WorldWideScience

Sample records for metalloproteinase inhibition delays

  1. Kinetic analysis of the inhibition of matrix metalloproteinases: lessons from the study of tissue inhibitors of metalloproteinases.

    Science.gov (United States)

    Willenbrock, Frances; Thomas, Daniel A; Amour, Augustin

    2010-01-01

    Tissue inhibitors of metalloproteinases (TIMPs) are a group of highly potent inhibitors of matrix metalloproteinases (MMPs) and disintegrin metalloproteinases (ADAMs). The high affinity and "tight-binding" nature of the inhibition of MMPs or ADAMs by TIMPs presents challenges for the determination of both equilibrium and dissociation rate constants of these inhibitory events. Methodologies that enable some of these challenges to be overcome are described in this chapter and represent valuable lessons for the in vitro assessment of MMP or ADAM inhibitors within a drug discovery context.

  2. Delayed-type hypersensitivity lesions in the central nervous system are prevented by inhibitors of matrix metalloproteinases.

    Science.gov (United States)

    Matyszak, M K; Perry, V H

    1996-09-01

    We have studied the effect of an inhibitor of matrix metalloproleinases, BB-1101, on a delayed-type hypersensitivity (DTH) response in the CNS. We used a recently described model in which heat-killed bacillus Calmette-Guérin (BCG) sequestered behind the blood-brain barrier (BBB) is targeted by a T-cell mediated response after subcutaneous injection of BCG (Matyszak and Perry, 1995). The DTH lesions are characterised by breakdown of the BBB, macrophage and lymphocyte infiltration and tissue damage including myelin loss. Treatment with BB-1101, which is not only a potent inhibitor of matrix metalloproteinases but also strongly inhibits TNF-alpha release, dramatically attenuated the CNS lesions. Breakdown of the BBB and the recruitment of T-cells into the site of the lesion were significantly reduced. There were many fewer inflammatory macrophages in DTH lesions than in comparable lesions from untreated animals. There was also significantly less myelin damage (assessed by staining with anti-MBP antibody). The DTH response in animals treated with dexamethasone was also reduced, but to a lesser degree. No significant effect was seen after administration of pentoxifylline, a phosphodiesterase inhibitor with effects including the inhibition of TNF-alpha production. Our results suggest that inhibitors of matrix metalloproteinases may be of considerable therapeutic benefit in neuroinflammatory diseases.

  3. Suramin Inhibits Osteoarthritic Cartilage Degradation by Increasing Extracellular Levels of Chondroprotective Tissue Inhibitor of Metalloproteinases 3.

    Science.gov (United States)

    Chanalaris, Anastasios; Doherty, Christine; Marsden, Brian D; Bambridge, Gabriel; Wren, Stephen P; Nagase, Hideaki; Troeberg, Linda

    2017-10-01

    Osteoarthritis is a common degenerative joint disease for which no disease-modifying drugs are currently available. Attempts to treat the disease with small molecule inhibitors of the metalloproteinases that degrade the cartilage matrix have been hampered by a lack of specificity. We aimed to inhibit cartilage degradation by augmenting levels of the endogenous metalloproteinase inhibitor, tissue inhibitor of metalloproteinases (TIMP)-3, through blocking its interaction with the endocytic scavenger receptor, low-density lipoprotein receptor-related protein 1 (LRP1). We discovered that suramin (C 51 H 40 N 6 O 23 S 6 ) bound to TIMP-3 with a K D value of 1.9 ± 0.2 nM and inhibited its endocytosis via LRP1, thus increasing extracellular levels of TIMP-3 and inhibiting cartilage degradation by the TIMP-3 target enzyme, adamalysin-like metalloproteinase with thrombospondin motifs 5. NF279 (8,8'-[carbonyl bis (imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)] bis -1,3,5-naphthalenetrisulfonic acid hexasodium salt), a structural analog of suramin, has an increased affinity for TIMP-3 and increased ability to inhibit TIMP-3 endocytosis and protect cartilage. Suramin is thus a promising scaffold for the development of novel therapeutics to increase TIMP-3 levels and inhibit cartilage degradation in osteoarthritis. Copyright © 2017 by The Author(s).

  4. Matrix metalloproteinase inhibition delays wound healing and blocks the latent transforming growth factor-beta1-promoted myofibroblast formation and function

    DEFF Research Database (Denmark)

    Mirastschijski, Ursula; Schnabel, Reinhild; Claes, Juliane

    2010-01-01

    applied topically to full-thickness skin excisional wounds in rats and its ability to inhibit the promotion of myofibroblast formation and function by the latent transforming-growth factor-beta1 (TGF-beta1). BB-94 delayed wound contraction, as well as all other associated aspects of wound healing examined......, including myofibroblast formation, stromal cell proliferation, blood vessel formation, and epithelial wound coverage. Interestingly, BB-94 dramatically increased the level of latent and active MMP-9. The increased levels of active MMP-9 may eventually overcome the ability of BB-94 to inhibit this MMP...... and may explain why wound contraction and other associated events of wound healing were only delayed and not completely inhibited. BB-94 was also found to inhibit the ability of latent TGF-beta1 to promote the formation and function of myofibroblasts. These results suggest that BB-94 could delay wound...

  5. Epigallocatechin-3-gallate ameliorates intrahepatic cholestasis of pregnancy by inhibiting matrix metalloproteinase-2 and matrix metalloproteinase-9.

    Science.gov (United States)

    Zhang, Mei; Xu, Meimei

    2017-10-01

    Matrix metalloproteinase (MMP)-2 and matrix metalloproteinase-9 are involved in many illnesses affecting pregnant women, including intrahepatic cholestasis of pregnancy (ICP), a serious liver abnormality during pregnancy. Epigallocatechin-3-gallate (EGCG) has been widely reported to inhibit activities of MMP-2 and MMP-9. We aimed to investigate the role of EGCG in ameliorating ICP symptoms in a rat model. Using 17α-ethinylestradiol to induce ICP in pregnant rats, we investigated the efficacy of EGCG administration on ICP symptoms, including bile flow rate, total bile acids (TBA) and MMP-2 and MMP-9 activities. Correlation study was conducted among levels of the two MMPs with other ICP symptoms. In ICP rats, activities of both MMP-2 and MMP-9 were significantly elevated. EGCG administration could inhibit the upregulation of MMP-2 and MMP-9 post-transcriptionally. Furthermore, EGCG ameliorated ICP symptoms, as evidenced by restored bile flow rate and TBA, showing efficient treatment outcomes. At last, levels of TBA and the two MMPs were found to be strongly correlated. Our study demonstrates that, for the first time, the efficacy of EGCG in ameliorating ICP symptoms by inhibiting both MMP-2 and MMP-9, which supports its potential as a novel drug in ameliorating ICP. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  6. Inhibition of the metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor.

    Science.gov (United States)

    Chirivi, R G; Garofalo, A; Crimmin, M J; Bawden, L J; Stoppacciaro, A; Brown, P D; Giavazzi, R

    1994-08-01

    The synthetic matrix metalloproteinase inhibitor batimastat was tested for its ability to inhibit growth and metastatic spread of the B16-BL6 murine melanoma in syngeneic C57BL/6N mice. Intraperitoneal administration of batimastat resulted in a significant inhibition in the number of lung colonies produced by B16-BL6 cells injected i.v. The effect of batimastat on spontaneous metastases was examined in mice inoculated in the hind footpad with B16-BL6 melanoma. The primary tumor was removed surgically after 26-28 days. Batimastat was administered twice a day from day 14 to day 28 (pre-surgery) or from day 26 to day 44 (post-surgery). With both protocols, the median number of lung metastases was not significantly affected, but there was a significant reduction in the weight of the metastases. Finally, the effect of batimastat was examined on s.c. growth of B16-BL6 melanoma. Batimastat administered daily, starting at day of tumor transplantation, resulted in a significant growth delay, whereas treatment starting at advanced stage tumor only reduced tumor growth marginally. Our results indicate that a matrix metalloproteinase inhibitor can not only prevent the colonization of secondary organs by B16-BL6 cells but also limit the growth of solid tumors.

  7. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    International Nuclear Information System (INIS)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D.; Pacher, Pal; Schulz, Richard

    2009-01-01

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC 50 values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.

  8. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D. [Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2 (Canada); Pacher, Pal [National Institutes of Health, NIAAA, Laboratory of Physiologic Studies, Bethesda, MD (United States); Schulz, Richard, E-mail: richard.schulz@ualberta.ca [Departments of Pharmacology and Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2 (Canada)

    2009-10-02

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC{sub 50} values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.

  9. Suppression of local invasion of ameloblastoma by inhibition of matrix metalloproteinase-2 in vitro

    International Nuclear Information System (INIS)

    Wang, Anxun; Zhang, Bin; Huang, Hongzhang; Zhang, Leitao; Zeng, Donglin; Tao, Qian; Wang, Jianguang; Pan, Chaobin

    2008-01-01

    Ameloblastomas are odontogenic neoplasms characterized by local invasiveness. This study was conducted to address the role of matrix metalloproteinase-2 (MMP-2) in the invasiveness of ameloblastomas. Plasmids containing either MMP-2 siRNA or tissue inhibitor of metalloproteinase-2 (TIMP-2) cDNA were created and subsequently transfected into primary ameloblastoma cells. Zymography, RT-PCR, and Western blots were used to assess MMP-2 activity and expression of MMP-2 and TIMP-2, as well as protein levels. Primary cultures of ameloblastoma cells expressed cytokeratin (CK) 14 and 16, and MMP-2, but only weakly expressed CK18 and vimentin. MMP-2 mRNA and protein levels were significantly inhibited by RNA interference (P < 0.05). Both MMP-2 siRNA and TIMP-2 overexpression inhibited MMP-2 activity and the in vitro invasiveness of ameloblastoma. These results indicate that inhibition of MMP-2 activity suppresses the local invasiveness of ameloblastoma cells. This mechanism may serve as a novel therapeutic target in ameloblastomas pursuant to additional research

  10. Aluminum Chloride Pretreatment of Elastin Inhibits Elastolysis by Matrix Metalloproteinases and Leads to Inhibition of Elastin-Oriented Calcification

    OpenAIRE

    Bailey, Michael; Xiao, Hui; Ogle, Matthew; Vyavahare, Naren

    2001-01-01

    Calcification of elastin occurs in many pathological cardiovascular diseases including atherosclerosis. We have previously shown that purified elastin when subdermally implanted in rats undergoes severe calcification and aluminum chloride (AlCl3) pretreatment of elastin inhibits calcification. In the present study we investigated whether matrix metalloproteinase (MMP) binding to elastin and elastin degradation is prevented by AlCl3 pretreatment. Subdermal implantation of AlCl3-pretreated elas...

  11. Inhibiting extracellular matrix metalloproteinase inducer maybe beneficial for diminishing the atherosclerotic plaque instability

    Directory of Open Access Journals (Sweden)

    Xie S

    2009-01-01

    Full Text Available Atherosclerotic plaque rupture and local thrombosis activation in the artery cause acute serious incidents such as acute coronary syndrome and stroke. The exact mechanism of plaque rupture remains unclear but excessive degradation of the extracellular matrix scaffold by matrix-degrading metalloproteinases (MMPs has been implicated as one of the major molecular mechanisms in this process. Convincing evidence is available to prove that extracellular matrix metalloproteinase inducer (EMMPRIN induces MMP expression and is involved in the inflammatory responses in the artery wall. The inflammation and MMPs have been shown to play a critical role for atherosclerotic lesion development and progression. More recent data showed that increased EMMPRIN expression was associated with vulnerable atherosclerotic lesions. Therefore, we speculate that EMMPRIN may be pivotal for atherosclerotic plaque instability, and hence inhibition of EMMPRIN expression could be a promising approach for the prevention or treatment of atheroma instability.

  12. Snake Venom Metalloproteinases

    Directory of Open Access Journals (Sweden)

    Gâz Florea Şerban Andrei

    2016-03-01

    Full Text Available As more data are generated from proteome and transcriptome analysis revealing that metalloproteinases represent most of the Viperid and Colubrid venom components authors decided to describe in a short review a classification and some of the multiple activities of snake venom metalloproteinases. SVMPs are classified in three major classes (P-I, P-II and P-III classes based on the presence of various domain structures and according to their domain organization. Furthermore, P-II and P-III classes were separated in subclasses based on distinctive post-translational modifications. SVMPs are synthesized in a latent form, being activated through a Cys-switch mechanism similar to matrix metalloproteinases. Most of the metalloproteinases of the snake venom are responsible for the hemorrhagic events but also have fibrinogenolytic activity, poses apoptotic activity, activate blood coagulation factor II and X, inhibit platelet aggregation, demonstrating that SVMPs have multiple functions in addition to well-known hemorrhagic function.

  13. Icotinib inhibits the invasion of Tca8113 cells via downregulation of nuclear factor κB-mediated matrix metalloproteinase expression.

    Science.gov (United States)

    Yang, Cailing; Yan, Jianguo; Yuan, Guoyan; Zhang, Yinghua; Lu, Derong; Ren, Mingxin; Cui, Weigang

    2014-09-01

    Icotinib is an epidermal growth factor receptor tyrosine kinase inhibitor, which has been revealed to inhibit proliferation in tumor cells. However, the effect of icotinib on cancer cell metastasis remains to be explained. This study examines the effect of icotinib on the migration and invasion of squamous cells of tongue carcinoma (Tca8113 cells) in vitro . The results of the Boyden chamber invasion assay demonstrated that icotinib reduced cell invasion, suppressed the protein levels of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, and increased the expression of tissue inhibitor of metalloproteinase-1. In addition, icotinib was found to significantly decrease the protein levels of nuclear factor κB (NF-κB) p65, which suggested that icotinib inhibits NF-κB activity. Furthermore, treatment with the NF-κB inhibitor, pyrrolidine dithiocarbamate, suppressed cell invasion and MMP-2 expression. These results suggested that icotinib inhibits the invasion of Tca8113 cells by downregulating MMP via the inactivation of the NF-κB signaling pathways.

  14. Haloperidol Abrogates Matrix Metalloproteinase-9 Expression by Inhibition of NF-κB Activation in Stimulated Human Monocytic Cells

    Directory of Open Access Journals (Sweden)

    Yueh-Lun Lee

    2018-01-01

    Full Text Available Much evidence has indicated that matrix metalloproteinases (MMPs participate in the progression of neuroinflammatory disorders. The present study was undertaken to investigate the inhibitory effect and mechanism of the antipsychotic haloperidol on MMP activation in the stimulated THP-1 monocytic cells. Haloperidol exerted a strong inhibition on tumor necrosis factor- (TNF- α-induced MMP-9 gelatinolysis of THP-1 cells. A concentration-dependent inhibitory effect of haloperidol was observed in TNF-α-induced protein and mRNA expression of MMP-9. On the other hand, haloperidol slightly affected cell viability and tissue inhibition of metalloproteinase-1 levels. It significantly inhibited the degradation of inhibitor-κB-α (IκBα in activated cells. Moreover, it suppressed activated nuclear factor-κB (NF-κB detected by a mobility shift assay, NF-κB reporter gene, and chromatin immunoprecipitation analyses. Consistent with NF-κB inhibition, haloperidol exerted a strong inhibition of lipopolysaccharide- (LPS- induced MMP-9 gelatinolysis but not of transforming growth factor-β1-induced MMP-2. In in vivo studies, administration of haloperidol significantly attenuated LPS-induced intracerebral MMP-9 activation of the brain homogenate and the in situ in C57BL/6 mice. In conclusion, the selective anti-MMP-9 activation of haloperidol could possibly involve the inhibition of the NF-κB signal pathway. Hence, it was found that haloperidol treatment may represent a bystander of anti-MMP actions for its conventional psychotherapy.

  15. Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer PC-3 cells by reducing matrix metalloproteinases expression.

    Directory of Open Access Journals (Sweden)

    Pin-Shern Chen

    Full Text Available BACKGROUND: Diosgenin, a steroidal saponin obtained from fenugreek (Trigonella foenum graecum, was found to exert anti-carcinogenic properties, such as inhibiting proliferation and inducing apoptosis in a variety of tumor cells. However, the effect of diosgenin on cancer metastasis remains unclear. The aim of the study is to examine the effect of diosgenin on migration and invasion in human prostate cancer PC-3 cells. METHODS AND PRINCIPAL FINDINGS: Diosgenin inhibited proliferation of PC-3 cells in a dose-dependent manner. When treated with non-toxic doses of diosgenin, cell migration and invasion were markedly suppressed by in vitro wound healing assay and Boyden chamber invasion assay, respectively. Furthermore, diosgenin reduced the activities of matrix metalloproteinase-2 (MMP-2 and MMP-9 by gelatin zymography assay. The mRNA level of MMP-2, -9, -7 and extracellular inducer of matrix metalloproteinase (EMMPRIN were also suppressed while tissue inhibitor of metalloproteinase-2 (TIMP-2 was increased by diosgenin. In addition, diosgenin abolished the expression of vascular endothelial growth factor (VEGF in PC-3 cells and tube formation of endothelial cells. Our immunoblotting assays indicated that diosgenin potently suppressed the phosphorylation of phosphatidylinositide-3 kinase (PI3K, Akt, extracellular signal regulating kinase (ERK and c-Jun N-terminal kinase (JNK. In addition, diosgenin significantly decreased the nuclear level of nuclear factor kappa B (NF-κB, suggesting that diosgenin inhibited NF-κB activity. CONCLUSION/SIGNIFICANCE: The results suggested that diosgenin inhibited migration and invasion of PC-3 cells by reducing MMPs expression. It also inhibited ERK, JNK and PI3K/Akt signaling pathways as well as NF-κB activity. These findings reveal new therapeutic potential for diosgenin in anti-metastatic therapy.

  16. Stanniocalcin-1 Potently Inhibits the Proteolytic Activity of the Metalloproteinase Pregnancy-associated Plasma Protein-A

    DEFF Research Database (Denmark)

    Kløverpris, Søren; Mikkelsen, Jakob Hauge; Pedersen, Josefine Hvidkjær

    2015-01-01

    regulation in these species. Several physiological functions of STC1 have been reported, although many molecular details are still lacking. We here demonstrate that STC1 is an inhibitor of the metzincin metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A), which modulates insulin-like growth...... that the homologous STC2 inhibits PAPP-A proteolytic activity, and that this depends on the formation of a covalent complex between the inhibitor and the proteinase, mediated by Cys-120 of STC2. We find that STC1 is unable to bind covalently to PAPP-A, in agreement with the absence of a corresponding cysteine residue....... It rather binds to PAPP-A with high affinity (KD = 75 pm). We further demonstrate that both STC1 and STC2 show inhibitory activity toward PAPP-A2, but not selected serine proteinases and metalloproteinases. We therefore conclude that the STCs are proteinase inhibitors, probably restricted in specificity...

  17. Isoginkgetin inhibits tumor cell invasion by regulating phosphatidylinositol 3-kinase/Akt-dependent matrix metalloproteinase-9 expression.

    Science.gov (United States)

    Yoon, Sang-Oh; Shin, Sejeong; Lee, Ho-Jae; Chun, Hyo-Kon; Chung, An-Sik

    2006-11-01

    Matrix metalloproteinase (MMP)-9 plays a key role in tumor invasion. Inhibitors of MMP-9 were screened from Metasequoia glyptostroboides (Dawn redwood) and one potent inhibitor, isoginkgetin, a biflavonoid, was identified. Noncytotoxic levels of isoginkgetin decreased MMP-9 production profoundly, but up-regulated the level of tissue inhibitor of metalloproteinase (TIMP)-1, an inhibitor of MMP-9, in HT1080 human fibrosarcoma cells. The major mechanism of Ras-dependent MMP-9 production in HT1080 cells was phosphatidylinositol 3-kinase (PI3K)/Akt/nuclear factor-kappaB (NF-kappaB) activation. Expression of dominant-active H-Ras and p85 (a subunit of PI3K) increased MMP-9 activity, whereas dominant-negative forms of these molecules decreased the level of MMP-9. H-Ras did not increase MMP-9 in the presence of a PI3K inhibitor, LY294002, and a NF-kappaB inhibitor, SN50. Further studies showed that isoginkgetin regulated MMP-9 production via PI3K/Akt/NF-kappaB pathway, as evidenced by the findings that isoginkgetin inhibited activities of both Akt and NF-kappaB. PI3K/Akt is a well-known key pathway for cell invasion, and isoginkgetin inhibited HT1080 tumor cell invasion substantially. Isoginkgetin was also quite effective in inhibiting the activities of Akt and MMP-9 in MDA-MB-231 breast carcinomas and B16F10 melanoma. Moreover, isoginkgetin treatment resulted in marked decrease in invasion of these cells. In summary, PI3K/Akt is a major pathway for MMP-9 expression and isoginkgetin markedly decreased MMP-9 expression and invasion through inhibition of this pathway. This suggests that isoginkgetin could be a potential candidate as a therapeutic agent against tumor invasion.

  18. Eicosapentaenoic acid inhibits TNF-α-induced matrix metalloproteinase-9 expression in human keratinocytes, HaCaT cells

    International Nuclear Information System (INIS)

    Kim, Hyeon Ho; Lee, Youngae; Eun, Hee Chul; Chung, Jin Ho

    2008-01-01

    Eicosapentaenoic acid (EPA) is an omega-3 (ω-3) polyunsaturated fatty acid (PUFA), which has anti-inflammatory and anti-cancer properties. Some reports have demonstrated that EPA inhibits NF-κB activation induced by tumor necrosis factor (TNF)-α or lipopolysaccharide (LPS) in various cells. However, its detailed mode of action is unclear. In this report, we investigated whether EPA inhibits the expression of TNF-α-induced matrix metalloproteinases (MMP)-9 in human immortalized keratinocytes (HaCaT). TNF-α induced MMP-9 expression by NF-κB-dependent pathway. Pretreatment of EPA inhibited TNF-α-induced MMP-9 expression and p65 phosphorylation. However, EPA could not affect IκB-α phosphorylation, nuclear translocation of p65, and DNA binding activity of NF-κB. EPA inhibited TNF-α-induced p65 phosphorylation through p38 and Akt inhibition and this inhibition was IKKα-dependent event. Taken together, we demonstrate that EPA inhibits TNF-α-induced MMP-9 expression through inhibition of p38 and Akt activation

  19. Inhibition delay increases neural network capacity through Stirling transform

    Science.gov (United States)

    Nogaret, Alain; King, Alastair

    2018-03-01

    Inhibitory neural networks are found to encode high volumes of information through delayed inhibition. We show that inhibition delay increases storage capacity through a Stirling transform of the minimum capacity which stabilizes locally coherent oscillations. We obtain both the exact and asymptotic formulas for the total number of dynamic attractors. Our results predict a (ln2) -N-fold increase in capacity for an N -neuron network and demonstrate high-density associative memories which host a maximum number of oscillations in analog neural devices.

  20. Matrix metalloproteinase inhibition reduces contraction by dupuytren fibroblasts.

    Science.gov (United States)

    Townley, William A; Cambrey, Alison D; Khaw, Peng T; Grobbelaar, Adriaan O

    2008-11-01

    Dupuytren's disease is a common fibroproliferative condition of the hand characterized by fibrotic lesions (nodules and cords), leading to disability through progressive digital contracture. Although the etiology of the disease is poorly understood, recent evidence suggests that abnormal matrix metalloproteinase (MMP) activity may play a role in cell-mediated collagen contraction and tissue scarring. The aim of this study was to investigate the efficacy of ilomastat, a broad-spectrum MMP inhibitor, in an in vitro model of Dupuytren fibroblast-mediated contraction. Nodule-derived and cord-derived fibroblasts were isolated from Dupuytren patients; carpal ligament-derived fibroblasts acted as control. Stress-release fibroblast-populated collagen lattices (FPCLs) were used as a model of contraction. FPCLs were allowed to develop mechanical stress (48 hours) during treatment with ilomastat (0-100 micromol/L), released, and allowed to contract over a 48-hour period. Contraction was estimated by measuring lattice area compared with untreated cells or treatment with a control peptide. MMP-1, MMP-2, and MT1-MMP levels were assessed by zymography, Western blotting, and enzyme-linked immunosorbent assay. Nodule-derived fibroblasts contracted lattices (69% +/- 2) to a greater extent than did cord-derived (55% +/- 3) or carpal ligament-derived (55% +/- 1) fibroblasts. Exposure to ilomastat led to significant inhibition of lattice contraction by all fibroblasts, although a reduction in lattice contraction by nodule-derived fibroblasts was most prominent (84% +/- 8). In addition, treatment with ilomastat led to a concomitant suppression of MMP-1 and MMP-2 activity, whereas MT1-MMP activity was found to be upregulated. Our results demonstrate that inhibition of MMP activity results in a reduction in extracellular matrix contraction by Dupuytren fibroblasts and suggest that MMP activity may be a critical target in preventing recurrent contracture caused by this disease.

  1. Data in support of the negative influence of divalent cations on (?)-epigallocatechin-3-gallate (EGCG)-mediated inhibition of matrix metalloproteinase-2 (MMP-2)

    OpenAIRE

    Deb, Gauri; Batra, Sahil; Limaye, Anil M.

    2015-01-01

    In this data article we have provided evidence for the negative influence of divalent cations on (−)‐epigallocatechin-3-gallate (EGCG)-mediated inhibition of matrix metalloproteinase-2 (MMP-2) activity in cell-free experiments. Chelating agents, such as EDTA and sodium citrate alone, did not affect MMP-2 activity. While EDTA enhanced, excess of divalent cations interfered with EGCG-mediated inhibition of MMP-2.

  2. Extracellular matrix remodeling and matrix metalloproteinase inhibition in visceral adipose during weight cycling in mice.

    Science.gov (United States)

    Caria, Cíntia Rabelo E Paiva; Gotardo, Érica Martins Ferreira; Santos, Paola Souza; Acedo, Simone Coghetto; de Morais, Thainá Rodrigues; Ribeiro, Marcelo Lima; Gambero, Alessandra

    2017-10-15

    Extracellular matrix (ECM) remodeling is necessary for a health adipose tissue (AT) expansion and also has a role during weight loss. We investigate the ECM alteration during weight cycling (WC) in mice and the role of matrix metalloproteinases (MMPs) was assessed using GM6001, an MMP inhibitor, during weight loss (WL). Obesity was induced in mice by a high-fat diet. Obese mice were subject to caloric restriction for WL followed by reintroduction to high-fat diet for weight regain (WR), resulting in a WC protocol. In addition, mice were treated with GM6001 during WL period and the effects were observed after WR. Activity and expression of MMPs was intense during WL. MMP inhibition during WL results in inflammation and collagen content reduction. MMP inhibition during WL period interferes with the period of subsequent expansion of AT resulting in improvements in local inflammation and systemic metabolic alterations induced by obesity. Our results suggest that MMPs inhibition could be an interesting target to improve adipose tissue inflammation during WL and to support weight cyclers. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Inhibition of Snake Venom Metalloproteinase by β-Lactoglobulin Peptide from Buffalo (Bubalus bubalis) Colostrum.

    Science.gov (United States)

    Arpitha, Ashok; Sebastin Santhosh, M; Rohit, A C; Girish, K S; Vinod, D; Aparna, H S

    2017-08-01

    Bioactive peptide research has experienced considerable therapeutic interest owing to varied physiological functions, efficacy in excretion, and tolerability of peptides. Colostrum is a rich natural source of bioactive peptides with many properties elucidated such as anti-thrombotic, anti-hypertensive, opioid, immunomodulatory, etc. In this study, a variant peptide derived from β-lactoglobulin from buffalo colostrum was evaluated for the anti-ophidian property by targeting snake venom metalloproteinases. These are responsible for rapid local tissue damages that develop after snakebite such as edema, hemorrhage, myonecrosis, and extracellular matrix degradation. The peptide identified by LC-MS/MS effectively neutralized hemorrhagic activity of the Echis carinatus venom in a dose-dependent manner. Histological examinations revealed that the peptide mitigated basement membrane degradation and accumulation of inflammatory leucocytes at the venom-injected site. Inhibition of proteolytic activity was evidenced in both casein and gelatin zymograms. Also, inhibition of fibrinolytic and fibrinogenolytic activities was seen. The UV-visible spectral study implicated Zn 2+ chelation, which was further confirmed by molecular docking and dynamic studies by assessing molecular interactions, thus implicating the probable mechanism for inhibition of venom-induced proteolytic and hemorrhagic activities. The present investigation establishes newer vista for the BLG-col peptide with anti-ophidian efficacy as a promising candidate for therapeutic interventions.

  4. Matrix metalloproteinase-10 (MMP-10) interaction with tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2: binding studies and crystal structure.

    Science.gov (United States)

    Batra, Jyotica; Robinson, Jessica; Soares, Alexei S; Fields, Alan P; Radisky, Derek C; Radisky, Evette S

    2012-05-04

    Matrix metalloproteinase 10 (MMP-10, stromelysin-2) is a secreted metalloproteinase with functions in skeletal development, wound healing, and vascular remodeling; its overexpression is also implicated in lung tumorigenesis and tumor progression. To understand the regulation of MMP-10 by tissue inhibitors of metalloproteinases (TIMPs), we have assessed equilibrium inhibition constants (K(i)) of putative physiological inhibitors TIMP-1 and TIMP-2 for the active catalytic domain of human MMP-10 (MMP-10cd) using multiple kinetic approaches. We find that TIMP-1 inhibits the MMP-10cd with a K(i) of 1.1 × 10(-9) M; this interaction is 10-fold weaker than the inhibition of the similar MMP-3 (stromelysin-1) catalytic domain (MMP-3cd) by TIMP-1. TIMP-2 inhibits the MMP-10cd with a K(i) of 5.8 × 10(-9) M, which is again 10-fold weaker than the inhibition of MMP-3cd by this inhibitor (K(i) = 5.5 × 10(-10) M). We solved the x-ray crystal structure of TIMP-1 bound to the MMP-10cd at 1.9 Å resolution; the structure was solved by molecular replacement and refined with an R-factor of 0.215 (R(free) = 0.266). Comparing our structure of MMP-10cd·TIMP-1 with the previously solved structure of MMP-3cd·TIMP-1 (Protein Data Bank entry 1UEA), we see substantial differences at the binding interface that provide insight into the differential binding of stromelysin family members to TIMP-1. This structural information may ultimately assist in the design of more selective TIMP-based inhibitors tailored for specificity toward individual members of the stromelysin family, with potential therapeutic applications.

  5. Extracellular matrix metalloproteinase inducer (EMMPRIN) remodels the extracellular matrix through enhancing matrix metalloproteinases (MMPs) and inhibiting tissue inhibitors of MMPs expression in HPV-positive cervical cancer cells.

    Science.gov (United States)

    Xu, Q; Cao, X; Pan, J; Ye, Y; Xie, Y; Ohara, N; Ji, H

    2015-01-01

    PUPOSE OF INVESTIGATION: To study the expression of extracellular matrix metalloproteinase inducer (EMMPRIN), matrix metalloproteinases (MMPs), and tissue inhibitors of MMP (TIMPs) in uterine cervical cancer cell lines in vitro. EMMPRIN, MMPs, and TIMPs expression were assessed by Western blot and real-time RT-PCR from cervical carcinoma SiHa, HeLa, and C33-A cells. EMMPRIN recombinant significantly increased MMP-2, MMP-9 protein and mRNA expression in SiHa and Hela cells, but not in C33-A cells by Western blot analysis and real-time RT-PCR. EMMPRIN recombinant significantly inhibited TIMP-1 protein and mRNA levels in SiHa and Hela cells, but not in C33-A cells. There was no difference on the TIMP-2 expression in those cells with the treatment of EMMPRIN recombinant. EMMPRIN RNAi decreased MMP-2 and MMP-9 and increased TIMP-1 expression in SiHa and HeLa cells, but not in C33-A cells. There was no change on the expression of TIMP-2 mRNA levels in SiHa, HeLa and C33-A cells transfected with siEMMPRIN. EMMPRIN may induce MMP-2 and MMP-9, and downregulate TIMP-1 in HPV-positive cervical cancer cells in vitro.

  6. Pentosan polysulfate inhibits atherosclerosis in Watanabe heritable hyperlipidemic rabbits: differential modulation of metalloproteinase-2 and -9.

    Science.gov (United States)

    Lupia, Enrico; Zheng, Feng; Grosjean, Fabrizio; Tack, Ivan; Doublier, Sophie; Elliot, Sharon J; Vlassara, Helen; Striker, Gary E

    2012-02-01

    Pentosan polysulfate (PPS), a heparinoid compound essentially devoid of anticoagulant activity, modulates cell growth and decreases inflammation. We investigated the effect of PPS on the progression of established atherosclerosis in Watanabe heritable hyperlipidemic (WHHL) rabbits. After severe atherosclerosis developed on an atherogenic diet, WHHL rabbits were treated with oral PPS or tap water for 1 month. The aortic intima-to-media ratio and macrophage infiltration were reduced, plaque collagen content was increased, and plaque fibrous caps were preserved by PPS treatment. Plasma lipid levels and post-heparin hepatic lipase activity remained unchanged. However, net collagenolytic activity in aortic extracts was decreased, and the levels of matrix metalloproteinase (MMP)-2 and tissue inhibitor of metalloproteinase (TIMP) activity were increased by PPS. Moreover, PPS treatment decreased tumor necrosis factor α (TNFα)-stimulated proinflammatory responses, in particular activation of nuclear factor-κB and p38, and activation of MMPs in macrophages. In conclusion, oral PPS treatment prevents progression of established atherosclerosis in WHHL rabbits. This effect may be partially mediated by increased MMP-2 and TIMP activities in the aortic wall and reduced TNFα-stimulated inflammation and MMP activation in macrophages. Thus, PPS may be a useful agent in inhibiting the progression of atherosclerosis.

  7. Snake venom metalloproteinases and disintegrins: interactions with cells

    Directory of Open Access Journals (Sweden)

    Kamiguti A.S.

    1998-01-01

    Full Text Available Metalloproteinases and disintegrins are important components of most viperid and crotalid venoms. Large metalloproteinases referred to as MDC enzymes are composed of an N-terminal Metalloproteinase domain, a Disintegrin-like domain and a Cys-rich C-terminus. In contrast, disintegrins are small non-enzymatic RGD-containing cysteine-rich polypeptides. However, the disintegrin region of MDC enzymes bears a high degree of structural homology to that of the disintegrins, although it lacks the RGD motif. Despite these differences, both components share the property of being able to recognize integrin cell surface receptors and thereby to inhibit integrin-dependent cell reactions. Recently, several membrane-bound MDC enzymes, closely related to soluble venom MDC enzymes, have been described in mammalian cells. This group of membrane-anchored mammalian enzymes is also called the ADAM family of proteins due to the structure revealing A Disintegrin And Metalloproteinase domains. ADAMs are involved in the shedding of molecules from the cell surface, a property which is also shared by some venom MDC enzymes.

  8. A failure of matrix metalloproteinase inhibition in the prevention of rat intracranial aneurysm formation

    International Nuclear Information System (INIS)

    Kaufmann, T.J.; Kallmes, D.F.; Marx, W.F.

    2006-01-01

    We tested the hypothesis that nonspecific matrix metalloproteinase (MMP) inhibition with doxycycline would decrease the incidence of intracranial aneurysm formation in a rat aneurysm model. We performed common carotid artery ligation on 96 Long-Evans rats. A treatment group of 48 animals was chosen at random to receive oral doxycycline (3 mg/kg) in addition to standard rat chow, and the control group of 48 animals received standard rat chow only. The major circle of Willis arteries was dissected at 1 year following carotid ligation, and the proportions of animals with aneurysms were compared between groups using Fisher's exact test. Four animals given oral doxycycline and ten control animals expired before 1 year. Of the examined animals, eight saccular intracranial aneurysms were found in 8 of 45 animals which had received doxycycline (17.8%) and seven saccular intracranial aneurysms were found in 7 of 37 control animals (18.9%). There was no significant difference in aneurysm formation between the doxycycline-treated and control groups (P=0.894). Nonspecific MMP inhibition with doxycycline is not effective in preventing intracranial aneurysm formation in a rat model. (orig.)

  9. Inhibition of matrix metalloproteinase-14 in osteosarcoma cells by clodronate

    NARCIS (Netherlands)

    Heikkilä, P.; Teronen, O.; Hirn, M.Y.; Sorsa, T.; Tervahartiala, T.; Salo, T.; Konttinen, Y.T.; Halttunen, T.; Moilanen, M.; Hanemaaijer, R.; Laitinen, M.

    2003-01-01

    Background. Bisphosphonates reduce the bone metastasis formation and angiogenesis but the exact molecular mechanisms involved are unclear. Progelatinase A (proMMP-2; 78 KDa) is activated up during the tumor spread and metastasis by a cell surface-associated matrix metalloproteinase (membrane-type

  10. Overexpression of membrane sialic acid-specific sialidase Neu3 inhibits matrix metalloproteinase-9 expression in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Moon, Sung-Kwon; Cho, Seung-Hak; Kim, Kyung-Woon; Jeon, Jae Heung; Ko, Jeong-Heon; Kim, Bo Yeon; Kim, Cheorl-Ho

    2007-01-01

    The ganglioside-specific sialidase Neu3 has been suggested to participate in cell growth, migration, and differentiation. Recent reports suggest that sialidase may be involved in intimal thickening, an early stage in the development of atherosclerosis. However, the role of the Neu3 gene in vascular smooth muscle cells (VSMC) responses has not yet been elucidated. To determine whether a Neu3 is able to modulate VSMC growth, the effect of overexpression of the Neu3 gene on cell proliferation was examined. However, the results show that the overexpression of this gene has no effect on DNA synthesis and ERK phosphorylation in cultured VSMC in the presence of TNF-α. Because atherogenic effects need not be limited to proliferation, we decided to examine whether Neu3 exerted inhibitory effects on matrix metalloproteinase-9 (MMP-9) activity in TNF-α-induced VSMC. The expression of the Neu3 gene led to the inhibition of TNF-α-induced matrix metalloproteinase-9 (MMP-9) expression in VSMC as determined by zymography and immunoblot. Furthermore, Neu3 gene expression strongly decreased MMP-9 promoter activity in response to TNF-α. This inhibition was characterized by the down-regulation of MMP-9, which was transcriptionally regulated at NF-κB and activation protein-1 (AP-1) sites in the MMP-9 promoter. These findings suggest that the Neu3 gene represents a physiological modulator of VSMC responses that may contribute to plaque instability in atherosclerosis

  11. Isolation and cloning of a metalloproteinase from king cobra snake venom.

    Science.gov (United States)

    Guo, Xiao-Xi; Zeng, Lin; Lee, Wen-Hui; Zhang, Yun; Jin, Yang

    2007-06-01

    A 50 kDa fibrinogenolytic protease, ohagin, from the venom of Ophiophagus hannah was isolated by a combination of gel filtration, ion-exchange and heparin affinity chromatography. Ohagin specifically degraded the alpha-chain of human fibrinogen and the proteolytic activity was completely abolished by EDTA, but not by PMSF, suggesting it is a metalloproteinase. It dose-dependently inhibited platelet aggregation induced by ADP, TMVA and stejnulxin. The full sequence of ohagin was deduced by cDNA cloning and confirmed by protein sequencing and peptide mass fingerprinting. The full-length cDNA sequence of ohagin encodes an open reading frame of 611 amino acids that includes signal peptide, proprotein and mature protein comprising metalloproteinase, disintegrin-like and cysteine-rich domains, suggesting it belongs to P-III class metalloproteinase. In addition, P-III class metalloproteinases from the venom glands of Naja atra, Bungarus multicinctus and Bungarus fasciatus were also cloned in this study. Sequence analysis and phylogenetic analysis indicated that metalloproteinases from elapid snake venoms form a new subgroup of P-III SVMPs.

  12. Inhibition of matrix metalloproteinases expression in human dental pulp cells by all-trans retinoic acid

    Institute of Scientific and Technical Information of China (English)

    Jin Man Kim; Sang Wook Kang; Su-Mi Shin; Duck Su Kim; Kyong-Kyu Choi; Eun-Cheol Kim; Sun-Young Kim

    2014-01-01

    All-trans retinoic acid (ATRA) inhibits matrix metalloproteinase (MMP)-2 and MMP-9 in synovial fibroblasts, skin fibroblasts, bronchoalveolar lavage cells and cancer cells, but activates MMP-9 in neuroblast and leukemia cells. Very little is known regarding whether ATRA can activate or inhibit MMPs in human dental pulp cells (HDPCs). The purpose of this study was to determine the effects of ATRA on the production and secretion of MMP-2 and-9 in HDPCs. The productions and messenger RNA (mRNA) expressions of MMP-2 and-9 were accessed by gelatin zymography and real-time polymerase chain reaction (PCR), respectively. ATRA was found to decrease MMP-2 level in a dose-dependent manner. Significant reduction in MMP-2 mRNA expression was also observed in HDPCs treated with 25 mmol?L21 ATRA. However, HDPCs treated with ATRA had no effect on the pattern of MMP-9 produced or secreted in either cell extracts or conditioned medium fractions. Taken together, ATRA had an inhibitory effect on MMP-2 expression in HDPCs, which suggests that ATRA could be a candidate as a medicament which could control the inflammation of pulp tissue in vital pulp therapy and regenerative endodontics.

  13. Terminalia catappa Exerts Antimetastatic Effects on Hepatocellular Carcinoma through Transcriptional Inhibition of Matrix Metalloproteinase-9 by Modulating NF-κB and AP-1 Activity

    Directory of Open Access Journals (Sweden)

    Chao-Bin Yeh

    2012-01-01

    Full Text Available High mortality and morbidity rates for hepatocellular carcinoma (HCC in Taiwan primarily result from uncontrolled tumor metastasis. Previous studies have identified that Terminalia catappa leaf extracts (TCE exert hepatoprotective, antioxidative, antiinflammatory, anticancer, and antimetastatic activities. However, the effects of TCE on HCC and the underlying molecular mechanisms of its activities have yet to be fully elucidated. The present study's findings demonstrate that TCE concentration dependently inhibits human HCC migration/invasion. Zymographic and western blot analyses revealed that TCE inhibited the activities and expression of matrix metalloproteinase-9 (MMP-9. Assessment of mRNA levels, using reverse transcriptase polymerase chain reaction (PCR and real-time PCR, and promoter assays confirmed the inhibitory effects of TCE on MMP-9 expression in HCC cells. The inhibitory effects of TCE on MMP-9 proceeded by upregulating tissue inhibitor of metalloproteinase-1 (TIMP-1, as well as suppressing nuclear translocation and DNA binding activity of nuclear factor-kappa B (NF-κB and activating protein-1 (AP-1 on the MMP-9 promoter in Huh7 cells. In conclusion, TCE inhibits MMP-9 expression and HCC cell metastasis and, thus, has potential use as a chemopreventive agent. Its inhibitory effects are associated with downregulation of the binding activities of the transcription factors NF-κB and AP-1.

  14. Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration.

    Science.gov (United States)

    Kaplan, Artem; Spiller, Krista J; Towne, Christopher; Kanning, Kevin C; Choe, Ginn T; Geber, Adam; Akay, Turgay; Aebischer, Patrick; Henderson, Christopher E

    2014-01-22

    Selective neuronal loss is the hallmark of neurodegenerative diseases. In patients with amyotrophic lateral sclerosis (ALS), most motor neurons die but those innervating extraocular, pelvic sphincter, and slow limb muscles exhibit selective resistance. We identified 18 genes that show >10-fold differential expression between resistant and vulnerable motor neurons. One of these, matrix metalloproteinase-9 (MMP-9), is expressed only by fast motor neurons, which are selectively vulnerable. In ALS model mice expressing mutant superoxide dismutase (SOD1), reduction of MMP-9 function using gene ablation, viral gene therapy, or pharmacological inhibition significantly delayed muscle denervation. In the presence of mutant SOD1, MMP-9 expressed by fast motor neurons themselves enhances activation of ER stress and is sufficient to trigger axonal die-back. These findings define MMP-9 as a candidate therapeutic target for ALS. The molecular basis of neuronal diversity thus provides significant insights into mechanisms of selective vulnerability to neurodegeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Matrix metalloproteinase 2 and membrane type 1 matrix metalloproteinase co-regulate axonal outgrowth of mouse retinal ganglion cells

    DEFF Research Database (Denmark)

    Gaublomme, Djoere; Buyens, Tom; De Groef, Lies

    2014-01-01

    regenerative therapies, an improved understanding of axonal outgrowth and the various molecules influencing it, is highly needed. Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases that were sporadically reported to influence axon outgrowth. Using an ex vivo retinal explant model......, but not MMP-9, are involved in this process. Furthermore, administration of a novel antibody to MT1-MMP that selectively blocks pro-MMP-2 activation revealed a functional co-involvement of these proteinases in determining RGC axon outgrowth. Subsequent immunostainings showed expression of both MMP-2 and MT1...... nervous system is lacking in adult mammals, thereby impeding recovery from injury to the nervous system. Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases that were sporadically reported to influence axon outgrowth. Inhibition of specific MMPs reduced neurite outgrowth from...

  16. Matrix metalloproteinase-9 inhibition improves proliferation and engraftment of myogenic cells in dystrophic muscle of mdx mice.

    Directory of Open Access Journals (Sweden)

    Sajedah M Hindi

    Full Text Available Duchenne muscular dystrophy (DMD caused by loss of cytoskeletal protein dystrophin is a devastating disorder of skeletal muscle. Primary deficiency of dystrophin leads to several secondary pathological changes including fiber degeneration and regeneration, extracellular matrix breakdown, inflammation, and fibrosis. Matrix metalloproteinases (MMPs are a group of extracellular proteases that are involved in tissue remodeling, inflammation, and development of interstitial fibrosis in many disease states. We have recently reported that the inhibition of MMP-9 improves myopathy and augments myofiber regeneration in mdx mice (a mouse model of DMD. However, the mechanisms by which MMP-9 regulates disease progression in mdx mice remain less understood. In this report, we demonstrate that the inhibition of MMP-9 augments the proliferation of satellite cells in dystrophic muscle. MMP-9 inhibition also causes significant reduction in percentage of M1 macrophages with concomitant increase in the proportion of promyogenic M2 macrophages in mdx mice. Moreover, inhibition of MMP-9 increases the expression of Notch ligands and receptors, and Notch target genes in skeletal muscle of mdx mice. Furthermore, our results show that while MMP-9 inhibition augments the expression of components of canonical Wnt signaling, it reduces the expression of genes whose products are involved in activation of non-canonical Wnt signaling in mdx mice. Finally, the inhibition of MMP-9 was found to dramatically improve the engraftment of transplanted myoblasts in skeletal muscle of mdx mice. Collectively, our study suggests that the inhibition of MMP-9 is a promising approach to stimulate myofiber regeneration and improving engraftment of muscle progenitor cells in dystrophic muscle.

  17. DIDS prevents ischemic membrane degradation in cultured hippocampal neurons by inhibiting matrix metalloproteinase release.

    Directory of Open Access Journals (Sweden)

    Matthew E Pamenter

    Full Text Available During stroke, cells in the infarct core exhibit rapid failure of their permeability barriers, which releases ions and inflammatory molecules that are deleterious to nearby tissue (the penumbra. Plasma membrane degradation is key to penumbral spread and is mediated by matrix metalloproteinases (MMPs, which are released via vesicular exocytosis into the extracellular fluid in response to stress. DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid preserves membrane integrity in neurons challenged with an in vitro ischemic penumbral mimic (ischemic solution: IS and we asked whether this action was mediated via inhibition of MMP activity. In cultured murine hippocampal neurons challenged with IS, intracellular proMMP-2 and -9 expression increased 4-10 fold and extracellular latent and active MMP isoform expression increased 2-22 fold. MMP-mediated extracellular gelatinolytic activity increased ∼20-50 fold, causing detachment of 32.1±4.5% of cells from the matrix and extensive plasma membrane degradation (>60% of cells took up vital dyes and >60% of plasma membranes were fragmented or blebbed. DIDS abolished cellular detachment and membrane degradation in neurons and the pathology-induced extracellular expression of latent and active MMPs. DIDS similarly inhibited extracellular MMP expression and cellular detachment induced by the pro-apoptotic agent staurosporine or the general proteinase agonist 4-aminophenylmercuric acetate (APMA. Conversely, DIDS-treatment did not impair stress-induced intracellular proMMP production, nor the intracellular cleavage of proMMP-2 to the active form, suggesting DIDS interferes with the vesicular extrusion of MMPs rather than directly inhibiting proteinase expression or activation. In support of this hypothesis, an antagonist of the V-type vesicular ATPase also inhibited extracellular MMP expression to a similar degree as DIDS. In addition, in a proteinase-independent model of vesicular exocytosis, DIDS

  18. Caffeic Acid Phenethyl Ester Inhibits Oral Cancer Cell Metastasis by Regulating Matrix Metalloproteinase-2 and the Mitogen-Activated Protein Kinase Pathway

    Directory of Open Access Journals (Sweden)

    Chih-Yu Peng

    2012-01-01

    Full Text Available Caffeic acid phenethyl ester (CAPE, an active component extracted from honeybee hives, exhibits anti-inflammatory and anticancer activities. However, the molecular mechanism by which CAPE affects oral cancer cell metastasis has yet to be elucidated. In this study, we investigated the potential mechanisms underlying the effects of CAPE on the invasive ability of SCC-9 oral cancer cells. Results showed that CAPE attenuated SCC-9 cell migration and invasion at noncytotoxic concentrations (0 μM to 40 μM. Western blot and gelatin zymography analysis findings further indicated that CAPE downregulated matrix metalloproteinase-2 (MMP-2 protein expression and inhibited its enzymatic activity. CAPE exerted its inhibitory effects on MMP-2 expression and activity by upregulating tissue inhibitor of metalloproteinase-2 (TIMP-2 and potently decreased migration by reducing focal adhesion kinase (FAK phosphorylation and the activation of its downstream signaling molecules p38/MAPK and JNK. These data indicate that CAPE could potentially be used as a chemoagent to prevent oral cancer metastasis.

  19. Matrix metalloproteinase inhibition reduces intimal hyperplasia in a porcine arteriovenous-graft model

    NARCIS (Netherlands)

    Rotmans, Joris I.; Velema, Evelyn; Verhagen, Hence J. M.; Blankensteijn, Jan D.; de kleijn, Dominique P. V.; Stroes, Erik S. G.; Pasterkamp, Gerard

    2004-01-01

    Background: The patency of arteriovenous (AV) polytetrafluoroethylene grafts for hemodialysis is impaired by intimal hyperplasia (IH) at the venous outflow tract. IH mainly consists of vascular smooth muscle cells, fibroblasts, and extracellular matrix proteins. Because matrix metalloproteinases

  20. Matrix metalloproteinase inhibition reduces intimal hyperplasia in a porcine arteriovenous-graft model.

    NARCIS (Netherlands)

    Rotmans, J.I.; Velema, E.; Verhagen, H.J.; Blankensteijn, J.D.; Kleijn, D.P. de; Stroes, E.S.; Pasterkamp, G.

    2004-01-01

    BACKGROUND: The patency of arteriovenous (AV) polytetrafluoroethylene grafts for hemodialysis is impaired by intimal hyperplasia (IH) at the venous outflow tract. IH mainly consists of vascular smooth muscle cells, fibroblasts, and extracellular matrix proteins. Because matrix metalloproteinases

  1. Matrix metalloproteinase inhibition reduces intimal hyperplasia in a porcine arteriovenous-graft model

    NARCIS (Netherlands)

    Rotmans, JI; Velema, E; Verhagen, HJM; Blankensteijn, JD; de Kleijn, DPV; Stroes, ESG; Pasterkamp, G

    Background: The patency of arteriovenous (AV) polytetrafluoroethylene grafts for hemodialysis is impaired by intimal hyperplasia (IH) at the venous outflow tract. IH mainly consists of vascular smooth muscle cells, fibroblasts, and extracellular matrix proteins. Because matrix metalloproteinases

  2. Matrix metalloproteinases (MMPs) safeguard osteoblasts from apoptosis during transdifferentiation into osteocytes

    DEFF Research Database (Denmark)

    Karsdal, M A; Levin Andersen, Thomas; Bonewald, L

    2004-01-01

    of osteoblasts forced to transdifferentiate into osteocytes in 3D type I collagen gels were inhibited by more than 50% when exposed to 10 microM GM6001 and to Tissue Inhibitor of Metalloproteinase-2 (TIMP-2), a natural MT1-MMP inhibitor. This shows the importance of MMPs in safeguarding osteoblasts from......Osteoblasts undergo apoptosis or differentiate into either osteocytes or bone-lining cells after termination of bone matrix synthesis. In this study, we investigated the role of matrix metalloproteinases (MMPs) in differentiation of osteoblasts, bone formation, transdifferentiation into osteocytes......, and osteocyte apoptosis. This was accomplished by using calvarial sections from the MT1-MMP-deficient mouse and by culture of the mouse osteoblast cell line MC3T3-E1 and primary mouse calvarial osteoblasts. We found that a synthetic matrix metalloprotease inhibitor, GM6001, strongly inhibited bone formation...

  3. Inhibition of Cellular Adhesion by Immunological Targeting of Osteopontin Neoepitopes Generated through Matrix Metalloproteinase and Thrombin Cleavage.

    Science.gov (United States)

    Jürets, Alexander; Le Bras, Marie; Staffler, Günther; Stein, Gesine; Leitner, Lukas; Neuhofer, Angelika; Tardelli, Matteo; Turkof, Edvin; Zeyda, Maximilian; Stulnig, Thomas M

    2016-01-01

    Osteopontin (OPN), a secreted protein involved in inflammatory processes and cancer, induces cell adhesion, migration, and activation of inflammatory pathways in various cell types. Cells bind OPN via integrins at a canonical RGD region in the full length form as well as to a contiguous cryptic site that some have shown is unmasked upon thrombin or matrix metalloproteinase cleavage. Thus, the adhesive capacity of osteopontin is enhanced by proteolytic cleavage that may occur in inflammatory conditions such as obesity, atherosclerosis, rheumatoid arthritis, tumor growth and metastasis. Our aim was to inhibit cellular adhesion to recombinant truncated proteins that correspond to the N-terminal cleavage products of thrombin- or matrix metalloproteinase-cleaved OPN in vitro. We specifically targeted the cryptic integrin binding site with monoclonal antibodies and antisera induced by peptide immunization of mice. HEK 293 cells adhered markedly stronger to truncated OPN proteins than to full length OPN. Without affecting cell binding to the full length form, the raised monoclonal antibodies specifically impeded cellular adhesion to the OPN fragments. Moreover, we show that the peptides used for immunization were able to induce antisera, which impeded adhesion either to all OPN forms, including the full-length form, or selectively to the corresponding truncated recombinant proteins. In conclusion, we developed immunological tools to selectively target functional properties of protease-cleaved OPN forms, which could find applications in treatment and prevention of various inflammatory diseases and cancers.

  4. Metalloproteinase inhibition prevents acute respiratory distress syndrome.

    Science.gov (United States)

    Carney, D E; McCann, U G; Schiller, H J; Gatto, L A; Steinberg, J; Picone, A L; Nieman, G F

    2001-08-01

    The acute respiratory distress syndrome (ARDS) occurs in patients with clearly identifiable risk factors, and its treatment remains merely supportive. We postulated that patients at risk for ARDS can be protected against lung injury by a prophylactic treatment strategy that targets neutrophil-derived proteases. We hypothesized that a chemically modified tetracycline 3 (COL-3), a potent inhibitor of neutrophil matrix metalloproteinases (MMPs) and neutrophil elastase (NE) with minimal toxicity, would prevent ARDS in our porcine endotoxin-induced ARDS model. Yorkshire pigs were anesthetized, intubated, surgically instrumented for hemodynamic monitoring, and randomized into three groups: (1) control (n = 4), surgical instrumentation only; (2) lipopolysaccharide (LPS) (n = 4), infusion of Escherichia coli lipopolysaccharide at 100 microg/kg; and (3) COL-3 + LPS (n = 5), ingestion of COL-3 (100 mg/kg) 12 h before LPS infusion. All animals were monitored for 6 h following LPS or sham LPS infusion. Serial bronchoalveolar lavage (BAL) samples were analyzed for MMP concentration by gelatin zymography. Lung tissue was fixed for morphometric assessment at necropsy. LPS infusion was marked by significant (P decrement in arterial oxygen partial pressure (P(a)O(2)) (LPS = 66 +/- 15 mm Hg, Control = 263 +/- 25 mm Hg) 6 h following LPS or sham LPS infusion, respectively. Pretreatment with COL-3 reduced the above pathophysiological changes 6 h following LPS infusion (P(plat) = 18.5 +/- 1.7 mm Hg, P(a)O(2) = 199 +/- 35 mm Hg; P = NS vs control). MMP-9 and MMP-2 concentration in BAL fluid was significantly increased between 2 and 4 h post-LPS infusion; COL-3 reduced the increase in MMP-9 and MMP-2 concentration at all time periods. Morphometrically LPS caused a significant sequestration of neutrophils and monocytes into pulmonary tissue. Pretreatment with COL-3 ameliorated this response. The wet/dry lung weight ratio was significantly greater (P single prophylactic treatment with COL

  5. Maintenance of ovulation inhibition with a new progestogen-only pill containing drospirenone after scheduled 24-h delays in pill intake

    DEFF Research Database (Denmark)

    Duijkers, Ingrid J M; Heger-Mahn, Doris; Drouin, Dominique

    2016-01-01

    by four placebo tablets. A previous study showed that this new drospirenone-only pill effectively inhibited ovulation. Clinical efficacy, however, can be affected by compliance, and delayed or forgotten pill intake often occurs in daily life. The aim of this study was to investigate if inhibition.......8%; only one subject in Group A fulfilled the ovulation criteria in Cycle 2. Follicular diameters in the regular-intake and the delayed-intake cycles were similar. CONCLUSION: Despite the 4-day hormone-free period and multiple intentional 24-h delays in tablet intake, ovulation inhibition was maintained...... inhibition by the new-generation oestrogen-free pill, containing 4-mg drospirenone for 24 days followed by a 4-day treatment-free period, was maintained despite four 24-h delays in tablet intake, so the impact of delayed intake on contraceptive reliability will be low....

  6. Resveratrol suppresses TPA-induced matrix metalloproteinase-9 expression through the inhibition of MAPK pathways in oral cancer cells.

    Science.gov (United States)

    Lin, Feng-Yan; Hsieh, Yi-Hsien; Yang, Shun-Fa; Chen, Chang-Tai; Tang, Chih-Hsin; Chou, Ming-Yung; Chuang, Yi-Ting; Lin, Chiao-Wen; Chen, Mu-Kuan

    2015-10-01

    Naturally occurring agents, such as resveratrol, have been determined to benefit health. Numerous studies have demonstrated that resveratrol has antioxidative, cardioprotective, and neuroprotective properties. However, the effect of resveratrol exerts on the metastasis of oral cancer cells remains unclear. In this study, we investigated the effect the anti-invasive activity of resveratrol on a human oral cancer cell line (SCC-9) in vitro and the underlying mechanisms. Cell viability was examined by MTT assay, whereas cell motility was measured by migration and wound-healing assays. Zymography, reverse-transcriptase polymerase chain reaction (PCR), and promoter assays confirmed the inhibitory effects of resveratrol on matrix metalloproteinase-9 (MMP-9) expression in oral cancer cells. We established that various concentrations (0-100 μM) of resveratrol inhibited the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced migration capacities of SCC-9 cells and caused no cytotoxic effects. Zymography and Western blot analyses suggested that resveratrol inhibited TPA-induced MMP-9 gelatinolytic activity and protein expression. In addition, the results indicated that resveratrol inhibited the phosphorylation of c-Jun N-terminal kinase (JNK)1/2 and extracellular-signal-regulated kinase (ERK)1/2 involved in downregulating protein expression and the transcription of MMP-9. In summary, resveratrol inhibited MMP-9 expression and oral cancer cell metastasis by downregulating JNK1/2 and ERK1/2 signals pathways and, thus, exerts beneficial effects in chemoprevention. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Beneficial Regulation of Matrix Metalloproteinases for Skin Health

    Directory of Open Access Journals (Sweden)

    Neena Philips

    2011-01-01

    Full Text Available Matrix metalloproteinases (MMPs are essential to the remodeling of the extracellular matrix. While their upregulation facilitates aging and cancer, they are essential to epidermal differentiation and the prevention of wound scars. The pharmaceutical industry is active in identifying products that inhibit MMPs to prevent or treat aging and cancer and products that stimulate MMPs to prevent epidermal hyperproliferative diseases and wound scars.

  8. Better working memory and motor inhibition in children who delayed gratification

    Directory of Open Access Journals (Sweden)

    Junhong Yu

    2016-07-01

    Full Text Available Background: Despite the extensive research on delayed gratification over the past few decades, the neurocognitive processes that subserve delayed gratification remains unclear. As an exploratory step in studying these processes, the present study aims to describe the executive function profiles of children who were successful at delaying gratification and those who were not. =Methods: A total of 138 kindergarten students (65 males, 73 females; Mage = 44 months, SD= 3.5; age range= 37 to 53 months were administered a delayed gratification task, a 1-back test, a Day/night Stroop test and a Go/no-go test. The outcome measures of these tests were then analyzed between groups using a Multivariate Analysis of Variance, and subsequently a Multivariate Analysis of Covariance incorporating age as a covariate.Results: Children who were successful in delaying gratification were significantly older and had significantly better outcomes in the 1-back test and go/no-go test. With the exception of the number of hits in the go/no-go test, all other group differences remained significant after controlling for age.Conclusion:Children who were successful in delaying gratification showed better working memory and motor inhibition relative to those who failed the delayed gratification task. The implications of these findings are discussed

  9. Better Working Memory and Motor Inhibition in Children Who Delayed Gratification

    Science.gov (United States)

    Yu, Junhong; Kam, Chi-Ming; Lee, Tatia M. C.

    2016-01-01

    Background: Despite the extensive research on delayed gratification over the past few decades, the neurocognitive processes that subserve delayed gratification remains unclear. As an exploratory step in studying these processes, the present study aims to describe the executive function profiles of children who were successful at delaying gratification and those who were not. Methods: A total of 138 kindergarten students (65 males, 73 females; Mage = 44 months, SD = 3.5; age range = 37–53 months) were administered a delayed gratification task, a 1-back test, a Day/night Stroop test and a Go/no-go test. The outcome measures of these tests were then analyzed between groups using a Multivariate Analysis of Variance, and subsequently a Multivariate Analysis of Covariance incorporating age as a covariate. Results: Children who were successful in delaying gratification were significantly older and had significantly better outcomes in the 1-back test and go/no-go test. With the exception of the number of hits in the go/no-go test, all other group differences remained significant after controlling for age. Conclusion: Children who were successful in delaying gratification showed better working memory and motor inhibition relative to those who failed the delayed gratification task. The implications of these findings are discussed. PMID:27493638

  10. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in diagnosis of pleural effusion of malignant origin.

    Science.gov (United States)

    Fiorelli, Alfonso; Ricci, Serena; Feola, Antonia; Mazzella, Antonio; D'Angelo, Luigi; Santini, Mario; Di Domenico, Marina; Di Carlo, Angelina

    2016-04-01

    The aim of the present study was to evaluate the diagnostic accuracy of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in differentiating benign from malignant exudative pleural effusions. This is a unicentre observational study including 97 consecutive patients with exudative pleural effusions. Metalloproteinase-9, tissue inhibitor of metalloproteinase-1, lactate dehydrogenase, ferritin, carcinoembryonic antigen and carbohydrate antigen 15-3 were measured in pleural effusion and serum by enzyme-linked immunosorbent assay. The activity of metalloproteinase-9 was also evaluated by substrate zymography. The data were correlated with final diagnosis of pleural effusions to evaluate the diagnostic accuracy. Of the 97 eligible patients, 6 were excluded. Of the 91 patients included in the study, 70 had malignant pleural effusions and 21 had benign pleural effusions. Both in sera and pleural effusions, matrix metalloproteinase-9 (P effusion (P effusion metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels showed higher value of sensitivity (97 and 91%, respectively) and specificity (90 and 95%, respectively) compared with other standard markers. Serum metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels showed similar results. Among 70 neoplastic patients, 29 had negative pleural cytology. Of these, 25 presented elevated levels of metalloproteinase-9 and tissue inhibitor of metalloproteinase-1, whereas 4 patients had elevated levels of one of the two markers. Our results showed that metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 might be valuable markers in differentiating benign from malignant pleural effusions. Their levels are neither influenced by the histology and tumour origin nor by the presence of tumour cells in pleural effusions. Thus, their use in clinical practice could help in the selection of patients needing more invasive procedures, such as thoracoscopic biopsy. © The Author 2016

  11. CopA3 Peptide Prevents Ultraviolet-Induced Inhibition of Type-I Procollagen and Induction of Matrix Metalloproteinase-1 in Human Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Dong-Hee Kim

    2014-05-01

    Full Text Available Ultraviolet (UV exposure is well-known to induce premature aging, which is mediated by matrix metalloproteinase-1 (MMP-1 activity. A 9-mer peptide, CopA3 (CopA3 was synthesized from a natural peptide, coprisin, which is isolated from the dung beetle Copris tripartitus. As part of our continuing search for novel bioactive natural products, CopA3 was investigated for its in vitro anti-skin photoaging activity. UV-induced inhibition of type-I procollagen and induction of MMP-1 were partially prevented in human skin fibroblasts by CopA3 peptide in a dose-dependent manner. At a concentration of 25 μM, CopA3 nearly completely inhibited MMP-1 expression. These results suggest that CopA3, an insect peptide, is a potential candidate for the prevention and treatment of skin aging.

  12. Effects of matrix metalloproteinase inhibitor doxycycline and CD147 antagonist peptide-9 on gallbladder carcinoma cell lines.

    Science.gov (United States)

    Wang, Shihang; Liu, Chao; Liu, Xinjiang; He, Yanxin; Shen, Dongfang; Luo, Qiankun; Dong, Yuxi; Dong, Haifeng; Pang, Zhigang

    2017-10-01

    Gallbladder carcinoma is the most common and aggressive malignancy of the biliary tree and highly expresses CD147, which is closely related to disease prognosis in a variety of human cancers. Doxycycline exhibited anti-tumor properties in many cancer cells. CD147 antagonist peptide-9 is a polypeptide and can specifically bind to CD147. The effect of these two drugs on gallbladder cancer cells has not been studied. The aim of this study is to investigate the effect of doxycycline and antagonist peptide-9 on gallbladder carcinoma cells and the possible mechanism of inhibition on cancer cell of doxycycline. To investigate the effects of doxycycline and antagonist peptide-9 on gallbladder carcinoma cells (GBC-SD and SGC-996), cell proliferation, CD147 expression, and early-stage apoptosis rate were measured after treated with doxycycline. Matrix metalloproteinase-2 and matrix metalloproteinase-9 activities were measured after treated with different concentrations of doxycycline, antagonist peptide-9, and their combination. The results demonstrated that doxycycline inhibited cell proliferation, reduced CD147 expression level, and induced an early-stage apoptosis response in GBC-SD and SGC-996 cells. The matrix metalloproteinase-2 and matrix metalloproteinase-9 activities were inhibited by antagonist peptide-9 and doxycycline, and the inhibitory effects were enhanced by combined drugs in gallbladder carcinoma cell lines. Taken together, doxycycline showed inhibitory effects on gallbladder carcinoma cell lines and reduced the expression of CD147, and this may be the mechanism by which doxycycline inhibits cancer cells. This study provides new information and tries to implement the design of adjuvant therapy method for gallbladder carcinoma.

  13. Exercise Prevents Diaphragm Wasting Induced by Cigarette Smoke through Modulation of Antioxidant Genes and Metalloproteinases

    Directory of Open Access Journals (Sweden)

    Gracielle Vieira Ramos

    2018-01-01

    Full Text Available Background. The present study aimed to analyze the effects of physical training on an antioxidant canonical pathway and metalloproteinases activity in diaphragm muscle in a model of cigarette smoke-induced chronic obstructive pulmonary disease (COPD. Methods. Male mice were randomized into control, smoke, exercise, and exercise + smoke groups, which were maintained in trial period of 24 weeks. Gene expression of kelch-like ECH-associated protein 1; nuclear factor erythroid-2 like 2; and heme-oxygenase1 by polymerase chain reaction was performed. Metalloproteinases 2 and 9 activities were analyzed by zymography. Exercise capacity was evaluated by treadmill exercise test before and after the protocol. Results. Aerobic training inhibited diaphragm muscle wasting induced by cigarette smoke exposure. This inhibition was associated with improved aerobic capacity in those animals that were submitted to 24 weeks of aerobic training, when compared to the control and smoke groups, which were not submitted to training. The aerobic training also downregulated the increase of matrix metalloproteinases (MMP-2 and MMP-9 and upregulated antioxidant genes, such as nuclear factor erythroid-2 like 2 (NRF2 and heme-oxygenase1 (HMOX1, in exercise + smoke group compared to smoke group. Conclusions. Treadmill aerobic training protects diaphragm muscle wasting induced by cigarette smoke exposure involving upregulation of antioxidant genes and downregulation of matrix metalloproteinases.

  14. Structure of matrix metalloproteinase-3 with a platinum-based inhibitor.

    Science.gov (United States)

    Belviso, Benny Danilo; Caliandro, Rocco; Siliqi, Dritan; Calderone, Vito; Arnesano, Fabio; Natile, Giovanni

    2013-06-18

    An X-ray investigation has been performed with the aim of characterizing the binding sites of a platinum-based inhibitor (K[PtCl3(DMSO)]) of matrix metalloproteinase-3 (stromelysin-1). The platinum complex targets His224 in the S1' specificity loop, representing the first step in the selective inhibition process (PDB ID code 4JA1).

  15. Minocycline and matrix metalloproteinase inhibition in acute intracerebral hemorrhage: a pilot study.

    Science.gov (United States)

    Chang, J J; Kim-Tenser, M; Emanuel, B A; Jones, G M; Chapple, K; Alikhani, A; Sanossian, N; Mack, W J; Tsivgoulis, G; Alexandrov, A V; Pourmotabbed, T

    2017-11-01

    Intracerebral hemorrhage (ICH) is a devastating cerebrovascular disorder with high morbidity and mortality. Minocycline is a matrix metalloproteinase-9 (MMP-9) inhibitor that may attenuate secondary mechanisms of injury in ICH. The feasibility and safety of minocycline in ICH patients were evaluated in a pilot, double-blinded, placebo-controlled randomized clinical trial. Patients with acute onset (minocycline or placebo. The outcome events included adverse events, change in serial National Institutes of Health Stroke Scale score assessments, hematoma volume and MMP-9 measurements, 3-month functional outcome (modified Rankin score) and mortality. A total of 20 patients were randomized to minocycline (n = 10) or placebo (n = 10). The two groups did not differ in terms of baseline characteristics. No serious adverse events or complications were noted with minocycline infusion. The two groups did not differ in any of the clinical and radiological outcomes. Day 5 serum MMP-9 levels tended to be lower in the minocycline group (372 ± 216 ng/ml vs. 472 ± 235 ng/ml; P = 0.052). Multiple linear regression analysis showed that minocycline was associated with a 217.65 (95% confidence interval -425.21 to -10.10, P = 0.041) decrease in MMP-9 levels between days 1 and 5. High-dose intravenous minocycline can be safely administered to patients with ICH. Larger randomized clinical trials evaluating the efficacy of minocycline and MMP-9 inhibition in ICH patients are required. © 2017 EAN.

  16. Structures and Functions of Snake Venom Metalloproteinases (SVMP) from Protobothrops venom Collected in Japan.

    Science.gov (United States)

    Oyama, Etsuko; Takahashi, Hidenobu

    2017-08-04

    Snake venom metalloproteinases (SVMP) are widely distributed among the venoms of Crotalinae and Viperidae, and are organized into three classes (P-I, P-II and P-III) according to their size and domain structure. P-I SVMP are the smallest SVMP, as they only have a metalloproteinase (M) domain. P-II SVMP contain a disintegrin-like (D) domain, which is connected by a short spacer region to the carboxyl terminus of the M domain. P-III SVMP contain a cysteine-rich (C) domain, which is attached to the carboxyl terminus of the D domain. Some SVMP exhibit hemorrhagic activity, whereas others do not. In addition, SVMP display fibrinolytic/fibrinogenolytic (FL) activity, and the physiological functions of SVMP are controlled by their structures. Furthermore, these proteinases also demonstrate fibrinogenolytic and proteolytic activity against synthetic substrates for matrix metalloproteinases and ADAM (a disintegrin and metalloproteinase). This article describes the structures and FL, hemorrhagic, and platelet aggregation-inhibiting activity of SVMP derived from Protobothrops snake venom that was collected in Japan.

  17. Matrix Metalloproteinase Enzyme Family

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available Matrix metalloproteinases play an important role in many biological processes such as embriogenesis, tissue remodeling, wound healing, and angiogenesis, and in some pathological conditions such as atherosclerosis, arthritis and cancer. Currently, 24 genes have been identified in humans that encode different groups of matrix metalloproteinase enzymes. This review discuss the members of the matrix metalloproteinase family and their substrate specificity, structure, function and the regulation of their enzyme activity by tissue inhibitors. [Archives Medical Review Journal 2013; 22(2.000: 209-220

  18. Osthole inhibits the invasive ability of human lung adenocarcinoma cells via suppression of NF-κB-mediated matrix metalloproteinase-9 expression

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Shang-Jyh [Department of Chest Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan (China); School of Respiratory Therapy, Taipei Medical University, Taipei Taiwan (China); Su, Jen-Liang [Graduate Institute of Cancer Biology, College of Medicine, China Medical University, Taichung, Taiwan (China); Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan (China); Department of Biotechnology, Asia University, Taichung, Taiwan (China); Chen, Chi-Kuan [Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yu, Ming-Chih; Bai, Kuan-Jen; Chang, Jer-Hua [Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan (China); Bien, Mauo-Ying [School of Respiratory Therapy, Taipei Medical University, Taipei Taiwan (China); Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan (China); Yang, Shun-Fa [Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chien, Ming-Hsien, E-mail: mhchien1976@gmail.com [Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2012-05-15

    The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibition of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. -- Highlights: ► Osthole treatment inhibits lung adenocarcinoma cells migration and invasion. ► Osthole reduces the expression and proteolytic activity of MMP-9. ► Osthole inhibits MMP-9 transcription via suppression of NF-κB binding activity. ► Osthole

  19. CS5931, a Novel Polypeptide in Ciona savignyi, Represses Angiogenesis via Inhibiting Vascular Endothelial Growth Factor (VEGF and Matrix Metalloproteinases (MMPs

    Directory of Open Access Journals (Sweden)

    Ge Liu

    2014-03-01

    Full Text Available CS5931 is a novel polypeptide from Ciona savignyi with anticancer activities. Previous study in our laboratory has shown that CS5931 can induce cell death via mitochondrial apoptotic pathway. In the present study, we found that the polypeptide could inhibit angiogenesis both in vitro and in vivo. CS5931 inhibited the proliferation, migration and formation of capillary-like structures of HUVECs (Human Umbilical Vein Endothelial Cell in a dose-dependent manner. Additionally, CS5931 repressed spontaneous angiogenesis of the zebrafish vessels. Further studies showed that CS5931 also blocked vascular endothelial growth factor (VEGF production but without any effect on its mRNA expression. Moreover, CS5931 reduced the expression of matrix metalloproteinases (MMP-2 and MMP-9 both on protein and mRNA levels in HUVEC cells. We demonstrated that CS5931 possessed strong anti-angiogenic activity both in vitro and in vivo, possible via VEGF and MMPs. This study indicates that CS5931 has the potential to be developed as a novel therapeutic agent as an inhibitor of angiogenesis for the treatment of cancer.

  20. Molecular cloning, expression and characterization of albolamin: a type P-IIa snake venom metalloproteinase from green pit viper (Cryptelytrops albolabris).

    Science.gov (United States)

    Jangprasert, Panchalee; Rojnuckarin, Ponlapat

    2014-03-01

    Snake venom metalloproteinases (SVMPs) can damage vessel wall, degrade clotting factors, inhibit integrins and block platelet functions. Studying them not only gives us deeper insights in pathogenesis of snakebites, but also potentially yields novel therapeutic agents. Here, we discovered a clone of an RGD-containing SVMP from the green pit viper (Cryptelytrops albolabris) venom gland cDNA library. Sequence analysis revealed that it belonged to the P-IIa subclass of SVMP comprising signal peptide, prodomain, metalloproteinase and disintegrin. Compared with other P-II SVMPs, it contained 2 additional conserved cysteines that were predicted to prevent the release of disintegrin from the metalloproteinase domain in the mature protein. The N-terminal histidine-tagged construct of metalloproteinase and disintegrin domains of albolamin was inserted into the pPICZαA vector and expressed in Pichia pastoris. The recombinant protein molecular weight was approximately 35 kDa on Western blot probed with anti-polyhistidine antibody. The recombinant albolamin could digest human type IV collagen starting within 15 min after incubation. In addition, it dose-dependently inhibited collagen-induced platelet aggregation with the IC50 of 1.8 μM. However, there was no effect on ADP-induced platelet aggregation. Therefore, the inhibition mechanism is probably through blocking collagen receptor(s). Albolamin activities probably contributed to pathology of green pit viper bites. Its disintegrin domain deserves further studies for the potential to be a useful agent affecting platelet functions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Action of caffeine on x-irradiated HeLa cells. I. Delayed inhibition of DNA synthesis

    International Nuclear Information System (INIS)

    Tolmach, L.J.; Jones, R.W.; Busse, P.M.

    1977-01-01

    Treatment of HeLa S3 cells with 1 mM caffeine delays progression through G1 by 1.5 hours but causes no other detectable inhibition of cell progression; it sometimes results in a large stimulation of thymidine incorporation. When this concentration is applied to cells that have been irradiated with 1-krad doses of 220-kV x rays, there is a marked suppression of both the inhibition of DNA synthesis and G2 arrest induced by the radiation. Larger doses require higher concentrations of caffeine to suppress the inhibition of DNA synthesis. Delaying addition until the rate of synthesis is at its minimum (1.5 hours after irradiation with 1 krad) results in a slightly accelerated recovery of the rate. Treatment before or during irradiation is without effect on the inhibition. Removal of the caffeine as late as 6 hours after its addition at the time of irradiation results in a prompt inhibition in DNA synthesis that mimics that observed immediately after irradiation in the absence of caffeine. These findings raise the possibility that the depression in rate of DNA systhesis might not result from radiation damage introduced into the replicon initiation system, but rather may be an indirect consequence of damage residing elsewhere in the irradiated cell

  2. Telomerase inhibition effectively targets mouse and human AML stem cells and delays relapse following chemotherapy

    DEFF Research Database (Denmark)

    Bruedigam, Claudia; Bagger, Frederik Otzen; Heidel, Florian H.

    2014-01-01

    (-/-) LSCs express a specific gene expression signature that can be identified in human AML patient cohorts and is positively correlated with patient survival following chemotherapy. In xenografts of primary human AML, genetic or pharmacological inhibition of telomerase targets LSCs, impairs leukemia...... progression, and delays relapse following chemotherapy. Altogether, these results establish telomerase inhibition as an effective strategy for eliminating AML LSCs....

  3. Snake Venom Metalloproteinases

    OpenAIRE

    Gâz Florea Şerban Andrei; Gâz Florea Adriana; Kelemen Hajnal; Muntean Daniela-Lucia

    2016-01-01

    As more data are generated from proteome and transcriptome analysis revealing that metalloproteinases represent most of the Viperid and Colubrid venom components authors decided to describe in a short review a classification and some of the multiple activities of snake venom metalloproteinases. SVMPs are classified in three major classes (P-I, P-II and P-III classes) based on the presence of various domain structures and according to their domain organization. Furthermore, P-II and P-III clas...

  4. Curcumin: a potential candidate for matrix metalloproteinase inhibitors.

    Science.gov (United States)

    Kumar, Dileep; Kumar, Manish; Saravanan, Chinnadurai; Singh, Sushil Kumar

    2012-10-01

    Curcumin, a natural yellow pigment of turmeric, has become focus of interest with regard to its role in regulation of matrix metalloproteinases (MMPs). MMPs are metal-dependent endopeptidases capable of degrading components of the extracellular matrix. MMPs are involved in chronic diseases such as arthritis, Alzheimer's disease, psoriasis, chronic obstructive pulmonary disease, asthma, cancer, neuropathic pain, and atherosclerosis. Curcumin regulates the expression and secretion of various MMPs. This review documents the matrix metalloproteinase inhibitory activity of curcumin on various diseases viz., cancer, arthritis, and ulcer. Finally, the steps to be taken for getting potent curcuminoids have also been discussed in the structure-activity relationship (SAR) section. From this review, readers can get answer to the question: Is curcumin a potential MMPI candidate? Numerous approaches have been taken to beget a molecule with specificity restricted to a particular MMP as well as good oral bioavailability; however, nearly all the molecules lack these criteria. Using quantitative structure-activity relationship (QSAR) modeling and virtual screening, new analogs of curcumin can be designed which will be selectively inhibiting different MMPs.

  5. Andrographolide inhibits the migration, invasion and matrix metalloproteinase expression of rheumatoid arthritis fibroblast-like synoviocytes via inhibition of HIF-1α signaling.

    Science.gov (United States)

    Li, Guo-feng; Qin, Yu-hua; Du, Peng-qiang

    2015-09-01

    Hypoxia is implicated in the pathogenesis of rheumatoid arthritis (RA), contributing to the tumor-like phenotypes of RA fibroblast-like synoviocytes (RA-FLSs). Andrographolide is the main bioactive component of Andrographis paniculata, an herbal medicine that shows therapeutic benefits in RA patients. Here, we explored the effects of andrographolide on hypoxia-induced migration and invasion of RA-FLSs. RA-FLSs were exposed to hypoxia in the presence or absence of andrographolide and cell migration and invasion were tested by Transwell assays. The expression of hypoxia-inducible factor-1 alpha (HIF-1α), matrix metalloproteinase (MMP)-1, MMP-3 and MMP-9 was measured by semi-quantitative reverse transcription polymerase chain reaction and Western blot analysis. HIF-1α DNA binding activity was assessed by electrophoretic mobility shift assay. The effects of overexpression of exogenous HIF-1α on the action of andrographolide in RA-FLSs were investigated. Andrographolide inhibited FLS migration and invasion under hypoxic conditions in a dose-dependent manner. The upregulation of MMP-1, MMP-3 and MMP-9 in response to hypoxia was significantly (Pandrographolide. Moreover, the expression and DNA binding activity of HIF-1α were dose-dependently decreased in andrographolide-treated cells under hypoxic conditions. Overexpression of HIF-1α almost completely reversed the suppressive effects of andrographolide on the migration, invasion and MMP expression of hypoxic RA-FLSs. These results indicate the ability of andrographolide to attenuate hypoxia-induced invasiveness of RA-FLSs via inhibition of HIF-1α signaling, and warrant further exploration of andrographolide for the treatment of RA. Copyright © 2015. Published by Elsevier Inc.

  6. Inhibiting Invasion into Human Bladder Carcinoma 5637 Cells with Diallyl Trisulfide by Inhibiting Matrix Metalloproteinase Activities and Tightening Tight Junctions

    Directory of Open Access Journals (Sweden)

    Yung Hyun Choi

    2013-10-01

    Full Text Available Diallyl trisulfide (DATS, an organosulfur compound in garlic, possesses pronounced anti-cancer potential. However, the anti-invasive mechanism of this compound in human bladder carcinoma is not fully understood. In this study, we evaluated the anti-invasive effects of DATS on a human bladder carcinoma (5637 cell line and investigated the underlying mechanism. The results indicated that DATS suppressed migration and invasion of 5637 cells by reducing the activities and expression of matrix metalloproteinase (MMP-2 and MMP-9 at both the protein and mRNA levels. DATS treatment up-regulated expression of tissue inhibitor of metalloproteinase (TIMP-1 and TIMP-2 in 5637 cells. The inhibitory effects of DATS on invasiveness were associated with an increase in transepithelial electrical resistance and repression of the levels of claudin family members. Although further studies are needed, our data demonstrate that DATS exhibits anti-invasive effects in 5637 cells by down-regulating the activity of tight junctions and MMPs. DATS may have future utility in clinical applications for treating bladder cancer.

  7. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation.

    Science.gov (United States)

    Scannevin, Robert H; Alexander, Richard; Haarlander, Tara Mezzasalma; Burke, Sharon L; Singer, Monica; Huo, Cuifen; Zhang, Yue-Mei; Maguire, Diane; Spurlino, John; Deckman, Ingrid; Carroll, Karen I; Lewandowski, Frank; Devine, Eric; Dzordzorme, Keli; Tounge, Brett; Milligan, Cindy; Bayoumy, Shariff; Williams, Robyn; Schalk-Hihi, Celine; Leonard, Kristi; Jackson, Paul; Todd, Matthew; Kuo, Lawrence C; Rhodes, Kenneth J

    2017-10-27

    Aberrant activation of matrix metalloproteinases (MMPs) is a common feature of pathological cascades observed in diverse disorders, such as cancer, fibrosis, immune dysregulation, and neurodegenerative diseases. MMP-9, in particular, is highly dynamically regulated in several pathological processes. Development of MMP inhibitors has therefore been an attractive strategy for therapeutic intervention. However, a long history of failed clinical trials has demonstrated that broad-spectrum MMP inhibitors have limited clinical utility, which has spurred the development of inhibitors selective for individual MMPs. Attaining selectivity has been technically challenging because of sequence and structural conservation across the various MMPs. Here, through a biochemical and structural screening paradigm, we have identified JNJ0966, a highly selective compound that inhibited activation of MMP-9 zymogen and subsequent generation of catalytically active enzyme. JNJ0966 had no effect on MMP-1, MMP-2, MMP-3, MMP-9, or MMP-14 catalytic activity and did not inhibit activation of the highly related MMP-2 zymogen. The molecular basis for this activity was characterized as an interaction of JNJ0966 with a structural pocket in proximity to the MMP-9 zymogen cleavage site near Arg-106, which is distinct from the catalytic domain. JNJ0966 was efficacious in reducing disease severity in a mouse experimental autoimmune encephalomyelitis model, demonstrating the viability of this therapeutic approach. This discovery reveals an unprecedented pharmacological approach to MMP inhibition, providing an opportunity to improve selectivity of future clinical drug candidates. Targeting zymogen activation in this manner may also allow for pharmaceutical exploration of other enzymes previously viewed as intractable drug targets. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Circulating levels of matrix metalloproteinases and tissue inhibitors of metalloproteinases in patients with incisional hernia

    DEFF Research Database (Denmark)

    Henriksen, Nadia A; Sørensen, Lars T; Jorgensen, Lars N

    2013-01-01

    Incisional hernia formation is a common complication to laparotomy and possibly associated with alterations in connective tissue metabolism. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are closely involved in the metabolism of the extracellular matrix. Our...

  9. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in gingival crevicular fluid during orthodontic tooth movement.

    NARCIS (Netherlands)

    Bildt, M.M.; Bloemen, M.; Kuijpers-Jagtman, A.M.; Hoff, J.W. Von den

    2009-01-01

    Orthodontic tooth movement requires extensive re-modelling of the periodontium. Matrix metalloproteinases (MMPs) degrade the extracellular matrix during re-modelling, while their activity is regulated by the tissue inhibitors of metalloproteinases (TIMPs). The aim of this study was to investigate

  10. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in gingival crevicular fluid during orthodontic tooth movement

    NARCIS (Netherlands)

    Bildt, Miriam; Bloemen, M; Kuijpers-Jagtman, A.M.; Von Den Hoff, Johannes W

    2009-01-01

    Orthodontic tooth movement requires extensive re-modelling of the periodontium. Matrix metalloproteinases (MMPs) degrade the extracellular matrix during re-modelling, while their activity is regulated by the tissue inhibitors of metalloproteinases (TIMPs). The aim of this study was to investigate

  11. Role of aberrant metalloproteinase activity in the pro-inflammatory phenotype of bronchial epithelium in COPD

    Directory of Open Access Journals (Sweden)

    Postma Dirkje S

    2011-08-01

    Full Text Available Abstract Background Cigarette smoke, the major risk factor for COPD, is known to activate matrix metalloproteinases in airway epithelium. We investigated whether metalloproteinases, particularly A Disintegrin and Metalloproteinase (ADAM17, contribute to increased pro-inflammatory epithelial responses with respect to the release of IL-8 and TGF-α, cytokines implicated in COPD pathogenesis. Methods We studied the effects of cigarette smoke extract (CSE and metalloproteinase inhibitors on TGF-α and IL-8 release in primary bronchial epithelial cells (PBECs from COPD patients, healthy smokers and non-smokers. Results We observed that TGF-α was mainly shed by ADAM17 in PBECs from all groups. Interestingly, IL-8 production occurred independently from ADAM17 and TGF-α shedding, but was significantly inhibited by broad-spectrum metalloproteinase inhibitor TAPI-2. CSE did not induce ADAM17-dependent TGF-α shedding, while it slightly augmented the production of IL-8. This was accompanied by reduced endogenous inhibitor of metalloproteinase (TIMP-3 levels, suggesting that CSE does not directly but rather indirectly alter activity of ADAM17 through the regulation of its endogenous inhibitor. Furthermore, whereas baseline TGF-α shedding was lower in COPD PBECs, the early release of IL-8 (likely due to its shedding was higher in PBECs from COPD than healthy smokers. Importantly, this was accompanied by lower TIMP-2 levels in COPD PBECs, while baseline TIMP-3 levels were similar between groups. Conclusions Our data indicate that IL-8 secretion is regulated independently from ADAM17 activity and TGF-α shedding and that particularly its early release is differentially regulated in PBECs from COPD and healthy smokers. Since TIMP-2-sensitive metalloproteinases could potentially contribute to IL-8 release, these may be interesting targets to further investigate novel therapeutic strategies in COPD.

  12. Ramiprilate inhibits functional matrix metalloproteinase activity in Crohn's disease fistulas

    DEFF Research Database (Denmark)

    Efsen, Eva; Saermark, Torben; Hansen, Alastair

    2011-01-01

    Increased expression of matrix metalloproteinase (MMP)-2, -3 and -9 has been demonstrated in Crohn's disease fistulas, but it is unknown whether these enzymes are biologically active and represent a therapeutic target. Therefore, we investigated the proteolytic activity of MMPs in fistula tissue...... from six controls were also included. Total functional MMP activity was measured by a high-pressure liquid chromatography (HPLC)-based, fluorogenic MMP-substrate cleavage assay, and the specific activity of MMP-2, -3 and -9 by the MMP Biotrak Activity Assay. The MMP inhibitors comprised ethylene......-9.83) compared with non-Crohn's fistulas, [0.32 ng/ml, range 0-2.66, (p MMP-9 activity [0.64 ng/ml, range 0-5.66 and 0.17 ng/ml, range 0-1.1, respectively (p MMP activity level by 42% and suppressed the specific MMP-3...

  13. Developmental roles of the BMP1/TLD metalloproteinases.

    Science.gov (United States)

    Ge, Gaoxiang; Greenspan, Daniel S

    2006-03-01

    The astacin family (M12A) of the metzincin subclan MA(M) of metalloproteinases has been detected in developing and mature individuals of species that range from hydra to humans. Functions of this family of metalloproteinase vary from digestive degradation of polypeptides, to biosynthetic processing of extracellular proteins, to activation of growth factors. This review will focus on a small subgroup of the astacin family; the bone morphogenetic protein 1 (BMP1)/Tolloid (TLD)-like metalloproteinases. In vertebrates, the BMP1/TLD-like metalloproteinases play key roles in regulating formation of the extracellular matrix (ECM) via biosynthetic processing of various precursor proteins into mature functional enzymes, structural proteins, and proteins involved in initiating mineralization of the ECM of hard tissues. Roles in ECM formation include: processing of the C-propeptides of procollagens types I-III, to yield the major fibrous components of vertebrate ECM; proteolytic activation of the enzyme lysyl oxidase, necessary to formation of covalent cross-links in collagen and elastic fibers; processing of NH2-terminal globular domains and C-propeptides of types V and XI procollagen chains to yield monomers that are incorporated into and control the diameters of collagen type I and II fibrils, respectively; processing of precursors for laminin 5 and collagen type VII, both of which are involved in securing epidermis to underlying dermis; and maturation of small leucine-rich proteoglycans. The BMP1/TLD-related metalloproteinases are also capable of activating the vertebrate transforming growth factor-beta (TGF-beta)-like "chalones" growth differentiation factor 8 (GDF8, also known as myostatin), and GDF11 (also known as BMP11), involved in negative feedback inhibition of muscle and neural tissue growth, respectively; by freeing them from noncovalent latent complexes with their cleaved prodomains. BMP1/TLD-like proteinases also liberate the vertebrate TGF

  14. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Bo Mi [Department of Chemistry, Pukyoung National University, Busan 608-737 (Korea, Republic of); Qian Zhongji [Marine Bioprocess Research Center, Pukyong National University, Busan 608-737 (Korea, Republic of); Kim, Moon-Moo [Department of Chemistry, Dong-Eui University, Busan 614-714 (Korea, Republic of); Nam, Ki Wan [Department of Marine Biology, Pukyong National University, Busan 608-737 (Korea, Republic of); Kim, Se-Kwon [Department of Chemistry, Pukyoung National University, Busan 608-737 (Korea, Republic of); Marine Bioprocess Research Center, Pukyong National University, Busan 608-737 (Korea, Republic of)], E-mail: sknkim@pknu.ac.kr

    2009-02-15

    Matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to ultraviolet A, appear to be increased by UV-irradiation-associated generation of reactive oxygen species (ROS). In this study, the alga Corallina pilulifera methanol (CPM) extract has been shown to exert a potent antioxidant activity and protective effect on UVA-induced oxidative stress of human dermal fibroblast (HDF) cell. Antioxidant evaluated by various antioxidant assays. These include reducing power, total antioxidant, DPPH radical scavenging, hydroxyl radical scavenging and protective effect on DNA damage caused by hydroxyl radicals generated. Further, the ROS level was detected using a fluorescence probe, 2',7'-dichlorofluorescein diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on HT-1080 cells. Those various antioxidant activities were compared to standard antioxidants such as {alpha}-tocopherol. In addition, the in vitro activities of MMP-2 and MMP-9 in HDF cell were inhibited by C. pilulifera methanol extract dose dependently by using gelatin zymography method. The results obtained in the present study suggested that the C. pilulifera methanol extract may be a potential source of natural anti-photoaging.

  15. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract

    International Nuclear Information System (INIS)

    Ryu, Bo Mi; Qian Zhongji; Kim, Moon-Moo; Nam, Ki Wan; Kim, Se-Kwon

    2009-01-01

    Matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to ultraviolet A, appear to be increased by UV-irradiation-associated generation of reactive oxygen species (ROS). In this study, the alga Corallina pilulifera methanol (CPM) extract has been shown to exert a potent antioxidant activity and protective effect on UVA-induced oxidative stress of human dermal fibroblast (HDF) cell. Antioxidant evaluated by various antioxidant assays. These include reducing power, total antioxidant, DPPH radical scavenging, hydroxyl radical scavenging and protective effect on DNA damage caused by hydroxyl radicals generated. Further, the ROS level was detected using a fluorescence probe, 2',7'-dichlorofluorescein diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on HT-1080 cells. Those various antioxidant activities were compared to standard antioxidants such as α-tocopherol. In addition, the in vitro activities of MMP-2 and MMP-9 in HDF cell were inhibited by C. pilulifera methanol extract dose dependently by using gelatin zymography method. The results obtained in the present study suggested that the C. pilulifera methanol extract may be a potential source of natural anti-photoaging

  16. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract

    Science.gov (United States)

    Ryu, BoMi; Qian, Zhong-Ji; Kim, Moon-Moo; Nam, Ki Wan; Kim, Se-Kwon

    2009-02-01

    Matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to ultraviolet A, appear to be increased by UV-irradiation-associated generation of reactive oxygen species (ROS). In this study, the alga Corallina pilulifera methanol (CPM) extract has been shown to exert a potent antioxidant activity and protective effect on UVA-induced oxidative stress of human dermal fibroblast (HDF) cell. Antioxidant evaluated by various antioxidant assays. These include reducing power, total antioxidant, DPPH radical scavenging, hydroxyl radical scavenging and protective effect on DNA damage caused by hydroxyl radicals generated. Further, the ROS level was detected using a fluorescence probe, 2',7'-dichlorofluorescein diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on HT-1080 cells. Those various antioxidant activities were compared to standard antioxidants such as α-tocopherol. In addition, the in vitro activities of MMP-2 and MMP-9 in HDF cell were inhibited by C. pilulifera methanol extract dose dependently by using gelatin zymography method. The results obtained in the present study suggested that the C. pilulifera methanol extract may be a potential source of natural anti-photoaging.

  17. Wogonin Suppresses the Activity of Matrix Metalloproteinase-9 and Inhibits Migration and Invasion in Human Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Ming Hong

    2018-02-01

    Full Text Available As one of the major active ingredients in Radix Scutellariae, wogonin has been shown to be associated with various pharmacological activities on cancer cell growth, apoptosis, and cell invasion and migration. Here, we demonstrated that wogonin may harbor potential anti-metastatic activities in hepatocarcinoma (HCC. The anti-metastasis potential of wogonin and its underlying mechanisms were evaluated by ligand–protein docking approach, surface plasmon resonance assay, and in vitro gelatin zymography studies. Our results showed that wogonin (100 μM, 50 μM suppressed MHCC97L and PLC/PRF/5 cells migration and invasion in vitro. The docking approach and surface plasmon resonance assay indicated that the potential binding affinity between wogonin and matrix metalloproteinase-9 (MMP-9 may lead to inhibition of MMP-9 activity and further leads to suppression of tumor metastasis. This conclusion was further verified by Western blot results and gelatin zymography analysis. Wogonin might be a potent treatment option for disrupting the tumor metastasis that favors HCC development. The potential active targets from computational screening integrated with biomedical study may help us to explore the molecular mechanism of herbal medicines.

  18. Inhibition of STAT3 activity delays obesity-induced thyroid carcinogenesis in a mouse model

    Science.gov (United States)

    Park, Jeong Won; Han, Cho Rong; Zhao, Li; Willingham, Mark C.; Cheng, Sheue-yann

    2015-01-01

    Compelling epidemiologic studies indicate that obesity is a risk factor for many human cancers, including thyroid cancer. In recent decades, the incidence of thyroid cancer has dramatically increased along with a marked rise in obesity prevalence. We previously demonstrated that a high fat diet (HFD) effectively induced the obese phenotype in a mouse model of thyroid cancer (ThrbPV/PVPten+/− mice). Moreover, HFD activates the STAT3 signal pathway to promote more aggressive tumor phenotypes. The aim of the present study was to evaluate the effect of S3I-201, a specific inhibitor of STAT3 activity, on HFD-induced aggressive cancer progression in the mouse model of thyroid cancer. Wild type and ThrbPV/PVPten+/− mice were treated with HFD together with S3I-201 or vehicle-only as controls. We assessed the effects of S3I-201 on HFD-induced thyroid cancer progression, the leptin-JAK2-STAT3 signaling pathway, and key regulators of epithelial-mesenchymal transition. S3I-201 effectively inhibited HFD-induced aberrant activation of STAT3 and its downstream targets to markedly inhibit thyroid tumor growth and to prolong survival. Decreased protein levels of cyclins D1 and B1, cyclin dependent kinase (CDK) 4, CDK 6, and phosphorylated retinoblastoma protein led to the inhibition of tumor cell proliferation in S3I-201-treated ThrbPV/PVPten+/− mice. Reduced occurrence of vascular invasion and blocking of anaplasia and lung metastasis in thyroid tumors of S3I-201-treated ThrbPV/PVPten+/− mice were mediated via decreased expression of vimentin and matrix metalloproteinases, two key effectors of epithelial-mesenchymal transition. The present findings suggest that inhibition of the STAT3 activity would be a novel treatment strategy for obesity-induced thyroid cancer. PMID:26552408

  19. Matrix Metalloproteinase Responsive Delivery of Myostatin Inhibitors.

    Science.gov (United States)

    Braun, Alexandra C; Gutmann, Marcus; Ebert, Regina; Jakob, Franz; Gieseler, Henning; Lühmann, Tessa; Meinel, Lorenz

    2017-01-01

    The inhibition of myostatin - a member of the transforming growth factor (TGF-β) family - drives regeneration of functional skeletal muscle tissue. We developed a bioresponsive drug delivery system (DDS) linking release of a myostatin inhibitor (MI) to inflammatory flares of myositis to provide self-regulated MI concentration gradients within tissues of need. A protease cleavable linker (PCL) - responding to MMP upregulation - is attached to the MI and site-specifically immobilized on microparticle surfaces. The PCL disintegrated in a matrix metalloproteinase (MMP) 1, 8, and particularly MMP-9 concentration dependent manner, with MMP-9 being an effective surrogate biomarker correlating with the activity of myositis. The bioactivity of particle-surface bound as well as released MI was confirmed by luciferase suppression in stably transfected HEK293 cells responding to myostatin induced SMAD phosphorylation. We developed a MMP-responsive DDS for MI delivery responding to inflammatory flare of a diseased muscle matching the kinetics of MMP-9 upregulation, with MMP-9 kinetics matching (patho-) physiological myostatin levels. ᅟ: Graphical Abstract Schematic illustration of the matrix metalloproteinase responsive delivery system responding to inflammatory flares of muscle disease. The protease cleavable linker readily disintegrates upon entry into the diseased tissue, therby releasing the mystatin inhibitor.

  20. Expression of the insect metalloproteinase inhibitor IMPI in the fat body of Galleria mellonella exposed to infection with Beauveria bassiana.

    Science.gov (United States)

    Vertyporokh, Lidiia; Wojda, Iwona

    2017-01-01

    The inducible metalloproteinase inhibitor (IMPI) discovered in Galleria mellonella is currently the only specific inhibitor of metalloproteinases found in animals. Its role is to inhibit the activity of metalloproteinases secreted by pathogenic organisms as virulence factors to degrade immune-relevant polypeptides of the infected host. This is a good example of an evolutionary arms race between the insect hosts and their natural pathogens. In this report, we analyze the expression of a gene encoding an inducible metalloproteinase inhibitor (IMPI) in fat bodies of the greater wax moth larvae Galleria mellonella infected with an entomopathogenic fungus Beauveria bassiana. We have used a natural infection, i.e. covering larval integument with fungal aerospores, as well as injection of fungal blastospores directly into the larval hemocel. We compare the expression of IMPI with the expression of genes encoding proteins with fungicidal activity, gallerimycin and galiomycin, whose expression reflects the stimulation of Galleria mellonella defense mechanisms. Also, gene expression is analyzed in the light of survival of animals after spore injection.

  1. Inhibition of Matrix Metalloproteinase Activity Prevents Increases in Myocardial Tumor Necrosis Factor-α

    Science.gov (United States)

    Murray, David B.; Levick, Scott P; Brower, Gregory L.; Janicki, Joseph S.

    2010-01-01

    Aim TNF-α is known to cause adverse myocardial remodeling. While we have previously shown a role for cardiac mast cells in mediating myocardial TNF-α, matrix metalloproteinases (MMP) activation of TNF-α may also be contributory. We sought to determine the relative roles of MMPs and cardiac mast cells in the activation of TNF-α in the hearts of rats subjected to chronic volume overload. Methods Interventions with the broad spectrum MMP inhibitor, GM6001, or the mast cell stabilizer, nedocromil, were performed in the rat aortocaval fistula (ACF) model of volume overload. Results Myocardial TNF-α levels were significantly increased in the ACF. This increase was prevented by MMP inhibition with GM6001 (p ≤ 0.001 vs. ACF). Conversely, myocardial TNF-α levels were increased in the ACF + nedocromil treated fistula groups (p ≤ 0.001 vs. sham). The degradation of interstitial collagen volume fraction seen in the untreated ACF group was prevented in both the GM6001 and nedocromil treated hearts. Significant increases in LV myocardial ET-1 levels also occurred in the ACF group at 3 days post-fistula. Whereas administration of GM6001 significantly attenuated this increase, mast cell stabilization with nedocromil markedly exacerbated the increase, producing ET-1 levels 6.5 fold and 2 fold greater than that in the sham-operated control and ACF group, respectively. Conclusion The efficacy of the MMP inhibitor, GM6001, to prevent increased levels of myocardial TNF-α is indicative of MMP-mediated cleavage of latent extracellular membrane bound TNF-α protein as the primary source of bioactive TNF-α in the myocardium of the volume-overload heart. PMID:20403361

  2. Snake Venom Metalloproteinases and Their Peptide Inhibitors from Myanmar Russell’s Viper Venom

    Directory of Open Access Journals (Sweden)

    Khin Than Yee

    2016-12-01

    Full Text Available Russell’s viper bites are potentially fatal from severe bleeding, renal failure and capillary leakage. Snake venom metalloproteinases (SVMPs are attributed to these effects. In addition to specific antivenom therapy, endogenous inhibitors from snakes are of interest in studies of new treatment modalities for neutralization of the effect of toxins. Two major snake venom metalloproteinases (SVMPs: RVV-X and Daborhagin were purified from Myanmar Russell’s viper venom using a new purification strategy. Using the Next Generation Sequencing (NGS approach to explore the Myanmar RV venom gland transcriptome, mRNAs of novel tripeptide SVMP inhibitors (SVMPIs were discovered. Two novel endogenous tripeptides, pERW and pEKW were identified and isolated from the crude venom. Both purified SVMPs showed caseinolytic activity. Additionally, RVV-X displayed specific proteolytic activity towards gelatin and Daborhagin showed potent fibrinogenolytic activity. These activities were inhibited by metal chelators. Notably, the synthetic peptide inhibitors, pERW and pEKW, completely inhibit the gelatinolytic and fibrinogenolytic activities of respective SVMPs at 5 mM concentration. These complete inhibitory effects suggest that these tripeptides deserve further study for development of a therapeutic candidate for Russell’s viper envenomation.

  3. Biochemical and functional characterization of Bothropoidin: the first haemorrhagic metalloproteinase from Bothrops pauloensis snake venom.

    Science.gov (United States)

    Gomes, Mário Sérgio R; Naves de Souza, Dayane L; Guimarães, Denise O; Lopes, Daiana S; Mamede, Carla C N; Gimenes, Sarah Natalie C; Achê, David C; Rodrigues, Renata S; Yoneyama, Kelly A G; Borges, Márcia H; de Oliveira, Fábio; Rodrigues, Veridiana M

    2015-03-01

    We present the biochemical and functional characterization of Bothropoidin, the first haemorrhagic metalloproteinase isolated from Bothrops pauloensis snake venom. This protein was purified after three chromatographic steps on cation exchange CM-Sepharose fast flow, size-exclusion column Sephacryl S-300 and anion exchange Capto Q. Bothropoidin was homogeneous by SDS-PAGE under reducing and non-reducing conditions, and comprised a single chain of 49,558 Da according to MALDI TOF analysis. The protein presented an isoelectric point of 3.76, and the sequence of six fragments obtained by MS (MALDI TOF\\TOF) showed a significant score when compared with other PIII Snake venom metalloproteinases (SVMPs). Bothropoidin showed proteolytic activity on azocasein, Aα-chain of fibrinogen, fibrin, collagen and fibronectin. The enzyme was stable at pH 6-9 and at lower temperatures when assayed on azocasein. Moreover, its activity was inhibited by EDTA, 1.10-phenanthroline and β-mercaptoethanol. Bothropoidin induced haemorrhage [minimum haemorrhagic dose (MHD) = 0.75 µg], inhibited platelet aggregation induced by collagen and ADP, and interfered with viability and cell adhesion when incubated with endothelial cells in a dose and time-dependent manner. Our results showed that Bothropoidin is a haemorrhagic metalloproteinase that can play an important role in the toxicity of B. pauloensis envenomation and might be used as a tool for studying the effects of SVMPs on haemostatic disorders and tumour metastasis. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  4. Inhibition of neutrophil elastase and metalloprotease-9 of human adenocarcinoma gastric cells by chamomile (Matricaria recutita L.) infusion.

    Science.gov (United States)

    Bulgari, Michela; Sangiovanni, Enrico; Colombo, Elisa; Maschi, Omar; Caruso, Donatella; Bosisio, Enrica; Dell'Agli, Mario

    2012-12-01

    This study investigated whether the antiinflammatory effect of chamomile infusion at gastric level could be ascribed to the inhibition of metalloproteinase-9 and elastase. The infusions from capitula and sifted flowers (250-1500 µg/mL) and individual flavonoids (10 µM) were tested on phorbol 12-myristate 13-acetate-stimulated AGS cells and human neutrophil elastase. The results indicate that the antiinflammatory activity associated with chamomile infusions from both the capitula and sifted flowers is most likely due to the inhibition of neutrophil elastase and gastric metalloproteinase-9 activity and secretion; the inhibition occurring in a concentration dependent manner. The promoter activity was inhibited as well and the decrease of metalloproteinase-9 expression was found to be associated with the inhibition of NF-kB driven transcription. The results further indicate that the flavonoid-7-glycosides, major constituents of chamomile flowers, may be responsible for the antiinflammatory action of the chamomile infusion observed here. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Nonselective matrix metalloproteinase but not tumor necrosis factor-a inhibition effectively preserves the early critical colon anastomotic integrity

    DEFF Research Database (Denmark)

    Ågren, Magnus S.; Andersen, Thomas L.; Andersen, Line

    2011-01-01

    Increased matrix metalloproteinase (MMP) activity has been implicated in the pathogenesis of colorectal anastomotic leakage. Tumor necrosis factor-a (TNF-a) induces MMPs and may influence anastomosis repair....

  6. Expression, purification, and analysis of three recombinant ECD disintegrins (r-colombistatins) from P-III class snake venom metalloproteinases affecting platelet aggregation and SK-MEL-28 cell adhesion.

    Science.gov (United States)

    Suntravat, Montamas; Helmke, Thomas J; Atphaisit, Chairat; Cuevas, Esteban; Lucena, Sara E; Uzcátegui, Nestor L; Sánchez, Elda E; Rodriguez-Acosta, Alexis

    2016-11-01

    Crotalid venoms are rich sources of components that affect the hemostatic system. Snake venom metalloproteinases are zinc-dependent enzymes responsible for hemorrhage that also interfere with hemostasis. The disintegrin domain is a part of snake venom metalloproteinases, which involves the binding of integrin receptors. Integrins play an essential role in cancer survival and invasion, and they have been major targets for drug development and design. Both native and recombinant disintegrins have been widely investigated for their anti-cancer activities in biological systems as well as in vitro and in vivo systems. Here, three new cDNAs encoding ECD disintegrin-like domains of metalloproteinase precursor sequences obtained from a Venezuelan mapanare (Bothrops colombiensis) venom gland cDNA library have been cloned. Three different N- and C-terminal truncated ECD disintegrin-like domains of metalloproteinases named colombistatins 2, 3, and 4 were amplified by PCR, cloned into a pGEX-4T-1 vector, expressed in Escherichia coli BL21, and tested for inhibition of platelet aggregation and inhibition of adhesion of human skin melanoma (SK-Mel-28) cancer cell lines on collagen I. Purified recombinant colombistatins 2, 3, and 4 were able to inhibit ristocetin- and collagen-induced platelet aggregation. r-Colombistatins 2 showed the most potent inhibiting SK-Mel-28 cancer cells adhesion to collagen. These results suggest that colombistatins may have utility in the development of therapeutic tools in the treatment of melanoma cancers and also thrombotic diseases. Copyright © 2016. Published by Elsevier Ltd.

  7. Peptidomimetic hydroxamate metalloproteinase inhibitors abrogate local and systemic toxicity induced by Echis ocellatus (saw-scaled) snake venom.

    Science.gov (United States)

    Arias, Ana Silvia; Rucavado, Alexandra; Gutiérrez, José María

    2017-06-15

    The ability of two peptidomimetic hydroxamate metalloproteinase inhibitors, Batimastat and Marimastat, to abrogate toxic and proteinase activities of the venom of Echis ocellatus from Cameroon and Ghana was assessed. Since this venom largely relies for its toxicity on the action of zinc-dependent metalloproteinases (SVMPs), the hypothesis was raised that toxicity could be largely eliminated by using SVMP inhibitors. Both hydroxamate molecules inhibited local and pulmonary hemorrhagic, in vitro coagulant, defibrinogenating, and proteinase activities of the venoms in conditions in which venom and inhibitors were incubated prior to the test. In addition, the inhibitors prolonged the time of death of mice receiving 4 LD 50 s of venom by the intravenous route. Lower values of IC 50 were observed for in vitro and local hemorrhagic activities than for systemic effects. When experiments were performed in conditions that simulated the actual circumstances of snakebite, i.e. by administering the inhibitor after envenoming, Batimastat completely abrogated local hemorrhage if injected immediately after venom. Moreover, it was also effective at inhibiting lethality and defibrinogenation when venom and inhibitor were injected by the intraperitoneal route. Results suggest that these, and possibly other, metalloproteinase inhibitors may become an effective adjunct therapy in envenomings by E. ocellatus when administered at the anatomic site of venom injection rapidly after the bite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Synthetic matrix metalloproteinase inhibitors inhibit growth of established breast cancer osteolytic lesions and prolong survival in mice

    DEFF Research Database (Denmark)

    Winding, Bent; NicAmhlaoibh, Róisín; Misander, Henriette

    2002-01-01

    Breast cancer frequently leads to incurable bone metastasis. Essential requirements for the development of bone metastasis are cell-cell and cell-matrix interactions, release of bioactive growth factors and cytokines, and removal of large amounts of bone matrix. Matrix metalloproteinases (MMPs...

  9. Metalloproteinase Inhibition Protects against Reductions in Circulating Adrenomedullin during Lead-induced Acute Hypertension.

    Science.gov (United States)

    Nascimento, Regina A; Mendes, Gabryella; Possomato-Vieira, Jose S; Gonçalves-Rizzi, Victor Hugo; Kushima, Hélio; Delella, Flavia K; Dias-Junior, Carlos A

    2015-06-01

    Intoxication with lead (Pb) results in increased blood pressure by mechanisms involving matrix metalloproteinases (MMPs). Recent findings have revealed that MMP type two (MMP-2) seems to cleave vasoactive peptides. This study examined whether MMP-2 and MMP-9 levels/activities increase after acute intoxication with low lead concentrations and whether these changes were associated with increases in blood pressure and circulating endothelin-1 or with reductions in circulating adrenomedullin and calcitonin gene-related peptide (CGRP). Here, we expand previous findings and examine whether doxycycline (a MMPs inhibitor) affects these alterations. Wistar rats received intraperitoneally (i.p.) 1st dose 8 μg/100 g of lead (or sodium) acetate, a subsequent dose of 0.1 μg/100 g to cover daily loss and treatment with doxycycline (30 mg/kg/day) or water by gavage for 7 days. Similar whole-blood lead levels (9 μg/dL) were found in lead-exposed rats treated with either doxycycline or water. Lead-induced increases in systolic blood pressure (from 143 ± 2 to 167 ± 3 mmHg) and gelatin zymography of plasma samples showed that lead increased MMP-9 (but not MMP-2) levels. Both lead-induced increased MMP-9 activity and hypertension were blunted by doxycycline. Doxycycline also prevented lead-induced reductions in circulating adrenomedullin. No significant changes in plasma levels of endothelin-1 or CGRP were found. Lead-induced decreases in nitric oxide markers and antioxidant status were not prevented by doxycycline. In conclusion, acute lead exposure increases blood pressure and MMP-9 activity, which were blunted by doxycycline. These findings suggest that MMP-9 may contribute with lead-induced hypertension by cleaving the vasodilatory peptide adrenomedullin, thereby inhibiting adrenomedullin-dependent lowering of blood pressure. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  10. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells

    International Nuclear Information System (INIS)

    Rose, Peter; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-01-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependant manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables

  11. Osthole Suppresses the Migratory Ability of Human Glioblastoma Multiforme Cells via Inhibition of Focal Adhesion Kinase-Mediated Matrix Metalloproteinase-13 Expression

    Directory of Open Access Journals (Sweden)

    Cheng-Fang Tsai

    2014-03-01

    Full Text Available Glioblastoma multiforme (GBM is the most common type of primary and malignant tumor occurring in the adult central nervous system. GBM often invades surrounding regions of the brain during its early stages, making successful treatment difficult. Osthole, an active constituent isolated from the dried C. monnieri fruit, has been shown to suppress tumor migration and invasion. However, the effects of osthole in human GBM are largely unknown. Focal adhesion kinase (FAK is important for the metastasis of cancer cells. Results from this study show that osthole can not only induce cell death but also inhibit phosphorylation of FAK in human GBM cells. Results from this study show that incubating GBM cells with osthole reduces matrix metalloproteinase (MMP-13 expression and cell motility, as assessed by cell transwell and wound healing assays. This study also provides evidence supporting the potential of osthole in reducing FAK activation, MMP-13 expression, and cell motility in human GBM cells.

  12. Two Distinct Isoforms of Matrix Metalloproteinase-2 Are Associated with Human Delayed Kidney Graft Function.

    Directory of Open Access Journals (Sweden)

    Shaynah Wanga

    Full Text Available Delayed graft function (DGF is a frequent complication of renal transplantation, particularly in the setting of transplantation of kidneys derived from deceased donors and expanded-criteria donors. DGF results from tubular epithelial cell injury and has immediate and long term consequences. These include requirement for post-transplantation dialysis, increased incidence of acute rejection, and poorer long-term outcomes. DGF represents one of the clearest clinical examples of renal acute ischemia/reperfusion injury. Experimental studies have demonstrated that ischemia/reperfusion injury induces the synthesis of the full length secreted isoform of matrix metalloproteinase-2 (FL-MMP-2, as well as an intracellular N-terminal truncated MMP-2 isoform (NTT-MMP-2 that initiates an innate immune response. We hypothesized that the two MMP-2 isoforms mediate tubular epithelial cell injury in DGF. Archival renal biopsy sections from 10 protocol biopsy controls and 41 cases with a clinical diagnosis of DGF were analyzed for the extent of tubular injury, expression of the FL-MMP-2 and NTT-MMP-2 isoforms by immunohistochemistry (IHC, in situ hybridization, and qPCR to determine isoform abundance. Differences in transcript abundance were related to tubular injury score. Markers of MMP-2-mediated injury included TUNEL staining and assessment of peritubular capillary density. There was a clear relationship between tubular epithelial cell expression of both FL-MMP-2 and NTT-MMP-2 IHC with the extent of tubular injury. The MMP-2 isoforms were detected in the same tubular segments and were present at sites of tubular injury. qPCR demonstrated highly significant increases in both the FL-MMP-2 and NTT-MMP-2 transcripts. Statistical analysis revealed highly significant associations between FL-MMP-2 and NTT-MMP-2 transcript abundance and the extent of tubular injury, with NTT-MMP-2 having the strongest association. We conclude that two distinct MMP-2 isoforms are

  13. The extracellular matrix metalloproteinase inducer EMMPRIN is a target of nitric oxide in myocardial ischemia/reperfusion.

    Science.gov (United States)

    Tarin, Carlos; Lavin, Begoña; Gomez, Monica; Saura, Marta; Diez-Juan, Antonio; Zaragoza, Carlos

    2011-07-15

    Nitric oxide (NO) is an important defense against myocardial ischemia/reperfusion (I/R) injury. Although matrix metalloproteinase (MMP)-mediated necrosis of cardiac myocytes is well characterized, the role of inducible NO synthase (iNOS)-derived NO in this process is poorly understood. I/R injury was increased in iNOS-deficient mice and in mice treated with 1400 W (a pharmacological iNOS inhibitor) and was associated with significantly increased expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and EMMPRIN-associated MMPs. Transcriptional activity of an EMMPRIN luciferase promoter reporter expressed in cardiac myocytes was inhibited by NO in a cGMP-dependent manner, and this transcriptional inhibition was abolished by mutation of a putative E2F site. Consistent with these findings, EMMPRIN null mice, in which iNOS is normally induced, are partially protected against I/R injury. Pharmacological inhibition of iNOS in EMMPRIN null mice had no additional protective effect, suggesting that EMMPRIN is a downstream target of NO. Administration of anti-EMMPRIN neutralizing antibodies partly reduced the excess heart damage and MMP-9 expression induced by I/R in iNOS null mice, indicating that regulation of EMMPRIN is an important mechanism of NO-mediated cardioprotection. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. CcMP-II, a new hemorrhagic metalloproteinase from Cerastes cerastes snake venom: purification, biochemical characterization and amino acid sequence analysis.

    Science.gov (United States)

    Boukhalfa-Abib, Hinda; Laraba-Djebari, Fatima

    2015-01-01

    Snake venom metalloproteinases (SVMPs) are the most abundant components in snake venoms. They are important in the induction of systemic alterations and local tissue damage after envenomation. CcMP-II, which is a metalloproteinase purified from Cerastes cerastes snake venom, was obtained by a combination of gel filtration, ion-exchange and affinity chromatographies. It was homogeneous on SDS-PAGE, with a molecular mass estimated to 35kDa and presents a pI of 5.6. CcMP-II has an N-terminal sequence of EDRHINLVSVADHRMXTKY, with high levels of homology with those of the members of class P-II of SVMPs, which comprises metalloproteinase and disintegrin-like domains together. This proteinase displayed a fibrinogenolytic and hemorrhagic activities. The proteolytic and hemorrhagic activities of CcMP-II were inhibited by EDTA and 1,10-phenanthroline. However, these activities were not affected by aprotinine and PMSF, suggesting that CcMP-II is a zinc-dependent hemorrhagic metalloproteinase with an α-fibrinogenase activity. The hemorrhagic metalloproteinase CcMP-II was also able to hydrolyze extracellular matrix components, such as type IV collagen and laminin. These results indicate that CcMP-II is implicated in the local and systemic bleeding, contributing thus in the toxicity of C. cerastes venom. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Serum matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels in patients with tick-borne encephalitis

    Czech Academy of Sciences Publication Activity Database

    Palus, Martin; Žampachová, E.; Elsterová, Jana; Růžek, Daniel

    2014-01-01

    Roč. 68, č. 2 (2014), s. 165-169 ISSN 0163-4453 R&D Projects: GA ČR GAP502/11/2116 Institutional support: RVO:60077344 Keywords : tick-borne encephalitis * matrix metalloproteinase-9 * tissue inhibitor of metalloproteinase-1 * bloodebrain barrier Subject RIV: EC - Immunology Impact factor: 4.441, year: 2014

  16. A novel fibrinolytic metalloproteinase, barnettlysin-I from Bothrops barnetti (Barnett´s pitviper) snake venom with anti-platelet properties.

    Science.gov (United States)

    Sanchez, Eladio Flores; Richardson, Michael; Gremski, Luiza Helena; Veiga, Silvio Sanches; Yarleque, Armando; Niland, Stephan; Lima, Augusto Martins; Estevao-Costa, Maria Inácia; Eble, Johannes Andreas

    2016-03-01

    Viperid snake venoms contain active components that interfere with hemostasis. We report a new P-I class snake venom metalloproteinase (SVMP), barnettlysin-I (Bar-I), isolated from the venom of Bothrops barnetti and evaluated its fibrinolytic and antithrombotic potential. Bar-I was purified using a combination of molecular exclusion and cation-exchange chromatographies. We describe some biochemical features of Bar-I associated with its effects on hemostasis and platelet function. Bar-I is a 23.386 kDa single-chain polypeptide with pI of 6.7. Its sequence (202 residues) shows high homology to other members of the SVMPs. The enzymatic activity on dimethylcasein (DMC) is inhibited by metalloproteinase inhibitors e.g. EDTA, and by α2-macroglobulin. Bar-I degrades fibrin and fibrinogen dose- and time-dependently by cleaving their α-chains. Furthermore, it hydrolyses plasma fibronectin but not laminin nor collagen type I. In vitro Bar-I dissolves fibrin clots made either from purified fibrinogen or from whole blood. In contrast to many other P-I SVMPs, Bar-I is devoid of hemorrhagic activity. Also, Bar-I dose- and time-dependently inhibits aggregation of washed human platelets induced by vWF plus ristocetin and collagen (IC50=1.3 and 3.2 μM, respectively), presumably Bar-I cleaves both vWF and GPIb. Thus, it effectively inhibits vWF-induced platelet aggregation. Moreover, this proteinase cleaves the collagen-binding α2-A domain (160 kDa) of α2β1-integrin. This explains why it additionally inhibits collagen-induced platelet activation. A non-hemorrhagic but fibrinolytic metalloproteinase dissolves fibrin clots in vitro and impairs platelet function. This study provides new opportunities for drug development of a fibrinolytic agent with antithrombotic effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Effect of food on the pharmacokinetics of oral MMI270B (CGS 27023A), a novel matrix metalloproteinase inhibitor

    NARCIS (Netherlands)

    F.A.L.M. Eskens (Ferry); N.C. Levitt; A. Sparreboom (Alex); L. Choi; R. Mather; J. Verweij (Jaap); A.L. Harris

    2000-01-01

    textabstractMMI270B is a matrix metalloproteinase inhibitor (MMPI) with in vitro and in vivo activity. To exert optimal target inhibition, MMPI must be given chronically, and therefore, oral bioavailability is important. We analyzed the effect of food intake on AUC0-8

  18. Oral administration of curcumin suppresses production of matrix metalloproteinase (MMP)-1 and MMP-3 to ameliorate collagen-induced arthritis: inhibition of the PKCdelta/JNK/c-Jun pathway.

    Science.gov (United States)

    Mun, Se Hwan; Kim, Hyuk Soon; Kim, Jie Wan; Ko, Na Young; Kim, Do Kyun; Lee, Beob Yi; Kim, Bokyung; Won, Hyung Sik; Shin, Hwa-Sup; Han, Jeung-Whan; Lee, Hoi Young; Kim, Young Mi; Choi, Wahn Soo

    2009-09-01

    We investigated whether oral administration of curcumin suppressed type II collagen-induced arthritis (CIA) in mice and its effect and mechanism on matrix metalloproteinase (MMP)-1 and MMP-3 production in CIA mice, RA fibroblast-like synoviocytes (FLS), and chondrocytes. CIA in mice was suppressed by oral administration of curcumin in a dose-dependent manner. Macroscopic observations were confirmed by histological examinations. Histological changes including infiltration of immune cells, synovial hyperplasia, cartilage destruction, and bone erosion in the hind paw sections were extensively suppressed by curcumin. The histological scores were consistent with clinical arthritis indexes. Production of MMP-1 and MMP-3 were inhibited by curcumin in CIA hind paw sections and tumor necrosis factor (TNF)-alpha-stimulated FLS and chondrocytes in a dose-dependent manner. As for the mechanism, curcumin inhibited activating phosphorylation of protein kinase Cdelta (PKCdelta) in CIA, FLS, and chondrocytes. Curcumin also suppressed the JNK and c-Jun activation in those cells. This study suggests that the suppression of MMP-1 and MMP-3 production by curcumin in CIA is mediated through the inhibition of PKCdelta and the JNK/c-Jun signaling pathway.

  19. Inhibition of matrix metalloproteinase-2 and 9 by Piroxicam confer neuroprotection in cerebral ischemia: an in silico evaluation of the hypothesis.

    Science.gov (United States)

    Mazumder, Muhammed Khairujjaman; Bhattacharya, Pallab; Borah, Anupom

    2014-12-01

    Matrix metalloproteinases are zinc-containing endopeptidases that are involved in extracellular matrix (ECM) remodeling cascade in many neurological disorders, including cerebral ischemia (CI). Remodeling of the ECM followed by disruption of the blood-brain barrier (BBB) is one of the major factors contributing to the ultimate neurodegeneration in CI. BBB disruption causes a cascade of pathophysiologies that trigger Anoikis-like cell death. While inhibition of MMP-2 and MMP-9 decreases the extent of neuronal damage in CI, MMP-2/9 knock-out mice have reduced infarct volume in experimental animal models of CI. Piroxicam, which is a non-steroidal anti-inflammatory drug (NSAID), has been demonstrated to be protective against aquaporin-4 and acid-sensing ion channel 1a--mediated neurodegeneration in CI. However, no report exists on the inhibitory action of Piroxicam on MMPs. We tested the hypothesis that Piroxicam, with its larger molecular size and more number of interacting pharmacophores, can inhibit MMP-2 and MMP-9. A comparative study on the inhibitory potential of Piroxicam with other reported MMP-inhibitors, viz., Aspirin, Melatonin and Doxycycline, has also been performed. Since the drug has already been reported to be neuroprotective through its inhibitory action in other pathways, it can be the drug of choice in the therapeutic management and prevention of neurodegeneration in CI. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Downregulation of Extracellular Matrix Metalloproteinase Inducer by scFv-M6-1B9 Intrabody Suppresses Cervical Cancer Invasion Through Inhibition of Urokinase-Type Plasminogen Activator.

    Science.gov (United States)

    Panich, Tipattaraporn; Tragoolpua, Khajornsak; Pata, Supansa; Tayapiwatana, Chatchai; Intasai, Nutjeera

    2017-02-01

    Overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN) accelerates tumor invasion and metastasis via activation of matrix metalloproteinases (MMPs) and urokinase-type plasminogen activator (uPA) expression. The authors were interested in whether the scFv-M6-1B9 intrabody against EMMPRIN that retains EMMPRIN in endoplasmic reticulum could be a potential tool to suppress cervical cancer invasion through inhibition of uPA. The chimeric adenoviral vector Ad5/F35-scFv-M6-1B9 was transferred into human cervical carcinoma HeLa cells to produce the scFv-M6-1B9 intrabody against EMMPRIN. Cell surface expression of EMMPRIN, the membrane-bound uPA, the enzymatic activity of secreted uPA, and the invasion ability were analyzed. The scFv-M6-1B9 intrabody successfully diminished the cell surface expression of EMMPRIN and the membrane-bound uPA on HeLa cells. uPA activity from tissue culture media of EMMPRIN-downregulated HeLa cells was decreased. The invasion ability of HeLa cells harboring scFv-M6-1B9 intrabody was also suppressed. These results suggested that the scFv-M6-1B9 intrabody might represent a potential approach for invasive cervical cancer treatment. The application of scFv-M6-1B9 intrabody in animal experiments and preclinical studies would be investigated further.

  1. Selective small-molecule inhibitors as chemical tools to define the roles of matrix metalloproteinases in disease.

    Science.gov (United States)

    Meisel, Jayda E; Chang, Mayland

    2017-11-01

    The focus of this article is to highlight novel inhibitors and current examples where the use of selective small-molecule inhibitors has been critical in defining the roles of matrix metalloproteinases (MMPs) in disease. Selective small-molecule inhibitors are surgical chemical tools that can inhibit the targeted enzyme; they are the method of choice to ascertain the roles of MMPs and complement studies with knockout animals. This strategy can identify targets for therapeutic development as exemplified by the use of selective small-molecule MMP inhibitors in diabetic wound healing, spinal cord injury, stroke, traumatic brain injury, cancer metastasis, and viral infection. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  2.  The role of metalloproteinases in modification of extracellular matrix in invasive tumor growth, metastasis and angiogenesis

    Directory of Open Access Journals (Sweden)

    Krzysztof Fink

    2012-09-01

    Full Text Available Extracellular matrix metalloproteinases (MMPs are a family of endopeptydases which recquire a zinc ion at their active site, for proteolityc activity. There are six members of the MMP family: matrilysins, collagenases, stromelysins, gelatinases, membrane MMPs and other MMPs. Activity of MMPs is regulated at the level of gene transcription, mRNA stability, zymogene proteolitic activation, inhibition of an active enzyme and MMP degradation. Tissue inhibitors of metalloproteinases (TIMPs are main intracellular inhibitors of MMPs. Host cells can be stimulated by tumor cells to produce MMPs by secreted interleukins, interferons, growth factors and an extracellular matrix metalloproteinase inducer (EMMPRIN. MMPs are produced by tumor cells, fibroblasts, macrophages, mast cells, polimorphonuclear neutrophiles (PMNs and endothelial cells (ECs. MMPs affect many stages of tumor development, facilitating its growth through promoting tumor cells proliferation, invasion and migration, new blood vessels formation and blocking tumor cells apoptosis. MMPs can promote tumor development in several ways. ECM degradation results in release of peptide growth factors. Growth factors linked with cell surface or binding proteins can also be liberated by MMPs. MMPs can indirectly regulate integrin signalling or cleave E-cadherins, facilitating cell migration. MMPs support metastasis inducing an epithelial to mesenchymal transition (EMT. MMP also support transendothelial migration. MMPs support angiogenesis by releasing pro-angiogenic factors and degrading ECM to support ECs migration. Cell surface growth factor receptors are also cleaved by MMPs, which results in inhibition of tumor development, so is release of anti-angiogenic factors from ECM. 

  3. Metalloproteinases and their regulators in colorectal cancer.

    NARCIS (Netherlands)

    Jagt, M.F.P. van der; Wobbes, T.; Strobbe, L.J.; Sweep, F.C.; Span, P.N.

    2010-01-01

    Metalloproteinases (MPs) such as the matrix metalloproteinases (MMPs) and adamalysins (ADAMs and ADAMTS) are expressed in various stages of colorectal cancer (CRC), and some correlate with survival and prognosis. The MPs are regulated by various factors including EMMPRIN, TIMPs, and RECK. In

  4. Tissue Inhibitor of Matrix Metalloproteinase-1 Promotes Myocardial Fibrosis by Mediating CD63-Integrin β1 Interaction.

    Science.gov (United States)

    Takawale, Abhijit; Zhang, Pu; Patel, Vaibhav B; Wang, Xiuhua; Oudit, Gavin; Kassiri, Zamaneh

    2017-06-01

    Myocardial fibrosis is excess accumulation of the extracellular matrix fibrillar collagens. Fibrosis is a key feature of various cardiomyopathies and compromises cardiac systolic and diastolic performance. TIMP1 (tissue inhibitor of metalloproteinase-1) is consistently upregulated in myocardial fibrosis and is used as a marker of fibrosis. However, it remains to be determined whether TIMP1 promotes tissue fibrosis by inhibiting extracellular matrix degradation by matrix metalloproteinases or via an matrix metalloproteinase-independent pathway. We examined the function of TIMP1 in myocardial fibrosis using Timp1 -deficient mice and 2 in vivo models of myocardial fibrosis (angiotensin II infusion and cardiac pressure overload), in vitro analysis of adult cardiac fibroblasts, and fibrotic myocardium from patients with dilated cardiomyopathy (DCM). Timp1 deficiency significantly reduced myocardial fibrosis in both in vivo models of cardiomyopathy. We identified a novel mechanism for TIMP1 action whereby, independent from its matrix metalloproteinase-inhibitory function, it mediates an association between CD63 (cell surface receptor for TIMP1) and integrin β1 on cardiac fibroblasts, initiates activation and nuclear translocation of Smad2/3 and β-catenin, leading to de novo collagen synthesis. This mechanism was consistently observed in vivo, in cultured cardiac fibroblasts, and in human fibrotic myocardium. In addition, after long-term pressure overload, Timp1 deficiency persistently reduced myocardial fibrosis and ameliorated diastolic dysfunction. This study defines a novel matrix metalloproteinase-independent function of TIMP1 in promoting myocardial fibrosis. As such targeting TIMP1 could prove to be a valuable approach in developing antifibrosis therapies. © 2017 American Heart Association, Inc.

  5. Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer.

    Directory of Open Access Journals (Sweden)

    Jae-Kyung Myung

    Full Text Available Androgen receptor (AR is a member of the steroid receptor family and a therapeutic target for all stages of prostate cancer. AR is activated by ligand binding within its C-terminus ligand-binding domain (LBD. Here we show that overexpression of the AR NTD to generate decoy molecules inhibited both the growth and progression of prostate cancer in castrated hosts. Specifically, it was shown that lentivirus delivery of decoys delayed hormonal progression in castrated hosts as indicated by increased doubling time of tumor volume, prolonged time to achieve pre-castrate levels of serum prostate-specific antigen (PSA and PSA nadir. These clinical parameters are indicative of delayed hormonal progression and improved therapeutic response and prognosis. Decoys reduced the expression of androgen-regulated genes that correlated with reduced in situ interaction of the AR with androgen response elements. Decoys did not reduce levels of AR protein or prevent nuclear localization of the AR. Nor did decoys interact directly with the AR. Thus decoys did not inhibit AR transactivation by a dominant negative mechanism. This work provides evidence that the AR NTD plays an important role in the hormonal progression of prostate cancer and supports the development of AR antagonists that target the AR NTD.

  6. The Complex Interaction of Matrix Metalloproteinases in the Migration of Cancer Cells through Breast Tissue Stroma

    Directory of Open Access Journals (Sweden)

    Kerry J. Davies

    2014-01-01

    Full Text Available Breast cancer mortality is directly linked to metastatic spread. The metastatic cell must exhibit a complex phenotype that includes the capacity to escape from the primary tumour mass, invade the surrounding normal tissue, and penetrate into the circulation before proliferating in the parenchyma of distant organs to produce a metastasis. In the normal breast, cellular structures change cyclically in response to ovarian hormones leading to regulated cell proliferation and apoptosis. Matrix metalloproteinases (MMPs are a family of zinc dependent endopeptidases. Their primary function is degradation of proteins in the extracellular matrix to allow ductal progression through the basement membrane. A complex balance between matrix metalloproteinases and their inhibitors regulate these changes. These proteinases interact with cytokines, growth factors, and tumour necrosis factors to stimulate branching morphologies in normal breast tissues. In breast cancer this process is disrupted facilitating tumour progression and metastasis and inhibiting apoptosis increasing the life of the metastatic cells. This paper highlights the role of matrix metalloproteinases in cell progression through the breast stroma and reviews the complex relationships between the different proteinases and their inhibitors in relation to breast cancer cells as they metastasise.

  7. Peroxisome proliferator-activated receptor δ inhibits Porphyromonas gingivalis lipopolysaccharide-induced activation of matrix metalloproteinase-2 by downregulating NADPH oxidase 4 in human gingival fibroblasts.

    Science.gov (United States)

    Yoo, T; Ham, S A; Hwang, J S; Lee, W J; Paek, K S; Oh, J W; Kim, J H; Do, J T; Han, C W; Kim, J H; Seo, H G

    2016-10-01

    We investigated the roles of peroxisome proliferator-activated receptor δ (PPARδ) in Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS)-induced activation of matrix metalloproteinase 2 (MMP-2). In human gingival fibroblasts (HGFs), activation of PPARδ by GW501516, a specific ligand of PPARδ, inhibited Pg-LPS-induced activation of MMP-2 and generation of reactive oxygen species (ROS), which was associated with reduced expression of NADPH oxidase 4 (Nox4). These effects were significantly smaller in the presence of small interfering RNA targeting PPARδ or the specific PPARδ inhibitor GSK0660, indicating that PPARδ is involved in these events. In addition, modulation of Nox4 expression by small interfering RNA influenced the effect of PPARδ on MMP-2 activity, suggesting a mechanism in which Nox4-derived ROS modulates MMP-2 activity. Furthermore, c-Jun N-terminal kinase and p38, but not extracellular signal-regulated kinase, mediated PPARδ-dependent inhibition of MMP-2 activity in HGFs treated with Pg-LPS. Concomitantly, PPARδ-mediated inhibition of MMP-2 activity was associated with the restoration of types I and III collagen to levels approaching those in HGFs not treated with Pg-LPS. These results indicate that PPARδ-mediated downregulation of Nox4 modulates cellular redox status, which in turn plays a critical role in extracellular matrix homeostasis through ROS-dependent regulation of MMP-2 activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Rapamycin attenuates bleomycin-induced pulmonary fibrosis in rats and the expression of metalloproteinase-9 and tissue inhibitors of metalloproteinase-1 in lung tissue.

    Science.gov (United States)

    Jin, Xiaoguang; Dai, Huaping; Ding, Ke; Xu, Xuefeng; Pang, Baosen; Wang, Chen

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is the most common and devastating form of interstitial lung disease (ILD) in the clinic. There is no effective therapy except for lung transplantation. Rapamycin is an immunosuppressive drug with potent antifibrotic activity. The purpose of this study was to examine the effects of rapamycin on bleomycin-induced pulmonary fibrosis in rats and the relation to the expression of metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1). Sprague-Dawley rats were treated with intratracheal injection of 0.3 ml of bleomycin (5 mg/kg) in sterile 0.9% saline to make the pulmonary fibrosis model. Rapamycin was given at a dose of 0.5 mg/kg per gavage, beginning one day before bleomycin instillation and once daily until animal sacrifice. Ten rats in each group were sacrificed at 3, 7, 14, 28 and 56 days after bleomycin administration. Alveolitis and pulmonary fibrosis were semi-quantitatively assessed after HE staining and Masson staining under an Olympus BX40 microscope with an IDA-2000 Image Analysis System. Type I and III collagen fibers were identified by Picro-sirius-polarization. Hydroxyproline content in lung tissue was quantified by a colorimetric-based spectrophotometric assay, MMP-9 and TIMP-1 were detected by immunohistochemistry and by realtime quantitative reverse transcriptase polymerase chain reaction (RT-PCR). Bleomycin induced alveolitis and pulmonary fibrosis of rats was inhibited by rapamycin. Significant inhibition of alveolitis and hydroxyproline product were demonstrated when daily administration of rapamycin lasted for at least 14 days. The inhibitory efficacy on pulmonary fibrosis was unremarkable until rapamycin treatment lasted for at least 28 days (P pulmonary fibrosis, which is associated with decreased expression of MMP-9 and TIMP-1.

  9. Dentin matrix degradation by host Matrix Metalloproteinases: inhibition and clinical perspectives towards regeneration.

    Directory of Open Access Journals (Sweden)

    Catherine eChaussain

    2013-11-01

    Full Text Available Bacterial enzymes have long been considered solely accountable for the degradation of the dentin matrix during the carious process. However, the emerging literature suggests that host-derived enzymes, and in particular the matrix metalloproteinases (MMPs contained in dentin and saliva can play a major role in this process by their ability to degrade the dentin matrix from within. These findings are important since they open new therapeutic options for caries prevention and treatment. The possibility of using MMP inhibitors to interfere with dentin caries progression is discussed. Furthermore, the potential release of bioactive peptides by the enzymatic cleavage of dentin matrix proteins by MMPs during the carious process is discussed. These peptides, once identified, may constitute promising therapeutical tools for tooth and bone regeneration.

  10. Matrix metalloproteinase 2 (MMP-2) levels are increased in active acromegaly patients.

    Science.gov (United States)

    Karci, Alper Cagri; Canturk, Zeynep; Tarkun, Ilhan; Cetinarslan, Berrin

    2017-07-01

    During follow-up of acromegaly patients, there is a discordance rate of 30% between the measurements of growth hormone and insulin-like growth factor-1 levels. Further tests are required to determine disease activity in patients with discordant results. This study was planned to investigate an association of serum levels of matrix metalloproteinase-2, matrix metalloproteinase-9, and cathepsin B with disease activity in acromegaly patients. In this study, 64 acromegaly patients followed in our clinic were divided into two groups according to the 2010 consensus criteria for cure of acromegaly as patients with active disease (n = 24) and patients with controlled disease (n = 40). Serum matrix metalloproteinase-2, matrix metalloproteinase-9, and cathepsin B levels were measured by the enzyme-linked immunosorbent assay method. The mean serum matrix metalloproteinase-2 level was significantly higher in the active acromegaly patients than in the controlled acromegaly patients (150.1 ± 54.5 ng/mL vs. 100.2 ± 44.6 ng/mL; p matrix metalloproteinase-9 and cathepsin B levels (p = 0.205 and p = 0.598, respectively). Serum matrix metalloproteinase-2 levels of 118.3 ng/mL and higher had a sensitivity of 75% and a specificity of 77.5% in determining active disease. The risk of active acromegaly was 3.3 fold higher in the patients with a matrix metalloproteinase-2 level of >118.3 ng/mL than in the patients with a matrix metalloproteinase-2 level of matrix metalloproteinase-2 level is increased in the active acromegaly patients and a threshold value in determining active disease was defined for serum matrix metalloproteinase-2 level. This study is the first to compare acromegaly patients having active or controlled disease in terms of matrix metalloproteinase-2 and matrix metalloproteinase-9 levels. The results need to be confirmed by a study that will be conducted in a larger patient group also including a healthy control group to demonstrate the

  11. Matrix Metalloproteinases in Non-Neoplastic Disorders

    Science.gov (United States)

    Tokito, Akinori; Jougasaki, Michihisa

    2016-01-01

    The matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. There are at least 23 members of MMPs ever reported in human, and they and their substrates are widely expressed in many tissues. Recent growing evidence has established that MMP not only can degrade a variety of components of extracellular matrix, but also can cleave and activate various non-matrix proteins, including cytokines, chemokines and growth factors, contributing to both physiological and pathological processes. In normal conditions, MMP expression and activity are tightly regulated via interactions between their activators and inhibitors. Imbalance among these factors, however, results in dysregulated MMP activity, which causes tissue destruction and functional alteration or local inflammation, leading to the development of diverse diseases, such as cardiovascular disease, arthritis, neurodegenerative disease, as well as cancer. This article focuses on the accumulated evidence supporting a wide range of roles of MMPs in various non-neoplastic diseases and provides an outlook on the therapeutic potential of inhibiting MMP action. PMID:27455234

  12. Curcumin Delays Retinal Degeneration by Regulating Microglia Activation in the Retina of rd1 Mice

    Directory of Open Access Journals (Sweden)

    Yanhe Wang

    2017-11-01

    Full Text Available Background/Aims: Retinitis pigmentosa (RP is characterized by degeneration of photoreceptors, and there are currently no effective treatments for this disease. However, curcumin has shown neuroprotectant efficacy in a RP rat and swine model, and thus, may have neuroprotective effects in this disease. Methods: Immunofluorescence staining, electroretinogram recordings, and behavioral tests were used to analyze the effects of curcumin and the underlying mechanism in retinal degeneration 1 (rd1 mice. Results: The number of apoptotic cells in the retina of rd1 mice at postnatal day 14 significantly decreased with curcumin treatment and visual function was improved. The activation of microglia and secretion of chemokines and matrix metalloproteinases in the retina were inhibited by curcumin. These effects were also observed in a co-culture of BV2 microglial cells and retina-derived 661W cells. Conclusions: Curcumin delayed retinal degeneration by suppressing microglia activation in the retina of rd1 mice. Thus, it may be an effective treatment for neurodegenerative disorders such as RP.

  13. Matrix metalloproteinases in the brain and blood–brain barrier: Versatile breakers and makers

    Science.gov (United States)

    Rempe, Ralf G; Hartz, Anika MS

    2016-01-01

    Matrix metalloproteinases are versatile endopeptidases with many different functions in the body in health and disease. In the brain, matrix metalloproteinases are critical for tissue formation, neuronal network remodeling, and blood–brain barrier integrity. Many reviews have been published on matrix metalloproteinases before, most of which focus on the two best studied matrix metalloproteinases, the gelatinases MMP-2 and MMP-9, and their role in one or two diseases. In this review, we provide a broad overview of the role various matrix metalloproteinases play in brain disorders. We summarize and review current knowledge and understanding of matrix metalloproteinases in the brain and at the blood–brain barrier in neuroinflammation, multiple sclerosis, cerebral aneurysms, stroke, epilepsy, Alzheimer’s disease, Parkinson’s disease, and brain cancer. We discuss the detrimental effects matrix metalloproteinases can have in these conditions, contributing to blood–brain barrier leakage, neuroinflammation, neurotoxicity, demyelination, tumor angiogenesis, and cancer metastasis. We also discuss the beneficial role matrix metalloproteinases can play in neuroprotection and anti-inflammation. Finally, we address matrix metalloproteinases as potential therapeutic targets. Together, in this comprehensive review, we summarize current understanding and knowledge of matrix metalloproteinases in the brain and at the blood–brain barrier in brain disorders. PMID:27323783

  14. Transcriptomics of aged Drosophila motor neurons reveals a matrix metalloproteinase that impairs motor function.

    Science.gov (United States)

    Azpurua, Jorge; Mahoney, Rebekah E; Eaton, Benjamin A

    2018-04-01

    The neuromuscular junction (NMJ) is responsible for transforming nervous system signals into motor behavior and locomotion. In the fruit fly Drosophila melanogaster, an age-dependent decline in motor function occurs, analogous to the decline experienced in mice, humans, and other mammals. The molecular and cellular underpinnings of this decline are still poorly understood. By specifically profiling the transcriptome of Drosophila motor neurons across age using custom microarrays, we found that the expression of the matrix metalloproteinase 1 (dMMP1) gene reproducibly increased in motor neurons in an age-dependent manner. Modulation of physiological aging also altered the rate of dMMP1 expression, validating dMMP1 expression as a bona fide aging biomarker for motor neurons. Temporally controlled overexpression of dMMP1 specifically in motor neurons was sufficient to induce deficits in climbing behavior and cause a decrease in neurotransmitter release at neuromuscular synapses. These deficits were reversible if the dMMP1 expression was shut off again immediately after the onset of motor dysfunction. Additionally, repression of dMMP1 enzymatic activity via overexpression of a tissue inhibitor of metalloproteinases delayed the onset of age-dependent motor dysfunction. MMPs are required for proper tissue architecture during development. Our results support the idea that matrix metalloproteinase 1 is acting as a downstream effector of antagonistic pleiotropy in motor neurons and is necessary for proper development, but deleterious when reactivated at an advanced age. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  15. Inhibitory effect of Daesungki-Tang on the invasiveness potential of hepatocellular carcinoma through inhibition of matrix metalloproteinase-2 and -9 activities

    International Nuclear Information System (INIS)

    Ha, Ki-Tae; Kim, June-Ki; Lee, Young-Choon; Kim, Cheorl-Ho

    2004-01-01

    Daesungki-Tang (DST), a drug preparation consisting of four herbs, that is, Rhei radix et rhizoma (RR; the roots of Rheum coreanum Nakai, Daehwang in Korean), Aurantiii frutus immaturus (AFI; immature fruits of Poncirus trifolita Rafin., Jisil in Korean), Magnoliae cortex (MC; the stem bark of Magnolia officinalis Rehd. Et Wils., Hubak in Korean), and Mirabilite (MS; Matrii sulfas, Mangcho in Korean), is a traditional Korean herbal medicine that is widely used in the treatment of cancer metastasis, gastrointestinal complaints, vascular disorders, and atherosclerosis-related disorders. In this study, water extracts of DST and each of the four ingredient herbs were prepared. The extracts were tested for cytotoxic activity on human hepatocellular carcinoma cells, Hep3B cells using the XTT assay method. The inhibitory effect of the extracts on the invasion of Hep3B cells was also tested using matrigel precoated transwell chambers. DST effectively inhibited the invasion of Hep3B cells, compared with the control groups in a dose-dependent manner. In addition, a gelatin zymography assay showed that DST decreased the gelatinolytic activity of matrix metalloproteinases-2 (MMP-2; IC 50 = 87 μg/ml) and -9 (MMP-9; IC 50 = 75 μg/ml) that are secreted from Hep3B cells, respectively. Among the four herbal ingredients of DST, only MC has been shown to significantly inhibit the invasion of Hep3B cells and MMP-2 and -9 activities. From these results, it can be concluded that DST has some potential for use as an antitumor agent

  16. Chemically modified tetracyclines stimulate matrix metalloproteinase-s production by periodontal ligament cells

    NARCIS (Netherlands)

    Bildt, M.M.; Snoek-van Beurden, A.M.P.; Groot, J. de; El, B. van; Kuijpers-Jagtman, A.M.; Hoff, J.W. van den

    2006-01-01

    Background and Objective: The purpose of this study was to investigate the effects of chemically modified tetracyclines (CMTs) on the production of gelatinases [matrix metalloproteinase (MMP)-2 and -9] by human periodontal ligament (PDL) cells, and on the activity of recombinant gelatinases.

  17. Urinary metalloproteinases: noninvasive biomarkers for breast cancer risk assessment

    DEFF Research Database (Denmark)

    Pories, Susan E; Zurakowski, David; Roy, Roopali

    2008-01-01

    Matrix metalloproteinases (MMP) and a disintegrin and metalloprotease 12 (ADAM 12) can be detected in the urine of breast cancer patients and provide independent prediction of disease status. To evaluate the potential of urinary metalloproteinases as biomarkers to predict breast cancer risk statu...

  18. Augmented growth inhibition of B16-BL6 melanoma by combined treatment with a selective matrix metalloproteinase inhibitor, MMI-166, and cytotoxic agents.

    Science.gov (United States)

    Hojo, Kanji; Maki, Hideo; Sawada, Takuko Yamada; Maekawa, Ryuji; Yoshioka, Takayuki

    2002-01-01

    MMI-166 is a selective matrix metalloproteinase (MMP) inhibitor. The purpose of this study was to evaluate the antitumor efficacy of the combined treatment of MMI-166 with paclitaxel or carboplatin. Mice bearing B16-BL6 melanoma were treated p.o. with MMI-166 from 1 day after tumor inoculation. The mice were administered i.v. with either paclitaxel or carboplatin at the maximum tolerated dose (MTD). MMI-166 monotherapy inhibited in vivo growth of the B16-BL6 tumor to an extent similar to that of paclitaxel or carboplatin monotherapy. When MMI-166 was combined with paclitaxel or carboplatin, the antitumor efficacy was significantly (p B16-BL6 tumor cells nor does it augment the cytotoxicity of paclitaxel or carboplatin. These results indicate that augmented antitumor activity of the combination treatment was not simply due to the augmentation of direct cytotoxic activity, but was rather an additive effect of the antitumor activities of different mechanisms. They suggest the effectiveness of a combination therapy of MMI-166 with paclitaxel or carboplatin in clinical therapy.

  19. Biochemical and biological characterization of a dermonecrotic metalloproteinase isolated from Cerastes cerastes snake venom.

    Science.gov (United States)

    Ami, Amina; Oussedik-Oumehdi, Habiba; Laraba-Djebari, Fatima

    2017-02-01

    A dermonecrotic metalloproteinase (CcD-II) was isolated from C. cerastes venom. Venom fractionation was performed using three chromatographic steps (molecular exclusion on Sephadex G-75, ion-exchange on DEAE-Sephadex A-50, and reversed-phase high-performance liquid chromatography on C8 column). CcD-II presented an apparent molecular mass of 39.9 kDa and displayed a dermonecrotic activity with a minimal necrotic dose of 0.2 mg/kg body weight. CcD-II showed proteolytic ability on casein chains and on α and β fibrinogen chains that was inhibited by ethylenediamine tetraacetic acid and 1,10-phenanthroline while remained unaffected by phenylmethylsulphonyl fluoride and heparin. CcD-II displayed gelatinase activity and degraded extracellular matrix compounds (type-IV collagen and laminin). These results correlated with histopathological analysis showing a complete disorganization of collagenous skin fibers. These data suggested that CcD-II belongs to P-II class of snake venom metalloproteinase. The characterization of venom compounds involved in tissue damage may contribute in the development of new therapeutic strategies in envenomation. © 2016 Wiley Periodicals, Inc.

  20. Acrolein-activated matrix metalloproteinase 9 contributes to persistent mucin production.

    Science.gov (United States)

    Deshmukh, Hitesh S; Shaver, Colleen; Case, Lisa M; Dietsch, Maggie; Wesselkamper, Scott C; Hardie, William D; Korfhagen, Thomas R; Corradi, Massimo; Nadel, Jay A; Borchers, Michael T; Leikauf, George D

    2008-04-01

    Chronic obstructive pulmonary disease (COPD), a global public health problem, is characterized by progressive difficulty in breathing, with increased mucin production, especially in the small airways. Acrolein, a constituent of cigarette smoke and an endogenous mediator of oxidative stress, increases airway mucin 5, subtypes A and C (MUC5AC) production; however, the mechanism remains unclear. In this study, increased mMUC5AC transcripts and protein were associated with increased lung matrix metalloproteinase 9 (mMMP9) transcripts, protein, and activity in acrolein-exposed mice. Increased mMUC5AC transcripts and mucin protein were diminished in gene-targeted Mmp9 mice [Mmp9((-/-))] or in mice treated with an epidermal growth factor receptor (EGFR) inhibitor, erlotinib. Acrolein also decreased mTissue inhibitor of metalloproteinase protein 3 (an MMP9 inhibitor) transcript levels. In a cell-free system, acrolein increased pro-hMMP9 cleavage and activity in concentrations (100-300 nM) found in sputum from subjects with COPD. Acrolein increased hMMP9 transcripts in human airway cells, which was inhibited by an MMP inhibitor, EGFR-neutralizing antibody, or a mitogen-activated protein kinase (MAPK) 3/2 inhibitor. Together these findings indicate that acrolein can initiate cleavage of pro-hMMP9 and EGFR/MAPK signaling that leads to additional MMP9 formation. Augmentation of hMMP9 activity, in turn, could contribute to persistent excessive mucin production.

  1. A study on expression levels of matrix metalloproteinases and their ...

    African Journals Online (AJOL)

    Keywords: Ulcerative colitis, Matrix metalloproteinases, Tissue inhibitors of metalloproteinases, Lamina propria ... The symptoms of UC include diarrhea with blood, fever ..... Eisen A, Jeffrey J, Gross J. Human skin collagenase. Isolation and ...

  2. Cannabinoids inhibit angiogenic capacities of endothelial cells via release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells.

    Science.gov (United States)

    Ramer, Robert; Fischer, Sascha; Haustein, Maria; Manda, Katrin; Hinz, Burkhard

    2014-09-15

    Cannabinoids inhibit tumor neovascularization as part of their tumorregressive action. However, the underlying mechanism is still under debate. In the present study the impact of cannabinoids on potential tumor-to-endothelial cell communication conferring anti-angiogenesis was studied. Cellular behavior of human umbilical vein endothelial cells (HUVEC) associated with angiogenesis was evaluated by Boyden chamber, two-dimensional tube formation and fibrin bead assay, with the latter assessing three-dimensional sprout formation. Viability was quantified by the WST-1 test. Conditioned media (CM) from A549 lung cancer cells treated with cannabidiol, Δ(9)-tetrahydrocannabinol, R(+)-methanandamide or the CB2 agonist JWH-133 elicited decreased migration as well as tube and sprout formation of HUVEC as compared to CM of vehicle-treated cancer cells. Inhibition of sprout formation was further confirmed for cannabinoid-treated A549 cells co-cultured with HUVEC. Using antagonists to cannabinoid-activated receptors the antimigratory action was shown to be mediated via cannabinoid receptors or transient receptor potential vanilloid 1. SiRNA approaches revealed a cannabinoid-induced expression of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) as well as its upstream trigger, the intercellular adhesion molecule-1, to be causally linked to the observed decrease of HUVEC migration. Comparable anti-angiogenic effects were not detected following direct exposure of HUVEC to cannabinoids, but occurred after addition of recombinant TIMP-1 to HUVEC. Finally, antimigratory effects were confirmed for CM of two other cannabinoid-treated lung cancer cell lines (H460 and H358). Collectively, our data suggest a pivotal role of the anti-angiogenic factor TIMP-1 in intercellular tumor-endothelial cell communication resulting in anti-angiogenic features of endothelial cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Matrix metalloproteinase-14 mediates a phenotypic shift in the airways to increase mucin production.

    Science.gov (United States)

    Deshmukh, Hitesh S; McLachlan, Anne; Atkinson, Jeffrey J; Hardie, William D; Korfhagen, Thomas R; Dietsch, Maggie; Liu, Yang; Di, Peter Y P; Wesselkamper, Scott C; Borchers, Michael T; Leikauf, George D

    2009-11-01

    Induced mainly by cigarette smoking, chronic obstructive pulmonary disease (COPD) is a global public health problem characterized by progressive difficulty in breathing and increased mucin production. Previously, we reported that acrolein levels found in COPD sputum could activate matrix metalloproteinase-9 (MMP9). To determine whether acrolein increases expression and activity of MMP14, a critical membrane-bound endopeptidase that can initial a MMP-activation cascade. MMP14 activity and adduct formation were measured following direct acrolein treatment. MMP14 expression and activity was measured in human airway epithelial cells. MMP14 immunohistochemistry was performed with COPD tissue, and in acrolein- or tobacco-exposed mice. In a cell-free system, acrolein, in concentrations equal to those found in COPD sputum, directly adducted cysteine 319 in the MMP14 hemopexin-like domain and activated MMP14. In cells, acrolein increased MMP14 activity, which was inhibited by a proprotein convertase inhibitor, hexa-d-arginine. In the airway epithelium of COPD subjects, immunoreactive MMP14 protein increased. In mouse lung, acrolein or tobacco smoke increased lung MMP14 activity and protein. In cells, acrolein-induced MMP14 transcripts were inhibited by an epidermal growth factor receptor (EGFR) neutralizing antibody, EGFR kinase inhibitor, metalloproteinase inhibitor, or mitogen-activated protein kinase (MAPK) 3/2 or MAPK8 inhibitors, but not a MAPK14 inhibitor. Decreasing the MMP14 protein and activity in vitro by small interfering (si)RNA to MMP14 diminished the acrolein-induced MUC5AC transcripts. In acrolein-exposed mice or transgenic mice with lung-specific transforming growth factor-alpha (an EGFR ligand) expression, lung MMP14 and MUC5AC levels increased and these effects were inhibited by a EGFR inhibitor, erlotinib. Taken together, these findings implicate acrolein-induced MMP14 expression and activity in mucin production in COPD.

  4. The effect of tomatine on metastasis related matrix metalloproteinase (MMP) activities in breast cancer cell model.

    Science.gov (United States)

    Yelken, Besra Özmen; Balcı, Tuğçe; Süslüer, Sunde Yılmaz; Kayabaşı, Çağla; Avcı, Çığır Biray; Kırmızıbayrak, Petek Ballar; Gündüz, Cumhur

    2017-09-05

    Breast cancer is one of the most common malignancies in women and metastasis is the cause of morbidity and mortality in patients. In the development of metastasis, the matrix metalloproteinase (MMP) family has a very important role in tumor development. MMP-2 and MMP-9 work together for extracellular matrix (ECM) cleavage to increase migration. Tomatine is a secondary metabolite that has a natural defense role against plants, fungi, viruses and bacteria that are synthesized from tomato. In additıon, tomatine is also known that it breaks down the cell membrane and is a strong inhibitor in human cancer cells. In this study, it was aimed to evaluate the effect of tomatine on cytotoxicity, apoptosis and matrix metalloproteinase inhibition in MCF-7 cell lines. Human breast cancer cell line (MCF-7) was used as a cell line. In MCF-7 cells, the IC 50 dose of tomatine was determined to be 7.07μM. According to the control cells, apoptosis increased 3.4 fold in 48thh. Activation of MMP-2, MMP-9 and MMP-9\\NGAL has been shown to decrease significantly in cells treated with tomatine by gelatin zymography compared to the control. As a result, matrix metalloproteinase activity and cell proliferation were suppressed by tomatine and this may provide support in treatment methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Polysaccharide Extracted from Laminaria japonica Delays Intrinsic Skin Aging in Mice

    Directory of Open Access Journals (Sweden)

    Longyuan Hu

    2016-01-01

    Full Text Available This study aimed to determine the effect of topically applied Laminaria polysaccharide (LP on skin aging. We applied ointment containing LP (10, 25, and 50 μg/g or vitamin E (10 μg/g to the dorsal skin of aging mice for 12 months and young control mice for 4 weeks. Electron microscopy analysis of skin samples revealed that LP increased dermal thickness and skin collagen content. Tissue inhibitor of metalloprotease- (TIMP- 1 expression was upregulated while that of matrix metalloproteinase- (MMP- 1 was downregulated in skin tissue of LP-treated as compared to untreated aging mice. Additionally, phosphorylation of c-Jun N-terminal kinase (JNK and p38 was higher in aging skin than in young skin, while LP treatment suppressed phospho-JNK expression. LP application also enhanced the expression of antioxidative enzymes in skin tissue, causing a decrease in malondialdehyde levels and increases in superoxide dismutase, catalase, and glutathione peroxidase levels relative to those in untreated aging mice. These results indicate that LP inhibits MMP-1 expression by preventing oxidative stress and JNK phosphorylation, thereby delaying skin collagen breakdown during aging.

  6. Bystander effects in UV-induced genomic instability: Antioxidants inhibit delayed mutagenesis induced by ultraviolet A and B radiation

    Directory of Open Access Journals (Sweden)

    Dahle Jostein

    2005-01-01

    Full Text Available Abstract Background Genomic instability is characteristic of many types of human cancer. Recently, we reported that ultraviolet radiation induced elevated mutation rates and chromosomal instability for many cell generations after ultraviolet irradiation. The increased mutation rates of unstable cells may allow them to accumulate aberrations that subsequently lead to cancer. Ultraviolet A radiation, which primarily acts by oxidative stress, and ultraviolet B radiation, which initially acts by absorption in DNA and direct damage to DNA, both produced genomically unstable cell clones. In this study, we have determined the effect of antioxidants on induction of delayed mutations by ultraviolet radiation. Delayed mutations are indicative of genomic instability. Methods Delayed mutations in the hypoxanthine phosphoribosyl transferase (hprt gene were detected by incubating the cells in medium selectively killing hprt mutants for 8 days after irradiation, followed by a 5 day period in normal medium before determining mutation frequencies. Results The UVB-induced delayed hprt mutations were strongly inhibited by the antioxidants catalase, reduced glutathione and superoxide dismutase, while only reduced glutathione had a significant effect on UVA-induced delayed mutations. Treatment with antioxidants had only minor effects on early mutation frequenies, except that reduced glutathione decreased the UVB-induced early mutation frequency by 24 %. Incubation with reduced glutathione was shown to significantly increase the intracellular amount of reduced glutathione. Conclusion The strong effects of these antioxidants indicate that genomic instability, which is induced by the fundamentally different ultraviolet A and ultraviolet B radiation, is mediated by reactive oxygen species, including hydrogen peroxide and downstream products. However, cells take up neither catalase nor SOD, while incubation with glutathione resulted in increased intracellular levels of

  7. Increased matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1 ratio in smokers with airway hyperresponsiveness and accelerated lung function decline

    Directory of Open Access Journals (Sweden)

    Lo CY

    2018-04-01

    was positively correlated with the annual decline in FEV1%pred, FVC%pred, and MMEF%pred. Both SB203580 and PD98059 significantly reduced MMP-9, but not TIMP-1, from AMs of smokers.Conclusion: AMs of AHR + NS produce excessive MMP-9 over TIMP-1, which may be a predictor of the development of airway obstruction. Inhibition of p38 MAPK and ERK suppresses the generation of MMP-9 by AMs from smokers. Keywords: smoking, airway hyperresponsiveness, alveolar macrophage, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 

  8. A study on the expression levels of matrix metalloproteinases and ...

    African Journals Online (AJOL)

    Conclusion: MMP-2, MMP-7, and MMP-9 are potential targets for therapeutic control of UC. Keywords: Glandular epithelium, Inflammatory cells, Inhibitors, Matrix metalloproteinases (MMPs),. Tissue inhibitors of metalloproteinases, Ulcerative colitis. Tropical Journal of Pharmaceutical Research is indexed by Science ...

  9. Human aqueous humor levels of transforming growth factor-β2: Association with matrix metalloproteinases/tissue inhibitors of matrix metalloproteinases

    OpenAIRE

    Jia, Yan; Yue, Yu; Hu, Dan-Ning; Chen, Ji-Li; Zhou, Ji-Bo

    2017-01-01

    The present study aims to investigate the association of transforming growth factor-β2 (TGF-β2) and matrix metalloproteinases (MMPs), MMP-2 and MMP-3, and tissue inhibitors of matrix metalloproteinases (TIMPs), TIMP-1, TIMP-2 and TIMP-3 in the aqueous humor of patients with high myopia or cataracts. The levels of TGF-β2 and MMPs/TIMPs were measured with the Luminex xMAP Technology using commercially available Milliplex xMAP kits. The association between TGF-β2 and MMPs/TIMPs levels was analyz...

  10. Neutralisation of uPA with a monoclonal antibody reduces plasmin formation and delays skin wound healing in tPA-deficient mice

    DEFF Research Database (Denmark)

    Jögi, Annika; Rønø, Birgitte; Lund, Ida K

    2010-01-01

    Proteolytic degradation by plasmin and metalloproteinases is essential for epidermal regeneration in skin wound healing. Plasminogen deficient mice have severely delayed wound closure as have mice simultaneously lacking the two plasminogen activators, urokinase-type plasminogen activator (u......PA) and tissue-type plasminogen activator (tPA). In contrast, individual genetic deficiencies in either uPA or tPA lead to wound healing kinetics with no or only slightly delayed closure of skin wounds....

  11. Curcumin influences hepatic expression patterns of matrix metalloproteinases in liver toxicity.

    Science.gov (United States)

    Rukkumani, Rajagopalan; Aruna, Kode; Varma, Penumathsa Suresh; Menon, Venugopal Padmanabhan

    2004-07-01

    Hepatic fibrosis is a result of an imbalance between enhanced matrix synthesis and diminished breakdown of connective tissue proteins, the net result of which is increased deposition of Extra Cellular Matrix. In this concept Matrix Metalloproteinases play an important role because their activity is largely responsible for extra cellular matrix breakdown. In the present study we have tested the influence of curcumin, the active principle of turmeric, on matrix metalloproteinase expression during alcohol and thermally oxidised sunflower oil induced liver toxicity. Male albino Wistar rats were used for the study. The matrix metalloproteinase expressions were found to be increased significantly in alcohol as well as thermally oxidised sunflower oil groups and on treatment with curcumin there was a significant decrease. In alcohol + thermally oxidised sunflower oil group, we found a significant decrease in matrix metalloproteinase activities. Administration of curcumin significantly improved their activities. From the results obtained, we could conclude that curcumin influences the hepatic matrix metalloproteinases and effectively protects liver against alcohol and delta PUFA induced toxicity.

  12. The Metalloproteinase ADAM28 Promotes Metabolic Dysfunction in Mice

    Directory of Open Access Journals (Sweden)

    Lakshini Herat

    2017-04-01

    Full Text Available Obesity and diabetes are major causes of morbidity and mortality globally. The current study builds upon our previous association studies highlighting that A Disintegrin And Metalloproteinase 28 (ADAM28 appears to be implicated in the pathogenesis of obesity and type 2 diabetes in humans. Our novel study characterised the expression of ADAM28 in mice with the metabolic syndrome and used molecular inhibition approaches to investigate the functional role of ADAM28 in the pathogenesis of high fat diet-induced obesity. We identified that ADAM28 mRNA and protein expression was markedly increased in the livers of mice with the metabolic syndrome. In addition, noradrenaline, the major neurotransmitter of the sympathetic nervous system, results in elevated Adam28 mRNA expression in human monocytes. Downregulation of ADAM28 with siRNA technology resulted in a lack of weight gain, promotion of insulin sensitivity/glucose tolerance and decreased liver tumour necrosis factor-α (TNF-α levels in our diet-induced obesity mouse model as well as reduced blood urea nitrogen, alkaline phosphatase and aspartate aminotransferase. In addition, we show that ADAM28 knock-out mice also displayed reduced body weight, elevated high density lipoprotein cholesterol levels, and reductions in blood urea nitrogen, alkaline phosphatase, and aspartate aminotransferase. The results of this study provide important insights into the pathogenic role of the metalloproteinase ADAM28 in the metabolic syndrome and suggests that downregulation of ADAM28 may be a potential therapeutic strategy in the metabolic syndrome.

  13. Curcumin Delays Retinal Degeneration by Regulating Microglia Activation in the Retina of rd1 Mice.

    Science.gov (United States)

    Wang, Yanhe; Yin, Zhiyuan; Gao, Lixiong; Sun, Dayu; Hu, Xisu; Xue, Langyue; Dai, Jiaman; Zeng, YuXiao; Chen, Siyu; Pan, Boju; Chen, Min; Xie, Jing; Xu, Haiwei

    2017-01-01

    Retinitis pigmentosa (RP) is characterized by degeneration of photoreceptors, and there are currently no effective treatments for this disease. However, curcumin has shown neuroprotectant efficacy in a RP rat and swine model, and thus, may have neuroprotective effects in this disease. Immunofluorescence staining, electroretinogram recordings, and behavioral tests were used to analyze the effects of curcumin and the underlying mechanism in retinal degeneration 1 (rd1) mice. The number of apoptotic cells in the retina of rd1 mice at postnatal day 14 significantly decreased with curcumin treatment and visual function was improved. The activation of microglia and secretion of chemokines and matrix metalloproteinases in the retina were inhibited by curcumin. These effects were also observed in a co-culture of BV2 microglial cells and retina-derived 661W cells. Curcumin delayed retinal degeneration by suppressing microglia activation in the retina of rd1 mice. Thus, it may be an effective treatment for neurodegenerative disorders such as RP. © 2017 The Author(s). Published by S. Karger AG, Basel.

  14. Tissue inhibitor of metalloproteinase-3 knockout mice exhibit enhanced energy expenditure through thermogenesis.

    Directory of Open Access Journals (Sweden)

    Yohsuke Hanaoka

    Full Text Available Tissue inhibitors of metalloproteinases (TIMPs regulate matrix metalloproteinase activity and maintain extracellular matrix homeostasis. Although TIMP-3 has multiple functions (e.g., apoptosis, inhibition of VEGF binding to VEGF receptor, and inhibition of TNFα converting enzyme, its roles in thermogenesis and metabolism, which influence energy expenditure and can lead to the development of metabolic disorders when dysregulated, are poorly understood. This study aimed to determine whether TIMP-3 is implicated in metabolism by analyzing TIMP-3 knockout (KO mice. TIMP-3 KO mice had higher body temperature, oxygen consumption, and carbon dioxide production than wild-type (WT mice, although there were no differences in food intake and locomotor activity. These results suggest that metabolism is enhanced in TIMP-3 KO mice. Real-time PCR analysis showed that the expression of PPAR-δ, UCP-2, NRF-1 and NRF-2 in soleus muscle, and PGC-1α and UCP-2 in gastrocnemius muscle, was higher in TIMP-3 KO mice than in WT mice, suggesting that TIMP-3 deficiency may increase mitochondrial activity. When exposed to cold for 8 hours to induce thermogenesis, TIMP-3 KO mice had a higher body temperature than WT mice. In the treadmill test, oxygen consumption and carbon dioxide production were higher in TIMP-3 KO mice both before and after starting exercise, and the difference was more pronounced after starting exercise. Our findings suggest that TIMP-3 KO mice exhibit enhanced metabolism, as reflected by a higher body temperature than WT mice, possibly due to increased mitochondrial activity. Given that TIMP-3 deficiency increases energy expenditure, TIMP-3 may present a novel therapeutic target for preventing metabolic disorders.

  15. Selective inhibition of ADAM12 catalytic activity through engineering of tissue inhibitor of metalloproteinase 2 (TIMP-2)

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Jacobsen, Jonas; Lee, Meng-Huee

    2010-01-01

    activity may be of great value therapeutically and as an investigative tool to elucidate its mechanisms of action. We have previously reported the inhibitory profile of TIMPs (tissue inhibitor of metalloproteinases) against ADAM12, demonstrating in addition to TIMP-3, a unique ADAM-inhibitory activity...... activity of TIMPs against the transmembrane ADAM12-L (full-length ADAM12), verifying the distinctive inhibitory abilities of N-TIMP-2 and engineered N-TIMP-2 mutants in a cellular environment. Taken together, our findings support the idea that a distinctive ADAM12 inhibitor with future therapeutic...

  16. Perspectives and new aspects of metalloproteinases' inhibitors in therapy of CNS disorders: from chemistry to medicine.

    Science.gov (United States)

    Boguszewska-Czubara, Anna; Budzynska, Barbara; Skalicka-Wozniak, Krystyna; Kurzepa, Jacek

    2018-05-13

    Matrix metalloproteinases (MMPs) play a key role in remodelling of the extracellular matrix (ECM) and, at the same time, influence cell differentiation, migration, proliferation and survival. Their importance in variety of human diseases including cancer, rheumatoid arthritis, pulmonary emphysema and fibrotic disorders has been known for many years but special attention should be paid on the role of MMPs in the central nervous system (CNS) disorders. Till now, there are not many well documented physiological MMP target proteins in the brain and only some pathological ones. Numerous neurodegenerative diseases is a consequence or result in disturbed remodeling of brain ECM, therefore proper action of MMPs as well as control of their activity may play crucial roles in the development and the progress of these diseases. In present review we discuss the role of metalloproteinase inhibitors, from the well-known natural endogenous tissue inhibitors of metalloproteinases (TIMPs) through exogenous synthetic ones like (4-phenoxyphenylsulfonyl)methylthiirane (SB-3CT), tetracyclines, batimastat (BB-94) and FN-439. As the MMP-TIMP system has been well described in physiological development as well as in pathological conditions mainly in neoplasctic diseases, the knowledge about the enzymatic system in mammalian brain tissue remain still poorly understood in this context. Therefore, we focus on MMPs inhibition in the context of physiological function of adult brain as well as pathological conditions including neurodegenerative diseases, brain injuries and others. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. A Metalloproteinase Mirolysin of Tannerella forsythia Inhibits All Pathways of the Complement System

    DEFF Research Database (Denmark)

    Jusko, Monika; Potempa, Jan; Mizgalska, Danuta

    2015-01-01

    Recent reports focusing on virulence factors of periodontal pathogens implicated proteinases as major determinants of remarkable pathogenicity of these species, with special emphasis on their capacity to modulate complement activity. In particular, bacteria-mediated cleavage of C5 and subsequent...... release of C5a seems to be an important phenomenon in the manipulation of the local inflammatory response in periodontitis. In this study, we present mirolysin, a novel metalloproteinase secreted by Tannerella forsythia, a well-recognized pathogen strongly associated with periodontitis. Mirolysin...... with karilysin, as well as a cysteine proteinase of another periodontal pathogen, Prevotella intermedia, resulted in a strong synergistic effect on complement. Furthermore, mutant strains of T. forsythia, devoid of either mirolysin or karilysin, showed diminished survival in human serum, providing further...

  18. Regulation of Matrix Metalloproteinase-2 Activity by COX-2-PGE2-pAKT Axis Promotes Angiogenesis in Endometriosis

    Science.gov (United States)

    Ray, Amlan K.; DasMahapatra, Pramathes; Swarnakar, Snehasikta

    2016-01-01

    Endometriosis is characterized by the ectopic development of the endometrium which relies on angiogenesis. Although studies have identified the involvement of different matrix metalloproteinases (MMPs) in endometriosis, no study has yet investigated the role of MMP-2 in endometriosis-associated angiogenesis. The present study aims to understand the regulation of MMP-2 activity in endothelial cells and on angiogenesis during progression of ovarian endometriosis. Histological and biochemical data showed increased expressions of vascular endothelial growth factor (VEGF), VEGF receptor-2, cycloxygenase (COX)-2, von Willebrand factor along with angiogenesis during endometriosis progression. Women with endometriosis showed decreased MMP-2 activity in eutopic endometrium as compared to women without endometriosis. However, ectopic ovarian endometrioma showed significantly elevated MMP-2 activity with disease severity. In addition, increased MT1MMP and decreased tissue inhibitors of metalloproteinases (TIMP)-2 expressions were found in the late stages of endometriosis indicating more MMP-2 activation with disease progression. In vitro study using human endothelial cells showed that prostaglandin E2 (PGE2) significantly increased MMP-2 activity as well as tube formation. Inhibition of COX-2 and/or phosphorylated AKT suppressed MMP-2 activity and endothelial tube formation suggesting involvement of PGE2 in regulation of MMP-2 activity during angiogenesis. Moreover, specific inhibition of MMP-2 by chemical inhibitor significantly reduced cellular migration, invasion and tube formation. In ovo assay showed decreased angiogenic branching upon MMP-2 inhibition. Furthermore, a significant reduction of lesion numbers was observed upon inhibition of MMP-2 and COX-2 in mouse model of endometriosis. In conclusion, our study establishes the involvement of MMP-2 activity via COX-2-PGE2-pAKT axis in promoting angiogenesis during endometriosis progression. PMID:27695098

  19. Suppression of Heregulin-β1/HER2-Modulated Invasive and Aggressive Phenotype of Breast Carcinoma by Pterostilbene via Inhibition of Matrix Metalloproteinase-9, p38 Kinase Cascade and Akt Activation

    Directory of Open Access Journals (Sweden)

    Min-Hsiung Pan

    2011-01-01

    Full Text Available Invasive breast cancer is the major cause of death among females and its incidence is closely linked to HER2 (human epidermal growth factor receptor 2 overexpression. Pterostilbene, a natural analog of resveratrol, exerts its cancer chemopreventive activity similar to resveratrol by inhibiting cancer cell proliferation and inducing apoptosis. However, the anti-invasive effect of pterostilbene on HER2-bearing breast cancer has not been evaluated. Here, we used heregulin-β1 (HRG-β1, a ligand for HER3, to transactivate HER2 signaling. We found that pterostilbene was able to suppress HRG-β1-mediated cell invasion, motility and cell transformation of MCF-7 human breast carcinoma through down-regulation of matrix metalloproteinase-9 (MMP-9 activity and growth inhibition. In parallel, pterostilbene also inhibited protein and mRNA expression of MMP-9 driven by HRG-β1, suggesting that pterostilbene decreased HRG-β1-mediated MMP-9 induction via transcriptional regulation. Examining the signaling pathways responsible for HRG-β1-associated MMP-9 induction and growth inhibition, we observed that pterostilbene, as well as SB203580 (p38 kinase inhibitor, can abolish the phosphorylation of p38 mitogen-activated protein kinase (p38 kinase, a downstream HRG-β1-responsive kinase responsible for MMP-9 induction. In addition, HRG-β1-driven Akt phosphorylation required for cell proliferation was also suppressed by pterostilbene. Taken together, our present results suggest that pterostilbene may serve as a chemopreventive agent to inhibit HRG-β1/HER2-mediated aggressive and invasive phenotype of breast carcinoma through down-regulation of MMP-9, p38 kinase and Akt activation.

  20. Levels of matrix metalloproteinase-1 and tissue inhibitors of metalloproteinase-1 in gastric cancer

    Science.gov (United States)

    Kemik, Ozgur; Kemik, Ahu Sarbay; Sümer, Aziz; Dulger, Ahmet Cumhur; Adas, Mine; Begenik, Huseyin; Hasirci, Ismail; Yilmaz, Ozkan; Purisa, Sevim; Kisli, Erol; Tuzun, Sefa; Kotan, Cetin

    2011-01-01

    AIM: To evaluate the levels of preoperative serum matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in gastric cancer. METHODS: One hundred gastric cancer patients who underwent gastrectomy were enrolled in this study. The serum concentrations of MMP-1 and TIMP-1 in these patients and in fifty healthy controls were determined using an enzyme-linked immunosorbent assay. RESULTS: Higher serum MMP-1 and TIMP-1 levels were observed in patients than in controls (P < 0.001). Serum MMP-1 and TIMP-1 levels were positively associated with morphological appearance, tumor size, depth of wall invasion, lymph node metastasis, liver metastasis, perineural invasion, and pathological stage. They were not significantly associated with age, gender, tumor location, or histological type. CONCLUSION: Increased MMP-1 and TIMP-1 were associated with gastric cancer. Although these markers are not good markers for diagnosis, these markers show in advanced gastric cancer. PMID:21547130

  1. Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors.

    NARCIS (Netherlands)

    Snoek, P.A.; Hoff, J.W. Von den

    2005-01-01

    The balance between matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), is largely responsible for the remodeling of tissues. Deregulation of this balance is a characteristic of extensive tissue degradation in certain degenerative diseases. To

  2. Structural properties of matrix metalloproteinases.

    Science.gov (United States)

    Bode, W; Fernandez-Catalan, C; Tschesche, H; Grams, F; Nagase, H; Maskos, K

    1999-04-01

    Matrix metalloproteinases (MMPs) are involved in extracellular matrix degradation. Their proteolytic activity must be precisely regulated by their endogenous protein inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance results in serious diseases such as arthritis, tumour growth and metastasis. Knowledge of the tertiary structures of the proteins involved is crucial for understanding their functional properties and interference with associated dysfunctions. Within the last few years, several three-dimensional MMP and MMP-TIMP structures became available, showing the domain organization, polypeptide fold and main specificity determinants. Complexes of the catalytic MMP domains with various synthetic inhibitors enabled the structure-based design and improvement of high-affinity ligands, which might be elaborated into drugs. A multitude of reviews surveying work done on all aspects of MMPs have appeared in recent years, but none of them has focused on the three-dimensional structures. This review was written to close the gap.

  3. Peptide-Based Selective Inhibitors of Matrix Metalloproteinase-Mediated Activities

    Directory of Open Access Journals (Sweden)

    Margaret W. Ndinguri

    2012-11-01

    Full Text Available The matrix metalloproteinases (MMPs exhibit a broad array of activities, some catalytic and some non-catalytic in nature. An overall lack of selectivity has rendered small molecule, active site targeted MMP inhibitors problematic in execution. Inhibitors that favor few or individual members of the MMP family often take advantage of interactions outside the enzyme active site. We presently focus on peptide-based MMP inhibitors and probes that do not incorporate conventional Zn2+ binding groups. In some cases, these inhibitors and probes function by binding only secondary binding sites (exosites, while others bind both exosites and the active site. A myriad of MMP mediated-activities beyond selective catalysis can be inhibited by peptides, particularly cell adhesion, proliferation, motility, and invasion. Selective MMP binding peptides comprise highly customizable, unique imaging agents. Areas of needed improvement for MMP targeting peptides include binding affinity and stability.

  4. Bacterial lipoprotein delays apoptosis in human neutrophils through inhibition of caspase-3 activity: regulatory roles for CD14 and TLR-2.

    LENUS (Irish Health Repository)

    Power, Colm P

    2012-02-03

    The human sepsis syndrome resulting from bacterial infection continues to account for a significant proportion of hospital mortality. Neutralizing strategies aimed at individual bacterial wall products (such as LPS) have enjoyed limited success in this arena. Bacterial lipoprotein (BLP) is a major constituent of the wall of diverse bacterial forms and profoundly influences cellular function in vivo and in vitro, and has been implicated in the etiology of human sepsis. Delayed polymorphonuclear cell (PMN) apoptosis is a characteristic feature of human sepsis arising from Gram-negative or Gram-positive bacterial infection. Bacterial wall product ligation and subsequent receptor-mediated events upstream of caspase inhibition in neutrophils remain incompletely understood. BLP has been shown to exert its cellular effects primarily through TLR-2, and it is now widely accepted that lateral associations with the TLRs represent the means by which CD14 communicates intracellular messages. In this study, we demonstrate that BLP inhibits neutrophil mitochondrial membrane depolarization with a subsequent reduction in caspase-3 processing, ultimately leading to a significant delay in PMN apoptosis. Pretreatment of PMNs with an anti-TLR-2 mAb or anti-CD14 mAb prevented BLP from delaying PMN apoptosis to such a marked degree. Combination blockade using both mAbs completely prevented the effects of BLP (in 1 and 10 ng\\/ml concentrations) on PMN apoptosis. At higher concentrations of BLP, the antiapoptotic effects were observed, but were not as pronounced. Our findings therefore provide the first evidence of a crucial role for both CD14 and TLR-2 in delayed PMN apoptosis arising from bacterial infection.

  5. A radical scavenger edaravone inhibits matrix metalloproteinase-9 upregulation and blood-brain barrier breakdown in a mouse model of prolonged cerebral hypoperfusion.

    Science.gov (United States)

    Miyamoto, Nobukazu; Pham, Loc-Duyen D; Maki, Takakuni; Liang, Anna C; Arai, Ken

    2014-06-24

    Matrix metalloproteinase-9 (MMP-9) plays key roles in the brain pathophysiology, especially in blood-brain barrier (BBB) breakdown. Therefore, inhibiting MMP-9 activity may be a promising therapy for protecting brains in cerebrovascular diseases. Here we show that in a mouse prolonged cerebral hypoperfusion model, a clinically proven radical scavenger edaravone suppressed MMP-9 and reduced BBB damage in cerebral white matter. Prolonged cerebral hypoperfusion was induced by bilateral common carotid artery stenosis in male adult C57BL/6J mice (10 weeks old). After 7 days of cerebral hypoperfusion, white matter region (e.g. corpus callosum) exhibited significant BBB leakage, assessed by IgG staining. Correspondingly, immunostaining and western blotting showed that MMP-9 was upregulated in the white matter. Edaravone treatment (3mg/kg, i.p. at days 0 and 3) inhibited both BBB leakage and MMP-9 increase. Under the early phase of cerebral hypoperfusion conditions, oligodendrocyte precursor cells (OPCs) mainly contribute to the MMP-9 increase, but our immunostaining data showed that very little OPCs expressed MMP-9 in the edaravone-treated animals at day 7. Therefore, in vitro studies with primary rat OPCs were conducted to examine whether edaravone would directly suppressed MMP-9 expressions in OPCs. OPC cultures were exposed to sub-lethal CoCl2 for 7 days to induce prolonged chemical hypoxic stress. Prolonged chemical hypoxic stress increased MMP-9 expression in OPCs, and radical scavenging with edaravone (10μM for 7 days) ameliorated the increase. Taken together, our proof-of-concept study demonstrates that radical scavengers may provide a potential therapeutic approach for white matter injury by suppressing BBB damage. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview

    Directory of Open Access Journals (Sweden)

    Soichi Takeda

    2016-05-01

    Full Text Available A disintegrin and metalloproteinase (ADAM family proteins constitute a major class of membrane-anchored multidomain proteinases that are responsible for the shedding of cell-surface protein ectodomains, including the latent forms of growth factors, cytokines, receptors and other molecules. Snake venom metalloproteinases (SVMPs are major components in most viper venoms. SVMPs are primarily responsible for hemorrhagic activity and may also interfere with the hemostatic system in envenomed animals. SVMPs are phylogenetically most closely related to ADAMs and, together with ADAMs and related ADAM with thrombospondin motifs (ADAMTS family proteinases, constitute adamalysins/reprolysins or the M12B clan (MEROPS database of metalloproteinases. Although the catalytic domain structure is topologically similar to that of other metalloproteinases such as matrix metalloproteinases, the M12B proteinases have a modular structure with multiple non-catalytic ancillary domains that are not found in other proteinases. Notably, crystallographic studies revealed that, in addition to the conserved metalloproteinase domain, M12B members share a hallmark cysteine-rich domain designated as the “ADAM_CR” domain. Despite their name, ADAMTSs lack disintegrin-like structures and instead comprise two ADAM_CR domains. This review highlights the current state of our knowledge on the three-dimensional structures of M12B proteinases, focusing on their unique domains that may collaboratively participate in directing these proteinases to specific substrates.

  7. The plasma and peritoneal fluid concentrations of matrix metalloproteinase-9 are elevated in patients with endometriosis.

    Science.gov (United States)

    Liu, Haiping; Wang, Jianye; Wang, Haiyu; Tang, Ning; Li, Yunfei; Zhang, Yan; Hao, Tianyu

    2016-09-01

    Enzyme matrix metalloproteinase-9 is a member of the matrix metalloproteinase family, which is critical to normal tissue remodelling during embryogenesis and wound healing. In patients with endometriosis, increased expression and activity of matrix metalloproteinase-9 have been observed in ectopic endometrium, but the plasma and peritoneal fluid concentrations of matrix metalloproteinase-9 in patients with endometriosis and their relation to disease severity have not been clear. The aim of the study was to investigate the concentrations of matrix metalloproteinase-9 in plasma and peritoneal fluid of patients with endometriosis. A prospective case-control study was conducted in Jinan Military General Hospital between January 2010 and December 2013. Fifty patients with proven endometriosis and 26 endometriosis-free controls were enrolled in this study. Patients with endometriosis were evaluated and divided into moderate/severe endometriosis group (stage I-II, n = 26) and minimal/mild endometriosis group (stage III-IV, n = 24) according to the revised criteria of the American Society for Reproductive Medicine. Blood samples and peritoneal fluid were obtained from both patients and controls. Matrix metalloproteinase-9 was measured using enzyme-linked immunosorbent assay in plasma and peritoneal fluid. The concentration of matrix metalloproteinase-9 between different groups was compared and its correlation to disease severity was analysed. Plasma and peritoneal fluid concentrations of matrix metalloproteinase-9 in patients with endometriosis were higher than that in controls. In addition, those patients with moderate/severe endometriosis had significantly higher plasma and peritoneal fluid concentrations of matrix metalloproteinase-9 compared to those with minimal/mild endometriosis. Matrix metalloproteinase-9 concentrations in plasma and peritoneal fluid were both positively correlated with severity of endometriosis and plasma matrix metalloproteinase-9

  8. Luteolin decreases invasiveness, deactivates STAT3 signaling, and reverses interleukin-6 induced epithelial–mesenchymal transition and matrix metalloproteinase secretion of pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Huang XC

    2015-10-01

    Full Text Available Xince Huang,1 Shengjie Dai,1 Juji Dai,1 Yuwu Xiao,1 Yongyu Bai,1 Bicheng Chen,1,2 Mengtao Zhou1 1Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China; 2Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Wenzhou, Zhejiang Province, People’s Republic of China Abstract: Luteolin, a flavone, has been shown to exhibit anticancer properties. Here, we investigated whether luteolin affects epithelial–mesenchymal transition (EMT and invasiveness of pancreatic cancer cell lines and their underlying mechanism. Pancreatic cancer cell lines PANC-1 and SW1990 were used in our study, and their EMT characters, matrix metalloproteinase (MMP expression level, invasiveness, and signal transducer and activator of transcription 3 (STAT3 activity were determined after luteolin treatment. We also treated pancreatic cancer cells with interleukin-6 (IL-6 to see whether IL-6-induced activation of STAT3, EMT, and MMP secretion was affected by luteolin. We found that luteolin inhibits EMT and MMP2, MMP7, and MMP9 expression in a dose-dependent manner, similar to STAT3 signaling. Through Transwell assay, we found that invasiveness of pancreatic cancer cells was inhibited by luteolin. EMT characters and MMP secretion increase with STAT3 activity after IL-6 treatment and these effects, caused by IL-6, were inhibited by luteolin. We concluded that luteolin inhibits invasiveness of pancreatic cancer cells, and we speculated that luteolin inhibits EMT and MMP secretion likely through deactivation of STAT3 signaling. Luteolin has potential antitumor effects and merits further investigation. Keywords: epithelial–mesenchymal transition, matrix metalloproteinase, luteolin, STAT3

  9. Proactive modulation of long-interval intracortical inhibition during response inhibition

    Science.gov (United States)

    Cowie, Matthew J.; MacDonald, Hayley J.; Cirillo, John

    2016-01-01

    Daily activities often require sudden cancellation of preplanned movement, termed response inhibition. When only a subcomponent of a whole response must be suppressed (required here on Partial trials), the ensuing component is markedly delayed. The neural mechanisms underlying partial response inhibition remain unclear. We hypothesized that Partial trials would be associated with nonselective corticomotor suppression and that GABAB receptor-mediated inhibition within primary motor cortex might be responsible for the nonselective corticomotor suppression contributing to Partial trial response delays. Sixteen right-handed participants performed a bimanual anticipatory response inhibition task while single- and paired-pulse transcranial magnetic stimulation was delivered to elicit motor evoked potentials in the left first dorsal interosseous muscle. Lift times, amplitude of motor evoked potentials, and long-interval intracortical inhibition were examined across the different trial types (Go, Stop-Left, Stop-Right, Stop-Both). Go trials produced a tight distribution of lift times around the target, whereas those during Partial trials (Stop-Left and Stop-Right) were substantially delayed. The modulation of motor evoked potential amplitude during Stop-Right trials reflected anticipation, suppression, and subsequent reinitiation of movement. Importantly, suppression was present across all Stop trial types, indicative of a “default” nonselective inhibitory process. Compared with blocks containing only Go trials, inhibition increased when Stop trials were introduced but did not differ between trial types. The amount of inhibition was positively correlated with lift times during Stop-Right trials. Tonic levels of inhibition appear to be proactively modulated by task context and influence the speed at which unimanual responses occur after a nonselective “brake” is applied. PMID:27281744

  10. Zinc and metalloproteinases 2 and 9: What is their relation with breast cancer?

    Directory of Open Access Journals (Sweden)

    Aldenora Oliveira do Nascimento Holanda

    Full Text Available Summary Zinc is the catalytic component of proteins that regulate responses to DNA damage, intracellular signaling enzymes, and matrix metalloproteinases, which are important proteins in carcinogenesis. The objective of this review is to bring current information on the participation of zinc and matrix metalloproteinases types 2 and 9 in mechanisms involved in the pathogenesis of breast cancer. We conducted a literature review, in consultation with the PubMed, Lilacs, and Scielo databases. The zinc and cysteine residues are structural elements shared by all members of the family of matrix metalloproteinases, and these proteins appear to be involved in the propagation of various types of neoplasms, including breast cancer. Moreover, transported zinc is likely to be used for the metalation of the catalytic domain of the newly synthesized metalloproteinases before the latter are secreted. Accordingly, increase in zinc concentrations in cellular compartments and the reduction of this trace element in the blood of patients with breast cancer appear to alter the activity of metalloproteinases 2 and 9, contributing to the occurrence of malignancy. Thus, it is necessary to carry out further studies with a view to clarify the role of zinc and metalloproteinases 2 and 9 in the pathogenesis of breast cancer.

  11. Omega-3 and Omega-6 Fatty Acids Act as Inhibitors of the Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 Activity.

    Science.gov (United States)

    Nicolai, Eleonora; Sinibaldi, Federica; Sannino, Gianpaolo; Laganà, Giuseppina; Basoli, Francesco; Licoccia, Silvia; Cozza, Paola; Santucci, Roberto; Piro, Maria Cristina

    2017-08-01

    Polyunsaturated fatty acids have been reported to play a protective role in a wide range of diseases characterized by an increased metalloproteinases (MMPs) activity. The recent finding that omega-3 and omega-6 fatty acids exert an anti-inflammatory effect in periodontal diseases has stimulated the present study, designed to determine whether such properties derive from a direct inhibitory action of these compounds on the activity of MMPs. To this issue, we investigated the effect exerted by omega-3 and omega-6 fatty acids on the activity of MMP-2 and MMP-9, two enzymes that actively participate to the destruction of the organic matrix of dentin following demineralization operated by bacteria acids. Data obtained (both in vitro and on ex-vivo teeth) reveal that omega-3 and omega-6 fatty acids inhibit the proteolytic activity of MMP-2 and MMP-9, two enzymes present in dentin. This observation is of interest since it assigns to these compounds a key role as MMPs inhibitors, and stimulates further study to better define their therapeutic potentialities in carious decay.

  12. Reward acts as a signal to control delay-period activity in delayed-response tasks.

    Science.gov (United States)

    Ichihara-Takeda, Satoe; Takeda, Kazuyoshi; Funahashi, Shintaro

    2010-03-31

    Prefrontal delay-period activity represents a neural mechanism for the active maintenance of information and needs to be controlled by some signal to appropriately operate working memory. To examine whether reward-delivery acts as this signal, the effects of delay-period activity in response to unexpected reward-delivery were examined by analyzing single-neuron activity recorded in the primate dorsolateral prefrontal cortex. Among neurons that showed delay-period activity, 34% showed inhibition of this activity in response to unexpected reward-delivery. The delay-period activity of these neurons was affected by the expectation of reward-delivery. The strength of the reward signal in controlling the delay-period activity is related to the strength of the effect of reward information on the delay-period activity. These results indicate that reward-delivery acts as a signal to control delay-period activity.

  13. Matrix metalloproteinases in gastric inflammation and cancer : clinical relevance and prognostic impact

    NARCIS (Netherlands)

    Kubben, Francois Jozef Gerard Marie

    2007-01-01

    The studies in this thesis describe the clinical impact of several matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in H. pylori-induced gastritis and gastric cancer. In patients with H. pylori-induced gastritis, significantly increased mucosal MMP-9 levels were

  14. Expression of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) by colorectal cancer cells and adjacent stroma cells--associations with histopathology and patients outcome

    DEFF Research Database (Denmark)

    Jensen, Søren Astrup; Vainer, Ben; Bartels, Annette

    2010-01-01

    To elucidate cellular features accountable for colorectal cancers' (CRC) capability to invade normal tissue and to metastasize, we investigated the level of the collagenase matrix metalloproteinase 9 (MMP-9) and its physiological inhibitor tissue inhibitor of metalloproteinases 1 (TIMP-1) in canc...

  15. Isoflurane depolarizes bronchopulmonary C neurons by inhibiting transient A-type and delayed rectifier potassium channels.

    Science.gov (United States)

    Zhang, Zhenxiong; Zhuang, Jianguo; Zhang, Cancan; Xu, Fadi

    2013-04-01

    Inhalation of isoflurane (ISO), a widely used volatile anesthetic, can produce clinical tachypnea. In dogs, this response is reportedly mediated by bronchopulmonary C-fibers (PCFs), but the relevant mechanisms remain unclear. Activation of transient A-type potassium current (IA) channels and delayed rectifier potassium current (IK) channels hyperpolarizes neurons, and inhibition of both channels by ISO increases neural firing. Due to the presence of these channels in the cell bodies of rat PCFs, we determined whether ISO could stimulate PCFs to produce tachypnea in anesthetized rats, and, if so, whether this response resulted from ISO-induced depolarization of the pulmonary C neurons via the inhibition of IA and IK. We recorded ventilatory responses to 5% ISO exposure in anesthetized rats before and after blocking PCF conduction and the responses of pulmonary C neurons (extracellularly recorded) to ISO exposure. ISO-induced (1mM) changes in pulmonary C neuron membrane potential and IA/IK were tested using the perforated patch clamp technique. We found that: (1) ISO inhalation evoked a brief tachypnea (∼7s) and that this response disappeared after blocking PCF conduction; (2) the ISO significantly elevated (by 138%) the firing rate of most pulmonary C neurons (17 out of 21) in the nodose ganglion; and (3) ISO perfusion depolarized the pulmonary C neurons in the vitro and inhibited both IA and IK, and this evoked-depolarization was largely diminished after blocking both IA and IK. Our results suggest that ISO is able to stimulate PCFs to elicit tachypnea in rats, at least partly, via inhibiting IA and IK, thereby depolarizing the pulmonary C neurons. Copyright © 2013. Published by Elsevier B.V.

  16. Expressions of matrix metalloproteinase-2 and extracellular matrix metalloproteinase inducer in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Yu-Hong Cheng

    2015-07-01

    Full Text Available AIM: To investigate expressions of matrix metalloproteinase-2(MMP-2and extracellular matrix metalloproteinase inducer(EMMPRINin retinoblastoma(Rband the relationships between MMP-2, EMMPRIN and tumor development.METHODS:Immunohistochemical technique was used to detect expressions of MMP-2 and EMMPRIN in 39 cases of paraffin embedded Rb samples. Quantitative analysis of expressions of MMP-2 and EMMPRIN were assessed by measuring the mean gray scale of Rb tissue with LEICA IM50 Color Pathologic Analysis System. The differences of expressions of MMP-2 and EMMPRIN in each clinical and pathological stage were statistically analyzed, and the same step was also undertaken to study the relationship between Rb with MMP-2 positive expression and that with EMMPRIN positive expression.RESULTS: The positive expression rate of MMP-2 was 90%(Gray value: 109.64±14.52; 35/39, and that of EMMPRIN was 85%(Gray value: 108.01±13.60; 33/39. The expressions of MMP-2 and EMMPRIN were significantly higher in tumors of glaucomatous stage(Gray value: 108.21±11.47 and 107.56±14.32than those in intraocular stage(Gray value: 121.13±11.32 and 119.34±12.66; PPPPPPCONCLUSION: The positive expression levels of MMP-2 and EMMPRIN may correlate with tumor infiltration and metastasis.

  17. HPLC-MS/MS method optimisation for matrix metalloproteinase 3 and matrix metalloproteinase 9 determination in human blood serum using target analysis.

    Science.gov (United States)

    Kotnik, Petra; Krajnc, Metka Koren; Pahor, Artur; Finšgar, Matjaž; Knez, Željko

    2018-02-20

    A quantitative analysis of zinc endopeptidases matrix metalloproteinase 9 (MMP9) and matrix metalloproteinase 3 (MMP3) from human blood serum are presented. Both matrix metalloproteinases (MMP) are present in human blood serum and can be used as biomarkers for different diseases. The analysis was performed using LC-MS/MS with a triple quadrupole mass spectrometer, based on two specific peptides of each MMP in comparison with an enzyme-linked immunosorbent assay (ELISA). While the conditions for the LC-MS/MS analysis of MMP9 peptides were previously reported for bronchoalveolar lavage fluid, the analysis of MMP3 peptides was newly quantified for human blood serum herein for the first time. For MMP3, the linear behaviour was determined in the concentration range from 1.0-200.0ng/mL (R 2 =0.997) with an LLOD of 0.5ng/mL. For MMP9, linearity was determined in the concentration range from 6.5-65.0ng/mL (R 2 =0.995) with an LLOD of 2.0ng/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Matrix metalloproteinases, tissue inhibitors of matrix metalloproteinases and angiogenic cytokines in peripheral blood of patients with thyroid cancer.

    Science.gov (United States)

    Komorowski, Jan; Pasieka, Z; Jankiewicz-Wika, J; Stepień, H

    2002-08-01

    Stimulation of growth of endothelial cells from preexisting blood vessels, i.e., angiogenesis, is one of the essential elements necessary to create a permissive environment in which a tumor can grow. During angiogenesis, the matrix metalloproteinase (MMP) family of tissue enzymes contributes to normal (embriogenesis or wound repair) and pathologic tissue remodeling (chronic inflammation and tumor genesis). The proposed pathogenic roles of MMPs in cancer are tissue breakdown and remodeling during invasive tumor growth and tumor angiogenesis. Tissue inhibitors of metalloproteinases (TIMPs) form a complex with MMPs, which in turn inhibits active MMPs. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are unique among mediators of angiogenesis with synergistic effect, and both can also be secreted by thyroid cancer cells. The goal of the study was to evaluate the plasma blood concentration of VEGF, bFGF, MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, TIMP-1, and TIMP-2 in patients with cancer and in normal subjects. Twenty-two patients with thyroid cancers (papillary cancer, 11; partly papillary and partly follicular cancer, 3; anaplastic cancer, 5; medullary cancer, 3) and 16 healthy subjects (controls) were included in the study. VEGF, bFGF MMPs, and TIMPs were evaluated by enzyme-linked immunosorbent assay (ELISA). In patients with thyroid cancer, normal VEGF concentrations (74.29 +/- 13.38 vs. 84.85 +/- 21.71 pg/mL; p > 0.05) and increased bFGF (29.52 +/- 4.99 vs. 6.05 +/- 1.43 pg/mL; p < 0.001), MMP-2 (605.95 +/- 81.83 vs. 148.75 +/- 43.53 ng/mL; p < 0.001), TIMP-2 (114.19 +/- 6.62 vs. 60.75 +/- 9.18 ng/mL; p < 0.001), as well as lower MMP-1 (0.70 +/- 0.42 vs. 3.87 +/- 0.53; p < 0.001) levels have been noted. Increased plasma levels of MMP-3 and MMP-9 were also found in patients with medullary carcinoma. In conclusion, predominance of MMP-2 over TIMP-2 and TIMP-1 over MMP-1 as well as increased concentration of bFGF in peripheral blood are

  19. Green tea polyphenol epigallocatechin-3-gallate inhibits advanced glycation end product-induced expression of tumor necrosis factor-alpha and matrix metalloproteinase-13 in human chondrocytes.

    Science.gov (United States)

    Rasheed, Zafar; Anbazhagan, Arivarasu N; Akhtar, Nahid; Ramamurthy, Sangeetha; Voss, Frank R; Haqqi, Tariq M

    2009-01-01

    The major risk factor for osteoarthritis (OA) is aging, but the mechanisms underlying this risk are only partly understood. Age-related accumulation of advanced glycation end products (AGEs) can activate chondrocytes and induce the production of proinflammatory cytokines and matrix metalloproteinases (MMPs). In the present study, we examined the effect of epigallocatechin-3-gallate (EGCG) on AGE-modified-BSA (AGE-BSA)-induced activation and production of TNFalpha and MMP-13 in human OA chondrocytes. Human chondrocytes were derived from OA cartilage by enzymatic digestion and stimulated with in vitro-generated AGE-BSA. Gene expression of TNFalpha and MMP-13 was measured by quantitative RT-PCR. TNFalpha protein in culture medium was determined using cytokine-specific ELISA. Western immunoblotting was used to analyze the MMP-13 production in the culture medium, phosphorylation of mitogen-activated protein kinases (MAPKs), and the activation of NF-kappaB. DNA binding activity of NF-kappaB p65 was determined using a highly sensitive and specific ELISA. IkappaB kinase (IKK) activity was determined using an in vitro kinase activity assay. MMP-13 activity in the culture medium was assayed by gelatin zymography. EGCG significantly decreased AGE-stimulated gene expression and production of TNFalpha and MMP-13 in human chondrocytes. The inhibitory effect of EGCG on the AGE-BSA-induced expression of TNFalpha and MMP-13 was mediated at least in part via suppression of p38-MAPK and JNK activation. In addition, EGCG inhibited the phosphorylating activity of IKKbeta kinase in an in vitro activity assay and EGCG inhibited the AGE-mediated activation and DNA binding activity of NF-kappaB by suppressing the degradation of its inhibitory protein IkappaBalpha in the cytoplasm. These novel pharmacological actions of EGCG on AGE-BSA-stimulated human OA chondrocytes provide new suggestions that EGCG or EGCG-derived compounds may inhibit cartilage degradation by suppressing AGE

  20. Activity of matrix metalloproteinases during antimycobacterial therapy in mice with simulated tuberculous inflammation.

    Science.gov (United States)

    Sumenkova, D V; Russkikh, G S; Poteryaeva, O N; Polyakov, L M; Panin, L E

    2013-05-01

    Matrix metalloproteinases are shown to be involved in the pathogenesis of tuberculosis inflammation. In the early stages of BCG-granuloma formation in mouse liver and lungs, the serum levels of matrix metalloproteinases 2 and 7 increased by 4.5 times and remained unchanged while the pathology developed. Antimycobacterial therapy with isoniazid reduced enzyme activity almost to the level of intact control. The decrease in activity of matrix metalloproteinases 2 and 7 that play the most prominent role in the development of destructive forms of tuberculosis is of great therapeutic importance.

  1. Chlorotoxin Fused to IgG-Fc Inhibits Glioblastoma Cell Motility via Receptor-Mediated Endocytosis

    Directory of Open Access Journals (Sweden)

    Tomonari Kasai

    2012-01-01

    Full Text Available Chlorotoxin is a 36-amino acid peptide derived from Leiurus quinquestriatus (scorpion venom, which has been shown to inhibit low-conductance chloride channels in colonic epithelial cells. Chlorotoxin also binds to matrix metalloproteinase-2 and other proteins on glioma cell surfaces. Glioma cells are considered to require the activation of matrix metalloproteinase-2 during invasion and migration. In this study, for targeting glioma, we designed two types of recombinant chlorotoxin fused to human IgG-Fcs with/without a hinge region. Chlorotoxin fused to IgG-Fcs was designed as a dimer of 60 kDa with a hinge region and a monomer of 30 kDa without a hinge region. The monomeric and dimeric forms of chlorotoxin inhibited cell proliferation at 300 nM and induced internalization in human glioma A172 cells. The monomer had a greater inhibitory effect than the dimer; therefore, monomeric chlorotoxin fused to IgG-Fc was multivalently displayed on the surface of bionanocapsules to develop a drug delivery system that targeted matrix metalloproteinase-2. The target-dependent internalization of bionanocapsules in A172 cells was observed when chlorotoxin was displayed on the bionanocapsules. This study indicates that chlorotoxin fused to IgG-Fcs could be useful for the active targeting of glioblastoma cells.

  2. Buddleja officinalis inhibits high glucose-induced matrix metalloproteinase activity in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Yun Jung; Kang, Dae Gill; Kim, Jin Sook; Lee, Ho Sub

    2008-12-01

    The aim of the present investigation was to investigate whether an aqueous extract of Buddleja officinalis (ABO), a traditional Korean herbal medicine, suppresses the endothelial extracellular matrix degradation under high glucose condition. The incubation with high concentration of glucose (25 mM) increased significantly matrix metalloproteinase (MMP)-2/-9 expressions and activities in primary cultured human umbilical vein endothelial cells (HUVEC). Pretreatment with ABO decreased high glucose-induced increase of MMP-2/-9 activities in a dose-dependent manner. Real time qRT-PCR revealed that high glucose-induced MMP-2/-9 mRNA expression levels were attenuated by pretreatment with ABO. High glucose-induced MCP-1 and IL-8 mRNA expression levels also decreased by ABO. ABO decreased high glucose-induced hydrogen peroxide production, oxidative stress marker. These results provide new insights into the pathophysiological mechanisms for anti-inflammatory properties of ABO in vascular diseases associated with diabetes mellitus. (c) 2008 John Wiley & Sons, Ltd.

  3. TNF-α inhibits trophoblast integration into endothelial cellular networks.

    Science.gov (United States)

    Xu, B; Nakhla, S; Makris, A; Hennessy, A

    2011-03-01

    Preeclampsia has been linked to shallow trophoblast invasion and failure of uterine spiral artery transformation. Interaction between trophoblast cells and maternal uterine endothelium is critically important for this remodelling. The aim of our study was to investigate the effect of TNF-α on the interactions of trophoblast-derived JEG-3 cells into capillary-like cellular networks. We have employed an in vitro trophoblast-endothelial cell co-culture model to quantify trophoblast integration into endothelial cellular networks and to investigate the effects of TNF-α. Controlled co-cultures were also treated with anti-TNF-α antibody (5 μg/ml) to specifically block the effect of TNF-α. The invasion was evaluated by performing quantitative PCR (Q-PCR) to analyse gene expression of matrix metalloproteinases-2 (MMP-2), MMP-9, tissue inhibitor of matrix metalloproteinase (TIMP)-1, integrins (α(1)β(1) and α(6)β(4)), plasminogen activator inhibitor (PAI)-1, E-cadherin and VE-cadherin. JEG-3 cell integration into endothelial networks was significantly inhibited by exogenous TNF-α. The inhibition was observed in the range of 0.2-5 ng/ml, to a maximum 56% inhibition at the highest concentration. This inhibition was reversed by anti-TNF-α antibody. Q-PCR analysis showed that mRNA expression of integrins α(1)β(1) and MMP-2 was significantly decreased. VE-cadherin mRNA expression was significantly up-regulated (32-80%, p integration into maternal endothelial cellular networks, and this process involves the inhibition of MMP-2 and a failure of integrins switch from α(6)β(4) to α(1)β(1.) These molecular correlations reflect the changes identified in human preeclampsia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization

    Science.gov (United States)

    Stafford, Jason H.; Hirai, Takahisa; Deng, Lei; Chernikova, Sophia B.; Urata, Kimiko; West, Brian L.; Brown, J. Martin

    2016-01-01

    Background Glioblastoma (GBM) may initially respond to treatment with ionizing radiation (IR), but the prognosis remains extremely poor because the tumors invariably recur. Using animal models, we previously showed that inhibiting stromal cell–derived factor 1 signaling can prevent or delay GBM recurrence by blocking IR-induced recruitment of myeloid cells, specifically monocytes that give rise to tumor-associated macrophages. The present study was aimed at determining if inhibiting colony stimulating factor 1 (CSF-1) signaling could be used as an alternative strategy to target pro-tumorigenic myeloid cells recruited to irradiated GBM. Methods To inhibit CSF-1 signaling in myeloid cells, we used PLX3397, a small molecule that potently inhibits the tyrosine kinase activity of the CSF-1 receptor (CSF-1R). Combined IR and PLX3397 therapy was compared with IR alone using 2 different human GBM intracranial xenograft models. Results GBM xenografts treated with IR upregulated CSF-1R ligand expression and increased the number of CD11b+ myeloid-derived cells in the tumors. Treatment with PLX3397 both depleted CD11b+ cells and potentiated the response of the intracranial tumors to IR. Median survival was significantly longer for mice receiving combined therapy versus IR alone. Analysis of myeloid cell differentiation markers indicated that CSF-1R inhibition prevented IR-recruited monocyte cells from differentiating into immunosuppressive, pro-angiogenic tumor-associated macrophages. Conclusion CSF-1R inhibition may be a promising strategy to improve GBM response to radiotherapy. PMID:26538619

  5. The role of up-regulated serine proteases and matrix metalloproteinases in the pathogenesis of a murine model of colitis

    DEFF Research Database (Denmark)

    Tarlton, J F; Whiting, C V; Tunmore, D

    2000-01-01

    , with major species of 23 kd, 30 kd, and 45 kd. Co-migration and inhibition studies indicated that the 23-kd proteinase was pancreatic trypsin and that the 30-kd species was neutrophil elastase. Matrix metalloproteinase (MMP)-9 expression, and MMP-2 and MMP-9 activation, was elevated in colitic tissues....... Proteinase levels followed a decreasing concentration gradient from proximal to distal colon. Proteolysis was localized to infiltrating leukocytes in diseased severe combined immunodeficient mice. Transmural inflammation was associated with serine proteinase and MMP activity in overlying epithelium...

  6. Matrix metalloproteinases in acute coronary syndromes: current perspectives.

    Science.gov (United States)

    Kampoli, Anna-Maria; Tousoulis, Dimitris; Papageorgiou, Nikolaos; Antoniades, Charalambos; Androulakis, Emmanuel; Tsiamis, Eleftherios; Latsios, George; Stefanadis, Christodoulos

    2012-01-01

    Matrix metalloproteinases (MMPs) are a family of zinc metallo-endopeptidases secreted by cells and are responsible for much of the turnover of matrix components. Several studies have shown that MMPs are involved in all stages of the atherosclerotic process, from the initial lesion to plaque rupture. Recent evidence suggests that MMP activity may facilitate atherosclerosis, plaque destabilization, and platelet aggregation. In the heart, matrix metalloproteinases participate in vascular remodeling, plaque instability, and ventricular remodelling after cardiac injury. The aim of the present article is to review the structure, function, regulation of MMPs and to discuss their potential role in the pathogenesis of acute coronary syndromes, as well as their contribution and usefullness in the setting of the disease.

  7. Correlation between expression of extracellular matrix metalloproteinase inducer and matrix metalloproteinase-2 and cervical lymph node metastasis of nasopharyngeal carcinoma.

    Science.gov (United States)

    Huang, Tian; Chen, Mao-Huai; Wu, Ming-Yao; Wu, Xian-Ying

    2013-03-01

    We evaluated the expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase-2 (MMP-2) in nasopharyngeal carcinoma (NPC) and studied their relationship with cervical lymph node metastasis. Immunohistochemical staining was used to detect the expression of EMMPRIN and MMP-2 in specimens from patients with chronic nasopharyngitis (CN), nonmetastastic NPC (NM-NPC), and lymph node-metastatic NPC (LNM-NPC). The rates of positive EMMPRIN expression in CN, NM-NPC, and LNM-NPC were 13.3%, 30.0%, and 66.7%, respectively. Significant differences were found between the rates in CN and LNM-NPC (p correlated (rs = 0.466; p <0.01). Nasopharyngeal carcinoma cells may attain enhanced metastastic capability through the expression of MMP-2 induced by EMMPRIN.

  8. Enhanced expression of two discrete isoforms of matrix metalloproteinase-2 in experimental and human diabetic nephropathy.

    Directory of Open Access Journals (Sweden)

    Sang Soo Kim

    Full Text Available We recently reported on the enhanced expression of two isoforms of matrix metalloproteinase-2 (MMP-2 in human renal transplantation delayed graft function. These consist of the conventional secreted, full length MMP-2 isoform (FL-MMP-2 and a novel intracellular N-Terminal Truncated isoform (NTT-MMP-2 generated by oxidative stress-mediated activation of an alternate promoter in the MMP-2 first intron. Here we evaluated the effect of hyperglycemia and diabetes mellitus on the in vitro and in vivo expression of the two MMP-2 isoforms.We quantified the abundance of the FL-MMP-2 and NTT-MMP-2 transcripts by qPCR in HK2 cells cultured in high glucose or 4-hydroxy-2-hexenal (HHE and tested the effects of the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC. The streptozotocin (STZ murine model of Type I diabetes mellitus and renal biopsies of human diabetic nephropathy were used in this study.Both isoforms of MMP-2 in HK2 cells were upregulated by culture in high glucose or with HHE. PDTC treatment did not suppress high glucose-mediated FL-MMP-2 expression but potently inhibited NTT-MMP-2 expression. With STZ-treated mice, renal cortical expression of both isoforms was increased (FL-MMP-2, 1.8-fold; NTT-MMP-2, greater than 7-fold. Isoform-specific immunohistochemical staining revealed low, but detectable levels of the FL-MMP-2 isoform in controls, while NTT-MMP-2 was not detected. While there was a modest increase in tubular epithelial cell staining for FL-MMP-2 in STZ-treated mice, NTT-MMP-2 was intensely expressed in a basolateral pattern. FL-MMP-2 and NTT-MMP-2 isoform expression as quantified by qPCR were both significantly elevated in renal biopsies of human diabetic nephropathy (12-fold and 3-fold, respectively.The expression of both isoforms of MMP-2 was enhanced in an experimental model of diabetic nephropathy and in human diabetic nephropathy. Selective MMP-2 isoform inhibition could offer a novel approach for the treatment of diabetic renal

  9. Matrix metalloproteinase 2 and tissue inhibitor of matrix metalloproteinases 2 in the diagnosis of colorectal adenoma and cancer patients

    Directory of Open Access Journals (Sweden)

    Magdalena Groblewska

    2010-04-01

    Full Text Available The aim of the study was to assess the importance of the measurement of matrix metalloproteinase 2 (MMP-2and tissue inhibitor of matrix metalloproteinases 2 (TIMP-2 in patients with colorectal cancer (CRC in relation to clinicopathologicalfeatures of tumor and patients' survival. Additionally, we determined serum MMP-2 and TIMP-2 in colorectaladenoma (CA patients and healthy controls and compared them with tumor markers, CEA and CA 19-9. The serum levelsof MMP-2 and TIMP-2 in 91 CRC patients, 28 CA subjects and 91 healthy controls were determined by ELISA method, butconcentrations of CEA and CA 19-9 using MEIA method. Nonparametric statistical analyses were used. Serum levels ofMMP-2 and TIMP-2 were significantly lower in CRC patients than in healthy subjects and decreased with tumor stage.Additionally, MMP-2 concentrations were significantly lower in patients with CRC than in CA group. Diagnostic sensitivityof TIMP-2 (59% was the highest among biomarkers tested and increased in combined use with CEA (79%. Moreover,the area under ROC curve (AUC of TIMP-2 was larger than AUC of MMP-2 in differentiation between CRC and healthysubjects, but lower than AUC of matrix metalloproteinase 2 in differentiation between colorectal cancer and adenoma. Ourfindings suggest clinical usefulness of TIMP-2 as a biomarker in the diagnosis of CRC, especially in combination with CEA.However, further investigation is necessary.

  10. Matrix metalloproteinase 2 and tissue inhibitor of matrix metalloproteinases 2 in the diagnosis of colorectal adenoma and cancer patients.

    Directory of Open Access Journals (Sweden)

    Barbara Mroczko

    2011-04-01

    Full Text Available The aim of the study was to assess the importance of the measurement of matrix metalloproteinase 2 (MMP-2 and tissue inhibitor of matrix metalloproteinases 2 (TIMP-2 in patients with colorectal cancer (CRC in relation to clinicopathological features of tumor and patients' survival. Additionally, we determined serum MMP-2 and TIMP-2 in colorectal adenoma (CA patients and healthy controls and compared them with tumor markers, CEA and CA 19-9. The serum levels of MMP-2 and TIMP-2 in 91 CRC patients, 28 CA subjects and 91 healthy controls were determined by ELISA method, but concentrations of CEA and CA 19-9 using MEIA method. Nonparametric statistical analyses were used. Serum levels of MMP-2 and TIMP-2 were significantly lower in CRC patients than in healthy subjects and decreased with tumor stage. Additionally, MMP-2 concentrations were significantly lower in patients with CRC than in CA group. Diagnostic sensitivity of TIMP-2 (59% was the highest among biomarkers tested and increased in combined use with CEA (79%. Moreover, the area under ROC curve (AUC of TIMP-2 was larger than AUC of MMP-2 in differentiation between CRC and healthy subjects, but lower than AUC of matrix metalloproteinase 2 in differentiation between colorectal cancer and adenoma. Our findings suggest clinical usefulness of TIMP-2 as a biomarker in the diagnosis of CRC, especially in combination with CEA. However, further investigation is necessary.

  11. Downregulation of reversion-inducing cysteine-rich protein with Kazal motifs in malignant melanoma: inverse correlation with membrane-type 1-matrix metalloproteinase and tissue inhibitor of metalloproteinase 2.

    Science.gov (United States)

    Jacomasso, Thiago; Trombetta-Lima, Marina; Sogayar, Mari C; Winnischofer, Sheila M B

    2014-02-01

    The invasive phenotype of many tumors is associated with an imbalance between the matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs), and the membrane-anchored reversion-inducing cysteine-rich protein with Kazal motifs (RECK). RECK inhibits MMP-2, MMP-9, and MT1-MMP, and has been linked to patient survival and better prognosis in several types of tumors. However, despite the wide implication of these MMPs in melanoma establishment and progression, the role of RECK in this type of tumor is still unknown. Here, we analyzed the expression of RECK, TIMP1, TIMP2, TIMP3, MT1MMP, MMP2, and MMP9 in two publicly available melanoma microarray datasets and in a panel of human melanoma cell lines. We found that RECK is downregulated in malignant melanoma, accompanied by upregulation of MT1MMP and TIMP2. In both datasets, we observed that the group of samples displaying higher RECK levels show lower median expression levels of MT1MMP and TIMP2 and higher levels of TIMP3. When tested in a sample-wise manner, these correlations were statistically significant. Inverse correlations between RECK, MT1MMP, and TIMP2 were verified in a panel of human melanoma cell lines and in a further reduced model that includes a pair of matched primary tumor-derived and metastasis-derived cell lines. Taken together, our data indicate a consistent correlation between RECK, MT1MMP, and TIMP2 across different models of clinical samples and cell lines and suggest evidence of the potential use of this subset of genes as a gene signature for diagnosing melanoma.

  12. Reduced Levels of Tissue Inhibitors of Metalloproteinases in UVB-Irradiated Corneal Epithelium

    Czech Academy of Sciences Publication Activity Database

    Ardan, Taras; Němcová, Lucie; Bohuslavová, Božena; Klezlová, A.; Popelka, Štěpán; Studenovská, Hana; Hrnčiarová, Eva; Čejková, Jitka; Motlík, Jan

    2016-01-01

    Roč. 92, č. 5 (2016), s. 720-727 ISSN 0031-8655 R&D Projects: GA ČR GPP302/10/P155; GA MŠk(CZ) LO1609 Institutional support: RVO:67985904 ; RVO:61389013 ; RVO:68378041 Keywords : tissue inhibitors of metalloproteinases * matrix metalloproteinases Subject RIV: EB - Genetics ; Molecular Biology; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 2.121, year: 2016

  13. The presence of promatrix metalloproteinase-3 and its relation with different categories of coal workers' pneumoconiosis

    Directory of Open Access Journals (Sweden)

    Remzi Altin

    2004-01-01

    Full Text Available Extracellular matrix formation (ECM and remodeling are critical events related to the pathogenesis of pulmonary fibrosis. Matrix metalloproteinases play an essential role in degrading and remodeling the ECM. In this study, we tried to show the presence and correlation of promatrix metalloproteinase-3 (proMMP-3 (the inactive form of metalloproteinase-3 levels in coal workers' pneumoconiosis (CWP with different categories.

  14. Andrographolide suppresses the migratory ability of human glioblastoma multiforme cells by targeting ERK1/2-mediated matrix metalloproteinase-2 expression.

    Science.gov (United States)

    Yang, Shih-Liang; Kuo, Fu-Hsuan; Chen, Pei-Ni; Hsieh, Yi-Hsien; Yu, Nuo-Yi; Yang, Wei-En; Hsieh, Ming-Ju; Yang, Shun-Fa

    2017-12-01

    Glioblastoma multiforme (GBM) can be a fatal tumor because of difficulties in treating the related metastasis. Andrographolide is the bioactive component of the Andrographis paniculata . Andrographolide possesses the anti-inflammatory activity and inhibits the growth of various cancers; however, its effect on GBM cancer motility remains largely unknown. In this study, we examined the antimetastatic properties of andrographolide in human GBM cells. Our results revealed that andrographolide inhibited the invasion and migration abilities of GBM8401 and U251 cells. Furthermore, andrographolide inhibited matrix metalloproteinase (MMP)-2 activity and expression. Real-time PCR and promoter activity assays indicated that andrographolide inhibited MMP-2 expression at the transcriptional level. Such inhibitory effects were associated with the suppression of CREB DNA-binding activity and CREB expression. Mechanistically, andrographolide inhibited the cell motility of GBM8401 cells through the extracellular-regulated kinase (ERK) 1/2 pathway, and the blocking of the ERK 1/2 pathway could reverse MMP-2-mediated cell motility. In conclusion, CREB is a crucial target of andrographolide for suppressing MMP-2-mediated cell motility in GBM cells. Therefore, a combination of andrographolide and an ERK inhibitor might be a good strategy for preventing GBM metastasis.

  15. Increased extracellular matrix metalloproteinase inducer (EMMPRIN) expression in the conjunctival epithelium exposed to antiglaucoma treatments.

    Science.gov (United States)

    Labbé, Antoine; Gabison, Eric; Brignole-Baudouin, Françoise; Riancho, Luisa; Menashi, Suzanne; Baudouin, Christophe

    2015-01-01

    To analyze the effect of preserved antiglaucoma eye drops on the expression of extracellular matrix (ECM) metalloproteinase inducer (EMMPRIN) in conjunctival epithelial cells. A total of 18 patients treated for primary open-angle glaucoma with benzalkonium chloride (BAK) preserved eye drops and eight age-matched controls were included in this study. Glaucoma patients were divided into two groups according to their daily exposure to BAK: high-exposure (HE) group and low-exposure (LE) group. HLA-DR and EMMPRIN were quantified on conjunctival impression cytology specimens using flow cytometry. In parallel, IOBA-NHC conjunctival epithelial cells were exposed to different BAK concentrations, in the presence or absence of cyclosporine A (CsA), and their total and surface expressions of EMMPRIN were assessed by flow cytometry and results are given in relative fluorescence intensities (RFIs). Compared to the control group (1.71 ± 0.39 RFI), EMMPRIN was significantly increased in the HE (4.19 ± 1.50 RFI, p EMMPRIN (R(2) = 0.875, p EMMPRIN, which was proportional to the concentration of BAK. The surface expression of EMMPRIN was inhibited by CsA. The increased expression of EMMPRIN in patients topically treated with multiple antiglaucoma BAK-preserved eye drops suggests a matrix metalloproteinase-related modification of conjunctival ECM remodeling. In vitro results suggest that CsA has the potential to limit BAK effects on EMMPRIN.

  16. Immunohistochemical correlation of matrix metalloproteinase-2 and tissue inhibitors of metalloproteinase-2 in tobacco associated epithelial dysplasia.

    Science.gov (United States)

    Bajracharya, Dipshikha; Shrestha, Bijayatha; Kamath, Asha; Menon, Aparna; Radhakrishnan, Raghu

    2014-01-01

    To study the immunohistochemical expression of matrix metalloproteinase and tissue inhibitors of matrix metalloproteinase-2 in different histological grades of tobacco associated epithelial dysplasia and correlate the association between these proteases. Potentially malignant oral disorders (PMODs) progressing to oral cancer are related to the severity of epithelial dysplasia. A retrospective immunohistochemical study was carried out on 30 clinically and histologically proven cases of leukoplakia with dysplasia and 10 cases of normal buccal mucosa using anti-MMP-2 and anti-TIMP-2 monoclonal antibodies. Mann Whitney U test, for comparing the expression of both MMP-2 and TIMP-2 in normal mucosa with dysplasia, was highly significant (P correlation between MMP-2 and TIMP-2 through different grades of dysplasia and cells observed showed positive correlation. Concomitant increase in the expression of both MMP-2 and TIMP-2 suggested that the activation of MMP-2 is dependent on TIMP-2 acting as a cofactor. Changes in TIMP-2 levels are considered important because they directly affect the level of MMP-2 activity.

  17. Identification of accelerated evolution in the metalloproteinase ...

    African Journals Online (AJOL)

    U

    2016-02-24

    Feb 24, 2016 ... drugs for different diseases. Key words: SVMPs, evolution, multiple sequence alignment, phylogenic tree, secondary structure, homology. ... in matrix metalloproteinase genes MMP1, MMP9 and. MMP12 are shown to be ... Evolution and diversification of snake venom is a very interesting phenomenon.

  18. Correlation of bacterial coinfection versus matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 expression in aortic aneurysm and atherosclerosis.

    Science.gov (United States)

    Roggério, Alessandra; Sambiase, Nádia Vieira; Palomino, Suely A P; de Castro, Maria Alice Pedreira; da Silva, Erasmo Simão; Stolf, Noedir G; de Lourdes Higuchi, Maria

    2013-10-01

    We searched for any relationship between Chlamydophila pneumoniae, Mycoplasma pneumoniae, matrix metalloproteinase 9 (MMP-9), and tissue inhibitor of metalloproteinase 1 (TIMP-1) in aneurysmatic atherosclerotic lesions, and whether this relationship differed from that in atherosclerotic nonaneurysmatic lesions. Twenty-eight tissue samples paired by age and sex were grouped as follows: group 1 included 14 nonaneurysmal atherosclerotic fragments obtained from abdominal aortas collected from necropsies; group 2 included 14 aneurysmatic atherosclerotic aortic fragments obtained from patients during corrective surgery. Immunohistochemistry reactions were evaluated for C pneumoniae, M pneumoniae, MMP-9, and TIMP-1 antigens. Both groups were compared using the Mann-Whitney test, and the correlations among variables were obtained using the Spearman correlation test. P ≤ 0.05 was considered statistically significant. C pneumoniae and M pneumoniae antigens were detected in 100% of cases. A higher amount of C pneumoniae (P = 0.005), M pneumoniae (P = 0.002), and MMP-9 (P = 0.021) was found in adventitia of group 2 with aneurysm. A positive correlation was found in the aneurysm group, as follows: intima C pneumoniae versus adventitia thickness (r = 0.70; P = 0.01), media C pneumoniae versus adventitia C pneumoniae (r = 0.75; P = 0.002), intima C pneumoniae versus media C pneumoniae (r = 0.8; P = 0.00), and adventitia C pneumoniae versus intima M pneumoniae (r = 0.54; P = 0.05); negative correlations were as follows: adventitia thickness and adventitia M pneumoniae (r = -0.65; P = 0.01), media MMP-9 and media thickness (r = -0.55; P = 0.04), TIMP-1 media versus adventitia C pneumoniae (r = -0.86; P = 0.00), and TIMP-1 media versus M pneumoniae intima (r = -0.67; P = 0.03). Nonaneurysmal atherosclerotic group 1 results are as follows: adventitia C pneumoniae versus TIMP-1 media (r = 0.75; P = 0.01) and media C pneumoniae and adventitia C pneumoniae (r = 0.59; P = 0.03). The

  19. Oligopeptidase B from Serratia proteamaculans. III. Inhibition analysis. Specific interactions with metalloproteinase inhibitors.

    Science.gov (United States)

    Mikhailova, A G; Khairullin, R F; Kolomijtseva, G Ya; Rumsh, L D

    2012-03-01

    Inhibition of the novel oligopeptidase B from Serratia proteamaculans (PSP) by basic pancreatic trypsin inhibitor, Zn2+ ions, and o- and m-phenanthroline was investigated. A pronounced effect of calcium ions on the interaction of PSP with inhibitors was demonstrated. Inversion voltamperometry and atomic absorption spectrometry revealed no zinc ions in the PSP molecule. Hydrophobic nature of the enzyme inhibition by o- and m-phenanthroline was established.

  20. Chondroprotective effects of a proanthocyanidin rich Amazonian genonutrient reflects direct inhibition of matrix metalloproteinases and upregulation of IGF-1 production by human chondrocytes

    Directory of Open Access Journals (Sweden)

    Gupta Kalpana

    2007-08-01

    Full Text Available Abstract Background The Amazonian medicinal plant Sangre de grado (Croton palanostigma has traditional applications for the treatment of wound healing and inflammation. We sought to characterize two extracts (progrado and zangrado in terms of safety and oligomeric proanthocyanidin chain length. Additionally progrado was evaluated for antioxidant activity and possible chondroprotective actions. Methods Acute oral safety and toxicity was tested in rats according under OECD protocol number 420. The profile of proanthocyanidin oligomers was determined by HPLC and progrado's antioxidant activity quantified by the ORAC, NORAC and HORAC assays. Human cartilage explants, obtained from surgical specimens, were used to assess chondroproteciton with activity related to direct inhibitory effects on human matrix metalloproteinase (MMP, gelatinolytic activity using synovial fluid and chondrocytes activated with IL-1β (10 ng/ml. Additionally, progrado (2–10 μg/ml was tested for its ability to maintain optimal IGF-1 transcription and translation in cartilage explants and cultured chondrocytes. Results Both progrado and zangrado at doses up to 2000 mg/kg (po displayed no evidence of toxicity. Oligomeric proanthocyanidin content was high for both progrado (158 mg/kg and zangrado (124 mg/kg, with zangrado almost entirely composed of short oligomers ( Conclusion Progrado has a promising safety profile, significant chondroprotective and antioxidant actions, directly inhibits MMP activity and promotes the production of the cartilage repair factor, IGF-1. This suggests that progrado may offer therapeutic benefits in joint health, wound healing and inflammation.

  1. Expression and response to angiotensin-converting enzyme inhibition of matrix metalloproteinases 2 and 9 in renal glomerular damage in young transgenic rats with renin-dependent hypertension

    NARCIS (Netherlands)

    Bolbrinker, J; Markovic, S; Wehland, M; Melenhorst, WBWH; van Goor, H; Kreutz, R

    Extracellular matrix expansion in the glomerular mesangium contributes to the development of glomerulosclerosis and chronic renal disease in arterial hypertension. Transforming growth factor-beta 1 (TGF-beta 1), matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs (TIMPs) are involved in

  2. EMMPRIN mediates beta-adrenergic receptor-stimulated matrix metalloproteinase activity in cardiac myocytes.

    OpenAIRE

    Siwik Deborah A; Kuster Gabriela M; Brahmbhatt Jamin V; Zaidi Zaheer; Malik Julia; Ooi Henry; Ghorayeb Ghassan

    2008-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) expression is increased in myocardium from patients with dilated cardiomyopathy and animal models of heart failure. However little is known about the regulated expression or functional role of EMMPRIN in the myocardium. In rat cardiac cells EMMPRIN is expressed on myocytes but not endothelial cells or fibroblasts. Therefore we tested the hypothesis that EMMPRIN expression regulates matrix metalloproteinase (MMP) activity in rat ventricu...

  3. Regulation of MMP2 and MMP9 metalloproteinases by FSH and growth factors in bovine granulosa cells

    Directory of Open Access Journals (Sweden)

    Valerio M. Portela

    2009-01-01

    Full Text Available Matrix metalloproteinases (MMP are key enzymes involved in tissue remodeling. Within the ovary, they are believed to play a major role in ovulation, and have been linked to follicle atresia. To gain insight into the regulation of MMPs, we measured the effect of hormones and growth factors on MMP2 and MMP9 mRNA levels in non-luteinizing granulosa cells in serum-free culture. FSH and IGF1 both stimulated estradiol secretion and inhibited MMP2 and MMP9 mRNA abundance. In contrast, EGF and FGF2 both inhibited estradiol secretion but had no effect on MMP expression. At physiological doses, none of these hormones altered the proportion of dead cells. Although we cannot link MMP expression with apoptosis, the specific down regulation by the gonadotropic hormones FSH and IGF1 in vitro suggests that excess MMP2 and MMP9 expression is neither required nor desired for follicle development.

  4. Trichomonas vaginalis Metalloproteinase Induces mTOR Cleavage of SiHa Cells

    Science.gov (United States)

    Quan, Juan-Hua; Choi, In-Wook; Yang, Jung-Bo; Zhou, Wei; Cha, Guang-Ho; Zhou, Yu; Ryu, Jae-Sook

    2014-01-01

    Trichomonas vaginalis secretes a number of proteases which are suspected to be the cause of pathogenesis; however, little is understood how they manipulate host cells. The mammalian target of rapamycin (mTOR) regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. We detected various types of metalloproteinases including GP63 protein from T. vaginalis trophozoites, and T. vaginalis GP63 metalloproteinase was confirmed by sequencing and western blot. When SiHa cells were stimulated with live T. vaginalis, T. vaginalis excretory-secretory products (ESP) or T. vaginalis lysate, live T. vaginalis and T. vaginalis ESP induced the mTOR cleavage in both time- and parasite load-dependent manner, but T. vaginalis lysate did not. Pretreatment of T. vaginalis with a metalloproteinase inhibitor, 1,10-phenanthroline, completely disappeared the mTOR cleavage in SiHa cells. Collectively, T. vaginalis metallopeptidase induces host cell mTOR cleavage, which may be related to survival of the parasite. PMID:25548410

  5. CO-releasing molecules CORM2 attenuates angiotensin II-induced human aortic smooth muscle cell migration through inhibition of ROS/IL-6 generation and matrix metalloproteinases-9 expression

    Directory of Open Access Journals (Sweden)

    Ming-Horng Tsai

    2017-08-01

    Full Text Available Ang II has been involved in the pathogenesis of cardiovascular diseases, and matrix metalloproteinase-9 (MMP-9 induced migration of human aortic smooth muscle cells (HASMCs is the most common and basic pathological feature. Carbon monoxide (CO, a byproduct of heme breakdown by heme oxygenase, exerts anti-inflammatory effects in various tissues and organ systems. In the present study, we aimed to investigate the effects and underlying mechanisms of carbon monoxide releasing molecule-2 (CORM-2 on Ang II-induced MMP-9 expression and cell migration of HASMCs. Ang II significantly up-regulated MMP-9 expression and cell migration of HASMCs, which was inhibited by transfection with siRNA of p47phox, Nox2, Nox4, p65, angiotensin II type 1 receptor (AT1R and pretreatment with the inhibitors of NADPH oxidase, ROS, and NF-κB. In addition, Ang II also induced NADPH oxidase/ROS generation and p47phox translocation from the cytosol to the membrane. Moreover, Ang II-induced oxidative stress and MMP-9-dependent cell migration were inhibited by pretreatment with CORM-2. Finally, we observed that Ang II induced IL-6 release in HASMCs via AT1R, but not AT2R, which could further caused MMP-9 secretion and cell migration. Pretreatment with CORM-2 reduced Ang II-induced IL-6 release. In conclusion, CORM-2 inhibits Ang II-induced HASMCs migration through inactivation of suppression of NADPH oxidase/ROS generation, NF-κB inactivation and IL-6/MMP-9 expression. Thus, application of CO, especially CORM-2, is a potential countermeasure to reverse the pathological changes of various cardiovascular diseases. Further effects aimed at identifying novel antioxidant and anti-inflammatory substances protective for heart and blood vessels that targeting CO and establishment of well-designed in vivo models properly evaluating the efficacy of these agents are needed. Keywords: Angiotensin II, Carbon monoxide, Human aortic smooth muscle cell, Inflammation, Matrix metallopeptidase

  6. Tissue inhibitor of matrix metalloproteinase-1 mediates erythropoietin-induced neuroprotection in hypoxia ischemia.

    Science.gov (United States)

    Souvenir, Rhonda; Fathali, Nancy; Ostrowski, Robert P; Lekic, Tim; Zhang, John H; Tang, Jiping

    2011-10-01

    Previous studies have shown that erythropoietin (EPO) is neuroprotective in both in vivo and in vitro models of hypoxia ischemia. However these studies hold limited clinical translations because the underlying mechanism remains unclear and the key molecules involved in EPO-induced neuroprotection are still to be determined. This study investigated if tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and its upstream regulator signaling molecule Janus kinase-2 (JAK-2) are critical in EPO-induced neuroprotection. Hypoxia ischemia (HI) was modeled in-vitro by oxygen and glucose deprivation (OGD) and in-vivo by a modified version of Rice-Vannucci model of HI in 10-day-old rat pups. EPO treated cells were exposed to AG490, an inhibitor of JAK-2 or TIMP-1 neutralizing antibody for 2h with OGD. Cell death, phosphorylation of JAK-2 and signal transducers and activators of transcription protein-3 (STAT-3), TIMP-1 expression, and matrix metalloproteinase-9 (MMP-9) activity were measured and compared with normoxic group. Hypoxic ischemic animals were treated one hour following HI and evaluated 48 h after. Our data showed that EPO significantly increased cell survival, associated with increased TIMP-1 activity, phosphorylation of JAK-2 and STAT-3, and decreased MMP-9 activity in vivo and in vitro. EPO's protective effects were reversed by inhibition of JAK-2 or TIMP-1 in both models. We concluded that JAK-2, STAT-3 and TIMP-1 are key mediators of EPO-induced neuroprotection during hypoxia ischemia injury. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Multifaceted role of matrix metalloproteinases (MMPs)

    OpenAIRE

    Singh, Divya; Srivastava, Sanjeev K.; Chaudhuri, Tapas K.; Upadhyay, Ghanshyam

    2015-01-01

    Matrix metalloproteinases (MMPs), a large family of calcium-dependent zinc-containing endopeptidases, are involved in the tissue remodeling and degradation of the extracellular matrix. MMPs are widely distributed in the brain and regulate various processes including microglial activation, inflammation, dopaminergic apoptosis, blood-brain barrier disruption, and modulation of ?-synuclein pathology. High expression of MMPs is well documented in various neurological disorders including Parkinson...

  8. Inhibition of MMPs by alcohols

    Science.gov (United States)

    Tezvergil-Mutluay, Arzu; Agee, Kelli A.; Hoshika, Tomohiro; Uchiyama, Toshikazu; Tjäderhane, Leo; Breschi, Lorenzo; Mazzoni, Annalisa; Thompson, Jeremy M.; McCracken, Courtney E.; Looney, Stephen W.; Tay, Franklin R.; Pashley, David H.

    2011-01-01

    Objectives While screening the activity of potential inhibitors of matrix metalloproteinases (MMPs), due to the limited water solubility of some of the compounds, they had to be solubilized in ethanol. When ethanol solvent controls were run, they were found to partially inhibit MMPs. Thus, the purpose of this study was to compare the MMP-inhibitory activity of a series of alcohols. Methods The possible inhibitory activity of a series of alcohols was measured against soluble rhMMP-9 and insoluble matrix-bound endogenous MMPs of dentin in completely demineralized dentin. Increasing concentrations (0.17, 0.86, 1.71 and 4.28 moles/L) of a homologous series of alcohols (i.e. methanol, ethanol, propanols, butanols, pentanols, hexanols, the ethanol ester of methacrylic acid, heptanols and octanol) were compared to ethanediol, and propanediol by regression analysis to calculate the molar concentration required to inhibit MMPs by 50% (i.e. the IC50). Results Using two different MMP models, alcohols were shown to inhibit rhMMP-9 and the endogenous proteases of dentin matrix in a dose-dependent manner. The degree of MMP inhibition by alcohols increased with chain length up to 4 methylene groups. Based on the molar concentration required to inhibit rhMMP-9 fifty percent, 2-hydroxyethylmethacrylate (HEMA), 3-hexanol, 3-heptanol and 1-octanol gave the strongest inhibition. Significance The results indicate that alcohols with 4 methylene groups inhibit MMPs more effectively than methanol or ethanol. MMP inhibition was inversely related to the Hoy's solubility parameter for hydrogen bonding forces of the alcohols (i.e. to their hydrophilicity). PMID:21676453

  9. Reduction of mouse atherosclerosis by urokinase inhibition or with a limited-spectrum matrix metalloproteinase inhibitor

    DEFF Research Database (Denmark)

    Hu, Jie Hong; Touch, Phanith; Zhang, Jingwan

    2015-01-01

    -accelerated atherosclerosis) to investigate whether systemic inhibition of proteolytic activity of uPA or a subset of MMPs can reduce protease-induced atherosclerosis and aortic dilation. METHODS AND RESULTS: SR-uPA mice were fed a high-fat diet for 10 weeks and treated either with an antibody inhibiting mouse uPA (mU1...... surface lesion coverage. Several lines of evidence identified MMP-13 as a mediator of uPA-induced aortic MMP activity. CONCLUSIONS: Pharmacological inhibition of either uPA or selected MMPs decreased atherosclerosis in SR-uPA mice. uPA inhibition decreased aortic dilation. Differential effects of both...... agents on aortic root vs. distal aortic atherosclerosis suggest prevention of atherosclerosis progression vs. initiation. Systemic inhibition of uPA or a subset of MMPs shows promise for treating atherosclerosis....

  10. Naringenin regulates production of matrix metalloproteinases in the knee-joint and primary cultured articular chondrocytes and alleviates pain in rat osteoarthritis model.

    Science.gov (United States)

    Wang, C C; Guo, L; Tian, F D; An, N; Luo, L; Hao, R H; Wang, B; Zhou, Z H

    2017-03-23

    Inflammation of cartilage is a primary symptom for knee-joint osteoarthritis. Matrix metalloproteinases (MMPs) are known to play an important role in the articular cartilage destruction related to osteoarthritis. Naringenin is a plant-derived flavonoid known for its anti-inflammatory properties. We studied the effect of naringenin on the transcriptional expression, secretion and enzymatic activity of MMP-3 in vivo in the murine monosodium iodoacetate (MIA) osteoarthritis model. The assessment of pain behavior was also performed in the MIA rats. The destruction of knee-joint tissues was analyzed microscopically. Moreover, the effect of naringenin was also studied in vitro in IL-1β activated articular chondrocytes. The transcriptional expression of MMP-3, MMP-1, MMP-13, thrombospondin motifs (ADAMTS-4) and ADAMTS-5 was also studied in primary cultured chondrocytes of rats. Naringenin caused significant reduction in pain behavior and showed marked improvement in the tissue morphology of MIA rats. Moreover, a significant inhibition of MMP-3 expression in MIA rats was observed upon treatment with naringenin. In the in vitro tests, naringenin caused a significant reduction in the transcriptional expression, secretion and enzymatic activity of the studied degradative enzymes. The NF-κB pathway was also found to be inhibited upon treatment with naringenin in vitro. Overall, the study suggests that naringenin alleviated pain and regulated the production of matrix-metalloproteinases via regulation of NF-κB pathway. Thus, naringenin could be a potent therapeutic option for the treatment of osteoarthritis.

  11. Naringenin regulates production of matrix metalloproteinases in the knee-joint and primary cultured articular chondrocytes and alleviates pain in rat osteoarthritis model

    Directory of Open Access Journals (Sweden)

    C.C. Wang

    Full Text Available Inflammation of cartilage is a primary symptom for knee-joint osteoarthritis. Matrix metalloproteinases (MMPs are known to play an important role in the articular cartilage destruction related to osteoarthritis. Naringenin is a plant-derived flavonoid known for its anti-inflammatory properties. We studied the effect of naringenin on the transcriptional expression, secretion and enzymatic activity of MMP-3 in vivo in the murine monosodium iodoacetate (MIA osteoarthritis model. The assessment of pain behavior was also performed in the MIA rats. The destruction of knee-joint tissues was analyzed microscopically. Moreover, the effect of naringenin was also studied in vitro in IL-1β activated articular chondrocytes. The transcriptional expression of MMP-3, MMP-1, MMP-13, thrombospondin motifs (ADAMTS-4 and ADAMTS-5 was also studied in primary cultured chondrocytes of rats. Naringenin caused significant reduction in pain behavior and showed marked improvement in the tissue morphology of MIA rats. Moreover, a significant inhibition of MMP-3 expression in MIA rats was observed upon treatment with naringenin. In the in vitro tests, naringenin caused a significant reduction in the transcriptional expression, secretion and enzymatic activity of the studied degradative enzymes. The NF-κB pathway was also found to be inhibited upon treatment with naringenin in vitro. Overall, the study suggests that naringenin alleviated pain and regulated the production of matrix-metalloproteinases via regulation of NF-κB pathway. Thus, naringenin could be a potent therapeutic option for the treatment of osteoarthritis.

  12. Matrix metalloproteinase 9 level as an indicator for restenosis following cervical and intracranial angioplasty and stenting

    Directory of Open Access Journals (Sweden)

    Jun-peng Liu

    2015-01-01

    Full Text Available Cervical and intracranial angioplasty and stenting is an effective and safe method of reducing the risk of ischemic stroke, but it may be affected by in-stent restenosis. The present study investigated serum level of matrix metalloproteinase 9 as a predictor of restenosis after 40 patients underwent cervical and/or intracranial angioplasty and stenting. Results showed that restenosis occurred in 30% (3/10 of patients when the serum level of matrix metalloproteinase 9 at 3 days after surgery was 2.5 times higher than preoperative level. No restenosis occurred when the serum level of matrix metalloproteinase 9 at 3 days after surgery was not 2.5 times higher than preoperative level. Restenosis occurred in 12% (2/17 of patients when the serum level of matrix metalloproteinase 9 was higher than preoperative level for more than 30 days after surgery, but only occurred in 4% (1/23 of patients when the serum level of matrix metalloproteinase 9 was higher than preoperative level for less than 30 days after surgery. However, the differences observed were not statistically significant (P > 0.05. Experimental findings indicate that when the serum level of matrix metalloproteinase 9 is 2.5 times higher than preoperative level at 3 days after cervical and intracranial angioplasty and stenting, it may serve as a predictor of in-stent restenosis.

  13. Role of matrix metalloproteinases in recurrent corneal melting

    Czech Academy of Sciences Publication Activity Database

    Brejchová, K.; Lisková, P.; Čejková, Jitka; Jirsová, K.

    2010-01-01

    Roč. 90, č. 5 (2010), s. 583-590 ISSN 0014-4835 Institutional research plan: CEZ:AV0Z50390512 Keywords : corneal melting * extracellular matrix degradation * matrix metalloproteinases Subject RIV: FF - HEENT, Dentistry Impact factor: 2.817, year: 2010

  14. Matrix Metalloproteinases Are Differentially Regulated and Responsive to Compression Therapy in a Red Duroc Model of Hypertrophic Scar.

    Science.gov (United States)

    Travis, Taryn E; Ghassemi, Pejhman; Prindeze, Nicholas J; Moffatt, Lauren T; Carney, Bonnie C; Alkhalil, Abdulnaser; Ramella-Roman, Jessica C; Shupp, Jeffrey W

    2018-01-01

    Objective: Proteins of the matrix metalloproteinases family play a vital role in extracellular matrix maintenance and basic physiological processes in tissue homeostasis. The function and activities of matrix metalloproteinases in response to compression therapies have yet to be defined. Here, a swine model of hypertrophic scar was used to profile the transcription of all known 26 matrix metalloproteinases in scars treated with a precise compression dose. Methods: Full-thickness excisional wounds were created. Wounds underwent healing and scar formation. A subset of scars underwent 2 weeks of compression therapy. Biopsy specimens were preserved, and microarrays, reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemistry were performed to characterize the transcription and expression of various matrix metalloproteinase family members. Results: Microarray results showed that 13 of the known 26 matrix metalloproteinases were differentially transcribed in wounds relative to the preinjury skin. The predominant upregulation of these matrix metalloproteinases during early wound-healing stages declined gradually in later stages of wound healing. The use of compression therapy reduced this decline in 10 of the 13 differentially regulated matrix metalloproteinases. Further investigation of MMP7 using reverse transcription-polymerase chain reaction confirmed the effect of compression on transcript levels. Assessment of MMP7 at the protein level using Western blotting and immunohistochemistry was concordant. Conclusions: In a swine model of hypertrophic scar, the application of compression to hypertrophic scar attenuated a trend of decreasing levels of matrix metalloproteinases during the process of hypertrophic wound healing, including MMP7, whose enzyme regulation was confirmed at the protein level.

  15. Protective Effects of LSGYGP from Fish Skin Gelatin Hydrolysates on UVB-Induced MEFs by Regulation of Oxidative Stress and Matrix Metalloproteinase Activity.

    Science.gov (United States)

    Ma, Qingyu; Liu, Qiuming; Yuan, Ling; Zhuang, Yongliang

    2018-03-28

    A previous study has shown that tilapia fish skin gelatin hydrolysates inhibited photoaging in vivo, and that, Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP) identified in the hydrolysate had a high hydroxyl radical scavenging activity. In this study, activities of LSGYGP were further evaluated using ultraviolet B (UVB)-induced mouse embryonic fibroblasts (MEFs). UVB irradiation significantly increased the intercellular reactive oxygen species (ROS) production and matrix metalloproteinases (MMPs) activities and decreased the content of collagen in MEFs. LSGYGP reduced the intercellular ROS generation in UVB-induced MEFs. Meanwhile, the decrease of superoxide dismutase (SOD) activity and the increase of malondiaidehyde (MDA) content were inhibited by LSGYGP. LSGYGP reduced MMP-1 and MMP-9 activities in a dose-dependent manner. Molecular docking simulation indicated that LSGYGP inhibited MMPs activities by docking the active sites of MMP-1 and MMP-9. Furthermore, LSGYGP also affected the intercellular phosphorylation of UVB-induced the mitogen-activated protein kinase pathway. LSGYGP could protect collagen synthesis in MEFs under UVB irradiation by inhibiting oxidative stress and regulating MMPs activities.

  16. Protective Effects of LSGYGP from Fish Skin Gelatin Hydrolysates on UVB-Induced MEFs by Regulation of Oxidative Stress and Matrix Metalloproteinase Activity

    Directory of Open Access Journals (Sweden)

    Qingyu Ma

    2018-03-01

    Full Text Available A previous study has shown that tilapia fish skin gelatin hydrolysates inhibited photoaging in vivo, and that, Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP identified in the hydrolysate had a high hydroxyl radical scavenging activity. In this study, activities of LSGYGP were further evaluated using ultraviolet B (UVB-induced mouse embryonic fibroblasts (MEFs. UVB irradiation significantly increased the intercellular reactive oxygen species (ROS production and matrix metalloproteinases (MMPs activities and decreased the content of collagen in MEFs. LSGYGP reduced the intercellular ROS generation in UVB-induced MEFs. Meanwhile, the decrease of superoxide dismutase (SOD activity and the increase of malondiaidehyde (MDA content were inhibited by LSGYGP. LSGYGP reduced MMP-1 and MMP-9 activities in a dose-dependent manner. Molecular docking simulation indicated that LSGYGP inhibited MMPs activities by docking the active sites of MMP-1 and MMP-9. Furthermore, LSGYGP also affected the intercellular phosphorylation of UVB-induced the mitogen-activated protein kinase pathway. LSGYGP could protect collagen synthesis in MEFs under UVB irradiation by inhibiting oxidative stress and regulating MMPs activities.

  17. Matrix metalloproteinase-9 expression in folliculostellate cells of rat anterior pituitary gland.

    Science.gov (United States)

    Ilmiawati, Cimi; Horiguchi, Kotaro; Fujiwara, Ken; Yashiro, Takashi

    2012-03-01

    Folliculostellate (FS) cells of the anterior pituitary gland express a variety of regulatory molecules. Using transgenic rats that express green fluorescent protein specifically in FS cells, we recently demonstrated that FS cells in vitro showed marked changes in motility, proliferation, and that formation of cellular interconnections in the presence of laminin, a component of the extracellular matrix, closely resembled those observed in vivo. These findings suggested that FS cells express matrix metalloproteinase-9 (MMP-9), which assists their function on laminin. In the present study, we investigate MMP-9 expression in rat anterior pituitary gland and examine its role in motility and proliferation of FS cells on laminin. Immunohistochemistry, RT-PCR, immunoblotting, and gelatin zymography were performed to assess MMP-9 expression in the anterior pituitary gland and cultured FS cells. Real-time RT-PCR was used to quantify MMP-9 expression in cultured FS cells under different conditions and treatments. MMP-9 expression was inhibited by pharmacological inhibitor or downregulated by siRNA and time-lapse images were acquired. A 5-bromo-2'-deoxyuridine assay was performed to analyze the proliferation of FS cells. Our results showed that MMP-9 was expressed in FS cells, that this expression was upregulated by laminin, and that laminin induced MMP-9 secretion by FS cells. MMP-9 inhibition and downregulation did not impair FS motility; however, it did impair the capacity of FS cells to form interconnections and it significantly inhibited proliferation of FS cells on laminin. We conclude that MMP-9 is necessary in FS cell interconnection and proliferation in the presence of laminin.

  18. Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases.

    Science.gov (United States)

    Brkic, Marjana; Balusu, Sriram; Libert, Claude; Vandenbroucke, Roosmarijn E

    2015-01-01

    Neurodegeneration is a chronic progressive loss of neuronal cells leading to deterioration of central nervous system (CNS) functionality. It has been shown that neuroinflammation precedes neurodegeneration in various neurodegenerative diseases. Matrix metalloproteinases (MMPs), a protein family of zinc-containing endopeptidases, are essential in (neuro)inflammation and might be involved in neurodegeneration. Although MMPs are indispensable for physiological development and functioning of the organism, they are often referred to as double-edged swords due to their ability to also inflict substantial damage in various pathological conditions. MMP activity is strictly controlled, and its dysregulation leads to a variety of pathologies. Investigation of their potential use as therapeutic targets requires a better understanding of their contributions to the development of neurodegenerative diseases. Here, we review MMPs and their roles in neurodegenerative diseases: Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and multiple sclerosis (MS). We also discuss MMP inhibition as a possible therapeutic strategy to treat neurodegenerative diseases.

  19. Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Marjana Brkic

    2015-01-01

    Full Text Available Neurodegeneration is a chronic progressive loss of neuronal cells leading to deterioration of central nervous system (CNS functionality. It has been shown that neuroinflammation precedes neurodegeneration in various neurodegenerative diseases. Matrix metalloproteinases (MMPs, a protein family of zinc-containing endopeptidases, are essential in (neuroinflammation and might be involved in neurodegeneration. Although MMPs are indispensable for physiological development and functioning of the organism, they are often referred to as double-edged swords due to their ability to also inflict substantial damage in various pathological conditions. MMP activity is strictly controlled, and its dysregulation leads to a variety of pathologies. Investigation of their potential use as therapeutic targets requires a better understanding of their contributions to the development of neurodegenerative diseases. Here, we review MMPs and their roles in neurodegenerative diseases: Alzheimer’s disease (AD, Parkinson’s disease (PD, amyotrophic lateral sclerosis (ALS, Huntington’s disease (HD, and multiple sclerosis (MS. We also discuss MMP inhibition as a possible therapeutic strategy to treat neurodegenerative diseases.

  20. Ubiquitin-specific peptidase 22 inhibits colon cancer cell invasion by suppressing the signal transducer and activator of transcription 3/matrix metalloproteinase 9 pathway.

    Science.gov (United States)

    Ao, Ning; Liu, Yanyan; Bian, Xiaocui; Feng, Hailiang; Liu, Yuqin

    2015-08-01

    Colon cancer is associated with increased cell migration and invasion. In the present study, the role of ubiquitin-specific peptidase 22 (USP22) in signal transducer and activator of transcription 3 (STAT3)-mediated colon cancer cell invasion was investigated. The messenger RNA levels of STAT3 target genes were measured by reverse transcription-quantitative polymerase chain reaction, following USP22 knockdown by RNA interference in SW480 colon cancer cells. The matrix metalloproteinase 9 (MMP9) proteolytic activity and invasion potential of SW480 cells were measured by zymography and Transwell assay, respectively, following combined USP22 and STAT3 short interfering (si)RNA treatment or STAT3 siRNA treatment alone. Similarly, a cell counting kit-8 assay was used to detect the proliferation potential of SW480 cells. The protein expression levels of USP22, STAT3 and MMP9 were detected by immunohistochemistry in colon cancer tissue microarrays (TMAs) and the correlation between USP22, STAT3 and MMP9 was analyzed. USP22/STAT3 co-depletion partly rescued the MMP9 proteolytic activity and invasion of SW480 cells, compared with that of STAT3 depletion alone. However, the proliferation of USP22/STAT3si-SW480 cells was decreased compared with that of STAT3si-SW480 cells. USP22 expression was positively correlated with STAT3 and MMP9 expression in colon cancer TMAs. In conclusion, USP22 attenuated the invasion capacity of colon cancer cells by inhibiting the STAT3/MMP9 signaling pathway.

  1. Spontaneous and cytokine induced expression and activity of matrix metalloproteinases in human colonic epithelium

    DEFF Research Database (Denmark)

    Pedersen, G; Saermark, T; Kirkegaard, T

    2009-01-01

    levels in cells from inflamed IBD mucosa. MMP-2 and -8 mRNA were expressed inconsistently and MMP-11, -13 and -14 mRNA undetectable. Proteolytic MMP activity was detected in CEC supernatants and the level was increased significantly in inflamed IBD epithelium. The enzyme activity was inhibited strongly......Matrix metalloproteinases (MMPs) have been implicated in tissue damage associated with inflammatory bowel disease (IBD).As the role of the intestinal epithelium in this process is unknown, we determined MMP expression and enzyme activity in human colonic epithelial cells (CEC). MMP mRNA expression...... was assessed by reverse transcription-polymerase chain reaction in HT-29 and DLD-1 cells and in CEC isolated from biopsies from IBD and control patients. Total MMP activity in the cells was measured by a functional assay, based on degradation of a fluorescent synthetic peptide containing the specific bond...

  2. Matrix metalloproteinases in exercise and obesity

    OpenAIRE

    Jaoude, Jonathan; Koh, Yunsuk

    2016-01-01

    Jonathan Jaoude,1 Yunsuk Koh2 1Department of Biology, 2Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA Abstract: Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs’ functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and ...

  3. Matrix metalloproteinase-8 overexpression prevents proper tissue repair

    DEFF Research Database (Denmark)

    Danielsen, Patricia L; Holst, Anders V; Maltesen, Henrik R

    2011-01-01

    The collagenolytic matrix metalloproteinase-8 (MMP-8) is essential for normal tissue repair but is often overexpressed in wounds with disrupted healing. Our aim was to study the impact of a local excess of this neutrophil-derived proteinase on wound healing using recombinant adenovirus...

  4. Adenosine A₂A receptors inhibit delayed rectifier potassium currents and cell differentiation in primary purified oligodendrocyte cultures.

    Science.gov (United States)

    Coppi, Elisabetta; Cellai, Lucrezia; Maraula, Giovanna; Pugliese, Anna Maria; Pedata, Felicita

    2013-10-01

    Oligodendrocyte progenitor cells (OPCs) are a population of cycling cells which persist in the adult central nervous system (CNS) where, under opportune stimuli, they differentiate into mature myelinating oligodendrocytes. Adenosine A(2A) receptors are Gs-coupled P1 purinergic receptors which are widely distributed throughout the CNS. It has been demonstrated that OPCs express A(2A) receptors, but their functional role in these cells remains elusive. Oligodendrocytes express distinct voltage-gated ion channels depending on their maturation. Here, by electrophysiological recordings coupled with immunocytochemical labeling, we studied the effects of adenosine A(2A) receptors on membrane currents and differentiation of purified primary OPCs isolated from the rat cortex. We found that the selective A(2A) agonist, CGS21680, inhibits sustained, delayed rectifier, K(+) currents (I(K)) without modifying transient (I(A)) conductances. The effect was observed in all cells tested, independently from time in culture. CGS21680 inhibition of I(K) current was concentration-dependent (10-200 nM) and blocked in the presence of the selective A(2A) antagonist SCH58261 (100 nM). It is known that I(K) currents play an important role during OPC development since their block decreases cell proliferation and differentiation. In light of these data, our further aim was to investigate whether A(2A) receptors modulate these processes. CGS21680, applied at 100 nM in the culture medium of oligodendrocyte cultures, inhibits OPC differentiation (an effect prevented by SCH58261) without affecting cell proliferation. Data demonstrate that cultured OPCs express functional A(2A) receptors whose activation negatively modulate I(K) currents. We propose that, by this mechanism, A(2A) adenosine receptors inhibit OPC differentiation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Matrix metalloproteinases outside vertebrates.

    Science.gov (United States)

    Marino-Puertas, Laura; Goulas, Theodoros; Gomis-Rüth, F Xavier

    2017-11-01

    The matrix metalloproteinase (MMP) family belongs to the metzincin clan of zinc-dependent metallopeptidases. Due to their enormous implications in physiology and disease, MMPs have mainly been studied in vertebrates. They are engaged in extracellular protein processing and degradation, and present extensive paralogy, with 23 forms in humans. One characteristic of MMPs is a ~165-residue catalytic domain (CD), which has been structurally studied for 14 MMPs from human, mouse, rat, pig and the oral-microbiome bacterium Tannerella forsythia. These studies revealed close overall coincidence and characteristic structural features, which distinguish MMPs from other metzincins and give rise to a sequence pattern for their identification. Here, we reviewed the literature available on MMPs outside vertebrates and performed database searches for potential MMP CDs in invertebrates, plants, fungi, viruses, protists, archaea and bacteria. These and previous results revealed that MMPs are widely present in several copies in Eumetazoa and higher plants (Tracheophyta), but have just token presence in eukaryotic algae. A few dozen sequences were found in Ascomycota (within fungi) and in double-stranded DNA viruses infecting invertebrates (within viruses). In contrast, a few hundred sequences were found in archaea and >1000 in bacteria, with several copies for some species. Most of the archaeal and bacterial phyla containing potential MMPs are present in human oral and gut microbiomes. Overall, MMP-like sequences are present across all kingdoms of life, but their asymmetric distribution contradicts the vertical descent model from a eubacterial or archaeal ancestor. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. alpha-Glucosidase inhibition (acarbose) fails to enhance secretion of glucagon-like peptide 1 (7-36 amide) and to delay gastric emptying in Type 2 diabetic patients

    DEFF Research Database (Denmark)

    Hücking, K; Kostic, Z; Pox, C

    2005-01-01

    AIM: Acarbose is able to enhance GLP-1 release and delay gastric emptying in normal subjects. The effect of alpha-glucosidase inhibition on GLP-1 has been less evident in Type 2 diabetic patients. The aim of this study was to investigate the possible influence of acarbose on GLP-1 release and gas...

  7. A new synthetic matrix metalloproteinase inhibitor reduces human mesenchymal stem cell adipogenesis.

    Directory of Open Access Journals (Sweden)

    Dale B Bosco

    Full Text Available Development of adipose tissue requires the differentiation of less specialized cells, such as human mesenchymal stem cells (hMSCs, into adipocytes. Since matrix metalloproteinases (MMPs play critical roles in the cell differentiation process, we conducted investigations to determine if a novel mercaptosulfonamide-based MMP inhibitor (MMPI, YHJ-7-52, could affect hMSC adipogenic differentiation and lipid accumulation. Enzyme inhibition assays, adipogenic differentiation experiments, and quantitative PCR methods were employed to characterize this inhibitor and determine its effect upon adipogenesis. YHJ-7-52 reduced lipid accumulation in differentiated cells by comparable amounts as a potent hydroxamate MMPI, GM6001. However, YHJ-7-82, a non-inhibitory structural analog of YHJ-7-52, in which the zinc-binding thiol group is replaced by a hydroxyl group, had no effect on adipogenesis. The two MMPIs (YHJ-7-52 and GM6001 were also as effective in reducing lipid accumulation in differentiated cells as T0070907, an antagonist of peroxisome-proliferator activated receptor gamma (PPAR-gamma, at a similar concentration. PPAR-gamma is a typical adipogenic marker and a key regulatory protein for the transition of preadiopocyte to adipocyte. Moreover, MMP inhibition was able to suppress lipid accumulation in cells co-treated with Troglitazone, a PPAR-gamma agonist. Our results indicate that MMP inhibitors may be used as molecular tools for adipogenesis and obesity treatment research.

  8. Expression of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) by colorectal cancer cells and adjacent stroma cells - associations with histopathology and patients outcome

    DEFF Research Database (Denmark)

    Jensen, Søren Astrup; Vainer, Ben; Bartels, Annette

    2010-01-01

    AIM: To elucidate cellular features accountable for colorectal cancers' (CRC) capability to invade normal tissue and to metastasize, we investigated the level of the collagenase matrix metalloproteinase 9 (MMP-9) and its physiological inhibitor tissue inhibitor of metalloproteinases 1 (TIMP-1) in...... cells is associated with poor prognosis independent of its function as inhibitor of MMP-9. MMP-9 and TIMP-1 are important mediators of the host-cancer cell interaction in the tumour microenvironment with significant influence on the histopathology and on prognosis of CRC....

  9. Matrix metalloproteinase-10/TIMP-2 structure and analyses define conserved core interactions and diverse exosite interactions in MMP/TIMP complexes.

    Science.gov (United States)

    Batra, Jyotica; Soares, Alexei S; Mehner, Christine; Radisky, Evette S

    2013-01-01

    Matrix metalloproteinases (MMPs) play central roles in vertebrate tissue development, remodeling, and repair. The endogenous tissue inhibitors of metalloproteinases (TIMPs) regulate proteolytic activity by binding tightly to the MMP active site. While each of the four TIMPs can inhibit most MMPs, binding data reveal tremendous heterogeneity in affinities of different TIMP/MMP pairs, and the structural features that differentiate stronger from weaker complexes are poorly understood. Here we report the crystal structure of the comparatively weakly bound human MMP-10/TIMP-2 complex at 2.1 Å resolution. Comparison with previously reported structures of MMP-3/TIMP-1, MT1-MMP/TIMP-2, MMP-13/TIMP-2, and MMP-10/TIMP-1 complexes offers insights into the structural basis of binding selectivity. Our analyses identify a group of highly conserved contacts at the heart of MMP/TIMP complexes that define the conserved mechanism of inhibition, as well as a second category of diverse adventitious contacts at the periphery of the interfaces. The AB loop of the TIMP N-terminal domain and the contact loops of the TIMP C-terminal domain form highly variable peripheral contacts that can be considered as separate exosite interactions. In some complexes these exosite contacts are extensive, while in other complexes the AB loop or C-terminal domain contacts are greatly reduced and appear to contribute little to complex stability. Our data suggest that exosite interactions can enhance MMP/TIMP binding, although in the relatively weakly bound MMP-10/TIMP-2 complex they are not well optimized to do so. Formation of highly variable exosite interactions may provide a general mechanism by which TIMPs are fine-tuned for distinct regulatory roles in biology.

  10. Baicalein inhibits the migration and invasive properties of human hepatoma cells

    International Nuclear Information System (INIS)

    Chiu, Yung-Wei; Lin, Tseng-Hsi; Huang, Wen-Shih; Teng, Chun-Yuh; Liou, Yi-Sheng; Kuo, Wu-Hsien; Lin, Wea-Lung; Huang, Hai-I; Tung, Jai-Nien; Huang, Chih-Yang; Liu, Jer-Yuh; Wang, Wen-Hung; Hwang, Jin-Ming

    2011-01-01

    Flavonoids have been demonstrated to exert health benefits in humans. We investigated whether the flavonoid baicalein would inhibit the adhesion, migration, invasion, and growth of human hepatoma cell lines, and we also investigated its mechanism of action. The separate effects of baicalein and baicalin on the viability of HA22T/VGH and SK-Hep1 cells were investigated for 24 h. To evaluate their invasive properties, cells were incubated on matrigel-coated transwell membranes in the presence or absence of baicalein. We examined the effect of baicalein on the adhesion of cells, on the activation of matrix metalloproteinases (MMPs), protein kinase C (PKC), and p38 mitogen-activated protein kinase (MAPK), and on tumor growth in vivo. We observed that baicalein suppresses hepatoma cell growth by 55%, baicalein-treated cells showed lower levels of migration than untreated cells, and cell invasion was significantly reduced to 28%. Incubation of hepatoma cells with baicalein also significantly inhibited cell adhesion to matrigel, collagen I, and gelatin-coated substrate. Baicalein also decreased the gelatinolytic activities of the matrix metalloproteinases MMP-2, MMP-9, and uPA, decreased p50 and p65 nuclear translocation, and decreased phosphorylated I-kappa-B (IKB)-β. In addition, baicalein reduced the phosphorylation levels of PKCα and p38 proteins, which regulate invasion in poorly differentiated hepatoma cells. Finally, when SK-Hep1 cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of baicalein induced a significant dose-dependent decrease in tumor growth. These results demonstrate the anticancer properties of baicalein, which include the inhibition of adhesion, invasion, migration, and proliferation of human hepatoma cells in vivo. - Highlight: → Baicalein inhibits several essential steps in the onset of metastasis.

  11. Immunohistochemical Correlation of Matrix Metalloproteinase-2 and Tissue Inhibitors of Metalloproteinase-2 in Tobacco Associated Epithelial Dysplasia

    Directory of Open Access Journals (Sweden)

    Dipshikha Bajracharya

    2014-01-01

    Full Text Available Aim. To study the immunohistochemical expression of matrix metalloproteinase and tissue inhibitors of matrix metalloproteinase-2 in different histological grades of tobacco associated epithelial dysplasia and correlate the association between these proteases. Potentially malignant oral disorders (PMODs progressing to oral cancer are related to the severity of epithelial dysplasia. Methods. A retrospective immunohistochemical study was carried out on 30 clinically and histologically proven cases of leukoplakia with dysplasia and 10 cases of normal buccal mucosa using anti-MMP-2 and anti-TIMP-2 monoclonal antibodies. Results. Mann Whitney U test, for comparing the expression of both MMP-2 and TIMP-2 in normal mucosa with dysplasia, was highly significant (P<0.001. Kruskal-Wallis test to compare the median score of MMP-2 and TIMP-2 in different grades of dysplasia showed statistical significance (P<0.001, and a Spearman’s correlation between MMP-2 and TIMP-2 through different grades of dysplasia and cells observed showed positive correlation. Conclusion. Concomitant increase in the expression of both MMP-2 and TIMP-2 suggested that the activation of MMP-2 is dependent on TIMP-2 acting as a cofactor. Changes in TIMP-2 levels are considered important because they directly affect the level of MMP-2 activity.

  12. Smad signaling pathway is a pivotal component of tissue inhibitor of metalloproteinases-3 regulation by transforming growth factor beta in human chondrocytes.

    Science.gov (United States)

    Qureshi, Hamid Yaqoob; Ricci, Gemma; Zafarullah, Muhammad

    2008-09-01

    Transforming growth factor beta (TGF-beta1) promotes cartilage matrix synthesis and induces tissue inhibitor of metalloproteinases-3 (TIMP-3), which inhibits matrix metalloproteinases, aggrecanases and TNF-alpha-converting enzyme implicated in articular cartilage degradation and joint inflammation. TGF-beta1 activates Akt, ERK and Smad2 pathways in chondrocytes. Here we investigated previously unexplored roles of specific Smads in TGF-beta1 induction of TIMP-3 gene by pharmacological and genetic knockdown approaches. TGF-beta1-induced Smad2 phosphorylation and TIMP-3 protein expression could be inhibited by the Smad2/3 phosphorylation inhibitors, PD169316 and SB203580 and by Smad2-specific siRNA. Specific inhibitor of Smad3 (SIS3) and Smad3 siRNA abolished TGF-beta induction of TIMP-3. Smad2/3 siRNAs also down regulated TIMP-3 promoter-driven luciferase activities, suggesting transcriptional regulation. SiRNA-driven co-Smad4 knockdown abrogated TIMP-3 augmentation by TGF-beta. TIMP-3 promoter deletion analysis revealed that -828 deletion retains the original promoter activity while -333 and -167 deletions display somewhat reduced activity suggesting that most of the TGF-beta-responsive, cis-acting elements are found in the -333 fragment. Chromatin Immunoprecipitation (ChIP) analysis confirmed binding of Smad2 and Smad4 with the -940 and -333 promoter sequences. These results suggest that receptor-activated Smad2 and Smad3 and co-Smad4 critically mediate TGF-beta-stimulated TIMP-3 expression in human chondrocytes and TIMP-3 gene is a target of Smad signaling pathway.

  13. Targeting surface nucleolin with a multivalent pseudopeptide delays development of spontaneous melanoma in RET transgenic mice

    International Nuclear Information System (INIS)

    El Khoury, Diala; Courty, José; Hovanessian, Ara G; Prévost-Blondel, Armelle; Destouches, Damien; Lengagne, Renée; Krust, Bernard; Hamma-Kourbali, Yamina; Garcette, Marylène; Niro, Sandra; Kato, Masashi; Briand, Jean-Paul

    2010-01-01

    The importance of cell-surface nucleolin in cancer biology was recently highlighted by studies showing that ligands of nucleolin play critical role in tumorigenesis and angiogenesis. By using a specific antagonist that binds the C-terminal tail of nucleolin, the HB-19 pseudopeptide, we recently reported that HB-19 treatment markedly suppressed the progression of established human breast tumor cell xenografts in the athymic nude mice without apparent toxicity. The in vivo antitumoral action of HB-19 treatment was assessed on the spontaneous development of melanoma in the RET transgenic mouse model. Ten days old RET mice were treated with HB-19 in a prophylactic setting that extended 300 days. In parallel, the molecular basis for the action of HB-19 was investigated on a melanoma cell line (called TIII) derived from a cutaneous nodule of a RET mouse. HB-19 treatment of RET mice caused a significant delay in the onset of cutaneous tumors, several-months delay in the incidence of large tumors, a lower frequency of cutaneous nodules, and a reduction of visceral metastatic nodules while displaying no toxicity to normal tissue. Moreover, microvessel density was significantly reduced in tumors recovered from HB-19 treated mice compared to corresponding controls. Studies on the melanoma-derived tumor cells demonstrated that HB-19 treatment of TIII cells could restore contact inhibition, impair anchorage-independent growth, and reduce their tumorigenic potential in mice. Moreover, HB-19 treatment caused selective down regulation of transcripts coding matrix metalloproteinase 2 and 9, and tumor necrosis factor-α in the TIII cells and in melanoma tumors of RET mice. Although HB-19 treatment failed to prevent the development of spontaneous melanoma in the RET mice, it delayed for several months the onset and frequency of cutaneous tumors, and exerted a significant inhibitory effect on visceral metastasis. Consequently, HB-19 could provide a novel therapeutic agent by itself or

  14. Effect of flavones on rat brain and lung matrix metalloproteinase activity measured by film in-situ zymography.

    Science.gov (United States)

    Sasaki, K; Tateoka, N; Ando, H; Yoshizaki, F

    2005-04-01

    We have evaluated the inhibitory activity of flavone, nobiletin, and heptamethoxyflavone on matrix metalloproteinase (MMP) activity in the rat. MMP in 9000-g supernatant fraction of lung homogenate was activated by p-aminophenyl mercuric acetate (APMA), and gelatinolytic activity was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by Coomassie staining. This activity should be related to MMP-2 and/or MMP-9 and was confirmed by gelatin zymography. Fluorescent-conjugated collagen used as a substrate for collagenolytic activity wasinvestigated by SDS-PAGE also. The film in-situ zymography method was applied to rat brain and lung tissue in the same manner. Flavone and nobiletin inhibited the APMA-stimulated gelatinolytic activity and also the collagenolytic activity by more than 75%. The film in-situ zymography method indicated that these compounds might be potent inhibitors of MMP, suggesting the specific inhibition of localized MMP in brain hippocampus and/or lung terminal bronchioles, which may contribute to the prevention of some types of brain disease or cancer invasion and metastasis.

  15. Mycobacterium tuberculosis, but not vaccine BCG, specifically upregulates matrix metalloproteinase-1.

    Science.gov (United States)

    Elkington, Paul T G; Nuttall, Robert K; Boyle, Joseph J; O'Kane, Cecilia M; Horncastle, Donna E; Edwards, Dylan R; Friedland, Jon S

    2005-12-15

    Pulmonary cavitation is fundamental to the global success of Mycobacterium tuberculosis. However, the mechanisms of this lung destruction are poorly understood. The biochemistry of lung matrix predicts matrix metalloproteinase (MMP) involvement in immunopathology. We investigated gene expression of all MMPs, proteins with a disintegrin and metalloproteinase domain, and tissue inhibitors of metalloproteinases in M. tuberculosis-infected human macrophages by real-time polymerase chain reaction. MMP secretion was measured by zymography and Western analysis, and expression in patients with pulmonary tuberculosis was localized by immunohistochemistry. MMP-1 and MMP-7 gene expression and secretion are potently upregulated by M. tuberculosis, and no increase in tissue inhibitor of metalloproteinase expression occurs to oppose their activity. Dexamethasone completely suppresses MMP-1 but not MMP-7 gene expression and secretion. In patients with active tuberculosis, macrophages express MMP-1 and MMP-7 adjacent to areas of tissue destruction. MMP-1 but not MMP-7 expression and secretion are relatively M. tuberculosis specific, are not upregulated by tuberculosis-associated cytokines, and are prostaglandin dependent. In contrast, the vaccine M. bovis bacillus Calmette-Guérin (BCG) does not stimulate MMP-1 secretion from human macrophages, although M. tuberculosis and BCG do upregulate MMP-7 equally. BCG-infected macrophages secrete reduced prostaglandin E2 concentrations compared with M. tuberculosis-infected macrophages, and prostaglandin pathway supplementation augments MMP-1 secretion from BCG-infected cells. M. tuberculosis specifically upregulates MMP-1 in a cellular model of human infection and in patients with tuberculosis. In contrast, vaccine BCG, which does not cause lung cavitation, does not upregulate prostaglandin E2-dependent MMP-1 secretion.

  16. The Ayurvedic plant Bacopa monnieri inhibits inflammatory pathways in the brain.

    Science.gov (United States)

    Nemetchek, Michelle D; Stierle, Andrea A; Stierle, Donald B; Lurie, Diana I

    2017-02-02

    Bacopa monnieri (L) Wettst (common name, bacopa) is a medicinal plant used in Ayurveda, the traditional system of medicine of India, as a nootropic. It is considered to be a "medhya rasayana", an herb that sharpens the mind and the intellect. Bacopa is an important ingredient in many Ayurvedic herbal formulations designed to treat conditions such as memory loss, anxiety, poor cognition and loss of concentration. It has also been used in Ayurveda to treat inflammatory conditions such as arthritis. In modern biomedical studies, bacopa has been shown in animal models to inhibit the release of the pro-inflammatory cytokines TNF-α and IL-6. However, less is known regarding the anti-inflammatory activity of Bacopa in the brain. The current study examines the ability of Bacopa to inhibit the release of pro-inflammatory cytokines from microglial cells, the immune cells of the brain that participate in inflammation in the CNS. The effect of Bacopa on signaling enzymes associated with CNS inflammatory pathways was also studied. Various extracts of Bacopa were prepared and examined in the N9 microglial cell line in order to determine if they inhibited the release of the proinflammatory cytokines TNF-α and IL-6. Extracts were also tested in cell free assays as inhibitors of caspase-1 and matrix metalloproteinase-3 (enzymes associated with inflammation) and caspase-3, which has been shown to cleave protein Tau, an early event in the development of Alzheimer's disease. The tea, infusion, and alkaloid extracts of bacopa, as well as Bacoside A significantly inhibited the release of TNF-α and IL-6 from activated N9 microglial cells in vitro. In addition, the tea, infusion, and alkaloid extracts of Bacopa effectively inhibited caspase 1 and 3, and matrix metalloproteinase-3 in the cell free assay. Bacopa inhibits the release of inflammatory cytokines from microglial cells and inhibits enzymes associated with inflammation in the brain. Thus, Bacopa can limit inflammation in the

  17. The Ayurvedic plant Bacopa Monnieri inhibits inflammatory pathways in the brain

    Science.gov (United States)

    Nemetchek, Michelle D.; Stierle, Andrea A.; Stierle, Donald B.; Lurie, Diana I.

    2016-01-01

    Ethnopharmacological Relevance Bacopa monnieri (L) Wettst (common name, bacopa) is a medicinal plant used in Ayurveda, the traditional system of medicine of India, as a nootropic. It is considered to be a “medhya rasayana”, an herb that sharpens the mind and the intellect. Bacopa is an important ingredient in many Ayurvedic herbal formulations designed to treat conditions such as memory loss, anxiety, poor cognition and loss of concentration. It has also been used in Ayurveda to treat inflammatory conditions such as arthritis. In modern biomedical studies, bacopa has been shown in animal models to inhibit the release of the pro-inflammatory cytokines TNF-α and IL-6. However, less is known regarding the anti-inflammatory activity of Bacopa in the brain. Aim Of The Study The current study examines the ability of Bacopa to inhibit the release of pro-inflammatory cytokines from microglial cells, the immune cells of the brain that participate in inflammation in the CNS. The effect of Bacopa on signaling enzymes associated with CNS inflammatory pathways was also studied. Materials And Methods Various extracts of Bacopa were prepared and examined in the N9 microglial cell line in order to determine if they inhibited the release of the proinflammatory cytokines TNF-α and IL-6. Extracts were also tested in cell free assays as inhibitors of caspase-1 and matrix metalloproteinase-3 (enzymes associated with inflammation) and caspase-3, which has been shown to cleave protein Tau, an early event in the development of Alzheimer's disease. Results The tea, infusion, and alkaloid extracts of bacopa, as well as Bacoside A significantly inhibited the release of TNF-α and IL-6 from activated N9 microglial cells in vitro. In addition, the tea, infusion, and alkaloid extracts of Bacopa effectively inhibited caspase 1 and 3, and matrix metalloproteinase-3 in the cell free assay. Conclusions Bacopa inhibits the release of inflammatory cytokines from microglial cells and inhibits

  18. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) promotes lung fibroblast proliferation, survival and differentiation to myofibroblasts.

    Science.gov (United States)

    Hasaneen, Nadia A; Cao, Jian; Pulkoski-Gross, Ashleigh; Zucker, Stanley; Foda, Hussein D

    2016-02-17

    Idiopathic pulmonary fibrosis (IPF) is a chronic progressively fatal disease. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) is a glycosylated transmembrane protein that induces the expression of some matrix metalloproteinase (MMP) in neighboring stromal cells through direct epithelial-stromal interactions. EMMPRIN is highly expressed in type II alveolar epithelial cells at the edges of the fibrotic areas in IPF lung sections. However, the exact role of EMMPRIN in IPF is unknown. To determine if EMMPRIN contributes to lung fibroblast proliferation, resistance to apoptosis, and differentiation to myofibroblasts, normal Human lung fibroblasts (NHLF) transiently transfected with either EMMPRIN/GFP or GFP were treated with TGF- β1 from 0 to 10 ng/ml for 48 h and examined for cell proliferation (thymidine incorporation), apoptosis (FACS analysis and Cell Death Detection ELISA assay), cell migration (Modified Boyden chamber) and differentiation to myofibroblasts using Western blot for α-smooth actin of cell lysates. The effect of EMMPRIN inhibition on NHLF proliferation, apoptosis, migration and differentiation to myofibroblasts after TGF- β1 treatment was examined using EMMPRIN blocking antibody. We examined the mechanism by which EMMPRIN induces its effects on fibroblasts by studying the β-catenin/canonical Wnt signaling pathway using Wnt luciferase reporter assays and Western blot for total and phosphorylated β-catenin. Human lung fibroblasts overexpressing EMMPRIN had a significant increase in cell proliferation and migration compared to control fibroblasts. Furthermore, EMMPRIN promoted lung fibroblasts resistance to apoptosis. Lung fibroblasts overexpressing EMMPRIN showed a significantly increased expression of α- smooth muscle actin, a marker of differentiation to myofibroblasts compared to control cells. TGF-β1 increased the expression of EMMPRIN in lung fibroblasts in a dose-dependent manner. Attenuation of EMMPRIN expression with the use of an

  19. Sinomenine Hydrochloride Inhibits the Metastasis of Human Glioblastoma Cells by Suppressing the Expression of Matrix Metalloproteinase-2/-9 and Reversing the Endogenous and Exogenous Epithelial-Mesenchymal Transition.

    Science.gov (United States)

    Jiang, Yumao; Jiao, Yue; Liu, Yang; Zhang, Meiyu; Wang, Zhiguo; Li, Yujuan; Li, Tao; Zhao, Xiaoliang; Wang, Danqiao

    2018-03-14

    As shown in our previous study, sinomenine hydrochloride (SH), the major bioactive alkaloid isolated from Sinomenium acutum Rehd. et Wils. (Fam. Menispermaceae ), initiates the autophagy-mediated death of human glioblastoma cells by generating reactive oxygen species and activating the autophagy-lysosome pathway. However, its effects on the migration and invasion of human glioblastoma cells have not yet been elucidated. Therefore, human glioblastoma U87 and SF767 cells were treated with SH (0.125 and 0.25 mM) for 24 h, and cell migration and invasion were assessed using scratch wound healing, migration and invasion assays. SH promoted G0/G1 phase arrest, inhibited the migration and invasion of the two cell lines, suppressed the activation of nuclear factor kappa B (NFκB) and the expression of matrix metalloproteinase (MMP)-2/-9, triggered endoplasmic reticulum (ER) stress, reversed the exogenous epithelial-mesenchymal transition (EMT) induced by the inflammatory microenvironment and the endogenous EMT. Additionally, NFκB p65 overexpression blocked the SH-mediated inhibitory effects on MMP-2/-9 expression and cell invasion. SH-induced autophagy was reduced in CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) or autophagy-related 5 (ATG5)-silenced human glioblastoma cells and cells treated with 4-phenylbutyric acid (4-PBA) or 3-methyladenine (3-MA), as shown by the decreased levels of the microtubule-associated protein light chain 3B (LC3B)-II and autophagic vacuoles (AVs) stained with monodansylcadaverine (MDC), respectively. Moreover, knockdown of CHOP or ATG5 and treatment with 4-PBA or 3-MA abolished the SH-mediated inhibition of mesenchymal markers (vimentin, Snail and Slug) expression and cell invasion, respectively. Importantly, SH also regulated the above related pathways in nude mice. Based on these findings, SH inhibited cell proliferation by inducing cell cycle arrest, and attenuated the metastasis of U87 and SF767 cells by suppressing MMP

  20. Sinomenine Hydrochloride Inhibits the Metastasis of Human Glioblastoma Cells by Suppressing the Expression of Matrix Metalloproteinase-2/-9 and Reversing the Endogenous and Exogenous Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Yumao Jiang

    2018-03-01

    Full Text Available As shown in our previous study, sinomenine hydrochloride (SH, the major bioactive alkaloid isolated from Sinomenium acutum Rehd. et Wils. (Fam. Menispermaceae, initiates the autophagy-mediated death of human glioblastoma cells by generating reactive oxygen species and activating the autophagy-lysosome pathway. However, its effects on the migration and invasion of human glioblastoma cells have not yet been elucidated. Therefore, human glioblastoma U87 and SF767 cells were treated with SH (0.125 and 0.25 mM for 24 h, and cell migration and invasion were assessed using scratch wound healing, migration and invasion assays. SH promoted G0/G1 phase arrest, inhibited the migration and invasion of the two cell lines, suppressed the activation of nuclear factor kappa B (NFκB and the expression of matrix metalloproteinase (MMP-2/-9, triggered endoplasmic reticulum (ER stress, reversed the exogenous epithelial-mesenchymal transition (EMT induced by the inflammatory microenvironment and the endogenous EMT. Additionally, NFκB p65 overexpression blocked the SH-mediated inhibitory effects on MMP-2/-9 expression and cell invasion. SH-induced autophagy was reduced in CCAAT/enhancer binding protein (C/EBP homologous protein (CHOP or autophagy-related 5 (ATG5-silenced human glioblastoma cells and cells treated with 4-phenylbutyric acid (4-PBA or 3-methyladenine (3-MA, as shown by the decreased levels of the microtubule-associated protein light chain 3B (LC3B-II and autophagic vacuoles (AVs stained with monodansylcadaverine (MDC, respectively. Moreover, knockdown of CHOP or ATG5 and treatment with 4-PBA or 3-MA abolished the SH-mediated inhibition of mesenchymal markers (vimentin, Snail and Slug expression and cell invasion, respectively. Importantly, SH also regulated the above related pathways in nude mice. Based on these findings, SH inhibited cell proliferation by inducing cell cycle arrest, and attenuated the metastasis of U87 and SF767 cells by suppressing

  1. Effect of Agmatine Sulfate on Modulation of Matrix Metalloproteinases via PI3K/Akt-1 in HT1080 Cells.

    Science.gov (United States)

    Kim, Hyejeong; Kim, Moon-Moo

    2017-11-01

    The purpose of this study was to investigate the mechanism by which agmatine sulfate induces an anti-metastatic effect in human HT1080 fibrosarcoma cells, by affecting matrix metalloproteinases (MMPs). For the experiments, we used a non-toxic concentration of agmatine, below 512 μM, that was determined using an MTT assay. The effect of agmatine sulfate on metastasis was gelatin zymography, western blot, immunofluorescence staining and cell invasion assay. Agmatine sulfate inhibited MMP-2 activity stimulated by phenazine methosulfate (PMS). Furthermore, the expression level of MMP-2 stimulated by PMS, was decreased, but the expression level of TIMP-1 was increased in the presence of agmatine sulfate. Moreover, it was observed that the expression levels of ERK and p38 were increased, but those of PI3K and Akt-1 associated with the modulation of MMP-2 were decreased in this study. Furthermore, agmatine sulfate decreased the invasion level of human fibrosarcoma cells stimulated by VEGF. These results suggest that agmatine sulfate could inhibit metastasis through inhibition of MMP-2 via the PI3K/Akt-1 signaling pathway. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Temporal and spatial expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 in trophoblast and endometrial epithelium during pregnancy of pig

    Czech Academy of Sciences Publication Activity Database

    Georgieva, R.; Rashev, P.; Pěknicová, Jana; Michailova, A.

    2004-01-01

    Roč. 52, Suppl.1 (2004), s. 42-43 ISSN 1046-7408. [International Congress of Reproductive Immunology /9./. Hakone, 11.10.2004-15.10.2004] Institutional research plan: CEZ:AV0Z5052915 Keywords : matrix metalloproteinase * trophoblast * endometrium Subject RIV: EC - Immunology Impact factor: 1.808, year: 2004

  3. Spontaneous metastasis in matrix metalloproteinase 3-deficient mice

    DEFF Research Database (Denmark)

    Juncker-Jensen, Anna; Rømer, John; Pennington, Caroline J

    2009-01-01

    Matrix metalloproteinases (MMPs) have been linked to the metastatic potential of tumor cells due to their ability to degrade the extracellular matrix. MMP-3 (stromelysin-1) is upregulated in a wide variety of human tumors. We used the MMTV-PyMT breast cancer model to determine if MMP-3 is involved...

  4. cDNA cloning of a snake venom metalloproteinase from the eastern diamondback rattlesnake (Crotalus adamanteus), and the expression of its disintegrin domain with anti-platelet effects

    Science.gov (United States)

    Suntravat, Montamas; Jia, Ying; Lucena, Sara E.; Sánchez, Elda E.; Pérez, John C.

    2013-01-01

    A 5′ truncated snake venom metalloproteinase was identified from a cDNA library constructed from venom glands of an eastern diamondback rattlesnake (Crotalus adamanteus). The 5′-rapid amplification of cDNA ends (RACE) was used to obtain the 1865 bp full-length cDNA sequence of a snake venom metalloproteinase (CamVMPII). CamVMPII encodes an open reading frame of 488 amino acids, which includes a signal peptide, a pro-domain, a metalloproteinase domain, a spacer, and an RGD-disintegrin domain. The predicted amino acid sequence of CamVMPII showed a 91%, 90%, 83%, and 82% sequence homology to the P-II class enzymes of C. adamanteus metalloproteinase 2, C. atrox CaVMP-II, Gloydius halys agkistin, and Protobothrops jerdonii jerdonitin, respectively. Disintegrins are potent inhibitors of both platelet aggregation and integrin-dependent cell adhesion. Therefore, the disintegrin domain (Cam-dis) of CamVMPII was amplified by PCR, cloned into a pET-43.1a vector, and expressed in Escherichia coli BL21. Affinity purified recombinantly modified Cam-dis (r-Cam-dis) with a yield of 8.5 mg/L culture medium was cleaved from the fusion tags by enterokinase cleavage. r-Cam-dis was further purified by two-step chromatography consisting of HiTrap™ Benzamidine FF column, followed by Talon Metal affinity column with a final yield of 1 mg/L culture. r-Cam-dis was able to inhibit all three processes of platelet thrombus formation including platelet adhesion with an estimated IC50 of 1 nM, collagen- and ADP-induced platelet aggregation with the estimated IC50s of 18 and 6 nM, respectively, and platelet function on clot retraction. It is a potent anti-platelet inhibitor, which should be further investigated for drug discovery to treat stroke patients or patients with thrombotic disorders. PMID:23313448

  5. Different protein kinase C isoenzymes mediate inhibition of cardiac rapidly activating delayed rectifier K+ current by different G-protein coupled receptors.

    Science.gov (United States)

    Liu, Xueli; Wang, Yuhong; Zhang, Hua; Shen, Li; Xu, Yanfang

    2017-12-01

    Elevated angiotensin II (Ang II) and sympathetic activity contributes to a high risk of ventricular arrhythmias in heart disease. The rapidly activating delayed rectifier K + current (I Kr ) carried by the hERG channels plays a critical role in cardiac repolarization, and decreased I Kr is involved in increased cardiac arrhythmogenicity. Stimulation of α 1A -adrenoreceptors or angiotensin II AT 1 receptors is known to inhibit I Kr via PKC. Here, we have identified the PKC isoenzymes mediating the inhibition of I Kr by activation of these two different GPCRs. The whole-cell patch-clamp technique was used to record I Kr in guinea pig cardiomyocytes and HEK293 cells co-transfected with hERG and α 1A -adrenoreceptor or AT 1 receptor genes. A broad spectrum PKC inhibitor Gö6983 (not inhibiting PKCε), a selective cPKC inhibitor Gö6976 and a PKCα-specific inhibitor peptide, blocked the inhibition of I Kr by the α 1A -adrenoreceptor agonist A61603. However, these inhibitors did not affect the reduction of I Kr by activation of AT 1 receptors, whereas the PKCε-selective inhibitor peptide did block the effect. The effects of angiotensin II and the PKCε activator peptide were inhibited in mutant hERG channels in which 17 of the 18 PKC phosphorylation sites were deleted, whereas a deletion of the N-terminus of the hERG channels selectively prevented the inhibition elicited by A61603 and the cPKC activator peptide. Our results indicated that inhibition of I Kr by activation of α 1A -adrenoreceptors or AT 1 receptors were mediated by PKCα and PKCε isoforms respectively, through different molecular mechanisms. © 2017 The British Pharmacological Society.

  6. Cobalt (III) complexes as novel matrix metalloproteinase-9 inhibitors

    International Nuclear Information System (INIS)

    Lee, Jiyoun

    2012-01-01

    We have synthesized a series of novel MMP-9 inhibitors containing cobalt(III) complexes. The synthesized cobalt(III) complexes are effective as enzyme inhibitors and the attachment of a biphenyl group enhanced the efficiency of enzyme inhibition up to 6-fold. When compared to the reported non-hydroxamate MMP inhibitors, the synthesized complexes showed comparable in vitro potency. The enzyme assay showed that the cobalt(III) complex can disrupt the zinc binding active site of MMP-9 and is proposed to work via a ligand exchange mechanism. Since histidine residues are essential for the catalytic activity of a large percentage of enzymes and zinc finger proteins, these cobalt(III) complexes can serve as a prototype inhibitor towards various zinc containing enzymes and proteins. Matrix metalloproteinases (MMPs) are a family of zinc binding endopeptidases that play crucial roles in various physiological processes and diseases such as embryogenic growth, angiogenesis, arthritis, skin ulceration, liver fibrosis and tumor metastasis. Because of their implications in a wide range of diseases, MMPs are considered as intriguing drug targets. The majority of MMP inhibitors are organic small molecules containing a hydroxamate functionality for the zinc binding group. This hydroxamate group binds to a zinc(II) center in a bidentate fashion and creates a distorted trigonal bipyramidal geometry

  7. Cobalt (III) complexes as novel matrix metalloproteinase-9 inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiyoun [Sungshin Women' s Univ., Seoul (Korea, Republic of)

    2012-04-15

    We have synthesized a series of novel MMP-9 inhibitors containing cobalt(III) complexes. The synthesized cobalt(III) complexes are effective as enzyme inhibitors and the attachment of a biphenyl group enhanced the efficiency of enzyme inhibition up to 6-fold. When compared to the reported non-hydroxamate MMP inhibitors, the synthesized complexes showed comparable in vitro potency. The enzyme assay showed that the cobalt(III) complex can disrupt the zinc binding active site of MMP-9 and is proposed to work via a ligand exchange mechanism. Since histidine residues are essential for the catalytic activity of a large percentage of enzymes and zinc finger proteins, these cobalt(III) complexes can serve as a prototype inhibitor towards various zinc containing enzymes and proteins. Matrix metalloproteinases (MMPs) are a family of zinc binding endopeptidases that play crucial roles in various physiological processes and diseases such as embryogenic growth, angiogenesis, arthritis, skin ulceration, liver fibrosis and tumor metastasis. Because of their implications in a wide range of diseases, MMPs are considered as intriguing drug targets. The majority of MMP inhibitors are organic small molecules containing a hydroxamate functionality for the zinc binding group. This hydroxamate group binds to a zinc(II) center in a bidentate fashion and creates a distorted trigonal bipyramidal geometry.

  8. Vascular endothelial growth factor-A, matrix metalloproteinase-1, and macrophage migration inhibition factor changes in the porcine remnant kidney model: Evaluation by MRI

    Science.gov (United States)

    Misra, Sanjay; Misra, Khamal D; Glockner, James F.

    2010-01-01

    Purpose To determine the expression of vascular endothelial growth factor-A (VEGF-A), macrophage migration inhibition factor (MIF), and matrix metalloproteinase-1 (MMP-1) in the porcine remnant kidney model and quantify renal blood flow and volume using phase contrast magnetic resonance imaging with magnetic resonance angiography (PC MRI/MRA). Material and methods In 23 pigs, the left renal artery was completely embolized using polyvinyl acrylide (PVA) particles and the right kidney partially embolized (remnant kidney) while six pigs served as controls. The animals were sacrificed early (day 3, 7, and 14, N=3), day 24 (D24, N=5), day 37 (D37, N=3), day 42 (D42, N=9), and day 84 (D84, N=3). MRI/PC MRA of the kidneys was performed prior to sacrifice. The remnant and control kidneys were harvested for Western blotting of VEGF-A, MMP-1, and MIF. Blood was removed for BUN and creatinine prior to embolization and at time of sacrifice. Results The kidney function after the embolization was characterized by chronic renal insufficiency. The renal artery blood flow, volume, and weight of the remnant kidney increased significantly over time when compared to controls. At early time points, there was increased expression of MIF and MMP-1 followed by an increase in the expression of VEGF-A by day 37 (P<0.05 when compared to control). Masson's trichrome staining of the remnant kidney revealed scarring in the tubulointerstitial space. Conclusions In this model, renal blood flow and volume increase as the remnant kidney hypertrophies and scars. There is increased expression of MIF, VEGF-A, and MMP-1 in the remnant kidney. PMID:20610182

  9. Structural differences of matrix metalloproteinases. Homology modeling and energy minimization of enzyme-substrate complexes

    DEFF Research Database (Denmark)

    Terp, G E; Christensen, I T; Jørgensen, Flemming Steen

    2000-01-01

    Matrix metalloproteinases are extracellular enzymes taking part in the remodeling of extracellular matrix. The structures of the catalytic domain of MMP1, MMP3, MMP7 and MMP8 are known, but structures of enzymes belonging to this family still remain to be determined. A general approach...... to the homology modeling of matrix metalloproteinases, exemplified by the modeling of MMP2, MMP9, MMP12 and MMP14 is described. The models were refined using an energy minimization procedure developed for matrix metalloproteinases. This procedure includes incorporation of parameters for zinc and calcium ions...... in the AMBER 4.1 force field, applying a non-bonded approach and a full ion charge representation. Energy minimization of the apoenzymes yielded structures with distorted active sites, while reliable three-dimensional structures of the enzymes containing a substrate in active site were obtained. The structural...

  10. Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases

    International Nuclear Information System (INIS)

    Huang, T.-Y.; Chu, H.-C.; Lin, Y.-L.; Lin, C.-K.; Hsieh, T.-Y.; Chang, W.-K.; Chao, Y.-C.; Liao, C.-L.

    2009-01-01

    In addition to its antimicrobial activity, minocycline exerts anti-inflammatory effects in several disease models. However, whether minocycline affects the pathogenesis of inflammatory bowel disease has not been determined. We investigated the effects of minocycline on experimental colitis and its underlying mechanisms. Acute and chronic colitis were induced in mice by treatment with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS), and the effect of minocycline on colonic injury was assessed clinically and histologically. Prophylactic and therapeutic treatment of mice with minocycline significantly diminished mortality rate and attenuated the severity of DSS-induced acute colitis. Mechanistically, minocycline administration suppressed inducible nitric oxide synthase (iNOS) expression and nitrotyrosine production, inhibited proinflammatory cytokine expression, repressed the elevated mRNA expression of matrix metalloproteinases (MMPs) 2, 3, 9, and 13, diminished the apoptotic index in colonic tissues, and inhibited nitric oxide production in the serum of mice with DSS-induced acute colitis. In DSS-induced chronic colitis, minocycline treatment also reduced body weight loss, improved colonic histology, and blocked expression of iNOS, proinflammatory cytokines, and MMPs from colonic tissues. Similarly, minocycline could ameliorate the severity of TNBS-induced acute colitis in mice by decreasing mortality rate and inhibiting proinflammatory cytokine expression in colonic tissues. These results demonstrate that minocycline protects mice against DSS- and TNBS-induced colitis, probably via inhibition of iNOS and MMP expression in intestinal tissues. Therefore, minocycline is a potential remedy for human inflammatory bowel diseases.

  11. Modulation of Matrix Metalloproteinase 14, Tissue Inhibitor of Metalloproteinase 3, Tissue Inhibitor of Metalloproteinase 4, and Inducible Nitric Oxide Synthase in the Development of Periapical Lesions.

    Science.gov (United States)

    Cassanta, Lorena Teodoro de Castro; Rodrigues, Virmondes; Violatti-Filho, Jose Roberto; Teixeira Neto, Benedito Alves; Tavares, Vinícius Marques; Bernal, Eduarda Castelo Branco Araujo; Souza, Danila Malheiros; Araujo, Marcelo Sivieri; de Lima Pereira, Sanivia Aparecida; Rodrigues, Denise Bertulucci Rocha

    2017-07-01

    Periapical cysts and granulomas are chronic lesions caused by an inflammatory immune response against microbial challenge in the root canal. Different cell types, cytokines, and molecules have been associated with periapical lesion formation and expansion. Therefore, because of the chronic inflammatory state of these lesions, the aim of this study was to evaluate the in situ expression of matrix metalloproteinase (MMP)-14 and -19, tissue inhibitor of metalloproteinase (TIMP)-3 and -4, CD68, and inducible nitric oxide synthase (iNOS) in periapical cysts and granulomas. Sixteen cases of periapical cysts and 15 cases of periapical granulomas were analyzed. Ten normal dental pulps were used as the negative control. Immunohistochemistry was performed with anti-MMP-19, anti-MMP-14, anti-TIMP-3, anti-TIMP-4, anti-iNOS, and anti-CD68 antibodies. The expression of TIMP-3, TIMP-4, iNOS, and CD68 was significantly higher in both the cyst and granuloma groups than in the control group. TIMP-4 was also significantly higher in cases of chronic apical abscess. There was also a significant difference in the expression of MMP-14 between the cyst and control groups. However, there were no differences in the expression of MMP-19 between the 3 groups. Our data suggest that the expression of MMP-14, TIMP-3, and TIMP-4 is associated with the development of periapical lesions. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Detection of Matrix Metalloproteinases by Zymography.

    Science.gov (United States)

    Tajhya, Rajeev B; Patel, Rutvik S; Beeton, Christine

    2017-01-01

    Matrix metalloproteinases (MMPs) represent more than 20 zinc-containing endopeptidases that cleave internal peptide bonds, leading to protein degradation. They play a critical role in many physiological cell functions, including tissue remodeling, embryogenesis, and angiogenesis. They are also involved in the pathogenesis of a vast array of diseases, including but not limited to systemic inflammation, various cancers, and cardiovascular, neurological, and autoimmune diseases. Here, we describe gel zymography to detect MMPs in cell and tissue samples and in cell culture supernatants.

  13. Matrix metalloproteinase-10/TIMP-2 structure and analyses define conserved core interactions and diverse exosite interactions in MMP/TIMP complexes.

    Directory of Open Access Journals (Sweden)

    Jyotica Batra

    Full Text Available Matrix metalloproteinases (MMPs play central roles in vertebrate tissue development, remodeling, and repair. The endogenous tissue inhibitors of metalloproteinases (TIMPs regulate proteolytic activity by binding tightly to the MMP active site. While each of the four TIMPs can inhibit most MMPs, binding data reveal tremendous heterogeneity in affinities of different TIMP/MMP pairs, and the structural features that differentiate stronger from weaker complexes are poorly understood. Here we report the crystal structure of the comparatively weakly bound human MMP-10/TIMP-2 complex at 2.1 Å resolution. Comparison with previously reported structures of MMP-3/TIMP-1, MT1-MMP/TIMP-2, MMP-13/TIMP-2, and MMP-10/TIMP-1 complexes offers insights into the structural basis of binding selectivity. Our analyses identify a group of highly conserved contacts at the heart of MMP/TIMP complexes that define the conserved mechanism of inhibition, as well as a second category of diverse adventitious contacts at the periphery of the interfaces. The AB loop of the TIMP N-terminal domain and the contact loops of the TIMP C-terminal domain form highly variable peripheral contacts that can be considered as separate exosite interactions. In some complexes these exosite contacts are extensive, while in other complexes the AB loop or C-terminal domain contacts are greatly reduced and appear to contribute little to complex stability. Our data suggest that exosite interactions can enhance MMP/TIMP binding, although in the relatively weakly bound MMP-10/TIMP-2 complex they are not well optimized to do so. Formation of highly variable exosite interactions may provide a general mechanism by which TIMPs are fine-tuned for distinct regulatory roles in biology.

  14. There is no free won't: antecedent brain activity predicts decisions to inhibit.

    Directory of Open Access Journals (Sweden)

    Elisa Filevich

    Full Text Available Inhibition of prepotent action is an important aspect of self-control, particularly in social contexts. Action inhibition and its neural bases have been extensively studied. However, the neural precursors of free decisions to inhibit have hardly been studied. We asked participants to freely choose to either make a rapid key press in response to a visual cue, or to transiently inhibit action, and briefly delay responding. The task required a behavioural response on each trial, so trials involving inhibition could be distinguished from those without inhibition as those showing slower reaction times. We used this criterion to classify free-choice trials as either rapid or inhibited/delayed. For 13 participants, we measured the mean amplitude of the ERP activity at electrode Cz in three subsequent 50 ms time windows prior to the onset of the signal that either instructed to respond or inhibit, or gave participants a free choice. In two of these 50 ms time windows (-150 to -100, and -100 to -50 ms relative to action onset, the amplitude of prestimulus ERP differed between trials where participants "freely" chose whether to inhibit or to respond rapidly. Larger prestimulus ERP amplitudes were associated with trials in which participants decided to act rapidly as compared to trials in which they decided to delay their responses. Last-moment decisions to inhibit or delay may depend on unconscious preparatory neural activity.

  15. Ischemic preconditioning provides both acute and delayed protection against renal ischemia and reperfusion injury in mice.

    Science.gov (United States)

    Joo, Jin Deok; Kim, Mihwa; D'Agati, Vivette D; Lee, H Thomas

    2006-11-01

    Acute as well as delayed ischemic preconditioning (IPC) provides protection against cardiac and neuronal ischemia reperfusion (IR) injury. This study determined whether delayed preconditioning occurs in the kidney and further elucidated the mechanisms of renal IPC in mice. Mice were subjected to IPC (four cycles of 5 min of ischemia and reperfusion) and then to 30 min of renal ischemia either 15 min (acute IPC) or 24 h (delayed IPC) later. Both acute and delayed renal IPC provided powerful protection against renal IR injury. Inhibition of Akt but not extracellular signal-regulated kinase phosphorylation prevented the protection that was afforded by acute IPC. Neither extracellular signal-regulated kinase nor Akt inhibition prevented protection that was afforded by delayed renal IPC. Pretreatment with an antioxidant, N-(2-mercaptopropionyl)-glycine, to scavenge free radicals prevented the protection that was provided by acute but not delayed renal IPC. Inhibition of protein kinase C or pertussis toxin-sensitive G-proteins attenuated protection from both acute and delayed renal IPC. Delayed renal IPC increased inducible nitric oxide synthase (iNOS) as well as heat-shock protein 27 synthesis, and the renal protective effects of delayed preconditioning were attenuated by a selective inhibitor of iNOS (l-N(6)[1-iminoethyl]lysine). Moreover, delayed IPC was not observed in iNOS knockout mice. Both acute and delayed IPC were independent of A(1) adenosine receptors (AR) as a selective A(1)AR antagonist failed to block preconditioning and acute and delayed preconditioning occurred in mice that lacked A(1)AR. Therefore, this study demonstrated that acute or delayed IPC provides renal protection against IR injury in mice but involves distinct signaling pathways.

  16. Gallic Acid Inhibited Matrix Invasion and AP-1/ETS-1-Mediated MMP-1 Transcription in Human Nasopharyngeal Carcinoma Cells.

    Science.gov (United States)

    Pang, Jong-Hwei S; Yen, Jia-Hau; Wu, Hsiao-Ting; Huang, Sheng-Teng

    2017-06-24

    Gallic acid is a trihydroxybenzoic acid found in natural herbal plants. Gallic acid has been reported to inhibit the migration and invasive capability of various cancers. Little is known about the underlying mechanisms of invasion responsible for cancer metastasis via gallic acid. The present study was intended to investigate the anti-invasive effect of gallic acid on human nasopharyngeal carcinoma cells (NPC-BM1) and its related mechanism. Gallic acid inhibited the invasion of NPC-BM1 cells dose- and time-dependently without significant cytotoxic effect. Affymetrix oligonucleotide microarray analysis revealed matrix metalloproteinase-1 (MMP-1) as the most down-regulated gene in NPC-BM1 cells by gallic acid. The cytosolic and secreted MMP-1 levels were both found to be inhibited by gallic acid as demonstrated by western blot analysis and ELISA respectively. The mRNA expression and transcription of MMP-1 gene was also down-regulated as determined by RT/real-time PCR and promoter activity assay. The expression of two major transcription binding factors in the MMP-1 promoter, AP-1 and ETS-1, were demonstrated to be reduced by gallic acid in NPC-BM1 cells. The effect of gallic acid was associated with the inhibition of p38 MAPK signaling pathway. In addition, gallic acid enhanced the gene expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) which further suppressed the MMP-1 activity. These findings may be useful to develop a novel chemotherapeutic agent to inhibit the metastasis of nasopharyngeal cancer.

  17. Effect of Phase Response Curve Skew on Synchronization with and without Conduction Delays

    Directory of Open Access Journals (Sweden)

    Carmen eCanavier

    2013-12-01

    Full Text Available A central problem in cortical processing including sensory binding and attentional gating is how neurons can synchronize their responses with zero or near-zero time lag. For a spontaneously firing neuron, an input from another neuron can delay or advance the next spike by different amounts depending upon the timing of the input relative to the previous spike. This information constitutes the phase response curve (PRC. We present a simple graphical method for determining the effect of PRC shape on synchronization tendencies and illustrate it using type 1 PRCs, which consist entirely of advances (delays in response to excitation (inhibition. We obtained the following generic solutions for type 1 PRCs, which include the pulse coupled leaky integrate and fire model. For pairs with mutual excitation, exact synchrony can be stable for strong coupling because of the stabilizing effect of the causal limit region of the PRC in which an input triggers a spike immediately upon arrival. However, synchrony is unstable for short delays, because delayed inputs arrive during a refractory period and cannot trigger an immediate spike. Right skew destabilizes antiphase and enables modes with time lags that grow as the conduction delay is increased. Therefore, right skew favors near-synchrony at short conduction delays and a gradual transition between synchrony and antiphase for pairs coupled by mutual excitation. For pairs with mutual inhibition, zero time lag synchrony is stable for conduction delays ranging from zero to a substantial fraction of the period for pairs. However, for right skew there is a preferred antiphase mode at short delays. In contrast to mutual excitation, left skew destabilizes antiphase for mutual inhibition so that synchrony dominates at short delays as well. These pairwise synchronization tendencies constrain the synchronization properties of neurons embedded in larger networks.

  18. Liposome-mediated amplified detection of cell-secreted matrix metalloproteinase-9†

    Science.gov (United States)

    Banerjee, Jayati; Hanson, Andrea J.; Nyren-Erickson, Erin K.; Ganguli, Bratati; Wagh, Anil; Muhonen, Wallace W.; Law, Benedict; Shabb, John B.; Srivastava, D. K.; Mallik, Sanku

    2018-01-01

    A liposome-based amplified detection system is presented for the cancer cell secreted pathogenic enzyme matrix metalloproteinase-9 which does not require the use of biological antibodies. PMID:20424776

  19. Relationship between Serum Levels of Metalloproteinase-8 and Tissue Inhibitor of Metalloproteinases-1 and Exercise Test Results in Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    J. Mieczkowska

    2016-01-01

    Full Text Available Physical activity as a part of the lifestyle is a significant factor influencing health condition. Exercises that require stamina are of particular importance. Oxygen metabolism, which is a significant part of all longer training processes, has an influence on cardiovascular and respiratory system functioning as well as all the processes taking part in maintenance of efficient homeostasis. Presentation of the correlation between exercise test results and MMP-8 (metalloproteinase-8 and TIMP-1 (tissue inhibitor of metalloproteinases-1 levels was attempted in this work. MMP-8 is a proteolytic enzyme taking part in progression of diseases related to process of ageing. 62 healthy women in postmenopausal period were qualified for the study (mean age: 54±3.6. There was exercise test on the treadmill according to Bruce’s protocol performed. MMP-8 and TIMP-1 serum levels were measured. There was statistically important correlation between increased level of MMP-8 and increased level of TIMP-1 with lower results of exercise test observed. The conducted study provides further biochemical arguments for prophylactic role of physical activity, which lowers the risk of noninfectious diseases, typical for middle adulthood, by influencing physical capacity.

  20. Tumorigenic Potential of Extracellular Matrix Metalloproteinase Inducer

    Science.gov (United States)

    Zucker, Stanley; Hymowitz, Michelle; Rollo, Ellen E.; Mann, Richard; Conner, Cathleen E.; Cao, Jian; Foda, Hussein D.; Tompkins, David C.; Toole, Bryan P.

    2001-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a glycoprotein present on the cancer cell plasma membrane, enhances fibroblast synthesis of matrix metalloproteinases (MMPs). The demonstration that peritumoral fibroblasts synthesize most of the MMPs in human tumors rather than the cancer cells themselves has ignited interest in the role of EMMPRIN in tumor dissemination. In this report we have demonstrated a role for EMMPRIN in cancer progression. Human MDA-MB-436 breast cancer cells, which are tumorigenic but slow growing in vivo, were transfected with EMMPRIN cDNA and injected orthotopically into mammary tissue of female NCr nu/nu mice. Green fluorescent protein was used to visualize metastases. In three experiments, breast cancer cell clones transfected with EMMPRIN cDNA were considerably more tumorigenic and invasive than plasmid-transfected cancer cells. Increased gelatinase A and gelatinase B expression (demonstrated by in situ hybridization and gelatin substrate zymography) was demonstrated in EMMPRIN-enhanced tumors. In contrast to de novo breast cancers in humans, human tumors transplanted into mice elicited minimal stromal or inflammatory cell reactions. Based on these experimental studies and our previous demonstration that EMMPRIN is prominently displayed in human cancer tissue, we propose that EMMPRIN plays an important role in cancer progression by increasing synthesis of MMPs. PMID:11395366

  1. Tissue inhibitor of matrix metalloproteinase-1 suppresses apoptosis of mouse bone marrow stromal cell line MBA-1.

    Science.gov (United States)

    Guo, L-J; Luo, X-H; Xie, H; Zhou, H-D; Yuan, L-Q; Wang, M; Liao, E-Y

    2006-05-01

    We investigated the action of tissue inhibitor of metalloproteinase-1 (TIMP-1) on apoptosis and differentiation of mouse bone marrow stromal cell line MBA-1. TIMP-1 did not affect alkaline phosphatase (ALP) activity, suggesting that it is not involved in osteoblastic differentiation in MBA-1 cells. However, TIMP-1 inhibited MBA-1 apoptosis induced by serum deprivation in a dose-dependent manner. Our study also showed increased Bcl-2 protein expression and decreased Bax protein expression with TIMP-1 treatment. TIMP-1 decreased cytochrome c release and caspase-3 activation in MBA-1 cells. TIMP-1 activated phosphatidylinositol 3-kinase (PI3-kinase) and c-Jun N-terminal kinase (JNK), and the PI3-kinase inhibitor LY294002 or the JNK inhibitor SP600125 abolished its antiapoptotic activity. To investigate whether antiapoptotic action of TIMP-1 was mediated through its inhibition on MMP activities, we constructed mutant TIMP-1 by side-directed mutagenesis, which abolished the inhibitory activity of MMPs by deletion of Cys1 to Ala4. Wild-type TIMP-1 and mutant TIMP-1 expression plasmids were transfected in MBA-1 cells, and results showed that mutant TIMP-1 still protected the induced MBA-1 cell against apoptosis. These data suggest that TIMP-1 antiapoptotic actions are mediated via the PI3-kinase and JNK signaling pathways and independent of TIMP-1 inhibition of MMP activities.

  2. Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression

    International Nuclear Information System (INIS)

    McDonald, Gail T.; Sullivan, Richard; Pare, Genevieve C.; Graham, Charles H.

    2010-01-01

    Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G 1 phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21 Waf1/Cip1 and p27 Kip1 ; and knockdown of p27 kip1 with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity.

  3. Obésité et grossesse : étude de l'influence d'un marqueur de l'obésité sur les mécanismes cellulaires et tissulaires de l'accouchement dans un modèle d'explants myométriaux humains

    OpenAIRE

    Wendremaire, Maeva

    2012-01-01

    Maternal obesity is associated with a wide spectrum of delivery disorders, such as delayed or post-term delivery, that might be explained partly by the increase in plasma leptin levels in obese women, as leptin inhibits in vitro myometrial contractility. Delivery involves uterine apoptosis and remodelling of the extracellular matrix, via the activation of matrix metalloproteinases (MMP). This study was aimed to assess the role of leptin on human myometrium, by studying the interaction of lept...

  4. Impressic acid from Acanthopanax koreanum, possesses matrix metalloproteinase-13 down-regulating capacity and protects cartilage destruction.

    Science.gov (United States)

    Lim, Hyun; Min, Dong Suk; Yun, Han Eul; Kim, Kil Tae; Sun, Ya Nan; Dat, Le Duc; Kim, Young Ho; Kim, Hyun Pyo

    2017-09-14

    Acanthopanax koreanum (Araliaceae) has been used in traditional medicine for enhancing vitality, rheumatism, and bone-related pains. But its activity on cartilage protection has not been known yet. Matrix metalloproteinase (MMP)-13 has an important role in degrading cartilage materials under pathologic conditions such as arthritis. The present study was designed to find the inhibitory activity of impressic acid on MMP-13 expression and cartilage protective action. 70% ethanol extract of Acanthopanax koreanum leaves and impressic acid, a major constituent isolated from the same plant materials, were examined on MMP-13 down-regulating capacity in IL-1β-treated human chondrocyte cell line (SW1353) and rabbit cartilage explants. In IL-1β-treated SW1353 cells, impressic acid significantly and concentration-dependently inhibited MMP-13 expression at 0.5-10μM. Impressic acid was found to be able to inhibit MMP-13 expression by blocking the phosphorylation of signal transducer and activator of transcription-1/-2 (STAT-1/-2) and activation of c-Jun and c-Fos among the cellular signaling pathways involved. Further, impressic acid was found to inhibit the expression of MMP-13 mRNA (47.7% inhibition at 10μM), glycosaminoglycan release (42.2% reduction at 10μM) and proteoglycan loss in IL-1-treated rabbit cartilage explants culture. In addition, a total of 21 lupane-type triterpenoids structurally-related to impressic acid were isolated from the same plant materials and their suppressive activities against MMP-13 expression were also examined. Among these derivatives, compounds 2, 3, 16, and 18 clearly down-regulated MMP-13 expression. However, impressic acid was more potent than these derivatives in down-regulating MMP-13 expression. Impressic acid, its related triterpenoids, and A. koreanum extract have potential as therapeutic agents to prevent cartilage degradation by inhibiting matrix protein degradation. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  5. Matrix metalloproteinase-1 inhibitory activities of Morinda citrifolia seed extract and its constituents in UVA-irradiated human dermal fibroblasts.

    Science.gov (United States)

    Masuda, Megumi; Murata, Kazuya; Naruto, Shunsuke; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2012-01-01

    The objective of this study was to examine whether a 50% ethanolic extract (MCS-ext) of the seeds of Morinda citrifolia (noni) and its constituents have matrix metalloproteinase-1 (MMP-1) inhibitory activity in UVA-irradiated normal human dermal fibroblasts (NHDFs). The MCS-ext (10 μg/mL) inhibited MMP-1 secretion from UVA-irradiated NHDFs, without cytotoxic effects, at 48 h after UV exposure. The ethyl acetate-soluble fraction of MCS-ext was the most potent inhibitor of MMP-1 secretion. Among the constituents of the fraction, a lignan, 3,3'-bisdemethylpinoresinol (1), inhibited the MMP-1 secretion at a concentration of 0.3 μM without cytotoxic effects. Furthermore, 1 (0.3 μM) reduced the level of intracellular MMP-1 expression. Other constituents, namely americanin A (2), quercetin (3) and ursolic acid (4), were inactive. To elucidate inhibition mechanisms of MMP-1 expression and secretion, the effect of 1 on mitogen-activated protein kinases (MAPKs) phosphorylation was examined. Western blot analysis revealed that 1 (0.3 μM) reduced the phosphorylations of p38 and c-Jun-N-terminal kinase (JNK). These results suggested that 1 suppresses intracellular MMP-1 expression, and consequent secretion from UVA-irradiated NHDFs, by down-regulation of MAPKs phosphorylation.

  6. Human trophoblast survival at low oxygen concentrations requires metalloproteinase-mediated shedding of heparin-binding EGF-like growth factor.

    Science.gov (United States)

    Armant, D Randall; Kilburn, Brian A; Petkova, Anelia; Edwin, Samuel S; Duniec-Dmuchowski, Zophia M; Edwards, Holly J; Romero, Roberto; Leach, Richard E

    2006-02-01

    Heparin-binding EGF-like growth factor (HBEGF), which is expressed in the placenta during normal pregnancy, is down regulated in pre-eclampsia, a human pregnancy disorder associated with poor trophoblast differentiation and survival. This growth factor protects against apoptosis during stress, suggesting a role in trophoblast survival in the relatively low O(2) ( approximately 2%) environment of the first trimester conceptus. Using a well-characterized human first trimester cytotrophoblast cell line, we found that a 4-hour exposure to 2% O(2) upregulates HBEGF synthesis and secretion independently of an increase in its mRNA. Five other expressed members of the EGF family are largely unaffected. At 2% O(2), signaling via HER1 or HER4, known HBEGF receptors, is required for both HBEGF upregulation and protection against apoptosis. This positive-feedback loop is dependent on metalloproteinase-mediated cleavage and shedding of the HBEGF ectodomain. The restoration of trophoblast survival by the addition of soluble HBEGF in cultures exposed to low O(2) and metalloproteinase inhibitor suggests that the effects of HBEGF are mediated by autocrine/paracrine, rather than juxtacrine, signaling. Our results provide evidence that a post-transcriptional mechanism induced in trophoblasts by low O(2) rapidly amplifies HBEGF signaling to inhibit apoptosis. These findings have a high clinical significance, as the downregulation of HBEGF in pre-eclampsia is likely to be a contributing factor leading to the demise of trophoblasts.

  7. Fractional Excretion of Survivin, Extracellular Matrix Metalloproteinase Inducer, and Matrix Metalloproteinase 7 in Children with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Agnieszka Bargenda

    2016-07-01

    Full Text Available Background: Epithelial–mesenchymal transition (EMT is defined as a transformation of tubular epithelial cells into mesenchymal ones. These cells migrate through the extracellular matrix and change into active myofibroblasts, which are responsible for excessive matrix deposition. Such changes may lead to tubular dysfunction and fibrosis of the renal parenchyma, characteristic of chronic kidney disease (CKD. However, there are no data on potential EMT markers in children with CKD. The aim of our study was to assess the usefulness of fractional excretion (FE of survivin, E-cadherin, extracellular matrix metalloproteinase inducer (EMMPRIN, matrix metalloproteinase (MMP7, and transforming growth factor beta 1 (TGF-β1 as potential markers of CKD-related complications such as tubular damage and fibrosis. Methods: Forty-one pre-dialysis children with CKD Stages 3–5 and 23 age-matched controls were enrolled in the study. The serum and urine concentrations of analysed parameters were assessed by an enzyme-linked immunosorbent assay test. Results: Tubular reabsorption of all analysed parameters was >99% in the control group. All FE values rose significantly in children with CKD, yet they remained 1%. Conclusions: FE of the examined markers may become a useful tool in the assessment of tubular dysfunction during the course of CKD. The FE of survivin, EMMPRIN, and MMP7 warrant further research as potential independent markers of kidney-specific EMT.

  8. Metastasis is strongly reduced by the matrix metalloproteinase inhibitor Galardin in the MMTV-PymT transgenic breast cancer model

    DEFF Research Database (Denmark)

    Almholt, Kasper; Juncker-Jensen, Anna; Lærum, Ole Didrik

    2008-01-01

    Matrix metalloproteinases (MMP) have several roles that influence cancer progression and dissemination. However, low molecular weight metalloproteinase inhibitors (MPI) have not yet been tested in transgenic/spontaneous metastasis models. We have tested Galardin/GM6001, a potent MPI that reacts w...

  9. Matrix metalloproteinases during and outside of migraine attacks without aura

    DEFF Research Database (Denmark)

    Ashina, M.; Tvedskov, J.F.; Thiesen, Kerstin Lipka

    2010-01-01

    Ashina M, Tvedskov JF, Lipka K, Bilello J, Penkowa M & Olesen J. Matrix metalloproteinases during and outside of migraine attacks without aura. Cephalalgia 2009. London. ISSN 0333-1024To test the hypothesis that permeability of the blood-brain barrier (BBB) is altered during migraine attack due...... to enhanced activation of matrix metalloproteinases (MMPs), we investigated MMP-3, MMP-9 and tissue inhibitor of metalloproteases (TIMP)-1 in the external jugular vein during and outside of migraine attacks in 21 patients with migraine without aura. In addition, we measured plasma levels of several other...... of MMP-3 in the external jugular (P = 0.002) and cubital (P = 0.008) vein during attacks compared with outside of attacks. We found no correlation of ictal or interictal MMP-3, MMP-9 and TIMP-1 to migraine duration and frequency analysed in 21 patients (P > 0.05). There was no difference between ictal...

  10. α-Solanine Inhibits Invasion of Human Prostate Cancer Cell by Suppressing Epithelial-Mesenchymal Transition and MMPs Expression

    Directory of Open Access Journals (Sweden)

    Kun-Hung Shen

    2014-08-01

    Full Text Available α-Solanine, a naturally occurring steroidal glycoalkaloid found in nightshade (Solanum nigrum Linn., was found to inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism involved in suppression of cancer cell metastasis by α-solanine remains unclear. This study investigates the suppression mechanism of α-solanine on motility of the human prostate cancer cell PC-3. Results show that α-solanine reduces the viability of PC-3 cells. When treated with non-toxic doses of α-solanine, cell invasion is markedly suppressed by α-solanine. α-Solanine also significantly elevates epithelial marker E-cadherin expression, while it concomitantly decreases mesenchymal marker vimentin expression, suggesting it suppresses epithelial-mesenchymal transition (EMT. α-Solanine reduces the mRNA level of matrix metalloproteinase-2 (MMP-2, MMP-9 and extracellular inducer of matrix metalloproteinase (EMMPRIN, but increases the expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK, and tissue inhibitor of metalloproteinase-1 (TIMP-1 and TIMP-2. Immunoblotting assays indicate α-solanine is effective in suppressing the phosphorylation of phosphatidylinositide-3 kinase (PI3K, Akt and ERK. Moreover, α-solanine downregulates oncogenic microRNA-21 (miR-21 and upregulates tumor suppressor miR-138 expression. Taken together, the results suggest that inhibition of PC-3 cell invasion by α-solanine may be, at least in part, through blocking EMT and MMPs expression. α-Solanine also reduces ERK and PI3K/Akt signaling pathways and regulates expression of miR-21 and miR-138. These findings suggest an attractive therapeutic potential of α-solanine for suppressing invasion of prostate cancer cell.

  11. Berberine Attenuates Inflammation Associated with Delayed-Type Hypersensitivity via Suppressing Th1 Response and Inhibiting Apoptosis.

    Science.gov (United States)

    Wang, Zhigang; Chen, Zhe; Chen, Tao; Yi, Tao; Zheng, Zhou; Fan, Hong; Chen, Zebin

    2017-02-01

    Berberine, one of the active alkaloids from Rhizoma Coptidis, has been indicated to have anti-inflammatory and immunosuppressive properties. The aim of this study was to determine the role of berberine on ovalbumin (OVA)-induced delayed-type hypersensitivity (DTH) and its potential mechanisms. Berberine treatment significantly reduced footpad swelling, inflammatory cells infiltration, anti-OVA IgG levels, IgE concentration in serum, and the tetramer + CD8 + cells. In homogenized footpad tissue, the production of Th1-mediated cytokines including IFN-γ, TNF-α, and IL-2 were suppressed following the administration of berberine. Detailed studies revealed that berberine prevented differentiation into Th1 cells in the OVA-primed lymphocytes, resulting from suppressing the expression of T-bet and secretion of IFN-γ but not IL-4. Concanavalin A stimulation assay and MTT assay also indicated inhibiting effect of berberine treatment on IFN-γ production and decreased cytotoxicity in lymphocytes proliferation, respectively. Additionally, berberine obviously decreased the cell apoptosis and enzymatic activity of caspase-3, which was further confirmed by the facts that berberine clearly lowered Bax/Bcl-2 ratio and expression of cleaved caspase-3 protein. On correlation analysis, the percentage of apoptotic cells showed a significant positive relationship with IFN-γ/IL-4 ratio of supernatant from footpad tissue in berberine-treated DTH mice. These results demonstrated that berberine attenuated Th1-mediated inflammation in OVA-induced DTH by curbing Th1 response and inhibiting cell apoptosis, suggesting a therapeutic potential for berberine for the treatment of type IV hypersensitivity.

  12. Matrix metalloproteinases in stem cell regulation and cancer

    OpenAIRE

    Kessenbrock, K; Wang, CY; Wang, CY; Werb, Z

    2014-01-01

    © 2015. Since Gross and Lapiere firstly discovered matrix metalloproteinases (MMPs) as important collagenolytic enzymes during amphibian tadpole morphogenesis in 1962, this intriguing family of extracellular proteinases has been implicated in various processes of developmental biology. However, the pathogenic roles of MMPs in human diseases such as cancer have also garnered widespread attention. The most straightforward explanation for their role in cancer is that MMPs, through extracellular ...

  13. RhoA mediates the expression of acidic extracellular pH-induced matrix metalloproteinase-9 mRNA through phospholipase D1 in mouse metastatic B16-BL6 melanoma cells.

    Science.gov (United States)

    Maeda, Toyonobu; Yuzawa, Satoshi; Suzuki, Atsuko; Baba, Yuh; Nishimura, Yukio; Kato, Yasumasa

    2016-03-01

    Solid tumors are characterized by acidic extracellular pH (pHe). The present study examined the contribution of small GTP-binding proteins to phospholipase D (PLD) activation of acidic pHe-induced matrix metalloproteinase-9 (MMP-9) production. Acidic pHe-induced MMP-9 production was reduced by C3 exoenzyme, which inhibits the Rho family of GTPases; cytochalasin D, which inhibits actin reorganization; and simvastatin, which inhibits geranylgeranylation of Rho. Small interfering RNA (siRNA) against RhoA, but not against Rac1 or Cdc42, significantly inhibited acidic pHe induction of MMP-9. Pull-down assays showed that acidic pHe increased the activated form of RhoA. Forced expression of constitutively active RhoA induced MMP-9 production, even at neutral pHe. RhoA siRNA also reduced acidic pHe induced PLD activity. Specific inhibition of PLD1 and Pld1 gene knockout significantly reduced acidic pHe-induced MMP-9 expression. In contrast, PLD2 inhibition or knockout had no effect on MMP-9 expression. These findings suggested that RhoA-PLD1 signaling is involved in acidic pHe induction of MMP-9.

  14. Plasma tissue inhibitor of metalloproteinases-1 as a biological marker?

    DEFF Research Database (Denmark)

    Lomholt, Anne F.; Frederiksen, Camilla B.; Christensen, Ib J.

    2007-01-01

    Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) may be a valuable biological marker in Colorectal Cancer (CRC). However, prospective validation of TIMP-1 as a biological marker should include a series of pre-analytical considerations. TIMP-1 is stored in platelets, which may degranulate during...

  15. Evaluation of matrix metalloproteinases-2 (MMP-2) and tissue inhibitors of metalloproteinases-2 (TIMP-2) in oral submucous fibrosis and their correlation with disease severity.

    Science.gov (United States)

    Shrestha, A; Carnelio, S

    2013-01-01

    Oral submucous fibrosis (OSF), a potentially malignant oral lesion, is a form of pathological fibrosis affecting the oral mucosa. It results from an imbalance in equilibrium of the normal process of synthesis and degradation of extra cellular matrix. Matrix metalloproteinases and its inhibitors play important role in remodeling of the extra cellular matrix which are important in progression and pathogenesis of potentially malignant lesions to malignancy. To evaluate the expression and distribution of Matrix metalloproteinases-2 (MMP- 2) and Tissue inhibitor of metalloproteinases-2 (TIMP-2) in different grades of Oral Submucous Fibrosis(OSF). Immunohistochemical analysis for MMP-2 and its TIMP-2 was performed in 30 histopathologically confirmed, formalin fixed, paraffin embedded specimens of OSF. A semi-quantitative analysis was done to assess the expression, distribution and comparison of these in various stages of this disease. All moderately advanced cases and 64.2% for MMP-2 and 78.5% for TIMP-2 of early stage cases showed positivity. Between two stages of OSF, statistically significant differences were noted in expression of TIMP-2 in lamina propria, deep connective tissue and supra basal layers (p<0.05) and basal and supra basal layers for MMP-2 (p<0.05). The simultaneous increase in expression of MMP-2 and TIMP-2 with advancing stages of OSF can provide a basis for considering the proteases as important mediators in the pathogenesis and progression of OSF which could aid in identifying the aggressiveness of the condition and elucidate its role in its malignant transformation.

  16. PPARγ agonist pioglitazone reduces matrix metalloproteinase-9 activity and neuronal damage after focal cerebral ischemia

    International Nuclear Information System (INIS)

    Lee, Seong-Ryong; Kim, Hahn-Young; Hong, Jung-Suk; Baek, Won-Ki; Park, Jong-Wook

    2009-01-01

    Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, has shown protective effects against ischemic insult in various tissues. Pioglitazone is also reported to reduce matrix metalloproteinase (MMP) activity. MMPs can remodel extracellular matrix components in many pathological conditions. The current study was designed to investigate whether the neuroprotection of pioglitazone is related to its MMP inhibition in focal cerebral ischemia. Mice were subjected to 90 min focal ischemia and reperfusion. In gel zymography, pioglitazone reduced the upregulation of active form of MMP-9 after ischemia. In in situ zymograms, pioglitazone also reduced the gelatinase activity induced by ischemia. After co-incubation with pioglitazone, in situ gelatinase activity was directly reduced. Pioglitazone reduced the infarct volume significantly compared with controls. These results demonstrate that pioglitazone may reduce MMP-9 activity and neuronal damage following focal ischemia. The reduction of MMP-9 activity may have a possible therapeutic effect for the management of brain injury after focal ischemia.

  17. Aqueous zymography screening of matrix metalloproteinase activity and inhibition based on colorimetric gold nanoparticles.

    Science.gov (United States)

    Chuang, Yao-Chen; Huang, Wei-Ting; Chiang, Pin-Hsuan; Tang, Meng-Che; Lin, Chih-Sheng

    2012-02-15

    An optical gold nanoparticles (AuNPs)-based method was fabricated for the rapid detection of matrix metalloproteinase (MMP) activity and screening potential MMP inhibitors without sophisticated instruments. The diagnosis platform was composed of AuNPs, particular MMP substrates and 6-mercapto-1-hexanol (MCH). The functionalized AuNPs were subjected to specific MMP digestion, and the MMP found the substrate on AuNPs, such that the AuNPs lost shelter and MCH increased the attraction force between AuNPs. Consequently, AuNPs aggregation and a color change from red to purple with increasing MMP concentration were observed. The surface plasmon resonance (SPR) of the formed AuNPs allowed for the quantitative detection of MMP activity. A sensitive linear correlation existed between the absorbance and the activity of the MMPs, which ranged from 10 ng/mL to 700 ng/mL in NTTC buffer and plasma samples. The proposed colorimetric method could be accomplished in a homogeneous solution with one-step operation in 30 min and has been successfully applied to the determination of particular MMP activity in plasma samples, in which the results are consistent with substrate zymography. This technology may become a simple platform for parallel screening a number of inhibitors and offer an alternative method to studying the efficiency of inhibitors for suppressing MMP activity. The absorbance ratio at 625 nm and 525 nm (A(625)/A(525)) confirmed the efficiency of the inhibitors as observed in substrate zymography. The IC(50) of ONO-4817 and galardin for MMP-1, MMP-2 and MMP-7 determined by the proposed colorimetric method was similar to the results of substrate zymography. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  18. Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells.

    Science.gov (United States)

    Temprana, Silvio G; Mongiat, Lucas A; Yang, Sung M; Trinchero, Mariela F; Alvarez, Diego D; Kropff, Emilio; Giacomini, Damiana; Beltramone, Natalia; Lanuza, Guillermo M; Schinder, Alejandro F

    2015-01-07

    Developing granule cells (GCs) of the adult dentate gyrus undergo a critical period of enhanced activity and synaptic plasticity before becoming mature. The impact of developing GCs on the activity of preexisting dentate circuits remains unknown. Here we combine optogenetics, acute slice electrophysiology, and in vivo chemogenetics to activate GCs at different stages of maturation to study the recruitment of local target networks. We show that immature (4-week-old) GCs can efficiently drive distal CA3 targets but poorly activate proximal interneurons responsible for feedback inhibition (FBI). As new GCs transition toward maturity, they reliably recruit GABAergic feedback loops that restrict spiking of neighbor GCs, a mechanism that would promote sparse coding. Such inhibitory loop impinges only weakly in new cohorts of young GCs. A computational model reveals that the delayed coupling of new GCs to FBI could be crucial to achieve a fine-grain representation of novel inputs in the dentate gyrus. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. miR-346 and miR-582-3p-regulated EG-VEGF expression and trophoblast invasion via matrix metalloproteinases 2 and 9.

    Science.gov (United States)

    Su, Mei-Tsz; Tsai, Pei-Yin; Tsai, Hui-Ling; Chen, Yi-Chi; Kuo, Pao-Lin

    2017-03-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an important regulator for embryo implantation and placental development, and is clinically associated with several obstetric disorders related to insufficient or inappropriate trophoblast invasion, such as recurrent abortion, preeclampsia, and intrauterine fetal growth restriction. This study was performed to identify the microRNAs targeting EG-VEGF, and evaluate the regulatory effect on trophoblast biology. miR-346 and miR-582-3p were initially identified via bioinformatic tools, and their specific binding sites on the EG-VEGF 3'UTR were further confirmed using dual luciferase and a co-transfection assays. miR-346 and miR-582-3p were demonstrated not only to suppress EG-VEGF expression, but also inhibit trophoblast invasion and migration in the JAR and HTR-8/SVneo cell lines. We further evaluated the effect of microRNAs in HTR-8/SVneo cells coexpressing EG-VEGF and miR-346 or miR-582-3p on matrix metalloproteinase (MMP 2 and MMP 9) and the tissue inhibitors of metalloproteinase (TIMP 1 and TIMP 2) using RT-PCR, western blotting and gelatin zymography. TIMP 1 and TIMP 2 were not affected by the two microRNAs, whereas the expressions and activities of MMP 2 and MMP 9 were significantly downregulated, which in turn inhibited the invasion ability of trophoblasts. In conclusion, miR-346 and miR-582-3p regulate EG-VEGF-induced trophoblast invasion through repressing MMP 2 and MMP 9, and may become novel diagnostic biomarkers or therapeutic targets for EG-VEGF-related obstetric disorders. © 2016 BioFactors, 43(2):210-219, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  20. VANGL2 interacts with integrin αv to regulate matrix metalloproteinase activity and cell adhesion to the extracellular matrix.

    Science.gov (United States)

    Jessen, Tammy N; Jessen, Jason R

    2017-12-15

    Planar cell polarity (PCP) proteins are implicated in a variety of morphogenetic processes including embryonic cell migration and potentially cancer progression. During zebrafish gastrulation, the transmembrane protein Vang-like 2 (VANGL2) is required for PCP and directed cell migration. These cell behaviors occur in the context of a fibrillar extracellular matrix (ECM). While it is thought that interactions with the ECM regulate cell migration, it is unclear how PCP proteins such as VANGL2 influence these events. Using an in vitro cell culture model system, we previously showed that human VANGL2 negatively regulates membrane type-1 matrix metalloproteinase (MMP14) and activation of secreted matrix metalloproteinase 2 (MMP2). Here, we investigated the functional relationship between VANGL2, integrin αvβ3, and MMP2 activation. We provide evidence that VANGL2 regulates cell surface integrin αvβ3 expression and adhesion to fibronectin, laminin, and vitronectin. Inhibition of MMP14/MMP2 activity suppressed the cell adhesion defect in VANGL2 knockdown cells. Furthermore, our data show that MMP14 and integrin αv are required for increased proteolysis by VANGL2 knockdown cells. Lastly, we have identified integrin αvβ3 as a novel VANGL2 binding partner. Together, these findings begin to dissect the molecular underpinnings of how VANGL2 regulates MMP activity and cell adhesion to the ECM. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Casticin Inhibits A375.S2 Human Melanoma Cell Migration/Invasion through Downregulating NF-κB and Matrix Metalloproteinase-2 and -1

    Directory of Open Access Journals (Sweden)

    Zih-Yun Wu

    2016-03-01

    Full Text Available Casticin is one of the main components from Fructus Viticis, which is widely used as an anti-inflammatory agent. The mechanism of how casticin affects melanoma cell migration and invasion is still not well known. Here we studied the anti-metastasis effects of casticin on A375.S2 melanoma cells by using a non-lethal concentration. First; we used an adhesion assay to test the A375.S2 cells’ adhesion ability after treatment with casticin. We next investigated the cell migration ability after casticin treatment by using a wound healing assay to prove that the migration of A375.S2 cells can be inhibited by casticin and double checked the results using the transwell-migration assay. The suppressive effects on matrix metalloproteinase-2; and -9 (MMP-2; and -9 activities were examined by gelatin zymography. Furthermore, western blotting was used to investigate the protein level changes in A375.S2 cells. We found that p-EGFR; Ras and p-ERK1/2 are decreased by casticin, indicating that casticin can down-regulate the migration and invasion ability of A375.S2 cells via the p-EGFR/Ras/p-ERK pathway. The NF-κB p65 and p-ERK levels in nuclear proteins are also decreased by treatment with casticin. An EMSA assay also discovered that the NF-κB p65 and DNA interaction is decreased. NF-κB p65 protein level was examined by immunofluorescence staining and also decreased. Our findings suggest that casticin has anti-metastatic potential by decreasing the invasiveness of A375.S2 cells. We also found that casticin suppressed A375.S2 cell proliferation and cell adhesion ability, but did not affect cell death, as examined using cytometry and a collagen adhesion assay. Based on these observations, casticin could be used as an inhibitor of migration and invasion of human melanoma cells in the future.

  2. Periodontal Disease, Matrix Metalloproteinases and Chemically Modified Tetracyclines

    OpenAIRE

    Steinsvoll, Svein

    2011-01-01

    Matrix metalloproteinases (MMPs) are crucial in the degradation of the main components in the extracellular matrix and thereby play important roles in cell migration, wound healing and tissue remodelling. MMPs have pathogenic roles in arthritis, periodontitis, hepatitis, glomerulonephritis, atherosclerosis and cancer cell invasion. MMPs are activators of pro-inflammatory mediators that occur in latent forms, such as interleukin (IL)-1β, membrane-bound tumour necrosis factor (TNF) and dif...

  3. "Flexible Ligand Docking Studies of Matrix Metalloproteinase Inhibitors Using Lamarckian Genetic Algorithm "

    Directory of Open Access Journals (Sweden)

    lOrkideh Ghorban Dadrass

    2004-06-01

    Full Text Available As important therapeutic drug targets, matrix metalloproteinases (MMPs have recently attracted great interest in the search for potent and selective inhibitors using computer-aided molecular modelling and docking techniques. Availability of more than 60 X-ray crystal structures or NMR solution structures related to MMPs in Protein Data Bank (PDB of which more than half of them are in complex with various MMP inhibitors (MMPIs, provides a great opportunity for docking studies. In this study AutoDock 3.0.5 along with its LGA algorithm were used for automated flexible ligand docking of 32 MMPI-MMP complexes and docking accuracy and reliability of the estimated inhibition constants were evaluated. Twenty-six out of 32 docks had RMSD less than 3.0 Å which is considered as well-docked, however, for the most of the cases (15 out of 27, predicted pKi values were considerably overestimated in comparison to experimental values. To improve pKi prediction regarding MMPI-MMP complexes, inclusion of at least one such a complex in calibration of empirical free energy function in the next release of AutoDock is highly recommended.

  4. Matrix metalloproteinases in inflammatory bowel disease : expression, regulation and clinical relevance

    NARCIS (Netherlands)

    Meijer, Martin Jan-Willem

    2009-01-01

    Crohn’s disease (CD) is characterized by chronic, patchy, transmural inflammation of the entire gastrointestinal tract, while ulcerative colitis (UC) is manifested by chronic, continuous, superficial inflammation of the colon. Matrix metalloproteinases (MMPs) constitute a family of matrix degrading

  5. Differential expression of lactic acid isomers, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-8 in vaginal fluid from women with vaginal disorders.

    Science.gov (United States)

    Beghini, J; Linhares, I M; Giraldo, P C; Ledger, W J; Witkin, S S

    2015-11-01

    Do metabolites in vaginal samples vary between women with different vaginal disorders. Cross-sectional study. Campinas, Brazil. Seventy-seven women (39.9%) with no vaginal disorder, 52 women (26.9%) with vulvovaginal candidiasis (VVC), 43 women (22.3%) with bacterial vaginosis (BV), and 21 women (10.9%) with cytolytic vaginosis (CTV). Concentrations of D- and L-lactic acid, extracellular matrix metalloproteinase inducer (EMMPRIN), and matrix metalloproteinase-8 (MMP-8), and the influence of Candida albicans on EMMPRIN production by cultured vaginal epithelial cells, were determined by enzyme-linked immunosorbent assay (ELISA). Associations were determined by the Mann-Whitney U-test and by Spearman's rank correlation test. Metabolite levels and their correlation with diagnoses. Vaginal concentrations of D- and L-lactic acid were reduced from control levels in BV (P vaginal epithelial cells. Vaginal secretions from women with BV are deficient in D- and L-lactic acid, women with VVC have elevated EMMPRIN and MMP-8 levels, and women with CTV have elevated L-lactic acid levels. These deviations may contribute to the clinical signs, symptoms, and sequelae that are characteristic of these disorders. © 2014 Royal College of Obstetricians and Gynaecologists.

  6. Pirfenidone inhibits the proliferation of fibroblasts from patients with active Crohn's disease.

    Science.gov (United States)

    Kadir, Sara-Irini; Wenzel Kragstrup, Tue; Dige, Anders; Kok Jensen, Simon; Dahlerup, Jens Frederik; Kelsen, Jens

    2016-11-01

    One-third of Crohn's disease (CD) patients develop intestinal strictures that require repeated surgical intervention. Current anti-inflammatory therapies have limited effect on stricture development, which necessitates the exploration of new pharmacological approaches. Pirfenidone (PFD), a novel anti-fibrotic agent, was recently approved in Europe for the treatment of idiopathic pulmonary fibrosis (IPF). We hypothesized that observations in IPF could be transferable to intestinal fibrosis and that PFD inhibits the proliferation and extracellular matrix (ECM) turnover of gut-derived fibroblasts from CD patients. Fibroblasts were isolated from biopsies of inflamed (n = 8) and non-inflamed (n = 5) colonic mucosa. Expression of CD90 and alpha-smooth muscle actin (αSMA) expression was determined by flow cytometry. The fibroblasts were cultured with PFD (0.5, 1.0 and 2.0 mg/ml). Proliferation was evaluated with CellTiter 96(®) AQueous One Solution Cell Proliferation Assay. Production of matrix metalloproteinase-3 (MMP-3), tissue inhibitor of metalloproteinases-1 (TIMP-1) and collagen were assessed using ELISA and calorimetric assays, respectively. The majority of the fibroblasts were αSMA-positive myofibroblasts. PFD inhibited fibroblast proliferation [0.94 (PFD 0.5 mg/ml); 0.76 (1.0 mg/ml); 0.58 (2.0 mg/ml)] and production of MMP-3 [0.85 (0.5 mg/ml); 0.74 (1.0 mg/ml); 0.63 (2.0 mg/ml)] dose-dependently (both p = 0.0001). The anti-proliferative effect of PFD was reversible (p = 0.0001), indicating that PFD does not act by an irreversible cytotoxic mechanism. PFD did not influence neither TIMP-1 nor collagen production. PFD inhibited the proliferation and the production of MMP-3 dose-dependently in gut-derived fibroblast from CD patients. Our observations support further studies on PFD in stricturing CD.

  7. Local intra-articular injection of resveratrol delays cartilage degeneration in C57BL/6 mice by inducing autophagy via AMPK/mTOR pathway.

    Science.gov (United States)

    Qin, Na; Wei, Liwei; Li, Wuyin; Yang, Wei; Cai, Litao; Qian, Zhuang; Wu, Shufang

    2017-07-01

    Autophagy is an essential cellular homeostasis mechanism that was found to be compromised in aging and osteoarthritis (OA) cartilage. Previous studies showed that resveratrol can effectively regulate autophagy in other cells. The purpose of this study was to determine whether the chondroprotective effect of resveratrol was related to chondrocyte autophagy and to elucidate underlying mechanisms. OA model was induced by destabilization of the medial meniscus (DMM) in 10-week-old male mice. OA mice were treated with resveratrol with/without 3-MA for 8 weeks beginning 4 weeks after surgery. The local intra-articular injection of resveratrol delayed articular cartilage degradation in DMM-induced OA by OARSI scoring systems and Safranin O-fast green. Resveratrol treatment increased Unc-51-like kinase1, Beclin1, microtubule-associated protein light chain 3, hypoxia inducible factor-1α, phosphorylated AMPK, collagen-2A1, Aggrecan expressions, but decreased hypoxia inducible factor-2α, phosphorylated mTOR, matrix metalloproteinases13 and a disintegrin and metalloproteinase with thrombospondin motifs 5 expressions. The effects of resveratrol were obviously blunted by 3-MA except HIF and AMPK. These findings indicate that resveratrol intra-articular injection delayed articular cartilage degeneration and promoted chondrocyte autophagy in an experimental model of surgical DMM-induced OA, in part via balancing HIF-1α and HIF-2α expressions and thereby regulating AMPK/mTOR signaling pathway. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  8. Binding of matrix metalloproteinase inhibitors to extracellular matrix: 3D-QSAR analysis.

    Science.gov (United States)

    Zhang, Yufen; Lukacova, Viera; Bartus, Vladimir; Nie, Xiaoping; Sun, Guorong; Manivannan, Ethirajan; Ghorpade, Sandeep R; Jin, Xiaomin; Manyem, Shankar; Sibi, Mukund P; Cook, Gregory R; Balaz, Stefan

    2008-10-01

    Binding to the extracellular matrix, one of the most abundant human protein complexes, significantly affects drug disposition. Specifically, the interactions with extracellular matrix determine the free concentrations of small molecules acting in tissues, including signaling peptides, inhibitors of tissue remodeling enzymes such as matrix metalloproteinases, and other drug candidates. The nature of extracellular matrix binding was elucidated for 63 matrix metalloproteinase inhibitors, for which the association constants to an extracellular matrix mimic were reported here. The data did not correlate with lipophilicity as a common determinant of structure-nonspecific, orientation-averaged binding. A hypothetical structure of the binding site of the solidified extracellular matrix surrogate was analyzed using the Comparative Molecular Field Analysis, which needed to be applied in our multi-mode variant. This fact indicates that the compounds bind to extracellular matrix in multiple modes, which cannot be considered as completely orientation-averaged and exhibit structural dependence. The novel comparative molecular field analysis models, exhibiting satisfactory descriptive and predictive abilities, are suitable for prediction of the extracellular matrix binding for the untested chemicals, which are within applicability domains. The results contribute to a better prediction of the pharmacokinetic parameters such as the distribution volume and the tissue-blood partition coefficients, in addition to a more imminent benefit for the development of more effective matrix metalloproteinase inhibitors.

  9. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan)

    2014-09-26

    Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APP has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.

  10. New radioiodinated carboxylic and hydroxamic matrix metalloproteinase inhibitor tracers as potential tumor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Oltenfreiter, Ruth E-mail: ruth.oltenfreiter@rug.ac.be; Staelens, Ludovicus; Lejeune, Annabelle; Dumont, Filip; Frankenne, Francis; Foidart, Jean-Michel; Slegers, Guido

    2004-05-01

    Several studies have demonstrated a positive correlation between tumor progression and expression of extracellular proteinases such as matrix metalloproteinases (MMPs). MMP-2 and MMP-9 have become attractive targets for cancer research because of their increased expression in human malignant tumor tissues of various organs, providing a target for medical imaging techniques. Radioiodinated carboxylic and hydroxamic MMP inhibitors 2-(4'-[{sup 123}I]iodo-biphenyl-4-sulfonylamino)-3-(1H-indol-3-yl)-propionic acid (9) and 2-(4'-[{sup 123}I]iodo-biphenyl-4-sulfonylamino)-3-(1H-indol-3-yl)-propionamide (11) were synthesized by electrophilic aromatic substitution of the tributylstannyl derivatives and resulted in radiochemical yields of 60% {+-} 5% (n = 3) and 70% {+-} 5% (n = 6), respectively. In vitro zymography and enzyme assays showed high inhibition capacities of the inhibitors on gelatinases. In vivo biodistribution showed no long-term accumulation in organs and the possibility to accumulate in the tumor. These results warrant further studies of radioiodinated carboxylic and hydroxamic MMP inhibitor tracers as potential SPECT tumor imaging agents.

  11. New radioiodinated carboxylic and hydroxamic matrix metalloproteinase inhibitor tracers as potential tumor imaging agents

    International Nuclear Information System (INIS)

    Oltenfreiter, Ruth; Staelens, Ludovicus; Lejeune, Annabelle; Dumont, Filip; Frankenne, Francis; Foidart, Jean-Michel; Slegers, Guido

    2004-01-01

    Several studies have demonstrated a positive correlation between tumor progression and expression of extracellular proteinases such as matrix metalloproteinases (MMPs). MMP-2 and MMP-9 have become attractive targets for cancer research because of their increased expression in human malignant tumor tissues of various organs, providing a target for medical imaging techniques. Radioiodinated carboxylic and hydroxamic MMP inhibitors 2-(4'-[ 123 I]iodo-biphenyl-4-sulfonylamino)-3-(1H-indol-3-yl)-propionic acid (9) and 2-(4'-[ 123 I]iodo-biphenyl-4-sulfonylamino)-3-(1H-indol-3-yl)-propionamide (11) were synthesized by electrophilic aromatic substitution of the tributylstannyl derivatives and resulted in radiochemical yields of 60% ± 5% (n = 3) and 70% ± 5% (n = 6), respectively. In vitro zymography and enzyme assays showed high inhibition capacities of the inhibitors on gelatinases. In vivo biodistribution showed no long-term accumulation in organs and the possibility to accumulate in the tumor. These results warrant further studies of radioiodinated carboxylic and hydroxamic MMP inhibitor tracers as potential SPECT tumor imaging agents

  12. The antioxidants curcumin and quercetin inhibit inflammatory processes associated with arthritis.

    Science.gov (United States)

    Jackson, J K; Higo, T; Hunter, W L; Burt, H M

    2006-04-01

    Curcumin and quercetin are antioxidant molecules with anti-proliferative, anti-inflammatory and immunosuppressive activities. The objective of this study was to investigate the inhibitory activity of these agents using four assays of inflammatory aspects of arthritis. Crystal-induced neutrophil activation was measured by luminol-dependent chemiluminescence. Synoviocyte proliferation was measured by an MTS assay using HIG-82 rabbit synoviocytes in cell culture. Chondrocyte (cultured primary cells) expression of the matrix metalloproteinases collagenase and stromelysin was measured by Northern Blot analysis. Angiogenesis was measured using the chorioallantoic membrane of the chick embryo. Both agents inhibited neutrophil activation, synoviocyte proliferation and angiogenesis. Curcumin strongly inhibited collagenase and stromelysin expression at micromolar concentrations whereas quercetin had no effect in this assay. These studies suggest that curcumin and to a lesser extent quercetin may offer therapeutic potential for the treatment of crystal-induced arthritis or rheumatoid arthritis.

  13. Tissue inhibitor of metalloproteinase-3 (TIMP3) promotes endothelial apoptosis via a caspase-independent mechanism.

    Science.gov (United States)

    Qi, Jian Hua; Anand-Apte, Bela

    2015-04-01

    Tissue inhibitor of metalloproteinases-3 (TIMP3) is a tumor suppressor and a potent inhibitor of angiogenesis. TIMP3 exerts its anti-angiogenic effect via a direct interaction with vascular endothelial growth factor (VEGF) receptor-2 (KDR) and inhibition of proliferation, migration and tube formation of endothelial cells (ECs). TIMP3 has also been shown to induce apoptosis in some cancer cells and vascular smooth muscle cells via MMP inhibition and caspase-dependent mechanisms. In this study, we examined the molecular mechanisms of TIMP3-mediated apoptosis in endothelial cells. We have previously demonstrated that mice developed smaller tumors with decreased vascularity when injected with breast carcinoma cells overexpressing TIMP3, than with control breast carcinoma cells. TIMP3 overexpression resulted in increased apoptosis in human breast carcinoma (MDA-MB435) in vivo but not in vitro. However, TIMP3 could induce apoptosis in ECs in vitro. The apoptotic activity of TIMP3 in ECs appears to be independent of MMP inhibitory activity. Furthermore, the equivalent expression of functional TIMP3 promoted apoptosis and caspase activation in ECs expressing KDR (PAE/KDR), but not in ECs expressing PDGF beta-receptor (PAE/β-R). Surprisingly, the apoptotic activity of TIMP3 appears to be independent of caspases. TIMP3 inhibited matrix-induced focal adhesion kinase (FAK) tyrosine phosphorylation and association with paxillin and disrupted the incorporation of β3 integrin, FAK and paxillin into focal adhesion contacts on the matrix, which were not affected by caspase inhibitors. Thus, TIMP3 may induce apoptosis in ECs by triggering a caspase-independent cell death pathway and targeting a FAK-dependent survival pathway.

  14. Expression of extracellular matrix metalloproteinase inducer in odontogenic cysts.

    Science.gov (United States)

    Ali, Mohammad Abdulhadi Abbas

    2008-08-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is known to induce matrix metalloproteinase (MMP) production. The expression of EMMPRIN in odontogenic cysts has not been previously studied. This study was done to determine the presence and the variability of EMMPRIN expression in various types of odontogenic cysts. An immunohistochemical study using a polyclonal anti-EMMPRIN antibody was done using 48 odontogenic cyst cases: 13 odontogenic keratocysts (OKCs), 18 dentigerous cysts (DCs), and 17 periapical cysts (PAs). Twelve cases of normal dental follicles (DFs) were also included in this study for comparison. EMMPRIN immunoreactivity was detected in all of the cysts and DFs studied. In odontogenic cysts, EMMPRIN immunoreactivity was generally higher in basal cells than in suprabasal cells. The overall EMMPRIN expression in the epithelial lining of the 3 different types of odontogenic cyst was significantly higher than in the DFs. Overall EMMPRIN expression was also found to be significantly higher in the epithelial lining of OKCs than in the other types of cysts. This study confirmed that EMMPRIN is present in odontogenic cysts and DFs. The higher EMMPRIN expression in OKCs suggests that it may be involved in the aggressive behavior of this type of cyst.

  15. Matrix metalloproteinase-12 (MMP-12) in osteoclasts

    DEFF Research Database (Denmark)

    Hou, Peng; Troen, Tine; Ovejero, Maria C

    2004-01-01

    Osteoclasts require matrix metalloproteinase (MMP) activity and cathepsin K to resorb bone, but the critical MMP has not been identified. Osteoclasts express MMP-9 and MMP-14, which do not appear limiting for resorption, and the expression of additional MMPs is not clear. MMP-12, also called...... bone show MMP-12 expression in osteoclasts in calvariae and long bones. We also demonstrate that recombinant MMP-12 cleaves the putative functional domains of osteopontin and bone sialoprotein, two bone matrix proteins that strongly influence osteoclast activities, such as attachment, spreading...

  16. Epoxy fatty acids and inhibition of the soluble epoxide hydrolase selectively modulate GABA mediated neurotransmission to delay onset of seizures.

    Directory of Open Access Journals (Sweden)

    Bora Inceoglu

    Full Text Available In the brain, seizures lead to release of large amounts of polyunsaturated fatty acids including arachidonic acid (ARA. ARA is a substrate for three major enzymatic routes of metabolism by cyclooxygenase, lipoxygenase and cytochrome P450 enzymes. These enzymes convert ARA to potent lipid mediators including prostanoids, leukotrienes and epoxyeicosatrienoic acids (EETs. The prostanoids and leukotrienes are largely pro-inflammatory molecules that sensitize neurons whereas EETs are anti-inflammatory and reduce the excitability of neurons. Recent evidence suggests a GABA-related mode of action potentially mediated by neurosteroids. Here we tested this hypothesis using models of chemically induced seizures. The level of EETs in the brain was modulated by inhibiting the soluble epoxide hydrolase (sEH, the major enzyme that metabolizes EETs to inactive molecules, by genetic deletion of sEH and by direct administration of EETs into the brain. All three approaches delayed onset of seizures instigated by GABA antagonists but not seizures through other mechanisms. Inhibition of neurosteroid synthesis by finasteride partially blocked the anticonvulsant effects of sEH inhibitors while the efficacy of an inactive dose of neurosteroid allopregnanolone was enhanced by sEH inhibition. Consistent with earlier findings, levels of prostanoids in the brain were elevated. In contrast, levels of bioactive EpFAs were decreased following seizures. Overall these results demonstrate that EETs are natural molecules which suppress the tonic component of seizure related excitability through modulating the GABA activity and that exploration of the EET mediated signaling in the brain could yield alternative approaches to treat convulsive disorders.

  17. Mangiferin exerts antitumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and β-catenin signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongzhong; Huang, Jing; Yang, Bing; Xiang, Tingxiu; Yin, Xuedong; Peng, Weiyan; Cheng, Wei [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Wan, Jingyuan; Luo, Fuling [Department of Pharmacology, Chongqing Medical University, Chongqing (China); Li, Hongyuan [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Ren, Guosheng, E-mail: rgs726@163.com [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China)

    2013-10-01

    Although mangiferin which is a naturally occurring glucosylxanthone has exhibited promising anticancer activities, the detailed molecular mechanism of mangiferin on cancers still remains enigmatic. In this study, the anticancer activity of mangiferin was evaluated in breast cancer cell line-based in vitro and in vivo models. We showed that mangiferin treatment resulted in decreased cell viability and suppression of metastatic potential in breast cancer cells. Further mechanistic investigation revealed that mangiferin induced decreased matrix metalloproteinase (MMP)-7 and -9, and reversal of epithelial–mesenchymal transition (EMT). Moreover, it was demonstrated that mangiferin significantly inhibited the activation of β-catenin pathway. Subsequent experiments showed that inhibiting β-catenin pathway might play a central role in mangiferin-induced anticancer activity through modulation of MMP-7 and -9, and EMT. Consistent with these findings in vitro, the antitumor potential was also verified in mangiferin-treated MDA-MB-231 xenograft mice where significantly decreased tumor volume, weight and proliferation, and increased apoptosis were obtained, with lower expression of MMP-7 and -9, vimentin and active β-catenin, and higher expression of E-cadherin. Taken together, our study suggests that mangiferin might be used as an effective chemopreventive agent against breast cancer. - Highlights: • Mangiferin inhibits growth and metastatic potential in breast cancer cells. • Mangiferin down-regulates MMP-7 and -9 in breast cancer cells. • Mangiferin induces the reversal of EMT in metastatic breast cancer cells. • Mangiferin inhibits the activation of β-catenin pathway in breast cancer cells. • Inhibiting β-catenin is responsible for the antitumor activity of mangiferin.

  18. Structure and evolutionary aspects of matrix metalloproteinases: a brief overview.

    Science.gov (United States)

    Das, Sudip; Mandal, Malay; Chakraborti, Tapati; Mandal, Amritlal; Chakraborti, Sajal

    2003-11-01

    The matrix metalloproteinases (MMPs) are zinc dependent endopeptidases known for their ability to cleave one or several extracellular matrix (ECM) constituents, as well as non-matrix proteins. They comprise a large family of proteinases that share common structural and functional elements and are products of different genes. All members of this family contain a signal peptide, a propeptide and a catalytic domain. The catalytic domain contains two zinc ions and at least one calcium ion coordinated to various residues. All MMPs, with the exception matrilysin, have a hemopexin/vitronectin-like domain that is connected to the catalytic domain by a hinge or linker region. The hemopexin-like domain influences tissue inhibitor of metalloproteinases (TIMP) binding, the binding of certain substrates, membrane activation, and some proteolytic activities. It has been proposed that the origin of MMPs could be traced to before the emergence of vertebrates from invertebrates. It appears conceivable that the domain assemblies occurred at an early stage of the diversification of different MMPs and that they progressed through the evolutionary process independent of one another, and perhaps parallel to each other.

  19. New intracellular activities of matrix metalloproteinases shine in the moonlight.

    Science.gov (United States)

    Jobin, Parker G; Butler, Georgina S; Overall, Christopher M

    2017-11-01

    Adaption of a single protein to perform multiple independent functions facilitates functional plasticity of the proteome allowing a limited number of protein-coding genes to perform a multitude of cellular processes. Multifunctionality is achievable by post-translational modifications and by modulating subcellular localization. Matrix metalloproteinases (MMPs), classically viewed as degraders of the extracellular matrix (ECM) responsible for matrix protein turnover, are more recently recognized as regulators of a range of extracellular bioactive molecules including chemokines, cytokines, and their binders. However, growing evidence has convincingly identified select MMPs in intracellular compartments with unexpected physiological and pathological roles. Intracellular MMPs have both proteolytic and non-proteolytic functions, including signal transduction and transcription factor activity thereby challenging their traditional designation as extracellular proteases. This review highlights current knowledge of subcellular location and activity of these "moonlighting" MMPs. Intracellular roles herald a new era of MMP research, rejuvenating interest in targeting these proteases in therapeutic strategies. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A comprehensive assessment of memory, delay aversion, timing, inhibition, decision making and variability in attention deficit hyperactivity disorder: advancing beyond the three-pathway models.

    Science.gov (United States)

    Coghill, D R; Seth, S; Matthews, K

    2014-07-01

    Although attention deficit hyperactivity disorder (ADHD) has been associated with a broad range of deficits across various neuropsychological domains, most studies have assessed only a narrow range of neuropsychological functions. Direct cross-domain comparisons are rare, with almost all studies restricted to less than four domains. Therefore, the relationships between these various domains remain undefined. In addition, almost all studies included previously medicated participants, limiting the conclusions that can be drawn. We present the first study to compare a large cohort of medication-naive boys with ADHD with healthy controls on a broad battery of neuropsychological tasks, assessing six key domains of neuropsychological functioning. The neuropsychological functioning of 83 medication-naive boys with well-characterized ADHD (mean age 8.9 years) was compared with that of 66 typically developing (TYP) boys (mean age 9.0 years) on a broad battery of validated neuropsychological tasks. Data reduction using complementary factor analysis (CFA) confirmed six distinct neuropsychological domains: working memory, inhibition, delay aversion, decision making, timing and response variability. Boys with ADHD performed less well across all six domains although, for each domain, only a minority of boys with ADHD had a deficit [effect size (% with deficit) ADHD versus TYP: working memory 0.95 (30.1), inhibition 0.61 (22.9), delay aversion 0.82 (36.1), decision making 0.55 (20.5), timing 0.71 (31.3), response variability 0.37 (18.1)]. The clinical syndrome of ADHD is neuropsychologically heterogeneous. These data highlight the complexity of the relationships between the different neuropsychological profiles associated with ADHD and the clinical symptoms and functional impairment.

  1. Acetylcholineestarase-inhibiting alkaloids from Lycoris radiata delay paralysis of amyloid beta-expressing transgenic C. elegans CL4176.

    Directory of Open Access Journals (Sweden)

    Lijuan Xin

    Full Text Available The limited symptom relief and side effects of current Alzheimer's disease (AD medications warrant urgent discovery and study of new anti-AD agents. The "cholinergic hypothesis" of AD prompts us to search for plant-derived acetylcholineesterase (AChE inhibitors such as galanthamine that has been licensed in Europe for AD treatment. We used the unique amyloid β-expressing transgenic C. elegans CL4176, which exhibits paralysis when human Aβ1-42 is induced, to study two natural benzylphenethylamine alkaloids isolated from Lycoris radiata (L' Her. Herb, galanthamine and haemanthidine, and their synthetic derivatives 1,2-Di-O-acetyllycorine and 1-O-acetyllycorine for their anti-paralysis effects. Our data indicate that these Lycoris compounds effectively delay the paralysis of CL4176 worms upon temperature up-shift, and prolong the lives of these transgenic worms. Lycoris compounds were shown to significantly inhibit the gene expression of ace-1 and ace-2. Additionally, the Lycoris compounds may modulate inflammatory and stress-related gene expressions to combat the Aβ-toxicity in C. elegans.

  2. Inhibition of Collagenase by Mycosporine-like Amino Acids from Marine Sources

    Science.gov (United States)

    Hartmann, Anja; Gostner, Johanna; Fuchs, Julian E.; Chaita, Eliza; Aligiannis, Nektarios; Skaltsounis, Leandros; Ganzera, Markus

    2015-01-01

    Matrix metalloproteinases (MMP) play an important role in extracellular matrix remodeling. Excessive activity of these enzymes can be induced by UV light and leads to skin damage, a process known as photoaging. In this study we investigated the collagenase inhibition potential of mycosporine-like amino acids (MAA), compounds that have been isolated from marine organisms and are known photoprotectants against UV-A and UV-B. For this purpose the commonly used collagenase assay was optimized and for the first time validated in terms of relationships between enzyme-substrate concentrations, temperature, incubation time and enzyme stability. Three compounds were isolated from the marine red algae Porphyra sp. and Palmaria palmata, and evaluated for their inhibitory properties against Chlostridium histolyticum collagenase (Chc). A dose-dependent, but very moderate inhibition was observed for all substances and IC50 values of 104.0 μM for shinorine, 105.9 μM for porphyra and 158.9 μM for palythine were determined. Additionally, computer-aided docking models suggested that the MAA binding to the active site of the enzyme is a competitive inhibition. PMID:26039265

  3. Genetic polymorphisms of matrix metalloproteinases and their inhibitors in potentially malignant and malignant lesions of the head and neck

    Directory of Open Access Journals (Sweden)

    Asotra Kamlesh

    2010-02-01

    Full Text Available Abstract Matrix metalloproteinases (MMPs are a family of zinc-dependent proteinases that are capable of cleaving all extra cellular matrix (ECM substrates. Degradation of matrix is a key event in progression, invasion and metastasis of potentially malignant and malignant lesions of the head and neck. It might have an important polymorphic association at the promoter regions of several MMPs such as MMP-1 (-1607 1G/2G, MMP-2 (-1306 C/T, MMP-3 (-1171 5A/6A, MMP-9 (-1562 C/T and TIMP-2 (-418 G/C or C/C. Tissue inhibitors of metalloproteinases (TIMPs are naturally occurring inhibitors of MMPs, which inhibit the activity of MMPs and control the breakdown of ECM. Currently, many MMP inhibitors (MMPIs are under development for treating different malignancies. Useful markers associated with molecular aggressiveness might have a role in prognostication of malignancies and to better recognize patient groups that need more antagonistic treatment options. Furthermore, the introduction of novel prognostic markers may also promote exclusively new treatment possibilities, and there is an obvious need to identify markers that could be used as selection criteria for novel therapies. The objective of this review is to discuss the molecular functions and polymorphic association of MMPs and TIMPs and the possible therapeutic aspects of these proteinases in potentially malignant and malignant head and neck lesions. So far, no promising drug target therapy has been developed for MMPs in the lesions of this region. In conclusion, further research is required for the development of their potential diagnostic and therapeutic possibilities.

  4. Protein kinase C epsilon mediates the inhibition of angiotensin II on the slowly activating delayed-rectifier potassium current through channel phosphorylation.

    Science.gov (United States)

    Gou, Xiangbo; Wang, Wenying; Zou, Sihao; Qi, Yajuan; Xu, Yanfang

    2018-03-01

    The slowly activating delayed rectifier K + current (I Ks ) is one of the main repolarizing currents in the human heart. Evidence has shown that angiotensin II (Ang II) regulates I Ks through the protein kinase C (PKC) pathway, but the related results are controversial. This study was designed to identify PKC isoenzymes involved in the regulation of I Ks by Ang II and the underlying molecular mechanism. The whole-cell patch-clamp technique was used to record I Ks in isolated guinea pig ventricular cardiomyocytes and in human embryonic kidney (HEK) 293 cells co-transfected with human KCNQ1/KCNE1 genes and Ang II type 1 receptor genes. Ang II inhibited I Ks in a concentration-dependent manner in native cardiomyocytes. A broad PKC inhibitor Gö6983 (not inhibiting PKCε) and a selective cPKC inhibitor Gö6976 did not affect the inhibitory action of Ang II. In contrast, the inhibition was significantly attenuated by PKCε-selective peptide inhibitor εV1-2. However, direct activation of PKC by phorbol 12-myristate 13-acetate (PMA) increased the cloned human I Ks in HEK293 cells. Similarly, the cPKC peptide activator significantly enhanced the current. In contrast, the PKCε peptide activator inhibited the current. Further evidence showed that PKCε knockdown by siRNA antagonized the Ang II-induced inhibition on KCNQ1/KCNE1 current, whereas knockdown of cPKCs (PKCα and PKCβ) attenuated the potentiation of the current by PMA. Moreover, deletion of four putative phosphorylation sites in the C-terminus of KCNQ1 abolished the action of PMA. Mutation of two putative phosphorylation sites in the N-terminus of KCNQ1 and one site in KCNE1 (S102) blocked the inhibition of Ang II. Our results demonstrate that PKCε isoenzyme mediates the inhibitory action of Ang II on I Ks and by phosphorylating distinct sites in KCNQ1/KCNE1, cPKC and PKCε isoenzymes produce the contrary regulatory effects on the channel. These findings have provided new insight into the molecular mechanism

  5. Involvement of matrix metalloproteinases and their inhibitors in peripheral synovitis and down-regulation by tumor necrosis factor alpha blockade in spondylarthropathy

    NARCIS (Netherlands)

    Vandooren, Bernard; Kruithof, Elli; Yu, David T. Y.; Rihl, Markus; Gu, Jieruo; de Rycke, Leen; van den Bosch, Filip; Veys, Eric M.; de Keyser, Filip; Baeten, Dominique

    2004-01-01

    OBJECTIVE: To investigate the role of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) in spondylarthropathy (SpA) synovitis. METHODS: Paired samples of synovial biopsy tissue as well as serum and synovial fluid (SF) from 41 patients with SpA and 20

  6. The Effects of Four-Hour Delay of PUnishment under Two Conditions of Verbal Instruction

    Science.gov (United States)

    Verna, Gary B.

    1977-01-01

    The effects of 4-hour delay of punishment (withdrawal of reward) on response inhibition was studied with 24 fourth-grade children. Results showed that verbal expression of the punishment contingency allows the 10-year-old child to profit from 4-hour delayed punishment as much as immediate punishment. (Author/JMB)

  7. Matrix Metalloproteinases as Therapeutic Targets for Idiopathic Pulmonary Fibrosis

    OpenAIRE

    Craig, Vanessa J.; Zhang, Li; Hagood, James S.; Owen, Caroline A.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the p...

  8. Assessment of Matrix Metalloproteinases by Gelatin Zymography.

    Science.gov (United States)

    Cathcart, Jillian

    2016-01-01

    Matrix metalloproteinases are endopeptidases responsible for remodeling of the extracellular matrix and have been identified as critical contributors to breast cancer progression. Gelatin zymography is a valuable tool which allows the analysis of MMP expression. In this approach, enzymes are resolved electrophoretically on a sodium dodecyl sulfate-polyacrylamide gel copolymerized with the substrate for the MMP of interest. Post electrophoresis, the enzymes are refolded in order for proteolysis of the incorporated substrate to occur. This assay yields valuable information about MMP isoforms or changes in activation and can be used to analyze the role of MMPs in normal versus pathological conditions.

  9. Enhanced cerebrovascular expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 via the MEK/ERK pathway during cerebral ischemia in the rat

    Directory of Open Access Journals (Sweden)

    Maddahi Aida

    2009-06-01

    Full Text Available Abstract Background Cerebral ischemia is usually characterized by a reduction in local blood flow and metabolism and by disruption of the blood-brain barrier in the infarct region. The formation of oedema and opening of the blood-brain barrier in stroke is associated with enhanced expression of metalloproteinase-9 (MMP-9 and tissue inhibitor of metalloproteinase-1 (TIMP-1. Results Here, we found an infarct volume of 24.8 ± 2% and a reduced neurological function after two hours of middle cerebral artery occlusion (MCAO, followed by 48 hours of recirculation in rat. Immunocytochemistry and confocal microscopy revealed enhanced expression of MMP-9, TIMP-1, and phosphorylated ERK1/2 in the smooth muscle cells of the ischemic MCA and associated intracerebral microvessels. The specific MEK1/2 inhibitor U0126, given intraperitoneal zero or 6 hours after the ischemic event, reduced the infarct volume significantly (11.8 ± 2% and 14.6 ± 3%, respectively; P Conclusion These data are the first to show that the elevated vascular expression of MMP-9 and TIMP-1, associated with breakdown of the blood-brain barrier following focal ischemia, are transcriptionally regulated via the MEK/ERK pathway.

  10. Matrix metalloproteinase-2 is a consistent prognostic factor in gastric cancer

    NARCIS (Netherlands)

    Kubben, F.J.G.M.; Sier, C.F.M.; Duijn, W. van; Griffioen, G.; Hanemaaijer, R.; Velde, C.J.H. van de; Krieken, J.H.J.M. van; Lamers, C.B.H.W.; Verspaget, H.W.

    2006-01-01

    In a pioneer study, we showed 10 years ago that enhanced tissue levels of the matrix metalloproteinases (MMPs) MMP-2 and MMP-9 in gastric cancers, as determined by zymography, were related with worse overall survival of the patients. To corroborate these observations, we now assessed MMP-2 and MMP-9

  11. Matrix metalloproteinase-2 is a consistent prognostic factor in gastric cancer.

    NARCIS (Netherlands)

    Kubben, F.J.G.M.; Sier, C.F.M.; Duijn, W. van; Griffioen, G.; Hanemaaijer, R.; Velde, C.J. van de; Krieken, J.H.J.M. van; Lamers, C.B.H.W.; Verspaget, H.W.

    2006-01-01

    In a pioneer study, we showed 10 years ago that enhanced tissue levels of the matrix metalloproteinases (MMPs) MMP-2 and MMP-9 in gastric cancers, as determined by zymography, were related with worse overall survival of the patients. To corroborate these observations, we now assessed MMP-2 and MMP-9

  12. Fisetin Ameliorated Photodamage by Suppressing the Mitogen-Activated Protein Kinase/Matrix Metalloproteinase Pathway and Nuclear Factor-κB Pathways.

    Science.gov (United States)

    Chiang, Hsiu-Mei; Chan, Shih-Yun; Chu, Yin; Wen, Kuo-Ching

    2015-05-13

    Ultraviolet (UV) irradiation is one of the most important extrinsic factors contributing to skin photodamage. After UV irradiation, a series of signal transductions in the skin will be activated, leading to inflammatory response and photoaged skin. In this study, fisetin, a flavonol that exists in fruits and vegetables, was investigated for its photoprotective effects. The results revealed that 5-25 μM fisetin inhibits cyclooxygenase-2 (COX-2) and matrix metalloproteinase (MMP)-1, MMP-3, MMP-9 expression induced by ultraviolet B (UVB) irradiation in human skin fibroblasts. In addition, fisetin suppressed UVB-induced collagen degradation. With regard to its effect on upper-stream signal transduction, we found that fisetin reduced the expression of ultraviolet (UV)-induced ERK, JNK, and p38 phosphorylation in the mitogen-activated protein kinase (MAP kinase) pathway. Furthermore, fisetin reduced inhibitor κB (IκB) degradation and increased the amount of p65, which is a major subunit of nuclear factor-κB (NF-κB), in cytoplasm. It also suppressed NF-κB translocated to the nucleus and inhibited cAMP response element-binding protein (CREB) Ser-133 phosphorylation level in the phosphoinositide 3-kinase/protein kinase B/CREB (PI3K/AKT/CREB) pathway. Finally, fisetin inhibited UV-induced intracellular reactive oxygen species (ROS), prostaglandin E2 (PGE2), and nitric oxide (NO) generation. The mentioned effects and mechanisms suggest that fisetin can be used in the development of photoprotective agents.

  13. Analysis of Enzymatic Activity of Matrix Metalloproteinase (MMP) by Collagen Zymography in Melanoma.

    Science.gov (United States)

    Walia, Vijay; Samuels, Yardena

    2018-01-01

    Protein zymography is the most commonly used technique to study the enzymatic activity of matrix metalloproteinases (MMPs) and their inhibitors. MMPs are proteolytic enzymes that promote extracellular matrix degradation. MMPs are frequently mutated in malignant melanomas as well as other cancers and are linked to increasing incidence of tumor metastasis. Substrate zymography characterizes MMP activity by their ability to degrade preferred substrates. Here we describe the collagen zymography technique to measure the active or latent form of MMPs using MMP-8 as an example, which is a frequently mutated MMP family member in malignant melanomas. The same technique can be used with the modification of substrate to detect metalloproteinase activity of other MMPs. Both wild-type and mutated forms of MMPs can be analyzed using a single gel using this method.

  14. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells

    International Nuclear Information System (INIS)

    Sassoli, Chiara; Nosi, Daniele; Tani, Alessia; Chellini, Flaminia; Mazzanti, Benedetta; Quercioli, Franco; Zecchi-Orlandini, Sandra; Formigli, Lucia

    2014-01-01

    Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7 + satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration

  15. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Sassoli, Chiara; Nosi, Daniele; Tani, Alessia; Chellini, Flaminia [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Mazzanti, Benedetta [Dept. of Experimental and Clinical Medicine—Section of Haematology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Quercioli, Franco [CNR-National Institute of Optics (INO), Largo Enrico Fermi 6, 50125 Arcetri-Florence (Italy); Zecchi-Orlandini, Sandra [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Formigli, Lucia, E-mail: formigli@unifi.it [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy)

    2014-05-01

    Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7{sup +} satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration.

  16. Synergistic Inhibition of Delayed Rectifier K+ and Voltage-Gated Na+ Currents by Artemisinin in Pituitary Tumor (GH3) Cells.

    Science.gov (United States)

    So, Edmund Cheung; Wu, Sheng-Nan; Wu, Ping-Ching; Chen, Hui-Zhen; Yang, Chia-Jung

    2017-01-01

    Artemisinin (ART) is an anti-malarial agent reported to influence endocrine function. Effects of ART on ionic currents and action potentials (APs) in pituitary tumor (GH3) cells were evaluated by patch clamp techniques. ART inhibited the amplitude of delayed-rectifier K+ current (IK(DR)) in response to membrane depolarization and accelerated the process of current inactivation. It exerted an inhibitory effect on IK(DR) with an IC50 value of 11.2 µM and enhanced IK(DR) inactivation with a KD value of 14.7 µM. The steady-state inactivation curve of IK(DR) was shifted to hyperpolarization by 10 mV. Pretreatment of chlorotoxin (1 µM) or iloprost (100 nM) did not alter the magnitude of ART-induced inhibition of IK(DR) in GH3 cells. ART also decreased the peak amplitude of voltage-gated Na+ current (INa) with a concentration-dependent slowing in inactivation rate. Application of KMUP-1, an inhibitor of late INa, was effective at reversing ART-induced prolongation in inactivation time constant of INa. Under current-clamp recordings, ART alone reduced the amplitude of APs and prolonged the duration of APs. Under ART exposure, the inhibitory actions on both IK(DR) and INa could be a potential mechanisms through which this drug influences membrane excitability of endocrine or neuroendocrine cells appearing in vivo. © 2017 The Author(s). Published by S. Karger AG, Basel.

  17. Matrix Metalloproteinases Contribute to Neuronal Dysfunction in Animal Models of Drug Dependence, Alzheimer's Disease, and Epilepsy

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizoguchi

    2011-01-01

    Full Text Available Matrix metalloproteinases (MMPs and tissue inhibitors of metalloproteinases (TIMPs remodel the pericellular environment by regulating the cleavage of extracellular matrix proteins, cell surface components, neurotransmitter receptors, and growth factors that mediate cell adhesion, synaptogenesis, synaptic plasticity, and long-term potentiation. Interestingly, increased MMP activity and dysregulation of the balance between MMPs and TIMPs have also been implicated in various pathologic conditions. In this paper, we discuss various animal models that suggest that the activation of the gelatinases MMP-2 and MMP-9 is involved in pathogenesis of drug dependence, Alzheimer's disease, and epilepsy.

  18. Proteomics-based investigation of multiple stages of OSCC development indicates that the inhibition of Trx-1 delays oral malignant transformation.

    Science.gov (United States)

    Chen, Xijuan; Hu, Qinchao; Wu, Tong; Wang, Chunyang; Xia, Juan; Yang, Linglan; Cheng, Bin; Chen, Xiaobing

    2018-03-01

    The majority of cases of oral squamous cell carcinoma (OSCC) develop from oral potentially malignant disorders, which have been confirmed to be involved in chronic oxidative stimulation. However, no effective treatment approaches have been used to prevent the development of dysplasia into cancerous lesions thus far. In the present study, a well-established OSCC model was used to detect proteomics profiles at different stages during oral malignant transformation. Of the 15 proteins that were found to be upregulated in both the dysplasia and carcinoma stages, the oxidative stress-associated proteins, thioredoxin-1 (Trx-1), glutaredoxin-1 and peroxiredoxin-2 were note as the proteins with significant changes in expression Trx-1 was identified to be the most significantly upregulated protein in the precancerous stage. Validation experiments confirmed that Trx-1 was overexpressed both in dysplasia and cancerous tissue samples, and the inhibition of Trx-1 was able to promote the apoptosis of OSCC cells under hypoxic conditions. Furthermore, the experimental application of a Trx-1-specific inhibitory agent in an animal model led to a lower cancerization rate and a delay in tumor formation. The possible mechanisms were associated with the increased apoptosis via a reactive oxygen species (ROS)-dependent pathway. Taken together, our findings indicate that Trx-1 may be an important target for delaying oral malignant transformation, which provides a novel therapeutic strategy for the prevention and treatment of OSCC.

  19. Expression and inhibition of matrix metalloproteinase (MMP)-8, MMP-9 and MMP-12 in early colonic anastomotic repair

    DEFF Research Database (Denmark)

    Krarup, Peter-Martin; Eld, Mikkel; Heinemeier, Katja

    2013-01-01

    of specific MMPs responsible for the weakening of anastomoses can be used to optimise MMP inhibition therapy. We aimed to quantify transcript and protein levels of multiple MMPs in colonic anastomoses and evaluate the effect of inhibiting the MMPs that displayed the highest expression levels on anastomotic...

  20. Serum Matrix Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 Expression in Patients with Non-alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Taner Akyol

    2015-06-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is the most common chronic liver disease in developed countries. NAFLD may progress to non-alcoholic steatohepatitis (NASH and cirrhosis. Emerging evidence suggests that NAFLD is the hepatic manifestation of metabolic syndrome (MetS. NAFLD is closely linked to MetS, with a significant increase in cardiovascular risk. Several matrix metalloproteinases (MMPs and tissue inhibitors of MMPs (TIMPs play important roles in the pathophysiology of atherosclerosis and liver fibrosis. In this study we investigated the usefulness of serum metalloproteinases as noninvasive markers of NAFLD. Forty-six patients with NAFLD and twenty-six healthy controls were enrolled into the study, in Gulhane Military Medical Academy, Haydarpasa Training Hospital. Liver biopsies were performed on all patients with NAFLD and histopathological evaluations were made by an experienced pathologist. All NAFLD patients were divided into 2 subgroups according to MetS status using ATP III criteria. MMP-9 and TIMP-1 were studied in serum samples of all groups. Results were compared between both groups and subgroups. In this study, the NAFLD and control groups did not differ significantly on MMP-9, TIMP-1 and TIMP-1/MMP-9 ratio (p > 0.05. However, we found a significant relationship between the HOMA and TIMP-1 (p<0.05. Moreover, MMP-9 and TIMP-1/MMP-9 levels were significantly correlated with waist circumference (p<0.05. Our findings are not sufficient to suggest that MMP-9, TIMP-1 and TIMP-1/MMP-9 ratio might be used as noninvasive biochemical diagnostic tests among NAFLD patients. [Dis Mol Med 2015; 3(2.000: 11-17

  1. Metalloproteinase Profiling in Lung Transplant Recipients With Good Outcome and Bronchiolitis Obliterans Syndrome

    NARCIS (Netherlands)

    Heijink, Irene H.; Rozeveld, Dennie; van der Heide, Sicco; Bij, van der Wim; Bischoff, Rainer; Oosterhout, van Antoon J,; van der Toorn, Marco

    Background. Bronchiolitis obliterans syndrome (BOS), the major cause of death on lung transplantation, is characterized by bronchiolar inflammation and tissue remodeling. Matrix metalloproteinases (MMPs) have been implicated in these processes, although it is still unclear whether MMP activity and

  2. Matrix metalloproteinase 2 and 9 activity in patients with colorectal cancer liver metastasis.

    NARCIS (Netherlands)

    Waas, E.T.; Wobbes, Th.; Lomme, R.M.L.M.; Groot, J.H. de; Ruers, T.J.M.; Hendriks, T.

    2003-01-01

    BACKGROUND: Matrix metalloproteinases (MMPs) have been reported to play an important role in tumour cell invasion and metastasis. The bioactivity of MMPs in liver metastasis from colorectal cancer was investigated and correlated with clinicopathological variables. METHOD: Thirty-two patients

  3. Inhibition of transcriptional activity of c-JUN by SIRT1

    International Nuclear Information System (INIS)

    Gao Zhanguo; Ye Jianping

    2008-01-01

    c-JUN is a major component of heterodimer transcription factor AP-1 (Activator Protein-1) that activates gene transcription in cell proliferation, inflammation and stress responses. SIRT1 (Sirtuin 1) is a histone deacetylase that controls gene transcription through modification of chromatin structure. However, it is not clear if SIRT1 regulates c-JUN activity in the control of gene transcription. Here, we show that SIRT1 associated with c-JUN in co-immunoprecipitation of whole cell lysate, and inhibited the transcriptional activity of c-JUN in the mammalian two hybridization system. SIRT1 was found in the AP-1 response element in the matrix metalloproteinase-9 (MMP9) promoter DNA leading to inhibition of histone 3 acetylation as shown in a ChIP assay. The SIRT1 signal was reduced by the AP-1 activator PMA, and induced by the SIRT1 activator Resveratrol in the promoter DNA. SIRT1-mediaetd inhibition of AP-1 was demonstrated in the MMP9 gene expression at the gene promoter, mRNA and protein levels. In mouse embryonic fibroblast (MEF) with SIRT1 deficiency (SIRT1 -/- ), mRNA and protein of MMP9 were increased in the basal condition, and the inhibitory activity of Resveratrol was significantly attenuated. Glucose-induced MMP9 expression was also inhibited by SIRT1 in response to Resveratrol. These data consistently suggest that SIRT1 directly inhibits the transcriptional activity of AP-1 by targeting c-JUN

  4. Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9.

    Science.gov (United States)

    Li, Chenglin; Zhao, Yuanwei; Yang, Dan; Yu, Yanyan; Guo, Hao; Zhao, Ziming; Zhang, Bei; Yin, Xiaoxing

    2015-02-01

    Matrix metalloproteinases (MMPs) have been regarded as major critical molecules assisting tumor cells during metastasis, for excessive ECM (ECM) degradation, and cancer cell invasion. In the present study, in vitro and in vivo assays were employed to examine the inhibitory effects of kaempferol, a natural polyphenol of flavonoid family, on tumor metastasis. Data showed that kaempferol could inhibit adhesion, migration, and invasion of MDA-MB-231 human breast carcinoma cells. Moreover, kaempferol led to the reduced activity and expression of MMP-2 and MMP-9, which were detected by gelatin zymography, real-time PCR, and western blot analysis, respectively. Further elucidation of the mechanism revealed that kaempferol treatment inhibited the activation of transcription factor activator protein-1 (AP-1) and MAPK signaling pathway. Moreover, kaempferol repressed phorbol-12-myristate-13-acetate (PMA)-induced MMP-9 expression and activity through suppressing the translocation of protein kinase Cδ (PKCδ) and MAPK signaling pathway. Our results also indicated that kaempferol could block the lung metastasis of B16F10 murine melanoma cells as well as the expression of MMP-9 in vivo. Taken together, these results demonstrated that kaempferol could inhibit cancer cell invasion through blocking the PKCδ/MAPK/AP-1 cascade and subsequent MMP-9 expression and its activity. Therefore, kaempferol might act as a therapeutic potential candidate for cancer metastasis.

  5. Stuttering Inhibition via Altered Auditory Feedback during Scripted Telephone Conversations

    Science.gov (United States)

    Hudock, Daniel; Kalinowski, Joseph

    2014-01-01

    Background: Overt stuttering is inhibited by approximately 80% when people who stutter read aloud as they hear an altered form of their speech feedback to them. However, levels of stuttering inhibition vary from 60% to 100% depending on speaking situation and signal presentation. For example, binaural presentations of delayed auditory feedback…

  6. Positive correlation between disease activity index and matrix metalloproteinases activity in a rat model of colitis.

    Science.gov (United States)

    Oliveira, Luiz Gustavo de; Cunha, André Luiz da; Duarte, Amaury Caiafa; Castañon, Maria Christina Marques Nogueira; Chebli, Júlio Maria Fonseca; Aguiar, Jair Adriano Kopke de

    2014-01-01

    Inflammatory bowel disease, including ulcerative colitis and Crohn's disease, comprising a broad spectrum of diseases those have in common chronic inflammation of the gastrointestinal tract, histological alterations and an increased activity levels of certain enzymes, such as, metalloproteinases. Evaluate a possible correlation of disease activity index with the severity of colonic mucosal damage and increased activity of metalloproteinases in a model of ulcerative colitis induced by dextran sulfate sodium. Colitis was induced by oral administration of 5% dextran sulfate sodium for seven days in this group (n=10), whereas control group (n=16) received water. Effects were analyzed daily by disease activity index. In the seventh day, animals were euthanized and hematological measurements, histological changes (hematoxylin and eosin and Alcian Blue staining), myeloperoxidase and metalloproteinase activities (MMP-2 and MMP-9) were determined. Dextran sulfate sodium group showed elevated disease activity index and reduced hematological parameters. Induction of colitis caused tissue injury with loss of mucin and increased myeloperoxidase (Pcorrelation with the degree of histopathological changes after induction of colitis, and this result may be related mainly to the increased activity of MMP-9 and mieloperoxidase.

  7. Can the attention training technique turn one marshmallow into two? Improving children's ability to delay gratification.

    Science.gov (United States)

    Murray, Joanne; Theakston, Anna; Wells, Adrian

    2016-02-01

    The seminal Marshmallow Test (Mischel & Ebbesen, 1970) has reliably demonstrated that children who can delay gratification are more likely to be emotionally stable and successful later in life. However, this is not good news for those children who can't delay. Therefore, this study aimed to explore whether a metacognitive therapy technique, Attention Training (ATT: Wells, 1990) can improve young children's ability to delay gratification. One hundred children participated. Classes of 5-6 year olds were randomly allocated to either the ATT or a no-intervention condition and were tested pre and post-intervention on ability to delay gratification, verbal inhibition (executive control), and measures of mood. The ATT intervention significantly increased (2.64 times) delay of gratification compared to the no-intervention condition. After controlling for age and months in school, the ATT intervention and verbal inhibition task performance were significant independent predictors of delay of gratification. These results provide evidence that ATT can improve children's self-regulatory abilities with the implication that this might reduce psychological vulnerability later in life. The findings highlight the potential contribution that the Self-Regulatory Executive Function (S-REF) model could make to designing techniques to enhance children's self-regulatory processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Polyploidization delay in rat hepatocytes under liver growth inhibition by hypokinesia

    Science.gov (United States)

    Faktor, V. M.; Malyutin, V. F.; Li, S. Y.; Brodskiy, V. Y.

    1981-01-01

    A study of young rats, weighing 55 to 59 g, after being for 10 days in conditions of limited mobility, shows a retardation of body growth as well as that of liver growth. The decrease in the rate of growth is accompanied by a reduction of cell proliferation and by delay polyploidization of hepatocytes in the liver of experimental rats. The materials, methods, and results of research are discussed.

  9. The Methoxyflavonoid Isosakuranetin Suppresses UV-B-Induced Matrix Metalloproteinase-1 Expression and Collagen Degradation Relevant for Skin Photoaging

    Directory of Open Access Journals (Sweden)

    Hana Jung

    2016-09-01

    Full Text Available Solar ultraviolet (UV radiation is a main extrinsic factor for skin aging. Chronic exposure of the skin to UV radiation causes the induction of matrix metalloproteinases (MMPs, such as MMP-1, and consequently results in alterations of the extracellular matrix (ECM and skin photoaging. Flavonoids are considered as potent anti-photoaging agents due to their UV-absorbing and antioxidant properties and inhibitory activity against UV-mediated MMP induction. To identify anti-photoaging agents, in the present study we examined the preventative effect of methoxyflavonoids, such as sakuranetin, isosakuranetin, homoeriodictyol, genkwanin, chrysoeriol and syringetin, on UV-B-induced skin photo-damage. Of the examined methoxyflavonoids, pretreatment with isosakuranetin strongly suppressed the UV-B-mediated induction of MMP-1 in human keratinocytes in a concentration-dependent manner. Isosakuranetin inhibited UV-B-induced phosphorylation of mitogen-activated protein kinase (MAPK signaling components, ERK1/2, JNK1/2 and p38 proteins. This result suggests that the ERK1/2 kinase pathways likely contribute to the inhibitory effects of isosakuranetin on UV-induced MMP-1 production in human keratinocytes. Isosakuranetin also prevented UV-B-induced degradation of type-1 collagen in human dermal fibroblast cells. Taken together, our findings suggest that isosakuranetin has the potential for development as a protective agent for skin photoaging through the inhibition of UV-induced MMP-1 production and collagen degradation.

  10. Arsenic trioxide inhibits Ewing's sarcoma cell invasiveness by targeting p38(MAPK) and c-Jun N-terminal kinase.

    Science.gov (United States)

    Zhang, Shuai; Guo, Wei; Ren, Ting-Ting; Lu, Xin-Chang; Tang, Guo-Qing; Zhao, Fu-Long

    2012-01-01

    Ewing's sarcoma is the second most frequent primary malignant bone tumor, mainly affecting children and young adults. The notorious metastatic capability of this tumor aggravates patient mortality and remains a problem to be overcome. We investigated the effect of arsenic trioxide (As₂O₃) on the metastasis capability of Ewing's sarcoma cells. We performed 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide assays to choose appropriate concentrations of As₂O₃ for the experiments. Migration, invasion, and adhesion assays were performed to assess the effect of As₂O₃ on the metastasis of Ewing's sarcoma. Immunofluorescent staining was used to observe cytoskeleton reorganization in Ewing's sarcoma cells treated with As₂O₃. Changes in matrix metalloproteinase-9 expression and the mitogen-activated protein kinase (MAPK) pathway were investigated using western blot. Inhibitors of p38(MAPK) (sb202190) and c-Jun NH₂-terminal kinase (JNK, sp600125) were used in invasion assays to determine the effect of p38(MAPK) and JNK. We found that As₂O₃ may markedly inhibit the migration and invasion capacity of Ewing's sarcoma cells with structural rearrangements of the actin cytoskeleton. The expressions of matrix metalloproteinase-9, phosphor-p38(MAPK), and phosphor-JNK were suppressed by As₂O₃ treatment in a dose-dependent manner. The inhibitors of p38(MAPK) (sb202190) and JNK (sp600125) enhanced the inhibition induced by As₂O₃, which was counteracted by anisomycin, an activating agent of p38(MAPK) and JNK. Taken together, our results demonstrate that As₂O₃ can inhibit the metastasis capability of RD-ES and A-673 cells and may have new therapeutic value for Ewing's sarcoma.

  11. 2-Methoxy-2,4-diphenyl-3(2H)-furanone-labeled gelatin zymography and reverse zymography: a rapid real-time method for quantification of matrix metalloproteinases-2 and -9 and tissue inhibitors of metalloproteinases.

    Science.gov (United States)

    Min, Danqing; Lyons, James Guy; Jia, Junhong; Lo, Lisa; McLennan, Susan V

    2006-02-01

    Measurement of matrix metalloproteinases (MMPs) and their specific tissue inhibitors of metalloproteinases (TIMPs) by the techniques of zymography and reverse zymography provide useful information regarding the status of matrix accumulation or breakdown. This report describes the use of 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF), a fluorescent compound which can be used to label gelatin as a substrate for detection of the gelatin degrading MMP-2 and -9 by zymography. In addition, a modification of the zymographic technique by addition of excess MMPs enables the use of the MDPF-labeled gelatin substrate for the identification and quantification of TIMPs by reverse zymography. Both systems are real-time sensitive reliable quantification techniques, easily used for measurement of these MMPs and TIMPs in clinical, biological, and tissue culture samples.

  12. [Expression of various matrix metalloproteinases in mice with hyperoxia-induced acute lung injury].

    Science.gov (United States)

    Zhang, Xiang-feng; Ding, Shao-fang; Gao, Yuan-ming; Liang, Ying; Foda, Hussein D

    2006-08-01

    To investigate the role of matrix metalloproteinases (MMPs) and extracellular matrix metalloproteinase inducer (EMMPRIN) in the pathogenesis of acute lung injury induced by hyperoxia. Fifty four mice were exposed in sealed cages to >98% oxygen (for 24-72 hours), and another 18 mice to room air. The severity of lung injury was assessed, and the expression of mRNA and protein of MMP-2, MMP-9 and EMMPRIN in lung tissue, after exposure for 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Hyperoxia caused acute lung injury; this was accompanied by increased expression of an upregulation of MMP-2, MMP-9 and EMMPRIN mRNA and protein in lung tissues. Hyperoxia causes acute lung injury in mice; increases in MMP-2, MMP-9 and EMMPRIN may play an important role in the development of hyperoxia induced lung injury in mice.

  13. The evolution of the matrix metalloproteinase inhibitor drug discovery program at abbott laboratories.

    Science.gov (United States)

    Wada, Carol K

    2004-01-01

    Matrix metalloproteinases (MMPs) have been implicated in several pathologies. At Abbott Laboratories, the matrix metalloproteinases inhibitor drug discovery program has focused on the discovery of a potent, selective, orally bioavailable MMP inhibitor for the treatment of cancer. The program evolved from early succinate-based inhibitors to utilizing in-house technology such as SAR by NMR to develop a novel class of biaryl hydroxamate MMP inhibitors. The metabolic instability of the biaryl hydroxamates led to the discovery of a new class of N-formylhydroxylamine (retrohydroxamate) biaryl ethers, exemplified by ABT-770 (16). Toxicity issues with this pre-clinical candidate led to the discovery of another novel class of retrohydroxamate MMP inhibitors, the phenoxyphenyl sulfones such as ABT-518 (19j). ABT-518 is a potent, orally bioavailable, selective inhibitor of MMP-2 and 9 over MMP-1 that has been evaluated in Phase I clinical trials in cancer patients.

  14. Matrix Metalloproteinases in Normal Pregnancy and Preeclampsia

    Science.gov (United States)

    Chen, Juanjuan; Khalil, Raouf A.

    2017-01-01

    Normal pregnancy is associated with marked hemodynamic and uterine changes that allow adequate uteroplacental blood flow and uterine expansion for the growing fetus. These pregnancy-associated changes involve significant uteroplacental and vascular remodeling. Matrix metalloproteinases (MMPs) are important regulators of vascular and uterine remodeling. Increases in MMP-2 and MMP-9 have been implicated in vasodilation, placentation and uterine expansion during normal pregnancy. The increases in MMPs could be induced by the increased production of estrogen and progesterone during pregnancy. MMP expression/activity may be altered during complications of pregnancy. Decreased vascular MMP-2 and MMP-9 may lead to decreased vasodilation, increased vasoconstriction, hypertensive pregnancy and preeclampsia. Abnormal expression of uteroplacental integrins, cytokines and MMPs may lead to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate remodeling of spiral arteries, and reduced uterine perfusion pressure (RUPP). RUPP may cause imbalance between the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-angiogenic vascular endothelial growth factor and placental growth factor, or stimulate the release of inflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could target MMPs in the extracellular matrix as well as endothelial and vascular smooth muscle cells, causing generalized vascular dysfunction, increased vasoconstriction and hypertension in pregnancy. MMP activity can also be altered by endogenous tissue inhibitors of metalloproteinases (TIMPs) and changes in the MMP/TIMP ratio. In addition to their vascular effects, decreases in expression/activity of MMP-2 and MMP-9 in the uterus could impede uterine growth and expansion and lead to premature labor. Understanding the role of MMPs in uteroplacental and

  15. Clonorchis sinensis excretory-secretory products regulate migration and invasion in cholangiocarcinoma cells via extracellular signal-regulated kinase 1/2/nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    Science.gov (United States)

    Pak, Jhang Ho; Shin, Jimin; Song, In-Sung; Shim, Sungbo; Jang, Sung-Wuk

    2017-01-01

    Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory-secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory-secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory-secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory-secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory-secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory-secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  16. Red Grape Skin Polyphenols Blunt Matrix Metalloproteinase-2 and -9 Activity and Expression in Cell Models of Vascular Inflammation: Protective Role in Degenerative and Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Nadia Calabriso

    2016-08-01

    Full Text Available Matrix metalloproteinases (MMPs are endopeptidases responsible for the hydrolysis of various components of extracellular matrix. MMPs, namely gelatinases MMP-2 and MMP-9, contribute to the progression of chronic and degenerative diseases. Since gelatinases’ activity and expression are regulated by oxidative stress, we sought to evaluate whether supplementation with polyphenol-rich red grape skin extracts modulated the matrix-degrading capacity in cell models of vascular inflammation. Human endothelial and monocytic cells were incubated with increasing concentrations (0.5–25 μg/mL of Negroamaro and Primitivo red grape skin polyphenolic extracts (NSPE and PSPE, respectively or their specific components (0.5–25 μmol/L, before stimulation with inflammatory challenge. NSPE and PSPE inhibited, in a concentration-dependent manner, endothelial invasion as well as the MMP-9 and MMP-2 release in stimulated endothelial cells, and MMP-9 production in inflamed monocytes, without affecting tissue inhibitor of metalloproteinases (TIMP-1 and TIMP-2. The matrix degrading inhibitory capacity was the same for both NSPE and PSPE, despite their different polyphenolic profiles. Among the main polyphenols of grape skin extracts, trans-resveratrol, trans-piceid, kaempferol and quercetin exhibited the most significant inhibitory effects on matrix-degrading enzyme activities. Our findings appreciate the grape skins as rich source of polyphenols able to prevent the dysregulation of vascular remodelling affecting degenerative and inflammatory diseases.

  17. Matrix Metalloproteinases as Therapeutic Targets for Idiopathic Pulmonary Fibrosis

    Science.gov (United States)

    Craig, Vanessa J.; Zhang, Li; Hagood, James S.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF. PMID:26121236

  18. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Craig, Vanessa J; Zhang, Li; Hagood, James S; Owen, Caroline A

    2015-11-01

    Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF.

  19. Matrix metalloproteinases in lung biology

    Directory of Open Access Journals (Sweden)

    Parks William C

    2000-12-01

    Full Text Available Abstract Despite much information on their catalytic properties and gene regulation, we actually know very little of what matrix metalloproteinases (MMPs do in tissues. The catalytic activity of these enzymes has been implicated to function in normal lung biology by participating in branching morphogenesis, homeostasis, and repair, among other events. Overexpression of MMPs, however, has also been blamed for much of the tissue destruction associated with lung inflammation and disease. Beyond their role in the turnover and degradation of extracellular matrix proteins, MMPs also process, activate, and deactivate a variety of soluble factors, and seldom is it readily apparent by presence alone if a specific proteinase in an inflammatory setting is contributing to a reparative or disease process. An important goal of MMP research will be to identify the actual substrates upon which specific enzymes act. This information, in turn, will lead to a clearer understanding of how these extracellular proteinases function in lung development, repair, and disease.

  20. Matrix metalloproteinase 2 genotype is associated with nonanastomotic biliary strictures after orthotopic liver transplantation

    NARCIS (Netherlands)

    Ten Hove, W. Rogier; Korkmaz, Kerem S.; den Dries, Sanna Op; de Rooij, Bert-Jan F.; van Hoek, Bart; Porte, Robert J.; van der Reijden, Johan J.; Coenraad, Minneke J.; Dubbeld, Jeroen; Hommes, Daniel W.; Verspaget, Hein W.

    Background: Nonanastomotic biliary strictures (NAS) are a serious complication after orthotopic liver transplantation (OLT). Matrix metalloproteinases (MMPs) are involved in connective tissue remodelling in chronic liver disease and complications after OLT. Aim: To evaluate the relationship between

  1. Association of matrix metalloproteinase inducer (EMMPRIN) with the expression of matrix metalloproteinases-1, -2 and -9 during periapical lesion development.

    Science.gov (United States)

    Sousa, Natália Guimarães Kalatzis; Cardoso, Cristina Ribeiro de Barros; Silva, João Satana da; Kuga, Milton Carlos; Tanomaru-Filho, Mário; Faria, Gisele

    2014-09-01

    To evaluate the expression of matrix metalloproteinase inducer (EMMPRIN) and its correlation with the expression of matrix metalloproteinases (MMPs)-1, -2 and -9 during the development of periapical lesion in mice. Periapical lesions were induced in the lower first molars of mice and after 7, 14, 21 and 42 days the mandibles were removed. The periapical lesions were measured by micro-computed tomography. The expression of EMMPRIN, MMPs-1, -2, and -9 genes were determined by real-time RT-PCR. The location and expression of EMMPRIN and MMPs were evaluated by immunohistochemistry. At 14 days, the periapical lesion area was higher than at 7 days. At 21 and 42 days no statistically significant bone loss was observed in comparison to 14 days. The control group showed discrete and occasional EMMPRIM, MMP-1, -2 and -9 immunostaining in the periodontal ligament fibroblasts. At 7, 14, 21 and 42 days intense immunoexpression was observed for EMMPRIN, MMPs-1, -2 and -9 in the region adjacent to the apical foramen. The EMMPRIN immunoexpression was higher at 7, 14, 21 and 42 days compared with the control. There was a positive correlation between gene expression of EMMPRIN and MMPs in the active phase of periapical lesion development. There is a high expression of EMMPRIM mainly by the inflammatory infiltrate in the region adjacent to the apical foramen during periapical lesion development. Furthermore, the positive correlation with MMP-1, -2, and -9 during the first days after periapical lesion induction indicates that EMMPRIM may be involved in the active phase of periapical lesions development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Inhibition of Mitochondrial Cytochrome c Release and Suppression of Caspases by Gamma-Tocotrienol Prevent Apoptosis and Delay Aging in Stress-Induced Premature Senescence of Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Suzana Makpol

    2012-01-01

    Full Text Available In this study, we determined the molecular mechanism of γ-tocotrienol (GTT in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS model of human diploid fibroblasts (HDFs. Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal and promoted G0/G1 cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P<0.05. GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P<0.05. Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P<0.05 in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.

  3. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi Hee [Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Geumjeong gu, Busan 609-735 (Korea, Republic of); Min, Do Sik, E-mail: minds@pusan.ac.kr [Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Geumjeong gu, Busan 609-735 (Korea, Republic of)

    2011-09-09

    Highlights: {yields} Quercetin, a bioactive flavonoid, suppresses expression and enzymatic activity of phospholipase D1. {yields} Quercetin abolishes NFkB-induced phospholipase D1 expression via inhibition of NFkB transactivation. {yields} Quercetin-induced suppression of phospholipase D1 inhibits invasion and proliferation of human glioma cells. -- Abstract: Phospholipase D (PLD) has been recognized as a regulator of cell proliferation and tumorigenesis, but little is known about the molecules regulating PLD expression. Thus, the identification of small molecules inhibiting PLD expression would be an important advance in PLD-mediated physiology. Quercetin, a ubiquitous bioactive flavonoid, is known to inhibit proliferation and induce apoptosis in a variety of cancer cells. In the present study, we examined the effect of quercetin on the expression of PLD in U87 glioma cells. Quercetin significantly suppressed the expression of PLD1 at the transcriptional level. Moreover, quercetin abolished the protein expression of PLD1 in a time and dose-dependent manner, as well as inhibited PLD activity. Quercetin suppressed NF{kappa}B-induced PLD1 expression via inhibition of NFkB transactivation. Furthermore, quercetin inhibited activation and invasion of metalloproteinase-2 (MMP-2), a key modulator of glioma cell invasion, induced by phosphatidic acid (PA), a product of PLD activity. Taken together these data demonstrate that quercetin abolishes PLD1 expression and subsequently inhibits invasion and proliferation of glioma cells.

  4. of Matrix Metalloproteinase-9 and Neutrophil Gelatinase-Associated Lipocalin

    Directory of Open Access Journals (Sweden)

    De Caridi Giovanni

    2015-01-01

    Full Text Available The association of an axillary artery aneurysm and an abdominal aortic aneurysm is extremely rare. In this study, we describe this association in a 69 year-old-man. We measured this patient’s metalloproteinases (MMPs and Neutrophil Gelatinase - Associated Lipocalin (NGAL levels over a three years period before the abdominal aortic aneurysm rupture. We speculate that high serium levels of MMPs and NGAL may have a prognostic role and may predict aneurysm rupture in patients with an uncommon association of arterial aneurysms.

  5. Matrix metalloproteinase-14 mediates formation of bile ducts and hepatic maturation of fetal hepatic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Satoshi [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Kakinuma, Sei, E-mail: skakinuma.gast@tmd.ac.jp [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo (Japan); Kamiya, Akihide [Institute of Innovative Science and Technology, Tokai University, Isehara (Japan); Goto, Fumio; Kaneko, Shun; Miyoshi, Masato; Tsunoda, Tomoyuki; Asano, Yu; Kawai-Kitahata, Fukiko; Nitta, Sayuri; Nakata, Toru; Okamoto, Ryuichi; Itsui, Yasuhiro; Nakagawa, Mina; Azuma, Seishin [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Asahina, Yasuhiro [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo (Japan); Yamaguchi, Tomoyuki [Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Koshikawa, Naohiko [Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Seiki, Motoharu [Medical School, Kanazawa University, Kanazawa (Japan); Nakauchi, Hiromitsu [Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); and others

    2016-01-22

    Fetal hepatic stem/progenitor cells, called hepatoblasts, play central roles in liver development; however, the molecular mechanisms regulating the phenotype of these cells have not been completely elucidated. Matrix metalloproteinase (MMP)-14 is a type I transmembrane proteinase regulating pericellular proteolysis of the extracellular matrix and is essential for the activation of several MMPs and cytokines. However, the physiological functions of MMP-14 in liver development are unknown. Here we describe a functional role for MMP-14 in hepatic and biliary differentiation of mouse hepatoblasts. MMP-14 was upregulated in cells around the portal vein in perinatal stage liver. Formation of bile duct-like structures in MMP-14–deficient livers was significantly delayed compared with wild-type livers in vivo. In vitro biliary differentiation assays showed that formation of cholangiocytic cysts derived from MMP-14–deficient hepatoblasts was completely impaired, and that overexpression of MMP-14 in hepatoblasts promoted the formation of bile duct-like cysts. In contrast, the expression of molecules associated with metabolic functions in hepatocytes, including hepatic nuclear factor 4α and tryptophan 2,3-dioxygenase, were significantly increased in MMP-14–deficient livers. Expression of the epidermal growth factor receptor and phosphorylation of mitogen-activated protein kinases were significantly upregulated in MMP-14–deficient livers. We demonstrate that MMP-14–mediated signaling in fetal hepatic progenitor cells promotes biliary luminal formation around the portal vein and negatively controls the maturation of hepatocytes. - Highlights: • Loss of MMP-14 delayed formation of bile duct-like structures in perinatal liver. • Overexpression of MMP-14 in hepatobalsts promoted the biliary formation in vitro. • Loss of MMP-14 promoted hepatocyte maturation of hepatoblasts in vivo. • MMP-14–mediated signaling regulates terminal differentiation of

  6. Erbb2 up-regulation of ADAM12 expression accelerates skin cancer progression.

    Science.gov (United States)

    Rao, Velidi H; Vogel, Kristen; Yanagida, Jodi K; Marwaha, Nitin; Kandel, Amrit; Trempus, Carol; Repertinger, Susan K; Hansen, Laura A

    2015-10-01

    Solar ultraviolet (UV) radiation can cause severe damage to the skin and is the primary cause of most skin cancer. UV radiation causes DNA damage leading to mutations and also activates the Erbb2/HER2 receptor through indirect mechanisms involving reactive oxygen species. We hypothesized that Erbb2 activation accelerates the malignant progression of UV-induced skin cancer. Following the induction of benign squamous papillomas by UV exposure of v-ras(Ha) transgenic Tg.AC mice, mice were treated topically with the Erbb2 inhibitor AG825 and tumor progression monitored. AG825 treatment reduced tumor volume, increased tumor regression, and delayed the development of malignant squamous cell carcinoma (SCC). Progression to malignancy was associated with increased Erbb2 and ADAM12 (A Disintegin And Metalloproteinase 12) transcripts and protein, while inhibition of Erbb2 blocked the increase in ADAM12 message upon malignant progression. Similarly, human SCC and SCC cell lines had increased ADAM12 protein and transcripts when compared to normal controls. To determine whether Erbb2 up-regulation of ADAM12 contributed to malignant progression of skin cancer, Erbb2 expression was modulated in cultured SCC cells using forced over-expression or siRNA targeting, demonstrating up-regulation of ADAM12 by Erbb2. Furthermore, ADAM12 transfection or siRNA targeting revealed that ADAM12 increased both the migration and invasion of cutaneous SCC cells. Collectively, these results suggest Erbb2 up-regulation of ADAM12 as a novel mechanism contributing to the malignant progression of UV-induced skin cancer. Inhibition of Erbb2/HER2 reduced tumor burden, increased tumor regression, and delayed the progression of benign skin tumors to malignant SCC in UV-exposed mice. Inhibition of Erbb2 suppressed the increase in metalloproteinase ADAM12 expression in skin tumors, which in turn increased migration and tumor cell invasiveness. © 2014 Wiley Periodicals, Inc.

  7. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Yi-Rang Na

    Full Text Available Tumor cells are often associated with abundant macrophages that resemble the alternatively activated M2 subset. Tumor-associated macrophages (TAMs inhibit anti-tumor immune responses and promote metastasis. Cyclooxygenase-2 (COX-2 inhibition is known to prevent breast cancer metastasis. This study hypothesized that COX-2 inhibition affects TAM characteristics potentially relevant to tumor cell metastasis. We found that the specific COX-2 inhibitor, etodolac, inhibited human M2 macrophage differentiation, as determined by decreased CD14 and CD163 expressions and increased TNFα production. Several key metastasis-related mediators, such as vascular endothelial growth factor-A, vascular endothelial growth factor-C, and matrix metalloproteinase-9, were inhibited in the presence of etodolac as compared to untreated M2 macrophages. Murine bone marrow derived M2 macrophages also showed enhanced surface MHCII IA/IE and CD80, CD86 expressions together with enhanced TNFα expressions with etodolac treatment during differentiation. Using a BALB/c breast cancer model, we found that etodolac significantly reduced lung metastasis, possibly due to macrophages expressing increased IA/IE and TNFα, but decreased M2 macrophage-related genes expressions (Ym1, TGFβ. In conclusion, COX-2 inhibition caused loss of the M2 macrophage characteristics of TAMs and may assist prevention of breast cancer metastasis.

  8. Celastrol nanoparticles inhibit corneal neovascularization induced by suturing in rats

    Directory of Open Access Journals (Sweden)

    Li ZR

    2012-03-01

    Full Text Available Zhanrong Li1, Lin Yao1, Jingguo Li2, Wenxin Zhang1, Xianghua Wu1, Yi Liu1, Miaoli Lin1, Wenru Su1, Yongping Li1, Dan Liang11State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 2School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of ChinaPurpose: Celastrol, a traditional Chinese medicine, is widely used in anti-inflammation and anti-angiogenesis research. However, the poor water solubility of celastrol restricts its further application. This paper aims to study the effect of celastrol nanoparticles (CNPs on corneal neovascularization (CNV and determine the possible mechanism.Methods: To improve the hydrophilicity of celastrol, celastrol-loaded poly(ethylene glycol-block-poly(ε-caprolactone nanopolymeric micelles were developed. The characterization of CNPs was measured by dynamic light scattering and transmission electron microscopy analysis. Celastrol loading content and release were assessed by ultraviolet-visible analysis and high performance liquid chromatography, respectively. In vitro, human umbilical vein endothelial cell proliferation and capillary-like tube formation were assayed. In vivo, suture-induced CNV was chosen to evaluate the effect of CNPs on CNV in rats. Immunohistochemistry for CD68 assessed the macrophage infiltration of the cornea on day 6 after surgery. Real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay were used to evaluate the messenger ribonucleic acid and protein levels, respectively, of vascular endothelial growth factor, matrix metalloproteinase 9, and monocyte chemoattractant protein 1 in the cornea.Results: The mean diameter of CNPs with spherical shape was 48 nm. The celastrol loading content was 7.36%. The release behavior of CNPs in buffered solution (pH 7.4 showed a typical two-phase release profile. CNPs inhibited the proliferation of human umbilical vein endothelial

  9. Degradation of tropoelastin by matrix metalloproteinases--cleavage site specificities and release of matrikines

    DEFF Research Database (Denmark)

    Heinz, Andrea; Jung, Michael C; Duca, Laurent

    2010-01-01

    To provide a basis for the development of approaches to treat elastin-degrading diseases, the aim of this study was to investigate the degradation of the natural substrate tropoelastin by the elastinolytic matrix metalloproteinases MMP-7, MMP-9, and MMP-12 and to compare the cleavage site...

  10. Evaluation of an improved tissue inhibitor of metalloproteinase 1 dual monoclonal sandwich immunoassay

    DEFF Research Database (Denmark)

    Sørensen, Nanna Møller; Blincko, Stuart; Dinsmore, Emma

    2006-01-01

    BACKGROUND: It has previously been shown that increased levels of plasma tissue inhibitor of metalloproteinase 1 (TIMP-1) is associated with shorter survival for patients with colorectal cancer (CRC). Furthermore, plasma TIMP-1 levels have been found to be elevated in patients with early-stage CR...

  11. Expression of matrix metalloproteinase enzymes in endometrium of women with abnormal uterine bleeding.

    Science.gov (United States)

    Grzechocinska, Barbara; Dabrowski, Filip A; Chlebus, Marcin; Gondek, Agata; Czarzasta, Katarzyna; Michalowski, Lukasz; Cudnoch-Jedrzejewska, Agnieszka; Wielgos, Miroslaw

    2018-02-01

    Abnormal uterine bleeding (AUB) is caused by derangement of physiological processes of tissue growth, shedding and regeneration. It is known that interplay between metalloproteinases (MMP's) and tissue inhibitors of metalloproteinases (TIMP's) may play a crucial role in its occurrence. To define if expression of proMMP-2, MMP-2 and TIMP-1 in endometrium of women with AUB is dependent on steroid sex hormone concentration and histopathological picture. Endometrial scraps were taken from 21 women with AUB and 19 controls. Samples were evaluated in light microscopy by a certified pathologist. Activity of proMMP-2 and MMP-2 proteins levels were evaluated by gelatin zymography and TIMP-1 by reversed zymography. The results has been correlated with serum estradiol and progesterone concentrations in linear regression model. Expression: of proMMP-2 in endometrium of women with AUB is correlated with estradiol concentration and inversely correlated with progesterone levels. It was significantly higher in women with dysfunctional endometrium (pbleeding (pbleeding.

  12. Caffeic acid phenethyl ester downregulates phospholipase D1 via direct binding and inhibition of NFκB transactivation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi Hee; Kang, Dong Woo [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of); Jung, Yunjin [College of Pharmacy, Pusan National University, Busan 609-735 (Korea, Republic of); Choi, Kang-Yell [Translational Research Center for Protein Function Control, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Min, Do Sik, E-mail: minds@pusan.ac.kr [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of)

    2013-12-06

    Highlights: •We found CAFÉ, a natural product that suppresses expression and activity of PLD1. •CAPE decreased PLD1 expression by inhibiting NFκB transactivation. •CAPE rapidly inhibited PLD activity via its binding to a Cys837 of PLD1. •PLD1 downregulation by CAPE inhibited invasion and proliferation of glioma cells. -- Abstract: Upregulation of phospholipase D (PLD) is functionally linked with oncogenic signals and tumorigenesis. Caffeic acid phenethyl ester (CAPE) is an active compound of propolis extract that exhibits anti-proliferative, anti-inflammatory, anti-oxidant, and antineoplastic properties. In this study, we demonstrated that CAPE suppressed the expression of PLD1 at the transcriptional level via inhibition of binding of NFκB to PLD1 promoter. Moreover, CAPE, but not its analogs, bound to a Cys837 residue of PLD1 and inhibited enzymatic activity of PLD. CAPE also decreased activation of matrix metalloproteinases-2 induced by phosphatidic acid, a product of PLD activity. Ultimately, CAPE-induced downregulation of PLD1 suppressed invasion and proliferation of glioma cells. Taken together, the results of this study indicate that CAPE might contribute to anti-neoplastic effect by targeting PLD1.

  13. Increased expression of metalloproteinase-2 and -9 (MMP-2, MMP-9), tissue inhibitor of metalloproteinase-1 and -2 (TIMP-1, TIMP-2), and EMMPRIN (CD147) in multiple myeloma.

    Science.gov (United States)

    Urbaniak-Kujda, Donata; Kapelko-Slowik, Katarzyna; Prajs, Iwona; Dybko, Jarosław; Wolowiec, Dariusz; Biernat, Monika; Slowik, Miroslaw; Kuliczkowski, Kazimierz

    2016-01-01

    Activity of metalloproteinases (MMP) is controlled both by specific tissue inhibitors (TIMP) and activators (extracellular matrix metalloproteinase inducer, EMMPRIN). There are few data available concerning concentration the bone marrow of MMP-2, MMP-9, TIMP-1, and TIMP-2, or EMMPRIM expression by bone marrow mesenchymal stromal cells (BMSCs) in patients with multiple myeloma (MM). We studied 40 newly diagnosed, untreated patients: 18 males and 22 females with de novo MM and 11 healthy controls. Bone marrow was collected prior to therapy. BMSCs were derived by culturing bone marrow cells on MesenCult. Protein concentrations were determined in bone marrow plasma and culture supernatants by ELISA. EMMPRIN expression by BMSCs was assessed by flow cytometry. The median concentrations of MMP-9, TIMP-1, and TIMP-2 in both marrow plasma and culture supernatants were significantly higher in MM patients than controls. EMMPRIN expression and ratios MMP-9/TIMP-1 and MMP-2/TIMP-2 were higher in MM patients, our results demonstrate that in MM patients MMP-2 and MMP-9 are secreted in higher amounts and are not balanced by inhibitors.

  14. Increased expression of matrix metalloproteinases in the murine zymosan-induced multiple organ dysfunction syndrome.

    NARCIS (Netherlands)

    Volman, T.J.H.; Goris, R.J.A.; Lomme, R.M.L.M.; Groot, J. de; Verhofstad, A.A.J.; Hendriks, T.

    2004-01-01

    Matrix metalloproteinases (MMPs) have been implicated as mediators of tissue damage in several inflammatory diseases. Since the multiple organ dysfunction syndrome (MODS) is thought to result from systemic inflammation, overactivation of MMPs could contribute to the organ damage observed. The

  15. Downregulation of membrane type-matrix metalloproteinases in the inflamed or injured central nervous system

    DEFF Research Database (Denmark)

    Toft-Hansen, Henrik; Babcock, Alicia A; Millward, Jason M

    2007-01-01

    BACKGROUND: Matrix metalloproteinases (MMPs) are thought to mediate cellular infiltration in central nervous system (CNS) inflammation by cleaving extracellular matrix proteins associated with the blood-brain barrier. The family of MMPs includes 23 proteinases, including six membrane type-MMPs (M...

  16. Activity and expression of urokinase-type plasminogen activator and matrix metalloproteinases in human colorectal cancer

    International Nuclear Information System (INIS)

    Kim, Tae-Dong; Song, Kyoung-Sub; Li, Ge; Choi, Hoon; Park, Hae-Duck; Lim, Kyu; Hwang, Byung-Doo; Yoon, Wan-Hee

    2006-01-01

    Matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and urokinase-type plasminogen activator (uPA) are involved in colorectal cancer invasion and metastasis. There is still debate whether the activity of MMP-2 and MMP-9 differs between tumors located in the colon and rectum. We designed this study to determine any differences in the expression of MMP-2, MMP-9 and uPA system between colon and rectal cancer tissues. Cancer tissue samples were obtained from colon carcinoma (n = 12) and rectal carcinomas (n = 10). MMP-2 and MMP-9 levels were examined using gelatin zymography and Western blotting; their endogenous inhibitors, tissue inhibitor of metalloproteinase-2 (TIMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1), were assessed by Western blotting. uPA, uPAR and PAI-1 were examined using enzyme-linked immunosorbent assay (ELISA). The activity of uPA was assessed by casein-plasminogen zymography. In both colon and rectal tumors, MMP-2, MMP-9 and TIMP-1 protein levels were higher than in corresponding paired normal mucosa, while TIMP-2 level in tumors was significantly lower than in normal mucosa. The enzyme activities or protein levels of MMP-2, MMP-9 and their endogenous inhibitors did not reach a statistically significant difference between colon and rectal cancer compared with their normal mucosa. In rectal tumors, there was an increased activity of uPA compared with the activity in colon tumors (P = 0.0266), however urokinase-type plasminogen activator receptor (uPAR) and plasminogen activator inhibitor-1 (PAI-1) showed no significant difference between colon and rectal cancer tissues. These findings suggest that uPA may be expressed differentially in colon and rectal cancers, however, the activities or protein levels of MMP-2, MMP-9, TIMP-1, TIMP-2, PAI-1 and uPAR are not affected by tumor location in the colon or the rectum

  17. Fluorescent Water Soluble Polymers for Isozyme-Selective Interactions with Matrix Metalloproteinase-9

    Science.gov (United States)

    Dutta, Rinku; Scott, Michael D.; Haldar, Manas K.; Ganguly, Bratati; Srivastava, D. K.; Friesner, Daniel L.; Mallik, Sanku

    2011-01-01

    Matrix metalloproteinases (MMPs) are overexpressed in various pathological conditions, including various cancers. Although these isozymes have similar active sites, the patterns of exposed amino acids on their surfaces are different. Herein, we report the synthesis and molecular interactions of two water-soluble, fluorescent polymers which demonstrate selective interactions with MMP-9 compared to MMP-7 and -10. PMID:21367603

  18. Matrix metalloproteinase-7 and matrix metalloproteinase-25 in oral tongue squamous cell carcinoma.

    Science.gov (United States)

    Mäkinen, Laura K; Häyry, Valtteri; Hagström, Jaana; Sorsa, Timo; Passador-Santos, Fabricio; Keski-Säntti, Harri; Haukka, Jari; Mäkitie, Antti A; Haglund, Caj; Atula, Timo

    2014-12-01

    Predicting the clinical course of early-stage oral tongue squamous cell carcinoma (SCC) is challenging. As matrix metalloproteinases (MMPs) are enzymes associated with invasion, metastasis, and poor survival in many cancers, we examined MMP-7 and MMP-25 in oral tongue SCC. We used tissue microarray (TMA) technique and immunohistochemistry to study the expression of MMP-7 and MMP-25 in 73 patients with stage I to II oral tongue SCC and compared their immunoexpressions with clinical data. Immunohistochemistry revealed MMP-7 and MMP-25 expression in 90% (n = 63 of 70) and 90% (n = 64 of 71) of the tumors, respectively. MMP-7 protein expression was associated with presence of occult cervical metastases (odds ratio [OR], 3.67; p = .013), increased invasion depth (OR, 4.60; p = .005), and higher tumor grade (OR, 3.30; p = .007). MMP-7 expression was predictive for poor outcome (p = .021). Immunostaining of MMP-25 did not correlate with any clinical parameters. We conclude that MMP-7, but not MMP-25, expression may have prognostic significance in early-stage oral tongue SCC. © 2014 Wiley Periodicals, Inc.

  19. Arctigenin Inhibits Lung Metastasis of Colorectal Cancer by Regulating Cell Viability and Metastatic Phenotypes.

    Science.gov (United States)

    Han, Yo-Han; Kee, Ji-Ye; Kim, Dae-Seung; Mun, Jeong-Geon; Jeong, Mi-Young; Park, Sang-Hyun; Choi, Byung-Min; Park, Sung-Joo; Kim, Hyun-Jung; Um, Jae-Young; Hong, Seung-Heon

    2016-08-27

    Arctigenin (ARC) has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC). In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mesenchymal transition (EMT) through increasing the expression of epithelial marker E-cadherin and decreasing the expressions of mesenchymal markers; N-cadherin, vimentin, β-catenin, and Snail. Moreover, ARC inhibited migration and invasion through reducing of matrix metalloproteinase-2 (MMP-2) and MMP-9 expressions. In an experimental metastasis model, ARC significantly inhibited lung metastasis of CT26 cells. Taken together, our study demonstrates the inhibitory effects of ARC on colorectal metastasis.

  20. Arctigenin Inhibits Lung Metastasis of Colorectal Cancer by Regulating Cell Viability and Metastatic Phenotypes

    Directory of Open Access Journals (Sweden)

    Yo-Han Han

    2016-08-01

    Full Text Available Arctigenin (ARC has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC. In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mesenchymal transition (EMT through increasing the expression of epithelial marker E-cadherin and decreasing the expressions of mesenchymal markers; N-cadherin, vimentin, β-catenin, and Snail. Moreover, ARC inhibited migration and invasion through reducing of matrix metalloproteinase-2 (MMP-2 and MMP-9 expressions. In an experimental metastasis model, ARC significantly inhibited lung metastasis of CT26 cells. Taken together, our study demonstrates the inhibitory effects of ARC on colorectal metastasis.

  1. Effect of pomegranate juice supplementation on matrix metalloproteinases 2 and 9 following exhaustive exercise in young healthy males

    International Nuclear Information System (INIS)

    Mazani, M.; Fard, A. S.; Baghi, A. N.; Nemati, A.; Mogadam, R. A.

    2014-01-01

    Objectives: To evaluate the efficacy of pomegranate juice supplementation on matrix metalloproteinases 2 and 9 serum levels and improving antioxidant function in young healthy males during exhaustive exercise. Methods: The study was conducted at Ardabil University of Medical Sciences, Iran, in 2010-11 and comprised 28 healthy subjects in 18-24 age bracket. They were randomly divided into control and supplemented groups. One cup of pomegranate juice and one cup of tap water were given to supplemented and control groups daily for two weeks respectively. Fasting blood samples were taken at baseline and at the end of two weeks of intervention. The subjects were given one exhaustive exercise and then fasting blood samples were taken for testing blood glutathione peroxidase and superoxide dismutase and serum levels of high sensitivity C-reactive protein, zinc, ceruloplasmin, matrix metalloproteinases 2 and 9, malondialdehyde and total antioxidant capacity. Data was analysed using descriptive statistical tests, paired and independent sample t-test. Results: The blood levels of glutathione peroxidase and superoxide dismutase and serum levels of total antioxidant capacity after exhaustive exercise in the supplemented group were significantly increased (p<0.05), while the content of matrix metalloproteinases 2 and 9, ceruloplasmin and malondialdehyde showed a significant decrease in comparison to the control group (p<0.05). Besides, there were no significant changes in other biochemical factors. Conclusion: Regular intake of pomegranate juice significantly modulates matrix metalloproteinases 2 and 9 serum levels of some inflammatory factors and thus protects against exhaustive exercise-induced oxidative injury in young healthy males. (author)

  2. The Influence of Autologous Bone Marrow Stem Cell Transplantation on Matrix Metalloproteinases in Patients Treated for Acute ST-Elevation Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Eline Bredal Furenes

    2014-01-01

    Full Text Available Background. Matrix metalloproteinase-9 (MMP-9, regulated by tissue inhibitor of metalloproteinase-9 (TIMP-1 and the extracellular matrix metalloproteinase inducer (EMMPRIN, contributes to plaque instability. Autologous stem cells from bone marrow (mBMC treatment are suggested to reduce myocardial damage; however, limited data exists on the influence of mBMC on MMPs. Aim. We investigated the influence of mBMC on circulating levels of MMP-9, TIMP-1, and EMMPRIN at different time points in patients included in the randomized Autologous Stem-Cell Transplantation in Acute Myocardial Infarction (ASTAMI trial (n=100. Gene expression analyses were additionally performed. Results. After 2-3 weeks we observed a more pronounced increase in MMP-9 levels in the mBMC group, compared to controls (P=0.030, whereas EMMPRIN levels were reduced from baseline to 2-3 weeks and 3 months in both groups (P<0.0001. Gene expression of both MMP-9 and EMMPRIN was reduced from baseline to 3 months. MMP-9 and EMMPRIN were significantly correlated to myocardial injury (CK: P=0.005 and P<0.001, resp. and infarct size (SPECT: P=0.018 and P=0.008, resp.. Conclusion. The results indicate that the regulation of metalloproteinases is important during AMI, however, limited influenced by mBMC.

  3. Kaempferol Inhibits the Invasion and Migration of Renal Cancer Cells through the Downregulation of AKT and FAK Pathways.

    Science.gov (United States)

    Hung, Tung-Wei; Chen, Pei-Ni; Wu, Hsu-Chen; Wu, Sheng-Wen; Tsai, Pao-Yu; Hsieh, Yih-Shou; Chang, Horng-Rong

    2017-01-01

    Kaempferol, which is isolated from several natural plants, is a polyphenol belonging to the subgroup of flavonoids. Kaempferol exhibits various pharmacological activities, including anti-inflammatory, antioxidant, antimicrobial, and anticancer activities. In this study, kaempferol can significantly inhibit the invasion and migration of 786-O renal cell carcinoma (RCC) without cytotoxicity. We examined the potential mechanisms underlying its anti-invasive activities on 786-O RCC cells. Western blot was performed, and the results showed that kaempferol attenuates the manifestation of metalloproteinase-2 (MMP-2) protein and activity. The inhibitive effect of kaempferol on MMP-2 may be attributed to the downregulation of phosphorylation of Akt and focal adhesion kinase (FAK). By examining the SCID mice model, we found that kaempferol can safely inhibit the metastasis of the 786-O RCC cells into the lungs by about 87.4% as compared to vehicle treated control animals. In addition, the lung tumor masses of mice pretreated with 2-10 mg/kg kaempferol were reduced about twofold to fourfold. These data suggested that kaempferol can play a promising role in tumor prevention and cancer metastasis inhibition.

  4. Early increased levels of matrix metalloproteinase-9 in neonates recovering from respiratory distress syndrome

    NARCIS (Netherlands)

    Dik, Willem A.; van Kaam, Anton H. L. C.; Dekker, Tamara; Naber, Brigitta A. E.; Janssen, Daphne J.; Kroon, A. A.; Zimmermann, Luc J. I.; Versnel, Marjan A.; Lutter, René

    2006-01-01

    Aim: Matrix metalloproteinases (MMPs) play an eminent role in airway injury and remodelling. We explored the hypothesis that pulmonary MMP levels would differ early after birth (2-4 days) between infants with resolving respiratory distress syndrome (RDS) and infants developing chronic lung disease

  5. Tissue inhibitor of metalloproteinase 1 (TIMP-1) as a biomarker in gastric cancer

    DEFF Research Database (Denmark)

    Grunnet, Mie; Mau-Sørensen, Morten; Brünner, Nils

    2013-01-01

    The value of Tissue Inhibitor of MetalloProteinase-1 (TIMP-1) as a biomarker in patients with gastric cancer (GC) is widely debated. The aim of this review is to evaluate available literature describing the association between levels of TIMP-1 in tumor tissue and/or blood and the prognosis...

  6. Streptococcus sanguinis-induced cytokine and matrix metalloproteinase-1 release from platelets

    OpenAIRE

    Cognasse, Fabrice; Hamzeh-Cognasse, Hind; Chabert, Adrien; Jackson, Elke; Arthaud, Charles-Antoine; Garraud, Olivier; McNicol, Archie

    2014-01-01

    Background Streptococcus sanguinis (S.sanguinis), a predominant bacterium in the human oral cavity, has been widely associated with the development of infective endocarditis. Platelets play both a haemostatic function and can influence both innate and adaptive immune responses. Previous studies have shown that S.sanguinis can interact with, and activate, platelets. Results The aim of this study was to determine whether S.sanguinis stimulates the release of matrix metalloproteinases (MMPs) 1, ...

  7. Chronic mild stress influences nerve growth factor through a matrix metalloproteinase-dependent mechanism.

    Science.gov (United States)

    Kucharczyk, Mateusz; Kurek, Anna; Detka, Jan; Slusarczyk, Joanna; Papp, Mariusz; Tota, Katarzyna; Basta-Kaim, Agnieszka; Kubera, Marta; Lason, Wladyslaw; Budziszewska, Bogusława

    2016-04-01

    Stress is generally a beneficial experience that motivates an organism to action to overcome the stressful challenge. In particular situations, when stress becomes chronic might be harmful and devastating. The hypothalamus is a critical coordinator of stress and the metabolic response; therefore, disruptions in this structure may be a significant cause of the hormonal and metabolic disturbances observed in depression. Chronic stress induces adverse changes in the morphology of neural cells that are often associated with a deficiency of neurotrophic factors (NTFs); additionally, many studies indicate that insufficient NTF synthesis may participate in the pathogenesis of depression. The aim of the present study was to determine the expression of the nerve growth factor (NGF) in the hypothalamus of male rats subjected to chronic mild stress (CMS) or to prenatal stress (PS) and to PS in combination with an acute stress event (AS). It has been found that chronic mild stress, but not prenatal stress, acute stress or a combination of PS with AS, decreased the concentration of the mature form of NGF (m-NGF) in the rat hypothalamus. A discrepancy between an increase in the Ngf mRNA and a decrease in the m-NGF levels suggested that chronic mild stress inhibited NGF maturation or enhanced the degradation of this factor. We have shown that NGF degradation in the hypothalamus of rats subjected to chronic mild stress is matrix metalloproteinase-dependent and related to an increase in the active forms of some metalloproteinases (MMP), including MMP2, MMP3, MMP9 and MMP13, while the NGF maturation process does not seem to be changed. We suggested that activated MMP2 and MMP9 potently cleave the mature but not the pro- form of NGF into biologically inactive products, which is the reason for m-NGF decomposition. In turn, the enhanced expression of Ngf in the hypothalamus of these rats is an attempt to overcome the reduced levels of m-NGF. Additionally, the decreased level of m

  8. TISSUE INHIBITOR OF METALLOPROTEINASE 1, MATRIX METALLOPROTEINASE 9, ALPHA-1 ANTITRYPSIN, METALLOTHIONEIN AND UROKINASE TYPE PLASMINOGEN ACTIVATOR RECEPTOR IN SKIN BIOPSIES FROM PATIENTS AFFECTED BY AUTOIMMUNE BLISTERING DISEASES

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2013-07-01

    Full Text Available Introduction: Proteinases and proteinase inhibitors have been described to play a role in autoimmune skin blistering diseases. We studied skin lesional biopsies from patients affected by several autoimmune skin blistering diseases for proteinases and proteinase inhibitors. Methods: We utilized immunohistochemistry to evaluate biopsies for alpha-1-antitrypsin, human matrix metalloproteinase 9 (MMP9, human tissue inhibitor of metalloproteinases 1 (TIMP-1, metallothionein and urokinase type plasminogen activator receptor (uPAR. We tested 30 patients affected by endemic pemphigus, 30 controls from the endemic area, and 15 normal controls. We also tested 30 biopsies from patients with bullous pemphigoid (BP, 20 with pemphigus vulgaris (PV, 8 with pemphigus foliaceus, and 14 with dermatitis herpetiformis (DH. Results: Contrary to findings in the current literature, most autoimmune skin blistering disease biopsies were negative for uPAR and MMP9. Only some chronic patients with El Bagre-EPF were positive to MMP9 in the dermis, in proximity to telocytes. TIMP-1 and metallothionein were positive in half of the biopsies from BP patients at the basement membrane of the skin, within several skin appendices, in areas of dermal blood vessel inflammation and within dermal mesenchymal-epithelial cell junctions.

  9. Purification and characterization of a novel milk-clotting metalloproteinase from Paenibacillus spp. BD3526.

    Science.gov (United States)

    Hang, Feng; Wang, Qinbo; Hong, Qing; Liu, Peiyi; Wu, Zhengjun; Liu, Zhenmin; Zhang, Hao; Chen, Wei

    2016-04-01

    In this study, a milk-clotting enzyme (MCE) isolated from Paenibacillus spp. BD3526 was purified and characterized. The MCE was purified 8.9-fold with a 10.11% recovery using ammonium sulfate precipitation and anion-exchange chromatography and the specific milk-clotting activity (MCA) reached 6791.73 SU/mg. The enzyme was characterized as a 35kDa metalloproteinase, and the zymogen of which was encoded by a 1671 bp gene named zinc metalloproteinase precursor (zmp) with a predicted molecular weight of 59.6 kDa. The optimal temperature for MCA and proteolytic activity (PA) was 65°C and 60°C, respectively. The enzyme was stable over a pH range of 5.0-9.0 and at temperatures below 50°C. The MCA was completely inactivated when the enzyme was heated at 60°C for 30 min, and the PA was totally inactivated for 20 and 10 min when the enzyme was heated at 55°C and 60°C, respectively. The BD3526 enzyme was preferentially active towards κ-casein (κ-CN) and β-casein (β-CN), as determined by sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE), whereas the hydrolysis of αs-casein (αs-CN) was slow and comparable to that caused by chymosin and asparatic acid proteinase from Rhizomucor miehei. The cleavage site of the metalloproteinase in κ-CN was located at the Met106-Ala107 bond, as determined by mass spectrometry analysis. Copyright © 2016. Published by Elsevier B.V.

  10. MMP-9 directed shRNAs as relevant inhibitors of matrix metalloproteinase 9 activity and signaling

    Directory of Open Access Journals (Sweden)

    Ewa Nowak

    2013-08-01

    Full Text Available Introduction: The main function of matrix metalloproteinases is the degradation of extracellular matrix components, which is related to changes in the proliferation of cells, their differentiation, motility, and death. MMPs play an important role in physiological processes such as embryogenesis, angiogenesis and tissue remodeling. The increase of MMPs activity is also observed in pathological conditions including tumorigenesis where MMP-2 (gelatinase A and MMP-9 (gelatinase B show the ability to degrade the basement membrane of vessels and they are involved in metastasis. The aim of our study was to verify the changes of MMP-9 enzymatic activity and the mobility of cells after inhibition of MMP-9 gene expression.Material and Methods: The oligonucleotide shRNA insert had been designed to silence MMP-9 gene expression and was cloned into the pSUPER.neo expression vector. The construct was introduced into the HeLa (CCL-2 cervical cancer cells by lipotransfection. Simultaneously in control cells MMP-9 were inhibited by doxycycline. Changes in activity of MMP-9 were analyzed by gelatin zymography and wound-healing assay.Results/Conclusions: Gelatin zymography allowed us to confirm that activity of MMP-9 in cells transfected by shRNA-MMP-9 and treated by doxycycline were similar and significantly lower in comparison with control cells. Phenotypic tests of migration in vitro confirm statistically significant (P<0.05 changes in cell migration – control cells healed 3 to 5 times faster in comparison with transfected or doxycycline treated cells. Our studies show the significant role of MMP-9 in mobility and invasiveness of tumor cells, thus indicating a potential target point of interest for gene therapy.

  11. Doxycycline-loaded nanotube-modified adhesives inhibit MMP in a dose-dependent fashion.

    Science.gov (United States)

    Palasuk, Jadesada; Windsor, L Jack; Platt, Jeffrey A; Lvov, Yuri; Geraldeli, Saulo; Bottino, Marco C

    2018-04-01

    This article evaluated the drug loading, release kinetics, and matrix metalloproteinase (MMP) inhibition of doxycycline (DOX) released from DOX-loaded nanotube-modified adhesives. DOX was chosen as the model drug, since it is the only MMP inhibitor approved by the U.S. Food and Drug Administration. Drug loading into the nanotubes was accomplished using DOX solution at distinct concentrations. Increased concentrations of DOX significantly improved the amount of loaded DOX. The modified adhesives were fabricated by incorporating DOX-loaded nanotubes into the adhesive resin of a commercial product. The degree of conversion (DC), Knoop microhardness, DOX release kinetics, antimicrobial, cytocompatibility, and anti-MMP activity of the modified adhesives were investigated. Incorporation of DOX-loaded nanotubes did not compromise DC, Knoop microhardness, or cell compatibility. Higher concentrations of DOX led to an increase in DOX release in a concentration-dependent manner from the modified adhesives. DOX released from the modified adhesives did not inhibit the growth of caries-related bacteria, but more importantly, it did inhibit MMP-1 activity. The loading of DOX into the nanotube-modified adhesives did not compromise the physicochemical properties of the adhesives and the released levels of DOX were able to inhibit MMP activity without cytotoxicity. Doxycycline released from the nanotube-modified adhesives inhibited MMP activity in a concentration-dependent fashion. Therefore, the proposed nanotube-modified adhesive may hold clinical potential as a strategy to preserve resin/dentin bond stability.

  12. A dual inhibitor of matrix metalloproteinases and a disintegrin and metalloproteinases, [¹⁸F]FB-ML5, as a molecular probe for non-invasive MMP/ADAM-targeted imaging.

    Science.gov (United States)

    Matusiak, Nathalie; Castelli, Riccardo; Tuin, Adriaan W; Overkleeft, Herman S; Wisastra, Rosalina; Dekker, Frank J; Prély, Laurette M; Bischoff, Rainer; Bischoff, Rainer P M; van Waarde, Aren; Dierckx, Rudi A J O; Elsinga, Philip H

    2015-01-01

    Numerous clinical studies have shown a correlation between increased matrix metalloproteinase (MMP)/a disintegrin and metalloproteinase (ADAM) activity and poor outcome of cancer. Various MMP inhibitors (MMPIs) have been developed for therapeutic purposes in oncology. In addition, molecular imaging of MMP/ADAM levels in vivo would allow the diagnosis of tumors. We selected the dual inhibitor of MMPs and ADAMs, ML5, which is a hydroxamate-based inhibitor with affinities for many MMPs and ADAMs. ML5 was radiolabelled with (18)F and the newly obtained radiolabelled inhibitor was evaluated in vitro and in vivo. ML5 was radiolabelled by direct acylation with N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB) for PET (positron emission tomography). The resulting radiotracer [(18)F]FB-ML5 was evaluated in vitro in human bronchial epithelium 16HBE cells and breast cancer MCF-7 cells. The non-radioactive probe FB-ML5 and native ML5 were tested in a fluorogenic inhibition assay against MMP-2, -9, -12 and ADAM-17. The in vivo kinetics of [(18)F]FB-ML5 were examined in a HT1080 tumor-bearing mouse model. Specificity of probe binding was examined by co-injection of 0 or 2.5mg/kg ML5. ML5 and FB-ML5 showed high affinity for MMP-2, -9, -12 and ADAM-17; indeed IC50 values were respectively 7.4 ± 2.0, 19.5 ± 2.8, 2.0 ± 0.2 and 5.7 ± 2.2 nM and 12.5 ± 3.1, 31.5 ± 13.7, 138.0 ± 10.9 and 24.7 ± 2.8 nM. Radiochemical yield of HPLC-purified [(18)F]FB-ML5 was 13-16% (corrected for decay). Cellular binding of [(18)F]FB-ML5 was reduced by 36.6% and 27.5% in MCF-7 and 16 HBE cells, respectively, after co-incubation with 10 μM of ML5. In microPET scans, HT1080 tumors exhibited a low and homogeneous uptake of the tracer. Tumors of mice injected with [(18)F]FB-ML5 showed a SUVmean of 0.145 ± 0.064 (n=6) which decreased to 0.041 ± 0.027 (n=6) after target blocking (pFB-ML5 demonstrated rather low binding in ADAM-17 overexpressing cell lines. [(18)F]FB-ML5 uptake showed significant

  13. Attention Diversion Improves Response Inhibition of Immediate Reward, But Only When it Is Beneficial: An fMRI Study

    Science.gov (United States)

    Scalzo, Franco; O’Connor, David A.; Orr, Catherine; Murphy, Kevin; Hester, Robert

    2016-01-01

    Deficits of self-control are associated with a number of mental state disorders. The ability to direct attention away from an alluring stimulus appears to aid inhibition of an impulsive response. However, further functional imaging research is required to assess the impact of shifts in attention on self-regulating processes. We varied the level of attentional disengagement in an functional magnetic resonance imaging (fMRI)-based Go/No-go task to probe whether diversion of attention away from alluring stimuli facilitates response inhibition. We used the attention-grabbing characteristic of faces to exogenously direct attention away from stimuli and investigated the relative importance of attention and response inhibition mechanisms under different delayed reward scenarios [i.e., where forgoing an immediate reward ($1) led to a higher ($10) or no payoff in the future]. We found that diverting attention improved response inhibition performance, but only when resistance to an alluring stimulus led to delayed reward. Region of interest analyses indicated significant increased activity in posterior right inferior frontal gyrus during successful No-go trials for delayed reward trials compared to no delayed reward trials, and significant reduction in activity in the superior temporal gyri and left caudate in contexts of high attentional diversion. Our findings imply that strategies that increase the perceived benefits of response inhibition might assist individuals in abstaining from problematic impulsive behaviors. PMID:27616988

  14. Tissue inhibitor of matrix metalloproteinases-1 loaded poly(lactic-co-glycolic acid nanoparticles for delivery across the blood–brain barrier

    Directory of Open Access Journals (Sweden)

    Chaturvedi M

    2014-01-01

    Full Text Available Mayank Chaturvedi,1 Yves Molino,2 Bojja Sreedhar,3 Michel Khrestchatisky,4 Leszek Kaczmarek1 1Laboratory of Neurobiology, Nencki Institute, Warsaw, Poland; 2Vect-Horus, Marseille, France; 3Indian Institute of Chemical Technology, Hyderabad, India; 4Aix-Marseille Université, CNRS, NICN, UMR7259, Marseille, France Aim: The aim of this study was to develop poly(lactic-co-glycolic acid (PLGA nanoparticles (NPs for delivery of a protein – tissue inhibitor of matrix metalloproteinases 1 (TIMP-1 – across the blood–brain barrier (BBB to inhibit deleterious matrix metalloproteinases (MMPs. Materials and methods: The NPs were formulated by multiple-emulsion solvent-evaporation, and for enhancing BBB penetration, they were coated with polysorbate 80 (Ps80. We compared Ps80-coated and uncoated NPs for their toxicity, binding, and BBB penetration on primary rat brain capillary endothelial cell cultures and the rat brain endothelial 4 cell line. These studies were followed by in vivo studies for brain delivery of these NPs. Results: Results showed that neither Ps80-coated nor uncoated NPs caused significant opening of the BBB, and essentially they were nontoxic. NPs without Ps80 coating had more binding to endothelial cells compared to Ps80-coated NPs. Penetration studies showed that TIMP-1 NPs + Ps80 had 11.21%±1.35% penetration, whereas TIMP-1 alone and TIMP-1 NPs without Ps80 coating did not cross the endothelial monolayer. In vivo studies indicated BBB penetration of intravenously injected TIMP-1 NPs + Ps80. Conclusion: The study demonstrated that Ps80 coating of NPs does not cause significant toxic effects to endothelial cells and that it can be used to enhance the delivery of protein across endothelial cell barriers, both in vitro and in vivo. Keywords: PLGA nanoparticles, drug delivery, protein delivery, sustained release, brain delivery, BBB penetration, RBCEC culture

  15. CDP-choline modulates matrix metalloproteinases in rat sciatic injury.

    Science.gov (United States)

    Gundogdu, Elif Basaran; Bekar, Ahmet; Turkyilmaz, Mesut; Gumus, Abdullah; Kafa, Ilker Mustafa; Cansev, Mehmet

    2016-02-01

    CDP-choline (cytidine-5'-diphosphocholine) improves functional recovery, promotes nerve regeneration, and decreases perineural scarring in rat peripheral nerve injury. The aim of the present study was to investigate the mechanism of action of CDP-choline with regard to matrix metalloproteinase (MMP) activity in the rat-transected sciatic nerve injury model. Male Wistar rats were randomized into Sham, Saline, and CDP-choline groups. Rats in Sham group received Sham surgery, whereas rats in Saline and CDP-choline groups underwent right sciatic nerve transection followed by immediate primary saturation and injected intraperitoneally with 0.9% NaCl (1 mL/kg) and CDP-choline (600 μg/kg), respectively. Sciatic nerve samples were obtained 1, 3, and 7 d after the surgery and analyzed for levels and activities of MMP-2 and MMP-9, levels of tissue inhibitor of metalloproteinases-1 (TIMP-1) and TIMP-3, and axonal regeneration. CDP-choline treatment decreased the levels and activities of MMP-2 and MMP-9, whereas increasing levels of TIMP-1 and TIMP-3 significantly on the third and seventh day after injury compared to Saline group. In addition, CDP-choline administration resulted in new axon formation and formation and advancement of myelination on newly formed islets (compartments) of axonal regrowth. Our data show, for the first time, that CDP-choline modulates MMP activity and promotes the expression of TIMPs to stimulate axonal regeneration. These data help to explain one mechanism by which CDP-choline provides neuroprotection in peripheral nerve injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Comprehensive profiling and localisation of the matrix metalloproteinases in urothelial carcinoma

    OpenAIRE

    Wallard, M J; Pennington, C J; Veerakumarasivam, A; Burtt, G; Mills, I G; Warren, A; Leung, H Y; Murphy, G; Edwards, D R; Neal, D E; Kelly, J D

    2006-01-01

    The matrix metalloproteinases (MMPs) are endopeptidases which break down the extracellular matrix and regulate cytokine and growth factor activity. Several MMPs have been implicated in the promotion of invasion and metastasis in a broad range of tumours including urothelial carcinoma. In this study, RNA from 132 normal bladder and urothelial carcinoma specimens was profiled for each of the 24 human MMPs, the four endogenous tissue inhibitors of MMPs (TIMPs) and several key growth factors and ...

  17. Anti-inflammatory and Anti-apoptotic Effect of Valproic Acid and Doxycycline Independent from MMP Inhibition in Early Radiation Damage

    Directory of Open Access Journals (Sweden)

    Ferda Hoşgörler

    2016-10-01

    Full Text Available Background: Matrix metalloproteinase (MMP inhibitors decrease inflammation in normal tissues and suppress cancer progress in normal tissues. Valproic acid (VA and doxycycline (DX are MMP inhibitors that have radio-protective effects. Their ability to inhibit MMPs in irradiated tissue is unknown and the role of MMPs in radio-protective effects has not been tested to date. Aims: The purpose of this study was to examine whether administration of VA and DX to rats before irradiation affects tissue inflammation and apoptosis in the early phase of radiation, and whether the effect of these drugs is mediated by MMP inhibition. Study Design: Animal experimentation. Methods: Twenty-six Wistar rats were randomized into four groups: control (CTRL, radiation (RT, VA plus radiation (VA+RT, and DX plus radiation (DX+RT.Three study groups were exposed to a single dose of abdominal 10 Gy gamma radiation; the CTRL group received no radiation. Single doses of VA 300 mg/kg and DX 100 mg/kg were administered to each rat before radiation and all rats were sacrificed 8 hours after irradiation, at which point small intestine tissue samples were taken for analyses. Levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6 and matrix metalloproteinases (MMP-2 and MMP 9 were measured by ELISA, MMP activities were measured by gelatin and casein zymography and apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Results: VA decreased the levels of TNF-α and IL-1β proteins insignificantly and decreased apoptosis significantly in the irradiated tissue, but did not inhibit MMPs. In contrast, VA protected the basal MMP activities, which decreased in response to irradiation. No effect of DX was observed on the levels of inflammatory cytokines or activities of MMPs in the early phases of radiation apoptosis. Conclusion: Our findings indicated that VA protects against inflammation and apoptosis, and DX exhibits anti-apoptotic effects in

  18. Circulating matrix metalloproteinases are associated with arterial stiffness in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Peeters, Stijn A.; Engelen, Lian; Buijs, Jacqueline

    2017-01-01

    BACKGROUND: Altered regulation of extracellular matrix (ECM) composition by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) may contribute to arterial stiffening. We investigated associations between circulating MMP-1, -2, -3, -9, -10 and TIMP-1, and carotid......). Linear regression analyses were used to investigate cross-sectional associations between circulating levels of MMP-1, -2, -3, -9, -10, and TIMP-1 and cfPWV (n = 614) as well as office PP (n = 1517). Data on 24-h brachial and 24-h central PP were available in 638 individuals from PROFIL. Analyses were...... was associated with cfPWV [β per 1 SD higher lnMMP3 0.29 m/s (0.02; 0.55)]. In addition, brachial and central 24-h PP measurements in PROFIL were significantly associated with MMP-2 [(1.40 (0.47:2.33) and 1.43 (0.63:2.23)]. Pooled data analysis showed significant associations of circulating levels of MMP-1...

  19. Matrix Metalloproteinase Inhibitors (MMPIs from Marine Natural Products: the Current Situation and Future Prospects

    Directory of Open Access Journals (Sweden)

    Se-Kwon Kim

    2009-03-01

    Full Text Available Matrix metalloproteinases (MMPs are a family of more than twenty five secreted and membrane-bound zinc-endopeptidases which can degrade extracellular matrix (ECM components. They also play important roles in a variety of biological and pathological processes. Matrix metalloproteinase inhibitors (MMPIs have been identified as potential therapeutic candidates for metastasis, arthritis, chronic inflammation and wrinkle formation. Up to present, more than 20,000 new compounds have been isolated from marine organisms, where considerable numbers of these naturally occurring derivatives are developed as potential candidates for pharmaceutical application. Eventhough the quantity of marine derived MMPIs is less when compare with the MMPIs derived from terrestrial materials, huge potential for bioactivity of these marine derived MMPIs has lead to large number of researches. Saccharoids, flavonoids and polyphones, fatty acids are the most important groups of MMPIs derived from marine natural products. In this review we focus on the progress of MMPIs from marine natural products.

  20. HIV-1-infected macrophages induce astrogliosis by SDF-1α and matrix metalloproteinases

    International Nuclear Information System (INIS)

    Okamoto, Mika; Wang, Xin; Baba, Masanori

    2005-01-01

    Brain macrophages/microglia and astrocytes are known to be involved in the pathogenesis of HIV-1-associated dementia (HAD). To clarify their interaction and contribution to the pathogenesis, HIV-1-infected or uninfected macrophages were used as a model of brain macrophages/microglia, and their effects on human astrocytes in vitro were examined. The culture supernatants of HIV-1-infected or uninfected macrophages induced significant astrocyte proliferation, which was annihilated with a neutralizing antibody to stromal cell-derived factor (SDF)-1α or a matrix metalloproteinase (MMP) inhibitor. In these astrocytes, CXCR4, MMP, and tissue inhibitors of matrix metalloproteinase mRNA expression and SDF-1α production were significantly up-regulated. The supernatants of infected macrophages were always more effective than those of uninfected cells. Moreover, the enhanced production of SDF-1α was suppressed by the MMP inhibitor. These results indicate that the activated and HIV-1-infected macrophages can indirectly induce astrocyte proliferation through up-regulating SDF-1α and MMP production, which implies a mechanism of astrogliosis in HAD

  1. Lysophosphatidylcholine hydrolases of human erythrocytes, lymphocytes, and brain: Sensitive targets of conserved specificity for organophosphorus delayed neurotoxicants

    International Nuclear Information System (INIS)

    Vose, Sarah C.; Holland, Nina T.; Eskenazi, Brenda; Casida, John E.

    2007-01-01

    Brain neuropathy target esterase (NTE), associated with organophosphorus (OP)-induced delayed neuropathy, has the same OP inhibitor sensitivity and specificity profiles assayed in the classical way (paraoxon-resistant, mipafox-sensitive hydrolysis of phenyl valerate) or with lysophosphatidylcholine (LysoPC) as the substrate. Extending our earlier observation with mice, we now examine human erythrocyte, lymphocyte, and brain LysoPC hydrolases as possible sensitive targets for OP delayed neurotoxicants and insecticides. Inhibitor profiling of human erythrocytes and lymphocytes gave the surprising result of essentially the same pattern as with brain. Human erythrocyte LysoPC hydrolases are highly sensitive to OP delayed neurotoxicants, with in vitro IC 50 values of 0.13-85 nM for longer alkyl analogs, and poorly sensitive to the current OP insecticides. In agricultural workers, erythrocyte LysoPC hydrolyzing activities are similar for newborn children and their mothers and do not vary with paraoxonase status but have high intersample variation that limits their use as a biomarker. Mouse erythrocyte LysoPC hydrolase activity is also of low sensitivity in vitro and in vivo to the OP insecticides whereas the delayed neurotoxicant ethyl n-octylphosphonyl fluoride inhibits activity in vivo at 1-3 mg/kg. Overall, inhibition of blood LysoPC hydrolases is as good as inhibition of brain NTE as a predictor of OP inducers of delayed neuropathy. NTE and lysophospholipases (LysoPLAs) both hydrolyze LysoPC, yet they are in distinct enzyme families with no sequence homology and very different catalytic sites. The relative contributions of NTE and LysoPLAs to LysoPC hydrolysis and clearance from erythrocytes, lymphocytes, and brain remain to be defined

  2. Increased matrix metalloproteinase-8 and -9 activity in patients with infarct rupture after myocardial infarction

    NARCIS (Netherlands)

    Borne, S.W.M. van den; Cleutjens, J.P.M.; Hanemaaijer, R.; Creemers, E.E.; Smits, J.F.M.; Daemen, M.J.A.P.; Blankesteijn, W.M.

    2009-01-01

    Background: Infarct rupture is a usually fatal complication of myocardial infarction (MI), for which no molecular mechanism has been described in humans. Experimental evidence in mouse models suggests that the degradation of the extracellular matrix by matrix metalloproteinases (MMPs) plays an

  3. Diospyros kaki Extract Inhibits Alkali Burn-Induced Corneal Neovascularization.

    Science.gov (United States)

    Yang, Sung Jae; Jo, Hyoung; Kim, Kyung-A; Ahn, Hong Ryul; Kang, Suk Woo; Jung, Sang Hoon

    2016-01-01

    The purpose of this study was to evaluate the effect of ethanol extract of Diospyros kaki (EEDK) leaves on corneal neovascularization (CoNV) in rats. One week after the alkali burns in the corneas, the CoNV area coverage in the CoNV-positive control group, 100 mg/kg EEDK group, and 200 mg/kg EEDK group was 43.3% ± 5.5%, 337.7% ± 2.5%, and 27.2% ± 4.3%, respectively. The areas of CoNV in the EEDK-treated groups were significantly different from those of the CoNV group. EEDK significantly attenuated the upregulation of vascular endothelial growth factor, fibroblast growth factor, interleukin-6, and matrix metalloproteinase-2 (MMP-2) protein levels. Orally administrated D. kaki inhibited CoNV development in rats.

  4. Wogonin suppresses melanoma cell B16-F10 invasion and migration by inhibiting Ras-medicated pathways.

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    Full Text Available The patients diagnosed with melanoma have a bad prognosis for early regional invasion and distant metastases. Wogonin (5,7-dihydroxy-8-methoxyflavone is one of the active components of flavonoids that extracts from Scutellariae radix. Several previous studies reported that wogonin possesses antitumor effect against leukemia, gastrointestinal cancer and breast cancer. In this study, we used melanoma cell B16-F10 to further investigate the anti-invasive and anti-migratory activity of wogonin. Our date showed that wogonin caused suppression of cell migration, adhesion, invasion and actin remodeling by inhibiting the expression of matrix metalloproteinase-2 and Rac1 in vitro. Wogonin also reduced the number of the tumor nodules on the whole surface of the lung in vivo. Furthermore, the examination of mechanism revealed that wogonin inhibited Extracellular Regulated protein Kinases and Protein Kinase B pathways, which are both medicated by Ras. Insulin-like growth factor-1-induced or tumor necrosis factor-α-induced invasion was also inhibited by wogonin. Therefore, the inhibitory mechanism of melanoma cell invasion by wogonin might be elucidated.

  5. Modeling delay in genetic networks: from delay birth-death processes to delay stochastic differential equations.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Bennett, Matthew R; Josić, Krešimir; Ott, William

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  6. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Bennett, Matthew R. [Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77204, USA and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas 77005 (United States); Josić, Krešimir [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204 (United States)

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  7. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    International Nuclear Information System (INIS)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William; Bennett, Matthew R.; Josić, Krešimir

    2014-01-01

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay

  8. Inhibition of NF-κB activity in rabbit vascular smooth muscle cells by lovastatin

    International Nuclear Information System (INIS)

    Luan Zhaoxia; Lan Xiaoli

    2003-01-01

    Nuclear factor NF-κB is believed to play an important role in regulating the production of matrix metalloproteinase (MMPs), which induce atherosclerosis, restenosis and plaque rupture. We incubated rabbit vascular smooth muscle cells (RVSMCs) with 5 μmol/L lovastatin in the presence of IL-1-α and PDGF BB (20 μg/L, respectively) to study whether lovastatin inhibited NF-κB binding activity induced by IL-1 and PDGF. The NF-κB activity was detected by electrophoretic mobility shift assay (EMSA); MMP-1 and MMP-3 were measured by western blotting; and MMP-9 was detected by zymography. The result showed that lovastatin strongly reduced NF-κB activity upregulated by IL-1 combined with PDGF, and lovastatin also dose-dependently inhibited the expression of MMP-1, -3 and -9 induced by IL-1 and PDGF. It suggested that the beneficial effects of statins may extend to mechanisms beyond cholesterol reduction

  9. Zoledronic acid inhibits pulmonary metastasis dissemination in a preclinical model of Ewing’s sarcoma via inhibition of cell migration

    International Nuclear Information System (INIS)

    Odri, Guillaume; Kim, Pui-Pui; Lamoureux, François; Charrier, Céline; Battaglia, Séverine; Amiaud, Jérôme; Heymann, Dominique; Gouin, François; Redini, Françoise

    2014-01-01

    Ewing’s sarcoma (ES) is the second most frequent primitive malignant bone tumor in adolescents with a very poor prognosis for high risk patients, mainly when lung metastases are detected (overall survival <15% at 5 years). Zoledronic acid (ZA) is a potent inhibitor of bone resorption which induces osteoclast apoptosis. Our previous studies showed a strong therapeutic potential of ZA as it inhibits ES cell growth in vitro and ES primary tumor growth in vivo in a mouse model developed in bone site. However, no data are available on lung metastasis. Therefore, the aim of this study was to determine the effect of ZA on ES cell invasion and metastatic properties. Invasion assays were performed in vitro in Boyden’s chambers covered with Matrigel. Matrix Metalloproteinase (MMP) activity was analyzed by zymography in ES cell culture supernatant. In vivo, a relevant model of spontaneous lung metastases which disseminate from primary ES tumor was induced by the orthotopic injection of 10 6 human ES cells in the tibia medullar cavity of nude mice. The effect of ZA (50 μg/kg, 3x/week) was studied over a 4-week period. Lung metastases were observed macroscopically at autopsy and analysed by histology. ZA induced a strong inhibition of ES cell invasion, probably due to down regulation of MMP-2 and −9 activities as analyzed by zymography. In vivo, ZA inhibits the dissemination of spontaneous lung metastases from a primary ES tumor but had no effect on the growth of established lung metastases. These results suggest that ZA could be used early in the treatment of ES to inhibit bone tumor growth but also to prevent the early metastatic events to the lungs

  10. IgE-mediated basophil tumour necrosis factor alpha induces matrix metalloproteinase-9 from monocytes

    DEFF Research Database (Denmark)

    Falkencrone, Sidsel; Poulsen, Lars K.; Bindslev-Jensen, Carsten

    2013-01-01

    IgE-mediated activation of mast cells has been reported to induce the release of tumour necrosis alpha (TNF-α), which may display autocrine effects on these cells by inducing the generation of the tissue remodelling protease matrix metalloproteinase-9 (MMP-9). While mast cells and basophils have...

  11. The dimer interface of the membrane type 1 matrix metalloproteinase hemopexin domain: crystal structure and biological functions.

    Science.gov (United States)

    Tochowicz, Anna; Goettig, Peter; Evans, Richard; Visse, Robert; Shitomi, Yasuyuki; Palmisano, Ralf; Ito, Noriko; Richter, Klaus; Maskos, Klaus; Franke, Daniel; Svergun, Dmitri; Nagase, Hideaki; Bode, Wolfram; Itoh, Yoshifumi

    2011-03-04

    Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion.

  12. Exogenous L-arginine reduces matrix metalloproteinase-2 and -9 activities and oxidative stress in patients with hypertension

    DEFF Research Database (Denmark)

    Garcia, Vinicius P; Rocha, Helena N M; Silva, Gustavo M.

    2016-01-01

    Aims Increased matrix metalloproteinases activity and reduced nitric oxide (NO) bioavailability contributes to development of hypertension and this may be associated with a defective L-arginine-NO pathway. Exogenous L-arginine improves endothelial function to prevent the onset of cardiovascular...... disease, but the mechanism by which this is accomplished remains unclear. We determined the effects of exogenous L-arginine infusion on vascular biomarkers in patients with hypertension. Main methods Venous blood samples were obtained from seven patients with hypertension (45 ± 5 yrs., HT group...... biomarkers between groups during the saline infusion (P > 0.05). Significance Exogenous L-arginine diminished metalloproteinase-2 and -9 activities and MMP-9/TIMP-1 ratio along with restoring the oxidative stress balance in patients with hypertension....

  13. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Yang, Xi-fei [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Ren, Xiao-hu [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Meng, Xiao-jing [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Huang, Hai-yan [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zhao, Qiong-hui [Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen (China); Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Liu, Jian-jun, E-mail: bio-research@hotmail.com [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zou, Fei, E-mail: zoufei616@163.com [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China)

    2014-10-10

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer.

  14. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    International Nuclear Information System (INIS)

    Li, Jie; Yang, Xi-fei; Ren, Xiao-hu; Meng, Xiao-jing; Huang, Hai-yan; Zhao, Qiong-hui; Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li; Liu, Jian-jun; Zou, Fei

    2014-01-01

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer

  15. Thread Embedding Acupuncture Inhibits Ultraviolet B Irradiation-Induced Skin Photoaging in Hairless Mice

    Directory of Open Access Journals (Sweden)

    Yoon-Jung Kim

    2015-01-01

    Full Text Available Thread embedding acupuncture (TEA is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P=0.001 versus UV in UVB irradiated mice and also inhibited degradation of collagen fibers (P=0.010 versus normal by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9. Western blot data showed that activation of c-Jun N-terminal kinase (JNK induced by UVB (P=0.002 versus normal group was significantly inhibited by TEA treatment (P=0.005 versus UV with subsequent alleviation of MMP-9 activation (P=0.048 versus UV. These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging.

  16. Fasudil inhibits proliferation and migration of Hep-2 laryngeal carcinoma cells

    Directory of Open Access Journals (Sweden)

    Zhang X

    2018-02-01

    Full Text Available Xiaowen Zhang,1 Nan Wu2 1Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; 2The Core Laboratory for Public Health Science and Practice, The First Affiliated Hospital of China Medical University, Shenyang, China Background: Rho-kinase signal pathway is a new target for cancer therapy. Fasudil, a selective Rho-kinase inhibitor, is found to exert antitumor effects on several types of cancer, but whether fasudil has antitumor effects on laryngeal carcinoma is still unknown. The aim of this study was to determine the effects of fasudil on laryngeal carcinoma and explore the underlying molecular mechanisms in this process. Methods: After treatment with fasudil, changes in biological behaviors, including the growth, proliferation, clone formation, apoptosis, and migration of human laryngeal carcinoma cells (Hep-2 cells were observed. The influences on apoptotic protease activity factor-1 (APAF-1-mediated apoptosis pathway and the activities of matrix metalloproteinases (MMP-2 and MMP-9 were measured by Western blotting and gelatin zymography assay. Results: Half-maximal inhibitory concentration of fasudil to Hep-2 cells was ~3.40×103 µM (95% CI: 2.53–4.66×103 µM. Moreover, fasudil treatment significantly decreased the ability of growth, proliferation, clone formation, and migration of Hep-2 cells, while remarkably increased the apoptosis rate. Furthermore, the expressions of APAF-1, caspase-9, and caspase-3 significantly increased in fasudil treatment group. Meanwhile, fasudil led to a remarkable decrease in the expressions and activities of MMP-2 and MMP-9. Conclusion: Our findings first demonstrate that fasudil not only inhibits the proliferation of laryngeal carcinoma cells through activating APAF-1-mediated apoptosis pathway, but also prevents migration by inhibiting the activities of MMP-2 and MMP-9. Therefore, fasudil is an attractive antitumor drug candidate for the treatment of laryngeal carcinoma

  17. Bee venom induces apoptosis and suppresses matrix metaloprotease-2 expression in human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Mohsen Sisakht

    Full Text Available Abstract Glioblastoma is the most common malignant brain tumor representing with poor prognosis, therapy resistance and high metastasis rate. Increased expression and activity of matrix metalloproteinase-2, a member of matrix metalloproteinase family proteins, has been reported in many cancers including glioblastoma. Inhibition of matrix metalloproteinase-2 expression has resulted in reduced aggression of glioblastoma tumors in several reports. In the present study, we evaluated effect of bee venom on expression and activity of matrix metalloproteinase-2 as well as potential toxicity and apoptogenic properties of bee venom on glioblastoma cells. Human A172 glioblastoma cells were treated with increasing concentrations of bee venom. Then, cell viability, apoptosis, matrix metalloproteinase-2 expression, and matrix metalloproteinase-2 activity were measured using MMT assay, propidium iodide staining, real time-PCR, and zymography, respectively. The IC50 value of bee venom was 28.5 µg/ml in which it leads to decrease of cell viability and induction of apoptosis. Incubation with bee venom also decreased the expression of matrix metalloproteinase-2 in this cell line (p < 0.05. In zymography, there was a reverse correlation between bee venom concentration and total matrix metalloproteinase-2 activity. Induction of apoptosis as well as inhibition of matrix metalloproteinase-2 activity and expression can be suggested as molecular mechanisms involved in cytotoxic and antimetastatic effects of bee venom against glioblastoma cells.

  18. Purification and characterization of bioactive his6-tagged recombinant human tissue inhibitor of metalloproteinases-1 (TIMP-1) protein expressed at high yields in mammalian cells

    DEFF Research Database (Denmark)

    Jensen, Lena Vinther; Lademann, Ulrik Axel; Andersen, Elisabeth Veyhe

    2014-01-01

    Tissue inhibitor of metalloproteinases-1 (TIMP-1) is an endogenous inhibitor of matrix metalloproteinases (MMPs) with reported tumor promoting, as well as inhibitory, effects. These paradoxical properties are presumably mediated by different biological functions, MMP-dependent as well as -indepen...... TIMP-1, which structurally and functionally is similar to endogenous human TIMP-1, while using an expression system that is adaptable to most biochemical and biomedical laboratories including those that do not perform protein purifications routinely.......Tissue inhibitor of metalloproteinases-1 (TIMP-1) is an endogenous inhibitor of matrix metalloproteinases (MMPs) with reported tumor promoting, as well as inhibitory, effects. These paradoxical properties are presumably mediated by different biological functions, MMP-dependent as well...... as -independent, and probably related to TIMP-1 levels of protein expression, post-translational modifications, and cellular localization. TIMP-1 is an N-glycosylated protein that folds into two functional domains, a C- and an N-terminal domain, with six disulfide bonds. Furthermore, TIMP-1 is processed in the N...

  19. Tumor cell invasion of collagen matrices requires coordinate lipid agonist-induced G-protein and membrane-type matrix metalloproteinase-1-dependent signaling

    Directory of Open Access Journals (Sweden)

    Anthis Nicholas J

    2006-12-01

    Full Text Available Abstract Background Lysophosphatidic acid (LPA and sphingosine 1-phosphate (S1P are bioactive lipid signaling molecules implicated in tumor dissemination. Membrane-type matrix metalloproteinase 1 (MT1-MMP is a membrane-tethered collagenase thought to be involved in tumor invasion via extracellular matrix degradation. In this study, we investigated the molecular requirements for LPA- and S1P-regulated tumor cell migration in two dimensions (2D and invasion of three-dimensional (3D collagen matrices and, in particular, evaluated the role of MT1-MMP in this process. Results LPA stimulated while S1P inhibited migration of most tumor lines in Boyden chamber assays. Conversely, HT1080 fibrosarcoma cells migrated in response to both lipids. HT1080 cells also markedly invaded 3D collagen matrices (~700 μm over 48 hours in response to either lipid. siRNA targeting of LPA1 and Rac1, or S1P1, Rac1, and Cdc42 specifically inhibited LPA- or S1P-induced HT1080 invasion, respectively. Analysis of LPA-induced HT1080 motility on 2D substrates vs. 3D matrices revealed that synthetic MMP inhibitors markedly reduced the distance (~125 μm vs. ~45 μm and velocity of invasion (~0.09 μm/min vs. ~0.03 μm/min only when cells navigated 3D matrices signifying a role for MMPs exclusively in invasion. Additionally, tissue inhibitors of metalloproteinases (TIMPs-2, -3, and -4, but not TIMP-1, blocked lipid agonist-induced invasion indicating a role for membrane-type (MT-MMPs. Furthermore, MT1-MMP expression in several tumor lines directly correlated with LPA-induced invasion. HEK293s, which neither express MT1-MMP nor invade in the presence of LPA, were transfected with MT1-MMP cDNA, and subsequently invaded in response to LPA. When HT1080 cells were seeded on top of or within collagen matrices, siRNA targeting of MT1-MMP, but not other MMPs, inhibited lipid agonist-induced invasion establishing a requisite role for MT1-MMP in this process. Conclusion LPA is a

  20. Fisetin suppresses malignant proliferation in human oral squamous cell carcinoma through inhibition of Met/Src signaling pathways.

    Science.gov (United States)

    Li, Yan-Shu; Qin, Xing-Jun; Dai, Wei

    2017-01-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone) is a dietary flavonoid and has been indicated as a novel anti-cancer agent in several types of cancer cells. However, the mechanisms underlying the effect of fisetin in human oral squamous cell carcinoma (OSCC) remain unclear. Here, we report that fisetin significantly inhibits tumor cell proliferation and induces apoptosis in OSCC (UM-SCC-23 and Tca-8113) cancer cell lines. Further analysis demonstrates that fisetin also inhibits Met/Src signaling pathways using the PathScan ® receptor tyrosine kinases (RTK) Signaling Antibody Array Kit. Fisetin resulted in decreased basal expression of Met and Src protein in UM-SCC-23 cancer cell lines, which validated by western blot. A student's t -test (two-tailed) was used to compare differences between groups. Furthermore, fisetin significantly inhibited the expression of a disintegrin and metalloproteinase 9 (ADAM9) protein in OSCC cells. Taken together, these results provide novel insights into the mechanism of fisetin and suggest potential therapeutic strategies for human OSCC by blocking the Met/Src signaling pathways.

  1. The anti-inflammatory effects of matrix metalloproteinase-3 on irreversible pulpitis of mature erupted teeth.

    Directory of Open Access Journals (Sweden)

    Hisanori Eba

    Full Text Available Matrix metalloproteinases (MMPs are involved in extracellular matrix degradation and the modulation of cell behavior. These proteinases have also been implicated in tissue repair and regeneration. Our previous studies have demonstrated that MMP-3 elicits stimulatory effects on the proliferation and the migration of endothelial cells as well as anti-apoptotic effects on these cells in vitro. In addition, we found that MMP-3 enhanced the regeneration of lost pulp tissue in a rat incisor pulp injury model. However, continuously erupting rodent incisors exhibit significantly different pulp organization compared with mature erupted teeth. Therefore, we have further extended these studies using a canine irreversible pulpitis model to investigate the effects of MMP-3. In this study, the crowns of the canine mature premolars were removed and the pulp tissues were amputated. The amputated pulp tissues remained exposed for 24 or 72 hours to induce mild or severe irreversible pulpitis, respectively, followed by sealing of the cavities. In both models, the whole pulp tissues became necrotic by day 14. In this mild pulpitis model, the regeneration of pulp tissue with vasculature and nerves was observed until 14 days after sealing with MMP-3, followed by extracellular matrix formation in the regenerated pulp tissues until day 28. The treatment with MMP-3 resulted in a decrease in the number of macrophage and antigen-presenting cells and a significant inhibition of IL-6 expression on day 3. The inhibition of MMP-3 activity abolished these anti-inflammatory effects. Immunofluorescence staining demonstrated that MMP-3 was involved in the modification of serum-derived hyaluronan-associated proteins and hyaluronan (SHAP-HA complexes possibly through the degradation of versican. These results demonstrate that MMP-3 can act as an anti-inflammatory agent and suggest that MMP-3 might represent a useful therapy for the treatment of mild irreversible pulpitis.

  2. The anti-inflammatory effects of matrix metalloproteinase-3 on irreversible pulpitis of mature erupted teeth.

    Science.gov (United States)

    Eba, Hisanori; Murasawa, Yusuke; Iohara, Koichiro; Isogai, Zenzo; Nakamura, Hiroshi; Nakamura, Hiroyuki; Nakashima, Misako

    2012-01-01

    Matrix metalloproteinases (MMPs) are involved in extracellular matrix degradation and the modulation of cell behavior. These proteinases have also been implicated in tissue repair and regeneration. Our previous studies have demonstrated that MMP-3 elicits stimulatory effects on the proliferation and the migration of endothelial cells as well as anti-apoptotic effects on these cells in vitro. In addition, we found that MMP-3 enhanced the regeneration of lost pulp tissue in a rat incisor pulp injury model. However, continuously erupting rodent incisors exhibit significantly different pulp organization compared with mature erupted teeth. Therefore, we have further extended these studies using a canine irreversible pulpitis model to investigate the effects of MMP-3. In this study, the crowns of the canine mature premolars were removed and the pulp tissues were amputated. The amputated pulp tissues remained exposed for 24 or 72 hours to induce mild or severe irreversible pulpitis, respectively, followed by sealing of the cavities. In both models, the whole pulp tissues became necrotic by day 14. In this mild pulpitis model, the regeneration of pulp tissue with vasculature and nerves was observed until 14 days after sealing with MMP-3, followed by extracellular matrix formation in the regenerated pulp tissues until day 28. The treatment with MMP-3 resulted in a decrease in the number of macrophage and antigen-presenting cells and a significant inhibition of IL-6 expression on day 3. The inhibition of MMP-3 activity abolished these anti-inflammatory effects. Immunofluorescence staining demonstrated that MMP-3 was involved in the modification of serum-derived hyaluronan-associated proteins and hyaluronan (SHAP-HA) complexes possibly through the degradation of versican. These results demonstrate that MMP-3 can act as an anti-inflammatory agent and suggest that MMP-3 might represent a useful therapy for the treatment of mild irreversible pulpitis.

  3. Curcumin inhibits EMMPRIN and MMP-9 expression through AMPK-MAPK and PKC signaling in PMA induced macrophages.

    Science.gov (United States)

    Cao, Jiatian; Han, Zhihua; Tian, Lei; Chen, Kan; Fan, Yuqi; Ye, Bozhi; Huang, Weijian; Wang, Changqian; Huang, Zhouqing

    2014-09-21

    In coronary arteries, plaque disruption, the major acute clinical manifestations of atherosclerosis, leads to a subsequent cardiac event, such as acute myocardial infarction (AMI) and unstable angina pectoris (UA). Numerous reports have shown that high expression of MMP-9 (matrix metalloproteinase-9), MMP-13 (matrix metalloproteinase-13) and EMMPRIN (extracellular matrix metalloproteinase induce) in monocyte/macrophage results in the plaque progression and destabilization. Curcumin exerts well-known anti-inflammatory and antioxidant effects and probably has a protective role in the atherosclerosis. The purpose of our study was to investigate the molecular mechanisms by which curcumin affects MMP-9, MMP13 and EMMPRIN in PMA (phorbol 12-myristate 13-acetate) induced macrophages. Human monocytic cells (THP-1 cells) were pretreated with curcumin or compound C for 1 h, and then induced by PMA for 48 h. Total RNA and proteins were collected for real-time PCR and Western blot analysis, respectively. In the present study, the exposure to curcumin resulted in attenuated JNK, p38, and ERK activation and decreased expression of MMP-9, MMP-13 and EMMPRIN in PMA induced macrophages. Moreover, we demonstrated that AMPK (AMP-activated protein kinase) and PKC (Protein Kinase C) was activated by PMA during monocyte/macrophage differentiation. Furthermore, curcumin reversed PMA stimulated PKC activation and suppressed the chronic activation of AMPK, which in turn reduced the expression of MMP-9, MMP-13 and EMMPRIN. Therefore, it is suggested that curcumin by inhibiting AMPK-MAPK (mitogen activated protein kinase) and PKC pathway may led to down-regulated EMMPRIN, MMP-9 and MMP-13 expression in PMA-induced THP-1 cells.

  4. Quantification of tissue inhibitor of metalloproteinases 2 in plasma from healthy donors and cancer patients

    DEFF Research Database (Denmark)

    Larsen, M. B.; Stephens, R. W.; Brünner, Nils

    2005-01-01

    Tissue inhibitor of metalloproteinases (TIMP)-2 is a highly conserved molecule, which binds both active and latent matrix metalloproteinase (MMP)-2. TIMP-2 is also involved in the activation of MMP-2 on the cell surface. A quantitative enzyme-linked immunosorbent assay (ELISA) was established...... and optimized for measurement of TIMP-2 in plasma. The capturing antibody in the ELISA was a monoclonal, while the detecting antibody was a chicken polyclonal antibody recognizing the native form of human TIMP-2. The levels of TIMP-2 were measured in ethylenediaminetetraacetic acid (EDTA) and citrate plasma...... from healthy donors. The median values were determined as 163 ng/ml (n = 186) with a range of 109-253 ng/ml for EDTA plasma and 139 ng/ml (n = 77) with a range of 95-223 ng/ml for citrate plasma. The TIMP-2 concentration in citrate plasma from 15 patients with advanced, stage IV breast cancer had...

  5. Danshen attenuates osteoarthritis-related cartilage degeneration through inhibition of NF-κB signaling pathway in vivo and in vitro.

    Science.gov (United States)

    Xu, Xilin; Lv, Hang; Li, Xiaodong; Su, Hui; Zhang, Xiaofeng; Yang, Jun

    2017-12-01

    Danshen (Salvia miltiorrhiza) is a traditional Chinese medicine herb that can alleviate the symptoms of osteoarthritis (OA) (Söder et al. 2006) in animals. However, the underlying mechanisms remain poorly understood and require further investigation. In this study, rabbits with experimentally induced OA were given an intra-articular injection of danshen (0.7 mL/day) for 5 weeks. In addition to attenuating the cartilage degeneration of OA in the rabbits, danshen decreased the expression and activity of matrix metalloproteinase 9 (MMP-9) and MMP-13, and increased the expression of their natural inhibitors: tissue inhibitor of matrix metalloproteinase 1 (TIMP-1) and TIMP-2. Apoptosis in osteoarthritic cartilage tissues was attenuated by danshen, accompanied with increased expression of B cell lymphoma 2 (Bcl-2) and decreased levels of Bcl-2-associated X protein (Bax). Further, danshen inhibited the nuclear accumulation of nuclear factor kappa-B (NF-κB) p65 in osteoarthritic cartilage. The therapeutic effects of danshen in vivo were comparable to that of sodium hyaluronate, which is a drug used clinically for the treatment OA. In vitro, sodium nitroprusside (SNP) was used to stimulate apoptosis in primary rabbit chondrocytes. We found that the SNP-induced apoptosis was mitigated by danshen. BAY11-7028, an inhibitor of the NF-κB pathway, augmented danshen's anti-apoptotic effects in cells exposed to SNP. When these results are considered together, they indicate that danshen alleviates the cartilage injury in rabbit OA through inhibition of the NF-κB signaling pathway.

  6. Epithelial expression of extracellular matrix metalloproteinase inducer/CD147 and matrix metalloproteinase-2 in neoplasms and precursor lesions derived from cutaneous squamous cells: An immunohistochemical study.

    Science.gov (United States)

    Ayva, Sebnem Kupana; Karabulut, Ayse Anil; Akatli, Ayşe Nur; Atasoy, Pinar; Bozdogan, Onder

    2013-10-01

    Extracellular matrix metalloproteinase inducer (CD147) is a transmembrane glycoprotein involved in the regulation of matrix metalloproteinases (MMPs). The study investigated CD147 and MMP-2 expression in epidermis of cutaneous squamous lesions. CD147 and MMP-2 expressions were evaluated immunohistochemically in 44 specimens: 18 actinic keratoses (AK), 6 squamous cell carcinomas in situ (SCCIS), 13 squamous cell carcinomas (SCC; peritumoral and invasive portions assessed), and 7 normal skins. Patterns of expression were assessed, with MMP-2 in nuclei (MMP-2n) and cytoplasm (MMP-2c) evaluated separately. The expression of each marker was quantified using a calculated immunohistochemical/histologic score (H-score). Correlations were analyzed for the marker H-scores in each study group. Associations between H-scores and histopathologic parameters were also evaluated. CD147 H-score was the highest in SCC (invasive islands), followed by AK, SCCIS, and control specimens, respectively. MMP-2n and MMP-2c H-scores were the highest in AK, followed by SCCIS, SCC, and control specimens, respectively. MMP-2c and MMP-2n H-scores were significantly higher in peritumoral epidermis than in invasive islands of SCC. MMP-2c and CD147 H-scores were positively correlated in the peritumoral SCCs. CD147 H-score was positively correlated with tumor differentiation in SCC. The findings suggest that overexpression of CD147 plays a role in the development of SCC. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Serum amyloid A stimulates matrix-metalloproteinase-9 upregulation via formyl peptide receptor like-1-mediated signaling in human monocytic cells

    International Nuclear Information System (INIS)

    Lee, Ha Young; Kim, Mi-Kyoung; Park, Kyoung Sun; Bae, Yun Hee; Yun, Jeanho; Park, Joo-In; Kwak, Jong-Young; Bae, Yoe-Sik

    2005-01-01

    In the present study, we found that serum amyloid A (SAA) stimulated matrix-metalloproteinase-9 (MMP-9) upregulation at the transcription and translational levels in THP-1 cells. SAA stimulated the activation of nuclear factor κB (NF-κB), which was required for the MMP-9 upregulation by SAA. The signaling events induced by SAA included the activation of ERK and intracellular calcium rise, which were found to be required for MMP-9 upregulation. Formyl peptide receptor like 1 (FPRL1) was found to be involved in the upregulation of MMP-9 by SAA. Among several FPRL1 agonists, including Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm), SAA selectively stimulated MMP-9 upregulation. With respect to the molecular mechanisms involved in the differential action of SAA and WKYMVm, we found that SAA could not competitively inhibit the binding of 125 I-labeled WKYMVm to FPRL1. Taken together, we suggest that SAA plays a role in the modulation of inflammatory and immune responses via FPRL1, by inducing MMP-9 upregulation in human monocytic cells

  8. Delay-induced diversity of firing behavior and ordered chaotic firing in adaptive neuronal networks

    International Nuclear Information System (INIS)

    Gong Yubing; Wang Li; Xu Bo

    2012-01-01

    In this paper, we study the effect of time delay on the firing behavior and temporal coherence and synchronization in Newman–Watts thermosensitive neuron networks with adaptive coupling. At beginning, the firing exhibit disordered spiking in absence of time delay. As time delay is increased, the neurons exhibit diversity of firing behaviors including bursting with multiple spikes in a burst, spiking, bursting with four, three and two spikes, firing death, and bursting with increasing amplitude. The spiking is the most ordered, exhibiting coherence resonance (CR)-like behavior, and the firing synchronization becomes enhanced with the increase of time delay. As growth rate of coupling strength or network randomness increases, CR-like behavior shifts to smaller time delay and the synchronization of firing increases. These results show that time delay can induce diversity of firing behaviors in adaptive neuronal networks, and can order the chaotic firing by enhancing and optimizing the temporal coherence and enhancing the synchronization of firing. However, the phenomenon of firing death shows that time delay may inhibit the firing of adaptive neuronal networks. These findings provide new insight into the role of time delay in the firing activity of adaptive neuronal networks, and can help to better understand the complex firing phenomena in neural networks.

  9. The Biological Behaviors of Rat Dermal Fibroblasts Can Be Inhibited by High Levels of MMP9

    Directory of Open Access Journals (Sweden)

    Sheng-Neng Xue

    2012-01-01

    Full Text Available Aims. To explore the effects of the high expression of MMP9 on biological behaviors of fibroblasts. Methods. High glucose and hyperhomocysteine were used to induce MMP9 expression in skin fibroblasts. Cell proliferation was detected by flow cytometry and cell viability by CCK-8. ELISA assay was used to detect collagen (hydroxyproline secretion. Scratch test was employed to evaluate horizontal migration of cells and transwell method to evaluate vertical migration of cells. Results. The mRNA and protein expressions of MMP9 and its protease activity were significantly higher in cells treated with high glucose and hyperhomocysteine than those in control group. At the same time, the S-phase cell ratio, proliferation index, cell viability, collagen (hydroxyproline secretion, horizontal migration rate, and the number of vertical migration cells decreased in high-glucose and hyperhomocysteine-treated group. Tissue inhibitor of metalloproteinase 1 (TIMP1, which inhibits the activity of MMP9, recovered the above biological behaviors. Conclusions. High expression of MMP9 in skin fibroblasts could be induced by cultureing in high glucose and hyperhomocysteine medium, which inhibited cell biological behaviors. Inhibitions could be reversed by TIMP1. The findings suggested that MMP9 deters the healing of diabetic foot ulcers by inhibiting the biological behaviors of fibroblasts.

  10. Overexpression of Hiwi Inhibits the Growth and Migration of Chronic Myeloid Leukemia Cells.

    Science.gov (United States)

    Wang, Yalin; Jiang, Yan; Ma, Ning; Sang, Bailu; Hu, Xiaolin; Cong, Xiaofeng; Liu, Ziling

    2015-09-01

    Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by dysregulated growth and proliferation of hematopoietic stem/progenitor cells in bone marrow and excessive expansion of hematopoietic compartments in peripheral blood. Expression deletion of Hiwi, a human Piwi homolog, has been reported to be implicated in leukemogenesis. We here explored Hiwi's role in CML pathogenesis by determining how and whether its forced overexpression could affect CML cell growth and migration. The present results showed that lentivirus-mediated overexpression of Hiwi significantly suppressed cell proliferation and induced obvious apoptosis in K562 cells, a CML line cell line. Tumors in BALB/c nude mice generated by the K562 cells expressing Hiwi were much smaller than those formed by the control cells. Like in vitro, Hiwi upregulation induced cell apoptosis in the tumor tissues in vivo. Additionally, Hiwi elevation suppressed K562 cell migration and inhibited the activity and expression of matrix metalloproteinase-2 and -9. In summary, our study demonstrates that Hiwi overexpression inhibits CML cell growth and migration, providing insights into its role in CML pathogenesis.

  11. Rapid, Automated, and Specific Immunoassay to Directly Measure Matrix Metalloproteinase-9–Tissue Inhibitor of Metalloproteinase-1 Interactions in Human Plasma Using AlphaLISA Technology: A New Alternative to Classical ELISA

    Directory of Open Access Journals (Sweden)

    Helena Pulido-Olmo

    2017-07-01

    Full Text Available The protocol describes a novel, rapid, and no-wash one-step immunoassay for highly sensitive and direct detection of the complexes between matrix metalloproteinases (MMPs and their tissue inhibitor of metalloproteinases (TIMPs based on AlphaLISA® technology. We describe two procedures: (i one approach is used to analyze MMP-9–TIMP-1 interactions using recombinant human MMP-9 with its corresponding recombinant human TIMP-1 inhibitor and (ii the second approach is used to analyze native or endogenous MMP-9–TIMP-1 protein interactions in samples of human plasma. Evaluating native MMP-9–TIMP-1 complexes using this approach avoids the use of indirect calculations of the MMP-9/TIMP-1 ratio for which independent MMP-9 and TIMP-1 quantifications by two conventional ELISAs are needed. The MMP-9–TIMP-1 AlphaLISA® assay is quick, highly simplified, and cost-effective and can be completed in less than 3 h. Moreover, the assay has great potential for use in basic and preclinical research as it allows direct determination of native MMP-9–TIMP-1 complexes in circulating blood as biofluid.

  12. Optimal Joint Expected Delay Forwarding in Delay Tolerant Networks

    OpenAIRE

    Jia Xu; Xin Feng; Wen Jun Yang; Ru Chuan Wang; Bing Qing Han

    2013-01-01

    Multicopy forwarding schemes have been employed in delay tolerant network (DTN) to improve the delivery delay and delivery rate. Much effort has been focused on reducing the routing cost while retaining high performance. This paper aims to provide an optimal joint expected delay forwarding (OJEDF) protocol which minimizes the expected delay while satisfying a certain constant on the number of forwardings per message. We propose a comprehensive forwarding metric called joint expected delay (JE...

  13. Carprofen inhibits the release of matrix metalloproteinases 1, 3, and 13 in the secretome of an explant model of articular cartilage stimulated with interleukin 1β.

    Science.gov (United States)

    Williams, Adam; Smith, Julia R; Allaway, David; Harris, Pat; Liddell, Susan; Mobasheri, Ali

    2013-01-01

    Arthritic diseases are characterized by the degradation of collagenous and noncollagenous extracellular matrix (ECM) components in articular cartilage. The increased expression and activity of matrix metalloproteinases (MMPs) is partly responsible for cartilage degradation. This study used proteomics to identify inflammatory proteins and catabolic enzymes released in a serum-free explant model of articular cartilage stimulated with the pro-inflammatory cytokine interleukin 1β (IL-1β). Western blotting was used to quantify the release of selected proteins in the presence or absence of the cyclooxygenase-2 specific nonsteroidal pro-inflammatory drug carprofen. Cartilage explant cultures were established by using metacarpophalangeal joints from horses euthanized for purposes other than research. Samples were treated as follows: no treatment (control), IL-1β (10 ng/ml), carprofen (100 μg/ml), and carprofen (100 μg/ml) + IL-1β (10 ng/ml). Explants were incubated (37°C, 5% CO2) over twelve day time courses. High-throughput nano liquid chromatography/mass spectrometry/mass spectrometry uncovered candidate proteins for quantitative western blot analysis. Proteoglycan loss was assessed by using the dimethylmethylene blue (DMMB) assay, which measures the release of sulfated glycosaminoglycans (GAGs). Mass spectrometry identified MMP-1, -3, -13, and the ECM constituents thrombospondin-1 (TSP-1) and fibronectin-1 (FN1). IL-1β stimulation increased the release of all three MMPs. IL-1β also stimulated the fragmentation of FN1 and increased chondrocyte cell death (as assessed by β-actin release). Addition of carprofen significantly decreased MMP release and the appearance of a 60 kDa fragment of FN1 without causing any detectable cytotoxicity to chondrocytes. DMMB assays suggested that carprofen initially inhibited IL-1β-induced GAG release, but this effect was transient. Overall, during the two time courses, GAG release was 58.67% ± 10.91% (SD) for IL-1

  14. Engineering N-terminal domain of tissue inhibitor of metalloproteinase (TIMP)-3 to be a better inhibitor against tumour necrosis factor-alpha-converting enzyme.

    Science.gov (United States)

    Lee, Meng-Huee; Verma, Vandana; Maskos, Klaus; Nath, Deepa; Knäuper, Vera; Dodds, Philippa; Amour, Augustin; Murphy, Gillian

    2002-01-01

    We previously reported that full-length tissue inhibitor of metalloproteinase-3 (TIMP-3) and its N-terminal domain form (N-TIMP-3) displayed equal binding affinity for tissue necrosis factor-alpha (TNF-alpha)-converting enzyme (TACE). Based on the computer graphic of TACE docked with a TIMP-3 model, we created a number of N-TIMP-3 mutants that showed significant improvement in TACE inhibition. Our strategy was to select those N-TIMP-3 residues that were believed to be in actual contact with the active-site pockets of TACE and mutate them to amino acids of a better-fitting nature. The activities of these mutants were examined by measuring their binding affinities (K(app)(i)) and association rates (k(on)) against TACE. Nearly all mutants at position Thr-2 exhibited slightly impaired affinity as well as association rate constants. On the other hand, some Ser-4 mutants displayed a remarkable increase in their binding tightness with TACE. In fact, the binding affinities of several mutants were less than 60 pM, beyond the sensitivity limits of fluorimetric assays. Further studies on cell-based processing of pro-TNF-alpha demonstrated that wild-type N-TIMP-3 and one of its tight-binding mutants, Ser-4Met, were capable of inhibiting the proteolytic shedding of TNF-alpha. Furthermore, the Ser-4Met mutant was also significantly more active (P<0.05) than the wild-type N-TIMP-3 in its cellular inhibition. Comparison of N-TIMP-3 and full-length TIMP-3 revealed that, despite their identical TACE-interaction kinetics, the latter was nearly 10 times more efficient in the inhibition of TNF-alpha shedding, with concomitant implications for the importance of the TIMP-3 C-terminal domain in vivo. PMID:11988096

  15. THE ROLE OF MATRIX METALLOPROTEINASES IN PROCESSES OF HEART RE-MODELING IN CHILDREN WITH RESTRICTIVE CARDIOMYOPATHY

    Directory of Open Access Journals (Sweden)

    T.V. Bershova

    2009-01-01

    Full Text Available Restrictive cardiomyopathy (RCMP is heart disorder with unclear etiology; it can be characterized as disease with disorder of diastolic myocardium function of left ventricle, conditioned by restriction. The chronic heart failure as a syndrome of RCMP can develop as a result of disbalance in system of complex biochemical, structural, and geometrical mechanisms of myocardium re-modeling. Extra cellular matrix play significant role in heart structure and geometry breaking. The destruction of heart is realized by matrix metalloproteinases (MMP. The activity of MMP, in its turn, is controlled by its tissue inhibitors. The present study analyzed the role of MMP in process of collagen’s synthesis and catabolism deregulation, myocardium fibrosis, change of heart chambers, and development of diastolic dysfunction in children with RCMP.Key words: children, chronic heart failure, restrictive cardiomyopathy, matrix metalloproteinases.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2009;8(5:36-39

  16. The impact of depressed mood, working memory capacity, and priming on delay discounting.

    Science.gov (United States)

    Szuhany, Kristin L; MacKenzie, Danny; Otto, Michael W

    2018-09-01

    The impaired ability to delay rewards, delay discounting (DD), is associated with several problematic conditions in which impulsive decision-making derails long-term goals. Working memory (WM), the ability to actively store and manipulate information, is associated with DD. The purpose of this study was to examine the effect of cognitive priming on DD and to identify moderation of this effect dependent on degree of WM capacity (WMC) and depressed mood. A WM task (n-back) was used as a cognitive prime before assessment of DD (Monetary Choice Questionnaire) and was compared to a similar prime from an inhibition task in a factorial design in 183 community participants. All participants completed a DD task and assessment of depressive symptoms (Beck Depression Inventory-II). Priming effects were evaluated relative to WMC of participants. Higher WMC and lower depression scores were associated with greater relative preference for larger, delayed rewards. The effects of a WM prime were moderated by WMC; benefits of the prime were only evident for individuals with lower WMC. No effects were found for an alternative inhibition task. Limitations included depression scores mainly in subclinical range, use of hypothetical instead of real rewards in the DD task, and no examination of the time course of effects. This study provides support for the effectiveness of a brief WM prime in enhancing ability to delay rewards. Priming may be a useful adjunctive intervention for individuals with WM dysfunction or conditions in which impulsive decision-making may derail long-term goals. Copyright © 2018. Published by Elsevier Ltd.

  17. Understanding the Snake Venom Metalloproteinases: An Interview with Jay Fox and José María Gutiérrez.

    Science.gov (United States)

    Fox, Jay W; Gutiérrez, José María

    2017-01-16

    Jay W. Fox and José María Gutiérrez recently finished editing a Special Issue on the topic "Snake Venom Metalloproteinases" in Toxins . The Special Issue covers a wide range of topics, including the molecular evolution and structure of snake venom metalloproteinases (SVMPs), the mechanisms involved in the generation of diversity of SVMPs, the mechanism of action of SVMPs, and their role in the pathophysiology of envenomings, with implications for improving the therapy of envenomings. In this interview, we discussed with Jay W. Fox and José María Gutiérrez their research on the SVMPs and their perspectives on the future trends and challenges for studying snake venoms.

  18. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    International Nuclear Information System (INIS)

    Karki, Rajendra; Kim, Seong-Bin; Kim, Dong-Wook

    2013-01-01

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti

  19. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    Energy Technology Data Exchange (ETDEWEB)

    Karki, Rajendra [Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City (United States); Department of Oriental Medicine Resources, Mokpo National University (Korea, Republic of); Kim, Seong-Bin [Jeollanamdo Development Institute for Korean Traditional Medicine, Jangheung gun, Jeollanamdo (Korea, Republic of); Kim, Dong-Wook, E-mail: dbkim@mokpo.ac.kr [Department of Oriental Medicine Resources, Mokpo National University (Korea, Republic of)

    2013-12-10

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti

  20. Pharmacological inhibition of dynamin II reduces constitutive protein secretion from primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Maaike Kockx

    Full Text Available Dynamins are fission proteins that mediate endocytic and exocytic membrane events and are pharmacological therapeutic targets. These studies investigate whether dynamin II regulates constitutive protein secretion and show for the first time that pharmacological inhibition of dynamin decreases secretion of apolipoprotein E (apoE and several other proteins constitutively secreted from primary human macrophages. Inhibitors that target recruitment of dynamin to membranes (MiTMABs or directly target the GTPase domain (Dyngo or Dynole series, dose- and time- dependently reduced the secretion of apoE. SiRNA oligo's targeting all isoforms of dynamin II confirmed the involvement of dynamin II in apoE secretion. Inhibition of secretion was not mediated via effects on mRNA or protein synthesis. 2D-gel electrophoresis showed that inhibition occurred after apoE was processed and glycosylated in the Golgi and live cell imaging showed that inhibited secretion was associated with reduced post-Golgi movement of apoE-GFP-containing vesicles. The effect was not restricted to macrophages, and was not mediated by the effects of the inhibitors on microtubules. Inhibition of dynamin also altered the constitutive secretion of other proteins, decreasing the secretion of fibronectin, matrix metalloproteinase 9, Chitinase-3-like protein 1 and lysozyme but unexpectedly increasing the secretion of the inflammatory mediator cyclophilin A. We conclude that pharmacological inhibitors of dynamin II modulate the constitutive secretion of macrophage apoE as a class effect, and that their capacity to modulate protein secretion may affect a range of biological processes.

  1. Dehydroeffusol effectively inhibits human gastric cancer cell-mediated vasculogenic mimicry with low toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenming; Meng, Mei; Zhang, Bin; Du, Longsheng; Pan, Yanyan; Yang, Ping; Gu, Zhenlun; Zhou, Quansheng, E-mail: quanshengzhou@yahoo.com; Cao, Zhifei, E-mail: hunancao@163.com

    2015-09-01

    Accumulated data has shown that various vasculogenic tumor cells, including gastric cancer cells, are able to directly form tumor blood vessels via vasculogenic mimicry, supplying oxygen and nutrients to tumors, and facilitating progression and metastasis of malignant tumors. Therefore, tumor vasculogenic mimicry is a rational target for developing novel anticancer therapeutics. However, effective antitumor vasculogenic mimicry-targeting drugs are not clinically available. In this study, we purified 2,7-dihydroxyl-1-methyl-5-vinyl-phenanthrene, termed dehydroeffusol, from the traditional Chinese medicinal herb Juncus effusus L., and found that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry in vitro and in vivo with very low toxicity. Dehydroeffusol significantly suppressed gastric cancer cell adhesion, migration, and invasion. Molecular mechanistic studies revealed that dehydroeffusol markedly inhibited the expression of a vasculogenic mimicry master gene VE-cadherin and reduced adherent protein exposure on the cell surface by inhibiting gene promoter activity. In addition, dehydroeffusol significantly decreased the expression of a key vasculogenic gene matrix metalloproteinase 2 (MMP2) in gastric cancer cells, and diminished MMP2 protease activity. Together, our results showed that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry with very low toxicity, suggesting that dehydroeffusol is a potential drug candidate for anti-gastric cancer neovascularization and anti-gastric cancer therapy. - Highlights: • Dehydroeffusol markedly inhibits gastric cancer cell-mediated vasculogenic mimicry. • Dehydroeffusol suppresses the expression of vasculogenic mimicry key gene VE-cadherin. • Dehydroeffusol decreases the MMP2 expression and activity in gastric cancer cells. • Dehydroeffusol is a potential anti-cancer drug candidate with very low toxicity.

  2. Perinatal asphyxia: CNS development and deficits with delayed onset

    Directory of Open Access Journals (Sweden)

    Mario eHerrera-Marschitz

    2014-03-01

    Full Text Available Perinatal asphyxia constitutes a prototype of obstetric complications occurring when pulmonary oxygenation is delayed or interrupted. The primary insult relates to the duration of the period lacking oxygenation, leading to death if not re-established. Re-oxygenation leads to a secondary insult, related to a cascade of biochemical events required for restoring proper function. Perinatal asphyxia interferes with neonatal development, resulting in long-term deficits associated to mental and neurological diseases with delayed clinical onset, by mechanisms not yet clarified.In the experimental scenario, the effects observed long after perinatal asphyxia have been explained by over expression of sentinel proteins, such as poly(ADP-ribose polymerase-1 (PARP-1, competing for NAD+ during re-oxygenation, leading to the idea that sentinel protein inhibition constitutes a suitable therapeutic strategy. Asphyxia induces transcriptional activation of pro-inflammatory factors, in tandem with PARP-1 overactivation, and pharmacologically induced PARP-1 inhibition also down-regulates the expression of proinflammatory cytokines. Nicotinamide has been proposed as a suitable PARP-1 inhibitor. Its effect has been studied in an experimental model of global hypoxia in rats. In that model, the insult is induced by immersing rat foetuses into a water bath for various periods of time. Following asphyxia, the pups are delivered, treated, and nursed by surrogate dams, pending further experiments. Nicotinamide rapidly distributes into the brain following systemic administration, reaching steady state concentrations sufficient to inhibit PARP-1 activity for several hours, preventing several of the long-term consequences of perinatal asphyxia, supporting the idea that it constitutes a lead for exploring compounds with similar or better pharmacological profiles.

  3. Matrix metalloproteinases: structures, evolution, and diversification.

    Science.gov (United States)

    Massova, I; Kotra, L P; Fridman, R; Mobashery, S

    1998-09-01

    A comprehensive sequence alignment of 64 members of the family of matrix metalloproteinases (MMPs) for the entire sequences, and subsequently the catalytic and the hemopexin-like domains, have been performed. The 64 MMPs were selected from plants, invertebrates, and vertebrates. The analyses disclosed that as many as 23 distinct subfamilies of these proteins are known to exist. Information from the sequence alignments was correlated with structures, both crystallographic as well as computational, of the catalytic domains for the 23 representative members of the MMP family. A survey of the metal binding sites and two loops containing variable sequences of amino acids, which are important for substrate interactions, are discussed. The collective data support the proposal that the assembly of the domains into multidomain enzymes was likely to be an early evolutionary event. This was followed by diversification, perhaps in parallel among the MMPs, in a subsequent evolutionary time scale. Analysis indicates that a retrograde structure simplification may have accounted for the evolution of MMPs with simple domain constituents, such as matrilysin, from the larger and more elaborate enzymes.

  4. Susceptibility of various areas of the nervous system of hens to TOCP-induced delayed neuropathy.

    Science.gov (United States)

    Classen, W; Gretener, P; Rauch, M; Weber, E; Krinke, G J

    1996-01-01

    Sensitivity of in-life parameters, biochemical endpoints, and susceptibility of various areas of the chicken nervous system to delayed neuropathy induced by tri-orthocresyl phosphate (TOCP) was assessed. Groups of hens were exposed to a single oral dose of TOCP of 0, 50, 200 or 500 mg/kg and the animals observed for 21 days. Perfusion fixed, paraffin embedded tissue sections were stained with Bodian's silver and Luxol blue and semi-thin epoxy sections with toluidine blue. Sciatic and tibial nerves, lumbosacral, midthoracic, and upper cervical spinal cord, medulla oblongata and cerebellum were examined using a semiquantitative scoring system. In pair-dosed hens inhibition of brain and spinal cord neurotoxic esterase (NTE) and cholinesterase and of plasma and erythrocyte cholinesterases was determined 24 hr and 48 hr after administration. At all dose levels NTE in brain and spinal cord and plasma cholinesterase was inhibited markedly. Quantitative inhibition of NTE was seen also in absence of neuropathy. Ataxia and body weight loss occurred in high-dose animals only, while dose-related neuropathy was seen in the distal tibial nerve, medulla oblongata and cerebellum. Ataxia was correlated best with neuropathy in peripheral nerves while degeneration of nerve fibers in the cerebellum, seen best in mid-longitudinal sections, was the most sensitive histological indicator of TOCP-induced delayed neuropathy. The particular susceptibility of spinocerebellar neurons was recognized long ago, but often has been neglected in delayed neurotoxicity studies and respective guidelines. Optimal sensitivity of toxicity tests is a prerequisite for risk assessment, can be cost efficient, and nowadays should be a main interest of animal welfare in order to reduce animals' suffering. Based on these data, determination of NTE inhibition together with histopathological examination of longitudinal sections of distal tibial nerves, mid-longitudinal sections of rostral cerebellum and cross

  5. Possible Association between Serum Matrix Metalloproteinase-9 (MMP-9) Levels and Relapse in Depressed Patients following Electroconvulsive Therapy (ECT).

    Science.gov (United States)

    Shibasaki, Chiyo; Itagaki, Kei; Abe, Hiromi; Kajitani, Naoto; Okada-Tsuchioka, Mami; Takebayashi, Minoru

    2018-03-01

    Matrix metalloproteinases are involved in neuroinflammatory processes, which could underlie depression. Serum levels of MMP-9 and MMP-2 in depressed patients are significantly altered following electroconvulsive therapy, but an association between altered matrix metalloproteinases after successful ECT and possible relapse has yet to be investigated. Serum was obtained twice, before and immediately after a course of electroconvulsive therapy, from 38 depressed patients. Serum was also collected, once, from two groups of age- and gender-matched healthy controls, 40 volunteers in each group. Possible associations between levels of matrix metalloproteinases and relapse during a 1-year follow-up period were analyzed. Excluding patients who did not respond to electroconvulsive therapy and patients lost to follow-up, data from 28 patients were evaluated. Eighteen of the patients (64.3%) relapsed within 1 year. In the group that did not relapse, serum levels of MMP-9 were significantly decreased after a course of electroconvulsive therapy, but not in the group that relapsed. No association between MMP-2 and relapse was observed. The degree of change in serum MMP-9 change could be associated with relapse following electroconvulsive therapy in depressed patients. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  6. Expression of matrix metalloproteinases in Naegleria fowleri and their role in invasion of the central nervous system.

    Science.gov (United States)

    Lam, Charlton; Jamerson, Melissa; Cabral, Guy; Carlesso, Ana Maris; Marciano-Cabral, Francine

    2017-10-01

    Naegleria fowleri is a free-living amoeba found in freshwater lakes and ponds and is the causative agent of primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system (CNS). PAM occurs when amoebae attach to the nasal epithelium and invade the CNS, a process that involves binding to, and degradation of, extracellular matrix (ECM) components. This degradation is mediated by matrix metalloproteinases (MMPs), enzymes that have been described in other pathogenic protozoa, and that have been linked to their increased motility and invasive capability. These enzymes also are upregulated in tumorigenic cells and have been implicated in metastasis of certain tumours. In the present study, in vitro experiments linked MMPs functionally to the degradation of the ECM. Gelatin zymography demonstrated enzyme activity in N. fowleri whole cell lysates, conditioned media and media collected from invasion assays. Western immunoblotting indicated the presence of the metalloproteinases MMP-2 (gelatinase A), MMP-9 (gelatinase B) and MMP-14 [membrane type-1 matrix metalloproteinase (MT1-MMP)]. Highly virulent mouse-passaged amoebae expressed higher levels of MMPs than weakly virulent axenically grown amoebae. The functional relevance of MMPs in media was indicated through the use of the MMP inhibitor, 1,10-phenanthroline. The collective in vitro results suggest that MMPs play a critical role in vivo in invasion of the CNS and that these enzymes may be amenable targets for limiting PAM.

  7. Synthetic inhibitors of matrix metalloproteinases prevent sulfur mustard-induced epidermal-dermal separation in human skin pieces

    NARCIS (Netherlands)

    Mol, M.A.E.; Alblas, S.W.; Hammer, A.; Benschop, H.P.

    2000-01-01

    Degradation of proteins of the basement membrane zone (BMZ) in the skin depends on the activity of proteolytic enzymes, particularly those belonging to the group of matrix metalloproteinases (MMPs). In the present study we have investigated the contribution of these enzymes to the epidermal-dermal

  8. Matrix metalloproteinase-2 gene variants and abdominal aortic aneurysm.

    Science.gov (United States)

    Smallwood, L; Warrington, N; Allcock, R; van Bockxmeer, F; Palmer, L J; Iacopetta, B; Golledge, J; Norman, P E

    2009-08-01

    To investigate associations between two polymorphisms of the matrix metalloproteinase-2 gene (MMP2) and the incidence and progression of abdominal aortic aneurysm (AAA). Cases and controls were recruited from a trial of screening for AAAs. The association between two variants of MMP2 (-1360C>T, and +649C>T) in men with AAA (n=678) and in controls (n=659) was examined using multivariate analyses. The association with AAA expansion (n=638) was also assessed. In multivariate analyses with adjustments for multiple testing, no association between either SNP and AAA presence or expansion was detected. MMP2 -1360C>T and +649C>T variants are not risk factors for AAA.

  9. Vorinostat, a HDAC inhibitor, showed anti-osteoarthritic activities through inhibition of iNOS and MMP expression, p38 and ERK phosphorylation and blocking NF-κB nuclear translocation.

    Science.gov (United States)

    Zhong, Hui-ming; Ding, Qian-hai; Chen, Wei-ping; Luo, Ru-bin

    2013-10-01

    Overproduction of nitric oxide (NO) and matrix metalloproteinases (MMPs) plays an important role in the pathogenesis of osteoarthritis (OA). In present study, we investigated whether vorinostat can inhibit the catabolic effects of IL-1β in vitro, especially the inhibition of MMPs and inducible nitric oxide synthase (iNOS) through the attenuation of nuclear factor kappa-B (NF-κB) and mitogen activated protein kinase (MAPK) pathways in human chondrocytes. Human OA chondrocytes were either left untreated or treated with various concentrations of vorinostat followed by incubation with IL-1β (5ng/mL). Effects of vorinostat on IL-1β-induced gene and protein expression of iNOS, MMP-1, MMP-13 and tissue inhibitors of metalloproteinase-1 (TIMP-1) were verified by quantitative real time-PCR and Western blot analysis. Production of NO, MMP-1, MMP-13 and TIMP-1 released in culture supernatant was estimated using commercially available kits. The roles of NF-κB and MAPK pathways in the regulation of targeted genes and the mechanism involved in vorinostat mediated modulation of these genes were determined by Western blot using specific antibodies. We found that vorinostat down-regulated iNOS, MMP-1 and MMP-13 expression and up-regulated TIMP-1 expression in human OA chondrocytes. In addition, the release of NO, MMP-1 and MMP-13 secreted from IL-1β stimulated chondrocytes was also suppressed by vorinostat. Interestingly, vorinostat selectively inhibited IL-1β-induced p38 and ERK1/2 activation without affecting JNK activation. Furthermore, we observed that vorinostat inhibited NF-κB pathway by suppressing the degradation of I-κBα and attenuating NF-κB p65 translocation to the nucleus. These results suggest that vorinostat may be a promising therapeutic agent for the prevention and treatment of OA. © 2013.

  10. Matrix metalloproteinase-8 levels in periodontal disease patients: A systematic review.

    Science.gov (United States)

    de Morais, E F; Pinheiro, J C; Leite, R B; Santos, P P A; Barboza, C A G; Freitas, R A

    2018-04-01

    Periodontal disease is characterized as a disorder of the oral microbiota resulting in an immune response which, in turn, leads to the destruction of periodontal tissue. Matrix metalloproteinase-8 (MMP-8) has been reported as the major metalloproteinase involved in periodontal disease, being present at high levels in gingival crevicular fluid and salivary fluid (SF). The aim of this systematic review was to evaluate the scientific literature regarding the expression of MMP-8 in gingival crevicular fluid and SF in patients with periodontal disease, analyzing its validity as a possible biomarker in the diagnosis of periodontal disease. A systematic review of the literature was performed using the PubMed/Medline, CENTRAL and Science Direct databases. Studies concerning the use of MMP-8 in the diagnosis of periodontal disease that evaluated its effectiveness as a biomarker for periodontal disease were selected. The search strategy provided a total of 6483 studies. After selection, six articles met all the inclusion criteria and were included in the present systematic review. The studies demonstrated significantly higher concentrations of MMP-8 in patients with periodontal disease compared with controls, as well as in patients presenting more advanced stages of periodontal disease. The findings on higher MMP-8 concentrations in patients with periodontal disease compared with controls imply the potential adjunctive use of MMP-8 in the diagnosis of periodontal disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Associations between advanced glycation endproducts and matrix metalloproteinases and its inhibitor in individuals with type 1 diabetes

    DEFF Research Database (Denmark)

    Peeters, S A; Engelen, L; Buijs, J

    2018-01-01

    the production of MMPs and/or TIMP-1. Therefore, we investigated associations between specific AGEs and MMP-1, -2, -3, -9, and -10, and TIMP-1 in individuals with type 1 diabetes. METHODS: In 670 type 1 diabetic individuals we determined serum levels of protein-bound AGEs Nε-(carboxymethyl)lysine (CML), Nε-(carboxyethyl)lysine......AIMS: Advanced glycation endproducts (AGEs) and altered extracellular matrix remodeling by matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase (TIMP) are associated with vascular complications in type 1 diabetes. Experimental studies have shown that AGEs regulate...... (CEL), 5-hydro-5-methylimidazolone (MG-H1) and pentosidine, and MMP-1, -2, -3, -9, and -10, and TIMP-1. We performed linear regression analyses to investigate associations between AGEs and markers of the MMP-TIMP system. Analyses were adjusted for age, sex, HbA1c and duration of diabetes...

  12. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hofmann, Matthias [Department of Dermatology, Venereology and Allergology, Goethe University, Frankfurt (Germany); Kusachi, Shozo [Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama (Japan); Ninomiya, Yoshifumi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hirohata, Satoshi, E-mail: hirohas@cc.okayama-u.ac.jp [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); International Center, Okayama University, Okayama (Japan)

    2014-05-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC.

  13. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    International Nuclear Information System (INIS)

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi; Hofmann, Matthias; Kusachi, Shozo; Ninomiya, Yoshifumi; Hirohata, Satoshi

    2014-01-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC

  14. Plasma tissue inhibitor of metalloproteinases-1 as a biological marker? Pre-analytical considerations

    DEFF Research Database (Denmark)

    Lomholt, Anne Fog; Frederiksen, Camilla; Christensen, Ib Jarle

    2007-01-01

    Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) may be a valuable biological marker in Colorectal Cancer (CRC). However, prospective validation of TIMP-1 as a biological marker should include a series of pre-analytical considerations. TIMP-1 is stored in platelets, which may degranulate during ...... collection and storage. The aim of this study was to evaluate the influence of platelet TIMP-1 contamination on plasma TIMP-1 levels in healthy volunteers....

  15. Differential Expression and Processing of Matrix Metalloproteinase 19 Marks Progression of Gastrointestinal Diseases

    Czech Academy of Sciences Publication Activity Database

    Červinková, Monika; Horák, P.; Kanchev, Ivan; Matej, R.; Fanta, J.; Sequens, R.; Kašpárek, Petr; Sarnová, Lenka; Turečková, Jolana; Sedláček, Radislav

    2014-01-01

    Roč. 60, č. 3 (2014), s. 113-122 ISSN 0015-5500 R&D Projects: GA ČR GAP302/11/2048; GA ČR GAP303/10/2044; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk EE.2.3.20.0102 Institutional support: RVO:68378050 Keywords : matrix metalloproteinase 19 * macrophages * colon cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.000, year: 2014

  16. Bothrops asper snake venom and its metalloproteinase BaP–1 activate the complement system. Role in leucocyte recruitment

    Directory of Open Access Journals (Sweden)

    Sandra H. P. Farsky

    2000-01-01

    Full Text Available The venom of the snake Bothrops asper, the most important poisonous snake in Central America, evokes an inflammatory response, the mechanisms of which are not well characterized. The objectives of this study were to investigate whether B. asper venom and its purified toxins – phospholipases and metalloproteinase – activate the complement system and the contribution of the effect on leucocyte recruitment. In vitro chemotaxis assays were performed using Boyden's chamber model to investigate the ability of serum incubated with venom and its purified toxins to induce neutrophil migration. The complement consumption by the venom was evaluated using an in vitro haemolytic assay. The importance of complement activation by the venom on neutrophil migration was investigated in vivo by injecting the venom into the peritoneal cavity of C5-deficient mice. Data obtained demonstrated that serum incubated with crude venom and its purified metalloproteinase BaP–1 are able to induce rat neutrophil chemotaxis, probably mediated by agent(s derived from the complement system. This hypothesis was corroborated by the capacity of the venom to activate this system in vitro. The involvement of C5a in neutrophil chemotaxis induced by venom-activated serum was demonstrated by abolishing migration when neutrophils were pre-incubated with antirat C5a receptor antibody. The relevance of the complement system in in vivo leucocyte mobilization was further demonstrated by the drastic decrease of this response in C5-deficient mice. Pre-incubation of serum with the soluble human recombinant complement receptor type 1 (sCR 1 did not prevent the response induced by the venom, but abolished the migration evoked by metalloproteinase-activated serum. These data show the role of the complement system in bothropic envenomation and the participation of metalloproteinase in the effect. Also, they suggest that the venom may contain other component(s which can cause direct activation

  17. Action of matrix metalloproteinases at restricted sites in colon anastomosis repair

    DEFF Research Database (Denmark)

    Ågran, Magnus S.; Levin Andersen, Thomas; Mirastschijski, Ursula

    2006-01-01

    compared with adjacent micro-areas of 3-day-old anastomoses. Only this specific tissue compartment underwent a dramatic and significant increase in collagenolysis, amounting to a loss of 10% of existing collagen molecules in 24 hours, and was abolished by metalloproteinase inhibitors. The tissue....... CONCLUSIONS: The unique finding of this study was that the specific tissue holding the sutures of a colon anastomosis lost the most collagen presumably through induction and activation of multiple MMPs that may explain the beneficial effects of treatment with non-selective MMP antagonists....

  18. New and paradoxical roles of matrix metalloproteinases in the tumor microenvironment

    DEFF Research Database (Denmark)

    Noël, Agnès; Gutiérrez-Fernández, Ana; Sounni, Nor Eddine

    2012-01-01

    Processes such as cell proliferation, angiogenesis, apoptosis, or invasion are strongly influenced by the surrounding microenvironment of the tumor. Therefore, the ability to change these surroundings represents an important property through which tumor cells are able to acquire specific functions....... Despite the pro-tumorigenic function of certain metalloproteinases, recent studies have shown that other members of these families, such as MMP8 or MMP11, have a protective role against tumor growth and metastasis in animal models. These studies have been further expanded by large-scale genomic analysis...

  19. Fisetin regulates TPA-induced breast cell invasion by suppressing matrix metalloproteinase-9 activation via the PKC/ROS/MAPK pathways.

    Science.gov (United States)

    Noh, Eun-Mi; Park, Yeon-Ju; Kim, Jeong-Mi; Kim, Mi-Seong; Kim, Ha-Rim; Song, Hyun-Kyung; Hong, On-Yu; So, Hong-Seob; Yang, Sei-Hoon; Kim, Jong-Suk; Park, Samg Hyun; Youn, Hyun-Jo; You, Yong-Ouk; Choi, Ki-Bang; Kwon, Kang-Beom; Lee, Young-Rae

    2015-10-05

    Invasion and metastasis are among the main causes of death in patients with malignant tumors. Fisetin (3,3',4',7-tetrahydroxyflavone), a natural flavonoid found in the smoke tree (Cotinus coggygria), is known to have antimetastatic effects on prostate and lung cancers; however, the effect of fisetin on breast cancer metastasis is unknown. The aim of this study was to determine the anti-invasive activity of fisetin in human breast cancer cells. Matrix metalloproteinase (MMP)-9 is a major component facilitating the invasion of many cancer tumor cell types, and thus the inhibitory effect of fisetin on MMP-9 expression in 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated human breast cancer cells was investigated in this study. Fisetin significantly attenuated TPA-induced cell invasion in MCF-7 human breast cancer cells, and was found to inhibit the activation of the PKCα/ROS/ERK1/2 and p38 MAPK signaling pathways. This effect was furthermore associated with reduced NF-κB activation, suggesting that the anti-invasive effect of fisetin on MCF-7 cells may result from inhibited TPA activation of NF-κB and reduced TPA activation of PKCα/ROS/ERK1/2 and p38 MAPK signals, ultimately leading to the downregulation of MMP-9 expression. Our findings indicate the role of fisetin in MCF-7 cell invasion, and clarify the underlying molecular mechanisms of this role, suggesting fisetin as a potential chemopreventive agent for breast cancer metastasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Methyl jasmonate abolishes the migration, invasion and angiogenesis of gastric cancer cells through down-regulation of matrix metalloproteinase 14

    International Nuclear Information System (INIS)

    Zheng, Liduan; Li, Dan; Xiang, Xuan; Tong, Ling; Qi, Meng; Pu, Jiarui; Huang, Kai; Tong, Qiangsong

    2013-01-01

    Recent evidence indicates that methyl jasmonate (MJ), a plant stress hormone, exhibits anti-cancer activity on human cancer cells. The aim of this study is to determine whether sub-cytotoxic MJ can abolish the migration, invasion and angiogenesis gastric cancer cells. Human gastric cancer cell lines SGC-7901 and MKN-45 were treated with diverse concentrations of MJ. Cell viability, proliferation, migration, invasion and angiogenesis capabilities of cancer cells were measured by MTT colorimetry, EdU incorporation, scratch assay, matrigel invasion assay, and tube formation assay. Gene expression was detected by western blot and real-time quantitative RT-PCR. Binding of transcription factor on gene promoter was detected by chromatin immunoprecipitation. Sub-cytotoxic (0.05 to 0.2 mM) MJ attenuated the migration, invasion and angiogenesis, but not the cell viability or proliferation, of gastric cancer cells in a time- and dose-dependent manner, with down-regulation of matrix metalloproteinase 14 (MMP-14) and its downstream gene vascular endothelial growth factor. Restoration of MMP-14 expression rescued the SGC-7901 and MKN-45 cells from sub-cytotoxic MJ-inhibited migration, invasion and angiogenesis. In addition, sub-cytotoxic MJ decreased the specificity protein 1 (Sp1) expression and binding on MMP-14 promoter, while restoration of Sp1 expression rescued the cancer cells from sub-cytotoxic MJ-mediated defects in MMP-14 expression, migration, invasion and angiogenesis. Sub-cytotoxic MJ attenuates the MMP-14 expression via decreasing the Sp1 expression and binding on MMP-14 promoter, thus inhibiting the migration, invasion and angiogenesis of gastric cancer cells

  1. Triptonide inhibits the pathological functions of gastric cancer-associated fibroblasts.

    Science.gov (United States)

    Wang, Zhenfei; Ma, Daguang; Wang, Changshan; Zhu, Zhe; Yang, Yongyan; Zeng, Fenfang; Yuan, Jianlong; Liu, Xia; Gao, Yue; Chen, Yongxia; Jia, Yongfeng

    2017-12-01

    Direct attacks on tumour cells with chemotherapeutic drugs have the drawbacks of accelerating tumour metastasis and inducing tumour stem cell phenotypes. Inhibition of tumour-associated fibroblasts, which provide nourishment and support to tumour cells, is a novel and promising anti-tumour strategy. However, effective drugs against tumour-associated fibroblasts are currently lacking. In the present study, we explored the possibility of inhibiting the pathological functions of tumour-associated fibroblasts with triptonide. Paired gastric normal fibroblasts (GNFs) and gastric cancer-associated fibroblasts (GCAFs) were obtained from resected tissues. GCAFs showed higher capacities to induce colony formation, migration, and invasion of gastric cancer cells than GNFs. Triptonide treatment strongly inhibited the colony formation-, migration-, and invasion-promoting capacities of GCAFs. The expression of microRNA-301a was higher and that of microRNA-149 was lower in GCAFs than in GNFs. Triptonide treatment significantly down-regulated microRNA-301a expression and up-regulated microRNA-149 expression in GCAFs. Re-establishment of microRNA expression balance increased the production and secretion of tissue inhibitor of metalloproteinase 2, a tumour suppressive factor, and suppressed the production and secretion of IL-6, an oncogenic factor, in GCAFs. Moreover, triptonide treatment abolished the ability of GCAFs to induce epithelial-mesenchymal transition in gastric cancer cells. These results indicate that triptonide inhibits the malignancy-promoting capacity of GCAFs by correcting abnormalities in microRNA expression. Thus, triptonide is a promisingly therapeutic agent for gastric cancer treatment, and traditional herbs may be a valuable source for developing new drugs that can regulate the tumour microenvironment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. In vitro and in vivo investigation of matrix metalloproteinase expression in metastatic tumor models

    Energy Technology Data Exchange (ETDEWEB)

    Sprague, Jennifer E. [Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Li Wenping [Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Liang Kexian [Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Achilefu, Samuel [Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Anderson, Carolyn J. [Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110 (United States)]. E-mail: andersoncj@wustl.edu

    2006-02-15

    Introduction: Overexpression of matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, has been correlated with poor prognosis in several cancer types including lung, colon and breast. Noninvasive detection of MMP expression might allow physicians to better determine when more aggressive cancer therapy is appropriate. The peptide CTT (CTTHWGFTLC) was identified as a selective inhibitor of MMP-2/9 that inhibits the growth of MDA-MB-435 human breast cancer xenografts. Methods: CTT was conjugated with the bifunctional chelator DOTA (1,4,7,10-tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid) for radiolabeling with {sup 64}Cu (t {sub 1/2}=12.7 h, 17.4% {beta}{sup +}, 39% {beta}{sup -}), a radionuclide suitable for positron emission tomography (PET). In vitro affinity was determined in a fluorogenic substrate assay. Tumor gelatinase targeting was evaluated in both biodistribution and microPET imaging studies. Results: Cu(II)-DOTA-CTT inhibited hMMP-2 (EC{sub 5}=8.7 {mu}M) and mMMP-9 (EC{sub 5}=18.2 {mu}M) with similar affinity to CTT (hMMP-2 EC{sub 5}=13.2 {mu}M; mMMP-9 EC{sub 5}=11.0 {mu}M). In biodistribution and microPET imaging studies, {sup 64}Cu-DOTA-CTT was taken up by MMP-2/9-positive B16F10 murine melanoma tumors. Subsequently, imaging studies using {sup 64}Cu-DOTA-CTT were performed on MDA-MB-435 tumor-bearing mice. With zymography, tumor MMP-2/9 expression in this model was shown to be inconsistent, resulting in microPET detection of the MDA-MB-435 tumor in only 1 of 24 imaged mice. Following limited imaging success, {sup 64}Cu-DOTA-CTT was shown to have poor in vivo stability. Conclusions: Despite some evidence for selective uptake of {sup 64}Cu-DOTA-CTT by gelatinase-expressing tumors, the low affinity for MMP-2 and MMP-9 and in vivo instability make this an inadequate radioligand for in vivo tumor evaluation.

  3. In vitro and in vivo investigation of matrix metalloproteinase expression in metastatic tumor models

    International Nuclear Information System (INIS)

    Sprague, Jennifer E.; Li Wenping; Liang Kexian; Achilefu, Samuel; Anderson, Carolyn J.

    2006-01-01

    Introduction: Overexpression of matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, has been correlated with poor prognosis in several cancer types including lung, colon and breast. Noninvasive detection of MMP expression might allow physicians to better determine when more aggressive cancer therapy is appropriate. The peptide CTT (CTTHWGFTLC) was identified as a selective inhibitor of MMP-2/9 that inhibits the growth of MDA-MB-435 human breast cancer xenografts. Methods: CTT was conjugated with the bifunctional chelator DOTA (1,4,7,10-tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid) for radiolabeling with 64 Cu (t 1/2 =12.7 h, 17.4% β + , 39% β - ), a radionuclide suitable for positron emission tomography (PET). In vitro affinity was determined in a fluorogenic substrate assay. Tumor gelatinase targeting was evaluated in both biodistribution and microPET imaging studies. Results: Cu(II)-DOTA-CTT inhibited hMMP-2 (EC 5 =8.7 μM) and mMMP-9 (EC 5 =18.2 μM) with similar affinity to CTT (hMMP-2 EC 5 =13.2 μM; mMMP-9 EC 5 =11.0 μM). In biodistribution and microPET imaging studies, 64 Cu-DOTA-CTT was taken up by MMP-2/9-positive B16F10 murine melanoma tumors. Subsequently, imaging studies using 64 Cu-DOTA-CTT were performed on MDA-MB-435 tumor-bearing mice. With zymography, tumor MMP-2/9 expression in this model was shown to be inconsistent, resulting in microPET detection of the MDA-MB-435 tumor in only 1 of 24 imaged mice. Following limited imaging success, 64 Cu-DOTA-CTT was shown to have poor in vivo stability. Conclusions: Despite some evidence for selective uptake of 64 Cu-DOTA-CTT by gelatinase-expressing tumors, the low affinity for MMP-2 and MMP-9 and in vivo instability make this an inadequate radioligand for in vivo tumor evaluation

  4. EMMPRIN/CD147 deficiency disturbs ameloblast-odontoblast cross-talk and delays enamel mineralization.

    Science.gov (United States)

    Khaddam, Mayssam; Huet, Eric; Vallée, Benoît; Bensidhoum, Morad; Le Denmat, Dominique; Filatova, Anna; Jimenez-Rojo, Lucia; Ribes, Sandy; Lorenz, Georg; Morawietz, Maria; Rochefort, Gael Y; Kiesow, Andreas; Mitsiadis, Thimios A; Poliard, Anne; Petzold, Matthias; Gabison, Eric E; Menashi, Suzanne; Chaussain, Catherine

    2014-09-01

    Tooth development is regulated by a series of reciprocal inductive signaling between the dental epithelium and mesenchyme, which culminates with the formation of dentin and enamel. EMMPRIN/CD147 is an Extracellular Matrix MetalloPRoteinase (MMP) INducer that mediates epithelial-mesenchymal interactions in cancer and other pathological processes and is expressed in developing teeth. Here we used EMMPRIN knockout (KO) mice to determine the functional role of EMMPRIN on dental tissue formation. We report a delay in enamel deposition and formation that is clearly distinguishable in the growing incisor and associated with a significant reduction of MMP-3 and MMP-20 expression in tooth germs of KO mice. Insufficient basement membrane degradation is evidenced by a persistent laminin immunostaining, resulting in a delay of both odontoblast and ameloblast differentiation. Consequently, enamel volume and thickness are decreased in adult mutant teeth but enamel maturation and tooth morphology are normal, as shown by micro-computed tomographic (micro-CT), nanoindentation, and scanning electron microscope analyses. In addition, the dentino-enamel junction appears as a rough calcified layer of approximately 10±5μm thick (mean±SD) in both molars and growing incisors of KO adult mice. These results indicate that EMMPRIN is involved in the epithelial-mesenchymal cross-talk during tooth development by regulating the expression of MMPs. The mild tooth phenotype observed in EMMPRIN KO mice suggests that the direct effect of EMMPRIN may be limited to a short time window, comprised between basement membrane degradation allowing direct cell contact and calcified matrix deposition. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Tissue inhibitor of matrix metalloproteinase-1 expression in colorectal cancer liver metastases is associated with vascular structures

    DEFF Research Database (Denmark)

    Illemann, Martin; Eefsen, Rikke Helene Løvendahl; Bird, Nigel Charles

    2016-01-01

    several proteases, involved in the degradation of extracellular matrix components, are up-regulated. In liver metastases, their expression is growth pattern dependent. Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) is a strong prognostic marker in plasma from colorectal cancer patients...

  6. Tristetraprolin: A novel target of diallyl disulfide that inhibits the progression of breast cancer.

    Science.gov (United States)

    Xiong, Ting; Liu, Xiao-Wang; Huang, Xue-Long; Xu, Xiong-Feng; Xie, Wei-Quan; Zhang, Su-Jun; Tu, Jian

    2018-05-01

    Diallyl disulfide (DADS), a volatile component of garlic oil, has various biological properties, including antioxidant, antiangiogenic and anticancer effects. The present study aimed to explore novel targets of DADS that may slow or stop the progression of breast cancer. First, xenograft tumor models were created by subcutaneously injecting MCF-7 and MDA-MB-231 breast cancer cells into nude mice. Subsequently, western blot analysis was performed to investigate the expression of tristetraprolin (TTP), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) in the xenograft tumors, and cell cultures. Tablet cloning, Transwell and wound healing assays revealed that DADS treatment significantly inhibited the proliferation, invasion and migration of breast cancer cells. In addition, DADS treatment led to significant downregulation of uPA and MMP-9 protein expression, but significantly upregulated TTP expression in vivo and in vitro . Knocking down TTP expression using small interfering RNA reversed the aforementioned effects of DADS, which suggests TTP is a key target of DADS in inhibiting the progression of breast cancer.

  7. A-Type Cranberry Proanthocyanidins Inhibit the RANKL-Dependent Differentiation and Function of Human Osteoclasts

    Directory of Open Access Journals (Sweden)

    Amy B. Howell

    2011-03-01

    Full Text Available This study investigated the effect of A-type cranberry proanthocyanidins (AC-PACs on osteoclast formation and bone resorption activity. The differentiation of human pre-osteoclastic cells was assessed by tartrate-resistant acid phosphatase (TRAP staining, while the secretion of interleukin-8 (IL-8 and matrix metalloproteinases (MMPs was measured by ELISA. Bone resorption activity was investigated by using a human bone plate coupled with an immunoassay that detected the release of collagen helical peptides. AC-PACs up to 100 µg/mL were atoxic for osteoclastic cells. TRAP staining evidenced a dose-dependent inhibition of osteoclastogenesis. More specifically, AC-PACs at 50 µg/mL caused a 95% inhibition of RANKL-dependent osteoclast differentiation. This concentration of AC-PACs also significantly increased the secretion of IL-8 (6-fold and inhibited the secretion of both MMP-2 and MMP-9. Lastly, AC-PACs (10, 25, 50 and 100 µg/ml affected bone degradation mediated by mature osteoclasts by significantly decreasing the release of collagen helical peptides. This study suggests that AC-PACs can interfere with osteoclastic cell maturation and physiology as well as prevent bone resorption. These compounds may be considered as therapeutic agents for the prevention and treatment of periodontitis.

  8. Transmembrane neural cell-adhesion molecule (NCAM), but not glycosyl-phosphatidylinositol-anchored NCAM, down-regulates secretion of matrix metalloproteinases

    DEFF Research Database (Denmark)

    Edvardsen, K; Chen, W; Rucklidge, G

    1993-01-01

    proteinases, and proteinase inhibitors all participate in the construction, maintenance, and remodeling of extracellular matrix by cells. The neural cell-adhesion molecule (NCAM)-negative rat glioma cell line BT4Cn secretes substantial amounts of metalloproteinases, as compared with its NCAM-positive mother......During embryogenesis interactions between cells and extracellular matrix play a central role in the modulation of cell motility, growth, and differentiation. Modulation of matrix structure is therefore crucial during development; extracellular matrix ligands, their receptors, extracellular...... cell line BT4C. We have transfected the BT4Cn cell line with cDNAs encoding the human NCAM-B and -C isoforms. We report here that the expression of transmembrane NCAM-B, but not of glycosyl-phosphatidylinositol-linked NCAM-C, induces a down-regulation of 92-kDa gelatinase (matrix metalloproteinase 9...

  9. Andrographolide inhibits arrhythmias and is cardioprotective in rabbits.

    Science.gov (United States)

    Zeng, Mengliu; Jiang, Wanzhen; Tian, Youjia; Hao, Jie; Cao, Zhenzhen; Liu, Zhipei; Fu, Chen; Zhang, Peihua; Ma, Jihua

    2017-09-22

    Andrographolide has a protective effect on the cardiovascular system. To study its cardic-electrophysiological effects, action potentials and voltage-gated Na + (I Na ), Ca 2+ (I CaL ), and K + (I K1 , I Kr , I to and I Kur ) currents were recorded using whole-cell patch clamp and current clamp techniques. Additionally, the effects of andrographolide on aconitine-induced arrhythmias were assessed on electrocardiograms in vivo . We found that andrographolide shortened action potential duration and reduced maximum upstroke velocity in rabbit left ventricular and left atrial myocytes. Andrographolide attenuated rate-dependence of action potential duration, and reduced or abolished delayed afterdepolarizations and triggered activities induced by isoproterenol (1 μM) and high calcium ([Ca 2+ ] o =3.6 mM) in left ventricular myocytes. Andrographolide also concentration-dependently inhibited I Na and I CaL , but had no effect on I to , I Kur , I K1 , or I Kr in rabbit left ventricular and left atrial myocytes. Andrographolide treatment increased the time and dosage thresholds of aconitine-induced arrhythmias, and reduced arrhythmia incidence and mortality in rabbits. Our results indicate that andrographolide inhibits cellular arrhythmias (delayed afterdepolarizations and triggered activities) and aconitine-induced arrhythmias in vivo , and these effects result from I Na and I CaL inhibition. Andrographolide may be useful as a class I and IV antiarrhythmic therapeutic.

  10. Recovery from inhibition of transcription in γ-irradiated Euglena cells

    International Nuclear Information System (INIS)

    Tsushimoto, G.; Kikuchi, T.; Ishida, M.R.

    1982-01-01

    Transcriptional activity was inhibited with low doses of γ-irradiation which did not cause the death of cells, but induced the delay of cell division in the unicellular alga Euglena. The incorporation of [ 14 C]uracil into cells was inhibited to about 50% of non-irradiated cells immediately after 3 krad irradiation. The suppressed transcriptional activity was gradually recovered after irradiation. At about 12 h post-irradiation, the rate of incorporation of [ 14 C]uracil recovered to that of non-irradiated cells. The synthesis of ribosomal RNA was inhibited immediately after 3 krad irradiation, but it recovered within 12 h after irradiation. The synthesis of cytosol ribosomal RNA precursor was more strongly inhibited than that of other cytosol ribosomal RNAs. The synthesis of cytoplasmic organelle ribosomal RNA was also inhibited and recovered after 3 krad irradiation. (Auth.)

  11. Stability and delay sensitivity of neutral fractional-delay systems.

    Science.gov (United States)

    Xu, Qi; Shi, Min; Wang, Zaihua

    2016-08-01

    This paper generalizes the stability test method via integral estimation for integer-order neutral time-delay systems to neutral fractional-delay systems. The key step in stability test is the calculation of the number of unstable characteristic roots that is described by a definite integral over an interval from zero to a sufficient large upper limit. Algorithms for correctly estimating the upper limits of the integral are given in two concise ways, parameter dependent or independent. A special feature of the proposed method is that it judges the stability of fractional-delay systems simply by using rough integral estimation. Meanwhile, the paper shows that for some neutral fractional-delay systems, the stability is extremely sensitive to the change of time delays. Examples are given for demonstrating the proposed method as well as the delay sensitivity.

  12. Tumor necrosis factor-α-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo

    DEFF Research Database (Denmark)

    Ågren, Magnus S; Schnabel, Reinhild; Christensen, Lise H

    2015-01-01

    Tumor necrosis factor (TNF)-α induces matrix metalloproteinases (MMPs) that may disrupt skin integrity. We have investigated the effects and mechanisms of exogenous TNF-α on collagen degradation by incubating human skin explants in defined serum-free media with or without TNF-α (10ng/ml) in the a......Tumor necrosis factor (TNF)-α induces matrix metalloproteinases (MMPs) that may disrupt skin integrity. We have investigated the effects and mechanisms of exogenous TNF-α on collagen degradation by incubating human skin explants in defined serum-free media with or without TNF-α (10ng...... tissue-derived collagenolytic activity with TNF-α exposure was blocked by neutralizing MMP-1 monoclonal antibody and was not due to down-regulation of tissue inhibitor of metalloproteinase-1. TNF-α increased production (pendogenous MMP-1...

  13. Matrix metalloproteinase-1 facilitates MSC migration via cleavage of IGF-2/IGFBP2 complex.

    Science.gov (United States)

    Guan, Shou P; Lam, Alan T L; Newman, Jennifer P; Chua, Kevin L M; Kok, Catherine Y L; Chong, Siao T; Chua, Melvin L K; Lam, Paula Y P

    2018-01-01

    The specific mechanism underlying the tumor tropism of human mesenchymal stem cells (MSCs) for cancer is not well defined. We previously showed that the migration potential of MSCs correlated with the expression and protease activity of matrix metalloproteinase (MMP)-1. Furthermore, highly tumor-tropic MSCs expressed higher levels of MMP-1 and insulin-like growth factor (IGF)-2 than poorly migrating MSCs. In this study, we examined the functional roles of IGF-2 and MMP-1 in mediating the tumor tropism of MSCs. Exogenous addition of either recombinant IGF-2 or MMP-1 could stimulate MSC migration. The correlation between IGF-2, MMP-1 expression, and MSC migration suggests that MMP-1 may play a role in regulating MSC migration via the IGF-2 signaling cascade. High concentrations of IGF binding proteins (IGFBPs) can inhibit IGF-stimulated functions by blocking its binding to its receptors and proteolysis of IGFBP is an important mechanism for the regulation of IGF signaling. We thus hypothesized that MMP-1 acts as an IGFBP2 proteinase, resulting in the cleavage of IGF-2/IGFBP2 complex and extracellular release of free IGF-2. Indeed, our results showed that conditioned media from highly migrating MSCs, which expressed high levels of MMP-1, cleaved the IGF-2/IGFBP2 complex. Taken together, these results showed that the MMP-1 secreted by highly tumor-tropic MSCs cleaved IGF-2/IGFBP2 complex. Free IGF-2 released from the complex may facilitate MSC migration toward tumor.

  14. Suppressions of Migration and Invasion by Cantharidin in TSGH-8301 Human Bladder Carcinoma Cells through the Inhibitions of Matrix Metalloproteinase-2/-9 Signaling

    Directory of Open Access Journals (Sweden)

    Yi-Ping Huang

    2013-01-01

    Full Text Available Cancer metastasis becomes an initial cause of cancer death in human population. In many cancers, it has been shown that the high levels of matrix metalloproteinase (MMP-2 and/or MMP-9 are associated with the invasive phenotypes of cancer cells. In this study, we investigated the effects of cantharidin, a derivative of blister beetles which is one of the traditional Chinese medicines, on the adhesion, migration, and invasion of human bladder cancer TSGH-8301 cells. Cantharidin effectively suppressed TSGH-8301 cell adhesion, migration, and invasion in a concentration-dependent manner. Results from Western blotting, RT-PCR, and gelatin zymography assays indicated that cantharidin blocked the protein levels, gene expression (mRNA, and activities of MMP-2 and -9 in TSGH-8301 cells. Cantharidin also significantly suppressed the protein expressions of p-p38 and p-JNK1/2 in TSGH-8301 cells. Taken together, cantharidin was suggested to present antimetastatic potential via suppressing the levels of MMP-2 and MMP-9 expression that might be mediated by targeting the p38 and JNK1/2 MAPKs pathway in TSGH-8301 human bladder cancer cells.

  15. Direct Fibrinolytic Snake Venom Metalloproteinases Affecting Hemostasis: Structural, Biochemical Features and Therapeutic Potential.

    Science.gov (United States)

    Sanchez, Eladio F; Flores-Ortiz, Renzo J; Alvarenga, Valeria G; Eble, Johannes A

    2017-12-05

    Snake venom metalloproteinases (SVMPs) are predominant in viperid venoms, which provoke hemorrhage and affect hemostasis and thrombosis. P-I class enzymes consist only of a single metalloproteinase domain. Despite sharing high sequence homology, only some of them induce hemorrhage. They have direct fibrin(ogen)olytic activity. Their main biological substrate is fibrin(ogen), whose Aα-chain is degraded rapidly and independently of activation of plasminogen. It is important to understand their biochemical and physiological mechanisms, as well as their applications, to study the etiology of some human diseases and to identify sites of potential intervention. As compared to all current antiplatelet therapies to treat cardiovascular events, the SVMPs have outstanding biochemical attributes: (a) they are insensitive to plasma serine proteinase inhibitors; (b) they have the potential to avoid bleeding risk; (c) mechanistically, they are inactivated/cleared by α2-macroglobulin that limits their range of action in circulation; and (d) few of them also impair platelet aggregation that represent an important target for therapeutic intervention. This review will briefly highlight the structure-function relationships of these few direct-acting fibrinolytic agents, including, barnettlysin-I, isolated from Bothrops barnetti venom, that could be considered as potential agent to treat major thrombotic disorders. Some of their pharmacological advantages are compared with plasmin.

  16. Direct Fibrinolytic Snake Venom Metalloproteinases Affecting Hemostasis: Structural, Biochemical Features and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Eladio F. Sanchez

    2017-12-01

    Full Text Available Snake venom metalloproteinases (SVMPs are predominant in viperid venoms, which provoke hemorrhage and affect hemostasis and thrombosis. P-I class enzymes consist only of a single metalloproteinase domain. Despite sharing high sequence homology, only some of them induce hemorrhage. They have direct fibrin(ogenolytic activity. Their main biological substrate is fibrin(ogen, whose Aα-chain is degraded rapidly and independently of activation of plasminogen. It is important to understand their biochemical and physiological mechanisms, as well as their applications, to study the etiology of some human diseases and to identify sites of potential intervention. As compared to all current antiplatelet therapies to treat cardiovascular events, the SVMPs have outstanding biochemical attributes: (a they are insensitive to plasma serine proteinase inhibitors; (b they have the potential to avoid bleeding risk; (c mechanistically, they are inactivated/cleared by α2-macroglobulin that limits their range of action in circulation; and (d few of them also impair platelet aggregation that represent an important target for therapeutic intervention. This review will briefly highlight the structure–function relationships of these few direct-acting fibrinolytic agents, including, barnettlysin-I, isolated from Bothrops barnetti venom, that could be considered as potential agent to treat major thrombotic disorders. Some of their pharmacological advantages are compared with plasmin.

  17. Proof of Concept: Matrix metalloproteinase inhibitor decreases inflammation and improves muscle insulin sensitivity in people with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Frankwich Karen

    2012-10-01

    Full Text Available Abstract Background Obesity is a state of subclinical inflammation resulting in loss of function of insulin receptors and decreased insulin sensitivity. Inhibition of the inflammatory enzymes, matrix metalloproteinases (MMPs, for 6 months in rodent models restores insulin receptor function and insulin sensitivity. Methods This 12-week double-blind, randomized, placebo (PL-controlled proof-of-concept study was performed to determine if the MMP inhibitor (MMPI, doxycycline, decreased global markers of inflammation and enhanced muscle insulin sensitivity in obese people with type 2 diabetes (DM2. The study included non-DM2 controls (n = 15, and DM2 subjects randomized to PL (n = 13 or doxycycline 100 mg twice daily (MMPI; n = 11. All participants were evaluated on Day 1; MMPI and PL groups were also evaluated after 84 days of treatment. Results There was a significant decrease in inflammatory markers C-reactive protein (P  Conclusions This study demonstrated short term treatment of people with diabetes with an MMPI resulted in decreased inflammation and improved insulin sensitivity. Larger, longer studies are warranted to determine if doxycycline can improve glucose control in people with diabetes. Trial Registration Clinicaltrials.gov NCT01375491

  18. Monocyte matrix metalloproteinase production in Type 2 diabetes and controls – a cross sectional study

    Directory of Open Access Journals (Sweden)

    Davies Isabel R

    2003-03-01

    Full Text Available Abstract Background Coronary plaque rupture may result from localised over expression of matrix metalloproteinases (MMPs within the plaque by infiltrating monocyte – macrophages. As MMP expression can be promoted by the modified lipoproteins, oxidative stress and hyperglycaemia that characterises Type 2 diabetes, we hypothesised that peripheral monocytes in these patients, exposed to these factors in vivo, would demonstrate increased MMP production compared to controls. Methods We examined peripheral venous monocyte expression of MMP and tissue inhibitor of metalloproteinase-1 (TIMP-1 in 18 controls and 22 subjects with Type 2 diabetes and no previous cardiovascular complications. Results No significant difference in MMP-1, 3 or 9 or TIMP-1 production was observed between control and diabetes groups. Conclusions Monocyte MMP-1, 3, and 9, and TIMP-1, production are not abnormal in Type 2 diabetes. This data cannot be extrapolated to monocyte – macrophage behaviour in the vessel wall, but it does suggest MMP and TIMP-1 expression prior to monocyte infiltration and transformation are not abnormal in Type 2 diabetes.

  19. Cortisol/cortisone ratio and matrix metalloproteinase-9 activity are associated with pediatric primary hypertension.

    Science.gov (United States)

    Martinez-Aguayo, Alejandro; Campino, Carmen; Baudrand, Rene; Carvajal, Cristian A; García, Hernán; Aglony, Marlene; Bancalari, Rodrigo; García, Lorena; Loureiro, Carolina; Vecchiola, Andrea; Tapia-Castillo, Alejandra; Valdivia, Carolina; Sanhueza, Sebastian; Fuentes, Cristobal A; Lagos, Carlos F; Solari, Sandra; Allende, Fidel; Kalergis, Alexis M; Fardella, Carlos E

    2016-09-01

    To identify novel biomarkers associated with pediatric primary hypertension. We recruited 350 participants (4-16 years). Anthropometric parameters and aldosterone, plasma renin activity, cortisol, cortisone, Homeostasis Model Assessment Insulin Resistance (HOMA-IR), high-sensitivity C-reactive protein, adiponectin, IL-6, plasminogen activator inhibitor type 1 levels and matrix metalloproteinase-9 and matrix metalloproteinase-2 (MMP-9 and MMP-2) activities were measured. Genomic DNA was isolated. Patients with altered glucose metabolism, severe obesity [BMI-SD score (BMI-SDS) > 2.5], renovascular disease, primary aldosteronism and apparent mineralocorticoid excess syndrome were excluded. In selected participants (n = 320), SBP was positively correlated with BMI-SDS (r = 0.382, P cortisol/cortisone ratio (r = 0.231, P cortisol/cortisone ratio (P cortisol/cortisone ratio (OR = 3.92; 95% CI = 1.98-7.71) and increased MMP-9 activity (OR = 4.23; 95% CI = 2.15-8.32). We report that MMP-9 activity and the cortisol/cortisone ratio were higher in pediatric primary hypertensive patients, and these associations were independent of the effect of obesity. The potential role of these novel biomarkers in predicting hypertension risk and blood pressure regulation warrants further investigation.

  20. Delayed wound healing in aged skin rat models after thermal injury is associated with an increased MMP-9, K6 and CD44 expression.

    Science.gov (United States)

    Simonetti, Oriana; Oriana, Simonetti; Lucarini, Guendalina; Guendalina, Lucarini; Cirioni, Oscar; Oscar, Cirioni; Zizzi, Antonio; Antonio, Zizzi; Orlando, Fiorenza; Fiorenza, Orlando; Provinciali, Mauro; Mauro, Provinciali; Di Primio, Roberto; Roberto, Di Primio; Giacometti, Andrea; Andrea, Giacometti; Offidani, Annamaria; Annamaria, Offidani

    2013-06-01

    Age-related differences in wound healing have been documented but little is known about the wound healing mechanism after burns. Our aim was to compare histological features and immunohistochemical expression of matrix metalloproteinase-9 (MMP-9), collagen IV, K6 and CD44 in the burn wound healing process in aged and young rats. Following burns the appearance of the wound bed in aged rats had progressed but slowly, resulting in a delayed healing process compared to the young rats. At 21 days after injury, epithelial K6, MMP-9 and CD44 expression was significantly increased in aged rats with respect to young rats; moreover, in the aged rat group we observed a not fully reconstituted basement membrane. K6, MMP-9 and CD44 expression was significantly increased in wounded skin compared to unwounded skin both in young and aged rats. We hypothesise that delayed burn skin wound healing process in the aged rats may represent an age dependent response to injury where K6, MMP-9 and CD44 play a key role. It is therefore possible to suggest that these factors contribute to the delayed wound healing in aged skin and that modulation could lead to a better and faster recovery of skin damage in elderly. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  1. α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells

    International Nuclear Information System (INIS)

    Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2015-01-01

    We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blot and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated

  2. α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan)

    2015-02-01

    We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blot and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated.

  3. Matrix metalloproteinase-9-mediated type III collagen degradation as a novel serological biochemical marker for liver fibrogenesis

    DEFF Research Database (Denmark)

    Veidal, Sanne S; Vassiliadis, Efstathios; Barascuk, Natasha

    2010-01-01

    During fibrogenesis in the liver, in which excessive remodelling of the extracellular matrix (ECM) occurs, both the quantity of type III collagen (CO3) and levels of matrix metalloproteinases (MMPs), including MMP-9, increase significantly. MMPs play major roles in ECM remodelling, via...

  4. Retroviral gene transfer of an antisense construct against membrane type 1 matrix metalloproteinase reduces the invasiveness of rheumatoid arthritis synovial fibroblasts.

    Science.gov (United States)

    Rutkauskaite, Edita; Volkmer, Dagmar; Shigeyama, Yukio; Schedel, Jörg; Pap, Geza; Müller-Ladner, Ulf; Meinecke, Ingmar; Alexander, Dorothea; Gay, Renate E; Drynda, Susanne; Neumann, Wolfram; Michel, Beat A; Aicher, Wilhelm K; Gay, Steffen; Pap, Thomas

    2005-07-01

    Membrane type 1 matrix metalloproteinase (MT1-MMP) is expressed prominently in rheumatoid arthritis synovial fibroblasts (RASFs), but the specific contribution of MT1-MMP to fibroblast-mediated destruction of articular cartilage is incompletely understood. This study used gene transfer of an antisense expression construct to assess the effects of MT1-MMP inhibition on the invasiveness of RASFs. Retroviral gene transfer of a pLXIN vector-based antisense RNA expression construct (MT1-MMPalphaS) to MT1-MMP was used to stably transduce RASFs. Levels of MT1-MMP RNA and protein were determined by quantitative polymerase chain reaction, Western blotting, and immunocytochemistry in MT1-MMPalphaS-transduced RASFs as well as in control cells, with monitoring for 60 days. The effects of MT1-MMPalphaS on the invasiveness of RASFs were analyzed in the SCID mouse co-implantation model of RA. MT1-MMPalphaS-transduced RASFs produced high levels of antisense RNA that exceeded endogenous levels of MT1-MMP messenger RNA by 15-fold and resulted in a down-regulation of MT1-MMP at the protein level. Inhibition of MT1-MMP production was maintained for 60 days and significantly reduced the invasiveness of RASFs in the SCID mouse model. Whereas prominent invasion into cartilage by non-transduced and mock-transduced RASFs was observed (mean invasion scores 3.0 and 3.1, respectively), MT1-MMPalphaS-transduced cells showed only moderate invasiveness (mean invasion score 1.8; P < 0.05). The data demonstrate that an antisense RNA expression construct against MT1-MMP can be generated and expressed in RASFs for at least 60 days. Inhibition of MT1-MMP significantly reduces the cartilage degradation by RASFs.

  5. Tissue inhibitor of metalloproteinases-1 in breast cancer

    DEFF Research Database (Denmark)

    Würtz, Sidse Ørnbjerg; Rasmussen, Anne-Sofie Schrohl; Sørensen, Nanna Møller

    2005-01-01

    Whether patients diagnosed with primary breast cancer are offered adjuvant systemic therapy following surgical removal of the tumor is based on prognosis. Prognosis is estimated in every patient using established prognostic variables. Unfortunately, when using the currently available prognostic...... parameters a significant proportion of patients are over-treated. Thus, in order to improve stratification of breast cancer patients, additional prognostic factors need to be identified. Tissue inhibitor of metalloproteinases-1 (TIMP-1) is one of the promising candidates for new prognostic markers in breast...... cancer, as a number of studies have demonstrated an association between high tumor-tissue levels of TIMP-1 mRNA as well as TIMP-1 protein and a poor prognosis of breast cancer patients. TIMP-1 is a member of the TIMP family, currently comprising four members (TIMP-1-4), and its main function...

  6. Prevention of secretory diarrhea by ethanol extract of Bistortae rhizoma through inhibition of chloride channel

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2015-08-01

    Full Text Available Inhibition of cystic fibrosis transmembrane conductance regulator (CFTR and Ca2+-activated Cl- channel (CaCC represents an attractive approach for the treatment of secretory diarrhea. The aim of the study is to investigate the molecular basis of the anti-diarrheal effect of traditional Chinese herbal anti-diarrheal medicine Bistortae rhizoma. Fluorescence quenching assay indicated that the 40% methanol /water fraction (D5 dose-dependently inhibited both CFTR and CaCC function in transfected Fischer rat thyroid (FRT cells. Ex vivo studies indicated that D5 inhibited both forskolin (FSK-activated CFTR current and CCh-induced CaCC current in rat colonic mucosa. In the mouse closed-loop model, intraluminal application of D5 (200 µg/mL significantly reduced cholera toxin-stimulated fluid secretion. In the intestinal motility model, D5 significantly delayed intestinal peristalsis in mice. Our research suggests that CFTR and CaCC-mediated intestinal epithelial Cl- secretion inhibiting and gastrointestinal motility delaying may account for the anti-diarrheal activity of B. rhizoma.

  7. Inhibition of CD147 (Cluster of Differentiation 147) Ameliorates Acute Ischemic Stroke in Mice by Reducing Thromboinflammation.

    Science.gov (United States)

    Jin, Rong; Xiao, Adam Y; Chen, Rui; Granger, D Neil; Li, Guohong

    2017-12-01

    Inflammation and thrombosis currently are recognized as critical contributors to the pathogenesis of ischemic stroke. CD147 (cluster of differentiation 147), also known as extracellular matrix metalloproteinase inducer, can function as a key mediator of inflammatory and immune responses. CD147 expression is increased in the brain after cerebral ischemia, but its role in the pathogenesis of ischemic stroke remains unknown. In this study, we show that CD147 acts as a key player in ischemic stroke by driving thrombotic and inflammatory responses. Focal cerebral ischemia was induced in C57BL/6 mice by a 60-minute transient middle cerebral artery occlusion. Animals were treated with anti-CD147 function-blocking antibody (αCD147) or isotype control antibody. Blood-brain barrier permeability, thrombus formation, and microvascular patency were assessed 24 hours after ischemia. Infarct size, neurological deficits, and inflammatory cells invaded in the brain were assessed 72 hours after ischemia. CD147 expression was rapidly increased in ischemic brain endothelium after transient middle cerebral artery occlusion. Inhibition of CD147 reduced infarct size and improved functional outcome on day 3 after transient middle cerebral artery occlusion. The neuroprotective effects were associated with (1) prevented blood-brain barrier damage, (2) decreased intravascular fibrin and platelet deposition, which in turn reduced thrombosis and increased cerebral perfusion, and (3) reduced brain inflammatory cell infiltration. The underlying mechanism may include reduced NF-κB (nuclear factor κB) activation, MMP-9 (matrix metalloproteinase-9) activity, and PAI-1 (plasminogen activator inhibitor-1) expression in brain microvascular endothelial cells. Inhibition of CD147 ameliorates acute ischemic stroke by reducing thromboinflammation. CD147 might represent a novel and promising therapeutic target for ischemic stroke and possibly other thromboinflammatory disorders. © 2017 American Heart

  8. Messenger RNA for membrane-type 2 matrix metalloproteinase, MT2-MMP, is expressed in human placenta of first trimester.

    Science.gov (United States)

    Bjørn, S F; Hastrup, N; Larsen, J F; Lund, L R; Pyke, C

    2000-01-01

    An intimately regulated cell surface activation of matrix metalloproteinases (MMPs) is believed to be of critical importance for the control of trophoblast invasion. A histological investigation of the expression and localization of three different MMPs, the membrane-type matrix metalloproteinases 1 and 2 (MT1-MMP, MT2-MMP) and matrix metalloproteinase 2 (MMP-2/gelatinase A) was performed by in situ hybridization on consecutive sections from human placentae of first trimester pregnancies. Cytokeratin immunostaining identified trophoblast cells. Both normal and tubal implantation sites were studied. We observed a high degree of coexpression of MT2-MMP, MT1-MMP and MMP-2 mRNAs in single extravillous cytotrophoblasts that had invaded the endometrium and tubal wall. Furthermore, mRNAs for all three genes were also seen in cytotrophoblasts of cell islands. In contrast to this coexpression pattern, MT2-MMP expression was absent from cell columns and decidual cells, in which signals for MT1-MMP and MMP-2 mRNAs were seen. The present data on the cellular expression of MT2-MMP mRNA in placenta extend our knowledge of the proteolytic events that take place during early pregnancy. The data suggest that MT2-MMP, capable of activating MMP-2 in vitro, is involved in the invasion of extravillous cytotrophoblast, possibly related to the physiological activation of MMP-2. Copyright 2000 Harcourt Publishers Ltd.

  9. MIF inhibition interferes with the inflammatory and T cell-stimulatory capacity of NOD macrophages and delays autoimmune diabetes onset.

    Directory of Open Access Journals (Sweden)

    Hannelie Korf

    Full Text Available Macrophages contribute in the initiation and progression of insulitis during type 1 diabetes (T1D. However, the mechanisms governing their recruitment into the islets as well as the manner of retention and activation are incompletely understood. Here, we investigated a role for macrophage migration inhibitory factor (MIF and its transmembrane receptor, CD74, in the progression of T1D. Our data indicated elevated MIF concentrations especially in long-standing T1D patients and mice. Additionally, NOD mice featured increased MIF gene expression and CD74+ leukocyte frequencies in the pancreas. We identified F4/80+ macrophages as the main immune cells in the pancreas expressing CD74 and showed that MIF antagonism of NOD macrophages prevented their activation-induced cytokine production. The physiological importance was highlighted by the fact that inhibition of MIF delayed the onset of autoimmune diabetes in two different diabetogenic T cell transfer models. Mechanistically, macrophages pre-conditioned with the MIF inhibitor featured a refractory capacity to trigger T cell activation by keeping them in a naïve state. This study underlines a possible role for MIF/CD74 signaling pathways in promoting macrophage-mediated inflammation in T1D. As therapies directed at the MIF/CD74 pathway are in clinical development, new opportunities may be proposed for arresting T1D progression.

  10. Development of a specific affinity-matured exosite inhibitor to MT1-MMP that efficiently inhibits tumor cell invasion in vitro and metastasis in vivo

    DEFF Research Database (Denmark)

    Botkjaer, Kenneth A; Kwok, Hang Fai; Terp, Mikkel G

    2016-01-01

    therapeutic target. Here, we report the identification of antibody fragments to MT1-MMP that potently and specifically inhibit its cell surface functions. Lead antibody clones displayed inhibitory activity towards pro-MMP-2 activation, collagen-film degradation and gelatin-film degradation, and were shown......The membrane-associated matrix metalloproteinase-14, MT1-MMP, has been implicated in pericellular proteolysis with an important role in cellular invasion of collagenous tissues. It is substantially upregulated in various cancers and rheumatoid arthritis, and has been considered as a potential...... to bind to the MT1-MMP catalytic domain outside the active site cleft, inhibiting binding to triple helical collagen. Affinity maturation using CDR3 randomization created a second generation of antibody fragments with dissociation constants down to 0.11 nM, corresponding to an improved affinity of 332...

  11. Effects of caffeine on cleavage delay of sea urchin eggs induced by ethidium bromide or puromycin

    International Nuclear Information System (INIS)

    Kimura, Hiroshi

    1975-01-01

    The mitotic delay was induced when sea urchin eggs were treated with either ethidium bromide or puromycin, as observed with eggs fertilized with x- or UV-irradiated sperm. Treatment of these eggs with caffeine during the period of early prophase block resulted in the reduction of the mitotic delay. Protein synthesis of these eggs was not affected by x-irradiation but inhibited by ethidium bromide or puromycin. Caffeine was almost ineffective in changing the protein synthesis of eggs inseminated with x-irradiated sperm or treated with ethidium bromide. These facts mean that additive synthesis of protein is not required for the reduction by caffeine of the mitotic delay. Some role of protein synthesis in the reduction by caffeine of the cleavage delay is not excluded for puromycin treated eggs, since caffeine counteracted the inhibitory effect of puromycin on protein synthesis. (author)

  12. The reduction of radiation-induced mitotic delay by caffeine: a test of the cyclic AMP hypothesis

    International Nuclear Information System (INIS)

    Oleinick, N.L.; Brewer, E.N.; Rustad, R.C.

    1978-01-01

    A study has been made of the reduction in γ-radiation-induced mitotic delay by caffeine in the naturally-synchronous plasmodial slime mould. Physarum polycephalum during late G 2 and early prophase, and the results compared with those obtained with other compounds of similar structure and/or physiological function. The reduction of radiation-induced mitotic delay was related to increasing concentrations of caffeine over at least two orders of magnitude. Pre-irradiation treatment with caffeine had no detectable effect. Caffeine had to be present for most, if not all, of the post-irradiation pre-mitotic period. Other chemicals which are reported to inhibit cyclic AMP phosphodiesterase either reduce or increase radiation-induced mitotic delay. The results therefore indicate that the reduction of mitotic delay by caffeine is not a result of altered cyclic AMP levels. (UK)

  13. Attenuation of ischemia/reperfusion-induced inhibition of the rapid component of delayed rectifier potassium current by Isosteviol through scavenging reactive oxygen species.

    Science.gov (United States)

    Yin, Chunxia; Chen, Yaoxu; Wu, Huanlin; Xu, Danping; Tan, Wen

    2017-12-01

    Isosteviol has been demonstrated to play a protective role during ischemia reperfusion (I/R) myocardial infarction. However, the underlying electrophysiological mechanisms of isosteviol are still unknown. Our previous study showed that the rapid component of the delayed rectifier potassium channel (I Kr ) plays an important role in the prolongation of I/R-induced QT interval-related arrhythmia. This study aimed to investigate whether isosteviol could attenuate I/R-induced prolongation of the action potential duration (APD) along with inhibition of I Kr , and we aimed to clarify the electrophysiological mechanism of isosteviol to determine its cardioprotective effects in guinea pigs. We observed that the APD 90 were 298.5±41.6ms in control, 528.6±56.7ms during I/R, and reduced to 327.8±40.5ms after 10μmol/L of isosteviol treatment. The I Kr currents were 1.44±0.06 pA·pF -1 in the control group, 0.50±0.07pA·pF -1 during I/R, and recovered to 1.20±0.12pA·pF -1 after 10μmol/L of isoteviol treatment. Moreover, isosteviol reduced the over-production of reactive oxygen species (ROS) during I/R. Importantly, isosteviol does not affect the I Kr and human ether-a-go-go-related gene currents of normal cardiomyocytes. It attenuated the I/R-induced inhibition of I Kr due to reduced over-production of ROS. Furthermore, isosteviol is safe and has no cardiotoxicity, and it might be beneficial for coronary reperfusion therapy. Copyright © 2017. Published by Elsevier B.V.

  14. HGF potentiates extracellular matrix-driven migration of human myoblasts: involvement of matrix metalloproteinases and MAPK/ERK pathway.

    Science.gov (United States)

    González, Mariela Natacha; de Mello, Wallace; Butler-Browne, Gillian S; Silva-Barbosa, Suse Dayse; Mouly, Vincent; Savino, Wilson; Riederer, Ingo

    2017-10-10

    The hepatocyte growth factor (HGF) is required for the activation of muscle progenitor cells called satellite cells (SC), plays a role in the migration of proliferating SC (myoblasts), and is present as a soluble factor during muscle regeneration, along with extracellular matrix (ECM) molecules. In this study, we aimed at determining whether HGF is able to interact with ECM proteins, particularly laminin 111 and fibronectin, and to modulate human myoblast migration. We evaluated the expression of the HGF-receptor c-Met, laminin, and fibronectin receptors by immunoblotting, flow cytometry, or immunofluorescence and used Transwell assays to analyze myoblast migration on laminin 111 and fibronectin in the absence or presence of HGF. Zymography was used to check whether HGF could modulate the production of matrix metalloproteinases by human myoblasts, and the activation of MAPK/ERK pathways was evaluated by immunoblotting. We demonstrated that human myoblasts express c-Met, together with laminin and fibronectin receptors. We observed that human laminin 111 and fibronectin have a chemotactic effect on myoblast migration, and this was synergistically increased when low doses of HGF were added. We detected an increase in MMP-2 activity in myoblasts treated with HGF. Conversely, MMP-2 inhibition decreased the HGF-associated stimulation of cell migration triggered by laminin or fibronectin. HGF treatment also induced in human myoblasts activation of MAPK/ERK pathways, whose specific inhibition decreased the HGF-associated stimulus of cell migration triggered by laminin 111 or fibronectin. We demonstrate that HGF induces ERK phosphorylation and MMP production, thus stimulating human myoblast migration on ECM molecules. Conceptually, these data state that the mechanisms involved in the migration of human myoblasts comprise both soluble and insoluble moieties. This should be taken into account to optimize the design of therapeutic cell transplantation strategies by improving

  15. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13-Suppressed Elastin in Airway Fibroblasts in Asthma.

    Science.gov (United States)

    Ingram, Jennifer L; Slade, David; Church, Tony D; Francisco, Dave; Heck, Karissa; Sigmon, R Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L; Que, Loretta; Sunday, Mary E; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert's resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13-induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13-induced suppression of ELN expression in airway fibroblasts.

  16. The Impact of a Time Delay on the Depleted Proportion of the Viral ...

    African Journals Online (AJOL)

    Journal of the Nigerian Association of Mathematical Physics ... While the impact of the variability of the reproductive rate of the infected cell on the viral load of the virions is an on-going research activity, the inclusion of a time delay which mimics the African culture of diverse health inhibiting belief system is a new numerical ...

  17. Delayed Growth Suppression and Radioresistance Induced by Long-Term Continuous Gamma Irradiation.

    Science.gov (United States)

    Nakajima, Hiroo; Furukawa, Chiharu; Chang, Young-Chae; Ogata, Hiromitsu; Magae, Junji

    2017-08-01

    Biological response to ionizing radiation depends not only on the type of radiation and dose, but also on the duration and dose rate of treatment. For a given radiation dose, the biological response may differ based on duration and dose rate. We studied the properties of two human cell lines, M059K glioma and U2OS osteosarcoma, continuously exposed to γ rays for long time periods of more than five months. Growth inhibition in both cell lines was dependent on total dose when exposed to acute radiation over several minutes, whereas prolonged growth inhibition was dependent on dose rate after continuous irradiation over several months. The minimum dose rate for growth inhibition was 53.6 mGy/h. Cell cycle analysis showed G 1 phase accumulation in cell populations continuously exposed to γ rays, and G 2 phase accumulation in cells acutely exposed to high-dose-rate γ rays. Cells continuously exposed to γ rays continued to exhibit delayed growth suppression even after one month in an environment of background radiation, and maintained a high-level expression of c-Jun and its phosphorylation forms, as well as resistance to apoptosis induced by staurosporine and chemotherapeutic agents. These delayed effects were not observed in cells acutely exposed to 5 Gy of radiation. These results suggest that optimization of the irradiation schedule is crucial for risk estimation, protection and therapeutic utilization of ionizing radiation.

  18. Assessment of chronic spontaneous urticaria by serum-induced tumor necrosis factor alpha and matrix metalloproteinase-9 release

    DEFF Research Database (Denmark)

    Falkencrone, Sidsel; Bindslev-Jensen, Carsten; Skov, Per Stahl

    BACKGROUND Previous studies from our group have demonstrated that IgE-mediated basophil activation leads to release of TNFα that in turn can induce matrix metallo-proteinase-9 (MMP-9) release from monocytes. We wished to investigate if serum from chronic spontaneous urticaria-patients with auto-a...

  19. Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages

    International Nuclear Information System (INIS)

    Souissi, Imen Jguirim; Billiet, Ludivine; Cuaz-Perolin, Clarisse; Slimane, Mohamed-Naceur; Rouis, Mustapha

    2008-01-01

    MMP-12, a macrophage-specific matrix metalloproteinase with large substrate specificity, has been reported to be highly expressed in mice, rabbits and human atherosclerotic lesions. Increased MMP-12 from inflammatory macrophages is associated with several degenerative diseases such as atherosclerosis. In this manuscript, we show that IL-1β, a proinflammatory cytokine found in atherosclerotic plaques, increases both mRNA and protein levels of MMP-12 in human monocyte-derived macrophages (HMDM). Since peroxisome proliferator-activated receptors (PPARs), such as PPARα and PPARγ, are expressed in macrophages and because PPAR activation exerts an anti-inflammatory effect on vascular cells, we have investigated the effect of PPARα and γ isoforms on MMP-12 regulation in HMDM. Our results show that MMP-12 expression (mRNA and protein) is down regulated in IL-1β-treated macrophages only in the presence of a specific PPARα agonist, GW647, in a dose-dependent manner. In contrast, this inhibitory effect was abolished in IL-1β-stimulated peritoneal macrophages isolated from PPARα -/- mice and treated with the PPARα agonist, GW647. Moreover, reporter gene transfection experiments using different MMP-12 promoter constructs showed a reduction of the promoter activities by ∼ 50% in IL-1β-stimulated PPARα-pre-treated cells. However, MMP-12 promoter analysis did not reveal the presence of a PPRE response element. The IL-1β effect is known to be mediated through the AP-1 binding site. Mutation of the AP-1 site, located at - 81 in the MMP-12 promoter region relative to the transcription start site, followed by transfection analysis, gel shift and ChIP experiments revealed that the inhibitory effect was the consequence of the protein-protein interaction between GW 647-activated PPARα and c-Fos or c-Jun transcription factors, leading to inhibition of their binding to the AP-1 motif. These studies suggest that PPARα agonists may be used therapeutically, not only for lipid

  20. Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor-α

    Directory of Open Access Journals (Sweden)

    Anna Janowska-Wieczorek

    2012-07-01

    Full Text Available Membrane type-1 matrix metalloproteinase (MT1-MMP has been implicated in tumor invasion, as well as trafficking of normal hematopoietic cells, and acts as a physiologic activator of proMMP-2. In this study we examined MT1-MMP expression in primary acute myeloid leukemia (AML cells. Because tumor necrosis factor (TNF-α is known to be elevated in AML, we also investigated the effect of TNF-α on MT1-MMP expression. We found (i MT1-MMP mRNA expression in 41 out of 43 primary AML samples tested; (ii activation of proMMP-2 in co-cultures of AML cells with normal bone marrow stromal cells; and (iii inhibition of proMMP-2 activation and trans-Matrigel migration of AML cells by gene silencing using MT1-MMP siRNA. Moreover, recombinant human TNF-α upregulated MT1-MMP expression in AML cells resulting in enhanced proMMP-2 activation and trans-Matrigel migration. Thus, AML cells express MT1-MMP and TNF-α enhances it leading to increased MMP-2 activation and most likely contributing to the invasive phenotype. We suggest that MT1-MMP, together with TNF-α, should be investigated as potential therapeutic targets in AML.

  1. Structural exploration for the refinement of anticancer matrix metalloproteinase-2 inhibitor designing approaches through robust validated multi-QSARs

    Science.gov (United States)

    Adhikari, Nilanjan; Amin, Sk. Abdul; Saha, Achintya; Jha, Tarun

    2018-03-01

    Matrix metalloproteinase-2 (MMP-2) is a promising pharmacological target for designing potential anticancer drugs. MMP-2 plays critical functions in apoptosis by cleaving the DNA repair enzyme namely poly (ADP-ribose) polymerase (PARP). Moreover, MMP-2 expression triggers the vascular endothelial growth factor (VEGF) having a positive influence on tumor size, invasion, and angiogenesis. Therefore, it is an urgent need to develop potential MMP-2 inhibitors without any toxicity but better pharmacokinetic property. In this article, robust validated multi-quantitative structure-activity relationship (QSAR) modeling approaches were attempted on a dataset of 222 MMP-2 inhibitors to explore the important structural and pharmacophoric requirements for higher MMP-2 inhibition. Different validated regression and classification-based QSARs, pharmacophore mapping and 3D-QSAR techniques were performed. These results were challenged and subjected to further validation to explain 24 in house MMP-2 inhibitors to judge the reliability of these models further. All these models were individually validated internally as well as externally and were supported and validated by each other. These results were further justified by molecular docking analysis. Modeling techniques adopted here not only helps to explore the necessary structural and pharmacophoric requirements but also for the overall validation and refinement techniques for designing potential MMP-2 inhibitors.

  2. Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor-α

    International Nuclear Information System (INIS)

    Marquez-Curtis, Leah A.; Shirvaikar, Neeta; Turner, A. Robert; Mirza, Imran; Surmawala, Amir; Larratt, Loree M.; Janowska-Wieczorek, Anna

    2012-01-01

    Membrane type-1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion, as well as trafficking of normal hematopoietic cells, and acts as a physiologic activator of proMMP-2. In this study we examined MT1-MMP expression in primary acute myeloid leukemia (AML) cells. Because tumor necrosis factor (TNF)-α is known to be elevated in AML, we also investigated the effect of TNF-α on MT1-MMP expression. We found (i) MT1-MMP mRNA expression in 41 out of 43 primary AML samples tested; (ii) activation of proMMP-2 in co-cultures of AML cells with normal bone marrow stromal cells; and (iii) inhibition of proMMP-2 activation and trans-Matrigel migration of AML cells by gene silencing using MT1-MMP siRNA. Moreover, recombinant human TNF-α upregulated MT1-MMP expression in AML cells resulting in enhanced proMMP-2 activation and trans-Matrigel migration. Thus, AML cells express MT1-MMP and TNF-α enhances it leading to increased MMP-2 activation and most likely contributing to the invasive phenotype. We suggest that MT1-MMP, together with TNF-α, should be investigated as potential therapeutic targets in AML

  3. Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor-α

    Energy Technology Data Exchange (ETDEWEB)

    Marquez-Curtis, Leah A.; Shirvaikar, Neeta [Canadian Blood Services R& D, Edmonton, Alberta T6G 2R8 (Canada); Turner, A. Robert [Departments of Medicine and Oncology, University of Alberta, Edmonton, Alberta T6G 2G3 (Canada); Mirza, Imran [Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2B7 (Canada); Surmawala, Amir; Larratt, Loree M. [Departments of Medicine and Oncology, University of Alberta, Edmonton, Alberta T6G 2G3 (Canada); Janowska-Wieczorek, Anna, E-mail: anna.janowska@blood.ca [Canadian Blood Services R& D, Edmonton, Alberta T6G 2R8 (Canada); Departments of Medicine and Oncology, University of Alberta, Edmonton, Alberta T6G 2G3 (Canada)

    2012-07-25

    Membrane type-1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion, as well as trafficking of normal hematopoietic cells, and acts as a physiologic activator of proMMP-2. In this study we examined MT1-MMP expression in primary acute myeloid leukemia (AML) cells. Because tumor necrosis factor (TNF)-α is known to be elevated in AML, we also investigated the effect of TNF-α on MT1-MMP expression. We found (i) MT1-MMP mRNA expression in 41 out of 43 primary AML samples tested; (ii) activation of proMMP-2 in co-cultures of AML cells with normal bone marrow stromal cells; and (iii) inhibition of proMMP-2 activation and trans-Matrigel migration of AML cells by gene silencing using MT1-MMP siRNA. Moreover, recombinant human TNF-α upregulated MT1-MMP expression in AML cells resulting in enhanced proMMP-2 activation and trans-Matrigel migration. Thus, AML cells express MT1-MMP and TNF-α enhances it leading to increased MMP-2 activation and most likely contributing to the invasive phenotype. We suggest that MT1-MMP, together with TNF-α, should be investigated as potential therapeutic targets in AML.

  4. Complete amino-acid sequence, crystallization and preliminary X-ray diffraction studies of leucurolysin-a, a nonhaemorrhagic metalloproteinase from Bothrops leucurus snake venom

    International Nuclear Information System (INIS)

    Ferreira, Rodrigo Novaes; Rates, Breno; Richardson, Michael; Guimarães, Beatriz Gomes; Sanchez, Eládio Oswaldo Flores; Castro Pimenta, Adriano Monteiro de; Nagem, Ronaldo Alves Pinto

    2009-01-01

    Leucurolysin-a, a nonhaemorrhagic metalloproteinase from B. leucurus snake venom, has been crystallized in a free form and in a complexed form. Leucurolysin-a (leuc-a) is a class P-I snake-venom metalloproteinase isolated from the venom of the South American snake Bothrops leucurus (white-tailed jararaca). The mature protein is composed of 202 amino-acid residues in a single polypeptide chain. It contains a blocked N-terminus and is not glycosylated. In vitro studies revealed that leuc-a dissolves clots made either from purified fibrinogen or from whole blood. Unlike some other venom fibrinolytic metalloproteinases, leuc-a has no haemorrhagic activity. Leuc-a was sequenced and was crystallized using the hanging-drop vapour-diffusion technique. Crystals were obtained using PEG 6000 or PEG 1500. Diffraction data to 1.80 and 1.60 Å resolution were collected from two crystals (free enzyme and the endogenous ligand–protein complex, respectively). They both belonged to space group P2 1 2 1 2 1 , with very similar unit-cell parameters (a = 44.0, b = 56.2, c = 76.3 Å for the free-enzyme crystal)

  5. Andrographolide Inhibits Proliferation and Metastasis of SGC7901 Gastric Cancer Cells.

    Science.gov (United States)

    Dai, Lei; Wang, Gang; Pan, Wensheng

    2017-01-01

    To explore the mechanisms by which andrographolide inhibits gastric cancer cell proliferation and metastasis, we employed the gastric cell line SGC7901 to investigate the anticancer effects of andrographolide. The cell survival ratio, cell migration and invasion, cell cycle, apoptosis, and matrix metalloproteinase activity were assessed. Moreover, western blotting and real-time PCR were used to examine the protein expression levels and the mRNA expression levels, respectively. The survival ratio of cells decreased with an increasing concentration of andrographolide in a dose-dependent manner. Consistent results were also obtained using an apoptosis assay, as detected by flow cytometry. The cell cycle was blocked at the G2/M2 phase by andrographolide treatment, and the proportion of cells arrested at G1/M was enhanced as the dose increased. Similarly, wound healing and Transwell assays showed reduced migration and invasion of the gastric cancer cells at various concentrations of andrographolide. Andrographolide can inhibit cell proliferation, invasion, and migration, block the cell cycle, and promote apoptosis in SGC7901 cells. The mechanisms may include upregulated expression of Timp-1/2, cyclin B1, p-Cdc2, Bax, and Bik and downregulated expression of MMP-2/9 and antiapoptosis protein Bcl-2.

  6. Andrographolide Inhibits Proliferation and Metastasis of SGC7901 Gastric Cancer Cells

    Directory of Open Access Journals (Sweden)

    Lei Dai

    2017-01-01

    Full Text Available To explore the mechanisms by which andrographolide inhibits gastric cancer cell proliferation and metastasis, we employed the gastric cell line SGC7901 to investigate the anticancer effects of andrographolide. The cell survival ratio, cell migration and invasion, cell cycle, apoptosis, and matrix metalloproteinase activity were assessed. Moreover, western blotting and real-time PCR were used to examine the protein expression levels and the mRNA expression levels, respectively. The survival ratio of cells decreased with an increasing concentration of andrographolide in a dose-dependent manner. Consistent results were also obtained using an apoptosis assay, as detected by flow cytometry. The cell cycle was blocked at the G2/M2 phase by andrographolide treatment, and the proportion of cells arrested at G1/M was enhanced as the dose increased. Similarly, wound healing and Transwell assays showed reduced migration and invasion of the gastric cancer cells at various concentrations of andrographolide. Andrographolide can inhibit cell proliferation, invasion, and migration, block the cell cycle, and promote apoptosis in SGC7901 cells. The mechanisms may include upregulated expression of Timp-1/2, cyclin B1, p-Cdc2, Bax, and Bik and downregulated expression of MMP-2/9 and antiapoptosis protein Bcl-2.

  7. T-cell- and macrophage-mediated axon damage in the absence of a CNS-specific immune response: involvement of metalloproteinases.

    Science.gov (United States)

    Newman, T A; Woolley, S T; Hughes, P M; Sibson, N R; Anthony, D C; Perry, V H

    2001-11-01

    Recent evidence has highlighted the fact that axon injury is an important component of multiple sclerosis pathology. The issue of whether a CNS antigen-specific immune response is required to produce axon injury remains unresolved. We investigated the extent and time course of axon injury in a rodent model of a delayed-type hypersensitivity (DTH) reaction directed against the mycobacterium bacille Calmette-Guérin (BCG). Using MRI, we determined whether the ongoing axon injury is restricted to the period during which the blood-brain barrier is compromised. DTH lesions were initiated in adult rats by intracerebral injection of heat-killed BCG followed by a peripheral challenge with BCG. Our findings demonstrate that a DTH reaction to a non-CNS antigen within a CNS white matter tract leads to axon injury. Ongoing axon injury persisted throughout the 3-month period studied and was not restricted to the period of blood-brain barrier breakdown, as detected by MRI enhancing lesions. We have previously demonstrated that matrix metalloproteinases (MMPs) are upregulated in multiple sclerosis plaques and DTH lesions. In this study we demonstrated that microinjection of activated MMPs into the cortical white matter results in axon injury. Our results show that axon injury, possibly mediated by MMPs, is immunologically non-specific and may continue behind an intact blood-brain barrier.

  8. Correlation of Claudins6 (CLDN6 gene expression in meningioma tissue with the expression of matrix metalloproteinases (MMPs/ tissue inhibitors of matrix metalloproteinase (TIMPs and epithelialmesenchymal transition (EMT genes

    Directory of Open Access Journals (Sweden)

    An-Qiang Yang

    2017-09-01

    Full Text Available Objective: To study the correlation of Claudins6 (CLDN6 gene expression in meningioma tissue with the expression of matrix metalloproteinases (MMPs/tissue inhibitors of matrix metalloproteinase (TIMPs and epithelial-mesenchymal transition (EMT genes. Methods: Meningioma tissue samples that were surgically removed in Yibin First People’s Hospital between April 2014 and May 2017 were selected, normal arachnoid tissue samples that were collected from decompressive craniectomy in Yibin First People’s Hospital during the same period were selected, and the expression of CLDN6, MMPs/TIMPs and EMT genes in tissues were determined. Results: CLDN6 protein expression in meningioma tissue was significantly lower than that in normal arachnoid tissue; EMMPRIN, MMP2, MMP9, Vimentin and N-cadherin protein expression in meningioma tissue were significantly higher than those in normal arachnoid tissue while TIMP1, TIMP2, E-cadherin and α-catenin protein expression were significantly lower than those in normal arachnoid tissue; EMMPRIN, MMP2, MMP9, Vimentin and N-cadherin protein expression in meningioma tissue with higher CLDN6 expression were significantly lower than those in meningioma tissue with lower CLDN6 expression while TIMP1, TIMP2, E-cadherin and α-catenin protein expression were significantly higher than those in meningioma tissue with lower CLDN6 expression. Conclusion: Lowly expressed CLDN6 gene in meningioma tissue can increase the hydrolysis activity of MMPs, induce epithelial-mesenchymal transition and thus promote the invasive growth of meningioma.

  9. Assessment of the biological variation of plasma tissue inhibitor of metalloproteinases-1

    DEFF Research Database (Denmark)

    Frederiksen, C.B.; Lomholt, Anne Fog; Lottenburger, Tine

    2008-01-01

    BACKGROUND: Tissue inhibitor of metalloproteinases-1 (TIMP-1) measurements in plasma may be useful for the early detection and prognosis of colorectal cancer (CRC). Data on analytical performance and normal intra- and interindividual biological variation are required in order to interpret...... the utility of TIMP-1 in CRC. The aim of this study was to establish the biological and analytical variation of plasma TIMP-1 in volunteers. MATERIAL AND METHODS: Three separate studies were undertaken. 1: Plasma was collected from 23 volunteers 6 times within a 3-week period, first in September 2004 (round...

  10. The Matrix Metalloproteinase 9 Point-of-Care Test in Dry Eye.

    Science.gov (United States)

    Lanza, Nicole L; Valenzuela, Felipe; Perez, Victor L; Galor, Anat

    2016-04-01

    Dry eye is a common, multifactorial disease currently diagnosed by a combination of symptoms and signs. However, the subjective symptoms of dry eye poorly correlate to the current gold standard for diagnostic tests, reflecting the need to develop better objective tests for the diagnosis of dry eye. This review considers the role of ocular surface matrix metalloproteinase 9 (MMP-9) in dry eye and the implications of a novel point-of-care test that measures MMP-9 levels, InflammaDry (RPS, Sarasota, FL) on choosing appropriate therapeutic treatments. Published by Elsevier Inc.

  11. Expression and prognostic impact of matrix metalloproteinase-2 (MMP-2) in astrocytomas

    DEFF Research Database (Denmark)

    Ramachandran, Rahimsan K.; Sørensen, Mia D.; Aaberg-Jessen, Charlotte

    2017-01-01

    with diffuse astrocytoma, anaplastic astrocytoma and glioblastoma were stained immunohistochemically using a monoclonal MMP-2 antibody. The MMP-2 intensity in cytoplasm/membrane was quantified by a trained software-based classifier using systematic random sampling in 10% of the tumor area. We found MMP-2...... of this tumor. Matrix metalloproteinase-2 (MMP-2) is an extracellular matrix degrading enzyme which has been shown to play important roles in different cancers. The aim of this study was to investigate the expression and prognostic potential of MMP-2 in astrocytomas. Tissue samples from 89 patients diagnosed...

  12. Matrix Metalloproteinases: The Gene Expression Signatures of Head and Neck Cancer Progression

    Energy Technology Data Exchange (ETDEWEB)

    Iizuka, Shinji [Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States); Ishimaru, Naozumi; Kudo, Yasusei, E-mail: yasusei@tokushima-u.ac.jp [Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-8-15 Kuramoto, Tokushima 770-8504 (Japan)

    2014-02-13

    Extracellular matrix degradation by matrix metalloproteinases (MMPs) plays a pivotal role in cancer progression by promoting motility, invasion and angiogenesis. Studies have shown that MMP expression is increased in head and neck squamous cell carcinomas (HNSCCs), one of the most common cancers in the world, and contributes to poor outcome. In this review, we examine the expression pattern of MMPs in HNSCC by microarray datasets and summarize the current knowledge of MMPs, specifically MMP-1, -3, -7 -10, -12, -13, 14 and -19, that are highly expressed in HNSCCs and involved cancer invasion and angiogenesis.

  13. Topical estradiol does not interfere with the expression of the metalloproteinase-1 enzyme in photo exposed skin cells Estradiol tópico não interfere na expressão da enzima metaloproteinase-1 em células da pele fotoexposta

    Directory of Open Access Journals (Sweden)

    Luciana Neder

    2012-02-01

    Full Text Available BACKGROUND: In postmenopausal women there is a rapid destruction of dermal collagen, resulting in accelerated skin ageing, which is manifested by cutaneous atrophy, increased number and depth of wrinkles and sagging. This accelerated catabolism of the collagen is due to estrogen deficiency and increased synthesis of the metalloproteinase-1 enzyme, which degrades the dermal collagen. OBJECTIVES: To assess whether the use of topical estradiol 0.05% cream on photo exposed skin can inhibit the expression of the metalloproteinase-1 enzyme on the dermis and subsequently the rapid loss of collagen in women after menopause. METHODS: We included 40 postmenopausal women without hormone replacement therapy. Information about lifestyle, lipid profile, blood glucose level, thyroid hormones, mammography, Pap smear and transvaginal ultrasound were obtained to rule out associated diseases. Skin biopsy of the right preauricular region was performed before and after treatment with topical estradiol 0.05% for 30 days. The biopsy specimens were subjected to immunohistochemistry to identify the expression of the metalloproteinase-1 enzyme. RESULTS: There was no statistically significant difference on the expression of the metalloproteinase-1 enzyme in keratinocytes, fibroblasts and endothelial cells before and after treatment with topical estradiol for 30 days. CONCLUSION: Treatment with estradiol 0.05% cream, in photo exposed skin for 30 days, does not inhibit the production of metalloproteinase-1.FUNDAMENTOS: Na pós-menopausa, ocorre rápida destruição do colágeno dérmico, com consequente envelhecimento acelerado da pele, que se expressa com atrofia cutânea, aumento do número e da profundidade das rugas e flacidez. Esse catabolismo acelerado do colágeno ocorre por deficiência estrogênica e aumento na síntese da enzima metaloproteinase-1, que degrada o colágeno dérmico. OBJETIVOS: Avaliar se o uso de estradiol tópico a 0,05% em creme na pele

  14. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia

    NARCIS (Netherlands)

    Klein, G.; Vellenga, E.; Fraaije, M.W.; Kamps, W.A.; Bont, E.S.J.M. de

    2004-01-01

    In the past decades, a lot of effort has been put in identifying the role of matrix metalloproteinases (MMPs) in cancer. The main role of MMPs in angiogenesis, tumor growth and metastasis is degradation of extracellular matrix (ECM) and release and/or activation of growth factors through their

  15. Fuzzy delay model based fault simulator for crosstalk delay fault test ...

    Indian Academy of Sciences (India)

    In this paper, a fuzzy delay model based crosstalk delay fault simulator is proposed. As design trends move towards nanometer technologies, more number of new parameters affects the delay of the component. Fuzzy delay models are ideal for modelling the uncertainty found in the design and manufacturing steps.

  16. A New Class III Antiarrhythmic Drug Niferidil Prolongs Action Potentials in Guinea Pig Atrial Myocardium via Inhibition of Rapid Delayed Rectifier.

    Science.gov (United States)

    Abramochkin, Denis V; Kuzmin, Vladislav S; Rosenshtraukh, Leonid V

    2017-12-01

    A new class III antiarrhythmic drug niferidil (RG-2) has been introduced as a highly effective therapy for cases of persistent atrial fibrillation, but ionic mechanisms of its action are poorly understood. In the present study, the effects of niferidil on action potential (AP) waveform and potassium currents responsible for AP repolarization were investigated in guinea pig atrial myocardium. APs were recorded with sharp glass microelectrodes in multicellular atrial preparations. Whole-cell patch-clamp technique was used to measure K + currents in isolated myocytes. In multicellular atrial preparations, 10 -8  M niferidil effectively prolonged APs by 15.2 ± 2.8% at 90% repolarization level. However, even the highest tested concentrations, 10 -6  M and 10 -5  M failed to prolong APs more than 32.5% of control duration. The estimated concentration of niferedil for half-maximal AP prolongation was 1.13 × 10 -8  M. Among the potassium currents responsible for AP repolarization phase, I K1 was found to be almost insensitive to niferidil. However, another inward rectifier, I KACh , was effectively suppressed by micromolar concentrations of niferidil with IC 50  = 9.2 × 10 -6  M. I KATP was much less sensitive to the drug with IC 50  = 2.26 × 10 -4  M. The slow component of delayed rectifier, I Ks , also demonstrated low sensitivity to niferidil-the highest used concentration, 10 -4  M, decreased peak I Ks density to 46.2 ± 5.5% of control. Unlike I Ks , the rapid component of delayed rectifier, I Kr , appeared to be extremely sensitive to niferidil. The IC 50 was 1.26 × 10 -9  M. I Kr measured in ventricular myocytes was found to be less sensitive to niferidil with IC 50  = 3.82 × 10 -8  M. Niferidil prolongs APs in guinea pig atrial myocardium via inhibition of I Kr .

  17. Biochemical properties of the matrix metalloproteinase NtMMP1 from Nicotiana tabacum cv. BY-2 suspension cells.

    Science.gov (United States)

    Mandal, Manoj K; Fischer, Rainer; Schillberg, Stefan; Schiermeyer, Andreas

    2010-09-01

    A zinc-dependent matrix metalloproteinase (NtMMP1) found in the plasma membrane of Nicotiana tabacum cv. Bright Yellow 2 (BY-2) suspension cells is thought to be responsible for the degradation of recombinant proteins secreted into the culture supernatant. We have characterized the proteolytic activity of NtMMP1 by expressing a recombinant derivative lacking the C-terminal transmembrane domain in yeast. After purifying the protein by affinity chromatography, its autocatalytic activity was analyzed using monoclonal antibodies raised against its N-terminal and C-terminal portions. Both the unprocessed and processed forms of NtMMP1 displayed caseinolytic activity and N-terminal sequencing identified an autocatalytic cleavage site within the sequence motif HFSFFP, which is similar to the corresponding sequences of the human matrix metalloproteinases stromelysin-1 (MMP-3) and stromelysin-2 (MMP-10). Unlike all other matrix metalloproteinases investigated so far, NtMMP1 contains a disulfide bond within its propeptide thus rendering the proenzyme catalytically active. Kinetic analysis of NtMMP1 with a synthetic substrate revealed a K(m) of 10.55 +/- 0.9 microM, a k(cat) of 0.6 +/- 0.01 s(-1) and maximum activity at pH 7.5. We found that NtMMP1 degrades Desmodus rotundus salivary plasminogen activator alpha 1 (DSPAalpha1), a biopharmaceutical protein, that has proven difficult to produce in tobacco BY-2 cells. This provides a likely explanation for the frequent instability of secreted recombinant biopharmaceuticals produced in plant suspension cell cultures. Our data suggest new avenues that can be explored to improve the production of pharmaceutical proteins in plants and plant cells.

  18. Immunohistochemical Expression of Tissue Inhibitor of Metalloproteinase-1 (Timp-1 in Invasive Breast Carcinoma

    Directory of Open Access Journals (Sweden)

    Suada Kuskunović

    2009-05-01

    Full Text Available Tissue inhibitor of metalloproteinase-1 (TIMP-1 is a natural inhibitor of matrix metalloproteinas-es (MMPs. Aim of this study was to assess the immunohistochemical expression of TIMP-1 in invasive breast carcinomas, and to examine its association with classical clinico-pathological parameters, oestrogen receptor, progesterone receptor and Her-2/neu protein expression. Immuno-histochemistry was used to determine the expression of TIMP-1 on 38 paraffin-embedded breast tissue specimens - 18 with invasive ductal carcinoma, 10 with invasive lobular carcinoma, and 10 specimens from patients with fibrocystic breast disease. TIMP-1 protein was immunodetected in the carcinoma cells, fibroblasts and inflammatory cells of the stroma in 92,9%, 65,8%, and 65,8% of cases, respectively. TIMP-1 protein expression in carcinoma cells showed positive correlation with TIMP-1 protein expression in peritumoural fibroblasts (p=0,010. Positive peritumoural fibroblast TIMP-1 expression was associated with histological tumour type with higher frequency in ductal carcinomas (p=0,023. Negative association was found between TIMP-1 protein expression in carcinoma cells and HER-2/neu nuclear staining (p=0,005. TIMP-1 may be particularly useful as a predictive marker in breast carcinoma when evaluated along with HER-2/neu protein being a promising indicator of favourable prognosis in breast carcinoma.

  19. Expression of matrix metalloproteinases 2 and 9 in human gastric cancer and superficial gastritis.

    Science.gov (United States)

    Sampieri, Clara Luz; de la Peña, Sol; Ochoa-Lara, Mariana; Zenteno-Cuevas, Roberto; León-Córdoba, Kenneth

    2010-03-28

    To assess expression of matrix metalloproteinases 2 (MMP2) and MMP9 in gastric cancer, superficial gastritis and normal mucosa, and to measure metalloproteinase activity. MMP2 and MMP9 mRNA expression was determined by quantitative real-time polymerase chain reaction. Normalization was carried out using three different factors. Proteins were analyzed by quantitative gelatin zymography (qGZ). 18S ribosomal RNA (18SRNA) was very highly expressed, while hypoxanthine ribosyltransferase-1 (HPRT-1) was moderately expressed. MMP2 was highly expressed, while MMP9 was not detected or lowly expressed in normal tissues, moderately or highly expressed in gastritis and highly expressed in cancer. Relative expression of 18SRNA and HPRT-1 showed no significant differences. Significant differences in MMP2 and MMP9 were found between cancer and normal tissue, but not between gastritis and normal tissue. Absolute quantification of MMP9 echoed this pattern, but differential expression of MMP2 proved conflictive. Analysis by qGZ indicated significant differences between cancer and normal tissue in MMP-2, total MMP-9, 250 and 110 kDa bands. MMP9 expression is enhanced in gastric cancer compared to normal mucosa; interpretation of differential expression of MMP2 is difficult to establish.

  20. Increased expression of matrix metalloproteinase-1 in systemic vessels of preeclamptic women: a critical mediator of vascular dysfunction.

    Science.gov (United States)

    Estrada-Gutierrez, Guadalupe; Cappello, Renato E; Mishra, Nikita; Romero, Roberto; Strauss, Jerome F; Walsh, Scott W

    2011-01-01

    This study was conducted to determine the following: (1) whether matrix metalloproteinase-1 (MMP-1) is increased in systemic vessels of preeclamptic women, (2) whether this increase might be mediated by neutrophils, and (3) whether MMP-1 could be responsible for vascular dysfunction. Omental arteries and plasma were collected from healthy pregnant and preeclamptic women. Omental arteries were evaluated for gene and protein expression of MMP-1, collagen type 1α, tissue inhibitor of metalloproteinase-1, and vascular reactivity to MMP-1. Gene and protein expression levels were also evaluated in human vascular smooth muscle cells (VSMCs) co-cultured with activated neutrophils, reactive oxygen species, or tumor necrosis factor α. Vessel expression of MMP-1 and circulating MMP-1 levels were increased in preeclamptic women, whereas vascular expression of collagen or tissue inhibitor of metalloproteinase-1 were down-regulated or unchanged. In cultured VSMCs, the imbalance in collagen-regulating genes of preeclamptic vessels was reproduced by treatment with neutrophils, tumor necrosis factor α, or reactive oxygen species. Chemotaxis studies with cultured cells revealed that MMP-1 promoted recruitment of neutrophils via vascular smooth muscle release of interleukin-8. Furthermore, MMP-1 induced vasoconstriction via protease-activated receptor-1, whose expression was significantly increased in omental arteries of preeclamptic women and in VSMCs co-cultured with neutrophils. Collectively, these findings disclose a novel role for MMP-1 as a mediator of vasoconstriction and vascular dysfunction in preeclampsia. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. On the cost/delay tradeoff of wireless delay tolerant geographic routing

    OpenAIRE

    Tasiopoulos, Argyrios; Tsiaras, Christos; Toumpis, Stavros

    2012-01-01

    In Delay Tolerant Networks (DTNs), there is a fundamental tradeoff between the aggregate transport cost of a packet and the delay in its delivery. We study this tradeoff in the context of geographical routing in wireless DTNs.We ?rst specify the optimal cost/delay tradeoff, i.e., the tradeoff under optimal network operation, using a dynamic network construction termed the Cost/Delay Evolving Graph (C/DEG) and the Optimal Cost/Delay Curve (OC/DC), a function that gives the minimum possible agg...

  2. Leveraging delay discounting for health: Can time delays influence food choice?

    Science.gov (United States)

    Appelhans, Bradley M; French, Simone A; Olinger, Tamara; Bogucki, Michael; Janssen, Imke; Avery-Mamer, Elizabeth F; Powell, Lisa M

    2018-03-15

    Delay discounting, the tendency to choose smaller immediate rewards over larger delayed rewards, is theorized to promote consumption of immediately rewarding but unhealthy foods at the expense of long-term weight maintenance and nutritional health. An untested implication of delay discounting models of decision-making is that selectively delaying access to less healthy foods may promote selection of healthier (immediately available) alternatives, even if they may be less desirable. The current study tested this hypothesis by measuring healthy versus regular vending machine snack purchasing before and during the implementation of a 25-s time delay on the delivery of regular snacks. Purchasing was also examined under a $0.25 discount on healthy snacks, a $0.25 tax on regular snacks, and the combination of both pricing interventions with the 25-s time delay. Across 32,019 vending sales from three separate vending locations, the 25-s time delay increased healthy snack purchasing from 40.1% to 42.5%, which was comparable to the impact of a $0.25 discount (43.0%). Combining the delay and the discount had a roughly additive effect (46.0%). However, the strongest effects were seen under the $0.25 tax on regular snacks (53.7%) and the combination of the delay and the tax (50.2%). Intervention effects varied substantially between vending locations. Importantly, time delays did not harm overall vending sales or revenue, which is relevant to the real-world feasibility of this intervention. More investigation is needed to better understand how the impact of time delays on food choice varies across populations, evaluate the effects of time delays on beverage vending choices, and extend this approach to food choices in contexts other than vending machines. ClinicalTrials.gov, NCT02359916. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. EMMPRIN is secreted by human uterine epithelial cells in microvesicles and stimulates metalloproteinase production by human uterine fibroblast cells.

    Science.gov (United States)

    Braundmeier, A G; Dayger, C A; Mehrotra, P; Belton, R J; Nowak, R A

    2012-12-01

    Endometrial remodeling is a physiological process involved in the gynecological disease, endometriosis. Tissue remodeling is directed by uterine fibroblast production of matrix metalloproteinases (MMPs). Several MMPs are regulated directly by the protein extracellular matrix metalloproteinase inducer (EMMPRIN) and also by proinflammatory cytokines such as interleukin (IL)1-α/β. We hypothesized that human uterine epithelial cells (HESs) secrete intact EMMPRIN to stimulate MMPs. Microvesicles from HES cell-conditioned medium (CM) expressed intact EMMPRIN protein. Treatment of HES cells with estradiol or phorbyl 12-myristate-13-acetate increased the release of EMMPRIN-containing microvesicles. The HES CM stimulated MMP-1, -2, and -3 messenger RNA levels in human uterine fibroblasts (HUFs) and EMMPRIN immunodepletion from HES-cell concentrated CM reduced MMP stimulation (P EMMPRIN, in response to ovarian hormones, proinflammatory cytokines as well as activation of protein kinase C.

  4. Genetic Variation in the Matrix Metalloproteinase Genes and Diabetic Nephropathy in Type 1 Diabetes

    OpenAIRE

    Kure, Masahiko; Pezzolesi, Marcus G.; Poznik, G. David; Katavetin, Pisut; Skupien, Jan; Dunn, Jonathon S.; Mychaleckyj, Josyf C.; Warram, James H.; Krolewski, Andrzej S.

    2011-01-01

    Genetic data support the notion that polymorphisms in members of the matrix metalloproteinase (MMP) family of genes play an important role in extracellular matrix remodeling and contribute to the pathogenesis of vascular disease. To identify novel genetic markers for diabetic nephropathy (DN), we examined the relationship between MMP gene polymorphisms and DN in the Genetics of Kidneys in Diabetes (GoKinD) population. Genotypic data from the Genetic Association Information Network (GAIN) type...

  5. Bifurcation analysis of a delay differential equation model associated with the induction of long-term memory

    International Nuclear Information System (INIS)

    Hao, Lijie; Yang, Zhuoqin; Lei, Jinzhi

    2015-01-01

    Highlights: • A delay differentiation equation model for CREB regulation is developed. • Increasing the time delay can generate various bifurcations. • Increasing the time delay can induce chaos by two routes. - Abstract: The ability to form long-term memories is an important function for the nervous system, and the formation process is dynamically regulated through various transcription factors, including CREB proteins. In this paper, we investigate the dynamics of a delay differential equation model for CREB protein activities, which involves two positive and two negative feedbacks in the regulatory network. We discuss the dynamical mechanisms underlying the induction of long-term memory, in which bistability is essential for the formation of long-term memory, while long time delay can destabilize the high level steady state to inhibit the long-term memory formation. The model displays rich dynamical response to stimuli, including monostability, bistability, and oscillations, and can transit between different states by varying the negative feedback strength. Introduction of a time delay to the model can generate various bifurcations such as Hopf bifurcation, fold limit cycle bifurcation, Neimark–Sacker bifurcation of cycles, and period-doubling bifurcation, etc. Increasing the time delay can induce chaos by two routes: quasi-periodic route and period-doubling cascade.

  6. PERIPUBERTAL PROCHLORAZ EXPOSURE STRONGLY INHIBITS TESTOSTERONE PRODUCTION, BUT HAS WEAK EFFECTS ON PUBERTY

    Science.gov (United States)

    Prochloraz (PCZ) is an imidazole fungicide that inhibits steroidogenesis and acts as an androgen receptor antagonist. We hypothesized that pubertal exposure to prochloraz would delay preputial separation and development of reproductive organs. Sprague Dawley rats were dosed wit...

  7. Genistein and tyrphostin AG556 decrease ultra-rapidly activating delayed rectifier K+ current of human atria by inhibiting EGF receptor tyrosine kinase.

    Science.gov (United States)

    Xiao, Guo-Sheng; Zhang, Yan-Hui; Wu, Wei; Sun, Hai-Ying; Wang, Yan; Li, Gui-Rong

    2017-03-01

    The ultra-rapidly activating delayed rectifier K + current I Kur (encoded by K v 1.5 or KCNA5) plays an important role in human atrial repolarization. The present study investigates the regulation of this current by protein tyrosine kinases (PTKs). Whole-cell patch voltage clamp technique and immunoprecipitation and Western blotting analysis were used to investigate whether the PTK inhibitors genistein, tyrphostin AG556 (AG556) and PP2 regulate human atrial I Kur and hKv1.5 channels stably expressed in HEK 293 cells. Human atrial I Kur was decreased by genistein (a broad-spectrum PTK inhibitor) and AG556 (a highly selective EGFR TK inhibitor) in a concentration-dependent manner. Inhibition of I Kur induced by 30 μM genistein or 10 μM AG556 was significantly reversed by 1 mM orthovanadate (a protein tyrosine phosphatase inhibitor). Similar results were observed in HEK 293 cells stably expressing hK v 1.5 channels. On the other hand, the Src family kinase inhibitor PP2 (1 μM) slightly enhanced I Kur and hK v 1.5 current, and the current increase was also reversed by orthovanadate. Immunoprecipitation and Western blotting analysis showed that genistein, AG556, and PP2 decreased tyrosine phosphorylation of hK v 1.5 channels and that the decrease was countered by orthovanadate. The PTK inhibitors genistein and AG556 decrease human atrial I Kur and cloned hK v 1.5 channels by inhibiting EGFR TK, whereas the Src kinase inhibitor PP2 increases I Kur and hK v 1.5 current. These results imply that EGFR TK and the soluble Src kinases may have opposite effects on human atrial I Kur . © 2017 The British Pharmacological Society.

  8. Regulation of spatial selectivity by crossover inhibition.

    Science.gov (United States)

    Cafaro, Jon; Rieke, Fred

    2013-04-10

    Signals throughout the nervous system diverge into parallel excitatory and inhibitory pathways that later converge on downstream neurons to control their spike output. Converging excitatory and inhibitory synaptic inputs can exhibit a variety of temporal relationships. A common motif is feedforward inhibition, in which an increase (decrease) in excitatory input precedes a corresponding increase (decrease) in inhibitory input. The delay of inhibitory input relative to excitatory input originates from an extra synapse in the circuit shaping inhibitory input. Another common motif is push-pull or "crossover" inhibition, in which increases (decreases) in excitatory input occur together with decreases (increases) in inhibitory input. Primate On midget ganglion cells receive primarily feedforward inhibition and On parasol cells receive primarily crossover inhibition; this difference provides an opportunity to study how each motif shapes the light responses of cell types that play a key role in visual perception. For full-field stimuli, feedforward inhibition abbreviated and attenuated responses of On midget cells, while crossover inhibition, though plentiful, had surprisingly little impact on the responses of On parasol cells. Spatially structured stimuli, however, could cause excitatory and inhibitory inputs to On parasol cells to increase together, adopting a temporal relation very much like that for feedforward inhibition. In this case, inhibitory inputs substantially abbreviated a cell's spike output. Thus inhibitory input shapes the temporal stimulus selectivity of both midget and parasol ganglion cells, but its impact on responses of parasol cells depends strongly on the spatial structure of the light inputs.

  9. Inhibition of STAT3 reduces astrocytoma cell invasion and constitutive activation of STAT3 predicts poor prognosis in human astrocytoma.

    Directory of Open Access Journals (Sweden)

    Qinchuan Liang

    Full Text Available Astrocytoma cells characteristically possess high invasion potentials. Recent studies have revealed that knockdown of signal transducers and activators of transcription 3 (STAT3 expression by RNAi induces apoptosis in astrocytoma cell. Nevertheless, the distinct roles of STAT3 in astrocytoma's invasion and recurrence have not been elucidated. In this study, we silenced STAT3 using Small interfering RNAs in two human glioblastoma multiforme (GBM cell lines (U251 and U87, and investigated the effect on GBM cell adhesion and invasion. Our results demonstrate that disruption of STAT3 inhibits GBM cell's adhesion and invasion. Knockdown of STAT3 significantly increased E-cadherin but decreased N-cadherin, vascular endothelial growth factor, matrix metalloproteinase 2 and matrix metalloproteinase 9. Additionally, expression of pSTAT3(Tyr705 correlates with astrocytoma WHO classification, Karnofsky performance status scale score, tumor recurrence and survival. Furthermore, pSTAT3(Tyr705 is a significant prognostic factor in astrocytoma. In conclusion, STAT3 may affect astrocytoma invasion, expression of pSTAT3(Tyr705 is a significant prognostic factor in tumor recurrence and overall survival in astrocytoma patients. Therefore, STAT3 may provide a potential target for molecular therapy in human astrocytoma, and pSTAT3(Tyr705could be an important biomarker for astrocytoma prognosis.

  10. Role of Matrix Metalloproteinases-1 and -2 in Interleukin-13–Suppressed Elastin in Airway Fibroblasts in Asthma

    Science.gov (United States)

    Slade, David; Church, Tony D.; Francisco, Dave; Heck, Karissa; Sigmon, R. Wesley; Ghio, Michael; Murillo, Anays; Firszt, Rafael; Lugogo, Njira L.; Que, Loretta; Sunday, Mary E.; Kraft, Monica

    2016-01-01

    Elastin synthesis and degradation in the airway and lung parenchyma contribute to airway mechanics, including airway patency and elastic recoil. IL-13 mediates many features of asthma pathobiology, including airway remodeling, but the effects of IL-13 on elastin architecture in the airway wall are not known. We hypothesized that IL-13 modulates elastin expression in airway fibroblasts from subjects with allergic asthma. Twenty-five subjects with mild asthma (FEV1, 89 ± 3% predicted) and 30 normal control subjects (FEV1, 102 ± 2% predicted) underwent bronchoscopy with endobronchial biopsy. Elastic fibers were visualized in airway biopsy specimens using Weigert’s resorcin-fuchsin elastic stain. Airway fibroblasts were exposed to IL-13; a pan-matrix metalloproteinase (MMP) inhibitor (GM6001); specific inhibitors to MMP-1, -2, -3, and -8; and combinations of IL-13 with MMP inhibitors in separate conditions in serum-free media for 48 hours. Elastin (ELN) expression as well as MMP secretion and activity were quantified. Results of this study show that elastic fiber staining of airway biopsy tissue was significantly associated with methacholine PC20 (i.e., the provocative concentration of methacholine resulting in a 20% fall in FEV1 levels) in patients with asthma. IL-13 significantly suppressed ELN expression in asthmatic airway fibroblasts as compared with normal control fibroblasts. The effect of IL-13 on ELN expression was significantly correlated with postbronchodilator FEV1/FVC in patients with asthma. MMP inhibition significantly stimulated ELN expression in patients with asthma as compared with normal control subjects. Specific inhibition of MMP-1 and MMP-2, but not MMP-3 or MMP-8, reversed the IL-13–induced suppression of ELN expression. In asthma, MMP-1 and MMP-2 mediate IL-13–induced suppression of ELN expression in airway fibroblasts. PMID:26074138

  11. 10-Hydroxy-2-decenoic acid prevents ultraviolet A-induced damage and matrix metalloproteinases expression in human dermal fibroblasts.

    Science.gov (United States)

    Zheng, Jinfen; Lai, Wei; Zhu, Guoxing; Wan, Miaojian; Chen, Jian; Tai, Yan; Lu, Chun

    2013-10-01

    10-Hydroxy-2-decenoic acid (10-HDA) is a major fatty acid component of royal jelly, which has been reported to have a variety of beneficial pharmacological characteristics. However, the effects of 10-HDA on skin photoageing and its potential mechanism of action are unclear. We investigated the protective effects of 10-HDA on ultraviolet (UV) A-induced damage in human dermal fibroblasts (HDFs). We then explored the inhibitory effects of 10-HDA on UVA-induced matrix metalloproteinases (MMPs) expression and elucidated the signalling pathways controlling MMPs inhibition. Primary human dermal fibroblasts were exposed to UVA. Cell proliferation, cellular senescent state and collagen content were analysed using CCK-8, senescence-associated β-galactosidase staining and Sircol collagen assay, respectively. Fluorometric assays were performed to detect the formation of reactive oxygen species (ROS) in the cells. The mRNA levels of MMP-1, MMP-3 and type I (α1) collagen were determined by quantitative real-time PCR. Western blot was applied to detect the expression of MMP-1, MMP-3, JNK and p38 MAPK. HDFs treated with 10-HDA were significantly protected from UVA-induced cytotoxicity, ROS, cellular senescence and stimulated collagen production. Moreover, 10-HDA suppressed the UVA-induced expression of MMP-1 and MMP-3 at both the transcriptional and protein levels. Treatment with 10-HDA also reduced the UVA-induced activation of the JNK and p38 MAPK pathways. The data obtained in this study provide evidence that 10-HDA could prevent UVA-induced damage and inhibit MMP-1 and MMP-3 expressions. Therefore, 10-HDA may be a potential agent for the prevention and treatment of skin photoageing. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  12. Representing delayed force feedback as a combination of current and delayed states.

    Science.gov (United States)

    Avraham, Guy; Mawase, Firas; Karniel, Amir; Shmuelof, Lior; Donchin, Opher; Mussa-Ivaldi, Ferdinando A; Nisky, Ilana

    2017-10-01

    To adapt to deterministic force perturbations that depend on the current state of the hand, internal representations are formed to capture the relationships between forces experienced and motion. However, information from multiple modalities travels at different rates, resulting in intermodal delays that require compensation for these internal representations to develop. To understand how these delays are represented by the brain, we presented participants with delayed velocity-dependent force fields, i.e., forces that depend on hand velocity either 70 or 100 ms beforehand. We probed the internal representation of these delayed forces by examining the forces the participants applied to cope with the perturbations. The findings showed that for both delayed forces, the best model of internal representation consisted of a delayed velocity and current position and velocity. We show that participants relied initially on the current state, but with adaptation, the contribution of the delayed representation to adaptation increased. After adaptation, when the participants were asked to make movements with a higher velocity for which they had not previously experienced with the delayed force field, they applied forces that were consistent with current position and velocity as well as delayed velocity representations. This suggests that the sensorimotor system represents delayed force feedback using current and delayed state information and that it uses this representation when generalizing to faster movements. NEW & NOTEWORTHY The brain compensates for forces in the body and the environment to control movements, but it is unclear how it does so given the inherent delays in information transmission and processing. We examined how participants cope with delayed forces that depend on their arm velocity 70 or 100 ms beforehand. After adaptation, participants applied opposing forces that revealed a partially correct representation of the perturbation using the current and the

  13. Matrix metalloproteinase-3 gene polymorphism in renal transplant patients with gingival overgrowth.

    Science.gov (United States)

    Drozdzik, A; Kurzawski, M; Lener, A; Kozak, M; Banach, J; Drozdzik, M

    2010-02-01

    Gingival enlargement frequently occurs in transplant patients receiving immunosuppressive drugs. It was hypothesized that gingival enlargement associated with cyclosporine use results from reduced degradation of extracellular matrix in the gingiva. Matrix metalloproteinase-3 (MMP-3) is involved in biodegradation of the extracellular matrix, and its inhibition may contribute to an abnormal accumulation of fibronectin and proteoglycans, which are MMP-3 substrates. The aim of this study was to investigate whether an association exists between MMP-3 genotypes and gingival enlargement in kidney transplant patients medicated with cyclosporine A. Sixty-four unrelated kidney transplant patients suffering from gingival overgrowth, as well as 111 control transplant patients without gingival overgrowth, were enrolled in the study. Gingival overgrowth was assessed 6 mo after transplantation. During the post-transplant period all patients were given cyclosporine A as a principal immunosuppressive agent. MMP-3 polymorphism was determined using a PCR restriction fragment length polymorphism assay. In kidney transplant patients suffering from gingival overgrowth the mean gingival overgrowth score was 1.35 +/- 0.57, whereas in control subjects the mean gingival overgrowth score was 0.0. The distribution of MMP-3-1178A/dupA alleles among all kidney transplant patients, as well as in the two study subgroups, did not differ significantly from Hardy-Weinberg equilibrium. The frequency of the MMP-3-1171A/A genotype (28.1% for gingival overgrowth vs. 26.1% for controls) and of the MMP-3-1171dupA/dupA genotype (32.8% for gingival overgrowth vs. 22.5% for controls) was similar for both study groups. The risk of gingival overgrowth was lowest among patients carrying the MMP-3-1171A/dupA genotype (odds ratio 0.52), but this did not differ markedly from the other genotypes. No association between MMP-3 gene polymorphism and gingival overgrowth was revealed in kidney transplant patients

  14. Phosphodiesterase inhibition mediates matrix metalloproteinase activity and the level of collagen degradation fragments in a liver fibrosis ex vivo rat model

    Directory of Open Access Journals (Sweden)

    Veidal Sanne Skovgård

    2012-12-01

    Full Text Available Abstract Background Accumulation of extracellular matrix (ECM and increased matrix metalloproteinase (MMP activity are hallmarks of liver fibrosis. The aim of the present study was to develop a model of liver fibrosis combining ex vivo tissue culture of livers from CCl4 treated animals with an ELISA detecting a fragment of type III collagen generated in vitro by MMP-9 (C3M, known to be associated with liver fibrosis and to investigate cAMP modulation of MMP activity and liver tissue turnover in this model. Findings In vivo: Rats were treated for 8 weeks with CCl4/Intralipid. Liver slices were cultured for 48 hours. Levels of C3M were determined in the supernatants of slices cultured without treatment, treated with GM6001 (positive control or treated with IBMX (phosphodiesterase inhibitor. Enzymatic activity of MMP-2 and MMP-9 were studied by gelatin zymography. Ex vivo: The levels of serum C3M increased 77% in the CCl4-treated rats at week 8 (p 4-treated animals had highly increased MMP-9, but not MMP-2 activity, compared to slices derived from control animals. Conclusions We have combined an ex vivo model of liver fibrosis with measurement of a biochemical marker of collagen degradation in the condition medium. This technology may be used to evaluate the molecular process leading to structural fibrotic changes, as collagen species are the predominant structural part of fibrosis. These data suggest that modulation of cAMP may play a role in regulation of collagen degradation associated with liver fibrosis.

  15. Asymptotic Delay Analysis for Cross-Layer Delay-Based Routing in Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Philippe Jacquet

    2007-01-01

    Full Text Available This paper addresses the problem of the evaluation of the delay distribution via analytical means in IEEE 802.11 wireless ad hoc networks. We show that the asymptotic delay distribution can be expressed as a power law. Based on the latter result, we present a cross-layer delay estimation protocol and we derive new delay-distribution-based routing algorithms, which are well adapted to the QoS requirements of real-time multimedia applications. In fact, multimedia services are not sensitive to average delays, but rather to the asymptotic delay distributions. Indeed, video streaming applications drop frames when they are received beyond a delay threshold, determined by the buffer size. Although delay-distribution-based routing is an NP-hard problem, we show that it can be solved in polynomial time when the delay threshold is large, because of the asymptotic power law distribution of the link delays.

  16. Unbalanced Metalloproteinase-9 and Tissue inhibitors of Metalloproteinases Ratio Predicts Hemorrhagic Transformation of Lesion in Ischemic Stroke Patients Treated with Thrombolysis: Results from the MAGIC Study

    Directory of Open Access Journals (Sweden)

    Benedetta ePiccardi

    2015-05-01

    Full Text Available Background Experimentally, metalloproteinases (MMPs play a detrimental role related to severity of ischemic brain lesions. Both MMPs activity and function in tissues reflect the balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs. We aimed to evaluate the role of MMPs/TIMPs balance in the setting of rtPA treated stroke patients Methods Blood was taken before and 24-hours after rtPA from 327 patients (mean age 68 years, median NIHSS 11 with acute ischemic stroke. Delta median values of each MMP/TIMP ratio [(post rtPA MMP/TIMP-baseline MMP/TIMP/(baseline MMP/TIMP] were analyzed related to symptomatic intracranial hemorrhage (sICH according to NINDS criteria, relevant hemorrhagic transformation (HT defined as hemorrhagic infarction type 2 or any parenchimal hemorrhage, stroke subtypes (according to Oxfordshire Community Stroke Project and 3-month death. The net effect of each MMP/TIMP ratio was estimated by a logistic regression model including major clinical determinants of outcomes Results Adjusting for major clinical determinants, only increase in MMP9/TIMP1 and MMP9/TIMP2 ratios remained significantly associated with sICH (odds ratio [95% confidence interval], 1.67 [1.17 – 2.38], p = 0.005; 1.74 [1.21 – 2.49], p=0.003 respectively. Only relative increase in MMP9/TIMP1 ratio proved significantly associated with relevant HT (odds ratio [95% confidence interval], 1.74 [1.17 – 2.57], p=0.006 with a trend towards significance for MMP9/TIMP2 ratio (p=0.007.Discussion Our data add substantial clinical evidence about the role of MMPs/TIMPs balance in rtPA treated stroke patients. These results may serve to generate hypotheses on MMPs inhibitors to be administered together with rtPA in order to counteract its deleterious effect.

  17. Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xin-Ai; Jia, Lin-Lin [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Meng [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Yuan, Zu-Yi [Department of Cardiovascular Medicine, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Guo, Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Li, Hui-Hua [Key Laboratory of Remodeling-related Cardiovascular Diseases, Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Liu, Hao, E-mail: haoliu75@163.com [Department of Neurosurgery, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China)

    2014-11-15

    We hypothesized that chronic inhibition of tumor necrosis factor-alpha (TNF-α) in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), decreasing nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase activities, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusion of a TNF-α blocker (pentoxifylline or etanercept) or vehicle for 4 weeks. SHR rats showed higher mean arterial pressure and cardiac hypertrophy compared with WKY rats, as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC) mRNA expressions. Compared with WKY rats, SHR rats had higher PVN levels of tyrosine hydroxylase, PICs, the chemokine monocyte chemoattractant protein-1 (MCP-1), NF-κB p65 activity, mRNA expressions of NOX-2 and NOX-4, and lower PVN levels of IL-10 and 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma norepinephrine. PVN infusion of pentoxifylline or etanercept attenuated all these changes in SHR rats. These findings suggest that SHR rats have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN; and chronic inhibition of TNF-α in the PVN delays the progression of hypertension by restoring the balances of neurotransmitters and cytokines in the PVN, and attenuating PVN NF-κB p65 activity and oxidative stress, thereby attenuating hypertension-induced sympathetic hyperactivity and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of

  18. Matrix metalloproteinases in exercise and obesity.

    Science.gov (United States)

    Jaoude, Jonathan; Koh, Yunsuk

    2016-01-01

    Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs' functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and -9 may be associated with exercise and obesity. Thus, the current study reviewed the effects of different types of exercise (resistance and aerobic) on MMP-1, -2, and -9. Previous studies report that the response of MMP-2 and -9 to resistance exercise is dependent upon the length of exercise training, since long-term resistance exercise training increased both MMP-2 and -9, whereas acute bout of resistance exercise decreased these MMPs. Aerobic exercise produces an inconsistent result on MMPs, although some studies showed a decrease in MMP-1. Obesity is related to a relatively lower level of MMP-9, indicating that an exercise-induced increase in MMP-9 may positively influence obesity. A comprehensive understanding of the relationship between exercise, obesity, and MMPs does not exist yet. Future studies examining the acute and chronic responses of these MMPs using different subject models may provide a better understanding of the molecular mechanisms that are associated with exercise, obesity, and cardiovascular disease.

  19. Delayed neurotoxicity - do trichlorphon and/or dichlorvos cause delayed neuropathy in man or in test animals?

    Science.gov (United States)

    Johnson, M K

    1981-01-01

    Many, but not all, reports of delayed neuropathy associated with acute poisoning by trichlorphon refer to cases in U.S.S.R. Adulteration of technical trichlorphon with the ethyl analogue would greatly increase the neurotoxic hazard but analysis of a few samples has not revealed such impurities. Simultaneous ingestion of alcohol does not appear to increase neuropathic hazard. In hens double doses of trichlorphon each exceeding unprotected LD50 can produce moderate neuropathy associated with appropriately high inhibitions of neurotoxic esterase. Similar results are obtained with 2 doses of 10 x LD50 of dichlorvos. In vitro the inhibitory power of dichlorvos against neurotoxic esterase of hen brain is 0.02 x the power against acetylcholinesterase. This ratio correlates reasonably with the ratio of LD50/neuropathic dose. The factor for human brain enzymes is 0.06 suggesting that man is more susceptible to neuropathic effects of near-lethal doses of circulating dichlorvos. It is concluded that the only neuropathic hazard to man from good quality trichlorphon arises from rapid ingestion of massive doses. To obtain critical levels of inhibition of neurotoxic esterase and to cause neuropathy in man by repeated doses would require each dose to be severely toxic. Dichlorvos ingested in large doses is likely to kill rather than to cause neuropathy.

  20. Delayed fission

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)