WorldWideScience

Sample records for metalloprotease-mediated sonic hedgehog

  1. Sonic hedgehog signaling during nervous system development

    Institute of Scientific and Technical Information of China (English)

    Qin Yang; Peng Xie

    2008-01-01

    The Hedgehog signaling pathway plays a key role in embryonic development and organ formation.Sonic hedgehog signaling participates in nervous system development,regulates proliferation and differentiation of neural stem cells,controls growth and targeting of axons,and contributes to specialization of oligodendrocytes.For further studies of the Sonic hedgehog signaling pathway and for the development of new drugs in the treatment of nervous system diseases,it is beneficial to understand these mechanisms.

  2. Inhibitors of Hedgehog Acyltransferase Block Sonic Hedgehog Signaling

    OpenAIRE

    Petrova, Elissaveta; Rios-Esteves, Jessica; Ouerfelli, Ouathek; Glickman, J. Fraser; Resh, Marilyn D.

    2013-01-01

    Inhibition of Sonic hedgehog (Shh) signaling is of great clinical interest. Here we exploit Hedgehog acyltransferase (Hhat)-mediated Shh palmitoylation, a modification critical for Shh signaling, as a novel target for Shh pathway inhibition. A target-oriented high-throughput screen was used to identify small-molecule inhibitors of Hhat. In cells, these Hhat inhibitors specifically block Shh palmitoylation and inhibit autocrine and paracrine Shh signaling.

  3. Inhibitors of Hedgehog acyltransferase block Sonic Hedgehog signaling.

    Science.gov (United States)

    Petrova, Elissaveta; Rios-Esteves, Jessica; Ouerfelli, Ouathek; Glickman, J Fraser; Resh, Marilyn D

    2013-04-01

    Inhibition of Sonic hedgehog (Shh) signaling is of great clinical interest. Here we exploit Hedgehog acyltransferase (Hhat)-mediated Shh palmitoylation, a modification critical for Shh signaling, as a new target for Shh pathway inhibition. A target-oriented high-throughput screen was used to identify small-molecule inhibitors of Hhat. In cells, these Hhat inhibitors specifically block Shh palmitoylation and inhibit autocrine and paracrine Shh signaling.

  4. Primary cilia and graded Sonic Hedgehog signaling.

    Science.gov (United States)

    Sasai, Noriaki; Briscoe, James

    2012-01-01

    Cilia are evolutionary-conserved microtubule-containing organelles protruding from the surface of cells. They are classified into two types--primary and motile cilia. Primary cilia are nearly ubiquitous, at least in vertebrate cells, and it has become apparent that they play an essential role in the intracellular transduction of a range of stimuli. Most notable among these is Sonic Hedgehog. In this article we briefly summarize the structure and biogenesis of primary cilia. We discuss the evidence implicating cilia in the transduction of extrinsic signals. We focus on the involvement and molecular mechanism of cilia in signaling by Sonic Hedgehog in embryonic tissues, specifically the neural tube, and we discuss how cilia play an active role in the interpretation of gradients of Sonic Hedgehog (Shh) signaling.

  5. [The role of sonic hedgehog pathway in skin carcinogenesis].

    Science.gov (United States)

    Lesiak, Aleksandra; Sysa-Jedrzejowska, Anna; Narbutt, Joanna

    2010-08-01

    Non melanoma skin cancers (NMSC) involving basal (BCC)--and squamosus cell carcinomas (SCC) and are the most frequent skin cancers in Caucasians. Ultraviolet radiation is the main environmental risk factor for NMSC development. The aim of this paper is to review the latest opinions concerning the role of sonic hedgehog pathway in non-melanoma skin cancers development. Experimental data indicate that sonic hedgehog pathway might be involved in skin carcinogenesis. Under physiological conditions sonic hedgehog pathway is responsible for normal embryogenesis, regeneration of damaged tissues and for regulation of cell proliferation. It was revealed that UVR caused inactivated mutation in PATCHED gene encoding Ptch1 protein. These events lead to deregulation of sonic hedgehog pathway trough activation of Smo protein and Gli transcriptional factors what stimulates cell proliferation and in consequence NMSC development. Literature data indicate that understanding of molecular background of skin cancers might be a reason for introduction of new therapeutic approaches including sonic hedgehog pathway inhibitors.

  6. Sonic hedgehog elevates N-myc gene expression in neural stem cells.

    Science.gov (United States)

    Liu, Dongsheng; Wang, Shouyu; Cui, Yan; Shen, Lun; Du, Yanping; Li, Guilin; Zhang, Bo; Wang, Renzhi

    2012-08-05

    Proliferation of neural stem cells is regulated by the secreted signaling molecule sonic hedgehog. In this study, neural stem cells were infected with recombinant adeno-associated virus expressing sonic hedgehog-N-enhanced green fluorescent protein. The results showed that overexpression of sonic hedgehog in neural stem cells induced the increased expression of Gli1 and N-myc, a target gene of sonic hedgehog. These findings suggest that N-myc is a direct downstream target of the sonic hedgehog signal pathway in neural stem cells. Sonic hedgehog and N-myc are important mediators of sonic hedgehog-induced proliferation of neural stem cells.

  7. Targeting sonic hedgehog signaling in neurological disorders.

    Science.gov (United States)

    Patel, Sita Sharan; Tomar, Sunil; Sharma, Diksha; Mahindroo, Neeraj; Udayabanu, Malairaman

    2017-03-01

    Sonic hedgehog (Shh) signaling influences neurogenesis and neural patterning during the development of central nervous system. Dysregulation of Shh signaling in brain leads to neurological disorders like autism spectrum disorder, depression, dementia, stroke, Parkinson's diseases, Huntington's disease, locomotor deficit, epilepsy, demyelinating disease, neuropathies as well as brain tumors. The synthesis, processing and transport of Shh ligand as well as the localization of its receptors and signal transduction in the central nervous system has been carefully reviewed. Further, we summarize the regulation of small molecule modulators of Shh pathway with potential in neurological disorders. In conclusion, further studies are warranted to demonstrate the potential of positive and negative regulators of the Shh pathway in neurological disorders.

  8. Sonic Hedgehog regulates thymic epithelial cell differentiation.

    Science.gov (United States)

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-04-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus.

  9. Sonic hedgehog elevates N-myc gene expression in neural stem cells★

    OpenAIRE

    Liu, Dongsheng; Wang, Shouyu; Cui, Yan; Shen, Lun; Du, Yanping; Li, Guilin; Zhang, Bo; Wang, Renzhi

    2012-01-01

    Proliferation of neural stem cells is regulated by the secreted signaling molecule sonic hedgehog. In this study, neural stem cells were infected with recombinant adeno-associated virus expressing sonic hedgehog-N-enhanced green fluorescent protein. The results showed that overexpression of sonic hedgehog in neural stem cells induced the increased expression of Gli1 and N-myc, a target gene of sonic hedgehog. These findings suggest that N-myc is a direct downstream target of the sonic hedgeho...

  10. Sonic Hedgehog Signaling in Limb Development

    Science.gov (United States)

    Tickle, Cheryll; Towers, Matthew

    2017-01-01

    The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs. PMID:28293554

  11. Regulation of Patched by Sonic Hedgehog in the Developing Neural Tube

    Science.gov (United States)

    Marigo, Valeria; Tabin, Clifford J.

    1996-09-01

    Ventral cell fates in the central nervous system are induced by Sonic hedgehog, a homolog of hedgehog, a secreted Drosophila protein. In the central nervous system, Sonic hedgehog has been identified as the signal inducing floor plate, motor neurons, and dopaminergic neurons. Sonic hedgehog is also involved in the induction of ventral cell type in the developing somites. ptc is a key gene in the Drosophila hedgehog signaling pathway where it is involved in transducing the hedgehog signal and is also a transcriptional target of the signal. PTC, a vertebrate homolog of this Drosophila gene, is genetically downstream of Sonic hedgehog (Shh) in the limb bud. We analyze PTC expression during chicken neural and somite development and find it expressed in all regions of these tissues known to be responsive to Sonic hedgehog signal. As in the limb bud, ectopic expression of Sonic hedgehog leads to ectopic induction of PTC in the neural tube and paraxial mesoderm. This conservation of regulation allows us to use PTC as a marker for Sonic hedgehog response. The pattern of PTC expression suggests that Sonic hedgehog may play an inductive role in more dorsal regions of the neural tube than have been previously demonstrated. Examination of the pattern of PTC expression also suggests that PTC may act in a negative feedback loop to attenuate hedgehog signaling.

  12. Metformin suppresses sonic hedgehog expression in pancreatic cancer cells.

    Science.gov (United States)

    Nakamura, Masafumi; Ogo, Ayako; Yamura, Masahiro; Yamaguchi, Yoshiyuki; Nakashima, Hiroshi

    2014-04-01

    Metformin use has previously been associated with decreased cancer risk. The Hedgehog signaling pathway is a well-characterized early and late mediator of pancreatic cancer oncogenesis. The aim of the present study was to clarify the effect of metformin on factors involved in Hedgehog signaling. BxPC3 human pancreatic cancer cells were treated with metformin, and Sonic hedgehog (Shh) mRNA and protein levels were examined by real time reverse transcription-polymerase chain reaction, immunohistochemistry and immunoblotting, respectively. The effect of metformin on Shh levels was also examined in three other cancer cell lines. Shh protein and mRNA expression was suppressed by metformin in BxPC3 cells. This phenomenon was further confirmed in three other cancer cell lines. Shh mRNA expression was inhibited by metformin in a concentration-dependent manner in two cancer cell lines. Metformin reduces the expression of Shh in several cancer cell lines including pancreatic cancer cell.

  13. Cloning and bioinformatical analysis of the N-terminus of the sonic hedgehog gene.

    Science.gov (United States)

    Zhang, Yi; Zhao, Shu; Dong, Weiren; He, Suifen; Wang, Haihong; Zhang, Lihua; Tang, Yinjuan; Guo, Jiasong; Guo, Suiqun

    2013-01-25

    The sonic hedgehog protein not only plays a key role in early embryonic development, but also has essential effects on the adult nervous system, including neural stem cell proliferation, differentiation, migration and neuronal axon guidance. The N-terminal fragment of sonic hedgehog is the key functional element in this process. Therefore, this study aimed to clone and analyze the N-terminal fragment of the sonic hedgehog gene. Total RNA was extracted from the notochord of a Sprague-Dawley rat at embryonic day 9 and the N-terminal fragment of sonic hedgehog was amplified by nested reverse transcription-PCR. The N-terminal fragment of the sonic hedgehog gene was successfully cloned. The secondary and tertiary structures of the N-terminal fragment of the sonic hedgehog protein were predicted using Jpred and Phyre online.

  14. Cloning and bioinformatical analysis of the N-terminus of the sonic hedgehog gene

    Institute of Scientific and Technical Information of China (English)

    Yi Zhang; Shu Zhao; Weiren Dong; Suifen He; Haihong Wang; Lihua Zhang; Yinjuan Tang; Jiasong Guo; Suiqun Guo

    2013-01-01

    The sonic hedgehog protein not only plays a key role in early embryonic development, but also has essential effects on the adult nervous system, including neural stem cell proliferation, differentiation, migration and neuronal axon guidance. The N-terminal fragment of sonic hedgehog is the key functional element in this process. Therefore, this study aimed to clone and analyze the N-terminal fragment of the sonic hedgehog gene. Total RNA was extracted from the notochord of a Sprague-Dawley rat at embryonic day 9 and the N-terminal fragment of sonic hedgehog was amplified by nested reverse transcription-PCR. The N-terminal fragment of the sonic hedgehog gene was successfully cloned. The secondary and tertiary structures of the N-terminal fragment of the sonic hedgehog protein were predicted using Jpred and Phyre online.

  15. Localization of Sonic hedgehog secreting and receiving cells in the developing and adult rat adrenal cortex.

    Science.gov (United States)

    Guasti, Leonardo; Paul, Alex; Laufer, Ed; King, Peter

    2011-04-10

    Sonic hedgehog signaling was recently demonstrated to play an important role in murine adrenal cortex development. The organization of the rat adrenal differs from that of the mouse, with the zona glomerulosa and zona fasciculata separated by an undifferentiated zone in the rat, but not in the mouse. In the present study we aimed to determine the mRNA expression patterns of Sonic hedgehog and the hedgehog signaling pathway components Patched-1 and Gli1 in the developing and adult rat adrenal. Sonic hedgehog expression was detected at the periphery of the cortex in cells lacking CYP11B1 and CYP11B2 expression, while signal-receiving cells were localized in the overlying capsule mesenchyme. Using combined in situ hybridization and immunohistochemistry we found that the cells expressing Sonic hedgehog lie between the CYP11B2 and CYP11B1 layers, and thus Sonic hedgehog expression defines one cell population of the undifferentiated zone.

  16. Sortilin regulates sorting and secretion of Sonic hedgehog.

    Science.gov (United States)

    Campbell, Charles; Beug, Shawn; Nickerson, Philip E B; Peng, Jimmy; Mazerolle, Chantal; Bassett, Erin A; Ringuette, Randy; Jama, Fadumo A; Morales, Carlos; Christ, Annabel; Wallace, Valerie A

    2016-10-15

    Sonic Hedgehog (Shh) is a secreted morphogen that is an essential regulator of patterning and growth. The Shh full-length protein undergoes autocleavage in the endoplasmic reticulum to generate the biologically active N-terminal fragment (ShhN), which is destined for secretion. We identified sortilin (Sort1), a member of the VPS10P-domain receptor family, as a new Shh trafficking receptor. We demonstrate that Sort-Shh interact by performing coimmunoprecipitation and proximity ligation assays in transfected cells and that they colocalize at the Golgi. Sort1 overexpression causes re-distribution of ShhN and, to a lesser extent, of full-length Shh to the Golgi and reduces Shh secretion. We show loss of Sort1 can partially rescue Hedgehog-associated patterning defects in a mouse model that is deficient in Shh processing, and we show that Sort1 levels negatively regulate anterograde Shh transport in axons in vitro and Hedgehog-dependent axon-glial interactions in vivo Taken together, we conclude that Shh and Sort1 can interact at the level of the Golgi and that Sort1 directs Shh away from the pathways that promote its secretion.

  17. Canonical Sonic Hedgehog Signaling in Early Lung Development

    Directory of Open Access Journals (Sweden)

    Hugo Fernandes-Silva

    2017-03-01

    Full Text Available The canonical hedgehog (HH signaling pathway is of major importance during embryonic development. HH is a key regulatory morphogen of numerous cellular processes, namely, cell growth and survival, differentiation, migration, and tissue polarity. Overall, it is able to trigger tissue-specific responses that, ultimately, contribute to the formation of a fully functional organism. Of all three HH proteins, Sonic Hedgehog (SHH plays an essential role during lung development. In fact, abnormal levels of this secreted protein lead to severe foregut defects and lung hypoplasia. Canonical SHH signal transduction relies on the presence of transmembrane receptors, such as Patched1 and Smoothened, accessory proteins, as Hedgehog-interacting protein 1, and intracellular effector proteins, like GLI transcription factors. Altogether, this complex signaling machinery contributes to conveying SHH response. Pulmonary morphogenesis is deeply dependent on SHH and on its molecular interactions with other signaling pathways. In this review, the role of SHH in early stages of lung development, specifically in lung specification, primary bud formation, and branching morphogenesis is thoroughly reviewed.

  18. Sonic hedgehog signaling in kidney fibrosis: a master communicator.

    Science.gov (United States)

    Zhou, Dong; Tan, Roderick J; Liu, Youhua

    2016-09-01

    The hedgehog signaling cascade is an evolutionarily conserved pathway that regulates multiple aspects of embryonic development and plays a decisive role in tissue homeostasis. As the best studied member of three hedgehog ligands, sonic hedgehog (Shh) is known to be associated with kidney development and tissue repair after various insults. Recent studies uncover an intrinsic link between dysregulated Shh signaling and renal fibrogenesis. In various types of chronic kidney disease (CKD), Shh is upregulated specifically in renal tubular epithelium but targets interstitial fibroblasts, thereby mediating a dynamic epithelial- mesenchymal communication (EMC). Tubule-derived Shh acts as a growth factor for interstitial fibroblasts and controls a hierarchy of fibrosis-related genes, which lead to the excessive deposition of extracellular matrix in renal interstitium. In this review, we recapitulate the principle of Shh signaling, its activation and regulation in a variety of kidney diseases. We also discuss the potential mechanisms by which Shh promotes renal fibrosis and assess the efficacy of blocking this signaling in preclinical settings. Continuing these lines of investigations will provide novel opportunities for designing effective therapies to improve CKD prognosis in patients.

  19. 131-Iodine-Labeled Derivatives of the Sonic Hedgehog Protein

    Directory of Open Access Journals (Sweden)

    Jennifer Sims-Mourtada

    2012-01-01

    Full Text Available Activation of hedgehog (HH pathway signaling is observed in many tumors. Due to a feedback loop, the HH receptor Patched (PTCH-1 is overexpressed in tumors with activated HH signaling. Therefore, we sought to radiolabel the PTCH-1 ligand sonic (SHH for detection of cancer cells with canonical HH activity. Receptor binding of 131I-SHH was increased in cell lines with high HH pathway activation. Our findings also show that PTCH-1 receptor expression is decreased upon treatment with HH signaling inhibitors, and receptor binding of 131I-SHH is significantly decreased following treatment with cyclopamine. In vivo imaging and biodistribution studies revealed significant accumulation of 131I-SHH within tumor tissue as compared to normal organs. Tumor-to-muscle ratios were approximately 8 : 1 at 5 hours, while tumor to blood and tumor to bone were 2 : 1 and 5 : 1, respectively. Significant uptake was also observed in liver and gastrointestinal tissue. These studies show that 131I-SHH is capable of in vivo detection of breast tumors with high HH signaling. We further demonstrate that the hedgehog receptor PTCH-1 is downregulated upon treatment with hedgehog inhibitors. Our data suggests that radiolabeled SHH derivatives may provide a method to determine response to SHH-targeted therapies.

  20. Attenuation of hedgehog acyltransferase-catalyzed sonic Hedgehog palmitoylation causes reduced signaling, proliferation and invasiveness of human carcinoma cells

    DEFF Research Database (Denmark)

    Konitsiotis, Antonios D; Chang, Shu-Chun; Jovanović, Biljana

    2014-01-01

    Overexpression of Hedgehog family proteins contributes to the aetiology of many cancers. To be highly active, Hedgehog proteins must be palmitoylated at their N-terminus by the MBOAT family multispanning membrane enzyme Hedgehog acyltransferase (Hhat). In a pancreatic ductal adenocarcinoma (PDAC......) cell line PANC-1 and transfected HEK293a cells Hhat localized to the endoplasmic reticulum. siRNA knockdown showed that Hhat is required for Sonic hedgehog (Shh) palmitoylation, for its assembly into high molecular weight extracellular complexes and for functional activity. Hhat knockdown inhibited Hh...

  1. High frequency stimulation induces sonic hedgehog release from hippocampal neurons

    Science.gov (United States)

    Su, Yujuan; Yuan, Yuan; Feng, Shengjie; Ma, Shaorong; Wang, Yizheng

    2017-01-01

    Sonic hedgehog (SHH) as a secreted protein is important for neuronal development in the central nervous system (CNS). However, the mechanism about SHH release remains largely unknown. Here, we showed that SHH was expressed mainly in the synaptic vesicles of hippocampus in both young postnatal and adult rats. High, but not low, frequency stimulation, induces SHH release from the neurons. Moreover, removal of extracellular Ca2+, application of tetrodotoxin (TTX), an inhibitor of voltage-dependent sodium channels, or downregulation of soluble n-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) proteins, all blocked SHH release from the neurons in response to HFS. Our findings suggest a novel mechanism to control SHH release from the hippocampal neurons. PMID:28262835

  2. Sonic hedgehog expression during early tooth development in Suncus murinus.

    Science.gov (United States)

    Miyado, Mami; Ogi, Hidenao; Yamada, Gen; Kitoh, Junzo; Jogahara, Takamichi; Oda, Sen-Ichi; Sato, Iwao; Miyado, Kenji; Sunohara, Masataka

    2007-11-16

    Tooth development is a highly organized process characterized by reciprocal interactions between epithelium and mesenchyme. However, the expression patterns and functions of molecules involved in mouse tooth development are unclear from the viewpoint of explaining human dental malformations and anomalies. Here, we show the expression of sonic hedgehog (Shh), a potent initiator of morphogenesis, during the early stages of tooth development in Suncus murinus. Initially, symmetrical, elongated expression of suncus Shh (sShh) was observed in the thin layer of dental epithelial cells along the mesial-distal axis of both jaws. As the dental epithelium continued to develop, sShh was strictly restricted to the predicted leading parts of the growing, invaginating epithelium corresponding to tooth primordia and enamel knots. We propose that some aspects of Shh function in tooth development are widely conserved in mammalian phylogeny.

  3. Sonic Hedgehog Signaling and Development of the Dentition

    Directory of Open Access Journals (Sweden)

    Maisa Seppala

    2017-05-01

    Full Text Available Sonic hedgehog (Shh is an essential signaling peptide required for normal embryonic development. It represents a highly-conserved marker of odontogenesis amongst the toothed vertebrates. Signal transduction is involved in early specification of the tooth-forming epithelium in the oral cavity, and, ultimately, in defining tooth number within the established dentition. Shh also promotes the morphogenetic movement of epithelial cells in the early tooth bud, and influences cell cycle regulation, morphogenesis, and differentiation in the tooth germ. More recently, Shh has been identified as a stem cell regulator in the continuously erupting incisors of mice. Here, we review contemporary data relating to the role of Shh in odontogenesis, focusing on tooth development in mammals and cartilaginous fishes. We also describe the multiple actions of this signaling protein at the cellular level.

  4. Sonic Hedgehog activation is implicated in diosgenin-induced megakaryocytic differentiation of human erythroleukemia cells.

    Science.gov (United States)

    Ghezali, Lamia; Liagre, Bertrand; Limami, Youness; Beneytout, Jean-Louis; Leger, David Yannick

    2014-01-01

    Differentiation therapy is a means to treat cancer and is induced by different agents with low toxicity and more specificity than traditional ones. Diosgenin, a plant steroid, is able to induce megakaryocytic differentiation or apoptosis in human HEL erythroleukemia cells in a dose-dependent manner. However, the exact mechanism by which diosgenin induces megakaryocytic differentiation has not been elucidated. In this study, we studied the involvement of Sonic Hedgehog in megakaryocytic differentiation induced by diosgenin in HEL cells. First, we showed that different elements of the Hedgehog pathway are expressed in our model by qRT-PCR. Then, we focused our interest on key elements in the Sonic Hedgehog pathway: Smoothened receptor, GLI transcription factor and the ligand Sonic Hedgehog. We showed that Smoothened and Sonic Hedgehog were overexpressed in disogenin-treated cells and that GLI transcription factors were activated. Then, we showed that SMO inhibition using siSMO or the GLI antagonist GANT-61, blocked megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, we demonstrated that Sonic Hedgehog pathway inhibition led to inhibition of ERK1/2 activation, a major physiological pathway involved in megakaryocytic differentiation. In conclusion, our study reports, for the first time, a crucial role for the Sonic Hedgehog pathway in diosgenin-induced megakaryocytic differentiation in HEL cells.

  5. Sonic Hedgehog activation is implicated in diosgenin-induced megakaryocytic differentiation of human erythroleukemia cells.

    Directory of Open Access Journals (Sweden)

    Lamia Ghezali

    Full Text Available Differentiation therapy is a means to treat cancer and is induced by different agents with low toxicity and more specificity than traditional ones. Diosgenin, a plant steroid, is able to induce megakaryocytic differentiation or apoptosis in human HEL erythroleukemia cells in a dose-dependent manner. However, the exact mechanism by which diosgenin induces megakaryocytic differentiation has not been elucidated. In this study, we studied the involvement of Sonic Hedgehog in megakaryocytic differentiation induced by diosgenin in HEL cells. First, we showed that different elements of the Hedgehog pathway are expressed in our model by qRT-PCR. Then, we focused our interest on key elements in the Sonic Hedgehog pathway: Smoothened receptor, GLI transcription factor and the ligand Sonic Hedgehog. We showed that Smoothened and Sonic Hedgehog were overexpressed in disogenin-treated cells and that GLI transcription factors were activated. Then, we showed that SMO inhibition using siSMO or the GLI antagonist GANT-61, blocked megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, we demonstrated that Sonic Hedgehog pathway inhibition led to inhibition of ERK1/2 activation, a major physiological pathway involved in megakaryocytic differentiation. In conclusion, our study reports, for the first time, a crucial role for the Sonic Hedgehog pathway in diosgenin-induced megakaryocytic differentiation in HEL cells.

  6. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Ting; Ding, Jing-Ya [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Li, Ming-Yang [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yeh, Tien-Shun [Department of Anatomy and Cell Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Wang, Tsu-Wei, E-mail: twwang@ntnu.edu.tw [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yu, Jenn-Yah, E-mail: jyyu@ym.edu.tw [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan (China)

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  7. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    Science.gov (United States)

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  8. Sonic hedgehog signaling in the lung. From development to disease.

    Science.gov (United States)

    Kugler, Matthias C; Joyner, Alexandra L; Loomis, Cynthia A; Munger, John S

    2015-01-01

    Over the past two decades, the secreted protein sonic hedgehog (SHH) has emerged as a critical morphogen during embryonic lung development, regulating the interaction between epithelial and mesenchymal cell populations in the airway and alveolar compartments. There is increasing evidence that the SHH pathway is active in adult lung diseases such as pulmonary fibrosis, asthma, chronic obstructive pulmonary disease, and lung cancer, which raises two questions: (1) What role does SHH signaling play in these diseases? and (2) Is it a primary driver of the disease or a response (perhaps beneficial) to the primary disturbance? In this review we aim to fill the gap between the well-studied period of embryonic lung development and the adult diseased lung by reviewing the hedgehog (HH) pathway during the postnatal period and in adult uninjured and injured lungs. We elucidate the similarities and differences in the epithelial-mesenchymal interplay during the fibrosis response to injury in lung compared with other organs and present a critical appraisal of tools and agents available to evaluate HH signaling.

  9. Sonic hedgehog-Gli1 pathway in colorectal adenocarcinomas

    Institute of Scientific and Technical Information of China (English)

    Yue-Hong Bian; Shu-Hong Huang; Ling Yang; XiaoLi Ma; Jing-Wu Xie; Hong-Wei Zhang

    2007-01-01

    AIM: To determine the role of Sonic hedgehog (Shh) pathway in colorectal adenocarcinomas through analysis of the expression of Shh pathway-related molecules, Shh, Ptchl, hedgehog-interacting protein (Hip), Gli1, Gli3 and PDGFRα.METHODS: Expression of Shh in 25 colorectal adenocarcinomas was detected by RT-PCR, in situ hybridization and immunohistochemistry. Expression of Ptchl was observed by in situ hybridization and immunohistochemistry. Expression of Hip, Glil, Gli3 and PDGFRa was analyzed by in situ hybridization.RESULTS: Expression of cytokeratin AE1/AE3 was observed in the cytoplasm of colorectal crypts. Members of the Hh signaling pathway were expressed in colorectal epithelium. Shh was expressed in cytoplasm of dysplastic epithelial cells, while expression of Ptchl, Hip and Glil were mainly detected in the malignant crypts of adenocarcinomas. In contrast, PDGFRa was expressed highly in aberrant crypts and moderately in the stroma. Expression of Gli3 could not be detected in colorectal adenocarcinomas.CONCLUSION: These data suggest that Shh-Ptchl-Gli1 signaling pathway may play a role in the progression of colorectal tumor.

  10. The Role of the Sonic Hedgehog Pathway for Prostate Cancer Progression

    Science.gov (United States)

    2007-02-01

    HCV replicon , we detected an additional increase in the sonic hedgehog promoter activity, suggesting that HCV somehow activates the sonic hedgehog...are derived from Huh7 cells, containing HCV replicons . The Shh promoter activity in Huh7 and HepG2 cells is consistent with the level of Shh...transcript (see Figure 2E for comparison). In the presence of HCV replicons , we observed an increase in the Shh reporter activity. We concluded from

  11. Mechanism of inhibition of the tumor suppressor Patched by Sonic Hedgehog.

    Science.gov (United States)

    Tukachinsky, Hanna; Petrov, Kostadin; Watanabe, Miyako; Salic, Adrian

    2016-10-04

    The Hedgehog cell-cell signaling pathway is crucial for animal development, and its misregulation is implicated in numerous birth defects and cancers. In unstimulated cells, pathway activity is inhibited by the tumor suppressor membrane protein, Patched. Hedgehog signaling is triggered by the secreted Hedgehog ligand, which binds and inhibits Patched, thus setting in motion the downstream events in signal transduction. Despite its critical importance, the mechanism by which Hedgehog antagonizes Patched has remained unknown. Here, we show that vertebrate Patched1 inhibition is caused by direct, palmitate-dependent interaction with the Sonic Hedgehog ligand. We find that a short palmitoylated N-terminal fragment of Sonic Hedgehog binds Patched1 and, strikingly, is sufficient to inhibit it and to activate signaling. The rest of Sonic Hedgehog confers high-affinity Patched1 binding and internalization through a distinct binding site, but, surprisingly, it is not absolutely required for signaling. The palmitate-dependent interaction with Patched1 is specifically impaired in a Sonic Hedgehog mutant causing human holoprosencephaly, the most frequent congenital brain malformation, explaining its drastically reduced potency. The palmitate-dependent interaction is also abolished in constitutively inhibited Patched1 point mutants causing the Gorlin cancer syndrome, suggesting that they might adopt a conformation distinct from the wild type. Our data demonstrate that Sonic Hedgehog signals via the palmitate-dependent arm of a two-pronged contact with Patched1. Furthermore, our results suggest that, during Hedgehog signaling, ligand binding inhibits Patched by trapping it in an inactive conformation, a mechanism that explains the dramatically reduced activity of oncogenic Patched1 mutants.

  12. Role of Sonic Hedgehog in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Bolaños, Alfredo Lozano; Milla, Criselda Mendoza; Lira, José Cisneros; Ramírez, Remedios; Checa, Marco; Barrera, Lourdes; García-Alvarez, Jorge; Carbajal, Verónica; Becerril, Carina; Gaxiola, Miguel; Pardo, Annie; Selman, Moisés

    2012-12-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disease of unknown etiology and uncertain pathogenic mechanisms. Recent studies indicate that the pathogenesis of the disease may involve the abnormal expression of certain developmental pathways. Here we evaluated the expression of Sonic Hedgehog (SHH), Patched-1, Smoothened, and transcription factors glioma-associated oncogene homolog (GLI)1 and GLI2 by RT-PCR, as well as their localization in IPF and normal lungs by immunohistochemistry. The effects of SHH on fibroblast proliferation, migration, collagen and fibronectin production, and apoptosis were analyzed by WST-1, Boyden chamber chemotaxis, RT-PCR, Sircol, and annexin V-propidium iodide binding assays, respectively. Our results showed that all the main components of the Sonic signaling pathway were overexpressed in IPF lungs. With the exception of Smoothened, they were also upregulated in IPF fibroblasts. SHH and GLI2 localized to epithelial cells, whereas Patched-1, Smoothened, and GLI1 were observed mainly in fibroblasts and inflammatory cells. No staining was detected in normal lungs. Recombinant SHH increased fibroblast proliferation (P < 0.05), collagen synthesis, (2.5 ± 0.2 vs. 4.5 ± 1.0 μg of collagen/ml; P < 0.05), fibronectin expression (2-3-fold over control), and migration (190.3 ± 12.4% over control, P < 0.05). No effect was observed on α-smooth muscle actin expression. SHH protected lung fibroblasts from TNF-α/IFN-γ/Fas-induced apoptosis (14.5 ± 3.2% vs. 37.3 ± 7.2%, P < 0.0001). This protection was accompanied by modifications in several apoptosis-related proteins, including increased expression of X-linked inhibitor of apoptosis. These findings indicate that the SHH pathway is activated in IPF lungs and that SHH may contribute to IPF pathogenesis by increasing the proliferation, migration, extracellular matrix production, and survival of fibroblasts.

  13. Sonic Hedgehog与前列腺生长调控%Sonic Hedgehog and Prostate Growth Regulation

    Institute of Scientific and Technical Information of China (English)

    杨立; 申吉泓; 刘孝东

    2007-01-01

    Sonic hedgehog(Shh)是一类在胚胎发育过程中起关键作用的信号调节因子.研究认为Shh信号在前列腺导管形成分化以及基质-上皮的相互作用等机制中发挥着重要作用,从而调节前列腺发育、生长和细胞增殖;Shh信号作用途径的紊乱可导致肿瘤细胞的生成和增殖.探讨Shh信号机制在前列腺正常生长和疾病状态中的作用将为研究前列腺疾病的发病机制提供重要的思路.

  14. Sonic Hedgehog signaling pathway in primary liver cancer cells

    Institute of Scientific and Technical Information of China (English)

    Lian-Yi Guo; Pei Liu; Ying Wen; Wei Cui; Ying Zhou

    2014-01-01

    Objective:To investigate clinical significance ofSonicHedgehog(SHH) signaling pathway molecularShh,Smo andGli2 in primary hepatocellular carcinoma(HCC) tissue.Methods:A total of30HCC tissue samples were collected.Protein expression ofSHH signaling pathway moleculesShh,Smo andGli2 inHCC tissues and para - carcinoma tissue were detected by using immunohistochemical method.Cirrhosis and normal liver tissue specimens were observed as control to analyze the expression ofSHH signaling pathway molecularShh,Smo andGli2 mRNA inHCC tissues and corresponding para-carcinoma tissues and its relationship with the onset of HCC.Results:There was no expression ofShh,Smo andGli2 protein in normal liver tissue, while their positive rates were63.3%,76.7% and66.7% inHCC tissues, respectively, with asignificantly higher expression level than that in the para - carcinoma tissue(P0.05);Shh andSmo protein was detected in part of cirrhosis with positive expression, butGli2 protein was not observable in cirrhosis tissues.Conclusions:InHCC tissues, the high expression level ofSHH signaling pathway molecules signal peptide(Shh), membrane protein receiptor(Smo) and nuclear transcription molecular(Gli2) can be indicators of the onset of liver cancer.

  15. Ontogenetic expression of Sonic Hedgehog in the chicken subpallium

    Directory of Open Access Journals (Sweden)

    Sylvia M Bardet

    2010-07-01

    Full Text Available Sonic hedgehog (SHH is a secreted signaling factor that is implicated in the molecular patterning of the central nervous system (CNS, somites and limbs in vertebrates. SHH has a crucial role in the generation of ventral cell types along the entire rostrocaudal axis of the neural tube. It is secreted early in development by the axial mesoderm (prechordal plate and notochord and the overlying ventral neural tube. Recent studies clarified the impact of SHH signaling mechanisms on dorsoventral patterning of the spinal cord, but the corresponding phenomena in the rostral forebrain are slightly different and more complex. This notably involves separate Shh expression in the preoptic part of the forebrain alar plate, as well as in the hypothalamic floor and basal plates. The present work includes a detailed spatio-temporal description of the singular alar Shh expression pattern in the rostral preoptic forebrain of chick embryos, comparing it with FoxG1, Dlx5, Nkx2.1 and Nkx2.2 mRNA expression at diverse stages of development. As a result of this mapping, we report a subdivision of the preoptic region in dorsal and ventral zones; only the dorsal part shows Shh expression. The positive area impinges as well upon a median septocommissural preoptic domain. Our study strongly suggests tangential migration of Shh positive cells from the preoptic region into other subpallial domains, particularly into the pallidal mantle and the intermediate septum.

  16. Role of Sonic Hedgehog Signaling in Oligodendrocyte Differentiation.

    Science.gov (United States)

    Wang, Li-Chun; Almazan, Guillermina

    2016-12-01

    During development, the secreted molecule Sonic Hedgehog (Shh) is required for lineage specification and proliferation of oligodendrocyte progenitors (OLPs), which are the glia cells responsible for the myelination of axons in the central nervous system (CNS). Shh signaling has been implicated in controlling both the generation of oligodendrocytes (OLGs) during embryonic development and their production in adulthood. Although, some evidence points to a role of Shh signaling in OLG development, its involvement in OLG differentiation remains to be fully determined. The objective of this study was to assess whether Shh signaling is involved in OLG differentiation after neural stem cell commitment to the OLG lineage. To address these questions, we manipulated Shh signaling using cyclopamine, a potent inhibitor of Shh signaling activator Smoothened (Smo), alone or combined with the agonist SAG in OLG primary cultures and assessed expression of myelin-specific markers. We found that inactivation of Shh signaling caused a dose-dependent decrease in myelin basic protein (MBP) and myelin associated glycoprotein (MAG) in differentiating OLGs. Co-treatment of the cells with SAG reversed the inhibitory effect of cyclopamine on both myelin-specific protein levels and morphological changes associated with it. Further experiments are required to elucidate the molecular mechanism by which Shh signaling regulates OLG differentiation.

  17. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog

    Science.gov (United States)

    Martinez-Lopez, Jesus E.; Moreno-Bravo, Juan A.; Madrigal, M. Pilar; Martinez, Salvador; Puelles, Eduardo

    2015-01-01

    In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral (DV) axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral (BL) domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the BL domain and demonstrated that the development of the BL domain highly depends on Shh. PMID:25741244

  18. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog

    Directory of Open Access Journals (Sweden)

    Jesus E. Martinez-Lopez

    2015-02-01

    Full Text Available In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the basolateral domain and demonstrated that the development of the basolateral domain highly depends on Shh.

  19. Sonic hedgehog in oral squamous cell carcinoma: An immunohistochemical study

    Science.gov (United States)

    Srinath, Sahana; Iyengar, Asha R; Mysorekar, Vijaya

    2016-01-01

    Background: Recent studies have revealed the involvement of hedgehog (Hh) signaling component in proliferation and invasive behavior of many carcinomas. Aim: This study aims to identify the expression of sonic Hh (SHH) protein of SHH pathway in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC) using SHH (H-160) (Santa Cruz, sc-9042) which could have therapeutic implication in future. Materials and Methods: A total of 250 cases comprising 50 normal oral mucosa, 50 cases of oral epithelial dysplasia, 50 well, 50 moderate and 50 poorly differentiated OSCCs were included in the study. Immunohistochemical evaluation of SHH protein expression was conducted using monoclonal antibody. Interpretation of the expression was done by immunoreactive score of Remmele and Stegner (IRS) scoring method. Statistical Analysis: Chi-Square test was used to analyze the results. Results: The study showed that SHH signaling molecules are highly expressed in OSCC, and their expression was mainly in the cytoplasm of epithelial cells. Conclusion: The SHH signaling component is associated with the pathological parameter in OSCC and oral epithelial dysplasia. PMID:27721600

  20. Identification of conserved regions and residues within Hedgehog acyltransferase critical for palmitoylation of Sonic Hedgehog.

    Directory of Open Access Journals (Sweden)

    John A Buglino

    Full Text Available BACKGROUND: Sonic hedgehog (Shh is a palmitoylated protein that plays key roles in mammalian development and human cancers. Palmitoylation of Shh is required for effective long and short range Shh-mediated signaling. Attachment of palmitate to Shh is catalyzed by Hedgehog acyltransferase (Hhat, a member of the membrane bound O-acyl transferase (MBOAT family of multipass membrane proteins. The extremely hydrophobic composition of MBOAT proteins has limited their biochemical characterization. Except for mutagenesis of two conserved residues, there has been no structure-function analysis of Hhat, and the regions of the protein required for Shh palmitoylation are unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we undertake a systematic approach to identify residues within Hhat that are required for protein stability and/or enzymatic activity. We also identify a second, novel MBOAT homology region (residues 196-234 that is required for Hhat activity. In total, ten deletion mutants and eleven point mutants were generated and analyzed. Truncations at the N- and C-termini of Hhat yielded inactive proteins with reduced stability. Four Hhat mutants with deletions within predicted loop regions and five point mutants retained stability but lost palmitoylation activity. We purified two point mutants, W378A and H379A, with defective Hhat activity. Kinetic analyses revealed alterations in apparent K(m and V(max for Shh and/or palmitoyl CoA, changes that likely explain the catalytic defects observed for these mutants. CONCLUSIONS/SIGNIFICANCE: This study has pinpointed specific regions and multiple residues that regulate Hhat stability and catalysis. Our findings should be applicable to other MBOAT proteins that mediate lipid modification of Wnt proteins and ghrelin, and should serve as a model for understanding how secreted morphogens are modified by palmitoyl acyltransferases.

  1. Interaction of PACAP with Sonic hedgehog reveals complex regulation of the hedgehog pathway by PKA.

    Science.gov (United States)

    Niewiadomski, Pawel; Zhujiang, Annie; Youssef, Mary; Waschek, James A

    2013-11-01

    Sonic hedgehog (Shh) signaling is essential for proliferation of cerebellar granule cell progenitors (cGCPs) and its aberrant activation causes a cerebellar cancer medulloblastoma. Pituitary adenylate cyclase activating polypeptide (PACAP) inhibits Shh-driven proliferation of cGCPs and acts as tumor suppressor in murine medulloblastoma. We show that PACAP blocks canonical Shh signaling by a mechanism that involves activation of protein kinase A (PKA) and inhibition of the translocation of the Shh-dependent transcription factor Gli2 into the primary cilium. PKA is shown to play an essential role in inhibiting gene transcription in the absence of Shh, but global PKA activity levels are found to be a poor predictor of the degree of Shh pathway activation. We propose that the core Shh pathway regulates a small compartmentalized pool of PKA in the vicinity of primary cilia. GPCRs that affect global PKA activity levels, such as the PACAP receptor, cooperate with the canonical Shh signal to regulate Gli protein phosphorylation by PKA. This interaction serves to fine-tune the transcriptional and physiological function of the Shh pathway.

  2. The Hedgehog signaling pathway in ovarian teratoma is stimulated by Sonic Hedgehog which induces internalization of Patched.

    Science.gov (United States)

    Sabol, Maja; Car, Diana; Musani, Vesna; Ozretic, Petar; Oreskovic, Slavko; Weber, Igor; Levanat, Sonja

    2012-10-01

    The Hedgehog-Gli (Hh-Gli) signaling pathway was examined in ovarian dermoids, which show characteristics of both tumors and developmental malformations. Dermoids are classified as mature teratomas that present differentiation into various tissues, mostly epidermal elements such as glands, multilayered epithelium, hair follicles and occasionally bone and cartilage. Their development is attributed to aberrant meiosis of germinal cells within the ovary. We showed activation of the Hh-Gli signaling in ovarian dermoid primary cultures. Cyclopamine treatment slows down cell proliferation, while the Sonic Hedgehog (Shh) protein stimulates cell proliferation and induces internalization of the Patched (Ptch) protein, which accumulates in the form of granules in the cytoplasm, colocalized with the Shh protein. Cyclopamine treatment decreases Gli1 localization in the nucleus compared to non-treated cells. Based on our observations, the mechanism of Hedgehog activation in the ovarian dermoids could be the ligand-dependent autocrine pathway, which can also be stimulated by paracrine signals.

  3. Sonic hedgehog induces transcription-independent cytoskeletal rearrangement and migration regulated by arachidonate metabolites

    NARCIS (Netherlands)

    Bijlsma, Maarten F.; Borensztajn, Keren S.; Roelink, Henk; Peppelenbosch, Maikel P.; Spek, C. Arnold

    2007-01-01

    Sonic hedgehog (Shh) is a morphogen pivotal for development and tissue maintenance. Biological effects of Shh are mediated through a pathway that involves binding to patched1 (Ptch1), thereby releasing Smoothened (Smo) from inhibition resulting in the activation of Gli transcription factors, which m

  4. Sonic Hedgehog: A Good Gene Gone Bad? Detection and Treatment of Genetic Abnormalities.

    Science.gov (United States)

    Yaich, Lauren E.

    2001-01-01

    Presents a case of a baby born with the genetic condition holoprosencephaly in which students explore the "Sonic hedgehog" gene, signal transduction, and the ethics of body and tissue donation. Presents a two-part assignment that features students writing an informed consent document that explains the science behind this congenital abnormality,…

  5. Analysis of the Sonic Hedgehog signaling pathway in normal and abnormal bladder development.

    Science.gov (United States)

    DeSouza, Kristin R; Saha, Monalee; Carpenter, Ashley R; Scott, Melissa; McHugh, Kirk M

    2013-01-01

    In this study, we examined the expression of Sonic Hedgehog, Patched, Gli1, Gli2, Gli3 and Myocardin in the developing bladders of male and female normal and megabladder (mgb-/-) mutant mice at embryonic days 12 through 16 by in situ hybridization. This analysis indicated that each member of the Sonic Hedgehog signaling pathway as well as Myocardin displayed distinct temporal and spatial patterns of expression during normal bladder development. In contrast, mgb-/- bladders showed both temporal and spatial changes in the expression of Patched, Gli1 and Gli3 as well as a complete lack of Myocardin expression. These changes occurred primarily in the outer mesenchyme of developing mgb-/- bladders consistent with the development of an amuscular bladder phenotype in these animals. These results provide the first comprehensive analysis of the Sonic Hedgehog signaling pathway during normal bladder development and provide strong evidence that this key signaling cascade is critical in establishing radial patterning in the developing bladder. In addition, the lack of detrusor smooth muscle development observed in mgb-/- mice is associated with bladder-specific temporospatial changes in Sonic Hedgehog signaling coupled with a lack of Myocardin expression that appears to result in altered patterning of the outer mesenchyme and poor initiation and differentiation of smooth muscle cells within this region of the developing bladder.

  6. Expression and significance of sonic hedgehog signaling pathway-related components in brainstem and supratentorial astrocytomas

    Institute of Scientific and Technical Information of China (English)

    XIN Yu; HAO Shu-yu; TIAN Yong-ji; ZHANG Jun-ting; WU Zhen; WAN Hong; LI Jun-hua; JIANG Jian; ZHANG Li-wei

    2011-01-01

    Background Studies have shown that abnormal activation of the sonic hedgehog pathway is closely related to tumorigenesis in central nervous system.This study aimed to investigate the role of the sonic hedgehog signaling pathway in the occurrence of brainstem and supratentorial glioma.Methods Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry were used to detect the expression of sonic hedgehog-related components in 5 specimens of normal brain tissue,10 of grade Ⅱ brainstem glioma,and 10 of grade Ⅱ supratentorial glioma.The significance of differences between two groups was determined using the Mann-Whitney U test or the two-sample test according to the results of normality distribution tests.Results The mRNA expression levels of sonic hedgehog-related genes were higher in brainstem astrocytomas than in supratentorial astrocytomas and normal brain tissue.The level of protein patched homolog 1 (PTCH1) was significantly higher in brainstem astrocytomas than in supratentorial astrocytomas and normal brain tissue (P <0.01).Immunohistochemistry semi-quantitative analysis was consistent with the qRT-PCR result that PTCH1 expression was increased significantly in brainstem astrocytomas at the protein level (P <0.05).Conclusions Enhanced PTCH1 expression and activation of the sonic hedgehog pathway are involved in brainstem glioma.This may be related to the difference in malignant biological behavior between brainstem and hemispheric glioma,and could be an ideal therapeutic target in brainstem glioma.

  7. Two distinct sites in sonic Hedgehog combine for heparan sulfate interactions and cell signaling functions

    DEFF Research Database (Denmark)

    Chang, Shu-Chun; Mulloy, Barbara; Magee, Anthony I

    2011-01-01

    Hedgehog (Hh) proteins are morphogens that mediate many developmental processes. Hh signaling is significant for many aspects of embryonic development, whereas dysregulation of this pathway is associated with several types of cancer. Hh proteins require heparan sulfate proteoglycans (HSPGs......) for their normal distribution and signaling activity. Here, we have used molecular modeling to examine the heparin-binding domain of sonic hedgehog (Shh). In biochemical and cell biological assays, the importance of specific residues of the putative heparin-binding domain for signaling was assessed...

  8. Sonic Hedgehog Signaling Switches the Mode of Division in the Developing Nervous System

    Directory of Open Access Journals (Sweden)

    Murielle Saade

    2013-08-01

    Full Text Available The different modes of stem cell division are tightly regulated to balance growth and differentiation during organ development and homeostasis, and these regulatory processes are subverted in tumor formation. Here, we developed markers that provided the single-cell resolution necessary to quantify the three modes of division taking place in the developing nervous system in vivo: self-expanding, PP; self-replacing, PN; and self-consuming, NN. Using these markers and a mathematical model that predicts the dynamics of motor neuron progenitor division, we identify a role for the morphogen Sonic hedgehog in the maintenance of stem cell identity in the developing spinal cord. Moreover, our study provides insight into the process linking lineage commitment to neurogenesis with changes in cell-cycle parameters. As a result, we propose a challenging model in which the external Sonic hedgehog signal dictates stem cell identity, reflected in the consequent readjustment of cell-cycle parameters.

  9. Quiescent Sox2+ Cells Drive Hierarchical Growth and Relapse in Sonic Hedgehog Subgroup Medulloblastoma

    Science.gov (United States)

    Vanner, Robert J.; Remke, Marc; Gallo, Marco; Selvadurai, Hayden J.; Coutinho, Fiona; Lee, Lilian; Kushida, Michelle; Head, Renee; Morrissy, Sorana; Zhu, Xueming; Aviv, Tzvi; Voisin, Veronique; Clarke, Ian D.; Li, Yisu; Mungall, Andrew J.; Moore, Richard A.; Ma, Yussanne; Jones, Steven J.M.; Marra, Marco A.; Malkin, David; Northcott, Paul A.; Kool, Marcel; Pfister, Stefan M.; Bader, Gary; Hochedlinger, Konrad; Korshunov, Andrey; Taylor, Michael D.; Dirks, Peter B.

    2015-01-01

    SUMMARY Functional heterogeneity within tumors presents a significant therapeutic challenge. Here we show that quiescent, therapy-resistant Sox2+ cells propagate sonic hedgehog subgroup medulloblastoma by a mechanism that mirrors a neurogenic program. Rare Sox2+ cells produce rapidly cycling doublecortin+ progenitors that, together with their postmitotic progeny expressing NeuN, comprise tumor bulk. Sox2+ cells are enriched following anti-mitotic chemotherapy and Smoothened inhibition, creating a reservoir for tumor regrowth. Lineage traces from Sox2+ cells increase following treatment, suggesting that this population is responsible for relapse. Targeting Sox2+ cells with the antineoplastic mithramycin abrogated tumor growth. Addressing functional heterogeneity and eliminating Sox2+ cells presents a promising therapeutic paradigm for treatment of sonic hedgehog subgroup medulloblastoma. PMID:24954133

  10. Anti-apoptotic role of the sonic hedgehog signaling pathway in the proliferation of ameloblastoma

    OpenAIRE

    KANDA, SHIORI; MITSUYASU, TAKESHI; NAKAO, YU; Kawano, Shintaro; GOTO, YUICHI; Matsubara, Ryota; Nakamura, Seiji

    2013-01-01

    Sonic hedgehog (SHH) signaling pathway is crucial to growth and patterning during organogenesis. Aberrant activation of the SHH signaling pathway can result in tumor formation. We examined the expression of SHH signaling molecules and investigated the involvement of the SHH pathway in the proliferation of ameloblastoma, the most common benign tumor of the jaws. We used immunohistochemistry on ameloblastoma specimens and immunocytochemistry and reverse transcription-PCR on the ameloblastoma ce...

  11. Sonic Hedgehog Mutations Identified in Holoprosencephaly Patients Can Act in a Dominant Negative Manner

    OpenAIRE

    Singh, Samer; Tokhunts, Robert; Baubet, Valerie; Goetz, John A.; Huang, Zhen Jane; Schilling, Neal S.; Black, Kendall E.; MacKenzie, Todd A.; Dahmane, Nadia; Robbins, David J.

    2008-01-01

    Sonic Hedgehog (SHH) plays an important instructional role in vertebrate development, as exemplified by the numerous developmental disorders that occur when the SHH pathway is disrupted. Mutations in the SHH gene are the most common cause of sporadic and inherited Holoprosencephaly (HPE), a developmental disorder that is characterized by defective prosencephalon development. SHH HPE mutations provide a unique opportunity to better understand SHH biogenesis and signaling, and to decipher its r...

  12. Sonic Hedgehog Signaling Mediates Epithelial–Mesenchymal Communication and Promotes Renal Fibrosis

    OpenAIRE

    Ding, Hong; Zhou, Dong; Hao, Sha; Zhou, Lili; He, Weichun; Nie, Jing; Hou, Fan Fan; Liu, Youhua

    2012-01-01

    Sonic hedgehog (Shh) signaling is a developmental signal cascade that plays an essential role in regulating embryogenesis and tissue homeostasis. Here, we investigated the potential role of Shh signaling in renal interstitial fibrogenesis. Ureteral obstruction induced Shh, predominantly in the renal tubular epithelium of the fibrotic kidneys. Using Gli1lacZ knock-in mice, we identified renal interstitial fibroblasts as Shh-responding cells. In cultured renal fibroblasts, recombinant Shh prote...

  13. Controlled Delivery of Sonic Hedgehog with a Heparin-Based Coacervate.

    Science.gov (United States)

    Johnson, Noah Ray; Wang, Yadong

    2015-01-01

    Here we describe the preparation of a delivery vehicle for controlled release of Sonic hedgehog (Shh). The vehicle contains a synthetic polycation and heparin which interact by polyvalent charge attraction and rapidly self-assemble into liquid coacervate droplets. The coacervate loads Shh with high efficiency, protects its bioactivity, and provides sustained and localized release at the site of application. Shh coacervate may be injected directly or coated onto a polymeric scaffold for tissue engineering approaches, as described here.

  14. Mitogenic Sonic hedgehog signaling drives E2F1-dependent lipogenesis in progenitor cells and Medulloblastoma

    OpenAIRE

    Bhatia, Bobby; Hsieh, Michael; Kenney, Anna Marie; Nahlé, Zaher

    2010-01-01

    Deregulation of the Rb/E2F tumor suppressor complex and aberrantion of Sonic hedgehog (Shh) signaling are documented across the spectrum of human malignancies. Exaggerated de novo lipid synthesis is also found in certain highly proliferative, aggressive tumors. Here, we show that in Shh-driven medulloblastomas, Rb is inactivated and E2F1 is up-regulated, promoting lipogenesis. Extensive lipid accumulation and elevated levels of the lipogenic enzyme FASN mark those tumors. In primary cerebella...

  15. Curcumin Suppresses Lung Cancer Stem Cells via Inhibiting Wnt/β-catenin and Sonic Hedgehog Pathways.

    Science.gov (United States)

    Zhu, Jian-Yun; Yang, Xue; Chen, Yue; Jiang, Ye; Wang, Shi-Jia; Li, Yuan; Wang, Xiao-Qian; Meng, Yu; Zhu, Ming-Ming; Ma, Xiao; Huang, Cong; Wu, Rui; Xie, Chun-Feng; Li, Xiao-Ting; Geng, Shan-Shan; Wu, Jie-Shu; Zhong, Cai-Yun; Han, Hong-Yu

    2017-02-15

    Cancer stem cells (CSCs) are highly implicated in the progression of human cancers. Thus, targeting CSCs may be a promising strategy for cancer therapy. Wnt/β-catenin and Sonic Hedgehog pathways play an important regulatory role in maintaining CSC characteristics. Natural compounds, such as curcumin, possess chemopreventive properties. However, the interventional effect of curcumin on lung CSCs has not been clarified. In the present study, tumorsphere formation assay was used to enrich lung CSCs from A549 and H1299 cells. We showed that the levels of lung CSC markers (CD133, CD44, ALDHA1, Nanog and Oct4) and the number of CD133-positive cells were significantly elevated in the sphere-forming cells. We further illustrated that curcumin efficiently abolished lung CSC traits, as evidenced by reduced tumorsphere formation, reduced number of CD133-positive cells, decreased expression levels of lung CSC markers, as well as proliferation inhibition and apoptosis induction. Moreover, we demonstrated that curcumin suppressed the activation of both Wnt/β-catenin and Sonic Hedgehog pathways. Taken together, our data suggested that curcumin exhibited its interventional effect on lung CSCs via inhibition of Wnt/β-catenin and Sonic Hedgehog pathways. These novel findings could provide new insights into the potential therapeutic application of curcumin in lung CSC elimination and cancer intervention. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Increased expression of the sonic hedgehog and vascular endothelial growth factor with co-localization in varicocele veins.

    Science.gov (United States)

    Wang, Shih-Ho; Yang, Wen-Kai; Lee, Jane-Dar

    2017-03-01

    Objectives Varicocele is characterized by dilatation and tortuosity of the internal spermatic vein. Sonic hedgehog plays an important role in angiogenesis and vascular remodeling under hypoxic stress. We studied the relationship and distribution of SHH and vascular endothelial growth factor in internal spermatic vein in patients diagnosed with varicocele. Methods Specimens of 1 cm were taken from the internal spermatic vein during left varicocele repair (N = 20). The control samples of ISV were obtained from eight male patients who underwent left inguinal herniorrhaphy. We analyzed the sonic hedgehog and vascular endothelial growth factor expression and distribution by immunoblotting, immunohistochemistry, immunofluorescent staining, and confocal laser scanning microscopy. The data were analyzed using the Student's t test. Results Immunoblotting showed higher expression of sonic hedgehog and vascular endothelial growth factor proteins in varicocele veins than in the control group ( P sonic hedgehog and vascular endothelial growth factor with co-localization in varicocele veins which imply that the reducing hypoxia or using sonic hedgehog antagonists may be helpful for this vascular disease.

  17. Noggin and Sonic hedgehog are involved in compensatory changes within the motoneuron-depleted mouse spinal cord.

    Science.gov (United States)

    Gulino, Rosario; Gulisano, Massimo

    2013-09-15

    Sonic hedgehog and Noggin are morphogenetic factors involved in neural induction and ventralization of the neural tube, but recent findings suggest that they could participate in regeneration and functional recovery after injury. Here, in order to verify if these mechanisms could occur in the spinal cord and involve synaptic plasticity, we measured the expression levels of Sonic hedgehog, Noggin, Choline Acetyltransferase, Synapsin-I and Glutamate receptor subunits (GluR1, GluR2, GluR4), in a motoneuron-depleted mouse spinal cord lesion model obtained by intramuscular injection of Cholera toxin-B saporin. The lesion caused differential expression changes of the analyzed proteins. Moreover, motor performance was found correlated with Sonic hedgehog and Noggin expression in lesioned animals. The results also suggest that Sonic hedgehog could collaborate in modulating synaptic plasticity. Together, these findings confirm that the injured mammalian spinal cord has intrinsic potential for repair and that some proteins classically involved in development, such as Sonic hedgehog and Noggin could have important roles in regeneration and functional restoration, by mechanisms including synaptic plasticity.

  18. Epithelial cells supply Sonic Hedgehog to the perinatal dentate gyrus via transport by platelets.

    Science.gov (United States)

    Choe, Youngshik; Huynh, Trung; Pleasure, Samuel J

    2015-10-12

    Dentate neural stem cells produce neurons throughout life in mammals. Sonic hedgehog (Shh) is critical for maintenance of these cells; however, the perinatal source of Shh is enigmatic. In the present study, we examined the role of Shh expressed by hair follicles (HFs) that expand perinatally in temporal concordance with the proliferation of Shh-responding dentate stem cells. Specific inhibition of Shh from HFs or from epithelial sources in general hindered development of Shh-responding dentate stem cells. We also found that the blood-brain barrier (BBB) of the perinatal dentate gyrus (DG) is leaky with stem cells in the dentate exposed to blood-born factors. In attempting to identify how Shh might be transported in blood, we found that platelets contain epithelial Shh, provide Shh to the perinatal DG and that inhibition of platelet generation reduced hedgehog-responsive dentate stem cells.

  19. LRP2, an auxiliary receptor that controls sonic hedgehog signaling in development and disease.

    Science.gov (United States)

    Christ, Annabel; Herzog, Katja; Willnow, Thomas E

    2016-05-01

    To fulfill their multiple roles in organ development and adult tissue homeostasis, hedgehog (HH) morphogens act through their receptor Patched (PTCH) on target cells. However, HH actions also require HH binding proteins, auxiliary cell surface receptors that agonize or antagonize morphogen signaling in a context-dependent manner. Here, we discuss recent findings on the LDL receptor-related protein 2 (LRP2), an exemplary HH binding protein that modulates sonic hedgehog activities in stem and progenitor cell niches in embryonic and adult tissues. LRP2 functions are crucial for developmental processes in a number of tissues, including the brain, the eye, and the heart, and defects in this receptor pathway are the cause of devastating congenital diseases in humans. Developmental Dynamics 245:569-579, 2016. © 2016 Wiley Periodicals, Inc.

  20. The Role of Sonic Hedgehog in Craniofacial Patterning, Morphogenesis and Cranial Neural Crest Survival

    Directory of Open Access Journals (Sweden)

    Sebastian Dworkin

    2016-08-01

    Full Text Available Craniofacial defects (CFD are a significant healthcare problem worldwide. Understanding both the morphogenetic movements which underpin normal facial development, as well as the molecular factors which regulate these processes, forms the cornerstone of future diagnostic, and ultimately, preventative therapies. The soluble morphogen Sonic hedgehog (Shh, a vertebrate orthologue of Drosophila hedgehog, is a key signalling factor in the regulation of craniofacial skeleton development in vertebrates, operating within numerous tissue types in the craniofacial primordia to spatiotemporally regulate the formation of the face and jaws. This review will provide an overview of normal craniofacial skeleton development, and focus specifically on the known roles of Shh in regulating the development and progression of the first pharyngeal arch, which in turn gives rise to both the upper jaw (maxilla and lower jaw (mandible.

  1. Role of Sonic Hedgehog (Shh) Signaling in Bladder Cancer Stemness and Tumorigenesis.

    Science.gov (United States)

    Syed, Islam S; Pedram, Akbari; Farhat, Walid A

    2016-02-01

    Sonic hedgehog (Shh) signaling pathway has emerged as a critical component of bladder development, cancer initiation, and progression. While the role of Shh signaling in bladder development is well documented, its role in bladder cancer progression is uncertain. Additionally, epithelial-to-mesenchymal transition (EMT) has been identified to promote bladder cancer progression in the initial stages and also contribute to drug resistance in the later stage and ultimately metastasis. We speculate that epithelial-to-mesenchymal transitions (EMT) and Shh fuel the carcinogenesis process. This review presents the most recent studies focusing on the role of Shh signaling in bladder cancer progression.

  2. Targeting Sonic Hedgehog: a new way to mow down pancreatic cancer?

    Science.gov (United States)

    Cengel, Keith A

    2004-02-01

    Despite continuing development of new therapies, the prognosis for patients with pancreatic cancer remains extremely poor. In part, this may relate to molecular abnormalities that stimulate pancreatic tumorigenesis and also contribute to reduced sensitivity to standard treatments such as chemotherapy and radiotherapy. Two recent reports in Nature suggest that Sonic Hedgehog (Shh) overexpression may contribute to pancreatic tumorigenesis and that cyclopamine, a specific inhibitor of Shh signaling, can reduce pancreatic cancer cell growth and viability. This discovery is exciting and suggests that targeting Shh signaling may be an effective novel approach to therapy in patients with this devastating disease.

  3. Activation of Sonic Hedgehog Signaling Pathway in S-type Neuroblastoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    周昱男; 戴若连; 毛玲; 夏远鹏; 姚玉芳; 杨雪; 胡波

    2010-01-01

    The effects of Sonic hedgehog(Shh) signaling pathway activation on S-type neuroblastoma(NB) cell lines and its role in NB tumorigenesis were investigated.Immunohistochemistry was used to detect the expression of Shh pathway components- Patched1(PTCH1) and Gli1 in 40 human primary NB samples.Western blotting and RT-PCR were used to examine the protein expression and mRNA levels of PTCH1 and Gli1 in three kinds of S-type NB cell lines(SK-N-AS,SK-N-SH and SHEP1),respectively.Exogenous Shh was administrated to ...

  4. Study of Sonic hedgehog signaling pathway related molecules in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xiao-Li Ma; Hai-Ji Sun; Yun-Shan Wang; Shu-Hong Huang; Jing-Wu Xie; Hong-Wei Zhang

    2006-01-01

    AIM: To study the expression of Sonic hedgehog pathway-related molecules, Sonic hedgehog (Shh) and Gli1 in gastric carcinoma.METHODS: Expression of Shh in 56 gastric specimens including non-cancerous gastric tissues, gastric adenocarcinoma, gastric squamous cell carcinoma was detected by RT-PCR, in situ hybridization and immunohistochemistry. Expression of Gli1 was observed by in situ hybridization.RESULTS: The positive rate of Shh and Gli1 expression was 0.0%, 0.0% in non-cancerous gastric tissues while it was 66.7%, 57.8% respectively in gastric adenocarcinoma, and 100%, 100% respectively in gastric squamous cell carcinoma. There was a significant difference between the non-cancerous gastric tissues and gastric carcinoma (P < 0.05). Elevated expression of Shh and Gli1 in gastric tubular adenocarcinoma was associated with poorly differentiated tumors while the expression was absent in gastric mucinous adenocarcinoma.CONCLUSION: The elevated expression of Shh and Gli1 in gastric adenocarcinoma and gastric squamous cell carcinoma shows the involvement of activated Shh signaling in the cellular proliferation of gastric carcinogenesis. It suggests Shh signaling gene may be a new and good target gene for gastric tumor diagnosis and therapy.

  5. Sonic Hedgehog Guides Axons via Zipcode Binding Protein 1-Mediated Local Translation.

    Science.gov (United States)

    Lepelletier, Léa; Langlois, Sébastien D; Kent, Christopher B; Welshhans, Kristy; Morin, Steves; Bassell, Gary J; Yam, Patricia T; Charron, Frédéric

    2017-02-15

    Sonic hedgehog (Shh) attracts spinal cord commissural axons toward the floorplate. How Shh elicits changes in the growth cone cytoskeleton that drive growth cone turning is unknown. We find that the turning of rat commissural axons up a Shh gradient requires protein synthesis. In particular, Shh stimulation increases β-actin protein at the growth cone even when the cell bodies have been removed. Therefore, Shh induces the local translation of β-actin at the growth cone. We hypothesized that this requires zipcode binding protein 1 (ZBP1), an mRNA-binding protein that transports β-actin mRNA and releases it for local translation upon phosphorylation. We found that Shh stimulation increases phospho-ZBP1 levels in the growth cone. Disruption of ZBP1 phosphorylation in vitro abolished the turning of commissural axons toward a Shh gradient. Disruption of ZBP1 function in vivo in mouse and chick resulted in commissural axon guidance errors. Therefore, ZBP1 is required for Shh to guide commissural axons. This identifies ZBP1 as a new mediator of noncanonical Shh signaling in axon guidance.SIGNIFICANCE STATEMENT Sonic hedgehog (Shh) guides axons via a noncanonical signaling pathway that is distinct from the canonical Hedgehog signaling pathway that specifies cell fate and morphogenesis. Axon guidance is driven by changes in the growth cone in response to gradients of guidance molecules. Little is known about the molecular mechanism of how Shh orchestrates changes in the growth cone cytoskeleton that are required for growth cone turning. Here, we show that the guidance of axons by Shh requires protein synthesis. Zipcode binding protein 1 (ZBP1) is an mRNA-binding protein that regulates the local translation of proteins, including actin, in the growth cone. We demonstrate that ZBP1 is required for Shh-mediated axon guidance, identifying a new member of the noncanonical Shh signaling pathway.

  6. Microduplications encompassing the Sonic Hedgehog Limb Enhancer ZRS are Associated with Haas Type Polysyndactyly and Laurin-Sandrow Syndrome

    DEFF Research Database (Denmark)

    Lohan, Silke; Spielmann, Malte; Doelken, Sandra C

    2014-01-01

    with Haas type polysyndactyly (HTS) regarding the digital phenotype. Here we report on five unrelated families with overlapping microduplications encompassing the Sonic hedgehog (SHH) limb enhancer ZRS on chromosome 7q36. Clinically, the patients show polysyndactyly phenotypes and various types of lower...

  7. Duplication of 7q36.3 encompassing the Sonic Hedgehog (SHH) gene is associated with congenital muscular hypertrophy

    DEFF Research Database (Denmark)

    Kroeldrup, L; Kjaergaard, S; Kirchhoff, Eva Maria

    2012-01-01

    with muscular hypertrophy and mildly retarded psychomotor development. Array-CGH identified a small duplication of 7q36.3 including the Sonic Hedgehog (SHH) gene in both the aborted foetus and the live born male sib. Neither of the parents carried the 7q36.3 duplication. The consequences of overexpression...

  8. Sonic hedgehog pathway contributes to gastric cancer cell growth and proliferation.

    Science.gov (United States)

    Wan, Jianhua; Zhou, Ji; Zhao, Hailong; Wang, Mei; Wei, Zhuanqin; Gao, Hongyan; Wang, Yongzhong; Cui, Hongjuan

    2014-04-01

    The Sonic Hedgehog (Shh) signaling pathway is commonly activated in gastrointestinal cancer. However, our understanding of the Shh pathway in gastric cancer remains limited. Here we examined the effects of cyclopamine, a specific inhibitor of the Shh signaling pathway, on cell growth and proliferation in gastric primary cancer cells GAM-016 and the MKN-45 cell line. The results showed that the Shh signaling molecules SHH, PTCH, SMO, GLI1, and GLI2 were intact and activated in both types of cells. Furthermore, we observed that cyclopamine inhibited gastric cancer cell proliferation through cell cycle arrest and apoptosis. An in vivo study using NOD/SCID mouse xenografts demonstrated that cyclopamine significantly prevented tumor growth and development. Our study indicated that Shh signaling pathway could promote gastric cancer cell proliferation and tumor development, and blocking this pathway may be a potential strategy in gastric cancer treatment.

  9. Interferon gamma and sonic hedgehog signaling are required to dysregulate murine neural stem/precursor cells.

    Directory of Open Access Journals (Sweden)

    Janine Walter

    Full Text Available BACKGROUND: The pro-inflammatory cytokine interferon gamma (IFNγ, a key player in various neurological diseases, was recently shown to induce a dysregulated phenotype in neural stem/precursor cells (NSPCs that is characterized by the simultaneous expression of glial and neuronal markers and irregular electrophysiological properties. Thus far, the mechanisms of this phenomenon have remained unclear. METHODOLOGY/PRINCIPAL FINDINGS: To determine if binding of the signal transducers and activators of transcription (Stat 1 to the sonic hedgehog (SHH promoter is important for this phenomenon to occur, chromatin immunoprecipitation and pharmacological inhibition studies were performed. We report here that the activation of both the Stat 1 and SHH pathways is necessary to elicit the dysregulated phenotype. CONCLUSIONS/SIGNIFICANCE: Thus, blocking these pathways might preserve functional differentiation of NSPCs under inflammatory conditions leading to more effective regeneration.

  10. Toll-like receptor 3 regulates neural stem cell proliferation by modulating the Sonic Hedgehog pathway.

    Directory of Open Access Journals (Sweden)

    Kavitha Yaddanapudi

    Full Text Available Toll-like receptor 3 (TLR3 signaling has been implicated in neural stem/precursor cell (NPC proliferation. However, the molecular mechanisms involved, and their relationship to classical TLR-mediated innate immune pathways, remain unknown. Here, we report investigation of the mechanics of TLR3 signaling in neurospheres comprised of epidermal growth factor (EGF-responsive NPC isolated from murine embryonic cerebral cortex of C57BL/6 (WT or TLR3 deficient (TLR3(-/- mice. Our data indicate that the TLR3 ligand polyinosinic-polycytidylic acid (PIC negatively regulates NPC proliferation by inhibiting Sonic Hedgehog (Shh signaling, that PIC induces apoptosis in association with inhibition of Ras-ERK signaling and elevated expression of Fas, and that these effects are TLR3-dependent, suggesting convergent signaling between the Shh and TLR3 pathways.

  11. Sonic Hedgehog Promotes Neurite Outgrowth of Primary Cortical Neurons Through Up-Regulating BDNF Expression.

    Science.gov (United States)

    He, Weiliang; Cui, Lili; Zhang, Cong; Zhang, Xiangjian; He, Junna; Xie, Yanzhao

    2016-04-01

    Sonic hedgehog (Shh), a secreted glycoprotein factor, can activate the Shh pathway, which has been implicated in neuronal polarization involving neurite outgrowth. However, little evidence is available about the effect of Shh on neurite outgrowth in primary cortical neurons and its potential mechanism. Here, we revealed that Shh increased neurite outgrowth in primary cortical neurons, while the Shh pathway inhibitor (cyclopamine, CPM) partially suppressed Shh-induced neurite outgrowth. Similar results were found for the expressions of Shh and Patched genes in Shh-induced primary cortical neurons. Moreover, Shh increased the levels of brain-derived neurotrophic factor (BDNF) not only in lysates and in culture medium but also in the longest neurites of primary cortical neurons, which was partially blocked by CPM. In addition, blocking of BDNF action suppressed Shh-mediated neurite elongation in primary cortical neurons. In conclusion, these findings suggest that Shh promotes neurite outgrowth in primary cortical neurons at least partially through modulating BDNF expression.

  12. Controlled delivery of sonic hedgehog morphogen and its potential for cardiac repair.

    Directory of Open Access Journals (Sweden)

    Noah Ray Johnson

    Full Text Available The morphogen Sonic hedgehog (Shh holds great promise for repair or regeneration of tissues suffering ischemic injury, however clinical translation is limited by its short half-life in the body. Here, we describe a coacervate delivery system which incorporates Shh, protects it from degradation, and sustains its release for at least 3 weeks. Shh released from the coacervate stimulates cardiac fibroblasts to upregulate the expression of multiple trophic factors including VEGF, SDF-1α, IGF-1, and Shh itself, for at least 48 hours. Shh coacervate also demonstrates cytoprotective effects for cardiomyocytes in a hydrogen peroxide-induced oxidative stress environment. In each of these studies the bioactivity of the Shh coacervate is enhanced compared to free Shh. These results warrant further investigation of the in vivo efficacy of Shh coacervate for cardiac repair.

  13. Controlled delivery of sonic hedgehog morphogen and its potential for cardiac repair.

    Science.gov (United States)

    Johnson, Noah Ray; Wang, Yadong

    2013-01-01

    The morphogen Sonic hedgehog (Shh) holds great promise for repair or regeneration of tissues suffering ischemic injury, however clinical translation is limited by its short half-life in the body. Here, we describe a coacervate delivery system which incorporates Shh, protects it from degradation, and sustains its release for at least 3 weeks. Shh released from the coacervate stimulates cardiac fibroblasts to upregulate the expression of multiple trophic factors including VEGF, SDF-1α, IGF-1, and Shh itself, for at least 48 hours. Shh coacervate also demonstrates cytoprotective effects for cardiomyocytes in a hydrogen peroxide-induced oxidative stress environment. In each of these studies the bioactivity of the Shh coacervate is enhanced compared to free Shh. These results warrant further investigation of the in vivo efficacy of Shh coacervate for cardiac repair.

  14. A critical role for sonic hedgehog signaling in the early expansion of the developing brain.

    Science.gov (United States)

    Britto, Joanne; Tannahill, David; Keynes, Roger

    2002-02-01

    The mechanisms that coordinate the three-dimensional shape of the vertebrate brain during development are largely unknown. We have found that sonic hedgehog (Shh) is crucial in driving the rapid, extensive expansion of the early vesicles of the developing midbrain and forebrain. Transient displacement of the notochord from the midbrain floor plate resulted in abnormal folding and overall collapse of the vesicles, accompanied by reduced cell proliferation and increased cell death in the midbrain. Simultaneously, expression of Shh decreased locally in the notochord and floor plate, whereas overt patterning and differentiation proceeded normally. Normal midbrain expansion was restored by implantation of Shh-secreting cells in a dose-dependent manner; conversely, expansion was retarded following antagonism of the Shh signaling pathway by cyclopamine. Our results indicate that Shh signaling from the ventral midline is essential for regulating brain morphogenesis during early development.

  15. Novel Sonic Hedgehog Mutation in a Couple with Variable Expression of Holoprosencephaly

    Directory of Open Access Journals (Sweden)

    M. Aguinaga

    2011-01-01

    Full Text Available Holoprosencephaly (HPE is the most common developmental defect of the forebrain and midface in humans. sporadic and inherited mutations in the human sonic hedgehog (SHH gene cause 37% of familial HPE. A couple was referred to our unit with a family history of two spontaneous first trimester miscarriages and a daughter with HPE who presented early neonatal death. The father had a repaired median cleft lip, absence of central incisors, facial medial hypoplasia, and cleft palate. Intelligence and a brain CT scan were normal. Direct paternal sequencing analysis showed a novel nonsense mutation (W127X. Facial characteristics are considered as HPE microforms, and the pedigree suggested autosomal dominant inheritance with a variable expression of the phenotype. This study reinforces the importance of an exhaustive evaluation of couples with a history of miscarriages and neonatal deaths with structural defects.

  16. Sonic Hedgehog信号通路在眼科的应用进展%Applied research of Sonic Hedgehog signal pathway in ophthalmology

    Institute of Scientific and Technical Information of China (English)

    王小婷; 徐国兴; 傅冷西

    2012-01-01

    Sonic Hedgehog(Shh)信号通路与动物胚胎发育及细胞增殖分化密切相关.我们主要综述Shh信号通路在眼球的发育、眼球多种组织细胞的再生和修复、眼科多种疾病发生、发展及治疗的研究及应用.

  17. Blockade of sonic hedgehog signal pathway enhances antiproliferative effect of EGFR inhibitor in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Wei-guo HU; Tao LIU; Jiong-xin XIONG; Chun-you WANG

    2007-01-01

    Aim: To investigate the expression of sonic hedgehog (SHH) and epidermal growth factor receptor (EGFR) signal molecules in pancreatic cancer cells, and to assess the inhibitory effects through the blockade of the SHH and EGFR signaling path- ways by cyclopamine and Iressa, respectively. Methods: The expression of SHH and EGFR in pancreatic cancer cell lines (PANC-1, SUIT-2, and ASPC-1) was de-tected by RT-PCR and Western blot analysis. After treatment with different con-centrations of cyclopamine, alone or in combination with Iressa, the antiproliferative effect on pancreatic cancer cells was analyzed by methyl thiazolyl tetrazolium assays. A flow cytometry analysis was used to detect the cellular cycle distribu-tion and apoptosis of pancreatic cancer cells. Results: All of the 3 pancreatic cancer cell lines expressed SHH, Smoothened (SMO), and EGFR. Cyclopamine could downregulate the expression of EGFR in all cell lines. Cyclopamine or Iressa could induce a growth inhibitory effect in a dose-dependent manner. Moreover,the combined use of 2.5 μmol/L cyclopamine and 1 μmol/L Iressa induced an enhanced inhibitory effect and a greater apoptosis rate than any agent alone. The percentage of the cell population of the G0/G1 and sub-G1 phases was significantly increased along with the increasing dose of cyclopamine and/or Iressa. Conclusion: The blockade of the sonic hedgehog signal pathway enhances the antiproliferative effect of the EGFR inhibitor through the downregulation of its expression in pancreatic cancer cells. The simultaneous blockade of SHH and EGFR signaling represents possible targets of new treatment strategies for pan-creatic carcinoma.

  18. Sonic Hedgehog promotes tumor cell survival by inhibiting CDON pro-apoptotic activity.

    Directory of Open Access Journals (Sweden)

    Céline Delloye-Bourgeois

    Full Text Available The Hedgehog signaling is a determinant pathway for tumor progression. However, while inhibition of the Hedgehog canonical pathway-Patched-Smoothened-Gli-has proved efficient in human tumors with activating mutations in this pathway, recent clinical data have failed to show any benefit in other cancers, even though Sonic Hedgehog (SHH expression is detected in these cancers. Cell-adhesion molecule-related/down-regulated by Oncogenes (CDON, a positive regulator of skeletal muscle development, was recently identified as a receptor for SHH. We show here that CDON behaves as a SHH dependence receptor: it actively triggers apoptosis in the absence of SHH. The pro-apoptotic activity of unbound CDON requires a proteolytic cleavage in its intracellular domain, allowing the recruitment and activation of caspase-9. We show that by inducing apoptosis in settings of SHH limitation, CDON expression constrains tumor progression, and as such, decreased CDON expression observed in a large fraction of human colorectal cancer is associated in mice with intestinal tumor progression. Reciprocally, we propose that the SHH expression, detected in human cancers and previously considered as a mechanism for activation of the canonical pathway in an autocrine or paracrine manner, actually provides a selective tumor growth advantage by blocking CDON-induced apoptosis. In support of this notion, we present the preclinical demonstration that interference with the SHH-CDON interaction triggers a CDON-dependent apoptosis in vitro and tumor growth inhibition in vivo. The latter observation qualifies CDON as a relevant alternative target for anticancer therapy in SHH-expressing tumors.

  19. Sonic hedgehog mediates the proliferation and recruitment of transformed mesenchymal stem cells to the stomach.

    Directory of Open Access Journals (Sweden)

    Jessica M Donnelly

    Full Text Available Studies using Helicobacter-infected mice show that bone marrow-derived mesenchymal stem cells (MSCs can repopulate the gastric epithelium and promote gastric cancer progression. Within the tumor microenvironment of the stomach, pro-inflammatory cytokine interferon-gamma (IFNγ and Sonic hedgehog (Shh are elevated. IFNγ is implicated in tumor proliferation via activation of the Shh signaling pathway in various tissues but whether a similar mechanism exists in the stomach is unknown. We tested the hypothesis that IFNγ drives MSC proliferation and recruitment, a response mediated by Shh signaling. The current study uses transplantation of an in vitro transformed mesenchymal stem cell line (stMSC(vect, that over-expresses hedgehog signaling, in comparison to non-transformed wild-type MSCs (wtMSCs, wtMSCs transfected to over-express Shh (wtMSC(Shh, and stMSCs transduced with lentiviral constructs containing shRNA targeting the Shh gene (stMSC(ShhKO. The effect of IFNγ on MSC proliferation was assessed by cell cycle analysis in vitro using cells treated with recombinant IFNγ (rmIFNγ alone, or in combination with anti-Shh 5E1 antibody, and in vivo using mice transplanted with MSCs treated with PBS or rmIFNγ. In vitro, IFNγ significantly increased MSC proliferation, a response mediated by Shh that was blocked by 5E1 antibody. The MSC population collected from bone marrow of PBS- or IFNγ-treated mice showed that IFNγ significantly increased the percentage of all MSC cell lines in S phase, with the exception of the stMSCs(ShhKO cells. While the MSC cell lines with intact Shh expression were recruited to the gastric mucosa in response to IFNγ, stMSCs(ShhKO were not. Hedgehog signaling is required for MSC proliferation and recruitment to the stomach in response to IFNγ.

  20. Expression and Role of Sonic Hedgehog in the Process of Fracture Healing with Aging.

    Science.gov (United States)

    Matsumoto, Kenichi; Shimo, Tsuyoshi; Kurio, Naito; Okui, Tatsuo; Obata, Kyoichi; Masui, Masanori; Pang, Pai; Horikiri, Yuu; Sasaki, Akira

    2016-01-01

    Aging is one of the risk factors for delayed fracture healing. Sonic hedgehog (SHH) protein, an inducer of embryonic development, has been demonstrated to be activated in osteoblasts at the dynamic remodeling site of a bone fracture. Herein, we compared and examined the distribution patterns of SHH and the functional effect of SHH signaling on osteogenesis and osteoclastogenesis between young (5-week-old) and aged (60-week-old) mice during fracture healing. We found that SHH was expressed in bone marrow cells from the fractured site of the rib of young mice on day 5, but was barely detectable in the corresponding cells from the rib of aged mice. SHH was also detected in osteoblasts and bone marrow cells at the callus remodeling stage on days 14 and 28 in both young and aged mice. The number of alkaline phosphatase (ALP)-positive osteoblasts was significantly higher in young mice on days 5 and 14, whereas the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts was significantly higher in aged mice. SHH stimulated significantly more osteoblast formation in the young compared to old mice. SHH stimulated the osteoclast formation directly in the aged mice and suppressed the formation indirectly through osteoprotegerin expression in the young mice. Results indicate that an aged-related delay of fracture healing may contribute to the unbalanced bone formation and resorption, regulated by hedgehog signaling.

  1. Sonic hedgehog processing and release are regulated by glypican heparan sulfate proteoglycans.

    Science.gov (United States)

    Ortmann, Corinna; Pickhinke, Ute; Exner, Sebastian; Ohlig, Stefanie; Lawrence, Roger; Jboor, Hamodah; Dreier, Rita; Grobe, Kay

    2015-06-15

    All Hedgehog morphogens are released from producing cells, despite being synthesized as N- and C-terminally lipidated molecules, a modification that firmly tethers them to the cell membrane. We have previously shown that proteolytic removal of both lipidated peptides, called shedding, releases bioactive Sonic hedgehog (Shh) morphogens from the surface of transfected Bosc23 cells. Using in vivo knockdown together with in vitro cell culture studies, we now show that glypican heparan sulfate proteoglycans regulate this process, through their heparan sulfate chains, in a cell autonomous manner. Heparan sulfate specifically modifies Shh processing at the cell surface, and purified glycosaminoglycans enhance the proteolytic removal of N- and C-terminal Shh peptides under cell-free conditions. The most likely explanation for these observations is direct Shh processing in the extracellular compartment, suggesting that heparan sulfate acts as a scaffold or activator for Shh ligands and the factors required for their turnover. We also show that purified heparan sulfate isolated from specific cell types and tissues mediates the release of bioactive Shh from pancreatic cancer cells, revealing a previously unknown regulatory role for these versatile molecules in a pathological context.

  2. Using mechanistic Bayesian networks to identify downstream targets of the sonic hedgehog pathway.

    Science.gov (United States)

    Shah, Abhik; Tenzen, Toyoaki; McMahon, Andrew P; Woolf, Peter J

    2009-12-18

    The topology of a biological pathway provides clues as to how a pathway operates, but rationally using this topology information with observed gene expression data remains a challenge. We introduce a new general-purpose analytic method called Mechanistic Bayesian Networks (MBNs) that allows for the integration of gene expression data and known constraints within a signal or regulatory pathway to predict new downstream pathway targets. The MBN framework is implemented in an open-source Bayesian network learning package, the Python Environment for Bayesian Learning (PEBL). We demonstrate how MBNs can be used by modeling the early steps of the sonic hedgehog pathway using gene expression data from different developmental stages and genetic backgrounds in mouse. Using the MBN approach we are able to automatically identify many of the known downstream targets of the hedgehog pathway such as Gas1 and Gli1, along with a short list of likely targets such as Mig12. The MBN approach shown here can easily be extended to other pathways and data types to yield a more mechanistic framework for learning genetic regulatory models.

  3. Using mechanistic Bayesian networks to identify downstream targets of the Sonic Hedgehog pathway

    Directory of Open Access Journals (Sweden)

    McMahon Andrew P

    2009-12-01

    Full Text Available Abstract Background The topology of a biological pathway provides clues as to how a pathway operates, but rationally using this topology information with observed gene expression data remains a challenge. Results We introduce a new general-purpose analytic method called Mechanistic Bayesian Networks (MBNs that allows for the integration of gene expression data and known constraints within a signal or regulatory pathway to predict new downstream pathway targets. The MBN framework is implemented in an open-source Bayesian network learning package, the Python Environment for Bayesian Learning (PEBL. We demonstrate how MBNs can be used by modeling the early steps of the sonic hedgehog pathway using gene expression data from different developmental stages and genetic backgrounds in mouse. Using the MBN approach we are able to automatically identify many of the known downstream targets of the hedgehog pathway such as Gas1 and Gli1, along with a short list of likely targets such as Mig12. Conclusions The MBN approach shown here can easily be extended to other pathways and data types to yield a more mechanistic framework for learning genetic regulatory models.

  4. Sonic hedgehog functions as a mitogen during bell stage of odontogenesis.

    Science.gov (United States)

    Wu, Changshan; Shimo, Tsuyoshi; Liu, Mufei; Pacifici, Maurizio; Koyama, Eiki

    2003-01-01

    Epithelial-mesenchymal interactions are required for tissue growth and gene expression patterns during odontogenesis. We showed previously that Sonic hedgehog (SHH) is detectable in both dental epithelium and mesenchyme, while Shh transcripts are present in dental epithelium only, suggesting that SHH functions as an autocrine signal in epithelium and a paracrine signal in mesenchyme. This hypothesis was tested here. We found by in situ hybridization that the SHH autocrine receptor Ptch-2 is indeed expressed in dental epithelium whereas the paracrine receptor Ptc is expressed in mesenchyme. Bovine bell stage tooth germs were microsurgically separated into epithelial and mesenchymal portions and the resulting tissue fragments were organ-cultured. In epithelium fragments cultured by themselves, gene expression of Shh and Gli-1 (a putative transcriptional mediator of hedgehog signaling) was significantly decreased in both inner dental epithelium and stratum intermedium layers; this was accompanied by a sharp drop in epithelial cell proliferation. However, in companion control tissue fragments containing both epithelium and mesenchyme, Shh and Gli-1 expression as well as cell proliferation were maintained. Treatment of dental epithelial or mesenchymal cell populations in monolayer cultures with exogenous recombinant SHH stimulated cell proliferation. Together, the data provide clear evidence that Shh is synthesized by dental epithelium, reaches the underlying mesenchyme, and appears to act as an autocrine mitogen for epithelial cells and a paracrine mitogen for mesenchymal cells, thus exerting crucial functions in tooth germ growth, morphogenesis, and tissue-tissue interactions of bell stage of odontogenesis.

  5. Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: Does abnormal cholesterol metabolism affect the function of sonic hedgehog?

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, R.I. [Johns Hopkins Univ., Baltimore, MD (United States); Roessler, E.; Muenke, M. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)] [and others

    1996-12-30

    The RAH/Smith-Lemli-Opitz syndrome (RAH/SLOS) is an autosomal recessive malformation syndrome associated with increased levels of 7-dehydrocholesterol (7-DHC) and a defect of cholesterol biosynthesis at the level of 3{beta}-hydroxy-steroid-{Delta}{sup 7}-reductase (7-DHC reductase). Because rats exposed to inhibitors of 7-DHC reductase during development have a high frequency of holoprosencephaly (HPE), we have undertaken a search for biochemical evidence of RSH/SLOS and other possible defects of sterol metabolism among patients with various forms of HPE. We describe 4 patients, one with semilobar HPE and three others with less complete forms of the HPE sequence, in whom we have made a biochemical diagnosis of RAH/SLOS. The clinical and biochemical spectrum of these and other patients with RAH/SLOS suggests a role of abnormal sterol metabolism in the pathogenesis of their malformations. The association of HPE and RAH/SLOS is discussed in light of the recent discoveries that mutations in the embryonic patterning gene, Sonic Hedgehog (SHH), can cause HPE in humans and that the sonic hedgehog protein product undergoes autoproteolysis to form a cholesterol-modified active product. These clinical, biochemical, and molecular studies suggest that HPE and other malformations in SLOS may be caused by incomplete or abnormal modification of the sonic hedgehog protein and, possibly, other patterning proteins of the hedgehog class, a hypothesis testable in somatic cell systems. 37 refs., 1 fig.

  6. Signaling domain of Sonic Hedgehog as cannibalistic calcium-regulated zinc-peptidase.

    Directory of Open Access Journals (Sweden)

    Rocio Rebollido-Rios

    2014-07-01

    Full Text Available Sonic Hedgehog (Shh is a representative of the evolutionary closely related class of Hedgehog proteins that have essential signaling functions in animal development. The N-terminal domain (ShhN is also assigned to the group of LAS proteins (LAS = Lysostaphin type enzymes, D-Ala-D-Ala metalloproteases, Sonic Hedgehog, of which all members harbor a structurally well-defined Zn2+ center; however, it is remarkable that ShhN so far is the only LAS member without proven peptidase activity. Another unique feature of ShhN in the LAS group is a double-Ca2+ center close to the zinc. We have studied the effect of these calcium ions on ShhN structure, dynamics, and interactions. We find that the presence of calcium has a marked impact on ShhN properties, with the two calcium ions having different effects. The more strongly bound calcium ion significantly stabilizes the overall structure. Surprisingly, the binding of the second calcium ion switches the putative catalytic center from a state similar to LAS enzymes to a state that probably is catalytically inactive. We describe in detail the mechanics of the switch, including the effect on substrate co-ordinating residues and on the putative catalytic water molecule. The properties of the putative substrate binding site suggest that ShhN could degrade other ShhN molecules, e.g. by cleavage at highly conserved glycines in ShhN. To test experimentally the stability of ShhN against autodegradation, we compare two ShhN mutants in vitro: (1 a ShhN mutant unable to bind calcium but with putative catalytic center intact, and thus, according to our hypothesis, a constitutively active peptidase, and (2 a mutant carrying additionally mutation E177A, i.e., with the putative catalytically active residue knocked out. The in vitro results are consistent with ShhN being a cannibalistic zinc-peptidase. These experiments also reveal that the peptidase activity depends on pH.

  7. Signaling domain of Sonic Hedgehog as cannibalistic calcium-regulated zinc-peptidase.

    Science.gov (United States)

    Rebollido-Rios, Rocio; Bandari, Shyam; Wilms, Christoph; Jakuschev, Stanislav; Vortkamp, Andrea; Grobe, Kay; Hoffmann, Daniel

    2014-07-01

    Sonic Hedgehog (Shh) is a representative of the evolutionary closely related class of Hedgehog proteins that have essential signaling functions in animal development. The N-terminal domain (ShhN) is also assigned to the group of LAS proteins (LAS = Lysostaphin type enzymes, D-Ala-D-Ala metalloproteases, Sonic Hedgehog), of which all members harbor a structurally well-defined Zn2+ center; however, it is remarkable that ShhN so far is the only LAS member without proven peptidase activity. Another unique feature of ShhN in the LAS group is a double-Ca2+ center close to the zinc. We have studied the effect of these calcium ions on ShhN structure, dynamics, and interactions. We find that the presence of calcium has a marked impact on ShhN properties, with the two calcium ions having different effects. The more strongly bound calcium ion significantly stabilizes the overall structure. Surprisingly, the binding of the second calcium ion switches the putative catalytic center from a state similar to LAS enzymes to a state that probably is catalytically inactive. We describe in detail the mechanics of the switch, including the effect on substrate co-ordinating residues and on the putative catalytic water molecule. The properties of the putative substrate binding site suggest that ShhN could degrade other ShhN molecules, e.g. by cleavage at highly conserved glycines in ShhN. To test experimentally the stability of ShhN against autodegradation, we compare two ShhN mutants in vitro: (1) a ShhN mutant unable to bind calcium but with putative catalytic center intact, and thus, according to our hypothesis, a constitutively active peptidase, and (2) a mutant carrying additionally mutation E177A, i.e., with the putative catalytically active residue knocked out. The in vitro results are consistent with ShhN being a cannibalistic zinc-peptidase. These experiments also reveal that the peptidase activity depends on pH.

  8. Sonic Hedgehog基因及其在发育过程中的调控作用%The Regulation of Sonic Hedgehog Gene in the Development Process

    Institute of Scientific and Technical Information of China (English)

    张艳; 徐选福; 郭传勇

    2014-01-01

    Sonic Hedgehog(Shh)基因属于Hedgehog(Hh)基因家族,该家族最早在果蝇体内被发现,进化上呈高度保守状态.Sonic Hedgehog定位在7号染色体长臂远端(7q36),其通过细胞表面特殊受体Patched (Ptc)和Smoothened(Smo)被-收和传导,从而激活锌指蛋白Ci/Gli家族.Sonic Hedgehog基因作为重要的形态发生素,在胚胎发育、机体器官组织形成的过程中发挥了重要的作用,它的缺失或者失活会导致一系列严重的遗传疾病.其与体节、神经管、消化道、头面部、上下肢芽的发育以及肿瘤形成等有密切关系.本文主要就Sonic Hedgehog基因及其在发育中的调控作用作一综述.

  9. Alteration of hedgehog signaling by chronic exposure to different pesticide formulations and unveiling the regenerative potential of recombinant sonic hedgehog in mouse model of bone marrow aplasia.

    Science.gov (United States)

    Chaklader, Malay; Law, Sujata

    2015-03-01

    Chronic pesticide exposure-induced downregulation of hedgehog signaling and its subsequent degenerative effects on the mammalian hematopoietic system have not been investigated yet. However a number of concurrent studies have pointed out the positive correlation between chronic pesticide exposure induced bone marrow failure and immune suppression. Here, we have given an emphasis on the recapitulation of human marrow aplasia like condition in mice by chronic mixed pesticide exposures and simultaneously unravel the role of individual pesticides in the said event. Unlike the effect of mixed pesticide, individual pesticides differentially alter the hedgehog signaling in the bone marrow primitive hematopoietic compartment (Sca1 + compartment) and stromal compartment. Individually, hexaconazole disrupted hematopoietic as well as stromal hedgehog signaling activation through inhibiting SMO and facilitating PKC δ expression. On contrary, both chlorpyriphos and cypermethrin increased the sequestration and degradation of GLI1 by upregulating SU(FU) and βTrCP, respectively. However, cypermethrin-mediated inhibition of hedgehog signaling has partly shown to be circumvented by non-canonical activation of GLI1. Finally, we have tested the regenerative response of sonic hedgehog and shown that in vitro supplemented recombinant SHH protein augmented clonogenic stromal progenitors (CFU-F) as well as primitive multipotent hematopoietic clones including CFU-GEMM and CFU-GM of mixed pesticide-induced aplastic marrow. It is an indication of the marrow regeneration. Finally, our findings provide a gripping evidence that downregulated hedgehog signaling contribute to pesticide-mediated bone marrow aplasia but it could be recovered by proper supplementation of recombinant SHH along with hematopoietic base cocktail. Furthermore, SU(FU) and GLI1 can be exploited as future theradiagnostic markers for early marrow aplasia diagnosis.

  10. CD44, Sonic Hedgehog, and Gli1 Expression Are Prognostic Biomarkers in Gastric Cancer Patients after Radical Resection

    OpenAIRE

    Chen Jian-Hui; Zhai Er-Tao; Chen Si-Le; Wu Hui; Wu Kai-Ming; Zhang Xin-Hua; Chen Chuang-Qi; Cai Shi-Rong; He Yu-Long

    2016-01-01

    Aim. CD44 and Sonic Hedgehog (Shh) signaling are important for gastric cancer (GC). However, the clinical impact, survival, and recurrence outcome of CD44, Shh, and Gli1 expressions in GC patients following radical resection have not been elucidated. Patients and Methods. CD44, Shh, and Gli1 protein levels were quantified by immunohistochemistry (IHC). The association between CD44, Shh, and Gli1 expression and clinicopathological features or prognosis of GC patients was determined. The biomar...

  11. Cell Division Mode Change Mediates the Regulation of Cerebellar Granule Neurogenesis Controlled by the Sonic Hedgehog Signaling

    OpenAIRE

    Rong Yang; Minglei Wang; Jia Wang; Xingxu Huang; Ru Yang; Wei-Qiang Gao

    2015-01-01

    Summary Symmetric and asymmetric divisions are important for self-renewal and differentiation of stem cells during neurogenesis. Although cerebellar granule neurogenesis is controlled by sonic hedgehog (SHH) signaling, whether and how this process is mediated by regulation of cell division modes have not been determined. Here, using time-lapse imaging and cell culture from neuronal progenitor-specific and differentiated neuron-specific reporter mouse lines (Math1-GFP and Dcx-DsRed) and Patche...

  12. Proliferation of murine midbrain neural stem cells depends upon an endogenous sonic hedgehog (Shh) source.

    Science.gov (United States)

    Martínez, Constanza; Cornejo, Víctor Hugo; Lois, Pablo; Ellis, Tammy; Solis, Natalia P; Wainwright, Brandon J; Palma, Verónica

    2013-01-01

    The Sonic Hedgehog (Shh) pathway is responsible for critical patterning events early in development and for regulating the delicate balance between proliferation and differentiation in the developing and adult vertebrate brain. Currently, our knowledge of the potential role of Shh in regulating neural stem cells (NSC) is largely derived from analyses of the mammalian forebrain, but for dorsal midbrain development it is mostly unknown. For a detailed understanding of the role of Shh pathway for midbrain development in vivo, we took advantage of mouse embryos with cell autonomously activated Hedgehog (Hh) signaling in a conditional Patched 1 (Ptc1) mutant mouse model. This animal model shows an extensive embryonic tectal hypertrophy as a result of Hh pathway activation. In order to reveal the cellular and molecular origin of this in vivo phenotype, we established a novel culture system to evaluate neurospheres (nsps) viability, proliferation and differentiation. By recreating the three-dimensional (3-D) microenvironment we highlight the pivotal role of endogenous Shh in maintaining the stem cell potential of tectal radial glial cells (RGC) and progenitors by modulating their Ptc1 expression. We demonstrate that during late embryogenesis Shh enhances proliferation of NSC, whereas blockage of endogenous Shh signaling using cyclopamine, a potent Hh pathway inhibitor, produces the opposite effect. We propose that canonical Shh signaling plays a central role in the control of NSC behavior in the developing dorsal midbrain by acting as a niche factor by partially mediating the response of NSC to epidermal growth factor (EGF) and fibroblast growth factor (FGF) signaling. We conclude that endogenous Shh signaling is a critical mechanism regulating the proliferation of stem cell lineages in the embryonic dorsal tissue.

  13. Cooperatively transcriptional and epigenetic regulation of sonic hedgehog overexpression drives malignant potential of breast cancer.

    Science.gov (United States)

    Duan, Zhao-Heng; Wang, Hao-Chuan; Zhao, Dong-Mei; Ji, Xiao-Xin; Song, Min; Yang, Xiao-Jun; Cui, Wei

    2015-08-01

    Sonic hedgehog (Shh), a ligand of Hedgehog signaling pathway, is considered an important oncogene and an exciting potential therapeutic target in several cancers. Comprehensive understanding of the regulation mechanism of Shh in cancer cells is necessary to find an effective approach to selectively block its tumorigenic function. We and others previously demonstrated that nuclear factor-kappa B (NF-κB) activation and promoter hypomethylation contributed to the overexpression of Shh. However, the relationship between transcriptional and epigenetic regulation of Shh, and their roles in the malignant phenotype of cancer cells are still not clearly elucidated. In the present study, our data showed that the level of Shh was higher in breast cancer tissues with positive NF-κB nuclear staining and promoter hypomethylation. In addition, survival analysis revealed that Shh overexpression, but not hypomethylation and NF-κB nuclear staining, was a poor prognosis indicator for breast cancers. Moreover, in vitro data demonstrated that both NF-κB activation and hypomethylation in promoter region were positively associated with the overexpression of Shh. Mechanistically, the hypomethylation in Shh promoter could facilitate NF-κB binding to its site, and subsequently cooperate to induce transcription of Shh. Furthermore, the biological function data indicated that overexpressed Shh enhanced the self-renewal capacity and migration ability of breast cancer cells, which could be augmented by promoter demethylation and NF-κB activation. Overall, our findings reveal multiple and cooperative mechanisms of Shh upregulation in cancer cells, and the roles of Shh in tumor malignant behavior, thus suggesting a new strategy for therapeutic interventions to reduce Shh in tumors and improve patients' prognosis.

  14. Paracrine sonic hedgehog signaling contributes significantly to acquired steroidogenesis in the prostate tumor microenvironment.

    Science.gov (United States)

    Lubik, Amy A; Nouri, Mannan; Truong, Sarah; Ghaffari, Mazyar; Adomat, Hans H; Corey, Eva; Cox, Michael E; Li, Na; Guns, Emma S; Yenki, Parvin; Pham, Steven; Buttyan, Ralph

    2017-01-15

    Despite the substantial benefit of androgen deprivation therapy (ADT) for metastatic prostate cancer, patients often progress to castration-resistant disease (CRPC) that is more difficult to treat. CRPC is associated with renewed androgen receptor activity in tumor cells and restoration of tumor androgen levels through acquired intratumoral steroidogenesis (AIS). Although prostate cancer (PCa) cells have been shown to have steroidogenic capability in vitro, we previously found that benign prostate stromal cells (PrSCs) can also synthesize testosterone (T) from an adrenal precursor, DHEA, when stimulated with a hedgehog (Hh) pathway agonist, SAG. Here, we show exposure of PrSCs to a different Smoothened (Smo) agonist, Ag1.5, or to conditioned medium from sonic hedgehog overexpressing LNCaP cells induces steroidogenic enzyme expression in PrSCs and significantly increases production of T and its precursor steroids in a Smo-dependent manner from 22-OH-cholesterol substrate. Hh agonist-/ligand-treated PrSCs produced androgens at a rate similar to or greater than that of PCa cell lines. Likewise, primary bone marrow stromal cells became more steroidogenic and produced T under the influence of Smo agonist. Treatment of mice bearing LNCaP xenografts with a Smo antagonist, TAK-441, delayed the onset of CRPC after castration and substantially reduced androgen levels in residual tumors. These outcomes support the idea that stromal cells in ADT-treated primary or metastatic prostate tumors can contribute to AIS as a consequence of a paracrine Hh signaling microenvironment. As such, Smo antagonists may be useful for targeting prostate tumor stromal cell-derived AIS and delaying the onset of CRPC after ADT.

  15. Proliferation of murine midbrain neural stem cells depends upon an endogenous sonic hedgehog (Shh source.

    Directory of Open Access Journals (Sweden)

    Constanza Martínez

    Full Text Available The Sonic Hedgehog (Shh pathway is responsible for critical patterning events early in development and for regulating the delicate balance between proliferation and differentiation in the developing and adult vertebrate brain. Currently, our knowledge of the potential role of Shh in regulating neural stem cells (NSC is largely derived from analyses of the mammalian forebrain, but for dorsal midbrain development it is mostly unknown. For a detailed understanding of the role of Shh pathway for midbrain development in vivo, we took advantage of mouse embryos with cell autonomously activated Hedgehog (Hh signaling in a conditional Patched 1 (Ptc1 mutant mouse model. This animal model shows an extensive embryonic tectal hypertrophy as a result of Hh pathway activation. In order to reveal the cellular and molecular origin of this in vivo phenotype, we established a novel culture system to evaluate neurospheres (nsps viability, proliferation and differentiation. By recreating the three-dimensional (3-D microenvironment we highlight the pivotal role of endogenous Shh in maintaining the stem cell potential of tectal radial glial cells (RGC and progenitors by modulating their Ptc1 expression. We demonstrate that during late embryogenesis Shh enhances proliferation of NSC, whereas blockage of endogenous Shh signaling using cyclopamine, a potent Hh pathway inhibitor, produces the opposite effect. We propose that canonical Shh signaling plays a central role in the control of NSC behavior in the developing dorsal midbrain by acting as a niche factor by partially mediating the response of NSC to epidermal growth factor (EGF and fibroblast growth factor (FGF signaling. We conclude that endogenous Shh signaling is a critical mechanism regulating the proliferation of stem cell lineages in the embryonic dorsal tissue.

  16. High expression of Sonic Hedgehog signaling pathway genes indicates a risk of recurrence of breast carcinoma

    Directory of Open Access Journals (Sweden)

    Jeng KS

    2013-12-01

    Full Text Available Kuo-Shyang Jeng,1 I-Shyan Sheen,2 Wen-Juei Jeng,2 Ming-Che Yu,3 Hsin-I Hsiau,3 Fang-Yu Chang31Department of Surgery, Far Eastern Memorial Hospital, Taipei, 2Department of Internal Medicine, Chang-Gung Memorial Hospital, Linkou Medical Center, Chang-Gung University, Tao-Yuan, 3Department of Medical Research, Far Eastern Memorial Hospital, Taipei, TaiwanBackground: Abnormal activation of the Sonic Hedgehog (SHH signaling pathway contributing to carcinogenesis of some organs has been reported in the literature. We hypothesize that activation of the SHH pathway contributes to the recurrence of breast carcinoma.Methods: Fifty consecutive patients with invasive breast carcinoma following curative resection were enrolled in this prospective study. The ratios of messenger RNA (mRNA expression for Sonic Hedgehog (SHH, patched homolog-1 (PTCH-1, glioma-associated oncogene-1 (GLI-1, and smoothened (SMOH were measured between breast carcinoma tissue and paired noncancerous breast tissue. These ratios were compared with their clinicopathologic characteristics. These factors and the mRNA ratios were compared between patients with recurrence and those without recurrence.Results: The size of the invasive cancer correlated significantly with the ratio of SHH mRNA (P=0.001, that of PTCH-1 mRNA (P=0.005, and that of SMOH mRNA (P=0.021. Lymph node involvement correlated significantly with the ratio of SMOH mRNA (P=0.041. The correlation between Her-2 neu and the ratio of GLI-1 mRNA was statistically significant (P=0.012. Each ratio of mRNA of SHH, PTCH-1, GLI-1, and SMOH correlated significantly with cancer recurrence (P<0.001 for each.Conclusion: We suggest that high expression of SHH mRNA, PTCH-1 mRNA, GLI-1 mRNA, and SMOH mRNA in breast cancer tissue correlates with invasiveness and is a potential biomarker to predict postoperative recurrence.Keywords: SHH pathway, breast carcinoma, prediction, recurrence

  17. Developmental hypothyroidism abolishes bilateral differences in sonic hedgehog gene control in the rat hippocampal dentate gyrus.

    Science.gov (United States)

    Tanaka, Takeshi; Wang, Liyun; Kimura, Masayuki; Abe, Hajime; Mizukami, Sayaka; Yoshida, Toshinori; Shibutani, Makoto

    2015-03-01

    Both developmental and adult-stage hypothyroidism disrupt rat hippocampal neurogenesis. We previously showed that exposing mouse offspring to manganese permanently disrupts hippocampal neurogenesis and abolishes the asymmetric distribution of cells expressing Mid1, a molecule regulated by sonic hedgehog (Shh) signaling. The present study examined the involvement of Shh signaling on the disruption of hippocampal neurogenesis in rats with hypothyroidism. Pregnant rats were treated with methimazole (MMI) at 0 or 200 ppm in the drinking water from gestation day 10-21 days after delivery (developmental hypothyroidism). Adult male rats were treated with MMI in the same manner from postnatal day (PND) 46 to PND 77 (adult-stage hypothyroidism). Developmental hypothyroidism reduced the number of Mid1(+) cells within the subgranular zone of the dentate gyrus of offspring on PND 21, and consequently abolished the normal asymmetric predominance of Mid1(+) cells on the right side through the adult stage. In control animals, Shh was expressed in a subpopulation of hilar neurons, showing asymmetric distribution with left side predominance on PND 21; however, this asymmetry did not continue through the adult stage. Developmental hypothyroidism increased Shh(+) neurons bilaterally and abolished the asymmetric distribution pattern on PND 21. Adult hypothyroidism also disrupted the asymmetric distribution of Mid1(+) cells but did not affect the distribution of Shh(+) hilar neurons. The results suggest that the hippocampal neurogenesis disruption seen in hypothyroidism involves changes in asymmetric Shh(+) neuron distribution in developmental hypothyroidism and altered Mid1 expression in both developmental and adult-stage hypothyroidism.

  18. Sonic hedgehog-induced histone deacetylase activation is required for cerebellar granule precursor hyperplasia in medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Seung Joon Lee

    Full Text Available Medulloblastoma, the most common pediatric brain tumor, is thought to arise from deregulated proliferation of cerebellar granule precursor (CGP cells. Sonic hedgehog (Shh is the primary mitogen that regulates proliferation of CGP cells during the early stages of postnatal cerebellum development. Aberrant activation of Shh signaling during this time has been associated with hyperplasia of CGP cells and eventually may lead to the development of medulloblastoma. The molecular targets of Shh signaling involved in medulloblastoma formation are still not well-understood. Here, we show that Shh regulates sustained activation of histone deacetylases (HDACs and that this activity is required for continued proliferation of CGP cells. Suppression of HDAC activity not only blocked the Shh-induced CGP proliferation in primary cell cultures, but also ameliorated aberrant CGP proliferation at the external germinal layer (EGL in a medulloblastoma mouse model. Increased levels of mRNA and protein of several HDAC family members were found in medulloblastoma compared to wild type cerebellum suggesting that HDAC activity is required for the survival/progression of tumor cells. The identification of a role of HDACs in the early steps of medulloblastoma formation suggests there may be a therapeutic potential for HDAC inhibitors in this disease.

  19. Interleukin-1β induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes.

    Science.gov (United States)

    Wang, Yue; Jin, Shijie; Sonobe, Yoshifumi; Cheng, Yi; Horiuchi, Hiroshi; Parajuli, Bijay; Kawanokuchi, Jun; Mizuno, Tetsuya; Takeuchi, Hideyuki; Suzumura, Akio

    2014-01-01

    The blood-brain barrier (BBB) is composed of capillary endothelial cells, pericytes, and perivascular astrocytes, which regulate central nervous system homeostasis. Sonic hedgehog (SHH) released from astrocytes plays an important role in the maintenance of BBB integrity. BBB disruption and microglial activation are common pathological features of various neurologic diseases such as multiple sclerosis, Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. Interleukin-1β (IL-1β), a major pro-inflammatory cytokine released from activated microglia, increases BBB permeability. Here we show that IL-1β abolishes the protective effect of astrocytes on BBB integrity by suppressing astrocytic SHH production. Astrocyte conditioned media, SHH, or SHH signal agonist strengthened BBB integrity by upregulating tight junction proteins, whereas SHH signal inhibitor abrogated these effects. Moreover, IL-1β increased astrocytic production of pro-inflammatory chemokines such as CCL2, CCL20, and CXCL2, which induce immune cell migration and exacerbate BBB disruption and neuroinflammation. Our findings suggest that astrocytic SHH is a potential therapeutic target that could be used to restore disrupted BBB in patients with neurologic diseases.

  20. Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells.

    Science.gov (United States)

    Corcoran, Ryan B; Scott, Matthew P

    2006-05-30

    Sterol synthesis is required for Sonic hedgehog (Shh) signal transduction. Errors in Shh signal transduction play important roles in the formation of human tumors, including medulloblastoma (MB). It is not clear which products of sterol synthesis are necessary for Shh signal transduction or how they act. Here we show that cholesterol or specific oxysterols are the critical products of sterol synthesis required for Shh pathway signal transduction in MB cells. In MB cells, sterol synthesis inhibitors reduce Shh target gene transcription and block Shh pathway-dependent proliferation. These effects of sterol synthesis inhibitors can be reversed by exogenous cholesterol or specific oxysterols. We also show that certain oxysterols can maximally activate Shh target gene transcription through the Smoothened (Smo) protein as effectively as the known Smo full agonist, SAG. Thus, sterols are required and sufficient for Shh pathway activation. These results suggest that oxysterols may be critical regulators of Smo, and thereby Shh signal transduction. Inhibition of Shh signaling by sterol synthesis inhibitors may offer a novel approach to the treatment of MB and other Shh pathway-dependent human tumors.

  1. Sonic hedgehog signaling regulates amygdalar neurogenesis and extinction of fear memory.

    Science.gov (United States)

    Hung, Hui-Chi; Hsiao, Ya-Hsin; Gean, Po-Wu

    2015-10-01

    It is now recognized that neurogenesis occurs throughout life predominantly in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricle. In the present study, we investigated the relationship between neurogenesis in the amygdala and extinction of fear memory. Mice received 15 tone-footshock pairings. Twenty-four hours after training, the mice were given 15 tone-alone trials (extinction training) once per day for 7 days. Two hours before extinction training, the mice were injected intraperitoneally with 5-bromo-3-deoxyuridine (BrdU). BrdU-positive and NeuN-positive cells were analyzed 52 days after the training. A group of mice that received tone-footshock pairings but no extinction training served as controls (FC+No-Ext). The number of BrdU(+)/NeuN(+) cells was significantly higher in the extinction (FC+Ext) than in the FC+No-Ext mice. Proliferation inhibitor methylazoxymethanol acetate (MAM) or DNA synthesis inhibitor cytosine arabinoside (Ara-C) reduced neurogenesis and retarded extinction. Silencing Sonic hedgehog (Shh) gene with short hairpin interfering RNA (shRNA) by means of a retrovirus expression system to knockdown Shh specifically in the mitotic neurons reduced neurogenesis and retarded extinction. By contrast, over-expression of Shh increased neurogenesis and facilitated extinction. These results suggest that amygdala neurogenesis and Shh signaling are involved in the extinction of fear memory.

  2. Sonic hedgehog signaling regulates mode of cell division of early cerebral cortex progenitors and increases astrogliogenesis

    Directory of Open Access Journals (Sweden)

    Geissy LL Araújo

    2014-03-01

    Full Text Available The morphogen Sonic Hedgehog (SHH plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.

  3. Targeting Sonic Hedgehog Signaling by Compounds and Derivatives from Natural Products

    Directory of Open Access Journals (Sweden)

    Yu-Chuen Huang

    2013-01-01

    Full Text Available Cancer stem cells (CSCs are a major cause of cancer treatment failure, relapse, and drug resistance and are known to be responsible for cancer cell invasion and metastasis. The Sonic hedgehog (Shh signaling pathway is crucial to embryonic development. Intriguingly, the aberrant activation of the Shh pathway plays critical roles in developing CSCs and leads to angiogenesis, migration, invasion, and metastasis. Natural compounds and chemical structure modified derivatives from complementary and alternative medicine have received increasing attention as cancer chemopreventives, and their antitumor effects have been demonstrated both in vitro and in vivo. However, reports for their bioactivity against CSCs and specifically targeting Shh signaling remain limited. In this review, we summarize investigations of the compounds cyclopamine, curcumin, epigallocatechin-3-gallate, genistein, resveratrol, zerumbone, norcantharidin, and arsenic trioxide, with a focus on Shh signaling blockade. Given that Shh signaling antagonism has been clinically proven as effective strategy against CSCs, this review may be exploitable for development of novel anticancer agents from complementary and alternative medicine.

  4. Sonic Hedgehog Signaling Drives Proliferation of Synoviocytes in Rheumatoid Arthritis: A Possible Novel Therapeutic Target

    Directory of Open Access Journals (Sweden)

    Mingxia Wang

    2014-01-01

    Full Text Available Sonic hedgehog (Shh signaling controls many aspects of human development, regulates cell growth and differentiation in adult tissues, and is activated in a number of malignancies. Rheumatoid arthritis (RA is characterized by chronic synovitis and pannus formation associated with activation of fibroblast-like synoviocytes (FLS. We investigated whether Shh signaling plays a role in the proliferation of FLS in RA. Expression of Shh signaling related components (Shh, Ptch1, Smo, and Gli1 in RA synovial tissues was examined by immunohistochemistry (IHC and in FLS by IHC, immunofluorescence (IF, quantitative RT-PCR, and western blotting. Expression of Shh, Smo, and Gli1 in RA synovial tissue was higher than that in control tissue (P<0.05. Cyclopamine (a specific inhibitor of Shh signaling decreased mRNA expression of Shh, Ptch1, Smo, and Gli1 in cultured RA FLS, Shh, and Smo protein expression, and significantly decreased FLS proliferation. Flow cytometry analysis suggested that cyclopamine treatment resulted in cell cycle arrest of FLS in G1 phase. Our data show that Shh signaling is activated in synovium of RA patients in vivo and in cultured FLS form RA patients in vitro, suggesting a role in the proliferation of FLS in RA. It may therefore be a novel therapeutic target in RA.

  5. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Na [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 (United States); Chen, Yan [Central Laboratory, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Wang, Zhengmin [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Institute of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Chen, Guoling [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Lin, Qin [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Department of Otolaryngology, First Affiliated Hospital of Fujian Medical University, Otolaryngology Institute of Fujian Province, Fuzhou (China); Chen, Zheng-Yi, E-mail: Zheng-yi_chen@meei.harvard.edu [Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 (United States); Li, Huawei, E-mail: hwli@shmu.edu.cn [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Institute of Biomedical Sciences, Fudan University, Shanghai 200032 (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Shh activation in neonatal cochleae enhances sensory cell proliferation. Black-Right-Pointing-Pointer Proliferating supporting cells can transdifferentiate into hair cells. Black-Right-Pointing-Pointer Shh promotes proliferation by transiently modulating pRb activity. Black-Right-Pointing-Pointer Shh inhibits pRb by inhibiting transcription and increasing phosphorylation of pRb. -- Abstract: Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.

  6. Interleukin-1β induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes.

    Directory of Open Access Journals (Sweden)

    Yue Wang

    Full Text Available The blood-brain barrier (BBB is composed of capillary endothelial cells, pericytes, and perivascular astrocytes, which regulate central nervous system homeostasis. Sonic hedgehog (SHH released from astrocytes plays an important role in the maintenance of BBB integrity. BBB disruption and microglial activation are common pathological features of various neurologic diseases such as multiple sclerosis, Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. Interleukin-1β (IL-1β, a major pro-inflammatory cytokine released from activated microglia, increases BBB permeability. Here we show that IL-1β abolishes the protective effect of astrocytes on BBB integrity by suppressing astrocytic SHH production. Astrocyte conditioned media, SHH, or SHH signal agonist strengthened BBB integrity by upregulating tight junction proteins, whereas SHH signal inhibitor abrogated these effects. Moreover, IL-1β increased astrocytic production of pro-inflammatory chemokines such as CCL2, CCL20, and CXCL2, which induce immune cell migration and exacerbate BBB disruption and neuroinflammation. Our findings suggest that astrocytic SHH is a potential therapeutic target that could be used to restore disrupted BBB in patients with neurologic diseases.

  7. Primary cilium and sonic hedgehog signaling during neural tube patterning: role of GPCRs and second messengers.

    Science.gov (United States)

    Pal, Kasturi; Mukhopadhyay, Saikat

    2015-04-01

    The ventral neural tube in vertebrates is patterned by a gradient of sonic hedgehog (Shh) secreted from the notochord and floor plate. Forward genetic screens first pointed to the role of the primary cilium in ventral neural tube patterning. Further research has shown that most components of the Shh pathway localize to or shuttle through the primary cilium. In the absence of Shh, the bifunctional Gli transcription factors are proteolytically processed into repressor forms in a protein kinase A (PKA)- and cilium-dependent manner. Recent work suggests that the orphan G-protein-coupled receptor (GPCR) Gpr161 localizes to cilia, and functions as a negative regulator of Shh signaling by determining Gli processing via cAMP signaling. The primary cilium also functions as a signaling compartment for calcium in the Shh pathway. A better understanding of the role of the cilium as a signaling compartment, and the interplay of second messenger systems that regulate PKA activation and Gli amplification during signaling is critical for deciphering the role of Shh during development, neuronal differentiation, and tumorigenesis.

  8. Ectopic expression of Sonic Hedgehog in a cryptorchid man with azoospermia: a case report.

    Science.gov (United States)

    Zou, Shasha; Wang, Yanan; Chen, Tingting; Song, Pingping; Xin, Daiying; Ping, Ping; Huang, Yiran; Li, Zheng; Hu, Hongliang

    2014-04-01

    A 30-year-old man presented with a left undescended testis, right testicular deficiency and azoospermia. Testicular biopsy revealed an absence of spermatocytes and increased numbers of Leydig cells in the undescended testis. Additional comparative analyses were undertaken to explore Sonic Hedgehog (Shh) immunostaining in the testis of juvenile and adult mice, in the testis of the patient with cryptorchidism, and in archival testicular tissue from a patient with obstructive azoospermia and a patient with prostate cancer. Shh immunostaining was demonstrated in spermatocytes in juvenile and adult mouse testis and in the patients with obstructive azoospermia and prostate cancer, suggesting that Shh signalling is involved in normal spermatogenesis. In the patient with cryptorchidism, Shh immunostaining was localized to the Leydig cells, which suggests that Shh might be involved in the abnormal expansion of the Leydig cell population in the testis. These preliminary data on the appearance of Shh protein during normal spermatogenesis might provide the basis for further investigations to clarify the role of Shh signalling in spermatogenesis during normal and pathogenic testis development.

  9. Sonic Hedgehog, VACTERL, and Fanconi anemia: Pathogenetic connections and therapeutic implications.

    Science.gov (United States)

    Lubinsky, Mark

    2015-11-01

    Three systems with VACTERL association findings- mutations of the Sonic Hedgehog (SHH) signaling pathway in mice, murine adriamycin teratogenicity, and human Fanconi anemia (FA) pathway mutations, may all involve a similar mechanism. SHH is up-regulated in irradiated cells, and DNA breaks common with radiation damage in the adriamycin and FA systems are plausible signals for such effects, which would affect development. Since FA related DNA breakage occurs throughout life, SHH disturbances may account for later FA related findings involving hematopoietic and malignancy issues. In support, androgen, a standard treatment for FA hematologic failure, down-regulates SHH, and common FA malignancies such as squamous cell carcinomas and acute myeloid leukemia have been linked to enhanced SHH function. This suggests that interventions lowering SHH levels may be useful therapeutically. Also supporting a connection between pre- and post- natal findings, the frequency and number of VACTERL anomalies with FA correlate with the severity and onset of hematopoietic and malignancy issues. In FA, radial anomalies are the most common of these defects, followed by renal findings, while vertebral and gastrointestinal anomalies are relatively uncommon, a pattern that differs from observations of the VACTERL association. Genes with more severe effects also show a greatly increased incidence of brain abnormalities, and a paucity of such findings with other FA genes suggests that brain development is relatively refractory to SHH related effects, accounting for the rarity of such findings with the association.

  10. Sonic hedgehog controls enteric nervous system development by patterning the extracellular matrix.

    Science.gov (United States)

    Nagy, Nandor; Barad, Csilla; Graham, Hannah K; Hotta, Ryo; Cheng, Lily S; Fejszak, Nora; Goldstein, Allan M

    2016-01-15

    The enteric nervous system (ENS) develops from neural crest cells that migrate along the intestine, differentiate into neurons and glia, and pattern into two plexuses within the gut wall. Inductive interactions between epithelium and mesenchyme regulate gut development, but the influence of these interactions on ENS development is unknown. Epithelial-mesenchymal recombinations were constructed using avian hindgut mesenchyme and non-intestinal epithelium from the bursa of Fabricius. These recombinations led to abnormally large and ectopically positioned ganglia. We hypothesized that sonic hedgehog (Shh), a secreted intestinal epithelial protein not expressed in the bursa, mediates this effect. Inhibition of Shh signaling, by addition of cyclopamine or a function-blocking antibody, resulted in large, ectopic ganglia adjacent to the epithelium. Shh overexpression, achieved in ovo using Shh-encoding retrovirus and in organ culture using recombinant protein, led to intestinal aganglionosis. Shh strongly induced the expression of versican and collagen type IX, whereas cyclopamine reduced expression of these chondroitin sulfate proteoglycans that are known to be inhibitory to neural crest cell migration. Shh also inhibited enteric neural crest-derived cell (ENCC) proliferation, promoted neuronal differentiation, and reduced expression of Gdnf, a key regulator of ENS formation. Ptc1 and Ptc2 were not expressed by ENCCs, and migration of isolated ENCCs was not inhibited by Shh protein. These results suggest that epithelial-derived Shh acts indirectly on the developing ENS by regulating the composition of the intestinal microenvironment.

  11. Intrinsic facilitation of adult peripheral nerve regeneration by the Sonic hedgehog morphogen.

    Science.gov (United States)

    Martinez, Jose A; Kobayashi, Masaki; Krishnan, Anand; Webber, Christine; Christie, Kimberly; Guo, GuiFang; Singh, Vandana; Zochodne, Douglas W

    2015-09-01

    Intrinsic molecular determinants of neurodevelopmental outcomes assume new, albeit related roles during adult neural regeneration. Here we studied and identified a facilitatory role for Sonic hedgehog protein (Shh), a morphogen that influences motor neuron floor plate architecture, during adult peripheral neuron regeneration. Shh and its receptors were expressed in adult dorsal root ganglia (DRG) neurons, axons and glia and trended toward higher levels following axotomy injury. Knockdown of Shh in adult sensory neurons resulted in decreased outgrowth and branching in vitro, identifying a role for Shh in facilitating outgrowth. The findings argued for an intrinsic action to support neuron regeneration. Support of advancement and turning however, were not identified in adult sensory neuron growth cones in response to local extrinsic gradients of Shh. That intrinsic Shh supported the regrowth of peripheral nerves after injury was confirmed by the analysis of axon regrowth from the proximal stumps of transected sciatic nerves. By exposing regenerating axons to local infusions of Shh siRNA in vivo within a conduit bridging the transected proximal and distal stumps, we achieved local knockdown of Shh. In response, there was attenuated axonal and Schwann cell outgrowth beyond the transection zone. Unlike its role during neurodevelopment, Shh facilitates but does not confer regenerative outgrowth properties to adult neurons alone. Exploring the differing properties of morphogens and related proteins in the adult nervous system identifies new and important roles for them.

  12. May Sonic Hedgehog proteins be markers for malignancy in uterine smooth muscle tumors?

    Science.gov (United States)

    Garcia, Natalia; Bozzini, Nilo; Baiocchi, Glauco; da Cunha, Isabela Werneck; Maciel, Gustavo Arantes; Soares Junior, José Maria; Soares, Fernando Augusto; Baracat, Edmund Chada; Carvalho, Katia Candido

    2016-04-01

    Several studies have demonstrated that the Sonic Hedgehog signaling pathway (SHH) plays an important role in tumorigenesis and cellular differentiation. We analyzed the protein expression of SHH pathway components and evaluated whether their profile could be useful for the diagnosis, prognosis, or prediction of the risk of malignancy for uterine smooth muscle tumors (USMTs). A total of 176 samples (20 myometrium, 119 variants of leiomyoma, and 37 leiomyosarcoma) were evaluated for the protein expression of the SHH signaling components, HHIP1 (SHH inhibitor), and BMP4 (SHH target) by immunohistochemistry. Western blot analysis was performed to verify the specificity of the antibodies. We grouped leiomyoma samples into conventional leiomyomas and unusual leiomyomas that comprise atypical, cellular, mitotically active leiomyomas and uterine smooth muscle tumors of uncertain malignant potential. Immunohistochemical analysis showed that SMO, SUFU, GLI1, GLI3, and BMP4 expression gradually increased depending on to the histologic tissue type. The protein expression of SMO, SUFU, and GLI1 was increased in unusual leiomyoma and leiomyosarcoma samples compared to normal myometrium. The inhibitor HHIP1 showed higher expression in myometrium, whereas only negative or basal expression of SMO, SUFU, GLI1, and GLI3 was detected in these samples. Strong expression of SHH was associated with poorer overall survival. Our data suggest that the expression of SHH proteins can be useful for evaluating the potential risk of malignancy for USMTs. Moreover, GLI1 and SMO may serve as future therapeutic targets for women with USMTs.

  13. Sonic hedgehog stimulates neurite outgrowth in a mechanical stretch model of reactive-astrogliosis.

    Science.gov (United States)

    Berretta, Antonio; Gowing, Emma K; Jasoni, Christine L; Clarkson, Andrew N

    2016-02-23

    Although recovery following a stroke is limited, undamaged neurons under the right conditions can establish new connections and take on-board lost functions. Sonic hedgehog (Shh) signaling is integral for developmental axon growth, but its role after injury has not been fully examined. To investigate the effects of Shh on neuronal sprouting after injury, we used an in vitro model of glial scar, whereby cortical astrocytes were mechanically traumatized to mimic reactive astrogliosis observed after stroke. This mechanical trauma impaired neurite outgrowth from post-natal cortical neurons plated on top of reactive astrocytes. Addition of Shh to the media, however, resulted in a concentration-dependent increase in neurite outgrowth. This response was inhibited by cyclopamine and activated by oxysterol 20(S)-hydroxycholesterol, both of which modulate the activity of the Shh co-receptor Smoothened (Smo), demonstrating that Shh-mediated neurite outgrowth is Smo-dependent. In addition, neurite outgrowth was not associated with an increase in Gli-1 transcription, but could be inhibited by PP2, a selective inhibitor of Src family kinases. These results demonstrate that neurons exposed to the neurite growth inhibitory environment associated with a glial scar can be stimulated by Shh, with signaling occurring through a non-canonical pathway, to overcome this suppression and stimulate neurite outgrowth.

  14. Anti-apoptotic role of the sonic hedgehog signaling pathway in the proliferation of ameloblastoma.

    Science.gov (United States)

    Kanda, Shiori; Mitsuyasu, Takeshi; Nakao, Yu; Kawano, Shintaro; Goto, Yuichi; Matsubara, Ryota; Nakamura, Seiji

    2013-09-01

    Sonic hedgehog (SHH) signaling pathway is crucial to growth and patterning during organogenesis. Aberrant activation of the SHH signaling pathway can result in tumor formation. We examined the expression of SHH signaling molecules and investigated the involvement of the SHH pathway in the proliferation of ameloblastoma, the most common benign tumor of the jaws. We used immunohistochemistry on ameloblastoma specimens and immunocytochemistry and reverse transcription-PCR on the ameloblastoma cell line AM-1. We also used the inhibitors of SHH signaling, SHH neutralizing antibody and cyclopamine, to assess the effects of SHH on the proliferation of AM-1 cells. We detected expression of SHH, patched, GLI1, GLI2 and GLI3 in the ameloblastoma specimens and AM-1 cells. The proliferation of these cells was significantly inhibited in the presence of SHH neutralizing antibody or cyclopamine; this was confirmed by BrdU incorporation assays. Furthermore, in the presence of SHH neutralizing antibody, nuclear translocation of GLI1 and GLI2 was abolished, apoptosis was induced, BCL-2 expression decreased and BAX expression increased. Our results suggest that the SHH signaling pathway is constitutively active in ameloblastoma and plays an anti-apoptotic role in the proliferation of ameloblastoma cells through autocrine loop stimulation.

  15. Mutations of the Sonic Hedgehog Pathway Underlie Hypothalamic Hamartoma with Gelastic Epilepsy.

    Science.gov (United States)

    Hildebrand, Michael S; Griffin, Nicole G; Damiano, John A; Cops, Elisa J; Burgess, Rosemary; Ozturk, Ezgi; Jones, Nigel C; Leventer, Richard J; Freeman, Jeremy L; Harvey, A Simon; Sadleir, Lynette G; Scheffer, Ingrid E; Major, Heather; Darbro, Benjamin W; Allen, Andrew S; Goldstein, David B; Kerrigan, John F; Berkovic, Samuel F; Heinzen, Erin L

    2016-08-01

    Hypothalamic hamartoma (HH) with gelastic epilepsy is a well-recognized drug-resistant epilepsy syndrome of early life.(1) Surgical resection allows limited access to the small deep-seated lesions that cause the disease. Here, we report the results of a search for somatic mutations in paired hamartoma- and leukocyte-derived DNA samples from 38 individuals which we conducted by using whole-exome sequencing (WES), chromosomal microarray (CMA), and targeted resequencing (TRS) of candidate genes. Somatic mutations were identified in genes involving regulation of the sonic hedgehog (Shh) pathway in 14/38 individuals (37%). Three individuals had somatic mutations in PRKACA, which encodes a cAMP-dependent protein kinase that acts as a repressor protein in the Shh pathway, and four subjects had somatic mutations in GLI3, an Shh pathway gene associated with HH. In seven other individuals, we identified two recurrent and three single brain-tissue-specific, large copy-number or loss-of-heterozygosity (LOH) variants involving multiple Shh genes, as well as other genes without an obvious biological link to the Shh pathway. The Shh pathway genes in these large somatic lesions include the ligand itself (SHH and IHH), the receptor SMO, and several other Shh downstream pathway members, including CREBBP and GLI2. Taken together, our data implicate perturbation of the Shh pathway in at least 37% of individuals with the HH epilepsy syndrome, consistent with the concept of a developmental pathway brain disease.

  16. Aberrant activation of Sonic hedgehog signaling in chronic cholecystitis and gallbladder carcinoma.

    Science.gov (United States)

    Xie, Fang; Xu, Xiaoping; Xu, Angao; Liu, Cuiping; Liang, Fenfen; Xue, Minmin; Bai, Lan

    2014-03-01

    Sonic hedgehog (Shh) signaling has been extensively studied and is implicated in various inflammatory diseases and malignant tumors. We summarized the clinicopathological features and performed immunohistochemistry assays to examine expression of Shh signaling proteins in 10 normal mucosa, 32 gallbladder carcinoma (GBC), and 95 chronic cholecystitis (CC) specimens. The CC specimens were classified into three groups according to degree of inflammation. Compared with normal mucosa, CC, and GBC specimens exhibited increased expression of Shh. The immunoreactive score of Shh in the GBC group was higher than that in the mild to moderate CC groups but lower than that in the severe CC group (P cholecystitis to malignant tumors. Compared with CC specimens, GBC specimens showed higher cytoplasmic and membranous expression for Ptch (P < .05). Gli1 staining showed cytoplasmic expression of Gli1 in both CC (60% for mild, 77% for moderate, and 84% for severe) and GBC specimens (97%). Nuclear expression of Gli1 was detected in 16% of severe CC specimens with moderate to poor atypical hyperplasia, and in 62.5% of GBC specimens. Shh expression strongly correlated with expression of Ptch and Gli1. Furthermore, patients with strongly positive Gli1 staining had significantly lower survival rates than those with weakly positive staining. Our data indicate that the Shh signaling pathway is aberrantly activated in CC and GBC, and altered Shh signaling may be involved in the course of development from CC to gallbladder carcinogenesis.

  17. Expanded expression of Sonic Hedgehog in Astyanax cavefish: multiple consequences on forebrain development and evolution.

    Science.gov (United States)

    Menuet, Arnaud; Alunni, Alessandro; Joly, Jean-Stéphane; Jeffery, William R; Rétaux, Sylvie

    2007-03-01

    Ventral midline Sonic Hedgehog (Shh) signalling is crucial for growth and patterning of the embryonic forebrain. Here, we report how enhanced Shh midline signalling affects the evolution of telencephalic and diencephalic neuronal patterning in the blind cavefish Astyanax mexicanus, a teleost fish closely related to zebrafish. A comparison between cave- and surface-dwelling forms of Astyanax shows that cavefish display larger Shh expression in all anterior midline domains throughout development. This does not affect global forebrain regional patterning, but has several important consequences on specific regions and neuronal populations. First, we show expanded Nkx2.1a expression and higher levels of cell proliferation in the cavefish basal diencephalon and hypothalamus. Second, we uncover an Nkx2.1b-Lhx6-GABA-positive migratory pathway from the subpallium to the olfactory bulb, which is increased in size in cavefish. Finally, we observe heterochrony and enlarged Lhx7 expression in the cavefish basal forebrain. These specific increases in olfactory and hypothalamic forebrain components are Shh-dependent and therefore place the telencephalic midline organisers in a crucial position to modulate forebrain evolution through developmental events, and to generate diversity in forebrain neuronal patterning.

  18. Complete and sustained response of adult medulloblastoma to first-line sonic hedgehog inhibition with vismodegib.

    Science.gov (United States)

    Lou, Emil; Schomaker, Matthew; Wilson, Jon D; Ahrens, Mary; Dolan, Michelle; Nelson, Andrew C

    2016-08-12

    Medulloblastoma is an aggressive primitive neuroectodermal tumor of the cerebellum that is rare in adults. Medulloblastomas fall into 4 prognostically significant molecular subgroups that are best defined by experimental gene expression profiles: the WNT pathway, sonic hedgehog (SHH) pathway, and subgroups 3 and 4 (non-SHH/WNT). Medulloblastoma of adults belong primarily to the SHH category. Vismodegib, an SHH-pathway inhibitor FDA-approved in 2012 for treatment of basal cell carcinoma, has been used successfully in the setting of chemorefractory medulloblastoma, but not as a first-line therapy. In this report, we describe a sustained response of an unresectable multifocal form of adult medulloblastoma to vismodegib. Molecular analysis in this case revealed mutations in TP53 and a cytogenetic abnormality, i17q, that is prevalent and most often associated with subgroup 4 rather than the SHH-activated form of medulloblastoma. Our findings indicate that vismodegib may also block alternate, non-canonical forms of downstream SHH pathway activation. These findings provide strong impetus for further investigation of vismodegib in clinical trials in the first-line setting for pediatric and adult forms of medulloblastoma.

  19. Targeting the Sonic Hedgehog Signaling Pathway: Review of Smoothened and GLI Inhibitors

    Directory of Open Access Journals (Sweden)

    Tadas K. Rimkus

    2016-02-01

    Full Text Available The sonic hedgehog (Shh signaling pathway is a major regulator of cell differentiation, cell proliferation, and tissue polarity. Aberrant activation of the Shh pathway has been shown in a variety of human cancers, including, basal cell carcinoma, malignant gliomas, medulloblastoma, leukemias, and cancers of the breast, lung, pancreas, and prostate. Tumorigenesis, tumor progression and therapeutic response have all been shown to be impacted by the Shh signaling pathway. Downstream effectors of the Shh pathway include smoothened (SMO and glioma-associated oncogene homolog (GLI family of zinc finger transcription factors. Both are regarded as important targets for cancer therapeutics. While most efforts have been devoted towards pharmacologically targeting SMO, developing GLI-targeted approach has its merit because of the fact that GLI proteins can be activated by both Shh ligand-dependent and -independent mechanisms. To date, two SMO inhibitors (LDE225/Sonidegib and GDC-0449/Vismodegib have received FDA approval for treating basal cell carcinoma while many clinical trials are being conducted to evaluate the efficacy of this exciting class of targeted therapy in a variety of cancers. In this review, we provide an overview of the biology of the Shh pathway and then detail the current landscape of the Shh-SMO-GLI pathway inhibitors including those in preclinical studies and clinical trials.

  20. ATOH1 Promotes Leptomeningeal Dissemination and Metastasis of Sonic Hedgehog Subgroup Medulloblastomas.

    Science.gov (United States)

    Grausam, Katie B; Dooyema, Samuel D R; Bihannic, Laure; Premathilake, Hasitha; Morrissy, A Sorana; Forget, Antoine; Schaefer, Amanda M; Gundelach, Justin H; Macura, Slobodan; Maher, Diane M; Wang, Xin; Heglin, Alex H; Ge, Xijin; Zeng, Erliang; Puget, Stephanie; Chandrasekar, Indra; Surendran, Kameswaran; Bram, Richard J; Schüller, Ulrich; Talyor, Michael D; Ayrault, Olivier; Zhao, Haotian

    2017-07-15

    Medulloblastoma arising from the cerebellum is the most common pediatric brain malignancy, with leptomeningeal metastases often present at diagnosis and recurrence associated with poor clinical outcome. In this study, we used mouse medulloblastoma models to explore the relationship of tumor pathophysiology and dysregulated expression of the NOTCH pathway transcription factor ATOH1, which is present in aggressive medulloblastoma subtypes driven by aberrant Sonic Hedgehog/Patched (SHH/PTCH) signaling. In experiments with conditional ATOH1 mouse mutants crossed to Ptch1(+/-) mice, which develop SHH-driven medulloblastoma, animals with Atoh1 transgene expression developed highly penetrant medulloblastoma at a young age with extensive leptomeningeal disease and metastasis to the spinal cord and brain, resembling xenografts of human SHH medulloblastoma. Metastatic tumors retained abnormal SHH signaling like tumor xenografts. Conversely, ATOH1 expression was detected consistently in recurrent and metastatic SHH medulloblastoma. Chromatin immunoprecipitation sequencing and gene expression profiling identified candidate ATOH1 targets in tumor cells involved in development and tumorigenesis. Among these targets specific to metastatic tumors, there was an enrichment in those implicated in extracellular matrix remodeling activity, cytoskeletal network and interaction with microenvironment, indicating a shift in transcriptomic and epigenomic landscapes during metastasis. Treatment with bone morphogenetic protein or SHH pathway inhibitors decreased tumor cell proliferation and suppressed metastatic tumor growth, respectively. Our work reveals a dynamic ATOH1-driven molecular cascade underlying medulloblastoma metastasis that offers possible therapeutic opportunities. Cancer Res; 77(14); 3766-77. ©2017 AACR. ©2017 American Association for Cancer Research.

  1. WIP1 modulates responsiveness to Sonic Hedgehog signaling in neuronal precursor cells and medulloblastoma

    Science.gov (United States)

    Wen, Jing; Lee, Juhyun; Malhotra, Anshu; Nahta, Rita; Arnold, Amanda R.; Buss, Meghan C.; Brown, Briana D.; Maier, Caroline; Kenney, Anna M.; Remke, Marc; Ramaswamy, Vijay; Taylor, Michael D.; Castellino, Robert C.

    2016-01-01

    High-level amplification of the protein phosphatase PPM1D (WIP1) is present in a subset of medulloblastomas (MBs) that have an expression profile consistent with active Sonic Hedgehog (SHH) signaling. We found that WIP1 overexpression increased expression of Shh target genes and cell proliferation in response to Shh stimulation in NIH3T3 and cerebellar granule neuron precursor (cGNP) cells in a p53-independent manner. Thus, we developed a mouse in which WIP1 is expressed in the developing brain under control of the Neurod2 promoter (ND2:WIP1). The external granule layer in early post-natal ND2:WIP1 mice exhibited increased proliferation and expression of Shh downstream targets. MB incidence increased and survival decreased when ND2:WIP1 mice were crossed with a Shh-activated MB mouse model. Conversely, Wip1 knock out significantly suppressed MB formation in two independent mouse models of Shh-activated MB. Furthermore, Wip1 knock-down or treatment with a WIP1 inhibitor suppressed the effects of Shh stimulation and potentiated the growth inhibitory effects of SHH pathway-inhibiting drugs in Shh-activated MB cells in vitro. This suggests an important cross-talk between SHH and WIP1 pathways that accelerates tumorigenesis and supports WIP1 inhibition as a potential treatment strategy for MB. PMID:27086929

  2. Effect of Sonic Hedgehog signaling pathway on pulmonary fibrosis%Sonic Hedgehog信号通路在肺纤维化中的研究进展

    Institute of Scientific and Technical Information of China (English)

    姜仔彦

    2015-01-01

    Sonic Hedgehog(SHH)信号通路不仅在胎肺发育中起重要作用,在维持生后肺组织、器官的结构和功能的完整中所发挥的作用也不容忽视.近年来,研究发现SHH信号通路参与肺损伤后修复的过程,提示SHH信号通路可能在肺纤维化中起一定作用.%The role of Sonic Hedgehog (SHH)signaling pathway in embryonic lung development has been recognized.What's more,it also plays a key role in postnatal development and maintenance of tissue or organ integrity and function.In recent years, studies have found that SHH signaling pathways are involved in the lung repairing process, suggesting that SHH signaling pathways may play a role in pulmonary fibrosis.This paper reviews the effect of the SHH signaling pathway in pulmonary fibrosis.

  3. An Integrated Approach Identifies Nhlh1 and Insm1 as Sonic Hedgehog-regulated Genes in Developing Cerebellum and Medulloblastoma

    Directory of Open Access Journals (Sweden)

    Enrico De Smaele

    2008-01-01

    Full Text Available Medulloblastoma (MB is the most common malignant brain tumor of childhood arising from deregulated cerebellar development. Sonic Hedgehog (Shh pathway plays a critical role in cerebellar development and its aberrant expression has been identified in MB. Gene expression profiling of cerebella from 1- to 14-day-old mice unveiled a cluster of genes whose expression correlates with the levels of Hedgehog (HH activity. From this cluster, we identified Insm1 and Nhlh1/NSCL1 as novel HH targets induced by Shh treatment in cultured cerebellar granule cell progenitors. Nhlh1 promoter was found to be bound and activated by Gli1 transcription factor. Remarkably, the expression of these genes is also upregulated in mouse and human HH-dependent MBs, suggesting that they may be either a part of the HH-induced tumorigenic process or a specific trait of HH-dependent tumor cells.

  4. A dual role for Sonic hedgehog in regulating adhesion and differentiation of neuroepithelial cells.

    Science.gov (United States)

    Jarov, Artem; Williams, Kevin P; Ling, Leona E; Koteliansky, Victor E; Duband, Jean-Loup; Fournier-Thibault, Claire

    2003-09-15

    In vertebrates, the nervous system arises from a flat sheet of epithelial cells, the neural plate, that gradually transforms into a hollow neural tube. This process, called neurulation, involves sequential changes in cellular interactions that are precisely coordinated both spatially and temporally by the combined actions of morphogens. To gain further insight into the molecular events regulating cell adhesion during neurulation, we investigated whether the adhesive and migratory capacities of neuroepithelial cells might be modulated by Sonic hedgehog (Shh), a signaling molecule involved in the control of cell differentiation in the ventral neural tube. When deposited onto extracellular matrix components in vitro, neural plates explanted from avian embryos at early neurulation readily dispersed into monolayers of spread cells, thereby revealing their intrinsic ability to migrate. In the presence of Shh added in solution to the culture medium, the explants still exhibited the same propensity to disperse. In contrast, when Shh was immobilized to the substrate or produced by neuroepithelial cells themselves after transfection, neural plate explants failed to disperse and instead formed compact structures. Changes in the adhesive capacities of neuroepithelial cells caused by Shh could be accounted for by inactivation of surface beta1-integrins combined with an increase in N-cadherin-mediated cell adhesion. Furthermore, immobilized Shh promoted differentiation of neuroepithelial cells into motor neurons and floor plate cells with the same potency as soluble Shh. However, the effect of Shh on the neuroepithelial cell adhesion was discernible and apparently independent from its differentiation effect and was not mediated by the signaling cascade elicited by the Patched-Smoothened receptor and involving the Gli transcription factors. Thus, our experiments indicate that Shh is able to control sequentially adhesion and differentiation of neuroepithelial cells through

  5. Sonic Hedgehog Signaling Affected by Promoter Hypermethylation Induces Aberrant Gli2 Expression in Spina Bifida.

    Science.gov (United States)

    Lu, Xiao-Lin; Wang, Li; Chang, Shao-Yan; Shangguan, Shao-Fang; Wang, Zhen; Wu, Li-Hua; Zou, Ji-Zhen; Xiao, Ping; Li, Rui; Bao, Yi-Hua; Qiu, Z-Y; Zhang, Ting

    2016-10-01

    GLI2 is a key mediator of the sonic hedgehog (Shh) signaling pathway and plays an important role in neural tube development during vertebrate embryogenesis; however, the role of gli2 in human folate-related neural tube defects remains unclear. In this study, we compared methylation status and polymorphisms of gli2 between spina bifida patients and a control group to explore the underlying mechanisms related to folate deficiency in spina bifida. No single nucleotide polymorphism was found to be significantly different between the two groups, although gli2 methylation levels were significantly increased in spina bifida samples, accompanied by aberrant GLI2 expression. Moreover, a prominent negative correlation was found between the folate level in brain tissue and the gli2 methylation status (r = -0.41, P = 0.014), and gli2 hypermethylation increased the risk of spina bifida with an odds ratio of 12.45 (95 % confidence interval: 2.71-57.22, P = 0.001). In addition, we established a cell model to illustrate the effect of gli2 expression and the accessibility of chromatin affected by methylation. High gli2 and gli1 mRNA expression was detected in 5-Aza-treated cells, while gli2 hypermethylation resulted in chromatin inaccessibility and a reduced association with nuclear proteins containing transcriptional factors. More meaningful to the pathway, the effect gene of the Shh pathway, gli1, was found to have a reduced level of expression along with a decreased expression of gli2 in our cell model. Aberrant high methylation resulted in the low expression of gli2 in spina bifida, which was affected by the change in chromatin status and the capacity of transcription factor binding.

  6. Proteomic analysis of human Sonic Hedgehog (SHH) medulloblastoma stem-like cells.

    Science.gov (United States)

    Ronci, Maurizio; Catanzaro, Giuseppina; Pieroni, Luisa; Po, Agnese; Besharat, Zein Mersini; Greco, Viviana; Levi Mortera, Stefano; Screpanti, Isabella; Ferretti, Elisabetta; Urbani, Andrea

    2015-06-01

    Human medulloblastoma (MB) is a malignant brain tumor that comprises four distinct molecular subgroups including the Sonic Hedgehog (SHH)-MB group. A leading cause of the SHH subgroup is an aberrant activation of the SHH pathway, a developmental signaling that regulates postnatal development of the cerebellum by promoting the mitotic expansion of granule neural precursors (GNPs) in the external granule layer (EGL). The abnormal SHH signaling pathway drives not only SHH-MB but also its cancer stem-like cells (SLCs), which represent a fraction of the tumor cell population that maintain cancer growth and have been associated with high grade tumors. Here, we report the first proteomic analysis of human SHH-MB SLCs before and after Retinoic Acid (RA)-induced differentiation. A total of 994 nLC-MS buckets were statistically analysed returning 68 modulated proteins between SLCs and their differentiated counterparts. Heat Shock Protein 70 (Hsp70) was one of the proteins that characterized the protein profile of SLCs. By means of Ingenuity Pathway Analysis (IPA), Genomatix analysis and extending the network obtained using the differentially expressed proteins we found a correlation between Hsp70 and the NF-κB complex. A key driver of the SHH-MB group is cMET whose downstream proliferation/survival signalling is indeed via PI3K/Akt/NF-κB. We confirmed the results of the proteomic analysis by western blot, underlining that a P-p65/NF-κB activatory complex is highly expressed in SLCs. Taking together these results we define a new protein feature of SHH-MB SLCs.

  7. The p53 inhibitor MDM2 facilitates Sonic Hedgehog-mediated tumorigenesis and influences cerebellar foliation.

    Directory of Open Access Journals (Sweden)

    Reem Malek

    Full Text Available Disruption of cerebellar granular neuronal precursor (GNP maturation can result in defects in motor coordination and learning, or in medulloblastoma, the most common childhood brain tumor. The Sonic Hedgehog (Shh pathway is important for GNP proliferation; however, the factors regulating the extent and timing of GNP proliferation, as well as GNP differentiation and migration are poorly understood. The p53 tumor suppressor has been shown to negatively regulate the activity of the Shh effector, Gli1, in neural stem cells; however, the contribution of p53 to the regulation of Shh signaling in GNPs during cerebellar development has not been determined. Here, we exploited a hypomorphic allele of Mdm2 (Mdm2(puro, which encodes a critical negative regulator of p53, to alter the level of wild-type MDM2 and p53 in vivo. We report that mice with reduced levels of MDM2 and increased levels of p53 have small cerebella with shortened folia, reminiscent of deficient Shh signaling. Indeed, Shh signaling in Mdm2-deficient GNPs is attenuated, concomitant with decreased expression of the Shh transducers, Gli1 and Gli2. We also find that Shh stimulation of GNPs promotes MDM2 accumulation and enhances phosphorylation at serine 166, a modification known to increase MDM2-p53 binding. Significantly, loss of MDM2 in Ptch1(+/- mice, a model for Shh-mediated human medulloblastoma, impedes cerebellar tumorigenesis. Together, these results place MDM2 at a major nexus between the p53 and Shh signaling pathways in GNPs, with key roles in cerebellar development, GNP survival, cerebellar foliation, and MB tumorigenesis.

  8. Sonic hedgehog is a chemotactic neural crest cell guide that is perturbed by ethanol exposure.

    Science.gov (United States)

    Tolosa, Ezequiel J; Fernández-Zapico, Martín E; Battiato, Natalia L; Rovasio, Roberto A

    2016-01-01

    Our aim was to understand the involvement of Sonic hedgehog (Shh) morphogen in the oriented distribution of neural crest cells (NCCs) toward the optic vesicle and to look for potential disorders of this guiding mechanism after ethanol exposure. In vitro directional analysis showed the chemotactic response of NCCs up Shh gradients and to notochord co-cultures (Shh source) or to their conditioned medium, a response inhibited by anti-Shh antibody, receptor inhibitor cyclopamine and anti-Smo morpholino (MO). Expression of the Ptch-Smo receptor complex on in vitro NCCs was also shown. In whole embryos, the expression of Shh mRNA and protein was seen in the ocular region, and of Ptch, Smo and Gli/Sufu system on cephalic NCCs. Anti-Smo MO or Ptch-mutated plasmid (Ptch1(Δloop2)) impaired cephalic NCC migration/distribution, with fewer cells invading the optic region and with higher cell density at the homolateral mesencephalic level. Beads embedded with cyclopamine (Smo-blocking) or Shh (ectopic signal) supported the role of Shh as an in vivo guide molecule for cephalic NCCs. Ethanol exposure perturbed in vitro and in vivo NCC migration. Early stage embryos treated with ethanol, in a model reproducing Fetal Alcohol Syndrome, showed later disruptions of craniofacial development associated with abnormal in situ expression of Shh morphogen. The results show the Shh/Ptch/Smo-dependent migration of NCCs toward the optic vesicle, with the support of specific inactivation with genetic and pharmacological tools. They also help to understand mechanisms of accurate distribution of embryonic cells and of their perturbation by a commonly consumed teratogen, and demonstrate, in addition to its other known developmental functions, a new biological activity of cellular guidance for Shh.

  9. Assessment of the stromal contribution to Sonic Hedgehog-dependent pancreatic adenocarcinoma.

    Science.gov (United States)

    Damhofer, Helene; Medema, Jan Paul; Veenstra, Veronique L; Badea, Liviu; Popescu, Irinel; Roelink, Henk; Bijlsma, Maarten F

    2013-12-01

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. It is typically detected at an advanced stage, at which the therapeutic options are very limited. One remarkable feature of PDAC that contributes to its resilience to treatment is the extreme stromal activation seen in these tumors. Often, the vast majority of tumor bulk consists of non-tumor cells that together provide a tumor-promoting environment. One of the signals that maintains and activates the stroma is the developmental protein Sonic Hedgehog (SHH). As the disease progresses, tumor cells produce increasing amounts of SHH, which activates the surrounding stroma to aid in tumor progression. To better understand this response and identify targets for inhibition, we aimed to elucidate the proteins that mediate the SHH-driven stromal response in PDAC. For this a novel mixed-species coculture model was set up in which the cancer cells are human, and the stroma is modeled by mouse fibroblasts. In conjunction with next-generation sequencing we were able to use the sequence difference between these species to genetically distinguish between the epithelial and stromal responses to SHH. The stromal SHH-dependent genes from this analysis were validated and their relevance for human disease was subsequently determined in two independent patient cohorts. In non-microdissected tissue from PDAC patients, in which a large amount of stroma is present, the targets were confirmed to associate with tumor stroma versus normal pancreatic tissue. Patient survival analysis and immunohistochemistry identified CDA, EDIL3, ITGB4, PLAUR and SPOCK1 as SHH-dependent stromal factors that are associated with poor prognosis in PDAC patients. Summarizing, the presented data provide insight into the role of the activated stroma in PDAC, and how SHH acts to mediate this response. In addition, the study has yielded several candidates that are interesting therapeutic targets for a disease for which treatment

  10. Relation between sonic hedgehog pathway gene polymorphisms and basal cell carcinoma development in the Polish population.

    Science.gov (United States)

    Lesiak, Aleksandra; Sobolewska-Sztychny, Dorota; Majak, Paweł; Sobjanek, Michał; Wodz, Karolina; Sygut, Karolina Przybyłowska-; Majsterek, Ireneusz; Wozniacka, Anna; Narbutt, Joanna

    2016-01-01

    In recent decades, increases have been observed in the incidence of nonmelanoma skin cancers, including basal cell carcinoma (BCC) and squamous cell carcinoma. BCC is the most common neoplasm in Caucasian populations. Sonic hedgehog (Shh) pathway impairment plays a key role in BCC pathogenesis, and there is evidence that Shh pathway genetic variations may predispose to BCC development. We genotyped 22 single-nucleotide polymorphisms (SNPs) in 4 Shh pathway genes: SHH, GLI, SMO, and PTCH. The study group consisted of 142 BCC patients and 142 age-matched, sex-matched healthy subjects (controls). SNPs were assessed using the PCR-RFLP method. The genotype distribution for the polymorphisms in the rs104894049 331 A/T SHH, rs104894040 349 T/C SHH, and rs41303402 385 G/A SMO genes differed significantly between the BCC patients and the controls. The presence of CC genotype in the SHH rs104894040 349 T/C polymorphism was linked to the highest risk of BCC development (OR 87.9, p < 0.001). Other genotypes, such as the TT in SHH rs104894049 331 A/T and the GG in SMO rs41303402 385 G/A also statistically raised the risk of BCC, but these associations were weaker. Other investigated polymorphisms showed no statistical differences between patients and controls. The results obtained testify to the importance of the SHH and SMO gene polymorphisms in skin cancerogenesis. These results mainly underline the potential role of SHH3 rs104894040 349 T/C gene polymorphism in the development of skin basal cell carcinomas in patients of Polish origin.

  11. Generation of reactive astrocytes from NG2 cells is regulated by sonic hedgehog.

    Science.gov (United States)

    Honsa, Pavel; Valny, Martin; Kriska, Jan; Matuskova, Hana; Harantova, Lenka; Kirdajova, Denisa; Valihrach, Lukas; Androvic, Peter; Kubista, Mikael; Anderova, Miroslava

    2016-09-01

    NG2 cells, a fourth glial cell type in the adult mammalian central nervous system, produce oligodendrocytes in the healthy nervous tissue, and display wide differentiation potential under pathological conditions, where they could give rise to reactive astrocytes. The factors that control the differentiation of NG2 cells after focal cerebral ischemia (FCI) are largely unknown. Here, we used transgenic Cspg4-cre/Esr1/ROSA26Sortm14(CAG-tdTomato) mice, in which tamoxifen administration triggers the expression of red fluorescent protein (tomato) specifically in NG2 cells and cells derived therefrom. Differentiation potential (in vitro and in vivo) of tomato-positive NG2 cells from control or postischemic brains was determined using the immunohistochemistry, single cell RT-qPCR and patch-clamp method. The ischemic injury was induced by middle cerebral artery occlusion, a model of FCI. Using genetic fate-mapping method, we identified sonic hedgehog (Shh) as an important factor that influences differentiation of NG2 cells into astrocytes in vitro. We also manipulated Shh signaling in the adult mouse brain after FCI. Shh signaling activation significantly increased the number of astrocytes derived from NG2 cells in the glial scar around the ischemic lesion, while Shh signaling inhibition caused the opposite effect. Since Shh signaling modifications did not change the proliferation rate of NG2 cells, we can conclude that Shh has a direct influence on the differentiation of NG2 cells and therefore, on the formation and composition of a glial scar, which consequently affects the degree of the brain damage. GLIA 2016;64:1518-1531.

  12. Adenohypophysis formation in the zebrafish and its dependence on sonic hedgehog.

    Science.gov (United States)

    Herzog, Wiebke; Zeng, Xianchun; Lele, Zsolt; Sonntag, Carmen; Ting, Jing-Wen; Chang, Chi-Yao; Hammerschmidt, Matthias

    2003-02-01

    Formation of the adenohypophysis in mammalian embryos occurs via an invagination of the oral ectoderm to form Rathke's pouch, which becomes exposed to opposing dorsoventral gradients of signaling proteins governing specification of the different hormone-producing pituitary cell types. One signal promoting pituitary cell proliferation and differentiation to ventral cell types is Sonic hedgehog (Shh) from the oral ectoderm. To study pituitary formation and patterning in zebrafish, we cloned four cDNAs encoding different pituitary hormones, prolactin (prl), proopiomelancortin (pomc), thyroid stimulating hormone (tsh), and growth hormone (gh), and analyzed their expression patterns relative to that of the pituitary marker lim3. prl and pomc start to be expressed at the lateral edges of the lim3 expression domain, before pituitary cells move into the head. This indicates that patterning of the pituitary anlage and terminal differentiation of pituitary cells starts while cells are still organized in a placodal fashion at the anterior edge of the developing brain. Following the expression pattern of prl and pomc during development, we show that no pituitary-specific invagination equivalent to Rathke's pouch formation takes place. Rather, pituitary cells move inwards together with stomodeal cells during oral cavity formation, with medial cells of the placode ending up posterior and lateral cells ending up anterior, resulting in an anterior-posterior, rather than a dorsoventral, patterning of the adenohypophysis. Carrying out loss- and gain-of-function experiments, we show that Shh from the ventral diencephalon plays a crucial role during induction, patterning, and growth of the zebrafish adenohypophysis. The phenotypes are very similar to those obtained upon pituitary-specific inactivation or overexpression of Shh in mouse embryo, suggesting that the role of Shh during pituitary development has been largely conserved between fish and mice, despite the different modes of

  13. Development of stratum intermedium and its role as a Sonic hedgehog-signaling structure during odontogenesis.

    Science.gov (United States)

    Koyama, E; Wu, C; Shimo, T; Iwamoto, M; Ohmori, T; Kurisu, K; Ookura, T; Bashir, M M; Abrams, W R; Tucker, T; Pacifici, M

    2001-10-01

    Stratum intermedium is a transient and subtle epithelial structure closely associated with inner dental epithelium in tooth germs. Little is known about its development and roles. To facilitate analysis, we used bovine tooth germs, predicting that they may contain a more conspicuous stratum intermedium. Indeed, early bell stage bovine tooth germs already displayed an obvious stratum intermedium with a typical multilayered organization and flanking the enamel knot. Strikingly, with further development, the cuspally located stratum intermedium underwent thinning and involution, whereas a multilayered stratum intermedium formed at successive sites along the cusp-to-cervix axis of odontogenesis. In situ hybridization and immunohistochemistry showed that stratum intermedium produces the signaling molecule Sonic hedgehog (Shh). Maximal Shh expression was invariably seen in its thickest multilayered portions. Shh was also produced by inner dental epithelium; expression was not constant but varied with development and cytodifferentiation of ameloblasts along the cusp-to-cervix axis. Interestingly, maximal Shh expression in inner dental epithelium did not coincide with that in stratum intermedium. Both stratum intermedium and inner dental epithelium expressed the Shh receptor Patched2 (Ptch2), an indication of autocrine signaling loops. Shh protein, but not RNA, was present in underlying dental mesenchyme, probably resulting from gradual diffusion from epithelial layers and reflecting paracrine loops of action. To analyze the regulation of Shh expression, epithelial and mesenchymal layers were separated and maintained in organ culture. Shh expression decreased over time, but was maintained in unoperated specimens. Our data show for the first time that stratum intermedium is a highly regulated and Shh-expressing structure. Given its dynamic and apparently interactive properties, stratum intermedium may help orchestrate progression of odontogenesis from cusp to cervix

  14. Baicalin Attenuates Alcoholic Liver Injury through Modulation of Hepatic Oxidative Stress, Inflammation and Sonic Hedgehog Pathway in Rats

    Directory of Open Access Journals (Sweden)

    Huifen Wang

    2016-08-01

    Full Text Available Background/Aims: Lipid accumulation, inflammatory responses and oxidative stress have been implicated in the pathology of alcoholic liver disease (ALD. Targeting inhibition of these features may provide a promising therapeutic strategy for ALD. Baicalin, a flavonoid isolated from Scutellaria baicalensis Georgi, has been shown to exert a hepatoprotective effect. However, its effects on ALD remain obscure. This study was aimed to investigate the effects of baicalin on alcohol-induced liver injury and its related mechanisms. Methods: For in vivo experiments, rats were supplied intragastrical administration of alcohol continuously for 4 or 8 weeks, and then received baicalin treatment in the latter 4 weeks in the presence / absence of alcohol intake. Liver histology and function, inflammatory cytokines, oxidative mediators, and the components of the Sonic hedgehog pathway were evaluated. For in vitro experiments, alcohol-stimulated human normal liver cells LO2 were used. Results: Baicalin treatment significantly alleviated alcoholic liver injury, improved liver function impaired by alcohol, and inhibited hepatocytes apoptosis. In addition, baicalin decreased the expression levels of proinflammatory cytokines TNF-α, IL-1β, IL-6 and malonyldialdehyde (MDA, and increased the activities of antioxidant enzymes SOD and GSH-Px. Furthermore, baicalin modulated the activation of Sonic hedgehog (Shh pathway. Administration of baicalin upregulated the expression of sonic hedgehog (Shh, patched (Ptc, Smoothened (Smo, and Glioblastoma-1(Gli-1. Blockade of the Shh pathway in cyclopamine abolished the effects of baicalin in vitro. Conclusion: Both in vivo and in vitro experimental results indicate that baicalin exerts hepatoprotective roles in alcohol-induced liver injury through inhibiting oxidative stress, inflammatory response, and the regulation of the Shh pathway.

  15. Sonic Hedgehog Acts as a Negative Regulator of β-Catenin Signaling in the Adult Tongue Epithelium

    OpenAIRE

    Schneider, Fabian T; Schänzer, Anne; Czupalla, Cathrin J.; Thom, Sonja; Engels, Knut; Schmidt, Mirko H. H.; Plate, Karl H; Liebner, Stefan

    2010-01-01

    Wnt/β-catenin signaling has been implicated in taste papilla development; however, its role in epithelial maintenance and tumor progression in the adult tongue remains elusive. We show Wnt/β-catenin pathway activation in reporter mice and by nuclear β-catenin staining in the epithelium and taste papilla of adult mouse and human tongues. β-Catenin activation in APCmin/+ mice, which carry a mutation in adenomatous poliposis coli (APC), up-regulates Sonic hedgehog (Shh) and Jagged-2 (JAG2) in th...

  16. The Hedgehog signaling pathway in ovarian teratoma is stimulated by Sonic Hedgehog which induces internalization of Patched

    OpenAIRE

    SABOL, MAJA; Car, Diana; MUSANI, VESNA; Ozretić, Petar; Orešković, Slavko; Weber, Igor; Levanat, Sonja

    2012-01-01

    The Hedgehog-Gli (Hh-Gli) signaling pathway was examined in ovarian dermoids, which show characteristics of both tumors and developmental malformations. Dermoids are classified as mature teratomas that present differentiation into various tissues, mostly epidermal elements such as glands, multilayered epithelium, hair follicles and occasionally bone and cartilage. Their development is attributed to aberrant meiosis of germinal cells within the ovary. We showed activation of the Hh-Gli signali...

  17. GLI1, a crucial mediator of sonic hedgehog signaling in prostate cancer, functions as a negative modulator for androgen receptor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guangchun; Goto, Yutaka; Sakamoto, Ryuichi; Tanaka, Kimitaka; Matsubara, Eri [Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan); Nakamura, Masafumi [Department of Cancer Therapy and Research, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan); Zheng, Hong [School of Pharmacy, Second Military Medical University, Shanghai 200433 (China); Lu, Jian [Department of Pathophysiology, Second Military Medical University, Shanghai 200433 (China); Takayanagi, Ryoichi [Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan); Nomura, Masatoshi, E-mail: nomura@med.kyushu-u.ac.jp [Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2011-01-21

    Research highlights: {yields} GLI1, which play a central role in sonic hedgehog signaling in prostate cancer, can act as a co-repressor to substantially block androgen receptor-mediated transactivation. {yields} GLI1 directly interacts with AR. {yields} SHH-GLI pathway might be one of determinants governing the transition of prostate cancer from an androgen-dependent to an androgen-independent state. -- Abstract: Sonic hedgehog (SHH) signaling, acting in a combinatorial manner with androgen signaling, is essential for prostate patterning and development. Recently, elevated activation of SHH signaling has been shown to play important roles in proliferation, progression and metastasis of prostate cancer. In this report, we demonstrate for the first time, that GLI1, which has been shown to play a central role in SHH signaling in prostate cancer, can act as a co-repressor to substantially block androgen receptor (AR)-mediated transactivation, at least in part, by directly interacting with AR. Our observations suggest that the SHH-GLI pathway might be one of determinants governing the transition of prostate cancer from an androgen-dependent to an androgen-independent state by compensating, or even superseding androgen signaling.

  18. Cerebrospinal fluid from patients with amyotrophic lateral sclerosis inhibits sonic hedgehog function

    Science.gov (United States)

    Drannik, Anna; Martin, Joan; Peterson, Randy; Ma, Xiaoxing; Jiang, Fan; Turnbull, John

    2017-01-01

    Sonic hedgehog (Shh) is a morphogen essential to the developing nervous system that continues to play an important role in adult life by contributing to cell proliferation and differentiation, maintaining blood-brain barrier integrity, and being cytoprotective against oxidative and excitotoxic stress, all features of importance in amyotrophic lateral sclerosis (ALS). ALS is a fatal disease characterized by selective loss of motor neurons due to poorly understood mechanisms. Evidence indicates that Shh might play an important role in ALS, and that Shh signaling might be also adversely affected in ALS. Since little is known about the functional status of Shh pathway in patients with ALS, we therefore sought to determine whether Shh protein levels or biological activity in cerebrospinal fluid (CSF) was less in ALS patients than controls, and whether these measures could be correlated with ALS disease severity and disease progression, and with other CSF analytes of biological interest in ALS. Comparing Shh levels in the CSF of normal controls (n = 13), neurological controls (n = 12), and ALS patients (n = 9) measured by ELISA, we found that CSF Shh levels were not different between controls and ALS patients. However, when assessing Shh biological activity in CSF using in vitro cell-based assays, which measure Shh activity as inducible Gli-driven luminescence, we found that in the presence of exogenous recombinant Shh or the Shh agonist, purmorphamine, the inducible activity of CSF was significantly augmented in the control groups as expected, but not in the ALS group, suggesting the presence of an inhibitor of Shh signaling in ALS CSF samples. Since purmorphamine acts on Smoothened, downstream of Shh and its receptor Patched, the inhibitory action is downstream of Smoothened. Our results also demonstrated that while the inhibitory effect of ALS CSF on Shh signaling did not correlate significantly with ALS disease characteristics, the levels of IL-1β and TNF-α did. In

  19. Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions

    Directory of Open Access Journals (Sweden)

    Alvarez-Bolado Gonzalo

    2012-01-01

    Full Text Available Abstract Background The hypothalamus is a brain region with essential functions for homeostasis and energy metabolism, and alterations of its development can contribute to pathological conditions in the adult, like hypertension, diabetes or obesity. However, due to the anatomical complexity of the hypothalamus, its development is not well understood. Sonic hedgehog (Shh is a key developmental regulator gene expressed in a dynamic pattern in hypothalamic progenitor cells. To obtain insight into hypothalamic organization, we used genetic inducible fate mapping (GIFM to map the lineages derived from Shh-expressing progenitor domains onto the four rostrocaudally arranged hypothalamic regions: preoptic, anterior, tuberal and mammillary. Results Shh-expressing progenitors labeled at an early stage (before embryonic day (E9.5 contribute neurons and astrocytes to a large caudal area including the mammillary and posterior tuberal regions as well as tanycytes (specialized median eminence glia. Progenitors labeled at later stages (after E9.5 give rise to neurons and astrocytes of the entire tuberal region and in particular the ventromedial nucleus, but not to cells in the mammillary region and median eminence. At this stage, an additional Shh-expressing domain appears in the preoptic area and contributes mostly astrocytes to the hypothalamus. Shh-expressing progenitors do not contribute to the anterior region at any stage. Finally, we show a gradual shift from neurogenesis to gliogenesis, so that progenitors expressing Shh after E12.5 generate almost exclusively hypothalamic astrocytes. Conclusions We define a fate map of the hypothalamus, based on the dynamic expression of Shh in the hypothalamic progenitor zones. We provide evidence that the large neurogenic Shh-expressing progenitor domains of the ventral diencephalon are continuous with those of the midbrain. We demonstrate that the four classical transverse zones of the hypothalamus have clearly

  20. Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions

    Science.gov (United States)

    2012-01-01

    Background The hypothalamus is a brain region with essential functions for homeostasis and energy metabolism, and alterations of its development can contribute to pathological conditions in the adult, like hypertension, diabetes or obesity. However, due to the anatomical complexity of the hypothalamus, its development is not well understood. Sonic hedgehog (Shh) is a key developmental regulator gene expressed in a dynamic pattern in hypothalamic progenitor cells. To obtain insight into hypothalamic organization, we used genetic inducible fate mapping (GIFM) to map the lineages derived from Shh-expressing progenitor domains onto the four rostrocaudally arranged hypothalamic regions: preoptic, anterior, tuberal and mammillary. Results Shh-expressing progenitors labeled at an early stage (before embryonic day (E)9.5) contribute neurons and astrocytes to a large caudal area including the mammillary and posterior tuberal regions as well as tanycytes (specialized median eminence glia). Progenitors labeled at later stages (after E9.5) give rise to neurons and astrocytes of the entire tuberal region and in particular the ventromedial nucleus, but not to cells in the mammillary region and median eminence. At this stage, an additional Shh-expressing domain appears in the preoptic area and contributes mostly astrocytes to the hypothalamus. Shh-expressing progenitors do not contribute to the anterior region at any stage. Finally, we show a gradual shift from neurogenesis to gliogenesis, so that progenitors expressing Shh after E12.5 generate almost exclusively hypothalamic astrocytes. Conclusions We define a fate map of the hypothalamus, based on the dynamic expression of Shh in the hypothalamic progenitor zones. We provide evidence that the large neurogenic Shh-expressing progenitor domains of the ventral diencephalon are continuous with those of the midbrain. We demonstrate that the four classical transverse zones of the hypothalamus have clearly defined progenitor domains

  1. Sonic Hedgehog在血管新生中的作用%Functions of Sonic Hedgehog in Angiogenesis

    Institute of Scientific and Technical Information of China (English)

    罗昭华; 修瑞娟

    2005-01-01

    Sonic Hedgehog介导的信号传导通路是血管生成中一个重要调节环节,可调控血管直径加粗、变长和分叉,影响基质细胞分泌众多的血管新生因子以及动脉血管的发生.Sonic Hedgehog可能通过3种机制(COUP-TFⅡ、SHH/GLI/SMO、PI3K通路)调控血管生成,并有望成为血管新生研究的新靶向因子.

  2. Effect of Sonic hedgehog signaling pathway on brain injury%Sonic hedgehog信号通路在脑损伤中的作用

    Institute of Scientific and Technical Information of China (English)

    屈晓羽; 屈艺; 张莉; 母得志

    2010-01-01

    Sonic hedgehog(Shh)是神经系统发育和肿瘤发生发展中的重要调节因子.近年的研究显示,Shh在脑损伤疾病中发挥重要的作用.在脑损伤后,Shh的表达上调,通过其信号通路促进脑损伤后的修复过程.研究Shh信号通路有助于深入地了解脑损伤的病理过程,同时也为脑损伤的临床治疗提供新的途径.

  3. Sonic hedgehog通路与肝细胞癌的研究进展%The advance of researches on the Sonic hedgehog pathway and hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    谢晶日; 张亮; 李明; 刘小莲

    2011-01-01

    SHH通路与肿瘤的发生具有密切的关系,在由内胚层形成的组织器官肿瘤中常过度表达.最新研究表明,SHH通路与肝细胞癌(HCC)也存在密切联系,本文就SHH通路与HCC的研究进展作一综述.%Sonic hedgehog(SHH) pathway relates to the occurrence of cancer closely, which is overexpressed in endodermal organ of tumor. Recent research shows that SHH pathway is also closed with hepatocellular carcinoma(HCC). This paper reviews the research progress of SHH pathway and HCC.

  4. Progress of sonic hedgehog signaling pathway regulating pain sensitization%Sonic hedgehog信号通路调节痛觉敏化的研究进展

    Institute of Scientific and Technical Information of China (English)

    冯晓雪(综述); 刘丹彦(审校)

    2015-01-01

    神经病理性痛是一种由于躯体感觉神经系统的损伤或疾病而直接造成的疼痛。Sonic hedgehog(Shh)信号转导通路是经典的控制胚胎发育的信号转导途径。近年来发现,该信号途径不仅参与胚胎神经系统模式发育,在成熟机体的稳态调节中也发挥重要作用,因此正逐渐成为信号转导领域新的研究热点。最新文献表明,Shh通路调节神经病理性疼痛的痛觉敏化,且其可能机制与星形胶质细胞激活,炎症因子以及突触可塑性的改变相关。%Neuropathy pain is a kind of pain due to injury or disease to the body of sensory nerve system. Sonic hedgehog (Shh) signal transduction pathway is a classic control signal transduction pathways in embryonic development. And it be found that the signaling pathways involved in the development of the nervous system model in mature steady state, so is becoming a hot spot in the ifeld of new signal transduction. Novel studies have demonstrated that the Shh pathway is associated with pain sensitization in neuropathy pain. And its mechanism maybe about astrocyte activation, inlfammation factors and the change of the synaptic plasticity.

  5. Heparan Sulfate Proteoglycans Containing a Glypican 5 Core and 2-O-Sulfo-iduronic Acid Function as Sonic Hedgehog Co-receptors to Promote Proliferation

    NARCIS (Netherlands)

    Witt, R.M.; Hecht, M.L.; Pazyra-Murphy, M.F.; Cohen, S.M.; Noti, C.; Kuppevelt, T.H. van; Fuller, M.; Chan, J.A.; Hopwood, J.J.; Seeberger, P.H.; Segal, R.A.

    2013-01-01

    Sonic Hedgehog (Shh) signaling is crucial for growth, cell fate determination, and axonal guidance in the developing nervous system. Although the receptors Patched (Ptch1) and Smoothened (Smo) are required for Shh signaling, a number of distinct co-receptors contribute to these critical responses to

  6. Involvement of brain-derived neurotrophic factor and sonic hedgehog in the spinal cord plasticity after neurotoxic partial removal of lumbar motoneurons.

    Science.gov (United States)

    Gulino, Rosario; Gulisano, Massimo

    2012-07-01

    Adult mammals could spontaneously achieve a partial sensory-motor recovery after spinal cord injury, by mechanisms including synaptic plasticity. We previously showed that this recovery is associated to the expression of synapsin-I, and that sonic hedgehog and Notch-1 could be also involved in plasticity. The role of brain-derived neurotrophic factor and glutamate receptors in regulating synaptic efficacy has been explored in the last decade but, although these mechanisms are now well-defined in the brain, the molecular mechanisms underlying the so called "spinal learning" are still less clear. Here, we measured the expression levels of choline acetyltransferase, synapsin-I, sonic hedgehog, Notch-1, glutamate receptor subunits (GluR1, GluR2, GluR4, NMDAR1) and brain-derived neurotrophic factor, in a motoneuron-depleted mouse spinal lesion model obtained by intramuscular injection of cholera toxin-B saporin. The lesion caused the down-regulation of the majority of analysed proteins. Moreover, we found that in lesioned but not in control spinal tissue, synapsin-I expression is associated to that of both brain-derived neurotrophic factor and sonic hedgehog, whereas GluR2 expression is linked to that of Shh. These results suggest that brain-derived neurotrophic factor and sonic hedgehog could collaborate in modulating synaptic plasticity after the removal of motoneurons, by a mechanism involving both pre- and post-synaptic processes. Interestingly, the involvement of sonic hedgehog showed here is novel, and offers new routes to address spinal cord plasticity and repair.

  7. The role of the sonic hedgehog signaling pathway in early brain injury after experimental subarachnoid hemorrhage in rats.

    Science.gov (United States)

    Li, Tao; Zhang, Jie; Liu, Rong-Yao; Lian, Zhi-Gang; Chen, Xiao-Lin; Ma, Li; Sun, Hao-Min; Zhao, Yuan-Li

    2013-09-27

    Previous studies have demonstrated that the sonic hedgehog (Shh) pathway plays a neuro-protective role. However, whether the Shh pathway is induced by subarachnoid hemorrhage (SAH) has not been investigated. We sought to investigate Shh activation in the cortex in the early stage of SAH, and assessed the effect of cyclopamine (a specific inhibitor of the Shh pathway) on Shh pathway regulation and evaluated the impact of cyclopamine on SAH. We found that the Shh pathway was up-regulated in the cortex after SAH, and that blocking the Shh pathway increased cell apoptosis. Early brain damages, including brain edema, blood-brain barrier impairment, and cortical apoptosis were significantly aggravated following with cyclopamine treatment compared with vehicle treatment. Our results suggest that the Shh pathway should be activated in the brain after SAH, and plays a beneficial role in SAH development, possibly by inhibiting cerebral oxidative stress through induction of antioxidant and detoxifying enzymes.

  8. Sonic Hedgehog modulates EGFR dependent proliferation of neural stem cells during late mouse embryogenesis through EGFR transactivation

    Science.gov (United States)

    Reinchisi, Gisela; Parada, Margarita; Lois, Pablo; Oyanadel, Claudia; Shaughnessy, Ronan; Gonzalez, Alfonso; Palma, Verónica

    2013-01-01

    Sonic Hedgehog (Shh/GLI) and EGFR signaling pathways modulate Neural Stem Cell (NSC) proliferation. How these signals cooperate is therefore critical for understanding normal brain development and function. Here we report a novel acute effect of Shh signaling on EGFR function. We show that during late neocortex development, Shh mediates the activation of the ERK1/2 signaling pathway in Radial Glial cells (RGC) through EGFR transactivation. This process is dependent on metalloprotease activity and accounts for almost 50% of the EGFR-dependent mitogenic response of late NSCs. Furthermore, in HeLa cancer cells, a well-known model for studying the EGFR receptor function, Shh also induces cell proliferation involving EGFR activation, as reflected by EGFR internalization and ERK1/2 phosphorylation. These findings may have important implications for understanding the mechanisms that regulate NSC proliferation during neurogenesis and may lead to novel approaches to the treatment of tumors. PMID:24133411

  9. KIF13B establishes a CAV1-enriched microdomain at the ciliary transition zone to promote Sonic hedgehog signalling

    DEFF Research Database (Denmark)

    Schou, Kenneth Bødtker; Mogensen, Johanne Bay; Morthorst, Stine Kjær

    2017-01-01

    Ciliary membrane composition is controlled by transition zone (TZ) proteins such as RPGRIP1, RPGRIPL and NPHP4, which are vital for balanced coordination of diverse signalling systems like the Sonic hedgehog (Shh) pathway. Activation of this pathway involves Shh-induced ciliary accumulation...... during ciliogenesis and is recruited to the ciliary base by NPHP4, which binds to two distinct sites in the KIF13B tail region, including an RPGRIP1N-C2 domain. KIF13B and NPHP4 are both essential for establishment of a CAV1 membrane microdomain at the TZ, which in turn is required for Shh......-induced ciliary SMO accumulation. Thus KIF13B is a novel regulator of ciliary TZ configuration, membrane composition and Shh signalling....

  10. Expressions of sonic hedgehog, patched, smoothened and Gli-1 in human intestinal stromal tumors and their correlation with prognosis

    Institute of Scientific and Technical Information of China (English)

    Ayumi Yoshizaki; Toshiyuki Nakayama; Shinji Naito; Chun-Yang Wen; Ichiro Sekine

    2006-01-01

    AIM: To investigate the role that the hedgehog (Hh)signaling pathway, which includes sonic hedgehog (Shh),Patched (Ptc), Smoothened (Smo) and Gli-1, plays in human gastrointestinal stromal tumors (GISTs).METHODS: Surgically resected specimens from patients with GISTs, leiomyomas and schwannomas were examined by immunohistochemical staining for aberrant expression of hedgehog signaling components, Shh, Ptc,Smo and Gli-1, respectively.RESULTS: In GISTs, 58.1% (18 of 31), 77.4% (24 of 31), 80.6% (25 of 31) and 58.1% (18 of 31) of the specimens stained positive for Shh, Ptc, Smo and Gli-1,respectively. In leiomyomas, 92.3% (12 of 13), 92.3% (12 of 13), 69.2% (9 of 13) and 92.3% (12 of 13) stained positive for Shh, Ptc, Smo and Gli-1, respectively. In schwannomas, 83.3% (5 of 6), 83.3% (5 of 6), 83.3%(5 of 6) and 100% (6 of 6) stained positive for Shh,Ptc, Smo and Gli-1, respectively. Immunohistochemistry revealed that the expressions of Shh and Gli-1 were significantly higher in leiomyomas than in GISTs (P < 0.05,respectively). Shh expression strongly correlated with the grade of tumor risk category and with tumor size (P <0.05, respectively). However, the expressions of Ptc and Smo did not correlate with histopathological differentiation.CONCLUSION: These results suggest that the Hh signaling pathway may play an important role in myogenic differentiation and the malignant potential of human intestinal stromal tumors.

  11. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal.

    Directory of Open Access Journals (Sweden)

    Mariana Rodova

    Full Text Available Dysregulation of the sonic hedgehog (Shh signaling pathway has been associated with cancer stem cells (CSC and implicated in the initiation of pancreatic cancer. Pancreatic CSCs are rare tumor cells characterized by their ability to self-renew, and are responsible for tumor recurrence accompanied by resistance to current therapies. The lethality of these incurable, aggressive and invasive pancreatic tumors remains a daunting clinical challenge. Thus, the objective of this study was to investigate the role of Shh pathway in pancreatic cancer and to examine the molecular mechanisms by which sulforaphane (SFN, an active compound in cruciferous vegetables, inhibits self-renewal capacity of human pancreatic CSCs. Interestingly, we demonstrate here that Shh pathway is highly activated in pancreatic CSCs and plays important role in maintaining stemness by regulating the expression of stemness genes. Given the requirement for Hedgehog in pancreatic cancer, we investigated whether hedgehog blockade by SFN could target the stem cell population in pancreatic cancer. In an in vitro model, human pancreatic CSCs derived spheres were significantly inhibited on treatment with SFN, suggesting the clonogenic depletion of the CSCs. Interestingly, SFN inhibited the components of Shh pathway and Gli transcriptional activity. Interference of Shh-Gli signaling significantly blocked SFN-induced inhibitory effects demonstrating the requirement of an active pathway for the growth of pancreatic CSCs. SFN also inhibited downstream targets of Gli transcription by suppressing the expression of pluripotency maintaining factors (Nanog and Oct-4 as well as PDGFRα and Cyclin D1. Furthermore, SFN induced apoptosis by inhibition of BCL-2 and activation of caspases. Our data reveal the essential role of Shh-Gli signaling in controlling the characteristics of pancreatic CSCs. We propose that pancreatic cancer preventative effects of SFN may result from inhibition of the Shh pathway

  12. Generalidades de la señalización molecular durante el desarrollo embrionario: El caso del Sonic Hedgehog

    Directory of Open Access Journals (Sweden)

    David Arias

    2016-12-01

    Full Text Available Histogenesis and organogenesis of the vertebrates –including humans– involves the interaction of an epithelium (derived from the ectoderm and endoderm and the underlying mesenchyme (derived from the intraembryonic mesoderm. This interaction is regulated by a paracrine signaling network that includes several ligands and their respective receptors, in addition to a series of transcription factors that control the whole system. Among these factors are fibroblast growth factors (Fgf, Hedgehog family (Hh, Wingless family (Wnt and beta-fibroblast growth factor superfamily (Tgf-β, which act to organize the morphogenetic pattern of a tissue, an organ, an apparatus and a morphofunctional system. One of the most studied factors is Sonic hedgehog (Shh, which is essential for regulating the formation of morphogenetic fields in specific places of the embryo’s body schema through cell proliferation, differentiation, migration and cell survival processes –in development or in the adult–. Therefore, the purpose of this literature review is to describe the role of Shh in the embryonic development of the neural tube, the limbs and the teeth.

  13. Regulation of sonic hedgehog on T cell development and function%Sonic hedgehog调控T细胞分化和功能的研究

    Institute of Scientific and Technical Information of China (English)

    孙艳; 李朋军

    2011-01-01

    T cell is an important immune cell. T cell-mediated immunity has been involved in the pathophysiology of many diseases such as cancer, autoimmune disease and so on. Study on regulation mechanisms of T cell development and function will not only contribute to uncover mechanism of diseases, and also provide ideas for prevention and treatment of related disease. Recently, researches abroad have showed that sonic hedgehog (SHH), acting as a key mophorgen during development of early embryo, not only regulated T cell development in every stages but also had effect on proliferation and activation of peripheral mature T cell. SHH maybe an important regulator to T cell development and function. Here we review the SHH signaling pathway and it's biological function, regulation of SHH on T cell development and function in this paper.%T细胞是体内重要的免疫细胞,T细胞介导的细胞免疫应答参与了肿瘤、自身免疫性疾病等疾病的病理生理过程.研究T细胞分化和功能调控机制将有助于阐明相关疾病的发病机制,并为疾病防治提供思路.近来有国外研究显示,早期胚胎发育过程中的关键成形素(mophorgen)--Sonic hedgehog(SHH)不仅调控T细胞发育的各个阶段,还对外周成熟T细胞的增殖、活化产生影响,因此可能是T细胞分化和功能实现的重要调控机制之一.本研究就SHH信号通路及其生物学功能、SHH对T细胞分化各个阶段的调控及功能的影响作一综述.

  14. 筛选调控Sonic Hedgehog信号转导的泛素连接酶%Identification of E3 ligases that regulate Sonic Hedgehog signaling transduction

    Institute of Scientific and Technical Information of China (English)

    汤颖; 乐珅; 程雁

    2013-01-01

    Objeetive:Screening for HECT E3 ligases that can regulate Sonic Hedgehog (Shh) signaling pathway.Methods:In the first round of screening,siRNAs of the HECT E3 ligases were tested for Shh pathway transduction by GliBS-luciferase assay.And in the second round,these siRNAs were tested for the localization of Patched1-GFP in primary cilia by immunofluorescence staining.Results:After two rounds of screening,5 HECT E3 ligases were identified to regulate Shh pathway,which are Smurf1,Smurf2,Ube3c,Wwp1 and Wwp2.Conclusion:A screening system of new regulators of Shh signaling was setup,and 5 HECT E3 ligases were found from our preliminary screening.%目的:发现调控Sonic Hedgehog (Shh)信号转导的泛素连接酶.方法:第一轮筛选,利用荧光素酶报告基因(8×GliBS-Luc)检测系统,检测相应HECT家族E3泛素连接酶的siRNA对Shh信号通路活性的影响;第二轮筛选,利用细胞免疫荧光激光共聚焦检测系统,检测上述siRNA对Shh的受体Ptch1蛋白原纤毛定位的影响.综合2轮筛选结果,初步发现影响Shh信号通路活性的HECT家族E3泛素连接酶.结果:通过2轮筛选,发现Smurf1、Smurf2、Ube3c、Wwp1、Wwp2共5个泛素连接酶,不仅能调节Ptch1蛋白的原纤毛定位,也可以增加通路下游转录因子Gli的活性.结论:建立了筛选调控Shh信号通路的泛素连接酶的平台.在初步筛选的27个HECT E3泛素连接酶中,有5个成员参与调控Shh信号通路.

  15. Identification of Sonic Hedgehog-Induced Stromal Factors That Stimulate Prostate Tumor Growth

    Science.gov (United States)

    2006-11-01

    Biol Anim 1995; 31(11):840–845. 13. Salm SN, Koikawa Y, Ogilvie V, Tsujimura A, Coetzee S, Moscatelli D, Moore E, Lepor H, Shapiro E, Sun TT, Wilson...R, Thrasher JB, Bushman W. Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology 2004;145(8):3961–3970. 27. Sherr CJ, Roberts JM ...Zylstra CR, Koeman JM , Swiatek PJ, Teh BT, Williams BO. Spectral karyotyping of sarcomas and fibroblasts derived from Ink4a/ Arf-deficient mice reveals

  16. Sonic hedgehog在小鼠胚胎颌面部的表达%Expression of Sonic hedgehog in the maxillofacial region of mouse embryo

    Institute of Scientific and Technical Information of China (English)

    杜娟; 刘淑红; 范文红; 沈岩; 范志朋; 范明; 王松灵

    2005-01-01

    目的探讨Sonic hedgehog(Shh)在小鼠胚胎颌面部正常发育中的表达.方法应用免疫组织化学ABC法和图像分析系统研究Shh在小鼠胚11.5 d,13.5 d及17.5 d颌面部的表达情况.结果 Shh在胚胎11.5 d,13.5 d及17.5 d的颌面上下颌突均有表达,且较对照组有差异(P<0.05),但在上下颌突之间表达没有差异,在上皮和结缔组织之间表达基本无差异.结论 Shh在小鼠胚胎颌面部正常发育有明显表达,提示Shh可能参与颌面部生长发育.

  17. Sonic Hedgehog Signaling: Evidence for Its Protective Role in Endotoxin Induced Acute Lung Injury in Mouse Model.

    Directory of Open Access Journals (Sweden)

    Xing Chen

    Full Text Available To investigate the protective role of the sonic hedgehog (SHH signaling associated with a lipopolysaccharide (LPS-induced acute lung injury (ALI in a mouse model.Male BALB/c mice were randomly divided into four groups: control, LPS, LPS-cyclopamine group and cyclopamine group. ALI was induced by LPS ip injection (5 mg/kg. The sonic hedgehog inhibitor cyclopamine (50 mg/kg was given to the LPS-cyclopamine group at 30 min after LPS injection as well as normal mice as control. Lung injury was observed histologically in hematoxylin and eosin (HE stained tissue sections, semi-quantified by lung tissue injury score, and the lung tissue mass alteration was measured by wet to dry weight ratio (W/D. mRNA expression levels of TNF-α, SHH, Patched (PTC and GLI1 in lung tissue were studied with real time quantitative PCR (RT-PCR, while the protein expression of SHH and GLI1 was determined by western blot analysis.Lung tissue injury score, thickness of alveolar septa, W/D, and TNF-α mRNA expression levels were significantly higher in the ALI mice than the normal mice (P<0.05. The mRNA expression levels of SHH, PTC, and GLI1 in the ALI mice were significantly higher at 12h and 24h after LPS injection, but not at the 6h time point. Protein production of SHH and GLI1 at 6h, 12h, and 24h in the lungs of ALI mice significantly increased, in a time-dependent manner, compared with that in normal mice. Cyclopamine alone has no effect on pathological changes in normal mice. Intervention with cyclopamine in ALI mice led to a reduction in mRNA levels of SHH, PTC, and GLI1 as well as SHH and GLI1 protein levels; meanwhile, the pathological injury scores of lung tissues, thickness of alveolar septa, W/D, and mRNA expression levels of TNF-α increased compared with mice receiving LPS only.The SHH signaling pathway was activated in response to LPS-induced ALI, and up-regulation of SHH expression could alleviate lung injury and be involved in the repair of injured lung

  18. Sonic hedgehog促1型糖尿病小鼠的伤口愈合%Delayed wound healing in type 1 diabetic mice improved by sonic hedgehog

    Institute of Scientific and Technical Information of China (English)

    胡太平

    2007-01-01

    目的:研究sonic hedgehog(Shh)及其受体Ptc1在糖尿病小鼠伤口愈合中的作用.方法:分别在正常和链脲佐菌素(STZ)诱导的糖尿病小鼠建立皮肤损伤模型,Western印迹检测Shh和Ptc1的蛋白水平;观察外源性Shh或Ptc1抑制剂cyclopamine对伤口愈合的影响.结果:(1)正常小鼠损伤后皮肤组织中的Shh和Ptc1蛋白质表达明显升高;外源性Shh对伤口愈合无明显促进作用,但cyclopamine可以明显地抑制伤口愈合;(2)STZ诱导的糖尿病小鼠,其皮肤组织中内源性的Shh和Ptc1蛋白水平明显下调;(3)外源性Shh可显著促进糖尿病小鼠伤口的愈合,且呈浓度依赖性;Cyclopamine则明显地抑制糖尿病小鼠的伤口愈合.结论:Shh-Ptc1通路参与了皮肤伤口愈合,糖尿病伤口愈合延迟与Shh-Ptc1表达下调有关.

  19. Role of Sonic Hedgehog Signaling Pathway in Rat Inflammatory Dental Pulp%Sonic Hedgehog信号通路在大鼠牙髓炎中的作用

    Institute of Scientific and Technical Information of China (English)

    潘明慧; 程志刚

    2014-01-01

    目的:观察Sonic Hedgehog(Shh)信号分子在大鼠牙髓炎中的免疫定位,探讨Shh信号通路在牙髓防御和修复中所起的作用.方法:将15只SD大鼠随机分成1d、3d和7d组,每组5只,用穿髓开放法建立大鼠牙髓炎模型,3组大鼠分别于术后1,3,7d处死,取出下颌磨牙,常规组织学处理,免疫组化方法检测Shh,Smo,Ptc,Gli1 的表达,并对Shh信号通路在大鼠牙髓炎中的表达进行半定量分析,对照组为大鼠正常牙髓.结果:大鼠牙髓炎模型1,3,7 d Shh广泛表达于穿髓孔下方牙髓间充质细胞及远离穿髓孔的根髓细胞中,表达量随炎症的进展无显著性提高(P>0.05).Ptc、Smo、Glil在大鼠牙髓损伤后1d未见阳性表达,3d和7d均表达于穿髓孔下方牙髓间充质细胞中,且表达量均有显著性提高(P<0.05).空白对照组中Shh信号通路阴性表达.结论:Shh信号通路在牙髓炎过程中表达,提示其可能被激活,参与牙髓炎症反应.

  20. Sonic hedgehog regulates its own receptor on postcrossing commissural axons in a glypican1-dependent manner.

    Science.gov (United States)

    Wilson, Nicole H; Stoeckli, Esther T

    2013-08-07

    Upon reaching their intermediate target, the floorplate, commissural axons acquire responsiveness to repulsive guidance cues, allowing the axons to exit the midline and adopt a contralateral, longitudinal trajectory. The molecular mechanisms that regulate this switch from attraction to repulsion remain poorly defined. Here, we show that the heparan sulfate proteoglycan Glypican1 (GPC1) is required as a coreceptor for the Shh-dependent induction of Hedgehog-interacting protein (Hhip) in commissural neurons. In turn, Hhip is required for postcrossing axons to respond to a repulsive anteroposterior Shh gradient. Thus, Shh is a cue with dual function. In precrossing axons it acts as an attractive guidance molecule in a transcription-independent manner. At the same time, Shh binds to GPC1 to induce the expression of its own receptor, Hhip, which mediates the repulsive response of postcrossing axons to Shh. Our study characterizes a molecular mechanism by which navigating axons switch their responsiveness at intermediate targets.

  1. A shared role for sonic hedgehog signalling in patterning chondrichthyan gill arch appendages and tetrapod limbs.

    Science.gov (United States)

    Gillis, J Andrew; Hall, Brian K

    2016-04-15

    Chondrichthyans (sharks, skates, rays and holocephalans) possess paired appendages that project laterally from their gill arches, known as branchial rays. This led Carl Gegenbaur to propose that paired fins (and hence tetrapod limbs) originally evolved via transformation of gill arches. Tetrapod limbs are patterned by asonic hedgehog(Shh)-expressing signalling centre known as the zone of polarising activity, which establishes the anteroposterior axis of the limb bud and maintains proliferative expansion of limb endoskeletal progenitors. Here, we use loss-of-function, label-retention and fate-mapping approaches in the little skate to demonstrate that Shh secretion from a signalling centre in the developing gill arches establishes gill arch anteroposterior polarity and maintains the proliferative expansion of branchial ray endoskeletal progenitor cells. These findings highlight striking parallels in the axial patterning mechanisms employed by chondrichthyan branchial rays and paired fins/limbs, and provide mechanistic insight into the anatomical foundation of Gegenbaur's gill arch hypothesis.

  2. A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors.

    Science.gov (United States)

    Neumann, Julia E; Wefers, Annika K; Lambo, Sander; Bianchi, Edoardo; Bockstaller, Marie; Dorostkar, Mario M; Meister, Valerie; Schindler, Pia; Korshunov, Andrey; von Hoff, Katja; Nowak, Johannes; Warmuth-Metz, Monika; Schneider, Marlon R; Renner-Müller, Ingrid; Merk, Daniel J; Shakarami, Mehdi; Sharma, Tanvi; Chavez, Lukas; Glass, Rainer; Chan, Jennifer A; Taketo, M Mark; Neumann, Philipp; Kool, Marcel; Schüller, Ulrich

    2017-09-11

    Embryonal tumors with multilayered rosettes (ETMRs) have recently been described as a new entity of rare pediatric brain tumors with a fatal outcome. We show here that ETMRs are characterized by a parallel activation of Shh and Wnt signaling. Co-activation of these pathways in mouse neural precursors is sufficient to induce ETMR-like tumors in vivo that resemble their human counterparts on the basis of histology and global gene-expression analyses, and that point to apical radial glia cells as the possible tumor cell of origin. Overexpression of LIN28A, which is a hallmark of human ETMRs, augments Sonic-hedgehog (Shh) and Wnt signaling in these precursor cells through the downregulation of let7-miRNA, and LIN28A/let7a interaction with the Shh pathway was detected at the level of Gli mRNA. Finally, human ETMR cells that were transplanted into immunocompromised host mice were responsive to the SHH inhibitor arsenic trioxide (ATO). Our work provides a novel mouse model in which to study this tumor type, demonstrates the driving role of Wnt and Shh activation in the growth of ETMRs and proposes downstream inhibition of Shh signaling as a therapeutic option for patients with ETMRs.

  3. Disruption of sonic hedgehog signaling in Ellis-van Creveld dwarfism confers protection against bipolar affective disorder.

    Science.gov (United States)

    Ginns, E I; Galdzicka, M; Elston, R C; Song, Y E; Paul, S M; Egeland, J A

    2015-10-01

    Ellis-van Creveld syndrome, an autosomal recessively inherited chondrodysplastic dwarfism, is frequent among Old Order Amish of Pennsylvania. Decades of longitudinal research on bipolar affective disorder (BPAD) revealed cosegregation of high numbers of EvC and Bipolar I (BPI) cases in several large Amish families descending from the same pioneer. Despite the high prevalence of both disorders in these families, no EvC individual has ever been reported with BPI. The proximity of the EVC gene to our previously reported chromosome 4p16 BPAD locus with protective alleles, coupled with detailed clinical observations that EvC and BPI do not occur in the same individuals, led us to hypothesize that the genetic defect causing EvC in the Amish confers protection from BPI. This hypothesis is supported by a significant negative association of these two disorders when contrasted with absence of disease (P=0.029, Fisher's exact test, two-sided, verified by permutation to estimate the null distribution of the test statistic). As homozygous Amish EVC mutations causing EvC dwarfism do so by disrupting sonic hedgehog (Shh) signaling, our data implicate Shh signaling in the underlying pathophysiology of BPAD. Understanding how disrupted Shh signaling protects against BPI could uncover variants in the Shh pathway that cause or increase risk for this and related mood disorders.

  4. Foxj1 regulates floor plate cilia architecture and modifies the response of cells to sonic hedgehog signalling

    Science.gov (United States)

    Cruz, Catarina; Ribes, Vanessa; Kutejova, Eva; Cayuso, Jordi; Lawson, Victoria; Norris, Dominic; Stevens, Jonathan; Davey, Megan; Blight, Ken; Bangs, Fiona; Mynett, Anita; Hirst, Elizabeth; Chung, Rachel; Balaskas, Nikolaos; Brody, Steven L.; Marti, Elisa; Briscoe, James

    2010-01-01

    Sonic hedgehog signalling is essential for the embryonic development of many tissues including the central nervous system, where it controls the pattern of cellular differentiation. A genome-wide screen of neural progenitor cells to evaluate the Shh signalling-regulated transcriptome identified the forkhead transcription factor Foxj1. In both chick and mouse Foxj1 is expressed in the ventral midline of the neural tube in cells that make up the floor plate. Consistent with the role of Foxj1 in the formation of long motile cilia, floor plate cells produce cilia that are longer than the primary cilia found elsewhere in the neural tube, and forced expression of Foxj1 in neuroepithelial cells is sufficient to increase cilia length. In addition, the expression of Foxj1 in the neural tube and in an Shh-responsive cell line attenuates intracellular signalling by decreasing the activity of Gli proteins, the transcriptional mediators of Shh signalling. We show that this function of Foxj1 depends on cilia. Nevertheless, floor plate identity and ciliogenesis are unaffected in mouse embryos lacking Foxj1 and we provide evidence that additional transcription factors expressed in the floor plate share overlapping functions with Foxj1. Together, these findings identify a novel mechanism that modifies the cellular response to Shh signalling and reveal morphological and functional features of the amniote floor plate that distinguish these cells from the rest of the neuroepithelium. PMID:21098568

  5. KIF13B establishes a CAV1-enriched microdomain at the ciliary transition zone to promote Sonic hedgehog signalling

    Science.gov (United States)

    Schou, Kenneth B.; Mogensen, Johanne B.; Morthorst, Stine K.; Nielsen, Brian S.; Aleliunaite, Aiste; Serra-Marques, Andrea; Fürstenberg, Nicoline; Saunier, Sophie; Bizet, Albane A.; Veland, Iben R.; Akhmanova, Anna; Christensen, Søren T.; Pedersen, Lotte B.

    2017-01-01

    Ciliary membrane composition is controlled by transition zone (TZ) proteins such as RPGRIP1, RPGRIPL and NPHP4, which are vital for balanced coordination of diverse signalling systems like the Sonic hedgehog (Shh) pathway. Activation of this pathway involves Shh-induced ciliary accumulation of Smoothened (SMO), which is disrupted by disease-causing mutations in TZ components. Here we identify kinesin-3 motor protein KIF13B as a novel member of the RPGRIP1N-C2 domain-containing protein family and show that KIF13B regulates TZ membrane composition and ciliary SMO accumulation. KIF13B is upregulated during ciliogenesis and is recruited to the ciliary base by NPHP4, which binds to two distinct sites in the KIF13B tail region, including an RPGRIP1N-C2 domain. KIF13B and NPHP4 are both essential for establishment of a CAV1 membrane microdomain at the TZ, which in turn is required for Shh-induced ciliary SMO accumulation. Thus KIF13B is a novel regulator of ciliary TZ configuration, membrane composition and Shh signalling. PMID:28134340

  6. Role of the ANKMY2-FKBP38 axis in regulation of the Sonic hedgehog (Shh) signaling pathway.

    Science.gov (United States)

    Saita, Shotaro; Shirane, Michiko; Ishitani, Tohru; Shimizu, Nobuyuki; Nakayama, Keiichi I

    2014-09-12

    Sonic hedgehog (Shh) is a secreted morphogen that controls the patterning and growth of various tissues in the developing vertebrate embryo, including the central nervous system. Ablation of the FK506-binding protein 38 (FKBP38) gene results in activation of the Shh signaling pathway in mouse embryos, but the molecular mechanism by which FKBP38 suppresses Shh signaling has remained unclear. With the use of a proteomics approach, we have now identified ANKMY2, a protein with three ankyrin repeats and a MYND (myeloid, Nervy, and DEAF-1)-type Zn(2+) finger domain, as a molecule that interacts with FKBP38. Co-immunoprecipitation analysis confirmed that endogenous FKBP38 and ANKMY2 interact in the mouse brain. Depletion or overexpression of ANKMY2 resulted in down- and up-regulation of Shh signaling, respectively, in mouse embryonic fibroblasts. Furthermore, combined depletion of both FKBP38 and ANKMY2 attenuated Shh signaling in these cells, suggesting that ANKMY2 acts downstream of FKBP38 to activate the Shh signaling pathway. Targeting of the zebrafish ortholog of mouse Ankmy2 (ankmy2a) in fish embryos with an antisense morpholino oligonucleotide conferred a phenotype reflecting loss of function of the Shh pathway, suggesting that the regulation of Shh signaling by ANKMY2 is conserved between mammals and fish. Our findings thus indicate that the FKBP38-ANKMY2 axis plays a key role in regulation of Shh signaling in vivo.

  7. Inactivation of Sonic Hedgehog Signaling and Polydactyly in Limbs of Hereditary Multiple Malformation, a Novel Type of Talpid Mutant

    Science.gov (United States)

    Matsubara, Yoshiyuki; Nakano, Mikiharu; Kawamura, Kazuki; Tsudzuki, Masaoki; Funahashi, Jun-Ichi; Agata, Kiyokazu; Matsuda, Yoichi; Kuroiwa, Atsushi; Suzuki, Takayuki

    2016-01-01

    Hereditary Multiple Malformation (HMM) is a naturally occurring, autosomal recessive, homozygous lethal mutation found in Japanese quail. Homozygote embryos (hmm−/−) show polydactyly similar to talpid2 and talpid3 mutants. Here we characterize the molecular profile of the hmm−/− limb bud and identify the cellular mechanisms that cause its polydactyly. The hmm−/− limb bud shows a severe lack of sonic hedgehog (SHH) signaling, and the autopod has 4 to 11 unidentifiable digits with syn-, poly-, and brachydactyly. The Zone of Polarizing Activity (ZPA) of the hmm−/− limb bud does not show polarizing activity regardless of the presence of SHH protein, indicating that either the secretion pathway of SHH is defective or the SHH protein is dysfunctional. Furthermore, mesenchymal cells in the hmm−/− limb bud do not respond to ZPA transplanted from the normal limb bud, suggesting that signal transduction downstream of SHH is also defective. Since primary cilia are present in the hmm−/− limb bud, the causal gene must be different from talpid2 and talpid3. In the hmm−/− limb bud, a high amount of GLI3A protein is expressed and GLI3 protein is localized to the nucleus. Our results suggest that the regulatory mechanism of GLI3 is disorganized in the hmm−/− limb bud. PMID:28083533

  8. Expression pattern of sonic hedgehog signaling and calcitonin gene-related peptide in the socket healing process after tooth extraction.

    Science.gov (United States)

    Pang, Pai; Shimo, Tsuyoshi; Takada, Hiroyuki; Matsumoto, Kenichi; Yoshioka, Norie; Ibaragi, Soichiro; Sasaki, Akira

    2015-11-06

    Sonic Hedgehog (SHH), a neural development inducer, plays a significant role in the bone healing process. Calcitonin gene-related peptide (CGRP), a neuropeptide marker of sensory nerves, has been demonstrated to affect bone formation. The roles of SHH signaling and CGRP-positive sensory nerves in the alveolar bone formation process have been unknown. Here we examined the expression patterns of SHH signaling and CGRP in mouse socket by immunohistochemistry and immunofluorescence analysis. We found that the expression level of SHH peaked at day 3 and was then decreased at 5 days after tooth extraction. CGRP, PTCH1 and GLI2 were each expressed in a similar pattern with their highest expression levels at day 5 and day 7 after tooth extraction. CGRP and GLI2 were co-expressed in some inflammatory cells and bone forming cells. In some areas, CGRP-positive neurons expressed GLI2. In conclusion, SHH may affect alveolar bone healing by interacting with CGRP-positive sensory neurons and thus regulate the socket's healing process after tooth extraction.

  9. Polydatin ameliorates renal ischemia/reperfusion injury by decreasing apoptosis and oxidative stress through activating sonic hedgehog signaling pathway.

    Science.gov (United States)

    Meng, Qiu-Hong; Liu, Hong-Bao; Wang, Jian-Bo

    2016-10-01

    Polydatin, a glucoside of resveratrol, recently has been demonstrated possibly to exert its biological effects by targeting sonic hedgehog (Shh). However, whether Shh signaling pathway is involved in the therapeutic effects of polydatin for renal ischemia/reperfusion (I/R) injury has not been evaluated. Our results showed that I/R induced the secretion of Shh, upregulated Patched and Smoothened, and enhanced the nuclear translocation and target gene transcription of Glioblastoma 1 in renal I/R injury models, which were further upregulated after the administration of polydatin significantly and in turn exerted prominent nephroprotective effects against cell apoptosis and oxidative stress. The treatment with cyclopamine (a specific inhibitor of Smoothened) or 5E1 (an anti-Shh antibody) not only markedly inhibited the activation of the Shh pathway, but also dramatically suppressed the nephroprotective effects of polydatin above-mentioned. These results advance our knowledge that polydatin can provide protection for kidneys against I/R injury by enhancing antioxidant capacity and decreasing cell apoptosis through activating Shh signaling pathway.

  10. Sonic Hedgehog Controls the Phenotypic Fate and Therapeutic Efficacy of Grafted Neural Precursor Cells in a Model of Nigrostriatal Neurodegeneration.

    Science.gov (United States)

    Madhavan, Lalitha; Daley, Brian F; Davidson, Beverly L; Boudreau, Ryan L; Lipton, Jack W; Cole-Strauss, Allyson; Steece-Collier, Kathy; Collier, Timothy J

    2015-01-01

    The expression of soluble growth and survival promoting factors by neural precursor cells (NPCs) is suggested to be a prominent mechanism underlying the protective and regenerative effects of these cells after transplantation. Nevertheless, how and to what extent specific NPC-expressed factors contribute to therapeutic effects is not well understood. Using RNA silencing, the current study investigated the roles of two donor NPC molecules, namely glial cell-line derived neurotrophic factor (GDNF) and sonic hedgehog (SHH), in the protection of substantia nigra dopamine neurons in rats treated with 6-hydroxydopamine (6-OHDA). Analyses indicate that as opposed to the knock-down of GDNF, SHH inhibition caused a profound decline in nigrostriatal neuroprotection. Further, SHH silencing also curbed endogenous neurogenesis and the migration of host brdU+/dcx+ neural precursors into the striatum, which was present in the animals receiving control or GDNF silenced NPCs. A change in graft phenotype, mainly reflected by a reduced proportion of undifferentiated nestin+ cells, as well as a significantly greater host microglial activity, suggested an important role for these processes in the attenuation of neuroprotection and neurogenesis upon SHH silencing. Overall these studies reveal core mechanisms fundamental to grafted NPC-based therapeutic effects, and delineate the particular contributions of two graft-expressed molecules, SHH and GDNF, in mediating midbrain dopamine neuron protection, and host plasticity after NPC transplantation.

  11. The sonic hedgehog signaling pathway stimulates anaplastic thyroid cancer cell motility and invasiveness by activating Akt and c-Met.

    Science.gov (United States)

    Williamson, Ashley J; Doscas, Michelle E; Ye, Jin; Heiden, Katherine B; Xing, Mingzhao; Li, Yi; Prinz, Richard A; Xu, Xiulong

    2016-03-01

    The sonic hedgehog (Shh) pathway is highly activated in thyroid neoplasms and promotes thyroid cancer stem-like cell phenotype, but whether the Shh pathway regulates thyroid tumor cell motility and invasiveness remains unknown. Here, we report that the motility and invasiveness of two anaplastic thyroid tumor cell lines, KAT-18 and SW1736, were inhibited by two inhibitors of the Shh pathway (cyclopamine and GANT61). Consistently, the cell motility and invasiveness was decreased by Shh and Gli1 knockdown, and was increased by Gli1 overexpression in KAT-18 cells. Mechanistic studies revealed that Akt and c-Met phosphorylation was decreased by a Gli1 inhibitor and by Shh and Gli1 knockdown, but was increased by Gli1 overexpression. LY294002, a PI-3 kinase inhibitor, and a c-Met inhibitor inhibited the motility and invasiveness of Gli1-transfected KAT-18 cells more effectively than the vector-transfected cells. Knockdown of Snail, a transcription factor regulated by the Shh pathway, led to decreased cell motility and invasiveness in KAT-18 and SW1736 cells. However, key epithelial-to-mesenchymal transition (EMT) markers including E-cadherin and vimentin as well as Slug were not affected by cyclopamine and GANT61 in either SW1736 or WRO82, a well differentiated follicular thyroid carcinoma cell line. Our data suggest that the Shh pathway-stimulated thyroid tumor cell motility and invasiveness is largely mediated by AKT and c-Met activation with little involvement of EMT.

  12. Sonic Hedgehog Produced by Bone Marrow-Derived Mesenchymal Stromal Cells Supports Cell Survival in Myelodysplastic Syndrome

    Directory of Open Access Journals (Sweden)

    Jixue Zou

    2015-01-01

    Full Text Available The role of marrow microenvironment in the pathogenesis of myelodysplastic syndrome (MDS remains controversial. Therefore, we studied the influence of bone marrow-derived mesenchymal stromal cells (BMSCs from patients with different risk types of MDS on the survival of the MDS cell lines SKM-1 and MUTZ-1. We first demonstrated that the expression of Sonic hedgehog (Shh, smoothened (Smo, and glioma-associated oncogene homolog 1 (Gli1 was increased in MDS patients n=23; the increase in expression was positively correlated with the presence of high-risk factors. The Shh signaling inhibitor, cyclopamine, inhibited high-risk MDS BMSC-induced survival of SKM-1 and MUTZ-1 cells, suggesting a role for Shh signaling in MDS cell survival. Furthermore, cyclopamine-mediated inhibition of Shh signaling in SKM-1 and MUTZ-1 cells resulted in decreased DNMT1 expression and cell survival; however, exogenous Shh peptide had the opposite effect, suggesting that Shh signaling could regulate the expression of DNMT1, thereby modulating cell survival in MDS. In addition, the apoptosis of SKM-1 and MUTZ-1 cell increased significantly when cultured with cyclopamine and a demethylation agent, 5-Aza-2′-deoxycytidine. These findings suggest that Shh signaling from BMSCs is important in the pathogenesis of MDS and could play a role in disease progression by modulating methylation.

  13. The effect of multivalent Sonic hedgehog on differentiation of human embryonic stem cells into dopaminergic and GABAergic neurons.

    Science.gov (United States)

    Vazin, Tandis; Ashton, Randolph S; Conway, Anthony; Rode, Nikhil A; Lee, Susan M; Bravo, Verenice; Healy, Kevin E; Kane, Ravi S; Schaffer, David V

    2014-01-01

    Stem cell differentiation is regulated by complex repertoires of signaling ligands which often use multivalent interactions, where multiple ligands tethered to one entity interact with multiple cellular receptors to yield oligomeric complexes. One such ligand is Sonic hedgehog (Shh), whose posttranslational lipid modifications and assembly into multimers enhance its biological potency, potentially through receptor clustering. Investigations of Shh typically utilize recombinant, monomeric protein, and thus the impact of multivalency on ligand potency is unexplored. Among its many activities, Shh is required for ventralization of the midbrain and forebrain and is therefore critical for the development of midbrain dopaminergic (mDA) and forebrain gamma-aminobutyric acid (GABA) inhibitory neurons. We have designed multivalent biomaterials presenting Shh in defined spatial arrangements and investigated the role of Shh valency in ventral specification of human embryonic stem cells (hESCs) into these therapeutically relevant cell types. Multivalent Shh conjugates with optimal valencies, compared to the monomeric Shh, increased the percentages of neurons belonging to mDA or forebrain GABAergic fates from 33% to 60% or 52% to 86%, respectively. Thus, multivalent Shh bioconjugates can enhance neuronal lineage commitment of pluripotent stem cells and thereby facilitate efficient derivation of neurons that could be used to treat Parkinson's and epilepsy patients.

  14. Tissue plasminogen activator and plasminogen activator inhibitor 1 contribute to sonic hedgehog-induced in vitro cerebral angiogenesis.

    Directory of Open Access Journals (Sweden)

    Hua Teng

    Full Text Available The molecular mechanisms underlying cerebral angiogenesis have not been fully investigated. Using primary mouse brain endothelial cells (MBECs and a capillary-like tube formation assay, we investigated whether the sonic hedgehog (Shh signaling pathway is coupled with the plasminogen/plasmin system in mediating cerebral angiogenesis. We found that incubation of MBECs with recombinant human Shh (rhShh substantially increased the tube formation in naïve MBECs. This was associated with increases in tissue plasminogen activator (tPA activation and reduction of plasminogen activator inhibitor 1 (PAI-1. Blockage of the Shh pathway with cyclopamine abolished the induction of tube formation and the effect of rhShh on tPA and PAI-1. Addition of PAI-1 reduced rhShh-augmented tube formation. Genetic ablation of tPA in MBECs impaired tube formation and downregulated of vascular endothelial growth factor (VEGF and angiopoietin 1 (Ang1. Addition of rhShh to tPA-/- MBECs only partially restored the tube formation and upregulated Ang1, but not VEGF, although rhShh increased VEGF and Ang1 expression on wild-type MBECs. Complete restoration of tube formation in tPA-/- MBECs was observed only when both exogenous Shh and tPA were added. The present study provides evidence that tPA and PAI-1 contribute to Shh-induced in vitro cerebral angiogenesis.

  15. Activation of sonic hedgehog signaling attenuates oxidized low-density lipoprotein-stimulated brain microvascular endothelial cells dysfunction in vitro.

    Science.gov (United States)

    Jiang, Xiu-Long; Chen, Ting; Zhang, Xu

    2015-01-01

    The study was performed to investigate the role of sonic hedgehog (SHH) in the oxidized low-density lipoprotein (oxLDL)-induced blood-brain barrier (BBB) disruption. The primary mouse brain microvascular endothelial cells (MBMECs) were exposed to oxLDL. The results indicated that treatment of MBMECs with oxLDL decreased the cell viability, and oxidative stress was involved in oxLDL-induce MBMECs dysfunction with increasing intracellular ROS and MDA formation as well as decreasing NO release and eNOS mRNA expression. In addition, SHH signaling components, such as SHH, Smo and Gli1, mRNA and protein levels were significantly decreased after incubation with increasing concentrations of oxLDL. Treatment with oxLDL alone or SHH loss-of-function significantly increased the permeability of MBMECs, and overexpression of SHH attenuated oxLDL-induced elevation of permeability in MBMECs. Furthermore, SHH gain-of-function could reverse oxLDL-induced apoptosis through inhibition caspase3 and caspase8 levels in MBMECs. Taken together, these results demonstrated that the suppression of SHH in MBMECs might contribute to the oxLDL-induced disruption of endothelial barrier. However, the overexpression of SHH could reverse oxLDL-induced endothelial cells dysfunction in vitro.

  16. Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen sonic hedgehog.

    Directory of Open Access Journals (Sweden)

    Eric Dessaud

    Full Text Available Morphogens are secreted signalling molecules that act in a graded manner to control the pattern of cellular differentiation in developing tissues. An example is Sonic hedgehog (Shh, which acts in several developing vertebrate tissues, including the central nervous system, to provide positional information during embryonic patterning. Here we address how Shh signalling assigns the positional identities of distinct neuronal subtype progenitors throughout the ventral neural tube. Assays of intracellular signal transduction and gene expression indicate that the duration as well as level of signalling is critical for morphogen interpretation. Progenitors of the ventral neuronal subtypes are established sequentially, with progressively more ventral identities requiring correspondingly higher levels and longer periods of Shh signalling. Moreover, cells remain sensitive to changes in Shh signalling for an extended time, reverting to antecedent identities if signalling levels fall below a threshold. Thus, the duration of signalling is important not only for the assignment but also for the refinement and maintenance of positional identity. Together the data suggest a dynamic model for ventral neural tube patterning in which positional information corresponds to the time integral of Shh signalling. This suggests an alternative to conventional models of morphogen action that rely solely on the level of signalling.

  17. miR-326 is downstream of Sonic hedgehog signaling and regulates the expression of Gli2 and smoothened.

    Science.gov (United States)

    Jiang, Zhihua; Cushing, Leah; Ai, Xingbin; Lü, Jining

    2014-08-01

    Sonic hedgehog (Shh) is expressed and secreted from the embryonic lung epithelium and acts on the adjacent mesenchymal cells via its receptor Patched (Ptch)/Smoothened (Smo) and transcriptional effectors Gli proteins. Genetic studies showed that the Shh pathway plays critical roles in mouse lung development. However, little is known about microRNAs (miRNAs) downstream of Shh in embryonic lungs. Here we profiled miRNAs in embryonic lung cultures treated with cyclopamine, a specific Smo antagonist or with Smo agonist by next-generation of sequencing. We then performed functional screening to examine whether some of these miRNAs can modulate the induction of Gli-responsive luciferase by Shh treatment. These analyses revealed that expression of miR-326 and its host gene, Arrestin β1, is selectively enriched in embryonic lung mesenchymal cells and is specifically influenced by Shh activity. Furthermore, functional analyses showed that miR-326 acts as a negative modulator for Shh signaling by directly targeting Smo and Gli2. Together, these findings suggest a novel miR-326-negative feedback loop in regulating the activity of Shh signaling.

  18. c-Myc Enhances Sonic Hedgehog-Induced Medulloblastoma Formation from Nestin-Expressing Neural Progenitors in Mice

    Directory of Open Access Journals (Sweden)

    Ganesh Rao

    2003-05-01

    Full Text Available Medulloblastomas are malignant brain tumors that arise in the cerebella of children. The presumed cellsof-origin are undifferentiated precursors of granule neurons that occupy the external granule layer (EGL of the developing cerebellum. The overexpression of proteins that normally stimulate proliferation of neural progenitor cells may initiate medulloblastoma formation. Two known mitogens for neural progenitors are the c-Myc oncoprotein and Sonic hedgehog (Shh, a crucial determinant of embryonic pattern formation in the central nervous system. We modeled the ability of c-Myc and Shh to induce medulloblastoma in mice using the RCAS/tv-a system, which allows postnatal gene transfer and expression in a cell type-specific manner. We targeted the expression of Shh and c-Myc to nestin-expressing neural progenitor cells by injecting replication-competent ALV splice acceptor (RCAS vectors into the cerebella of newborn mice. Following injection with RCAS-Shh alone, 3/32 (9% mice developed medulloblastomas and 5/32 showed multifocal hyperproliferation of the EGL, possibly a precursor stage of medulloblastoma. Following injection with RCAS-Shh plus RCAS-Myc, 9/39 (23% mice developed medulloblastomas. We conclude that nestin-expressing neural progenitors, present in the cerebellum at birth, can act as the cells-of-origin for medulloblastoma, and that c-Myc cooperates with Shh to enhance tumorigenicity.

  19. Suppression of hair follicle development inhibits induction of sonic hedgehog, patched, and patched-2 in hair germs in mice.

    Science.gov (United States)

    Yamago, G; Takata, Y; Furuta, I; Urase, K; Momoi, T; Huh, N

    2001-09-01

    Embryonic induction of hair follicles is a fascinating model of localized morphogenesis from a simple homogeneous epithelial cell sheet. Accumulating evidence indicates that Sonic hedgehog (Shh) signaling plays a central role in hair follicle formation. We quantitated the expression levels of Shh and its receptor genes, Patched (Ptc) and Patched-2 (Ptch2), in two distinct experimental systems in which the development of hair follicles was suppressed. Shh, Ptc, and Ptch2 were induced about six- to tenfold in normal embryonic hair germs in vivo as well as in developing skin tissue maintained in organ culture. This induction was almost completely inhibited both in the developing skin tissue of ICR mice cultured with 30ng/ml epidermal growth factor and in embryos of Tabby mutant mice (a model of hypohidrotic ectodermal dysplasia) at 14.5-15.5 days postcoitus. Expression of Shh, Ptc and Ptch2 was induced in the Tabby embryos at 16.5 days postcoitus, indicating that Shh signaling may be involved in the formation not only of the well-studied guard hair but also of the awl hair. The potential of the two biological systems for studying molecular mechanisms in hair follicle formation, particularly at an early phase including Shh signaling, is discussed.

  20. Loss and Re-emergence of Legs in Snakes by Modular Evolution of Sonic hedgehog and HOXD Enhancers.

    Science.gov (United States)

    Leal, Francisca; Cohn, Martin J

    2016-11-07

    Limb reduction and loss are hallmarks of snake evolution. Although advanced snakes are completely limbless, basal and intermediate snakes retain pelvic girdles and small rudiments of the femur. Moreover, legs may have re-emerged in extinct snake lineages [1-5], suggesting that the mechanisms of limb development were not completely lost in snakes. Here we report that hindlimb development arrests in python embryos as a result of mutations that abolish essential transcription factor binding sites in the limb-specific enhancer of Sonic hedgehog (SHH). Consequently, SHH transcription is weak and transient in python hindlimb buds, leading to early termination of a genetic circuit that drives limb outgrowth. Our results suggest that degenerate evolution of the SHH limb enhancer played a role in reduction of hindlimbs during snake evolution. By contrast, HOXD digit enhancers are conserved in pythons, and HOXD gene expression in the hindlimb buds progresses to the distal phase, forming an autopodial (digit) domain. Python hindlimb buds then develop transitory pre-chondrogenic condensations of the tibia, fibula, and footplate, raising the possibility that re-emergence of hindlimbs during snake evolution did not require de novo re-evolution of lost structures but instead could have resulted from persistence of embryonic legs. VIDEO ABSTRACT.

  1. Cell Division Mode Change Mediates the Regulation of Cerebellar Granule Neurogenesis Controlled by the Sonic Hedgehog Signaling

    Directory of Open Access Journals (Sweden)

    Rong Yang

    2015-11-01

    Full Text Available Symmetric and asymmetric divisions are important for self-renewal and differentiation of stem cells during neurogenesis. Although cerebellar granule neurogenesis is controlled by sonic hedgehog (SHH signaling, whether and how this process is mediated by regulation of cell division modes have not been determined. Here, using time-lapse imaging and cell culture from neuronal progenitor-specific and differentiated neuron-specific reporter mouse lines (Math1-GFP and Dcx-DsRed and Patched+/− mice in which SHH signaling is activated, we find evidence for the existence of symmetric and asymmetric divisions that are closely associated with progenitor proliferation and differentiation. While activation of the SHH pathway enhances symmetric progenitor cell divisions, blockade of the SHH pathway reverses the cell division mode change in Math1-GFP;Dcx-DsRed;Patched+/− mice by promoting asymmetric divisions or terminal neuronal symmetric divisions. Thus, cell division mode change mediates the regulation of cerebellar granule neurogenesis controlled by SHH signaling.

  2. An Evolutionarily Conserved Network Mediates Development of the zona limitans intrathalamica, a Sonic Hedgehog-Secreting Caudal Forebrain Signaling Center

    Directory of Open Access Journals (Sweden)

    Elena Sena

    2016-10-01

    Full Text Available Recent studies revealed new insights into the development of a unique caudal forebrain-signaling center: the zona limitans intrathalamica (zli. The zli is the last brain signaling center to form and the first forebrain compartment to be established. It is the only part of the dorsal neural tube expressing the morphogen Sonic Hedgehog (Shh whose activity participates in the survival, growth and patterning of neuronal progenitor subpopulations within the thalamic complex. Here, we review the gene regulatory network of transcription factors and cis-regulatory elements that underlies formation of a shh-expressing delimitated domain in the anterior brain. We discuss evidence that this network predates the origin of chordates. We highlight the contribution of Shh, Wnt and Notch signaling to zli development and discuss implications for the fact that the morphogen Shh relies on primary cilia for signal transduction. The network that underlies zli development also contributes to thalamus induction, and to its patterning once the zli has been set up. We present an overview of the brain malformations possibly associated with developmental defects in this gene regulatory network (GRN.

  3. Floor plate-derived sonic hedgehog regulates glial and ependymal cell fates in the developing spinal cord.

    Science.gov (United States)

    Yu, Kwanha; McGlynn, Sean; Matise, Michael P

    2013-04-01

    Cell fate specification in the CNS is controlled by the secreted morphogen sonic hedgehog (Shh). At spinal cord levels, Shh produced by both the notochord and floor plate (FP) diffuses dorsally to organize patterned gene expression in dividing neural and glial progenitors. Despite the fact that two discrete sources of Shh are involved in this process, the individual contribution of the FP, the only intrinsic source of Shh throughout both neurogenesis and gliogenesis, has not been clearly defined. Here, we have used conditional mutagenesis approaches in mice to selectively inactivate Shh in the FP (Shh(FP)) while allowing expression to persist in the notochord, which underlies the neural tube during neurogenesis but not gliogenesis. We also inactivated Smo, the common Hh receptor, in neural tube progenitors. Our findings confirm and extend prior studies suggesting an important requirement for Shh(FP) in specifying oligodendrocyte cell fates via repression of Gli3 in progenitors. Our studies also uncover a connection between embryonic Shh signaling and astrocyte-mediated reactive gliosis in adults, raising the possibility that this pathway is involved in the development of the most common cell type in the CNS. Finally, we find that intrinsic spinal cord Shh signaling is required for the proper formation of the ependymal zone, the epithelial cell lining of the central canal that is also an adult stem cell niche. Together, our studies identify a crucial late embryonic role for Shh(FP) in regulating the specification and differentiation of glial and epithelial cells in the mouse spinal cord.

  4. Lentivirus-mediated delivery of sonic hedgehog into the striatum stimulates neuroregeneration in a rat model of Parkinson disease.

    Science.gov (United States)

    Zhang, Yi; Dong, Weiren; Guo, Suiqun; Zhao, Shu; He, Suifen; Zhang, Lihua; Tang, Yinjuan; Wang, Haihong

    2014-12-01

    Parkinson disease (PD) is a progressive neurodegenerative disorder in which the nigrostriatal pathway, consisting of dopaminergic neuronal projections from the substantia nigra to the striatum, degenerates. Viral transduction is currently the most promising in vivo strategy for delivery of therapeutic proteins into the brain for treatment of PD. Sonic hedgehog (Shh) is necessary for cell proliferation, differentiation and neuroprotection in the central nervous system. In this study, we investigated the effects of overexpressed N-terminal product of SHH (SHH-N) in a PD model rat. A lentiviral vector containing SHH-N was stereotactically injected into the striatum 24 h after a striatal 6-OHDA lesion. We found that overexpressed SHH-N attenuated behavioral deficits and reduced the loss of dopamine neurons in the substantia nigra and the loss of dopamine fibers in the striatum. In addition, fluoro-ruby-labeled nigrostriatal projections were also repaired. Together, our results demonstrate the feasibility and efficacy of using the strategy of lentivirus-mediated Shh-N delivery to delay nigrostriatal pathway degeneration. This strategy holds the potential for therapeutic application in the treatment of PD.

  5. Reiterative pattern of sonic hedgehog expression in the catshark dentition reveals a phylogenetic template for jawed vertebrates.

    Science.gov (United States)

    Smith, Moya M; Fraser, Gareth J; Chaplin, Natalie; Hobbs, Carl; Graham, Anthony

    2009-04-01

    For a dentition representing the most basal extant gnathostomes, that of the shark can provide us with key insights into the evolution of vertebrate dentitions. To detail the pattern of odontogenesis, we have profiled the expression of sonic hedgehog, a key regulator of tooth induction. We find in the catshark (Scyliorhinus canicula) that intense shh expression first occurs in a bilaterally symmetrical pattern restricted to broad regions in each half of the dentition in the embryo jaw. As in the mouse, there follows a changing temporal pattern of shh spatial restriction corresponding to epithelial bands of left and right dental fields, but also a subfield for symphyseal teeth. Then, intense shh expression is restricted to loci coincident with a temporal series of teeth in iterative jaw positions. The developmental expression of shh reveals previously undetected timing within epithelial stages of tooth formation. Each locus at alternate, even then odd, jaw positions establishes precise sequential timing for successive replacement within each tooth family. Shh appears first in the central cusp, iteratively along the jaw, then reiteratively within each tooth for secondary cusps. This progressive, sequential restriction of shh is shared by toothed gnathostomes and conserved through 500 million years of evolution.

  6. Injury-stimulated Sonic hedgehog expression in microglia contributes to neuroinflammatory response in the MPTP model of Parkinson's disease.

    Science.gov (United States)

    Lee, Jeong Hwi; Chung, Young Cheul; Bok, Eugene; Lee, Hankyu; Huh, Sue Hee; Lee, Ji Eun; Jin, Byung Kwan; Ko, Hyuk Wan

    2017-01-22

    Parkinson's disease (PD) is a progressive neurodegenerative disorder in which dopamine (DA) neurons in the substantia nigra pars compacta (SNpc) region are selectively destroyed. Sonic hedgehog (Shh) has been well known to play a key role in a variety of processes such as embryogenesis, cell proliferation and protection, and tissue repair during inflammation. However, the evidences for the innate role of Shh in adult brain injury are presently lacking and studies have been needed to unveil the importance of Shh in the process of neurodegeneration. Here, we investigated the role of Shh in the pathologic progress of Parkinson's disease in MPTP-induced animal model system. Interestingly, we observed that Shh expression was gradually increased in MPTP affected SNpc region. Activated microglia exclusively expressed SHH in vivo and we could recapitulate Shh induction in activated cultured primary microglia cells. Using the SHH responsive Cre-loxP binary genetic reporter transgenic mouse system, we also found that most of the cell types except for oligodendrocyte in the SNpc region reacted to the SHH by MPTP injection. Taken together, activated microglia induced Shh expression and most neural cells except oligodendrocyte responded to microglia-derived SHH in MPTP-treated SN. These results suggest that SHH in activated microglia by MPTP-injection might be involved in the innate processes of recovery from neurotoxin induced injury in the PD animal model system. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Embryonic tongue morphogenesis in an organ culture model of mouse mandibular arches: blocking Sonic hedgehog signaling leads to microglossia.

    Science.gov (United States)

    Torii, Daisuke; Soeno, Yuuichi; Fujita, Kazuya; Sato, Kaori; Aoba, Takaaki; Taya, Yuji

    2016-01-01

    Mouse tongue development is initiated with the formation of lateral lingual swellings just before fusion between the mediodorsal surfaces of the mandibular arches at around embryonic day 11.0. Here, we investigated the role of Sonic hedgehog (Shh) signaling in embryonic mouse tongue morphogenesis. For this, we used an organ culture model of the mandibular arches from mouse embryos at embryonic day 10.5. When the Shh signaling inhibitor jervine was added to the culture medium for 24-96 h, the formation of lateral lingual swellings and subsequent epithelial invagination into the mesenchyme were impaired markedly, leading to a hypoplastic tongue with an incomplete oral sulcus. Notably, jervine treatment reduced the proliferation of non-myogenic mesenchymal cells at the onset of forming the lateral lingual swellings, whereas it did not affect the proliferation and differentiation of a myogenic cell lineage, which created a cell community at the central circumferential region of the lateral lingual swellings as seen in vivo and in control cultures lacking the inhibitor. Thus, epithelium-derived Shh signaling stimulates the proliferation of non-myogenic mesenchymal cells essential for forming lateral lingual swellings and contributes to epithelial invagination into the mesenchyme during early tongue development.

  8. Sonic hedgehog-expressing basal cells are general post-mitotic precursors of functional taste receptor cells

    Science.gov (United States)

    Miura, Hirohito; Scott, Jennifer K.; Harada, Shuitsu; Barlow, Linda A.

    2014-01-01

    Background Taste buds contain ~60 elongate cells and several basal cells. Elongate cells comprise three functional taste cell types: I - glial cells, II - bitter/sweet/umami receptor cells, and III - sour detectors. Although taste cells are continuously renewed, lineage relationships among cell types are ill-defined. Basal cells have been proposed as taste bud stem cells, a subset of which express Sonic hedgehog (Shh). However, Shh+ basal cells turnover rapidly suggesting that Shh+ cells are precursors of some or all taste cell types. Results To fate map Shh-expressing cells, mice carrying ShhCreERT2 and a high (CAG-CAT-EGFP) or low (R26RLacZ) efficiency reporter allele were given tamoxifen to activate Cre in Shh+ cells. Using R26RLacZ, lineage-labeled cells occur singly within buds, supporting a post-mitotic state for Shh+ cells. Using either reporter, we show that Shh+ cells differentiate into all three taste cell types, in proportions reflecting cell type ratios in taste buds (I > II > III). Conclusions Shh+ cells are not stem cells, but are post-mitotic, immediate precursors of taste cells. Shh+ cells differentiate into each of the three taste cell types, and the choice of a specific taste cell fate is regulated to maintain the proper ratio within buds. PMID:24590958

  9. Mutational analysis of the Sonic Hedgehog gene in 220 newborns with oral clefts in a South American (ECLAMC) population.

    Science.gov (United States)

    Orioli, Iêda M; Vieira, Alexandre R; Castilla, Eduardo E; Ming, Jeffrey E; Muenke, Maximilian

    2002-02-15

    Oral clefts generally have a multifactorial etiology. A number of genes contribute to the formation of the face and palate. Cleft lip and/or palate can occur in pedigrees with autosomal dominant holoprosencephaly due to mutations in Sonic Hedgehog (SHH). In addition, animal models have shown that SHH is involved in face development. We thus examined the human SHH gene in 220 newborn infants with nonsyndromic oral clefts registered by the Estudio Colaborativo Latinoamericano de Malformaciones Congenitas: ECLAMC (Latin American Collaborative Study of Congenital Malformations). We found 15 variant bands in 13 patients with oral clefts, representing five different base changes, all of which were found by sequencing to represent silent polymorphisms. Four occurred in introns. The alteration occurring in an exon, Ser190Ser, may create a consensus sequence for the 3'splice site 6 bp downstream of the original consensus sequence. Thus, we did not identify any clearly disease-causing mutation in SHH in these patients, and conclude that SHH mutations are not a frequent cause of isolated oral clefts in humans.

  10. Molecular dynamics simulations of sonic hedgehog-receptor and inhibitor complexes and their applications for potential anticancer agent discovery.

    Directory of Open Access Journals (Sweden)

    Swan Hwang

    Full Text Available The sonic hedgehog (Shh signaling pathway is necessary for a variety of development and differentiation during embryogenesis as well as maintenance and renascence of diverse adult tissues. However, an abnormal activation of the signaling pathway is related to various cancers. In this pathway, the Shh signaling transduction is facilitated by binding of Shh to its receptor protein, Ptch. In this study, we modeled the 3D structure of functionally important key loop peptides of Ptch based on homologous proteins. Using this loop model, the molecular interactions between the structural components present in the pseudo-active site of Shh and key residues of Ptch was investigated in atomic level through molecular dynamics (MD simulations. For the purpose of developing inhibitor candidates of the Shh signaling pathway, the Shh pseudo-active site of this interface region was selected as a target to block the direct binding between Shh and Ptch. Two different structure-based pharmacophore models were generated considering the key loop of Ptch and known inhibitor-induced conformational changes of the Shh through MD simulations. Finally two hit compounds were retrieved through a series of virtual screening combined with molecular docking simulations and we propose two hit compounds as potential inhibitory lead candidates to block the Shh signaling pathway based on their strong interactions to receptor or inhibitor induced conformations of the Shh.

  11. Modulation of Sonic hedgehog signaling and WW domain containing oxidoreductase WOX1 expression enhances radiosensitivity of human glioblastoma cells.

    Science.gov (United States)

    Chiang, Ming-Fu; Chen, Hsin-Hong; Chi, Chih-Wen; Sze, Chun-I; Hsu, Ming-Ling; Shieh, Hui-Ru; Lin, Chin-Ping; Tsai, Jo-Ting; Chen, Yu-Jen

    2015-03-01

    WW domain containing oxidoreductase, designated WWOX, FOR or WOX1, is a known pro-apoptotic factor when ectopically expressed in various types of cancer cells, including glioblastoma multiforme (GBM). The activation of sonic hedgehog (Shh) signaling, especially paracrine Shh secretion in response to radiation, is associated with impairing the effective irradiation of cancer cells. Here, we examined the role of Shh signaling and WOX1 overexpression in the radiosensitivity of human GBM cells. Our results showed that ionizing irradiation (IR) increased the cytoplasmic Shh and nuclear Gli-1 content in GBM U373MG and U87MG cells. GBM cells with exogenous Shh treatment exhibited similar results. Pretreatment with Shh peptides protected U373MG and U87MG cells against IR in a dose-dependent manner. Cyclopamine, a Hedgehog/Smoothened (SMO) inhibitor, reversed the protective effect of Shh in U87MG cells. Cyclopamine increased Shh plus IR-induced H2AX, a marker of DNA double-strand breaks, in these cells. To verify the role of Shh signaling in the radiosensitivity of GBM cells, we tested the effect of the Gli family zinc finger 1 (Gli-1) inhibitor zerumbone and found that it could sensitize GBM cells to IR. We next examined the role of WOX1 in radiosensitivity. Overexpression of WOX1 enhanced the radiosensitivity of U87MG (possessing wild type p53 or WTp53) but not U373MG (harboring mutant p53 or MTp53) cells. Pretreatment with Shh peptides protected both WOX1-overexpressed U373MG and U87MG cells against IR and increased the cytoplasmic Shh and nuclear Gli-1 content. Zerumbone enhanced the radiosensitivity of WOX1-overexpressed U373MG and U87MG cells. In conclusion, overexpression of WOX1 preferentially sensitized human GBM cells possessing wild type p53 to radiation therapy. Blocking of Shh signaling may enhance radiosensitivity independently of the expression of p53 and WOX1. The crosstalk between Shh signaling and WOX1 expression in human glioblastoma warrants further

  12. Expression pattern of Sonic hedgehog in developing chicken bursa of Fabricius%Sonic hedgehog在鸡胚法氏囊发育过程中的表达研究

    Institute of Scientific and Technical Information of China (English)

    吕艳杰; 宁黔冀; 陈忠科

    2008-01-01

    Sonic hedgehog(Shh)是Hedgehog(Hh)家族中的一员,在胚胎发育和器官形成过程中发挥重要作用.法氏囊是鸟类所特有的中枢免疫器官,在机体的免疫防御方面发挥重要作用.利用切片原位杂交的方法探究Shh基因在鸡胚法氏囊发育过程中的表达模式,检测发现Shh基因主要在鸡胚法氏囊的囊下上皮细胞、血管周围上皮细胞以及网状细胞中表达.

  13. Sonic Hedgehog signaling pathway and regulation of inner ear development%Sonic Hedgehog信号通路与内耳发育调控

    Institute of Scientific and Technical Information of China (English)

    陈志强; 韩新焕; 曹新

    2013-01-01

    在内耳发育过程中,Sonic Hedgehog(Shh)信号通路参与确定了内耳的腹侧极性、螺旋神经元的诱导及毛细胞发育.Shh由菱脑底端分泌,与顶端产生的Wnt相互拮抗,共同调节内耳的背腹轴形成.Shh作为神经元细胞的促分裂因子,能够直接促进螺旋神经元细胞的发育.Shh信号的激活可导致Tbx1对Ngn1的抑制减弱,间接上调了Ngn1的表达,调控内耳的神经形成过程.通过调节耳蜗前体细胞的细胞周期,Shh通路参与了内耳毛细胞的分化过程.Shh从蜗管底部至顶部的浓度逐渐降低保证了毛细胞的正常发育顺序.动物实验及对听力障碍患者的研究均表明,Shh通路的传导缺陷将影响靶基因的转录,进而干扰内耳的正常发育,引起听力障碍.人类异常Shh信号所致听力障碍的疾病包括Greig cephalopolysyndactyly syndrome (GCPS)、Pallister-Hall syndrome (PHS)、Waardenburg syndrome (WS)及髓母细胞瘤等.文章总结了Shh信号通路在内耳发育调控领域的最新研究进展,为内耳发育的分子生物学机制及临床应用奠定了理论基础.

  14. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development

    Science.gov (United States)

    Bar, Carmit; Tsai, Pai-Chi; Valdes, Victor J.; Cohen, Idan; Santoriello, Francis J.; Zhao, Dejian; Hsu, Ya-Chieh; Ezhkova, Elena

    2016-01-01

    An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures. PMID:27414999

  15. Improved smell function with increased nasal mucus sonic hedgehog in hyposmic patients after treatment with oral theophylline.

    Science.gov (United States)

    Henkin, Robert I; Hosein, Suzanna; Stateman, William A; Knöppel, Alexandra B; Abdelmeguid, Mona

    We previously demonstrated the presence of sonic hedgehog (Shh) in nasal mucus in normal subjects and in patients with smell loss (hyposmia). Nasal mucus Shh levels were found significantly diminished in untreated hyposmic patients of multiple etiologies. Since treatment with oral theophylline has been previously associated with improvement in smell function we wished to study if such treatment increased nasal mucus Shh as well as improved smell function in patients with hyposmia. Forty-four patients with hyposmia of several etiologies were evaluated for changes in hyposmia by subjective measurements of smell, taste and flavor perception and by olfactometry. Measurements of nasal mucus Shh were made in relationship to each set of sensory measurements. Patients were treated with oral theophylline at doses of 200-800mg for periods of 2-10months with sensory function, nasal mucus Shh and serum theophylline levels evaluated at these time intervals. Nasal mucus Shh measurements were made with a sensitive spectrophotometric ELISA assay and theophylline with a fluorometric assay. There was consistent, significant improvement in subjective responses in smell, taste and flavor perception and in olfactometry associated with increased nasal mucus Shh and serum theophylline after theophylline treatment. Improvement in smell function and in nasal mucus Shh was positively correlated in a dose-response relationship after treatment with oral theophylline. Results are consistent with a successful role for theophylline in improvement of smell function in hyposmic patients of multiple etiologies associated with increased nasal mucus Shh which can act as a biochemical marker for smell function. Copyright © 2016. Published by Elsevier Inc.

  16. The sonic hedgehog signaling pathway is reactivated in human renal cell carcinoma and plays orchestral role in tumor growth

    Directory of Open Access Journals (Sweden)

    Helwig Jean-Jacques

    2009-12-01

    Full Text Available Abstract Background Human clear cell renal cell carcinoma (CRCC remains resistant to therapies. Recent advances in Hypoxia Inducible Factors (HIF molecular network led to targeted therapies, but unfortunately with only limited clinical significance. Elucidating the molecular processes involved in kidney tumorigenesis and resistance is central to the development of improved therapies, not only for kidney cancer but for many, if not all, cancer types. The oncogenic PI3K/Akt, NF-kB and MAPK pathways are critical for tumorigenesis. The sonic hedgehog (SHH signaling pathway is crucial to normal development. Results By quantitative RT-PCR and immunoblot, we report that the SHH signaling pathway is constitutively reactivated in tumors independently of the von Hippel-Lindau (VHL tumor suppressor gene expression which is inactivated in the majority of CRCC. The inhibition of the SHH signaling pathway by the specific inhibitor cyclopamine abolished CRCC cell growth as assessed by cell counting, BrdU incorporation studies, fluorescence-activated cell sorting and β-galactosidase staining. Importantly, inhibition of the SHH pathway induced tumor regression in nude mice through inhibition of cell proliferation and neo-vascularization, and induction of apoptosis but not senescence assessed by in vivo studies, immunoblot and immunohistochemistry. Gli1, cyclin D1, Pax2, Lim1, VEGF, and TGF-β were exclusively expressed in tumors and were shown to be regulated by SHH, as evidenced by immunoblot after SHH inhibition. Using specific inhibitors and immunoblot, the activation of the oncogenic PI3K/Akt, NF-kB and MAPK pathways was decreased by SHH inhibition. Conclusions These findings support targeting SHH for the treatment of CRCC and pave the way for innovative and additional investigations in a broad range of cancers.

  17. EDEM2 and OS-9 are required for ER-associated degradation of non-glycosylated sonic hedgehog.

    Directory of Open Access Journals (Sweden)

    Hsiang-Yun Tang

    Full Text Available Misfolded proteins of the endoplasmic reticulum (ER are eliminated by the ER-associated degradation (ERAD in eukaryotes. In S. cerevisiae, ER-resident lectins mediate substrate recognition through bipartite signals consisting of an unfolded local structure and the adjacent glycan. Trimming of the glycan is essential for the directional delivery of the substrates. Whether a similar recognition and delivery mechanism exists in mammalian cells is unknown. In this study, we systematically study the function and substrate specificity of known mammalian ER lectins, including EDEM1/2/3, OS-9 and XTP-3B using the recently identified ERAD substrate sonic hedgehog (SHH, a soluble protein carrying a single N-glycan, as well as its nonglycosylated mutant N278A. Efficient ERAD of N278A requires the core processing complex of HRD1, SEL1L and p97, similar to the glycosylated SHH. While EDEM2 was required for ERAD of both glycosylated and non-glycosylated SHHs, EDEM3 was only necessary for glycosylated SHH and EDEM1 was dispensable for both. Degradation of SHH and N278A also required OS-9, but not the related lectin XTP3-B. Robust interaction of both EDEM2 and OS-9 with a non-glycosylated SHH variant indicates that the misfolded polypeptide backbone, rather than a glycan signature, functions as the predominant signal for recognition for ERAD. Notably, SHH-N278A is the first nonglycosylated substrate to require EDEM2 for recognition and targeting for ERAD. EDEM2 also interacts with calnexin and SEL1L, suggesting a potential avenue by which misfolded glycoproteins may be shunted towards SEL1L and ERAD rather than being released into the secretory pathway. Thus, ER lectins participate in the recognition and delivery of misfolded ER substrates differently in mammals, with an underlying mechanism distinct from that of S. cerevisiae.

  18. Sonic Hedgehog-signalling patterns the developing chicken comb as revealed by exploration of the pea-comb mutation.

    Directory of Open Access Journals (Sweden)

    Henrik Boije

    Full Text Available The genetic basis and mechanisms behind the morphological variation observed throughout the animal kingdom is still relatively unknown. In the present work we have focused on the establishment of the chicken comb-morphology by exploring the Pea-comb mutant. The wild-type single-comb is reduced in size and distorted in the Pea-comb mutant. Pea-comb is formed by a lateral expansion of the central comb anlage into three ridges and is caused by a mutation in SOX5, which induces ectopic expression of the SOX5 transcription factor in mesenchyme under the developing comb. Analysis of differential gene expression identified decreased Sonic hedgehog (SHH receptor expression in Pea-comb mesenchyme. By experimentally blocking SHH with cyclopamine, the wild-type single-comb was transformed into a Pea-comb-like phenotype. The results show that the patterning of the chicken comb is under the control of SHH and suggest that ectopic SOX5 expression in the Pea-comb change the response of mesenchyme to SHH signalling with altered comb morphogenesis as a result. A role for the mesenchyme during comb morphogenesis is further supported by the recent finding that another comb-mutant (Rose-comb, is caused by ectopic expression of a transcription factor in comb mesenchyme. The present study does not only give knowledge about how the chicken comb is formed, it also adds to our understanding how mutations or genetic polymorphisms may contribute to inherited variations in the human face.

  19. Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells.

    Science.gov (United States)

    Tyson, Jennifer A; Goldberg, Ethan M; Maroof, Asif M; Xu, Qing; Petros, Timothy J; Anderson, Stewart A

    2015-04-01

    Medial ganglionic eminence (MGE)-derived GABAergic cortical interneurons (cINs) consist of multiple subtypes that are involved in many cortical functions. They also have a remarkable capacity to migrate, survive and integrate into cortical circuitry after transplantation into postnatal cortex. These features have engendered considerable interest in generating distinct subgroups of interneurons from pluripotent stem cells (PSCs) for the study of interneuron fate and function, and for the development of cell-based therapies. Although advances have been made, the capacity to generate highly enriched pools of subgroup fate-committed interneuron progenitors from PSCs has remained elusive. Previous studies have suggested that the two main MGE-derived interneuron subgroups--those expressing somatostatin (SST) and those expressing parvalbumin (PV)--are specified in the MGE from Nkx2.1-expressing progenitors at higher or lower levels of sonic hedgehog (Shh) signaling, respectively. To further explore the role of Shh and other factors in cIN fate determination, we generated a reporter line such that Nkx2.1-expressing progenitors express mCherry and postmitotic Lhx6-expressing MGE-derived interneurons express GFP. Manipulations of Shh exposure and time in culture influenced the subgroup fates of ESC-derived interneurons. Exposure to higher Shh levels, and collecting GFP-expressing precursors at 12 days in culture, resulted in the strongest enrichment for SST interneurons over those expressing PV, whereas the strongest enrichment for PV interneurons was produced by lower Shh and by collecting mCherry-expressing cells after 17 days in culture. These findings confirm that fate determination of cIN subgroups is crucially influenced by Shh signaling, and provide a system for the further study of interneuron fate and function.

  20. Sonic hedgehog and retinoic Acid induce bone marrow-derived stem cells to differentiate into glutamatergic neural cells.

    Science.gov (United States)

    Yu, Zhenhai; Wu, Shixing; Liu, Zhen; Lin, Haiyan; Chen, Lei; Yuan, Xinli; Zhang, Zhiying; Liu, Fang; Zhang, Chuansen

    2015-01-01

    Studies have showed that transplanted stem cells in the inner ear won't regenerate to replace the damaged sensory hair cells. They can spontaneously differentiate into mesenchymal cells and fibrocytes in the damaged inner ear. Only mature sensory cells of MSCs-derived possess the great potency for cell transplantation in the treatment of sensorineural hearing loss. So, we try to establish an efficient generation of the glutamatergic sensory neural phenotype for the cell transplantation of the hearing loss. We isolated MSCs from femoral and tibial bones according to their adherence to culture dishes. After purification, proliferation, and passaged, cells became homogeneous in appearance, showing more uniformity and grew in a monolayer with a typical spindle-shape morphology. The cell surface markers were assessed using FACS to characterize the isolated cells. For neural induction to harvest the glutamatergic sensory neurons, passage 3 MSCs were incubated with preinduced medium for 24 hr, and neural-induced medium for an additional 14 days. The cells exhibit a typical neural shape. RT-PCR analysis indicated that the mRNA levels of the neural cell marker nestin, Tau, MAP-2, β-tubulin III, GluR-3, and GluR-4 were higher compared with primary MSCs. Immunohistochemistry and western-blotting proofed that nestin, MAP-2, β-tubulin III, and GluR-4 proteins indeed exhibit their expression difference in the induced cells compared to the MSCs. We show an efficient protocol by the combined applications of Sonic Hedgehog (Shh) and Retinoic Acid (RA) to induce MSCs to differentiate into the glutamatergic sensory neuron which were identified from the morphological, biochemical, and molecular characteristics.

  1. Interaction of L-Arginine-methyl ester and Sonic hedgehog in liver ischemia-reperfusion injury in the rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the role of Sonic hedgehog (Shh) on the course of liver ischemia and repeffusion (I/R) in rats,and the interaction between treatment with nitric oxide donor L-Arginine-methyl ester (L-Arg) and up-regulation of Shh expression.METHODS: A total of 30 male Sprague-Dawley rats weighing 220-240 g were used in this study. Sham-control group (G1, n = 10): a sham operation was performed (except for liver I/R). I/R-untreated group (G2,n = 10): rats underwent liver ischemia for 1 h followed by reperfusion for 45 min. I/R-L-Arg group (G3, n =10): after performing the same surgical procedure as in group 2, animals were treated with L-Arg. Liver tissues were taken for determination of malondialdehyde (MDA)levels, and biochemical and histological evaluations were made.RESULTS: Plasma alanine aminotransferase (ALT),aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and γ-glutamyltranspeptidase (GGT) activities were higher in group 2 than in group 3. MDA values and the hepatic injury score decreased in the L-Arg treated group compared to the I/R-untreated group. In group 2,the hepatocytes were swollen with marked vacuolization.Group 3 rats showed well-preserved liver parenchyma,with hepatocytes extending from the central vein. The morphology of the hepatocytes and the sinusoidal structures was normal, without any signs of congestion.Mild Shh positive immunostaining was detected in group 2 animals. The expression of immunoreactive cells was increased markedly in liver tissue from I/R-L-Arg rats.CONCLUSION: Our findings suggest that Shh molecules are critical factors in the pathophysiology of inflammatory liver injury induced by I/R. In addition, NO plays an important role in the immunohistochemical expression of these molecules.

  2. Sonic hedgehog improves ischemia-induced neovascularization by enhancing endothelial progenitor cell function in type 1 diabetes.

    Science.gov (United States)

    Qin, Yuan; He, Yan-Huan; Hou, Ning; Zhang, Gen-Shui; Cai, Yi; Zhang, Gui-Ping; Xiao, Qing; He, Li-Shan; Li, Su-Juan; Yi, Quan; Luo, Jian-Dong

    2016-03-05

    The Sonic hedgehog (Shh) pathway is downregulated in type 1 diabetes, and it has been reported that augmentation of this pathway may alleviate diabetic complications. However, the cellular mechanisms underlying these protective effects are poorly understood. Recent studies indicate that impaired function of endothelial progenitor cells (EPCs) may contribute to cardiovascular problems in diabetes. We hypothesized that impaired Shh signaling contribute to endothelial progenitor cell dysfunction and that activating the Shh signaling pathway may rescue EPC function and promote diabetic neovascularization. Adult male C57/B6 mice and streptozotocin (STZ)-induced type 1 diabetic mice were used. Gli1 and Ptc1 protein levels were reduced in EPCs from diabetic mice, indicating inhibition of the Shh signaling pathway. EPC migration, tube formation ability, and mobilization were impaired in diabetic mice compared with non-diabetic controls (p < 0.05 vs control), and all were improved by in vivo administration of the Shh pathway receptor agonist SAG (p < 0.05 vs diabetes). SAG significantly increased capillary density and blood perfusion in the ischemic hindlimbs of diabetic mice (p < 0.05 vs diabetes). The AKT activity was lower in EPCs from diabetic mice than those from non-diabetic controls (p < 0.05 vs control). This decreased AKT activity led to an increased GSK-3β activity and degradation of the Shh pathway transcription factor Gli1/Gli2. SAG significantly increased the activity of AKT in EPCs. Our data clearly demonstrate that an impaired Shh pathway mediated by the AKT/GSK-3β pathway can contribute to EPC dysfunction in diabetes and thus activating the Shh signaling pathway can restore both the number and function of EPCs and increase neovascularization in type 1 diabetic mice.

  3. Activation of sonic hedgehog signaling pathway is an independent potential prognosis predictor in human hepatocellular carcinoma patients

    Institute of Scientific and Technical Information of China (English)

    Li Che; Yan-Hua Yuan; Jun Jia; Jun Ren

    2012-01-01

    Objective:The activation of hedgehog (HH) pathway is implicated in the development of human malignancies including hepatocellular carcinoma (HCC).However,the clinical impact of HH activation in HCC patents is still unclear.This study was conducted to confirm whether the expression of HH pathway components was associated with HCC progression and clinical outcome.Methods:This study was a sample-expanded and prolonged follow up of one of our previous studies.It included 46 HCC patients who underwent surgical treatment from 2002 to 2005.The expression of sonic HH (SHH),patched-1 (PTCH1),smoothened (SMOH) and glioma-associated oncogene-1 (GLI1) genes in tumor and adjacent normal tissues extracted from the patients were examined by reverse transcription-polymerase chain reaction (RT-PCR) to explore the relationship between these genes and the clinical prognosis of HCC.Results:The expression levels of SHH,PTCH1,SMOH and GLI1 in HCC tissues were 60.87%,50.00%,32.61% and 54.35%,respectively.The expression levels of SHH-related molecules were relatively intense in cancer tissue,but insignificantly correlated with any clinicopathological factors of tumor.Transcriptional factor GLI1 was the only molecule associated with poor prognosis among the HCC patients.The expression of GLI1 gene in tumor tissues was significantly related with disease-free survival (DFS) (P=0.042) and overall survival (OS) (P=0.030).The simultaneous expression of GLI1 in tumor and adjacent normal liver tissues correlated with DFS (P<0.029) and OS (P<0.025).Conclusions:HH signaling activation is an important event in the development of human HCC.The expression of GLI1 in SHH pathway is possibly involved in HCC progression,which may be a useful prognostic indicator of HCC.

  4. Nicotine induces self-renewal of pancreatic cancer stem cells via neurotransmitter-driven activation of sonic hedgehog signalling.

    Science.gov (United States)

    Al-Wadei, Mohammed H; Banerjee, Jheelam; Al-Wadei, Hussein A N; Schuller, Hildegard M

    2016-01-01

    A small subpopulation of pancreatic cancer cells with characteristics of stem cells drive tumour initiation, progression and metastasis. A better understanding of the regulation of cancer stem cells may lead to more effective cancer prevention and therapy. We have shown that the proliferation and migration of pancreatic cancer cell lines is activated by the nicotinic receptor-mediated release of stress neurotransmitters, responses reversed by γ-aminobutyric acid (GABA). However, the observed cancer inhibiting effects of GABA will only succeed clinically if GABA inhibits pancreatic cancer stem cells (PCSCs) in addition to the more differentiated cancer cells that comprise the majority of cancer tissues and cell lines. Using PCSCs isolated from two pancreatic cancer patients by cell sorting and by spheroid formation assay from pancreatic cancer cell line Panc-1, we tested the hypothesis that nicotine induces the self-renewal of PCSCs. Nicotinic acetylcholine receptors (nAChRs) α3, α4, α5 and α7 were expressed and chronic exposure to nicotine increased the protein expression of these receptors. Immunoassays showed that PCSCs produced the stress neurotransmitters epinephrine and norepinephrine and the inhibitory neurotransmitter GABA. Chronic nicotine significantly increased the production of stress neurotransmitters and sonic hedgehog (SHH) while inducing Gli1 protein and decreasing GABA. GABA treatment inhibited the induction of SHH and Gli1. Spheroid formation and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide assays showed significant nicotine-induced increases in self renewal and cell proliferation, responses blocked by GABA. Our data suggest that nicotine increases the SHH-mediated malignant potential of PCSCs and that GABA prevents these effects.

  5. AB300. SPR-27 Sonic hedgehog promotes sprouting of neurons in the pelvic ganglia and cavernous nerve during regeneration

    Science.gov (United States)

    Dobbs, Ryan; Choe, Shawn; Harrington, Daniel A.; Stupp, Samuel I.; McVary, Kevin T.; Podlasek, Carol A.

    2016-01-01

    Objective We’ve shown in previous studies that sonic hedgehog (SHH) protein delivered by nanoparticle based peptide amphiphile (PA) hydrogels to the cavernous nerve (CN) at the time of crush injury (mimicking prostatectomy), are neuroprotective and promote CN regeneration in a rat model. The mechanism of how SHH promotes CN regeneration is unknown. We hypothesize that SHH promotes sprouting of CN axons, in order to enhance nerve regeneration. We examine this hypothesis in an in vitro organ culture model. Methods The caudal portion of the pelvic ganglia (innervates penis) and CN were dissected from adult Sprague Dawley rats (n=47) and placed in Matrigel in growth factor reduced medium and were grown for three to five days. Pelvic ganglia were exposed to Affi-Gel beads containing: (I) SHH protein; (II) 5e1 and cyclopamine SHH inhibitors; and (III) SHH protein delivered by PA. Additional pelvic ganglia/CN tissue underwent CN crush and were exposed to SHH protein or PBS/mouse serum albumin (MSA) protein. Sprouting was evaluated for number of sprouts and their length, and by immunohistochemical analysis for sprouting markers (GAP43 and nNOS). Results Sprouting of pelvic ganglia and CN axons was increased with SHH treatment. Sprouts were more abundant, longer in length, with larger arborization of sprouts, in comparison to controls. More sprouting was promoted with SHH treatment of CN injured nerves. The CN had similar sprouting potential at 4 and 9 days after crush injury. Localization of SHH delivery makes a difference in sprouting potential. Conclusions The mechanism of how SHH PA treatment promotes CN regeneration, involves enhanced sprouting of pelvic ganglia and CN neurons. Understanding the mechanism of SHH PA action on neuronal tissue is critical for translation to prostatectomy patients and to further enhance regeneration. Funding Source(s) NIH/NIDDK DK079184

  6. Sonic hedgehog acts as a negative regulator of {beta}-catenin signaling in the adult tongue epithelium.

    Science.gov (United States)

    Schneider, Fabian T; Schänzer, Anne; Czupalla, Cathrin J; Thom, Sonja; Engels, Knut; Schmidt, Mirko H H; Plate, Karl H; Liebner, Stefan

    2010-07-01

    Wnt/beta-catenin signaling has been implicated in taste papilla development; however, its role in epithelial maintenance and tumor progression in the adult tongue remains elusive. We show Wnt/beta-catenin pathway activation in reporter mice and by nuclear beta-catenin staining in the epithelium and taste papilla of adult mouse and human tongues. beta-Catenin activation in APC(min/+) mice, which carry a mutation in adenomatous poliposis coli (APC), up-regulates Sonic hedgehog (Shh) and Jagged-2 (JAG2) in the tongue epithelium without formation of squamous cell carcinoma (SCC). We demonstrate that Shh suppresses beta-catenin transcriptional activity in a signaling-dependent manner in vitro and in vivo. A similar regulation and function was observed for JAG2, suggesting that both pathways negatively regulate beta-catenin, thereby preventing SCC formation in the tongue. This was supported by reduced nuclear beta-catenin in the tongue epithelium of Patched(+/-) mice, exhibiting dominant active Shh signaling. At the invasive front of human tongue cancer, nuclear beta-catenin and Shh were increased, suggesting their participation in tumor progression. Interestingly, Shh but not JAG2 was able to reduce beta-catenin signaling in SCC cells, arguing for a partial loss of negative feedback on beta-catenin transcription in tongue cancer. We show for the first time that the putative Wnt/beta-catenin targets Shh and JAG2 control beta-catenin signaling in the adult tongue epithelium, a function that is partially lost in lingual SCC.

  7. The Matricellular Protein CCN1/Cyr61 Is a Critical Regulator of Sonic Hedgehog in Pancreatic Carcinogenesis*

    Science.gov (United States)

    Haque, Inamul; De, Archana; Majumder, Monami; Mehta, Smita; McGregor, Douglas; Banerjee, Sushanta K.; Van Veldhuizen, Peter; Banerjee, Snigdha

    2012-01-01

    CCN1 is a matricellular protein and a member of the CCN family of growth factors. CCN1 is associated with the development of various cancers including pancreatic ductal adenocarcinoma (PDAC). Our recent studies found that CCN1 plays a critical role in pancreatic carcinogenesis through the induction of EMT and stemness. CCN1 mRNA and protein were detected in the early precursor lesions, and their expression intensified with disease progression. However, biochemical activity and the molecular targets of CCN1 in pancreatic cancer cells are unknown. Here we show that CCN1 regulates the Sonic Hedgehog (SHh) signaling pathway, which is associated with the PDAC progression and poor prognosis. SHh regulation by CCN1 in pancreatic cancer cells is mediated through the active Notch-1. Notably, active Notch-1is recruited by CCN1 in these cells via the inhibition of proteasomal degradation results in stabilization of the receptor. We find that CCN1-induced activation of SHh signaling might be necessary for CCN1-dependent in vitro pancreatic cancer cell migration and tumorigenicity of the side population of pancreatic cancer cells (cancer stem cells) in a xenograft in nude mice. Moreover, the functional role of CCN1 could be mediated through the interaction with the αvβ3 integrin receptor. These extensive studies propose that targeting CCN1 can provide a new treatment option for patients with pancreatic cancer since blocking CCN1 simultaneously blocks two critical pathways (i.e. SHh and Notch1) associated with the development of the disease as well as drug resistance. PMID:23027863

  8. Short-term sonic-hedgehog gene therapy to mitigate myelosuppression in highly irradiated monkeys: hype or reality?

    Science.gov (United States)

    Drouet, M; Garrigou, P; Peinnequin, A; Hérodin, F

    2014-02-01

    The protection of hematopoietic stem and progenitor cells and their environment is required for recovery from radiation-induced (RI) myelosuppression. To achieve this goal, we propose a new gene therapy strategy based on local and short-term synthesis and expression of Sonic hedgehog morphogene (Shh) at the niche level. We investigated the hematopoietic response of 8 Gy gamma-irradiated monkeys to a single intra-osseous injection of multipotent mesenchymal stem cells (adipocyte-derived stem cells/ASC) transduced with a Shh pIRES2 plasmid (3+/-0.4 × 10(6) cells/kg on day (D) 2; n=4). Control animals were injected with mock-ASCs (n=4). Two controls died from radiation toxicity on D19 and D196, whereas all Shh-ASC treated monkeys fully recovered. Thrombocytopenia (4.75+/-1.8 days versus 10+/-2.2 days, platelet count <20 × 10(9)/L), neutropenia (14.2 +/-1 days versus 17.7 +/-2.6 days, ANC count<0.5 × 10(9)/L) and anemia (15.5 +/-3.6 days versus 50.7 +/-31 days, Hb less than 10 g/dL) duration were reduced in Shh-ASC animals. Areas under the curve of platelets (P<0.05), ANCs (P=0.06) and RBC/Hb between D0 and D30 were higher in Shh-ASC injected animals. Globally this study suggests that Shh may represent a new factor to counteract RI-myelosuppression.

  9. Is Sonic Hedgehog Involved in Human Fracture Healing? - A Prospective Study on Local and Systemic Concentrations of SHH

    Science.gov (United States)

    Eipeldauer, Stefan; Thomas, Anita; Hoechtl-Lee, Leonard; Kecht, Mathias; Binder, Harald; Koettstorfer, Julia; Gregori, Markus; Sarahrudi, Kambiz

    2014-01-01

    Introduction Sonic Hedgehog (SHH) is a new signalling pathway in bone repair. Evidence exist that SHH pathway plays a significant role in vasculogenesis and limb development during embryogenesis. Some in vitro and animal studies has already proven its potential for bone regeneration. However, no data on the role of SHH in the human fracture healing have been published so far. Methods Seventy-five patients with long bone fractures were included into the study and divided in 2 groups. First group contained 69 patients with normal fracture healing. Four patients with impaired fracture healing formed the second group. 34 volunteers donated blood samples as control. Serum samples were collected over a period of 1 year following a standardized time schedule. In addition, SHH levels were measured in fracture haematoma and serum of 16 patients with bone fractures. Results Fracture haematoma and patients serum both contained lower SHH concentrations compared to control serum. The comparison between the patients' serum SHH level and the control serum revealed lower levels for the patients at all measurement time points. Significantly lower concentrations were observed at weeks 1 and 2 after fracture. SHH levels were slightly decreased in patients with impaired fracture healing without statistical significance. Conclusion This is the first study to report local and systemic concentration of SHH in human fracture healing and SHH serum levels in healthy adults. A significant reduction of the SHH levels during the inflammatory phase of fracture healing was found. SHH concentrations in fracture haematoma and serum were lower than the concentration in control serum for the rest of the healing period. Our findings indicate that there is no relevant involvement of SHH in human fracture healing. Fracture repair process seem to reduce the SHH level in human. Further studies are definitely needed to clarify the underlying mechanisms. PMID:25501422

  10. Comparative study assessing effects of sonic hedgehog and VEGF in a human co-culture model for bone vascularisation strategies

    Directory of Open Access Journals (Sweden)

    CJ Kirkpatrick

    2011-02-01

    Full Text Available The morphogen sonic hedgehog (Shh seems to mediate adult repair processes in bone regeneration and vascularisation. In this study we investigated the effects of Shh on co-cultures consisting of human primary osteoblasts and outgrowth endothelial cells in terms of angiogenic activation and vessel maturation in comparison to the treatment with the commonly used proangiogenic factor, VEGF. Both, stimulation with VEGF or Shh, leads to an increase in the formation of microvessel-like structures compared to untreated controls. In contrast to VEGF, proangiogenic effects by Shh could already be observed after 24 h of treatment. Nevertheless, after 14 days the angiogenic activity of OEC was comparable in VEGF- or Shh-treated co-cultures. Furthermore, Shh and VEGF resulted in different growth factor expression or release profiles. Compared to VEGF, Shh stimulates also the expression and secretion of angiopoietins which was detected as early as 24 h of treatment. Moreover, smooth muscle cell-related markers, such as alpha-smooth muscle actin, desmin and myocardin, as well as basement membrane components were clearly upregulated in response to Shh treatment compared to VEGF- or untreated controls. In terms of growth factors relevant for vessel stabilisation and maturation increased levels of PDGF-BB, angiopoietin-1 and TGF-beta were observed in cell culture supernatants when treated with Shh. This was in accordance with higher levels of smooth muscle actin in Shh-treated samples indicating the potential of Shh to improve the angiogenic activity and vessel stabilisation of human tissue engineered constructs. Experiments using cyclopamine, a Shh pathway inhibitor, blocked the effects of Shh.

  11. Sonic Hedgehog gene delivery to the rodent heart promotes angiogenesis via iNOS/netrin-1/PKC pathway.

    Directory of Open Access Journals (Sweden)

    Rafeeq P H Ahmed

    Full Text Available BACKGROUND: We hypothesized that genetic modification of mesenchymal stem cells (MSCs with Sonic Hedgehog (Shh transgene, a morphogen during embryonic development and embryonic and adult stem cell growth, improved their survival and angiogenic potential in the ischemic heart via iNOS/netrin/PKC pathway. METHODS/PRINCIPAL FINDINGS: MSCs from young Fisher-344 rat bone marrow were purified and transfected with pCMV Shh plasmid ((ShhMSCs. Immunofluorescence, RT-PCR and Western blotting showed higher expression of Shh in (ShhMSCs which also led to increased expression of angiogenic and pro-survival growth factors in (ShhMSCs. Significantly improved migration and tube formation was seen in (ShhMSCs as compared to empty vector transfected MSCs ((EmpMSCs. Significant upregulation of netrin-1 and iNOS was observed in (ShhMSCs in PI3K independent but PKC dependent manner. For in vivo studies, acute myocardial infarction model was developed in Fisher-344 rats. The animals were grouped to receive 70 microl basal DMEM without cells (group-1 or containing 1x10(6 (EmpMSCs (group-2 and (ShhMSCs (group-3. Group-4 received recombinant netrin-1 protein injection into the infarcted heart. FISH and sry-quantification revealed improved survival of (ShhMSCs post engraftment. Histological studies combined with fluorescent microspheres showed increased density of functionally competent blood vessels in group-3 and group-4. Echocardiography showed significantly preserved heart function indices post engraftment with (ShhMSCs in group-3 animals. CONCLUSIONS/SIGNIFICANCE: Reprogramming of stem cells with Shh maximizes their survival and angiogenic potential in the heart via iNOS/netrin-1/PKC signaling.

  12. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development.

    Directory of Open Access Journals (Sweden)

    Carolina N Perdigoto

    2016-07-01

    Full Text Available An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2 in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures.

  13. Sonic hedgehog stimulates glycolysis and proliferation of breast cancer cells: Modulation of PFKFB3 activation

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xin; Lyu, Pengwei; Gu, Yuanting; Li, Lin; Li, Jingruo; Wang, Yan; Zhang, Linfeng [Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Fu, Chao [Department of Ultrasonography, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Cao, Zhang, E-mail: zzzhangcao@126.com [Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China)

    2015-08-28

    Sonic hesgehog (Shh) signaling has been reported to play an essential role in cancer progression. The mechanism of Shh involved in breast cancer carcinogenesis remains unclear. The present study sought to explore whether Shh signaling could regulate the glycolytic metabolism in breast cancers. Overexpression of the smoothed (Smo) and Gli-1 was found in human primary breast cancers. The expressions of Shh and Gli-1 correlated significantly with tumor size and tumor stage. In vitro, human recombinant Shh (rShh) triggered Smo and Gli-1 expression, promoted glucose utilization and lactate production, and accelerated cell proliferation in MCF-7 and MDA-MB-231 cells. Notably, rShh did not alter 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) expression but augmented PFKFB3 phosphorylation on ser{sup 461}, along with elevated fructose-2,6-bisphosphate (F2,6BP) generation by MCF-7 and MDA-MB-231 cells. This effect could be dampened by Smo siRNA but not by Gli-1 siRNA. In addition, our data showed the upregulated expressions of MAPK by rShh and elevatory PFKFB3 phosphorylation by p38/MAPK activated kinase (MK2). In conclusion, our study characterized a novel role of Shh in promoting glycolysis and proliferation of breast cancer cells via PFKFB3 phosphorylation, which was mediated by Smo and p38/MK2. - Highlights: • Overexpression of Smo and Gli-1 was found in human primary breast cancers. • Shh promoted glucose utilization, lactate production, and cell proliferation. • Shh did not alter PFKFB3 expression but augmented PFKFB3 phosphorylation on ser461. • Shh acts on PFKFB3 phosphorylation via Smo and p38 MAPK/MK2.

  14. Uloga Sonic Hedgehog signalnog puta u regulaciji ekspresije SOX18 gena u HeLa ćelijama, kao model sistemu karcinoma grlića materice

    OpenAIRE

    Milivojević, Milena C.

    2014-01-01

    Sonic Hedgehog (SHH) signalni put ima važnu ulogu u procesima koji se odvijaju tokom embrionalnog razvića u kojima kontroliše proliferaciju i diferencijaciju ćelija i učestvuje u održavanju polarnosti tkiva. Poslednjih godina mnogobrojni literaturni podaci pokazuju da promena u regulaciji SHH signalnog puta dovodi do nastanka i progresije različitih vrsta tumora kod čoveka. SHH signalni put je povezan sa meduloblastomom, leukemijom, karcinomom bazalnih ćelija, tumorima pluća, prostate, pancre...

  15. Expression and clinical significance of Sonic hedgehog mRNA and protein in colorectal carcinoma%Sonic hedgehog mRNA及其蛋白在大肠癌的表达及其临床意义

    Institute of Scientific and Technical Information of China (English)

    吴莹莹; 李瑜元; 王红

    2010-01-01

    Objective To evaluate the expression of Hedgehog signaling pathway related Sonic hedgehog (SHH) gene in colorectal carcinoma (CRC) and to explore its clinical significance. Methods Between December 2008 and April 2009, 43 specimens of fresh CRC tissues and adjacent tissues (>10 cm away from the cancer margin) were collected and detected for their expressions of SHH mRNA and proteins with RT-PCR and immunohistochemistry (Envision method), and compared with 20 specimens of normal colorectal tissues from non- CRC patients as controls. The associations of SHH mRNA and proteins expressions and clinicopathological variables were analyzed. Results Gel-imaging analysis displayed a 280 bp band in SHH mRNA-positive specimens in consistency with theoretical value, which was not seen in SHH mRNA-negative specimens. The rate of SHH mRNA expression in CRC tissues (27.9%, n=12) was not statistically different from that in the adjacent tissues (18.6%, n=8) (P>0.05) , but the both were significantly higher than that in the normal mucosa (0%, n=0) (all P<0.05). The expression intensity of SHH mRNA was significantly higher in CRC tissues than that in the adjacent tissues (P<0.05) but not detected in normal colorectal tissues (P<0.05). Immunohistochemistry demonstrated positive expression of SHH proteins in both CRC tissues and adjacent tissues, appearing as yellow-brown particles with unstained background in the cell membrane and cytoplasm. The expression of SHH protein was negative in the cell membrane of normal colorectal mucosa. The rate of SHH protein expression in CRC tissues was remarkably higher than that in normal colorectal mucosa [25.6% (11/43) vs 0% (0/20) , P<0.05]. There was no statistical difference in the positive rate of SHH protein expression between CRC and adjacent tissues, and between adjacent tissues and normal colorectal mucosa (all P>0.05). The CRC tissues showed the highest intensity of SHH protein expression, followed by adjacent tissues and

  16. Sonic Hedgehog信号通路与乳腺癌抑癌基因LKB1的相互影响%Mutual influence between the Sonic Hedgehog signaling pathway and breast cancer suppressor gene LKB1

    Institute of Scientific and Technical Information of China (English)

    成小林; 蒋蓓琦; 李正东; 傅韵; 庄志刚; 庄传经

    2012-01-01

    Objective: To investigate changes of apoptosis, cell cycle and signaling pathway -related gene expression of the cancer cells, under the inhibition of cyclopamine to the Sonic Hedgehog (SHH) signaling pathway of the breast cancer cells transfected with LKB1 genes. Methods: The LKB1 gene was reintroduced into the MDA - MB -231 breast cancer cells which was lack of LKB1. And then 2 groups were classified: the MDA - MB - 231 group (231 group) and the LKB1 transfected MDA - MB -231 group (LKB1 group). The cells in each group were treated with different content (0,5 × 10-6mol/L,10 × 10-6mol/L, 20 × 10-6mol/L) of Sonic Hedgehog signaling inhibitor cyclopamine. The apoptosis and cell cycle were detected with flow cytometry. mRNA and protein expression levels of Shh, Smo, Ptch, Sufu, Hip and LKB1 genes which related to Sonic Hedgehog signaling pathway were detected with the methods of RT - PCR and Western blot. Results: In LKB1 group and 231 group, the apoptosis variations of the cells were in consistent with the changes in the expression of Sonic Hedgehog related gene Shh and Smo. With the increase of cyclopamine content, the variations of the apoptosis increased and Shh and Smo gene expressions were inhibited. These variations and inhibitions reached the maxima at a cyclopamine content of 10 × 10 -6mol/L, and the variations and inhibitions were more considerable in the LKB1 group than those in 231 group. In 231 group,the variations of cell cycles consisted with the expression changes of Sonic Hedgehog inhibitor Sufu and Hip. While, in LKB1 group, the cell cycle and the gene expression of Sufu and Hip kept nearly unchanged. In addition, in 231 group, the expression of the tumor suppressor gene LKB1 was enhanced with the cyclopamine content increase. The gene expression of Ptch remained unaffected in both LKB1 group and 231 group. Conclusion: In breast cancer MDA - MB -231 cells, under a synergetic affection of LKB1 tumor suppressor and cyclopamine inhibitor, the

  17. Effect of Sonic Hedgehog signaling pathway on the embryonic lung development and lung diseases%Sonic Hedgehog信号通路在胎肺发育和肺部疾病中的研究进展

    Institute of Scientific and Technical Information of China (English)

    邵亚楠

    2012-01-01

    Sonic Hedgehog (SHH) signaling pathway not only plays key roles in embryonic development,but also functions in postnatal development and maintenance of tissue/organ integrity and function.In recent years,it has been found that the SHH signaling pathway was abnormally activated in some lung diseases,which suggested that the SHH signaling pathway may play a part in the development of some lung diseases.This article reviewed the potential role of SHH signaling pathway on the embryonic lung development and lung diseases.%Sonic Hedgehog(SHH)信号通路不仅在胚胎期发育起重要作用,而且在生后保持组织或器官的完整和功能发育中起重要作用.近年来在肺部疾病中发现SHH信号通路异常激活,提示SHH信号通路可能在肺部疾病中起一定作用.

  18. Osteoblast-secreted collagen upregulates paracrine Sonic hedgehog signaling by prostate cancer cells and enhances osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Zunich Samantha M

    2012-07-01

    Full Text Available Abstract Background Induction of osteoblast differentiation by paracrine Sonic hedgehog (Shh signaling may be a mechanism through which Shh-expressing prostate cancer cells initiate changes in the bone microenvironment and promote metastases. A hallmark of osteoblast differentiation is the formation of matrix whose predominant protein is type 1 collagen. We investigated the formation of a collagen matrix by osteoblasts cultured with prostate cancer cells, and its effects on interactions between prostate cancer cells and osteoblasts. Results In the presence of exogenous ascorbic acid (AA, a co-factor in collagen synthesis, mouse MC3T3 pre-osteoblasts in mixed cultures with human LNCaP prostate cancer cells or LNCaP cells modified to overexpress Shh (LNShh cells formed collagen matrix with distinct fibril ultrastructural characteristics. AA increased the activity of alkaline phosphatase and the expression of the alkaline phosphatase gene Akp2, markers of osteoblast differentiation, in MC3T3 pre-osteoblasts cultured with LNCaP or LNShh cells. However, the AA-stimulated increase in Akp2 expression in MC3T3 pre-osteoblasts cultured with LNShh cells far exceeded the levels observed in MC3T3 cells cultured with either LNCaP cells with AA or LNShh cells without AA. Therefore, AA and Shh exert a synergistic effect on osteoblast differentiation. We determined whether the effect of AA on LNShh cell-induced osteoblast differentiation was mediated by Shh signaling. AA increased the expression of Gli1 and Ptc1, target genes of the Shh pathway, in MC3T3 pre-osteoblasts cultured with LNShh cells to at least twice their levels without AA. The ability of AA to upregulate Shh signaling and enhance alkaline phosphatase activity was blocked in MC3T3 cells that expressed a dominant negative form of the transcription factor GLI1. The AA-stimulated increase in Shh signaling and Shh-induced osteoblast differentiation was also inhibited by the specific collagen synthesis

  19. Sonic hedgehog (Shh) signaling promotes tumorigenicity and stemness via activation of epithelial-to-mesenchymal transition (EMT) in bladder cancer.

    Science.gov (United States)

    Islam, S S; Mokhtari, R B; Noman, A S; Uddin, M; Rahman, M Z; Azadi, M A; Zlotta, A; van der Kwast, T; Yeger, H; Farhat, W A

    2016-05-01

    Activation of the sonic hedgehog (Shh) signaling pathway controls tumorigenesis in a variety of cancers. Here, we show a role for Shh signaling in the promotion of epithelial-to-mesenchymal transition (EMT), tumorigenicity, and stemness in the bladder cancer. EMT induction was assessed by the decreased expression of E-cadherin and ZO-1 and increased expression of N-cadherin. The induced EMT was associated with increased cell motility, invasiveness, and clonogenicity. These progression relevant behaviors were attenuated by treatment with Hh inhibitors cyclopamine and GDC-0449, and after knockdown by Shh-siRNA, and led to reversal of the EMT phenotype. The results with HTB-9 were confirmed using a second bladder cancer cell line, BFTC905 (DM). In a xenograft mouse model TGF-β1 treated HTB-9 cells exhibited enhanced tumor growth. Although normal bladder epithelial cells could also undergo EMT and upregulate Shh with TGF-β1 they did not exhibit tumorigenicity. The TGF-β1 treated HTB-9 xenografts showed strong evidence for a switch to a more stem cell like phenotype, with functional activation of CD133, Sox2, Nanog, and Oct4. The bladder cancer specific stem cell markers CK5 and CK14 were upregulated in the TGF-β1 treated xenograft tumor samples, while CD44 remained unchanged in both treated and untreated tumors. Immunohistochemical analysis of 22 primary human bladder tumors indicated that Shh expression was positively correlated with tumor grade and stage. Elevated expression of Ki-67, Shh, Gli2, and N-cadherin were observed in the high grade and stage human bladder tumor samples, and conversely, the downregulation of these genes were observed in the low grade and stage tumor samples. Collectively, this study indicates that TGF-β1-induced Shh may regulate EMT and tumorigenicity in bladder cancer. Our studies reveal that the TGF-β1 induction of EMT and Shh is cell type context dependent. Thus, targeting the Shh pathway could be clinically beneficial in the

  20. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma.

    Science.gov (United States)

    Chang, Liang; Zhao, Dan; Liu, Hui-Bin; Wang, Qiu-Shi; Zhang, Ping; Li, Chen-Long; Du, Wen-Zhong; Wang, Hong-Jun; Liu, Xing; Zhang, Zhi-Ren; Jiang, Chuan-Lu

    2015-11-01

    Aberrant hedgehog signaling contributes to the development of various malignancies, including glioblastoma (GBM). However, the potential mechanism of hedgehog signaling in GBM migration and invasion has remained to be elucidated. The present study showed that enhanced hedgehog signaling by recombinant human sonic hedgehog N‑terminal peptide (rhSHH) promoted the adhesion, invasion and migration of GBM cells, accompanied by increases in mRNA and protein levels of matrix metalloproteinase‑2 (MMP‑2) and MMP‑9. However, inhibition of hedgehog signaling with cyclopamine suppressed the adhesion, invasion and migration of GBM cells, accompanied by decreases in mRNA and protein levels of MMP‑2 and ‑9. Furthermore, it was found that MMP‑2- and MMP‑9-neutralizing antibodies or GAM6001 reversed the inductive effects of rhSHH on cell migration and invasion. In addition, enhanced hedgehog signaling by rhSHH increased AKT phosphorylation, whereas blockade of hedgehog signaling decreased AKT phosphorylations. Further experiments showed that LY294002, an inhibitor of phosphoinositide-3 kinase (PI3K), decreased rhSHH‑induced upregulation of MMP‑2 and ‑9. Finally, the protein expression of glioblastoma-associated oncogene 1 was positively correlated with levels of phosphorylated AKT as well as protein expressions of MMP‑2 and ‑9 in GBM tissue samples. In conclusion, the present study indicated that the hedgehog pathway regulates GBM-cell migration and invasion by increasing MMP-2 and MMP-9 production via the PI3K/AKT pathway.

  1. Sonic Hedgehog signaling in the development of vertebrate eye and its role in eye diseases%Sonic Hedgehog通路在脊椎动物眼球发育及眼病中的作用

    Institute of Scientific and Technical Information of China (English)

    钱宜珊; 褚仁远

    2007-01-01

    Sonic Hedgehog(Shh)信号通路在脊椎动物眼球发育过程中发挥重要的调控作用.包括决定视泡发育模式,促进神经元、神经胶质细胞及视网膜色素上皮细胞分化,调节细胞增生和存活,决定视网膜分层结构,引导视茎和轴突发育等.Shh可能参与角膜上皮细胞的增生和修复过程,并可能参与近视及眼部新生血管的调控.

  2. Sonic hedgehog (SHH) promotes the differentiation of mouse cochlear neural progenitors via the Math1-Brn3.1 signaling pathway in vitro.

    Science.gov (United States)

    Hu, Xiaohua; Huang, Jianmin; Feng, Ling; Fukudome, Shinji; Hamajima, Yuki; Lin, Jizhen

    2010-04-01

    Sonic hedgehog (SHH) is essential for the development of the cochlear duct that harbors the organ of Corti. However, little is known about the molecular signaling pathway through which SHH promotes the development of the organ of Corti, especially cochlear sensory epithelial cells. In this study, we demonstrated that SHH contributes to the differentiation of cochlear neural progenitors (CNPs), which are derived from the postnatal day 1 organ of Corti in mice. Addition of SHH to CNPs increased the formation of epithelial cell islands, simultaneously activated the expression of Math1 that is a transcription factor for the initial differentiation of auditory hair cells. The increased expression of Math1 then regulated the promoter activity of Brn3.1, another transcription factor that controls the further differentiation and survival of auditory hair cells. Taken together, our data suggest that SHH plays an important role in the promotion of auditory hair cell differentiation via the Math1-Brn3.1 signaling pathway.

  3. AMP-activated protein kinase-dependent autophagy mediated the protective effect of sonic hedgehog pathway on oxygen glucose deprivation-induced injury of cardiomyocytes.

    Science.gov (United States)

    Xiao, Qing; Yang, Ya; Qin, Yuan; He, Yan-Hua; Chen, Kui-Xiang; Zhu, Jian-Wei; Zhang, Gui-Ping; Luo, Jian-Dong

    2015-02-13

    Sonic hedgehog (Shh) pathway has been reported to protect cardiomyocytes in myocardial infarction (MI), but the underlying mechanism is not clear. Here, we provide evidence that Shh pathway induces cardiomyocytes survival through AMP-activated protein kinase-dependent autophagy. Shh pathway agonist SAG increased the expression of LC3-II, and induced the formation of autophagosomes in cultured H9c2 cardiomyocytes under oxygen glucose deprivation (OGD) 1 h and 4 h. Moreover, SAG induced a profound AMP-activated protein kinase (AMPK) activation, and then directly phosphorylated and activated the downstream autophagy initiator Ulk1, independent of the autophagy suppressor mammalian target of rapamycin (mTOR) complex 1. Taken together, our results have shown that Shh activates AMPK-dependent autophagy in cardiomyocytes under OGD, suggesting a role of autophagy in Shh-induced cellular protection.

  4. The regulation of tooth morphogenesis is associated with epithelial cell proliferation and the expression of Sonic hedgehog through epithelial-mesenchymal interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Kentaro; Murofushi, Mayumi [Faculty of Industrial Science and Technology, Tokyo University of Science, Chiba 278-8510 (Japan); Nakao, Kazuhisa; Morita, Ritsuko [Research Institute for Science and Technology, Tokyo University of Science, Chiba 278-8510 (Japan); Ogawa, Miho [Research Institute for Science and Technology, Tokyo University of Science, Chiba 278-8510 (Japan); Organ Technologies Inc., Tokyo 101-0048 (Japan); Tsuji, Takashi, E-mail: t-tsuji@rs.noda.tus.ac.jp [Faculty of Industrial Science and Technology, Tokyo University of Science, Chiba 278-8510 (Japan); Research Institute for Science and Technology, Tokyo University of Science, Chiba 278-8510 (Japan); Organ Technologies Inc., Tokyo 101-0048 (Japan)

    2011-02-18

    Research highlights: {yields} Bioengineered teeth regulated the contact area of epithelium and mesenchyme. {yields} The crown width is regulated by the contact area of the epithelium and mesenchyme. {yields} This regulation is associated with cell proliferation and Sonic hedgehog expression. {yields} The cusp number is correlated with the crown width of the bioengineered tooth. {yields} Cell proliferation and Shh expression areas regulate the tooth morphogenesis. -- Abstract: Ectodermal organs, such as the tooth, salivary gland, hair, and mammary gland, develop through reciprocal epithelial-mesenchymal interactions. Tooth morphologies are defined by the crown width and tooth length (macro-morphologies), and by the number and locations of the cusp and roots (micro-morphologies). In our current study, we report that the crown width of a bioengineered molar tooth, which was reconstructed using dissociated epithelial and mesenchymal cells via an organ germ method, can be regulated by the contact area between epithelial and mesenchymal cell layers. We further show that this is associated with cell proliferation and Sonic hedgehog (Shh) expression in the inner enamel epithelium after the germ stage has formed a secondary enamel knot. We also demonstrate that the cusp number is significantly correlated with the crown width of the bioengineered tooth. These findings suggest that the tooth micro-morphology, i.e. the cusp formation, is regulated after the tooth width, or macro-morphology, is determined. These findings also suggest that the spatiotemporal patterning of cell proliferation and the Shh expression areas in the epithelium regulate the crown width and cusp formation of the developing tooth.

  5. Expression of sonic hedgehog and the downstream transcriptional factor Gli1 in sonic hedgehog pathway in gastric cancer%Sonic hedgehog信号通路中Shh蛋白及其下游转录因子Glil在胃癌组织中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    祝芳; 杜国能; 陈剑辉; 蔡世荣; 陈创奇; 马晋平

    2011-01-01

    Objective To study the expression and prognostic value of Sonic hedgehog (Shh) and the downstream transcriptional factor Cli1 in Shh signal pathway in gastric cancer. Methods 100 primary gastric cancer samples and 10 normal gastric mucosa samples were selected in histopathological tissue bank of 1st affiliated hospital of Sun Yat-sen University. The expression of Shh and Gli1 was detected by using immunochemistry staining. Results Shh and Cli1 staining was positive in all gastric cancer samples,while only three samples were positive in normal gastric mucosa ( 3/10, 30% ) , and the staining intensity was lower in normal tissues than in cancer samples (P<0. 01). Shh and Gli1 were associated with worse differentiation, metastasis, late stage and shorter survival. Shh and Gli1 showed linear positive correlation in gastric cancer with a correlation coefficient equal to 0. 747 ( P < 0. 01 ). The survival was shortened along with the increases in Shh and Gli1 staining intensity (P<0. 05). Conclusion Shh signal pathway played an important role in gastric carcinogenesis, and Shh and Gli1 overexpression was associated with worse prognosis.%目的 探讨Sonic hedgehog(Shh)信号通路中Shh蛋白及其下游转录因子胶质母细胞瘤转录因子(Gli1)在胃癌组织中的表达及其与胃癌患者生存的相关性.方法 选取胃癌病理标本100例,正常胃黏膜上皮标本10例.使用SP法对上述病理标本及正常胃黏膜切片后进行Shh及Gli1抗体的免疫组织化学染色.结果 所有胃癌标本Shh、Gli1抗体染色阳性率为100%,正常胃黏膜标本Shh抗体染色阳性率30%,Gli1抗体染色阳性率为0%.正常胃黏膜的Shh及Gli1抗体染色强度明显低于胃癌组织标本(P<0.01).Shh及Gli1随恶性程度增高、TNM临床分期升高而表达强度升高,且伴有淋巴结转移及远处转移者表达强度升高.Shh与Gli1表达强度呈线性正相关,Pearson相关系数为0.747(P<0.01).胃

  6. SonicHedgehog信号通路在胚胎发育及神经修复中的现状与进展%Role of Sonic Hedgehog signal pathway in embryogenesis and neural regeneration

    Institute of Scientific and Technical Information of China (English)

    王苏平; 吴晓君; 闫旭; 赵红

    2015-01-01

    背景:多项研究表明Sonic Hedgehog (Shh)信号通路可调控神经细胞的增殖、分化和轴突形成,参与脑损伤后的神经再生。目的:总结Shh信号通路在胚胎发育及出生后神经修复中的作用。方法:由第一作者检索PubMed 数据库及CNKI全文数据库1980年1月至2015年7月的相关文献,并进行筛选,归纳和总结。英文检索词为“Shh signal pathway, embryogenesis,neural regeneration”,中文检索词为“Shh信号通路,胚胎发育,神经修复”,选择有关Shh在胚胎期细胞分化、组织发育中的研究及出生后参与神经修复,轴突迁移导向及肿瘤发生发展的相关研究,共检索38篇。结果与结论:近年来Shh信号通路因与脑损伤后神经组织修复的密切关系而备受关注。Shh在Hedgehog (Hh)家族中具有最广泛表达,在胚胎发育、器官形成中起着重要的作用,参与神经系统模式发生、调控前体细胞的分化和迁移、控制轴突的生长和导向,且与肿瘤的发生密切相关。相关研究表明Shh能缩减脑卒中大鼠的脑梗死体积并改善行为学预后。%BACKGROUND:Many studies have showed that Sonic Hedgehog (Shh) signal pathway regulates the proliferation and differentiation of nerve cels, axon guidance and neural regeneration after brain injury. OBJECTIVE:To summarize the role of Shh signal pathway in embryonic development and post-natal nerve repair. METHODS:A computer-based retrieval was performed by the first author in PubMed and CNKI database to search related papers published from January 1980 to July 2015 using the keywords of “Shh signal pathway, embryogenesis, neural regeneration” in English and Chinese, respectively. Articles related to Shh signal pathway in embryonic cels differentiation, tissue development, post-natal neural regeneration, axon migration and tumor formation. A total of 38 relevant literatures were retrieved. RESULTS AND CONCLUSION: Recently

  7. Down-regulation of Sonic hedgehog signaling pathway activity is involved in 5-fluorouracil-induced apoptosis and motility inhibition in Hep3B cells

    Institute of Scientific and Technical Information of China (English)

    Qiyu Wang; Shuhong Huang; Ling Yang; Ling Zhao; Yuxia Yin; Zhongzhen Liu; Zheyu Chen; Hongwei Zhang

    2008-01-01

    The Sonic hedgehog (SHh) pathway plays a critical role in normal embryogenesis and carcinogenesis, but its function in cancer cells treated with 5-fluorouracil (5-FU) remains unknown. We examined the expression of a subset of SHh signaling pathway genes, including SHh, SMO, PTC1, Su(Fu) and HIP in human hepatocellular carcinoma (HCC) cell lines,Hep3B and HepG2, treated with 5-FU by reverse transcriptionpolymerase chain reaction. Using trypan blue analysis,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling assay, we also detected the apoptosis of Hep3B cells resulting from the transfection of pCS2-Gli1 expression vector combined with 5-FU treatment.The motility of the cells was detected by scratch wound closure assay. The expression and subcellular location of PTC1 protein in Hep3B cells treated by 5-FU were also investigated by Western blot analysis and immunofluorescent microscopy. The results indicated that the expression of SHh pathway target molecules at both messenger RNA and protein levels are evidently down-regulated in Hep3B cells treated with 5-FU. The overexpression of Gli1 restores cell viability and, to some extent, the migration abilities inhibited by 5-FU.Furthermore, 5-FU treatment affects the subcellular localization of PTC1 protein, a key member in SHh signaling pathway. Our data showed that the down-regulation of SHh signaling pathway activity was involved in 5-FU-induced apoptosis and the inhibition of motility in hedgehog-activated HCC cell lines. This implies that the combination of SHh signaling pathway inhibitor and 5-FU-based chemotherapy might represent a more promising strategy against HCC.

  8. In the absence of Sonic hedgehog, p53 induces apoptosis and inhibits retinal cell proliferation, cell-cycle exit and differentiation in zebrafish.

    Directory of Open Access Journals (Sweden)

    Sergey V Prykhozhij

    Full Text Available BACKGROUND: Sonic hedgehog (Shh signaling regulates cell proliferation during vertebrate development via induction of cell-cycle regulator gene expression or activation of other signalling pathways, prevents cell death by an as yet unclear mechanism and is required for differentiation of retinal cell types. Thus, an unsolved question is how the same signalling molecule can regulate such distinct cell processes as proliferation, cell survival and differentiation. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of the zebrafish shh(-/- mutant revealed that in this context p53 mediates elevated apoptosis during nervous system and retina development and interferes with retinal proliferation and differentiation. While in shh(-/- mutants there is activation of p53 target genes and p53-mediated apoptosis, an increase in Hedgehog (Hh signalling by over-expression of dominant-negative Protein Kinase A strongly decreased p53 target gene expression and apoptosis levels in shh(-/- mutants. Using a novel p53 reporter transgene, I confirm that p53 is active in tissues that require Shh for cell survival. Proliferation assays revealed that loss of p53 can rescue normal cell-cycle exit and the mitotic indices in the shh(-/- mutant retina at 24, 36 and 48 hpf. Moreover, generation of amacrine cells and photoreceptors was strongly enhanced in the double p53(-/-shh(-/- mutant retina suggesting the effect of p53 on retinal differentiation. CONCLUSIONS: Loss of Shh signalling leads to the p53-dependent apoptosis in the developing nervous system and retina. Moreover, Shh-mediated control of p53 activity is required for proliferation and cell cycle exit of retinal cells as well as differentiation of amacrine cells and photoreceptors.

  9. Concerted actions of ameliorated colitis, aberrant crypt foci inhibition and 15-hydroxyprostaglandin dehydrogenase induction by sonic hedgehog inhibitor led to prevention of colitis-associated cancer.

    Science.gov (United States)

    Kangwan, Napapan; Kim, Yoon-Jae; Han, Young-Min; Jeong, Migyeong; Park, Jong-Min; Hahm, Ki-Baik

    2016-03-15

    The sonic hedgehog (Shh) signaling has been known to contribute to carcinogenesis in organ, where hedgehog exerted organogenesis and in cancers, which are developed based on mutagenic inflammation. Therefore, colitis-associated cancer (CAC) can be a good model to prove whether Shh inhibitors can be applied to prevent, as the efforts to discover potent anti-inflammatory agent are active to prevent CAC. Here, under the hypothesis that Shh inhibitors can prevent CAC, mouse model was generated to develop CAC by azoxymethane (AOM)-initiated, dextran sodium sulfate-promoted carcinogenesis. Shh inhibitors, cerulenin and itraconazole were treated by oral gavage and the mice were sacrificed at early phase of 3 weeks and late phase of 16 weeks. Compared to control group, the number of aberrant crypt foci at 3 weeks and tumor incidence at 16 weeks were all significantly decreased with Shh inhibitor. Significant attenuations of macrophage infiltration accompanied with significant decreases of IL-6, COX-2, STAT3 and NF-κB as well as significant ameliorations of β-catenin nuclear translocation, cyclin D1 and CDK4 were imposed with Shh inhibitors. Especially, CAC was accompanied with significant cancellation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), but their levels were significantly preserved with Shh inhibitors. Among inflammatory mediators, significantly decreased levels of IL-6 and TNF-α, regulated with repressed NF-κb and STAT3, were prominent with Shh inhibitor, whereas significant inductions of apoptosis were noted with Shh inhibitors. In conclusion, Shh inhibitors significantly prevented CAC covering either ameliorating oncogenic inflammation or suppressing tumor proliferation, especially supported with significant inhibition of IL-6 and STAT3 signaling, 15-PGDH preservation and apoptosis induction.

  10. The function of Sonic hedgehog gene in craniofacial development%Sonic hedgehog基因在颅面生长发育中作用的研究

    Institute of Scientific and Technical Information of China (English)

    杜娟; 王松灵

    2005-01-01

    Sonic hedgehog基因与细胞在肢体、体节、神经管发育中的分化建立有关,通过细胞表面特殊受体Ptch和Smo跨膜蛋白被接收和传导,从而激活锌指蛋白Ci/Gli家族.研究Shh信号传导通路的脊椎动物多为小鼠和鸡.Shh与颅面部、眼、脑的正常发育有关,Shh基因敲除小鼠前脑和颅面结构生长严重缺陷,Shh信号的短暂缺失可导致鸡胚颅面发育异常类似距离过近,过度表达导致距离过远,严重者甚至常伴面部重复.

  11. Expression and significance of sonic hedgehog in human pancreatic cancer%胚胎发育信号通路Sonic hedgehog在胰腺癌组织中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    胡伟国; 熊炯邤; 王春友; 刘涛

    2009-01-01

    目的 研究胚胎发育信号通路Sonic hedgehog(SHH)在胰腺癌组织中的表达及其临床意义.方法 逆转录聚合酶链反应(RT-PCR)技术和免疫组化方法检测胰腺癌组织及癌旁组织中SHH mRNA和蛋白的表达情况.结果 78.9%(30/38)胰腺癌组织中检测到SHH mRNA)18.4%(7/38)癌旁正常组织SHH mRNA阳性.免疫组化结果显示:84.2%(32/38)胰腺癌组织SHH蛋白呈阳性表达;癌旁胰腺组织SHH阳性率为21.1%(8/38).两组差异有显著意义(P0.05).结论 SHH信号分子在胰腺癌组织中表达增高,SHH信号途径可能在胰腺癌发生发展过程中起重要作用.%Objective To investigate the expression of sonic hedgehog(SHH) and its clinical significance in human pancreatic cancer(hPC). Methods RT-PCR and immunohistochemistry were used to determine the mRNA and protein expression of SHH in hPC tissue and normal tissues adjacent to the cancer. Results The SHH mRNA expression was detected in 78. 9%(30/38) oir the samples of pancreatic cancer, while in only 18. 4%(7/38) of those of normal tissues adjacent to the cancer. Im-munohistochernical analysis showed that the SH H protein expression rate was 84.2%(32/38) in pan-creatic cancer tissue and 21.1%(8/38) in normal tissues. There was significant difference between them(P0. 05). Conclusion The expression level of SHH signal molecule is increased in hPC. The overexpression of SHH signaling pathway might play an important role in carcinogenesis and development of pancreatic cancer.

  12. Activation of the sonic hedgehog signaling pathway occurs in the CD133 positive cells of mouse liver cancer Hepa 1–6 cells

    Directory of Open Access Journals (Sweden)

    Jeng KS

    2013-08-01

    Full Text Available Kuo-Shyang Jeng,1 I-Shyan Sheen,2 Wen-Juei Jeng,2 Ming-Che Yu,3 Hsin-I Hsiau,3 Fang-Yu Chang,3 Hsin-Hua Tsai31Department of Surgery, Far Eastern Memorial Hospital, Taipei, 2Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, 3Department of Medical Research, Far Eastern Memorial Hospital, Taipei, Taiwan, Republic of ChinaBackground: The important role of cancer stem cells in carcinogenesis has been emphasized in research. CD133+ cells have been mentioned as liver cancer stem cells in hepatocellular carcinoma (HCC. Some researchers have proposed that the sonic hedgehog (Shh pathway contributes to hepatocarcinogenesis and that the pathway activation occurs mainly in cancer stem cells. We investigated whether the activation of the Shh pathway occurs in CD133+ cells from liver cancer.Materials and methods: We used magnetic sorting to isolate CD133+ cells from mouse cancer Hepa 1–6 cells. To examine the clonogenicity, cell culture and soft agar colony formation assay were performed between CD133+ and CD133- cells. To study the activation of the Shh pathway, we examined the mRNA expressions of Shh, patched homolog 1 (Ptch-1, glioma-associated oncogene homolog 1 (Gli-1, and smoothened homolog (Smoh by real-time polymerase chain reaction of both CD133+ and CD133- cells.Results: The number (mean ± standard deviation of colonies of CD133+ cells and CD133- cells was 1,031.0 ± 104.7 and 119.7 ± 17.6 respectively. This difference was statistically significant (P < 0.001. Their clonogenicity was 13.7% ± 1.4% and 1.6% ± 0.2% respectively with a statistically significant difference found (P < 0.001. CD133+ cells and CD133– cells were found to have statistically significant differences in Shh mRNA and Smoh mRNA (P = 0.005 and P = 0.043 respectively.Conclusion: CD133+ Hepa 1–6 cells have a significantly higher colony proliferation and clonogenicity. The Shh pathway is activated in these

  13. Expression Patterns of Sonic Hedgehog Signaling Molecules in Human Fetal Prostate Development%sonic hedgehog信号通路蛋白在人胚胎前列腺发育不同阶段的表达及意义

    Institute of Scientific and Technical Information of China (English)

    朱国栋; 贺大林; 何辉; 张林琳; 王新阳; Zhau E Haiyen; Chung Leland WK

    2006-01-01

    目的:探明sonic hedgehog信号通路中几个关键的效应蛋白sonic hedgehog(SHH)、Patchedl(PTC1)、Smoothened(SMO)及GLI1在人胚胎前列腺组织中的定位表达及变化.方法:应用免疫组织化学方法研究SHH、PTC1、SMO及GLI1在不同胎龄(10~39周)人胚胎前列腺组织中的表达变化情况.结果:随胎龄增大,SHH、PTC1、SMO及GLI1在前列腺组织中的表达水平呈由弱变强,由强渐弱,又由弱转强的双峰变化趋势.SHH和SMO仅表达在胚胎前列腺上皮细胞中;而PTC1和GLI1主要表达在上皮细胞外,也可表达在腺体周围的间质中.结论:SHH信号通路参与了人胚胎前列腺发育的调控过程,可能对于腺体发育初期的诱导发生,以及后期的增殖、分化都具有重要的调控作用.

  14. Activating Sonic hedgehog pathway can improve the impaired function of endothelial progenitor cells in type 1 diabetic mice%激活Sonic hedgehog 通路改善1型糖尿病小鼠内皮祖细胞功能

    Institute of Scientific and Technical Information of China (English)

    覃媛; 何艳华; 张根水; 张贵平; 罗健东

    2015-01-01

    Aim To study the effect of activating Sonic hedgehog( Shh) pathway on the function of endothelial progenitor cells ( EPCs ) in type 1 diabetic mice. Methods EPCs were isolated and cultured by density gradient method from diabetic mice. The effects of Shh N-terminal peptide and agonist SAG on EPCs prolifera-tion were evaluated by using the MTT colorimetric as-say. EPCs migration was measured by Transwell meth-od. EPCs tube formation ability was estimated by Matrigel . EPCs senescence activity was determined by β-galactosidase staining. Results Compared with control mice, the function of EPCs in type 1 diabetic mice was impaired. The proliferation, migration and tube formation of diabetic EPCs could be promoted by Shh peptide and agonist SAG. The senescence of dia-betic EPCs could be decreased by Shh peptide and ag-onist SAG. Conclusion Activating Shh signaling pathway can improve the impared function of diabetic EPCs in type 1 diabetic mice.%目的:研究激活Sonic hedgehog通路对1型糖尿病小鼠内皮祖细胞( EPCs)生物学功能的影响。方法用链脲佐菌素( STZ)诱导建立1型糖尿病小鼠模型;采用密度梯度离心法分离并培养糖尿病小鼠骨髓 EPCs;体外给予 Sonic hedgehog( Shh)信号通路配体蛋白Shh和受体激动剂SAG,通过MTT法、改良Boyden小室、Matrigel和β-半乳糖苷酶分别检测各组EPCs的增殖、迁移、小管形成和衰老的功能性指标。结果1型糖尿病小鼠EPCs与正常对照组相比功能明显下降,体外给予Shh蛋白和受体激动剂SAG,可促进糖尿病EPCs增殖,减少衰老,改善迁移和小管形成能力。结论体外激活Sonic hedgehog通路可以改善1型糖尿病小鼠内皮祖细胞受损的功能。

  15. Sonic Hedgehog及其受体Patched在小鼠视交叉发育过程中的表达%EXPRESSION OF SONIC HEDGEHOG AND ITS RECEPTOR PATCHED DURING DEVELOPMENT OF MOUSE OPTIC CHIASM

    Institute of Scientific and Technical Information of China (English)

    郝彦利; 陈新安

    2005-01-01

    在小鼠胚胎发育过程中,胚胎第13 d(E13)至15 d(E15)是视交叉发育的主要阶段.在本研究中,我们观察了在E13~E15,Sonic Hedgehog(Shh)及其受体Patched(Ptc)在视觉传导通路的表达.结果发现:在视交叉和视束中,Shh在视神经纤维接近中线时表达上调,越过中线后表达下调,并且主要表达在较深的区域.Ptc在E13~E14的视网膜和E14~E15的视束中有表达,但在视交叉中无表达.Ptc,而不是Shh,表达在体外培养的生长锥中.Shh和Ptc在视觉传导通路发育中的表达提示Shh可能在引导视神经生长方面发挥一定作用.

  16. Sonic hedgehog在小鼠胚胎下颌突Meckel's软骨发育过程中的表达%Expression of Sonic hedgehog in mouse embryonic Meckel's cartilage during mandibular development

    Institute of Scientific and Technical Information of China (English)

    杜娟; 范志朋; 马鑫; 刘淑红; 吴燕; 范明; 王松灵

    2011-01-01

    目的:研究Sonic hedgehog(Shh)基因在小鼠胚胎颌面部Meckel's软骨发育不同阶段的表达,探讨Shh基因在下颌骨体发育骨化中的功能.方法:利用原位杂交和免疫组化技术检测Shh基因mRNA在小鼠胚胎11~14.5 dpc (days post coitum) 阶段下颌突Meckel's软骨中的表达情况.结果:在颌面形成的早期阶段(11~12.5 dpc),Shh基因mRNA和蛋白在Meckel's软骨有表达且有增强趋势,但在颌面发育完成(14.5 dpc)后表达消失.结论:Shh基因可能参与下颌骨体早期发育.

  17. Expression of Sonic Hedgehog Signaling Pathway and Its Significance in Vascular Smooth Muscle Cell%sonic hedgehog信号通路在血管平滑肌细胞中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    CUI Ze-shi; ZHAO Lei

    2009-01-01

    目的 研究sonic hedgehog(Shh)信号通路各蛋白在血管平滑肌细胞(VSMC)中的表达情况,探讨其是否与VSMC的增殖相关.方法 应用免疫荧光、激光共聚焦检测Shh信号通路蛋白在体外培养的VSMC中的表达,MTT法及Ki67的表达情况联合评价细胞增殖.结果 Shh信号通路的配体Shh蛋白、patched1受体及其下游转录因子Gli2在VSMC中有表达,MTT法及Ki67染色结果显示外源的Shh蛋白能够促进VSMC的增殖,而应用Shh信号通路的特异抑制剂Cyclopamine则能抑制细胞增殖.结论 Shh信号通路与VSMC增殖密切相关.

  18. 食道鳞状细胞癌组织及癌旁组织中sonic hedgehog和patched1的表达%Expression of sonic hedgehog and patched1 in esophageal squamous cell carcinomas and adjacent tissues

    Institute of Scientific and Technical Information of China (English)

    张满; 崔宏伟; 师迎旭; 杨凌

    2015-01-01

    目的 在食道鳞状细胞癌和配对癌旁组织中检测sonic hedgehog(SHH)和patched1(PTCH1)的表达.方法 选取内蒙古医科大学附属医院胸外科2012~2014年经手术切除、病理科确诊为食道鳞状细胞癌的标本共30例及其癌旁组织,应用免疫组织化学染色方法检测SHH和patched1的表达.结果 在30例食道鳞状细胞癌组织中10例(33.3%)PTCH1阳性表达,肿瘤组织中未检测到SHH蛋白的表达,癌旁组织中未见两种蛋白的表达.PTCH1的表达与患者吸烟、饮酒,食道鳞状细胞癌的肿瘤分化、分期,淋巴结转移无关(P>0.05).结论 SHH的表达不是激活hedgehog通路的原因.

  19. Sonic Hedgehog Signaling Mediates Resveratrol to Increase Proliferation of Neural Stem Cells After Oxygen-Glucose Deprivation/Reoxygenation Injury in Vitro

    Directory of Open Access Journals (Sweden)

    Wei Cheng

    2015-03-01

    Full Text Available Background/Aims: There is interest in drugs and rehabilitation methods to enhance neurogenesis and improve neurological function after brain injury or degeneration. Resveratrol may enhance hippocampal neurogenesis and improve hippocampal atrophy in chronic fatigue mice and prenatally stressed rats. However, its effect and mechanism of neurogenesis after stroke is less well understood. Sonic hedgehog (Shh signaling is crucial for neurogenesis in the embryonic and adult brain, but relatively little is known about the role of Shh signaling in resveratrol-enhanced neurogenesis after stroke. Methods: Neural stem cells (NSCs before oxygen-glucose deprivation/reoxygenation (OGD/R in vitro were pretreated with resveratrol with or without cyclopamine. Survival and proliferation of NSCs was assessed by the CCK8 assay and BrdU immunocytochemical staining. The expressions and activity of signaling proteins and mRNAs were detected by immunocytochemistry, Western blotting, and RT-PCR analysis. Results: Resveratrol significantly increased NSCs survival and proliferation in a concentration-dependent manner after OGD/R injury in vitro. At the same time, the expression of Patched-1, Smoothened (Smo, and Gli-1 proteins and mRNAs was upregulated, and Gli-1 entered the nucleus, which was inhibited by cyclopamine, a Smo inhibitor. Conclusion: Shh signaling mediates resveratrol to increase NSCs proliferation after OGD/R injury in vitro.

  20. Characterization of the human oncogene SCL/TAL1 interrupting locus (Stil) mediated Sonic hedgehog (Shh) signaling transduction in proliferating mammalian dopaminergic neurons.

    Science.gov (United States)

    Sun, Lei; Carr, Aprell L; Li, Ping; Lee, Jessica; McGregor, Mary; Li, Lei

    2014-07-11

    The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in all vertebrate species. In humans, the expression of Stil is involved in cancer cell survival, apoptosis and proliferation. In this research, we investigated the roles of Stil expression in cell proliferation of mammalian dopaminergic (DA) PC12 cells. Stil functions through the Sonic hedgehog (Shh) signal transduction pathway. Co-immunoprecipitation tests revealed that STIL interacts with Shh downstream components, which include SUFU and GLI1. By examining the expression of Stil, Gli1, CyclinD2 (cell-cycle marker) and PCNA (proliferating cell nuclear antigen), we found that up-regulation of Stil expression (transfection with overexpression plasmids) increased Shh signaling transduction and PC12 cell proliferation, whereas down-regulation of Stil expression (by shRNA) inhibited Shh signaling transduction, and thereby decreased PC12 cell proliferation. Transient transfection of PC12 cells with Stil knockdown or overexpression plasmids did not affect PC12 cell neural differentiation, further indicating the specific roles of Stil in cell proliferation. The results from this research suggest that Stil may serve as a bio-marker for neurological diseases involved in DA neurons, such as Parkinson's disease.

  1. Reconstruction of the gene regulatory network involved in the sonic hedgehog pathway with a potential role in early development of the mouse brain.

    Directory of Open Access Journals (Sweden)

    Jinhua Liu

    2014-10-01

    Full Text Available The Sonic hedgehog (Shh signaling pathway is crucial for pattern formation in early central nervous system development. By systematically analyzing high-throughput in situ hybridization data of E11.5 mouse brain, we found that Shh and its receptor Ptch1 define two adjacent mutually exclusive gene expression domains: Shh+Ptch1- and Shh-Ptch1+. These two domains are associated respectively with Foxa2 and Gata3, two transcription factors that play key roles in specifying them. Gata3 ChIP-seq experiments and RNA-seq assays on Gata3-knockdown cells revealed that Gata3 up-regulates the genes that are enriched in the Shh-Ptch1+ domain. Important Gata3 targets include Slit2 and Slit3, which are involved in the process of axon guidance, as well as Slc18a1, Th and Qdpr, which are associated with neurotransmitter synthesis and release. By contrast, Foxa2 both up-regulates the genes expressed in the Shh+Ptch1- domain and down-regulates the genes characteristic of the Shh-Ptch1+ domain. From these and other data, we were able to reconstruct a gene regulatory network governing both domains. Our work provides the first genome-wide characterization of the gene regulatory network involved in the Shh pathway that underlies pattern formation in the early mouse brain.

  2. Activation of Sonic Hedgehog Leads to Survival Enhancement of Astrocytes via the GRP78-Dependent Pathway in Mice Infected with Angiostrongylus cantonensis

    Directory of Open Access Journals (Sweden)

    Kuang-Yao Chen

    2015-01-01

    Full Text Available Angiostrongylus cantonensis infection may cause elevation of ROS and antioxidants in the CSF of infected mice. Astrocytes may protect the surrounding neurons from oxidative stress-induced cell death by secreting Sonic hedgehog (Shh via the PI3-K/AKT/Bcl-2 pathway. This study was conducted to determine the role of the Shh signaling pathway in A. cantonensis-infected BABL/c mice by coculturing astrocytes with living fifth-stage larvae or soluble antigens. The Shh pathway was activated with corresponding increases in the level of the Shh. Glial fibrillary acidic protein (GFAP and Shh were increased in astrocyte cocultured with living fifth-stage larvae or soluble antigens. The survival of astrocytes pretreated with Shh was significantly elevated in cocultures with the antigens but reduced by its inhibitor cyclopamine. The expression of GRP78 and Bcl-2 was significantly higher in astrocytes pretreated with recombinant Shh. These findings suggest that the expression of Shh may inhibit cell death by activating Bcl-2 through a GRP78-dependent pathway.

  3. Noggin-Mediated Retinal Induction Reveals a Novel Interplay Between Bone Morphogenetic Protein Inhibition, Transforming Growth Factor β, and Sonic Hedgehog Signaling.

    Science.gov (United States)

    Messina, Andrea; Lan, Lei; Incitti, Tania; Bozza, Angela; Andreazzoli, Massimiliano; Vignali, Robert; Cremisi, Federico; Bozzi, Yuri; Casarosa, Simona

    2015-08-01

    It has long been known that the depletion of bone morphogenetic protein (BMP) is one of the key factors necessary for the development of anterior neuroectodermal structures. However, the precise molecular mechanisms that underlie forebrain regionalization are still not completely understood. Here, we show that Noggin1 is involved in the regionalization of anterior neural structures in a dose-dependent manner. Low doses of Noggin1 expand prosencephalic territories, while higher doses specify diencephalic and retinal regions at the expense of telencephalic areas. A similar dose-dependent mechanism determines the ability of Noggin1 to convert pluripotent cells in prosencephalic or diencephalic/retinal precursors, as shown by transplant experiments and molecular analyses. At a molecular level, the strong inhibition of BMP signaling exerted by high doses of Noggin1 reinforces the Nodal/transforming growth factor (TGF)β signaling pathway, leading to activation of Gli1 and Gli2 and subsequent activation of Sonic Hedgehog (SHH) signaling. We propose a new role for Noggin1 in determining specific anterior neural structures by the modulation of TGFβ and SHH signaling.

  4. Anti-apoptotic effects of Sonic hedgehog signalling through oxidative stress reduction in astrocytes co-cultured with excretory-secretory products of larval Angiostrongylus cantonensis

    Science.gov (United States)

    Chen, Kuang-Yao; Chiu, Cheng-Hsun; Wang, Lian-Chen

    2017-01-01

    Angiostrongylus cantonensis, the rat lungworm, is an important aetiologic agent of eosinophilic meningitis and meningoencephalitis in humans. Co-culturing astrocytes with soluble antigens of A. cantonensis activated the Sonic hedgehog (Shh) signalling pathway and inhibited the apoptosis of astrocytes via the activation of Bcl-2. This study was conducted to determine the roles of the Shh signalling pathway, apoptosis, and oxidative stress in astrocytes after treatment with excretory-secretory products (ESP) from A. cantonensis fifth-stage larvae. Although astrocyte viability was significantly decreased after ESP treatment, the expression of Shh signalling pathway related proteins (Shh, Ptch-1 and Gli-1) was significantly increased. However, apoptosis in astrocytes was significantly decreased after activation of the Shh signalling pathway. Moreover, superoxide and hydrogen superoxide levels in astrocytes were significantly reduced after the activation of Shh pathway signalling due to increasing levels of the antioxidants catalase and superoxide dismutase. These findings indicate that the anti-apoptotic effects of the Shh signalling pathway in the astrocytes of mice infected with A. cantonensis are due to reduced levels of oxidative stress caused by the activation of antioxidants. PMID:28169282

  5. Mature salivary gland rests within sonic hedgehog-positive medulloblastoma: case report and insights into the molecular genetics and embryopathology of ectopic intracranial salivary gland analogs.

    Science.gov (United States)

    Shammassian, Berje; Manjila, Sunil; Cox, Efrem; Onwuzulike, Kaine; Wang, Dehua; Rodgers, Mark; Stearns, Duncan; Selman, Warren R

    2016-12-01

    Intracranial ectopic salivary gland rests within dural-based lesions are reported very infrequently in the literature. The authors report the unique case of a 12-year-old boy with a cerebellar medulloblastoma positive for sonic hedgehog (Shh) that contained intraaxial mature ectopic salivary gland rests. The patient underwent clinical and radiological monitoring postoperatively, until he died of disseminated disease. An autopsy showed no evidence of salivary glands within disseminated lesions. The intraaxial presence of salivary gland rests and concomitant Shh positivity of the described tumor point to a disorder in differentiation as opposed to ectopic developmental foci, which are uniformly dural based in the described literature. The authors demonstrate the characteristic "papilionaceous" appearance of the salivary glands with mucicarmine stain and highlight the role of Shh signaling in explaining the intraaxial presence of seromucous gland analogs. This article reports the first intraaxial posterior fossa tumor with heterotopic salivary gland rests, and it provides molecular and embryopathological insights into the development of these lesions.

  6. Sonic Hedgehog(Shh)蛋白在胃癌组织中的表达及其临床意义分析

    Institute of Scientific and Technical Information of China (English)

    万磊

    2013-01-01

    目的 研究Sonic Hedgehog(Shh)蛋白在胃癌及正常胃粘膜组织中的表达,探讨其表达与胃癌临床病理特点的关系.方法 应用免疫组织化学方法检测Shh抗体在胃癌病理标本及正常胃粘膜组织标本中的表达情况.结果 胃癌标本中Shh蛋白的表达阳性率为73.2%,正常胃粘膜表达阳性率为20%,P<0.05,差异具有统计学意义.结论 Shh蛋白的表达与胃癌恶性程度及TNM分期相关;参与了胃癌的发生进展.

  7. Characterization of the human oncogene SCL/TAL1 interrupting locus (Stil) mediated Sonic hedgehog (Shh) signaling transduction in proliferating mammalian dopaminergic neurons

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lei [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Department of Physiology, Nankai University School of Medicine, Tianjin 300071 (China); Carr, Aprell L. [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556 (United States); Li, Ping; Lee, Jessica; McGregor, Mary [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Li, Lei, E-mail: Li.78@nd.edu [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2014-07-11

    Highlights: • Stil is a human oncogene that is conserved in vertebrate species. • Stil functions in the Shh pathway in mammalian cells. • The expression of Stil is required for mammalian dopaminergic cell proliferation. - Abstract: The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in all vertebrate species. In humans, the expression of Stil is involved in cancer cell survival, apoptosis and proliferation. In this research, we investigated the roles of Stil expression in cell proliferation of mammalian dopaminergic (DA) PC12 cells. Stil functions through the Sonic hedgehog (Shh) signal transduction pathway. Co-immunoprecipitation tests revealed that STIL interacts with Shh downstream components, which include SUFU and GLI1. By examining the expression of Stil, Gli1, CyclinD2 (cell-cycle marker) and PCNA (proliferating cell nuclear antigen), we found that up-regulation of Stil expression (transfection with overexpression plasmids) increased Shh signaling transduction and PC12 cell proliferation, whereas down-regulation of Stil expression (by shRNA) inhibited Shh signaling transduction, and thereby decreased PC12 cell proliferation. Transient transfection of PC12 cells with Stil knockdown or overexpression plasmids did not affect PC12 cell neural differentiation, further indicating the specific roles of Stil in cell proliferation. The results from this research suggest that Stil may serve as a bio-marker for neurological diseases involved in DA neurons, such as Parkinson’s disease.

  8. Long-term behavioral change as a result of acute ethanol exposure in zebrafish: Evidence for a role for sonic hedgehog but not retinoic acid signaling.

    Science.gov (United States)

    Burton, Derek F; Zhang, Chengjin; Boa-Amponsem, Oswald; Mackinnon, Shanta; Cole, Gregory J

    2017-05-01

    Developmental exposure to ethanol is recognized to produce long-term neurobehavioral impairment in multiple animal models. However, the molecular mechanisms underlying these deficits remain poorly understood. The present study was undertaken to ascertain whether two well-characterized targets of prenatal alcohol exposure, sonic hedgehog (Shh) and retinoic acid (RA), that induce the hallmark morphological phenotypes of fetal alcohol spectrum disorders (FASD), are involved in the generation of behavioral alterations as a result of alcohol exposure. Zebrafish embryos were exposed to ethanol (0%, 1%, 3%) at either 8-10 or 24-27h post-fertilization (hpf) and then evaluated during adolescence in the novel tank dive test to assess anxiety and risk-taking behavior. Overt signs of dysmorphogenesis were also scored and behavioral and morphological changes were compared for embryos treated with alcohol alone or in combination with subthreshold doses of shh or alhh1a3 morpholinos (MOs). Ethanol treated fish displayed altered tank diving behavior that was not exacerbated by combined MO treatment. While treatment of embryos with either shha mRNA or RA prior to ethanol exposure only ameliorated the altered tank diving response in the case of shha mRNA overexpression, dysmorphogenesis was rescued by both treatments. These results suggest that the effects of ethanol exposure on changes in anxiety and risk-taking behavior in adolescent zebrafish is manifested by a blunting of Shh, but not RA, signaling during early development. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Sonic hedgehog signaling coordinates the proliferation and differentiation of neural stem/progenitor cells by regulating cell cycle kinetics during development of the neocortex.

    Science.gov (United States)

    Komada, Munekazu

    2012-06-01

    Sonic hedgehog (Shh) acts as a morphogen in normal development of various vertebrate tissues and organs. Shh signaling is essential for patterning and cell-fate specification, particularly in the central nervous system. Shh signaling plays different roles depending on its concentration, area, and timing of exposure. During the development of the neocortex, a low level of Shh is expressed in the neural stem/progenitor cells as well as in mature neurons in the dorsal telencephalon. Shh signaling in neocortex development has been shown to regulate cell cycle kinetics of radial glial cells and intermediate progenitor cells, thereby maintaining the proliferation, survival and differentiation of neurons in the neocortex. During the development of the telencephalon, endogenous Shh signaling is involved in the transition of slow-cycling neural stem cells to fast-cycling neural progenitor cells. It seems that high-level Shh signaling in the ventral telencephalon is essential for ventral specification, while low-level Shh signaling in the dorsal telencephalon plays important roles in the fine-tuning of cell cycle kinetics. The Shh levels and multiple functions of Shh signaling are important for proper corticogenesis in the developing brain. The present paper discusses the roles of Shh signaling in the proliferation and differentiation of neural stem/progenitor cells.

  10. Shh信号通路在神经胶质瘤发生发展中的作用%Sonic hedgehog signaling pathway in tumorigenesis of glioma

    Institute of Scientific and Technical Information of China (English)

    景芳邈; 滕菲菲; 张孟业

    2012-01-01

    Sonic hedgehog(Shh) is a member of the hedgehog family in vertebrate. The Shh signaling pathway is mainly composed of a secreted glycoprotein, named Shh, two transmembrane proteins (Ptch and Smo) and the downstream transcription factor family Glis. It plays a vital role in the embryo development, especially in the neuronal system. Recent study have demonstrated that the Shh pathway is closely associated with the tumorigenesis of various tumors. Glioma, the most common malignant brain tumor of humans, is characterized by the rapid proliferation, infiltrative growth and high rate of relapse, and it is one of the brain tumors with poorest prognosis. Abnormal activation of multiple signaling pathways has been known to enhance the proliferation ability of glioma cells. Moreover, glioma is composed of various tumor cells and the glioma stem cells were endowed with the ability of self-renewal and unlimited proliferation, which plays a key role in the tumorigenesis, progress and relapse. Evidence has been found that Shh signaling pathway is closely assoicated with tumorigenesis of glioma. Herein we review the current knowledge on the components of Shh signaling pathway and its role in the tumorigenesis of glioma and glioma stem cells.%Sonic hedgehog(Shh)信号转导通路是脊椎动物hedgehog信号通路家族成员之一,主要由分泌型糖蛋白Shh配体、跨膜蛋白受体Pteh和Smo以及下游转录因子Gli蛋白组成,在胚胎发育尤其是神经系统发育中起着重要的作用.近年研究发现Shh信号通路与多种肿瘤的形成有着密切的关系.神经胶质瘤是最常见的原发性脑肿瘤,生长迅速且多呈浸润性,易复发,是脑肿瘤中治疗效果最差的肿瘤之一,主要原因是多种信号通路的异常激活增强了胶质瘤细胞的增殖能力.此外,神经胶质瘤是由不同属性的肿瘤细胞混合构成,胶质瘤中的肿瘤干细胞具有无限增殖能力,这一特性也对胶质瘤的发生、发展和

  11. Sonic Hedgehog dependent phosphorylation by CK1α and GRK2 is required for ciliary accumulation and activation of smoothened.

    Directory of Open Access Journals (Sweden)

    Yongbin Chen

    2011-06-01

    Full Text Available Hedgehog (Hh signaling regulates embryonic development and adult tissue homeostasis through the GPCR-like protein Smoothened (Smo, but how vertebrate Smo is activated remains poorly understood. In Drosophila, Hh dependent phosphorylation activates Smo. Whether this is also the case in vertebrates is unclear, owing to the marked sequence divergence between vertebrate and Drosophila Smo (dSmo and the involvement of primary cilia in vertebrate Hh signaling. Here we demonstrate that mammalian Smo (mSmo is activated through multi-site phosphorylation of its carboxyl-terminal tail by CK1α and GRK2. Phosphorylation of mSmo induces its active conformation and simultaneously promotes its ciliary accumulation. We demonstrate that graded Hh signals induce increasing levels of mSmo phosphorylation that fine-tune its ciliary localization, conformation, and activity. We show that mSmo phosphorylation is induced by its agonists and oncogenic mutations but is blocked by its antagonist cyclopamine, and efficient mSmo phosphorylation depends on the kinesin-II ciliary motor. Furthermore, we provide evidence that Hh signaling recruits CK1α to initiate mSmo phosphorylation, and phosphorylation further increases the binding of CK1α and GRK2 to mSmo, forming a positive feedback loop that amplifies and/or sustains mSmo phosphorylation. Hence, despite divergence in their primary sequences and their subcellular trafficking, mSmo and dSmo employ analogous mechanisms for their activation.

  12. Sonic hedgehog信号对口腔鳞癌中组蛋白甲基化转移酶的研究%Sonic hedgehog signaling regulates the expression of histone methyltransferases in the head and neck squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    尹小楠; 马玉实; 杜娟; 范志朋

    2013-01-01

    目的 检测Sonic hedgehog信号在口腔鳞癌致病过程中是否具有调节组蛋白甲基化转移酶表达的功能.方法 利用人重组SHH-N蛋白及过表达M2-SMO在舌鳞状细胞癌细胞系SCC6激活Shh信号,利用Cyclopamine阻断Shh信号,采用Real-time PCR在mRNA水平检测组蛋白甲基化转移酶相关基因的表达.结果发现激活Shh信号通路,组蛋白甲基化转移酶DOT1、MLL2和MLL4在mRNA水平表达明显升高.抑制Shh信号通路,DOT1、MLL2和MLL4表达明显降低.结论 在口腔鳞癌中组蛋白甲基化转移酶DOT1、MLL2和MLL4是Shh信号通路的下游基因,其表达受Shh信号分子的正向调控.%Objective To invesligale whether the Sonic hedgehog (Shh) signaling could regulale the expression of histone melhyllransferases in the head and neck squamous cell carcinoma. Methods Human recombinanl SHH-N prolein and over-expression of the M2-SM0 were applied to aclivale the Shh signaling in tongue squamous cell carcinoma cell line SCC6 , and Cyclopamine was used lo block the Shh signaling. Real-lime PCR was used lo delet the expressions of hislone melhyllransferases al the mRNA level. Results The aclivalion of the Shh signaling up-regulated the expressions of hislone melhyllransferases DOT1, MLL2 and MLL4 al the mRNA level, and inhibilion of Shh signaling down-regulated DOT1, MLL2 and MLL4. Conclusion Hislone melhyllransferases DOT1, MLL2 and MLL4 were downslream genes of Shh signaling in head and neck squamous cell carcinoma, and their expressions were positively regulaled by Shh signaling.

  13. Activation of expression in peripheral blood mononuclear cells in Sonic hedgehog pathway%外周血单个核细胞在Sonic hedgehog信号通路中的活化表达

    Institute of Scientific and Technical Information of China (English)

    赵乾焜; 梁森; 闫慧明

    2015-01-01

    Objective To discuss the expression of Sonic hedgehog blocking antibody (Shh Ab) in peripheral blood mononuclear cells(PBMCs) of anti-gastric cancer cells. Methods Healthy human PBM-Cs were centrifugated by Ficoll density gradient (GES-1 cells were treated by nitrite amides) and gastric cancer cells were co-cultured with MC. To observe the expression and semi-quantitative analysis of Shh and Gli-1 by RT-PCR, Shh blocking antibodies were added in the co-culture system, and the expression of CD3, CD5, CD69 was assayed by flow cytometry. Results RT-PCR showed that Gli-1mRNA in MC+Shh Ab cell group was 0.284 5±0.002 5, lower than the MC cell group 0.516 7 ± 0.010 9 (P<0.05). Flow cytometry showed Shh blocking antibodies promoted the expression of CD3 and CD69. Shh Ab enhanced cell killing PBMCs for MC. Conclusion Shh Ab can promote activation of PBMCs, and enhances anti-carcinogenic effect of nitrite amides.%目的探讨Sonic hedgehog阻断抗体(Shh Ab)对外周血单个核细胞(PBMCs)抗胃癌MC细胞作用的表达。方法 Ficoll密度梯度离心法分离正常人PBMCs,并与胃癌MC细胞(GES-1细胞经亚硝酰胺类化合物处理)建立共培养体系;RT-PCR观察Shh、Gli-1基因的表达并进行半定量数据分析;于共培养体系中加入Shh阻断抗体,流式细胞术检测CD3、CD5、CD69分子表达。结果RT-PCR结果显示Gli-1mRNA在MC+Shh Ab细胞组值为0.2845±0.0025,低于MC 细胞组的0.5167±0.0109(P<0.05);流式细胞检测Shh Ab可促进CD3、CD69分子表达,对CD5分子没有显著影响;Shh Ab增强PBMCs对MC细胞的杀伤。结论 Shh Ab可促进PBMCs化,增强PBMCs抗亚硝酰胺类化合物致癌机制的作用。

  14. Effect of Sonic Hedgehog signaling blockade on growth of hepatocarcino-ma cells%阻断Sonic Hedgehog信号对不同人肝癌细胞生长的影响

    Institute of Scientific and Technical Information of China (English)

    刘爱梅; 余功旺; 黄莉霞; 孙艳; 迟作华

    2016-01-01

    AIM:To investigate the effect of Sonic Hedgehog ( Shh) signaling blockade on the growth of hema-tocarcinoma cells and underlying mechanisms.METHODS: The expression of Shh signaling molecules in hematocarci-noma cell lines BEL-7402, Huh7 and HepG2 was detected by RT-PCR.The cell viability was detected by MTT assay.The cell cycle and apoptosis were analyzed by flow cytometry.The expression of apoptosis-related proteins was determined by Western blot.RESULTS:Shh signaling molecules were all expressed in BEL-7402, Huh7 and HepG2 cells.The mRNA expression of Patched ( Ptch) , Gli1 and Gli2 was down-regulated by anti-Shh antibody.Blockade of Shh signaling pathway inhibited the proliferation of hepatocarcinoma cells with increasing cells in G0/G1 phase and induced the apoptosis of hepa-tocarcinoma cells.Treatment with anti-Shh antibody down-regulated the protein expression of pro-caspase-3, pro-caspase-8 and pro-caspase-9, while up-regulated the protein levels of cleaved caspase-3, cleaved caspase-8 and cleaved caspase-9 in BEL-7402 cells.CONCLUSION:Blockade of Shh signaling pathway inhibits the growth of hepatocarcinoma at different levels by cell cycle arrest and inducing apoptosis of hematocarcinoma cells.%目的:研究阻断Sonic Hedgehog ( Shh)信号对不同人肝癌细胞生长的影响,探讨阻断Shh信号抑制肝癌细胞生长的机制。方法:RT-PCR法检测Shh信号分子在3株人肝癌细胞(BEL-7402、Huh7和HepG2)中的表达,并检测Shh阻断抗体作用后BEL-7402细胞Shh信号效应分子表达变化;MTT法检测人肝癌细胞增殖活性;流式细胞术检测人肝癌细胞凋亡;Western blot检测凋亡相关蛋白表达。结果:Shh信号分子在3株人肝癌细胞中均有表达, Shh阻断抗体可以下调Shh信号效应分子patched ( Ptch)、Gli1和Gli2的表达;Shh阻断抗体可以抑制3株肝癌细胞生长,增加G0/G1期细胞,并诱导细胞凋亡;Shh阻断抗体作用后, BEL-7402

  15. 脊髓Sonic hedgehog信号通路在大鼠神经病理性痛中的作用%Role of Sonic hedgehog signaling pathway in spinal cord in neuropathic pain in rats

    Institute of Scientific and Technical Information of China (English)

    冯晓雪; 刘丹彦; 杨晓秋

    2016-01-01

    Objective To evaluate the role of Sonic hedgehog (Shh) signaling pathway in the spinal cord in neuropathic pain (NP) in the rats.Methods Seventy-two male Sprague-Dawley rats,aged 8 weeks,weighing 250-300 g,were randomly divided into 2 groups (n=36 each) using a random number table:sham operation group (S group) and NP group.Spared nerve injury was produced by exposing the sciatic nerve and its branches and ligation and transection of tibial nerve and common fibular nerve in anesthetized rats.The mechanical paw withdrawal threshold (MWT) was measured before operation and at 1,4,7,14 and 21 days after operation.After measurement of the pain threshold at 1,4,7,14 and 21 days after operation,the animals were then sacrificed,and the lumbar segment (L46) of the spinal cord was obtained for determination of Shh,Patched (Ptch),Gli1 and glial fibrillary acidic protein (GFAP)expression (by Western blot),Shh,Ptch and Gli1 mRNA expression (by fluorescent quantitative real-time reverse transcriptase-polymerase chain reaction),and Shh and GFAP expression (by immunohistochemistry).Results Compared with group S,the MWT was significantly decreased,and the expression of Shh,Ptch and Gli1 protein and mRNA and GFAP in spinal cord tissues was up-regulated in group NP (P< 0.05).Shh was mainly expressed in the cytoplasm of spinal dorsal horn neurons and in the gap around glial cells.Conclusion Shh signaling pathway in spinal cord is involved in the development and maintenance of NP in the rats.%目的 评价脊髓Sonic hedgehog(Shh)信号通路在大鼠神经病理性痛中的作用.方法 健康雄性SD大鼠72只,8周龄,体重250~ 300 g,采用随机数字表法,将其分为2组(n=36):假手术组(S组)和神经病理性痛组(NP组),采用坐骨神经分支选择性损伤法制备大鼠神经病理性痛模型.分别于术前、术后1、4、7、14、21d时采用up-down法测定机械缩足反应阈(MWT).于术后1、4、7、14、21 d时MWT测定结束后处死大鼠,取L4-6

  16. Expression of vascular endothelial growth factor-C and sonic hedgehog in esophageal squamous cell carcinoma%血管内皮生长因子-C和sonic hedgehog在食管鳞状细胞癌中的表达

    Institute of Scientific and Technical Information of China (English)

    齐博

    2010-01-01

    目的 探讨血管内皮生长因子-C(VEGF-C)和sonic hedgehog(SHH)在食管鳞状细胞癌(ESCC)组织中的表达及其与淋巴结转移的关系.方法 应用免疫组织化学法检测40例ESCC组织和30例癌旁正常黏膜组织中VEGF-C及SHH的表达.结果 40例ESCC组织中25例(62.5%)出现VEGF-C阳性,24例(60.0%)出现SHH阳性;癌旁正常食管黏膜组织30例中仅5例(16.7%)出现VEGF-C阳性,8例(26.7%)出现SHH阳性,其差异均有统计学意义(P<0.05).在VEGF-C阳性的25例ESCC组织中19例出现淋巴结转移,而在VEGF-C阴性的15例ESCC组织中仅2例出现淋巴结转移,其差异有统计学意义(P<0.05);SHH表达阳性的24例ESCC中18例有淋巴结转移,而SHH表达阴性的16例ESCC中7例有淋巴结转移,其差异有统计学意义(P<0.05).结论 VEGF-C和SHH参与了ECSS的发生发展,且与其淋巴结转移的发生有关.对于VEGF-C及SHH表达阳性的ESCC患者,术前和术中应分别加强对淋巴结转移的评估及清扫,以提高其生存率.%Objective To study the expression of vascular endothelial growth factor-C(VEGF-C)and sonic hedgehog(SHH) in esophageal squamous cell carcinoma(ESSC)and explore the relationship between lymph node metastasis of ESCC and them.Methods The expression of VEGF-C and SHH was detectde using immunohistochemical method on 40 specimens from patients with ESSC and 30 cases of non-cancerous esophageal tissues. Results In the 40 specimens from patients with ESSC, 25 cases(62.5%) were VEGF-C positive,24 cases(60.0%)were SHH positive. In 30 cases of non-cancerous esophageal tissues,only 5 cases(16.7%)were VEGF-C positive,8 cases(26.7%)were SHH positive,there were both significant differences between the 2 types of tissues (P<0.05).There were 19 cases had lymph node metastasis in the 25 cases whose VEGF-C were positive,while only 2 cases had lymph node metastasis in the 15 cases whose VEGF-C were negative (P<0.05). There were 18 cases had lymph node metastasis in the 24

  17. Sonic Hedgehog信号通路在肝癌细胞增殖中的作用%Role of Sonic Hedgehog signaling pathway in proliferation of hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    陈劲松; 黄炯强; 詹高房; 雷建

    2014-01-01

    目的:探讨Sonic Hedgehog (SHH)信号通路在肝癌细胞增殖中的作用及抑制该通路的活性对肝癌细胞对化疗药物敏感性的影响.方法:分别用不同浓度重组SHH N-末端肽(rSHH-N)、SHH中和抗体(anti-SHH)、SHH通路抑制剂cyclopamine作用人肝癌SMMC-7721细胞不同时间,用MTT法检测细胞增殖状态.比较5-氟尿嘧啶(5-FU)、anti-SHH、cyclopamine、anti-SHH+5-FU、cyclopamine+5-FU对SMMC-7721细胞增殖抑制作用的差异.结果:rSHH-N作用后,SMMC-7721细胞增殖明显增加,而anti-SHH和cyclopamine作用后,SMMC-7721细胞增殖明显降低,且均呈时间和浓度依赖性(均P<0.05);anti-SHH或cyclopamine联合5-FU对SMMC-7721细胞增殖抑制作用明显强于各药单用(均P<0.05).结论:SHH信号通路在肝癌生长中起重要作用,阻断SHH信号通路能抑制肝癌细胞增殖且能增加肝癌细胞对化疗药物的敏感性.

  18. The expression and significance of Shh and Smo in the Sonic Hedgehog signaling pathway in hepatocellular carcinoma%Sonic Hedgehog信号通路分子Shh和Smo在肝细胞肝癌中表达与意义

    Institute of Scientific and Technical Information of China (English)

    罗小军; 孔宪炳

    2010-01-01

    目的:探讨Sonic Hedgehog(SHH)信号通路分子Shh和Smo在肝细胞肝癌(Hepatocellular carcinoma,HCC)中的表达及其意义.方法:用RT-PCR方法检测10例HCC组织及相应癌旁组织和肝癌细胞系HepG2、Huh7中Shh、Smo mRNA的表达.采用免疫组化方法检测30例肝癌组织及10例正常肝组织中Shh、Smo蛋白的表达.结果:RT-PCR结果显示HCC组织中Shh、Smo mRNA的表达率显著高于癌旁组织(P<0.05);Shh、Smo mRNA在Huh7中的表达强度高于HepG2,但两者间无显著性差异(P>0.05).免疫组化结果显示Shh、Smo蛋白在HCC组织中阳性率分别为63.3%(19/30)、76.7%(23/30);Smo蛋白的表达与肿瘤大小相关(P<0.05).Shh、Smo蛋白在正常肝组织中均无表达.结论:Shh和Smo在肝癌中高表达,表明SHH信号通路可能参与肝癌的发生,为肝癌防治提供新的依据.

  19. Expression and prognostic value of sonic hedgehog in hepatocellular carcinoma%Sonichedgehog在肝细胞癌中的表达及其预后价值

    Institute of Scientific and Technical Information of China (English)

    柴宗涛; 朱小东; 王文权; 孔令群; 汤钊猷; 孙惠川

    2011-01-01

    Objective To investigate the expression of Sonic hedgehog (SHH) in paired tumor and peritumoral liver tissues of hepatocellular carcinoma (HCC) and its clinical significance.Methods The expression of SHH was assessed by immunohistochemistry in tissue microarrays containing paired tumor and peritumoral liver tissues from 145 patients who received hepatectomy for histologically proven HCC.Prognostic value of SHH expression was evaluated.The SHH mRNA expression of four HCC cell lines (HCCLM3,MHCC97H,MHCC97L,HepG2) and a normal liver cell line (L-02) was detected by realtime reverse transcription-polymerase chain reaction (RT-PCR).Results SHH was mainly expressed in the cytoplasm of tumor cells or hepatocytes in peritumoral or normal liver tissues.There was no statistically significant difference in the SHH density betwen intratumoral and peritumoral liver tissues ( P > 0.05 ).The median overall survival (OS) of HCC patients with high intratumoral SHH expression was longer than low SHH expression patients (P <0.05).High peritumoral SHH expression was also associated with good survival (P <0.05).SHH was expressed positively in both HCC and normal cell lines,and the levels of mRNA was higher in HCC cell lines than in L-02 ( P < 0.01 ).Conclusion SHH is expressed higher in both intratumoral or peritumoral liver tissues,and the expression of SHH is significantly correlated with OS of patients with HCC.SHH may become a biomarker of HCC patients after curative resection.%目的 探讨Sonic hedgehog(SHH)在肝细胞癌(HCC)和癌周肝组织中的表达及其临床意义.方法 检测145例HCC和癌周肝组织SHH的表达,了解其表达与患者根治性切除术后预后的关系.检测4种肝癌细胞株以及正常肝细胞株SHH mRNA的含量.结果 SHH主要表达于肝细胞和肝癌细胞的胞质,肝癌与癌周肝组织表达差异无统计学意义(P>0.05).癌和癌周高表达的患者总体生存率显著高于低表达患者(P<0.05).肝癌细胞株

  20. Comparison of Cortical and White Matter Traumatic Brain Injury Models Reveals Differential Effects in the Subventricular Zone and Divergent Sonic Hedgehog Signaling Pathways in Neuroblasts and Oligodendrocyte Progenitors

    Directory of Open Access Journals (Sweden)

    Amanda J. Mierzwa

    2014-09-01

    Full Text Available The regenerative capacity of the central nervous system must be optimized to promote repair following traumatic brain injury (TBI and may differ with the site and form of damage. Sonic hedgehog (Shh maintains neural stem cells and promotes oligodendrogenesis. We examined whether Shh signaling contributes to neuroblast (doublecortin or oligodendrocyte progenitor (neural/glial antigen 2 [NG2] responses in two distinct TBI models. Shh-responsive cells were heritably labeled in vivo using Gli1-CreERT2;R26-YFP bitransgenic mice with tamoxifen administration on Days 2 and 3 post-TBI. Injury to the cerebral cortex was produced with mild controlled cortical impact. Yellow fluorescent protein (YFP cells decreased in cortical lesions. Total YFP cells increased in the subventricular zone (SVZ, indicating Shh pathway activation in SVZ cells, including doublecortin-labeled neuroblasts. The alternate TBI model produced traumatic axonal injury in the corpus callosum. YFP cells decreased within the SVZ and were rarely double labeled as NG2 progenitors. NG2 progenitors increased in the cortex, with a similar pattern in the corpus callosum. To further test the potential of NG2 progenitors to respond through Shh signaling, Smoothened agonist was microinjected into the corpus callosum to activate Shh signaling. YFP cells and NG2 progenitors increased in the SVZ but were not double labeled. This result indicates that either direct Smoothened activation in NG2 progenitors does not signal through Gli1 or that Smoothened agonist acts indirectly to increase NG2 progenitors. Therefore, in all conditions, neuroblasts exhibited differential Shh pathway utilization compared with oligodendrocyte progenitors. Notably, cortical versus white matter damage from TBI produced opposite responses of Shh-activated cells within the SVZ.

  1. Inhibition of the CyclinD1 promoter in response to sonic hedgehog signaling pathway transduction is mediated by Gli1

    Science.gov (United States)

    Lin, Zhongxiao; Sheng, Hansong; You, Chaoguo; Cai, Ming; Zhang, Yiping; Yu, Li Sheng; Yu, Xiaoming; Lin, Jian; Zhang, Nu

    2017-01-01

    Medulloblastoma (MB) is the most common malignant tumor of the central nervous system in children. Accumulating evidence suggests a major role for the activation of the sonic hedgehog (SHH) signaling pathway in the development of MB cells; however, the mechanisms underlying the effect of this pathway on tumor survival and growth remain poorly understood. The Gli family zinc finger 1 (Gli1) transcription factor is considered as a mediator of the SHH signaling pathway in MB cells. Therefore, the present study investigated whether the SHH signaling pathway promotes the apoptosis of MB cells via downregulation of Gli1. GANT61, a novel Gli1 inhibitor, is known to have an in vitro activity against tumors. In the current study, Daoy cells were treated with different concentrations of GANT61 for 24 h, and the effect on cell proliferation was assayed by cell counting kit-8 assay. In addition, the cell cycle progression and apoptosis were assayed by flow cytometry analysis and hematoxylin-eosin (HE) staining. The effects of GANT61 treatment on SHH signaling pathway at the mRNA level were assayed by polymerase chain reaction (PCR). To further elucidate the inhibitory effects of GANT61 on the expression of Gli1 and CyclinD1, their protein levels were examined by western blot and immunofluorescence. The results indicated that GANT61 significantly inhibited the proliferation of Daoy cells in a dose-dependent manner, compared with the control group (PSHH pathway activity in MB, and may be a novel agent for use in combined chemotherapeutic regimens. PMID:28123507

  2. Inhibition of APP gamma-secretase restores Sonic Hedgehog signaling and neurogenesis in the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    Giacomini, Andrea; Stagni, Fiorenza; Trazzi, Stefania; Guidi, Sandra; Emili, Marco; Brigham, Elizabeth; Ciani, Elisabetta; Bartesaghi, Renata

    2015-10-01

    Neurogenesis impairment starting from early developmental stages is a key determinant of intellectual disability in Down syndrome (DS). Previous evidence provided a causal relationship between neurogenesis impairment and malfunctioning of the mitogenic Sonic Hedgehog (Shh) pathway. In particular, excessive levels of AICD (amyloid precursor protein intracellular domain), a cleavage product of the trisomic gene APP (amyloid precursor protein) up-regulate transcription of Ptch1 (Patched1), the Shh receptor that keeps the pathway repressed. Since AICD results from APP cleavage by γ-secretase, the goal of the current study was to establish whether treatment with a γ-secretase inhibitor normalizes AICD levels and restores neurogenesis in trisomic neural precursor cells. We found that treatment with a selective γ-secretase inhibitor (ELND006; ELN) restores proliferation in neurospheres derived from the subventricular zone (SVZ) of the Ts65Dn mouse model of DS. This effect was accompanied by reduction of AICD and Ptch1 levels and was prevented by inhibition of the Shh pathway with cyclopamine. Treatment of Ts65Dn mice with ELN in the postnatal period P3-P15 restored neurogenesis in the SVZ and hippocampus, hippocampal granule cell number and synapse development, indicating a positive impact of treatment on brain development. In addition, in the hippocampus of treated Ts65Dn mice there was a reduction in the expression levels of various genes that are transcriptionally regulated by AICD, including APP, its origin substrate. Inhibitors of γ-secretase are currently envisaged as tools for the cure of Alzheimer's disease because they lower βamyloid levels. Current results provide novel evidence that γ-secretase inhibitors may represent a strategy for the rescue of neurogenesis defects in DS.

  3. Sonic hedgehog protein promotes bone marrow-derived endothelial progenitor cell proliferation, migration and VEGF production via PI 3-kinase/ Akt signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Jin-rong FU; Wen-li LIU; Jian-feng ZHOU; Han-ying SUN; Hui-zhen XU; Li LUO; Heng ZHANG; Yu-feng ZHOU

    2006-01-01

    Aim: To investigate the effects of Sonic hedgehog (shh) protein on bone marrowderived endothelial progenitor cells (BM-EPC) proliferation, migration and vascular endothelial growth factor (VEGF) production, and the potential signaling pathways involved in these effects. Methods: Bone marrow-derived Flk-l+ cells were enriched using the MACS system from adult Kunming mice and then BM-EPC was cultured in gelatin-coated culture dishes. The effects of shh N-terminal peptide on BM-EPC proliferation were evaluated using the MTT colorimetric assay. Cell migration was assayed using a modified Boyden chamber technique. The production of VEGF was determined by ELIS A and immunofluorescence analysis. The potential involvement of PKC and PI3K signaling pathways was explored using selective inhibitor or Western blot. Results: The proliferation, migration and VEGF production in BM-EPC could be promoted by endogenous shh Nterminal peptide at concentrations of 0.1 μg/mL to 10 ug/mL, and could be inhibited by anti-shh antibodies. Shh-mediated proliferation and migration in BM-EPC could be partly attenuated by anti-VEGF. Phospho-PI3-kinase expression in newly separated BM-EPC was low, and it increased significantly when exogenous shh N-terminal peptide was added, but could be attenuated by anti-human/mouse shh N-terminal peptide antibody. Moreover, the inhibitor of the PI3-kinase, but not the inhibitor of the PKC, significantly inhibited the shh-mediated proliferation, migration and VEGF production. Conclusion: Shh protein can stimulate bone marrow-derived BM-EPC proliferation, migration and VEGF production, which may promote neovascularization to ischemic tissues. This results also suggests that the PI3-kinase/Akt signaling pathways are involved in the angiogenic effects of shh.

  4. Small-molecule synthetic compound norcantharidin reverses multi-drug resistance by regulating Sonic hedgehog signaling in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    Full Text Available Multi-drug resistance (MDR, an unfavorable factor compromising treatment efficacy of anticancer drugs, involves upregulated ATP binding cassette (ABC transporters and activated Sonic hedgehog (Shh signaling. By preparing human breast cancer MCF-7 cells resistant to doxorubicin (DOX, we examined the effect and mechanism of norcantharidin (NCTD, a small-molecule synthetic compound, on reversing multidrug resistance. The DOX-prepared MCF-7R cells also possessed resistance to vinorelbine, characteristic of MDR. At suboptimal concentration, NCTD significantly inhibited the viability of DOX-sensitive (MCF-7S and DOX-resistant (MCF-7R cells and reversed the resistance to DOX and vinorelbine. NCTD increased the intracellular accumulation of DOX in MCF-7R cells and suppressed the upregulated the mdr-1 mRNA, P-gp and BCRP protein expression, but not the MRP-1. The role of P-gp was strengthened by partial reversal of the DOX and vinorelbine resistance by cyclosporine A. NCTD treatment suppressed the upregulation of Shh expression and nuclear translocation of Gli-1, a hallmark of Shh signaling activation in the resistant clone. Furthermore, the Shh ligand upregulated the expression of P-gp and attenuated the growth inhibitory effect of NCTD. The knockdown of mdr-1 mRNA had not altered the expression of Shh and Smoothened in both MCF-7S and MCF-7R cells. This indicates that the role of Shh signaling in MDR might be upstream to mdr-1/P-gp, and similar effect was shown in breast cancer MDA-MB-231 and BT-474 cells. This study demonstrated that NCTD may overcome multidrug resistance through inhibiting Shh signaling and expression of its downstream mdr-1/P-gp expression in human breast cancer cells.

  5. Comparison of cortical and white matter traumatic brain injury models reveals differential effects in the subventricular zone and divergent Sonic hedgehog signaling pathways in neuroblasts and oligodendrocyte progenitors.

    Science.gov (United States)

    Mierzwa, Amanda J; Sullivan, Genevieve M; Beer, Laurel A; Ahn, Sohyun; Armstrong, Regina C

    2014-01-01

    The regenerative capacity of the central nervous system must be optimized to promote repair following traumatic brain injury (TBI) and may differ with the site and form of damage. Sonic hedgehog (Shh) maintains neural stem cells and promotes oligodendrogenesis. We examined whether Shh signaling contributes to neuroblast (doublecortin) or oligodendrocyte progenitor (neural/glial antigen 2 [NG2]) responses in two distinct TBI models. Shh-responsive cells were heritably labeled in vivo using Gli1-CreER(T2);R26-YFP bitransgenic mice with tamoxifen administration on Days 2 and 3 post-TBI. Injury to the cerebral cortex was produced with mild controlled cortical impact. Yellow fluorescent protein (YFP) cells decreased in cortical lesions. Total YFP cells increased in the subventricular zone (SVZ), indicating Shh pathway activation in SVZ cells, including doublecortin-labeled neuroblasts. The alternate TBI model produced traumatic axonal injury in the corpus callosum. YFP cells decreased within the SVZ and were rarely double labeled as NG2 progenitors. NG2 progenitors increased in the cortex, with a similar pattern in the corpus callosum. To further test the potential of NG2 progenitors to respond through Shh signaling, Smoothened agonist was microinjected into the corpus callosum to activate Shh signaling. YFP cells and NG2 progenitors increased in the SVZ but were not double labeled. This result indicates that either direct Smoothened activation in NG2 progenitors does not signal through Gli1 or that Smoothened agonist acts indirectly to increase NG2 progenitors. Therefore, in all conditions, neuroblasts exhibited differential Shh pathway utilization compared with oligodendrocyte progenitors. Notably, cortical versus white matter damage from TBI produced opposite responses of Shh-activated cells within the SVZ.

  6. Sonic hedgehog inhibitors prevent colitis-associated cancer via orchestrated mechanisms of IL-6/gp130 inhibition, 15-PGDH induction, Bcl-2 abrogation, and tumorsphere inhibition.

    Science.gov (United States)

    Kangwan, Napapan; Kim, Yoon-Jae; Han, Young Min; Jeong, Migyeong; Park, Jong-Min; Go, Eun-Jin; Hahm, Ki-Baik

    2016-02-16

    Sonic hedgehog (SHH) signaling is essential in normal development of the gastrointestinal (GI) tract, whereas aberrantly activated SHH is implicated in GI cancers because it facilitates carcinogenesis by redirecting stem cells. Since colitis-associated cancer (CAC) is associated with inflammatory bowel diseases, in which SHH and IL-6 signaling, inflammation propagation, and cancer stem cell (CSC) activation have been implicated, we hypothesized that SHH inhibitors may prevent CAC by blocking the above SHH-related carcinogenic pathways. In the intestinal epithelial cells IEC-6 and colon cancer cells HCT-116, IL-6 expression and its signaling were assessed with SHH inhibitors and levels of other inflammatory mediators, proliferation, apoptosis, tumorsphere formation, and tumorigenesis were also measured. CAC was induced in C57BL/6 mice by administration of azoxymethane followed by dextran sodium sulfate administration. SHH inhibitors were administered by oral gavage and the mice were sacrificed at 16 weeks. TNF-α-stimulated IEC-6 cells exhibited increased levels of proinflammatory cytokines and enzymes, whereas SHH inhibitors suppressed TNF-α-induced inflammatory signaling, especially IL-6/IL-6R/gp130 signaling. SHH inhibitors significantly induced apoptosis, inhibited cell proliferation, suppressed tumorsphere formation, and reduced stemness factors. In the mouse model, SHH inhibitors significantly reduced tumor incidence and multiplicity, decreased the expression of IL-6, TNF-α, COX-2, STAT3, and NF-κB, and significantly induced apoptosis. In colosphere xenografts, SHH inhibitor significantly suppressed tumorigenesis by inhibiting tumorsphere formation. Taken together, our data suggest that administration of SHH inhibitors could be an effective strategy to prevent colitis-induced colorectal carcinogenesis, mainly by targeting IL-6 signaling, ablating CSCs, and suppressing oncogenic inflammation, achieving chemoquiescence ultimately.

  7. Genome-wide screening reveals an EMT molecular network mediated by Sonic hedgehog-Gli1 signaling in pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Xuanfu Xu

    Full Text Available AIMS: The role of sonic hedgehog (SHH in epithelial mesenchymal transition (EMT of pancreatic cancer (PC is known, however, its mechanism is unclear. Because SHH promotes tumor development predominantly through Gli1, we sought to understand its mechanism by identifying Gli1 targets in pancreatic cancer cells. METHODS: First, we investigated invasion, migration, and EMT in PC cells transfected with lentiviral Gli1 interference vectors or SHH over-expression vectors in vitro and in vivo. Next, we determined the target gene profiles of Gli1 in PC cells using cDNA microarray assays. Finally, the primary regulatory networks downstream of SHH-Gli1 signaling in PC cells were studied through functional analyses of these targets. RESULTS: Our results indicate there is decreased E-cadherin expression upon increased expression of SHH/Gli1. Migration of PC cells increased significantly in a dose-dependent manner within 24 hours of Gli1 expression (P<0.05. The ratio of liver metastasis and intrasplenic miniature metastasis increased markedly upon activation of SHH-Gli1 signals in nude mice. Using cDNA microarray, we identified 278 upregulated and 59 downregulated genes upon Gli1 expression in AsPC-1 cells. The data indicate that SHH-Gli1 signals promote EMT by mediating a complex signaling network including TGFβ, Ras, Wnt, growth factors, PI3K/AKT, integrins, transmembrane 4 superfamily (TM4SF, and S100A4. CONCLUSION: Our results suggest that targeting the molecular connections established between SHH-Gli1 signaling and EMT could provide effective therapies for PC.

  8. PI3K/AKT/mTOR and sonic hedgehog pathways cooperate together to inhibit human pancreatic cancer stem cell characteristics and tumor growth.

    Science.gov (United States)

    Sharma, Narinder; Nanta, Rajesh; Sharma, Jay; Gunewardena, Sumedha; Singh, Karan P; Shankar, Sharmila; Srivastava, Rakesh K

    2015-10-13

    Cancer stem cells (CSCs) play major roles in cancer initiation, progression, and metastasis. It is evident from growing reports that PI3K/Akt/mTOR and Sonic Hedgehog (Shh) signaling pathways are aberrantly reactivated in pancreatic CSCs. Here, we examined the efficacy of combining NVP-LDE-225 (PI3K/mTOR inhibitor) and NVP-BEZ-235 (Smoothened inhibitor) on pancreatic CSCs characteristics, microRNA regulatory network, and tumor growth. NVP-LDE-225 co-operated with NVP-BEZ-235 in inhibiting pancreatic CSC's characteristics and tumor growth in mice by acting at the level of Gli. Combination of NVP-LDE-225 and NVP-BEZ-235 inhibited self-renewal capacity of CSCs by suppressing the expression of pluripotency maintaining factors Nanog, Oct-4, Sox-2 and c-Myc, and transcription of Gli. NVP-LDE-225 co-operated with NVP-BEZ-235 to inhibit Lin28/Let7a/Kras axis in pancreatic CSCs. Furthermore, a superior interaction of these drugs was observed on spheroid formation by pancreatic CSCs isolated from Pankras/p53 mice. The combination of these drugs also showed superior effects on the expression of proteins involved in cell proliferation, survival and apoptosis. In addition, NVP-LDE-225 co-operated with NVP-BEZ-235 in inhibiting EMT through modulation of cadherin, vimentin and transcription factors Snail, Slug and Zeb1. In conclusion, these data suggest that the combined inhibition of PI3K/Akt/mTOR and Shh pathways may be beneficial for the treatment of pancreatic cancer.

  9. Comparison of expression patterns of fibroblast growth factor 8, bone morphogenetic protein 4 and sonic hedgehog in jaw development of the house shrew, Suncus murinus.

    Science.gov (United States)

    Ogi, Hidenao; Tabata, Makoto J; Yamanaka, Atsushi; Yasui, Kinya; Uemura, Masanori

    2002-01-01

    To elucidate the mechanism underlying jaw development in mammals, we used a new laboratory animal, Suncus murinus (house shrew, an insectivore) as the subject for the investigation, because Suncus has all types of teeth (incisor, canine, premolar and molar) in its upper and lower jaws and is thought to be a good model animal having a general mammalian tooth pattern. At the start, by use of degenerate primers we cloned Suncus homologues of fibroblast growth factor 8 (sFgf8), bone morphogenetic protein 4 (sBmp4) and sonic hedgehog (sShh) genes from cDNA library derived from whole Suncus embryos at day 12 (E12). Thereafter, we examined the expression patterns of these genes in the jaw development of Suncus E11-16 embryos (for mouse E9.5-12 embryos). sFgf8 and sBmp4 were expressed in E11 but not in E15 and onward during orofacial development. sShh was expressed from E11 onward, and its expression was increased in the orofacial area. The expression pattern of sFgf8 in the maxillary and mandibular arches of E14 coincided with the area of the presumptive tooth arch. However, sShh and sBmp4 were expressed only in the outer area (= buccal/labial side) of presumptive tooth arch. Thus, these 3 genes showed specific expression pattern in jaw development of Suncus, and their distributions did not overlap each other except in a few regions. These findings suggest that sFgf8, sBmp4 and sShh have a specific function respectively during jaw development in Suncus murinus.

  10. Helicobacter pylori-induced sonic hedgehog expression is regulated by NFκB pathway activation: The use of a novel in vitro model to study epithelial response to infection

    OpenAIRE

    Schumacher, MA; R. Feng; Aihara, E; Engevik, AC; Montrose, MH; Ottemann, KM; Zavros, Y

    2015-01-01

    © 2014 John Wiley & Sons Ltd. Helicobacter pylori (H. pylori) infection leads to acute induction of Sonic Hedgehog (Shh) in the stomach that is associated with the initiation of gastritis. The mechanism by which H. pylori induces Shh is unknown. Shh is a target gene of transcription factor Nuclear Factor-κB (NFκB). We hypothesize that NFκB mediates H. pylori-induced Shh. Materials and Methods: To visualize Shh ligand expression in response to H. pylori infection in vivo, we used a mouse model...

  11. Estudi del gen sonic HEDGEHOG (Shh) i dels gens de la família CEACAM durant l'embriogènesi del còlon humà i la seva implicació en el desenvolupament del càncer colorectal

    OpenAIRE

    Artells i Prats, Rosa

    2008-01-01

    En aquest treball hem estudiat marcadors relacionats amb el desenvolupament embrionari del colon humà com són "Sonic hedgehog" i els membres de la família CEACAM comparant els seus nivells d'expressió en mostres de colon humà embrionari, teixit tumoral i teixit normal del propi pacient de pacients diagnosticats de càncer colorectal."Sonic hedgehog" (Shh) és un morfogen que s'expressa durant les etapes inicials de l'embriogènesi. Te un paper important en les primeres fases de l'organogènesi de...

  12. Expression of the Sonic Hedgehog signaling pathway in hepatocellular carcinoma and its significance%Sonic Hedgehog信号通路在肝细胞癌中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    罗小军; 孔宪炳; 阎雄; 周江山

    2010-01-01

    背景与目的:有研究表明Sonic Hedgehog(SHH)信号通路参与多种肿瘤的发生和发展,本研究通过检测SHH信号通路中蛋白Shh、Gli2在肝细胞癌(hepatocellular carcinoma,HCC)中的表达情况,探讨其与HCC各临床病理特征的关系和意义.方法:采用免疫组织化学法检测30例肝癌组织及10例正常肝组织中蛋白Shh、G1i2的表达;RT-PCR法检测10例HCC组织及相应癌旁组织中和肝痛细胞系HepG2、Huh7中Shh和Gli2mRNA的表达.结果:免疫组织化学法检测结果显示Shh、Gli2在HCC组织中阳性率分别为63.3%(19/30)和66.7%(20/30);Gli2的表达与HCC病理分级和肝门静脉侵犯相关(P=0.017,P=0.024).Shh、Gli2在正常肝组织中无表达.RT-PCR检测结果显示HCC组织和HepG2、Huh7细胞系中都存在Shh、Gli2 mRNA的表达.HCC组织中Shh、Gli2基因表达高于癌旁组织(P0.05).结论:Shh和Gli2在HCC细胞系和组织中的高表达,可能参与了肝癌的发生和发展,为肝癌的防治研究提供了新的实验依据.

  13. 白藜芦醇抑制Sonic hedgehog信号并减轻大鼠肺纤维化的研究%Resveratrol inactivates sonic hedgehog signaling and alleviates lung fibrosis in rats

    Institute of Scientific and Technical Information of China (English)

    李利华; 卢滨; 吴红科; 张浩; 姚菲菲

    2016-01-01

    目的 研究白藜芦醇对博莱霉素诱导大鼠肺纤维化的影响.方法 完全随机分组法将40只SD雄性大鼠分为4组:对照组、模型组、25μmol白藜芦醇组和50μmol白藜芦醇组.模型组大鼠气管内滴注博莱霉素,25和50μmol白藜芦醇组大鼠气管内滴注博莱霉素后分别用25和50μmol白藜芦醇灌胃,对照组大鼠气管内滴注生理盐水.处理30 d后,观察各处理组大鼠肺组织病理变化并检测大鼠肺组织羟脯氨酸(HYP)和Ⅰ型胶原蛋白含量.分离各组大鼠肺成纤维细胞,并利用实时荧光定量聚合酶链反应(qRT-PCR)和Western blot检测细胞中SHH(Sonic hedgehog,SHH)、Smo、Gli-1 mRNA和蛋白的表达,同时检测细胞增殖和凋亡.结果 模型组大鼠肺泡结构严重破坏并伴有胶原纤维沉淀,白藜芦醇处理可减轻纤维化病变.白藜芦醇可降低肺组织中博莱霉素诱导的HYP和Ⅰ型胶原蛋白含量.博莱霉素能显著上调成纤维细胞中SHH、Smo、Gli-1mRNA和蛋白的表达,而白藜芦醇则可抑制SHH、Smo和Gli-1的表达.博莱霉素促进成纤维细胞增殖并减少凋亡,白藜芦醇抑制细胞增殖并促进细胞凋亡.结论 白藜芦醇可抑制博莱霉素诱导的SHH信号活化并减轻大鼠肺纤维化.

  14. 刺猬蛋白在宫颈癌组织中的表达及其临床意义%Study on the expression level and clinical significance of Sonic Hedgehog in CIN and cervical carcinoma

    Institute of Scientific and Technical Information of China (English)

    闵爱萍

    2014-01-01

    Objective To detect the expression of Sonic Hedgehog( SHH)protein in normal cervical tissue, cervical intraepithelial neoplasia( CIN)and cervical carcinoma. And to probe the relation of SHH with progress of cervical carcinoma. Methods Detected the expression of SHH protein in normal cervical tissue,CIN and cervical carcinoma by immunohistochemistry. Results SHH protein had a high expression in cervical carcinoma. Conclusion SHH protein in cervical cancer showed that abnormal expression in Hedgehog( Hh)signaling pathways may be involved in the occurrence of cervical cancer process.%目的:检测刺猬蛋白( Sonic Hedgehog,SHH )在正常宫颈、宫颈上皮内瘤变( cervical intraepithelial neoplasia ,CIN)及宫颈癌组织中的表达情况,探讨其与宫颈癌发生发展的关系。方法采用免疫组化SP法,检测正常宫颈组织、CIN及宫颈癌组织中SHH的表达。结果 SHH在宫颈癌组织中高表达。结论 SHH在宫颈癌中的异常表达表明Hedgehog( Hh)信号传导通路可能参与宫颈癌的发生过程。

  15. Embelin suppresses growth of human pancreatic cancer xenografts, and pancreatic cancer cells isolated from KrasG12D mice by inhibiting Akt and Sonic hedgehog pathways.

    Directory of Open Access Journals (Sweden)

    Minzhao Huang

    Full Text Available Pancreatic cancer is a deadly disease, and therefore effective treatment and/or prevention strategies are urgently needed. The objectives of this study were to examine the molecular mechanisms by which embelin inhibited human pancreatic cancer cell growth in vitro, and xenografts in Balb C nude mice, and pancreatic cancer cell growth isolated from KrasG12D transgenic mice. XTT assays were performed to measure cell viability. AsPC-1 cells were injected subcutaneously into Balb c nude mice and treated with embelin. Cell proliferation and apoptosis were measured by Ki67 and TUNEL staining, respectively. The expression of Akt, and Sonic Hedgehog (Shh and their target gene products were measured by the immunohistochemistry, and Western blot analysis. The effects of embelin on pancreatic cancer cells isolated from 10-months old KrasG12D mice were also examined. Embelin inhibited cell viability in pancreatic cancer AsPC-1, PANC-1, MIA PaCa-2 and Hs 766T cell lines, and these inhibitory effects were blocked either by constitutively active Akt or Shh protein. Embelin-treated mice showed significant inhibition in tumor growth which was associated with reduced expression of markers of cell proliferation (Ki67, PCNA and Bcl-2 and cell cycle (cyclin D1, CDK2, and CDK6, and induction of apoptosis (activation of caspase-3 and cleavage of PARP, and increased expression of Bax. In addition, embelin inhibited the expression of markers of angiogenesis (COX-2, VEGF, VEGFR, and IL-8, and metastasis (MMP-2 and MMP-9 in tumor tissues. Antitumor activity of embelin was associated with inhibition of Akt and Shh pathways in xenografts, and pancreatic cancer cells isolated from KrasG12D mice. Furthermore, embelin also inhibited epithelial-to-mesenchymal transition (EMT by up-regulating E-cadherin and inhibiting the expression of Snail, Slug, and ZEB1. These data suggest that embelin can inhibit pancreatic cancer growth, angiogenesis and metastasis by suppressing Akt and

  16. Sonic hedgehog在二乙基亚硝胺诱发大鼠肝癌发生过程中的表达及意义%Expression and Significances of Sonic Hedgehog During Hepatocarcinogenesis Induced by Diethylnitrosamine in the Rats

    Institute of Scientific and Technical Information of China (English)

    王东; 李红星; 李笑岩; 白咸勇; 李雅娜

    2011-01-01

    To observe expression of sonic hedgehog (Shh) in tissue of liver,to explore its role during hepato-carcinogenesis induced by diethylnitrosamine (DEN) in the rats.On the Basis of this liver cancer model,the morphological changes of liver tissue were observed by HE staining,the expression of Shh protein and mR-NA were measured with immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) respectively.Based on morphological characters during the process of hepatocarcinogenesis,the rats were divided into control group,hepatic lesion group,hepatic proliferation/cirrhosis group and hepatic carcinogene-sis group.The cells of Shh protein expression mainly distributed in the epithelia of interlobular bile duct,hy-perplasia node,cancerous tissues and pericancerous tissues.The positive expression rate of Shh protein inthe control group,hepatic toxic lesion,hepatic proliferation/cirrhosis and hepatic carcinogenesis were 0%,30%,53.33% and 79.17% (χ2=42.67,P<0.05) respectively.The expression rate of Shh mRNA increased gradually with the hepatocarcinogenesis (χ2=13.35,P<0.05).The result that the binds of Shh mRNA positive expression were analyzed showed that its expression increased gradually with the hepatocarcinogenesis (F= 110.26,P<0.05).The expression rate of Ptch mRNA increased gradually with the hepatocarcinogenesis(χ2=19.83,P<0.05).The result that the binds of Ptch mRNA positive expression were analyzed showed that its expression increased gradually with the hepatocarcinogenesis (F=68.28,P<0.05).Experimental results in-di-cated that the abnormal expression of Shh caused abnormal activation of Shh signaling pathway,and con-tin-ually affected the cells of liver,and involved the process of hepatocarcinogenesis.%观察肝脏组织中Sonic hedgehog (Shh)的表达情况,探讨其在肝癌发生发展过程中的作用.用二乙基亚硝胺(diethylnitrosamine,DEN)制备诱发型肝癌模型,利用光镜技术观察诱癌过程中肝组织的形态学

  17. 类风湿关节炎患者外周血单个核细胞Sonic Hedgehog信号通路表达的初步研究%Preliminary study of Sonic Hedgehog signaling pathway in rheumatoid arthritis

    Institute of Scientific and Technical Information of China (English)

    王明霞; 黄建林; 朱尚玲; 彭蔚湘; 谢宝钊; 林灼锋; 古洁若

    2012-01-01

    AIM: To invesligale lhe expression of Sonic Hedgehog (Shh) signaling palhway - associaled fac-Lors in peripheral blood mononuclear cells (PBMCs) and synovial lissues of rheumaloid arlhrilis (RA). METHODS" The mRNA expression levels of Shh, Plchl and Glil in PBMCs of 35 RA palienls, and 35 age - and sex - malched heallhy con-Lrols were analyzed by real - Lime PCR. The expression of Shh, Plchl and Glil in synovial Lissues was delecled by immuno-hislochemisly assay in 10 RA palienls and 5 palienls wilh Iraumalic or meniscal injury (no arlhrilis) as conlrol group. All palienls accorded wilh lhe American College of Rheumatology ( ACR) 1987 revised classification criteria for determining RA, and lhe score of DAS28 was ≥3. 2. RESULTS: The results of real - lime PCR showed thai the expression of Shh and Glil mRNA in RA palienls was higher lhan thai in the controls (Shh and Glil in RA were 1.36 ±1.48 and 1. 15 ±0.68, while Shh and Glil in conlrol group were 0. 47 ± 0. 25 and 0. 49 ± 0. 05 , respectively) . The mRNA expression of Plchl be-tween lhe 2 groups had no significant difference. Similarly, lhe results of immunohislochemislry assay showed lhat lhe positive slaining rates of Shh and Glil in RA group were higher lhan those in conlrol group. However, no difference of Plchl posilive slaining rale between lhe 2 groups was observed ( P > 0. 05 ) . CONCLUSION: The positive expression of Shh and Glil indicates the aclivation of Shh signaling palhway in the RA palienls.%目的:初步探讨类风湿关节炎(RA)患者外周血单个核细胞(PBMCs)和滑膜组织中Sonic Hedgehog(Shh)信号通路相关因子表达及意义.方法:收集符合1987年美国风湿病学会(ACR)RA分类标准、28个关节疾病活动度评分(DAS28)≥3.2,病情活动RA患者(35例)及年龄、性别相匹配的健康志愿者(35例)外周血2 mL,分离PBMCs,提取总RNA,采用实时荧光定量PCR(real-time PCR)检测Shh信号通路中信号肽Shh、膜受体Ptch1和核转录因子Gli1 m

  18. Sonic hedgehog (SHH) promotes the proliferation of synovial fibroblasts of rats with collagen-induced arthritis%Sonic Hedgehog(SHH)促进胶原蛋白诱导关节炎大鼠滑膜成纤维细胞的增殖

    Institute of Scientific and Technical Information of China (English)

    李慧; 秦苏萍; 孙德旭; 潘伟; 李向阳; 孔凡运; 郑葵阳; 汤仁仙

    2016-01-01

    目的 探讨Sonic Hedgehog(SHH)在滑膜成纤维细胞增殖中的作用.方法 收集类风湿性关节炎(RA)、系统性红斑狼疮(SLE)、强直性脊柱炎(AS)患者及健康正常人血清样本各(30例),ELISA检测上述血清SHH的含量.SD大鼠皮内注射2型胶原蛋白(Col2)诱导RA大鼠模型(CIA),取其滑膜组织原代培养滑膜成纤维细胞(SF).免疫荧光细胞化学染色法检测vimentin表达鉴定SF,并检测SHH在SF中的表达.培养SF给予SHH-胶质瘤相关癌基因1(Gli-1)通路特异性阻断剂GANT61处理72 h,Western blot法检测SF表达SHH的变化情况,CCK-8法检测SF的增殖情况.结果 RA患者血清中SHH的含量较SLE、AS患者及正常组含量升高.成功建立CIA模型及分离培养SF;CIA-SF表达SHH较正常组SF高.给予GANT61处理72 h,CIA-SF中SHH蛋白表达降低且细胞增殖水平下降.结论 SHH参与RA发病与CIA-SF增殖有关.

  19. Sonic hedgehog信号通路在神经病理性疼痛模型大鼠中的表达及其意义%Expression and significance of sonic hedgehog in neuropathic pain rat model

    Institute of Scientific and Technical Information of China (English)

    刘宇临; 刘丹彦

    2016-01-01

    目的:观察神经病理性疼痛模型大鼠脊髓组织中(sonic hedgehog,Shh)信号通路的表达及随时间的动态变化规律,探索其在神经病理性疼痛中所发挥的作用.方法:取80只成年SD大鼠,采用随机数字表法均分为假手术组(sham operation group,Sham)与坐骨神经慢性压迫模型(chronic constriction injury of the sciatic nerve,CCI)组.CCI组(n=40)左侧坐骨神经以4.0丝线结扎,Sham组(n=40)不结扎,仅暴露左侧坐骨神经.建模后1、4、7、14、28 d分别对2组大鼠进行一般行为学观察,并测定大鼠机械缩足反射阈值(mechanical withdrawal threshold,MWT);采用Western blot和免疫组化检测大鼠脊髓腰骶膨大部(L4~6节段)的Shh、Gli表达.结果:与Sham组相同时间点比较:CCI组术前MWT(P=0.832)差异无统计学意义,术后其余各时间点均明显降低(P<0.01)具有统计学意义;CCI组内不同时间点比较:术后第1天MWT开始明显降低(P=0.002),7d达到最低值(P=0.027),28d仍处于较低的水平(P=0.003).Western blot结果显示:与Sham组相同时间点比较:CCI组术后1d大鼠脊髓腰骶膨大部Shh、Gli蛋白表达没有明显变化(P-0.215),其余各时间点Shh、Gli蛋白表达均出现明显增加(P<0.01);CCI组内不同时间点比较:术后7dShh、Gli蛋白表达水平达到最大值(P<0.01),这种高水平的表达可持续到损伤后28 d(P<0.01).免疫组化结果显示:与Sham组比较:CCI术后第7天Shh、Gli蛋白在相应区域显示染色明显增加(P<0.01).结论:神经病理性疼痛的发生、发展与Shh通路的激活具有显著相关,其通路蛋白的表达第7天达到峰值,第28天仍处于较高水平.

  20. 谷氨酸与神经干细胞Shh表达的相关性研究%Research of glumate and the Sonic Hedgehog expression involved in the action of neural cells

    Institute of Scientific and Technical Information of China (English)

    岳学静; 袁国艳; 袁彬; 赵新利; 金保哲; 张新中

    2009-01-01

    目的 探讨谷氨酸与神经干细胞Sonic Hedgehog(Shh)信号通路成员Shh表达的相关性研究.方法 应用谷氨酸与神经干细胞共孵,以正常神经干细胞为对照组,通过RT-PCR、Western-blot等技术检测谷氨酸刺激神经干细胞前后Shh Mrna及Shh蛋白的表达变化.结果 与对照组对比,谷氨酸刺激神经干细胞后,ShhmRNA及蛋白表达均有明显升高.结论 谷氨酸促进神经干细胞Shh的表达.

  1. Inhibition of Sonic Hedgehog Signaling Pathway by Thiazole Antibiotic Thiostrepton Attenuates the CD44+/CD24-Stem-Like Population and Sphere-Forming Capacity in Triple-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Na Yang

    2016-03-01

    Full Text Available Background/Aim: Triple-negative breast cancer (TNBC represents a particular clinical challenge because these cancers do not respond to endocrine therapy or other available targeted agents. The lack of effective agents and obvious targets are major challenges in treating TNBC. In this study we explored the cytostatic effect of thiazole ring containing antibiotic drug thiostrepton on TNBC cell lines and investigated the molecular mechanism. Methods: Cell viability was measured by MTT assay. Cell surface marker was monitored by FCM. Western blot was applied to assess the protein expression levels of target genes. Results: We found that thiostrepton remarkably suppressed the CD44+/CD24- stem-like population and sphere forming capacity of TNBC cell lines. Notably, we showed for the first time that thiostrepton exerted its pharmacological action by targeting sonic hedgehog (SHH signaling pathway. Thiostrepton repressed SHH ligand expression and reduced Gli-1 nuclear localization in TNBC cell line. Furthermore, the downstream target of SHH signaling undergone dose-dependent, rapid, and sustained loss of mRNA transcript level after thiostrepton treatment. Finally, we showed that SHH ligand was essential for maintaining CD44+/CD24- stem-like population in TNBC cell line. Conclusion: We conclude that thiostrepton suppresses the CD44+/CD24- stem-like population through inhibition of SHH signaling pathway. Our results give a new insight into the mechanism of thiostrepton anti-tumor activity and suggest thiostrepton as a promising agent that targets hedgehog signaling pathway in TNBC.

  2. Sonic hedgehog信号通路及其在肺癌中的研究进展%Progress in the Studies on Sonic Hedgehog Signaling Pathway in Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    黄淑红; 张红卫

    2004-01-01

    Hedgehog(Hh)信号通路是一种在动物胚胎时期起重要作用的信号通路,目前已经发现该通路的异常激活在多种肿瘤发生中有重要作用.Hh信号通路在肺癌中的配体依赖性激活也在多种肺癌类型中被发现,现简要介绍对该通路及其在肺癌发生中作用的研究进展.

  3. 小GTP酶Arl6调控原纤毛生成和Shh信号转导%Small GTPase Arl6 regulates ciliogenesis and sonic hedgehog signal transduction

    Institute of Scientific and Technical Information of China (English)

    沈秋红; 汤颖; 乐砷; 程雁

    2014-01-01

    目的:研究小GTP酶Arl6对sonic hedgehog(Shh)信号通路的调控作用.方法:构建Arl6敲低稳转细胞株,检测Shh通路靶基因Glil及Ptch1的mRNA表达水平;激光共聚焦显微镜下观察Arl6在原纤毛的定位,并且检测Arl6敲低细胞中原纤毛的生成情况.结果:Arl6的敲低抑制Shh信号通路的完全激活,在高浓度Shh条件性培养基或Smo激动剂Purm刺激下,靶基因Gli1 mRNA表达水平明显低于对照shControl组(P<0.01),Ptch1 mRNA的表达水平也明显降低(P< 0.05);Arl6定位于原纤毛的基部小体,Arl6的缺失会影响原纤毛的生成;同时,Shh信号会刺激Arl6的表达(P<0.05).结论:小GTP酶Arl6的敲低抑制Shh通路的完全活化,与其抑制原纤毛生成有关.

  4. A specific mutation in the distant sonic hedgehog (SHH) cis-regulator (ZRS) causes Werner mesomelic syndrome (WMS) while complete ZRS duplications underlie Haas type polysyndactyly and preaxial polydactyly (PPD) with or without triphalangeal thumb.

    Science.gov (United States)

    Wieczorek, Dagmar; Pawlik, Barbara; Li, Yun; Akarsu, Nurten A; Caliebe, Almuth; May, Klaus J W; Schweiger, Bernd; Vargas, Fernando R; Balci, Sevim; Gillessen-Kaesbach, Gabriele; Wollnik, Bernd

    2010-01-01

    Werner mesomelic syndrome (WMS) is an autosomal dominant disorder with unknown molecular etiology characterized by hypo- or aplasia of the tibiae in addition to the preaxial polydactyly (PPD) of the hands and feet and/or five-fingered hand with absence of thumbs. We show that point mutations of a specific nucleotide within the sonic hedgehog (SHH) regulatory region (ZRS) cause WMS. In a previously unpublished WMS family, we identified the causative G>A transition at position 404 of the ZRS, and in six affected family members of a second WMS family we found a 404G>C mutation of the ZRS. The 404G>A ZRS mutation is known as the "Cuban mutation" of PPD type II (PPD2). Interestingly, the index patient of that family had tibial hypoplasia as well. These data provide the first evidence that WMS is caused by a specific ZRS mutation, which leads to strong ectopic SHH expression. In contrast, we show that complete duplications of the ZRS region lead to type Haas polysyndactyly or triphalangeal thumb-polysyndactyly syndrome, but do not affect lower limb development. We suggest the term "ZRS-associated syndromes" and a clinical subclassification for the continuum of limb malformations caused by different molecular alterations of the ZRS.

  5. Loss of Sonic hedgehog expression in colorectal cancer cell lines is associated with hypermethylation of its promoter%Sonic hedgehog在大肠癌细胞株中表达缺失与其启动子高甲基化有关

    Institute of Scientific and Technical Information of China (English)

    付祥胜; 肖岚月; 邱野; 张巍; 石蕾; 周贤

    2012-01-01

      Objective: To investigate the expression of Sonic hedgehog (SHH) in colorectal cancer cell lines and its regulation mechanism. Methods: SHH mRNA expression in 4 colorectal cancer cell lines was examined by RT-PCR, and then determined after demethylation treatment with 5-aza-2′-deoxycytidine. The methylation status of SHH promoter in colorectal cancer cells was detected by bisulfite sequencing. Results: SHH mRNA was expressed weakly in HCT-8 cell, and lost in SW1116, SW480 and LOVO cells. After demethylation treatment, expression of SHH mRNA increased significantly(P<0.001). SHH promoter was hypermethylated in colorectal cancer lines. Conclusion:Loss of SHH expression in colorectal cancer cell lines is associated with hypermeth-ylation of its promoter.%  目的:研究sonic hedgehog (SHH)在大肠癌细胞株的表达及其调控机制.方法:RT-PCR检测SHH mRNA在大肠癌细胞株 HCT-8、SW1116、SW480及 LOVO中的表达,去甲基化试验观察5-氮-2-脱氧胞苷(5-aza-2′-deoxycytidine)处理细胞株后对 SHH mRNA 表达的影响,采用亚硫酸盐修饰后测序法检测 SHH 启动子区甲基化状况.结果:SHH mRNA 在HCT-8中仅有弱表达,在 SW1116、SW480及 LOVO 中表达缺失,去甲基化处理后,其表达与对照组相比显著增强(P<0.001);SHH启动子在大肠癌细胞株中为高甲基化状态.结论:SHH在大肠癌细胞株中表达缺失与其启动子高甲基化有关.

  6. 顺铂联合米托蒽醌调节脑胶质瘤U87细胞Sonic Hedgehog信号通路的研究%Effect of mitoxantrone combined with cisplatin on Sonic Hedgehog signal pathway of glioma cell line U87

    Institute of Scientific and Technical Information of China (English)

    尹宜发; 杨凡; 覃晓琳; 周海波; 刘朝奇

    2011-01-01

    Objective:To ohserve the effect of mitoxantrone ( MXT ) combined with cisplatin ( CDDP )on Sonic Hedgehog signal pathway of glioma cell line U87 in vitro. Methods : The survival rate of U87 cells after treatment with different concentrations of MXT, CDDP and the same concentrations of MXT plus CDDP were observed by MTT assay. Using DiOC6 dye staining to detect the mitochondria membrane potential changes in U87 cells and morphological changes were observed the apoptosis. The expression of Glil and Ptch gene on U87 cells were detected by RT - PCR. Results :MTT and mitochondrial memhrane potential assay indicated that CDDP at low concentrations (≤0. 625 μg / ml ) comhined with MXT can significantly enhance the inhibitory effect and apoptosis of U87 cells. RT - PCR assay showed that CDDP increased the expression of Ptch and Glil gene, but MXT and MXT + CDDP can decrease the Ptch and Glil gene expression. Conclusion : U87 glioma cells treated with MXT alone or treated with MXT combined with CDDP can affect the Sonic Hedgehog signaling pathway, which played an important role in enhancing the apoptosis, thus enhancing the sensitivity of U87 cells to chemotherapeutic drug.%目的:观察米托蒽醌(Mitoxantrone,MXT)联合顺铂(Cisplatin,CDDP)对脑胶质瘤U87细胞杀伤活性及对Sonic Hedgehog信号通路的影响.方法:应用MTT法检测不同浓度米托蒽醌、顺铂以及两药物联合对U87细胞成活率的影响.显微镜观察细胞的形态变化DiOC6荧光染料对细胞线粒体染色检测其膜电位变化来反映细胞凋亡.RT-PCR法检测顺铂、米托蒽醌及两药联合对U87细胞Gli1和Ptch基因表达的影响.结果:MTT结果显示顺铂、米托蒽醌均可以有效抑制U87细胞的增殖,当米托蒽醌和顺铂浓度≤ 0.625μg /ml时,两药联合对U87细胞增殖具有协同抑制作用;细胞形态变化及线粒体膜电位结果显示,单药处理可促进U87细胞凋亡,而联合用药可以协同促进U87细胞的凋亡;RT

  7. Expressions and Significance of Sonic Hedgehog in Adenoma and Colorectal Carcinoma%SHH蛋白在大肠腺瘤和大肠癌中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    包向东; 潘丹; 冯国飞; 项剑瑜; 周素英; 陈亮; 周慧珍; 颜王鑫

    2012-01-01

    目的:探讨Shh (sonic hedgehog)在大肠腺瘤及大肠癌中的表达及其临床意义.方法:应用免疫组织化学方法检测48例大肠腺瘤及50例大肠癌中Shh蛋白的表达,并与临床病理因素进行相关性分析.结果:Shh蛋白的阳性信号分布在大肠腺瘤和大肠癌细胞质内,在大肠腺瘤和大肠癌中的阳性表达率分别为64.6% (31/48)和58.0% (29/50),明显高于正常组织的20.0% (5/25) (P <0.01,P<0.05);在大肠腺瘤中,Shh的染色评分随腺瘤组织学分级的增加而呈显著性升高(P<0.05).Shh在早期大肠癌的阳性表达率和染色评分都高于进展期大肠癌,差异均有统计学意义(P <0.01和P<0.0001).Shh在大肠腺瘤和大肠癌中的表达与性别、年龄、肿瘤部位和大小及组织学类型无关(P>0.05).结论:Shh信号通路的异常激活在大肠癌发生过程中发挥一定的作用,Shh可作为大肠癌早期诊断的生物学指标及潜在的治疗靶点.%Objective:To explore the expressions and significance of Shh( sonic hedgehog) in colorectal adenoma and colorectal carcinoma (CRC). Methods :The expressions of Shh in 48 cases with colorectal adenomas and 50 cases with CRCs were detected and evaluated by immunohistochemistry, and its correlation with clinicopathological factors was statistically analyzed to investigate. Results :Shh protein was detected in the cytoplasm of colorectal adenoma and CRC cells,the positive rate of Shh was in colorectal adenoma and CRC were 64. 6% (31/48) and 58. 0% (29/50) respectively, which were significantly higher than that in normal tissue 20.0% (5/25 )(P 0. 05). Conclusion-.The aberrant activation of Shh signaling pathway plays some roles in progression of CRC. Shh may be indicators for early diagnoses of CRC and potential therapeutic targets.

  8. Hedgehog信号通路在胰腺癌中的表达与表皮生长因子受体的关系%Expression of sonic hedgehog and EGFR in human pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    宋启斌; 胡伟国; 王卫星

    2009-01-01

    Objective To investigate the expression of Sonic hedgehog(SHH)and EGFR signaling pathways in human pancreatic cancer.Methods Reveme transcription-polymerase chain reaction (RT-PCR)and Western blot assay were used to detect the mRNA and protein expression of SHH and EGFR in human pancreatic cancer tissue and normal tissues adjacent to cancer.Resuits The SHH mRNA and protein expression was detectable in 81.6%and 79.6%of pancreatic cancer.respectively.The EGFR mRNA and protein expression was both 73.5%in pancreatic cancer tissues.These was significant difference from that of normal tissue adjacent to cancer(P<0.05).The expression of SHH and EGFR protein in pancreatic cancer had no correlation with age,tumor size,pathological type and tumor site(P>0.05),but had a relationship with lymph node metastasis and TNM stage(P<0.05).The relationship between SHH and EGFR protein was positive(r=0.232,P<0.05).Conclusion The SHH and EGFR signaling pathways were active in human pancreatic cancer.The crosstalk between these pathways may play an important role in the carcinogenesis and development of pancreatic carcinoma.%目的 探讨胚胎发育信号通路Sonic hedgehog(SHH)在胰腺癌组织中的表达及其与表皮生长因子受体(EGFR)的关系.方法 逆转录-聚合酶链反应(RT-PCR)和Western blot法分别检测胰腺癌组织及癌旁组织中SHH和EGFR的mRNA和蛋白表达.结果 SHH mRNA和蛋白在胰腺癌组织中的阳性率分别为81.6%和79.6%,与癌旁组织比较,差异有统计学意义(P<0.05).EGFR mRNA和蛋白在胰腺癌组织中的阳性率均为73.5%,与癌旁组织比较,差异有统计学意义(P<0.05).SHH和EGFR蛋白表达与年龄、肿瘤大小、组织学类型和肿瘤部位等病理因素均无明显相关(P>0.05),而在不同淋巴结转移状况和TNM分期的病例组中,两者表达差异有统计学意义(P<0.05).配对资料的Spearman相关分析显示,SHH表达与EGFR表达呈正相关(r=0.232,P<0.05).结论 SHH

  9. Experimental study of rat mesenchymal stem cells transfected with Sonic Hedgehog gene%Shh基因转染大鼠骨髓间充质干细胞的可行性

    Institute of Scientific and Technical Information of China (English)

    吴晓明; 唐滔; 杨进福; 谭志平; 张伟

    2012-01-01

    Objective To evaluate the feasibility of genetic modification of mesenchymal stem cells (MSC) with Sonic Hedgehog(Shh) gene.Methods The pcDNA3.l-Shh eukaryotic expression plasmid was constructed and its correctness evaluated by the restriction enzyme analysis and sequencing. MSC were isolated from Wistar rats by density gradient centrifugation and purified,transfected with pcDNA3.1-Shh,blank plasmid pcDNA3.1 ( - ) or pmaxGFP respectively by NucleofectorTM.The protein expression of Shh in MSC was detected by Western blot after 48 hours.Results Correct construction of pcDNA3.1-Shh was identified by the methods of restriction enzyme analysis and nucleotide sequence determination. The expression of green fluorescent protein (GFP) could be observed by fluorescence microscopy after 48 hours.The expression of Shh gene was detected by Western blot.But the MSC transfected with empty plasmid expression was not detected.Conclusions Recombinant Eukaryotic expression plasmid pcDNA3.1-Shh is successfully detected in rat MSC.It may provide experimental rationales for the future gene therapy.%目的 探讨Sonic Hedgehog(Shh)基因有效转染大鼠骨髓间充质干细胞(BMSC)的可行性.方法 构建pcDNA3.1-Shh真核表达质粒,酶切和测序鉴定.密度梯度离心-贴壁培养法获取Wistar大鼠BMSC,电击穿孔法将pcDNA3.1-Shh、pcDNA3.1(一)空质粒和pmaxGFP报告质粒转染进BMSC,48 h后Western印迹法检测Shh基因的表达情况.结果 酶切和测序结果证实pcDNA3.1-Shh正确性.转染48 h后,荧光显微镜可观察到绿色荧光蛋白(GFP)的表达,有40%以上的细胞发出绿色荧光.Western印迹法检测证实有Shh基因表达,而转染pcDNA3.1(一)空质粒的BBMSC未检测到表达.结论 重组真核表达质粒pcDNA3.1-Shh转染大鼠BMSC后能有效表达Shh基因,为进一步Shh基因与细胞联合治疗大鼠心肌缺血模型提供了实验依据.

  10. RT-PCR study of the expression of sonic hedgehog and its receptor patched during late bell stage in mouse tooth germ%RT-PCR法研究sonic hedgehog基因及其受体patched在小鼠牙胚钟状晚期的表达

    Institute of Scientific and Technical Information of China (English)

    周彦秋; 林久祥

    2002-01-01

    目的:判断sonic hedgehog(Shh)基因及其受体patched(Ptc)是否在小鼠牙胚钟状晚期有表达.方法:用RT-PCR法研究Shh及其受体Ptc在小鼠牙胚钟状晚期的表达.设计Shh及其受体Ptc的PCR引物;选取新生鼠第1天(P1)、第3天(P3)、第7天(P7)的牙胚为研究对象,提取总RNA.两步法进行RT-PCR反应,10 g*L-1琼脂糖电泳观察.结果:出生后第1天、第3天、第7天小鼠牙胚RT-PCR产物可见Shh、 Ptc条带.结论:Shh及其受体Ptc在小鼠牙胚钟状晚期有表达.

  11. Research progress of Sonic Hedgehog signaling pathway and its targeted inhibitors in ;medulloblastoma%髓母细胞瘤SHH信号通路及靶向抑制剂研究进展

    Institute of Scientific and Technical Information of China (English)

    林中啸; 蔡铭; 盛汉松; 张弩

    2014-01-01

    SHH信号通路在小脑的发育形成过程中发挥着重要作用,能够调控小脑细胞正常发育周期及细胞增殖,维持小脑正常的功能和结构。SHH信号通路异常激活会出现小脑细胞异常增殖而导致髓母细胞瘤(MB)发生,是MB形成过程中最具有特异性的通路之一。针对SHH信号通路靶向抑制剂治疗将成为治疗MB的新方法,能特异性地阻断特定信号转导途径,靶向于肿瘤细胞的微环境及分子表达从而抑制肿瘤生长和转移。本文就MB发病机制中的SHH信号通路和基于该信号通路靶向抑制剂的研究进展作一综述。%Sonic Hedgehog (SHH) signaling pathway plays an important role in the formation process in the development of the cerebellum. It can regulate the normal development of the cerebellum cell cycle and cell proliferation to maintain normal function and structure of the cerebellum. Aberrant SHH signaling pathway causes severe cerebellar development and medulloblastoma (MB). Targeted for SHH signaling pathway inhibitor treatment will become a new treatment for MB, specificity to block certain signal transduction pathways, targeted to the microenvironment of tumor cells and molecules expression to inhibit tumor growth and metastasis. This review summarized the research progress of SHH signaling pathway and its targeted inhibitors in MB.

  12. Expression of Sonic Hedgehog (SHH) in human lung cancer and the impact of YangZheng XiaoJi on SHH-mediated biological function of lung cancer cells and tumor growth.

    Science.gov (United States)

    Jiang, Wen G; Ye, Lin; Ruge, Fiona; Sun, Ping-Hui; Sanders, Andrew J; Ji, Ki; Lane, Jane; Zhang, Lijian; Satherley, Lucy; Weeks, Hoi P; Zhi, Xiuyi; Gao, Yong; Wei, Cong; Wu, Yiling; Mason, Malcolm D

    2015-03-01

    Sonic Hedgehog (SHH) is a protein that is aberrantly expressed in various human tumors. SHH and its signaling molecules have been indicated as potential therapeutic targets. In the present study, we evaluated the expression of SHH transcript in human non-small cell lung cancer (NSCLC) tissues and investigated the impact of inhibiting SHH together with a traditional Chinese medicine formula, YangZheng XiaoJi (YZXJ), on the function and growth of lung cancer cells. Human NSCLC tissues had significantly higher levels of the SHH transcript compared matched normal lung tissues (n=83). TNM2 tumors and tumors with pleural invasion had higher levels than TNM1 and non-invasive tumors. High SHH levels were associated with a shorter overall survival (OS) of the patients. A SHH inhibitor, cyclopamine, and YZXJ alone or in combination had a marked inhibitory effect on cellular invasion and cellular migration of human lung cancer cells, A549 and SKMES1. YangZheng XiaoJi and its combination with cyclopamine also significantly reduced the growth of lung tumors in vivo together with a reduction of SHH and smoothened (Smo) proteins in the lung tumors. The present study provides evidence that blocking SHH by way of small inhibitor and by YangZheng XiaoJi has a profound influence on lung cancer cells as seen by in vitro invasion and cell migration and in vivo tumor growth. Together with the aberrant expression of SHH in NSCLC tumors in the patients, it is suggested that SHH is a potential target for therapies for NSCLC.

  13. The conserved barH-like homeobox-2 gene barhl2 acts downstream of orthodentricle-2 and together with iroquois-3 in establishment of the caudal forebrain signaling center induced by Sonic Hedgehog.

    Science.gov (United States)

    Juraver-Geslin, Hugo A; Gómez-Skarmeta, José Luis; Durand, Béatrice C

    2014-12-01

    In this study, we investigated the gene regulatory network that governs formation of the Zona limitans intrathalamica (ZLI), a signaling center that secretes Sonic Hedgehog (Shh) to control the growth and regionalization of the caudal forebrain. Using loss- and gain-of-function, explants and grafting experiments in amphibians, we demonstrate that barhl2 acts downstream of otx2 and together with the iroquois (irx)-3 gene in establishment of the ZLI compartment initiated by Shh influence. We find that the presumptive (pre)-ZLI domain expresses barhl2, otx2 and irx3, whereas the thalamus territory caudally bordering the pre-ZLI expresses barhl2, otx2 and irx1/2 and early on irx3. We demonstrate that Barhl2 activity is required for determination of the ZLI and thalamus fates and that within the p2 alar plate the ratio of Irx3 to Irx1/2 contributes to ZLI specification and size determination. We show that when continuously exposed to Shh, neuroepithelial cells coexpressing barhl2, otx2 and irx3 acquire two characteristics of the ZLI compartment-the competence to express shh and the ability to segregate from anterior neural plate cells. In contrast, neuroepithelial cells expressing barhl2, otx2 and irx1/2, are not competent to express shh. Noteworthy in explants, under Shh influence, ZLI-like cells segregate from thalamic-like cells. Our study establishes that Barhl2 activity plays a key role in p2 alar plate patterning, specifically ZLI formation, and provides new insights on establishment of the signaling center of the caudal forebrain.

  14. Helicobacter pylori-induced Sonic Hedgehog expression is regulated by NFκB pathway activation: the use of a novel in vitro model to study epithelial response to infection.

    Science.gov (United States)

    Schumacher, Michael A; Feng, Rui; Aihara, Eitaro; Engevik, Amy C; Montrose, Marshall H; Ottemann, Karen M; Zavros, Yana

    2015-02-01

    Helicobacter pylori (H. pylori) infection leads to acute induction of Sonic Hedgehog (Shh) in the stomach that is associated with the initiation of gastritis. The mechanism by which H. pylori induces Shh is unknown. Shh is a target gene of transcription factor Nuclear Factor-κB (NFκB). We hypothesize that NFκB mediates H. pylori-induced Shh. To visualize Shh ligand expression in response to H. pylori infection in vivo, we used a mouse model that expresses Shh fused to green fluorescent protein (Shh::GFP mice) in place of wild-type Shh. In vitro, changes in Shh expression were measured in response to H. pylori infection using 3-dimensional epithelial cell cultures grown from whole dissociated gastric glands (organoids). Organoids were generated from stomachs collected from the fundic region of control and mice expressing a parietal cell-specific deletion of Shh (PC-Shh(KO) mice). Within 2 days of infection, H. pylori induced Shh expression within parietal cells of Shh::GFP mice. Organoids expressed all major gastric cell markers, including parietal cell marker H(+) ,K(+) -ATPase and Shh. H. pylori infection of gastric organoids induced Shh expression; a response that was blocked by inhibiting NFκB signaling and correlated with IκB degradation. H. pylori infection of PC-Shh(KO) mouse-derived organoids did not result in the induction of Shh expression. Gastric organoids allow for the study of the interaction between H. pylori and the differentiated gastric epithelium independent of the host immune response. H. pylori induces Shh expression from the parietal cells, a response mediated via activation of NFκB signaling. © 2014 John Wiley & Sons Ltd.

  15. Regulation of sonic hedgehog-GLI1 downstream target genes PTCH1, Cyclin D2, Plakoglobin, PAX6 and NKX2.2 and their epigenetic status in medulloblastoma and astrocytoma

    Directory of Open Access Journals (Sweden)

    Eberhart Charles G

    2010-11-01

    Full Text Available Abstract Background The Sonic hedgehog (Shh signaling pathway is critical for cell growth and differentiation. Impairment of this pathway can result in both birth defects and cancer. Despite its importance in cancer development, the Shh pathway has not been thoroughly investigated in tumorigenesis of brain tumors. In this study, we sought to understand the regulatory roles of GLI1, the immediate downstream activator of the Shh signaling pathway on its downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6 in medulloblastoma and astrocytic tumors. Methods We silenced GLI1 expression in medulloblastoma and astrocytic cell lines by transfection of siRNA against GLI1. Subsequently, we performed RT-PCR and quantitative real time RT-PCR (qRT-PCR to assay the expression of downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6. We also attempted to correlate the pattern of expression of GLI1 and its regulated genes in 14 cell lines and 41 primary medulloblastoma and astrocytoma tumor samples. We also assessed the methylation status of the Cyclin D2 and PTCH1 promoters in these 14 cell lines and 58 primary tumor samples. Results Silencing expression of GLI1 resulted up-regulation of all target genes in the medulloblastoma cell line, while only PTCH1 was up-regulated in astrocytoma. We also observed methylation of the cyclin D2 promoter in a significant number of astrocytoma cell lines (63% and primary astrocytoma tumor samples (32%, but not at all in any medulloblastoma samples. PTCH1 promoter methylation was less frequently observed than Cyclin D2 promoter methylation in astrocytomas, and not at all in medulloblastomas. Conclusions Our results demonstrate different regulatory mechanisms of Shh-GLI1 signaling. These differences vary according to the downstream target gene affected, the origin of the tissue, as well as epigenetic regulation of some of these genes.

  16. Activation of the hedgehog pathway in advanced prostate cancer

    Directory of Open Access Journals (Sweden)

    McCormick Frank

    2004-10-01

    Full Text Available Abstract Background The hedgehog pathway plays a critical role in the development of prostate. However, the role of the hedgehog pathway in prostate cancer is not clear. Prostate cancer is the second most prevalent cause of cancer death in American men. Therefore, identification of novel therapeutic targets for prostate cancer has significant clinical implications. Results Here we report that activation of the hedgehog pathway occurs frequently in advanced human prostate cancer. We find that high levels of hedgehog target genes, PTCH1 and hedgehog-interacting protein (HIP, are detected in over 70% of prostate tumors with Gleason scores 8–10, but in only 22% of tumors with Gleason scores 3–6. Furthermore, four available metastatic tumors all have high expression of PTCH1 and HIP. To identify the mechanism of the hedgehog signaling activation, we examine expression of Su(Fu protein, a negative regulator of the hedgehog pathway. We find that Su(Fu protein is undetectable in 11 of 27 PTCH1 positive tumors, two of them contain somatic loss-of-function mutations of Su(Fu. Furthermore, expression of sonic hedgehog protein is detected in majority of PTCH1 positive tumors (24 out of 27. High levels of hedgehog target genes are also detected in four prostate cancer cell lines (TSU, DU145, LN-Cap and PC3. We demonstrate that inhibition of hedgehog signaling by smoothened antagonist, cyclopamine, suppresses hedgehog signaling, down-regulates cell invasiveness and induces apoptosis. In addition, cancer cells expressing Gli1 under the CMV promoter are resistant to cyclopamine-mediated apoptosis. All these data suggest a significant role of the hedgehog pathway for cellular functions of prostate cancer cells. Conclusion Our data indicate that activation of the hedgehog pathway, through loss of Su(Fu or overexpression of sonic hedgehog, may involve tumor progression and metastases of prostate cancer. Thus, targeted inhibition of hedgehog signaling may have

  17. Anti-Sonic hedgehog blocking antibody enhances killing effect of PBMCs on cervical carcinoma HeLa cells%Sonic hedgehog阻断抗体增强外周血单个核细胞抗宫颈癌HeLa细胞的作用

    Institute of Scientific and Technical Information of China (English)

    孙艳; 黄莉霞; 黄文浩; 黄斌

    2011-01-01

    AIM: To investigate the effect of anti - Sonic hedgehog( Shh ) blocking antibody on the killing effect of peripheral blood mononuclear cells( PBMCs ) on cervical carcinoma HeLa cells. METHODS: The expression levels of Shh and Shh signaling molecules in HeLa cells were detected by immunocytochemistry and RT - PCR. PBMCs from health peoples were isolated by the method of Ficoll density gradient centrifugation, and then co - cultured with HeLa cells in vitro. The expression of CD3, CD69 and CD71 was assayed by flew cytometry. The concentrations of IFN - 7, IL - 10 and IL - 4 in culture supernatants were detected by ELISA. The killing effect of PBMCs on HeLa cells was observed under microscope. RESULTS: Shh and Shh signaling molecules were expressed in HeLa cells. The level of Shh expression didn t change significantly in the 6th passage of HeLa cells. CD3 + cells were increased in the co - culture system. The expression of CD69 and CD 71, and the secretion of IFN - 7 were increased, while the secretion of IL - 10 was decreased in the co - culture system treated with anti - Shh blocking antibody. Anti - Shh blocking antibody has no effect on the secretion of IL -4. The killing effect of PBMCs on HeLa cells was strengthened by anti - Shh blocking antibody. CONCLUSION : Anti - Shh blocking antibody promotes the activation of PBMCs and enhances the killing effect of PBMCs on cervical carcinoma HeLa cells.%目的:探讨Sonic hedgehog(Shh)阻断抗体对外周血单个核细胞(PBMCs)抗宫颈癌HeLa细胞作用的影响.方法:免疫细胞化学技术和RT-PCR法检测Shh及其信号分子在HeLa 细胞中的表达;Ficoll密度梯度离心法分离正常人PBMCs,并与HeLa细胞建立共培养体系;于共培养体系中加入Shh阻断抗体,流式细胞术检测CD3、CD69和CD71分子表达;ELISA法检测细胞因子IFN-γ、IL-10和IL-4分泌;显微镜观察PBMCs 对HeLa细胞的杀伤.结果:HeLa细胞表达Shh及其信号分子,HeLa细胞传代6次对Shh的表达水

  18. Sonic Hedgehog在非小细胞肺癌中的表达及其与患者生存周期的关系%Expression of Sonic Hedgehog in non-small cell lung cancer and its relationship with the cycle of life

    Institute of Scientific and Technical Information of China (English)

    李岩; 吴爱萍; 李欣; 张蕾; 周海英

    2013-01-01

    Objective To observe the expression of Sonic Hedgehog (Shh) signaling pathway related protein in patients with non-small cell lung cancer and explore their roles in the development of lung cancer.Methods Forty-six patients with non-small cell lung cancer undergoing surgical operation were selected in our hospital from January to June,2013,which were operation resection of lung cancer as the observation group,39 cases the tissue of adjacent to carcinoma,28 cases of lung tissue with no lung cancer as control group.Using immunohistochemical method to observe the Shh and Gli2 protein expression.Results Shh and Gli1 protein in the cells were expressed in the cytoplasm under light microscope,yellow or brown yellow.The positive rate of Shh and Gli1 protein in the observe group were respectively 73.91% (34/46) and 67.40% (31/46),were higher than that in paracancerous tissues and the control group (P <0.05),The positive rate of Shh and Gli1 protein in Ⅲ,ⅣWstage were 80.95% (17/21),71.43%(15/21) and 91.67% (11/12),83.33% (10/12),were higher than those of Ⅰ and Ⅱ phase (P < 0.05).Conclusion In Shh signal pathway,there may be through the activation of Shh protein and the expression of Gli protein which promote carcinogenesis and cell proliferation in non-small cell lung cancer.%目的 观察非小细胞肺癌患者Sonic Hedgehog(Shh)信号通路相关蛋白的表达,探讨在肺癌发展过程中的作用.方法 选择本院2013年1月至6月非小细胞肺癌手术患者46例,取切除肺癌组织为观察组,取癌旁组织39例,以非非小细胞肺癌患者28例肺部组织为对照组.采用免疫组织化学方法观察Shh和Gli2蛋白表达.结果 观察组Shh和Gli1蛋白阳性率分别为73.91%(34/46)和67.40%(31/46),均高于癌旁组织和对照组(P<0.05),Ⅳ、Ⅲ期患者Shh和Gli1蛋白阳性率分别为80.95%(17/21)、71.43% (15/21)和91.67%(11/12)、83.33%(10/12),均高于Ⅰ期和Ⅱ期患者(P<0.05).结论 Shh信号

  19. PIAS1 promotes acquired gemcitabine resistance in pancreatice cancer cell SW1990 through regulating Sonic hedgehog signaling%PIAS1通过调控Sonic hedgehog信号通路使胰腺癌细胞SW1990获得对吉西他滨的耐药性

    Institute of Scientific and Technical Information of China (English)

    刘怀泽; 俞婷婷; 程雁

    2016-01-01

    目的:研究吉西他滨耐药性胰腺癌细胞中Sonic hedgehog(Shh)信号通路异常激活的机制.方法:通过间歇梯度倍增法筛选出对吉西他滨产生耐药性的胰腺癌细胞SW1990-GEM,荧光实时定量PCR和蛋白质印迹法检测耐药细胞中PIAS1的表达:利用RNA干扰技术构建稳定低表达PIAS1的细胞株SW1990-GEM-shPIAS1,从增殖速度、克隆形成能力及裸鼠皮下成瘤能力等方面考察PIAS1、Shh信号通路与胰腺癌耐药性的相关性.结果:耐药株SW1990-GEM中PIAS1基因表达量明显升高;PIAS1的高度表达正向激活了Shh信号通路的活性,使得细胞获得耐药能力;人为降低PIAS1的高表达后,耐药株的耐药能力同时被减弱.结论:PIAS1是使耐药株获得耐药性的关键因子,PIAS1通过正向调控Shh信号通路使其获得耐药能力.

  20. Shh对发育中小鼠视觉传导通路的影响%Changes of retinofugal pathway development in mouse embryos after Sonic hedgehog antibody perturbation

    Institute of Scientific and Technical Information of China (English)

    郝彦利; 陈新安; 董为人

    2006-01-01

    Objective To understand the function of Sonic hedgehog in lchiasm development in mouse embryos of embryonic day 13 (E13) to E15. Methods Brain slices of E13-E15 mouse embryos containing the optic pathway from the eyes to the optic tract were prepared and cultured in DMEM/F12 in the presence of 10% fetal bovine serum at 37 ℃ in a rolling incubator for 5 h. The antibody to Shh was added into the culture medium of the slices in the treatment group, while no additional chemical or only normal mouse IgG was added in the control groups. After culture, the brain slices were fixed and a DiI granule was inserted into the optic disc in one eye. Seven days later, the tissue overlying the chiasm was removed to expose the DiI-labeled chiasm for observation under confocal microscope, and the images were analyzed by METAMORPH soft ware.Results Shh antibody treatment produced a reduction of crossing of the earliest retinal axons at the midline of E13 chiasm, and the uncrossed axons were also influenced by Shh antibody at E15. Conclusion Shh executes a transient but important function in axon decussation in the early stage of mouse optic chiasm development and signals axon turning in the later stage.%目的 探察Shh对E13-E15小鼠胚胎中视觉传导通路发育的影响.方法 E13至E15小鼠胚胎的眼至视束部分制备成脑厚片,置于含10%的小牛血清的DMEM/F1212的培养液中,在37℃恒温滚动培养箱中培养5h.实验组中将Shh抗体加入培养液中.培养结束后,将脑厚片以4%多聚甲醛固定,将DiI颗粒置于视盘.7d后,在手术显微镜下,暴露被标记的视神经纤维,在激光扫描共聚焦纤维镜下观察.结果 用Shh抗体阻抑Shh的功能,可引起E13跨越中线的视神经纤维减少以及E15投射至同侧的视束的神经纤维的增多.结论 在视交叉形成的早期,Shh引导视神经纤维跨越中线.在视交叉形成的后期,Shh引导视神经转弯.

  1. The clinical significance of sonic hedgehog,Patched1 expression in human gastric canc-er tissue%音猬因子、Ptch1基因在胃癌中的表达及临床意义

    Institute of Scientific and Technical Information of China (English)

    李东伟; 刘宏斌; 曹廷宝; 韩晓鹏; 景化忠

    2015-01-01

    Objective:To explore the expression and significance of sonic hedgehog(Shh),Patched1 (Ptch1)in human gastric cancer tissue.Methods:The expression of Shh,Ptch1 mRNA and protein was detected in 9 8 human gastric cancer tissue by RT -PCR and Western blot.Results:The expression of Shh,Ptch 1 mRNA in gastric cancer was 0.687 ±0.057,0.594 ±0.046,and in gastric cancer adjacent tissue was 0.314 ±0.025,0.293 ±0.074 (P 0.05).Conclusion:Shh,Ptch1 overexpressed in gastric cancer tissues and its abnor-mal expression may be involved in the oncogenesis and development of gastric cancer.%目的:研究胃癌组织中音猬因子(Shh)、Patched1(Ptch1)基因的表达及意义。方法:采用反转录-聚合酶链反应(RT -PCR)和 Westem blot 检测98例胃癌组织和配对的癌旁组织中 Shh、Ptch 1 mRNA 和蛋白的表达情况。结果:RT -PCR 检测结果显示,Shh、Ptch 1 mRNA 在胃癌中相对表达量分别为0.687±0.057、0.594±0.046,在胃癌旁组织中分别为0.314±0.025、0.293±0.074(P <0.05)。Western blot 检测结果显示,Shh、Ptch1蛋白在胃癌中的相对表达量分别为0.525±0.057、0.481±0.046,在胃癌旁组织中分别为0.236±0.025、0.215±0.074。胃癌组织 Shh、Ptch1 mRNA 和蛋白平均表达水平高于癌旁组织,差异有统计学意义(P <0.05);Shh、Ptch1 mRNA 和蛋白表达水平与胃癌的分化程度、TNM分期、浸润深度和淋巴结转移明显相关(P <0.05),与患者年龄、性别和肿瘤直径无明显相关(P >0.05)。结论:胃癌组织中 Shh、Ptch1蛋白呈高表达,Shh、Ptch1蛋白的高表达可能与胃癌的发生及发展有关。

  2. Hedgehog signaling in the stomach.

    Science.gov (United States)

    Konstantinou, Daniel; Bertaux-Skeirik, Nina; Zavros, Yana

    2016-12-01

    The Hedgehog (Hh) signaling pathway not only plays a key part in controlling embryonic development, but in the adult stomach governs important cellular events such as epithelial cell differentiation, proliferation, gastric disease, and regeneration. In particular, Sonic Hedgehog (Shh) signaling has been well studied for its role in gastric physiology and pathophysiology. Shh is secreted from the gastric parietal cells and contributes to the regeneration of the epithelium in response to injury, or the development of gastritis during Helicobacter pylori infection. Dysregulation of the Shh signaling pathway leads to the disruption of gastric differentiation, loss of gastric acid secretion and the development of cancer. In this chapter, we will review the most recent findings that reveal the role of Shh as a regulator of gastric physiology, regeneration, and disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Hedgehog signaling pathway and gastrointestinal stem cell signaling network (review).

    Science.gov (United States)

    Katoh, Yuriko; Katoh, Masaru

    2006-12-01

    Hedgehog, BMP/TGFbeta, FGF, WNT and Notch signaling pathways constitute the stem cell signaling network, which plays a key role in a variety of processes, such as embryogenesis, maintenance of adult tissue homeostasis, tissue repair during chronic persistent inflammation, and carcinogenesis. Sonic hedgehog (SHH), Indian hedgehog (IHH) and Desert hedgehog (DHH) bind to PTCH1/PTCH or PTCH2 receptor to release Smoothened (SMO) signal transducer from Patched-dependent suppression. SMO then activates STK36 serine/threonine kinase to stabilize GLI family members and to phosphorylate SUFU for nuclear accumulation of GLI. Hedgehog signaling activation leads to GLI-dependent transcriptional activation of target genes, such as GLI1, PTCH1, CCND2, FOXL1, JAG2 and SFRP1. GLI1-dependent positive feedback loop combined with PTCH1-dependent negative feedback loop gives rise to transient proliferation of Hedgehog target cells. Iguana homologs (DZIP1 and DZIP1L) and Costal-2 homologs (KIF7 and KIF27) are identified by comparative integromics. SHH-dependent parietal cell proliferation is implicated in gastric mucosal repair during chronic Helicobacter pylori infection. BMP-RUNX3 signaling induces IHH expression in surface differentiated epithelial cells of stomach and intestine. Hedgehog signals from epithelial cells then induces FOXL1-mediated BMP4 upregulation in mesenchymal cells. Hedgehog signaling is frequently activated in esophageal cancer, gastric cancer and pancreatic cancer due to transcriptional upregulation of Hedgehog ligands and epigenetic silencing of HHIP1/HHIP gene, encoding the Hedgehog inhibitor. However, Hedgehog signaling is rarely activated in colorectal cancer due to negative regulation by the canonical WNT signaling pathway. Hedgehog signaling molecules or targets, such as SHH, IHH, HHIP1, PTCH1 and GLI1, are applied as biomarkers for cancer diagnostics, prognostics and therapeutics. Small-molecule inhibitors for SMO or STK36 are suitable to be used for

  4. Endogenous hedgehog expression contributes to myocardial ischemia-reperfusion-induced injury

    NARCIS (Netherlands)

    Bijlsma, Maarten F.; Leenders, Peter J. A.; Janssen, Ben J. A.; Peppelenbosch, Maikel P.; Ten Cate, Hugo; Spek, C. Arnold

    2008-01-01

    The developmentally important hedgehog (Hh) pathway is activated in ischemic tissue, and exogenously administered Sonic hedgehog (Shh) supports tissue repair after cardiac ischemia. Hence, it is currently assumed that the endogenous increase in Shh during ischemia serves a beneficial role in limitin

  5. Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling

    DEFF Research Database (Denmark)

    Balic, Anamaria; Sørensen, Morten Dræby; Trabulo, Sara Maria

    2014-01-01

    inhibition of hedgehog signaling by decreasing the production of Smoothened, translating into a significant reduction in sonic hedgehog-induced chemotaxis and downregulation of downstream targets in CSCs and the surrounding stroma. Our study demonstrates that via to date unreported effects, chloroquine...

  6. Hedgehog signaling sensitizes glioma stem cells to endogenous nano-irradiation

    NARCIS (Netherlands)

    Morgenroth, Agnieszka; Vogg, Andreas T J; Ermert, Katja; Zlatopolskiy, Boris; Mottaghy, Felix M

    2014-01-01

    The existence of therapy resistant glioma stem cells is responsible for the high recurrence rate and incurability of glioblastomas. The Hedgehog pathway activity plays an essential role for self-renewal capacity and survival of glioma stem cells. We examined the potential of the Sonic hedgehog ligan

  7. 音猬因子在乳腺癌中的表达及其临床意义%Expression of sonic hedgehog in breast cancer and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    姚春; 邵力伟; 郑刚; 刘锦修; 郜朝霞; 任德发; 伍龙

    2014-01-01

    Objective To detect the expression of sonic hedgehog ( Shh) in breast cancer tissue and its clinical significance. Methods Totally 46 patients with breast cancer who were treated by operation in Fifth Hospital of Wuhan City from January 2008 to December 2012 were enrolled. Their breast cancer tissues and normal para-carcinoma tissues were analyzed. The mRNA and Protein expressions of Shh in breast cancer tissues and normal paracarcinoma tissues were detected by real-time fluorescent quantitation PCR assay and immunohistochemistry and its relationship with clinicopathologic characteristics were also analyzed. Count data were compared using Chi-square test, and measurement data were compared with independent sample t test or One-Way ANOVA. Results The Shh mRNA level in breast cancer tissues was significantly higher than that in normal paracarcinoma tissues (1. 54±0. 47 vs 0. 60±0. 38,t=-12. 02,P=0. 000), and the positive rate of Shh protein in breast cancer tissues was significantly higher than that in normal paracarcinoma tissues [69. 6% (32/46) vs 17. 4% (8/46),χ2=25. 48,P=0. 000]. Shh protein expression was closely related to clinicopathologic stage. The more advanced stage, the higher Shh protein expression rate [ stage Ⅲ+Ⅳ : stageⅠ+Ⅱ=77. 8%(28/36) vs 4/10,χ2=5. 28,P=0. 022]. Conclusions The Shh signal is activated in breast cancer tissues and its abnormal expression may play an important role in the occurrence and development of breast cancer. Shh may be used as a potential tumor marker in clinic.%目的观察音猬因子( Shh)在乳腺癌组织中的表达及其临床意义。方法收集2008年1月至2012年12月在武汉市第五医院手术治疗的乳腺癌患者的乳腺癌组织和癌旁正常乳腺组织各46例。采用实时荧光定量 PCR法和免疫组织化学染色检测乳腺癌组织及癌旁正常乳腺组织中 Shh mRNA和Shh蛋白的表达,并探讨Shh蛋白与乳腺癌临床病理特征的关系。计数资料比较采用χ2检

  8. The effect of sonic hedgehog signaling pathway blocking on incursion and metastasis of colon cancer cell%Shh 信号通路对结肠癌细胞侵袭转移的影响

    Institute of Scientific and Technical Information of China (English)

    孙亚超; 鲁英; 丁印鲁; 金博; 孙振强; 王琦三

    2016-01-01

    目的:探讨激活 Shh 信号通路对结肠癌细胞侵袭转移的影响。方法常规培养结肠癌细胞株 HT-29细胞,分设对照组(培养液中加入 PBS)、信号通路活化组(培养液中加入重组 Shh 配体,实验组)、信号通路阻断组(培养液中加入 Shh 信号通路抑制剂 KADD-cyclopamine);采用 MTT 实验、Transwell 侵袭小室法,建立人结肠癌术后局部复发裸鼠动物模型、人结肠癌术后肝转移动物模型,分别经尾静脉注射 PBS、Shh 配体和 KADD-cyclo-pamine,分析 Shh 配体及 Shh 信号通路抑制剂 KADD-cyclopamine 干预 Shh 信号通路对结肠癌术后局部复发和肝转移的影响。结果Shh 配体激活 Shh 信号通路后检测到结肠癌细胞增殖、迁移及侵袭能力较对照组得到明显促进、增强且变化有统计学意义(P <0.05)。信号活化组与对照组和信号阻断组比较,裸鼠结肠癌术后复发率(50%比30%、30%,P <0.05)、肝转移率(100%比30%、23%,P <0.05)、平均肝转移瘤数目[(23.4±8.8)、(17.6±8.6)、(38.6±3.6)个,P <0.05]均显著升高。结论Shh 信号通路参与了结肠癌转移过程,激活 Shh 信号通路能够促进结肠癌术后局部复发和肝转移;抑制 Shh 信号通路能够降低结肠癌术后局部复发和肝转移。%Objectives To assess the effect of sonic hedgehog (Shh) signaling pathway blocking on incursion and metastasis of colon cancer cell.Methods Routinely cultured colon cancer HT-29 cells were devided into three groups:control group (PBS in broth),signal pathway group (recombinant shh ligand in PBS ),signal pathway blocking group (adding Shh signaling pathway inhibitor KADD-cyclopamine in broth);MTT assay,Transwell Boyden chamber assay were used respectively.Local recurrence model and 1iver metastasis model of human colon cancer in nude mouse were constructed with injecting Saline,PBS, Shh ligand

  9. Hedgehog signaling and therapeutics in pancreatic cancer.

    LENUS (Irish Health Repository)

    Kelleher, Fergal C

    2012-02-01

    OBJECTIVE: To conduct a systematic review of the role that the hedgehog signaling pathway has in pancreatic cancer tumorigenesis. METHOD: PubMed search (2000-2010) and literature based references. RESULTS: Firstly, in 2009 a genetic analysis of pancreatic cancers found that a core set of 12 cellular signaling pathways including hedgehog were genetically altered in 67-100% of cases. Secondly, in vitro and in vivo studies of treatment with cyclopamine (a naturally occurring antagonist of the hedgehog signaling pathway component; Smoothened) has shown that inhibition of hedgehog can abrogate pancreatic cancer metastasis. Thirdly, experimental evidence has demonstrated that sonic hedgehog (Shh) is correlated with desmoplasia in pancreatic cancer. This is important because targeting the Shh pathway potentially may facilitate chemotherapeutic drug delivery as pancreatic cancers tend to have a dense fibrotic stroma that extrinsically compresses the tumor vasculature leading to a hypoperfusing intratumoral circulation. It is probable that patients with locally advanced pancreatic cancer will derive the greatest benefit from treatment with Smoothened antagonists. Fourthly, it has been found that ligand dependent activation by hedgehog occurs in the tumor stromal microenvironment in pancreatic cancer, a paracrine effect on tumorigenesis. Finally, in pancreatic cancer, cells with the CD44+CD24+ESA+ immunophenotype select a population enriched for cancer initiating stem cells. Shh is increased 46-fold in CD44+CD24+ESA+ cells compared with normal pancreatic epithelial cells. Medications that destruct pancreatic cancer initiating stem cells are a potentially novel strategy in cancer treatment. CONCLUSIONS: Aberrant hedgehog signaling occurs in pancreatic cancer tumorigenesis and therapeutics that target the transmembrane receptor Smoothened abrogate hedgehog signaling and may improve the outcomes of patients with pancreatic cancer.

  10. Identification and characterization of rat Desert hedgehog and Indian hedgehog genes in silico.

    Science.gov (United States)

    Katoh, Yuriko; Katoh, Masaru

    2005-02-01

    Sonic hedgehog (SHH), Desert hedgehog (DHH) and Indian hedgehog (IHH) bind to Patched family receptors (PTCH1 and PTCH2) to transduce signals to GLI1, GLI2 and GLI3. GLI family transcription factors then activate transcription of Hedgehog target genes, such as FOXE1 and FOXM1 encoding Forkhead-box transcription factors. Hedgehog signaling pathway plays a pivotal role in a variety of human tumors, such as gastric cancer, pancreatic cancer, colorectal cancer, breast cancer, prostate cancer, basal cell carcinoma and brain tumors. Rat orthologs for human DHH and IHH remain to be identified. Here, we identified and characterized rat Dhh and Ihh genes by using bioinformatics. Rat Dhh complete coding sequence (CDS) was determined by assembling nucleotide positions 426397-426963, 429715-429976 and 430244-430898 of the AC114446.3 genome sequence. Rat Ihh complete CDS was determined by assembling nucleotide positions 63433-64033, 66432-66693 and 68242-69169 of AC095777.6 genome sequence. Rat Dhh mRNA was expressed in prostate, duodenum and dorsal root ganglia, while rat Ihh mRNA was expressed in cartilage. Rat Dhh showed 99.7% total-amino-acid identity with mouse Dhh, and 96.5% total-amino-acid identity with human DHH. Rat Ihh and human IHH were shorter than mouse Ihh by 38 amino acids. Rat Ihh showed 97.6% total-amino-acid identity with mouse Ihh and 94.4% total-amino-acid identity with human IHH. Hedgehog family proteins consist of signal peptide, Hedgehog ligand peptide and C-terminal peptide. Hedgehog ligand peptides derived from mammalian Hedgehog family proteins were conserved well, while C-terminal peptides were relatively divergent. The HPLGMXXXXS motif in the C-terminus was conserved in Shh orthologs and Ihh orthologs, but not in Dhh orthologs.

  11. 幽门螺杆菌及其脂多糖与刺猬蛋白信号通路关系的研究进展%Research Progress of the Relationship between Helicobacter Pylori Lipopolysaccharide and the Sonic Hedgehog Signaling Pathway

    Institute of Scientific and Technical Information of China (English)

    陈菲菲

    2012-01-01

    近年来,多项研究表明Shh信号通路与消化道肿瘤密切相关,并发现幽门螺旋杆菌(Hp)感染对Shh信号通路的表达有影响.Hp脂多糖在Hp相关疾病中发挥着重要作用,亦可能影响Shh信号通路的表达,但它们之间具体作用机制尚需进一步明确.现主要对Hp及其脂多糖的功能,Shh信号通路构成及其功能,Hp及其脂多糖与Shh信号通路间的关系予以综述.%Recent studies indicate that Sonic hedgehog( Shh )signaling pathway has been closely linked to gastrointestinal tumors, and some studies show that Helicobacter pylori( lip )infection has an effect on the expression of Shh signaling pathway, lip lipopolysaccharide plays an important role in lip related diseases, which may also affect the expression of Shh signaling pathway,but the specific mechanism need to be clarified. Here is to make a review' on the function of lip and its lipopolysaccharide, the constitution and function of Shh signaling pathway,and the relationship between the two.

  12. [Endoparasites of the hedgehog].

    Science.gov (United States)

    Beck, Wieland

    2007-01-01

    There is an increasing number of sick and young hedgehogs presented to veterinarians each fall. These wild hedgehogs are often heavily infected with parasites. Helminths in the respiratory tract (Crenosoma striatum and Capillaria aerophila) cause lung dysfunction. Intestinal tract of these small mammals is often infected by Capillaria erinacei. Furthermore hedgehogs may be occasionally infected by other nematodes (Physaloptera clausa), trematodes (Brachylaemus erinacei) and cestodes (Hymenolepis erinacei). Occasionally hedgehogs are infected by coccidia (Isospora rastegaiev) and cryptosporidia (Cryptosporidium spp.). Increasing importance of hedgehogs in small animal practice requires adequate knowledge about their parasitoses in order to have a sufficient approach to diagnosis and treatment of those infections.

  13. Sonic Watermarking

    Directory of Open Access Journals (Sweden)

    Ryuki Tachibana

    2004-10-01

    Full Text Available Audio watermarking has been used mainly for digital sound. In this paper, we extend the range of its applications to live performances with a new composition method for real-time audio watermarking. Sonic watermarking mixes the sound of the watermark signal and the host sound in the air to detect illegal music recordings recorded from auditoriums. We propose an audio watermarking algorithm for sonic watermarking that increases the magnitudes of the host signal only in segmented areas pseudorandomly chosen in the time-frequency plane. The result of a MUSHRA subjective listening test assesses the acoustic quality of the method in the range of “excellent quality.” The robustness is dependent on the type of music samples. For popular and orchestral music, a watermark can be stably detected from music samples that have been sonic-watermarked and then once compressed in an MPEG 1 layer 3 file.

  14. Hedgehog signaling and gastrointestinal cancer

    Science.gov (United States)

    Saqui-Salces, Milena; Merchant, Juanita L.

    2017-01-01

    Hedgehog (Hh) signaling is critical for embryonic development and in differentiation, proliferation, and maintenance of multiple adult tissues. De-regulation of the Hh pathway is associated with birth defects and cancer. In the gastrointestinal tract, Hh ligands Sonic (Shh) and Indian (Ihh), as well as the receptor Patched (Ptch1), and transcription factors of Glioblastoma family (Gli) are all expressed during development. In the adult, Shh expression is restricted to the stomach and colon, while Ihh expression occurs throughout the luminal gastrointestinal tract, its expression being highest in the proximal duodenum. Several studies have demonstrated a requirement for Hh signaling during gastrointestinal tract development. However to date, the specific role of the Hh pathway in the adult stomach and intestine is not completely understood. The current review will place into context the implications of recent published data related to the biochemistry and cell biology of Hh signaling on the luminal gastrointestinal tract during development, normal physiology and subsequently carcinogenesis. PMID:20307590

  15. Effect of Sonic hedgehog on the development of cerebellar granule cells after removing bone morphogenetic protein signaling%骨形态发生蛋白信号去除后Sonic hedgehog对小脑颗粒细胞发育的影响

    Institute of Scientific and Technical Information of China (English)

    秦丽华; 栾丽菊; E.Bryan CrenshawⅢ ○; 雷季良; 周长满; 郑亚杰; 王天昱; 王玺

    2007-01-01

    目的:骨形态发生蛋白信号在神经细胞的生长、分化、增殖、凋亡等方面发挥作用,而Sonic hedgehog能调节小脑颗粒细胞的增殖,故实验设计了去除骨形态发生蛋白信号后Sonic hedgehog信号在小脑颗粒细胞发育中作用的观察.方法:实验于2004-11/2005-10在美国费城儿童医院Crenshaw实验室和北京大学医学部解剖学神经研究实验室完成.①实验材料:C57BI/6J小鼠40只;Bmpr1b敲除鼠系来源于Karen Lyons博士.②实验过程:通过敲除骨形态发生蛋白Ⅰ型受体的Bmpr1a和Bmpr1b两个亚型基因,去除骨形态发生蛋白信号在小脑内的传导.③实验评估:使用原位杂交和免疫组织化学方法检测了新生幼鼠小脑中Sonic hedgehog信号的表达情况.结果:①在胚胎11.5 d,磷酸化SMAD免疫阳性的细胞被观察到在正常鼠神经管背侧的菱形唇附近,受体基因双敲除的小鼠背侧神经管中未发现免疫阳性细胞,此结果提示通过骨形态发生蛋白Ⅰ型受体传导的骨形态发生蛋白信号已消失.当小鼠出生后,磷酸化SMAD免疫阳性细胞主要位于正常小鼠的内颗粒层,在基因敲除鼠只有一小部分区域有磷酸化SMAD蛋白的表达.②Sonic hedgehog表达在正常新生鼠小脑的颗粒细胞层和蒲肯野氏细胞层;基因敲除鼠Sonic hedgehog信号只表达在小脑一小部分区域的颗粒细胞层和蒲肯野氏细胞层,而大部分区域则缺少它的表达.PTCH和N-myc在小脑中的表达与Sonic hedgehog表达部位类似.这提示Sonic hedgehog信号及其PTCH和N-myc都参与了小脑颗粒细胞的发育.结论:实验阐明了骨形态发生蛋白信号去除后,Sonic hedgehog信号对小脑颗粒细胞发育所起到的重要作用.

  16. Sonic hedgehog signaling enhanced the expression of histone demethylase, lysine-specific demethylase 8 in the head and neck squamous cell carcinoma cell line SCC-6%超音刺猬信号促进头颈部鳞状细胞癌组蛋白去甲基化酶相关基因表达的研究

    Institute of Scientific and Technical Information of China (English)

    尹小楠; 马玉实; 杜娟; 范志朋

    2013-01-01

    Objective To determine whether the sonic hedgehog (Shh) signaling could regulate the expression of histone demethylases in the head and neck squamous cell carcinoma(SCC).Methods Human recombinant SHH-N protein or over-expression of the mutant 2 smoothened (M2-SMO) was applied to activate the Shh signaling in tongue squamous cell carcinoma cell line-SCC-6 in this study.Cyclopamine was used to block the Shh signaling in SCC-6.The real-time reverse transcription (RT)-PCR was used to detect the expression of histone demethylases at the mRNA level.Results The data showed that activation of the Shh signaling up-regulated the expression of histone demethylase,lysine-specific demethylase 8 (KDM-8) at the mRNA level by human recombinant SHH-N protein (1.841 ~ 3.591 fold compare with untreated group;P <0.01),over-expression of the M2-SMO also increased the expression of KDM-8 (1.358 ~ 3.013 fold compared with empty vector group ;P < 0.05),and after the Shh signaling was blocked by Cyclopamine,the expression of KDM-8 was down regulated (decreased 25.6% ~ 66.6% compared with control cells,P <0.05).Conclusions Histone demethylase KDM-8 was downstream target gene of Shh signaling in head and neck squamous cell carcinoma cell line SCC-6,and its expression was positively regulated by the Shh signaling.%目的 检测超音刺猬(sonic hedgehog,Shh)信号在头颈部鳞状细胞癌(squamous cell carcinoma,SCC)中是否具有调节组蛋白去甲基化酶相关基因表达的功能.方法 利用人重组SHH-N蛋白或过表达2型突变的平滑基因(mutant 2 smoothened,M2-SMO)在舌SCC细胞系SCC-6激活Shh信号;利用环靶明(cyclopamine)阻断Shh信号0、2、4和8h后收集细胞,采用实时荧光定量反转录PCR(reverse transcription PCR,RT-PCR)在mRNA水平检测组蛋白去甲基化酶相关基因的表达.结果 利用重组SHH-N蛋白激活Shh信号通路后,组蛋白去甲基化酶-赖氨酸特异性去甲基化酶8(lysine-specific demethylase 8,KDM

  17. Expression of Sonic hedgehog pathway-related genes in kidney tissues of rats with unilateral ureteral obstruction%信号通路在单侧输尿管梗阻大鼠肾组织中的表达变化及意义

    Institute of Scientific and Technical Information of China (English)

    白永恒; 陆红; 周琴; 林成成; 梁勇; 洪炜龙; 郑少玲; 陈必成

    2012-01-01

    目的:探讨Sonic hedgehog(Shh)信号通路在单侧输尿管梗阻(UUO)大鼠肾组织中的表达变化及意义.方法:将48只SD大鼠随机分为UUO模型组(n=24)和假手术组(n=24),梗阻术3、7和14 d后取其梗阻侧肾脏组织.用HE和Masson染色检测肾间质纤维化程度,免疫组织化学染色检测Shh通路分子Shh、Ptch1、Smo、Gli1及III型胶原的蛋白表达,酶联免疫吸附实验(ELISA)检测肾组织中TGF-β1和Shh含量,real-time RT-PCR检测TGF-β1、I和III型胶原及Shh通路分子mRNA表达.结果:HE和Masson染色显示,梗阻侧肾组织出现明显的纤维化病变,且随时间延长而加剧.TGF-β1、I和III型胶原含量在梗阻肾中表达明显增高(P<0.05).同时,Shh信号通路分子Shh、Smo和Gli mRNA和蛋白在梗阻肾中表达明显升高(P<0.05),而Ptch1 mRNA和蛋白的表达下调(P<0.01),提示Shh信号被激活.相关分析表明,Shh信号起始信号Shh水平的升高与TGF-β1含量增加呈明显的相关.结论:UUO大鼠诱导肾间质纤维化发生过程中,Shh信号通路分子被激活,推测可能的机制是活化的Shh信号通路诱导TGF-β1表达和释放,导致肾间质纤维化.%ATM: To investigate the role of Sonic hedgehog ( Shh) signaling pathway in renal interstitial fibro -sis in the rats with unilateral ureteral obstruction ( UUO). METHODS: Forty - eight male Sprague - Dawley rats were divided randomly into sham operation group and UUO model group with 24 rats each. The kidneys were excised on day 3,7, and 14, and the deposition of collagen fiber in the kidneys was detected with HE and Masson staining . Immunohistochemi-cal analysis was performed to evaluate the expression of Shh signaling pathway — related proteins, including Shh, Smo, Ptchl and Glil. The contents of TGF - β1and Shh in the kidney tissues were determined by ELISA . Real - time RT - PCR was used to detect the mRNA expression of TGF - β1 , Col I, Col III and Shh signaling -related genes. RESULTS; Fibro

  18. The expression changes of Sonic Hedgehog signaling pathway in the striatum after focal cerebral ischemia in rats and its role on remyelination%局灶性脑缺血大鼠纹状体区域Shh信号通路成分的表达变化及对髓鞘修复的影响

    Institute of Scientific and Technical Information of China (English)

    赵红; 吴晓君; 刘赞华; 王苏平; 闫旭

    2016-01-01

    目的 检测Sonic Hedgehog (Shh)信号通路及其转录因子Gli1在局灶性脑缺血后不同时间点的表达变化,探讨该通路对脑缺血后髓鞘再生的影响.方法 线栓法建立大脑中动脉闭塞(middle cerebral artery occlusion,MCAO)模型,使用免疫组化和RT-PCR的方法观察脑缺血后1d,3d,7d和14 d Shh,Gli1的表达变化.碱性髓鞘蛋白(myelin basic protein,MBP)是髓鞘的组成成分,用作髓鞘的标志物,观察脑缺血后上述各时间点MBP的表达变化.结果 正常大鼠Shh和Gli1广泛分布于脑白质和灰质,如皮质,胼胝体和纹状体等区域.Shh和Gli1的表达在脑缺血后3d~14d呈逐渐上升趋势.MBP的表达在脑缺血后1 d~28d逐渐下降.结论 脑缺血性损伤可激活Shh信号通路,激活的Shh可能通过调控细胞的增殖参与神经修复,针对Shh的表达量进行干预治疗将为脱髓鞘疾病的治疗提供理论依据.

  19. Outfoxing the Hedgehog

    Science.gov (United States)

    Barbieri, Richard

    2011-01-01

    Jim Collins's "Good to Great" has attained near-scriptural status in organizations, including nonprofits, which Collins says constitute a third of his readers. The pivot point in "Good to Great" is the Hedgehog Concept. The "Hedgehog Concept" (HC), this author claims, is dangerous for schools because it distorts the nature of education. As Collins…

  20. Hedgehog signaling update.

    Science.gov (United States)

    Cohen, M Michael

    2010-08-01

    In vertebrate hedgehog signaling, hedgehog ligands are processed to become bilipidated and then multimerize, which allows them to leave the signaling cell via Dispatched 1 and become transported via glypicans and megalin to the responding cells. Hedgehog then interacts with a complex of Patched 1 and Cdo/Boc, which activates endocytic Smoothened to the cilium. Patched 1 regulates the activity of Smoothened (1) via Vitamin D3, which inhibits Smoothened in the absence of hedgehog ligand or (2) via oxysterols, which activate Smoothened in the presence of hedgehog ligand. Hedgehog ligands also interact with Hip1, Patched 2, and Gas1, which regulate the range as well as the level of hedgehog signaling. In vertebrates, Smoothened is shortened at its C-terminal end and lacks most of the phosphorylation sites of importance in Drosophila. Cos2, also of importance in Drosophila, plays no role in mammalian transduction, nor do its homologs Kif7 and Kif27. The cilium may provide a function analogous to that of Cos2 by linking Smoothened to the modulation of Gli transcription factors. Disorders associated with the hedgehog signaling network follow, including nevoid basal cell carcinoma syndrome, holoprosencephaly, Smith-Lemli-Opitz syndrome, Greig cephalopolysyndactyly syndrome, Pallister-Hall syndrome, Carpenter syndrome, and Rubinstein-Taybi syndrome.

  1. SHH在肠型胃癌发展中的表达及意义%THE EXPRESSION OF SONIC HEDGEHOG AND ITS SIGNIFICANCE IN THE DEVELOPMENT OF INTESTINAL-TYPE GASTRIC CANCER

    Institute of Scientific and Technical Information of China (English)

    赵坤; 张翠萍; 张琪; 刘希双

    2012-01-01

    目的 检测人类刺猬因子(SHH)在肠型胃癌各阶段病变的表达情况及与尾型同源盒转录因子2(CDX2)的相关性,探讨SHH在肠型胃癌发生、发展中的作用.方法 采用免疫组织化学方法,检测慢性浅表性胃炎、慢性萎缩性胃炎伴肠化生、不典型增生及肠型胃癌组织SHH和CDX2蛋白的表达情况.结果 SHH在萎缩性胃炎伴肠化生胃黏膜组织表达率低于在慢性浅表性胃炎的表达率(x2=3.914,P<0.05),在肠型胃癌组织的表达率高于在浅表性胃炎的表达率(x2=10.286,P<0.05).CDX2蛋白在慢性浅表性胃炎组织不表达,在萎缩性胃炎肠化生胃黏膜的表达率高于在不典型增生和肠型胃癌组织的表达率(x2 =9.619、4.904,P<0.05).慢性萎缩性胃炎伴肠化病人胃黏膜组织SHH和CDX2蛋白的表达呈负相关(r=-0.384,P<0.05).结论 SHH与胃黏膜肠上皮化生和肠型胃癌的发生有关,在胃黏膜肠上皮化生的过程中SHH与CDX2可能互相调节.%Objective To investigate the expression of 9onic hedgehog CSHH) in development of intestinal-type gastric cancer and its correlation with CDX2. Methods Using itnmunohistochemical method, the expressions of SHH and CDX2 in chronic superficial gastritis (CSG), chronic atrophic gastritis (CAG) with intestinal metaplasia (IM) , atypical hyperplasia and intestinal-type gastric cancer (ITGC) were detected. Results The expression rate of SHH in CAG with IM was lower than that in CSG (x2 = 3.914,P<0.05), in ITGC, the expression of SHH was higher than in CSG (x2= 10. 286,P<0. 05). CDX2 was not detected in CSG. The positive CDX2 expression in CAG with IM was higher than that in atypical hyperplasia and ITGC (x2 = 9. 619,4. 904;P<0. 05). The expression of SHH was negatively correlated with that of CDX2 in CAG with IM (r=-0. 384,P< 0. 05). Conclusion SHH is associated with intestinal metaplasia of gastric mucosa and the development of ITGC, in the process of the intestinal metaplasia, an

  2. Sonic Hedgehod y comportamiento de precursores neuroepiteliales

    OpenAIRE

    Santos Gutiérrez, Álvaro; Recio Moreno, Beatriz

    2016-01-01

    En los estadios tempranos del desarrollo embrionario, el cerebro tiene dos componentes fundamentales: fluido cerebroespinal embrionario (E-CSF) y precursores neuroepiteliales. En esta investigación nos centraremos en explicar la influencia de un factor de transcripción, sonic hedgehog (SHH), presente en el E-CSF, sobre el comportamiento de los precursores neuroepiteliares. Empleamos técnicas de Wester-Blot para demostrar la presencia de SHH en el E-CSF y técnicas de cultivo organotípico de...

  3. Sonic hedgehog信号通路Smo蛋白及其下游转录因子Glil蛋白在胃癌组织中的表达及其意义%Expression of Smo protein and the downstream transcription factor Gli1 protein in Sonic hedgehog signal transduction pathway in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    戎祯祥; 方驰华; 朱达坚; 刘胜军

    2006-01-01

    目的 探讨Sonic hedgehog信号通路Smo蛋白及其下游转录因子Gli1蛋白在胃癌组织中的表达及其意义.方法 收集85例胃癌组织及25例正常胃粘膜组织构建成组织芯片,应用免疫组化S-P法检测胃癌组织中Smo蛋白及G1il蛋白的表达,并以正常胃粘膜组织作对照,分析两者的相关性.结果 Smo和Gli1蛋白均在正常胃粘膜中不表达或弱表达;在胃乳头状腺癌、管状腺癌、低分化腺癌中,两者的表达强度和阳性表达率显著高于正常胃粘膜(P<0.05,并随着胃腺癌分化程度下降而上升;相关分析显示Smo和Gli1蛋白在胃癌组织中的表达呈正相关,相关系数为0.989,P<0.001.结论 胃癌发生过程中的Sonic hedgehog信号通路异常激活可能通过Smo蛋白高表达上调下游转录因子Gli1蛋白的表达参与部分胃腺癌的发生.

  4. The Hedgehog signalling pathway in bone formation

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Philipp Andre; Ling Ye; Ying-Zi Yang

    2015-01-01

    The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis, and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses and therapeutics.

  5. Shh在雷奈酸锶促进骨髓间充质干细胞成骨分化过程中的作用%Strontium renelate promotes osteogenesis via regulation of Sonic hedgehog signaling molecules in rat bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    靳思思; 胡洁芬; 吴文

    2014-01-01

    目的:研究Sonic Hedgehog (Shh)在雷奈酸锶(strontium ranelate,Sr)促进大鼠骨髓间充质干细胞(BMSCs)向成骨细胞分化中的作用.方法:采用全骨髓贴壁培养法分离、纯化、培养大鼠BMSCs,取第3~5代BM-SCs加入成骨诱导液诱导成骨分化,再加入不同浓度Sr及Shh拮抗剂cyclopamine (Cy),分别观察它们对BMSCs向成骨细胞分化的影响.酶标法检测成骨细胞分化早期标志物碱性磷酸酶(alkaline phosphatase,ALP)的活性;茜素红染色检测细胞钙化水平;Western blotting法检测Shh和Runx2蛋白的表达情况.结果:Sr(3 mmoVL)可以使细胞ALP活性增高,钙结节形成增加.Sr(0.1~5 mmol/L)作用BMSCs 7 d,可明显促进Shh和Runx2蛋白的表达,且Shh蛋白在l mmol/L Sr作用时表达最多,而Runx2在3 mmol/L Sr作用时表达最多.1 mmol/L Sr作用BMSCs不同时间(1、3、5、7 d),呈时间依赖性地上调Shh和Runx2蛋白的表达.Cy(10 μmol/L)不仅拮抗Sr对Shh和Runx2表达的上调作用,还抑制Sr对ALP和钙结节形成的促进作用.结论:Sr可通过上调Shh蛋白及成骨特异性转录因子Runx2的表达促进BMSCs向成骨细胞分化.

  6. 重组人SHH蛋白N端在HEK293T细胞中的分泌表达与鉴定%Secretory Expression and Identification of Recombinant Human Sonic Hedgehog Protein N-Terminal Domain by HEK293T Cells

    Institute of Scientific and Technical Information of China (English)

    龙凤; 仇玮祎; 常旭; 林建波; 朱恒奇; 张景海; 王双

    2014-01-01

    目的:获得有活性的Sonic Hedgehog(SHH)蛋白N端结构域蛋白纯品,该结构域是SHH蛋白与受体结合结构域,可用作抗原,用于研制抗SHH的中和抗体.方法:应用PCR技术从商业化人Shh基因中分别扩增该基因5'端591和600 bp的片段,并插入真核表达载体pL293,分别在HEK293T细胞中进行瞬时分泌表达,通过His标签纯化后获得SHH-591和SHH-600蛋白纯品,SDS-PAGE和Western印迹对表达产物进行分析,并通过ELISA进行结合活性鉴定.结果:构建了重组表达载体pL293-Shh-N591和pL293-Shh-N600,酶切鉴定和测序证实含有目的基因片段,真核瞬时表达产物均在相对分子质量约20×103处可见与预期相符的条带,该条带可被His标签抗体所识别;纯化获得了SHH-591-His和SHH-600-His蛋白纯品;ELISA结合实验结果显示SHH-591-His和SHH-600-His均能与抗His标签抗体结合,而SHH-591-His与SHH中和抗体的结合能力更强.结论:获得了真核表达的SHH-N蛋白SHH-591-His,可用于下一步中和抗体药物的筛选和后续研究.

  7. Greased hedgehogs: new links between hedgehog signaling and cholesterol metabolism

    NARCIS (Netherlands)

    Breitling, R.

    2007-01-01

    Greased hedgehogs: New links between hedgehog signaling and cholesterol metabolism Rainer Breitling * Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands email: Rainer Breitling (r.breitling@rug.nl) *Co

  8. Hedgehog inhibition causes complete loss of limb outgrowth and transformation of digit identity in Xenopus tropicalis.

    Science.gov (United States)

    Stopper, Geffrey F; Richards-Hrdlicka, Kathryn L; Wagner, Günter P

    2016-03-01

    The study of the tetrapod limb has contributed greatly to our understanding of developmental pathways and how changes to these pathways affect the evolution of morphology. Most of our understanding of tetrapod limb development comes from research on amniotes, with far less known about mechanisms of limb development in amphibians. To better understand the mechanisms of limb development in anuran amphibians, we used cyclopamine to inhibit Hedgehog signaling at various stages of development in the western clawed frog, Xenopus tropicalis, and observed resulting morphologies. We also analyzed gene expression changes resulting from similar experiments in Xenopus laevis. Inhibition of Hedgehog signaling in X. tropicalis results in limb abnormalities including reduced digit number, missing skeletal elements, and complete absence of limbs. In addition, posterior digits assume an anterior identity by developing claws that are usually only found on anterior digits, confirming Sonic hedgehog's role in digit identity determination. Thus, Sonic hedgehog appears to play mechanistically separable roles in digit number specification and digit identity specification as in other studied tetrapods. The complete limb loss observed in response to reduced Hedgehog signaling in X. tropicalis, however, is striking, as this functional role for Hedgehog signaling has not been found in any other tetrapod. This changed mechanism may represent a substantial developmental constraint to digit number evolution in frogs. J. Exp. Zool. (Mol. Dev. Evol.) 9999B:XX-XX, 2016. © 2016 Wiley Periodicals, Inc.

  9. 宫颈鳞癌演进过程P16INK4a及Hh-Gli信号通路相关蛋白表达及其相关性研究%Involvement of P16INK4a and Sonic Hedgehog Signaling Pathways in Squamous Cell Carcinoma of Uterine Cervix and Its Precursor Lesions

    Institute of Scientific and Technical Information of China (English)

    苗劲蔚; 张永清; 徐春玉; 房纯; 邓小虹

    2012-01-01

    To investigate the expression and the relationship of P16INK4a and sonic hedgehog signal pathway in cervical squamous cell carcinoma and its precursor lesions. The expression of P16INK4a, Smo, Ptch and Gli in different HPV types positive cell lines were detected by Western-blot. A tissue microarray constructed with 20 normal cervical tissues and 100 uterine cervical cancers and related lesions (28 squamous cell carcinomas, 26 cervical intraepithelial neoplasia (CIN) Ⅲ, 16 CIN Ⅱ , 12 CIN Ⅰ , 18 tumor-adjacent tissue specimens) was immunohistochemically analyzed with anti- P16INK4a, Shh, Patched (Ptch), Smoothened (Smo), Gli antibodies. The correlation between their expressions was analyzed. There was no significant difference among different HPV type cell lines regarding the expression of P16INK4a and Shh, Ptch and Gli proteins(P > 0.05). The expression of P16INK4a and the Hh-signaling molecules was greatly enhanced in cervical carcinoma tissues, compared with that in normal epithelium and tumor-adjacent tissues (P 0.05), whereas, in case of P16INK4a, Shh, Smo, and Gli, the differences among CIN Ⅰ , CIN Ⅱ and CIN Ⅲ were significant (P < 0.05). The expression of P16INK4a protein was significantly correlated with that of Shh, Smo and Gli protein in CIN Ⅱ -CIN Ⅲ and cervical carcinoma and was correlated with that of Shh, Smo only in carcinoma tissue. P16INK4a and the Hh-Gli signaling pathways were extensively activated in the development and evolution of cervical cancer, and the overexpression of P16INK4a was correlated with Hh-signaling pathways. The abnormal Hh-signaling pathways maybe much associated with Smo protein overexpression induced by Shh, which can upregulate the expression of Gli protein.%探讨P16INK4a及Sonic hedgehog (Hh-Gli)信号通路蛋白在宫颈癌及癌前病变(CIN)中的表达相关性及其意义.采用Western-blot方法检测HPV16阳性及HPV18阳性宫颈癌细胞系P16INK4a及Hh-Gli信号通路蛋白Smo、Ptch及Gli表达.

  10. Interactions between the Sonic Hedgehog signaling pathway and the cAMP/PKA signaling pathway in LKB1 transfected breast cancer cells%转染LKB1基因乳腺癌细胞与胚胎发育信号通路及cAMP/PKA通路的关系

    Institute of Scientific and Technical Information of China (English)

    成小林; 李正东; 蒋蓓琦; 庄志刚; 庄传经

    2011-01-01

    Objective To investigate the interactions between the LKB1 tumor suppressor,the Sonic Hedgehog (SHH) signaling pathway and the cAMP/PKA signaling pathway. Methods The LKB1 gene was reintroduced into MDA-MB-231 breast cancer cells which were lack of LKB1. And then two groups were classified-MDA-MB-231 group (231 group) and LKB1 transfected MDA-MB-231 group CLKB1 group).The cells in each group were treated with the SHH signaling inhibitor cyclopamine at different concentration levels (0,5 x 10~6,1 x 10~5 and 2 x 10"5 mol/L), respectively. The levels of SHH, Smo genes mRNA and protein expressions related to the SHH signaling pathway were detected with the methods of RT-PCR and Western blot analysis. Meanwhile, the activities of cAMP and PKA were determined with corresponding kits . Results After treated with different concentration of SHHsignaling inhibitor cyclopamine, SHH, Smo genes mRNA and protein expressions related to the SHH signaling pathway in LKB1 group were significantly inhibited in comparison with those in 231 group. The inhibition effect was positively correlated to the concentration of cyclopamine, which reached the highest when the concentration of cyclopamine was 1 x 10"5 mol/L. Above this concentration, the inhibition effect remained unaffected. Meanwhile, the values of PKA and cAMP in 231 group and LKB1 group both increased as cyclopamine concentration increased,and these values simultaneously achieved maxima when the concentration of cyclopamine was 1 x 10~5mol/L. Further increase of cyclopamine concentration to 2 x 10~5mol/L did not lead to any raise of PKA or cAMP values. Under the treatment with the same concentration of cyclopamine, higher values of PKA and cAMP were found in LKB1 group compared with 231 group. Conclusions In breast cancer MDA-MB-231 cells, the SHH signaling pathway is inhibited,under the synergetic affection of the LKBl tumor suppressor and the cyclopamine inhibitor, while the expression of the cAMP/PKA signaling pathway is

  11. Hedgehog-mediated regulation of PPARγ controls metabolic patterns in neural precursors and shh-driven medulloblastoma

    OpenAIRE

    Bhatia, Bobby; Potts, Chad R.; Guldal, Cemile; Choi, SunPhil; Korshunov, Andrey; Pfister, Stefan; Kenney, Anna M.; Nahlé, Zaher A.

    2012-01-01

    Sonic hedgehog (Shh) signaling is critical during development and its aberration is common across the spectrum of human malignancies. In the cerebellum, excessive activity of the Shh signaling pathway is associated with the devastating pediatric brain tumor medulloblastoma. We previously demonstrated that exaggerated de novo lipid synthesis is a hallmark of Shh-driven medulloblastoma and that hedgehog signaling inactivates the Rb/E2F tumor suppressor complex to promote lipogenesis. Indeed, su...

  12. Sonic hedgehog and Glis famliy expression in the human neonatal of congenital esophageal atresia and tracheoesophageal fistula%Sonic hedgehog基因及Gli家族在人类食管闭锁并气管食管瘘中的表达

    Institute of Scientific and Technical Information of China (English)

    陈璐璐; 陈永卫

    2012-01-01

    目的 研究Sonic hedgehog基因及Gli家族在人类先天性食管闭锁并气管食管瘘(esophageal atresia and tracheoesophageal fistula,EA-TEF)的表达特点,探讨EA-TEF病因及发病机制的可能影响因素.方法 食管吻合术中留取22例EA-TEF患儿近端食管盲端及远端气管食管瘘管组织,7例行HE染色,10例行real-time RT-PCR处理,5例行免疫荧光染色处理.观察食管盲端及气管食管瘘管形态上的变化及各指标的差异.结果 ①形态学:瘘管组织内皮下可见粘液腺体,肌层稀疏且肌肉组织结构紊乱;②Shh表达:食管盲端组织中可见表达,瘘管组织中未有表达;③Glis表达:Gli-1、Gli-3mRNA表达无差异,Gli-2mRNA表达差异有统计学意义(P<0.05),瘘管中表达低于食管盲袋.结论 气管食管瘘组织具有气管源性特征.EA-TEF的发生可能与Shh信号通路表达下调有关.Gli-2的功能缺失在EA-TEF的发生中可能发挥重要作用.%Objective To describe the differential expression of Shh and Gli family members between normal proximal esophageal pouch and distal tracheoesophageal fistula (EA-TEF).Methods Twenty twohuman proximal esophageal pouch and distal fistula samples were obtained at the time of standard repair of EA-TEF.Seven samples were processed for HE,ten for real-time reverse-transcriptase polymerase chain reaction (RT-PCR),and five for immunohistochemistry.Results Shh was confirmed to be present by immunohistochemistry in the proximal esophageal pouch,but was specifically absent in the distal fistula tract.Gli1and-3 mRNA expression showed no difference in the proximal pouch and distal esophagus using real-time RT-PCR.Gli-2 mRNA levels were much lower in the fistula tract than in the adjacent esophagus.Conclusions Abnomal expression of Shh may contribute to the malformation of EA-TEF.Gli2down-regulation may also play an important role in the mechanisms of EA-TEF malformation.These results support the conclusion that the fistula tract

  13. Hedgehog pathway does not play a role in hidradenitis suppurativa pathogenesis

    DEFF Research Database (Denmark)

    Mozeika, E.; Jemec, G.B.E.; Nürnberg, B.M.

    2011-01-01

    Hidradenitis suppurativa is a chronically relapsing skin disorder with onset after puberty and is characterized by inflammatory lesions in hair follicle and apocrine sweat gland-bearing skin that manifests as abscesses with formation of cysts and sinus tracts. Hedgehog family genes are required...... in normal embryonic skin, hair follicle, sebaceous and sweat gland development. Mutations of hedgehog pathway in adult skin have previously been found in basal cell carcinomas and in alopecia as well as in epidermal cysts and in odontogenic keratocysts. Therefore, we suggested that the hedgehog pathway...... might play a role in formation of sinus tracts and cysts as newly formed structures in hidradenitis suppurativa patients. None of the sinus tracts or cysts in 81 hidradenitis suppurativa histological slides from 34 patients showed positive finding for sonic hedgehog mutation. According to our findings...

  14. Disturbed MEK/ERK signaling increases osteoclast activity via the Hedgehog-Gli pathway in postmenopausal osteoporosis.

    Science.gov (United States)

    Li, Xiaojie; Jie, Qiang; Zhang, Hongyang; Zhao, Yantao; Lin, Yangjing; Du, Junjie; Shi, Jun; Wang, Long; Guo, Kai; Li, Yong; Wang, Chunhui; Gao, Bo; Huang, Qiang; Liu, Jian; Yang, Liu; Luo, Zhuojing

    2016-11-01

    Postmenopausal osteoporosis is a worldwide health problem and is characterized by increased and activated osteoclasts. However, the mechanism by which osteoclasts are dysregulated in postmenopausal osteoporosis is not fully understood. In this study, we found that the Hedgehog-Gli pathway was upregulated in postmenopausal osteoporotic osteoclasts and that 17β-estradiol both inhibited osteoclastogenesis and induced osteoclast apoptosis by downregulating Hedgehog-Gli signaling. Furthermore, we demonstrated that the Hedgehog-Gli pathway was negatively regulated by MEK/ERK signaling and that this effect was Sonic Hedgehog (SHH)-dependent and was partially blocked by an anti-SHH antibody. Moreover, we found that the stimulatory effect of Hedgehog signaling on osteoclastogenesis and the inhibitory effect on osteoclast apoptosis were dependent on the Gli family of transcription factors. The pathways and molecules that contribute to the regulation of osteoclastogenesis and apoptosis represent potential new strategies for designing molecular drugs for the treatment of postmenopausal osteoporosis.

  15. Mathematical modelling of digit specification by a sonic hedgehog gradient

    KAUST Repository

    Woolley, Thomas E.

    2013-11-26

    Background: The three chick wing digits represent a classical example of a pattern specified by a morphogen gradient. Here we have investigated whether a mathematical model of a Shh gradient can describe the specification of the identities of the three chick wing digits and if it can be applied to limbs with more digits. Results: We have produced a mathematical model for specification of chick wing digit identities by a Shh gradient that can be extended to the four digits of the chick leg with Shh-producing cells forming a digit. This model cannot be extended to specify the five digits of the mouse limb. Conclusions: Our data suggest that the parameters of a classical-type morphogen gradient are sufficient to specify the identities of three different digits. However, to specify more digit identities, this core mechanism has to be coupled to alternative processes, one being that in the chick leg and mouse limb, Shh-producing cells give rise to digits; another that in the mouse limb, the cellular response to the Shh gradient adapts over time so that digit specification does not depend simply on Shh concentration. Developmental Dynamics 243:290-298, 2014. © 2013 Wiley Periodicals, Inc.

  16. Comparison of wildtype and Sonic hedgehog deficient mouse embryos

    OpenAIRE

    Schrumpf, Pamela

    2010-01-01

    Congenital hypothyroidism (CH) occurs with a frequency of 1 in 3000 to 4.000 newborns and thus is the most frequent congenital endocrine disorder. In 80-85% CH is due to a disturbed thyroid organogenesis resulting in thyroid dysgenesis. Only in few patients can the etiology of the thyroid dysgenesis be explained by mutations in the known candidate genes, which are transcription factors expressed in the thyroid anlage itself, e.g. NKX2.1, PAX8 or FOXE1. In the course of this thesis the mor...

  17. 局灶缺血性脑卒中大鼠侧脑室下带Shh信号通路成分的动态表达%Dynamic Changes of the Expression of Sonic Hedgehog Signaling Pathway in the Subventricular Zone After Focal Cerebral Ischemia in Rats

    Institute of Scientific and Technical Information of China (English)

    范层层; 杨琴; 陈娜; 吴兆敏; 黄家贵

    2011-01-01

    通过研究Sonic hedgehog (Shh)信号通路成分在局灶缺血性脑卒中大鼠侧脑室下带(subventricular zone,SVZ)的动态表达,初步探讨该通路在局灶性缺血性脑卒中后神经再生的调控作用.将84只健康成年雄性SD大鼠随机分为正常组(n=12)、假手术组(n=12)、缺血6、12、24 h和3、7d,共7组(n=12).采用线栓法制备大鼠右侧大脑中动脉阻断(middle cerebral artery occlussion,MCAO)模型.分别应用逆转录聚合酶链反应(RT-PCR)、免疫组化、免疫印迹法检测局灶脑缺血大鼠侧脑室下带Shh、Gli1 mRNA和蛋白变化.与正常组比较,Shh、Gli1mRNA和蛋白在假手术组表达变化不明显(P>0.05),模型组6h表达增高(P<0.01),24 h达峰值(P<0.01),3d时接近正常水平(P>0.05),7d表达又升高(P<0.01).缺血性脑卒中可以上调Shh信号通路成分在SVZ区的表达,提示Shh信号通路可能参与卒中后神经再生机制的调控.%To study the expression changes of Shh signaling pathway in the subventricular zone (SVZ) at different times after focal cerebral ischemia and find out whether the Shh pathway is involved in the regulation of the differentiation of the proliferated neural precursor cells in the SVZ under ischemic conditions. Eighty-four SD rats were divided into normal control group, sham operation group, experimental group at 6, 12, 24 h and 3, 7 d (n=l2 for time point) after surgery. Experimental group was made by filament occlusion of right middle cerebral artery. RT-PCR, immunohistochemistry and Western blotting were used to detect the mRNA and protein levels of Shh and Glil in the SVZ. Compared with the normal control group, the protein and mRNA expressions of Shh and Glil were not significantly changed in the sham operation (P>0.05). The protein and mRNA expressions of Shh and Glil were increased significantly at 6 h (P0.05) and increased significantly at 7 days (P<0.01) in experimental group. The up-regulation of the protein and mRNA levels

  18. 7-Dehydrocholesterol reductase regulated the palatal development by the sonic hedgehog-bone morphogenetic protein 2 signal pathway%7-脱氢胆固醇还原酶基因沉默对体外培养腭突音猬基因-骨形成蛋白2信号通路的影响

    Institute of Scientific and Technical Information of China (English)

    张岱尊; 许尧祥; 肖文林; 庄翠竹

    2014-01-01

    目的 研究沉默7-脱氢胆固醇还原酶(7-dehydrocholesterol reductase,Dhcr-7)表达对体外培养腭突器官中音猬基因(sonic hedgehog,Shh)-骨形成蛋白2(bone morphogenetic protein 2,BMP-2)信号通路的影响,探讨Dhcr-7参与腭突发育的信号通路.方法 取60只孕期(gestation day,GD) 13.5d小鼠胚胎根据简单随机抽样法平均分为3组:空白对照组(A组):不含胆固醇培养基培养腭突;Dhcr-7基因沉默组(B组):不含胆固醇培养基培养腭突+Dhcr-7-siRNA腺病毒;添加胆固醇组(C组);每组各20只.培养48 h后,A、B组更换不含胆固醇培养基,C组更换含有600 mg/L胆固醇培养基.继续培养72 h后,分别将腭突固定,组织染色和扫描电镜观察其形态变化;分别提取腭突RNA和蛋白质,应用反转录-聚合酶链反应(reverse transcriotion-polymerase chain reaction,RT-PCR)和蛋白质印迹法检测Dhcr-7、Shh和BMP-2表达量的变化.结果 组织染色和扫描电镜显示A组及C组腭突能完全融合,B组腭突未融合.Shh和BMP-2在B组的mRNA和蛋白质的表达量随Dhcr-7表达量降低而降低.B组mRNA和蛋白质的表达量Shh为0.063±0.018和0.092±0.065;BMP-2为0.054±0.018和0.049±0.021;A组mRNA和蛋白质的表达量Shh为0.667±0.093和0.639±0.078;BMP-2为0.591±0.043和0.569±0.081.A、B两组Shh和BMP-2的mRNA和蛋白质的表达量差异分别具有统计学意义(P<0.05);C组Dhcr-7的mRNA表达量(0.074±0.034)和蛋白质表达量(0.075±0.028)基本无变化,与B组(Dhcr-7的mRNA表达量为0.083±0.045;蛋白质表达量为0.067±0.065)相比,差异无统计学意义(P>0.05);RNA和蛋白质的表达量Shh(0.649±0.085和0.608±0.092)和BMP-2(0.578±0.062和0.548±0.065)均明显升高,与B组相比差异有统计学意义(P<0.05).结论 Dhcr-7可影响Shh和BMP-2的表达,Dhcr-7通过Shh-BMP-2信号通路调控腭突发育.%Objective To investigate the effect of 7-dehydrocholesterol reductas(Dhcr-7) gene silencing on the palatal

  19. Prognostic value of hedgehog signaling pathway in patients with colon cancer.

    Science.gov (United States)

    Xu, Meihua; Li, Xinhua; Liu, Ting; Leng, Aimin; Zhang, Guiying

    2012-06-01

    Hedgehog signaling pathway plays an important role in normal mammalian gastrointestinal development and is implicated in the oncogenesis of various tumors. However, its correlation with progression and prognosis of colon cancer has not been well documented. This study was designed to investigate expression patterns of related proteins in hedgehog signaling pathway in colon cancer to elucidate its prognostic value in this tumor. Using human colon cancer and their corresponding non-diseased colon from 228 patients' biopsies, the expression of sonic hedgehog, its receptor Patched, and downstream transcription factor Gli1 was investigated by immunohistochemical staining to assess their association with the clinicopathological characteristics of colon cancer. Disease-free survival and overall survival were examined by Kaplan-Meier estimates and the log-rank test. Prognostic factors were determined by multivariate Cox analysis. One hundred and thirty-eight patients (59.6%) had sonic hedgehog-positive tumors and that the disease-free survival (43.5 vs. 73.3%, P colon cancer (50.0 vs. 89.3%, P colon cancer. This is the first report describing about the relationship between hedgehog signaling pathway and the prognosis of colon cancer.

  20. Hedgehog Signaling Components Are Expressed in Choroidal Neovascularization in Laser-induced Retinal Lesion

    Science.gov (United States)

    Nochioka, Katsunori; Okuda, Hiroaki; Tatsumi, Kouko; Morita, Shoko; Ogata, Nahoko; Wanaka, Akio

    2016-01-01

    Choroidal neovascularization is one of the major pathological changes in age-related macular degeneration, which causes devastating blindness in the elderly population. The molecular mechanism of choroidal neovascularization has been under extensive investigation, but is still an open question. We focused on sonic hedgehog signaling, which is implicated in angiogenesis in various organs. Laser-induced injuries to the mouse retina were made to cause choroidal neovascularization. We examined gene expression of sonic hedgehog, its receptors (patched1, smoothened, cell adhesion molecule down-regulated by oncogenes (Cdon) and biregional Cdon-binding protein (Boc)) and downstream transcription factors (Gli1-3) using real-time RT-PCR. At seven days after injury, mRNAs for Patched1 and Gli1 were upregulated in response to injury, but displayed no upregulation in control retinas. Immunohistochemistry revealed that Patched1 and Gli1 proteins were localized to CD31-positive endothelial cells that cluster between the wounded retina and the pigment epithelium layer. Treatment with the hedgehog signaling inhibitor cyclopamine did not significantly decrease the size of the neovascularization areas, but the hedgehog agonist purmorphamine made the areas significantly larger than those in untreated retina. These results suggest that the hedgehog-signaling cascade may be a therapeutic target for age-related macular degeneration. PMID:27239075

  1. Overexpression of Hedgehog signaling molecules and its involvement in triple-negative breast cancer

    OpenAIRE

    Tao, Yajun; Mao, Jun; Zhang, Qingqing; Li, Lianhong

    2011-01-01

    The purpose of this study was to investigate the activation of Hedgehog (Hh) signaling molecules and its involvement in triple-negative breast cancer (TNBC). A total of 123 cases of paraffin blocks, including 83 cases of primary breast carcinoma, 30 cases of mammary hyperplasia and 10 cases of normal breast tissue, were immunohistochemically analyzed for Sonic Hedgehog (SHH), Patched-1 (PTCH1), Smoothened (SMO) and glioma-associated oncogene homoglog 1 (GLI1) expression. The expression of SMO...

  2. Targeting hedgehog in hematologic malignancy.

    Science.gov (United States)

    Irvine, David A; Copland, Mhairi

    2012-03-08

    The Hedgehog pathway is a critical mediator of embryonic patterning and organ development, including hematopoiesis. It influences stem cell fate, differentiation, proliferation, and apoptosis in responsive tissues. In adult organisms, hedgehog pathway activity is required for aspects of tissue maintenance and regeneration; however, there is increasing awareness that abnormal hedgehog signaling is associated with malignancy. Hedgehog signaling is critical for early hematopoietic development, but there is controversy over its role in normal hematopoiesis in adult organisms where it may be dispensable. Conversely, hedgehog signaling appears to be an important survival and proliferation signal for a spectrum of hematologic malignancies. Furthermore, hedgehog signaling may be critical for the maintenance and expansion of leukemic stem cells and therefore provides a possible mechanism to selectively target these primitive cell subpopulations, which are resistant to conventional chemotherapy. Indeed, phase 1 clinical trials of hedgehog pathway inhibitors are currently underway to test this hypothesis in myeloid leukemias. This review covers: (1) the hedgehog pathway and its role in normal and malignant hematopoiesis, (2) the recent development of clinical grade small molecule inhibitors of the pathway, and (3) the potential utility of hedgehog pathway inhibition as a therapeutic strategy in hemato-oncology.

  3. Differentiation of human umbilical cord mesenchymal stem cells into motoneurons induced by retinoic acid combined with sonic hedgehog%维甲酸联合音猬因子诱导人脐带间充质干细胞分化为运动神经元

    Institute of Scientific and Technical Information of China (English)

    刘学元; 李德华; 单伟; 姜东; 房艳

    2012-01-01

    Objective :To explore the feasibility that human umbilical cord mesenchymal stem cells (hUCMSCs) differentiated into motoneurons induced by retinoic acid (RA) and sonic hedgehog (Shh), thereafter, to provide experimental basis for clinical translation. Methods-, The hUCMSCs were isolated and purified by double enzymatic digestion and the surface antigens of these cells were detected by flow cytometry. According to different inducer. the experimentation was divided into four groups; control (no inducer), RA group (0. 5 μg/ml RA), Shh group (300 ng/ml Shh) and RA+Shh group (0. 5 μg/ ml RA+300 ng/ml Shh). After hUCMSCs being induced for 25 days, the morphological change was observed, and the expressions of Nestin, MAP-2, Hb9 and GFAP were detected by immunocytochemical method. Additionally, the immunocy-tochemical analysis for these four proteins was also performed on day 5, 10, 15, and 20 after induction in RA+Shh group. Results-. hUCMSCs were positive to CD29 and CD44, and negative to CD31 and CD34. In the control and Shh group, morphological change of cells was not found, and the proportion of positive cells of Nestin and MAP-2 was low. Huwever, the cells induced by RA only or combination of RA+Shh presented typical neuronal-like appearance exhibited as cytoplasm contracted towards the nucleus and processes were formed and connected like network. The proportion of positive cells of Nestin and MAP-2 was significantly higher than that in the other groups. In four groups, positive to Hb9 was only found in RA+ Shh group. And, the GFAP was weak expressed without significant difference in four groups. The combination of RA and Shh caused detectable Nestin on day 5, MAP-2 on day 10, Hb9 on day 15. On day 20, the Nestin expression was decreased, and MAP-2 and Hb9 reached their highest levels on day 25. Conclusion-. RA could greatly promote the differentiation of hUCMSCs into neurons, while solitary Shh have no effect on it. However, hUCMSCs can be induced into the

  4. Sonic Interaction Design

    DEFF Research Database (Denmark)

    created for such contexts as mobile music, sensorimotor learning, rehabilitation, and gaming. The goal is not only to extend the existing research and pedagogical approaches to SID but also to foster domains of practice for sound designers, architects, interaction designers, media artists, product......Sound is an integral part of every user experience but a neglected medium in design disciplines. Design of an artifact’s sonic qualities is often limited to the shaping of functional, representational, and signaling roles of sound. The interdisciplinary field of sonic interaction design (SID...... aspects of sonic experience. Sonic Interaction Design gathers contributions from scholars, artists, and designers working at the intersections of fields ranging from electronic music to cognitive science. They offer both theoretical considerations of key themes and case studies of products and systems...

  5. Characterization of two patched receptors for the vertebrate hedgehog protein family

    OpenAIRE

    1998-01-01

    The multitransmembrane protein Patched (PTCH) is the receptor for Sonic Hedgehog (Shh), a secreted molecule implicated in the formation of embryonic structures and in tumorigenesis. Current models suggest that binding of Shh to PTCH prevents the normal inhibition of the seven-transmembrane-protein Smoothened (SMO) by PTCH. According to this model, the inhibition of SMO signaling is relieved after mutational inactivation of PTCH in the basal cell nevus syndrome. Recently, PTCH2, a molecule wit...

  6. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds

    OpenAIRE

    Yang, Hyekyung; Cong, Wei-Na; Yoon, Jeong Seon; Egan, Josephine M.

    2014-01-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three ...

  7. Hedgehog signalling controls eye degeneration in blind cavefish.

    Science.gov (United States)

    Yamamoto, Yoshiyuki; Stock, David W; Jeffery, William R

    2004-10-14

    Hedgehog (Hh) proteins are responsible for critical signalling events during development but their evolutionary roles remain to be determined. Here we show that hh gene expression at the embryonic midline controls eye degeneration in blind cavefish. We use the teleost Astyanax mexicanus, a single species with an eyed surface-dwelling form (surface fish) and many blind cave forms (cavefish), to study the evolution of eye degeneration. Small eye primordia are formed during cavefish embryogenesis, which later arrest in development, degenerate and sink into the orbits. Eye degeneration is caused by apoptosis of the embryonic lens, and transplanting a surface fish embryonic lens into a cavefish optic cup can restore a complete eye. Here we show that sonic hedgehog (shh) and tiggy-winkle hedgehog (twhh) gene expression is expanded along the anterior embryonic midline in several different cavefish populations. The expansion of hh signalling results in hyperactivation of downstream genes, lens apoptosis and arrested eye growth and development. These features can be mimicked in surface fish by twhh and/or shh overexpression, supporting the role of hh signalling in the evolution of cavefish eye regression.

  8. Transcriptional activation of Hedgehog pathway components in aggressive haemangioma.

    Science.gov (United States)

    Wendling-Keim, Danielle S; Wanie, Lynn; von Schweinitz, Dietrich; Grantzow, Rainer; Kappler, Roland

    2017-10-01

    Infantile hemangioma is a vascular neoplasm and is one of the most common tumors diagnosed in young children. Although most hemangiomas are harmless and involute spontaneously, some show severe progression, leading to serious complications, such as high-output cardiac failure, ulcerations, compression of the trachea or deprivation amblyopia, depending on their size and localization. However, the pathogenesis and cause of hemangioma are largely unknown to date. The goal of this study was to identify markers that could predict hemangiomas with aggressive growth and severe progression that would benefit from early intervention. By using a PCR-based screening approach, we first confirmed that previously known markers of hemangioma, namely FGF2 and GLUT1, are highly expressed in hemangioma. Nevertheless, these genes did not show any differential expression between severely progressing tumors and mild tumors. However, transcriptional upregulation of several Hedgehog signalling components, comprising the ligand Sonic Hedgehog (SHH), the transcription factor GLI2 and its target gene FOXA2 were detected in extremely aggressive hemangioma specimens during the proliferation phase. Notably, GLI2 was even overexpressed in involuting hemangiomas if they showed an aggressive growth pattern. In conclusion, our data suggest that overexpression of the Hedgehog components SHH, GLI2 and FOXA2 might be used as markers of an aggressive hemangioma that would benefit from too early intervention, while FGF2 and GLUT1 are more general markers of hemangiomas. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Two lamprey Hedgehog genes share non-coding regulatory sequences and expression patterns with gnathostome Hedgehogs.

    Directory of Open Access Journals (Sweden)

    Shungo Kano

    Full Text Available Hedgehog (Hh genes play major roles in animal development and studies of their evolution, expression and function point to major differences among chordates. Here we focused on Hh genes in lampreys in order to characterize the evolution of Hh signalling at the emergence of vertebrates. Screening of a cosmid library of the river lamprey Lampetra fluviatilis and searching the preliminary genome assembly of the sea lamprey Petromyzon marinus indicate that lampreys have two Hh genes, named Hha and Hhb. Phylogenetic analyses suggest that Hha and Hhb are lamprey-specific paralogs closely related to Sonic/Indian Hh genes. Expression analysis indicates that Hha and Hhb are expressed in a Sonic Hh-like pattern. The two transcripts are expressed in largely overlapping but not identical domains in the lamprey embryonic brain, including a newly-described expression domain in the nasohypophyseal placode. Global alignments of genomic sequences and local alignment with known gnathostome regulatory motifs show that lamprey Hhs share conserved non-coding elements (CNE with gnathostome Hhs albeit with sequences that have significantly diverged and dispersed. Functional assays using zebrafish embryos demonstrate gnathostome-like midline enhancer activity for CNEs contained in intron2. We conclude that lamprey Hh genes are gnathostome Shh-like in terms of expression and regulation. In addition, they show some lamprey-specific features, including duplication and structural (but not functional changes in the intronic/regulatory sequences.

  10. Antiferromagnetic hedgehogs with superconducting cores

    Energy Technology Data Exchange (ETDEWEB)

    Goldbart, P.M.; Sheehy, D.E. [Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang{close_quote}s SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to {open_quotes}escape{close_quotes} into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined. {copyright} {ital 1998} {ital The American Physical Society}

  11. Ultrasonic/Sonic Jackhammer

    Science.gov (United States)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Herz, Jack

    2005-01-01

    An ultrasonic/sonic jackhammer (USJ) is the latest in a series of related devices. Each of these devices cuts into a brittle material by means of hammering and chiseling actions of a tool bit excited with a combination of ultrasonic and sonic vibrations. A small-scale prototype of the USJ has been demonstrated. A fully developed, full-scale version of the USJ would be used for cutting through concrete, rocks, hard asphalt, and other materials to which conventional pneumatic jackhammers are applied, but the USJ would offer several advantages over conventional pneumatic jackhammers.

  12. Sonic Interaction Design

    DEFF Research Database (Denmark)

    created for such contexts as mobile music, sensorimotor learning, rehabilitation, and gaming. The goal is not only to extend the existing research and pedagogical approaches to SID but also to foster domains of practice for sound designers, architects, interaction designers, media artists, product...... aspects of sonic experience. Sonic Interaction Design gathers contributions from scholars, artists, and designers working at the intersections of fields ranging from electronic music to cognitive science. They offer both theoretical considerations of key themes and case studies of products and systems...

  13. Sonic rhinoplasty: innovative applications.

    Science.gov (United States)

    Pribitkin, Edmund; Greywoode, Jewel D

    2013-04-01

    Sonic rhinoplasty involves the use of the Sonopet ultrasonic bone aspirator (Stryker, Inc., Kalamazoo, MI, USA) to precisely sculpt the nasal bones without damage to the surrounding nasal cartilage, soft tissue, and mucosa. By employing ultrasonic waves to emulsify and remove bone under concurrent irrigation and suction, sonic rhinoplasty improves upon the conventional osteotome, drill, rasp, and powered rasp techniques that may be associated with decreased visualization, heat generation, mechanical chatter, and a lack of surgical precision with attendant soft tissue injury. We have applied this technology to bony dorsal hump and nasal spine removal, deepening of the glabellar angle and reshaping of irregular nasal contours, septoplasty, turbinate reduction, and the correction of bony asymmetries.

  14. Hedgehog signaling patterns the outgrowth of unpaired skeletal appendages in zebrafish

    Directory of Open Access Journals (Sweden)

    Ahlberg Per

    2007-06-01

    Full Text Available Abstract Background Little is known about the control of the development of vertebrate unpaired appendages such as the caudal fin, one of the key morphological specializations of fishes. Recent analysis of lamprey and dogshark median fins suggests the co-option of some molecular mechanisms between paired and median in Chondrichthyes. However, the extent to which the molecular mechanisms patterning paired and median fins are shared remains unknown. Results Here we provide molecular description of the initial ontogeny of the median fins in zebrafish and present several independent lines of evidence that Sonic hedgehog signaling emanating from the embryonic midline is essential for establishment and outgrowth of the caudal fin primordium. However, gene expression analysis shows that the primordium of the adult caudal fin does not harbor a Sonic hedgehog-expressing domain equivalent to the Shh secreting zone of polarizing activity (ZPA of paired appendages. Conclusion Our results suggest that Hedgehog proteins can regulate skeletal appendage outgrowth independent of a ZPA and demonstrates an unexpected mechanism for mediating Shh signals in a median fin primordium. The median fins evolved before paired fins in early craniates, thus the patterning of the median fins may be an ancestral mechanism that controls the outgrowth of skeletogenic appendages in vertebrates.

  15. Greased hedgehogs : new links between hedgehog signaling and cholesterol metabolism

    NARCIS (Netherlands)

    Breitling, Rainer

    2007-01-01

    The close link between signaling by the developmental regulators of the Hedgehog family and cholesterol biochemistry has been known for some time. The morphogen is covalently attached to cholesterol in a peculiar autocatalytic reaction and embryonal disruption of cholesterol synthesis leads to malfo

  16. Sox11 is required to maintain proper levels of Hedgehog signaling during vertebrate ocular morphogenesis.

    Directory of Open Access Journals (Sweden)

    Lakshmi Pillai-Kastoori

    2014-07-01

    Full Text Available Ocular coloboma is a sight-threatening malformation caused by failure of the choroid fissure to close during morphogenesis of the eye, and is frequently associated with additional anomalies, including microphthalmia and cataracts. Although Hedgehog signaling is known to play a critical role in choroid fissure closure, genetic regulation of this pathway remains poorly understood. Here, we show that the transcription factor Sox11 is required to maintain specific levels of Hedgehog signaling during ocular development. Sox11-deficient zebrafish embryos displayed delayed and abnormal lens formation, coloboma, and a specific reduction in rod photoreceptors, all of which could be rescued by treatment with the Hedgehog pathway inhibitor cyclopamine. We further demonstrate that the elevated Hedgehog signaling in Sox11-deficient zebrafish was caused by a large increase in shha transcription; indeed, suppressing Shha expression rescued the ocular phenotypes of sox11 morphants. Conversely, over-expression of sox11 induced cyclopia, a phenotype consistent with reduced levels of Sonic hedgehog. We screened DNA samples from 79 patients with microphthalmia, anophthalmia, or coloboma (MAC and identified two novel heterozygous SOX11 variants in individuals with coloboma. In contrast to wild type human SOX11 mRNA, mRNA containing either variant failed to rescue the lens and coloboma phenotypes of Sox11-deficient zebrafish, and both exhibited significantly reduced transactivation ability in a luciferase reporter assay. Moreover, decreased gene dosage from a segmental deletion encompassing the SOX11 locus resulted in microphthalmia and related ocular phenotypes. Therefore, our study reveals a novel role for Sox11 in controlling Hedgehog signaling, and suggests that SOX11 variants contribute to pediatric eye disorders.

  17. Hedgehog morphogen in cardiovascular disease

    NARCIS (Netherlands)

    Bijlsma, Maarten F.; Peppelenbosch, Maikel P.; Spek, C. Arnold

    2006-01-01

    In this review, we focus on the basic biology of the important developmental Hedgehog ( Hh) protein family, its general function in development, pathway mechanisms, and gene discovery and nomenclature. Hh function in cardiovascular development and recent findings concerning Hh signaling in ischemia

  18. Characterization of two patched receptors for the vertebrate hedgehog protein family.

    Science.gov (United States)

    Carpenter, D; Stone, D M; Brush, J; Ryan, A; Armanini, M; Frantz, G; Rosenthal, A; de Sauvage, F J

    1998-11-10

    The multitransmembrane protein Patched (PTCH) is the receptor for Sonic Hedgehog (Shh), a secreted molecule implicated in the formation of embryonic structures and in tumorigenesis. Current models suggest that binding of Shh to PTCH prevents the normal inhibition of the seven-transmembrane-protein Smoothened (SMO) by PTCH. According to this model, the inhibition of SMO signaling is relieved after mutational inactivation of PTCH in the basal cell nevus syndrome. Recently, PTCH2, a molecule with sequence homology to PTCH, has been identified. To characterize both PTCH molecules with respect to the various Hedgehog proteins, we have isolated the human PTCH2 gene. Biochemical analysis of PTCH and PTCH2 shows that they both bind to all hedgehog family members with similar affinity and that they can form a complex with SMO. However, the expression patterns of PTCH and PTCH2 do not fully overlap. While PTCH is expressed throughout the mouse embryo, PTCH2 is found at high levels in the skin and in spermatocytes. Because Desert Hedgehog (Dhh) is expressed specifically in the testis and is required for germ cell development, it is likely that PTCH2 mediates its activity in vivo. Chromosomal localization of PTCH2 places it on chromosome 1p33-34, a region deleted in some germ cell tumors, raising the possibility that PTCH2 may be a tumor suppressor in Dhh target cells.

  19. Secretion and Signaling Activities of Lipoprotein-Associated Hedgehog and Non-Sterol-Modified Hedgehog in Flies and Mammals

    Science.gov (United States)

    Kumari, Veena; Ehrhart-Bornstein, Monika; Bornstein, Stefan R.; Eaton, Suzanne

    2013-01-01

    Hedgehog (Hh) proteins control animal development and tissue homeostasis. They activate gene expression by regulating processing, stability, and activation of Gli/Cubitus interruptus (Ci) transcription factors. Hh proteins are secreted and spread through tissue, despite becoming covalently linked to sterol during processing. Multiple mechanisms have been proposed to release Hh proteins in distinct forms; in Drosophila, lipoproteins facilitate long-range Hh mobilization but also contain lipids that repress the pathway. Here, we show that mammalian lipoproteins have conserved roles in Sonic Hedgehog (Shh) release and pathway repression. We demonstrate that lipoprotein-associated forms of Hh and Shh specifically block lipoprotein-mediated pathway inhibition. We also identify a second conserved release form that is not sterol-modified and can be released independently of lipoproteins (Hh-N*/Shh-N*). Lipoprotein-associated Hh/Shh and Hh-N*/Shh-N* have complementary and synergistic functions. In Drosophila wing imaginal discs, lipoprotein-associated Hh increases the amount of full-length Ci, but is insufficient for target gene activation. However, small amounts of non-sterol-modified Hh synergize with lipoprotein-associated Hh to fully activate the pathway and allow target gene expression. The existence of Hh secretion forms with distinct signaling activities suggests a novel mechanism for generating a diversity of Hh responses. PMID:23554573

  20. A hedgehog-like signal is involved in slow muscle differentation in Sepia officinalis

    Directory of Open Access Journals (Sweden)

    A Grimaldi

    2007-01-01

    Full Text Available In the tentacle of Sepia officinalis, smooth-like, helical and cross-striated fibres deriving from different populations of myoblasts are present. Myoblasts appear at different times during the development and express two muscle-specific transcription factors: Myf5-like and MyoD-like factors. Myoblasts expressing Myf5 give rise to slow fibres, whereas fast fibres derive from MyoD+ myoblasts. We found that a Hedgehog (Hh-like signal was present in the central nerve cord of the tentacle from the early stages of development and in a specific population of myoblasts which are the precursors of slow muscle fibres. The model showed interesting similarities with vertebrates, in which Sonic hedgehog is a protein secreted by axial structures (the notochord and neurotube and is involved in slow muscle differentiation and in survival of muscle precursors.

  1. Paper mechanisms for sonic interaction

    DEFF Research Database (Denmark)

    Delle Monache, Stefano; Rocchesso, Davide; Qi, Ji

    2012-01-01

    Introducing continuous sonic interaction in augmented pop-up books enhances the expressive and performative qualities of movables, making the whole narrative experience more engaging and personal. The SaMPL Spring School on Sounding Popables explored the specific topic of paper-driven sonic...

  2. Paper mechanisms for sonic interaction

    DEFF Research Database (Denmark)

    Delle Monache, Stefano; Rocchesso, Davide; Qi, Ji

    2012-01-01

    Introducing continuous sonic interaction in augmented pop-up books enhances the expressive and performative qualities of movables, making the whole narrative experience more engaging and personal. The SaMPL Spring School on Sounding Popables explored the specific topic of paper-driven sonic narra...... narratives. Working groups produced several sketches of sonic interactions with movables. The most significant sketches of sounding popables are presented and analyzed.......Introducing continuous sonic interaction in augmented pop-up books enhances the expressive and performative qualities of movables, making the whole narrative experience more engaging and personal. The SaMPL Spring School on Sounding Popables explored the specific topic of paper-driven sonic...

  3. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration

    Energy Technology Data Exchange (ETDEWEB)

    Samarzija, Ivana [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland); Beard, Peter, E-mail: peter.beard@epfl.ch [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Unknown cellular mutations complement papillomavirus-induced carcinogenesis. Black-Right-Pointing-Pointer Hedgehog pathway components are expressed by cervical cancer cells. Black-Right-Pointing-Pointer Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. Black-Right-Pointing-Pointer Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.

  4. Intestinal Hedgehog signaling in tumors and inflammation

    NARCIS (Netherlands)

    Büller, N.V.J.A.

    2015-01-01

    In this thesis we investigated the role of Hedgehog signaling in tumors and inflammation. By using an inducible Indian Hedgehog (Ihh) knockout mouse we show that Ihh signals via the mesenchyme to the proliferating cells in the crypt to attenuate proliferation. Despite its anti-proliferative role in

  5. Significance of hedgehog signal pathway inhibitors in the therapy of tumors%Hedgehog信号途径调控因子及抑制物在肿瘤治疗中的意义

    Institute of Scientific and Technical Information of China (English)

    曾维城; 罗波

    2009-01-01

    Hedgehog(Hh)基因首先在果蝇中发现,人类存在Sonic Hedgehog(Shh)、India Hedgehog(Ihh)和Desert Hedgehog(Dhh)3种Hh同源基因,它们在胚胎发育中起着重要的作用,控制着许多组织和器官形成.最近,对许多常见恶性肿瘤的研究发现,此途径的反常在恶性肿瘤的生长和维持中起到重要作用.本文就此途径的调控因子及抑制物在肿瘤治疗中的作用进行综述.

  6. Hedgehog signaling pathway and gastric cancer.

    Science.gov (United States)

    Katoh, Yuriko; Katoh, Masaru

    2005-10-01

    Hedgehog, WNT, FGF and BMP signaling pathways network together during embryogenesis, tissue regeneration, and carcinogenesis. Aberrant activation of Hedgehog signaling pathway leads to pathological consequences in a variety of human tumors, such as gastric cancer and pancreatic cancer. Endoscopic mucosal resection (EMR), endoscopic submucosal dissection (ESD), surgical gastrectomy and chemotherapy are therapeutic options for gastric cancer; however, prognosis of advanced gastric cancer patient is still poor. Here, Hedgehog signaling pathway in human gastric cancer and its clinical applications will be reviewed. Human SHH, IHH, DHH (Hedgehog homologs), HHAT (Hedgehog acyltransferase), HHIP (Hedgehog-interacting protein), DISP1, DISP2, DISP3 (Dispatched homologs), PTCH1, PTCH2 (Patched homologs), SMO (Smoothened homolog), KIF27, KIF7 (Costal-2 homologs), STK36 (Fused homolog), SUFU (SuFu homolog), DZIP1 (Iguana homolog), GLI1, GLI2 and GLI3 (Cubitus interruptus homologs) are implicated in the Hedgehog signaling. PTCH1, FOXM1 and CCND2 are direct transcriptional targets of Hedgehog signaling. Hedgehog signaling activation leads to cell proliferation through cell cycle regulation. SHH regulates growth and differentiation within gastric mucosa through autocrine loop and FOXL1-mediated epithelial-mesenchymal interaction. SHH is implicated in stem/progenitor cell restitution of damaged gastric mucosa during chronic infection with Helicobacter pylori. SHH up-regulation, IHH upregulation and HHIP down-regulation lead to aberrant activation of Hedgehog signaling through PTCH1 to GLI1 in gastric cancer. Small molecule compounds targeted to SMO (KADD-cyclopamine, SANT1-4, Cur61414) as well as humanized anti-SHH antibodies are potent anti-cancer drugs for gastric cancer. Cocktail of Hedgehog inhibitors would be developed as novel therapeutics for gastric cancer. Single nucleotide polymorphism (SNP) and copy number polymorphism (CNP) of Hedgehog signaling genes would be utilized

  7. Low-level Ga-Al-As laser irradiation enhances osteoblast proliferation through activation of Hedgehog signaling pathway

    Science.gov (United States)

    Li, Qiushi; Qu, Zhou; Chen, Yingxin; Liu, Shujie; Zhou, Yanmin

    2014-12-01

    Low-level laser irradiation has been reported to promote bone formation, but the molecular mechanism is still unclear. Hedgehog signaling pathway has been reported to play an important role in promoting bone formation. The aim of the present study was to examine whether low-level Ga-Al-As laser (808 nm) irradiation could have an effect on Hedgehog signaling pathway during osteoblast proliferation in vitro. Mouse osteoblastic cell line MC3T3-E1 was cultured in vitro. The cultures after laser irradiation (3.75J/cm2) were treated with recombinant N-terminals Sonic Hedgehog (N-Shh)or Hedgehog inhibitor cyclopamine (cy). The experiment was divided into 4 group, group 1:laser irradiation, group 2: laser irradiation and N-Shh, group 3: laser irradiation and cy, group 4:control with no laser irradiation. On day 1,2 and 3,cell proliferation was determined by cell counting, Cell Counting Kit-8.On 12 h and 24 h, cell cycle was detected by flow cytometry. Proliferation activity of laser irradiation and N-Shh group was remarkably increased compared with those of laser irradiation group. Proliferation activity of laser irradiation and cy group was remarkably decreased compared with those of laser irradiation group, however proliferation activity of laser irradiation and cy group was remarkably increased compared with those of control group. These results suggest that low-level Ga-Al-As laser irradiation activate Hedgehog signaling pathway during osteoblast proliferation in vitro. Hedgehog signaling pathway is one of the signaling pathways by which low-level Ga-Al-As laser irradiation regulates osteoblast proliferation.

  8. All Mammalian Hedgehog Proteins Interact with Cell Adhesion Molecule, Down-regulated by Oncogenes (CDO) and Brother of CDO (BOC) in a Conserved Manner*

    OpenAIRE

    Kavran, Jennifer M.; Ward, Matthew D.; Oladosu, Oyindamola O.; Mulepati, Sabin; Leahy, Daniel J.

    2010-01-01

    Hedgehog (Hh) signaling proteins stimulate cell proliferation, differentiation, and tissue patterning at multiple points in animal development. A single Hh homolog is present in Drosophila, but three Hh homologs, Sonic Hh, Indian Hh, and Desert Hh, are present in mammals. Distribution, movement, and reception of Hh signals are tightly regulated, and abnormal Hh signaling is associated with developmental defects and cancer. In addition to the integral membrane proteins Patched and Smoothened, ...

  9. Hedgehog pathway as a drug target: Smoothened inhibitors in development

    Directory of Open Access Journals (Sweden)

    Lin TL

    2012-03-01

    Full Text Available Tara L Lin1, William Matsui21Division of Hematology/Oncology, Department of Internal Medicine, University of Kansas, Kansas City, MO, USA; 2Division of Hematologic Malignancies, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USAAbstract: Emerging laboratory and clinical investigations demonstrate that Hedgehog signaling (Hh represents a novel therapeutic target in various human cancers. This conserved signaling pathway precisely regulates self-renewal and terminal differentiation in embryonic development, but is typically silenced in adult tissues, with reactivation usually only during tissue repair. Aberrant Hh pathway signaling has been implicated in the pathogenesis, self-renewal, and chemotherapy resistance of a growing number of solid and hematologic malignancies. Major components of the Hh pathway include the Hh ligands (Sonic, Desert, and Indian, the transmembrane receptor Patched, the signal transducer Smoothened (Smo, and transcription factors Gli1–3 which regulate the transcription of Hh target genes. Mutations in Hh pathway genes, increased Hh signaling in tumor stroma, and Hh overexpression in self-renewing cells (cancer stem cells have been described, and these different modes of Hh signaling have implications for the design of Hh pathway inhibitors and their integration into conventional treatment regimens. Discovery of a naturally-occurring Smo inhibitor, cyclopamine, and the identification of Hh pathway mutations and over expression in cancer cells prompted the development of several cyclopamine derivatives. Encouraging laboratory and in vivo data has resulted in Phase I and II clinical trials of Smo inhibitors. In this review, we will discuss the current understanding of Hh pathway signaling in malignancy and Smo antagonists in development. Recent data with these agents shows that they are well-tolerated and may be effective for subsets of patients. Challenges remain

  10. Hedgehog can drive terminal differentiation of amniote slow skeletal muscle

    Directory of Open Access Journals (Sweden)

    Bildsoe Heidi

    2004-07-01

    Full Text Available Abstract Background Secreted Hedgehog (Hh signalling molecules have profound influences on many developing and regenerating tissues. Yet in most vertebrate tissues it is unclear which Hh-responses are the direct result of Hh action on a particular cell type because Hhs frequently elicit secondary signals. In developing skeletal muscle, Hhs promote slow myogenesis in zebrafish and are involved in specification of medial muscle cells in amniote somites. However, the extent to which non-myogenic cells, myoblasts or differentiating myocytes are direct or indirect targets of Hh signalling is not known. Results We show that Sonic hedgehog (Shh can act directly on cultured C2 myoblasts, driving Gli1 expression, myogenin up-regulation and terminal differentiation, even in the presence of growth factors that normally prevent differentiation. Distinct myoblasts respond differently to Shh: in some slow myosin expression is increased, whereas in others Shh simply enhances terminal differentiation. Exposure of chick wing bud cells to Shh in culture increases numbers of both muscle and non-muscle cells, yet simultaneously enhances differentiation of myoblasts. The small proportion of differentiated muscle cells expressing definitive slow myosin can be doubled by Shh. Shh over-expression in chick limb bud reduces muscle mass at early developmental stages while inducing ectopic slow muscle fibre formation. Abundant later-differentiating fibres, however, do not express extra slow myosin. Conversely, Hh loss of function in the limb bud, caused by implanting hybridoma cells expressing a functionally blocking anti-Hh antibody, reduces early slow muscle formation and differentiation, but does not prevent later slow myogenesis. Analysis of Hh knockout mice indicates that Shh promotes early somitic slow myogenesis. Conclusions Taken together, the data show that Hh can have direct pro-differentiative effects on myoblasts and that early-developing muscle requires Hh for

  11. Click chemistry armed enzyme-linked immunosorbent assay to measure palmitoylation by hedgehog acyltransferase.

    Science.gov (United States)

    Lanyon-Hogg, Thomas; Masumoto, Naoko; Bodakh, George; Konitsiotis, Antonio D; Thinon, Emmanuelle; Rodgers, Ursula R; Owens, Raymond J; Magee, Anthony I; Tate, Edward W

    2015-12-01

    Hedgehog signaling is critical for correct embryogenesis and tissue development. However, on maturation, signaling is also found to be aberrantly activated in many cancers. Palmitoylation of the secreted signaling protein sonic hedgehog (Shh) by the enzyme hedgehog acyltransferase (Hhat) is required for functional signaling. To quantify this important posttranslational modification, many in vitro Shh palmitoylation assays employ radiolabeled fatty acids, which have limitations in terms of cost and safety. Here we present a click chemistry armed enzyme-linked immunosorbent assay (click-ELISA) for assessment of Hhat activity through acylation of biotinylated Shh peptide with an alkyne-tagged palmitoyl-CoA (coenzyme A) analogue. Click chemistry functionalization of the alkyne tag with azido-FLAG peptide allows analysis through an ELISA protocol and colorimetric readout. This assay format identified the detergent n-dodecyl β-d-maltopyranoside as an improved solubilizing agent for Hhat activity. Quantification of the potency of RU-SKI small molecule Hhat inhibitors by click-ELISA indicated IC50 values in the low- or sub-micromolar range. A stopped assay format was also employed that allows measurement of Hhat kinetic parameters where saturating substrate concentrations exceed the binding capacity of the streptavidin-coated plate. Therefore, click-ELISA represents a nonradioactive method for assessing protein palmitoylation in vitro that is readily expandable to other classes of protein lipidation.

  12. Hedgehog Signaling in Endochondral Ossification

    Directory of Open Access Journals (Sweden)

    Shinsuke Ohba

    2016-06-01

    Full Text Available Hedgehog (Hh signaling plays crucial roles in the patterning and morphogenesis of various organs within the bodies of vertebrates and insects. Endochondral ossification is one of the notable developmental events in which Hh signaling acts as a master regulator. Among three Hh proteins in mammals, Indian hedgehog (Ihh is known to work as a major Hh input that induces biological impact of Hh signaling on the endochondral ossification. Ihh is expressed in prehypertrophic and hypertrophic chondrocytes of developing endochondral bones. Genetic studies so far have demonstrated that the Ihh-mediated activation of Hh signaling synchronizes chondrogenesis and osteogenesis during endochondral ossification by regulating the following processes: (1 chondrocyte differentiation; (2 chondrocyte proliferation; and (3 specification of bone-forming osteoblasts. Ihh not only forms a negative feedback loop with parathyroid hormone-related protein (PTHrP to maintain the growth plate length, but also directly promotes chondrocyte propagation. Ihh input is required for the specification of progenitors into osteoblast precursors. The combinatorial approaches of genome-wide analyses and mouse genetics will facilitate understanding of the regulatory mechanisms underlying the roles of Hh signaling in endochondral ossification, providing genome-level evidence of the potential of Hh signaling for the treatment of skeletal disorders.

  13. Anomalous dispersions of `hedgehog' particles

    Science.gov (United States)

    Bahng, Joong Hwan; Yeom, Bongjun; Wang, Yichun; Tung, Siu On; Hoff, J. Damon; Kotov, Nicholas

    2015-01-01

    Hydrophobic particles in water and hydrophilic particles in oil aggregate, but can form colloidal dispersions if their surfaces are chemically camouflaged with surfactants, organic tethers, adsorbed polymers or other particles that impart affinity for the solvent and increase interparticle repulsion. A different strategy for modulating the interaction between a solid and a liquid uses surface corrugation, which gives rise to unique wetting behaviour. Here we show that this topographical effect can also be used to disperse particles in a wide range of solvents without recourse to chemicals to camouflage the particles' surfaces: we produce micrometre-sized particles that are coated with stiff, nanoscale spikes and exhibit long-term colloidal stability in both hydrophilic and hydrophobic media. We find that these `hedgehog' particles do not interpenetrate each other with their spikes, which markedly decreases the contact area between the particles and, therefore, the attractive forces between them. The trapping of air in aqueous dispersions, solvent autoionization at highly developed interfaces, and long-range electrostatic repulsion in organic media also contribute to the colloidal stability of our particles. The unusual dispersion behaviour of our hedgehog particles, overturning the notion that like dissolves like, might help to mitigate adverse environmental effects of the use of surfactants and volatile organic solvents, and deepens our understanding of interparticle interactions and nanoscale colloidal chemistry.

  14. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jui Tung [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2014-12-15

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  15. Detergent-solubilized Patched purified from Sf9 cells fails to interact strongly with cognate Hedgehog or Ihog homologs.

    Science.gov (United States)

    Cleveland, Thomas E; McCabe, Jacqueline M; Leahy, Daniel J

    2014-12-01

    Patched (Ptc) is a twelve-pass transmembrane protein that functions as a receptor for the Hedgehog (Hh) family of morphogens. In addition to Ptc, several accessory proteins including the CDO/Ihog family of co-receptors are necessary for proper Hh signaling. Structures of Hh proteins bound to members of the CDO/Ihog family are known, but the nature of the full Hh receptor complex is not well understood. We have expressed the Drosophila Patched and Mouse Patched-1 proteins in Sf9 cells and find that Sonic Hedgehog will bind to Mouse Patched-1 in isolated Sf9 cell membranes but that purified, detergent-solubilized Ptc proteins do not interact strongly with cognate Hh and CDO/Ihog homologs. These results may reflect a nonnative conformation of detergent-solubilized Ptc or that an additional factor or factors lost during purification are required for high-affinity Ptc binding to Hh.

  16. Evolutionary genomics and adaptive evolution of the Hedgehog gene family (Shh, Ihh and Dhh) in vertebrates.

    Science.gov (United States)

    Pereira, Joana; Johnson, Warren E; O'Brien, Stephen J; Jarvis, Erich D; Zhang, Guojie; Gilbert, M Thomas P; Vasconcelos, Vitor; Antunes, Agostinho

    2014-01-01

    The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog--Shh; Indian hedgehog--Ihh; and Desert hedgehog--Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.

  17. Inflammatory PAF Receptor Signaling Initiates Hedgehog Signaling and Kidney Fibrogenesis During Ethanol Consumption.

    Directory of Open Access Journals (Sweden)

    Calivarathan Latchoumycandane

    Full Text Available Acute inflammation either resolves or proceeds to fibrotic repair that replaces functional tissue. Pro-fibrotic hedgehog signaling and induction of its Gli transcription factor in pericytes induces fibrosis in kidney, but molecular instructions connecting inflammation to fibrosis are opaque. We show acute kidney inflammation resulting from chronic ingestion of the common xenobiotic ethanol initiates Gli1 transcription and hedgehog synthesis in kidney pericytes, and promotes renal fibrosis. Ethanol ingestion stimulated transcription of TGF-ß, collagens I and IV, and alpha-smooth muscle actin with accumulation of these proteins. This was accompanied by deposition of extracellular fibrils. Ethanol catabolism by CYP2E1 in kidney generates local reactive oxygen species that oxidize cellular phospholipids to phospholipid products that activate the Platelet-activating Factor receptor (PTAFR for inflammatory phospholipids. Genetically deleting this ptafr locus abolished accumulation of mRNA for TGF-ß, collagen IV, and α-smooth muscle actin. Loss of PTAFR also abolished ethanol-stimulated Sonic (Shh and Indian hedgehog (Ihh expression, and abolished transcription and accumulation of Gli1. Shh induced in pericytes and Ihh in tubules escaped to urine of ethanol-fed mice. Neutrophil myeloperoxidase (MPO is required for ethanol-induced kidney inflammation, and Shh was not present in kidney or urine of mpo-/- mice. Shh also was present in urine of patients with acute kidney injury, but not in normal individuals or those with fibrotic liver cirrhosis We conclude neither endogenous PTAFR signaling nor CYP2E1-generated radicals alone are sufficient to initiate hedgehog signaling, but instead PTAFR-dependent neutrophil infiltration with myeloperoxidase activation is necessary to initiate ethanol-induced fibrosis in kidney. We also show fibrogenic mediators escape to urine, defining a new class of urinary mechanistic biomarkers of fibrogenesis for an organ not

  18. Evolutionary genomics and adaptive evolution of the Hedgehog gene family (Shh, Ihh and Dhh in vertebrates.

    Directory of Open Access Journals (Sweden)

    Joana Pereira

    Full Text Available The Hedgehog (Hh gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog--Shh; Indian hedgehog--Ihh; and Desert hedgehog--Dhh, each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.

  19. Altered canonical hedgehog-gli signalling axis in pesticide-induced bone marrow aplasia mouse model.

    Science.gov (United States)

    Chaklader, Malay; Das, Prosun; Pereira, Jacintha Archana; Chaudhuri, Samaresh; Law, Sujata

    2012-09-01

    The mechanistic interplay between pesticide exposure and development of marrow aplasia is not yet well established but there are indices that chronic pesticide exposure in some instances causes marrow aplasia like haematopoietic degenerative condition in human beings. Canonical Hedgehog (Hh) signalling has multiple roles in a wide range of developmental processes, including haematopoiesis. The present study was designed to explore the status of four important components of the canonical Hedgehog signalling cascade, the Sonic Hedgehog (Shh), Ptch1, Smo, and Gli1, in a mouse model of chronic pesticide-induced bone marrow aplasia. We used 5 % aqueous mixture of pesticides (chlorpyriphos, prophenophos, cypermethrin, alpha-methrin, and hexaconazole) for inhalation and dermal exposure of 6 hours per day and 5 days a week up to 90 days. Murine bone marrow aplasia related to chronic pesticide treatment was confirmed primarily by haemogram, bone marrow cellularity, short term bone marrow explant culture for cellular kinetics, bone marrow smear, and fl ow cytometric Lin-Sca-1+C-kit+ extracellular receptor expression pattern. Later, components of hedgehog signalling were analysed in the bone marrow of both control and pesticide-treated aplastic groups of animals. The results depicted pancytopenic feature of peripheral blood, developmental anomaly of neutrophils, depression of primitive stem and progenitor population along with Shh, Ptch1, Smo and Gli1 expression in aplasia group. This investigation suggests that pesticide-induced downregulation of two critically important proteins--Ptch1 and Gli1--inside the haematopoietic stem and progenitor cell population impairs haematopoietic homeostasis and regeneration mechanism in vivo concurrent with bone marrow aplasia.

  20. Evolutionary Genomics and Adaptive Evolution of the Hedgehog Gene Family (Shh, Ihh and Dhh) in Vertebrates

    Science.gov (United States)

    Pereira, Joana; Johnson, Warren E.; O’Brien, Stephen J.; Jarvis, Erich D.; Zhang, Guojie; Gilbert, M. Thomas P.; Vasconcelos, Vitor; Antunes, Agostinho

    2014-01-01

    The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog – Shh; Indian hedgehog – Ihh; and Desert hedgehog – Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots. PMID:25549322

  1. Evolutionary genomics and adaptive evolution of the hedgehog gene family (Shh, Ihh and Dhh) in vertebrates

    DEFF Research Database (Denmark)

    Pereira, Joana; Johnson, Warren E.; O'Brien, Stephen J.

    2014-01-01

    The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typi...... in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.......The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found...... typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog - Shh; Indian hedgehog - Ihh; and Desert hedgehog - Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification...

  2. Real Time Sonic Boom Display

    Science.gov (United States)

    Haering, Ed

    2014-01-01

    This presentation will provide general information about sonic boom mitigation technology to the public in order to supply information to potential partners and licensees. The technology is a combination of flight data, atmospheric data and terrain information implemented into a control room real time display for flight planning. This research is currently being performed and as such, any results and conclusions are ongoing.

  3. Hedgehog inhibitors from Withania somnifera.

    Science.gov (United States)

    Yoneyama, Tatsuro; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Ishibashi, Masami

    2015-09-01

    The hedgehog (Hh) signaling pathway performs an important role in embryonic development and in cellular proliferation and differentiation. However, aberrant activation of the Hh signaling pathway is associated with tumorigenesis. Hh signal inhibition was evaluated using a cell-based assay system that targets GLI1-mediated transcription. Activity-guided isolation of the Withania somnifera MeOH extract led to the isolation of six compounds: withaferin A (1) and its derivatives (2-6). Compounds 1 and 2 showed strong inhibition of Hh/GLI1-mediated transcriptional activity with IC50 values of 0.5 and 0.6 μM, respectively. Compounds 1, 2, 3, and 6 were cytotoxic toward human pancreatic (PANC-1), prostate (DU145) and breast (MCF7) cancer cells. Furthermore, 1 also inhibited GLI1-DNA complex formation in EMSA.

  4. Human Plasma Very Low Density Lipoprotein Carries Indian Hedgehog

    NARCIS (Netherlands)

    Queiroz, Karla C. S.; Tio, Rene A.; Zeebregts, Clark J.; Bijlsma, Maarten F.; Zijlstra, Felix; Badlou, Bahram; de Vries, Marcel; Ferreira, Carmen V.; Spek, C. Arnold; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2010-01-01

    Hedgehog is one of the major morphogens and fulfils critical functions in both the development and maintenance of the vasculature. Hedgehog is highly hydrophobic and its diffusion toward target tissues remains only partly understood. In Drosophila, hedgehog transport via lipophorins is relevant for

  5. Sonic Virtuality, Environment, and Presence

    DEFF Research Database (Denmark)

    Grimshaw, Mark

    2017-01-01

    The article presents a brief introduction to the concept of sonic virtuality, a view of sound as a multi-modal, emergent perception that provides a framework that has since been used to provide an explanation of the formation of environments. Additionally, the article uses such concepts to explai...... on the use of biofeedback in computer games as part of the immersive technology designed to facilitate presence in such worlds....

  6. The Role of the Sonic Hedgehog Pathway for Prostate Cancer Progression

    Science.gov (United States)

    2008-02-01

    Kodacel cellulose film (Kodacel TA401/407) to eliminate UVC radiation. A UVC sensor (Oriel’s Goldilux UVC Probe) was used during each exposure to confirm...the lack of UVC emission. The UVB dose was quantified using a UVB Spectrum 305 Dosimeter obtained from the Daavlin Co. The radiation was additionally...2002;94:814–9. 25. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science (Wash. DC) 1998; 281:1312–6. 26. Fenton RG, Hixon JA, Wright PW

  7. IS SONIC HEDGEHOG (SHH) A CANDIDATE GENE FOR SPINA BIFIDA? (R828292)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Aberrant expression of Sonic hedgehog signaling in Peutz-Jeghers syndrome.

    Science.gov (United States)

    Xu, Xiaoping; Su, Juan; Li, Ran; Wang, Yadong; Zeng, Di; Wu, Baoping

    2016-04-01

    The SHH signaling pathway is critical for gastrointestinal development and organic patterning, and dysregulation of SHH pathway molecules has been detected in multiple gastrointestinal neoplasms. This study investigated the role of the SHH signaling pathway in PJS. Expression of SHH, PTCH, and GLI1 was examined by real-time PCR and immunohistochemistry in 20 normal tissues and 75 colorectal lesions (25 PJPs, 25 adenomas, and 25 adenocarcinomas). Expression of SHH, PTCH, and GLI1 mRNA was higher in PJPs than in normal tissue (P < .05) and gradually increased along the PJP-adenoma-adenocarcinoma sequence (P < .05). Immunostaining indicated that SHH expression was present in 60% of PJPs, 72% of adenomas, and 84% of carcinomas, whereas 68% of PJPs, 72% of adenomas, and 88% of carcinomas exhibited cytoplasmic expression of PTCH. Moreover, high GLI1 expression was detected in 56% of PJPs, 64% of adenomas, and 80% of carcinomas; and high nuclear expression of GLI1 was observed in 8 adenomas with atypia and 15 carcinomas. Increased SHH, PTCH, and GLI1 protein correlated positively with tumor grade (P = .012, P = .003, and P = .007, respectively), tumor depth (P = .024, P = .007, and P = .01), and lymph node metastasis (P = .05, P = .015, and P = .005). This study identified aberrant expression of SHH pathway molecules in PJS, and the findings may supply a novel mechanism for the development of PJ polyps.

  9. Function of Brg1 Chromatin Remodeling Factor in Sonic Hedgehog-Dependent Medulloblastoma Initiation and Maintenance

    Science.gov (United States)

    2015-12-01

    mice, Gli2-mediated Shh activation is required for multiple developmental processes such as hair follicle develop- ment, ventral neural tube...Jmjd3 in GliA-dependent target gene expression and ventral neural tube development. Shh-dependent Gli2 activation is essential for embryonic hair ... follicle development. Gli2 / embryos exhibit an arrest in hair follicle development with reduced cell proliferation42. When hair follicles in the sections

  10. IS SONIC HEDGEHOG (SHH) A CANDIDATE GENE FOR SPINA BIFIDA? (R828292)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  11. Temporal control of vertebrate embryo development : the role of Sonic Hedgehog in somite segmentation

    OpenAIRE

    Resende, Tatiana

    2011-01-01

    Tese de doutoramento em Ciências da Saúde All vertebrate species present a segmented articulated body, which is easily observed at the vertebral column level. This segmented nature can be detected quite early during embryonic development with the periodic formation of repeated segments, the somites, along the anteriorposterior embryo body axis. These are formed as blocks of cells that bud off from the rostral tip of the mesenchymal presomitic mesoderm (PSM), which flanks the em...

  12. Hedgehog signaling in mouse ovary: Indian hedgehog and desert hedgehog from granulosa cells induce target gene expression in developing theca cells.

    Science.gov (United States)

    Wijgerde, Mark; Ooms, Marja; Hoogerbrugge, Jos W; Grootegoed, J Anton

    2005-08-01

    Follicle development in the mammalian ovary requires interactions among the oocyte, granulosa cells, and theca cells, coordinating gametogenesis and steroidogenesis. Here we show that granulosa cells of growing follicles in mouse ovary act as a source of hedgehog signaling. Expression of Indian hedgehog and desert hedgehog mRNAs initiates in granulosa cells at the primary follicle stage, and we find induced expression of the hedgehog target genes Ptch1 and Gli1, in the surrounding pre-theca cell compartment. Cyclopamine, a highly specific hedgehog signaling antagonist, inhibits this induced expression of target genes in cultured neonatal mouse ovaries. The theca cell compartment remains a target of hedgehog signaling throughout follicle development, showing induced expression of the hedgehog target genes Ptch1, Ptch2, Hip1, and Gli1. In periovulatory follicles, a dynamic synchrony between loss of hedgehog expression and loss of induced target gene expression is observed. Oocytes are unable to respond to hedgehog because they lack expression of the essential signal transducer Smo (smoothened). The present results point to a prominent role of hedgehog signaling in the communication between granulosa cells and developing theca cells.

  13. Hedgehog signaling in the posterior region of the mouse gastrula suggests manifold roles in the fetal-umbilical connection and posterior morphogenesis.

    Science.gov (United States)

    Daane, Jacob M; Downs, Karen M

    2011-09-01

    Although many fetal birth defects, particularly those of the body wall and gut, are associated with abnormalities of the umbilical cord, the developmental relationship between these structures is largely obscure. Recently, genetic analysis of mid-gestation mouse embryos revealed that defects in Hedgehog signaling led to omphalocoele, or failure of the body wall to close at the umbilical ring (Matsumaru et al. [ 2011] PLos One 6:e16260). However, systematic spatiotemporal localization of Hedgehog signaling in the allantois, or umbilical precursor tissue, and the surrounding regions has not been documented. Here, a combination of reagents, including the Ptc1:lacZ and Runx1:lacZ reporter mice, immunohistochemistry for Smoothened (Smo), Sonic Hedgehog (Shh), and Indian hedgehog (Ihh), and detailed PECAM-1/Flk-1/Runx-1 analysis, revealed robust Hedgehog signaling in previously undocumented posterior sites over an extended period of time (∼7.0-9.75 dpc). These included the recently described proximal walls of the allantois (Ventral and Dorsal Cuboidal Mesothelia; VCM and DCM, respectively); the ventral embryonic surface continuous with them; hemogenic arterial endothelia; hematopoietic cells; the hindgut; ventral ectodermal ridge (VER); chorionic ectoderm; and the intraplacental yolk sac (IPY), which appeared to be a site of placental hematopoiesis. This map of Hedgehog signaling in the posterior region of the mouse conceptus will provide a valuable foundation upon which to elucidate the origin of many posterior midline abnormalities, especially those of the umbilical cord and associated fetal defects. Developmental Dynamics 240:2175-2193, 2011. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc.

  14. Broad-minded links cell cycle-related kinase to cilia assembly and hedgehog signal transduction.

    Science.gov (United States)

    Ko, Hyuk Wan; Norman, Ryan X; Tran, John; Fuller, Kimberly P; Fukuda, Mitsunori; Eggenschwiler, Jonathan T

    2010-02-16

    Recent findings indicate that mammalian Sonic hedgehog (Shh) signal transduction occurs within primary cilia, although the cell biological mechanisms underlying both Shh signaling and ciliogenesis have not been fully elucidated. We show that an uncharacterized TBC domain-containing protein, Broad-minded (Bromi), is required for high-level Shh responses in the mouse neural tube. We find that Bromi controls ciliary morphology and proper Gli2 localization within the cilium. By use of a zebrafish model, we further show that Bromi is required for proper association between the ciliary membrane and axoneme. Bromi physically interacts with cell cycle-related kinase (CCRK), whose Chlamydomonas homolog regulates flagellar length. Biochemical and genetic interaction data indicate that Bromi promotes CCRK stability and function. We propose that Bromi and CCRK control the structure of the primary cilium by coordinating assembly of the axoneme and ciliary membrane, allowing Gli proteins to be properly activated in response to Shh signaling.

  15. Indian hedgehog B function is required for the specification of oligodendrocyte progenitor cells in the zebrafish CNS.

    Science.gov (United States)

    Chung, Ah-Young; Kim, Suhyun; Kim, Eunmi; Kim, Dohyun; Jeong, Inyoung; Cha, Young Ryun; Bae, Young-ki; Park, Seung Woo; Lee, Jehee; Park, Hae-Chul

    2013-01-23

    A subset of ventral spinal cord precursors, known as pMN precursor cells, initially generate motor neurons and then oligodendrocyte progenitor cells (OPCs), which migrate and differentiate as myelinating oligodendrocytes in the developing neural tube. The switch between motor neuron and oligodendrocyte production by the pMN neural precursors is an important step in building a functional nervous system. However, the precise mechanism that orchestrates the sequential generation of motor neurons and oligodendrocytes within the common population of pMN precursors is still unclear. The current study demonstrates that Indian Hedgehog b (Ihhb), previously known as Echidna Hedgehog, begins to be expressed in the floor plate cells of the ventral spinal cord at the time of OPC specification in zebrafish embryos. Ihhb loss-of-function analysis revealed that Ihhb function is required for OPC specification from pMN precursors by negatively regulating the proliferation of neural precursors. Finally, results showed that Sonic Hedgehog (Shh) could not replace Ihhb function in OPC specification, suggesting that Ihhb and Shh play separate roles in OPC specification. Altogether, data from the present study suggested a novel mechanism, mediated by Ihhb, for the sequential generation of motor neurons and oligodendrocytes from pMN precursors in the ventral spinal cord of zebrafish embryos.

  16. Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy.

    Science.gov (United States)

    Mak, Kinglun Kingston; Kronenberg, Henry M; Chuang, Pao-Tien; Mackem, Susan; Yang, Yingzi

    2008-06-01

    Chondrocyte hypertrophy is an essential process required for endochondral bone formation. Proper regulation of chondrocyte hypertrophy is also required in postnatal cartilage homeostasis. Indian hedgehog (Ihh) and PTHrP signaling play crucial roles in regulating the onset of chondrocyte hypertrophy by forming a negative feedback loop, in which Ihh signaling regulates chondrocyte hypertrophy by controlling PTHrP expression. To understand whether there is a PTHrP-independent role of Ihh signaling in regulating chondrocyte hypertrophy, we have both activated and inactivated Ihh signaling in the absence of PTHrP during endochondral skeletal development. We found that upregulating Ihh signaling in the developing cartilage by treating PTHrP(-/-) limb explants with sonic hedgehog (Shh) protein in vitro, or overexpressing Ihh in the cartilage of PTHrP(-/-) embryos or inactivating patched 1 (Ptch1), a negative regulator of hedgehog (Hh) signaling, accelerated chondrocyte hypertrophy in the PTHrP(-/-) embryos. Conversely, when Hh signaling was blocked by cyclopamine or by removing Smoothened (Smo), a positive regulator of Hh signaling, chondrocyte hypertrophy was delayed in the PTHrP(-/-) embryo. Furthermore, we show that upregulated Hh signaling in the postnatal cartilage led to accelerated chondrocyte hypertrophy during secondary ossification, which in turn caused reduction of joint cartilage. Our results revealed a novel role of Ihh signaling in promoting chondrocyte hypertrophy independently of PTHrP, which is particularly important in postnatal cartilage development and homeostasis. In addition, we found that bone morphogenetic protein (Bmp) and Wnt/beta-catenin signaling in the cartilage may both mediate the effect of upregulated Ihh signaling in promoting chondrocyte hypertrophy.

  17. Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2

    Institute of Scientific and Technical Information of China (English)

    Cuiping Yang; Wenlin Chen; Yongbin Chen; Jin Jiang

    2012-01-01

    Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis in species ranging from Drosophila to mammals.The Hh signal is transduced by Smoothened (Smo),a seven-transmembrane protein related to G protein coupled receptors.Despite a conserved mechanism by which Hh activates Smo in Drosophila and mammals,how mammalian Hh signal is transduced from Smo to the Gli transcription factors is poorly understood.Here,we provide evidence that two ciliary proteins,Evc and Evc2,the products of human disease genes responsible for the Ellis-van Creveld syndrome,act downstream of Smo to transduce the Hh signal.We found that loss of Evc/Evc2 does not affect Sonic Hedgehog-induced Smo phosphorylation and ciliary localization but impedes Hh pathway activation mediated by constitutively active forms of Smo.Evc/Evc2 are dispensable for the constitutive Gli activity in Sufu-/- cells,suggesting that Evc/Evc2 act upstream of Sufu to promote Gli activation.Furthermore,we demonstrated that Hh stimulates binding of Evc/Evc2 to Smo depending on phosphorylation of the Smo C-terminal intracellular tail and that the binding is abolished in Kif3a-/- cilium-deficient cells.We propose that Hh activates Smo by inducing its phosphorylation,which recruits Evc/Evc2 to activate Gli proteins by antagonizing Sufu in the primary cilia.

  18. Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2.

    Science.gov (United States)

    Yang, Cuiping; Chen, Wenlin; Chen, Yongbin; Jiang, Jin

    2012-11-01

    Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis in species ranging from Drosophila to mammals. The Hh signal is transduced by Smoothened (Smo), a seven-transmembrane protein related to G protein coupled receptors. Despite a conserved mechanism by which Hh activates Smo in Drosophila and mammals, how mammalian Hh signal is transduced from Smo to the Gli transcription factors is poorly understood. Here, we provide evidence that two ciliary proteins, Evc and Evc2, the products of human disease genes responsible for the Ellis-van Creveld syndrome, act downstream of Smo to transduce the Hh signal. We found that loss of Evc/Evc2 does not affect Sonic Hedgehog-induced Smo phosphorylation and ciliary localization but impedes Hh pathway activation mediated by constitutively active forms of Smo. Evc/Evc2 are dispensable for the constitutive Gli activity in Sufu(-/-) cells, suggesting that Evc/Evc2 act upstream of Sufu to promote Gli activation. Furthermore, we demonstrated that Hh stimulates binding of Evc/Evc2 to Smo depending on phosphorylation of the Smo C-terminal intracellular tail and that the binding is abolished in Kif3a(-/-) cilium-deficient cells. We propose that Hh activates Smo by inducing its phosphorylation, which recruits Evc/Evc2 to activate Gli proteins by antagonizing Sufu in the primary cilia.

  19. Regulator of G-protein signaling - 5 (RGS5 is a novel repressor of hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    William M Mahoney

    Full Text Available Hedgehog (Hh signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc and smoothened (Smo. Recent studies identify Smo as a G-protein coupled receptor (GPCR-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP, we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases.

  20. Hedgehog Controls Quiescence and Activation of Neural Stem Cells in the Adult Ventricular-Subventricular Zone

    Directory of Open Access Journals (Sweden)

    Mathieu Daynac

    2016-10-01

    Full Text Available Identifying the mechanisms controlling quiescence and activation of neural stem cells (NSCs is crucial for understanding brain repair. Here, we demonstrate that Hedgehog (Hh signaling actively regulates different pools of quiescent and proliferative NSCs in the adult ventricular-subventricular zone (V-SVZ, one of the main brain neurogenic niches. Specific deletion of the Hh receptor Patched in NSCs during adulthood upregulated Hh signaling in quiescent NSCs, progressively leading to a large accumulation of these cells in the V-SVZ. The pool of non-neurogenic astrocytes was not modified, whereas the activated NSC pool increased after a short period, before progressively becoming exhausted. We also showed that Sonic Hedgehog regulates proliferation of activated NSCs in vivo and shortens both their G1 and S-G2/M phases in culture. These data demonstrate that Hh orchestrates the balance between quiescent and activated NSCs, with important implications for understanding adult neurogenesis under normal homeostatic conditions or during injury.

  1. Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett’s metaplasia

    Science.gov (United States)

    Wang, David H.; Tiwari, Anjana; Kim, Monica E.; Clemons, Nicholas J.; Regmi, Nanda L.; Hodges, William A.; Berman, David M.; Montgomery, Elizabeth A.; Watkins, D. Neil; Zhang, Xi; Zhang, Qiuyang; Jie, Chunfa; Spechler, Stuart J.; Souza, Rhonda F.

    2014-01-01

    Metaplasia can result when injury reactivates latent developmental signaling pathways that determine cell phenotype. Barrett’s esophagus is a squamous-to-columnar epithelial metaplasia caused by reflux esophagitis. Hedgehog (Hh) signaling is active in columnar-lined, embryonic esophagus and inactive in squamous-lined, adult esophagus. We showed previously that Hh signaling is reactivated in Barrett’s metaplasia and overexpression of Sonic hedgehog (SHH) in mouse esophageal squamous epithelium leads to a columnar phenotype. Here, our objective was to identify Hh target genes involved in Barrett’s pathogenesis. By microarray analysis, we found that the transcription factor Foxa2 is more highly expressed in murine embryonic esophagus compared with postnatal esophagus. Conditional activation of Shh in mouse esophageal epithelium induced FOXA2, while FOXA2 expression was reduced in Shh knockout embryos, establishing Foxa2 as an esophageal Hh target gene. Evaluation of patient samples revealed FOXA2 expression in Barrett’s metaplasia, dysplasia, and adenocarcinoma but not in esophageal squamous epithelium or squamous cell carcinoma. In esophageal squamous cell lines, Hh signaling upregulated FOXA2, which induced expression of MUC2, an intestinal mucin found in Barrett’s esophagus, and the MUC2-processing protein AGR2. Together, these data indicate that Hh signaling induces expression of genes that determine an intestinal phenotype in esophageal squamous epithelial cells and may contribute to the development of Barrett’s metaplasia. PMID:25083987

  2. The Hedgehog Inhibitor Cyclopamine Reduces β-Catenin-Tcf Transcriptional Activity, Induces E-Cadherin Expression, and Reduces Invasion in Colorectal Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qualtrough, David, E-mail: david.qualtrough@uwe.ac.uk [Department of Biological, Biomedical & Analytical Sciences, University of the West of England, Faculty of Health and Applied Sciences, University of the West of England, Frenchay, Bristol BS16 1QY (United Kingdom); Rees, Phil; Speight, Beverley; Williams, Ann C.; Paraskeva, Christos [School of Cellular & Molecular Medicine, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD (United Kingdom)

    2015-09-17

    Colorectal cancer is a major global health problem resulting in over 600,000 deaths world-wide every year with the majority of these due to metastatic disease. Wnt signalling, and more specifically β-catenin-related transcription, has been shown to drive both tumorigenesis and the metastatic process in colorectal neoplasia, yet its complex interactions with other key signalling pathways, such as hedgehog, remain to be elucidated. We have previously shown that the Hedgehog (HH) signalling pathway is active in cells from colorectal tumours, and that inhibition of the pathway with cyclopamine induces apoptosis. We now show that cyclopamine treatment reduces β-catenin related transcription in colorectal cancer cell lines, and that this effect can be reversed by addition of Sonic Hedgehog protein. We also show that cyclopamine concomitantly induces expression of the tumour suppressor and prognostic indicator E-cadherin. Consistent with a role for HH in regulating the invasive potential we show that cyclopamine reduces the expression of transcription factors (Slug, Snail and Twist) associated with the epithelial-mesenchymal transition and reduces the invasiveness of colorectal cancer cells in vitro. Taken together, these data show that pharmacological inhibition of the hedgehog pathway has therapeutic potential in the treatment of colorectal cancer.

  3. The Hedgehog Inhibitor Cyclopamine Reduces β-Catenin-Tcf Transcriptional Activity, Induces E-Cadherin Expression, and Reduces Invasion in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    David Qualtrough

    2015-09-01

    Full Text Available Colorectal cancer is a major global health problem resulting in over 600,000 deaths world-wide every year with the majority of these due to metastatic disease. Wnt signalling, and more specifically β-catenin-related transcription, has been shown to drive both tumorigenesis and the metastatic process in colorectal neoplasia, yet its complex interactions with other key signalling pathways, such as hedgehog, remain to be elucidated. We have previously shown that the Hedgehog (HH signalling pathway is active in cells from colorectal tumours, and that inhibition of the pathway with cyclopamine induces apoptosis. We now show that cyclopamine treatment reduces β-catenin related transcription in colorectal cancer cell lines, and that this effect can be reversed by addition of Sonic Hedgehog protein. We also show that cyclopamine concomitantly induces expression of the tumour suppressor and prognostic indicator E-cadherin. Consistent with a role for HH in regulating the invasive potential we show that cyclopamine reduces the expression of transcription factors (Slug, Snail and Twist associated with the epithelial-mesenchymal transition and reduces the invasiveness of colorectal cancer cells in vitro. Taken together, Cancers 2015, 7 1886 these data show that pharmacological inhibition of the hedgehog pathway has therapeutic potential in the treatment of colorectal cancer.

  4. Sonic journeys with the dead

    DEFF Research Database (Denmark)

    Sabra, Jakob Borrits

    This audio-paper is a site-specific investigation of relations between a gravesite at Vor Frelser Cemetery (Cemetery of Our Saviour), Copenhagen, Denmark, its cultural history and publicly co-constructed memories. The audio-paper follows a non-representational approach to sonic media and the meta......This audio-paper is a site-specific investigation of relations between a gravesite at Vor Frelser Cemetery (Cemetery of Our Saviour), Copenhagen, Denmark, its cultural history and publicly co-constructed memories. The audio-paper follows a non-representational approach to sonic media...... and the metaphor of travelling, in an attempt to establish an alternative method for meaning-making of urban cemeteries. By using recorded environmental sounds and publicly accessible online digital material an awareness of cemeteries as significant parts of our shared social and cultural history is established....... With offset in the particular gravesite of late Danish actor and cultural personage Jesper Klein, the audio-paper production is a aural narrative journey in which chosen spaces, places and temporal events from Jesper Klein's life are further animated by using relational sound souvenirs, interviews...

  5. Potential role of Hedgehog pathway in liver response to radiation.

    Directory of Open Access Journals (Sweden)

    Sihyung Wang

    Full Text Available Radiation-induced fibrosis constitutes a major problem that is commonly observed in the patients undergoing radiotherapy; therefore, understanding its pathophysiological mechanism is important. The Hedgehog (Hh pathway induces the proliferation of progenitors and myofibroblastic hepatic stellate cells (MF-HSCs and promotes the epithelial-to-mesenchymal transition (EMT, thereby regulating the repair response in the damaged liver. We examined the response of normal liver to radiation injury. Male mice were sacrificed at 6 weeks and 10 weeks after exposure to a single dose of 6 Gy and the livers were collected for biochemical analysis. Irradiated (IR and control mice were compared for progenitors, fibrosis, Hh pathway, and EMT at 6 and 10 weeks post irradiation. Fatty hepatocytes were observed and the expressions of Hh ligand, Indian Hh. were greater in the livers at 6 weeks, whereas expression of another Hh ligand, Sonic Hh, increased at 10 weeks post irradiation. Both Smoothened, Hh receptor, and Gli2, Hh-target gene, were up-regulated at 6 and 10 weeks after irradiation. Accumulation of progenitors (CD44, Pan-cytokeratin, and Sox9 was significant in IR livers at 6 and 10 weeks. RNA analysis showed enhanced expression of the EMT-stimulating factor, tgf-β, in the IR livers at 6 weeks and the upregulation of mesenchymal markers (α-SMA, collagen, N-cadherin, and s100a4, but down-regulation of EMT inhibitors, in IR mouse livers at 6 and 10 weeks. Increased fibrosis was observed in IR mouse livers at 10 weeks. Treatment of mice with Hh inhibitor, GDC-0449, suppressed Hh activity and block the proliferation of hepatic progenitor and expression of EMT-stimulating genes in irradiated mice. Therefore, those results demonstrated that the Hh pathway increased in response to liver injury by radiation and promoted a compensatory proliferation of MF-HSCs and progenitors, thereby regulating liver remodeling.

  6. The hedgehog receptor patched is involved in cholesterol transport.

    Directory of Open Access Journals (Sweden)

    Michel Bidet

    Full Text Available BACKGROUND: Sonic hedgehog (Shh signaling plays a crucial role in growth and patterning during embryonic development, and also in stem cell maintenance and tissue regeneration in adults. Aberrant Shh pathway activation is involved in the development of many tumors, and one of the most affected Shh signaling steps found in these tumors is the regulation of the signaling receptor Smoothened by the Shh receptor Patched. In the present work, we investigated Patched activity and the mechanism by which Patched inhibits Smoothened. METHODOLOGY/PRINCIPAL FINDINGS: Using the well-known Shh-responding cell line of mouse fibroblasts NIH 3T3, we first observed that enhancement of the intracellular cholesterol concentration induces Smoothened enrichment in the plasma membrane, which is a crucial step for the signaling activation. We found that binding of Shh protein to its receptor Patched, which involves Patched internalization, increases the intracellular concentration of cholesterol and decreases the efflux of a fluorescent cholesterol derivative (BODIPY-cholesterol from these cells. Treatment of fibroblasts with cyclopamine, an antagonist of Shh signaling, inhibits Patched expression and reduces BODIPY-cholesterol efflux, while treatment with the Shh pathway agonist SAG enhances Patched protein expression and BODIPY-cholesterol efflux. We also show that over-expression of human Patched in the yeast S. cerevisiae results in a significant boost of BODIPY-cholesterol efflux. Furthermore, we demonstrate that purified Patched binds to cholesterol, and that the interaction of Shh with Patched inhibits the binding of Patched to cholesterol. CONCLUSION/SIGNIFICANCE: Our results suggest that Patched may contribute to cholesterol efflux from cells, and to modulation of the intracellular cholesterol concentration. This activity is likely responsible for the inhibition of the enrichment of Smoothened in the plasma membrane, which is an important step in Shh pathway

  7. Sonic hedgehog信号通路在胃癌中的研究进展

    Institute of Scientific and Technical Information of China (English)

    何艳; 凌晖

    2014-01-01

    Shh(Sonic hedgehog)作为最重要的Hh同源基因产物,它的异常激活与胃癌的发生、发展关系密切成为近年研究热点.经典的Shh信号通路是由Shh配体、Ptch和Smo组成的受体复合物以及下游转录因子Gli蛋白(Gli1、Gli2、Gli3)组成.研究发现相比正常组织,胃癌组织中Shh的表达都有不同程度的升高,且升高程度与胃癌的发展转移呈正相关,本文就Shh信号通路与胃癌的研究进展做一综述.

  8. Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation.

    Science.gov (United States)

    Katoh, Y; Katoh, M

    2009-09-01

    Hedgehog signaling is aberrantly activated in glioma, medulloblastoma, basal cell carcinoma, lung cancer, esophageal cancer, gastric cancer, pancreatic cancer, breast cancer, and other tumors. Hedgehog signals activate GLI family members via Smoothened. RTK signaling potentiates GLI activity through PI3K-AKT-mediated GSK3 inactivation or RAS-STIL1-mediated SUFU inactivation, while GPCR signaling to Gs represses GLI activity through adenylate cyclase-mediated PKA activation. GLI activators bind to GACCACCCA motif to regulate transcription of GLI1, PTCH1, PTCH2, HHIP1, MYCN, CCND1, CCND2, BCL2, CFLAR, FOXF1, FOXL1, PRDM1 (BLIMP1), JAG2, GREM1, and Follistatin. Hedgehog signals are fine-tuned based on positive feedback loop via GLI1 and negative feedback loop via PTCH1, PTCH2, and HHIP1. Excessive positive feedback or collapsed negative feedback of Hedgehog signaling due to epigenetic or genetic alterations leads to carcinogenesis. Hedgehog signals induce cellular proliferation through upregulation of N-Myc, Cyclin D/E, and FOXM1. Hedgehog signals directly upregulate JAG2, indirectly upregulate mesenchymal BMP4 via FOXF1 or FOXL1, and also upregulate WNT2B and WNT5A. Hedgehog signals induce stem cell markers BMI1, LGR5, CD44 and CD133 based on cross-talk with WNT and/or other signals. Hedgehog signals upregulate BCL2 and CFLAR to promote cellular survival, SNAI1 (Snail), SNAI2 (Slug), ZEB1, ZEB2 (SIP1), TWIST2, and FOXC2 to promote epithelial-to-mesenchymal transition, and PTHLH (PTHrP) to promote osteolytic bone metastasis. KAAD-cyclopamine, Mu-SSKYQ-cyclopamine, IPI-269609, SANT1, SANT2, CUR61414 and HhAntag are small-molecule inhibitors targeted to Smoothened, GANT58, GANT61 to GLI1 and GLI2, and Robot-nikinin to SHH. Hedgehog signaling inhibitors should be used in combination with RTK inhibitors, GPCR modulators, and/or irradiation for cancer therapy.

  9. Involvement and targeted intervention of dysregulated Hedgehog signaling in osteosarcoma.

    Science.gov (United States)

    Lo, Winnie W; Wunder, Jay S; Dickson, Brendan C; Campbell, Veronica; McGovern, Karen; Alman, Benjamin A; Andrulis, Irene L

    2014-02-15

    During development, the Hedgehog pathway plays important roles regulating the proliferation and differentiation of chondrocytes, providing a template for growing bone. In this study, the authors investigated the components of dysregulated Hedgehog signaling as potential therapeutic targets for osteosarcoma. Small-molecule agonists and antagonists that modulate the Hedgehog pathway at different levels were used to investigate the mechanisms of dysregulation and the efficacy of Hedgehog blockade in osteosarcoma cell lines. The inhibitory effect of a small-molecule Smoothened (SMO) antagonist, IPI-926 (saridegib), also was examined in patient-derived xenograft models. An inverse correlation was identified in osteosarcoma cell lines between endogenous glioma-associated oncogene 2 (GLI2) levels and Hedgehog pathway induction levels. Cells with high levels of GLI2 were sensitive to GLI inhibition, but not SMO inhibition, suggesting that GLI2 overexpression may be a mechanism of ligand-independent activation. In contrast, cells that expressed high levels of the Hedgehog ligand gene Indian hedgehog (IHH) and the target genes patched 1 (PTCH1) and GLI1 were sensitive to modulation of both SMO and GLI, suggesting ligand-dependent activation. In 2 xenograft models, active autocrine and paracrine, ligand-dependent Hedgehog signaling was identified. IPI-926 inhibited the Hedgehog signaling interactions between the tumor and the stroma and demonstrated antitumor efficacy in 1 of 2 ligand-dependent models. The current results indicate that both ligand-dependent and ligand-independent Hedgehog dysregulation may be involved in osteosarcoma. It is the first report to demonstrate Hedgehog signaling crosstalk between the tumor and the stroma in osteosarcoma. The inhibitory effect of IPI-926 warrants additional research and raises the possibility of using Hedgehog pathway inhibitors as targeted therapeutics to improve treatment for osteosarcoma. © 2013 American Cancer Society.

  10. Impairment of lower jaw growth in developing zebrafish exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin and reduced hedgehog expression

    Energy Technology Data Exchange (ETDEWEB)

    Teraoka, Hiroki [Department of Toxicology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501 (Japan)]. E-mail: hteraoka@rakuno.ac.jp; Dong Wu [Department of Toxicology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501 (Japan); College of Animal Science and Technology, Inner Mongolia University for Nationalities, TongLiao (China); Okuhara, Yuji [Department of Toxicology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501 (Japan); Iwasa, Hiroyuki [Department of Toxicology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501 (Japan); Shindo, Asako [Department of Toxicology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501 (Japan); Hill, Adrian J. [School of Pharmacy, University of Wisconsin, Madison, WI (United States); Kawakami, Atsushi [Department of Biology, University of Tokyo, Tokyo (Japan); Hiraga, Takeo [Department of Toxicology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501 (Japan)

    2006-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been shown to cause a multitude of detrimental effects to developing zebrafish (Danio rerio). Previously, we demonstrated that jaw growth was impaired by TCDD exposure, but the exact mechanism underlying these malformations remained unknown. In the present study, we investigated the involvement of hedgehog genes and their downstream signaling in TCDD-mediated jaw malformation. We demonstrate that the developing lower jaw expresses sonic hedgehog a (shha), sonic hedgehog b (shhb) and their receptors, patched1 (ptc1) and patched2 (ptc2), as well as the downstream transcription factors, gli1 and gli2a. Loss of Hh signaling in mutants (sonic you) and larvae treated with a Hh inhibitor (cyclopamine), resulted in similar effects as those caused by TCDD. Moreover, TCDD exposure caused downregulation of shha and shhb in a manner dependent on aryl hydrocarbon receptor 2 (ahr2). Although this suggested an involvement of Hh signaling in TCDD-mediated impairment of jaw growth, we did not observe downregulation of ptc1 and ptc2, receptors dependent on Hh signaling. Furthermore, while the overall occurrence of apoptosis in the developing jaw was minimal, it was significantly increased in larvae treated with cyclopamine. In contrast, both TCDD and cyclopamine markedly reduced immunoreactivity against phosphorylated histone 3, a cell proliferation marker in the developing jaw. Taken together, our data suggest that Ahr2-mediated downregulation of Hh signaling, leading to a failure of cell proliferation, contributes to TCDD induced inhibition of lower jaw growth. TCDD may impair jaw growth through other pathway(s) in addition to Hh signaling.

  11. Sex and hedgehog: roles of genes in the hedgehog signaling pathway in mammalian sexual differentiation.

    Science.gov (United States)

    Franco, Heather L; Yao, Humphrey H-C

    2012-01-01

    The chromosome status of the mammalian embryo initiates a multistage process of sexual development in which the bipotential reproductive system establishes itself as either male or female. These events are governed by intricate cell-cell and interorgan communication that is regulated by multiple signaling pathways. The hedgehog signaling pathway was originally identified for its key role in the development of Drosophila, but is now recognized as a critical developmental regulator in many species, including humans. In addition to its developmental roles, the hedgehog signaling pathway also modulates adult organ function, and misregulation of this pathway often leads to diseases, such as cancer. The hedgehog signaling pathway acts through its morphogenetic ligands that signal from ligand-producing cells to target cells over a specified distance. The target cells then respond in a graded manner based on the concentration of the ligands that they are exposed to. Through this unique mechanism of action, the hedgehog signaling pathway elicits cell fate determination, epithelial-mesenchymal interactions, and cellular homeostasis. Here, we review current findings on the roles of hedgehog signaling in the sexually dimorphic development of the reproductive organs with an emphasis on mammals and comparative evidence in other species.

  12. Clinical implications of hedgehog signaling pathway inhibitors

    Institute of Scientific and Technical Information of China (English)

    Hailan Liu; Dongsheng Gu; Jingwu Xie

    2011-01-01

    Hedgehog was first described in Drosophila melanogaster by the Nobel laureates Eric Wieschaus and Christiane Nusslein-Volhard. The hedgehog (Hh) pathway is a major regulator of cell differentiation,proliferation, tissue polarity, stem cell maintenance, and carcinogenesis. The first link of Hh signaling to cancer was established through studies of a rare familial disease, Gorlin syndrome, in 1996. Follow-up studies revealed activation of this pathway in basal cell carcinoma, medulloblastoma and, leukemia as well as in gastrointestinal, lung, ovarian, breast, and prostate cancer. Targeted inhibition of Hh signaling is now believed to be effective in the treatment and prevention of human cancer. The discovery and synthesis of specific inhibitors for this pathway are even more exciting. In this review, we summarize major advances in the understanding of Hh signaling pathway activation in human cancer, mouse models for studying Hhmediated carcinogenesis, the roles of Hh signaling in tumor development and metastasis, antagonists for Hh signaling and their clinical implications.

  13. Hedgehog Signalling in the Embryonic Mouse Thymus

    OpenAIRE

    Barbarulo, Alessandro; Lau, Ching-In; Mengrelis, Konstantinos; Ross, Susan; Solanki, Anisha; Saldaña, José Ignacio; Crompton, Tessa

    2016-01-01

    T cells develop in the thymus, which provides an essential environment for T cell fate\\ud specification, and for the differentiation of multipotent progenitor cells into major histocompatibility\\ud complex (MHC)-restricted, non-autoreactive T cells. Here we review the role of the Hedgehog\\ud signalling pathway in T cell development, thymic epithelial cell (TEC) development, and\\ud thymocyte–TEC cross-talk in the embryonic mouse thymus during the last week of gestation.\\ud

  14. [Endoparasitic infestation of wild hedgehogs and hedgehogs in human care with a contribution to therapy].

    Science.gov (United States)

    Barutzki, D; Laubmeier, E; Forstner, M J

    1987-01-01

    In order to confirm the prevalence of endoparasites fecal samples from 127 hedgehogs living outdoors as well as from 85 in an animal home and from 542 hedgehogs hibernating in private homes were examined. 52.0%-72.3% of the animals from natural surroundings proved to be infested with the lung worm and 72.3%-74.0% with Capillaria species of the intestine, respectively. Capillaria aerophila were found in 15.1%-40.7%, whereas coccidia (1.4%-12.9%) were less frequent. In animal homes and private care hibernating hedgehogs excreted larvae of Crenosoma striatum (23.5% and 21.0%, respectively), eggs of Capillaria species of the intestine (47.1% and 37.1%), and eggs of Capillaria aerophila (7.1% and 19.4%), but oocysts of Isospora rastegaievae were found to be predominant (44.7% and 32.3%). Proglottides of Hymenolepis erinacei and eggs of Brachylaemus erinacei appeared only in the faeces of 3 and 2 hedgehogs, respectively. Helminths of the lung and gut were already found in May, therefore it must be concluded that these parasites are able to survive the winter in the host during the hibernation period. Even young hedgehogs (400-500 g) were infected with Crenosoma and/or Capillaria spp. of the intestine, however, compared with the adults the excretion of eggs and larvae was rather low. The antiparasitic agent Ivermectin (0.3 mg/100 g body-weight) was effective against Crenosoma striatum (efficacy: 95.9%) and Capillaria spp. (100%); therefore it can be recommended as a new, well tolerated anthelmintic against nematodes of the hedgehog.

  15. Frequency Effects on 2-Chlorobiphenyl Sonication

    Institute of Scientific and Technical Information of China (English)

    张光明; 常爱敏; 王丽

    2004-01-01

    In order to better understand sonication, this paper studies the effect of sound frequency on the 2-chlorobiphenyl (2-CB) sonication and analyzes two prevailing hypotheses. Four frequencies 205, 358, 618, and 1071 kHz were tested. The 2-CB degradation kinetics, dechlorination, and inhibition by a free radical scavenger were examined. The results show that sonication effectively degrades 2-CB, and the first order rate constants using 0.4 W/cm3 sonication are 0.214, 0.508, 0.454, and 0.248 min?1 at 205, 358, 618, and 1071 kHz, respectively. Good dechlorination was also achieved. 358 kHz frequency provided the most efficient 2-CB degradation, but the worst dechlorination, and was most sensitive to the free radical scavenger. Detailed analyses show that thermolysis is relatively stable at these frequencies while the free radical reaction depends strongly on the sound frequency.

  16. Hypoxia induces a hedgehog response mediated by HIF-1 alpha

    NARCIS (Netherlands)

    Bijlsma, Maarten F.; Groot, Angelique P.; Oduro, Jeremiah P.; Franken, Rutger J.; Schoenmakers, Saskia H. H. F.; Peppelenbosch, Maikel P.; Spek, C. Arnold

    2009-01-01

    Recently, it has become clear that the developmental hedgehog pathway is activated in ischaemic adult tissue where it aids in salvaging damaged tissue. The exact driving force for the initial hedgehog response is unclear and as most physiological and cellular processes are disturbed in ischaemic tis

  17. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT; ULTRASONIC AQUEOUS CLEANING SYSTEMS, SMART SONIC CORPORATION, SMART SONIC

    Science.gov (United States)

    This report is a product of the U.S. EPA's Environmental Technoloy Verification (ETV) Program and is focused on the Smart Sonics Ultrasonic Aqueous Cleaning Systems. The verification is based on three main objectives. (1) The Smart Sonic Aqueous Cleaning Systems, Model 2000 and...

  18. Production Well Performance Enhancement using Sonication Technology

    Energy Technology Data Exchange (ETDEWEB)

    Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C

    2005-12-31

    The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: • Laboratory studies • Mathematical modeling • Sonic tool design and development • Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40°C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale

  19. Sonication for advanced drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-ming; WEI Xi-zhu; LI Xiang-kun; ZHANG Jie; DOU Zi-bo

    2009-01-01

    This paper investigated the feasibility of sonication as an advanced treatment method for drinking water production and used comprehensive indexes of water quality to examine its efficiency. Results show that sonication significantly reduces the toxicity of water. Sonication with 5 W/L at 90 kHz lasting for 30 min decreases he water SUVA and the disinfection byproduct formation potential (DBPFP) by 38.7% and 27.2% respective ly. Sonieation also decreases the UV254 by more than 50% through destroying unsaturated chemical bonds.Higher sound intensity and higher frequency benefit the reduction of TOC and UV254, Besides, sonication significantly increases the affinity of organics with granular activated carbon (GAC), and thus the hybrid sonication-GAC method reduces the water TOC, COD, UV254, and DBPFP by 78. 3%, 69.4%, 75.7%, and 70. 0% respectively. Therefore, sonieation and the hybrid sonieation-GAC method are proposed as advanced treatment methods for drinking water.

  20. Realism Assessment of Sonic Boom Simulators

    Science.gov (United States)

    Sullivan, Brenda M.; Davies, Patrica; Hodgdon, Kthleen K.; Salamone, Joseph A., III; Pilon, Anthony

    2008-01-01

    Developments in small supersonic aircraft design are predicted to result in low-intensity sonic booms. Booms generated by current aircraft are similar to those that led to the ban on commercial supersonic fli ght over the US, so are unsuitable for parametric studies of psychoac oustic response to low-intensity booms. Therefore, simulators have be en used to study the impact of predicted low-intensity sonic booms. H owever, simulators have been criticized because, when simulating conv entional-level booms, the sounds were observed to be unrealistic by p eople experienced in listening to sonic booms. Thus, two studies were conducted to measure the perceived realism of three sonic boom simul ators. Experienced listeners rated the realism of conventional sonic boom signatures when played in these simulators. The effects on percei ved realism of factors such as duration of post-boom noise, exclusion of very low frequency components, inclusion of ground reflections, a nd type of simulator were examined. Duration of post-boom noise was f ound to have a strong effect on perceived realism, while type of simu lator had a weak effect. It was determined that post-boom noise had t o be at least 1.5 seconds long for the sound to be rated very realist ic. Loudness level did not affect realism for the range of sounds pla yed in the tests (80-93 dB ASEL).

  1. Waveform Freezing of Sonic Booms Revisited

    Science.gov (United States)

    Cleveland, Robin O.; Blackstock, David T.

    1996-01-01

    Nonlinear distortion of sonic booms propagating in the atmosphere is strongly affected by stratification and geometrical spreading. For a downward propagating sonic boom in a standard atmosphere, stratification and spreading cause a slowing down of nonlinear distortion. In certain cases a stage is reached where no further distortion takes place. When this happens, the waveform is said to be frozen. In previous work the authors argued that for most HSCT designs and flight conditions being considered, the sonic boom is not frozen when it reaches the ground. The criterion used was the value of the distortion distance x bar is a measure of the nonlinear distortion suffered by the wave (and is closely related to Hayes's E variable). The aircraft must be at an altitude greater than 27 km (80,000 ft) for x bar at the groun be within 95% of its asymptotic value. However, work reported here demonstrates that the ground waveform is much closer to the frozen state than indicated by the previous analysis. In the new analysis, duration of the sonic boom is used as the criterion for judging closeness of approach tz frozen state. In order for the duration of the sonic boom at the ground to be within 95% of its frozen value, the flight altitude of the aircraft needs to be only 15 km (45,000 ft).

  2. Distinct roles of PTCH2 splice variants in Hedgehog signalling.

    Science.gov (United States)

    Rahnama, Fahimeh; Toftgård, Rune; Zaphiropoulos, Peter G

    2004-03-01

    The human PTCH2 gene is highly similar to PTCH1, a tumour suppressor gene frequently mutated in basal cell carcinoma and several other tumour types. PTCH1 is a transmembrane protein believed to inhibit another transmembrane protein SMO (Smoothened), which mediates HH (Hedgehog) signalling. In this study, we analysed the biological properties of several PTCH2 splice variants. An mRNA form that lacked the last exon was abundantly expressed in all tissues examined, in contrast with the one that included it. Moreover, a transcript lacking exon 9, which is a part of a conserved sterol-sensing domain, was identified in intestine, prostate and cerebellum. In ovary, spleen, testis, cerebellum and skin, an mRNA lacking both exons 9 and 10 could also be observed. The different PTCH2 isoforms localized in the cytoplasm were capable of internalizing the N-terminal fragment of Sonic HH (Shh-N). Additionally, the PTCH2 gene was found to be a target of HH signalling. PTCH2 promoter regulation assays demonstrated that only one of the PTCH2 variants could inhibit the activity of SHH-N, whereas none was capable of inhibiting the activated form of SMO (SMO-M2) and this contrasts with PTCH1. Despite the fact that the PTCH2 isoforms lacked the ability to inhibit SMO-M2 activity, all PTCH2 variants as well as PTCH1, on co-transfection with Smo, were able to change Smo localization from being largely dispersed in the cytoplasm to the juxtanuclear region. Furthermore, the PTCH2 isoforms and PTCH1 co-localized in doubly transfected cells and an interaction between them was confirmed using immunoprecipitation assays. Using Ptch1-/- mouse cells, it was shown that the PTCH2 variants and PTCH1 differentially act to reconstitute not only the SHH but also the Desert HH-dependent transcriptional response. We conclude that in spite of their structural similarities, the PTCH2 isoforms have distinct functional properties when compared with PTCH1.

  3. Genetic Activation of Hedgehog Signaling Unbalances the Rate of Neural Stem Cell Renewal by Increasing Symmetric Divisions

    Directory of Open Access Journals (Sweden)

    Julien Ferent

    2014-08-01

    Full Text Available In the adult brain, self-renewal is essential for the persistence of neural stem cells (NSCs throughout life, but its regulation is still poorly understood. One NSC can give birth to two NSCs or one NSC and one transient progenitor. A correct balance is necessary for the maintenance of germinal areas, and understanding the molecular mechanisms underlying NSC division mode is clearly important. Here, we report a function of the Sonic Hedgehog (SHH receptor Patched in the direct control of long-term NSC self-renewal in the subependymal zone. We show that genetic conditional activation of SHH signaling in adult NSCs leads to their expansion and the depletion of their direct progeny. These phenotypes are associated in vitro with an increase in NSC symmetric division in a process involving NOTCH signaling. Together, our results demonstrate a tight control of adult neurogenesis and NSC renewal driven by Patched.

  4. Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling.

    Science.gov (United States)

    Wang, Jinhu; Cao, Jingli; Dickson, Amy L; Poss, Kenneth D

    2015-06-11

    In response to cardiac damage, a mesothelial tissue layer enveloping the heart called the epicardium is activated to proliferate and accumulate at the injury site. Recent studies have implicated the epicardium in multiple aspects of cardiac repair: as a source of paracrine signals for cardiomyocyte survival or proliferation; a supply of perivascular cells and possibly other cell types such as cardiomyocytes; and as a mediator of inflammation. However, the biology and dynamism of the adult epicardium is poorly understood. To investigate this, we created a transgenic line to ablate the epicardial cell population in adult zebrafish. Here we find that genetic depletion of the epicardium after myocardial loss inhibits cardiomyocyte proliferation and delays muscle regeneration. The epicardium vigorously regenerates after its ablation, through proliferation and migration of spared epicardial cells as a sheet to cover the exposed ventricular surface in a wave from the chamber base towards its apex. By reconstituting epicardial regeneration ex vivo, we show that extirpation of the bulbous arteriosus-a distinct, smooth-muscle-rich tissue structure that distributes outflow from the ventricle-prevents epicardial regeneration. Conversely, experimental repositioning of the bulbous arteriosus by tissue recombination initiates epicardial regeneration and can govern its direction. Hedgehog (Hh) ligand is expressed in the bulbous arteriosus, and treatment with a Hh signalling antagonist arrests epicardial regeneration and blunts the epicardial response to muscle injury. Transplantation of Sonic hedgehog (Shh)-soaked beads at the ventricular base stimulates epicardial regeneration after bulbous arteriosus removal, indicating that Hh signalling can substitute for the influence of the outflow tract. Thus, the ventricular epicardium has pronounced regenerative capacity, regulated by the neighbouring cardiac outflow tract and Hh signalling. These findings extend our understanding of

  5. Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Yoshikazu [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Itoh, Tohru, E-mail: itohru@iam.u-tokyo.ac.jp [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Miyajima, Atsushi [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2009-09-10

    Hedgehog (Hh) signaling plays crucial roles in development and homeostasis of various organs. In the adult liver, it regulates proliferation and/or viability of several types of cells, particularly under injured conditions, and is also implicated in stem/progenitor cell maintenance. However, the role of this signaling pathway during the normal developmental process of the liver remains elusive. Although Sonic hedgehog (Shh) is expressed in the ventral foregut endoderm from which the liver derives, the expression disappears at the onset of the liver bud formation, and its possible recurrence at the later stages has not been investigated. Here we analyzed the activation and functional relevance of Hh signaling during the mouse fetal liver development. At E11.5, Shh and an activation marker gene for Hh signaling, Gli1, were expressed in Dlk{sup +} hepatoblasts, the fetal liver progenitor cells, and the expression was rapidly decreased thereafter as the development proceeded. In the culture of Dlk{sup +} hepatoblasts isolated from the E11.5 liver, activation of Hh signaling stimulated their proliferation and this effect was cancelled by a chemical Hh signaling inhibitor, cyclopamine. In contrast, hepatocyte differentiation of Dlk{sup +} hepatoblasts in vitro as manifested by the marker gene expression and acquisition of ammonia clearance activity was significantly inhibited by forced activation of Hh signaling. Taken together, these results demonstrate the temporally restricted manner of Hh signal activation and its role in promoting the hepatoblast proliferation, and further suggest that the pathway needs to be shut off for the subsequent hepatic differentiation of hepatoblasts to proceed normally.

  6. The Mode of Hedgehog Binding to Ihog Homologues is Not Conserved Across Different Phyla

    Energy Technology Data Exchange (ETDEWEB)

    McLellan, J.; Zheng, X; Hauk, G; Ghirlando, R; Beachy, P; Leahy, D

    2008-01-01

    Hedgehog (Hh) proteins specify tissue pattern in metazoan embryos by forming gradients that emanate from discrete sites of expression and elicit concentration-dependent cellular differentiation or proliferation responses1, 2. Cellular responses to Hh and the movement of Hh through tissues are both precisely regulated, and abnormal Hh signalling has been implicated in human birth defects and cancer3, 4, 5, 6, 7. Hh signalling is mediated by its amino-terminal domain (HhN), which is dually lipidated and secreted as part of a multivalent lipoprotein particle8, 9, 10. Reception of the HhN signal is modulated by several cell-surface proteins on responding cells, including Patched (Ptc), Smoothened (Smo), Ihog (known as CDO or CDON in mammals) and the vertebrate-specific proteins Hip (also known as Hhip) and Gas1 (ref. 11). Drosophila Ihog and its vertebrate homologues CDO and BOC contain multiple immunoglobulin and fibronectin type III (FNIII) repeats, and the first FNIII repeat of Ihog binds Drosophila HhN in a heparin-dependent manner12, 13. Surprisingly, pull-down experiments suggest that a mammalian Sonic hedgehog N-terminal domain (ShhN) binds a non-orthologous FNIII repeat of CDO12, 14. Here we report biochemical, biophysical and X-ray structural studies of a complex between ShhN and the third FNIII repeat of CDO. We show that the ShhN-CDO interaction is completely unlike the HhN-Ihog interaction and requires calcium, which binds at a previously undetected site on ShhN. This site is conserved in nearly all Hh proteins and is a hotspot for mediating interactions between ShhN and CDO, Ptc, Hip and Gas1. Mutations in vertebrate Hh proteins causing holoprosencephaly and brachydactyly type A1 map to this calcium-binding site and disrupt interactions with these partners.

  7. Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists

    Directory of Open Access Journals (Sweden)

    Shulok Janine

    2002-11-01

    Full Text Available Abstract Background The Hedgehog (Hh signaling pathway is vital to animal development as it mediates the differentiation of multiple cell types during embryogenesis. In adults, Hh signaling can be activated to facilitate tissue maintenance and repair. Moreover, stimulation of the Hh pathway has shown therapeutic efficacy in models of neuropathy. The underlying mechanisms of Hh signal transduction remain obscure, however: little is known about the communication between the pathway suppressor Patched (Ptc, a multipass transmembrane protein that directly binds Hh, and the pathway activator Smoothened (Smo, a protein that is related to G-protein-coupled receptors and is capable of constitutive activation in the absence of Ptc. Results We have identified and characterized a synthetic non-peptidyl small molecule, Hh-Ag, that acts as an agonist of the Hh pathway. This Hh agonist promotes cell-type-specific proliferation and concentration-dependent differentiation in vitro, while in utero it rescues aspects of the Hh-signaling defect in Sonic hedgehog-null, but not Smo-null, mouse embryos. Biochemical studies with Hh-Ag, the Hh-signaling antagonist cyclopamine, and a novel Hh-signaling inhibitor Cur61414, reveal that the action of all these compounds is independent of Hh-protein ligand and of the Hh receptor Ptc, as each binds directly to Smo. Conclusions Smo can have its activity modulated directly by synthetic small molecules. These studies raise the possibility that Hh signaling may be regulated by endogenous small molecules in vivo and provide potent compounds with which to test the therapeutic value of activating the Hh-signaling pathway in the treatment of traumatic and chronic degenerative conditions.

  8. Gi proteins mediate activation of the canonical hedgehog pathway in the myocardium.

    Science.gov (United States)

    Carbe, Christian J; Cheng, Lan; Addya, Sankar; Gold, Jessica I; Gao, Erhe; Koch, Walter J; Riobo, Natalia A

    2014-07-01

    During myocardial ischemia, upregulation of the hedgehog (Hh) pathway promotes neovascularization and increases cardiomyocyte survival. The canonical Hh pathway activates a transcriptional program through the Gli family of transcription factors by derepression of the seven-transmembrane protein smoothened (Smo). The mechanisms linking Smo to Gli are complex and, in some cell types, involve coupling of Smo to Gi proteins. In the present study, we investigated, for the first time, the transcriptional response of cardiomyocytes to sonic hedgehog (Shh) and the role of Gi protein utilization. Our results show that Shh strongly activates Gli1 expression by quantitative PCR in a Smo-dependent manner in neonatal rat ventricular cardiomyocytes. Microarray analysis of gene expression changes elicited by Shh and sensitive to a Smo inhibitor identified a small subset of 37 cardiomyocyte-specific genes regulated by Shh, including some in the PKA and purinergic signaling pathways. In addition, neonatal rat ventricular cardiomyocytes infected with an adenovirus encoding GiCT, a peptide that impairs receptor-Gi protein coupling, showed reduced activation of Hh targets. In vitro data were confirmed in transgenic mice with cardiomyocyte-inducible GiCT expression. Transgenic GiCT mice showed specific reduction of Gli1 expression in the heart under basal conditions and failed to upregulate the Hh pathway upon ischemia and reperfusion injury, unlike their littermate controls. This study characterizes, for the first time, the transcriptional response of cardiomyocytes to Shh and establishes a critical role for Smo coupling to Gi in Hh signaling in the normal and ischemic myocardium. Copyright © 2014 the American Physiological Society.

  9. The Hedgehog signalling pathway mediates drug response of MCF-7 mammosphere cells in breast cancer patients.

    Science.gov (United States)

    He, Miao; Fu, Yingzi; Yan, Yuanyuan; Xiao, Qinghuan; Wu, Huizhe; Yao, Weifan; Zhao, Haishan; Zhao, Lin; Jiang, Qian; Yu, Zhaojin; Jin, Feng; Mi, Xiaoyi; Wang, Enhua; Cui, Zeshi; Fu, Liwu; Chen, Jianju; Wei, Minjie

    2015-11-01

    BCSCs (breast cancer stem cells) have been shown to be resistant to chemotherapy. However, the mechanisms underlying BCSC-mediated chemoresistance remain poorly understood. The Hh (Hedgehog) pathway is important in the stemness maintenance of CSCs. Nonetheless, it is unknown whether the Hh pathway is involved in BCSC-mediated chemoresistance. In the present study, we cultured breast cancer MCF-7 cells in suspension in serum-free medium to obtain BCSC-enriched MCF-7 MS (MCF-7 mammosphere) cells. We showed that MCF-7 MS cells are sensitive to salinomycin, but not paclitaxel, distinct from parent MCF-7 cells. The expression of the critical components of Hh pathway, i.e., PTCH (Patched), SMO (Smoothened), Gli1 and Gli2, was significantly up-regulated in MCF-7 MS cells; salinomycin, but not paclitaxel, treatment caused a remarkable decrease in expression of those genes in MCF-7 MS cells, but not in MCF-7 cells. Salinomycin, but not paclitaxel, increased apoptosis, decreased the migration capacity of MCF-7 MS cells, accompanied by a decreased expression of c-Myc, Bcl-2 and Snail, the target genes of the Hh pathway. The salinomycin-induced cytotoxic effect could be blocked by Shh (Sonic Hedgehog)-mediated Hh signalling activation. Inhibition of the Hh pathway by cyclopamine could sensitize MCF-7 MS cells to paclitaxel. In addition, salinomycin, but not paclitaxel, significantly reduced the tumour growth, accompanied by decreased expression of PTCH, SMO, Gli1 and Gli2 in xenograft tumours. Furthermore, the expression of SMO and Gli1 was positively correlated with the expression of CD44+ / CD24-, and the expression of SMO and Gli1 in CD44+ / CD24- tissues was associated with a significantly shorter OS (overall survival) and DFS (disease-free survival) in breast cancer patients receiving chemotherapy.

  10. Impact of the Smoothened inhibitor, IPI-926, on smoothened ciliary localization and Hedgehog pathway activity.

    Directory of Open Access Journals (Sweden)

    Marisa O Peluso

    Full Text Available A requisite step for canonical Hedgehog (Hh pathway activation by Sonic Hedgehog (Shh ligand is accumulation of Smoothened (Smo to the primary cilium (PC. Activation of the Hh pathway has been implicated in a broad range of cancers, and several Smo antagonists are being assessed clinically, one of which is approved for the treatment of advanced basal cell carcinoma. Recent reports demonstrate that various Smo antagonists differentially impact Smo localization to the PC while still exerting inhibitory activity. In contrast to other synthetic small molecule Smo antagonists, the natural product cyclopamine binds to and promotes ciliary accumulation of Smo and "primes" cells for Hh pathway hyper-responsiveness after compound withdrawal. We compared the properties of IPI-926, a semi-synthetic cyclopamine analog, to cyclopamine with regard to potency, ciliary Smo accumulation, and Hh pathway activity after compound withdrawal. Like cyclopamine, IPI-926 promoted accumulation of Smo to the PC. However, in contrast to cyclopamine, IPI-926 treatment did not prime cells for hyper-responsiveness to Shh stimulation after compound withdrawal, but instead demonstrated continuous inhibition of signaling. By comparing the levels of drug-induced ciliary Smo accumulation with the degree of Hh pathway activity after compound withdrawal, we propose that a critical threshold of ciliary Smo is necessary for "priming" activity to occur. This "priming" appears achievable with cyclopamine, but not IPI-926, and is cell-line dependent. Additionally, IPI-926 activity was evaluated in a murine tumor xenograft model and a pharmacokinetic/pharmacodynamic relationship was examined to assess for in vivo evidence of Hh pathway hyper-responsiveness. Plasma concentrations of IPI-926 correlated with the degree and duration of Hh pathway suppression, and pathway activity did not exceed baseline levels out to 96 hours post dose. The overall findings suggest that IPI-926 possesses

  11. Regulation of Smoothened Phosphorylation and High-Level Hedgehog Signaling Activity by a Plasma Membrane Associated Kinase.

    Directory of Open Access Journals (Sweden)

    Shuangxi Li

    2016-06-01

    Full Text Available Hedgehog (Hh signaling controls embryonic development and adult tissue homeostasis through the G protein coupled receptor (GPCR-family protein Smoothened (Smo. Upon stimulation, Smo accumulates on the cell surface in Drosophila or primary cilia in vertebrates, which is thought to be essential for its activation and function, but the underlying mechanisms remain poorly understood. Here we show that Hh stimulates the binding of Smo to a plasma membrane-associated kinase Gilgamesh (Gish/CK1γ and that Gish fine-tunes Hh pathway activity by phosphorylating a Ser/Thr cluster (CL-II in the juxtamembrane region of Smo carboxyl-terminal intracellular tail (C-tail. We find that CL-II phosphorylation is promoted by protein kinase A (PKA-mediated phosphorylation of Smo C-tail and depends on cell surface localization of both Gish and Smo. Consistent with CL-II being critical for high-threshold Hh target gene expression, its phosphorylation appears to require higher levels of Hh or longer exposure to the same level of Hh than PKA-site phosphorylation on Smo. Furthermore, we find that vertebrate CK1γ is localized at the primary cilium to promote Smo phosphorylation and Sonic hedgehog (Shh pathway activation. Our study reveals a conserved mechanism whereby Hh induces a change in Smo subcellular localization to promote its association with and activation by a plasma membrane localized kinase, and provides new insight into how Hh morphogen progressively activates Smo.

  12. Regulation of Smoothened Phosphorylation and High-Level Hedgehog Signaling Activity by a Plasma Membrane Associated Kinase.

    Science.gov (United States)

    Li, Shuangxi; Li, Shuang; Han, Yuhong; Tong, Chao; Wang, Bing; Chen, Yongbin; Jiang, Jin

    2016-06-01

    Hedgehog (Hh) signaling controls embryonic development and adult tissue homeostasis through the G protein coupled receptor (GPCR)-family protein Smoothened (Smo). Upon stimulation, Smo accumulates on the cell surface in Drosophila or primary cilia in vertebrates, which is thought to be essential for its activation and function, but the underlying mechanisms remain poorly understood. Here we show that Hh stimulates the binding of Smo to a plasma membrane-associated kinase Gilgamesh (Gish)/CK1γ and that Gish fine-tunes Hh pathway activity by phosphorylating a Ser/Thr cluster (CL-II) in the juxtamembrane region of Smo carboxyl-terminal intracellular tail (C-tail). We find that CL-II phosphorylation is promoted by protein kinase A (PKA)-mediated phosphorylation of Smo C-tail and depends on cell surface localization of both Gish and Smo. Consistent with CL-II being critical for high-threshold Hh target gene expression, its phosphorylation appears to require higher levels of Hh or longer exposure to the same level of Hh than PKA-site phosphorylation on Smo. Furthermore, we find that vertebrate CK1γ is localized at the primary cilium to promote Smo phosphorylation and Sonic hedgehog (Shh) pathway activation. Our study reveals a conserved mechanism whereby Hh induces a change in Smo subcellular localization to promote its association with and activation by a plasma membrane localized kinase, and provides new insight into how Hh morphogen progressively activates Smo.

  13. Semiclassical projection of hedgehog models with quarks

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, T.D.; Broniowski, W.

    1986-12-01

    A simple semiclassical method is presented for calculating physical observables in states with good angular momentum and isospin for models whose mean-field solutions are hedgehogs. The method is applicable for theories which have both quark and meson degrees of freedom. The basic approach is to find slowly rotating solutions to the time-dependent mean-field equations. A nontrivial set of differential equations must be solved to find the quark configuration for these rotating hedgehogs. The parameters which specify the rotating solutions are treated as the collective degrees of freedom. They are requantized by imposing a set of commutation relations which ensures the correct algebra for the SU(2) x SU(2) group of angular momentum and isospin. Collective wave functions can then be found and with these wave functions all matrix elements can be calculated. The method is applied to a simple version of the chiral quark-meson model. A number of physical quantities such as magnetic moments, charge distributions, g/sub A/, g/sub ..pi..//sub N//sub N/, N-..delta.. mass splitting, properties of the N-..delta.. transition, etc., are calculated.

  14. Endocannabinoids are conserved inhibitors of the Hedgehog pathway.

    Science.gov (United States)

    Khaliullina, Helena; Bilgin, Mesut; Sampaio, Julio L; Shevchenko, Andrej; Eaton, Suzanne

    2015-03-17

    Hedgehog ligands control tissue development and homeostasis by alleviating repression of Smoothened, a seven-pass transmembrane protein. The Hedgehog receptor, Patched, is thought to regulate the availability of small lipophilic Smoothened repressors whose identity is unknown. Lipoproteins contain lipids required to repress Smoothened signaling in vivo. Here, using biochemical fractionation and lipid mass spectrometry, we identify these repressors as endocannabinoids. Endocannabinoids circulate in human and Drosophila lipoproteins and act directly on Smoothened at physiological concentrations to repress signaling in Drosophila and mammalian assays. Phytocannabinoids are also potent Smo inhibitors. These findings link organismal metabolism to local Hedgehog signaling and suggest previously unsuspected mechanisms for the physiological activities of cannabinoids.

  15. Hedgehog turns lipoproteins into janus-faced particles

    NARCIS (Netherlands)

    Bijlsma, Maarten F.; Spek, C. Arnold; Peppelenbosch, Maikel P.

    2006-01-01

    Hedgehog is an important morphogenetic signal during embryonic development. The molecule contains several hydrophobic moieties, including cholesterol and palmitoyl groups, apparently incompatible with long-range functioning. Very recent research, however, performed in the fruitfly Drosophila melanog

  16. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian

    2016-08-01

    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol.

  17. Impacts of removing badgers on localised counts of hedgehogs.

    Directory of Open Access Journals (Sweden)

    Iain D Trewby

    Full Text Available Experimental evidence of the interactions among mammalian predators that eat or compete with one another is rare, due to the ethical and logistical challenges of managing wild populations in a controlled and replicated way. Here, we report on the opportunistic use of a replicated and controlled culling experiment (the Randomised Badger Culling Trial to investigate the relationship between two sympatric predators: European badgers Meles meles and western European hedgehogs Erinaceus europaeus. In areas of preferred habitat (amenity grassland, counts of hedgehogs more than doubled over a 5-year period from the start of badger culling (from 0.9 ha-1 pre-cull to 2.4 ha-1 post-cull, whereas hedgehog counts did not change where there was no badger culling (0.3-0.3 hedgehogs ha-1. This trial provides experimental evidence for mesopredator release as an outcome of management of a top predator.

  18. Sonic tractor beam costs less than 90

    Science.gov (United States)

    2017-02-01

    A single-sided sonic tractor beam that can levitate objects without the need for complex phase-shifting electronics has been developed by researchers in the UK, who say that it can be made for less than 90 with readily available components and a 3D printer.

  19. Sonic morphology: Aesthetic dimensional auditory spatial awareness

    Science.gov (United States)

    Whitehouse, Martha M.

    The sound and ceramic sculpture installation, " Skirting the Edge: Experiences in Sound & Form," is an integration of art and science demonstrating the concept of sonic morphology. "Sonic morphology" is herein defined as aesthetic three-dimensional auditory spatial awareness. The exhibition explicates my empirical phenomenal observations that sound has a three-dimensional form. Composed of ceramic sculptures that allude to different social and physical situations, coupled with sound compositions that enhance and create a three-dimensional auditory and visual aesthetic experience (see accompanying DVD), the exhibition supports the research question, "What is the relationship between sound and form?" Precisely how people aurally experience three-dimensional space involves an integration of spatial properties, auditory perception, individual history, and cultural mores. People also utilize environmental sound events as a guide in social situations and in remembering their personal history, as well as a guide in moving through space. Aesthetically, sound affects the fascination, meaning, and attention one has within a particular space. Sonic morphology brings art forms such as a movie, video, sound composition, and musical performance into the cognitive scope by generating meaning from the link between the visual and auditory senses. This research examined sonic morphology as an extension of musique concrete, sound as object, originating in Pierre Schaeffer's work in the 1940s. Pointing, as John Cage did, to the corporeal three-dimensional experience of "all sound," I composed works that took their total form only through the perceiver-participant's participation in the exhibition. While contemporary artist Alvin Lucier creates artworks that draw attention to making sound visible, "Skirting the Edge" engages the perceiver-participant visually and aurally, leading to recognition of sonic morphology.

  20. N-docosahexaenoylethanolamine regulates Hedgehog signaling and promotes growth of cortical axons

    Directory of Open Access Journals (Sweden)

    Giorgi Kharebava

    2015-12-01

    Full Text Available Axonogenesis, a process for the establishment of neuron connectivity, is central to brain function. The role of metabolites derived from docosahexaenoic acid (DHA, 22:6n-3 that is specifically enriched in the brain, has not been addressed in axon development. In this study, we tested if synaptamide (N-docosahexaenoylethanolamine, an endogenous metabolite of DHA, affects axon growth in cultured cortical neurons. We found that synaptamide increased the average axon length, inhibited GLI family zinc finger 1 (GLI1 transcription and sonic hedgehog (Shh target gene expression while inducing cAMP elevation. Similar effects were produced by cyclopamine, a regulator of the Shh pathway. Conversely, Shh antagonized elevation of cAMP and blocked synaptamide-mediated increase in axon length. Activation of Shh pathway by a smoothened (SMO agonist (SAG or overexpression of SMO did not inhibit axon growth mediated by synaptamide or cyclopamine. Instead, adenylate cyclase inhibitor SQ22536 abolished synaptamide-mediated axon growth indicating requirement of cAMP elevation for this process. Our findings establish that synaptamide promotes axon growth while Shh antagonizes synaptamide-mediated cAMP elevation and axon growth by a SMO-independent, non-canonical pathway.

  1. Synergism between Hedgehog-GLI and EGFR signaling in Hedgehog-responsive human medulloblastoma cells induces downregulation of canonical Hedgehog-target genes and stabilized expression of GLI1.

    Directory of Open Access Journals (Sweden)

    Frank Götschel

    Full Text Available Aberrant activation of Hedgehog (HH signaling has been identified as a key etiologic factor in many human malignancies. Signal strength, target gene specificity, and oncogenic activity of HH signaling depend profoundly on interactions with other pathways, such as epidermal growth factor receptor-mediated signaling, which has been shown to cooperate with HH/GLI in basal cell carcinoma and pancreatic cancer. Our experimental data demonstrated that the Daoy human medulloblastoma cell line possesses a fully inducible endogenous HH pathway. Treatment of Daoy cells with Sonic HH or Smoothened agonist induced expression of GLI1 protein and simultaneously prevented the processing of GLI3 to its repressor form. To study interactions between HH- and EGF-induced signaling in greater detail, time-resolved measurements were carried out and analyzed at the transcriptomic and proteomic levels. The Daoy cells responded to the HH/EGF co-treatment by downregulating GLI1, PTCH, and HHIP at the transcript level; this was also observed when Amphiregulin (AREG was used instead of EGF. We identified a novel crosstalk mechanism whereby EGFR signaling silences proteins acting as negative regulators of HH signaling, as AKT- and ERK-signaling independent process. EGFR/HH signaling maintained high GLI1 protein levels which contrasted the GLI1 downregulation on the transcript level. Conversely, a high-level synergism was also observed, due to a strong and significant upregulation of numerous canonical EGF-targets with putative tumor-promoting properties such as MMP7, VEGFA, and IL-8. In conclusion, synergistic effects between EGFR and HH signaling can selectively induce a switch from a canonical HH/GLI profile to a modulated specific target gene profile. This suggests that there are more wide-spread, yet context-dependent interactions, between HH/GLI and growth factor receptor signaling in human malignancies.

  2. Expression pattern of the Hedgehog signaling pathway in pituitary adenomas.

    Science.gov (United States)

    Yavropoulou, Maria P; Maladaki, Anna; Topouridou, Konstantina; Kotoula, Vasiliki; Poulios, Chris; Daskalaki, Emily; Foroglou, Nikolaos; Karkavelas, George; Yovos, John G

    2016-01-12

    Several studies have demonstrated the role of Wnt and Notch signaling in the pathogenesis of pituitary adenomas, but data are scarce regarding the role of Hedgehog signaling. In this study we investigated the differential expression of gene targets of the Hedgehog signaling pathway. Formalin-fixed, paraffin-embedded specimens from adult patients who underwent transphenoidal resection and normal human pituitary tissues that were obtained from autopsies were used. Clinical information and data from pre-operative MRI scan (extracellular tumor extension, tumor size, displacement of the optic chiasm) were retrieved from the Hospital's database. We used a customized RT(2) Profiler PCR Array, to investigate the expression of genes related to Notch and Hedgehog signaling pathways (PTCH1, PTCH2, GLI1, GLI3, NOTCH3, JAG1, HES1, and HIP). A total of 52 pituitary adenomas (32 non-functioning adenomas, 15 somatotropinomas and 5 prolactinomas) were used in the final analysis. In non-functioning pituitary adenomas there was a significant decrease (approximately 75%) in expression of all Hedgehog related genes that were tested, while Notch3 and Jagged-1 expression was found significantly increased, compared with normal pituitary tissue controls. In contrast, somatotropinomas demonstrated a significant increase in expression of all Hedgehog related genes and a decrease in the expression of Notch3 and Jagged-1. There was no significant difference in the expression of Hedgehog and Notch related genes between prolactinomas and healthy pituitary tissues. Hedgehog signalling appears to be activated in somatotropinomas but not in non-functioning pituitary adenomas in contrast to the expression pattern of Notch signalling pathway.

  3. The Expression of Sonic Hedgehog of the Member of Sonic Hedgehog Signaling Pathway in Gastric Cancer Cell SGC-7901%Shh信号通路成员Shh蛋白在胃癌细胞SGC-7901中的表达

    Institute of Scientific and Technical Information of China (English)

    李玖池; 苏继荣; 闫慧明; 张志军; 卢永清; 李文龙; 武伟

    2008-01-01

    目的:研究Shh信号通路成员Shh蛋白在胃癌细胞中的表达,探讨其与胃癌发生的关系.方法:培养胃癌细胞(SGC-7901)和正常肠上皮细胞(IEC-6),用免疫细胞化学法检测两种细胞中Shh蛋白的表达,用RT-PCR法检测Shh mRNA在两种细胞中的表达.结果:Shh蛋白在正常肠上皮细胞中表达阳性率为15%,在胃癌细胞中表达阳性率为70%,Shh蛋白在正常肠上皮细胞中的表达明显低于胃癌细胞(P<0.05).Shh mRNA在正常肠上皮细胞中不表达或低表达,在胃癌细胞中明显表达(P<0.05).结论:Shh信号通路可能与胃癌发生有关.

  4. Identification of spontaneous mutations within the long-range limb-specific Sonic Hedgehog enhancer (ZRS) that alter Sonic Hedgehog expression in the chicken limb mutants oligozeugodactly and Silkie Breed

    OpenAIRE

    2011-01-01

    The evolutionarily conserved, non-coding ~800 base-pair zone of polarizing activity (ZPA) regulatory sequence (ZRS) controls Shh expression in the posterior limb. We report that the chicken mutant oligozeugodactly (ozd), which lacks limb Shh expression, has a large deletion within the ZRS. Furthermore, the preaxial polydactylous, Silkie Breed chicken, which develops ectopic anterior limb Shh expression, has a single base-pair change within the ZRS. Using an in vivo reporter assay to examine e...

  5. Identification of spontaneous mutations within the long-range limb-specific Sonic Hedgehog enhancer (ZRS) that alter Sonic Hedgehog expression in the chicken limb mutants oligozeugodactly and Silkie Breed

    Science.gov (United States)

    Maas, Sarah A.; Suzuki, Takayuki; Fallon, John F.

    2011-01-01

    The evolutionarily conserved, non-coding ~800 base-pair zone of polarizing activity (ZPA) regulatory sequence (ZRS) controls Shh expression in the posterior limb. We report that the chicken mutant oligozeugodactly (ozd), which lacks limb Shh expression, has a large deletion within the ZRS. Furthermore, the preaxial polydactylous, Silkie Breed chicken, which develops ectopic anterior limb Shh expression, has a single base-pair change within the ZRS. Using an in vivo reporter assay to examine enhancer function in the chick limb, we demonstrate that the wild-type ZRS drives β-galactosidase reporter expression in the ZPA of both wild-type and ozd limbs. The Silkie ZRS drives β-galactosidase in both posterior and anterior Shh domains in wild-type limb buds. These results support the hypothesis that the ZRS integrates positive and negative prepatterned regulatory inputs in the chicken model system and demonstrate the utility of the chicken limb as an efficient genetic system for gene regulatory studies. PMID:21509895

  6. Studying the nonlinearity in Sonic IR NDE

    Science.gov (United States)

    Yu, Qiuye; Obeidat, Omar; Han, Xiaoyan

    2017-02-01

    Sonic IR Imaging combines pulsed ultrasound excitation and infrared imaging to detect defects in materials. The sound pulse causes rubbing due to non--unison motion between faces of defects, and infrared sensors image the temperature map over the target to identify defects. It works in various materials, including metal/metal alloy, ceramics, and composite materials. Its biggest advantage is that it's a fast, wide area NDE technique. It takes only a fraction of a second or a few seconds, depending on the thermal properties of the target, for one test over a few square feet. However, due to the nonlinearity in the coupling between the ultrasound transducer and the target, the repeatability has been an issue, which affects its application. In this paper, we present our study on this issue in Sonic IR.

  7. Discharge coefficient of small sonic nozzles

    Directory of Open Access Journals (Sweden)

    Yin Zhao-Qin

    2014-01-01

    Full Text Available The purpose of this investigation is to understand flow characteristics in mini/micro sonic nozzles, in order to precisely measure and control miniscule flowrates. Experimental and numerical simulation methods have been used to study critical flow Venturi nozzles. The results show that the nozzle’s size and shape influence gas flow characteristics which leading the boundary layer thickness to change, and then impact on the discharge coefficient. With the diameter of sonic nozzle throat decreasing, the discharge coefficient reduces. The maximum discharge coefficient exits in the condition of the inlet surface radius being double the throat diameter. The longer the diffuser section, the smaller the discharge coefficient becomes. Diffuser angle affects the discharge coefficient slightly.

  8. Comparison of Prevalent Types of Sonic Anemometers

    Science.gov (United States)

    Mauder, M.; Foken, Th.

    The objects of our investigations are five types of sonic anemometers that are widly used at present for turbulence measurements. These are the CSAT3 (Campbell Scien- tific), Solent HS (Gill Instruments), the NUW-Probe (NCAR), USA-1 (Metek) and the Model 81000 (R.M. Young). The main focus of this work was on the processing of the EBEX-2000 field intercomparison. In order to complete the characterisation of the instruments, the results of further intercomparison experiments were comparatively analysed and additionally three types of sonic anemometers were examined in a wind tunnel study. The highest measurement quality was found for the CSAT3 and the New UW-Probe. Other types of anemometers show significant deviations from the refer- ence, especially for the determination of fluctuations of the vertical wind component.

  9. Living Melodies - Coevolution Of Sonic Communication

    DEFF Research Database (Denmark)

    Dahlstedt, Palle; Nordahl, Mats G.

    2001-01-01

    The authors have constructed an artificial world of coevolving communicating agents. The behavior of the agents is described in terms of a simple genetic programming framework, which allows the evolution of foraging behavior and movement in order to reproduce, as well as sonic communication. The ....... The sound of the entire world is used as musical raw material for the work. Musically interesting and useful structures are found to emerge....

  10. Venturi easy ambient sonic-spray ionization.

    Science.gov (United States)

    Santos, Vanessa G; Regiani, Thaís; Dias, Fernanda F G; Romão, Wanderson; Jara, Jose Luis Paz; Klitzke, Clécio F; Coelho, Fernando; Eberlin, Marcos N

    2011-02-15

    The development and illustrative applications of an ambient ionization technique termed Venturi easy ambient sonic-spray ionization (V-EASI) is described. Its dual mode of operation with Venturi self-pumping makes V-EASI applicable to the direct mass spectrometric analysis of both liquid (V(L)-EASI) and solid (V(S)-EASI) samples. V-EASI is simple and easy to assemble, operating solely via the assistance of a sonic stream of nitrogen or air. The sonic gas stream causes two beneficial and integrated effects: (a) the self-pumping of solutions via the Venturi effect and (b) sonic-spray ionization (SSI) of analytes either in solution or resting on solid surfaces. In its liquid mode, V(L)-EASI is applicable to analytes in solution, forming negatively and/or positively charged intact molecular species in a soft fashion with little or no fragmentation. In its solid mode, V(S)-EASI relies on Venturi self-pumping of a proper SSI solvent solution in combination with SSI to form a stream of bipolar charged droplets that bombard the sample surface, causing desorption and ionization of the analyte molecules. As for its precursor technique (EASI), V-EASI generates bipolar droplets with considerably lower average charging, which increases selectivity for ionization with high signal-to-noise ratios and clean spectra dominated by single molecular species with minimal solvent ions. V-EASI also operates in a voltage-, heat-, and radiation-free fashion and is therefore free of thermal, electrical, or discharge interferences.

  11. The hedgehog-signaling pathway is repressed during the osteogenic differentiation of dental follicle cells

    DEFF Research Database (Denmark)

    Morsczeck, Christian; Reck, A; Beck, H C

    2017-01-01

    of repressors of the hedgehog-signaling pathway such as Patched 1 (PTCH1), Suppressor of Fused (SUFU), and Parathyroid Hormone-Related Peptide (PTHrP). Previous studies suggested that hedgehog proteins induce the osteogenic differentiation of mesenchymal stem cells via a paracrine pathway. Indian hedgehog (IHH...

  12. FGF signaling enhances a sonic hedgehog negative feedback loop at the initiation of spinal cord ventral patterning.

    Science.gov (United States)

    Morales, Aixa V; Espeso-Gil, Sergio; Ocaña, Inmaculada; Nieto-Lopez, Francisco; Calleja, Elena; Bovolenta, Paola; Lewandoski, Mark; Diez Del Corral, Ruth

    2016-09-01

    A prevalent developmental mechanism for the assignment of cell identities is the production of spatiotemporal concentration gradients of extracellular signaling molecules that are interpreted by the responding cells. One of such signaling systems is the Shh gradient that controls neuronal subtype identity in the ventral spinal cord. Using loss and gain of function approaches in chick and mouse embryos, we show here that the fibroblast growth factor (FGF) signaling pathway is required to restrict the domains of ventral gene expression as neuroepithelial cells become exposed to Shh during caudal extension of the embryo. FGF signaling activates the expression of the Shh receptor and negative pathway regulator Patched 2 (Ptch2) and therefore can enhance a negative feedback loop that restrains the activity of the pathway. Thus, we identify one of the mechanisms by which FGF signaling acts as a modulator of the onset of Shh signaling activity in the context of coordination of ventral patterning and caudal axis extension. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 956-971, 2016.

  13. Sonic Hedgehog信号通路及其在中枢神经系统肿瘤中的研究进展

    Institute of Scientific and Technical Information of China (English)

    王炜; 李华; 朱耀明; 王雄伟

    2011-01-01

    Sonic Hedgehog信号通路对胚胎发育过程中细胞分化和增殖的调控起重要作用[1].近年来随着研究的不断深入,发现Hh信号异常与人类胚胎、某些成体组织器官发育以及肿瘤的形成有密切关系[2].本文主要阐述Sonic Hedgehog信号通路及其在中枢神经系统肿瘤中的研究进展.1 Sonic Hedgehog( Shh)信号通路概述Shh信号通路主要由分泌型信号糖蛋白Shh配体与跨膜蛋白受体Patched( Ptch)和另一跨膜蛋白Smoothened( Smo)组成的复合物,以及下游转录因子Gli( Glil,Gli2,Gli3)组成.Shh是一种胞外配体,可以由许多器宫的分泌细胞产生.

  14. Hedgehog signaling pathway and ovarian cancer

    Institute of Scientific and Technical Information of China (English)

    Qi Chen; Guolan Gao; Shiwen Luo

    2013-01-01

    Epithelial ovarian carcinoma (EOC) is the most common form of ovarian malignancies and the most lethal gynecologic malignancy in the United States.To date,in spite of treatment to it with the extensive surgical debulking and chemotherapy,the prognosis of EOC remains dismal.Recently,it has become increasingly clear that in many instances,the signaling and molecular players that control development are the same,and when inappropriately regulated,drive tumorigenesis and cancer development.Here,we discuss the possible involvement of Hedgehog (Hh) pathway in the cellular regulation and development of cancer in the ovaries.Using the in vitro and in vivo assays developed has facilitated the dissection of the mechanisms behind Hh-driven ovarian cancers formation and growth.Based on recent studies,we propose that the inhibition of Hh signaling may interfere with spheroid-like structures in ovarian cancers.The components of the Hh signaling may provide novel drug targets,which could be explored as crucial combinatorial strategies for the treatment of ovarian cancers.

  15. The dawn of hedgehog inhibitors: Vismodegib

    Directory of Open Access Journals (Sweden)

    Selvarajan Sandhiya

    2013-01-01

    Full Text Available Cancer, one of the leading causes of death worldwide is estimated to increase to approximately 13.1 million by 2030. This has amplified the research in oncology towards the exploration of novel targets. Recently there has been lots of interest regarding the hedgehog (Hh pathway, which plays a significant role in the development of organs and tissues during embryonic and postnatal periods. In a normal person, the Hh signaling pathway is under inhibition and gets activated upon the binding of Hh ligand to a transmembrane receptor called Patched (PTCH1 thus allowing the transmembrane protein, smoothened (SMO to transfer signals through various proteins. One of the newer drugs namely vismodegib involves the inhibition of Hh pathway and has shown promising results in the treatment of advanced basal-cell carcinoma as well as medulloblastoma. It has been granted approval by US Food and Drug Administration′s (US FDA priority review program on January 30, 2012 for the treatment of advanced basal-cell carcinoma. The drug is also being evaluated in malignancies like medulloblastoma, pancreatic cancer, multiple myeloma, chondrosarcoma and prostate cancer. Moreover various Hh inhibitors namely LDE 225, saridegib, BMS 833923, LEQ 506, PF- 04449913 and TAK-441 are also undergoing phase I and II trials for different neoplasms. Hence this review will describe briefly the Hh pathway and the novel drug vismodegib.

  16. Aberrant Hedgehog Signaling and Clinical Outcome in Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Winnie W. Lo

    2014-01-01

    Full Text Available Despite the importance of Hedgehog signaling in bone development, the relationship between Hedgehog pathway expression and osteosarcoma clinical characteristics and outcome has not been investigated. In this study of 43 high-grade human osteosarcoma samples, we detected high expression levels of the Hedgehog ligand gene, IHH, and target genes, PTCH1 and GLI1, in most samples. Further analysis in tumors of patients with localized disease at diagnosis identified coexpression of IHH and PTCH1 exclusively in large tumors. Higher levels of IHH were observed more frequently in males and patients with higher levels of GLI1 were more responsive to chemotherapy. Subgroup analysis by tumor size and IHH expression indicated that the well-known association between survival and tumor size was further refined when IHH levels were taken into consideration.

  17. The Effect of Sonic Booms on Earthquake Warning Systems

    Science.gov (United States)

    Wurman, Gilead; Haering, Edward A, Jr.; Price, Michael J.

    2011-01-01

    Several aerospace companies are designing quiet supersonic business jets for service over the United States. These aircraft have the potential to increase the occurrence of mild sonic booms across the country. This leads to interest among earthquake warning (EQW) developers and the general seismological community in characterizing the effect of sonic booms on seismic sensors in the field, their potential impact on EQW systems, and means of discriminating their signatures from those of earthquakes. The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. (SWS) and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on EQW sensors. The study consists of exposing high-sample-rate (1000 sps) triaxial accelerometers to sonic booms with overpressures ranging from 10 to 600 Pa in the free field and the built environment. The accelerometers record the coupling of the sonic boom to the ground and surrounding structures, while microphones record the acoustic wave above ground near the sensor. Sonic booms are broadband signals with more high-frequency content than earthquakes. Even a 1000 sps accelerometer will produce a significantly aliased record. Thus the observed peak ground velocity is strongly dependent on the sampling rate, and increases as the sampling rate is reduced. At 1000 sps we observe ground velocities that exceed those of P-waves from ML 3 earthquakes at local distances, suggesting that sonic booms are not negligible for EQW applications. We present the results of several experiments conducted under SonicBREWS showing the effects of typical-case low amplitude sonic booms and worst-case high amplitude booms. We show the effects of various sensor placements and sensor array geometries. Finally, we suggest possible avenues for discriminating sonic booms from earthquakes for the purposes of EQW.

  18. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T. [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Aftab, Blake T. [Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Rudin, Charles M. [Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Tran, Phuoc T. [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Hales, Russell K., E-mail: rhales1@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.

  19. Multidisciplinary design optimization for sonic boom mitigation

    Science.gov (United States)

    Ozcer, Isik A.

    Automated, parallelized, time-efficient surface definition and grid generation and flow simulation methods are developed for sharp and accurate sonic boom signal computation in three dimensions in the near and mid-field of an aircraft using Euler/Full-Potential unstructured/structured computational fluid dynamics. The full-potential mid-field sonic boom prediction code is an accurate and efficient solver featuring automated grid generation, grid adaptation and shock fitting, and parallel processing. This program quickly marches the solution using a single nonlinear equation for large distances that cannot be covered with Euler solvers due to large memory and long computational time requirements. The solver takes into account variations in temperature and pressure with altitude. The far-field signal prediction is handled using the classical linear Thomas Waveform Parameter Method where the switching altitude from the nonlinear to linear prediction is determined by convergence of the ground signal pressure impulse value. This altitude is determined as r/L ≈ 10 from the source for a simple lifting wing, and r/L ≈ 40 for a real complex aircraft. Unstructured grid adaptation and shock fitting methodology developed for the near-field analysis employs an Hessian based anisotropic grid adaptation based on error equidistribution. A special field scalar is formulated to be used in the computation of the Hessian based error metric which enhances significantly the adaptation scheme for shocks. The entire cross-flow of a complex aircraft is resolved with high fidelity using only 500,000 grid nodes after only about 10 solution/adaptation cycles. Shock fitting is accomplished using Roe's Flux-Difference Splitting scheme which is an approximate Riemann type solver and by proper alignment of the cell faces with respect to shock surfaces. Simple to complex real aircraft geometries are handled with no user-interference required making the simulation methods suitable tools for

  20. Beyond the scalpel: targeting hedgehog in skin cancer prevention.

    Science.gov (United States)

    Rudin, Charles M

    2010-01-01

    This perspective places the article by Tang et al. in this issue of the journal (beginning on page 25) in the context of recent work defining the hedgehog signaling pathway as a central etiologic factor and as a therapeutic target in basal cell cancer. Tang et al. show that inhibition of cyclooxygenase activity, either genetically (in a relevant mouse model) or pharmacologically (in the mouse and in patients highly predisposed to develop basal cell skin cancers), may suppress basal cell carcinogenesis. This new study of cyclooxygenase inhibition, together with recent data on the efficacy of hedgehog pathway inhibition, offers new hope for patients at a high risk for basal cell cancer.

  1. The Hedgehog Effect The Secrets of Building High Performance Teams

    CERN Document Server

    Kets de Vries, Manfred F R

    2011-01-01

    In The Hedgehog Effect, Manfred Kets de Vries presents the case for leadership group coaching as an experiential training ground for learning to function as a high performance team. His group coaching model, incorporating living case studies, has been developed over more than 20 years of delivering programs to top-level executives and sets the standard in the field of leadership group coaching. Written for coaches, consultants, leadership development directors, and anyone working in or with teams, The Hedgehog Effect begins with an in-depth analysis of what teams and groups are all about. The

  2. Sound Absorption of Locally Resonant Sonic Materials

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong-Gang; LIU Yao-Zong; WEN Ji-Hong; YU Dian-Long; WANG Gang; WEN Xi-Sen

    2006-01-01

    @@ The acoustic properties of locally resonant sonic materials with viscosity are theoretically investigated by using the multiple-scattering approach. We find that the absorption of a two-layer slab dominates the wave attenuation in the resonant frequency region under the condition of moderate or high viscous level. The fundamental mechanism operating in local resonance for absorption is investigated for the viability by the mode translation in the scattering process of a single scatterer. Finally the absorption performance in a multi-layer system is discussed.

  3. The Social and Sonic Semantics of Reggae

    DEFF Research Database (Denmark)

    Levisen, Carsten

    2017-01-01

    This study breaks new ground into the emerging discipline of sonic semantics and the study of language ideologies in postcolonial contexts. The case in point is the reggae sociality in Port Vila, Vanuatu, where young Pacific Islanders are forming new ways of socializing on the fragments of kastom...... ‘traditional culture’ and with an ambivalent stance towards the value system represented by jioj ‘church’. As a cultural keyword, reke ‘reggae’ offers a rich point for understanding local language-embedded ideologies, and also for understanding the status of Bislama, the national creole....

  4. The hedgehog signal induced modulation of bone morphogenetic protein signaling: an essential signaling relay for urinary tract morphogenesis.

    Directory of Open Access Journals (Sweden)

    Ryuma Haraguchi

    Full Text Available BACKGROUND: Congenital diseases of the urinary tract are frequently observed in infants. Such diseases present a number of developmental anomalies such as hydroureter and hydronephrosis. Although some genetically-modified mouse models of growth factor signaling genes reproduce urinary phenotypes, the pathogenic mechanisms remain obscure. Previous studies suggest that a portion of the cells in the external genitalia and bladder are derived from peri-cloacal mesenchymal cells that receive Hedgehog (Hh signaling in the early developmental stages. We hypothesized that defects in such progenitor cells, which give rise to urinary tract tissues, may be a cause of such diseases. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the pathogenic mechanisms of upper urinary tract malformations, we analyzed a series of Sonic hedgehog (Shh deficient mice. Shh(-/- displayed hydroureter and hydronephrosis phenotypes and reduced expression of several developmental markers. In addition, we suggested that Shh modulation at an early embryonic stage is responsible for such phenotypes by analyzing the Shh conditional mutants. Tissue contribution assays of Hh-responsive cells revealed that peri-cloacal mesenchymal cells, which received Hh signal secreted from cloacal epithelium, could contribute to the ureteral mesenchyme. Gain- and loss-of-functional mutants for Hh signaling revealed a correlation between Hh signaling and Bone morphogenetic protein (Bmp signaling. Finally, a conditional ablation of Bmp receptor type IA (BmprIA gene was examined in Hh-responsive cell lineages. This system thus made it possible to analyze the primary functions of the growth factor signaling relay. The defective Hh-to-Bmp signaling relay resulted in severe urinary tract phenotypes with a decrease in the number of Hh-responsive cells. CONCLUSIONS/SIGNIFICANCE: This study identified the essential embryonic stages for the pathogenesis of urinary tract phenotypes. These results suggested that Hh

  5. Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull.

    Science.gov (United States)

    Wada, Naoyuki; Javidan, Yashar; Nelson, Sarah; Carney, Thomas J; Kelsh, Robert N; Schilling, Thomas F

    2005-09-01

    Neural crest cells that form the vertebrate head skeleton migrate and interact with surrounding tissues to shape the skull, and defects in these processes underlie many human craniofacial syndromes. Signals at the midline play a crucial role in the development of the anterior neurocranium, which forms the ventral braincase and palate, and here we explore the role of Hedgehog (Hh) signaling in this process. Using sox10:egfp transgenics to follow neural crest cell movements in the living embryo, and vital dye labeling to generate a fate map, we show that distinct populations of neural crest form the two main cartilage elements of the larval anterior neurocranium: the paired trabeculae and the midline ethmoid. By analyzing zebrafish mutants that disrupt sonic hedgehog (shh) expression, we demonstrate that shh is required to specify the movements of progenitors of these elements at the midline, and to induce them to form cartilage. Treatments with cyclopamine, to block Hh signaling at different stages, suggest that although requirements in morphogenesis occur during neural crest migration beneath the brain, requirements in chondrogenesis occur later, as cells form separate trabecular and ethmoid condensations. Cell transplantations indicate that these also reflect different sources of Shh, one from the ventral neural tube that controls trabecular morphogenesis and one from the oral ectoderm that promotes chondrogenesis. Our results suggest a novel role for Shh in the movements of neural crest cells at the midline, as well as in their differentiation into cartilage, and help to explain why both skeletal fusions and palatal clefting are associated with the loss of Hh signaling in holoprosencephalic humans.

  6. Indian hedgehog mutations causing brachydactyly type A1 impair Hedgehog signal transduction at multiple levels

    Institute of Scientific and Technical Information of China (English)

    Gang Ma; Jiang Yu; Yue Xiao; Danny Chan; Bo Gao; Jianxin Hu; Yongxing He

    2011-01-01

    Brachydactyly type A1 (BDA1),the first recorded Mendelian autosomal dominant disorder in humans,is characterized by a shortening or absence of the middle phalanges.Heterozygous missense mutations in the Indian Hedgehog (IHH) gene have been identified as a cause of BDA1; however,the biochemical consequences of these mutations are unclear.In this paper,we analyzed three BDA1 mutations (E95K,D100E,and E131K)in the N-terminal fragment of Indian Hedgehog (IhhN).Structural analysis showed that the E95K mutation changes a negatively charged area to a positively charged area in a calcium-binding groove,and that the D100E mutation changes the local tertiary structure.Furthermore,we showed that the E95K and D100E mutations led to a temperature-sensitive and calcium-dependent instability of lhhN,which might contribute to an enhanced intracellular degradation of the mutant proteins via the lysosome.Notably,all three mutations affected Hh binding to the receptor Patched1 (PTC1),reducing its capacity to induce cellular differentiation.We propose that these are common features of the mutations that cause BDA1,affecting the Hh tertiary structure,intracellular fate,binding to the receptor/partners,and binding to extracellular components.The combination of these features alters signaling capacity and range,but the impact is likely to be variable and mutation-dependent.The potential variation in the signaling range is characterized by an enhanced interaction with heparan sulfate for IHH with the E95K mutation,but not the E131K mutation.Taken together,our results suggest that these IHH mutations affect Hh signaling at multiple levels,causing abnormal bone development and abnormal digit formation.

  7. Graded hedgehog and fibroblast growth factor signaling independently regulate pituitary cell fates and help establish the pars distalis and pars intermedia of the zebrafish adenohypophysis.

    Science.gov (United States)

    Guner, Burcu; Ozacar, A Tuba; Thomas, Jeanne E; Karlstrom, Rolf O

    2008-09-01

    The vertebrate adenohypophysis forms as a placode at the anterior margin of the neural plate, requiring both hedgehog (Hh) and fibroblast growth factor (Fgf) mediated cell-cell signaling for induction and survival of endocrine cell types. Using small molecule inhibitors to modulate signaling levels during zebrafish development we show that graded Hh and Fgf signaling independently help establish the two subdomains of the adenohypophysis, the anteriorly located pars distalis (PD) and the posterior pars intermedia (PI). High levels of Hh signaling are required for formation of the PD and differentiation of anterior endocrine cell types, whereas lower levels of Hh signaling are required for formation of the PI and differentiation of posterior endocrine cell types. In contrast, high Fgf signaling levels are required for formation of the PI and posterior endocrine cell differentiation, whereas anterior regions require lower levels of Fgf signaling. Based on live observations and marker analyses, we show that the PD forms first at the midline closest to the central nervous system source of Sonic hedgehog. In contrast the PI appears to form from more lateral/posterior cells close to a central nervous system source of Fgf3. Together our data show that graded Hh and Fgf signaling independently direct induction of the PD and PI and help establish endocrine cell fates along the anterior/posterior axis of the zebrafish adenohypophysis. These data suggest that there are distinct origins and signaling requirements for the PD and PI.

  8. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    Directory of Open Access Journals (Sweden)

    Tamás Juhász

    2015-07-01

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load.

  9. Dissecting the Role of Hedgehog Pathway in Murine Gonadal Development

    Science.gov (United States)

    Barsoum, Ivraym Boshra

    2009-01-01

    Hedgehog (Hh) signaling pathway is one of the universal pathways involved in animal development. This dissertation focuses on Hh role in the mammalian gonad development, which is a central part of mammalian sexual development and identity. The central dogma of mammalian sex development is that genetic sex determines the gonadal sex, which in turn…

  10. Clinical Implications of Hedgehog Pathway Signaling in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Daniel L. Suzman

    2015-09-01

    Full Text Available Activity in the Hedgehog pathway, which regulates GLI-mediated transcription, is important in organogenesis and stem cell regulation in self-renewing organs, but is pathologically elevated in many human malignancies. Mutations leading to constitutive activation of the pathway have been implicated in medulloblastoma and basal cell carcinoma, and inhibition of the pathway has demonst