WorldWideScience

Sample records for metallic glass forming

  1. Forming of bulk metallic glass microcomponents

    DEFF Research Database (Denmark)

    Wert, John A.; Thomsen, Christian; Jensen, Rune Debel

    2009-01-01

    The present article considers forward extrusion, closed-die forging and backward extrusion processes for fabrication of individual microcomponents from two bulk metallic glass (BMG) compositions: Mg60Cu30Y10 and Zr44Cu40Ag8Al8. Two types of tooling were used in the present work: relatively massive...... die sets characteristic of cold forming operations for crystalline metals and lightweight die sets adapted to the special characteristics of BMGs. In addition to demonstrating that microcomponents of several geometries can be readily fabricated from BMGs, rheological properties are combined...

  2. Structural disorder in metallic glass-forming liquids.

    Science.gov (United States)

    Pan, Shao-Peng; Feng, Shi-Dong; Wang, Li-Min; Qiao, Jun-Wei; Niu, Xiao-Feng; Dong, Bang-Shao; Wang, Wei-Min; Qin, Jing-Yu

    2016-06-09

    We investigated structural disorder by a new structural parameter, quasi-nearest atom (QNA), in atomistic configurations of eight metallic glass-forming systems generated through molecular dynamics simulations at various temperatures. Structural analysis reveals that the scaled distribution of the number of QNA appears to be an universal property of metallic liquids and the spatial distribution of the number of QNA displays to be clearly heterogeneous. Furthermore, the new parameter can be directly correlated with potential energy and structural relaxation at the atomic level. Some straightforward relationships between QNA and other properties (per-atom potential energy and α-relaxation time) are introduced to reflect structure-property relationship in metallic liquids. We believe that the new structural parameter can well reflect structure disorder in metallic liquids and play an important role in understanding various properties in metallic liquids.

  3. Bulk glass formation and crystallization in zirconium based bulk metallic glass forming alloys

    International Nuclear Information System (INIS)

    Savalia, R.T.; Neogy, S.; Dey, G.K.; Banerjee, S.

    2002-01-01

    The microstructures of Zr based metallic glasses produced in bulk form have been described in the as-cast condition and after crystallization. Various microscopic techniques have been used to characterize the microstructures. The microstructure in the as-cast condition was found to contain isolated crystals and crystalline aggregates embedded in the amorphous matrix. Quenched-in nuclei of crystalline phases were found to be present in fully amorphous regions. These glasses after crystallization gave rise to nanocrystalline solids. (author)

  4. Compressive deformation of in situ formed bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B. [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lee, S.Y. [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Ustuendag, E. [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Kim, C.P. [Liquidmetal Technologies, Lake Forest, CA 92630 (United States); Brown, D.W. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, M.A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2006-02-15

    A bulk metallic glass matrix composite with dendc second phase precipitates was investigated using neutron diffraction and self-consistent modeling (SCM) to ascertain its deformation mechanisms. The compressive behavior of both the composite and the second phase (in its monolithic form) were investigated. The diffraction data were compared to the predictions of a new SCM resulting in good agreement. For the first time, this model considered both amorphous and crystalline phases and allowed the calculation of single crystal elastic constants from polycrystalline diffraction data. It was shown that the ductile second phase yielded first upon loading, and this was followed by multiple shear band formation in the matrix, a process which enhanced the ductility of the composite.

  5. Compressive deformation of in situ formed bulk metallic glass composites

    International Nuclear Information System (INIS)

    Clausen, B.; Lee, S.Y.; Ustuendag, E.; Kim, C.P.; Brown, D.W.; Bourke, M.A.M.

    2006-01-01

    A bulk metallic glass matrix composite with dendritic second phase precipitates was investigated using neutron diffraction and self-consistent modeling (SCM) to ascertain its deformation mechanisms. The compressive behavior of both the composite and the second phase (in its monolithic form) were investigated. The diffraction data were compared to the predictions of a new SCM resulting in good agreement. For the first time, this model considered both amorphous and crystalline phases and allowed the calculation of single crystal elastic constants from polycrystalline diffraction data. It was shown that the ductile second phase yielded first upon loading, and this was followed by multiple shear band formation in the matrix, a process which enhanced the ductility of the composite

  6. Metastability and thermophysical properties of metallic bulk glass forming alloys

    International Nuclear Information System (INIS)

    Wunderlich, R.K.; Fecht, H.J.

    1998-01-01

    The absence of crystallization over a wide time/temperature window can be used to produce bulk metallic glass by relatively slow cooling of the melt. For a number of alloys, including several multicomponent Zr-based alloys, the relevant thermodynamic and thermomechanical properties of the metastable glassy and undercooled liquid states have been measured below and above the glass transition temperature. These measurements include specific heat, viscosity, volume, and elastic properties as a function of temperature. As a result, it becomes obvious that the maximum undercooling for these alloys is given by an isentropic condition before an enthalpic or isochoric instability is reached. Alternatively, these glasses can also be produced by mechanical alloying, thus replacing the thermal disorder by static disorder and resulting in the same thermodynamic glass state. During heating through the undercooled liquid, a nanoscale phase separation occurs for most glasses as a precursor of crystallization

  7. Synthesis and devitrification of high glass-forming ability bulk metallic glasses.

    OpenAIRE

    Huang, Hong.

    2007-01-01

    In this thesis, literature on the production, microstructures and properties of bulk metallic glasses (BMG) has been reviewed with particular reference to glass forming ability (GFA) and alloys of the Fe-Zr-B and Zr-based BMG systems. The experimental procedures used in the research are presented and the results for the amorphous Fe80Zr12B8 ribbon and the Zr57Ti5Al10Cu20Ni8, Zr57Nb5Al10Cu20Ni8, Zr53Nb2Al8Cu30Ni7 BMGs are given and discussed. Wedge-shaped ingots of the Zr-based BMGs were produ...

  8. Early stage crystallization kinetics in metallic glass-forming alloys

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.

    2014-01-01

    Highlights: • Heterogeneous nucleation may precede the homogeneous one in an alloy. • High kinetic constants and the nucleation rate at the initial stage. • Metallic glasses have heterogeneous nucleation sites which saturate later. -- Abstract: The crystallization kinetics and structural changes of a few metallic glassy alloys were monitored using X-ray diffraction, transmission electron microscopy, differential scanning and isothermal calorimetry methods. Microstructural observations were used to estimate the nucleation and growth rates. A clear comparison of the differences in the crystallization kinetics in the metallic glassy samples is observed at the early and later crystallization stages

  9. A new parameter to evaluate the glass-forming ability of bulk metallic glasses

    International Nuclear Information System (INIS)

    Suo, Z.Y.; Qiu, K.Q.; Li, Q.F.; You, J.H.; Ren, Y.L.; Hu, Z.Q.

    2010-01-01

    Research highlights: → Develop a new criterion, i.e., Q=((T g +T x )/T l ).(ΔE/ΔH). → The reliability and benefits of the new criterion have been demonstrated in a wide range of BMG alloys. → It corresponds well with the critical diameter of BMGs investigated up to now. - Abstract: Based on the consideration of the liquid phase stability, the resistance to crystallization and the glass transition enthalpy, a new criterion Q, defined as ((T g + T x )/T l ).(ΔE/ΔH), where the T g , T x , T l , ΔE and ΔH are the glass transition temperature, the onset crystallization temperature, the liquidus temperature, the crystalline enthalpy and the fusion enthalpy, respectively, has been proposed for evaluating the glass-forming ability of bulk metallic glasses. The new criterion Q exhibits better correlation with the maximum cross section thickness (D m ) for glass formation compared with γ (=T x /(T l + T g )), T rg (=T g /T l ) and ΔT x (=T x - T g ) respectively. The available data from literatures and experiments have confirmed the effectiveness of the newly developed criterion.

  10. Distinct atomic structures of the Ni-Nb metallic glasses formed by ion beam mixing

    International Nuclear Information System (INIS)

    Tai, K. P.; Wang, L. T.; Liu, B. X.

    2007-01-01

    Four Ni-Nb metallic glasses are obtained by ion beam mixing and their compositions are measured to be Ni 77 Nb 23 , Ni 55 Nb 45 , Ni 31 Nb 69 , and Ni 15 Nb 85 , respectively, suggesting that a composition range of 23-85 at. % of Nb is favored for metallic glass formation in the Ni-Nb system. Interestingly, diffraction analyses show that the structure of the Nb-based Ni 31 Nb 69 metallic glass is distinctly different from the structure of the Nb-based Ni 15 Nb 85 metallic glass, as the respective amorphous halos are located at 2θ≅38 and 39 deg. To explore an atomic scale description of the Ni-Nb metallic glasses, an n-body Ni-Nb potential is first constructed with an aid of the ab initio calculations and then applied to perform the molecular dynamics simulation. Simulation results determine not only the intrinsic glass forming range of the Ni-Nb system to be within 20-85 at. % of Nb, but also the exact atomic positions in the Ni-Nb metallic glasses. Through a statistical analysis of the determined atomic positions, a new dominant local packing unit is found in the Ni 15 Nb 85 metallic glass, i.e., an icositetrahedron with a coordination number to be around 14, while in Ni 31 Nb 69 metallic glasses, the dominant local packing unit is an icosahedron with a coordination number to be around 12, which has been reported for the other metallic glasses. In fact, with increasing the irradiation dose, the Ni 31 Nb 69 metallic glasses are formed through an intermediate state of face-centered-cubic-solid solution, whereas the Ni 15 Nb 85 metallic glass is through an intermediate state of body-centered-cubic-solid solution, suggesting that the structures of the constituent metals play an important role in governing the structural characteristics of the resultant metallic glasses

  11. Glass forming ability and mechanical properties of Zr50Cu42Al8 bulk metallic glass

    International Nuclear Information System (INIS)

    Xia, L; Chan, K C; Wang, G; Liu, L

    2008-01-01

    In this work, we report that Zr 50 Cu 42 Al 8 bulk metallic glass (BMG) exhibits excellent glass forming ability and mechanical properties. Zr 50 Cu 42 Al 8 glassy rods with a diameter of 3 mm were prepared using conventional copper mould suction casting. The glassy rod exhibits a modulus of about 115 GPa and a fracture strength of about 2 GPa, and, as compared with other large-scale BMGs, it has excellent room-temperature plasticity of up to 20% under compression. The fracture mechanism of the rod was investigated by microstructural investigations, and it was found that the large plasticity of the as-cast rod is closely related to the in situ formation of nano-crystalline particles embedded in the amorphous matrix.

  12. Discontinuities of Plastic Deformation in Metallic Glasses with Different Glass Forming Ability

    Science.gov (United States)

    Hurakova, Maria; Csach, Kornel; Miskuf, Jozef; Jurikova, Alena; Demcak, Stefan; Ocelik, Vaclav; Hosson, Jeff Th. M. De

    The metallic ribbons Fe40Ni40B20, Cu47Ti35Zr11Ni6Si1 and Zr65Cu17.5Ni10Al7.5 with different microhardness and glass forming ability were studied at different loading rates from 0.05 to 100 mN/s. We describe in details the differences in elemental discontinuities on the loading curves for the studied alloys. It was found that the discontinuities began at a certain local deformation independently on the macroscopic mechanical properties of a ribbon. More developed discontinuities at higher deformations are created for the materials with lower microhardness and so lower strength.

  13. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    Science.gov (United States)

    Kim, Choong Paul; Hays, Charles C.; Johnson, William L.

    2004-03-23

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  14. New insight on glass-forming ability and designing Cu-based bulk metallic glasses: The solidification range perspective

    International Nuclear Information System (INIS)

    Wu, Jili; Pan, Ye; Li, Xingzhou; Wang, Xianfei

    2014-01-01

    Highlights: • The equation, T rg = T g /T l , was rotationally modified to T rg = κ(T m /T l ) + C/T l . • The newly generalized equation suggests a way for describing glass-forming ability. • Several new Cu-based bulk metallic glasses were discovered by solidification range. - Abstract: In this paper, a new equation was rationally generalized from the reduced glass transition temperature. This equation indicates that solidification range can be used for describing glass-forming ability, which can be calculated with the aid of computational thermodynamic approach. Based on this scenario, several new Cu-based bulk metallic glasses in the ternary Cu–Zr–Ti alloy system were discovered. The as-cast samples were characterized by X-ray diffraction and transmission electronic microscopy. The results indicate that as-cast samples have monolithic amorphous nature. Thermal analysis validates that the smaller solidification range is closely related to the higher glass-forming ability, which is contributed to the effect of solidification time on the formation of bulk metallic glasses. This work also suggests that solidus can influence glass formation

  15. Insight on the glass-forming ability of Al–Y–Ni–Ce bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shih-Fan, E-mail: sfchen@ntut.edu.tw [Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan (China); Chen, Chih-Yuan, E-mail: chen6563@gmail.com [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Lin, Chia-Hung [Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan (China)

    2015-07-15

    Highlights: • Adding 1 at.% cerium to Al{sub 87}Y{sub 8}Ni{sub 5} alloy causes glass transition. • A large ΔT{sub x} indicates that (Al{sub 87}Y{sub 8}Ni{sub 5}){sub 99}Ce{sub 1} is possibly a ductile amorphous alloy. • Ce is effective in improving the thermal stability of the Al–Y–Ni amorphous alloy. • The hardness of the crystallized cerium-bearing alloy was as high as 593 Hv. - Abstract: In the present study, the role of Ce in the thermal stability and glass forming ability (GFA) of (Al{sub 87}Y{sub 8}Ni{sub 5}){sub 99}Ce{sub 1} alloy ribbons produced by a single roller melt-spinning process has been investigated in an attempt to understand the influences of multiple RE elements in an Al–TM–RE (TM: transition metal, RE: rear earth metal) alloy system. Only the (Al{sub 87}Y{sub 8}Ni{sub 5}){sub 99}Ce{sub 1} alloy ribbon showed a glass transition temperature (T{sub g}) at 483.2 K, and its ΔT{sub x} value was 41.3 K. Crystallization occurred in the temperature range of 500–750 K in three exothermic reaction stages. The peak temperature for these reactions shifted toward higher temperatures at higher heating rates. XRD and SEM analysis of annealed samples revealed that nano-sized Al particles precipitated within the amorphous matrix during the first exothermic reaction. The maximum hardness was obtained for both non-cerium and cerium addition alloys after crystallization in the 550–660 K region due to numerous nano-sized precipitates randomly and homogeneously distributed in the amorphous matrix. Moreover, from observation of the fracture surface, it is found that the fracture mode transforms from ductile to brittle when the sample is annealed at a higher crystallization temperature, at which brittle intermetallic compounds appear.

  16. Linking structure to fragility in bulk metallic glass-forming liquids

    International Nuclear Information System (INIS)

    Wei, Shuai; Stolpe, Moritz; Gross, Oliver; Gallino, Isabella; Hembree, William; Busch, Ralf; Evenson, Zach; Bednarcik, Jozef; Kruzic, Jamie J.

    2015-01-01

    Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near T g . The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure

  17. Linking structure to fragility in bulk metallic glass-forming liquids

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shuai, E-mail: shuai.wei@asu.edu, E-mail: m.stolpe@mx.uni-saarland.de [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Stolpe, Moritz, E-mail: shuai.wei@asu.edu, E-mail: m.stolpe@mx.uni-saarland.de; Gross, Oliver; Gallino, Isabella; Hembree, William; Busch, Ralf [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Evenson, Zach [Department of Materials Science and Engineering, Saarland University, Campus C63, 66123 Saarbrücken (Germany); Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln (Germany); Bednarcik, Jozef [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Kruzic, Jamie J. [Material Science, School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, Oregon 97331 (United States)

    2015-05-04

    Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near T{sub g}. The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure.

  18. Atomistic approach to predict the glass-forming ability in Zr–Cu–Al ternary metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.Y. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, X.J. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Zheng, G.P. [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Niu, X.R. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, C.T., E-mail: chainliu@cityu.edu.hk [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2015-04-05

    Highlights: • An atomistic approach has been developed to predict the glass forming ability (GFA) in Zr–Cu–Al ternary alloy system. • Both of the thermodynamic and structure-dependent kinetic effects to glass formation have been taken into account. • The first-principles calculation and molecular dynamics simulation have been performed. • The approach predicts the best glass former in the model Zr–Cu–Al alloy system. • The predicted GFA is consistent with various experimental results. - Abstract: Prediction of composition-dependent glass-forming ability (GFA) remains to be a key scientific challenge in the metallic-glass community, especially in multi-component alloy systems. In the present study, we apply an atomistic approach to predict the trend of GFA effectively in the Zr–Cu–Al ternary alloy system from alloy compositions alone. This approach is derived from the first-principles calculations based on the density-functional theory and molecular dynamic (MD) simulations. By considering of both the thermodynamic and atomic-structure induced kinetic effects, the predicted GFA trend from this approach shows an excellent agreement with experimental data available in this alloy system, manifesting its capability of seeking metallic glasses with superior GFA in ternary alloy systems.

  19. Unusual glass-forming ability induced by changes in the local atomic structure in Ti-based bulk metallic glass

    International Nuclear Information System (INIS)

    Kim, Y C; Chang, H J; Kim, D H; Kim, W T; Cha, P R

    2007-01-01

    The effect of partial replacement of Cu by Be in Ti 50 Cu 32 Ni 15 Sn 3 alloy on the thermal properties, structure, and forming ability of an amorphous phase were investigated by differential scanning calorimetry (DSC), x-ray diffraction (XRD), extended x-ray absorption fine structure (EXAFS), and high-resolution transmission electron microscopy (HRTEM). Ti 50 Cu 25 Ni 15 Sn 3 Be 7 alloy shows enhanced glass-forming ability, enabling one to fabricate a fully amorphous bulk metallic glass sample 2 mm in diameter by injection casting. With the replacement, the supercooled liquid region ΔT x (= T x -T g , where T x is the crystallization temperature and T g is the glass transition temperature) decreased from 73 to 45 K and the reduced glass transition temperature T rg (= T g /T 1 , where T 1 is the liquidus temperature) increased from 0.53 to 0.57. The amorphous Ti 50 Cu 25 Ni 15 Sn 3 Be 7 phase showed a formation of short-range-ordered clusters 1-2 nm in size, which is attributed to the strong interaction between Ti and Be. The results show that ΔT x can be used as a thermal parameter reflecting the glass-forming ability of the alloy only when the phase formed during crystallization is the same as the phase competing with the glass transition during solidification

  20. Enhanced glass forming ability and refrigerant capacity of a Gd55Ni22Mn3Al20 bulk metallic glass

    International Nuclear Information System (INIS)

    Xia, L.; Chan, K.C.; Tang, M.B.

    2011-01-01

    Highlights: → A new Gd 55 Ni 22 Mn 3 Al 20 bulk metallic glass (BMG) was synthesized by minor Mn addition. → The BMG has enhanced glass forming ability and excellent refrigerant capacity (RC). → The RC of the BMG reaches a high value of 825 J kg -1 under a field of 3979 kA/m. → Its excellent RC is related to its large effective magnetic moment. - Abstract: In this work, a small amount of Mn was added to a Gd 55 Ni 25 Al 20 glass forming alloy, as a replacement for Ni, and a Gd 55 Ni 22 Mn 3 Al 20 bulk metallic glass (BMG) was obtained by suction casting. Its glass forming ability (GFA) was characterized by X-ray diffraction and differential scanning calorimetry, and its magnetic properties were measured using a magnetic property measurement system. It is found that the minor Mn addition can significantly improve both the GFA and the magnetocaloric effect (MCE) of the alloy. The refrigerant capacity (RC) of the BMG can reach a high value of 825 J kg -1 under a field of 3979 kA/m, which is about 29% larger than that of a Gd 55 Ni 25 Al 20 BMG. The effect of the minor Mn addition on the GFA and MCE of the BMG was investigated in the study.

  1. Zr-Cu-Ni-Al bulk metallic glasses with superhigh glass-forming ability

    International Nuclear Information System (INIS)

    Sun, Y.J.; Qu, D.D.; Huang, Y.J.; Liss, K.-D.; Wei, X.S.; Xing, D.W.; Shen, J.

    2009-01-01

    Zr-Cu-Ni-Al quaternary amorphous alloy compositions with varying glass-forming ability are developed by an efficient method of proportional mixing of binary eutectics. The critical diameter of the glassy sample is improved from 6 mm for Zr 53 Cu 18.7 Ni 12 Al 16.3 to 14 mm for Zr 50.7 Cu 28 Ni 9 Al 12.3 by straightforwardly adjusting the eutectic unit's coefficients. The drastic improvement in GFA is attributed to balancing the chemical affinities of the Zr, Cu, Ni and Al components in the melt prior to solidification which makes the precipitation of competing crystalline phases more difficult. As the glass-forming ability increases, the concentration of Cu in the alloys exhibits a same trend. Based on synchrotron radiation high-energy X-ray diffraction analysis and Miracle's structural model, it is envisioned that the substitution of additional Cu atoms for Zr atoms in the investigated alloys stabilizes the efficient cluster packing structure of the amorphous alloys, leading to the pronounced increase in their glass-forming ability

  2. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer, E-mail: chandraveer.singh@utoronto.ca; Thorpe, Steven John [Department of Materials Science and Engineering, University of Toronto, Room 140, 184 College Street, Toronto, Ontario M5S 3E4 (Canada)

    2015-09-21

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal–transition metal and transition metal–metalloid (TM–M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties of equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM–M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.

  3. Beating Homogeneous Nucleation and Tuning Atomic Ordering in Glass-Forming Metals by Nanocalorimetry.

    Science.gov (United States)

    Zhao, Bingge; Yang, Bin; Abyzov, Alexander S; Schmelzer, Jürn W P; Rodríguez-Viejo, Javier; Zhai, Qijie; Schick, Christoph; Gao, Yulai

    2017-12-13

    In this paper, the amorphous Ce 68 Al 10 Cu 20 Co 2 (atom %) alloy was in situ prepared by nanocalorimetry. The high cooling and heating rates accessible with this technique facilitate the suppression of crystallization on cooling and the identification of homogeneous nucleation. Different from the generally accepted notion that metallic glasses form just by avoiding crystallization, the role of nucleation and growth in the crystallization behavior of amorphous alloys is specified, allowing an access to the ideal metallic glass free of nuclei. Local atomic configurations are fundamentally significant to unravel the glass forming ability (GFA) and phase transitions in metallic glasses. For this reason, isothermal annealing near T g from 0.001 s to 25,000 s following quenching becomes the strategy to tune local atomic configurations and facilitate an amorphous alloy, a mixed glassy-nanocrystalline state, and a crystalline sample successively. On the basis of the evolution of crystallization enthalpy and overall latent heat on reheating, we quantify the underlying mechanism for the isothermal nucleation and crystallization of amorphous alloys. With Johnson-Mehl-Avrami method, it is demonstrated that the coexistence of homogeneous and heterogeneous nucleation contributes to the isothermal crystallization of glass. Heterogeneous rather than homogeneous nucleation dominates the isothermal crystallization of the undercooled liquid. For the mixed glassy-nanocrystalline structure, an extraordinary kinetic stability of the residual glass is validated, which is ascribed to the denser packed interface between amorphous phase and ordered nanocrystals. Tailoring the amorphous structure by nanocalorimetry permits new insights into unraveling GFA and the mechanism that correlates local atomic configurations and phase transitions in metallic glasses.

  4. A slow atomic diffusion process in high-entropy glass-forming metallic melts

    Science.gov (United States)

    Chen, Changjiu; Wong, Kaikin; Krishnan, Rithin P.; Embs, Jan P.; Chathoth, Suresh M.

    2018-04-01

    Quasi-elastic neutron scattering has been used to study atomic relaxation processes in high-entropy glass-forming metallic melts with different glass-forming ability (GFA). The momentum transfer dependence of mean relaxation time shows a highly collective atomic transport process in the alloy melts with the highest and lowest GFA. However, a jump diffusion process is the long-range atomic transport process in the intermediate GFA alloy melt. Nevertheless, atomic mobility close to the melting temperature of these alloy melts is quite similar, and the temperature dependence of the diffusion coefficient exhibits a non-Arrhenius behavior. The atomic mobility in these high-entropy melts is much slower than that of the best glass-forming melts at their respective melting temperatures.

  5. The glass-forming ability of model metal-metalloid alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Liu, Yanhui; Schroers, Jan [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Shattuck, Mark D. [Department of Physics and Benjamin Levich Institute, The City College of the City University of New York, New York, New York 10031 (United States); Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); O’Hern, Corey S. [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States)

    2015-03-14

    Bulk metallic glasses (BMGs) are amorphous alloys with desirable mechanical properties and processing capabilities. To date, the design of new BMGs has largely employed empirical rules and trial-and-error experimental approaches. Ab initio computational methods are currently prohibitively slow to be practically used in searching the vast space of possible atomic combinations for bulk glass formers. Here, we perform molecular dynamics simulations of a coarse-grained, anisotropic potential, which mimics interatomic covalent bonding, to measure the critical cooling rates for metal-metalloid alloys as a function of the atomic size ratio σ{sub S}/σ{sub L} and number fraction x{sub S} of the metalloid species. We show that the regime in the space of σ{sub S}/σ{sub L} and x{sub S} where well-mixed, optimal glass formers occur for patchy and LJ particle mixtures, coincides with that for experimentally observed metal-metalloid glass formers. Thus, our simple computational model provides the capability to perform combinatorial searches to identify novel glass-forming alloys.

  6. Preparation and characterization of Zr-based bulk metallic glasses in form of plate

    International Nuclear Information System (INIS)

    Pilarczyk, Wirginia

    2014-01-01

    Highlights: • Zr-based BMGs in form of plate was successful produced by die pressure casting method. • Many techniques have been used to characterize the structure of Zr 55 Cu 30 Ni 5 Al 10 alloy. • The calculated GFA parameters show that the alloy exhibits satisfactory GFA. • The studies reveal that tested as-cast Zr-based alloy is in amorphous state. - Abstract: Zr-based bulk metallic glasses present an interesting combination of physical, chemical and mechanical properties. During the last decade, intensive progress has been made and a number of applications have been suggested for these materials. In order to successfully apply these materials, it is necessary to accurately characterize their structure, thermal stability and other properties accurately. The aim of the presented work is the manufacturing, examination of the structure of selected Zr-based bulk metallic alloys and confirmation of an amorphous structure using X-ray analysis, microscopic observation and thermal analysis. In this work, the Zr-based bulk metallic glasses in form of plate was successful produced by die pressure casting method. Designed scientific station for casting zirconium based amorphous alloys in the form of plates and rods with selected dimensions is in our university a comprehensive method for achieving amorphous materials which enables us to maintain repeatability of as-cast samples with the amorphous structure and the assumed dimensions range. The diffraction pattern and exothermic reaction as well as the fracture surface morphology reveal that studied as-cast Zr-based alloy is in amorphous state. The calculated GFA parameters show that the alloy exhibits satisfactory glass-forming ability in form of studied plate. These obtained values can suggest that studied alloys are suitable materials for further planned practical application at welding process. The success of Zr-based bulk metallic glasses production in form of plate with obtained sizes is important for future

  7. Anomalous Crystallization as a Signature of the Fragile-to-Strong Transition in Metallic Glass-Forming Liquids

    DEFF Research Database (Denmark)

    Yang, X.N.; Zhou, C.; Sun, Q.J.

    2014-01-01

    We study the fragile-to-strong (F−S) transition of metallic glass-forming liquids (MGFLs) by measuring the thermal response during annealing and dynamic heating of La55Al25Ni5Cu15 glass ribbons fabricated at different cooling rates. We find that the glasses fabricated in the intermediate regime o...

  8. Effect of Nb on glass forming ability and plasticity of (Ti-Cu)-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Suo, Z.Y.; Qiu, K.Q.; Li, Q.F.; Ren, Y.L.; Hu, Z.Q.

    2010-01-01

    A Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 bulk metallic glass has been developed by Nb partial substitution for Zr in Ti 33 Cu 47 Zr 11 Ni 6 Sn 2 Si 1 alloy. The glass forming ability Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 alloy has been investigated using differential scanning calorimetry and X-ray diffractometry. Partial Nb substitutes for Zr promote the glass forming ability. Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 BMG with diameter of 3 mm can be fabricated by Cu-mold injection casting method. The glass forming ability of Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 alloy is enhanced by stabilizing the undercooled liquid against crystallization. The plastic strain up to 2.5% was obtained for Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 BMG compared to 0.15% for Ti 33 Cu 47 Zr 11 Ni 6 Sn 2 Si 1 BMG, which demonstrates that small amount of Nb addition can have a dramatic effect on plasticity enhancement in Ti-Cu-based BMG. The intersection and branching of the shear bands are observed. The plastic strain of the Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 BMG can be improved by the generation of nanocrystalline particles, which lead to multiple shear bands.

  9. Correlation between relaxations and plastic deformation, and elastic model of flow in metallic glasses and glass-forming liquids

    International Nuclear Information System (INIS)

    Wang Weihua

    2011-01-01

    We study the similarity and correlations between relaxations and plastic deformation in metallic glasses (MGs) and MG-forming liquids. It is shown that the microscope plastic events, the initiation and formation of shear bands, and the mechanical yield in MGs where the atomic sites are topologically unstable induced by applied stress, can be treated as the glass to supercooled liquid state transition induced by external shear stress. On the other hand, the glass transition, the primary and secondary relaxations, plastic deformation and yield can be attributed to the free volume increase induced flow, and the flow can be modeled as the activated hopping between the inherent states in the potential energy landscape. We then propose an extended elastic model to describe the flow based on the energy landscape theory. That is, the flow activation energy density is linear proportional to the instantaneous elastic moduli, and the activation energy density ρ E is determined to be a simple expression of ρ E =(10/11)G+(1/11)K. The model indicates that both shear and bulk moduli are critical parameters accounting for both the homogeneous and inhomogeneous flows in MGs and MG-forming liquids. The elastic model is experimentally certified. We show that the elastic perspectives offers a simple scenario for the flow in MGs and MG-forming liquids and are suggestive for understanding the glass transition, plastic deformation, and nature and characteristics of MGs

  10. Glass-Forming Ability and Early Crystallization Kinetics of Novel Cu-Zr-Al-Co Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Xiaoliang Han

    2016-09-01

    Full Text Available In recent years, CuZr-based bulk metallic glass (BMG composites ductilized by a shape memory B2 CuZr phase have attracted great attention owing to their outstanding mechanical properties. However, the B2 CuZr phase for most CuZr-based glass-forming compositions is only stable at very high temperatures, leading to the uncontrollable formation of B2 crystals during quenching. In this work, by introducing Co (i.e., 4, 5, and 6 at. % and 10 at. % Al into CuZr-based alloys, the relatively good glass-forming ability (GFA of CuZr-based alloys still can be achieved. Meanwhile, the B2 phase can be successfully stabilized to lower temperatures than the final temperatures of crystallization upon heating CuZr-based BMGs. Unlike previous reported CuZr-based BMGs, the primary crystallization products upon heating are mainly B2 CuZr crystals but not CuZr2 and Cu10Zr7 crystals. Furthermore, the primary precipitates during solidification are still dominated by B2 crystals, whose percolation threshold is detected to lie between 10 ± 2 vol. % and 31 ± 2 vol. %. The crystallization kinetics underlying the precipitation of B2 crystals was also investigated. Our results show that the present glass-forming composites are promising candidates for the fabrication of ductile CuZr-based BMG composites.

  11. Composition Range and Glass Forming Ability of Ternary Ca-Mg-Cu Bulk Metallic Glasses (Preprint)

    National Research Council Canada - National Science Library

    Senkov, O. N; Scott, J. M; Miracle, D. B

    2006-01-01

    .... The maximum thickness at which an alloy remains fully amorphous, glass transition temperature, crystallization temperature, temperature interval of the super-cooled region, solidus and liquidus...

  12. Atomic Scale Investigation of Structural Properties and Glass Forming Ability of Ti100- x Al x Metallic Glasses

    Science.gov (United States)

    Tahiri, M.; Hasnaoui, A.; Sbiaai, K.

    2018-06-01

    In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting "icosahedral-like" clusters (12-coordinated and 13-coordinated ) and by playing a main role in the structure stability of the Ti-Al MGs.

  13. Atomic Scale Investigation of Structural Properties and Glass Forming Ability of Ti100-x Al x Metallic Glasses

    Science.gov (United States)

    Tahiri, M.; Hasnaoui, A.; Sbiaai, K.

    2018-03-01

    In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting "icosahedral-like" clusters (12-coordinated and 13-coordinated ) and by playing a main role in the structure stability of the Ti-Al MGs.

  14. Influence of minor alloying additions on the glass-forming ability of Mg-Ni-La bulk metallic glasses

    International Nuclear Information System (INIS)

    Gonzalez, S.; Figueroa, I.A.; Todd, I.

    2009-01-01

    Bulk metallic glasses of Mg 60 Ni 23.6 Y x La (16.4-x) and Mg 65 Ni 20 Y x LaMM (15-x) with 0 ≤ x ≤ 1 at.% have been produced by injection casting. For the La-containing alloy a maximum amorphous diameter of 4 mm for x = 0.5 and 0.75 was obtained. The LaMM-containing alloy showed a maximum amorphous diameter of 2 mm for x = 0 and 0.25 but decreased to 1 mm with further Y additions. The glass-forming ability of the Mg 60 Ni 23.6 La 16.4 alloy decreased when La is partially substituted by small amounts of small atoms (Si or B) or by large atoms (Y and Si).

  15. Forming of protective nanostructure coatings on metals and glasses and their properties investigation

    International Nuclear Information System (INIS)

    Deshkovskaya, A.; Lynkov, L.; Nagibarov, A.; Glybin, V.; Richter, E.; Pham, M.

    2013-01-01

    Transparent heat-resistant coatings of 10-30 nm thickness described by (ZrO 2 ) x •(Y 2 O 3 ) y composition are formed on the surface of metals and glasses by thermolysis technique. Produced coatings possess high adhesive strength, high corrosive and abrasive resistance. Nanocrystalline formations are revealed on samples surface, with quantity of these formations depending on basic solution concentration, formed layers number and thermal treatment mode. Ion-beam modification of obtained coatings under mixing mode enables said properties enhancing owing to zirconium oxiboride formation at substrate-coating interface as a result of ion-beam synthesis. (authors)

  16. Preparation and characterization of Zr-based bulk metallic glasses in form of plate

    Energy Technology Data Exchange (ETDEWEB)

    Pilarczyk, Wirginia, E-mail: wirginia.pilarczyk@polsl.pl

    2014-12-05

    Highlights: • Zr-based BMGs in form of plate was successful produced by die pressure casting method. • Many techniques have been used to characterize the structure of Zr{sub 55}Cu{sub 30}Ni{sub 5}Al{sub 10} alloy. • The calculated GFA parameters show that the alloy exhibits satisfactory GFA. • The studies reveal that tested as-cast Zr-based alloy is in amorphous state. - Abstract: Zr-based bulk metallic glasses present an interesting combination of physical, chemical and mechanical properties. During the last decade, intensive progress has been made and a number of applications have been suggested for these materials. In order to successfully apply these materials, it is necessary to accurately characterize their structure, thermal stability and other properties accurately. The aim of the presented work is the manufacturing, examination of the structure of selected Zr-based bulk metallic alloys and confirmation of an amorphous structure using X-ray analysis, microscopic observation and thermal analysis. In this work, the Zr-based bulk metallic glasses in form of plate was successful produced by die pressure casting method. Designed scientific station for casting zirconium based amorphous alloys in the form of plates and rods with selected dimensions is in our university a comprehensive method for achieving amorphous materials which enables us to maintain repeatability of as-cast samples with the amorphous structure and the assumed dimensions range. The diffraction pattern and exothermic reaction as well as the fracture surface morphology reveal that studied as-cast Zr-based alloy is in amorphous state. The calculated GFA parameters show that the alloy exhibits satisfactory glass-forming ability in form of studied plate. These obtained values can suggest that studied alloys are suitable materials for further planned practical application at welding process. The success of Zr-based bulk metallic glasses production in form of plate with obtained sizes is

  17. An Assessment of Binary Metallic Glasses: Correlations Between Structure, Glass Forming Ability and Stability (Preprint)

    Science.gov (United States)

    2011-07-01

    volume (via indentation, relaxation or positron annihilation ) are expected to significantly clarify structural descriptions. Further insights may be... applicability of the concept of smaller spheres filling the interstices of larger spheres diminishes with decreasing difference in size, the efficient...alloys observed by Mossbauer spectroscopy and calorimetry’, Rapidly Quenched Metals, Proc. 4th International Conference on Rapidly Quenched Metals

  18. Thermoplastic forming of bulk metallic glasses for precision robotics components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Demand for novel manufacturing methods for space systems brings unique properties of bulk metallic glasses (BMG) into the spotlight. In addition to superior...

  19. A simple criterion to predict the glass forming ability of metallic alloys

    International Nuclear Information System (INIS)

    Falcao de Oliveira, Marcelo

    2012-01-01

    A new and simple criterion with which to quantitatively predict the glass forming ability (GFA) of metallic alloys is proposed. It was found that the critical cooling rate for glass formation (R C ) correlates well with a proper combination of two factors, the minimum topological instability (λ min ) and the Δh parameter, which depends on the average work function difference (Δφ) and the average electron density difference (Δn ws 1/3 ) among the constituent elements of the alloy. A correlation coefficient (R 2 ) of 0.76 was found between R c and the new criterion for 68 alloys in 30 different metallic systems. The new criterion and the Uhlmann's approach were used to estimate the critical amorphous thickness (Z C ) of alloys in the Cu-Zr system. The new criterion underestimated R C in the Cu-Zr system, producing predicted Z C values larger than those observed experimentally. However, when considering a scale factor, a remarkable similarity was observed between the predicted and the experimental behavior of the GFA in the binary Cu-Zr. When using the same scale factor and performing the calculation for the ternary Zr-Cu-Al, good agreement was found between the predicted and the actual best GFA region, as well as between the expected and the observed critical amorphous thickness.

  20. Bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Choi-Yim, H.; Johnson, W.L.

    1997-01-01

    Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods. copyright 1997 American Institute of Physics

  1. The fundamental structural factor in determining the glass-forming ability and mechanical behavior in the Cu-Zr metallic glasses

    International Nuclear Information System (INIS)

    Sha, Z.D.; Feng, Y.P.; Li, Y.

    2011-01-01

    Research highlights: → A weak but significant hump in trend of the coordinate number and density was observed, respectively. → Our findings indicate our simulation is more accurate to describe the atomic structure of Cu-Zr MGs. The composition-structure-properties correlation was established. → And the effective structural unit for this correlation is the Cu-centered full icosahedra. - Abstract: Using the large-scale atomic/molecular massively parallel simulator, the quantitative composition-structure-properties (including glass-forming ability (GFA) and mechanical behavior) correlations in the Cu-Zr metallic glasses were established. The atomic-level origin of these correlations was tracked down. It was found that the Cu-centered full icosahedron is the microscopic factor that fundamentally influences both GFA and mechanical behavior. Our findings have implications for understanding the nature, forming ability and properties of metallic glasses, and for searching novel metallic glasses with unique functional properties.

  2. Effect of component substitution on the atomic dynamics in glass-forming binary metallic melts

    Science.gov (United States)

    Nowak, B.; Holland-Moritz, D.; Yang, F.; Voigtmann, Th.; Evenson, Z.; Hansen, T. C.; Meyer, A.

    2017-08-01

    We investigate the substitution of early transition metals (Zr, Hf, and Nb) in Ni-based binary glass-forming metallic melts and the impact on structural and dynamical properties by using a combination of neutron scattering, electrostatic levitation (ESL), and isotopic substitution. The self-diffusion coefficients measured by quasielastic neutron scattering (QENS) identify a sluggish diffusion as well as an increased activation energy by almost a factor of 2 for Hf35Ni65 compared to Zr36Ni64 . This finding can be explained by the locally higher packing density of Hf atoms in Hf35Ni65 compared to Zr atoms in Zr36Ni64 , which has been derived from interatomic distances by analyzing the measured partial structure factors. Furthermore, QENS measurements of liquid Hf35Ni65 prepared with 60Ni , which has a vanishing incoherent scattering cross section, have demonstrated that self-diffusion of Hf is slowed down compared to the concentration weighted self-diffusion of Hf and Ni. This implies a dynamical decoupling between larger Hf and smaller Ni atoms, which can be related to a saturation effect of unequal atomic nearest-neighbor pairs, that was observed recently for Ni-rich compositions in Zr-Ni metallic melts. In order to establish a structure-dynamics relation, measured partial structure factors have been used as an input for mode-coupling theory (MCT) of the glass transition to calculate self-diffusion coefficients for the different atomic components. Remarkably, MCT can reproduce the increased activation energy for Hf35Ni65 as well as the dynamical decoupling between Hf and Ni atoms.

  3. Superductile bulk metallic glass

    International Nuclear Information System (INIS)

    Yao, K.F.; Ruan, F.; Yang, Y.Q.; Chen, N.

    2006-01-01

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<2%) at room temperature. We report a newly developed Pd-Si binary bulk metallic glass, which exhibits a uniform plastic deformation and a large plastic engineering strain of 82% and a plastic true strain of 170%, together with initial strain hardening, slight strain softening and final strain hardening characteristics. The uniform shear deformation and the ultrahigh plasticity are mainly attributed to strain hardening, which results from the nanoscale inhomogeneity due to liquid phase separation. The formed nanoscale inhomogeneity will hinder, deflect, and bifurcate the propagation of shear bands

  4. Electronic structure of metallic glasses

    International Nuclear Information System (INIS)

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (ΔH) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides

  5. Bulk forming of industrial micro components in conventional metals and bulk metallic glasses

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Paldan, Nikolas Aulin; Eriksen, Rasmus Solmer

    2007-01-01

    For production of micro components in large numbers, forging is an interesting and challenging process. The conventional metals like silver, steel and aluminum often require multi-step processes, but high productivity and increased strength justify the investment. As an alternative, bulk metallic...

  6. Effects of Cu substitution for Fe on the glass-forming ability and soft magnetic properties for Fe-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Dou, Lintao; Liu, Haishun; Hou, Long; Xue, Lin; Yang, Weiming; Zhao, Yucheng; Chang, Chuntao

    2014-01-01

    The effects of Cu substitution for Fe on the glass-forming ability (GFA) and soft magnetic properties for Fe 72−x Cu x B 20 Si 4 Nb 4 (x=0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) bulk metallic glasses (BMGs) are investigated. It is found that the investigated BMGs exhibit large GFA as well as excellent soft magnetic properties, and proper substitution of Fe by Cu improves the saturation magnetization, coercive force, and effective permeability without obvious deterioration of the GFA. - Highlights: • Fully glassy rods of Fe 72−x Cu x B 20 Si 4 Nb 4 BMGs were produced above 1 mm in diameter. • Investigated BMGs exhibit large glass-forming ability and excellent soft magnetic properties. • Proper Cu substitution improves magnetic properties without obvious deterioration of glass-forming ability

  7. Zirconium based bulk metallic glasses

    International Nuclear Information System (INIS)

    Dey, G.K.; Neogy, S.; Savalia, R.T.; Tewari, R.; Srivastava, D.; Banerjee, S.

    2006-01-01

    Metallic glasses have come into prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. In this study, bulk glasses have been obtained in Zr based multicomponent alloy by induction melting these alloys in silica crucibles and casting these in form of rods 3 and 6 mm in diameter in a copper mould

  8. Polyamorphism in metalic glass.

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P.L.; Luo, W.K.; Shastri, S.D.; Ma, E.; X-Ray Science Division; Johns Hopkins Univ.; Chinese Academy of Sciences

    2007-03-01

    A metal, or an alloy, can often exist in more than one crystal structure. The face-centered-cubic and body-centered-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been observed only in glasses involving directional and open (such as tetrahedral) coordination environments. Here, we report an in situ X-ray diffraction observation of a pressure-induced transition between two distinct amorphous polymorphs in a Ce{sub 55}Al{sub 45} metallic glass. The large density difference observed between the two polyamorphs is attributed to their different electronic and atomic structures, in particular the bond shortening revealed by ab initio modeling of the effects of f-electron delocalization. This discovery offers a new perspective of the amorphous state of metals, and has implications for understanding the structure, evolution and properties of metallic glasses and related liquids. Our work also opens a new avenue towards technologically useful amorphous alloys that are compositionally identical but with different thermodynamic, functional and rheological properties due to different bonding and structural characteristics.

  9. Improvement of corrosion resistance in NaOH solution and glass forming ability of as-cast Mg-based bulk metallic glasses by microalloying

    Directory of Open Access Journals (Sweden)

    Peng Hao

    2011-02-01

    Full Text Available The influences of the addition of Ag on the glass forming ability (GFA and corrosion behavior were investigated in the Mg-Ni-based alloy system by X-ray diffraction (XRD and electrochemical polarization in 0.1 mol/L NaOH solution. Results shows that the GFA of the Mg-Ni-based BMGs can be improved dramatically by the addition of an appropriate amount of Ag; and the addition element Ag can improve the corrosion resistance of Mg-Ni-based bulk metallic glass. The large difference in atomic size and large negative mixing enthalpy in alloy system can contribute to the high GFA. The addition element Ag improves the forming speed and the stability of the passive film, which is helpful to decrease the passivation current density and to improve the corrosion resistance of Mg-Ni-based bulk metallic glass.

  10. AC Calorimetry and Thermophysical Properties of Bulk Glass-Forming Metallic Liquids

    Science.gov (United States)

    Johnson, William L.

    2000-01-01

    Thermo-physical properties of two bulk metallic glass forming alloys, Ti34Zr11Cu47Ni8 (VIT 101) and Zr57Nb5Ni12.6Al10CU15.4 (VIT 106), were investigated in the stable and undercooled melt. Our investigation focused on measurements of the specific heat in the stable and undercooled liquid using the method of AC modulation calorimetry. The VIT 106 exhibited a maximum undercooling of 140 K in free radiative cooling. Specific heat measurements could be performed in stable melt down to an undercooling of 80 K. Analysis of the specific heat data indicate an anomaly near the equilibrium liquidus temperature. This anomaly is also observed in y the temperature dependencies of the external relaxation time, the specific volume, and the surface tension; it is tentatively attributed to a phase separation in the liquid state. The VIT 101 specimen exhibited a small undercooling of about 50 K. Specific heat measurements were performed in the stable and undercooled melt. These various results will be combined with ground based work such as the measurement of T-T-T curves in the electrostatic levitator and low temperature viscosity and specific heat measurements for modeling the nucleation kinetics of these alloys.

  11. Effects of Nb addition on icosahedral quasicrystalline phase formation and glass-forming ability of Zr--Ni--Cu--Al metallic glasses

    International Nuclear Information System (INIS)

    Fan, Cang; Li, Chunfei; Inoue, Akihisa; Haas, Volker

    2001-01-01

    This work shows that the crystallization process of Zr--Ni--Cu--Al metallic glass is greatly influenced by adding Nb as an alloying element. Based on the results of the differential scanning calorimetry experiments for metallic glasses Zr 69-x Nb x Ni 10 Cu 12 Al 9 (x=0--15at.%), the crystallization process takes place through two individual stages. For Zr 69 Ni 10 Cu 12 Al 9 (x=0), metastable hexagonal ω-Zr and a small fraction of tetragonal Zr 2 Cu are precipitated upon completion of the first exothermic reaction. Contrary to this alloy, the precipitation of a nanoquasicrystalline phase is detected when 5--10 at.% Nb is added. Furthermore, the crystallization temperature T x , supercooled liquid region ΔT x and reduced temperature T g /T L (T g is the glass transition temperature, T L the liquidus temperature) increase with increasing Nb content. These results indicate that adding Nb content to Zr--Ni--Cu--Al metallic glasses not only induces quasicrystalline phase formation, but also enhances glass-forming ability. Copyright 2001 American Institute of Physics

  12. Microstructural Control via Copious Nucleation Manipulated by In Situ Formed Nucleants: Large-Sized and Ductile Metallic Glass Composites.

    Science.gov (United States)

    Song, Wenli; Wu, Yuan; Wang, Hui; Liu, Xiongjun; Chen, Houwen; Guo, Zhenxi; Lu, Zhaoping

    2016-10-01

    A novel strategy to control the precipitation behavior of the austenitic phase, and to obtain large-sized, transformation-induced, plasticity-reinforced bulk metallic glass matrix composites, with good tensile properties, is proposed. By inducing heterogeneous nucleation of the transformable reinforcement via potent nucleants formed in situ, the characteristics of the austenitic phase are well manipulated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of Yttrium Addition on Glass-Forming Ability and Magnetic Properties of Fe–Co–B–Si–Nb Bulk Metallic Glass

    Directory of Open Access Journals (Sweden)

    Teruo Bitoh

    2015-06-01

    Full Text Available The glass-forming ability (GFA and the magnetic properties of the [(Fe0.5Co0.50.75B0.20Si0.05]96Nb4−xYx bulk metallic glasses (BMGs have been studied. The partial replacement of Nb by Y improves the thermal stability of the glass against crystallization. The saturation mass magnetization (σs exhibits a maximum around 2 at. % Y, and the value of σs of the alloy with 2 at. % Y is 6.5% larger than that of the Y-free alloy. The coercivity shows a tendency to decrease with increasing Y content. These results indicate that the partial replacement of Nb by Y in the Fe–Co–B–Si–Nb BMGs is useful to simultaneous achievement of high GFA, high σs, and good soft magnetic properties.

  14. Dynamical, structural and chemical heterogeneities in a binary metallic glass-forming liquid

    Science.gov (United States)

    Puosi, F.; Jakse, N.; Pasturel, A.

    2018-04-01

    As it approaches the glass transition, particle motion in liquids becomes highly heterogeneous and regions with virtually no mobility coexist with liquid-like domains. This complex dynamic is believed to be responsible for different phenomena including non-exponential relaxation and the breakdown of the Stokes-Einstein relation. Understanding the relationships between dynamical heterogeneities and local structure in metallic liquids and glasses is a major scientific challenge. Here we use classical molecular dynamics simulations to study the atomic dynamics and microscopic structure of Cu50Zr50 alloy in the supercooling regime. Dynamical heterogeneities are identified via an isoconfigurational analysis. We demonstrate the transition from isolated to clustering low mobility with decreasing temperature. These slow clusters, whose sizes grow upon cooling, are also associated with concentration fluctuations, characterized by a Zr-enriched phase, with a composition CuZr2 . In addition, a structural analysis of slow clusters based on Voronoi tessellation evidences an increase with respect of the bulk system of the fraction of Cu atoms having a local icosahedral order. These results are in agreement with the consolidated scenario of the relevant role played by icosahedral order in the dynamic slowing-down in supercooled metal alloys.

  15. Effect of Si addition on glass-forming ability and mechanical properties of Cu-Zr-Al bulk metallic glass

    International Nuclear Information System (INIS)

    Malekan, M.; Shabestari, S.G.; Zhang, W.; Seyedein, S.H.; Gholamipour, R.; Makino, A.; Inoue, A.

    2010-01-01

    Research highlights: The Cu 50 Zr 43 Al 7 alloy has a surprising GFA, and the glassy rods with diameter of 10 mm have been produced in this research. It has not been reported that the Cu-based glassy rods (Cu ≥ 50 at.%) to be produced with the critical diameter greater than 10 mm. The novelty of this research is that the glass formation has been improved and the critical diameter increased to 12 mm for the alloy having x = 1 with the addition of Si. Different criteria are used to evaluate the influence of Si content on the GFA, and the possible mechanisms involved in the achievement of this GFA are also discussed. - Abstract: The effect of Si addition on the glass-forming ability (GFA) and mechanical properties of (Cu 50 Zr 43 Al 7 ) 100-x Si x (x = 0, 0.5, 1, 1.5 and 2 at.%) alloys were investigated. The GFA of Cu 50 Zr 43 Al 7 alloy is improved by addition of a small amount of Si, and the critical diameter for glass formation increases from 10 mm for the alloy with x = 0-12 mm for the alloy with x = 1 when prepared using copper mold casting. Different criteria are used to evaluate the influence of Si content on the GFA, and the possible mechanisms involved in the achievement of this GFA are also discussed. In the uniaxial compression, the bulk glassy alloys exhibit a limited plastic strain of less than 1%, but the compressive fracture strength and Young's modulus were obtained in high values of 1969-2129 MPa and 101-144 GPa, respectively. Fracture surface and shear bands of samples were studied by using scanning electron microscopy (SEM).

  16. Preparation and characterization of Fe-based bulk metallic glasses in plate form

    International Nuclear Information System (INIS)

    Lavorato, G.C.; Fiore, G.; Castellero, A.; Baricco, M.; Moya, J.A.

    2012-01-01

    Amorphous alloys with composition (at%) Fe 48 Cr 15 Mo 14 C 15 B 6 Gd 2 (alloy A) and Fe 48 Cr 15 Mo 14 C 15 B 6 Y 2 (alloy B) were prepared either using pure elements (A and B1) and a commercial AISI430 steel as a base material (B2). When prepared from pure elements both alloys (A and B1) could be cast in plate form with a fixed thickness of 2 mm and variable lengths between 10 and 20 mm by means of copper-mold injection in air atmosphere. In the case of alloy B2, prepared using commercial grade raw materials, rods of 2 mm diameter were obtained. X-ray diffraction and scanning electron microscopy observations confirmed that an amorphous structure was obtained in all the as-cast samples. A minor fraction of crystalline phases (oxides and carbides) was detected on the as-cast surface. Differential scanning calorimetry measurements showed a glass transition temperature at 856 K for alloy A and 841 K for alloy B1, and an onset crystallization temperature of 887 K for alloy A and 885 K for alloy B1. In the case of alloy B2 a slightly different crystallization sequence was observed. Values of hardness (∼13 GPa) and the Young modulus (∼180 GPa) were measured by nanoindentation for both the alloys. The effects of adverse casting conditions (such as air atmosphere, non-conventional injection copper mold casting and partial replacement of pure elements with commercial grade raw materials) on the glass formation and properties of the alloy are discussed.

  17. Preparation and characterization of Fe-based bulk metallic glasses in plate form

    Energy Technology Data Exchange (ETDEWEB)

    Lavorato, G.C. [INTECIN (FIUBA-CONICET), Paseo Colon 850, Capital Federal (Argentina); Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Fiore, G.; Castellero, A.; Baricco, M. [Dipartimento di Chimica IFM and NIS, Universita di Torino, Torino (Italy); Moya, J.A., E-mail: jmoya.fi.uba@gmail.com [IESIING, Facultad de Ingenieria e Informatica, UCASAL, Salta (Argentina); CONICET (Argentina)

    2012-08-15

    Amorphous alloys with composition (at%) Fe{sub 48}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Gd{sub 2} (alloy A) and Fe{sub 48}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Y{sub 2} (alloy B) were prepared either using pure elements (A and B1) and a commercial AISI430 steel as a base material (B2). When prepared from pure elements both alloys (A and B1) could be cast in plate form with a fixed thickness of 2 mm and variable lengths between 10 and 20 mm by means of copper-mold injection in air atmosphere. In the case of alloy B2, prepared using commercial grade raw materials, rods of 2 mm diameter were obtained. X-ray diffraction and scanning electron microscopy observations confirmed that an amorphous structure was obtained in all the as-cast samples. A minor fraction of crystalline phases (oxides and carbides) was detected on the as-cast surface. Differential scanning calorimetry measurements showed a glass transition temperature at 856 K for alloy A and 841 K for alloy B1, and an onset crystallization temperature of 887 K for alloy A and 885 K for alloy B1. In the case of alloy B2 a slightly different crystallization sequence was observed. Values of hardness ({approx}13 GPa) and the Young modulus ({approx}180 GPa) were measured by nanoindentation for both the alloys. The effects of adverse casting conditions (such as air atmosphere, non-conventional injection copper mold casting and partial replacement of pure elements with commercial grade raw materials) on the glass formation and properties of the alloy are discussed.

  18. Electronic-structure origin of the glass-forming ability and magnetic properties in Fe–RE–B–Nb bulk metallic glasses

    International Nuclear Information System (INIS)

    Li, J.W.; Estévez, D.; Jiang, K.M.; Yang, W.M.; Man, Q.K.; Chang, C.T.; Wang, X.M.

    2014-01-01

    Highlights: • Relation between GFA and electronic structure of RE doped BMGs is investigated. • Tm enhances RE–B bonds and decreases the density of states near the Fermi level. • Magnetic properties of the alloys are related to the electronic structure of RE. - Abstract: (Fe 0.71 RE 0.05 B 0.24 ) 96 Nb 4 (RE = Gd, Tb, Ho, Er, Tm) bulk metallic glasses (BMGs) were found exhibiting excellent glass-forming ability (GFA) with critical diameters ranging from 3.5 to 6.5 mm, and high compressive fracture strength larger than 4300 MPa. Moreover, they displayed good soft-magnetic properties with saturation magnetic flux density of 0.71–0.87 T, coercive force of 1.23–39.76 A/m and effective permeability of 1500–12,740 at 1 kHz. X-ray photoelectron spectroscopy was performed to clarify the origin of the excellent GFA from the viewpoint of electronic structure. It was found that the Tm doped alloy displayed unique electronic structure including the deepest core-level binding energy, the most numerous RE–B bonds and the minimum density of states near the Fermi level, making this alloy the best glass former. The various trends noticed in the magnetic properties were ascribed mainly to the differences in the magnetic anisotropy and magnetic moment of RE elements

  19. Metallic glasses: structural models

    International Nuclear Information System (INIS)

    Nassif, E.

    1984-01-01

    The aim of this work is to give a summary of the attempts made up to the present in order to discribe by structural models the atomic arrangement in metallic glasses, showing also why the structure factors and atomic distribution functions cannot be always experimentally determined with a reasonable accuracy. (M.W.O.) [pt

  20. Yield point of metallic glass

    International Nuclear Information System (INIS)

    Shimizu, Futoshi; Ogata, Shigenobu; Li, Ju

    2006-01-01

    Shear bands form in most bulk metallic glasses (BMGs) within a narrow range of uniaxial strain ε y ≅ 2%. We propose this critical condition corresponds to embryonic shear band (ESB) propagation, not its nucleation. To propagate an ESB, the far-field shear stress τ ∞ ∼ Eε y /2 must exceed the quasi-steady-state glue traction τ glue of shear-alienated glass until the glass transition temperature is approached internally due to frictional heating, at which point ESB matures as a runaway shear crack. The incubation length scale l inc necessary for this maturation is estimated to be ∼10 2 nm for Zr-based BMGs, below which sample size-scale shear localization does not happen. In shear-alienated glass, the last resistance against localized shearing comes from extremely fast downhill dissipative dynamics of timescale comparable to atomic vibrations, allowing molecular dynamics (MD) simulations to capture this recovery process which governs τ glue . We model four metallic glasses: a binary Lennard-Jones system, two binary embedded atom potential systems and a quinternary embedded atom system. Despite vast differences in the structure and interatomic interactions, the four MD calculations give ε y predictions of 2.4%, 2.1%, 2.6% and 2.9%, respectively

  1. A thermodynamic approach to the quantitative evaluation of the metallic melts glass-forming ability

    International Nuclear Information System (INIS)

    Zajtsev, A.I.

    2004-01-01

    The outlook for development of quantitative criteria of the tendency of metallic melt to render amorphous is shown with taking into account specific features of chemical interaction between components. With the use of statistical physics methods and thermodynamics as well as concepts of association the techniques are devised for quantitative separation of contributions to liquid alloy thermodynamic functions conditioned by various types of chemical interaction between components. The results Knudsen mass-spectroscopic comprehensive thermodynamic study of a wide range of systems with various tendency to vitrification are summarized. It is shown that excessive (configurational) entropy and specific heat of the liquid are key features predetermining thermodynamic and kinetic stimuli of amorphization. Their values are completely determined by a covalent constituent of chemical interaction on entropic term of association reaction. The possibility of construction of quantitative amorphization criteria on the basis of this feature and the outlook for the use of the approach proposed to predict physicochemical and mechanical properties of solid amorphous materials are illustrated [ru

  2. Phonon scattering in metallic glasses

    International Nuclear Information System (INIS)

    Black, J.L.

    1979-01-01

    The purpose of this article is to review some recent theoretical and experimental developments in the study of metallic glasses at temperatures near or below 1K. In this temperature regime, it appears that practically all glasses, whether metallic or insulating, behave in a similar fashion. The fact that such similarities occur, despite substantial structural differences between metallic and insulating glasses, constitutes a major theoretical challenge. This challenge, however, is not directly addressed in what follows. Instead, the evidence for universal behavior and the theory which is necessary to understand this evidence are emphasized. It turns out that most of this evidence involves a comparison of phonon scattering in metallic glasses with its counterpart in insulating glasses

  3. Characterization of glass and glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lutze, W.; Borchardt, J.; De, A.K.

    1979-01-01

    Characteristics of solidified nuclear waste forms, glass and glass ceramic compositions and the properties (composition, thermal stability, crystallization, phase behavior, chemical stability, mechanical stability, and radiation effects) of glasses and glass ceramics are discussed. The preparation of glass ceramics may be an optional step for proposed vitrification plants if tailored glasses are used. Glass ceramics exhibit some improved properties with respect to glasses. The overall leach resistance is similar to that of glasses. An increased leach resistance may become effective for single radionuclides being hosted in highly insoluble crystal phases mainly when higher melting temperatures are applicable in order to get more leach resistant residual glass phases. The development of glass ceramic is going on. The technological feasibility is still to be demonstrated. The potential gain of stability when using glass ceramics qualifies the material as an alternative nuclear waste form

  4. Glass-forming ability and stability of ternary Ni-early transition metal (Ti/Zr/Hf) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Joysurya [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India); Ranganathan, S. [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India)]. E-mail: rangu@met.iisc.ernet.in

    2006-08-15

    Four Ni-bearing Ti, Zr and Hf ternary alloys of nominal composition Zr{sub 41.5}Ti{sub 41.5}Ni{sub 17}, Zr{sub 25}Ti{sub 25}Ni{sub 50}, Zr{sub 41.5}Hf{sub 41.5}Ni{sub 17} and Ti{sub 41.5}Hf{sub 41.5}Ni{sub 17} were rapidly solidified in order to produce ribbons. The Zr-Ti-Ni and Ti-Hf-Ni alloys become amorphous, whereas the Zr-Hf-Ni alloy shows precipitation of a cubic phase. The devitrification of all three alloys was followed and the relative tendency to form nanoquasicrystals and cF96 phases analysed. The relative glass-forming ability of the alloys can be explained by taking into account their atomic size difference. Addition of Ni often leads to quasicrystallisation or quasicrystal-related phases. This can be explained by the atomic radius and heat of mixing of the constituent elements. The phases precipitated at the initial stages of crystallisation indicate the possible presence of Frank-Kasper polyhedral structure in the amorphous alloys. Structural analysis reveals that the Laves and the anti-Laves phases have the same polyhedral structural unit, which is similar to the structural characteristics of glass.

  5. Beyond packing of hard spheres: The effects of core softness, non-additivity, intermediate-range repulsion, and many-body interactions on the glass-forming ability of bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Fan, Meng; Liu, Yanhui; Schroers, Jan [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Shattuck, Mark D. [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Department of Physics and Benjamin Levich Institute, The City College of the City University of New York, New York, New York 10031 (United States); O’Hern, Corey S. [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States)

    2015-11-14

    When a liquid is cooled well below its melting temperature at a rate that exceeds the critical cooling rate R{sub c}, the crystalline state is bypassed and a metastable, amorphous glassy state forms instead. R{sub c} (or the corresponding critical casting thickness d{sub c}) characterizes the glass-forming ability (GFA) of each material. While silica is an excellent glass-former with small R{sub c} < 10{sup −2} K/s, pure metals and most alloys are typically poor glass-formers with large R{sub c} > 10{sup 10} K/s. Only in the past thirty years have bulk metallic glasses (BMGs) been identified with R{sub c} approaching that for silica. Recent simulations have shown that simple, hard-sphere models are able to identify the atomic size ratio and number fraction regime where BMGs exist with critical cooling rates more than 13 orders of magnitude smaller than those for pure metals. However, there are a number of other features of interatomic potentials beyond hard-core interactions. How do these other features affect the glass-forming ability of BMGs? In this manuscript, we perform molecular dynamics simulations to determine how variations in the softness and non-additivity of the repulsive core and form of the interatomic pair potential at intermediate distances affect the GFA of binary alloys. These variations in the interatomic pair potential allow us to introduce geometric frustration and change the crystal phases that compete with glass formation. We also investigate the effect of tuning the strength of the many-body interactions from zero to the full embedded atom model on the GFA for pure metals. We then employ the full embedded atom model for binary BMGs and show that hard-core interactions play the dominant role in setting the GFA of alloys, while other features of the interatomic potential only change the GFA by one to two orders of magnitude. Despite their perturbative effect, understanding the detailed form of the intermetallic potential is important for

  6. Wetting of metals and glasses on Mo

    Energy Technology Data Exchange (ETDEWEB)

    Saiz, Eduardo; Tomsia, Antoni P.; Saiz, Eduardo; Lopez-Esteban, Sonia; Benhassine, Mehdi; de Coninck, Joel; Rauch, Nicole; Ruehle, Manfred

    2008-01-08

    The wetting of low melting point metals and Si-Ca-Al-Ti-O glasses on molybdenum has been investigated. The selected metals (Au, Cu, Ag) form a simple eutectic with Mo. Metal spreading occurs under nonreactive conditions without interdiffusion or ridge formation. The metals exhibit low (non-zero) contact angles on Mo but this requires temperatures higher than 1100 C in reducing atmospheres in order to eliminate a layer of adsorbed impurities on the molybdenum surface. By controlling the oxygen activity in the furnace, glass spreading can take place under reactive or nonreactive conditions. We have found that in the glass/Mo system the contact angle does not decrease under reactive conditions. In all cases, adsorption from the liquid seems to accelerate the diffusivity on the free molybdenum surface.

  7. Binary eutectic clusters and glass formation in ideal glass-forming liquids

    International Nuclear Information System (INIS)

    Lu, Z. P.; Shen, J.; Xing, D. W.; Sun, J. F.; Liu, C. T.

    2006-01-01

    In this letter, a physical concept of binary eutectic clusters in 'ideal' glass-forming liquids is proposed based on the characteristics of most well-known bulk metallic glasses (BMGs). The authors approach also includes the treatment of binary eutectic clusters as basic units, which leads to the development of a simple but reliable method for designing BMGs more efficiently and effectively in these unique glass-forming liquids. As an example, bulk glass formers with superior glass-forming ability in the Zr-Ni-Cu-Al and Zr-Fe-Cu-Al systems were identified with the use of the strategy

  8. Do atmospheric aerosols form glasses?

    Directory of Open Access Journals (Sweden)

    D. A. Pedernera

    2008-09-01

    Full Text Available A new process is presented by which water soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulfate and mixtures of dicarboxylic acids (M5, of dicarboxylic acids and ammonium sulfate (M5AS, of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K. To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger (≳150 g mol−1 and

  9. Structural study of conventional and bulk metallic glasses during annealing

    International Nuclear Information System (INIS)

    Pineda, E.; Hidalgo, I.; Bruna, P.; Pradell, T.; Labrador, A.; Crespo, D.

    2009-01-01

    Metallic glasses with conventional glass-forming ability (Al-Fe-Nd, Fe-Zr-B, Fe-B-Nb compositions) and bulk metallic glasses (Ca-Mg-Cu compositions) were studied by synchrotron X-ray diffraction during annealing throughout glass transition and crystallization temperatures. The analysis of the first diffraction peak position during the annealing process allowed us to follow the free volume change during relaxation and glass transition. The structure factor and the radial distribution function of the glasses were obtained from the X-ray measurements. The structural changes occurred during annealing are analyzed and discussed.

  10. Metallizing of machinable glass ceramic

    International Nuclear Information System (INIS)

    Seigal, P.K.

    1976-02-01

    A satisfactory technique has been developed for metallizing Corning (Code 9658) machinable glass ceramic for brazing. Analyses of several bonding materials suitable for metallizing were made using microprobe analysis, optical metallography, and tensile strength tests. The effect of different cleaning techniques on the microstructure and the effect of various firing temperatures on the bonding interface were also investigated. A nickel paste, used for thick-film application, has been applied to obtain braze joints with strength in excess of 2000 psi

  11. Thermal behaviors of liquid La-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D. W.; Wang, X. D., E-mail: wangxd@zju.edu.cn, E-mail: jiangjz@zju.edu.cn; Lou, H. B.; Cao, Q. P.; Jiang, J. Z., E-mail: wangxd@zju.edu.cn, E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Wang, L. W. [Institute of Materials Science and Engineering, Lanzhou University, Lanzhou 730000 (China); Zhang, D. X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China)

    2014-12-14

    Thermal behaviors of liquid La-based bulk metallic glasses have been measured by using the dilatometer with a self-sealed sample cell. It is demonstrated that the strong glass forming liquid not only has the small thermal expansion coefficient but also shows the slow variation rate. Moreover, the strong glass former has relatively dense atomic packing and also small density change in the liquid state. The results suggest that the high glass forming ability of La-based metallic glasses would be closely related to the slow atomic rearrangements in liquid melts.

  12. Superconducting state parameters of ternary metallic glasses

    Indian Academy of Sciences (India)

    Administrator

    to binary metallic glasses. They are of interest since third element can modify the physical properties of binary metallic glasses and can also be used as a probe to study the host. ..... conducting nature in the present case. When we. Figure 6. Variation of transition temperature (TC) with valance (Z) of ternary metallic glasses.

  13. A new method locating good glass-forming compositions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dechuan [Department of Materials Physics and Chemistry, Northeastern University, No.3-11, Wenhua Road, Shenyang, 110819 (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Geng, Yan [Department of Materials Physics and Chemistry, Northeastern University, No.3-11, Wenhua Road, Shenyang, 110819 (China); Li, Zhengkun [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Liu, Dingming [Department of Materials Physics and Chemistry, Northeastern University, No.3-11, Wenhua Road, Shenyang, 110819 (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Fu, Huameng; Zhu, Zhengwang [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Qi, Yang, E-mail: qiyang@imp.neu.edu.cn [Department of Materials Physics and Chemistry, Northeastern University, No.3-11, Wenhua Road, Shenyang, 110819 (China); Zhang, Haifeng, E-mail: hfzhang@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China)

    2015-10-15

    A new method was proposed to pinpoint the compositions with good glass forming ability (GFA) by combining atomic clusters and mixing entropy. The clusters were confirmed by analyzing competing crystalline phases. The method was applied to the Zr–Al–Ni–Cu–Ag alloy system. A series of glass formers with diameter up to 20 mm were quickly detected in this system. The good glass formers were located only after trying 5 compositions around the calculated composition. The method was also effective in other multi-component systems. This method might provide a new way to understand glass formation and to quickly pinpoint compositions with high GFA. - Highlights: • A new method was proposed to quickly design glass formers with high glass forming ability. • The method of designing pentabasic Zr–Al–Ni–Cu–Ag alloys was applied. • A series of new Zr-based bulk metallic glasses with critical diameter of 20 mm were discovered.

  14. A new method locating good glass-forming compositions

    International Nuclear Information System (INIS)

    Yu, Dechuan; Geng, Yan; Li, Zhengkun; Liu, Dingming; Fu, Huameng; Zhu, Zhengwang; Qi, Yang; Zhang, Haifeng

    2015-01-01

    A new method was proposed to pinpoint the compositions with good glass forming ability (GFA) by combining atomic clusters and mixing entropy. The clusters were confirmed by analyzing competing crystalline phases. The method was applied to the Zr–Al–Ni–Cu–Ag alloy system. A series of glass formers with diameter up to 20 mm were quickly detected in this system. The good glass formers were located only after trying 5 compositions around the calculated composition. The method was also effective in other multi-component systems. This method might provide a new way to understand glass formation and to quickly pinpoint compositions with high GFA. - Highlights: • A new method was proposed to quickly design glass formers with high glass forming ability. • The method of designing pentabasic Zr–Al–Ni–Cu–Ag alloys was applied. • A series of new Zr-based bulk metallic glasses with critical diameter of 20 mm were discovered

  15. Glass binder development for a glass-bonded sodalite ceramic waste form

    International Nuclear Information System (INIS)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; Kroll, Jared O.; Peterson, Jacob A.

    2017-01-01

    This paper discusses work to develop Na_2O-B_2O_3-SiO_2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na_2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.

  16. Micro metal forming

    CERN Document Server

    2013-01-01

    Micro Metal Forming, i. e. forming of parts and features with dimensions below 1 mm, is a young area of research in the wide field of metal forming technologies, expanding the limits for applying metal forming towards micro technology. The essential challenges arise from the reduced geometrical size and the increased lot size. In order to enable potential users to apply micro metal forming in production, information about the following topics are given: tribological behavior: friction between tool and work piece as well as tool wear mechanical behavior: strength and formability of the work piece material, durability of the work pieces size effects: basic description of effects occurring due to the fact, that the quantitative relation between different features changes with decreasing size process windows and limits for forming processes tool making methods numerical modeling of processes and process chains quality assurance and metrology All topics are discussed with respect to the questions relevant to micro...

  17. Production of glass or glass-ceramic to metal seals with the application of pressure

    Science.gov (United States)

    Kelly, Michael D.; Kramer, Daniel P.

    1987-11-10

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  18. Formation of Ti--Zr--Cu--Ni bulk metallic glasses

    International Nuclear Information System (INIS)

    Lin, X.H.; Johnson, W.L.

    1995-01-01

    Formation of bulk metallic glass in quaternary Ti--Zr--Cu--Ni alloys by relatively slow cooling from the melt is reported. Thick strips of metallic glass were obtained by the method of metal mold casting. The glass forming ability of the quaternary alloys exceeds that of binary or ternary alloys containing the same elements due to the complexity of the system. The best glass forming alloys such as Ti 34 Zr 11 Cu 47 Ni 8 can be cast to at least 4-mm-thick amorphous strips. The critical cooling rate for glass formation is of the order of 250 K/s or less, at least two orders of magnitude lower than that of the best ternary alloys. The glass transition, crystallization, and melting behavior of the alloys were studied by differential scanning calorimetry. The amorphous alloys exhibit a significant undercooled liquid region between the glass transition and first crystallization event. The glass forming ability of these alloys, as determined by the critical cooling rate, exceeds what is expected based on the reduced glass transition temperature. It is also found that the glass forming ability for alloys of similar reduced glass transition temperature can differ by two orders of magnitude as defined by critical cooling rates. The origins of the difference in glass forming ability of the alloys are discussed. It is found that when large composition redistribution accompanies crystallization, glass formation is enhanced. The excellent glass forming ability of alloys such as Ti 34 Zr 11 Cu 47 Ni 8 is a result of simultaneously minimizing the nucleation rate of the competing crystalline phases. The ternary/quaternary Laves phase (MgZn 2 type) shows the greatest ease of nucleation and plays a key role in determining the optimum compositions for glass formation. copyright 1995 American Institute of Physics

  19. Review of glass ceramic waste forms

    International Nuclear Information System (INIS)

    Rusin, J.M.

    1981-01-01

    Glass ceramics are being considered for the immobilization of nuclear wastes to obtain a waste form with improved properties relative to glasses. Improved impact resistance, decreased thermal expansion, and increased leach resistance are possible. In addition to improved properties, the spontaneous devitrification exhibited in some waste-containing glasses can be avoided by the controlled crystallization after melting in the glass-ceramic process. The majority of the glass-ceramic development for nuclear wastes has been conducted at the Hahn-Meitner Institute (HMI) in Germany. Two of their products, a celsian-based (BaAl 3 Si 2 O 8 ) and a fresnoite-based (Ba 2 TiSi 2 O 8 ) glass ceramic, have been studied at Pacific Northwest Laboratory (PNL). A basalt-based glass ceramic primarily containing diopsidic augite (CaMgSi 2 O 6 ) has been developed at PNL. This glass ceramic is of interest since it would be in near equilibrium with a basalt repository. Studies at the Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan have favored a glass-ceramic product based upon diopside (CaMgSi 2 O 6 ). Compositions, processing conditions, and product characterization of typical commercial and nuclear waste glass ceramics are discussed. In general, glass-ceramic waste forms can offer improved strength and decreased thermal expansion. Due to typcially large residual glass phases of up to 50%, there may be little improvement in leach resistance

  20. Using thermoforming capacity of metallic glasses to produce multimaterials

    International Nuclear Information System (INIS)

    Ragani, J.; Volland, A.; Valque, S.; Liu, Y.; Gravier, S.; Blandin, J.J.; Suery, M.

    2010-01-01

    In addition to casting, thermoforming is a particularly interesting way to produce components in bulk metallic glasses since large strains can be achieved when the BMGs are deformed in their supercooled liquid region. The experimental window (temperature, time) in which high temperature forming can be carried out is directly related to the crystallization resistance of the glass. Such forming windows have been identified for zirconium based bulk metallic glasses thanks to thermal analysis and compression tests in the supercooled liquid region. Based on this identification, the thermoforming capacity of the studied glasses was used to produce multimaterials associating metallic glasses with conventional metallic alloys. Two processes have been preferentially investigated (co-extrusion and co-pressing) and the interface quality of the elaborated multi materials was studied.

  1. Ceramic-glass-metal seal by microwave heating

    Science.gov (United States)

    Meek, Thomas T.; Blake, Rodger D.

    1985-01-01

    A method for producing a ceramic-glass-metal seal by microwaving mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  2. Mechanical failure and glass transition in metallic glasses

    International Nuclear Information System (INIS)

    Egami, T.

    2011-01-01

    Research highlights: → We review the recent results of molecular dynamics simulations on metallic glasses. → They show the equivalence of mechanical failure and glass transition. → We discuss the microscopic mechanism behind this equivalence. → We show that the density of defects in metallic glasses is as high as a quarter. → Our concepts about the defect state in glasses need to be changed. - Abstract: The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  3. Metal forming and lubrication

    DEFF Research Database (Denmark)

    Bay, Niels

    2000-01-01

    Lubrication is essential in most metal forming processes. The lubricant film has two basic functions, [1]: i. to separate the work piece and tool surfaces and ii. to cool the workpiece and the tool. Separation of the two surfaces implies lower friction facilitating deformation and lowering the tool...

  4. Designing porous metallic glass compact enclosed with surface iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Young; Park, Hae Jin; Hong, Sung Hwan; Kim, Jeong Tae; Kim, Young Seok; Park, Jun-Young; Lee, Naesung [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Seo, Yongho [Graphene Research Institute (GRI) & HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Park, Jin Man, E-mail: jinman_park@hotmail.com [Global Technology Center, Samsung Electronics Co., Ltd, 129 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742 (Korea, Republic of); Kim, Ki Buem, E-mail: kbkim@sejong.ac.kr [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2015-06-25

    Highlights: • Porous metallic glass compact was developed using electro-discharge sintering process. • Uniform PMGC can only be achieved when low electrical input energy was applied. • Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. - Abstract: Porous metallic glass compact (PMGC) using electro-discharge sintering (EDS) process of gas atomized Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} metallic glass powder was developed. The formation of uniform PMGC can only be achieved when low electrical input energy was applied. Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. This finding suggests that PMGC can be applied in the new area such as catalyst via hydrothermal technique and offer a promising guideline for using the metallic glasses as a potential functional application.

  5. Predicting Shear Transformation Events in Metallic Glasses

    Science.gov (United States)

    Xu, Bin; Falk, Michael L.; Li, J. F.; Kong, L. T.

    2018-03-01

    Shear transformation is the elementary process for plastic deformation of metallic glasses, the prediction of the occurrence of the shear transformation events is therefore of vital importance to understand the mechanical behavior of metallic glasses. In this Letter, from the view of the potential energy landscape, we find that the protocol-dependent behavior of shear transformation is governed by the stress gradient along its minimum energy path and we propose a framework as well as an atomistic approach to predict the triggering strains, locations, and structural transformations of the shear transformation events under different shear protocols in metallic glasses. Verification with a model Cu64 Zr36 metallic glass reveals that the prediction agrees well with athermal quasistatic shear simulations. The proposed framework is believed to provide an important tool for developing a quantitative understanding of the deformation processes that control mechanical behavior of metallic glasses.

  6. Thermodynamic and relative approach to compute glass-forming ...

    Indian Academy of Sciences (India)

    models) characteristic: the isobaric heat capacity (Cp) of oxides, and execute a mathematical treatment of oxides thermodynamic data. We note this coefficient as thermodynamical relative glass-forming ability (ThRGFA) and for- mulate a model to compute it. Computed values of 2nd, 3rd, 4th and 5th period metal oxides ...

  7. Forming Glasses from Se and Te

    Directory of Open Access Journals (Sweden)

    Pierre Lucas

    2009-10-01

    Full Text Available Despite being close neighbors on the Periodic Table, selenium and tellurium present a totally different abilities to form glasses. Se is a very good glass former, and gives rise to numerous glass compositions which are popular for their transparency in the infrared range and their stability against crystallization. These glasses can be shaped into sophisticated optical devices such as optical fibers, planar guides or lenses. Nevertheless, their transparencies are limited at about 12 μm (depending on the thickness of the optical systems due to the relatively small mass of the Se element. On the other hand, tellurium is heavier and its use in substitution for Se permits to shift the IR cutoff beyond 20 μm. However, the semimetallic nature of Te limits its glass formation ability and this glass family is known to be unstable and consequently has found application as phase change material in the Digital Versatile Disk (DVD technology. In this paper, after a review of selenide glasses and their applications, it will be shown how, in a recent past, it has been possible to stabilize tellurium glasses by introducing new elements like Ga or I in their compositions.

  8. Drastic influence of minor Fe or Co additions on the glass forming ability, martensitic transformations and mechanical properties of shape memory Zr-Cu-Al bulk metallic glass composites.

    Science.gov (United States)

    González, Sergio; Pérez, Pablo; Rossinyol, Emma; Suriñach, Santiago; Dolors Baró, Maria; Pellicer, Eva; Sort, Jordi

    2014-06-01

    The microstructure and mechanical properties of Zr 48 Cu 48 -  x Al 4 M x (M ≡ Fe or Co, x  = 0, 0.5, 1 at.%) metallic glass (MG) composites are highly dependent on the amount of Fe or Co added as microalloying elements in the parent Zr 48 Cu 48 Al 4 material. Addition of Fe and Co promotes the transformation from austenite to martensite during the course of nanoindentation or compression experiments, resulting in an enhancement of plasticity. However, the presence of Fe or Co also reduces the glass forming ability, ultimately causing a worsening of the mechanical properties. Owing to the interplay between these two effects, the compressive plasticity for alloys with x  = 0.5 (5.5% in Zr 48 Cu 47.5 Al 4 Co 0.5 and 6.2% in Zr 48 Cu 47.5 Al 4 Fe 0.5 ) is considerably larger than for Zr 48 Cu 48 Al 4 or the alloys with x  = 1. Slight variations in the Young's modulus (around 5-10%) and significant changes in the yield stress (up to 25%) are also observed depending on the composition. The different microstructural factors that have an influence on the mechanical behavior of these composites are investigated in detail: (i) co-existence of amorphous and crystalline phases in the as-cast state, (ii) nature of the crystalline phases (austenite versus martensite content), and (iii) propensity for the austenite to undergo a mechanically-driven martensitic transformation during plastic deformation. Evidence for intragranular nanotwins likely generated in the course of the austenite-martensite transformation is provided by transmission electron microscopy. Our results reveal that fine-tuning of the composition of the Zr-Cu-Al-(Fe,Co) system is crucial in order to optimize the mechanical performance of these bulk MG composites, to make them suitable materials for structural applications.

  9. Criticality in Bulk Metallic Glass Constituent Elements

    Science.gov (United States)

    Mota, Rodrigo Miguel Ojeda; Graedel, T. E.; Pekarskaya, Evgenia; Schroers, Jan

    2017-11-01

    Bulk metallic glasses (BMGs), which readily form amorphous phases during solidification, are increasingly being used in first applications of watch components, electronic casings, and sporting goods. The compositions of BMGs typically include four to six elements. Various political and geological factors have recently led to supply disruptions for several metals, including some present in BMG compositions. In this work, we assess the "criticality" of 22 technologically interesting BMG compositions, compare the results with those for three common engineering alloy groups, and derive recommendations for BMG composition choices from a criticality perspective. The criticality of BMGs is found to be generally much higher compared with those for the established engineering alloys. Therefore, criticality concerns should also be considered in the choice between existing and developing novel BMGs.

  10. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  11. Nanopatterned Bulk Metallic Glass Biosensors.

    Science.gov (United States)

    Kinser, Emily R; Padmanabhan, Jagannath; Yu, Roy; Corona, Sydney L; Li, Jinyang; Vaddiraju, Sagar; Legassey, Allen; Loye, Ayomiposi; Balestrini, Jenna; Solly, Dawson A; Schroers, Jan; Taylor, André D; Papadimitrakopoulos, Fotios; Herzog, Raimund I; Kyriakides, Themis R

    2017-12-22

    Nanopatterning as a surface area enhancement method has the potential to increase signal and sensitivity of biosensors. Platinum-based bulk metallic glass (Pt-BMG) is a biocompatible material with electrical properties conducive for biosensor electrode applications, which can be processed in air at comparably low temperatures to produce nonrandom topography at the nanoscale. Work presented here employs nanopatterned Pt-BMG electrodes functionalized with glucose oxidase enzyme to explore the impact of nonrandom and highly reproducible nanoscale surface area enhancement on glucose biosensor performance. Electrochemical measurements including cyclic voltammetry (CV) and amperometric voltammetry (AV) were completed to compare the performance of 200 nm Pt-BMG electrodes vs Flat Pt-BMG control electrodes. Glucose dosing response was studied in a range of 2 mM to 10 mM. Effective current density dynamic range for the 200 nm Pt-BMG was 10-12 times greater than that of the Flat BMG control. Nanopatterned electrode sensitivity was measured to be 3.28 μA/cm 2 /mM, which was also an order of magnitude greater than the flat electrode. These results suggest that nonrandom nanotopography is a scalable and customizable engineering tool which can be integrated with Pt-BMGs to produce biocompatible biosensors with enhanced signal and sensitivity.

  12. Crystallization peculiarities in metallic glasses

    International Nuclear Information System (INIS)

    Serebryakov, A.V.; Abrosimova, G.E.; Aronin, A.S.

    1985-01-01

    Methods of X-ray electron microscopy and X-ray diffraction analysis were used to investigate the peculiarities of crystallization of amorphous metallic Fe-B and Fe-Si-B alloys related to sufficient change of volume when passing from amorphous to crystalline state and the effect of sample prehistory on its thermal stability and crystallization kinetics. The dependence of morphology of crystalline phases formed during crystallization of amorphous Fe-B alloys on sample thickness was revealed and investigated. The model explaining this dependence was suggested. The observed differences are related, according to the model, with different diffusion ways of ''poles'' - elementary carriers of empty volume to their sinks

  13. Ceramic and glass radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Readey, D.W.; Cooley, C.R. (comps.)

    1977-01-01

    This report contains 14 individual presentations and 6 group reports on the subject of glass and polycrystalline ceramic radioactive waste forms. It was the general consensus that the information available on glass as a waste form provided a good basis for planning on the use of glass as an initial waste form, that crystalline ceramic forms could also be good waste forms if much more development work were completed, and that prediction of the chemical and physical stability of the waste form far into the future would be much improved if the basic synergistic effects of low temperature, radiation and long times were better understood. Continuing development of the polycrystalline ceramic forms was recommended. It was concluded that the leach rate of radioactive species from the waste form is an important criterion for evaluating its suitability, particularly for the time period before solidified waste is permanently placed in the geologic isolation of a Federal repository. Separate abstracts were prepared for 12 of the individual papers; the remaining two were previously abstracted.

  14. Glass forming ability of calcium aluminosilicate melts

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Yue, Yuanzheng

    2011-01-01

    The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite-wollastonite-tridymite and that of......The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite......-wollastonite-tridymite and that of anorthite-wollastonite-gehlenite. The series includes the eutectic compositions as end members. The second series consists of five compositions on a line parallel to the joining line on the alumina rich side. In the present work, GFA is described in terms of glass stability, i.e., the ability of a glass...... to resist crystallization during reheating. In addition, the fragility index (m) is derived by fitting the viscosity data with the Avramov-Milchev equation. The results show that m is inversely proportional to the glass stability for the two series of melts, implying that m is an indirect measure of GFA...

  15. Ultrahigh stability of atomically thin metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cao, C. R.; Huang, K. Q.; Zhao, N. J.; Sun, Y. T.; Bai, H. Y.; Gu, L., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn; Zheng, D. N., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn; Wang, W. H., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-07-07

    We report the fabrication and study of thermal stability of atomically thin ZrCu-based metallic glass films. The ultrathin films exhibit striking dynamic properties, ultrahigh thermal stability, and unique crystallization behavior with discrete crystalline nanoparticles sizes. The mechanisms for the remarkable high stability and crystallization behaviors are attributed to the dewetting process of the ultrathin film. We demonstrated a promising avenue for understanding some fundamental issues such as glassy structure, crystallization, deformation, and glass formation through atomic resolution imaging of the two dimensional like metallic glasses.

  16. Undercooling Limits and Thermophysical Properties in Glass Forming Alloys

    Science.gov (United States)

    Rhim, Won-Kyu; Ohsaka, Kenichi; Spjut, R. Erik

    1999-01-01

    The primary objective of this program is to produce deeply undercooled metallic liquids and to identify factors that limit undercooling and glass formation. The main research objectives are: (1) Investigating undercooling limits in glass-forming alloys and identifying factors that affect undercooling; (2) Measuring thermophysical properties and investigating the validity of the classical nucleation theory and other existing theories in the extreme undercooled states; and (3) To investigate the limits of electrostatic levitation technology in the ground base and to identify thermophysical parameters that might require reduced-g environment.

  17. Advances in metal forming expert system for metal forming

    CERN Document Server

    Hingole, Rahulkumar Shivajirao

    2015-01-01

    This comprehensive book offers a clear account of the theory and applications of advanced metal forming. It provides a detailed discussion of specific forming processes, such as deep drawing, rolling, bending extrusion and stamping. The author highlights recent developments of metal forming technologies and explains sound, new and powerful expert system techniques for solving advanced engineering problems in metal forming. In addition, the basics of expert systems, their importance and applications to metal forming processes, computer-aided analysis of metalworking processes, formability analysis, mathematical modeling and case studies of individual processes are presented.

  18. Simulation of Glass Fiber Forming Processes

    DEFF Research Database (Denmark)

    Von der Ohe, Renate

    Two glass fiber forming processes have been simulated using FEM, which are the drawing of continuous glass fibers for reinforcement purposes and the spinning of discontinuous glass fibers - stone wool for insulation. The aim of this work was to set up a numerical model for each process, and to use...... this model in finding relationships between the production conditions and the resulting fiber properties. For both processes, a free surface with large deformation and radiative and convective heat transfer must be taken into account. The continuous fiber drawing has been simulated successfully......, and parametric studies have been made. Several properties that characterize the process have been calculated, and the relationship between the fictive temperature and the cooling rate of the fibers has been found. The model for the discontinuous fiber spinning was brought to the limits of the commercial code...

  19. Plastic Deformation of Pressured Metallic Glass

    Directory of Open Access Journals (Sweden)

    Yun Cheng

    2017-11-01

    Full Text Available Although pressured metallic glass (MG has been reported in the literature; there are few studies focusing on pressure effects on the structure; dynamics and its plastic deformation. In this paper; we report on and characterize; via molecular dynamics simulation, the structure and dynamics heterogeneity of pressured MGs, and explore a causal link between local structures and plastic deformation mechanism of pressured glass. The results exhibit that the dynamical heterogeneity of metallic liquid is more pronounced at high pressure, while the MGs were less fragile after the release of external pressure, reflected by the non-Gaussian parameter (NGP. High pressure glass shows better plastic deformation; and the local strain zone distributed more uniformly than of in normal glass. Further research indicates that although the number of icosahedrons in pressured glass was much larger than that in normal glass, while the interpenetrating connections of icosahedra (ICOI exhibited spatial correlations were rather poor; In addition, the number of ‘fast’ atoms indexed by the atoms’ moving distance is larger than that in normal glass; leading to the sharp decreasing in number of icosahedrons during deformation. An uniform distribution of ‘fast’ atoms also contributed to better plastic deformation ability in the pressured glass. These findings may suggest a link between the deformation and destruction of icosahedra with short-range order.

  20. Atomistic simulation of nanoformed metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Da, E-mail: nanowu@cycu.edu.tw

    2015-07-15

    Highlights: • STZ forms at substrate surface underneath punch. • Atoms underneath punch have higher speeds at larger mold displacement. • Stick-slip phenomenon becomes more obvious with increasing imprint speed. • Great pattern transfer is obtained with unloading at low temperatures. - Abstract: The effects of forming speed and temperature on the forming mechanism and mechanics of Cu{sub 50}Zr{sub 25}Ti{sub 25} metallic glass are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. These effects are investigated in terms of atomic trajectories, flow field, slip vectors, internal energy, radial distribution function, and elastic recovery of nanoimprint lithography (NIL) patterns. The simulation results show that a shear transformation zone (STZ) forms at the substrate surface underneath the mold during the forming process. The STZ area increases with mold displacement (D). The movement speed of substrate atoms underneath the mold increases with increasing D value. The movement directions of substrate atoms underneath the mold are more agreeable for a larger D value. The stick-slip phenomenon becomes more obvious with increasing D value and imprint speed. The substrate energy increases with increasing imprint speed and temperature. Great NIL pattern transfer is obtained with unloading at low temperatures (e.g., room temperature)

  1. High level waste forms: glass marbles and thermal spray coatings

    International Nuclear Information System (INIS)

    Treat, R.L.; Oma, K.H.; Slate, S.C.

    1982-01-01

    A process that converts high-level waste to glass marbles and then coats the marbles has been developed at Pacific Northwest Laboratory (PNL) under sponsorship of the US Department of Energy. The process consists of a joule-heated glass melter, a marble-making device based on a patent issued to Corning Glass Works, and a coating system that includes a plasma spray coater and a marble tumbler. The process was developed under the Alternative Waste Forms Program which strived to improve upon monolithic glass for immobilizing high-level wastes. Coated glass marbles were found to be more leach-resistant, and the marbles, before coating were found to be very homogeneous, highly impact resistant, and conductive to encapsulation in a metal matric for improved heat transfer and containment. Marbles are also ideally suited for quality assurance and recycling. However, the marble process is more complex, and marbles require a larger number of canisters for waste containment and have a higher surface area than do glass monoliths

  2. Glass forming ability and magnetic properties of Co(40.2−x)Fe(20.1+x)Ni6.7B22.7Si5.3Nb5 (x=0–10) bulk metallic glasses produced by suction casting

    International Nuclear Information System (INIS)

    Sarlar, Kagan; Kucuk, Ilker

    2015-01-01

    The effect of Fe concentration on the glass forming ability (GFA) and magnetic properties in Co (40.2−x) Fe (20.1+x) Ni 6.7 B 22.7 Si 5.3 Nb 5 (x=0–10) bulk metallic glasses were investigated. By suction casting method, the bulk metallic glasses with diameters up to 2 mm were produced. We try to find out which Fe concentration makes an influence on Co based system's magnetic properties and glass forming ability. The curves of thermal analysis, obtained using differential scanning calorimetry (DSC), show that the Co (40.2−x) Fe (20.1+x) Ni 6.7 B 22.7 Si 5.3 Nb 5 (x=0–10) have a supercooled liquid region (∆T x ) of about 44 K. The saturation magnetizations (J s ) for as-cast BMG alloys were in the range of 0.62 T−0.81 T. - Highlights: • The effect of Fe concentration on the glass forming ability. • The substitution of an appropriate amount of Fe can enhance the GFA. • The substitution of Fe for Co also improves soft magnetic properties of the BMGs. • The high of J s 0.62−0.81 T with a low H c of 2−289 A/m of the alloys

  3. Bioactive glass coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  4. Thulium-based bulk metallic glass

    International Nuclear Information System (INIS)

    Yu, H. B.; Yu, P.; Wang, W. H.; Bai, H. Y.

    2008-01-01

    We report the formation and properties of a thulium-based bulk metallic glass (BMG). Compared with other known rare-earth (RE) based BMGs, Tm-based BMGs show features of excellent glass formation ability, considerable higher elastic modulus, smaller Poisson's ratio, high mechanical strength, and intrinsic brittleness. The reasons for the different properties between the Tm-based and other RE-based BMGs are discussed. It is expected that the Tm-based glasses with the unique properties are appropriate candidates for studying some important issues in BMGs

  5. Investigations on the Broadband Shielding Effectiveness of Metallized Glass Fiber

    National Research Council Canada - National Science Library

    Coburn, William

    1998-01-01

    ...) is an E-glass fiber metallized with Al and processed into a nonwoven mat. When formed into a mat, the MGFs lead to an effective sample conductivity, sigma eff, which is the parameter of interest for electromagnetic shielding in the RF region...

  6. Ion beam induced nanosized Ag metal clusters in glass

    International Nuclear Information System (INIS)

    Mahnke, H.-E.; Schattat, B.; Schubert-Bischoff, P.; Novakovic, N.

    2006-01-01

    Silver metal clusters have been formed in soda lime glass by high-energy heavy-ion irradiation at ISL. The metal cluster formation was detected with X-ray absorption spectroscopy (EXAFS) in fluorescence mode, and the shape of the clusters was imaged with transmission electron microscopy. While annealing in reducing atmosphere alone, leads to the formation of metal clusters in Ag-containing glasses, where the Ag was introduced by ion-exchange, such clusters are not very uniform in size and are randomly distributed over the Ag-containing glass volume. Irradiation with 600-MeV Au ions followed by annealing, however, results in clusters more uniform in size and arranged in chains parallel to the direction of the ion beam

  7. Structure and properties of transition metal-metalloid glasses based on refractory metals

    International Nuclear Information System (INIS)

    Johnson, W.L.; Williams, A.R.

    1979-01-01

    The structure and properties of several new transition metal-metalloid (TM/sub 1-x/M/sub x/) metallic glasses based on refractory transition metals (e.g. Mo, W, Ru etc.) have been systemically investigated as a function of composition. The structure of the alloys has been investigated by x-ray diffraction methods and measurements of superconducting properties, electrical resistivity, density, hardness, and mechanical behavior were made. These data are used in developing a novel description of the structure of TM/sub 1-x/M/sub x/ glasses. The experimental evidence suggests that an ideal amorphous phase forms at a specific composition x/sub c/ and that this phase has a well defined atomic short range order. For metallic glasses having x x/sub c/. This novel picture can explain the variation of many properties of these glasses with metalloid concentration

  8. MIIT: International in-situ testing of simulated HLW forms--preliminary analyses of SRL 165/TDS waste glass and metal systems

    International Nuclear Information System (INIS)

    Wicks, G.G.; Lodding, A.R.; Macedo, P.B.; Molecke, M.A.

    1989-01-01

    The first in-situ tests involving burial of simulated high-level waste (HLW) forms conducted in the United States were started on July 22, 1986. This effort, called the Materials Interface Interactions Tests (MIIT), comprises the largest, most cooperative field testing venture in the international waste management community. Included in the study are over 900 waste form samples comprising 15 different systems supplied by seven countries. Also included are almost 300 potential canister or overpack metal samples of 11 different metals along with more than 500 geologic and backfill specimens. There are a total of 1926 relevant interactions that characterize this effort which is being conducted in the bedded salt site at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico

  9. Strong-Superstrong Transition in Glass Transition of Metallic Glass

    International Nuclear Information System (INIS)

    Dan, Wang; Hong-Yan, Peng; Xiao-Yu, Xu; Bao-Ling, Chen; Chun-Lei, Wu; Min-Hua, Sun

    2010-01-01

    Dynamic fragility of bulk metallic glass (BMG) of Zr 64 Cu 16 Ni 10 Al 10 alloy is studied by three-point beam bending methods. The fragility parameter mfor Zr 64 Cu 16 Ni 10 Al 10 BMG is calculated to be 24.5 at high temperature, which means that the liquid is a 'strong' liquid, while to be 13.4 at low temperature which means that the liquid is a 'super-strong' liquid. The dynamical behavior of Zr 64 Cu 16 Ni 10 Al 10 BMG in the supercooled region undergoes a strong to super-strong transition. To our knowledge, it is the first time that a strong-to-superstrong transition is found in the metallic glass. Using small angle x-ray scattering experiments, we find that this transition is assumed to be related to a phase separation process in supercooled liquid. (condensed matter: structure, mechanical and thermal properties)

  10. Vitrification and determination of the crystallization time scales of the bulk-metallic-glass-forming liquid Zr58.5Nb2.8Cu15.6Ni12.8Al10.3

    International Nuclear Information System (INIS)

    Hays, C. C.; Schroers, J.; Johnson, W. L.; Rathz, T. J.; Hyers, R. W.; Rogers, J. R.; Robinson, M. B.

    2001-01-01

    The crystallization kinetics of Zr 58.5 Nb 2.8 Cu 15.6 Ni 12.8 Al 10.3 were studied in an electrostatic levitation (ESL) apparatus. The measured critical cooling rate is 1.75 K/s. Zr 58.5 Nb 2.8 Cu 15.6 Ni 12.8 Al 10.3 is the first bulk-metallic-glass-forming liquid that does not contain beryllium to be vitrified by purely radiative cooling in the ESL. Furthermore, the sluggish crystallization kinetics enable the determination of the time-temperature-transformation (TTT) diagram between the liquidus and the glass transition temperatures. The shortest time to reach crystallization in an isothermal experiment; i.e., the nose of the TTT diagram is 32 s. The nose of the TTT diagram is at 900 K and positioned about 200 K below the liquidus temperature

  11. Melt-quenched glasses of metal-organic frameworks

    DEFF Research Database (Denmark)

    Bennett, T.D.; Yue, Yuanzheng; Li, P.

    2016-01-01

    Crystalline solids dominate the field of metal−organic frameworks (MOFs), with access to the liquid and glass states of matter usually prohibited by relatively low temperatures of thermal decomposition. In this work, we give due consideration to framework chemistry and topology to expand...... of other MOFs. The glasses formed upon vitrification are chemically and structurally distinct from the three other existing categories of melt-quenched glasses (inorganic nonmetallic, organic, and metallic), and retain the basic metal−ligand connectivity of crystalline MOFs, which connects their mechanical...... the phenomenon of the melting of 3D MOFs, linking crystal chemistry to framework melting temperature and kinetic fragility of the glass-forming liquids. Here we show that melting temperatures can be lowered by altering the chemistry of the crystalline MOF state, which provides a route to facilitate the melting...

  12. Oxidation behaviour of metallic glass foams

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, B.R. [Department of Materials Science and Engineering, 434 Dougherty Hall, University of Tennessee, Knoxville, TN 37996-2200 (United States)], E-mail: bbarnard@utk.edu; Liaw, P.K. [Department of Materials Science and Engineering, 434 Dougherty Hall, University of Tennessee, Knoxville, TN 37996-2200 (United States); Demetriou, M.D.; Johnson, W.L. [Department of Materials Science, Keck Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2008-08-15

    In this study, the effects of porosity on the oxidation behaviour of bulk-metallic glasses were investigated. Porous Pd- and Fe-based bulk-metallic glass (BMG) foams and Metglas ribbons were studied. Oxidizing experiments were conducted at 70 deg. C, and around 80 deg. C below glass-transition temperatures, (T{sub g}s). Scanning-electron microscopy/energy-dispersive spectroscopy (SEM/EDS) studies revealed little evidence of oxidation at 70 deg. C. Specimens exhibited greater oxidation at T{sub g} - 80 deg. C. Oxides were copper-based for Pd-based foams, Fe-, Cr-, and Mo-based for Fe-based foams, and Co-based with borosilicates likely for the Metglas. Pd-based foams demonstrated the best oxidation resistance, followed by Metglas ribbons, followed by Fe-based foams.

  13. ESCA studies on leached glass forms

    International Nuclear Information System (INIS)

    Dawkins, B.G.

    1979-01-01

    Electron Spectroscopy for Chemical Analysis (ESCA) results for frit, obsidian, NBS standard, and Savannah River Laboratory (SRL) glass forms that have been subjected to cumulative water leachings of 36 hours show that [Na] exhibits the largest and fastest change of all the elements observed. Leaching of surface Na occurred within minutes. Surface Na depletion increased with leach time. Continuous x-ray irradiation and argon ion milling induced Na mobility, precluding semiquantitative ESCA analysis at normal operating temperatures. However, the sample stage has been equipped with a liquid nitrogen supply and alkali mobility should be eliminated in future work

  14. Structural investigations of some metallic glasses

    International Nuclear Information System (INIS)

    Sietsma, J.

    1987-03-01

    Metallic glasses were prepared by the melt spinning technique from iron and nickel alloys (Fe-Ni-P; Fe-B; Ni-Nb; Ni-B). Structure investigations were made by means of neutron diffraction experiments. Distribution functions and range orders were determined. (Auth.)

  15. Crystallization dynamics in glass-forming systems

    Energy Technology Data Exchange (ETDEWEB)

    Cullinan, Timothy Edward [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Crystallization under far-from-equilibrium conditions is investigated for two different scenarios: crystallization of the metallic glass alloy Cu50Zr50 and solidification of a transparent organic compound, o-terphenyl. For Cu50Zr50, crystallization kinetics are quanti ed through a new procedure that directly fits thermal analysis data to the commonly utilized JMAK model. The phase evolution during crystallization is quantified through in-situ measurements (HEXRD, DSC) and ex-situ microstructural analysis (TEM, HRTEM). The influence of chemical partitioning, diffusion, and crystallographic orientation on this sequence are examined. For o-terphenyl, the relationship between crystal growth velocity and interface undercooling is systematically studied via directional solidification.

  16. Designing biocompatible Ti-based metallic glasses for implant applications

    International Nuclear Information System (INIS)

    Calin, Mariana; Gebert, Annett; Ghinea, Andreea Cosmina; Gostin, Petre Flaviu; Abdi, Somayeh; Mickel, Christine; Eckert, Jürgen

    2013-01-01

    Ti-based metallic glasses show high potential for implant applications; they overcome in several crucial respects their well-established biocompatible crystalline counterparts, e.g. improved corrosion properties, higher fracture strength and wear resistance, increased elastic strain range and lower Young's modulus. However, some of the elements required for glass formation (e.g. Cu, Ni) are harmful for the human body. We critically reviewed the biological safety and glass forming tendency in Ti of 27 elements. This can be used as a basis for the future designing of novel amorphous Ti-based implant alloys entirely free of harmful additions. In this paper, two first alloys were developed: Ti 75 Zr 10 Si 15 and Ti 60 Nb 15 Zr 10 Si 15 . The overheating temperature of the melt before casting can be used as the controlling parameter to produce fully amorphous materials or bcc-Ti-phase reinforced metallic glass nano-composites. The beneficial effect of Nb addition on the glass-formation and amorphous phase stability was assessed by X-ray diffraction, transmission electron microscopy and differential scanning calorimetry. Crystallization and mechanical behavior of ribbons are influenced by the amount and distribution of the nano-scaled bcc phase existing in the as-cast state. Their electrochemical stability in Ringer's solution at 310 K was found to be significantly better than that of commercial Ti-based biomaterials; no indication for pitting corrosion was recorded. Highlights: ► Link between biocompatibility and glass-forming ability of alloying additions in Ti ► Selection of Ti–Zr–Si and Ti–Zr–Nb–Si glass-forming alloys ► Two novel glassy alloys were developed: Ti 75 Zr 10 Si 15 and Ti 60 Nb 15 Zr 10 Si 15. ► Glass-formation, thermal stability, corrosion and mechanical behavior were studied. ► Assessing the suitability for orthopedic applications.

  17. Positron annihilation in metallic glasses - a general survey

    International Nuclear Information System (INIS)

    Brauer, G.; Kajcsos, Zs.; Kemeny, T.

    1981-08-01

    This report presents a review of the literature on positron annihilation studies concerning metallic glasses. After some general information and overview on structural models of metallic glasses as well as a short description of the positron annihilation method itself are added. Conclusions regarding information on the structure of metallic glasses obtainable by positron annihilation are also given. (author)

  18. Direct conversion of plutonium metal, scrap, residue, and transuranic waste to glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.; Malling, J.F.; Rudolph, J.

    1995-01-01

    A method for the direct conversion of metals, ceramics, organics, and amorphous solids to borosilicate glass has been invented. The process is called the Glass Material Oxidation and Dissolution System (GMODS). Traditional glass-making processes can convert only oxide materials to glass. However, many wastes contain complex mixtures of metals, ceramics, organics, and amorphous solids. Conversion of such mixtures to oxides followed by their conversion to glass is often impractical. GMODS may create a practical method to convert such mixtures to glass. Plutonium-containing materials (PCMS) exist in many forms, including metals, ceramics, organics, amorphous solids, and mixtures thereof. These PCMs vary from plutonium metal to filters made of metal, organic binders, and glass fibers. For storage and/or disposal of PCMS, it is desirable to convert PCMs to borosilicate glass. Borosilicate glass is the preferred repository waste form for high-level waste (HLW) because of its properties. PCMs converted to a transuranic borosilicate homogeneous glass would easily pass all waste acceptance and storage criteria. Conversion of PCMs to a glass would also simplify safeguards by conversion of heterogeneous PCMs to homogeneous glass. Thermodynamic calculations and proof-of-principle experiments on the GMODS process with cerium (plutonium surrogate), uranium, stainless steel, aluminum, Zircaloy-2, and carbon were successfully conducted. Initial analysis has identified potential flowsheets and equipment. Major unknowns remain, but the preliminary data suggests that GMODS may be a major new treatment option for PCMs

  19. Thermo-physical characterization of the Fe_6_7Mo_6Ni_3_._5Cr_3_._5P_1_2C_5_._5B_2_._5 bulk metallic glass forming alloy

    International Nuclear Information System (INIS)

    Bochtler, Benedikt; Gross, Oliver; Gallino, Isabella; Busch, Ralf

    2016-01-01

    The iron-phosphorus based bulk metallic glass forming alloy Fe_6_7Mo_6Ni_3_._5Cr_3_._5P_1_2C_5_._5B_2_._5 is characterized with respect to its thermophysical properties, crystallization and relaxation behavior, as well as its viscosity. The alloy provides a high critical casting thickness of 13 mm, thus allowing for the casting of amorphous parts with a considerable size. Calorimetric measurements reveal the characteristic transformation temperatures, transformation enthalpies, and the specific heat capacity. The analyses show that no stable supercooled liquid region exists upon heating. The specific heat capacity data are used to calculate the enthalpy, entropy, and Gibbs free energy differences between the crystalline and the supercooled liquid state. The crystallization behavior of amorphous samples upon heating is analyzed by differential scanning calorimetry and X-ray diffraction, and a time-temperature-transformation diagram is constructed. Dilatometry is used to determine the thermal expansion behavior. The equilibrium viscosity below the glass transition as well as volume relaxation behavior are measured by three-point beam bending and dilatometry, respectively, to assess the kinetic fragility. With a kinetic fragility parameter of D* = 21.3, the alloy displays a rather strong liquid behavior. Viscosity above the melting point is determined using electromagnetic levitation in microgravity on a reduced gravity aircraft in cooperation with the German Aerospace Center (DLR). These high-temperature viscosity data are compared with the low-temperature three-point beam bending measurements. The alloy displays a strong liquid behavior at low temperatures and a fragile behavior at high temperatures. These results are analogous to the ones observed in several Zr-based bulk metallic glass forming liquids, indicating a strong to fragile liquid-liquid transition in the undercooled liquid, which is obscured by crystallization.

  20. Viscoelasticity of metallic, polymeric and oxide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, J.M. [GEMPPM, INSA Lyon, Bat. B. Pascal, 69621 Villeurbanne (France)]. E-mail: Jean-marc.Pelletier@insa-lyon.fr; Gauthier, C. [GEMPPM, INSA Lyon, Bat. B. Pascal, 69621 Villeurbanne (France); Munch, E. [GEMPPM, INSA Lyon, Bat. B. Pascal, 69621 Villeurbanne (France)

    2006-12-20

    Present work addresses on mechanical spectroscopy experiments performed on bulk metallic glasses (Zr-Ti-Cu-Ni-Be alloys, Mg-Y-Cu alloys), on oxide glasses (SiO{sub 2}-Na{sub 2}O-CaO) and on amorphous polymers (polyethylene terephtalate (PET), nitrile butadiene rubber (NBR), etc.). It appears that whatever the nature of the chemical bonding involved in the material, we observe strong relaxation effects in an intermediate temperature range, near the glass transition temperature. In addition, when crystallization occurs in the initially amorphous material, similar evolution is observed in all the materials. A method is proposed to properly separate elastic, viscoelastic and viscoplastic contributions to the deformation. Finally a physical model is given to describe these viscoelastic phenomena.

  1. Glass forming ability and magnetic properties of Co{sub (40.2−x)}Fe{sub (20.1+x)}Ni{sub 6.7}B{sub 22.7}Si{sub 5.3}Nb{sub 5} (x=0–10) bulk metallic glasses produced by suction casting

    Energy Technology Data Exchange (ETDEWEB)

    Sarlar, Kagan [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Physics Department, Kamil Ozdag Faculty of Sciences, Karamanoglu Mehmetbey University, YunusEmre Campus, 70100 Karaman (Turkey); Kucuk, Ilker, E-mail: ikucuk@uludag.edu.tr [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey)

    2015-01-15

    The effect of Fe concentration on the glass forming ability (GFA) and magnetic properties in Co{sub (40.2−x)}Fe{sub (20.1+x)}Ni{sub 6.7}B{sub 22.7}Si{sub 5.3}Nb{sub 5} (x=0–10) bulk metallic glasses were investigated. By suction casting method, the bulk metallic glasses with diameters up to 2 mm were produced. We try to find out which Fe concentration makes an influence on Co based system's magnetic properties and glass forming ability. The curves of thermal analysis, obtained using differential scanning calorimetry (DSC), show that the Co{sub (40.2−x)}Fe{sub (20.1+x)}Ni{sub 6.7}B{sub 22.7}Si{sub 5.3}Nb{sub 5} (x=0–10) have a supercooled liquid region (∆T{sub x}) of about 44 K. The saturation magnetizations (J{sub s}) for as-cast BMG alloys were in the range of 0.62 T−0.81 T. - Highlights: • The effect of Fe concentration on the glass forming ability. • The substitution of an appropriate amount of Fe can enhance the GFA. • The substitution of Fe for Co also improves soft magnetic properties of the BMGs. • The high of J{sub s} 0.62−0.81 T with a low H{sub c} of 2−289 A/m of the alloys.

  2. Dynamics of glass-forming liquids

    DEFF Research Database (Denmark)

    Hansen, Henriette Wase

    on alpha relaxation dynamics, and for the two van der Waals liquids, also when we have separation of timescales, i.e. the alpha relaxation is not contributing to the picosecond dynamics. The concept of isomorphs is observed to break down in two cases for the hydrogen bonding system: in density scaling......The overall theme of this work has been to experimentally test the shoving model and isomorph theory related to the dynamics of glass-forming liquids, both of which, rather than being universal explanations, are expected to work in the simplest case. We test the connection between fast and slow...... dynamics in light of the shoving model from the temperature dependence of the mean-squared displacement from neutron scattering at nanosecond timescale and the elastic modulus from shear mechanics. We find the fast dynamics to correlate with the alpha relaxation time and fragility in agreement...

  3. Alloy with metallic glass and quasi-crystalline properties

    Science.gov (United States)

    Xing, Li-Qian; Hufnagel, Todd C.; Ramesh, Kaliat T.

    2004-02-17

    An alloy is described that is capable of forming a metallic glass at moderate cooling rates and exhibits large plastic flow at ambient temperature. Preferably, the alloy has a composition of (Zr, Hf).sub.a Ta.sub.b Ti.sub.c Cu.sub.d Ni.sub.e Al.sub.f, where the composition ranges (in atomic percent) are 45.ltoreq.a.ltoreq.70, 3.ltoreq.b.ltoreq.7.5, 0.ltoreq.c.ltoreq.4, 3.ltoreq.b+c.ltoreq.10, 10.ltoreq.d.ltoreq.30, 0.ltoreq.e.ltoreq.20, 10.ltoreq.d+e.ltoreq.35, and 5.ltoreq.f.ltoreq.15. The alloy may be cast into a bulk solid with disordered atomic-scale structure, i.e., a metallic glass, by a variety of techniques including copper mold die casting and planar flow casting. The as-cast amorphous solid has good ductility while retaining all of the characteristic features of known metallic glasses, including a distinct glass transition, a supercooled liquid region, and an absence of long-range atomic order. The alloy may be used to form a composite structure including quasi-crystals embedded in an amorphous matrix. Such a composite quasi-crystalline structure has much higher mechanical strength than a crystalline structure.

  4. Correlations between elastic moduli and properties in bulk metallic glasses

    International Nuclear Information System (INIS)

    Wang Weihua

    2006-01-01

    A survey of the elastic, mechanical, fragility, and thermodynamic properties of bulk metallic glasses (BMGs) and glass-forming liquids is presented. It is found that the elastic moduli of BMGs have correlations with the glass transition temperature, melting temperature, mechanical properties, and even liquid fragility. On the other hand, the elastic constants of available BMGs show a rough correlation with a weighted average of the elastic constants for the constituent elements. Although the theoretical and physical reasons for the correlations are to be clarified, these correlations could assist in understanding the long-standing issues of glass formation and the nature of glass and simulate the work of theorists. Based on the correlation, we show that the elastic moduli can assist in selecting alloying components for controlling the elastic properties and glass-forming ability of the BMGs and thus can guide BMG design. As case study, we report the formation of the families of rare-earth-based BMGs with controllable properties

  5. Approximation of Moessbauer spectra of metallic glasses

    International Nuclear Information System (INIS)

    Miglierini, M.; Sitek, J.

    1988-01-01

    Moessbauer spectra of iron-rich metallic glasses are approximated by means of six broadened lines which have line position relations similar to those of α-Fe. It is shown via the results of the DISPA (dispersion mode vs. absorption mode) line shape analysis that each spectral peak is broadened owing to a sum of Lorentzian lines weighted by a Gaussian distribution in the peak position. Moessbauer parameters of amorphous metallic Fe 83 B 17 and Fe 40 Ni 40 B 20 alloys are presented, derived from the fitted spectra. (author). 2 figs., 2 tabs., 21 refs

  6. Corrosion resistant metallic glasses for biosensing applications

    Science.gov (United States)

    Sagasti, Ariane; Lopes, Ana Catarina; Lasheras, Andoni; Palomares, Verónica; Carrizo, Javier; Gutierrez, Jon; Barandiaran, J. Manuel

    2018-04-01

    We report the fabrication by melt spinning, the magnetic and magnetoelastic characterization and corrosion behaviour study (by potentiodynamic methods) of an Fe-based, Fe-Ni-Cr-Si-B metallic glass to be used as resonant platform for biological and chemical detection purposes. The same study has been performed in Fe-Co-Si-B (with excellent magnetoelastic properties) and Fe-Ni-B (with good corrosion properties due to the substitution of Co by Ni) composition amorphous alloys. The well-known, commercial metallic glass with high corrosion resistance Metglas 2826MB®(Fe40Ni38Mo4B18), widely used for such biological and chemical detection purposes, has been also fully characterized and used as reference. For our Fe-Ni-Cr-Si-B alloy, we have measured values of magnetization (1.22 T), magnetostriction (11.5 ppm) and ΔE effect (6.8 %) values, as well as corrosion potential (-0.25 V), current density (2.54 A/m2), and polarization resistance (56.22 Ω.cm2) that make this composition very promising for the desired biosensing applications. The obtained parameters from our exhaustive characterization are compared with the values obtained for the other different composition metallic glasses and discussed in terms of Ni and Cr content.

  7. Corrosion resistant metallic glasses for biosensing applications

    Directory of Open Access Journals (Sweden)

    Ariane Sagasti

    2018-04-01

    Full Text Available We report the fabrication by melt spinning, the magnetic and magnetoelastic characterization and corrosion behaviour study (by potentiodynamic methods of an Fe-based, Fe-Ni-Cr-Si-B metallic glass to be used as resonant platform for biological and chemical detection purposes. The same study has been performed in Fe-Co-Si-B (with excellent magnetoelastic properties and Fe-Ni-B (with good corrosion properties due to the substitution of Co by Ni composition amorphous alloys. The well-known, commercial metallic glass with high corrosion resistance Metglas 2826MB®(Fe40Ni38Mo4B18, widely used for such biological and chemical detection purposes, has been also fully characterized and used as reference. For our Fe-Ni-Cr-Si-B alloy, we have measured values of magnetization (1.22 T, magnetostriction (11.5 ppm and ΔE effect (6.8 % values, as well as corrosion potential (-0.25 V, current density (2.54 A/m2, and polarization resistance (56.22 Ω.cm2 that make this composition very promising for the desired biosensing applications. The obtained parameters from our exhaustive characterization are compared with the values obtained for the other different composition metallic glasses and discussed in terms of Ni and Cr content.

  8. Analysis of form deviation in non-isothermal glass molding

    Science.gov (United States)

    Kreilkamp, H.; Grunwald, T.; Dambon, O.; Klocke, F.

    2018-02-01

    Especially in the market of sensors, LED lighting and medical technologies, there is a growing demand for precise yet low-cost glass optics. This demand poses a major challenge for glass manufacturers who are confronted with the challenge arising from the trend towards ever-higher levels of precision combined with immense pressure on market prices. Since current manufacturing technologies especially grinding and polishing as well as Precision Glass Molding (PGM) are not able to achieve the desired production costs, glass manufacturers are looking for alternative technologies. Non-isothermal Glass Molding (NGM) has been shown to have a big potential for low-cost mass manufacturing of complex glass optics. However, the biggest drawback of this technology at the moment is the limited accuracy of the manufactured glass optics. This research is addressing the specific challenges of non-isothermal glass molding with respect to form deviation of molded glass optics. Based on empirical models, the influencing factors on form deviation in particular form accuracy, waviness and surface roughness will be discussed. A comparison with traditional isothermal glass molding processes (PGM) will point out the specific challenges of non-isothermal process conditions. Furthermore, the underlying physical principle leading to the formation of form deviations will be analyzed in detail with the help of numerical simulation. In this way, this research contributes to a better understanding of form deviations in non-isothermal glass molding and is an important step towards new applications demanding precise yet low-cost glass optics.

  9. Anomalies in the Thermophysical Properties of Undercooled Glass-Forming Alloys

    Science.gov (United States)

    Hyers, Robert W.; Rogers, Jan R.; Kelton, Kenneth F.; Gangopadhyay, Anup

    2008-01-01

    The surface tension, viscosity, and density of several bulk metallic glass-forming alloys have been measured using noncontact techniques in the electrostatic levitation facility (ESL) at NASA Marshall Space Flight Center. All three properties show unexpected behavior in the undercooled regime. Similar deviations were previously observed in titanium-based quasicrystal-forming alloys,but the deviations in the properties of the glass-forming alloys are much more pronounced. New results for anomalous thermophysical properties in undercooled glass-forming alloys will be presented and discussed.

  10. Friction behavior of glass and metals in contact with glass in various environments

    Science.gov (United States)

    Buckley, D. H.

    1973-01-01

    Sliding friction experiments have been conducted for heat-resistant glass and metals in contact with glass. These experiments were conducted in various environments including vacuum, moist air, dry air, octane, and stearic acid in hexadecane. Glass exhibited a higher friction force in moist air than it did in vacuum when in sliding contact with itself. The metals, aluminum, iron, and gold, all exhibited the same friction coefficient when sliding on glass in vacuum as glass sliding on glass. Gold-to-glass contacts were extremely sensitive to the environment despite the relative chemical inertness of gold.

  11. Bulk metallic glasses: A new class of engineering materials

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    been discovered. Glass-forming ability depends on various factors like enthalpy ... The determination of a glass transition temperature in ... Rao (1980) has postulated that an alloy with the smallest possible molar volume is most prone to glass ...

  12. A machine learning approach for the classification of metallic glasses

    Science.gov (United States)

    Gossett, Eric; Perim, Eric; Toher, Cormac; Lee, Dongwoo; Zhang, Haitao; Liu, Jingbei; Zhao, Shaofan; Schroers, Jan; Vlassak, Joost; Curtarolo, Stefano

    Metallic glasses possess an extensive set of mechanical properties along with plastic-like processability. As a result, they are a promising material in many industrial applications. However, the successful synthesis of novel metallic glasses requires trial and error, costing both time and resources. Therefore, we propose a high-throughput approach that combines an extensive set of experimental measurements with advanced machine learning techniques. This allows us to classify metallic glasses and predict the full phase diagrams for a given alloy system. Thus this method provides a means to identify potential glass-formers and opens up the possibility for accelerating and reducing the cost of the design of new metallic glasses.

  13. Mie scattering in heavy-metal fluoride glasses

    International Nuclear Information System (INIS)

    Edgar, A.

    1996-01-01

    Heavy-metal fluoride glasses comprise mixtures of heavy-cation fluorides such as those of zirconium, barium, and lanthanum together with some stabilising fluorides such as AlF 3 . For particular relative proportions, the mixtures form a glass rather than a polycrystalline material when quenched from the melt. The particularly useful features of these glasses are the wide spectral region (∼200nm-8000nm) over which they are transparent, the low minimum attenuation at the centre of the spectral window, and the ease with which optically-active rare-earth ions can be incorporated, leading to potential applications in passive and active fibre optics. The minimal attenuation, which is potentially lower than for silica fibre, is generally limited by wavelength-independent scattering by particle and gas bubble inclusions. We have observed a new wavelength-dependent scattering effect in fluoride glass of the well-known composition ZLABN20. In this paper, we report on work in progress on the optical extinction and scattering spectrum of the fluoride glasses, and discuss the spectra in terms of Mie's scattering theory. The chemical nature of the scattering centres in these nominally 'pure' glasses is at present a puzzle, and relative merits of various possible models will be compared

  14. Polymorphic crystallization of metal-metalloid-glasses above the glass transition temperature

    International Nuclear Information System (INIS)

    Koster, U.; Schunemann, U.; Stephenson, G.B.; Brauer, S.; Sutton, M.

    1992-01-01

    Crystallization of metal-metalloid glasses is known to proceed by nucleation and growth processes. Using crystallization statistics in partially crystallized glasses, at temperatures below the glass transition temperature, time-dependent heterogeneous nucleation has been found to occur at a number of quenched-in nucleation sites. Close to the glass transition temperature crystallization proceeds so rapidly that partially crystallized microstructures could not be obtained. Initial results form fully crystallized glasses exhibit evidence for a transient homogeneous nucleation process at higher temperatures. These conclusions are derived post mortem. At there may be some change of the microstructure after crystallization is finished or during he subsequent quenching, it is desirable to directly obtain information during the early stages of crystallization. Recently reported work by Sutton et al. showed that structural changes can be observed in situ during crystallization by time-resolved x-ray diffraction on time scales as short as milliseconds. The aim o the paper is to present the authors study of the crystallization behavior at temperatures near the glass transition by in-situ x-ray diffraction studies and by microstructural analysis after rapid heating experiments. The results are compared to those derived from a computer model of the crystallization process

  15. Elastic properties of superconducting bulk metallic glasses

    International Nuclear Information System (INIS)

    Hempel, Marius

    2015-01-01

    Within the framework of this thesis the elastic properties of a superconducting bulk metallic glass between 10 mK and 300 K were first investigated. In order to measure the entire temperature range, in particular the low temperature part, new experimental techniques were developed. Using an inductive readout scheme for a double paddle oscillator it was possible to determine the internal friction and the relative change of sound velocity of bulk metallic glasses with high precision. This allowed for a detailed comparison of the data with different models. The analysis focuses on the low temperature regime where the properties of glassy materials are governed by atomic tunneling systems as described by the tunneling model. The influence of conduction electrons in the normal conducting state and quasiparticles in the superconducting state of the glass were accounted for in the theoretical description, resulting in a good agreement over a large temperature range between measured data and prediction of the tunneling model. This allowed for a direct determination of the coupling constant between electrons and tunneling systems. In the vicinity of the transition temperature Tc the data can only be described if a modified distribution function of the tunneling parameters is applied.

  16. Green Lubricants for Metal Forming

    DEFF Research Database (Denmark)

    Bay, Niels

    2010-01-01

    The increasing focus on legislation towards diminishing the impact on working environment as well as external environment has driven efforts to develop new, environmentally benign lubricants for metal forming. The present paper gives an overview of these efforts to substitute environmentally...

  17. Glass Transition, Crystallization of Glass-Forming Melts, and Entropy

    Directory of Open Access Journals (Sweden)

    Jürn W. P. Schmelzer

    2018-02-01

    Full Text Available A critical analysis of possible (including some newly proposed definitions of the vitreous state and the glass transition is performed and an overview of kinetic criteria of vitrification is presented. On the basis of these results, recent controversial discussions on the possible values of the residual entropy of glasses are reviewed. Our conclusion is that the treatment of vitrification as a process of continuously breaking ergodicity with entropy loss and a residual entropy tending to zero in the limit of zero absolute temperature is in disagreement with the absolute majority of experimental and theoretical investigations of this process and the nature of the vitreous state. This conclusion is illustrated by model computations. In addition to the main conclusion derived from these computations, they are employed as a test for several suggestions concerning the behavior of thermodynamic coefficients in the glass transition range. Further, a brief review is given on possible ways of resolving the Kauzmann paradox and its implications with respect to the validity of the third law of thermodynamics. It is shown that neither in its primary formulations nor in its consequences does the Kauzmann paradox result in contradictions with any basic laws of nature. Such contradictions are excluded by either crystallization (not associated with a pseudospinodal as suggested by Kauzmann or a conventional (and not an ideal glass transition. Some further so far widely unexplored directions of research on the interplay between crystallization and glass transition are anticipated, in which entropy may play—beyond the topics widely discussed and reviewed here—a major role.

  18. Talc-silicon glass-ceramic waste forms for immobilization of high- level calcined waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1993-06-01

    Talc-silicon glass-ceramic waste forms are being evaluated as candidates for immobilization of the high level calcined waste stored onsite at the Idaho Chemical Processing Plant. These glass-ceramic waste forms were prepared by hot isostatically pressing a mixture of simulated nonradioactive high level calcined waste, talc, silicon and aluminum metal additives. The waste forms were characterized for density, chemical durability, and glass and crystalline phase compositions. The results indicate improved density and chemical durability as the silicon content is increased

  19. Density and glass forming ability in amorphous atomic alloys: The role of the particle softness

    International Nuclear Information System (INIS)

    Douglass, Ian; Hudson, Toby; Harrowell, Peter

    2016-01-01

    A key property of glass forming alloys, the anomalously small volume difference with respect to the crystal, is shown to arise as a direct consequence of the soft repulsive potentials between metals. This feature of the inter-atomic potential is demonstrated to be responsible for a significant component of the glass forming ability of alloys due to the decrease in the enthalpy of fusion and the associated depression of the freezing point.

  20. Density and glass forming ability in amorphous atomic alloys: The role of the particle softness

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, Ian; Hudson, Toby; Harrowell, Peter [School of Chemistry, University of Sydney, Sydney, NSW (Australia)

    2016-04-14

    A key property of glass forming alloys, the anomalously small volume difference with respect to the crystal, is shown to arise as a direct consequence of the soft repulsive potentials between metals. This feature of the inter-atomic potential is demonstrated to be responsible for a significant component of the glass forming ability of alloys due to the decrease in the enthalpy of fusion and the associated depression of the freezing point.

  1. Mesomorphic glass nanocomposites made of metal alkanoates and nanoparticles as emerging nonlinear-optical materials

    Science.gov (United States)

    Garbovskiy, Y.; Klimusheva, G.; Mirnaya, T.

    2016-09-01

    Mesomorphic metal alkanoates is very promising yet overlooked class of nonlinear-optical materials. Metal alkanoates can exhibit a broad variety of condensed states of matter including solid crystals, plastic crystals, lyotropic and thermotropic ionic liquid crystals, liquids, mesomorphic glasses, and Langmuir-Blodgett films. Glass-forming properties of metal alkanoates combined with their use as nano-reactors and anisotropic host open up simple and efficient way to design various photonic nanomaterials. Despite very interesting physics, the experimental data on optical and nonlinearoptical properties of such materials are scarce. The goal of the present paper is to fill the gap by discussing recent advances in the field of photonic materials made of metal alkanoates, organic dyes, and nanoparticles. Optical and nonlinear-optical properties of the following materials are reviewed: (i) mesomorphic glass doped with organic dyes; (ii) smectic glass composed of cobalt alkanoates; (iii) semiconductor nanoparticles embedded in a glassy host; (iv) metal nanoparticles - glass (the cobalt octanoate) nanocomposites.

  2. Phase boundary effects in metal matrix embedded glasses

    International Nuclear Information System (INIS)

    Schiewer, E.

    1979-01-01

    An investigation was performed to study reactions at the phase boundaries of glass-lead composites at temperatures up to the softening point of the glass. Some metal was oxidized at the boundary and penetrated into the glass. Solid-state diffusion was rate controlling. In the case of a phosphate glass, fission products were depleted in the boundary area. Molybdenum migrated into the lead, and cesium migrated into the glass core. 2 figures, 3 tables

  3. Stability of bulk metallic glass structure

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D.B.

    2003-06-18

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub (80-x)}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  4. Glass forming ability: Miedema approach to (Zr, Ti, Hf)-(Cu, Ni) binary and ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Joysurya [Department of Chemical, Materials and Biomolecular Engineering, 191 Auditorium Road, University of Connecticut, Storrs 06269, CT (United States)], E-mail: jbasu@engr.uconn.edu; Murty, B.S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Ranganathan, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2008-10-06

    Miedema's approach has been useful in determining the glass forming composition range for a particular alloy system. The concept of mixing enthalpy and mismatch entropy can be used in order to quantify Inoue's criteria of bulk metallic glass formation. In the present study, glass forming composition range has been determined for different binary and ternary (Zr, Ti, Hf)-(Cu, Ni) alloys based on the mixing enthalpy and mismatch entropy calculations. Though copper and nickel appear next to each other in the periodic table, the glass forming ability of the copper and nickel bearing alloys is different. Thermodynamic analysis reveals that the glass forming behaviour of Zr and Hf is similar, whereas it is different from that of Ti. The smaller atomic size of Ti and the difference in the heat of mixing of Ti, Zr, Hf with Cu and Ni leads to the observed changes in the glass forming behaviour. Enthalpy contour plots can be used to distinguish the glass forming compositions on the basis of the increasing negative enthalpy of the composition. This method reveals the high glass forming ability of binary Zr-Cu, Hf-Cu, Hf-Ni systems over a narrow composition range.

  5. An electron microscopy appraisal of tensile fracture in metallic glasses

    International Nuclear Information System (INIS)

    Matthews, D.T.A.; Ocelik, V.; Bronsveld, P.M.; De Hosson, J.Th.M.

    2008-01-01

    Three glass-forming alloy compositions were chosen for ribbon production and subsequent electron microscopy studies. In situ tensile testing with transmission electron microscopy (TEM), followed by ex situ TEM and ex situ scanning electron microscopy (SEM), allowed the deformation processes in tensile fracture of metallic glasses to be analysed. In situ shear band propagation was found to be jump-like, with the jump sites correlating with the formation of secondary shear bands. The effect of structural relaxation by in situ heating is also discussed. Nanocrystallization near the fracture surface was observed; however, no crystallization was also reported in the same sample and the reasons for this are discussed. Both the TEM and the SEM observations confirmed the presence of a liquid-like layer on or near the fracture surface of the ribbons. The formation of a liquid-like layer was characterized by the vein geometries and vein densities on the fracture surfaces and its dependence on shear displacement, δ, is discussed. A simple model is adapted to relate the temperature rise during shear banding to the glass transition and melting temperatures and this is used to explain the variety of fracture surfaces which are developed for macroscopically identical tensile testing of metallic glasses together with features which exhibit local melting

  6. Heavy metal oxide glasses as gamma rays shielding material

    International Nuclear Information System (INIS)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir

    2016-01-01

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal (_5_6Ba, _6_4Gd, _8_2Pb, _8_3Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  7. Heavy metal oxide glasses as gamma rays shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir, E-mail: dr.tejbir@gmail.com

    2016-10-15

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal ({sub 56}Ba, {sub 64}Gd, {sub 82}Pb, {sub 83}Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  8. Glass ceramics for sealing to high-thermal-expansion metals

    International Nuclear Information System (INIS)

    Wilder, J.A. Jr.

    1980-10-01

    Glass ceramics were studied, formulated in the Na 2 O CaO.P 2 O 5 , Na 2 O.BaOP 2 O 5 , Na 2 O.Al 2 O 3 .P 2 O 5 , and Li 2 O.BaO.P 2 O 5 systems to establish their suitability for sealing to high thermal expansion metals, e.g. aluminum, copper, and 300 series stainless steels. Glass ceramics in Na 2 O.CaO.P 2 O 5 and Na 2 O.BaO.P 2 O 5 systems have coefficients of thermal expansion in the range 140 x 10 -1 per 0 C less than or equal to α less than or equal to 225 x 10 -7 per 0 C and fracture toughness values generally greater than those of phosphate glasses; they are suitable for fabricating seals to high thermal expansion metals. Crystal phases include NaPo 3 , (NaPO 3 ) 3 , NaBa(PO 3 ) 3 , and NaCa(PO 3 ) 3 . Glass ceramics formed in the Na 2 O.Al 2 O 3 .P 2 O 5 systems have coefficients of thermal expansion greater than 240 x 10 -7 per 0 C, but they have extensive microcracking. Due to their low thermal expansion values (α less than or equal to 120 x 10 -7 per 0 C), glass ceramics in the Li 2 O.BaO.P 2 O 5 system are unsuitable for sealing to high thermal expansion metals

  9. Examining metallic glass formation in LaCe:Nb by ion implantation

    Directory of Open Access Journals (Sweden)

    Sisson Richard

    2017-01-01

    Full Text Available In order to combine niobium (Nb with lanthanum (La and cerium (Ce, Nb ions were deposited within a thin film of these two elements. According to the Hume-Rothery rules, these elements cannot be combined into a traditional crystalline metallic solid. The creation of an amorphous metallic glass consisting of Nb, La, and Ce is then investigated. Amorphous metallic glasses are traditionally made using fast cooling of a solution of molten metals. In this paper, we show the results of an experiment carried out to form a metallic glass by implanting 9 MeV Nb 3+ atoms into a thin film of La and Ce. Prior to implantation, the ion volume distribution is calculated by Monte Carlo simulation using the SRIM tool suite. Using multiple methods of electron microscopy and material characterization, small quantities of amorphous metallic glass are indeed identified.

  10. Characterisation of metallic glass incorporated Zircaloy-2 weldments

    International Nuclear Information System (INIS)

    Mishra, S.; Savalia, R.T.; Bhanumurthy, K.; Dey, G.K.; Banerjee, S.

    1995-01-01

    In this study the effect of incorporation of Zr based Fe and Ni bearing metallic glass in spot welds in Zircaloy components has been examined. A comparison of strength and microstructure of the welded joint with and without glass has been carried out. The welded joint with metallic glass has been found to be stronger than the one without metallic glass. The microstructure of the welded region with metallic glass has been found to comprise a large region having martensite. This large martensitic region has also been found to have considerable amount of excess solute (Fe, Ni). The higher strength of the weld with metallic glass seems to originate due to solid solution strengthening, small grain size and the presence of martensitic structure over a large region. (orig.)

  11. Structure of the glass-forming metallic liquids by ab-initio and classical molecular dynamics, a case study: Quenching the Cu{sub 60}Ti{sub 20}Zr{sub 20} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Amokrane, S.; Ayadim, A.; Levrel, L. [Groupe “Physique des Liquides et Milieux Complexes,” Faculté des Sciences et Technologie, Université Paris-Est (Créteil), 61 av. du Général de Gaulle, 94010 Créteil Cedex (France)

    2015-11-21

    We consider the question of the amorphization of metallic alloys by melt quenching, as predicted by molecular dynamics simulations with semi-empirical potentials. The parametrization of the potentials is discussed on the example of the ternary Cu-Ti-Zr transition metals alloy, using the ab-initio simulation as a reference. The pair structure in the amorphous state is computed from a potential of the Stillinger-Weber form. The transferability of the parameters during the quench is investigated using two parametrizations: from solid state data, as usual and from a new parametrization on the liquid structure. When the adjustment is made on the pair structure of the liquid, a satisfactory transferability is found between the pure components and their alloys. The liquid structure predicted in this way agrees well with experiment, in contrast with the one obtained using the adjustment on the solid. The final structure, after quenches down to the amorphous state, determined with the new set of parameters is shown to be very close to the ab-initio one, the latter being in excellent agreement with recent X-rays diffraction experiments. The corresponding critical temperature of the glass transition is estimated from the behavior of the heat capacity. Discussion on the consistency between the structures predicted using semi-empirical potentials and ab-initio simulation, and comparison of different experimental data underlines the question of the dependence of the final structure on the thermodynamic path followed to reach the amorphous state.

  12. Glass-ceramic hermetic seals to high thermal expansion metals

    Science.gov (United States)

    Kramer, D.P.; Massey, R.T.

    1987-04-28

    A process for forming glass-ceramic materials from an alkaline silica-lithia glass composition comprising 60-72 mole-% SiO/sub 2/, 18-27 mole-% Li/sub 2/O, 0-5 mole-% Al/sub 2/O/sub 3/, 0-6 mole-% K/sub 2/O, 0-3 mole-% B/sub 2/O/sub 3/, and 0.5-2.5 mole-% P/sub 2/O/sub 5/, which comprises heating said glass composition at a first temperature within the 950-1050/degree/C range for 5-60 minutes, and then at a devitrification temperature within the 700-900/degree/C range for about 5-300 minutes to obtain a glass-ceramic having a thermal expansion coefficient of up to 210 x 10/sup /minus/7///degree/C. These ceramics form strong, hermetic seals with high expansion metals such as stainless steel alloys. An intermediate nucleation heating step conducted at a temperature within the range of 675-750/degree/C for 10-120 minutes may be employed between the first stage and the devitrification stage. 1 fig., 2 tabs.

  13. Roles of Co element in Fe-based bulk metallic glasses utilizing industrial FeB alloy as raw material

    Directory of Open Access Journals (Sweden)

    Shouyuan Wang

    2017-08-01

    Full Text Available A series of Fe-based bulk metallic glasses were fabricated by a conventional copper mold casting method using a kind of Fe-B industrial raw alloy. It is found that Fe-B-Y-Nb bulk metallic glass with 3 at% of Co addition possesses the best glass forming ability, thermal stability, hardness, magnetic property and anti-corrosion property. The hardness test result indicates a synchronically trend with glass-forming ability parameters. The excellent glass-forming ability and a combination of good mechanical and functional properties suggest that the alloys in this work might be good candidates for commercial use.

  14. Glass forms for immobilization of Hanford wastes

    International Nuclear Information System (INIS)

    Schulz, W.W.; Dressen, A.L.; Hobbick, C.W.; Babad, H.

    1975-03-01

    Approximately 140 million liters of solid salt cake (mainly NaNO 3 ), produced by evaporation of aged alkaline high-level liquid wastes, will be stored in underground tanks when the present Hanford Waste Management Program is completed in the early 1980's. At this time also, large volumes of various other solid radioactive wastes (sludges, excavated Pu-contaminated soil, and doubly encapsulated 137 CsCl and 90 SrF 2 ) will be stored on the Hanford Reservation. All these solid wastes can be converted to immobile silicate and aluminosilicate glasses of low water leachability by melting them at 1100 0 to 1400 0 C with appropriate amounts of basalt (or sand) and other glass-formers such as B 2 O 3 or CaO. Reviewed in this paper are formulations and other melt conditions used successfully in batch tests to make glasses from actual and synthetic wastes; leachability and other properties of these glasses show them to be satisfactory vehicles for immobilization of the Hanford wastes. (U.S.)

  15. Glass Forming Ability in Systems with Competing Orderings

    Science.gov (United States)

    Russo, John; Romano, Flavio; Tanaka, Hajime

    2018-04-01

    Some liquids, if cooled rapidly enough to avoid crystallization, can be frozen into a nonergodic glassy state. The tendency for a material to form a glass when quenched is called "glass-forming ability," and it is of key significance both fundamentally and for materials science applications. Here, we consider liquids with competing orderings, where an increase in the glass-forming ability is signaled by a depression of the melting temperature towards its minimum at triple or eutectic points. With simulations of two model systems where glass-forming ability can be tuned by an external parameter, we are able to interpolate between crystal-forming and glass-forming behavior. We find that the enhancement of the glass-forming ability is caused by an increase in the structural difference between liquid and crystal: stronger competition in orderings towards the melting point minimum makes a liquid structure more disordered (more complex). This increase in the liquid-crystal structure difference can be described by a single adimensional parameter, i.e., the interface energy cost scaled by the thermal energy, which we call the "thermodynamic interface penalty." Our finding may provide a general physical principle for not only controlling the glass-forming ability but also the emergence of glassy behavior of various systems with competing orderings, including orderings of structural, magnetic, electronic, charge, and dipolar origin.

  16. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-01-01

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.(1) The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  17. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  18. Pressure-induced polyamorphism in lanthanide-solute metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangliang; Li, Renfeng; Liu, Haozhe [Harbin Institute of Technology, Harbin (China); Center for High Pressure Science Technology Advanced Research, Changchun (China); Wang, Luhong [Harbin Institute of Technology, Harbin (China); Qu, Dongdong [School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD (Australia); Zhao, Haiyan [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States); Center for Advanced Energy Studies, University of Idaho, Idaho Falls, ID (United States); Chapman, Karena W.; Chupas, Peter J. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States)

    2017-06-15

    The electronic structure inheritance of lanthanide-solvent atoms in lanthanide-based metallic glasses has been proposed. Is a polyamorphism possible in lanthanide-solute metallic glasses? So far, polyamorphic phase transitions in metallic glass containing lanthanide have been observed only in lanthanide-solvent metallic glasses. Here, a pressure-induced transition between two distinct amorphous states, accompanied by a 7% volume collapse at ambient pressure, was observed in La{sub 43.4}Pr{sub 18.6}Al{sub 14}Cu{sub 24} metallic glass, with low lanthanide content, by using in situ X-ray total scattering method. The transformation also indicated by changes in short range and medium range order. Thus, it is proposed that the lanthanide-solute metallic glasses also inherit 4f electronic transition from pure lanthanide element in polyamorphic transition. This discovery offers a supplement to research on lanthanide-based metallic glasses, which further provides a new perspective of the polyamorphic transformation in metallic glasses containing lanthanide element. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Oxidation behaviour of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Wang, Bin

    2011-01-01

    The Zr-based bulk metallic glasses, developed since the late 1980's, have very interesting mechanical properties, which can be considered for many applications including working under oxidizing atmosphere conditions at high temperatures. It is therefore interesting to study their oxidation resistance and to characterize the oxide scale formed on alloys surface. The fundamental objective of this thesis is to enhance the understanding of the role of various thermodynamic and chemistry parameters on the oxidation behaviour of the Zr-based bulk metallic glasses at high temperature under dry air, to determine the residual stresses in the oxide layer, in comparison with their crystalline alloys with the same chemical composition after an annealing treatment. The oxidation kinetics of these glasses and the crystalline structure of oxide scale ZrO 2 depend on the temperature and the oxidation duration: for short periods of oxidation or at a temperature below Tg, the kinetics follows a parabolic law, whereas, if the sample is oxidized at T ≥ Tg, the kinetics can be divided into two parts. The crystalline counterparts are oxidized by a parabolic rule whatever the temperature; for long oxidation duration at a temperature close to Tg, the kinetics becomes more complex because of the crystallisation of the glasses during the oxidation tests. Also the crystalline structure of the oxide layers depends on the oxidation temperature: the oxide layer consists only in tetragonal Zirconia at T ≤ Tg, while monoclinic Zirconia was formed at higher temperature. The mechanism of the formation of the oxide scale is due to both the interior diffusion of Oxygen ions and the external diffusion of Zirconium ions. However the diffusion of Zirconium ions slows gradually during the crystallisation process of the glass matrix. When the crystallisation is completed, the formation of Zirconia is controlled by only the internal diffusion of oxygen ions. The corresponding residual stresses

  20. Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses

    International Nuclear Information System (INIS)

    Kato, H.; Chen, H.-S.; Inoue, A.

    2008-01-01

    The thermal expansion coefficients of 13 metallic glasses were measured using a thermo-mechanical analyser. A unique correlation was found between the linear thermal expansion coefficient and the glass transition temperature-their product is nearly constant ∼8.24 x 10 -3 . If one assumes the Debye expression for thermal activation, the total linear thermal expansion up to glass transition temperature (T g ) is reduced to 6 x 10 -3 , nearly 25% of that at the fusion of pure metals

  1. Fe-based bulk metallic glasses used for magnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Serban, Va; Codrean, C; UTu, D [Politehnica University of Timisoara, Depart for Materials Science and Welding, 1, M. Viteazu Bvd., 300222, Timisoara (Romania); ErcuTa, A, E-mail: serban@mec.upt.r [West University of Timisoara, Faculty of Physics, 4, Vasile Parvan Bdv., Timisoara 300223 (Romania)

    2009-01-01

    The casting in complex shapes (tubular) and the main magnetic properties of bulk metallic glasses (BMG) alloys from the ferromagnetic Fe-Cr-Ni-Ga-P-Si-C system, with a small addition of Ni (3%) were studied. Samples as rods and sockets having the thickness up to 1 mm were obtained from master alloys by melt injection by low cooling rates into a Cu mold and annealed in order to ensure adequate magnetic requirements. The structure was examined by X-ray diffraction (XRD) and the basic magnetic properties (coercivity, magnetic remanence, initial susceptibility, etc.) were determined by conventional low frequency induction method. The experimental investigations on producing of BMG ferromagnetic alloys with 3% Ni show the possibility to obtain magnetic shields of complex shape with satisfactory magnetic properties. The presence of Ni does not affect the glass forming ability, but reduce the shielding capacity.

  2. Cavitation instability in bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    Dai L.H.

    2015-01-01

    Full Text Available Recent experiments have shown that fracture surfaces of bulk metallic glasses (BMGs usually exhibit an intriguing nanoscale corrugation like fractographic feature mediated by nanoscale void formation. We attribute the onset of this nanoscale corrugation to TTZs (tension transformation zones mediated cavitation. In our recent study, the spall experiments of Zr-based BMG using a single-stage light gas gun were performed. To uncover the mechanisms of the spallation damage nucleation and evolution, the samples were designed to be subjected to dynamic tensile loadings of identical amplitude but with different durations by making use of the multi-stress pulse and the double-flyer techniques. It is clearly revealed that the macroscopic spall fracture in BMGs originates from the nucleation, growth and coalescence of micro-voids. Then, a microvoid nucleation model of BMGs based on free volume theory is proposed, which indicates that the nucleation of microvoids at the early stage of spallation in BMGs is resulted from diffusion and coalescence of free volume. Furthermore, a theoretical model of void growth in BMGs undergoing remote dynamic hydrostatic tension is developed. The critical condition of cavitation instability is obtained. It is found that dynamic void growth in BMGs can be well controlled by a dimensionless inertial number characterizing the competition between intrinsic and extrinsic time scales. To unveil the atomic-level mechanism of cavitation, a systematic molecular dynamics (MD simulation of spallation behaviour of a binary metallic glass with different impact velocities was performed. It is found that micro-void nucleation is determined TTZs while the growth is controlled by shear transformation zones (STZs at atomic scale.

  3. Behavior of uranium and its surrogates in molten aluminosilicate glasses in contact with liquid metals

    International Nuclear Information System (INIS)

    Chevreux, Pierrick

    2016-01-01

    This study concerns an innovative process used for conditioning nuclear waste that contain metallic parts contaminated with actinides. High actinides concentrations are expected to be incorporated in the glass melt in contact with the molten metals. Among these metals, aluminum and/or stainless steel impose a strongly reducing environment to the glass melt involving redox reactions. These reactions modify actinides oxidation states and therefore change their solubilities in the glass and could also reduce them into the metallic form. In this work, we focus on the behavior of uranium and its surrogates, namely hafnium and neodymium, in aluminosilicate glasses from the Na 2 O-CaO-SiO 2 -Al 2 O 3 system melted in highly reducing conditions. The first step consists in comparing the hafnium and uranium solubilities in the glass as functions of redox conditions and glass composition. A methodology has been set up and a specific device has been used to control the oxygen fugacity and the alkali content of the glass. The results show that uranium is far less soluble in the glass than hafnium (Hf(IV)) in reducing conditions. The uranium solubility ranges from 4 to 7 wt% UO 2 for an oxygen fugacity below 10 -14 atm at 1250 C-1400 C. Uranium oxidation states have been investigated by X-ray absorption spectroscopy (XANES). It has been pointed out that U(IV) is the main form in the glass for such imposed oxygen fugacities. The second step of this work is to identify the glass-metal interaction mechanisms in order to determine the localization of uranium and its surrogates (Nd, Hf) in the glass-metal system. Mechanisms are mostly ruled by the presence of metallic aluminum and are similar for uranium, neodymium and hafnium. Glass-metal interaction kinetics demonstrate that uranium and its surrogates can temporarily be reduced into the metallic form for particular conditions. A re-oxidation occurs with time which is in good agreement with thermodynamics. Regarding uranium, the re

  4. Combined PIXE and SEM study of the behaviour of trace elements in gel formed around implant coated with bioactive glass

    Science.gov (United States)

    Oudadesse, H.; Irigaray, J. L.; Barbotteau, Y.; Brun, V.; Moretto, Ph.

    2002-05-01

    Bioactive glasses are used as coating biomaterials to facilitate anchorage of metallic prostheses implanted into the body. The aim of this work is to study the behavior of gel formed in contact with alloys and BVA and BVH bioactive glasses implanted. Cylinders of metallic implants composed by Ti, Al and V, are coated with bioactive glass. Three sheep were implanted for different time length: 3, 6 and 12 months in the femoral epiphysis. Results obtained with particle induced X-ray emission and scanning electron microscopy show that BVA coating induces a better contact between the metallic implant and bone. On the other hand, BVH coating prevents corrosion from the metallic implant.

  5. Are the dynamics of silicate glasses and glass-forming liquids embedded in their elastic properties?

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Mauro, John C.

    According to the elastic theory of the glass transition, the dynamics of glasses and glass-forming liquids are controlled by the evolution of shear modulus. In particular, the elastic shoving model expresses dynamics in terms of an activation energy required to shove aside the surrounding atoms......, which is determined by the shear modulus. First, we here present an in situ high-temperature Brillouin spectroscopy test of the shoving model near the glass transition of eight aluminosilicate glass-forming systems. We find that the measured viscosity data agree qualitatively with the measured...... temperature dependence of shear moduli, as predicted by the shoving model. However, the model systematically underpredicts the values of fragility. Second, we also present a thorough test of the shoving model for predicting the low temperature dynamics of an aluminosilicate glass system. This is done...

  6. Immobilisation of radwastes in glass containers and products formed thereby

    International Nuclear Information System (INIS)

    Macedo, P.B.; Simmons, C.J.; Lagakos, N.; Simmons, J.H.; Tran, D.C.

    1980-01-01

    A method of preventing the dissemination of toxic material to the environment comprises forming an admixture of toxic material and glass packing in a hollow doped glass container of high silica content, or forming the admixture in a first container and then depositing at least a portion of the admixture in a hollow doped glass container of high silica content. The glass container is then heated to collapse its walls and to seal the container so that the toxic material is entrapped and sealed within the collapsed doped glass container. The thermal expansion coefficient of the container may be decreased prior to use by exchanging hydrogen ion in pores thereof with other cations followed by collapsing the pores. (author)

  7. Ultra-stiff metallic glasses through bond energy density design.

    Science.gov (United States)

    Schnabel, Volker; Köhler, Mathias; Music, Denis; Bednarcik, Jozef; Clegg, William J; Raabe, Dierk; Schneider, Jochen M

    2017-07-05

    The elastic properties of crystalline metals scale with their valence electron density. Similar observations have been made for metallic glasses. However, for metallic glasses where covalent bonding predominates, such as metalloid metallic glasses, this relationship appears to break down. At present, the reasons for this are not understood. Using high energy x-ray diffraction analysis of melt spun and thin film metallic glasses combined with density functional theory based molecular dynamics simulations, we show that the physical origin of the ultrahigh stiffness in both metalloid and non-metalloid metallic glasses is best understood in terms of the bond energy density. Using the bond energy density as novel materials design criterion for ultra-stiff metallic glasses, we are able to predict a Co 33.0 Ta 3.5 B 63.5 short range ordered material by density functional theory based molecular dynamics simulations with a high bond energy density of 0.94 eV Å -3 and a bulk modulus of 263 GPa, which is 17% greater than the stiffest Co-B based metallic glasses reported in literature.

  8. Production of sodalite waste forms by addition of glass

    International Nuclear Information System (INIS)

    Pereira, C.

    1995-01-01

    Spent nuclear fuel can be treated in a molten salt electrorefiner for conversion into metal and mineral waste forms for geologic disposal. Sodalite is one of the mineral waste forms under study. Fission products in the molten salt are ion-exchanged into zeolite A, which is converted to sodalite and consolidated. Sodalite can be formed directly from mixtures of salt and zeolite A at temperatures above 975 K; however, nepheline is usually produced as a secondary phase. Addition of small amounts of glass frit to the mixture reduced nepheline formation significantly. Loss of fission products was not observed for reaction below 1000 K. Hot-pressing of the sodalite powders yielded dense pellets (∼2.3 g/cm 3 ) without any loss of fission product species. Normalized release rates were below 1 g/m 2 ·day for pre-washed samples in 28-day leach tests based on standard MCC-1 tests but increased with the presence of free salt on the sodalite

  9. Effects of partitioned enthalpy of mixing on glass-forming ability

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wen-Xiong; Zhao, Shi-Jin, E-mail: shijin.zhao@shu.edu.cn [Institute of Materials Science, Shanghai University, Shanghai 200072 (China)

    2015-04-14

    We explore the inherent reason at atomic level for the glass-forming ability of alloys by molecular simulation, in which the effect of partitioned enthalpy of mixing is studied. Based on Morse potential, we divide the enthalpy of mixing into three parts: the chemical part (Δ E{sub nn}), strain part (Δ E{sub strain}), and non-bond part (Δ E{sub nnn}). We find that a large negative Δ E{sub nn} value represents strong AB chemical bonding in AB alloy and is the driving force to form a local ordered structure, meanwhile the transformed local ordered structure needs to satisfy the condition (Δ E{sub nn}/2 + Δ E{sub strain}) < 0 to be stabilized. Understanding the chemical and strain parts of enthalpy of mixing is helpful to design a new metallic glass with a good glass forming ability. Moreover, two types of metallic glasses (i.e., “strain dominant” and “chemical dominant”) are classified according to the relative importance between chemical effect and strain effect, which enriches our knowledge of the forming mechanism of metallic glass. Finally, a soft sphere model is established, different from the common hard sphere model.

  10. Cast bulk metallic glass alloys: prospects as wear materials

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Dogan, Omer N.; Shiflet, Gary J. (Dept. of Materials Science and Engineering, University of Virginia, Charlottesville, VA)

    2005-01-01

    Bulk metallic glasses are single phase materials with unusual physical and mechanical properties. One intriguing area of possible use is as a wear material. Usually, pure metals and single phase dilute alloys do not perform well in tribological conditions. When the metal or alloy is lightweight, it is usually soft leading to galling in sliding situations. For the harder metals and alloys, their density is usually high, so there is an energy penalty when using these materials in wear situations. However, bulk metallic glasses at the same density are usually harder than corresponding metals and dilute single phase alloys, and so could offer better wear resistance. This work will discuss preliminary wear results for metallic glasses with densities in the range of 4.5 to 7.9 g/cc. The wear behavior of these materials will be compared to similar metals and alloys.

  11. Leaching behavior of glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1981-11-01

    Glass ceramic waste forms have been investigated as alternatives to borosilicate glasses for the immobilization of high-level radioactive waste at Pacific Northwest Laboratory (PNL). Three glass ceramic systems were investigated, including basalt, celsian, and fresnoite, each containing 20 wt % simulated high-level waste calcine. Static leach tests were performed on seven glass ceramic materials and one parent glass (before recrystallization). Samples were leached at 90 0 C for 3 to 28 days in deionized water and silicate water. The results, expressed in normalized elemental mass loss, (g/m 2 ), show comparable releases from celsian and fresnoite glass ceramics. Basalt glass ceramics demonstrated the lowest normalized elemental losses with a nominal release less than 2 g/m 2 when leached in polypropylene containers. The releases from basalt glass ceramics when leached in silicate water were nearly identical with those in deionized water. The overall leachability of celsian and fresnoite glass ceramics was improved when silicate water was used as the leachant

  12. Characterization and durability testing of a glass-bonded ceramic waste form

    International Nuclear Information System (INIS)

    Johnson, S. G.

    1998-01-01

    Argonne National Laboratory is developing a glass bonded ceramic waste form for encapsulating the fission products and transuranics from the conditioning of metallic reactor fuel. This waste form is currently being scaled to the multi-kilogram size for encapsulation of actual high level waste. This paper will present characterization and durability testing of the ceramic waste form. An emphasis on results from application of glass durability tests such as the Product Consistency Test and characterization methods such as X-ray diffraction and scanning electron microscopy. The information presented is based on a suite of tests utilized for assessing product quality during scale-up and parametric testing

  13. Shielding of electromagnetic fields by metallic glasses with Fe and Co matrix

    International Nuclear Information System (INIS)

    Nowosielski, R.; Griner, S.

    1997-01-01

    The influence of chemical composition and magnetic and electric properties for shielding of electromagnetic fields with frequency 10-1000 kHz, by metallic glasses has been analysed. For investigation were selected two groups of metallic glasses with matrix of Fe and Co. Particularly, in there were selected metallic glasses as follows; Fe 78 Si 9 B 13 , Co 68 Fe 4 Mo 1.5 Si 13.5 B 13 , Co 69 Mo 2 Fe 4 Si 14 B 11 , Co 70.5 Fe 2.5 Mn 4 Mo 1 Si 9 B 15 . The experiments were realised for casting metallic glasses by the CMBS method in the form of strips with width 10 mm. Obtained results of shielding indicate clear for very good shielding effectiveness of one layer shields both electric and magnetic components of electromagnetic fields, although shielding of magnetic component is smaller than electric. (author). 17 refs, 5 figs, 9 tabs

  14. Ductility and work hardening in nano-sized metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D. Z., E-mail: dzchen@caltech.edu [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); Gu, X. W. [Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States); An, Q.; Goddard, W. A. [Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States); Greer, J. R. [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); The Kavli Nanoscience Institute, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-02-09

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  15. Molecular dynamics study of the ternary Cu50Ti25Zr25 bulk glass forming alloy

    Directory of Open Access Journals (Sweden)

    Celtek M.

    2011-05-01

    Full Text Available The structure and thermodynamic properties of a ternary Cu50Ti25Zr25 metallic glass forming alloy in solid-liquid to glass phases were studied using molecular dynamics (MD method based on tight-binding (TB potentials. An atomic description of the melting, glass formation and crystallization process has been analyzed using different heating and cooling rates. The computed Glass Forming Ability (GFA parameters are in good agreement with experimental data. The structure analysis of the Cu50Ti25Zr25 based on molecular dynamics simulation will be also presented and compared with available MD results. We have also discussed the crystallization transition with two different interatomic potentials used in this work

  16. A diffraction study of Cosub(81.5)Bsub(18.5) binary metallic glass

    International Nuclear Information System (INIS)

    Chadha, G.S.; Sakata, M.; Cowlam, N.

    1981-01-01

    Neutron and X-ray diffraction experiments are made on Cosub(81.5)Bsub(18.5) metallic glass. The neutron scattering cross section for boron is greater than that for cobalt, and the structure factor obtained with neutrons is rather different from that obtained with X-rays, which has the usual characteristic form. These structure factors, and the reduced RDF's which are derived from them can be qualitatively explained in terms of the dominant contributions from the metal-metal and metal-metalloid correlations. The local topological order in Cosub(81.5)Bsub(18.5) appears to be similar to that of other transition metal-metalloid glasses, with a metal-metalloid distance slightly shorter than the metal-metal spacing and a coordination number close to 12. (author)

  17. Glass-Forming Ability of Soda Lime Borate Liquids

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Mauro, J.C.; Smedskjær, Morten Mattrup

    2012-01-01

    We investigate the composition dependence of glass-forming ability (GFA) of a series of iron-containing soda lime borate liquids by substituting Na2O for B2O3. We have characterized GFA by measuring the glass stability against crystallization using a differential scanning calorimeter (DSC......). The results show that the GFA decreases when substituting Na2O for B2O3. Moreover, we find that there is no direct link between the kinetic fragility and GFA for the soda lime borate series studied herein. We have also discovered and clarified a striking thermal history dependence of the glass stability...

  18. Glass formation, magnetic properties and magnetocaloric effect of ternary Ho–Al–Co bulk metallic glass

    International Nuclear Information System (INIS)

    Zhang, Huiyan; Li, Ran; Ji, Yunfei; Liu, Fanmao; Luo, Qiang; Zhang, Tao

    2012-01-01

    A ternary Ho–Al–Co system with high glass-forming ability (GFA) was developed and fully glassy rods with diameters up to 1 cm can be produced for the best glass former of Ho 55 Al 27.5 Co 17.5 alloy. The thermal stability and low-temperature magnetic properties of the Ho 55 Al 27.5 Co 17.5 bulk metallic glass (BMG) were studied. The magnetic transition temperature of this alloy is ∼14 K as determined by the thermomagnetic measurement. Two indicators, i.e. isothermal magnetic entropy change (ΔS M ) and the relative cooling power (RCP), were adopted to evaluate the magnetocaloric effect (MCE) of the alloy under a low magnetic field up to 2 T, which can be generated by permanent magnets. The values of |ΔS M | and RCP are 7.98 J kg −1 K −1 and 191.5 J kg −1 , respectively. The Ho 55 Al 27.5 Co 17.5 BMG with good MCE and high GFA provides an attractive candidate for magnetic refrigeration applications, like hydrogen liquefaction and storage. - Highlights: ► A ternary Ho–Al–Co BMG system with high glass-forming ability was developed. ► Fully glassy rods of Ho 55 Al 27.5 Co 17.5 alloy were produced up to 1 cm in diameter. ► The thermal stability and magnetic properties of the BMG were evaluated. ► The BMG exhibits good magnetocaloric effect under a low magnetic field up to 2 T.

  19. Nucleation and growth of a multicomponent metallic glass

    Indian Academy of Sciences (India)

    Unknown

    corrosion resistance (Karve and Kulkarni 1985). The industrial ... Thermal analysis has been extensively used for study- ... is extremely important to determine the activation energy ... nucleation and growth, respectively for the metallic glass.

  20. SPP propagation in nonlinear glass-metal interface

    KAUST Repository

    Sagor, Rakibul Hasan; Alsunaidi, Mohammad A.; Ooi, Boon S.

    2011-01-01

    The non-linear propagation of Surface-Plasmon-Polaritons (SPP) in single interface of metal and chalcogenide glass (ChG) is considered. A time domain simulation algorithm is developed using the Finite Difference Time Domain (FDTD) method

  1. Clustered field evaporation of metallic glasses in atom probe tomography

    International Nuclear Information System (INIS)

    Zemp, J.; Gerstl, S.S.A.; Löffler, J.F.; Schönfeld, B.

    2016-01-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3 nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different – as yet unknown – physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses. - Highlights: • Field evaporation of metallic glasses is heterogeneous on a scale of up to 3 nm. • Amount of clustered evaporation depends on ion species and temperature. • Length scales of clustered evaporation and correlative evaporation are similar.

  2. Five-fold local symmetry in metallic liquids and glasses

    International Nuclear Information System (INIS)

    Li M Z; Li F X; Zhang H P; Peng H L; Hu Y C; Wang W H

    2017-01-01

    The structure of metallic glasses has been a long-standing mystery. Owing to the disordered nature of atomic structures in metallic glasses, it is a great challenge to find a simple structural description, such as periodicity for crystals, for establishing the structure–property relationship in amorphous materials. In this paper, we briefly review the recent developments of the five-fold local symmetry in metallic liquids and glasses and the understanding of the structure–property relationship based on this parameter. Experimental evidence demonstrates that five-fold local symmetry is found to be general in metallic liquids and glasses. Comprehensive molecular dynamics simulations show that the temperature evolution of five-fold local symmetry reflects the structural evolution in glass transition in cooling process, and the structure–property relationship such as relaxation dynamics, dynamic crossover phenomena, glass transition, and mechanical deformation in metallic liquids and glasses can be well understood base on the simple and general structure parameter of five-fold local symmetry. (paper)

  3. Chemical and topological short-range order in metallic glasses

    International Nuclear Information System (INIS)

    Vincze, I.; Schaafsma, A.S.; Van der Woude, F.; Kemeny, T.; Lovas, A.

    1980-10-01

    Moessbauer spectroscopy is applied to the study of chemical short-range order in (Fe,Ni)B metallic glasses. It is found that the atomic arrangement in melt-quenched glasses closely resembles that of the crystalline counterparts (Fe 3 B is tetragonal, Ni 3 B is orthorombic). The distribution of transition metal atoms is not random at high Ni concentrations: Ni atoms prefer a neighbourhood with a higher boron coordination. (P.L.)

  4. Zr-(Cu,Ag)-Al bulk metallic glasses

    International Nuclear Information System (INIS)

    Jiang, Q.K.; Wang, X.D.; Nie, X.P.; Zhang, G.Q.; Ma, H.; Fecht, H.-J.; Bendnarcik, J.; Franz, H.; Liu, Y.G.; Cao, Q.P.; Jiang, J.Z.

    2008-01-01

    In this paper, we report the formation of a series Zr-(Cu,Ag)-Al bulk metallic glasses (BMGs) with diameters at least 20 mm and demonstrate the formation of about 25 g amorphous metallic ingots in a wide Zr-(Cu,Ag)-Al composition range using a conventional arc-melting machine. The origin of high glass-forming ability (GFA) of the Zr-(Cu,Ag)-Al alloy system has been investigated from the structural, thermodynamic and kinetic points of view. The high GFA of the Zr-(Cu,Ag)-Al system is attributed to denser local atomic packing and the smaller difference in Gibbs free energy between amorphous and crystalline phases. The thermal, mechanical and corrosion properties, as well as elastic constants for the newly developed Zr-(Cu,Ag)-Al BMGs, are also presented. These newly developed Ni-free Zr-(Cu,Ag)-Al BMGs exhibit excellent combined properties: strong GFA, high strength, high compressive plasticity, cheap and non-toxic raw materials and biocompatible property, as compared with other BMGs, leading to their potential industrial applications

  5. Glass-forming liquids: one or more "order" parameters"

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Christensen, Tage Emil; Jakobsen, Bo

    2008-01-01

    We first summarize the classical arguments that the vast majority of glass-forming liquids require more than one ‘order' parameter for their description. Critiques against this conventional wisdom are then presented, and it is argued that the matter deserves to be reconsidered in the light...... that a description with a single "order" parameter applies to a good approximation whenever thermal equilibrium fluctuations of fundamental variables like energy and pressure are strongly correlated. Results from computer simulations showing that this is the case for a number of simple glass-forming liquids, as well...

  6. Structural origin of fractional Stokes-Einstein relation in glass-forming liquids.

    Science.gov (United States)

    Pan, Shaopeng; Wu, Z W; Wang, W H; Li, M Z; Xu, Limei

    2017-01-06

    In many glass-forming liquids, fractional Stokes-Einstein relation (SER) is observed above the glass transition temperature. However, the origin of such phenomenon remains elusive. Using molecular dynamics simulations, we investigate the break- down of SER and the onset of fractional SER in a model of metallic glass-forming liquid. We find that SER breaks down when the size of the largest cluster consisting of trapped atoms starts to increase sharply at which the largest cluster spans half of the simulations box along one direction, and the fractional SER starts to follows when the largest cluster percolates the entire system and forms 3-dimentional network structures. Further analysis based on the percolation theory also confirms that percolation occurs at the onset of the fractional SER. Our results directly link the breakdown of the SER with structure inhomogeneity and onset of the fraction SER with percolation of largest clusters, thus provide a possible picture for the break- down of SER and onset of fractional SER in glass-forming liquids, which is is important for the understanding of the dynamic properties in glass-forming liquids.

  7. Glass ceramic-to-metal seals

    Science.gov (United States)

    Not Available

    1982-04-19

    A glass ceramic composition prepared by subjecting a glass composition comprising, by weight, 65 to 80% SiO/sub 2/, 8 to 16% Li/sub 2/O, 2 to 8% Al/sub 2/O/sub 3/, 1 to 8% K/sub 2/O, 1 to 5% P/sub 2/O/sub 5/ and 1.5 to 7% B/sub 2/O/sub 3/, to the following processing steps of heating the glass composition to a temperature sufficient to crystallize lithium metasilicate therein, holding the glass composition at a temperature and for a time period sufficient to dissolve the lithium metasilicate therein thereby creating cristobalite nucleii, cooling the glass composition and maintaining the composition at a temperature and for a time period sufficient to recrystallize lithium metasilicate therein, and thermally treating the glass composition at a temperature and for a time period sufficient to caus growth of cristobalite and further crystallization of lithium metasilicate producing a glass ceramic composition having a specific thermal expansion coefficient and products containing said composition.

  8. Copper oxide content dependence of crystallization behavior, glass forming ability, glass stability and fragility of lithium borate glasses

    International Nuclear Information System (INIS)

    Soliman, A.A.; Kashif, I.

    2010-01-01

    Differential thermal analysis (DTA) and X-ray diffraction (XRD) have been employed to investigate the copper oxide content dependence of the glass transition temperatures data, activation energy for the glass transition E t , glass stability GS, fragility index Fi, the glass-forming ability (GFA) and crystallization behavior of {(100-x) mol% Li 2 B 4 O 7 -x mol% CuO} glass samples, where x=0-40 mol% CuO. From the dependence of the glass transition temperature T g on the heating rate β, the fragility, F i , and the activation energy, E t , have been calculated. It is seen that F i and E t are attained their minimum values at 0 x -T g , SCL region and the GS. The GFA has been investigated on the basis of Hruby parameter K H , which is a strong indicator of GFA, and the relaxation time. Results of GFA are in good agreement with the fragility index, F i , calculations indicating that {90Li 2 B 4 O 7 .10CuO} is the best glass former. The stronger glass forming ability has decreasing the fragility index. XRD result indicates that no fully amorphous samples but a mixture of crystalline and amorphous phases are formed in the samples containing x>25 mol% CuO and below it composed of glassy phase. Increasing the CuO content above 25 mol% helps the crystallization process, and thus promotes a distinct SCL region. XRD suggests the presence of micro-crystallites of remaining residual amorphous matrix by increasing the CuO content.

  9. Triad 'Metal – Enamel – Glass'

    International Nuclear Information System (INIS)

    Mukhina, T; Petrova, S; Toporova, V; Fedyaeva, T

    2014-01-01

    This article shows how to change the color of metal and glass. Both these materials are self–sufficient, but sometimes used together. For example, enameling. In this case, the adhesion between metal substrate and stekloobraznae enamel layer, which was conducted on a stretching and a bend, was tested

  10. Effect of structural relaxation of metallic glasses on positron annihilation parameters

    International Nuclear Information System (INIS)

    Tian Decheng; Xiong Liangyue; Tang Zhongxun; Xu Yinhua

    1987-07-01

    The results of a comparative study of positron lifetime and a Doppler broadening line-shape parameter for two metallic glasses are presented. The change of lifetime τ-bar and the S-parameter for these two metallic glasses are shown to have a common feature, i.e. at the initial stage of structural relaxation, τ-bar presents a peak-form as a function of annealing time or temperature while the S-parameter decreases monotonically. A possible mechanism is proposed for explaining the peak-form of τ-bar which has been observed in many metallic glasses; the initial rise and the following decrease of τ-bar are attributed to the homogenization of defects taking place during the structural relaxation. The monotonic behaviour of the S-parameter seems to indicate that the annihilation of positrons in free state with the high momentum core electrons is negligible. (author). 8 refs, 2 figs

  11. Direct conversion of radioactive and chemical waste containing metals, ceramics, amorphous solids, and organics to glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1994-01-01

    The Glass Material Oxidation and Dissolution System (CMODS) is a new process for direct conversion of radioactive, mixed, and chemical wastes to glass. The wastes can be in the chemical forms of metals, ceramics, amorphous solids, and organics. GMODS destroys organics and it incorporates heavy metals and radionuclides into a glass. Processable wastes may include miscellaneous spent fuels (SF), SF hulls and hardware, plutonium wastes in different forms, high-efficiency particulate air (HEPA) filters, ion-exchange resins, failed equipment, and laboratory wastes. Thermodynamic calculations indicate theoretical feasibility. Small-scale laboratory experiments (< 100 g per test) have demonstrated chemical laboratory feasibility for several metals. Additional work is needed to demonstrate engineering feasibility

  12. A new lubricant carrier for metal forming

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Bay, Niels; Tang, Peter Torben

    2009-01-01

    A lubricant carrier for metal forming processes is developed. Surfaces with pores of micrometer size for entrapping lubricant are generated by electrochemical deposition of an alloy, consisting of two immiscible metals, of which one metal subsequently is etched away leaving 5 mu m layers with a s...... extrusion at high reduction and excessive stroke comparing with conventionally lubrication using phosphate coating and soap....

  13. Transparent form-active system with structural glass

    NARCIS (Netherlands)

    Nikolaou, M.S.N.; Veer, F.A.; Eigenraam, P.

    2015-01-01

    Free-form transparent wide-span spatial structures which have being constructed so far, are based on the concept of three sets of components, the structural components, usually steel elements to ensure both compressive and tensional capacity; the glass cladding elements for expressing transparency;

  14. Thermodynamic and relative approach to compute glass-forming

    Indian Academy of Sciences (India)

    This study deals with the evaluation of glass-forming ability (GFA) of oxides and is a critical reading of Sun and Rawson thermodynamic approach to quantify this aptitude. Both approaches are adequate but ambiguous regarding the behaviour of some oxides (tendency to amorphization or crystallization). Indeed, ZrO2 and ...

  15. Bulk metallic glasses and high entropy alloys for reprocessing applications

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.; Jayaraj, J.

    2016-01-01

    Recent breakthroughs in materials engineering have generated complex alloys that retain a glassy state in bulk form (bulk metallic glasses or BMGs) via ingot casting. High corrosion resistance is expected for BMGs (amorphous) as they are free from defects associated with the crystalline state such as grain boundaries, dislocations and stacking faults. Compared with conventional alloys containing one or two principal elements, the recently developed HEAs are usually composed of five or more elements with equimolar or near equimolar elemental fractions, which forms single solid solution phase. These HEAs exhibit excellent microstructural stability with better mechanical, wear and corrosion resistance properties as they are essentially single phase. Reprocessing of spent fuel from the fast breeder reactor involves the use of high concentration of (11.5 M) nitric acid under boiling conditions for the dissolution of the fuel. Conventional AISI type 304LSS and nitric acid grade 304L stainless steel would undergo inter-granular corrosion under these conditions and cannot be used for the fabrication of dissolver vessel. Currently titanium is used and zirconium alloys are proposed for future dissolver applications. Thus searching for newer materials with higher corrosion resistance suggests metallic glasses and HEAs for critical components of the dissolver application. Several Zr-based glassy alloys with different microstructural states and Ni-Nb based glassy alloys and TiZrHfNbTa HEA were cast and characterized for microstructure and corrosion resistance in nitric acid medium. From these studies, factors such as the corrosive environment (nitric acid, chloride and fluoride), and the presence of passivating elements in the alloy were emphasized for better corrosion resistance of BMGs and HEA. Attempts were also made to prepare coatings of Zr-and Ni-based glassy alloys on 304LSS by laser based deposition technique and their corrosion properties were evaluated. (author)

  16. Formation of bulk metallic glasses in the Fe-M-Y-B (M = transition metal) system

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.M. [International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Chang, C.T. [Institute for Material Research, Tohoku University, Sendai 980-8577 (Japan); Chang, Z.Y.; Wang, X.D.; Cao, Q.P. [International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Shen, B.L.; Inoue, A. [Institute for Material Research, Tohoku University, Sendai 980-8577 (Japan); Jiang, J.Z. [International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)], E-mail: jiangjz@zju.edu.cn

    2008-07-28

    In this work, quaternary Fe{sub 72-x}M{sub x}Y{sub 6}B{sub 22} (M = Ni, Co and Mo) bulk metallic glasses (BMGs) have been developed. It is found that a fully amorphous Fe{sub 68}Mo{sub 4}Y{sub 6}B{sub 22} cylindrical rod with 6.5 mm in diameter can be prepared by copper mold injection. These alloys have a high glass transition temperature of about 900 K with high fracture strengths up to about 3 GPa although they are still brittle. Magnetic measurements reveal that they are ferromagnetic at ambient temperature with low coercive force of about 2 A/m, saturation magnetization of about 0.7 T and effective permeability of about 7000 at 100 kHz. The newly developed Fe-based quaternary alloys exhibit excellent combination properties: superior glass forming ability (GFA), high glass transition temperature, and soft magnetic properties, which could have potential applications in electronic industries. Furthermore, the effect of Mo addition on GFA in the Fe-Y-B BMG system has been discussed compared with those of Ni and Co additions.

  17. Fast and slow crystal growth kinetics in glass-forming melts

    Energy Technology Data Exchange (ETDEWEB)

    Orava, J.; Greer, A. L., E-mail: alg13@cam.ac.uk [WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan and Department of Materials Science and Metallurgy, 27 Charles Babbage Road, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2014-06-07

    Published values of crystal growth rates are compared for supercooled glass-forming liquids undergoing congruent freezing at a planar crystal-liquid interface. For the purposes of comparison pure metals are considered to be glass-forming systems, using data from molecular-dynamics simulations. For each system, the growth rate has a maximum value U{sub max} at a temperature T{sub max} that lies between the glass-transition temperature T{sub g} and the melting temperature T{sub m}. A classification is suggested, based on the lability (specifically, the propensity for fast crystallization), of the liquid. High-lability systems show “fast” growth characterized by a high U{sub max}, a low T{sub max} / T{sub m}, and a very broad peak in U vs. T / T{sub m}. In contrast, systems showing “slow” growth have a low U{sub max}, a high T{sub max} / T{sub m}, and a sharp peak in U vs. T / T{sub m}. Despite the difference of more than 11 orders of magnitude in U{sub max} seen in pure metals and in silica, the range of glass-forming systems surveyed fit into a common pattern in which the lability increases with lower reduced glass-transition temperature (T{sub g} / T{sub m}) and higher fragility of the liquid. A single parameter, a linear combination of T{sub g} / T{sub m} and fragility, can show a good correlation with U{sub max}. For all the systems, growth at U{sub max} is coupled to the atomic/molecular mobility in the liquid. It is found that, across the diversity of glass-forming systems, T{sub max} / T{sub g} = 1.48 ± 0.15.

  18. Hydrogen-induced high damping of bulk metallic glasses

    International Nuclear Information System (INIS)

    Hasegawa, M.

    2009-01-01

    There are two important topics concerned with the recent researches on the damping materials of hydrogenated metallic glasses (HMGs). One is the mechanism of the high hydrogen-induced internal friction of HMGs. The other is the materials processing of 'bulk' HMGs for engineering. This article describes the summary of our recent studies on these topics. The first one is closely related to the local structure of the metallic glasses. Therefore, our recent results on the intermediate-range local structure of the simple two Zr-based metallic glasses are described, which has been clarified by the Voronoi analysis using the experimental data of the neutron diffraction measurements. The hydrogen-induced internal friction of HMGs is also discussed on the basis of these recent results of the local structure of the metallic glasses. In terms of the second topic, the first successful preparation of heavily hydrogenated Zr-based bulk HMG rods without hydrogen-induced surface embrittlement is described. They are prepared by a powder-compact-melting and liquid-casting process using Zr-Al-Ni-Cu metallic glass and ZrH 2 powders as the starting materials. It has been found that they have high damping properties.

  19. Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates

    International Nuclear Information System (INIS)

    Chang, P.-Y.; Yeh, P.-C.; Yang, J.-M.

    2008-01-01

    The fatigue crack initiation behavior of a high modulus and hybrid boron/glass/aluminum fiber/metal laminate (FML) was investigated experimentally and analytically. Two types of hybrid boron/glass/aluminum FMLs were fabricated and studied, which consisted of aluminum alloy sheets as the metal layers and a mixture of boron fibers and glass fibers as the composite layers. For the first type, the boron fiber/prepreg and the glass fiber/prepreg were used separately in the composite layers, and for the second type, the boron fibers and the glass fibers were mingled together to form a hybrid boron/glass/prepreg composite layer. These hybrid FMLs were consolidated using an autoclave curing process. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, would improve the fatigue crack initiation life of the Al sheet. The experimental results clearly showed that the fatigue crack initiation lives for both types of hybrid boron/glass/aluminum FMLs were superior to the monolithic aluminum alloy under the same loading condition. An analytical approach was proposed to calculate the fatigue crack initiation lives of hybrid boron/glass/aluminum FMLs based on the classical laminate theory and the small-crack theory. A good correlation was obtained between the predictions and the experimental results

  20. Effect of similar elements on improving glass-forming ability of La-Ce-based alloys

    International Nuclear Information System (INIS)

    Zhang Tao; Li Ran; Pang Shujie

    2009-01-01

    To date the effect of unlike component elements on glass-forming ability (GFA) of alloys have been studied extensively, and it is generally recognized that the main consisting elements of the alloys with high GFA usually have large difference in atomic size and atomic interaction (large negative heat of mixing) among them. In our recent work, a series of rare earth metal-based alloy compositions with superior GFA were found through the approach of coexistence of similar constituent elements. The quinary (La 0.5 Ce 0.5 ) 65 Al 10 (Co 0.6 Cu 0.4 ) 25 bulk metallic glass (BMG) in a rod form with a diameter up to 32 mm was synthesized by tilt-pour casting, for which the glass-forming ability is significantly higher than that for ternary Ln-Al-TM alloys (Ln = La or Ce; TM = Co or Cu) with critical diameters for glass-formation of several millimeters. We suggest that the strong frustration of crystallization by utilizing the coexistence of La-Ce and Co-Cu to complicate competing crystalline phases is helpful to construct BMG component with superior GFA. The results of our present work indicate that similar elements (elements with similar atomic size and chemical properties) have significant effect on GFA of alloys.

  1. Composition design and mechanical properties of ternary Cu–Zr–Ti bulk metallic glasses

    International Nuclear Information System (INIS)

    Pan, Ye; Zeng, Yuqiao; Jing, Lijun; Zhang, Lu; Pi, Jinhong

    2014-01-01

    Highlights: • Newly designed monolithic bulk metallic glasses are of good glass-forming ability. • Cu 50 Zr 44 Ti 6 exhibits excellent plastic deformation up to ∼7.4%. • Copious and intersected shear bans are observed in the fractography of Cu 50 Zr 44 Ti 6 . • Cu 50 Zr 44 Ti 6 has the best plasticity in the ternary Cu–Zr–Ti bulk metallic glasses. - Abstract: The new compositions of ternary Cu–Zr–Ti bulk metallic glasses are predicted by integrating calculation of vacancy formation energy, mixing enthalpy and configuration entropy of the alloys based on thermodynamics of glass formers. The monolithic amorphous rods of 3 mm diameter have been successfully fabricated, and characterized by X-ray diffractometry, differential scanning calorimetry, scanning electronic microscopy, transmission electronic microscopy and compression tests. The results show that the designed alloys possess good glass forming ability and excellent mechanical properties. The mechanical properties of the samples can be effectively improved by regulating their composition. The monolithic amorphous rod of Cu 50 Zr 44 Ti 6 exhibits a high fracture strength of 1855 MPa and excellent plastic deformation up to ∼7.4%. The formation and propagation of shear bands in samples are also investigated. The enhancement of plastic deformation is mainly contributed to multiplication and intersection of shear bands

  2. AI applications in sheet metal forming

    CERN Document Server

    Hussein, Hussein

    2017-01-01

    This book comprises chapters on research work done around the globe in the area of artificial intelligence (AI) applications in sheet metal forming. The first chapter offers an introduction to various AI techniques and sheet metal forming, while subsequent chapters describe traditional procedures/methods used in various sheet metal forming processes, and focus on the automation of those processes by means of AI techniques, such as KBS, ANN, GA, CBR, etc. Feature recognition and the manufacturability assessment of sheet metal parts, process planning, strip-layout design, selecting the type and size of die components, die modeling, and predicting die life are some of the most important aspects of sheet metal work. Traditionally, these activities are highly experience-based, tedious and time consuming. In response, researchers in several countries have applied various AI techniques to automate these activities, which are covered in this book. This book will be useful for engineers working in sheet metal industri...

  3. Waste glass/metal interactions in brines

    International Nuclear Information System (INIS)

    Shade, J.W.; Pederson, L.R.; McVay, G.L.

    1983-05-01

    Leaching studies of MCC 76-68 glass in synthetic brines high in NaCl were performed from 50 to 150 0 C and included interactive testing with ductile iron and titanium. Hydrolysis of the glass matrix was generally slower in saturated brines than in deionized water, due to a lower solubility of silica in the brines. Inclusion of ductile iron in the tests resulted in accelerated leach rates because irion-silica reactions occurred which reduced the silica saturation fraction. At 150 0 C, iron also accelerated the rate of crystalline reaction product formation which were primarily Fe-bearing sepiolite and talc. 16 references

  4. Measuring the Thermophysical and Structural Properties of Glass-Forming and Quasicrystal-Forming Liquids

    Science.gov (United States)

    Hyers, Robert W.; Bradshaw, Richard C.; Rogers, Jan R.; Gangopadhyay, Anup K.; Kelton, Ken F.

    2006-01-01

    The thermophysical properties of glass-forming and quasicrystal-forming alloys show many interesting features in the undercooled liquid range. Some of the features in the thermophysical property curves are expected to reflect changes in the structure and coordination of the liquid. These measurements require containerless processing such as electrostatic levitation to access the undercooled liquid regime. An overview of the state of the art in measuring the thermophysical properties and structure of undercooled liquid glass-forming and quasicrystal-forming alloys will be presented, along with the status of current measurements.

  5. Machine Learning Approach for Prediction and Understanding of Glass-Forming Ability.

    Science.gov (United States)

    Sun, Y T; Bai, H Y; Li, M Z; Wang, W H

    2017-07-20

    The prediction of the glass-forming ability (GFA) by varying the composition of alloys is a challenging problem in glass physics, as well as a problem for industry, with enormous financial ramifications. Although different empirical guides for the prediction of GFA were established over decades, a comprehensive model or approach that is able to deal with as many variables as possible simultaneously for efficiently predicting good glass formers is still highly desirable. Here, by applying the support vector classification method, we develop models for predicting the GFA of binary metallic alloys from random compositions. The effect of different input descriptors on GFA were evaluated, and the best prediction model was selected, which shows that the information related to liquidus temperatures plays a key role in the GFA of alloys. On the basis of this model, good glass formers can be predicted with high efficiency. The prediction efficiency can be further enhanced by improving larger database and refined input descriptor selection. Our findings suggest that machine learning is very powerful and efficient and has great potential for discovering new metallic glasses with good GFA.

  6. Simulation of Cu-Mg metallic glass: Thermodynamics and structure

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel

    2004-01-01

    We have obtained effective medium theory interatomic potential parameters suitable for studying Cu-Mg metallic glasses. We present thermodynamic and structural results from simulations of such glasses over a range of compositions. We have produced low-temperature configurations by cooling from...... the melt at as slow a rate as practical, using constant temperature and pressure molecular dynamics. During the cooling process we have carried out thermodynamic analyses based on the temperature dependence of the enthalpy and its derivative, the specific heat, from which the glass transition temperature...

  7. Relationship between the shear viscosity and heating rate in metallic glasses below the glass transition

    International Nuclear Information System (INIS)

    Khonik, Vitaly A.; Kobelev, N. P.

    2008-01-01

    It has been shown that first-order irreversible structural relaxation with distributed activation energies must lead to a linear decrease of the logarithm of Newtonian shear viscosity with the logarithm of heating rate upon linear heating of glass. Such a behavior is indeed observed in the experiments on metallic glasses. Structural relaxation-induced viscous flow leads to infra-low-frequency Maxwell viscoelastic internal friction, which is predicted to increase with the heating rate

  8. Rotation of small clusters in sheared metallic glasses

    International Nuclear Information System (INIS)

    Delogu, Francesco

    2011-01-01

    Graphical abstract: When a Cu 50 Ti 50 metallic glass is shear-deformed, the irreversible rearrangement of local structures allows the rigid body rotation of clusters. Highlights: → A shear-deformed Cu 50 Ti 50 metallic glass was studied by molecular dynamics. → Atomic displacements occur at irreversible rearrangements of local structures. → The dynamics of such events includes the rigid body rotation of clusters. → Relatively large clusters can undergo two or more complete rotations. - Abstract: Molecular dynamics methods were used to simulate the response of a Cu 50 Ti 50 metallic glass to shear deformation. Attention was focused on the atomic displacements taking place during the irreversible rearrangement of local atomic structures. It is shown that the apparently disordered dynamics of such events hides the rigid body rotation of small clusters. Cluster rotation was investigated by evaluating rotation angle, axis and lifetimes. This permitted to point out that relatively large clusters can undergo two or more complete rotations.

  9. Non-repeatability of large plasticity for Fe-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Weiming [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Sun, Baoan [Department of Mechanical and Biomedical Engineering, City University of Hong Kong (Hong Kong); Zhao, Yucheng, E-mail: zhaoyc1972@163.com [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Li, Qiang [School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046 (China); Hou, Long; Luo, Ning [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Dun, Chaochao [Department of Physics, Wake Forest University, Winston Salem, NC 27109 (United States); Zhao, Chengliang [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Ma, Zhanguo [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Liu, Haishun, E-mail: liuhaishun@126.com [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Shen, Baolong [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China)

    2016-08-15

    Serrated flow is an essential characteristic of the plastic deformation of metallic glasses. Under restricted loading conditions, the formation and expansion of shear bands act as the serrated flow of stress-strain curves in metallic glasses. In this work, serrated flows in Fe{sub 50}Ni{sub 30}P{sub 13}C{sub 7} glassy samples with different plasticity were studied. The distribution histogram shows a monotonically decreasing trend during the initial deformation stage (i.e., the plastic deformation in the range of 0–8%), whereas in the following deformation stage (i.e., a plastic deformation of 8–14%), the stress drop frequency distribution presents both a monotonically decreasing distribution and a peak shape similar to chaotic dynamics. It is shown that the spatial evolution behavior of shear bands in Fe{sub 50}Ni{sub 30}P{sub 13}C{sub 7} metallic glasses evolved from self-organized critical to chaotic dynamics in the form of serrated flow, which reveals the origin of discrete plasticity of Fe-based bulk metallic glasses. This study has potential applications for understanding the plastic deformation mechanism. - Highlights: • Two-stage deformation mechanism in Fe-based bulk metallic glasses. • Distribution of the stress drop amplitude is significantly different at two stages. • The stages are related to multiple shear bands and discrete plasticity.

  10. Non-repeatability of large plasticity for Fe-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Yang, Weiming; Sun, Baoan; Zhao, Yucheng; Li, Qiang; Hou, Long; Luo, Ning; Dun, Chaochao; Zhao, Chengliang; Ma, Zhanguo; Liu, Haishun; Shen, Baolong

    2016-01-01

    Serrated flow is an essential characteristic of the plastic deformation of metallic glasses. Under restricted loading conditions, the formation and expansion of shear bands act as the serrated flow of stress-strain curves in metallic glasses. In this work, serrated flows in Fe_5_0Ni_3_0P_1_3C_7 glassy samples with different plasticity were studied. The distribution histogram shows a monotonically decreasing trend during the initial deformation stage (i.e., the plastic deformation in the range of 0–8%), whereas in the following deformation stage (i.e., a plastic deformation of 8–14%), the stress drop frequency distribution presents both a monotonically decreasing distribution and a peak shape similar to chaotic dynamics. It is shown that the spatial evolution behavior of shear bands in Fe_5_0Ni_3_0P_1_3C_7 metallic glasses evolved from self-organized critical to chaotic dynamics in the form of serrated flow, which reveals the origin of discrete plasticity of Fe-based bulk metallic glasses. This study has potential applications for understanding the plastic deformation mechanism. - Highlights: • Two-stage deformation mechanism in Fe-based bulk metallic glasses. • Distribution of the stress drop amplitude is significantly different at two stages. • The stages are related to multiple shear bands and discrete plasticity.

  11. Superhydrophobic Zr-based metallic glass surface with high adhesive force

    Science.gov (United States)

    Li, Ning; Xia, Ting; Heng, Liping; Liu, Lin

    2013-06-01

    Micro/nano hierarchical structures were constructed on Zr35Ti30Be26.75Cu8.25 metallic glass surface by silicon moulding and subsequently chemical etching. The as-formed surface exhibited both superhydrophobicity and high adhesive force towards water. The superhydrophobicity is rationalized based on the modified Cassie-Baxter model [A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944)]. The origin of the robust adhesion is described in terms of intermolecular capillary forces. The present results not only provide a method to fabricate superhydrophobic metallic glasses surface but also explore an important industrial application as dry adhesives and transport of liquid microdroplets.

  12. Scratch test induced shear banding in high power laser remelted metallic glass layers

    NARCIS (Netherlands)

    Matthews, D. T. A.; Ocelik, V.; de Hosson, J. Th. M.

    Laser remelted surface layers of a Cu-based metallic glass forming alloy have been produced with fully amorphous depths up to 350 mu m for single track widths of around 1.3 mm and have been checked by transmission of synchrotron radiation. They have been subjected to indentation hardness and scratch

  13. Phase transformations and thermodynamics of aluminum-based metallic glasses

    Science.gov (United States)

    Gao, Changhua (Michael)

    This thesis examines the thermodynamics and associated kinetics and phase transformations of the glass forming Al-Ni-Gd and Al-Fe-Gd systems. In order to fully understand the unique glass forming ability (GFA) of Al-based metallic glasses, the ternary Al-Fe-Gd and Al-Ni-Gd systems in their Al-rich corners were examined experimentally to assist in a thermodynamic assessment. The solid-state phase equilibria are determined using XRD and TEM-EDS techniques. While this work basically confirms the solid-state equilibria in Al-Fe-Gd reported previously, the ternary phase in Al-Ni-Gd system has been identified to be Al15Ni3Gd2 rather than Al16Ni 3Gd reported in the literature. DTA analysis of 24 alloys in the Al-Fe-Gd system and 42 alloys in the Al-Ni-Gd system have yielded critical temperatures pertaining to the solid-liquid transition. Based on these data and information from the literature, a self-consistent thermodynamic database for these systems has been developed using the CALPHAD technique. Parameters describing the Gibbs free energy for various phases of the Al-Gd, Al-Fe-Gd and Al-Ni-Gd systems are manually optimized in this study. Once constructed, the database is used to calculate driving forces for nucleation of crystalline phases which can qualitatively explain the phase formation sequence during crystallization at low temperatures. It was also confirmed that alloy compositions with the lowest Gibbs free energy difference between the equilibrium state and undercooled liquid state exhibit better GFA than other chemistries. Based on 250°C isothermal devitrification phase transformations of 17 Al-Ni-Gd alloys, a phase formation sequence map is constructed. Fcc-Al nanocrystals are formed first in most of the alloys studied, but eutectic crystallization of a metastable phase and fcc-Al is also observed. Addition of Al or Ni promotes fcc-Al phase formation, while increasing Gd suppresses it. The continuous heating DSC scans revealed that crystallization in Al

  14. Conversion of ion-exchange resins, catalysts and sludges to glass with optional noble metal recovery using the GMODS process

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.

    1996-01-01

    Chemical processing and cleanup of waste streams (air and water) typically result in products, clean air, clean water, and concentrated hazardous residues (ion exchange resins, catalysts, sludges, etc.). Typically, these streams contain significant quantities of complex organics. For disposal, it is desirable to destroy the organics and immobilize any heavy metals or radioactive components into stable waste forms. If there are noble metals in the residues, it is desirable to recover these for reuse. The Glass Material Oxidation and Dissolution System (GMODS) is a new process that directly converts radioactive and hazardous chemical wastes to borosilicate glass. GMODS oxidizes organics with the residue converted to glass; converts metals, ceramics, and amorphous solids to glass; converts halides (eg chlorides) to borosilicate glass and a secondary sodium halide stream; and recovers noble metals. GMODS has been demonstrated on a small laboratory scale (hundreds of grams), and the equipment needed for larger masses has been identified

  15. Low sintering temperature glass waste forms for sequestering radioactive iodine

    Science.gov (United States)

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  16. Shear viscosity of glass-forming melts in the liquid-glass transition region

    International Nuclear Information System (INIS)

    Sanditov, D. S.

    2010-01-01

    A new approach to interpreting the hole-activation model of a viscous flow of glass-forming liquids is proposed. This model underlies the development of the concept on the exponential temperature dependence of the free energy of activation of a flow within the range of the liquid-glass transition in complete agreement with available experimental data. The 'formation of a fluctuation hole' in high-heat glass-forming melts is considered as a small-scale low-activation local deformation of a structural network, i.e., the quasi-lattice necessary for the switching of the valence bond, which is the main elementary event of viscous flow of glasses and their melts. In this sense, the hole formation is a conditioned process. A drastic increase in the activation free energy of viscous flow in the liquid-glass transition region is explained by a structural transformation that is reduced to a limiting local elastic deformation of the structural network, which, in turn, originates from the excitation (critical displacement) of a bridging atom like the oxygen atom in the Si-O-Si bridge. At elevated temperatures, as a rule, a necessary amount of excited bridging atoms (locally deformed regions of the structural network) always exists, and the activation free energy of viscous flow is almost independent of temperature. The hole-activation model is closely connected with a number of well-known models describing the viscous flow of glass-forming liquids (the Avramov-Milchev, Nemilov, Ojovan, and other models).

  17. Local structural mechanism for frozen-in dynamics in metallic glasses

    Science.gov (United States)

    Liu, X. J.; Wang, S. D.; Wang, H.; Wu, Y.; Liu, C. T.; Li, M.; Lu, Z. P.

    2018-04-01

    The nature of the glass transition is a fundamental and long-standing intriguing issue in the condensed-matter physics and materials science community. In particular, the structural response by which a liquid is arrested dynamically to form a glass or amorphous solid upon approaching its freezing temperature [the glass transition temperature (Tg)] remains unclear. Various structural scenarios in terms of the percolation theory have been proposed recently to understand such a phenomenon; however, there is still no consensus on what the general percolation entity is and how the entity responds to the sudden slowdown dynamics during the glass transition. In this paper, we demonstrate that one-dimensional local linear ordering (LLO) is a universal structural motif associated with the glass transition for various metallic glasses. The quantitative evolution of LLO with temperature indicates that a percolating LLO network forms to serve as the backbone of the rigid glass solid when the temperature approaches the freezing point, resulting in the frozen-in dynamics accompanying the glass transition. The percolation transition occurs by pinning different LLO networks together, which only needs the introduction of a small number of "joint" atoms between them, and therefore the energy expenditure is very low.

  18. Ion irradiation effect on metallic condensate adhesion to glass

    International Nuclear Information System (INIS)

    Kovalenko, V.V.; Upit, G.P.

    1984-01-01

    The ion irradiation effect on metallic condensate adhesion to glass is investigated. It has been found that in case of indium ion deposition the condensate adhesion to glass cleavages being in contact with atmosphere grows up to the level corresponding to a juvenile surface while in case of argon ion irradiation - exceeds it. It is shown that the observed adhesion growth is determined mainly by the surfwce modification comparising charge accumulation on surface, destruction of a subsurface layer and an interlayer formation in the condensate-substrate interface. The role of these factors in the course of various metals deposition is considered

  19. Influence of neutron irradiation on ferromagnetic metallic glasses

    International Nuclear Information System (INIS)

    Miglierini, M.; Nasu, Saburo; Sitek, J.

    1992-01-01

    Transmission 57 Fe Moessbauer spectroscopy is used to study effects of neutron irradiation on magnetic properties of Fe-based ferromagnetic metallic glasses. Elastic stress centers are produced during the process of neutron irradiation as a result of atom mixing. Rearrangement of the atoms causes changes in the average value of the hyperfine field distribution and orientation of the net magnetic moment. They are shown to depend on the composition of the investigated samples. Cr-doped metallic glasses depict transformation from ferromagnetic to paramagnetic state at room temperature after neutron irradiation implying changes in the Curie temperature. Presence of Ni in the samples reduces the effects of radiation damage. (orig.)

  20. Metallic glass coating on metals plate by adjusted explosive welding technique

    International Nuclear Information System (INIS)

    Liu, W.D.; Liu, K.X.; Chen, Q.Y.; Wang, J.T.; Yan, H.H.; Li, X.J.

    2009-01-01

    Using an adjusted explosive welding technique, an aluminum plate has been coated by a Fe-based metallic glass foil in this work. Scanning electronic micrographs reveal a defect-free metallurgical bonding between the Fe-based metallic glass foil and the aluminum plate. Experimental evidence indicates that the Fe-based metallic glass foil almost retains its amorphous state and mechanical properties after the explosive welding process. Additionally, the detailed explosive welding process has been simulated by a self-developed hydro-code and the bonding mechanism has been investigated by numerical analysis. The successful welding between the Fe-based metallic glass foil and the aluminum plate provides a new way to obtain amorphous coating on general metal substrates.

  1. Contour forming of metals by laser peening

    Science.gov (United States)

    Hackel, Lloyd; Harris, Fritz

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  2. Slurry erosion induced surface nanocrystallization of bulk metallic glass

    Science.gov (United States)

    Ji, Xiulin; Wu, Jili; Pi, Jinghong; Cheng, Jiangbo; Shan, Yiping; Zhang, Yingtao

    2018-05-01

    Microstructure evolution and phase transformation of metallic glasses (MGs) could occur under heating condition or mechanical deformation. The cross-section of as-cast Zr55Cu30Ni5Al10 MG rod was impacted by the solid particles when subjected to erosion in slurry flow. The surface microstructure was observed by XRD before and after slurry erosion. And the stress-driven de-vitrification increases with the increase of erosion time. A microstructure evolution layer with 1-2 μm thickness was formed on the topmost eroded surface. And a short range atomic ordering prevails in the microstructure evolution layer with crystalline size around 2-3 nm embedded in the amorphous matrix. The XPS analysis reveals that most of the metal elements in the MG surface, except for Cu, were oxidized. And a composite layer with ZrO2 and Al2O3 phases were formed in the topmost surface after slurry erosion. The cooling rate during solidification of MG has a strong influence on the slurry erosion induced nanocrystallization. And a lower cooling rate favors the surface nanocrystallization because of lower activation energy and thermo-stability. Finally, the slurry erosion induced surface nanocrystallization and microstructure evolution result in surface hardening and strengthening. Moreover, the microstructure evolution mechanisms were discussed and it is related to the cooling rate of solidification and the impact-induced temperature rise, as well as the combined effects of the impact-induced plastic flow, inter-diffusion and oxidation of the metal elements.

  3. Thermodynamics of the Gd/sub 63.2/Co/sub 36.8/ glass-forming eutectic

    International Nuclear Information System (INIS)

    Baricco, M.; Antonione, C.; Battezzati, L.

    1987-01-01

    In the last years a tendency has consolidated to investigate the properties of the liquid phase in relation to amorphization. The thermodynamic properties of glass-forming liquids show some remarkable similarities and provide a unifying picture for the understanding of glass formation. In particular the specific heat difference between liquid and crystal phases, C/sub P/, seem always positive thus enabling the liquid entropy to approach that of the solid on under-cooling towards the glass transition temperature, T/sub g/. The enthalpy of mixing in glass-forming alloys is strongly negative and depends on temperature giving rise to an excess specific heat. As the liquid and crystalline pure elements have similar specific heat and the Newmann-Kopp law is usually obeyed by solid alloys, the excess specific heat can be assimilated to G. This last quantity, therefore, determines the trend of the thermodynamic properties in the undercooling regime and ultimately the glass-forming tendency of the liquid systems. Specific heat data are available for some liquid alloys but only a few of them refer to glass-forming systems. Typical examples are Au/sub 77/Ge/sub 13.6/Si/sub 9.4/ among metal-metalloid and Mg/sub 85.5/Cu/sub 14.5/ among metal-metal systems. The authors present here a complete determination of the thermodynamic properties of the Gd/sub 63.2/Co/sub 36.8/ eutectic as an example for anthanide transition metal glass-formers. This alloy is low melting so that its liquid state is accessible by differential scanning calorimetry. It forms glasses readily by means of liquid quenching

  4. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pospiech, Doris, E-mail: pospiech@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Jehnichen, Dieter [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Starke, Sandra; Müller, Felix [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Bünker, Tobias [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Wollenberg, Anne [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Opitz, Michael; Kruspe, Rainer [IDUS Biologisch Analytisches Umweltlabor GmbH, Ottendorf-Okrilla (Germany)

    2017-03-31

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  5. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Science.gov (United States)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-03-01

    In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating's upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  6. Multifunctional methacrylate-based coatings for glass and metal surfaces

    International Nuclear Information System (INIS)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-01-01

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  7. Thermodynamic and topological instability approaches for forecasting glass-forming ability in the ternary Al-Ni-Y system

    International Nuclear Information System (INIS)

    Oliveira, M.F. de; Aliaga, L.C.R.; Bolfarini, C.; Botta, W.J.; Kiminami, C.S.

    2008-01-01

    A thermodynamic approach to predict bulk glass-forming compositions in binary metallic systems was recently proposed. In this approach, the parameter γ* = ΔH amor /(ΔH inter - ΔH amor ) indicates the glass-forming ability (GFA) from the standpoint of the driving force to form different competing phases, and ΔH amor and ΔH inter are the enthalpies for glass and intermetallic formation, respectively. Good glass-forming compositions should have a large negative enthalpy for glass formation and a very small difference for intermetallic formation, thus making the glassy phase easily reachable even under low cooling rates. The γ* parameter showed a good correlation with GFA experimental data in the Ni-Nb binary system. In this work, a simple extension of the γ* parameter is applied in the ternary Al-Ni-Y system. The calculated γ* isocontours in the ternary diagram are compared with experimental results of glass formation in that system. Despite some misfitting, the best glass formers are found quite close to the highest γ* values, leading to the conclusion that this thermodynamic approach can be extended to ternary systems, serving as a useful tool for the development of new glass-forming compositions. Finally the thermodynamic approach is compared with the topological instability criteria used to predict the thermal behavior of glassy Al alloys

  8. Liquid -to-glass transition in bulk glass-forming Cu55-xZr45Agx alloys using molecular dynamic simulations

    Directory of Open Access Journals (Sweden)

    Celtek M.

    2011-05-01

    Full Text Available We report results from molecular dynamics (MD studies concerning the microscopic structure of the ternary, bulk metallic glass-forming Cu55-x Zr45Agx (x=0,10,20 alloys using tight-binding potentials. Understanding of the nature of Glass Forming Ability (GFA of studied alloys, GFA parameters, glass transition temperature (T-g, melting temperature (T-m, reduced glass transition temperature (T-g/T-m, the supercooled liquid region and other parameters were simulated and compared with experiments. The computed pair distribution functions reproduce well experimental x-ray data of Inoue and co-workers. Structure analysis of the Cu-Zr-Ag alloy based on MD simulation will be also presented

  9. Fragility of superheated melts and glass-forming ability in Pr-based alloys

    International Nuclear Information System (INIS)

    Meng, Q.G.; Zhou, J.K.; Zheng, H.X.; Li, J.G.

    2006-01-01

    The kinetic viscosity (η) of superheated melts, thermal properties (T x , T m , T L ) and X-ray diffraction analysis on the Pr-based bulk metallic glasses (BMG) are reported and discussed. A new refined concept, the superheated fragility defined as M' = E S δ x /k B , has been developed based on common solidification theory and the Arrhenius equation. The interrelationship between this kind of fragility and the glass-forming ability (GFA) is elaborated on and evaluated in Pr-based BMG and Al-based amorphous ribbon alloys. Using viscosity data of superheated melts, it is shown, theoretically and experimentally, that the fragility parameter M' may be used as a GFA indicator for metallic alloys

  10. Focus: Nucleation kinetics of shear bands in metallic glass.

    Science.gov (United States)

    Wang, J Q; Perepezko, J H

    2016-12-07

    The development of shear bands is recognized as the primary mechanism in controlling the plastic deformability of metallic glasses. However, the kinetics of the nucleation of shear bands has received limited attention. The nucleation of shear bands in metallic glasses (MG) can be investigated using a nanoindentation method to monitor the development of the first pop-in event that is a signature of shear band nucleation. The analysis of a statistically significant number of first pop-in events demonstrates the stochastic behavior that is characteristic of nucleation and reveals a multimodal behavior associated with local spatial heterogeneities. The shear band nucleation rate of the two nucleation modes and the associated activation energy, activation volume, and site density were determined by loading rate experiments. The nucleation activation energy is very close to the value that is characteristic of the β relaxation in metallic glass. The identification of the rate controlling kinetics for shear band nucleation offers guidance for promoting plastic flow in metallic glass.

  11. Free standing bulk metallic glass microcomponents: Tooling considerations

    DEFF Research Database (Denmark)

    Byrne, Cormac; Eldrup, Morten Mostgaard; Ohnuma, Masato

    2010-01-01

    Bulk metallic glasses have enormous potential for use in small-scale devices such as MEMS and biomedical components. Thermoplastic forging of free standing components poses challenges unlike those seen when forging crystalline materials. Central to these challenges is the simultaneous advantage/disadvantage...

  12. Phonon dispersion of metallic glass CuZr{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, S [Department of Condensed Matter Chemistry and Physics, Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Kawakita, Y [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Otomo, T [Japan Proton Accelerator Research Complex, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan (Japan); Suenaga, R [Department of Condensed Matter Chemistry and Physics, Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Baron, A Q R [Materials Dynamics Laboratory, Harima RIKEN, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Tsutsui, S [Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan (Japan); Kohara, S [Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan (Japan); Takeda, S [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Itoh, K [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennnan-gun, Osaka 590-0494 (Japan); Kato, H [Institute for Material Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Fukunaga, T [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennnan-gun, Osaka 590-0494 (Japan); Hasegawa, M [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan)

    2007-12-15

    Collective dynamics of metallic glass CuZr{sub 2} has been studied in the first pseudo Brillouin zone using high-resolution inelastic X-ray scattering. Acoustic-like longitudinal propagating excitations were observed and the dispersion relation was determined. In addition of longitudinal mode, transverse mode with half excitation energy contributes to medium energy-transfer region.

  13. Interaction between electrons and tunneling levels in metallic glasses

    International Nuclear Information System (INIS)

    Black, J.L.; Gyorffy, B.L.

    1978-01-01

    A simple model in which the conduction electrons of a metallic glass experience a local time-dependent potential due to two-level tunneling states is considered. The model exhibits interesting divergent behavior which is quite different from that predicted by an earlier ''s-d Kondo'' model

  14. Process, structure, property and applications of metallic glasses

    Directory of Open Access Journals (Sweden)

    B. Geetha Priyadarshini

    2016-07-01

    Full Text Available Metallic glasses (MGs are gaining immense technological significance due to their unique structure-property relationship with renewed interest in diverse field of applications including biomedical implants, commercial products, machinery parts, and micro-electro-mechanical systems (MEMS. Various processing routes have been adopted to fabricate MGs with short-range ordering which is believed to be the genesis of unique structure. Understanding the structure of these unique materials is a long-standing unsolved mystery. Unlike crystalline counterpart, the outstanding properties of metallic glasses owing to the absence of grain boundaries is reported to exhibit high hardness, excellent strength, high elastic strain, and anti-corrosion properties. The combination of these remarkable properties would significantly contribute to improvement of performance and reliability of these materials when incorporated as bio-implants. The nucleation and growth of metallic glasses is driven by thermodynamics and kinetics in non-equilibrium conditions. This comprehensive review article discusses the various attributes of metallic glasses with an aim to understand the fundamentals of relationship process-structure-property existing in such unique class of material.

  15. Durability of adhesive glass-metal connections for structural applications

    NARCIS (Netherlands)

    Van Lancker, B.; Dispersyn, J.; De Corte, W.; Belis, J.

    2016-01-01

    The use of adhesive bonds for structural glass-metal connections in the building envelope has increased in recent years. Despite the multiple advantages compared to more traditional bolted connections, long-term behaviour and durability of the adhesives have to be investigated accurately. Because,

  16. Brittle-to-Ductile Transition in Metallic Glass Nanowires.

    Science.gov (United States)

    Şopu, D; Foroughi, A; Stoica, M; Eckert, J

    2016-07-13

    When reducing the size of metallic glass samples down to the nanoscale regime, experimental studies on the plasticity under uniaxial tension show a wide range of failure modes ranging from brittle to ductile ones. Simulations on the deformation behavior of nanoscaled metallic glasses report an unusual extended strain softening and are not able to reproduce the brittle-like fracture deformation as found in experiments. Using large-scale molecular dynamics simulations we provide an atomistic understanding of the deformation mechanisms of metallic glass nanowires and differentiate the extrinsic size effects and aspect ratio contribution to plasticity. A model for predicting the critical nanowire aspect ratio for the ductile-to-brittle transition is developed. Furthermore, the structure of brittle nanowires can be tuned to a softer phase characterized by a defective short-range order and an excess free volume upon systematic structural rejuvenation, leading to enhanced tensile ductility. The presented results shed light on the fundamental deformation mechanisms of nanoscaled metallic glasses and demarcate ductile and catastrophic failure.

  17. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M

    2003-07-15

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix.

  18. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    International Nuclear Information System (INIS)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M.

    2003-01-01

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix

  19. The electronic conduction of glass and glass ceramics containing various transition metal oxides

    International Nuclear Information System (INIS)

    Yoshida, T.; Matsuno, Y.

    1980-01-01

    Nb 2 O 5 -V 2 O 5 -P 2 O 5 glasses containing only Group Va oxides have been investigated to elucidate their electronic conduction and structure, as compared with other glasses obtained by the addition of various transition metal oxides to vanadium phosphate. The P 2 O 5 introduction for Nb 2 O 5 in this glass with the same amount of V 2 O 5 increased the conductivity about two times. Glass ceramics having high conductivity increased by two orders of magnitude and the activation energy for conduction decreased from about 0.5 to 0.2 eV. The crystals were confirmed to be (V,Nb) 2 O 5 and Nb phosphate, one of which was highly conductive and developed a pillar-like shape with a length of more than 20 μm. (orig.)

  20. Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths.

    Energy Technology Data Exchange (ETDEWEB)

    Strong, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Diebold, Thomas Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bencoe, Denise N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has been designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.

  1. Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths

    Energy Technology Data Exchange (ETDEWEB)

    Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Component & Systems Analysis; Strong, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Material Mechanics and Tribology; Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Material Mechanics and Tribology; Diebold, Thomas Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Material Mechanics and Tribology; Bencoe, Denise N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electronic, Optical and Nano; Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Organic Materials Science; Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Transportation System Analysis

    2017-08-01

    Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has been designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.

  2. Multiscale friction modeling for sheet metal forming

    NARCIS (Netherlands)

    Hol, J.; Cid Alfaro, M.V.; de Rooij, Matthias B.; Meinders, Vincent T.; Felder, Eric; Montmitonnet, Pierre

    2010-01-01

    The most often used friction model for sheet metal forming simulations is the relative simple Coulomb friction model. This paper presents a more advanced friction model for large scale forming simulations based on the surface change on the micro-scale. The surface texture of a material changes when

  3. Electrochemical characterization of Zr-based thin film metallic glass in hydrochloric aqueous solution

    International Nuclear Information System (INIS)

    Chuang, Ching-Yen; Liao, Yi-Chia; Lee, Jyh-Wei; Li, Chia-Lin; Chu, Jinn P.; Duh, Jenq-Gong

    2013-01-01

    Recently thin film metallic glass represents a class of promising engineering materials for structural applications. In this work, the Zr-based thin film metallic glass (TFMG) was fabricated on the Si and AISI 420 substrates using a Zr–Cu–Ni–Al alloy and pure Zr metal targets by a pulsed DC magnetron sputtering system. The chemical compositions, crystalline structures, microstructures and corrosion behavior in hydrochloric (HCl) aqueous solutions of Zr-based TFMGs were investigated. The results showed that the surface morphologies of Zr-based TFMG were very smooth. A compact and dense structure without columnar structure was observed. The amorphous structure of Zr-based TFMG was characterized by the X-ray diffractometer and transmission electron microscopy analyses. After the potentiodynamic polarization test, the better corrosion resistance was achieved for the Zr-based TFMG coated AISI 420 in 1 mM HCl aqueous solution. Based on the surface morphologies and chemical analysis results of the corroded surfaces, the pitting, crevice corrosion and filiform corrosion were found. The corrosion mechanisms of the Zr-based TFMG were discussed in this work. - Highlights: ► Zr-based thin film metallic glass with amorphous structure. ► Better corrosion resistance of Zr-based thin film metallic glass observed. ► Pitting, crevice and filiform corrosion reactions revealed. ► The Cu-rich corrosion products found in the pit. ► Nanowire and flaky corrosion products formed adjacent to the filiform corrosion path

  4. The local structure nature for a Ti-based bulk metallic glass

    International Nuclear Information System (INIS)

    Chen, Yiqiang; Huang, Yongjiang; Fan, Hongbo; Wang, Dongjun; Shen, Jun

    2013-01-01

    Highlights: ► The directional bonds in TiZrNiCuBe bulk metallic glass are primarily comprised of Be-Ni and Be-Cu bonds. ► A coefficient η could be extracted from Raman scattering to characterize the glass forming ability. ► The weak directional bonds dependent on Be could increase the localized electrons, facilitating the glass forming ability. - Abstract: In the present work, the local atomic structures of a Be-containing Ti-based bulk metallic glass (BMG) have been characterized using electron spectrum for chemical analysis and Raman scattering, including directional bonds and medium range order. It might suggest that a coefficient could be extracted from Raman scattering to characterize the glass forming ability (GFA), which could be employed to interpret the enhanced GFA by Be addition of Ti-based BMG. Additionally, compared with the crystallized sample, the glassy sample exhibits larger average bond length and larger content of local bond distortion using Raman scattering.

  5. Fracture toughness measurements on a glass bonded sodalite high-level waste form

    International Nuclear Information System (INIS)

    DiSanto, T.; Goff, K. M.; Johnson, S. G.; O'Holleran, T. P.

    1999-01-01

    The electrometallurgical treatment of metallic spent nuclear fuel produces two high-level waste streams; cladding hulls and chloride salt. Argonne National Laboratory is developing a glass bonded sodalite waste form to immobilize the salt waste stream. The waste form consists of 75 Vol.% crystalline sodalite (containing the salt) with 25 Vol.% of an ''intergranular'' glassy phase. Microindentation fracture toughness measurements were performed on representative samples of this material using a Vickers indenter. Palmqvist cracking was confirmed by post-indentation polishing of a test sample. Young's modulus was measured by an acoustic technique. Fracture toughness, microhardness, and Young's modulus values are reported, along with results from scanning electron microscopy studies

  6. Energy loss from internal reflection off metal layers on glass

    Science.gov (United States)

    McDowell, M. W.; Bezuidenhout, D. F.; Klee, H. W.; Theron, E.

    1983-12-01

    The reflection characteristics of metal layers are considered for the situation where the electromagnetic radiation is incident from the glass side. Theoretical and measured reflectance values are presented which indicate that for some metals the reflection has a strong dependence on the refractive index of the incident medium. Some examples are given of recent cases where the above results were an important consideration in the choice of the metallic reflecting material. These results indicate that aluminium should not be automatically considered the best choice for the visible region nor gold for the infra-red.

  7. Photo-induced-heat localization on nanostructured metallic glasses

    Science.gov (United States)

    Uzun, Ceren; Kahler, Niloofar; Grave de Peralta, Luis; Kumar, Golden; Bernussi, Ayrton A.

    2017-09-01

    Materials with large photo-thermal energy conversion efficiency are essential for renewable energy applications. Photo-excitation is an effective approach to generate controlled and localized heat at relatively low excitation optical powers. However, lateral heat diffusion to the surrounding illuminated areas accompanied by low photo-thermal energy conversion efficiency remains a challenge for metallic surfaces. Surface nanoengineering has proven to be a successful approach to further absorption and heat generation. Here, we show that pronounced spatial heat localization and high temperatures can be achieved with arrays of amorphous metallic glass nanorods under infrared optical illumination. Thermography measurements revealed marked temperature contrast between illuminated and non-illuminated areas even under low optical power excitation conditions. This attribute allowed for generating legible photo-induced thermal patterns on textured metallic glass surfaces.

  8. Simulation of Cu-Mg metallic glass: Thermodynamics and structure

    International Nuclear Information System (INIS)

    Bailey, Nicholas P.; Schioetz, Jakob; Jacobsen, Karsten W.

    2004-01-01

    We have obtained effective medium theory interatomic potential parameters suitable for studying Cu-Mg metallic glasses. We present thermodynamic and structural results from simulations of such glasses over a range of compositions. We have produced low-temperature configurations by cooling from the melt at as slow a rate as practical, using constant temperature and pressure molecular dynamics. During the cooling process we have carried out thermodynamic analyses based on the temperature dependence of the enthalpy and its derivative, the specific heat, from which the glass transition temperature may be determined. We have also carried out structural analyses using the radial distribution function (RDF) and common neighbor analysis (CNA). Our analysis suggests that the splitting of the second peak, commonly associated with metallic glasses, in fact, has little to do with the glass transition itself, but is simply a consequence of the narrowing of peaks associated with structural features present in the liquid state. In fact, the splitting temperature for the Cu-Cu RDF is well above T g . The CNA also highlights a strong similarity between the structure of the intermetallic alloys and the amorphous alloys of similar composition. We have also investigated the diffusivity in the supercooled regime. Its temperature dependence indicates fragile-liquid behavior, typical of binary metallic glasses. On the other hand, the relatively low specific-heat jump of around 1.5k B /atom indicates apparent strong-liquid behavior, but this can be explained by the width of the transition due to the high cooling rates

  9. Structural aspects of elastic deformation of a metallic glass

    International Nuclear Information System (INIS)

    Hufnagel, T. C.; Ott, R. T.; Almer, J.

    2006-01-01

    We report the use of high-energy x-ray scattering to measure strain in a Zr 57 Ti 5 Cu 20 Ni 8 Al 10 bulk metallic glass in situ during uniaxial compression in the elastic regime up to stresses of approximately 60% of the yield stress. The strains extracted in two ways--directly from the normalized scattering data and from the pair correlation functions--are in good agreement with each other for length scales greater than 4 A. The elastic modulus calculated on the basis of this strain is in good agreement with that reported for closely related amorphous alloys based on macroscopic measurements. The strain measured for atoms in the nearest-neighbor shell, however, is smaller than that for more distant shells, and the effective elastic modulus calculated from the strain on this scale is therefore larger, comparable to crystalline alloys of similar composition. These observations are in agreement with previously proposed models in which the nominally elastic deformation of a metallic glass has a significant anelastic component due to atomic rearrangements in topologically unstable regions of the structure. We also observe that the distribution of the atomic-level stresses in the glass becomes more uniform during loading. This implies that the stiffness of metallic glasses may have an entropic contribution, analogous to the entropic contribution in rubber elasticity

  10. Significantly enhanced memory effect in metallic glass by multistep training

    Science.gov (United States)

    Li, M. X.; Luo, P.; Sun, Y. T.; Wen, P.; Bai, H. Y.; Liu, Y. H.; Wang, W. H.

    2017-11-01

    The state of metastable equilibrium glass can carry an imprint of the past and exhibit memory effect. As a hallmark of glassy dynamics, memory effect can affect glassy behavior as it evolves further upon time. Even though the physical picture of the memory effect has been well studied, it is unclear whether a glass can recall as many pieces of information as possible, and if so, how the glass will accordingly behave. We report that by fractionizing temperature interval, inserting multistep aging protocols, and optimizing the time of each temperature step, i.e., by imposing a multistep "training" on a prototypical P d40N i10C u30P20 metallic glass, the memory of the trained glass can be significantly strengthened, marked by a pronounced augment in potential energy. These findings provide a new guide for regulating the energy state of glass by enhancing the nonequilibrium behaviors of the memory effect and offer an opportunity to develop a clearer physical picture of glassy dynamics.

  11. Melting, solidification, remelting, and separation of glass and metal

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Xin, R.C.; Liu, Y.Z.

    1998-01-01

    Several high-temperature vitrification technologies have been developed for the treatment of a wide range of mixed waste types in both the low-level waste and transuranic (TRU) mixed waste categories currently in storage at DOE sites throughout the nation. The products of these processes are an oxide slag phase and a reduced metal phase. The metal phase has the potential to be recycled within the DOE Complex. Enhanced slag/metal separation methods are needed to support these processes. This research project involves an experimental investigation of the melting, solidification, remelting, and separation of glass and metal and the development of an efficient separation technology. The ultimate goal of this project is to find an efficient way to separate the slag phase from the metal phase in the molten state. This two-year project commenced in October 1995 (FY96). In the first fiscal year, the following tasks were accomplished: (1) A literature review and an assessment of the baseline glass and metal separation technologies were performed. The results indicated that the baseline technology yields a high percentage of glass in the metal phase, requiring further separation. (2) The main melting and solidification system setup was established. A number of melting and solidification tests were conducted. (3) Temperature distribution, solidification patterns, and flow field in the molten metal pool were simulated numerically for the solidification processes of molten aluminum and iron steel. (4) Initial designs of the laboratory-scale DCS and CS technologies were also completed. The principal demonstration separation units were constructed. (5) An application for a patent for an innovative liquid-liquid separation technology was submitted and is pending

  12. Exposure Buildup Factors for Heavy Metal Oxide Glass: A Radiation Shield

    DEFF Research Database (Denmark)

    Manonara, S. R.; Hanagodimath, S. M.; Gerward, Leif

    2011-01-01

    Gamma ray exposure buildup factors for three Heavy Metal Oxide (HMO) glass systems, viz. PbO-Bi2O3-B2O3, PbO-B2O3, and Bi2O3-B2O3 glasses are presented. The computations were done by interpolation method using the Geometric Progression fitting formula and ANSI/ANS-6.4.3 library for the energy ran...... of graphs. Buildup factors of these HMO glasses cannot be found in any standard database, but they are useful for practical calculations in gamma ray shield designs, and they also, help to determine and control the thickness of the shielding material used.......Gamma ray exposure buildup factors for three Heavy Metal Oxide (HMO) glass systems, viz. PbO-Bi2O3-B2O3, PbO-B2O3, and Bi2O3-B2O3 glasses are presented. The computations were done by interpolation method using the Geometric Progression fitting formula and ANSI/ANS-6.4.3 library for the energy range...... from 0.015 to 15 MeV, up to penetration depths of 40 mfp (mean free path). The buildup factors have been studied as functions of incident photon energy and penetration depth. The variations in the buildup factor, for all the glass systems, in different energy regions; have been presented in the form...

  13. Relaxation processes and physical aging in metallic glasses

    Science.gov (United States)

    Ruta, B.; Pineda, E.; Evenson, Z.

    2017-12-01

    Since their discovery in the 1960s, metallic glasses have continuously attracted much interest across the physics and materials science communities. In the forefront are their unique properties, which hold the alluring promise of broad application in fields as diverse as medicine, environmental science and engineering. However, a major obstacle to their wide-spread commercial use is their inherent temporal instability arising from underlying relaxation processes that can dramatically alter their physical properties. The result is a physical aging process which can bring about degradation of mechanical properties, namely through embrittlement and catastrophic mechanical failure. Understanding and controlling the effects of aging will play a decisive role in our on-going endeavor to advance the use of metallic glasses as structural materials, as well as in the more general comprehension of out-of-equilibrium dynamics in complex systems. This review presents an overview of the current state of the art in the experimental advances probing physical aging and relaxation processes in metallic glasses. Similarities and differences between other hard and soft matter glasses are highlighted. The topic is discussed in a multiscale approach, first presenting the key features obtained in macroscopic studies, then connecting them to recent novel microscopic investigations. Particular emphasis is put on the occurrence of distinct relaxation processes beyond the main structural process in viscous metallic melts and their fate upon entering the glassy state, trying to disentangle results and formalisms employed by the different groups of the glass-science community. A microscopic viewpoint is presented, in which physical aging manifests itself in irreversible atomic-scale processes such as avalanches and intermittent dynamics, ascribed to the existence of a plethora of metastable glassy states across a complex energy landscape. Future experimental challenges and the comparison with

  14. Development and testing of matrices for the encapsulation of glass and ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Wald, J.W.; Brite, D.W.; Gurwell, W.E.; Buckwalter, C.Q.; Bunnell, L.R.; Gray, W.J.; Blair, H.T.; Rusin, J.M.

    1982-02-01

    This report details the results of research on the matrix encapsulation of high level wastes at PML over the past few years. The demonstrations and tests described were designed to illustrate how the waste materials are effected when encapsulated in an inert matrix. Candidate materials evaluated for potential use as matrices for encapslation of pelletized ceramics or glass marbles were categorized into four groups: metals, glasses, ceramics, and graphite. Two processing techniques, casting and hot pressing, were investigated as the most promising methods of formation or densification of the matrices. The major results reported deal with the development aspects. However, chemical durability tests (leach tests) of the matrix materials themselves and matrix-waste form composites are also reported. Matrix waste forms can provide a low porosity, waste-free barrier resulting in increased leach protection, higher impact strength and improved thermal conductivity compared to unencapsulated glass or ceramic waste materials. Glass marbles encapsulated in a lead matrix offer the most significant improvement in waste form stability of all combinations evaluated. This form represents a readily demonstrable process that provides high thermal conductivity, mechanical shock resistance, radiation shielding and increased chemical durability through both a chemical passivation mechanism and as a physical barrier. Other durable matrix waste forms evaluated, applicable primarily to ceramic pellets, involved hot-pressed titanium or TiO 2 materials. In the processing of these forms, near 100% dense matrices were obtained. The matrix materials had excellent compatibility with the waste materials and superior potential chemical durability. Cracking of the hot-pressed ceramic matrix forms, in general, prevented the realization of their optimum properties

  15. Effect of Ga substitution on the crystallization behaviour and glass forming ability of Zr-Al-Cu-Ni alloys

    International Nuclear Information System (INIS)

    Singh, Devinder; Yadav, T.P.; Mandal, R.K.; Tiwari, R.S.; Srivastava, O.N.

    2010-01-01

    The crystallization behaviour of melt spun Zr 69.5 Al 7.5-x Ga x Cu 12 Ni 11 (x = 0-7.5; in at.%) metallic glasses has been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The DSC traces showed changes in crystallization behaviour with substitution of Ga. Formation of single nano-quasicrystalline phase by controlled crystallization of glasses has been found only for 0 ≤ x ≤ 1.5. Further increase of Ga content gives rise to formation of the quasicrystals together with Zr 2 Cu type crystalline phase. In addition to this, the substitution of Ga influences the size and shape of nano-quasicrystals. The glass forming abilities (GFAs) of these metallic glasses were assessed by the recognition of glass forming ability indicators, i.e. reduced glass transition temperature (T rg ) and supercooled liquid region (ΔT x ). The glass transition temperature (T g ) has been observed for all the melt spun ribbons.

  16. Accuracy of a selection criterion for glass forming ability in the Ni–Nb–Zr system

    International Nuclear Information System (INIS)

    Déo, L.P.; Oliveira, M.F. de

    2014-01-01

    Highlights: • We applied a selection in the Ni–Nb–Zr system to find alloys with high GFA. • We used the thermal parameter γ m to evaluate the GFA of alloys. • The correlation between the γ m parameter and R c in the studied system is poor. • The effect of oxygen impurity reduced dramatically the GFA of alloys. • Unknown intermetallic compounds reduced the accuracy of the criterion. - Abstract: Several theories have been developed and applied in metallic systems in order to find the best stoichiometries with high glass forming ability; however there is no universal theory to predict the glass forming ability in metallic systems. Recently a selection criterion was applied in the Zr–Ni–Cu system and it was found some correlation between experimental and theoretical data. This criterion correlates critical cooling rate for glass formation with topological instability of stable crystalline structures; average work function difference and average electron density difference among the constituent elements of the alloy. In the present work, this criterion was applied in the Ni–Nb–Zr system. It was investigated the influence of factors not considered in the calculation and on the accuracy of the criterion, such as unknown intermetallic compounds and oxygen contamination. Bulk amorphous specimens were produced by injection casting. The amorphous nature was analyzed by X-ray diffraction and differential scanning calorimetry; oxygen contamination was quantified by the inert gas fusion method

  17. Glass transition memorized by the enthalpy-entropy compensation in the shear thinning of supercooled metallic liquids

    Science.gov (United States)

    Zhang, Meng; Liu, Lin

    2018-06-01

    To unravel the true nature of glass transition, broader insights into glass forming have been gained by examining the stress-driven glassy systems, where strong shear thinning, i.e. a reduced viscosity under increasing shear rate, is encountered. It is argued that arbitrarily small stress-driven shear rates would ‘melt’ the glass and erase any memory of its thermal history. In this work, we report a glass transition memorized by the enthalpy-entropy compensation in strongly shear-thinned supercooled metallic liquids, which coincides with the thermal glass transition in both the transition temperature and the activation Gibbs free energy. Our findings provide distinctive insights into both glass forming and shear thinning, and enrich current knowledge on the ubiquitous enthalpy-entropy compensation empirical law in condensed matter physics.

  18. Analysis of Pressure-Volume Relationship for Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    H. K. Rai

    2008-01-01

    Full Text Available Relationship between compression (V/V0 and pressure have been studied for five bulk metallic glasses (BMGs viz. Zr41Ti14Cu12.5Ni10Be22.5, Zr41Ti14Cu12.5Ni9Be22.5C1, Zr48Nb8Cu12Fe8Be24, (Zr0.59Ti0.06Cu0.22Ni0.1385.7Al14.3 and SiO2.TiO2 in the compression ranges of V/V0 =1.00 to V/V0 = 0.10. Six forms of equation of state reported in the literature have been used in the present study to calculate pressure corresponding to different values of compressions. The comparison of graph plotted between the logarithms of calculated value of pressure to logarithm of calculated value of compression (V/V0 reveals that the agreement of Brennan-Stacey equation of state (EOS and Poirier-Tarantolla equation of state are not good. It has been found that the assumptions, on which these equations are based, do not satisfy well in case of given BMGs.

  19. Strain gradient drives shear banding in metallic glasses

    Science.gov (United States)

    Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong

    2017-09-01

    Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.

  20. Mesoporous metal catalysts formed by ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Schaeferhans, Jana; Pazos Perez, Nicolas; Andreeva, Daria [Physikalische Chemie II, Universitaet Bayreuth (Germany)

    2010-07-01

    We study the ultrasound-driven formation of mesoporous metal sponges. The collapse of acoustic cavitations leads to very high temperatures and pressures on very short scales. Therefore, structures may be formed and quenched far from equilibrium. Mechanism of metal modification by ultrasound is complex and involves a variety of aspects. We propose that modification of metal particles and formation of mesoporous inner structures can be achieved due to thermal etching of metals by ultrasound stimulated high speed jets of liquid. Simultaneously, oxidation of metal surfaces by free radicals produced in water during cavitation stabilizes developed metal structures. Duration and intensity of the ultrasonication treatment is able to control the structure and morphology of metal sponges. We expect that this approach to the formation of nanoscale composite sponges is universal and opens perspective for a whole new class of catalytic materials that can be prepared in a one-step process. The developed method makes it possible to control the sponge morphology and can be used for formation of modern types of catalysts. For example, the sonication technique allows to combine the fabrication of mesoporous support and distribution of metal (Cu, Pd, Au, Pt etc.) nanoparticles in its pores into a single step.

  1. Distribution of oxides in a Zr-Cu-Ni-Al-Nb-Si bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Jochen; Busch, Ralf [Chair of Metallic Materials, Saarland University, PO Box 151150, 66041 Saarbruecken (Germany); Mueller, Frank; Huefner, Stefan [Chair of Experimental Physics, Saarland University, PO Box 151150, 66041 Saarbruecken (Germany)

    2010-07-01

    The course of oxide presence with distance from the sample surface and bonding partner was studied for the bulk metallic glass with the nominal composition Zr{sub 57.9}Cu{sub 15.4}Ni{sub 12.7}Al{sub 10.2}Nb{sub 2.8}Si{sub 1} (at%) by X-ray photoelectron spectroscopy (XPS). Investigated specimens are taken from vacuum quench-cast rods subjected to oxidation at room temperature and atmosphere. Binding energies were determined in various depths using ion beam ablation of up to 100 nanometers. XPS spectra confirm oxidation primarily of the pure zirconium and aluminum constituents, all other peaks correspond to metallic bonds. While the surface area shows a passivating zirconia layer a few nanometers thick, oxygen is bonded predominantly with aluminum inside the bulk. Since the concentration of oxygen is a crucial factor in the crystallization behavior of bulk metallic glass forming liquids on basis of oxygen affine metals, so far only high purity materials were thought to be suitable. The findings in this study, however, are promising for alloys with industrial grade elements with sufficient glass forming ability. Comparisons of the alloy with differing oxygen content support the conclusion that aluminum acts as an appropriate scavenger for both adsorbed and large amounts of intrinsic oxygen in zirconium based amorphous metals.

  2. Brazing of Cu with Pd-based metallic glass filler

    Energy Technology Data Exchange (ETDEWEB)

    Terajima, Takeshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)], E-mail: terajima@jwri.osaka-u.ac.jp; Nakata, Kazuhiro [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsumoto, Yuji [Materials and Structures Laboratory, Tokyo Institute of Technology (Japan); Zhang, Wei; Kimura, Hisamichi; Inoue, Akihisa [Institute for Materials Research, Tohoku University (Japan)

    2008-02-25

    Metallic glass has several unique properties, including high mechanical strength, small solidification shrinkage, small elastic modulus and supercooling state, all of which are well suited as a residual stress buffer for metal and ceramic joining. In the present preliminary study, we demonstrated brazing of Cu rods with Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} metallic glass filler. The brazing was carried out at 873 K for 1 min in a vacuum atmosphere (1 x 10{sup -3} Pa), and then the specimens were quenched at the rate of 30 K/s by blowing He. The metallic glass brazing of Cu using Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler was successful, with the exception that several voids remained in the filler. According to micro-focused X-ray diffraction, no diffraction patterns were observed at both the center of the Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler and the Cu/Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} interface. The result showed that the Cu specimens were joined with Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler in the glassy state. The tensile fracture strength of the brazed specimens ranged from 20 to 250 MPa. The crack extension from the voids in the Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler may have caused the results to be uneven and very low compared to the strength of Pd-based bulk metallic glass.

  3. Y and Er minor addition effect on glass forming ability of a Ni–Nb–Zr alloy

    International Nuclear Information System (INIS)

    Deo, L.P.; Oliveira, M.F. de

    2015-01-01

    Highlights: • A theoretical selection criterion to predict the GFA was used for Ni–Nb–Zr–RE alloys. • The prediction agrees very well with thermal parameter gm used to evaluate experimentally the GFA. • RE doped alloys showed higher GFA than the base alloy. • Y and Er elements showed similar effects to improve the GFA of the base alloy. - Abstract: Since the discovering of amorphous alloys in 1960, the actual causes of why some alloys can be easily formed into glasses while others cannot, are not clearly known, thus there is no universal theory to predict the glass forming ability in metallic systems. It is well known that the minor amount addition of proper rare-earth elements can greatly enhance the glass forming ability of some glass-forming alloys. In the present study, a selection criterion was successfully used to predict the glass forming ability improvement of Ni 67.3 Nb 28.4 Zr 4.3 alloy with minor additions of Y or Er. The actual glass forming ability of the base alloy and rare-earth doped alloys were evaluated by the thermal parameter γ m and the results agree very well with the tendency predicted by the calculation. The amorphous nature of alloys was mainly analyzed by X-ray diffraction and differential scanning calorimetry. This work also presents a brief and complementary consideration about oxygen contamination quantified by the inert gas fusion method

  4. Detecting Structural Features in Metallic Glass via Synchrotron Radiation Experiments Combined with Simulations

    Directory of Open Access Journals (Sweden)

    Gu-Qing Guo

    2015-11-01

    Full Text Available Revealing the essential structural features of metallic glasses (MGs will enhance the understanding of glass-forming mechanisms. In this work, a feasible scheme is provided where we performed the state-of-the-art synchrotron-radiation based experiments combined with simulations to investigate the microstructures of ZrCu amorphous compositions. It is revealed that in order to stabilize the amorphous state and optimize the topological and chemical distribution, besides the icosahedral or icosahedral-like clusters, other types of clusters also participate in the formation of the microstructure in MGs. This cluster-level co-existing feature may be popular in this class of glassy materials.

  5. Electrochemical Corrosion Studies for Modeling Metallic Waste Form Release Rates

    International Nuclear Information System (INIS)

    Poineau, Frederic; Tamalis, Dimitri

    2016-01-01

    The isotope 99 Tc is an important fission product generated from nuclear power production. Because of its long half-life (t 1/2 = 2.13 ∙ 105 years) and beta-radiotoxicity (β - = 292 keV), it is a major concern in the long-term management of spent nuclear fuel. In the spent nuclear fuel, Tc is present as an alloy with Mo, Ru, Rh, and Pd called the epsilon-phase, the relative amount of which increases with fuel burn-up. In some separation schemes for spent nuclear fuel, Tc would be separated from the spent fuel and disposed of in a durable waste form. Technetium waste forms under consideration include metallic alloys, oxide ceramics and borosilicate glass. In the development of a metallic waste form, after separation from the spent fuel, Tc would be converted to the metal, incorporated into an alloy and the resulting waste form stored in a repository. Metallic alloys under consideration include Tc–Zr alloys, Tc–stainless steel alloys and Tc–Inconel alloys (Inconel is an alloy of Ni, Cr and iron which is resistant to corrosion). To predict the long-term behavior of the metallic Tc waste form, understanding the corrosion properties of Tc metal and Tc alloys in various chemical environments is needed, but efforts to model the behavior of Tc metallic alloys are limited. One parameter that should also be considered in predicting the long-term behavior of the Tc waste form is the ingrowth of stable Ru that occurs from the radioactive decay of 99 Tc ( 99 Tc → 99 Ru + β - ). After a geological period of time, significant amounts of Ru will be present in the Tc and may affect its corrosion properties. Studying the effect of Ru on the corrosion behavior of Tc is also of importance. In this context, we studied the electrochemical behavior of Tc metal, Tc-Ni alloys (to model Tc-Inconel alloy) and Tc-Ru alloys in acidic media. The study of Tc-U alloys has also been performed in order to better understand the nature of Tc in metallic spent fuel. Computational modeling

  6. Electrochemical Corrosion Studies for Modeling Metallic Waste Form Release Rates

    Energy Technology Data Exchange (ETDEWEB)

    Poineau, Frederic [Univ. of Nevada, Las Vegas, NV (United States); Tamalis, Dimitri [Florida Memorial Univ., Miami Gardens, FL (United States)

    2016-08-01

    The isotope 99Tc is an important fission product generated from nuclear power production. Because of its long half-life (t1/2 = 2.13 ∙ 105 years) and beta-radiotoxicity (β⁻ = 292 keV), it is a major concern in the long-term management of spent nuclear fuel. In the spent nuclear fuel, Tc is present as an alloy with Mo, Ru, Rh, and Pd called the epsilon-phase, the relative amount of which increases with fuel burn-up. In some separation schemes for spent nuclear fuel, Tc would be separated from the spent fuel and disposed of in a durable waste form. Technetium waste forms under consideration include metallic alloys, oxide ceramics and borosilicate glass. In the development of a metallic waste form, after separation from the spent fuel, Tc would be converted to the metal, incorporated into an alloy and the resulting waste form stored in a repository. Metallic alloys under consideration include Tc–Zr alloys, Tc–stainless steel alloys and Tc–Inconel alloys (Inconel is an alloy of Ni, Cr and iron which is resistant to corrosion). To predict the long-term behavior of the metallic Tc waste form, understanding the corrosion properties of Tc metal and Tc alloys in various chemical environments is needed, but efforts to model the behavior of Tc metallic alloys are limited. One parameter that should also be considered in predicting the long-term behavior of the Tc waste form is the ingrowth of stable Ru that occurs from the radioactive decay of 99Tc (99Tc → 99Ru + β⁻). After a geological period of time, significant amounts of Ru will be present in the Tc and may affect its corrosion properties. Studying the effect of Ru on the corrosion behavior of Tc is also of importance. In this context, we studied the electrochemical behavior of Tc metal, Tc-Ni alloys (to model Tc-Inconel alloy) and Tc-Ru alloys in acidic media. The study of Tc-U alloys has also been performed in order to better understand the

  7. Glass-Metal Joining in Nuclear Environment: the State of the Art

    International Nuclear Information System (INIS)

    Jacobs, M.

    2007-01-01

    Full text of publication follows: In the ITER fusion machine and in material testing fission reactors, it is not possible to avoid the use of non-metallic materials like glass for example. There is therefore a need to apply metal to glass joints. This problem arose already at the beginning of the 19. century when the electric light bulb was invented. Nowadays this type of glass-metal joint is very successful and widely used in the electronic industry. In the case of ITER and material testing reactors, glass-metal joints are necessary for the fixation of the optical windows and optical fibres to a metal structure to perform diagnostics. These types of joints are still difficult to make and their behaviour is not fully understood. A joint between glass and metal for a nuclear or fusion application has indeed to resist high temperatures and high neutron fluences, while keeping a good mechanical strength and remaining leak tight. These characteristics are difficult to obtain under these severe conditions. This paper presents an overview of the different joining technologies that can be used to join glass to metal in a severe nuclear environment. The working mechanism of the technologies are explained, together with their respective advantages and drawbacks. Three different types of joining are discussed: fastening, liquid phase joining and solid phase joining. Fastening is a mechanical attachment technique, not achieving easily hermetic seals. Liquid and solid phase joining on the other hand form a real bond, what makes the joint much stronger. The most important technologies using liquid phase joining are adhesive bonding, fusion welding and brazing. In the case of the solid phase joining the choices are ultrasonic torsion welding, diffusion bonding and electrostatic bonding. If it is usually not possible to join the glass directly to the metal, an interlayer must be used. One speaks then of indirect joining. The paper will conclude with a discussion on the best

  8. Metallic glasses: viable tool materials for the production of surface microstructures in amorphous polymers by micro-hot-embossing

    International Nuclear Information System (INIS)

    Henann, David L; Srivastava, Vikas; Taylor, Hayden K; Hale, Melinda R; Hardt, David E; Anand, Lallit

    2009-01-01

    Metallic glasses possess unique mechanical properties which make them attractive materials for fabricating components for a variety of applications. For example, the commercial Zr-based metallic glasses possess high tensile strengths (≈2.0 GPa), good fracture toughnesses (≈10–50 MPa√m) and good wear and corrosion resistances. A particularly important characteristic of metallic glasses is their intrinsic homogeneity to the nanoscale because of the absence of grain boundaries. This characteristic, coupled with their unique mechanical properties, makes them ideal materials for fabricating micron-scale components, or high-aspect-ratio micro-patterned surfaces, which may in turn be used as dies for the hot-embossing of polymeric microfluidic devices. In this paper we consider a commercially available Zr-based metallic glass which has a glass transition temperature of T g ≈ 350 °C and describe the thermoplastic forming of a tool made from this material, which has the (negative) microchannel pattern for a simple microfluidic device. This tool was successfully used to produce the microchannel pattern by micro-hot-embossing of the amorphous polymers poly(methyl methacrylate) (T g ≈ 115 °C) and Zeonex-690R (T g ≈ 136 °C) above their glass transition temperatures. The metallic glass tool was found to be very robust, and it was used to produce hundreds of high-fidelity micron-scale embossed patterns without degradation or failure

  9. Structural study of Zr-based metallic glasses

    International Nuclear Information System (INIS)

    Matsubara, E.; Ichitsubo, T.; Saida, J.; Kohara, S.; Ohsumi, H.

    2007-01-01

    Structures of Zr 70 Ni 20 Al 10 , Zr 70 Cu 20 Al 10 , Zr 70 Cu 30 and Zr 70 Ni 30 amorphous alloys were analyzed by high-energy X-ray diffraction. The relatively stable Zr 2 Cu amorphous alloy shows a local atom arrangement different from the Zr 2 Cu crystalline phase. By contrast, the less stable Zr 70 Ni 30 amorphous alloy has a structure similar to Zr 2 Ni. In the Zr 70 Cu 20 Al 10 metallic glass, Zr-Al nearest neighbor pairs are introduced in the amorphous structure. In the Zr 70 Ni 20 Al 10 metallic glass, the strong correlation between Zr-Ni pairs is drastically modified by the formation of Zr-Al pairs. The presence of Zr-Al pairs in the ternary alloys suppresses the crystallization and stabilizes the glassy state

  10. Variation of boron concentration in metallic glass ribbons

    International Nuclear Information System (INIS)

    Nagy, A.Z.; Vasvari, B.; Duwez, P.; Bakos, L.; Seres, Z.; Bogancs, J.; Nazarov, V.M.

    1979-12-01

    The surface boron concentration of Fe 40 Ni 40 P 14 B 6 , Fe 32 Ni 36 Cr 14 P 12 B 6 and Fe 40 Ni 40 B 20 metallic glasses was measured by neutron activation analysis on both sides of the ribbon samples. It was found that the boron concentration is always higher at the bright side of the ribbon than that at the dull side which is in contact with the cold surface of the wheel during the rapid quenching from the melt. A possible explanation is given in terms of the solid-liquid interface moving rapidly from the cooled surface to the free surface when preparing the samples. Range values of alpha-particles for some characteristic compositions of metallic glasses are tabulated. A mathematical technique for the deconvolution of experimental data is described and the listing of the Fortran program is enclosed. (author)

  11. Optimization and control of metal forming processes

    NARCIS (Netherlands)

    Havinga, Gosse Tjipke

    2016-01-01

    Inevitable variations in process and material properties limit the accuracy of metal forming processes. Robust optimization methods or control systems can be used to improve the production accuracy. Robust optimization methods are used to design production processes with low sensitivity to the

  12. Advanced friction modeling for sheet metal forming

    NARCIS (Netherlands)

    Hol, J.; Cid Alfaro, M.V.; de Rooij, Matthias B.; Meinders, Vincent T.

    2012-01-01

    The Coulomb friction model is frequently used for sheet metal forming simulations. This model incorporates a constant coefficient of friction and does not take the influence of important parameters such as contact pressure or deformation of the sheet material into account. This article presents a

  13. Advanced friction modeling in sheet metal forming

    NARCIS (Netherlands)

    Hol, J.; Cid Alfaro, M.V.; Meinders, Vincent T.; Huetink, Han

    2011-01-01

    The Coulomb friction model is frequently used for sheet metal forming simulations. This model incorporates a constant coefficient of friction and does not take the influence of important parameters such as contact pressure or deformation of the sheet material into account. This article presents a

  14. Failure by fracture in bulk metal forming

    DEFF Research Database (Denmark)

    Silva, C.M.A.; Alves, Luis M.; Nielsen, Chris Valentin

    2015-01-01

    This paper revisits formability in bulk metal forming in the light of fundamental concepts of plasticity,ductile damage and crack opening modes. It proposes a new test to appraise the accuracy, reliability and validity of fracture loci associated with crack opening by tension and out-of-plane shear...

  15. Constitutive Modeling for Sheet Metal Forming

    International Nuclear Information System (INIS)

    Barlat, Frederic

    2005-01-01

    This paper reviews aspects of the plastic behaviour common in sheet metals. Macroscopic and microscopic phenomena occurring during plastic deformation are described succinctly. Constitutive models of plasticity suitable for applications to forming, are discussed in a very broad manner. Approaches to plastic anisotropy are described in a somewhat more detailed manner

  16. Flow-induced elastic anisotropy of metallic glasses

    International Nuclear Information System (INIS)

    Sun, Y.H.; Concustell, A.; Carpenter, M.A.; Qiao, J.C.; Rayment, A.W.; Greer, A.L.

    2016-01-01

    As-cast bulk metallic glasses are isotropic, but anisotropy can be induced by thermomechanical treatments. For example, the diffraction halo in the structure function S(Q) observed in transmission becomes elliptical (rather than circular) after creep in uniaxial tension or compression. Published studies associate this with frozen-in anelastic strain and bond-orientational anisotropy. Results so far are inconsistent on whether viscoplastic flow of metallic glasses can induce anisotropy. Preliminary diffraction data suggest that the anisotropy, if any, is very low, while measurements of the elastic properties suggest that there is induced anisotropy, opposite in sign to that due to anelastic strain. We study three bulk metallic glasses, Ce 65 Al 10 Cu 20 Co 5 , La 55 Ni 10 Al 35 , and Pd 40 Ni 30 Cu 10 P 20 . By using resonant ultrasound spectroscopy to determine the full elasticity tensor, the effects of relaxation and rejuvenation can be reliably separated from uniaxial anisotropy (of either sign). The effects of viscoplastic flow in tension are reported for the first time. We find that viscoplastic flow of bulk metallic glasses, particularly in tension, can induce significant anisotropy that is distinct from that associated with frozen-in anelastic strain. The conditions for inducing such anisotropy are explored in terms of the Weissenberg number (ratio of relaxation times for primary relaxation and for shear strain rate). There is a clear need for further work to characterize the structural origins of flow-induced anisotropy and to explore the prospects for improved mechanical and other properties through induced anisotropy.

  17. Metal Compression Forming of aluminum alloys and metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, S.; Ren, W.; Porter, W.D.; Brinkman, C.R.; Sabau, A.S.; Purgert, R.M.

    2000-02-01

    Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. However, the MCF process applies pressure on the entire mold face, thereby directing pressure on all regions of the casting and producing a uniformly sound part. The process is capable of producing parts with properties close to those of forgings, while retaining the near net shape, complexity in geometry, and relatively low cost of the casting process.

  18. Fragility correlates thermodynamic and kinetic properties of glass forming liquids

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, C.Narayana [Maharani’s Science College for Women, Bangalore 560001 (India); Viswanatha, R.; Chethana, B.K. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India); Gowda, V.C.Veeranna [Government First Grade College, Jayanagara, Bangalore 560070 (India); Rao, K.J., E-mail: kalyajrao@yahoo.co.in [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India)

    2015-03-15

    Graphical abstract: The suggested new fragility parameter correlates viscosity and configurational entropy. - Highlights: • A new fragility function, F=ΔT/ΔC{sub p}×C{sub p}{sup l}/T{sub g} has been proposed. • A three parameter viscosity function using the new F reproduces Angell fragility plot. • A new ΔC{sub p} function is derived which directly relates Adam–Gibbs function with the fragility based viscosity function. - Abstract: In our earlier communication we proposed a simple fragility determining function, ([NBO]/V{sub m}{sup 3}T{sub g}), which we have now used to analyze several glass systems using available thermal data. A comparison with similar fragility determining function, ΔC{sub p}/C{sub p}{sup l}, introduced by Chryssikos et al. in their investigation of lithium borate glasses has also been performed and found to be more convenient quantity for discussing fragilities. We now propose a new function which uses both ΔC{sub p} and ΔT and which gives a numerical fragility parameter, F whose value lies between 0 and 1 for glass forming liquids. F can be calculated through the use of measured thermal parameters ΔC{sub p}, C{sub p}{sup l}, T{sub g} and T{sub m}. Use of the new fragility values in reduced viscosity equation reproduces the whole range of viscosity curves of the Angell plot. The reduced viscosity equation can be directly compared with the Adam–Gibbs viscosity equation and a heat capacity function can be formulated which reproduces satisfactorily the ΔC{sub p} versus ln(T{sub r}) curves and hence the configurational entropy.

  19. Consolidated waste forms: glass marbles and ceramic pellets

    International Nuclear Information System (INIS)

    Treat, R.L.; Rusin, J.M.

    1982-05-01

    Glass marbles and ceramic pellets have been developed at Pacific Northwest Laboratory as part of the multibarrier concept for immobilizing high-level radioactive waste. These consolidated waste forms served as substrates for the application of various inert coatings and as ideal-sized particles for encapsulation in protective matrices. Marble and pellet formulations were based on existing defense wastes at Savannah River Plant and proposed commercial wastes. To produce marbles, glass is poured from a melter in a continuous stream into a marble-making device. Marbles were produced at PNL on a vibratory marble machine at rates as high as 60 kg/h. Other marble-making concepts were also investigated. The marble process, including a lead-encapsulation step, was judged as one of the more feasible processes for immobilizing high-level wastes. To produce ceramic pellets, a series of processing steps are required, which include: spray calcining - to dry liquid wastes to a powder; disc pelletizing - to convert waste powders to spherical pellets; sintering - to densify pellets and cause desired crystal formation. These processing steps are quite complex, and thereby render the ceramic pellet process as one of the least feasible processes for immobilizing high-level wastes

  20. Immobilization of radwastes in glass containers and products formed thereby

    International Nuclear Information System (INIS)

    Macedo, P.B.; Litovitz, T.A.; Simmons, C.J.; Simmons, J.H.; Lagakos, N.; Tran, D.C.

    1982-01-01

    A mixture of glass packing and radioactive or other toxic material is placed in a solid glass container, and the container is heated to drive off volatile components and collapse and seal the container

  1. Internal shear cracking in bulk metal forming

    DEFF Research Database (Denmark)

    Christiansen, Peter; Nielsen, Chris Valentin; Bay, Niels Oluf

    2017-01-01

    This paper presents an uncoupled ductile damage criterion for modelling the opening and propagation of internal shear cracks in bulk metal forming. The criterion is built upon the original work on the motion of a hole subjected to shear with superimposed tensile stress triaxiality and its overall...... performance is evaluated by means of side-pressing formability tests in Aluminium AA2007-T6 subjected to different levels of pre-strain. Results show that the new proposed criterionis able to combine simplicity with efficiency for predicting the onset of fracture and the crack propagation path for the entire...... cracking to internal cracks formed undert hree-dimensional states of stress that are typical of bulk metal forming....

  2. Damage induced by helium ion irradiation in Fe-based metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaonan; Mei, Xianxiu, E-mail: xxmei@dlut.edu.cn; Zhang, Qi; Li, Xiaona; Qiang, Jianbing; Wang, Younian

    2017-07-15

    The changes in structure and surface morphology of metallic glasses Fe{sub 80}Si{sub 7.43}B{sub 12.57} and Fe{sub 68}Zr{sub 7}B{sub 25} before and after the irradiation of He ions with the energy of 300 keV were investigated, and were compared with that of the tungsten. The results show that after the He{sup 2+} irradiation, metallic glass Fe{sub 68}Zr{sub 7}B{sub 25} still maintained amorphous. While a small amount of metastable β-Mn type phase nanocrystals formed in metallic glass Fe{sub 80}Si{sub 7.43}B{sub 12.57} at the fluence of 4.0 × 10{sup 17}ions/cm{sup 2} (19dpa). The nanocrystals transformed into α-Fe phase and tetragonal Fe{sub 2}B phase as the fluence increased to 1.0 × 10{sup 18}ions/cm{sup 2} (47dpa). Then the new orthogonal Fe{sub 3}B phase and β-Mn type phase nanocrystals appeared when the fluence increased further, and the quantities of nanocrystals increased. Blisters and cracks appeared on the surface of tungsten under the irradiation fluence of 1.0 × 10{sup 18}ions/cm{sup 2}, however only when the fluence was up to 1.6 × 10{sup 18}ions/cm{sup 2}, could cracks and spalling appear on the surfaces of metallic glasses. - Highlights: •Metallic glass Fe{sub 68}Zr{sub 7}B{sub 25} could maintain amorphous state after the irradiation. •A series of crystallization behaviors occurred in metallic glass Fe{sub 80}Si{sub 7.43}B{sub 12.57}. •The surface of tungsten appeared blisters at the fluence of 1.0 × 10{sup 18} ions/cm{sup 2}. •Surfaces of Fe-based metallic glasses cracked at the fluence of 1.6 × 10{sup 18}ions/cm{sup 2}.

  3. ELABORATION OF AMORPHOUS METALS AND GLASS TRANSITIONFORMATION AND CHARACTERIZATION OF AMORPHOUS METALS

    OpenAIRE

    Giessen , B.; Whang , S.

    1980-01-01

    This review deals with the definition of amorphous and glassy metals ; the principal methods for their preparation by atom-by-atom deposition, rapid liquid quenching and particle bombardment ; criteria for their formation, especially ready glass formation (RGF) and its alloy chemical foundations ; and their classification. This is followed by a discussion of their elastic and plastic properties (Young's modulus and microhardness) and thermal stability (glass transition and crystallization tem...

  4. Glass as a waste form for the immobilization of plutonium

    International Nuclear Information System (INIS)

    Bates, J.K.; Ellison, A.J.G.; Emery, J.W.; Hoh, J.C.

    1995-01-01

    Several alternatives for disposal of surplus plutonium are being considered. One method is incorporating Pu into glass and in this paper we discuss the development and corrosion behavior of an alkali-tin-silicate glass and update results in testing Pu doped Defense Waste Processing Facility (DWPF) reference glasses. The alkali-tin-silicate glass was engineered to accommodate a high Pu loading and to be durable under conditions likely to accelerate glass reaction. The glass dissolves about 7 wt% Pu together with the neutron absorber Gd, and under test conditions expected to accelerate the glass reaction with water, is resistant to corrosion. The Pu and the Gd are released from the glass at nearly the same rate in static corrosion tests in water, and are not segregated into surface alteration phases when the glass is reacted in water vapor. Similar results for the behavior of Pu and Gd are found for the DWPF reference glasses, although the long-term rate of reaction for the reference glasses is more rapid than for the alkali-tin-silicate glass

  5. Cooling rate dependence of structural order in Al{sub 90}Sm{sub 10} metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yang [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Ames Laboratory, US Department of Energy, Ames, Iowa 50011 (United States); Zhang, Yue; Zhang, Feng, E-mail: fzhang@ameslab.gov; Ye, Zhuo [Ames Laboratory, US Department of Energy, Ames, Iowa 50011 (United States); Ding, Zejun [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Cai-Zhuang [Ames Laboratory, US Department of Energy, Ames, Iowa 50011 (United States); Department of Physics, Iowa State University, Ames, Iowa 50011 (United States); Ho, Kai-Ming [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Ames Laboratory, US Department of Energy, Ames, Iowa 50011 (United States); Department of Physics, Iowa State University, Ames, Iowa 50011 (United States); International Center for Quantum Design of Functional Materials (ICQD), and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-07-07

    The atomic structure of Al{sub 90}Sm{sub 10} metallic glass is studied using molecular dynamics simulations. By performing a long sub-T{sub g} annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that “3661” cluster is the dominating short-range order in the glass samples. The connection and arrangement of “3661” clusters, which define the medium-range order in the system, are enhanced significantly in the sub-T{sub g} annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu{sub 64.5}Zr{sub 35.5}, the clusters representing the short-range order do not form an interconnected interpenetrating network in Al{sub 90}Sm{sub 10,} which has only marginal glass formability.

  6. Glass transition, crystallization kinetics and pressure effect on crystallization of ZrNbCuNiBe bulk metallic glass

    DEFF Research Database (Denmark)

    Xing, P.F.; Zhuang, Yanxin; Wang, W.H.

    2002-01-01

    The glass transition behavior and crystallization kinetics of Zr48Nb8Cu14Ni12Be18 bulk metallic glass have been investigated by differential scanning calorimetry and x-ray powder diffraction (XRD). The activation energies of both glass transition and crystallization events have been obtained using...... the Kissinger method. Results indicate that this glass crystallizes by a three-stage reaction: (1) phase separation and primary crystallization of glass, (2) formation of intermetallic compounds, and (3) decomposition of intermetallic compounds and crystallization of residual amorphous phase. The pressure...

  7. Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings

    International Nuclear Information System (INIS)

    Lan, Xiaodong; Wu, Hong; Liu, Yong; Zhang, Weidong; Li, Ruidi; Chen, Shiqi; Zai, Xiongfei; Hu, Te

    2016-01-01

    Metallic glass composite coatings Ti 45 Cu 41 Ni 9 Zr 5 and Ti 45 Cu 41 Ni 6 Zr 5 Sn 3 (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni 2 SnTi phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.

  8. A New Ni-Based Metallic Glass with High Thermal Stability and Hardness

    Directory of Open Access Journals (Sweden)

    Aytekin Hitit

    2015-02-01

    Full Text Available Glass forming ability (GFA, thermal stability and microhardness of Ni51−xCuxW31.6B17.4 (x = 0, 5 metallic glasses have been investigated. For each alloy, thin sheets of samples having thickness of 20 µm and 100 µm were synthesized by piston and anvil method in a vacuum arc furnace. Also, 400 µm thick samples of the alloys were synthesized by suction casting method. The samples were investigated by X-ray diffractometry (XRD and differential scanning calorimetry (DSC. Crystallization temperature of the base alloy, Ni51W31.6B17.4, is found to be 996 K and 5 at.% copper substitution for nickel increases the crystallization temperature to 1063 K, which is the highest value reported for Ni-based metallic glasses up to the present. In addition, critical casting thickness of alloy Ni51W31.6B17.4 is 100 µm and copper substitution does not have any effect on critical casting thickness of the alloys. Also, microhardness of the alloys are found to be around 1200 Hv, which is one of the highest microhardness values reported for a Ni-based metallic glass until now.

  9. Hybrid glasses from strong and fragile metal-organic framework liquids.

    Science.gov (United States)

    Bennett, Thomas D; Tan, Jin-Chong; Yue, Yuanzheng; Baxter, Emma; Ducati, Caterina; Terrill, Nick J; Yeung, Hamish H-M; Zhou, Zhongfu; Chen, Wenlin; Henke, Sebastian; Cheetham, Anthony K; Greaves, G Neville

    2015-08-28

    Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship between amorphization and melting has so far not been investigated. Here we show how heating MOFs of zeolitic topology first results in a low density 'perfect' glass, similar to those formed in ice, silicon and disaccharides. This order-order transition leads to a super-strong liquid of low fragility that dynamically controls collapse, before a subsequent order-disorder transition, which creates a more fragile high-density liquid. After crystallization to a dense phase, which can be remelted, subsequent quenching results in a bulk glass, virtually identical to the high-density phase. We provide evidence that the wide-ranging melting temperatures of zeolitic MOFs are related to their network topologies and opens up the possibility of 'melt-casting' MOF glasses.

  10. Friction welding of bulk metallic glasses to different ones

    International Nuclear Information System (INIS)

    Shoji, Takuo; Kawamura, Yoshihito; Ohno, Yasuhide

    2004-01-01

    For application of bulk metallic glasses (BMGs) as industrial materials, it is necessary to establish the metallurgical bonding technology. The BMGs exhibit high-strain-rate superplasticity in the supercooled liquid state. It has been reported that bulk metallic glasses were successfully welded together by friction, pulse-current, explosion and electron-beam methods. In this study, friction welding of the BMGs to different ones were tried for Pd 40 Ni 40 P 20 , Pd 40 Cu 30 P 20 Ni 10 , Zr 55 Cu 30 Al 10 Ni 5 and Zr 41 Be 23 Ti 14 Cu 12 Ni 10 BMGs. Successful welding was obtained in the combinations of the Pd 40 Ni 40 P 20 and Pd 40 Cu 30 P 20 Ni 10 BMGs, and the Zr 55 Cu 30 Al 10 Ni 5 and Zr 41 Be 23 Ti 14 Cu 12 Ni 10 ones. No crystallization was observed and no visible defect was recognized in the interface. The joining strength of the welded BMGs was the same as that of the parent BMG or more. BMGs seem to be successfully welded to the different ones with a difference below about 50 K in glass transition temperature

  11. Microstructure Effects on Spall Strength of Titanium-based Bulk Metallic Glass Composites

    Science.gov (United States)

    Diaz, Rene; Hofmann, Douglas; Thadhani, Naresh; Georgia Tech Team; GT-JPL Collaboration

    2017-06-01

    The spall strength of Ti-based metallic glass composites is investigated as a function of varying volume fractions (0-80%) of in-situ formed crystalline dendrites. With increasing dendrite content, the topology changes such that neither the harder glass nor the softer dendrites dominate the microstructure. Plate-impact experiments were performed using the 80-mm single-stage gas gun over impact stresses up to 18 GPa. VISAR interferometry was used to obtain rear free-surface velocity profiles revealing the velocity pullback spall failure signals. The spall strengths were higher than for Ti-6Al-4V alloy, and remained high up to impact stress. The influence of microstructure on the spall strength is indicated by the constants of the power law fit with the decompression strain rate. Differences in fracture behavior reveal void nucleation as a dominant mechanism affecting the spall strength. The microstructure with neither 100% glass nor with very high crystalline content, provides the most tortuous path for fracture and therefore highest spall strength. The results allow projection of spall strength predictions for design of in-situ formed metallic glass composites. ARO Grant # W911NF-09 ``1-0403 NASA JPL Contract # 1492033 ``Prime # NNN12AA01C; NSF GRFP Grant #DGE-1148903; and NDSE & G.

  12. Basaltic glasses from Iceland and the deep sea: Natural analogues to borosilicate nuclear waste-form glass

    International Nuclear Information System (INIS)

    Jercinovic, M.J.; Ewing, R.C.

    1987-12-01

    The report provides a detailed analysis of the alteration process and products for natural basaltic glasses. Information of specific applicability to the JSS project include: * The identification of typical alteration products which should be expected during the long-term corrosion process of low-silica glasses. The leached layers contain a relatively high proportion of crystalline phases, mostly in the form of smectite-type clays. Channels through the layer provide immediate access of solutions to the fresh glass/alteration layer interface. Thus, glasses are not 'protected' from further corrosion by the surface layer. * Corrosion proceeds with two rates - an initial rate in silica-undersaturated environments and a long-term rate in silica-saturated environments. This demonstrates that there is no unexpected change in corrosion rate over long periods of time. The long-term corrosion rate is consistent with that of borosilicate glasses. * Precipitation of silica-containing phases can result in increased alteration of the glass as manifested by greater alteration layer thicknesses. This emphasizes the importance of being able to predict which phases form during the reaction sequence. * For natural basaltic glasses the flow rate of water and surface area of exposed glass are critical parameters in minimizing glass alteration over long periods of time. The long-term stability of basalt glasses is enhanced when silica concentrations in solution are increased. In summary, there is considerable agreement between corrosion phenomena observed for borosilicate glasses in the laboratory and those observed for natural basalt glasses of great age. (With 121 refs.) (authors)

  13. Sheet-bulk metal formingforming of functional components from sheet metals

    Directory of Open Access Journals (Sweden)

    Merklein Marion

    2015-01-01

    Full Text Available The paper gives an overview on the application of sheet-bulk metal forming operations in both scientific and industrial environment. Beginning with the need for an innovative forming technology, the definition of this new process class is introduced. The rising challenges of the application of bulk metal forming operations on sheet metals are presented and the demand on a holistic investigation of this topic is motivated. With the help of examples from established production processes, the latest state of technology and the lack on fundamental knowledge is shown. Furthermore, perspectives regarding new research topics within sheet-bulk metal forming are presented. These focus on processing strategies to improve the quality of functional components by the application of process-adapted semi-finished products as well as the local adaption of the tribological system.

  14. Formation of centimeter Fe-based bulk metallic glasses in low vacuum environment

    Energy Technology Data Exchange (ETDEWEB)

    Pan Jie; Chen Qi; Li Ning [State Key Lab of Materials Processing and Mould Technology, Department of Materials Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Liu Lin [State Key Lab of Materials Processing and Mould Technology, Department of Materials Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China)], E-mail: lliu2000@public.wh.hb.cn

    2008-09-08

    The formation of a Fe{sub 43.7}Co{sub 7.3}Cr{sub 14.7}Mo{sub 12.6}C{sub 15.5}B{sub 4.3}Y{sub 1.9} bulk metallic glass (BMG) was attempted in low vacuum environment and in air using commercial raw materials. The glass forming ability of the Fe-based alloys was studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and differential thermal analyzer (DTA). It was found that cylindric rods with diameters ranging from 10 mm to 5 mm could be successfully fabricated by copper-mold casting in the pressures from 1.5 Pa to 10{sup 5} Pa (10{sup 5} Pa = 1 atm). All BMGs exhibit a distinct glass transition and wide supercooled liquid region. The preparation condition seems not significantly affected by the thermodynamic parameters of BMG, such as supercooled liquid region, glass transition temperature and melting process. The oxygen content of the alloys prepared in different vacuum conditions was measured by a LECO oxygen analyzer, which revealed that the oxygen content was less than 100 ppm for all BMGs prepared, even in air. The good glass forming ability and excellent oxidation resistance for the present Fe-based alloy are discussed.

  15. Oxidation feature and diffusion mechanism of Zr-based metallic glasses near the glass transition point

    Science.gov (United States)

    Hu, Zheng; Lei, Xianqi; Wang, Yang; Zhang, Kun

    2018-03-01

    The oxidation behaviors of as-cast, pre-deformed, and crystallized Zr47.9Ti0.3Ni3.1Cu39.3Al9.4 metallic glasses (MGs) were studied near the glass transition point. The oxidation kinetics of the crystallized MGs followed a parabolic-rate law, and the as-cast and pre-deformed MGs exerted a typical two-stage behavior above the glass transition temperature (T g). Most interesting, pre-deformed treatment can significantly improve the oxidation rate of MGs, as the initial oxidation appeared earlier than for the as-cast MGs, and was accompanied by much thicker oxide scale. The EDS and XPS results showed that the metal Al acted as the preferred scavenger that absorbed intrinsic oxygen in the near-surface region of as-cast MGs. However, a homogeneous mixed layer without Al was observed in the pre-deformed MGs. We speculated the accelerated diffusion of other elements in the MGs was due to the local increase in the free volume and significant shear-induced dilation of the local structure. The results from this study demonstrate that MGs exhibit controllable atomic diffusion during the oxidation process, which can facilitate use in super-cooled liquid region applications.

  16. Enzyme-Free Electrochemical Glucose Sensors Prepared by Dealloying Pd-Ni-P Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Yuqiao Zeng

    2014-01-01

    Full Text Available We report the formation of enzyme-free electrochemical glucose sensors by electrochemical dealloying palladium-containing Pd-Ni-P metallic glasses. When metallic glasses with different Pd contents are used as the dealloying precursor alloys, palladium-based nanoporous metals with different ligament and pore sizes can be obtained. The chemical compositions of the nanoporous metals also vary according to the different precursor compositions. All the as-obtained nanoporous metals exhibit electrochemical catalytic activity towards the oxidation of d-glucose, indicating that the nanoporous metals prepared by dealloying the Pd-Ni-P metallic glasses are promising materials for enzyme-free electrochemical glucose sensor.

  17. FeSiBP bulk metallic glasses with high magnetization and excellent magnetic softness

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Akihiro [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)], E-mail: amakino@imr.tohoku.ac.jp; Kubota, Takeshi; Chang, Chuntao [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Makabe, Masahiro [Makabe R and D Co., Ltd., 3-1-25 Nagatake, Sendai 983-0036 (Japan); Inoue, Akihisa [Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2008-10-15

    Fe-based amorphous alloy ribbons are one of the major soft magnetic materials, because of their superior magnetic properties such as the relatively high saturation magnetization (J{sub s}) of 1.5-1.6 T and good magnetic softness. However, the preparation of the ordinary amorphous magnetic alloys requires cooling rates higher than 10{sup 4} K/s due to the low glass-forming ability (GFA) and thus restricts the material outer shape. Recently, Fe-metalloid-based bulk metallic glasses (BMGs) containing glass-forming elements such as Al, Ga, Nb, Mo, Y and so forth have been developed. These alloys have high GFA, leading to the formation of BMG rod with diameters of mm-order. However, the glass-forming metal elements in BMGs result in a remarkable decrease in magnetization. Basically, J{sub s} depends on Fe content; hence, high J{sub s} requires high Fe content in the Fe-based amorphous alloys or BMGs. On the other hand, high GFA requires a large amount of glass-forming elements in the alloys, which results in lower Fe content. Therefore, in substances, the coexistence of high J{sub s} and high GFA is difficult. Since this matter should be immensely important from academia to industry in the material field, a great deal of effort has been devoted; however, it has remained unsolved for many years. In this paper, we present a novel Fe-rich FeSiBP BMG with high J{sub s} of 1.51 T comparable to the ordinary Fe-Si-B amorphous alloy now in practical use as well as with high GFA leading to a rod-shaped specimen of 2.5 mm in diameter, obtained by Cu-mold casting in air.

  18. Lubricant Test Methods for Sheet Metal Forming

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2008-01-01

    appearing in different sheet forming operations such as stretch forming, deep drawing, ironing and punching. The laboratory tests have been especially designed to model the conditions in industrial production. Application of the tests for evaluating new lubricants before introducing them in production has......Sheet metal forming of tribologically difficult materials such as stainless steel, Al-alloys and Ti-alloys or forming in tribologically difficult operations like ironing, punching or deep drawing of thick plate requires often use of environmentally hazardous lubricants such as chlorinated paraffin...... oils in order to avoid galling. The present paper describes a systematic research in the development of new, environmentally harmless lubricants focusing on the lubricant testing aspects. A system of laboratory tests has been developed to study the lubricant performance under the very varied conditions...

  19. Comparison of the corrosion behaviors of the glass-bonded sodalite ceramic waste form and reference HLW glasses

    International Nuclear Information System (INIS)

    Ebert, W. L.; Lewis, M. A.

    1999-01-01

    A glass-bonded sodalite ceramic waste form is being developed for the long-term immobilization of salt wastes that are generated during spent nuclear fuel conditioning activities. A durable waste form is prepared by hot isostatic pressing (HIP) a mixture of salt-loaded zeolite powders and glass frit. A mechanistic description of the corrosion processes is being developed to support qualification of the CWF for disposal. The initial set of characterization tests included two standard tests that have been used extensively to study the corrosion behavior of high level waste (HLW) glasses: the Material Characterization Center-1 (MCC-1) Test and the Product Consistency Test (PCT). Direct comparison of the results of tests with the reference CWF and HLW glasses indicate that the corrosion behaviors of the CWF and HLW glasses are very similar

  20. Electron beam welding of the dissimilar Zr-based bulk metallic glass and Ti metal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonghyun [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)], E-mail: joindoc@kumamoto-u.ac.jp; Kawamura, Y. [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)

    2007-04-15

    We successfully welded 3 mm thick Zr{sub 41}Be{sub 23}Ti{sub 14}Cu{sub 12}Ni{sub 10} bulk metallic glass plate to Ti metal by electron beam welding with a beam irradiated 0.4 mm on the BMG side of the interface. There was no crystallization or defects in the weld because changes in the chemical composition of the weld metal were prevented. Bending showed that the welded sample had a higher strength than the Ti base metal. The interface had a 10 {mu}m thick interdiffusion layer of Zr and Ti.

  1. High-entropy bulk metallic glasses as promising magnetic refrigerants

    International Nuclear Information System (INIS)

    Huo, Juntao; Huo, Lishan; Li, Jiawei; Men, He; Wang, Xinmin; Chang, Chuntao; Wang, Jun-Qiang; Li, Run-Wei; Inoue, Akihisa

    2015-01-01

    In this paper, the Ho 20 Er 20 Co 20 Al 20 RE 20 (RE = Gd, Dy, and Tm) high-entropy bulk metallic glasses (HE-BMGs) with good magnetocaloric properties are fabricated successfully. The HE-BMGs exhibit a second-order magnetic phase transition. The peak of magnetic entropy change (ΔS M pk ) and refrigerant capacity (RC) reaches 15.0 J kg −1 K −1 and 627 J kg −1 at 5 T, respectively, which is larger than most rare earth based BMGs. The heterogeneous nature of glasses also contributes to the large ΔS M pk and RC. In addition, the magnetic ordering temperature, ΔS M pk and RC can be widely tuned by alloying different rare earth elements. These results suggest that the HE-BMGs are promising magnetic refrigerant at low temperatures

  2. Deformation in Metallic Glass: Connecting Atoms to Continua

    Science.gov (United States)

    Hinkle, Adam R.; Falk, Michael L.; Rycroft, Chris H.; Shields, Michael D.

    Metallic glasses like other amorphous solids experience strain localization as the primary mode of failure. However, the development of continuum constitutive laws which provide a quantitative description of disorder and mechanical deformation remains an open challenge. Recent progress has shown the necessity of accurately capturing fluctuations in material structure, in particular the statistical changes in potential energy of the atomic constituents during the non-equilibrium process of applied shear. Here we directly cross-compare molecular dynamics shear simulations of a ZrCu glass with continuum shear transformation zone (STZ) theory representations. We present preliminary results for a methodology to coarse-grain detailed molecular dynamics data with the goal of initializing a continuum representation in the STZ theory. NSF Grants Awards 1107838, 1408685, and 0801471.

  3. Reentrant spin glass ordering in an Fe-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Qiang; Shen, Jun, E-mail: junshen@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China)

    2015-02-07

    We report the results of the complex susceptibility, temperature, and field dependence of DC magnetization and the nonequilibrium dynamics of a bulk metallic glass Fe{sub 40}Co{sub 8}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Er{sub 2}. Solid indication of the coexistence of reentrant spin glass (SG) and ferromagnetic orderings is determined from both DC magnetization and AC susceptibility under different DC fields. Dynamics scaling of AC susceptibility indicates critical slowing down to a reentrant SG state with a static transition temperature T{sub s} = ∼17.8 K and a dynamic exponent zv = ∼7.3. The SG nature is further corroborated from chaos and memory effects, magnetic hysteresis, and aging behavior. We discuss the results in terms of the competition among random magnetic anisotropy and exchange interactions and compare them with simulation predictions.

  4. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Akihisa Inoue

    2011-04-01

    Full Text Available This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs. In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni and Cu–Zr–Ag–Al–(Nb bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance.

  5. Waste vitrification: prediction of acceptable compositions in a lime-soda-silica glass-forming system

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Jantzen, C.M.

    1996-10-01

    A model is presented based upon calculated bridging oxygens which allows the prediction of the region of acceptable glass compositions for a lime-soda-silica glass-forming system containing mixed waste. The model can be used to guide glass formulation studies (e.g., treatability studies) or assess the applicability of vitrification to candidate waste streams

  6. Liquid phase and supercooled liquid phase welding of bulk metallic glasses

    International Nuclear Information System (INIS)

    Kawamura, Y.

    2004-01-01

    Recent progress on welding in bulk metallic glasses (BMGs) has been reviewed. BMGs have been successfully welded to BMGs or crystalline metals by liquid phase welding using explosion, pulse-current and electron-beam methods, and by supercooled liquid phase welding using friction method. Successful welding of the liquid phase methods was due to the high glass-forming ability of the BMGs and the high concentration of welding energy in these methods. In contrast, the supercooled liquid phase welding was successful due to the thermally stable supercooled liquid state of the BMGs and the superplasticity and viscous flow of the supercooled liquid. The successful welding of BMGs to BMGs and crystalline materials is promising for the future development of BMGs as engineering materials

  7. Stability of Bulk Metallic Glass Structure. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D. B.

    2003-06-01

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub 80-x}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  8. Investigation of Partially Crystalline Zr77Ni23 Metallic Glass

    Directory of Open Access Journals (Sweden)

    Amra Salčinović Fetić

    2016-08-01

    Full Text Available This paper presents the results of an extensive research of partially crystalline Zr77Ni23 metallic glass (indicated numbers refer to atomic percentages. The partially crystalline Zr77Ni23 samples were prepared by melt-spinning using a device constructed in the Metal Physics Laboratory, Faculty of Science in Sarajevo. XRD pattern shows crystalline peaks which correspond to an orthorhombic structure of Zr3Ni superimposed on an amorphous pattern. Homogeneity and chemical composition were investigated using scanning electron microscopy (SEM and energy-dispersive X-ray spectroscopy (EDX. Crystallization was studied by differential scanning calorimetry (DSC. DSC analysis indicated a simple thermally activated process. Overall activation energy of the crystallization was calculated using Kissinger's model for nonisothermal process and compared with those given by the Augis-Bennett model. By monitoring of the electrical resistance in the temperature range 80 – 270 K a small and negative thermal coefficient of electrical resistance was observed. This means that electrical resistance varies slightly with temperature and it makes this metallic glass suitable for application in electronic circuits for which this property is an important requirement.

  9. Structural behavior of Pd40Cu30Ni10P20 bulk metallic glass below and above the glass transition

    DEFF Research Database (Denmark)

    Mattern, N.; Hermann, H.; Roth, S.

    2003-01-01

    The thermal behavior of the structure of Pd40Cu30Ni10P20 bulk metallic glass has been investigated in situ through the glass transition by means of high-temperature x-ray synchrotron diffraction. The dependence of the x-ray structure factor S(q) of the Pd40Cu30Ni10P20 glass on temperature follows...... the Debye theory up to the glass transition with a Debye temperature theta=296 K. Above the glass transition temperature T-g, the temperature dependence of S(q) is altered, pointing to a continuous development of structural changes in the liquid with temperature. The atomic pair correlation functions g......(r) indicate changes in short-range-order parameters of the first and the second neighborhood with temperature. The temperature dependence of structural parameters is different in glass and in supercooled liquid, with a continuous behavior through the glass transition. The nearest-neighbor distance decreases...

  10. Damage Prediction in Sheet Metal Forming

    International Nuclear Information System (INIS)

    Saanouni, Khemais; Badreddine, Houssem

    2007-01-01

    Ductile (or plastic) damage often occurs during sheet metal forming processes due to the large plastic flow localization. Accordingly, it is crucial for numerical tools, used in the simulation of that processes, to use fully coupled constitutive equations accounting for both hardening and damage. This can be used in both cases, namely to overcome the damage initiation during some sheet metal forming processes as deep drawing, ... or to enhance the damage initiation and growth as in sheet metal cutting. In this paper, a fully coupled constitutive equations accounting for combined isotropic and kinematic hardening as well as the ductile damage is implemented into the general purpose Finite Element code for metal forming simulation. First, the fully coupled anisotropic constitutive equations in the framework of Continuum Damage Mechanics are presented. Attention is paid to the strong coupling between the main mechanical fields as elasto-viscoplasticity, mixed hardening, ductile isotropic damage and contact with friction. The anisotropy of the plastic flow is taken into account using various kinds of quadratic or non quadratic yield criteria in the framework of non associative finite plasticity theory with two types of normality rules. The associated numerical aspects concerning both the local integration of the coupled constitutive equations as well as the (global) equilibrium integration schemes are presented. The local integration is outlined thanks to the Newton iterative scheme applied to a reduced system of 2 equations. For the global resolution of the initial and boundary value problem, the classical dynamic explicit (DE) scheme with an adaptive time step control is used. The numerical implementation of the damage is made in such a manner that calculations can be executed with or without damage effect, i.e. fully coupled or uncoupled calculations. For the 2D processes an advanced adaptive meshing procedure is used in order to enhance the numerical solution and

  11. Simulation of an Aspheric Glass Lens Forming Behavior in Progressive GMP Process

    International Nuclear Information System (INIS)

    Chang, Sung Ho; Lee, Young Min; Kang, Jeong Jin; Hong, Seok Kwan; Shin, Gwang Ho; Heo, Young Moo; Jung, Tae Sung

    2007-01-01

    Recently, GMP(Glass Molding Press) process is mainly used to produce aspheric glass lenses. Because glass lens is heated at high temperature above Tg (Transformation Temperature) for forming the glass, the quality of aspheric glass lens is deteriorated by residual stresses which are generated in a aspheric glass lens after forming. In this study, as a fundamental study to develop the mold for progressive GMP process, we conducted a aspheric glass lens forming simulation. Prior to a aspheric glass lens forming simulation, compression and thermal conductivity tests were carried out to obtain mechanical and thermal properties of K-PBK40 which is newly developed material for precision molding, and flow characteristics of K-PBK40 were obtained at high temperature. Then, using the flow characteristics obtained, compression simulation was carried out and compared with the experimental result for the purpose of verifying the obtained flow characteristics. Finally, a glass lens press simulation in progressive GMP process was carried out and we could forecast the shape of deformed glass lenses and residual stresses contribution in the structure of deformed glass lenses after forming

  12. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    Science.gov (United States)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  13. Trends and Visions in Metal Forming Tribology

    DEFF Research Database (Denmark)

    Bay, Niels

    2011-01-01

    operations, which otherwise would require the use of environmentally hazardous lubricant systems. A methodology for prediction of limits of lubrication of new tribo-system for sheet forming production based on numerical modelling and off-line testing in dedicated simulative tribo-tests is proposed....... of structured work piece and tool surfaces to facilitate micro-hydro-dynamic lubrication. Increased knowledge on skin-pass rolling to establish structured sheet surfaces and new automatic polishing equipment to manufacture tailored tool surfaces are important means to improve tribo-conditions in severe forming......Research and development in metal forming tribology is characterized by intensified focus on new tribo-systems such as new lubricants, tool materials and tool coatings in order to substitute environmentally hazardous lubricant systems. Other means to solve these problems include the development...

  14. Variation of boron concentration in metallic glass ribbons

    International Nuclear Information System (INIS)

    Nagy, A.Z.; Vasvari, B.; Bakos, L.; Duwez, P.; Bogancs, J.; Nazarov, V.M.

    1980-01-01

    The boron concentration of Fe 40 Ni 40 P 14 B 6 , Fe 32 Ni 36 Cr 14 P 12 B 6 and Fe 40 Ni 40 B 20 metallic glasses is measured by neutron activation analysis on both surfaces of the ribbon samples. It is found that the boron concentration is always higher on the bright side of the ribbon than that on the dull side which is in contact with the cold surface of the wheel during the rapid quenching from the melt. A possible explanation is given in terms of the solid-liquid interface moving rapidly from the cooled surface to the free surface when preparing the samples. (author)

  15. The kinetic origin of delayed yielding in metallic glasses

    International Nuclear Information System (INIS)

    Ye, Y. F.; Liu, X. D.; Wang, S.; Liu, C. T.; Yang, Y.; Fan, J.

    2016-01-01

    Recent experiments showed that irreversible structural change or plasticity could occur in metallic glasses (MGs) even within the apparent elastic limit after a sufficiently long waiting time. To explain this phenomenon, a stochastic shear transformation model is developed based on a unified rate theory to predict delayed yielding in MGs, which is validated afterwards through extensive atomistic simulations carried out on different MGs. On a fundamental level, an analytic framework is established in this work that links time, stress, and temperature altogether into a general yielding criterion for MGs.

  16. The kinetic origin of delayed yielding in metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Y. F.; Liu, X. D.; Wang, S.; Liu, C. T.; Yang, Y., E-mail: yonyang@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, Centre for Advanced Structural Materials, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong (China); Fan, J. [Department of Applied Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong (China)

    2016-06-20

    Recent experiments showed that irreversible structural change or plasticity could occur in metallic glasses (MGs) even within the apparent elastic limit after a sufficiently long waiting time. To explain this phenomenon, a stochastic shear transformation model is developed based on a unified rate theory to predict delayed yielding in MGs, which is validated afterwards through extensive atomistic simulations carried out on different MGs. On a fundamental level, an analytic framework is established in this work that links time, stress, and temperature altogether into a general yielding criterion for MGs.

  17. Ultrahigh-strength submicron-sized metallic glass wires

    International Nuclear Information System (INIS)

    Wang, Y.B.; Lee, C.C.; Yi, J.; An, X.H.; Pan, M.X.; Xie, K.Y.; Liao, X.Z.; Cairney, J.M.; Ringer, S.P.; Wang, W.H.

    2014-01-01

    In situ deformation experiments were performed in a transmission electron microscope to investigate the mechanical properties of submicron-sized Pd 40 Cu 30 Ni 10 P 20 metallic glass (MG) wires. Results show that the submicron-sized MG wires exhibit intrinsic ultrahigh tensile strength of ∼2.8 GPa, which is nearly twice as high as that in their bulk counterpart, and ∼5% elastic strain approaching the elastic limits. The tensile strength, engineering strain at failure and deformation mode of the submicron-sized MG wires depend on the diameter of the wires

  18. SPP propagation in nonlinear glass-metal interface

    KAUST Repository

    Sagor, Rakibul Hasan

    2011-12-01

    The non-linear propagation of Surface-Plasmon-Polaritons (SPP) in single interface of metal and chalcogenide glass (ChG) is considered. A time domain simulation algorithm is developed using the Finite Difference Time Domain (FDTD) method. The general polarization algorithm incorporated in the auxiliary differential equation (ADE) is used to model frequency-dependent dispersion relation and third-order nonlinearity of ChG. The main objective is to observe the nonlinear behavior of SPP propagation and study the dynamics of the whole structure. © 2011 IEEE.

  19. Strength of metallic glasses at 4.2-300 K

    International Nuclear Information System (INIS)

    Tabachnikova, E.D.

    1987-01-01

    Investigation into temperature dependence of metallic glass strength (Ni 78 Si 8 B 14 ; Fe 40 Ni 38 Mo 4 B 18 ; Fe 25 Ni 55 Si 10 B 1 0 ; Fe 61 Co 20 Si 4 B 15 ) is conducted within 300-4.2 K temperature interval. By the character of σ (T) x dependence and fracture mode the alloys investigated are subdivided into two groups. In 1 group alloys the fracture up to 4.2 K has the character typical of ductile fracture. In the second group alloys fracture acquires brittle character with the temperature decrease

  20. Effects of neutron irradiation on a superconducting metallic glass

    International Nuclear Information System (INIS)

    Kramer, E.A.; Johnson, W.L.; Cline, C.

    1979-06-01

    The effects of fast neutron irradiation on a superconducting metallic glass (Mo 6 Ru 4 ) 82 B 18 have been studied. Following irradiation to a total fluence of 10 19 n/cm 2 , T/sub c/ increases from 6.05 K to 6.19 K, and the width of the transition decreases sharply. The density of the material decreases by 1.5%, and the x-ray scattering intensity maxima are broadened. An improvement in the ductility of the samples is observed which together with the other observations suggests the production of defects having atomic scale dimensions and characterized by excess volume

  1. Physical factors controlling the ductility of bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. [Central South University, China; Liu, Chain T [ORNL; Zhang, Z. [University of Tennessee, Knoxville (UTK); Keppens, V. [University of Tennessee, Knoxville (UTK)

    2008-01-01

    In order to identify key physical factor controlling the deformation and fracture behavior of bulk metallic glasses (BMGs), we compiled and analyzed the elastic moduli and compressive ductility for BMGs. In addition, new modulus data were generated in the critical ranges in order to facilitate the analysis. We have found that the intrinsic ductility of BMGs can be correlated with the bulk-to-shear modulus ratio B/G according to Pugh's [Philos. Mag. 45, 823 (1954) ] rule. In some individual BMG systems, for example, Fe based, the relationship seems to be very clear. The physical meaning of this correlation is discussed in terms of atomic bonding and connectivity.

  2. Effect of the metallic glass volume fraction on the mechanical properties of Zr-based metallic glass reinforced with porous W composite

    International Nuclear Information System (INIS)

    Zhang, X.Q.; Wang, L.; Xue, Y.F.; Cheng, X.W.; Wang, Y.D.; Nie, Z.H.; Zhang, H.F.; Fu, H.M.; Ma, L.L.; Ren, Y.

    2013-01-01

    The mechanical properties of both as-cast and as-extruded Zr-based metallic glass reinforced with tungsten composites with 33, 28, and 21 vol. % of metallic glass were investigated under quasi-static compression at strain rates from 10 −4 s −1 to 10 −1 s −1 . These two types of composites exhibited a strain rate sensitivity exponent that increased with the increase of the tungsten volume fraction. Compared to the composites with 33 and 21 vol. % of the metallic glass, the two types of composites with 28 vol. % of the metallic glass phase exhibited superior fracture energies. The in-situ compression test on the as-cast composites using high-energy synchrotron X-ray diffraction (HEXRD) revealed that the yield stress of the tungsten phase increased with a decrease in the metallic glass volume fraction. The as-cast composite with 28 vol. % of the metallic glass exhibited relatively great mechanical properties compared to the composites that contained 33 and 21 vol. % of the metallic glass. This result was attributed to the great coupling of the load distribution between the two phases and the high lattice strain in the tungsten phase.

  3. Antimicrobial properties of Zr–Cu–Al–Ag thin film metallic glass

    International Nuclear Information System (INIS)

    Chen, Hsien-Wei; Hsu, Kai-Chieh; Chan, Yu-Chen; Duh, Jenq-Gong; Lee, Jyh-Wei; Jang, Jason Shian-Ching; Chen, Guo-Ju

    2014-01-01

    Metallic glass as a prominent class of structure and multifunctional materials exhibits several unique properties in mechanical, electrochemical, and thermal properties. This study aimed to realize the advantage of biomedical application and to promote the attainable size of metallic glasses by the physical vapor deposition. The Zr–Cu–Al–Ag thin film metallic glass (TFMG) was deposited on silicon wafer and SUS304 stainless steel substrates by magnetron sputtering with single target. For X-ray diffraction analysis, all TFMGs revealed typical broad peaks around the incident angle of 30 to 50°, suggesting that coatings possess amorphous structure. In addition, diffuse halo ring patterns of transmission electron microscopy indicated a fine amorphorization for TFMG via sputtering process. The variation of surface roughness showed that TFMG derived from higher power of metallic targets revealed rougher morphology. Besides, the roughness of SUS304 stainless steel substrate significantly reduced from 7 nm to about 1 nm after TFMGs were deposited. The microbes of Candida albicans, Escherichia coli, and Pseudomonas aeruginosa were used and cultivated on the TFMG coatings with medium to investigate the antimicrobial properties. In the incubation experiment, the growth of each microbe was recorded by a digital photography system and the growth area was calculated by image processing software. The growth area of the microbes on the TFMG was mostly smaller than that on SUS304 stainless steel ones within incubation time of 72 h, indicating that the TFMGs reveal better antimicrobial capability. Moreover, the coatings exhibit a particularly long-term antimicrobial effect for P. aeruginosa. In summary, the Zr–Cu–Al–Ag prepared by sputtering with a single target device presented superior glass forming ability, and coatings with copper and silver constituents revealed significantly antimicrobial properties. Besides, the surface roughness is another factor to affect the

  4. Antimicrobial properties of Zr–Cu–Al–Ag thin film metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsien-Wei; Hsu, Kai-Chieh; Chan, Yu-Chen [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Lee, Jyh-Wei [Department of Materials Engineering, Ming Chi University of Technology, Taipei, Taiwan (China); Center for Thin Film Technologies and Applications, Mingchi University of Technology, Taipei, Taiwan (China); Jang, Jason Shian-Ching [Department of Mechanical Engineering, Institute of Materials Science and Engineering, National Central University, Chung-Li, Taiwan (China); Chen, Guo-Ju [Department of Materials Science and Engineering, I-Shou University, Kaohsiung, Taiwan (China)

    2014-06-30

    Metallic glass as a prominent class of structure and multifunctional materials exhibits several unique properties in mechanical, electrochemical, and thermal properties. This study aimed to realize the advantage of biomedical application and to promote the attainable size of metallic glasses by the physical vapor deposition. The Zr–Cu–Al–Ag thin film metallic glass (TFMG) was deposited on silicon wafer and SUS304 stainless steel substrates by magnetron sputtering with single target. For X-ray diffraction analysis, all TFMGs revealed typical broad peaks around the incident angle of 30 to 50°, suggesting that coatings possess amorphous structure. In addition, diffuse halo ring patterns of transmission electron microscopy indicated a fine amorphorization for TFMG via sputtering process. The variation of surface roughness showed that TFMG derived from higher power of metallic targets revealed rougher morphology. Besides, the roughness of SUS304 stainless steel substrate significantly reduced from 7 nm to about 1 nm after TFMGs were deposited. The microbes of Candida albicans, Escherichia coli, and Pseudomonas aeruginosa were used and cultivated on the TFMG coatings with medium to investigate the antimicrobial properties. In the incubation experiment, the growth of each microbe was recorded by a digital photography system and the growth area was calculated by image processing software. The growth area of the microbes on the TFMG was mostly smaller than that on SUS304 stainless steel ones within incubation time of 72 h, indicating that the TFMGs reveal better antimicrobial capability. Moreover, the coatings exhibit a particularly long-term antimicrobial effect for P. aeruginosa. In summary, the Zr–Cu–Al–Ag prepared by sputtering with a single target device presented superior glass forming ability, and coatings with copper and silver constituents revealed significantly antimicrobial properties. Besides, the surface roughness is another factor to affect the

  5. Icosahedral binary clusters of glass-forming Lennard-Jones binary alloy

    International Nuclear Information System (INIS)

    Iwamatsu, Masao

    2007-01-01

    It is widely believed that the local icosahedral structure is related to the formation of bulk metallic glasses (BMGs). Specifically the existence of 13-atom icosahedral cluster in undercooled liquid is imagined to play a key role to initiate the glass formation as the seed of amorphous structure or to block the nucleation of regular crystal as the impurity. The existence of 13-atom icosahedral clusters in one-component liquids was predicted more than half a century ago by Frank from his total energy calculation for isolated clusters. In BMG alloys, however, the situation is less clear. In this report, we present the lowest-energy structures of 13-atom Lennard-Jones binary cluster calculated from the modified space-fixed genetic algorithm. We study, in particular, the artificial Lennard-Jones potential designed by Kob and Andersen [W. Kob, H.C. Andersen, Phys. Rev. E 51 (1995) 4626] that is known to form BMG. Curiously, the lowest-energy structures of 13-atom cluster are non-icosahedral for almost all compositions. Our result suggests that the existence of the icosahedral cluster is not a necessary condition but only a sufficient condition for glass formation

  6. Glassy slags as novel waste forms for remediating mixed wastes with high metal contents

    International Nuclear Information System (INIS)

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Gong, M.; Ebert, W.L.

    1994-01-01

    Argonne National Laboratory (ANL) is developing a glassy slag final waste form for the remediation of low-level radioactive and mixed wastes with high metal contents. This waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. This work indicates that glassy slag shows promise as final waste form because (1) it has similar or better chemical durability than high-level nuclear waste (HLW) glasses, (2) it can incorporate large amounts of metal wastes, (3) it can incorporate waste streams having low contents of flux components (boron and alkalis), (4) it has less stringent processing requirements (e.g., viscosity and electric conductivity) than glass waste forms, (5) its production can require little or no purchased additives, which can result in greater reduction in waste volume and overall treatment costs. By using glassy slag waste forms, minimum additive waste stabilization approach can be applied to a much wider range of waste streams than those amenable only to glass waste forms

  7. Transparent phosphosilicate glasses containing crystals formed during cooling of melts

    DEFF Research Database (Denmark)

    Liu, S. J.; Zhang, Yanfei; He, W.

    2011-01-01

    The effect of P2O5-SiO2 substitution on spontaneous crystallization of SiO2-Al2O3-P2O5- Na2O-MgO melts during cooling was studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and rotation viscometry. Results show that addition of P2O5 leads...... to amorphous phase separation (APS), i.e., phosphate- and silicate-rich phases. It is due to the tendency of Mg2+ to form [MgO4] linking with [SiO4]. Molar substitution of P2O5 for SiO2 enhances the network polymerization of silicate-rich phase in the melts, and thereby the spontaneous crystallization of cubic...... Na2MgSiO4 is also enhanced during cooling of the melts. In addition, the sizes of the local crystalline and separated glassy domains are smaller than the wavelength of the visible light, and this leads to the transparency of the obtained glasses containing crystals....

  8. Evaluation of final waste forms and recommendations for baseline alternatives to group and glass

    Energy Technology Data Exchange (ETDEWEB)

    Bleier, A.

    1997-09-01

    An assessment of final waste forms was made as part of the Federal Facilities Compliance Agreement/Development, Demonstration, Testing, and Evaluation (FFCA/DDT&E) Program because supplemental waste-form technologies are needed for the hazardous, radioactive, and mixed wastes of concern to the Department of Energy and the problematic wastes on the Oak Ridge Reservation. The principal objective was to identify a primary waste-form candidate as an alternative to grout (cement) and glass. The effort principally comprised a literature search, the goal of which was to establish a knowledge base regarding four areas: (1) the waste-form technologies based on grout and glass, (2) candidate alternatives, (3) the wastes that need to be immobilized, and (4) the technical and regulatory constraints on the waste-from technologies. This report serves, in part, to meet this goal. Six families of materials emerged as relevant; inorganic, organic, vitrified, devitrified, ceramic, and metallic matrices. Multiple members of each family were assessed, emphasizing the materials-oriented factors and accounting for the fact that the two most prevalent types of wastes for the FFCA/DDT&E Program are aqueous liquids and inorganic sludges and solids. Presently, no individual matrix is sufficiently developed to permit its immediate implementation as a baseline alternative. Three thermoplastic materials, sulfur-polymer cement (inorganic), bitumen (organic), and polyethylene (organic), are the most technologically developed candidates. Each warrants further study, emphasizing the engineering and economic factors, but each also has limitations that regulate it to a status of short-term alternative. The crystallinity and flexible processing of sulfur provide sulfur-polymer cement with the highest potential for short-term success via encapsulation. Long-term immobilization demands chemical stabilization, which the thermoplastic matrices do not offer. Among the properties of the remaining

  9. Evaluation of final waste forms and recommendations for baseline alternatives to grout and glass

    International Nuclear Information System (INIS)

    Bleier, A.

    1997-09-01

    An assessment of final waste forms was made as part of the Federal Facilities Compliance Agreement/Development, Demonstration, Testing, and Evaluation (FFCA/DDT ampersand E) Program because supplemental waste-form technologies are needed for the hazardous, radioactive, and mixed wastes of concern to the Department of Energy and the problematic wastes on the Oak Ridge Reservation. The principal objective was to identify a primary waste-form candidate as an alternative to grout (cement) and glass. The effort principally comprised a literature search, the goal of which was to establish a knowledge base regarding four areas: (1) the waste-form technologies based on grout and glass, (2) candidate alternatives, (3) the wastes that need to be immobilized, and (4) the technical and regulatory constraints on the waste-from technologies. This report serves, in part, to meet this goal. Six families of materials emerged as relevant; inorganic, organic, vitrified, devitrified, ceramic, and metallic matrices. Multiple members of each family were assessed, emphasizing the materials-oriented factors and accounting for the fact that the two most prevalent types of wastes for the FFCA/DDT ampersand E Program are aqueous liquids and inorganic sludges and solids. Presently, no individual matrix is sufficiently developed to permit its immediate implementation as a baseline alternative. Three thermoplastic materials, sulfur-polymer cement (inorganic), bitumen (organic), and polyethylene (organic), are the most technologically developed candidates. Each warrants further study, emphasizing the engineering and economic factors, but each also has limitations that regulate it to a status of short-term alternative. The crystallinity and flexible processing of sulfur provide sulfur-polymer cement with the highest potential for short-term success via encapsulation. Long-term immobilization demands chemical stabilization, which the thermoplastic matrices do not offer. Among the properties of the

  10. Study of inelastic deformation mechanisms in metal glass volume

    International Nuclear Information System (INIS)

    Bakaj, S.A.; Neklyudov, I.M.; Savchenko, V.I.; Ehkert, Yu.

    2001-01-01

    The results of investigations of the mechanical properties and internal friction of the bulk amorphous alloy Zr 53.5 Ti 5 Cu 17.5 Ni 14.6 Al 10.4 within the temperature range from the room temperature up to glass-transition temperature are reported. The yield stress and transition from homogeneous to inhomogeneous plastic deformation are investigated. The temperature dependence of low-frequency internal friction, Q -1 (T), in the amplitude-independent limit of oscillations is obtained. The temperature range within which the homogeneous plastic deformation is observed under compression stress is determined. The superplasticity of the amorphous alloy is revealed at the temperature which is 100K lower than the glass-transition temperature. The lowest temperature, at which the superplasticity is revealed, turns to be an edge of the temperature range where Q -1 (T) increases fast. The microscopic nature of the observed phenomena are interpreted on the base of the polycluster model of the metallic glasses

  11. Impact of spatial dimension on structural ordering in metallic glass.

    Science.gov (United States)

    Hu, Yuan-Chao; Tanaka, Hajime; Wang, Wei-Hua

    2017-08-01

    Metallic glasses (MGs) have so far attracted considerable attention for their applications as bulk materials. However, new physics and applications often emerge by dimensional reduction from three dimensions (3D) to two dimensions (2D). Here, we study, by molecular dynamics simulations, how the liquid-to-glass transition of a binary Cu_{50}Zr_{50} MG is affected by spatial dimensionality. We find clear evidence that crystal-like structural ordering controls both dynamic heterogeneity and slow dynamics, and thus plays a crucial role in the formation of the 2DMG. Although the 2DMG reproduces the dynamical behaviors of its 3D counterpart by considering Mermin-Wagner-type fluctuations specific to 2D, this atomic-scale structural mechanism is essentially different from that for the 3DMG in which icosahedral clusters incompatible with crystallographic symmetry play a key role in glassy behaviors. Our finding provides a structural mechanism for the formation of 2DMGs, which cannot be inferred from the knowledge of 3DMGs. The results suggest a structural basis for the glass transition in 2DMG and provide possible explanations for some previous experimental observations in ultrathin film MGs.

  12. Structural Origin of the Enhanced Glass-Forming Ability Induced by Microalloying Y in the ZrCuAl Alloy

    Directory of Open Access Journals (Sweden)

    Gu-Qing Guo

    2016-03-01

    Full Text Available In this work, the structural origin of the enhanced glass-forming ability induced by microalloying Y in a ZrCuAl multicomponent system is studied by performing synchrotron radiation experiments combined with simulations. It is revealed that the addition of Y leads to the optimization of local structures, including: (1 more Zr-centered and Y-centered icosahedral-like clusters occur in the microstructure; (2 the atomic packing efficiency inside clusters and the regularity of clusters are both enhanced. These structural optimizations help to stabilize the amorphous structure in the ZrCuAlY system, and lead to a high glass-forming ability (GFA. The present work provides an understanding of GFAs in multicomponent alloys and will shed light on the development of more metallic glasses with high GFAs.

  13. Tribo-systems for Sheet Metal Forming

    DEFF Research Database (Denmark)

    Bay, Niels

    2009-01-01

    The present paper gives an overview of more than 10 years work by the author’s research group through participation in national as well as international framework programmes on developing and testing environmentally friendly lubricants and tool materials and coatings inhibiting galling. Partners ......’s research group has especially been involved in the development of a system of tribo-tests for sheet metal forming and in testing and modelling of friction and limits of lubrication of new, environmentally friendly lubricants and tool materials....

  14. Computational analysis of the atomic size effect in bulk metallic glasses and their liquid precursors

    International Nuclear Information System (INIS)

    Kokotin, V.; Hermann, H.

    2008-01-01

    The atomic size effect and its consequences for the ability of multicomponent liquid alloys to form bulk metallic glasses are analyzed in terms of the generalized Bernal's model for liquids, following the hypothesis that maximum density in the liquid state improves the glass-forming ability. The maximum density that can be achieved in the liquid state is studied in the 2(N-1) dimensional parameter space of N-component systems. Computer simulations reveal that the size ratio of largest to smallest atoms are most relevant for achieving the maximum packing for N = 3-5, whereas the number of components plays a minor role. At small size ratio, the maximum packing density can be achieved by different atomic size distributions, whereas for medium size ratios the maximum density is always correlated to a concave size distribution. The relationship of the results to Miracle's efficient cluster packing model is also discussed

  15. Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Dapeng [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The work presented in this thesis mainly focuses on the nucleation and growth of metal thin films on multimetallic surfaces. First, we have investigated the Ag film growth on a bulk metallic glass surface. Next, we have examined the coarsening and decay of bilayer Ag islands on NiAl(110) surface. Third, we have investigated the Ag film growth on NiAl(110) surface using low-energy electron diffraction (LEED). At last, we have reported our investigation on the epitaxial growth of Ni on NiAl(110) surface. Some general conclusions can be drawn as follows. First, Ag, a bulk-crystalline material, initially forms a disordered wetting layer up to 4-5 monolayers on Zr-Ni-Cu-Al metallic glass. Above this coverage, crystalline 3D clusters grow, in parallel with the flatter regions. The cluster density increases with decreasing temperature, indicating that the conditions of island nucleation are far-from-equilibrium. Within a simple model where clusters nucleate whenever two mobile Ag adatoms meet, the temperature-dependence of cluster density yields a (reasonable) upper limit for the value of the Ag diffusion barrier on top of the Ag wetting layer of 0.32 eV. Overall, this prototypical study suggests that it is possible to grow films of a bulk-crystalline metal that adopt the amorphous character of a glassy metal substrate, if film thickness is sufficiently low. Next, the first study of coarsening and decay of bilayer islands has been presented. The system was Ag on NiAl(110) in the temperature range from 185 K to 250 K. The coarsening behavior, has some similarities to that seen in the Ag(110) homoepitaxial system studied by Morgenstern and co-workers. At 185 K and 205 K, coarsening of Ag islands follows a Smoluchowski ripening pathway. At 205 K and 250 K, the terrace diffusion limited Ostwald ripening dominants. The experimental observed temperature for the transition from SR to OR is 205 K. The SR exhibits anisotropic island diffusion and the OR exhibits 1D decay of island

  16. Structural study of Zr-based metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, E. [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan)]. E-mail: e.matsubara@materials.mbox.media.kyoto-u.ac.jp; Ichitsubo, T. [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Saida, J. [Center of Interdisciplinary Research, Tohoku University, Sendai 980-8578 (Japan); Kohara, S. [JASRI, SPring-8, Sayo-gun, Hyogo 679-5198 (Japan); Ohsumi, H. [JASRI, SPring-8, Sayo-gun, Hyogo 679-5198 (Japan)

    2007-05-31

    Structures of Zr{sub 70}Ni{sub 20}Al{sub 10}, Zr{sub 70}Cu{sub 20}Al{sub 10}, Zr{sub 70}Cu{sub 30} and Zr{sub 70}Ni{sub 30} amorphous alloys were analyzed by high-energy X-ray diffraction. The relatively stable Zr{sub 2}Cu amorphous alloy shows a local atom arrangement different from the Zr{sub 2}Cu crystalline phase. By contrast, the less stable Zr{sub 70}Ni{sub 30} amorphous alloy has a structure similar to Zr{sub 2}Ni. In the Zr{sub 70}Cu{sub 20}Al{sub 10} metallic glass, Zr-Al nearest neighbor pairs are introduced in the amorphous structure. In the Zr{sub 70}Ni{sub 20}Al{sub 10} metallic glass, the strong correlation between Zr-Ni pairs is drastically modified by the formation of Zr-Al pairs. The presence of Zr-Al pairs in the ternary alloys suppresses the crystallization and stabilizes the glassy state.

  17. Microstructural characterization of Mg-based bulk metallic glass and nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Babilas, Rafał, E-mail: rafal.babilas@polsl.pl [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a St., 44-100 Gliwice (Poland); Nowosielski, Ryszard; Pawlyta, Mirosława [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a St., 44-100 Gliwice (Poland); Fitch, Andy [European Synchrotron Radiation Facility, CS40220, 38043 Grenoble (France); Burian, Andrzej [A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4 St., 40-007 Katowice (Poland)

    2015-04-15

    New magnesium-based bulk metallic glasses Mg{sub 60}Cu{sub 30}Y{sub 10} have been prepared by pressure casting. Glassy alloys were successfully annealed to become nanocomposite containing 200 nm crystallites in an amorphous matrix. The microstructure of bulk glassy alloy and nanocomposite obtained during heat treatment was examined by X-ray diffraction and scanning and high-resolution electron microscopy. Metallic glass has been also studied to explain the structural characteristics by the reverse Monte Carlo (RMC) modeling based on the diffraction data. The HRTEM images allow to indicate some medium-range order (MRO) regions about 2–3 nm in size and formation of local atomic clusters. The RMC modeling results confirmed some kinds of short range order (SRO) structures. It was found that the structure of bulk metallic glass formed by the pressure casting is homogeneous. The composite material contained very small particles in the amorphous matrix. Homogeneous glassy alloy had better corrosion resistance than a composite containing nanocrystalline particles in a glassy matrix. - Highlights: • RMC modeling demonstrates some kinds of SRO structures in Mg-based BMGs. • HRTEM indicated MRO regions about 2–3 nm and SRO regions about 0.5 nm in size. • Mg-based glassy alloys were successfully annealed to become nanocomposite material. • Crystalline particles have spherical morphology with an average diameter of 200 nm. • Glassy alloy had higher corrosion resistance than a nanocomposite sample.

  18. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-01-01

    The lead-iron-phosphate (Pb-Fe-P) nuclear waste glass developed at Oak Ridge National Laboratory (ORNL) was evaluated for its potential as an improvement over the current reference waste form, borosilicate (B-Si) glass. Vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass. However, severe crystallization leading to deteriorated chemical durability would result if this glass were poured into large canisters, as is presently done with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the performance advantages of the Pb-Fe-P material in a nuclear waste form, it would be necessary to process it so that it is cooled rapidly, thus retaining its vitreous structure

  19. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-01-01

    The lead-iron-phosphate nuclear waste glass developed at Oak Ridge National Laboratory (ORNL) was evaluated for its potential as an improvement over the current reference waste form, borosilicate glass. Vitreous lead-iron-phosphate glass appears to have substantially better chemical durability than borosilicate glass. However, severe crystallization leading to deteriorated chemical durability would result if this glass were poured into large canisters as is presently done with borosilicate glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from borosilicate glass. Therefore, in order to realize the performance advantages of the lead-iron-phosphate material in a nuclear waste form, it would be necessary to process it so that it is rapidly cooled, thus retaining its vitreous structure. 22 refs., 4 figs., 4 tabs

  20. Freeform Fabrication of Magnetophotonic Crystals with Diamond Lattices of Oxide and Metallic Glasses for Terahertz Wave Control by Micro Patterning Stereolithography and Low Temperature Sintering

    Directory of Open Access Journals (Sweden)

    Maasa Nakano

    2013-04-01

    Full Text Available Micrometer order magnetophotonic crystals with periodic arranged metallic glass and oxide glass composite materials were fabricated by stereolithographic method to reflect electromagnetic waves in terahertz frequency ranges through Bragg diffraction. In the fabrication process, the photo sensitive acrylic resin paste mixed with micrometer sized metallic glass of Fe72B14.4Si9.6Nb4 and oxide glass of B2O3·Bi2O3 particles was spread on a metal substrate, and cross sectional images of ultra violet ray were exposed. Through the layer by layer stacking, micro lattice structures with a diamond type periodic arrangement were successfully formed. The composite structures could be obtained through the dewaxing and sintering process with the lower temperature under the transition point of metallic glass. Transmission spectra of the terahertz waves through the magnetophotonic crystals were measured by using a terahertz time domain spectroscopy.

  1. Hybrid Glasses from Strong and Fragile Metal-Organic Framework Liquids

    DEFF Research Database (Denmark)

    Bennett, T.D.; Tan, J.C.; Yue, Yuanzheng

    2015-01-01

    Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship betwee...

  2. Spinel dissolution via addition of glass forming chemicals. Results of preliminary experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States); Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-01

    Increased loading of high level waste in glass can lead to crystallization within the glass. Some crystalline species, such as spinel, have no practical impact on the chemical durability of the glass, and therefore may be acceptable from both a processing and a product performance standpoint. In order to operate a melter with a controlled amount of crystallization, options must be developed for remediating an unacceptable accumulation of crystals. This report describes preliminary experiments designed to evaluate the ability to dissolve spinel crystals in simulated waste glass melts via the addition of glass forming chemicals (GFCs).

  3. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    ... devices; radiation shields, surgical lasers and their glass ceramic counter ... Alkaline earth oxides improve glass forming capability while heavy metal ... reports on optical properties of MO-B2O3 glasses containing alkaline earth oxides.

  4. Homogeneous nucleation limit on the bulk formation of metallic glasses

    International Nuclear Information System (INIS)

    Drehman, A.J.

    1983-01-01

    Glassy Pd 82 Si 18 spheres, of up to 1 mm diameter, were formed in a drop tube filled with He gas. The largest spheres were successfully cooled to a glass using a cooling rate of less than 800 K/sec. Even at this low cooling rate, crystallization (complete or partial) was the result of heterogeneous nucleation at a high temperature, relative to the temperature at which copious homogeneous nucleation would commence. Bulk underscoring experiments demonstrated that this alloy could be cooled to 385 K below its eutectic melting temperature (1083 K) without the occurrence of crystallization. If heterogeneous nucleation can be avoided, it is estimated that a cooling rate of at most 100 K/sec would be required to form this alloy in the glassy state. Ingots of glassy Pd 40 Ni 40 P 20 were formed from the liquid by cooling at a rate of only 1 K/sec. It was found that glassy samples of this alloy could be heated well above the glass transition temperature without the occurrence of rapid divitrification. This is a result due, in part of the low density of pre-existing nuclei, but, more importantly, due to the low homogeneous nucleation rate and the slow crystal growth kinetics. Based on the observed devitrification kinetics, the steady-state homogeneous nucleation rate is approximately 1 nuclei/cm 3 sec at 590 K (the temperature at which the homogeneous nucleation rate is estimated to be a maximum). Two iron-nickel based glass-forming alloys (Fe 40 Ni 40 P 14 B 6 and Fe 40 Ni 40 B 20 , were not successfully formed into glassy spheres, however, microstructural examination indicates that crystallization was not the result of copious homogeneous nucleation. In contrast, glass forming iron based alloys (Fe 80 B 20 and Fe/sub 79.3/B/sub 16.4/Si/sub 4.0/C/sub 0.3/) exhibit copious homogeneous nucleation when cooled at approximately the same rate

  5. Incorporation of defects into the central atoms model of a metallic glass

    International Nuclear Information System (INIS)

    Lass, Eric A.; Zhu Aiwu; Shiflet, G.J.; Joseph Poon, S.

    2011-01-01

    The central atoms model (CAM) of a metallic glass is extended to incorporate thermodynamically stable defects, similar to vacancies in a crystalline solid, within the amorphous structure. A bond deficiency (BD), which is the proposed defect present in all metallic glasses, is introduced into the CAM equations. Like vacancies in a crystalline solid, BDs are thermodynamically stable entities because of the increase in entropy associated with their creation, and there is an equilibrium concentration present in the glassy phase. When applied to Cu-Zr and Ni-Zr binary metallic glasses, the concentration of thermally induced BDs surrounding Zr atoms reaches a relatively constant value at the glass transition temperature, regardless of composition within a given glass system. Using this 'critical' defect concentration, the predicted temperatures at which the glass transition is expected to occur are in good agreement with the experimentally determined glass transition temperatures for both alloy systems.

  6. Validation Assessment of a Glass-to-Metal Seal Finite-Element Model

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Emery, John M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Vicente J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element model of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.

  7. Glassy slag: A complementary waste form to homogeneous glass for the implementation of MAWS in treating DOE low level/mixed wastes

    International Nuclear Information System (INIS)

    Feng, X.; Ordaz, G.; Krumrine, P.

    1994-01-01

    Glassy slag waste forms are being developed to complement glass waste forms in implementing the Minimum Additive Waste Stabilization (MAWS) Program for supporting DOE's environmental restoration efforts. These glassy slags are composed of various metal oxide crystalline phases embedded in an alumino-silicate glass phase. The slags are appropriate final waste forms for waste streams that contain large amounts of scrap metals and elements with low solubilities in glass, and that have low-flux contents. Homogeneous glass waste forms are appropriate for wastes with sufficient fluxes and low metal contents. Therefore, utilization of both glass and glassy slag waste forms will make vitrification technology applicable to the treatment of a much larger range of radioactive and mixed wastes. The MAWS approach was a plied to glassy slags by blending multiple waste streams to produce the final waste form, minimizing overall waste form volume and reducing costs. The crystalline oxide phases formed in the glassy slags can be specially formulated so that they are very durable and contain hazardous and radioactive elements in their lattice structures. The Structural Bond Strength (SBS) Model was used to predict the chemical durability of the product from the slag composition so that optimized slag compositions could be obtain with a limited number of crucible melts and testing

  8. Effect of Ge addition on mechanical properties and fracture behavior of Cu-Zr-Al bulk metallic glass

    International Nuclear Information System (INIS)

    Malekan, M.; Shabestari, S.G.; Gholamipour, R.; Seyedein, S.H.

    2009-01-01

    Effect of the addition of a small amount of Ge on mechanical properties and fracture behavior of Cu 50 Zr 43 Al 7 (at.%) bulk metallic glass were studied. The Cu 50 Zr 43 Al 7 alloy has a surprising glass-forming ability (GFA), and the glassy rods up to 4 mm in diameter can be formed. Partial addition of Ge causes the crystalline phases precipitate in the glassy matrix of (Cu 50 Zr 43 Al 7 ) 100-x Ge x (x = 0, 1, 2) rods with a diameter of 4 mm. In uniaxial compression, Cu 50 Zr 43 Al 7 bulk metallic glass exhibit high strength of 1692 MPa and very limited plasticity of 0.05%. When Ge increases from 0 to 2 at.%, the strength decreases, but plastic strain increases about 2.5%. Fracture surface and shear bands of samples were investigated by scanning electron microscopy (SEM).

  9. A Historical Review of High Speed Metal Forming

    OpenAIRE

    Zittel, G.

    2010-01-01

    This paper will present a Historical Review of High Speed Metal Forming beginning with the first thought of forming metal by using an electromagnetic impulse to today, whereby High Speed Metal Forming is an accepted production process. Although this paper will briefly cover the basic physics of the process, it will not dwell on it. It will rather show how the industrial acceptance of High Speed Metal Forming is tightly connected to the knowledge acquired from many applications studies. These ...

  10. Forming and bending of metal foams

    International Nuclear Information System (INIS)

    Nebosky, Paul; Tyszka, Daniel; Niebur, Glen; Schmid, Steven

    2004-01-01

    This study examines the formability of a porous tantalum foam, known as trabecular metal (TM). Used as a bone ingrowth surface on orthopedic implants, TM is desirable due to its combination of high strength, low relative density, and excellent osteoconductive properties. This research aims to develop bend and stretch forming as a cost-effective alternative to net machining and EDM for manufacturing thin parts made of TM. Experimentally, bending about a single axis using a wiping die was studied by observing cracking and measuring springback. It was found that die radius and clearance strongly affect the springback properties of TM, while punch speed, embossings, die radius and clearance all influence cracking. Depending on the various combinations of die radius and clearance, springback factor ranged from .70-.91. To examine the affect of the foam microstructure, bending also was examined numerically using a horizontal hexagonal mesh. As the hexagonal cells were elongated along the sheet length, elastic springback decreased. This can be explained by the earlier onset of plastic hinging occurring at the vertices of the cells. While the numerical results matched the experimental results for the case of zero clearance, differences at higher clearances arose due to an imprecise characterization of the post-yield properties of tantalum. By changing the material properties of the struts, the models can be modified for use with other open-cell metallic foams

  11. Recovery of palladium, cesium, and selenium from heavy metal alkali borosilicate glass by combination of heat treatment and leaching processes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhanglian; Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Nishimura, Fumihiro; Yonezawa, Susumu

    2017-06-05

    Highlights: • A separation technique of both noble and less noble metal from glass is studied. • Via reductive heat treatment, 80% of palladium is extracted in liquid bismuth. • Sodium–potassium-rich materials with cesium and selenium are phase separated. • From the materials, over 80% of cesium and selenium are extracted in water. - Abstract: Reductive heat-treatment and leaching process were applied to a simulated lead or bismuth soda-potash-borosilicate glass with palladium, cesium, and selenium to separate these elements. In the reductive heat treatment, palladium is extracted in liquid heavy metal phase generated by the reduction of the heavy metal oxides, whereas cesium and selenium are concentrated in phase separated Na–K-rich materials on the glass surface. From the materials, cesium and selenium can be extracted in water, and the selenium extraction was higher in the treatment of the bismuth containing glass. The chemical forms of palladium in the glass affected the extraction efficiencies of cesium and selenium. Among the examined conditions, in the bismuth glass treatment, the cesium and selenium extraction efficiencies in water were over 80%, and that of palladium in liquid bismuth was over 80%.

  12. Electrochemical corrosion testing of metal waste forms

    International Nuclear Information System (INIS)

    Abraham, D. P.; Peterson, J. J.; Katyal, H. K.; Keiser, D. D.; Hilton, B. A.

    1999-01-01

    Electrochemical corrosion tests have been conducted on simulated stainless steel-zirconium (SS-Zr) metal waste form (MWF) samples. The uniform aqueous corrosion behavior of the samples in various test solutions was measured by the polarization resistance technique. The data show that the MWF corrosion rates are very low in groundwaters representative of the proposed Yucca Mountain repository. Galvanic corrosion measurements were also conducted on MWF samples that were coupled to an alloy that has been proposed for the inner lining of the high-level nuclear waste container. The experiments show that the steady-state galvanic corrosion currents are small. Galvanic corrosion will, hence, not be an important mechanism of radionuclide release from the MWF alloys

  13. Glass Membrane For Controlled Diffusion Of Gases

    Science.gov (United States)

    Shelby, James E.; Kenyon, Brian E.

    2001-05-15

    A glass structure for controlled permeability of gases includes a glass vessel. The glass vessel has walls and a hollow center for receiving a gas. The glass vessel contains a metal oxide dopant formed with at least one metal selected from the group consisting of transition metals and rare earth metals for controlling diffusion of the gas through the walls of the glass vessel. The vessel releases the gas through its walls upon exposure to a radiation source.

  14. Welding of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Elahi, M.

    2010-01-01

    Recently, many bulk metallic glass (BMG) materials with high specific strength, hardness and superior corrosion resistance have been developed and the maximum thickness of some Zr-based BMGs have reached several tenths of millimeters. Nevertheless, homogeneous glassy BMGs are not thick enough to be used for structural applications. In order to extend the engineering applications of BMG materials, BMG welding technologies needed to be developed. Specifically, the welding technologies of dissimilar materials such as BMG materials to crystalline alloys are to be developed. The functional use of the specific properties of each material in dissimilar material combination provides flexible design possibilities for products. In this project electron beam welding is employed to join BMG with BMG of different composition as well as with different crystalline materials (i.e. Hastealoy C-276, Inconel-625 and pure Ti metal). Defects free weld joint was achieved in BMG-BMG welding. Some cracks were produced in melt zone of BMG-Ti and BMG-Hastealoy C-276 welding while at joint they fuse properly with BMG. Inconel-625 could not properly weld with BMG. In all cases, hardness of melt zone was found to be higher than the base metals and the heat affected zone (HAZ). (author)

  15. High pressure die casting of Fe-based metallic glass

    Science.gov (United States)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-01-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications. PMID:27725780

  16. High pressure die casting of Fe-based metallic glass.

    Science.gov (United States)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-11

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  17. High pressure die casting of Fe-based metallic glass

    Science.gov (United States)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  18. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases

    OpenAIRE

    Perim, Eric; Lee, Dongwoo; Liu, Yanhui; Toher, Cormac; Gong, Pan; Li, Yanglin; Simmons, W. Neal; Levy, Ohad; Vlassak, Joost J.; Schroers, Jan; Curtarolo, Stefano

    2016-01-01

    Metallic glasses have attracted considerable interest in recent years due to their unique combination of superb properties and processability. Predicting bulk metallic glass formers from known parameters remains a challenge and the search for new systems is still performed by trial and error. It has been speculated that some sort of "confusion" during crystallization of the crystalline phases competing with glass formation could play a key role. Here, we propose a heuristic descriptor quantif...

  19. PLZT capacitor on glass substrate

    Science.gov (United States)

    Fairchild, M. Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine W. K.; Ma, Beihai; Balachandran, Uthamalingam

    2016-01-05

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  20. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces

    Science.gov (United States)

    Li, Ning; Xu, Erjiang; Liu, Ze; Wang, Xinyun; Liu, Lin

    2016-12-01

    Micro-honeycomb structures with various pitches between adjacent cells were hot-embossed on Zr35Ti30Cu8.25Be26.75 bulk metallic glass surface. The effect of pitch geometry on the frictional behavior of metallic glass surface was systematically investigated. The results revealed that all textured metallic glass surfaces show a reduction in friction coefficient compared to smooth surface. More intriguingly, the friction coefficient first decreased and then increased gradually with increasing pitches. Such unique behavior can be understood fundamentally from the perspective of competing effects between contact area and local stress level with increasing pitches. This finding not only enhance the in-depth understanding of the mechanism of the significant role of surface topography on the frictional behavior of metallic glass surface, but also opens a new route towards other functional applications for bulk metallic glasses.

  1. Biocorrosion Evaluation on a Zr-Cu-Ag-Ti Metallic Glass

    Science.gov (United States)

    Kumar, Shresh; Anwar, Rebin; Ryu, Wookha; Park, E. S.; Vincent, S.

    2018-04-01

    Metallic glasses are in high demand for fabrication of variety of innovative products, in particular surgical and biomedical tools and devices owing to its excellent biocompatible properties. In the present investigation, a novel Zr39.5Cu50.5Ag4Ti6 metallic glass composition was synthesized using melt spinning technique. Potentiodynamic polarization studies were conducted to investigate bio-corrosion behaviour of Zr39.5Cu50.5Ag4Ti6 metallic glass. The test were conducted in various simulated artificial body conditions such as artificial saliva solution, phosphate-buffered saline solution, artificial blood plasma solution, and Hank’s balanced saline solution. The bio-corrosion results of metallic glass were compared with traditional biomaterials. The study aims to provide bio-compatible properties of Zr39.5Cu50.5Ag4Ti6 metallic glass.

  2. Ultrafine Ceramic Grains Embedded in Metallic Glass Matrix: Achieving Superior Wear Resistance via Increase in Both Hardness and Toughness.

    Science.gov (United States)

    Yang, Lina; Wen, Mao; Dai, Xuan; Cheng, Gang; Zhang, Kan

    2018-05-09

    As structural materials, crystalline or metallic glass materials have attracted scientific and practical interests. However, some mechanisms involving critical size and shear bands have adverse effects on their mechanical properties. Here, we counter these two effects by introducing a special structure with ultrafine ceramic grains (with a diameter of ∼2.0 nm) embedded into a metallic glass matrix, wherein the grains are mainly composed of a Ta-W-N solid solution structure in nature, surrounded by a W-based amorphous matrix that contains Ta and N atoms. Such a structure is in situ formed during preparation, which combines the merits of both phases to achieve simultaneous increase in hardness and toughness relative to references (pure TaN and W) and thus superior wear resistance. Even more remarkable, a favorable variation of increased hardness but reduced elasticity modulus can be induced by this structure. Intrinsically, ultrafine ceramic grains (free of dislocations), embedded in the metallic glass matrix, could prevent shear band propagation within the glass matrix and further improve the hardness of the matrix material. In return, such glass matrix allows for stiffness neutralization and structural relaxation to reduce the elasticity modulus of ceramic grains. This study will offer a new guidance to fabricate ultrahigh-performance metal-based composites.

  3. Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Xiaodong; Wu, Hong, E-mail: wuhong927@126.com; Liu, Yong, E-mail: yonliu@csu.edu.cn; Zhang, Weidong; Li, Ruidi; Chen, Shiqi; Zai, Xiongfei; Hu, Te

    2016-10-15

    Metallic glass composite coatings Ti{sub 45}Cu{sub 41}Ni{sub 9}Zr{sub 5} and Ti{sub 45}Cu{sub 41}Ni{sub 6}Zr{sub 5}Sn{sub 3} (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni{sub 2}SnTi phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.

  4. NMR in metal cluster compounds compared to glasses

    International Nuclear Information System (INIS)

    Staveren, M.P.J. van; Brom, H.B.; Jongh, L.J. de; Schmid, G.

    1991-01-01

    The field and temperature dependence of the 31 P nuclear spin lattice relaxation rate in the metal cluster compound Ru 55 (P(t-Bu) 3 ) 12 Cl 20 follows a power law: 1/T 1 ∝ T n B -m , with n = 1.5 ± 0.1 at 3.25 T and n = 1.3 ± 0.1 at 6.45 T; m ≅ 1.4. Such dependences have so far only been observed in inorganic glasses and been attributed to two level systems. The correspondence suggests that the relaxation rate is due to interaction of the P-nuclear moment with electronic spins of stochastically moving charge carriers, which are thought to be responsible for the electrical conductivity through hopping between neigboring cluster molecules. (orig.)

  5. Compressive behavior of wire reinforced bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Yub [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Clausen, Bjorn [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Uestuendag, Ersan [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Choi-Yim, Haein [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Aydiner, C. Can [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    Bulk metallic glasses (BMGs) possess a unique set of mechanical properties that make them attractive structural materials. However, when loaded without constraint, BMGs fracture catastrophically due to formation of macroscopic shear bands and this behavior reduces their reliability. To address this issue, BMG matrix composites have been developed. In this investigation, neutron diffraction was used during uniaxial compressive loading to measure the internal strains in the second phases of various BMG composites reinforced with Ta, Mo, or stainless steel wires. The diffraction data were then employed to develop a finite element model that deduced the in situ constitutive behavior of each phase. It was found that the reinforcements yielded first and started transferring load to the matrix, which remained elastic during the whole experiment. While the present composites exhibited enhanced ductility, largely due to their ductile reinforcements, they yielded at applied stresses lower than those found in W reinforced composites.

  6. Ferromagnetism and spin glass ordering in transition metal alloys (invited)

    Science.gov (United States)

    Crane, S.; Carnegie, D. W., Jr.; Claus, H.

    1982-03-01

    Magnetic properties of transition metal alloys near the percolation threshold are often complicated by metallurgical effects. Alloys like AuFe, VFe, CuNi, RhNi, and PdNi are in general not random solid solutions but have various degrees of atomic clustering or short-range order (SRO), depending on the heat treatment. First, it is shown how the magnetic ordering temperature of these alloys varies with the degree of clustering or SRO. Second, by systematically changing this degree of clustering or SRO, important information can be obtained about the magnetic phase diagram. In all these alloys below the percolation limit, the onset of ferromagnetic order is probably preceded by a spin glass-type ordering. However, details of the magnetic phase diagram near the critical point can be quite different alloy systems.

  7. ZrCuAl Bulk Metallic Glass spall induced by laser shock

    Science.gov (United States)

    Jodar, Benjamin; Loison, Didier; Yokoyama, Yoshihiko; Lescoute, Emilien; Berthe, Laurent; Sangleboeuf, Jean-Christophe

    2017-06-01

    To face High Velocity Impacts, the aerospace industry is always seeking for innovative materials usable as debris shielding components. Bulk Metallic Glasses (BMG) revealed interesting mechanical properties in case of static and quasi-static loading conditions: high elasticity, high tenacity, low density and high fracture threshold... The department of Mechanics and Glass of the Institut of Physics Rennes conducted on the ELFIE facility, laser shock experiments to study the behavior of a ternary ZrCuAl BMG under high strain rate, up-to fragmentation process. On the one hand, in-situ diagnostics were used to measure ejection velocities with PDV and debris morphologies were observed by Shadowgraphy. On the other hand, spalled areas (dimensions and features) were characterized through post-mortem analysis (optical observations, profilometry and SEM). These results are compared to experimental and numerical data on the crystalline forms of the ZrCuAl basic compounds.

  8. Radiation effects in glass and glass-ceramic waste forms for the immobilization of CANDU UO2 fuel reprocessing waste

    International Nuclear Information System (INIS)

    Tait, J.C.

    1993-05-01

    AECL has investigated three waste forms for the immobilization of high-level liquid wastes that would arise if used CANDU fuels were reprocessed at some time in the future to remove fissile materials for the fabrication of new power reactor fuel. These waste forms are borosilicate glasses, aluminosilicate glasses and titanosilicate glass-ceramics. This report discusses the potential effects of alpha, beta and gamma radiation on the releases of radionuclides from these waste forms as a result of aqueous corrosion by groundwaters that would be present in an underground waste disposal vault. The report discusses solid-state damage caused by radiation-induced atomic displacements in the waste forms as well as irradiation of groundwater solutions (radiolysis), and their potential effects on waste-form corrosion and radionuclide release. The current literature on radiation effects on borosilicate glasses and in ceramics is briefly reviewed, as are potential radiation effects on specialized waste forms for the immobilization of 129 I, 85 Kr and 14 C. (author). 104 refs., 9 tabs., 5 figs

  9. Nucleation reactions during deformation and crystallization of metallic glass

    International Nuclear Information System (INIS)

    Perepezko, J.H.; Imhoff, S.D.; Chen, M.W.; Gonzalez, S.; Inoue, A.

    2012-01-01

    Highlights: ► New approach to the examination and analysis of shear band nucleation. ► Discovery of multiple shear band nucleation sites. ► Identification of a method of using transient kinetic behavior to provide a more realistic evaluation of the diffusivity that is relevant to nucleation. - Abstract: Nucleation reactions play a central role in the synthesis of both bulk metallic glasses and nanostructured materials. For nanostructured materials it is necessary to promote a high nucleation density without significant growth or coarsening. Beyond crystallization reactions nucleation of shear bands is critical for promoting a homogeneous flow and useful ductility for structural applications of bulk metallic glass. The study and analysis of nucleation reactions for these different situations requires a consideration of the stochastic nature of nucleation, the influence of heterogeneous sites, and the controlling transport properties. For shear band nucleation, the stochastic nature can be effectively probed by instrumented nanoindentation tests. The analysis of a statistically significant number of measurements of the first pop-in shear band nucleation events reveals at least two main nucleation sites. In nanostructured composites, the initial nucleation stage is influenced by transient effects as reflected in the delay time prior to steady state nucleation and by heterogeneous nucleation sites that are related to medium range order regions in Al-base amorphous alloys. Moreover, the early growth characteristics are linked to the maximum achievable particle density. The new developments and insight on the fundamental understanding of nanostructure reaction mechanisms offer valuable guidance for control of nanoscale microstructures and for promoting ductile deformation behavior.

  10. A thermodynamic approach towards glass-forming ability of ...

    Indian Academy of Sciences (India)

    A quantitative measure of the stability of a glass as compared to its corresponding crystalline state can be obtained by calculating ... The thermal stability of various alloy compositions is studied by ... corrosion resistance and attractive soft magnetic behaviour.1,2 .... The value of R2 determines the relationship between GFA.

  11. Nanopatterned bulk metallic glass-based biomaterials modulate macrophage polarization.

    Science.gov (United States)

    Shayan, Mahdis; Padmanabhan, Jagannath; Morris, Aaron H; Cheung, Bettina; Smith, Ryan; Schroers, Jan; Kyriakides, Themis R

    2018-06-01

    Polarization of macrophages by chemical, topographical and mechanical cues presents a robust strategy for designing immunomodulatory biomaterials. Here, we studied the ability of nanopatterned bulk metallic glasses (BMGs), a new class of metallic biomaterials, to modulate murine macrophage polarization. Cytokine/chemokine analysis of IL-4 or IFNγ/LPS-stimulated macrophages showed that the secretion of TNF-α, IL-1α, IL-12, CCL-2 and CXCL1 was significantly reduced after 24-hour culture on BMGs with 55 nm nanorod arrays (BMG-55). Additionally, under these conditions, macrophages increased phagocytic potential and exhibited decreased cell area with multiple actin protrusions. These in vitro findings suggest that nanopatterning can modulate biochemical cues such as IFNγ/LPS. In vivo evaluation of the subcutaneous host response at 2 weeks demonstrated that the ratio of Arg-1 to iNOS increased in macrophages adjacent to BMG-55 implants, suggesting modulation of polarization. In addition, macrophage fusion and fibrous capsule thickness decreased and the number and size of blood vessels increased, which is consistent with changes in macrophage responses. Our study demonstrates that nanopatterning of BMG implants is a promising technique to selectively polarize macrophages to modulate the immune response, and also presents an effective tool to study mechanisms of macrophage polarization and function. Implanted biomaterials elicit a complex series of tissue and cellular responses, termed the foreign body response (FBR), that can be influenced by the polarization state of macrophages. Surface topography can influence polarization, which is broadly characterized as either inflammatory or repair-like. The latter has been linked to improved outcomes of the FBR. However, the impact of topography on macrophage polarization is not fully understood, in part, due to a lack of high moduli biomaterials that can be reproducibly processed at the nanoscale. Here, we studied

  12. Correlation between physical properties and ultrasonic relaxation parameters in transition metal tellurite glasses

    Science.gov (United States)

    Abd El-Moneim, A.

    2003-07-01

    The correlation between activation energy of ultrasonic relaxation process through the temperature range from 140 to 300 K and some physical properties has been investigated in pure TeO 2 and transition metal TeO 2-V 2O 5 and TeO 2-MoO 3 glasses according to Bridge and Patel's theory. The oxygen density (loss centers), number of two-well systems, hopping distance and mechanical relaxation time have been calculated in these glasses from the data of density, bulk modulus and stretching force constant of the glass. It has been found that the acoustic activation energy increased linearly with both the oxygen density and the number of two-well systems. The correlation between the acoustic activation energy and bulk modulus was achieved through the stretching force constant of the network and other structural parameters. Moreover, the experimental values of activation energy (V) agree well with those calculated from an empirical equation presented in this study in the form V=2.9×10 -7 F( F/ K) 3.37, where F is the stretching force constant of the glass and K is the experimental bulk modulus.

  13. Ti-based bulk metallic glass with high cold workability at room temperature

    International Nuclear Information System (INIS)

    Park, J.M.; Park, J.S.; Kim, J.H.; Lee, M.H.; Kim, D.H.; Kim, W.T.

    2005-01-01

    The cold workability of Ti-based bulk metallic glasses (BMGs) have been investigated. Ti 45 Zr 16 Be 20 Cu 10 Ni 9 BMG with a large compressive plastic strain of 4.7% shows a high cold workability, i.e. total reduction ratio of 50% by cold rolling at room temperature. The multiple shear bands formed during rolling are effective in enhancing the plasticity. The cold rolled Ti 45 Zr 16 Be 20 Cu 10 Ni 9 BMG (reduction ratio: 30%) exhibits a large plastic strain of ∝14%. (orig.)

  14. Magnetron deposition of metal-ceramic protective coatings on glasses of windows of space vehicles

    OpenAIRE

    Sergeev, Viktor Petrovich; Panin, Viktor Evgenyevich; Psakhie, Sergey Grigorievich; Chernyavskii, Alexandr; Svechkin, Valerii; Khristenko, Yurii; Kalashnikov, Mark Petrovich; Voronov, Andrei

    2014-01-01

    Transparent refractory metal-ceramic nanocomposite coatings with a high coefficient of elasticrecovery and microhardness on the basis of Ni/Si-Al-N are formed on a glass substrate by the pulse magnetron deposition method. The structure-phase states were investigated by TEM, SEM. It was established that the first layer consists of Ni nanograins with a fcc crystalline lattice, the second layer is two-phase: 5-10 nm nanocrystallites of the AlN phase with the hcp crystalline lattice in amorphous ...

  15. Tuning glass formation and brittle behaviors by similar solvent element substitution in (Mn,Fe)-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tao [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Ran, E-mail: liran@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Xiao, Ruijuan [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Gang [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Jianfeng [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhang, Tao, E-mail: zhangtao@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2015-02-25

    A family of Mn-rich bulk metallic glasses (BMGs) was developed through the similar solvent elements (SSE) substitution of Mn for Fe in (Mn{sub x}Fe{sub 80−x})P{sub 10}B{sub 7}C{sub 3} alloys. The effect of the SSE substitution on glass formation, thermal stability, elastic constants, mechanical properties, fracture morphologies, Weibull modulus and indentation fracture toughness was discussed. A thermodynamics analysis provided by Battezzati et al. (L. Battezzati, E. Garrone, Z. Metallkd. 75 (1984) 305–310) was adopted to explain the compositional dependence of the glass-forming ability (GFA). The elastic moduli follow roughly linear correlations with the substitution concentration of Mn in (Mn{sub x}Fe{sub 80−x})P{sub 10}B{sub 7}C{sub 3} BMGs. The introduction of Mn to replace Fe significantly decreases the plasticity of the resulting BMGs and the Weibull modulus of the fracture strength. A super-brittle Mn-based BMGs of (Mn{sub 55}Fe{sub 25})P{sub 10}B{sub 7}C{sub 3} BMGs were found with the indentation fracture toughness (K{sub c}) of 1.91±0.04 MPa m{sup 1/2}, the lowest value among all kinds of BMGs so far. The atomic and electronic structure of the selected BMGs were simulated by the first principles molecular dynamics calculations based on density functional theory, which provided a possible understanding of the brittleness caused by the similar chemical element replacement of Mn for Fe.

  16. Cu-Zr-Ag bulk metallic glasses based on Cu8Zr5 icosahedron

    International Nuclear Information System (INIS)

    Xia Junhai; Qiang Jianbing; Wang Yingmin; Wang Qing; Dong Chuang

    2007-01-01

    Based on the cluster line criterion, the Ag addition into the Cu 8 Zr 5 cluster composition is investigated for the search of ternary Cu-Zr-Ag bulk metallic glasses with high glass forming abilities. Two initial binary compositions Cu 0.618 Zr 0.382 and Cu 0.64 Zr 0.36 are selected. The former one corresponds to a deep eutectic point; it is also the composition of the Cu 8 Zr 5 icosahedron, which is derived from the Cu 8 Zr 3 structure. The latter one, which can be regarded as the Cu 8 Zr 5 cluster plus a glue atom Cu, is the best glass-forming composition in the Cu-Zr binary system. Two composition lines (Cu 0.618 Zr 0.382 ) 1-x Ag x and (Cu 0.64 Zr 0.36 ) 1-x Ag x are thus constructed in the Cu-Zr-Ag system by linking these two compositions with the third constitute Ag. A series of Cu-Zr-Ag bulk metallic glasses are found with 2-8 at.% Ag contents in both composition lines. The optimum composition (Cu 0.618 Zr 0.382 ) 0.92 Ag 0.08 within the searched region with the highest T g /T l = 0.633, is located along the cluster line (Cu 0.618 Zr 0.382 ) 1-x Ag x , where the deep eutectic Cu 0.618 Zr 0.382 exactly corresponds to the dense packing cluster Cu 8 Zr 5 . The alloying mechanism is discussed in the light of atomic size and electron concentration factors

  17. Cesium Hydroxide Fusion Dissolution of Analytical Reference Glass-1 in Both Powder and Shard Form

    International Nuclear Information System (INIS)

    Coleman, C.J.; Spencer, W.A.

    1998-04-01

    CsOH has been shown to be an effective and convenient dissolution reagent for Analytical Reference Glass-1 (ARG-1). This glass standard was prepared from nonradioactive DWPF Start-up Glass. Therefore, its composition is similar to DWPF product glass and many of the glass matrices prepared at SRTC.The principal advantage of the CsOH fusion dissolution is that the reagent does not add the alkali metals Li, Na, and K usually needed by SRS customers. Commercially available CsOH is quite pure so that alkali metals can be measured accurately, often without blank corrections. CsOH fusions provide a single dissolution method for applicable glass to replace multiple dissolution schemes used by most laboratories. For example, SRTC glass samples are most commonly dissolved with a Na 2 O 2 -NaOH fusion (ref.1) and a microwave- assisted acid dissolution with HNO 3 -HF-H 3 BO 3 -HCl (ref.2). Othe laboratories use fusion methods based on KOH, LiBO 2 , and Na 2 CO 3 CsOH fusion approach reduces by half not only the work in the dissolution laboratory, but also in the spectroscopy laboratories that must analyze each solution.Experiments also revealed that glass shards or pellets are rapidly attacked if the flux temperature is raised considerably above the glass softening point. The softening point of ARG-1 glass is near 650 degrees C. Fusions performed at 750 degrees C provided complete dissolutions and accurate elemental analyses of shards. Successful dissolution of glass shards was demonstrated with CsOH, Na 2 O 2 , NaOH, KOH, and RbOH. Ability to dissolve glass shards is of considerable practical importance. Crushing glass to a fine powder is a slow and tedious task, especially for radioactive glasses dissolved in shielded cells. CsOH fusion of glass powder or shards is a convenient, cost-effective dissolution scheme applicable in SRTC, the DWPF, and the commercial glass industry

  18. Behavior of high resistance to He{sup 2+} induced irradiation damage in metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Mei, Xianxiu, E-mail: xxmei@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Hou, Wenjing; Wang, Younian [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Wang, Zhiguang [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Dong, Chuang [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China)

    2013-10-01

    Highlights: •Metallic glasses and W were irradiated with 500 keV He{sup 2+} at different fluences. •Metallic glasses could maintain amorphous state at different irradiation fluences. •The resistance to He{sup 2+} irradiation of metallic glasses was superior to the one in W metal. •Cu- and Zr-based metallic glasses had better resistance to He{sup 2+} irradiation. -- Abstract: This study details the irradiation of various metallic glasses ((Cu{sub 47}Zr{sub 45}Al{sub 8}){sub 98.5}Y{sub 1.5}, Zr{sub 64}Cu{sub 17.8}Ni{sub 10.7}Al{sub 7.5}, Co{sub 61.2}B{sub 26.2}Si{sub 7.8}Ta{sub 4.8}) and metallic W using He{sup 2+} ions with an energy of 500 keV at irradiation fluences of 2 × 10{sup 17}, 1 × 10{sup 18} and 2 × 10{sup 18} ions/cm{sup 2} to investigate the radiation-resistant properties of these metallic glasses compared to the conventional irradiation-resistant material W. These three metallic glasses were able to maintain an amorphous state during these irradiation fluences. There was no significant irradiation damage at the low irradiation fluence. When the irradiation fluence was increased to 2 × 10{sup 18} ions/cm{sup 2}, a damage layer appeared up to a distance corresponding to the range of the ions away from the surfaces of the Cu- and Zr-based metallic glasses without any visible damage on the surface. Significant surface stripping damage appeared in the Co-based metallic glass. Relatively speaking, surface layer peeling appeared in metallic W along the crystal boundary at a fluence of 1 × 10{sup 18} ions/cm{sup 2}. When the fluence was increased to 2 × 10{sup 18} ions/cm{sup 2}, multilayer peeling, stripping, etc. appeared. The roughness of the Cu- and Zr-based metallic glass showed further smoothing with increasing fluence, while the opposite occurred in the Co-based metallic glass. Within the wavelength range of 400–1700 nm, after irradiation of He{sup 2+} at a fluence of 1 × 10{sup 18} ions/cm{sup 2}, the reflectance of the Cu-based and Co

  19. Effect of glass composition on waste form durability: A critical review

    International Nuclear Information System (INIS)

    Ellison, A.J.G.; Mazer, J.J.; Ebert, W.L.

    1994-11-01

    This report reviews literature concerning the relationship between the composition and durability of silicate glasses, particularly glasses proposed for immobilization of radioactive waste. Standard procedures used to perform durability tests are reviewed. It is shown that tests in which a low-surface area sample is brought into contact with a very large volume of solution provide the most accurate measure of the intrinsic durability of a glass composition, whereas high-surface area/low-solution volume tests are a better measure of the response of a glass to changes in solution chemistry induced by a buildup of glass corrosion products. The structural chemistry of silicate and borosilicate glasses is reviewed to identify those components with the strongest cation-anion bonds. A number of examples are discussed in which two or more cations engage in mutual bonding interactions that result in minima or maxima in the rheologic and thermodynamic properties of the glasses at or near particular optimal compositions. It is shown that in simple glass-forming systems such interactions generally enhance the durability of glasses. Moreover, it is shown that experimental results obtained for simple systems can be used to account for durability rankings of much more complex waste glass compositions. Models that purport to predict the rate of corrosion of glasses in short-term durability tests are evaluated using a database of short-term durability test results for a large set of glass compositions. The predictions of these models correlate with the measured durabilities of the glasses when considered in large groupings, but no model evaluated in this review provides accurate estimates of durability for individual glass compositions. Use of these models in long-term durability models is discussed. 230 refs

  20. Memory phenomenon in a lanthanum based bulk metallic glass

    International Nuclear Information System (INIS)

    Zhou, Ye; Huang, Wei Min; Zhao, Yong; Ding, Zhen; Li, Yan; Tor, Shu Beng; Liu, Erjia

    2016-01-01

    In this paper, we experimentally investigate two memory phenomena in a lanthanum based bulk metallic glass (BMG). While the temperature memory effect (TME) is not found by differential scanning calorimeter (DSC) test, shape recovery is observed in samples indented at both low and high temperatures. In terms of shape memory related characteristics, this BMG shares some features of shape memory alloys (SMAs) due to its metal nature, and some other features of shape memory polymers (SMPs) owing to its glassy–rubbery transition. The formation of protrusion in the polished sample after heating to super-cooled liquid region (SCLR) indicates that surface tension is not a necessarily positive contributor for shape recovery. Release of internal elastic stress is concluded as the major player. Although the amorphous nature of BMGs enables for storing appreciable amount of internal elastic stress upon deformation, without the presence of cross-linker as in typical SMPs, the shape recovery in BMGs is rather limited. - Highlights: • Experimental investigation of shape recovery in BMG. • Surface tension is not the major reason for shape recovery in BMG. • Release of internal stress is the major contributor for shape recovery. • Comparison of shape memory features of BMG with other shape memory materials.

  1. Welding of CuZr-based metallic glasses on air

    International Nuclear Information System (INIS)

    Batalha, W.; Gargarella, P.; Kiminami, C.S.

    2016-01-01

    Metallic glass alloys have been studied aiming at its exceptional mechanical properties. This alloys processing's requires high cooling rates, which diminishes the sample's size. There by welding these samples without the loss of amorphous structure is a good alternative. The DEMa group has developed a technique based on Joule effect heating. By applying pressure and electric current, reaching temperatures of super cold liquids (the temperature between crystallizing and vitric transition), the vitric metal has it’s viscosity reduced and sample binding occur. The objective of this paper was to weld samples of cylindrical geometry of 2 and 3 mm in diameter and 4 mm in length of the compositions Cu46Zr42Al7Y5 and (Cu47Zr45Al8)98Y2. The process was done using 2 copper electrodes under(over) argon flux. The samples were later analysed by microscopy, differential scanning calorimetry and X ray diffraction. The results showed that this kind of welding process is possible since crystal formation on the welding region did not occur and there were no faults like cracks or porosity. (author)

  2. Memory phenomenon in a lanthanum based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Huang, Wei Min, E-mail: mwmhuang@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Zhao, Yong [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Ding, Zhen [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Li, Yan [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Tor, Shu Beng; Liu, Erjia [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2016-07-05

    In this paper, we experimentally investigate two memory phenomena in a lanthanum based bulk metallic glass (BMG). While the temperature memory effect (TME) is not found by differential scanning calorimeter (DSC) test, shape recovery is observed in samples indented at both low and high temperatures. In terms of shape memory related characteristics, this BMG shares some features of shape memory alloys (SMAs) due to its metal nature, and some other features of shape memory polymers (SMPs) owing to its glassy–rubbery transition. The formation of protrusion in the polished sample after heating to super-cooled liquid region (SCLR) indicates that surface tension is not a necessarily positive contributor for shape recovery. Release of internal elastic stress is concluded as the major player. Although the amorphous nature of BMGs enables for storing appreciable amount of internal elastic stress upon deformation, without the presence of cross-linker as in typical SMPs, the shape recovery in BMGs is rather limited. - Highlights: • Experimental investigation of shape recovery in BMG. • Surface tension is not the major reason for shape recovery in BMG. • Release of internal stress is the major contributor for shape recovery. • Comparison of shape memory features of BMG with other shape memory materials.

  3. Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Roland, C M [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States); Hensel-Bielowka, S [Institute of Physics, Silesian University, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Paluch, M [Institute of Physics, Silesian University, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Casalini, R [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States); Chemistry Department, George Mason University, Fairfax, VA 22030 (United States)

    2005-06-01

    An intriguing problem in condensed matter physics is understanding the glass transition, in particular the dynamics in the equilibrium liquid close to vitrification. Recent advances have been made by using hydrostatic pressure as an experimental variable. These results are reviewed, with an emphasis in the insight provided into the mechanisms underlying the relaxation properties of glass-forming liquids and polymers.

  4. Machinable glass-ceramics forming as a restorative dental material.

    Science.gov (United States)

    Chaysuwan, Duangrudee; Sirinukunwattana, Krongkarn; Kanchanatawewat, Kanchana; Heness, Greg; Yamashita, Kimihiro

    2011-01-01

    MgO, SiO(2), Al(2)O(3), MgF(2), CaF(2), CaCO(3), SrCO(3), and P(2)O(5) were used to prepare glass-ceramics for restorative dental materials. Thermal properties, phases, microstructures and hardness were characterized by DTA, XRD, SEM and Vickers microhardness. Three-point bending strength and fracture toughness were applied by UTM according to ISO 6872: 1997(E). XRD showed that the glass crystallized at 892°C (second crystallization temperature+20°C) for 3 hrs consisted mainly of calcium-mica and fluorapatite crystalline phases. Average hardness (3.70 GPa) closely matched human enamel (3.20 GPa). The higher fracture toughness (2.04 MPa√m) combined with the hardness to give a lower brittleness index (1.81 µm(-1/2)) which indicates that they have exceptional machinability. Bending strength results (176.61 MPa) were analyzed by Weibull analysis to determine modulus value (m=17.80). Machinability of the calcium mica-fluorapatite glass-ceramic was demonstrated by fabricating with CAD/CAM.

  5. AN ALTERNATIVE HOST MATRIX BASED ON IRON PHOSPHATE GLASSES FOR THE VITRIFICATION OF SPECIALIZED WASTE FORMS

    International Nuclear Information System (INIS)

    Day, Delbert D.

    2000-01-01

    As mentioned above, the overall goal of this research project was to collect the scientific information essential to develop iron phosphate glass based nuclear wasteforms. The specific objectives of the project were: (1) Investigate the structure of binary iron phosphate glasses and it's dependence on the composition and melting atmosphere: Understand atomic arrangements and nature of the bonding. Establish structure-property relationships. Determine the compositions and melting conditions which optimize the critical properties of the base glass. (2) Understand the structure of iron phosphate wasteforms and it's dependence on the composition and melting atmosphere: Investigate how the waste elements are bonded and coordinated within the glass structure. Establish structure-property relationships for the waste glasses. Determine the compositions and melting atmosphere for which the critical properties of the waste forms would be optimum. (3) Determine the role(s) played by the valence states of iron ions and it's dependence on the composition and melting atmosphere: Understand the different roles of iron(II) and iron(III) ions in determining the critical properties of the base glass and the waste forms. Investigate how the iron valence and its significance depend on the composition and melting atmosphere. (4) Investigate glass forming and crystallization processes of the iron phosphate glasses and their waste forms: Understand the dependence of the glass forming and crystallization characteristics on overall glass composition and valence states of iron ions. Identify the products of devitrification and investigate the critical properties of these crystalline compounds which may adversely affect the chemical and physical properties of the waste forms

  6. Predicting glass-forming compositions in the Al-La and Al-La-Ni systems

    International Nuclear Information System (INIS)

    Gargarella, P.; de Oliveira, M.F.; Kiminami, C.S.; Pauly, S.; Kuehn, U.; Bolfarini, C.; Botta, W.J.; Eckert, J.

    2011-01-01

    Research highlights: → The glass-forming ability of the Al-La and Al-La-Ni systems was studied using the λ* and the λ.Δe criteria. → Both criteria predicted with just 1% at. of error the best glass-former verified so far in the Al-La system. → Four new glass-former compositions could be predicted in the Al-La-Ni system using the λ.Δe criterion. → The best glass-former reported so far in the Al-La-Ni system was found. - Abstract: In this work, a criterion considering the topological instability (λ) and the differences in the electronegativity of the constituent elements (Δe) was applied to the Al-La and Al-Ni-La systems in order to predict the best glass-forming compositions. The results were compared with literature data and with our own experimental data for the Al-La-Ni system. The alloy described in the literature as the best glass former in the Al-La system is located near the point with local maximum for the λ.Δe criterion. A good agreement was found between the predictions of the λ.Δe criterion and literature data in the Al-La-Ni system, with the region of the best glass-forming ability (GFA) and largest supercooled liquid region (ΔT x ) coinciding with the best compositional region for amorphization indicated by the λ.Δe criterion. Four new glassy compositions were found in the Al-La-Ni system, with the best predicted composition presenting the best glass-forming ability observed so far for this system. Although the λ.Δe criterion needs further refinements for completely describe the glass-forming ability in the Al-La and Al-La-Ni systems, the results demonstrated that this criterion is a good tool to predict new glass-forming compositions.

  7. Production of metal waste forms from spent fuel treatment

    International Nuclear Information System (INIS)

    Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

    1995-01-01

    Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities

  8. Mechanical properties of a co-extruded Metallic Glass/Alloy (MeGA) rod-Effect of the metallic glass volume fraction

    International Nuclear Information System (INIS)

    Gravier, S.; Blandin, J.J.; Suery, M.

    2010-01-01

    A Metallic Glass/Alloy (MeGA) rod with a core in zirconium-based bulk metallic glass and a sleeve in aluminium alloy has been successfully elaborated by co-extrusion. SEM observations of the cross-section of the rod show that the interface between the glass and the alloy is defect-free. Compression tests are carried out at room temperature on the MeGA rods containing various glass volume fractions. The yield stress is well described by the rule of mixtures which combines the strength of the glass and that of the alloy, suggesting isostrain behaviour as could be expected. During compression, a good mechanical bonding is observed in the MeGA-rod even after the first fracture of the metallic glass. Finally, push-out tests are performed to evaluate the bonding quality between the two materials. Large values of the shear strength are measured which confirms that co-extrusion leads to good bonding between the glass and the aluminium alloy.

  9. Electronic hybridisation implications for the damage-tolerance of thin film metallic glasses.

    Science.gov (United States)

    Schnabel, Volker; Jaya, B Nagamani; Köhler, Mathias; Music, Denis; Kirchlechner, Christoph; Dehm, Gerhard; Raabe, Dierk; Schneider, Jochen M

    2016-11-07

    A paramount challenge in materials science is to design damage-tolerant glasses. Poisson's ratio is commonly used as a criterion to gauge the brittle-ductile transition in glasses. However, our data, as well as results in the literature, are in conflict with the concept of Poisson's ratio serving as a universal parameter for fracture energy. Here, we identify the electronic structure fingerprint associated with damage tolerance in thin film metallic glasses. Our correlative theoretical and experimental data reveal that the fraction of bonds stemming from hybridised states compared to the overall bonding can be associated with damage tolerance in thin film metallic glasses.

  10. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Palza, Humberto, E-mail: hpalza@ing.uchile.cl [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Escobar, Blanca; Bejarano, Julian [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Bravo, Denisse [Departamento de Patología, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Diaz-Dosque, Mario [Departamento de Ciencias Básicas y Comunitarias, Facultad de Odontología, Universidad de Chile, Santiago (Chile); Perez, Javier [Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile)

    2013-10-15

    Bioactive glasses (SiO{sub 2}–P{sub 2}O{sub 5}–CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials.

  11. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method

    International Nuclear Information System (INIS)

    Palza, Humberto; Escobar, Blanca; Bejarano, Julian; Bravo, Denisse; Diaz-Dosque, Mario; Perez, Javier

    2013-01-01

    Bioactive glasses (SiO 2 –P 2 O 5 –CaO) having tailored concentrations of different biocide metal ions (copper or silver) were produced by the sol–gel method. All the particles release phosphorous ions when immersed in water and simulated body fluid (SBF). Moreover, a surface layer of polycrystalline hydroxy-carbonate apatite was formed on the particle surfaces after 10 day immersion in SBF as confirmed by X-ray diffraction and scanning electron microscopy (SEM) showing the bioactive materials. Samples with embedded either copper or silver ions were able to further release the biocide ions with a release rate that depends on the metal embedded and the dissolution medium: water or SBF. This biocide ion release from the samples explains the antimicrobial effect of our active particles against Escherichia coli DH5α ampicillin-resistant (Gram-negative) and Streptococcus mutans (Gram-positive) as determined by the Minimum Bactericidal Concentration (MBC) method. The antimicrobial behavior of the particles depends on the bacteria and the biocide ion used. Noteworthy, although samples with copper are able to release more metal ion than samples with silver, they present higher MBC showing the high effect of silver against these bacteria. - Highlights: • Copper and silver act as antimicrobial additives in bioactive glass materials. • Silver is more toxic than copper ions in these bioactive materials. • Sol–gel method allows the synthesis of antimicrobial bioactive materials

  12. Nonlinear response and avalanche behavior in metallic glasses

    Science.gov (United States)

    Riechers, B.; Samwer, K.

    2017-08-01

    The response to different stress amplitudes at temperatures below the glass transition temperature is analyzed by mechanical oscillatory excitation of Pd40Ni40P20 metallic glass samples in single cantilever bending geometry. While low amplitude oscillatory excitations are commonly used in mechanical spectroscopy to probe the relaxation spectrum, in this work the response to comparably high amplitudes is investigated. The strain response of the material is well below the critical yield stress even for highest stress amplitudes, implying the expectation of a linear relation between stress and strain according to Hooke's Law. However, a deviation from the linear behavior is evident, which is analyzed in terms of temperature dependence and influence of the applied stress amplitude by two different approaches of evaluation. The nonlinear approach is based on a nonlinear expansion of the stress-strain-relation, assuming an intrinsic nonlinear character of the shear or elastic modulus. The degree of nonlinearity is extracted by a period-by-period Fourier-analysis and connected to nonlinear coefficients, describing the intensity of nonlinearity at the fundamental and higher harmonic frequencies. The characteristic timescale to adapt to a significant change in stress amplitude in terms of a recovery timescale to a steady state value is connected to the structural relaxation time of the material, suggesting a connection between the observed nonlinearity and primary relaxation processes. The second approach of evaluation is termed the incremental analysis and relates the observed response behavior to avalanches, which occur due to the activation and correlation of local microstructural rearrangements. These rearrangements are connected with shear transformation zones and correspond to localized plastic events, which are superimposed on the linear response behavior of the material.

  13. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-09-01

    The lead-iron-phosphate (Pb-Fe-P) glass developed at Oak Ridge National Laboratory was evaluated for its potential as an improvement over the current reference nuclear waste form, borosilicate (B-Si) glass. The evaluation was conducted as part of the Second Generation HLW Technology Subtask of the Nuclear Waste Treatment Program at Pacific Northwest Laboratory. The purpose of this work was to investigate possible alternatives to B-Si glass as second-generation waste forms. While vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass, severe crystallization or devitrification leading to deteriorated chemical durability would result if this glass were poured into large canisters as is the procedure with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the potential performance advantages of the Pb-Fe-P material in a nuclear waste form, the processing method would have to cool the material rapidly to retain its vitreous structure

  14. Infrared and Raman investigation of rare-earth phosphate glasses for potential use as radioactive waste forms

    International Nuclear Information System (INIS)

    Morgan, S.H.

    1989-01-01

    This project was designed to investigate the properties of the rare-earth phosphate glass systems CeO 2 -P 2 O 5 and Pr 2 O 3 -P 2 O 5 for potential use as radioactive waste glasses. The glass-forming region and optimum processing parameters of these glass systems were investigated. The structure of the host glasses and glassed loaded with simulated waste elements was investigated using Raman and infrared spectroscopy. Because of the radical differences in the spectra of the molybdenum-loaded glasses, the structure of the MoO 3 -P 2 O 5 glass system was also investigated. 29 refs., 8 figs., 2 tabs

  15. FeNbB bulk metallic glass with high boron content

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, M.; Das, Jayanta; Eckert, Juergen [IFW Dresden, Institute for Complex Materials, P.O. Box 270016, D-01171 Dresden (Germany); Hajlaoui, Khalil; Yavari, Alain Reza [LTPCM-CNRS, I.N.P. Grenoble, 1130 Rue de la Piscine, BP 75, F-38402 University Campus (France)

    2007-07-01

    Fe-based alloys able to form magnetic bulk metallic glasses (BMGs) are of the type transition metal - metalloid and often contain 5 or more elements. Usually, the metalloid content is around 20 atomic %. Very recently, the Fe{sub 66}Nb{sub 4}B{sub 30} alloy was found to be able to form BMG by copper mold casting technique, despite its high metalloid content. Several composition with boron contents around 30 at. % or even higher were calculated since 1993 as possible compositions of the remaining amorphous matrix after the first stage of nanocrystallization of Finemet-type Fe{sub 77}Si{sub 14}B{sub 9} glassy ribbons with 0.5 to 1 atomic % Cu and a few percent Nb addition. Melt-spun ribbons of all calculated compositions were found to be glassy. The composition of the ternary Fe-based BMG investigated in the present study resulted as an optimization of all possibilities. The alloy is ferromagnetic with glass transition temperature T{sub g}=845 K, crystallisation temperature T{sub x}=876 K, liquidus temperature T{sub liq}=1451 K and mechanical strength of 4 GPa. The coercivity of as-cast samples is very low, around 1.5 A/m. The present contribution aims at discussing the thermal stability, mechanical and magnetic properties of the Fe{sub 66}Nb{sub 4}B{sub 30} BMG.

  16. The production of advanced glass ceramic HLW forms using cold crucible induction melter

    International Nuclear Information System (INIS)

    Rutledge, V.J.; Maio, V.

    2013-01-01

    Cold Crucible Induction Melters (CCIM) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in a near future. Unlike the existing Joule-Heated Melters (JHM) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIM offers unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. It is concluded that glass ceramic waste forms that are tailored to immobilize fission products of HLW can be can be made from the HLW processed with the CCIM. The advantageous higher temperatures reached with the CCIM and unachievable with JHM allows the lanthanides, alkali, alkaline earths, and molybdenum to dissolve into a molten glass. Upon controlled cooling they go into targeted crystalline phases to form a glass ceramic waste form with higher waste loadings than achievable with borosilicate glass waste forms. Natural cooling proves to be too fast for the formation of all targeted crystalline phases

  17. Viscous surface flow induced on Ti-based bulk metallic glass by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kun [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Zheng [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100072 (China); Li, Fengjiang [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wei, Bingchen, E-mail: weibc@imech.ac.cn [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-12-30

    Highlights: • Obvious smoothing and roughening phases on the Ti-based MG surface resulted, which correspond respectively to the normal and off-normal incidence angles. • Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough surface. • The irradiation-induced viscosity of MG is about 4×10{sup 12} Pa·s, which accords with the theoretical prediction for metallic glasses close to glass transition temperature. • Surface-confined viscous flow plays a dominant quantitative role, which is due to radiation-induced softening of the low-viscosity surface layer. - Abstract: Ti-based bulk metallic glass was irradiated by a 20 MeV Cl{sup 4+} ion beam under liquid-nitrogen cooling, which produced remarkable surface smoothing and roughening that respectively correspond to normal and off-normal incidence angles of irradiation. Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough glass surface. In terms of mechanism, irradiation-induced viscosity agrees with the theoretical prediction for metallic glasses near glass transition temperature. Here, a model is introduced, based on relaxation of confined viscous flow with a thin liquid-like layer, that explains both surface smoothing and ripple formation. This study demonstrates that bulk metallic glass has high morphological instability and low viscosity under ion irradiation, which assets can pave new paths for metallic glass applications.

  18. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Low Pressure Casting

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Kennett, Andrew (Inventor)

    2018-01-01

    Systems and methods to fabricate objects including metallic glass-based materials using low-pressure casting techniques are described. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: introducing molten alloy into a mold cavity defined by a mold using a low enough pressure such that the molten alloy does not conform to features of the mold cavity that are smaller than 100 microns; and cooling the molten alloy such that it solidifies, the solid including a metallic glass-based material.

  19. Low temperature uniform plastic deformation of metallic glasses during elastic iteration

    International Nuclear Information System (INIS)

    Fujita, Takeshi; Wang Zheng; Liu Yanhui; Sheng, Howard; Wang Weihua; Chen Mingwei

    2012-01-01

    Molecular dynamics simulations and dynamic mechanical analysis experiments were employed to investigate the mechanical behavior of metallic glasses subjected to iteration deformation in a nominally elastic region. It was found that cyclic deformation leads to the formation of irreversible shear transformation zones (STZs) and a permanent uniform strain. The initiation of STZs is directly correlated with the atomic heterogeneity of the metallic glass and the accumulated permanent strain has a linear relation with the number of STZs. This study reveals a new deformation mode and offers insights into the atomic mechanisms of STZ formation and low temperature uniform plastic deformation of metallic glasses.

  20. Flow and Fracture of Bulk Metallic Glass Alloys and their Composites

    International Nuclear Information System (INIS)

    Flores, K M; Suh, D; Howell, R; Asoka-Kumar, P; Dauskardt, R H

    2001-01-01

    The fracture and plastic deformation mechanisms of a Zr-Ti-Ni-Cu-Be bulk metallic glass and a composite utilizing a crystalline reinforcement phase are reviewed. The relationship between stress state, free volume and shear band formation are discussed. Positron annihilation techniques were used to confirm the predicted increase in free volume after plastic straining. Strain localization and failure were examined for a wide range of stress states. Finally, methods for toughening metallic glasses are considered. Significant increases in toughness are demonstrated for a composite bulk metallic glass containing a ductile second phase which stabilizes shear band formation and distributes plastic deformation

  1. Devitrification kinetics and phase selection mechanisms in Cu-Zr metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kalay, Ilkay [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Metallic glasses have been a promising class of materials since their discovery in the 1960s. Indeed, remarkable chemical, mechanical and physical properties have attracted considerable attention, and several excellent reviews are available. Moreover, the special group of glass forming alloys known as the bulk metallic glasses (BMG) become amorphous solids even at relatively low cooling rates, allowing them to be cast in large cross sections, opening the scope of potential applications to include bulk forms and net shape structural applications. Recent studies have been reported for new bulk metallic glasses produced with lower cooling rates, from 0.1 to several hundred K/s. Some of the application products of BMGs include sporting goods, high performance springs and medical devices. Several rapid solidification techniques, including melt-spinning, atomization and surface melting have been developed to produce amorphous alloys. The aim of all these methods is to solidify the liquid phase rapidly enough to suppress the nucleation and growth of crystalline phases. Furthermore, the production of amorphous/crystalline composite (ACC) materials by partial crystallization of amorphous precursor has recently given rise to materials that provide better mechanical and magnetic properties than the monolithic amorphous or crystalline alloys. In addition, these advances illustrate the broad untapped potential of using the glassy state as an intermediate stage in the processing of new materials and nanostructures. These advances underlie the necessity of investigations on prediction and control of phase stability and microstructural dynamics during both solidification and devitrification processes. This research presented in this dissertation is mainly focused on Cu-Zr and Cu-Zr-Al alloy systems. The Cu-Zr binary system has high glass forming ability in a wide compositional range (35-70 at.% Cu). Thereby, Cu-Zr based alloys have attracted much attention according to fundamental

  2. Development of iodine waste forms using low-temperature sintering glass

    International Nuclear Information System (INIS)

    Krumhansl, James Lee; Nenoff, Tina Maria; Garino, Terry J.; Rademacher, David

    2010-01-01

    This presentation will describe our recent work on the use of low temperature-sintering glass powders mixed with either AgI or AgI-zeolite to produce a stable waste form. Radioactive iodine ( 129 I, half-life of 1.6 x 10 7 years) is generated in the nuclear fuel cycle and is of particular concern due to its extremely long half-life and its effects on human health. As part of the DOE/NE Advanced Fuel Cycle Initiative (AFCI), the separation of 129 I from spent fuel during fuel reprocessing is being studied. In the spent fuel reprocessing scheme under consideration, the iodine is released in gaseous form and collected using Ag-loaded zeolites, to form AgI. Although AgI has extremely low solubility in water, it has a relatively high vapor pressure at moderate temperatures (>550 C), thus limiting the thermal processing. Because of this, immobilization using borosilicate glass is not feasible. Therefore, a bismuth oxide-based glasses are being studied due to the low solubility of bismuth oxide in aqueous solution at pH > 7. These waste forms were processed at 500 C, where AgI volatility is low but the glass powder is able to first densify by viscous sintering and then crystallize. Since the glass is not melted, a more chemically stable glass can be used. The AgI-glass mixture was found to have high iodine leach resistance in these initial studies.

  3. Diffusion in confinement as a microscopic relaxation mechanism in glass-forming liquids

    International Nuclear Information System (INIS)

    Mamontov, Eugene

    2012-01-01

    Using quasielastic neutron scattering, we compare dynamics in single-element liquids, glass-forming selenium and non glass-forming gallium. There is a single jump-diffusion process in gallium, whereas in selenium there is also a faster, spatially localized process. The fast and slow processes describe β- and α-relaxation, respectively. We then analyze an archetypical glass-former, glycerol, to show that the two-component fit, with β- and α-relaxations explicitly separated, yields the correct value for the translational diffusion coefficient and provides information on the spatial localization of the β-relaxation that is not experimentally accessible otherwise.

  4. Effect of high pressure on the relaxation dynamics of glass-forming liquids

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, M; Grzybowska, K; Grzybowski, A [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland)

    2007-05-23

    A glass is usually formed by cooling a liquid at a rate sufficient to avoid crystallization. In the vicinity of the glass transition the structural relaxation time increases with lowering temperature in a non-Arrhenius fashion and the structural relaxation function reveals a non-Debye behaviour. However, liquid can be also vitrified by keeping it at a constant temperature and increasing the pressure. This pressure-induced transition to the glassy state is also accompanied by dramatic changes in the relaxation dynamics. Herein we discuss the behaviour of the structural relaxation times of glass-forming liquids and polymer melts under high pressure.

  5. Effect of high pressure on the relaxation dynamics of glass-forming liquids

    International Nuclear Information System (INIS)

    Paluch, M; Grzybowska, K; Grzybowski, A

    2007-01-01

    A glass is usually formed by cooling a liquid at a rate sufficient to avoid crystallization. In the vicinity of the glass transition the structural relaxation time increases with lowering temperature in a non-Arrhenius fashion and the structural relaxation function reveals a non-Debye behaviour. However, liquid can be also vitrified by keeping it at a constant temperature and increasing the pressure. This pressure-induced transition to the glassy state is also accompanied by dramatic changes in the relaxation dynamics. Herein we discuss the behaviour of the structural relaxation times of glass-forming liquids and polymer melts under high pressure

  6. Fabrication of an artificial nanosucker device with a large area nanotube array of metallic glass.

    Science.gov (United States)

    Chen, Wei-Ting; Manivannan, Karthikeyan; Yu, Chia-Chi; Chu, Jinn P; Chen, Jem-Kun

    2018-01-18

    The concurrent attachment and detachment movements of geckos on virtually any type of surface via their foot pads have inspired us to develop a thermal device with numerous arrangements of a multi-layer thin film together with electrodes that can help modify the temperature of the surface via application of a voltage. A sequential fabrication process was employed on a large-scale integration to generate well-defined contact hole arrays of photoresist for use as templates on the electrode-based device. The photoresist templates were then subjected to sputter deposition of the metallic glass Zr 55 Cu 30 Al 10 Ni 5 . Consequently, a metallic glass nanotube (MGNT) array having a nominal wall thickness of 100 nm was obtained after removal of the photoresist template. When a water droplet was placed on the MGNT array, close nanochambers of metallic glass were formed. By applying voltage, the surface was heated to increase the pressure inside the nanochambers; this generated an expanding force that raised the droplet; thus, the static water contact angle (SWCA) was increased. In contrast, a sucking force was generated during surface cooling, which decreased the SWCA. Our fabrication strategy exploits the MGNT array surface as nanosuckers, which can mimic the climbing aptitude of geckos as they attach to (>10 N m -2 ) and detach from (0.26 N m -2 ) surfaces at 0.5 and 3 V of applied voltage, respectively. Thus, the climbing aptitude of geckos can be mimicked by employing the processing strategy presented herein for the development of artificial foot pads.

  7. Formation and stability of aluminum-based metallic glasses in Al-Fe-Gd alloys

    International Nuclear Information System (INIS)

    He, Y.; Poon, S.J.; Shiflet, G.J.

    1988-01-01

    Metallic glasses, a class of amorphous alloys made by rapid solidification, have been studied quite extensively for almost thirty years. It has been recognized for a long time that metallic glasses are usually very strong and ductile, and exhibit high corrosion resistance relative to crystalline alloys with the same compositions. Recently, metallic glasses containing as much as 90 atomic percent aluminum have been discovered independently by two groups. This discovery has both scientific and technological implications. The formability of these new glasses have been found to be unusual. Studies of mechanical properties in these new metallic glasses show that many of them have tensile strengths over 800MPa, greatly exceeding the strongest commercial aluminum alloys. The high strengths of aluminum-rich metallic glasses can be of significant importance in obtaining high strength low density materials. Therefore, from both scientific and technological standpoints, it is important to understand the formation and thermal stability of these metallic glasses. Al-Fe-Gd alloys were chosen for a more detailed study since they exhibit high tensile strengths

  8. Cross-craft interactions between metal and glass working: slag additions to early Anglo-Saxon red glass

    Science.gov (United States)

    Peake, James R. N.; Freestone, Ian C.

    Opaque red glass has been extensively studied over the years, but its compositional complexity and variability means that the way in which it was manufactured is still not fully understood. Previous studies have suggested the use of metallurgical by-products in its manufacture, but until now the evidence has been limited. SEM-EDS analysis of glass beads from the early Anglo-Saxon cemetery complex at Eriswell, southeast England, has provided further insights into the production and technology of opaque red glass, which could only have been possible through invasive sampling. The matrix of the red glasses contains angular particles of slag, the main phases of which typically correspond to either fayalite (Fe2SiO4) or kirschsteinite (CaFeSiO4), orthosilicate (olivine-type) minerals characteristic of some copper- and iron-smelting slags. This material appears to have been added in part as a reducing agent, to promote the precipitation of sub-micrometer particles of the colorant phase, copper metal. Its use represents a sophisticated, if empirical, understanding of materials and can only have resulted through deliberate experimentation with metallurgical by-products by early glass workers. Slag also seems to have been added as a source of iron to colour `black' glass. The compositions of the opaque red glasses appear to be strongly paralleled by Merovingian beads from northern Europe and Anglo-Saxon beads from elsewhere in England, suggesting that this technology is likely to have been quite widespread.

  9. Pulsed Nd:YAG laser welding of Cu54Ni6Zr22Ti18 bulk metallic glass

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Lee, Changhee; Lee, D.M.; Sun, J.H.; Shin, S.Y.; Bae, J.C.

    2007-01-01

    Pulsed Nd:YAG laser was used to weld Cu 54 Ni 6 Zr 22 Ti 18 (numbers indicate at.%) metallic glass with glass forming ability of 6 mm. Through a single pulse irradiation on the glassy plate, the pulse condition for welding without crystallization was investigated. Under the selected pulse condition, the Cu 54 Ni 6 Zr 22 Ti 18 plate was periodically welded with different welding speeds. For the welding speed of 60 mm/min, no crystallization was observed in both weldment and heat-affected zone. For the 20 mm/min, the crystallized areas with a band shape were observed along the welding direction

  10. Comparison of costs for solidification of high-level radioactive waste solutions: glass monoliths vs metal matrices

    International Nuclear Information System (INIS)

    Jardine, L.J.; Carlton, R.E.; Steindler, M.J.

    1981-05-01

    A comparative economic analysis was made of four solidification processes for liquid high-level radioactive waste. Two processes produced borosilicate glass monoliths and two others produced metal matrix composites of lead and borosilicate glass beads and lead and supercalcine pellets. Within the uncertainties of the cost (1979 dollars) estimates, the cost of the four processes was about the same, with the major cost component being the cost of the primary building structure. Equipment costs and operating and maintenance costs formed only a small portion of the building structure costs for all processes

  11. Forming processes and mechanics of sheet metal forming

    NARCIS (Netherlands)

    Burchitz, I.A.

    2004-01-01

    The report is dealing with the numerical analysis of forming processes. Forming processes is the large group of manufacturing processes used to obtain various product shapes by means of plastic deformations. The report is organized as follows. An overview of the deformation processes and the

  12. Characteristics of diffusion zone in changing glass-metal composite processing conditions

    Science.gov (United States)

    Lyubimova, O. N.; Morkovin, A. V.; Andreev, V. V.

    2018-03-01

    The influence of manufacturing technology on the characteristics of the glass and steel contact zone in manufacturing new structural material - glass-metal composite is studied theoretically and experimentally. Different types of structures in the contact zone and its dimensions affect the strength characteristics of the composite. Knowledge about changing the width of the glass and steel contact zone after changing such parameters of the technological regime as temperature, holding time and use of solders will allow one to control the structure and characteristics of the glass-metal composite. Experimental measurements of the width of the diffusion zone in the glass-metal composite for different regimes and their statistical processing according to the full factor experiment are presented in this article. The results of analysis of some mechanical characteristics of the diffusion zone are presented: microhardness and modulus of elasticity for samples, prepared according to different processing regimes.

  13. Process and equipment qualification of the ceramic and metal waste forms for spent fuel treatment

    International Nuclear Information System (INIS)

    Marsden, Ken; Knight, Collin; Bateman, Kenneth; Westphal, Brian; Lind, Paul

    2005-01-01

    The electrometallurgical process for treating sodium-bonded spent metallic fuel at the Materials and Fuels Complex of the Idaho National Laboratory separates actinides and partitions fission products into two waste forms. The first is the metal waste form, which is primarily composed of stainless steel from the fuel cladding. This stainless steel is alloyed with 15w% zirconium to produce a very corrosion-resistant metal which binds noble metal fission products and residual actinides. The second is the ceramic waste form which stabilizes fission product-loaded chloride salts in a sodalite and glass composite. These two waste forms will be packaged together for disposal at the Yucca Mountain repository. Two production-scale metal waste furnaces have been constructed. The first is in a large argon-atmosphere glovebox and has been used for equipment qualification, process development, and process qualification - the demonstration of process reliability for production of the DOE-qualified metal waste form. The second furnace will be transferred into a hot cell for production of metal waste. Prototype production-scale ceramic waste equipment has been constructed or procured; some equipment has been qualified with fission product-loaded salt in the hot cell. Qualification of the remaining equipment with surrogate materials is underway. (author)

  14. On the anelasticity and strain induced structural changes in a Zr-based bulk metallic glass

    International Nuclear Information System (INIS)

    Caron, A.; Louzguine-Luzguin, D. V.; Kawashima, A.; Inoue, A.; Fecht, H.-J.

    2011-01-01

    We report on the anelastic behavior of a cyclically loaded Zr 62.5 Fe 5 Cu 22.5 Al 10 bulk metallic glass well below its yield strength. The dynamic mechanical behavior of the glass is discussed on the basis of its structural and thermodynamic properties before and after tests. We show how the kinetically frozen anelastic deformation accumulates at room temperature and causes a structural relaxation and densification of the glass and further leads to its partial crystallization.

  15. Friction and wear of some ferrous-base metallic glasses

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  16. Thermal properties of superconducting bulk metallic glasses at ultralow temperatures

    International Nuclear Information System (INIS)

    Rothfuss, Daniel Simon

    2013-01-01

    This thesis describes the first investigation of thermal properties of superconducting bulk metallic glasses in the range between 6mK and 300K. Measuring the thermal conductivity provides the possibility to probe the fundamental interactions governing the heat flow in solids. At ultralow temperatures a novel contactless measuring technique was used, which is based on optical heating and paramagnetic temperature sensors that are read out by a SQUID magnetometer. Below the critical temperature T c the results can be described by resonant scattering of phonons by tunneling systems. Above T c the phonon contribution to the thermal conductivity can be described successfully within a model considering not only electrons and phonons but also localized modes as scattering centres. To expand the accessible temperature range for experiments an adiabatic nuclear demagnetization refrigerator was set up. For measuring the base temperature a novel noise thermometer was developed which enables continuous measuring of the temperature in this temperature range for the first time. Therefore the magnetic Johnson noise of a massive copper cylinder is simultaneously monitored by two SQUID magnetometers. A subsequent cross-correlation suppresses the amplifier noise by more than one order of magnitude. The thermometer was characterized between 42μK and 0.8K showing no deviation from the expected linear behaviour between the power spectral density of the thermal noise and the temperature.

  17. Poor glass-forming ability of Fe-based alloys

    DEFF Research Database (Denmark)

    Zheng, H.J.; Hu, L.N.; Zhao, X.

    2017-01-01

    processes. By using the concept of fluid cluster and supercooled liquid fragility in metallic liquids, it has been found that this dynamic transition makes the Fe-based supercooled liquids become more unstable, which leads to the poor GFA of Fe-based alloys. Further, it has been found that the degree...

  18. Corrosion behaviors of a glass-bonded sodalite ceramic waste form and its constituents

    International Nuclear Information System (INIS)

    Lewis, M. A.; Ebert, W. L.; Morss, L.

    1999-01-01

    A ceramic waste form (CWF) of glass bonded sodalite is being developed as a waste form for the long-term immobilization of fission products and transuranic elements from the U.S. Department of Energy's activities on spent nuclear fuel conditioning. A durable waste form was prepared by hot isostatic pressing (HIP) a mixture of salt-loaded zeolite powders and glass frit. During HIP the zeolite is converted to sodalite, and the resultant CWF is been completed for durations of up to 182 days. Four dissolution modes were identified: dissolution of free salt, dissolution of the aluminosilicate matrix of sodalite and the accompanying dissolution of occluded salt, dissolution of the boroaluminosilicate matrix of the glass, and ion exchange. Synergies inherent to the CWF were identified by comparing the results of the tests with pure glass and sodalite with those of the composite CWF

  19. Thermal forming of glass microsheets for x-ray telescope mirror segments

    DEFF Research Database (Denmark)

    Jimenez-Garate, M.A.; Hailey, C.J.; Craig, W.W.

    2003-01-01

    envisioned for future x-ray observatories. The glass microsheets are shaped into mirror segments at high temperature by use of a guiding mandrel, without polishing. We determine the physical properties and mechanisms that elucidate the formation process and that are crucial to improve surface quality. We......We describe a technology to mass-produce ultrathin mirror substrates for x-ray telescopes of near Wolter-I geometry. Thermal glass forming is a low-cost method to produce high-throughput, spaceborne x-ray mirrors for the 0.1-200-keV energy band. These substrates can provide the collecting area...... develop a viscodynamic model for the glass strain as the forming proceeds to find the conditions for repeatability. Thermal forming preserves the x-ray reflectance and scattering properties of the raw glass. The imaging resolution is driven by a large wavelength figure. We discuss the sources of figure...

  20. On the competition in phase formation during the crystallisation of Al-Ni-Y metallic glasses

    International Nuclear Information System (INIS)

    Styles, M.J.; Sun, W.W.; East, D.R.; Kimpton, J.A.; Gibson, M.A.; Hutchinson, C.R.

    2016-01-01

    Glassy metals exhibit a range of interesting properties including high strength and corrosion resistance, but often have poor toughness and tensile ductility in the fully amorphous state. It has been shown that combinations of desirable properties can be achieved by the partial crystallisation of glass-forming alloys, either during controlled solidification or by annealing a fully amorphous glass. The aim of this investigation is to understand the competition in phase formation during the crystallisation of metallic glasses in the Al-Ni-Y system. High-resolution, in situ synchrotron powder diffraction has been used to quantitatively follow the evolution of phases in 5 different alloys between Al 87 Ni 9 Y 4 and Al 75 Ni 15 Y 10 , as they were continuously heated to melting and subsequently cooled back to ambient temperature. Upon heating, the first crystallisation product was found to vary from FCC Al to the intermetallic Al 9 Ni 2 phase with increasing Ni concentration. In addition, the crystallisation sequence also changed from a two-stage to a three-stage process. High number densities of crystallites (∼10 23  m −3 ) were observed initially for both FCC Al and Al 9 Ni 2 . Upon cooling, the partially disordered Al 9 Ni 3 Y phase was found to form preferentially over the intermetallic phases observed during heating. The difference in competition in phase formation during heating and cooling are discussed in terms of nucleation barriers calculated using a recent thermodynamic assessment of the Al-Ni-Y system. The role of compositional heterogeneities in the as-quenched glasses and long-range diffusion on the nucleation process is discussed. - Graphical abstract: High-resolution, in situ synchrotron powder diffraction has been used to quantitatively follow the evolution of phases in 5 different alloys between Al 87 Ni 9 Y 4 and Al 75 Ni 15 Y 10 , as they were continuously heated to melting and subsequently cooled back to ambient temperature. Upon heating, the

  1. Kinetic and structural fragility—a correlation between structures and dynamics in metallic liquids and glasses

    International Nuclear Information System (INIS)

    Kelton, K F

    2017-01-01

    The liquid phase remains poorly understood. In many cases, the densities of liquids and their crystallized solid phases are similar, but since they are amorphous they lack the spatial order of the solid. Their dynamical properties change remarkably over a very small temperature range. At high temperatures, near their melting temperature, liquids flow easily under shear. However, only a few hundred degrees lower flow effectively ceases, as the liquid transforms into a solid-like glass. This temperature-dependent dynamical behavior is frequently characterized by the concept of kinetic fragility (or, generally, simply fragility). Fragility is believed to be an important quantity in glass formation, making it of significant practical interest. The microscopic origin of fragility remains unclear, however, making it also of fundamental interest. It is widely (although not uniformly) believed that the dynamical behavior is linked to the atomic structure of the liquid, yet experimental studies show that although the viscosity changes by orders of magnitude with temperature, the structural change is barely perceptible. In this article the concept of fragility is discussed, building to a discussion of recent results in metallic glass-forming liquids that demonstrate the presumed connection between structural and dynamical changes. In particular, it becomes possible to define a structural fragility parameter that can be linked with the kinetic fragility. (topical review)

  2. Effects of Al addition on atomic structure of Cu-Zr metallic glass

    Science.gov (United States)

    Li, Feng; Zhang, Huajian; Liu, Xiongjun; Dong, Yuecheng; Yu, Chunyan; Lu, Zhaoping

    2018-02-01

    The atomic structures of Cu52Zr48 and Cu45Zr48Al7 metallic glasses (MGs) have been studied by molecular dynamic simulations. The results reveal that the molar volume of the Cu45Zr48Al7 MG is smaller than that of the Cu52Zr48 MG, although the size of the Al atom is larger than that of the Cu atom, implying an enhanced atomic packing density achieved by introducing Al into the ternary MG. Bond shortening in unlike atomic pairs Zr-Al and Cu-Al is observed in the Cu45Zr48Al7 MG, which is attributed to strong interactions between Al and (Zr, Cu) atoms. Meanwhile, the atomic packing efficiency is enhanced by the minor addition of Al. Compared with the Cu52Zr48 binary MG, the potential energy of the ternary MG decreases and the glass transition temperature increases. Structural analyses indicate that more Cu- and Al-centered full icosahedral clusters emerge in the Cu45Zr48Al7 MG as some Cu atoms are substituted by Al. Furthermore, the addition of Al leads to more icosahedral medium-range orders in the ternary MG. The increase of full icosahedral clusters and the enhancement of the packing density are responsible for the improved glass-forming ability of Cu45Zr48Al7.

  3. Enhancement of plasticity of Fe-based bulk metallic glass by Ni substitution for Fe

    Energy Technology Data Exchange (ETDEWEB)

    Guo, S.F. [State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Li, N.; Zhang, C. [State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Liu, L., E-mail: sfguo2005@163.co [State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, 430074 Wuhan (China)

    2010-08-15

    Bulk metallic glasses (BMGs) (Fe{sub 1-x}Ni{sub x}){sub 71}Mo{sub 5}P{sub 12}C{sub 10}B{sub 2} (x = 0, 0.1 and 0.2) with a diameter of 3 mm were synthesized by copper mold casting. The effect of Ni substitution for Fe on the structure, thermal and mechanical properties has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and compressive testing. It was found that the substitution of Ni for Fe enhances the glass forming ability, and improves the plasticity of Fe{sub 71}Mo{sub 5}P{sub 12}C{sub 10}B{sub 2} BMG as indicated by the increase in the plastic strain from 3.1% (x = 0) to 5.2% (x = 0.2). The improvement of the plasticity is discussed in term of the reduction of glass transition temperature and the supercooled liquid region due to the substitution of Ni for Fe.

  4. Anelastic deformation processes in metallic glasses and activation energy spectrum model

    NARCIS (Netherlands)

    Ocelik, [No Value; Csach, K; Kasardova, A; Bengus, VZ; Ocelik, Vaclav

    1997-01-01

    The isothermal kinetics of anelastic deformation below the glass transition temperature (so-called 'stress induced ordering' or 'creep recovery' deformation) was investigated in Ni-Si-B metallic glass. The relaxation time spectrum model and two recently developed methods for its calculation from the

  5. Creep recovery of metallic glass Fe-Ni-B after longtime stress-annealing

    NARCIS (Netherlands)

    Jurikova, A; Csach, K; Miskuf, J; Ocelik, Vaclav

    2004-01-01

    The creep strain recovery of magnetic soft material - amorphous metallic glass Fe-Ni-B after a longtime stress-annealing at different temperatures below the crystallization temperature was described using differential scanning calorimetry and dilatometry. Several deformation energy accumulations

  6. Wear behaviour of Zr-based in situ bulk metallic glass matrix ...

    Indian Academy of Sciences (India)

    based bulk metallic glass (BMG) and its in situ BMG matrix composites with diameter of 3 mm were fabricated by conventional Cu-mould casting method and ... The composites showed lower friction coefficient and wear rate than the pure BMG.

  7. Development of Low Density CaMg-A1-Based Bulk Metallic Glasses (Preprint)

    National Research Council Canada - National Science Library

    Senkov, O. N; Scott, J. M; Miracle, D. B

    2006-01-01

    Low density Ca-Mg-Al-based bulk metallic glasses containing additionally Cu and Zn, were produced by a copper mold casting method as wedge-shaped samples with thicknesses varying from 0.5 mm to 10 rom...

  8. Wear behaviour of Zr-based in situ bulk metallic glass matrix ...

    Indian Academy of Sciences (India)

    based bulk metallic glasses; in situ composites; ductile phase; wear behaviours. 1. Introduction ... crystalline alloys [2], which led to an abnormal phenomenon that the wear ... of BMGs does not follow the empirical Archard's wear equa- tion which ...

  9. Net Shaping of Multifunctional Bulk Metallic Glass Containers and Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Demand for novel manufacturing methods for space systems brings unique properties of bulk metallic glasses (BMG) into the spotlight. In addition to superior...

  10. Preparation of oxide glasses from metal alkoxides by sol-gel method

    Science.gov (United States)

    Kamiya, K.; Yoko, T.; Sakka, S.

    1987-01-01

    An investigation is carried out on the types of siloxane polymers produced in the course of the hydrolysis of silicon tetraethoxide, as well as the preparation of oxide glasses from metal alkoxides by the sol-gel method.

  11. NMR signature of evolution of ductile-to-brittle transition in bulk metallic glasses.

    Science.gov (United States)

    Yuan, C C; Xiang, J F; Xi, X K; Wang, W H

    2011-12-02

    The mechanical properties of monolithic metallic glasses depend on the structures at atomic or subnanometer scales, while a clear correlation between mechanical behavior and structures has not been well established in such amorphous materials. In this work, we find a clear correlation of (27)Al NMR isotropic shifts with a microalloying induced ductile-to-brittle transition at ambient temperature in bulk metallic glasses, which indicates that the (27)Al NMR isotropic shift can be regarded as a structural signature to characterize plasticity for this metallic glass system. The study provides a compelling approach for investigating and understanding the mechanical properties of metallic glasses from the point of view of electronic structure. © 2011 American Physical Society

  12. Revealing the Link between Structural Relaxation and Dynamic Heterogeneity in Glass-Forming Liquids.

    Science.gov (United States)

    Wang, Lijin; Xu, Ning; Wang, W H; Guan, Pengfei

    2018-03-23

    Despite the use of glasses for thousands of years, the nature of the glass transition is still mysterious. On approaching the glass transition, the growth of dynamic heterogeneity has long been thought to play a key role in explaining the abrupt slowdown of structural relaxation. However, it still remains elusive whether there is an underlying link between structural relaxation and dynamic heterogeneity. Here, we unravel the link by introducing a characteristic time scale hiding behind an identical dynamic heterogeneity for various model glass-forming liquids. We find that the time scale corresponds to the kinetic fragility of liquids. Moreover, it leads to scaling collapse of both the structural relaxation time and dynamic heterogeneity for all liquids studied, together with a characteristic temperature associated with the same dynamic heterogeneity. Our findings imply that studying the glass transition from the viewpoint of dynamic heterogeneity is more informative than expected.

  13. Revealing the Link between Structural Relaxation and Dynamic Heterogeneity in Glass-Forming Liquids

    Science.gov (United States)

    Wang, Lijin; Xu, Ning; Wang, W. H.; Guan, Pengfei

    2018-03-01

    Despite the use of glasses for thousands of years, the nature of the glass transition is still mysterious. On approaching the glass transition, the growth of dynamic heterogeneity has long been thought to play a key role in explaining the abrupt slowdown of structural relaxation. However, it still remains elusive whether there is an underlying link between structural relaxation and dynamic heterogeneity. Here, we unravel the link by introducing a characteristic time scale hiding behind an identical dynamic heterogeneity for various model glass-forming liquids. We find that the time scale corresponds to the kinetic fragility of liquids. Moreover, it leads to scaling collapse of both the structural relaxation time and dynamic heterogeneity for all liquids studied, together with a characteristic temperature associated with the same dynamic heterogeneity. Our findings imply that studying the glass transition from the viewpoint of dynamic heterogeneity is more informative than expected.

  14. Stability and electronic structure of Zr-based ternary metallic glasses and relevant compounds

    International Nuclear Information System (INIS)

    Hasegawa, M.; Soda, K.; Sato, H.; Suzuki, T.; Taketomi, T.; Takeuchi, T.; Kato, H.; Mizutani, U.

    2007-01-01

    The electronic structure of the Zr-based metallic glasses has been investigated by theoretical and experimental approaches. One approach is band calculations of the Zr 2 Ni (Zr 66.7 Ni 33.3 ) compound to investigate the electronic structure of the Zr 66.7 Ni 33.3 metallic glass (ΔT x = 0 K) of which the local atomic structure is similar to that of the Zr 2 Ni compound. The other is photoemission spectroscopy of the Zr 50 Cu 35 Al 15 bulk metallic glass (BMG) (ΔT x = 69 K). Here ΔT x = T x - T g where T x and T g are crystallization and glass transition temperature, respectively. Both results and previous ones on the Zr 55 Cu 30 Ni 5 Al 10 BMG indicate that there is a pseudogap at the Fermi level in the electronic structure of these Zr-based metallic glasses, independent of the value of the ΔT x . This implies that the pseudogap at the Fermi level is one of the factors that stabilize the glass phase of Zr-based metallic glasses

  15. Commercial Production of Heavy Metal Fluoride Glass Fiber in Space

    Science.gov (United States)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    1998-01-01

    International Space Station Alpha (ISSA) will provide a platform not only for materials research but also a possible means to produce products in space which cannot be easily produced on the ground. Some products may even be superior to those now produced in unit gravity due to the lack of gravity induced convection effects. Our research with ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN glass) has shown that gravity does indeed play a major role in the crystallization behavior of this material. At the present time ZBLAN is being produced on earth in fiber optic form for use in surgical lasers and fiber optic lasers among other applications. High attenuation coefficients, however, have kept this material from being used in other applications such as long haul data transmission links. The high attenuation coefficients are due to impurities which can be removed through improved processing techniques and crystals which can only be removed or prevented from forming by processing in a reduced gravity environment.

  16. Dynamics and Geometry of Icosahedral Order in Liquid and Glassy Phases of Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Masato Shimono

    2015-07-01

    Full Text Available The geometrical properties of the icosahedral ordered structure formed in liquid and glassy phases of metallic glasses are investigated by using molecular dynamics simulations. We investigate the Zr-Cu alloy system as well as a simple model for binary alloys, in which we can change the atomic size ratio between alloying components. In both cases, we found the same nature of icosahedral order in liquid and glassy phases. The icosahedral clusters are observed in liquid phases as well as in glassy phases. As the temperature approaches to the glass transition point Tg, the density of the clusters rapidly grows and the icosahedral clusters begin to connect to each other and form a medium-range network structure. By investigating the geometry of connection between clusters in the icosahedral network, we found that the dominant connecting pattern is the one sharing seven atoms which forms a pentagonal bicap with five-fold symmetry. From a geometrical point of view, we can understand the mechanism of the formation and growth of the icosahedral order by using the Regge calculus, which is originally employed to formulate a theory of gravity. The Regge calculus tells us that the distortion energy of the pentagonal bicap could be decreased by introducing an atomic size difference between alloying elements and that the icosahedral network would be stabilized by a considerably large atomic size difference.

  17. High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission

    International Nuclear Information System (INIS)

    Hojati-Talemi, Pejman; Gibson, Mark A.; East, Daniel; Simon, George P.

    2011-01-01

    We report the preparation of new nanocomposites based on a combination of bulk metallic glass and carbon nanotubes for electron field emission applications. The use of bulk metallic glass as the matrix ensures high electrical and thermal conductivity, high thermal stability, and ease of processing, whilst the well dispersed carbon nanotubes act as highly efficient electron emitters. These advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

  18. High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission

    Energy Technology Data Exchange (ETDEWEB)

    Hojati-Talemi, Pejman [Department of Materials Engineering, Monash University, Clayton, Vic 3800 (Australia); Mawson Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Gibson, Mark A. [Process Science and Engineering, Commonwealth Scientific and Industrial Research Organisation, Clayton, Vic 3168 (Australia); East, Daniel; Simon, George P. [Department of Materials Engineering, Monash University, Clayton, Vic 3800 (Australia)

    2011-11-07

    We report the preparation of new nanocomposites based on a combination of bulk metallic glass and carbon nanotubes for electron field emission applications. The use of bulk metallic glass as the matrix ensures high electrical and thermal conductivity, high thermal stability, and ease of processing, whilst the well dispersed carbon nanotubes act as highly efficient electron emitters. These advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

  19. Effect of certain alkaline metals on Pr doped glasses to investigate spectroscopic studies

    Science.gov (United States)

    Lenkennavar Susheela, K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-02-01

    Incorporation of different Alkaline earth metal like Barium, Calcium and strontium in sodium lead borate glass doped with Pr3+ is studied. Physical parameters such as density, molar volume, molar refractivity etc have been evaluated. Effect of different atomic size of alkaline metal using optical and physical parameters is analysed. XRD and FTIR were carried out to know the structural behaviour of the glasses. Absorption and Emission spectra are recorded at room temperature and the results were discussed.

  20. Positron lifetime and Moessbauer study of Fe80-xNixB20 metallic glasses

    International Nuclear Information System (INIS)

    Baluch, S.; Miglierini, M.; Groene, R.; Sitek, J.

    1989-01-01

    In order to investigate the short-range order (SRO) of iron-rich Fe 80-x Ni x B 20 (x = 10, 20, 30, 40) metallic glasses positron lifetime and Moessbauer measurements were carried out. Positron lifetimes of samples and Moessbauer hyperfine structure data of neutron-irradiated samples as functions of nickel content are shown and discussed. Results give evidence that high Ni content stabilizes the structure and can be connected with a higher degree of SRO in metallic glasses

  1. Determination of the Structure of Vitrified Hydroceramic/CBC Waste Form Glasses Manufactured from DOE Reprocessing Waste

    International Nuclear Information System (INIS)

    Scheetz, B.E.; White, W. B.; Chesleigh, M.; Portanova, A.; Olanrewaju, J.

    2005-01-01

    industry with decades of practical experience. The research undertaken in the present investigation builds on a previous study under the NEER program. The earlier studies identified an optimal formulation for the immobilization of the calcine that is both compositionally adequate to retain radionuclides as well as hazardous constituents and which has a reaction rate that will allow the technical employment of the process. The study established in a general way the glass-forming region in the system M 2 O-MO-Al 2 O 3 -SiO 2 (M 2 0 = alkali metal oxides; MO = alkaline earth metal oxide) which provides the base for these hydroceramic/CBC materials (Fig. 1). The objectives of the present program are to track the structural changes that take place during formulation, chemical reaction, and HIPing. Compositions must be varied through the glass-forming region, structures of the crystals and glass matrix of the glass-ceramic determined, and the structural characteristics in turn related to stability and leachability of the final products

  2. Formation of hydroxyapatite on Ti-coated Ti-Zr-Cu-Pd bulk metallic glass

    International Nuclear Information System (INIS)

    Qin, F.X.; Wang, X.M.; Wada, T.; Xie, G.Q.; Asami, K.; Inoue, A.

    2009-01-01

    In this research, Ti coating was conducted on Ti 40 Zr 10 Cu 36 Pd 14 bulk metallic glass (BMG) in order to increase the formation rate of hydroxyapatite layer. The formation behavior of bone-like hydroxyapatite on Ti-coated and uncoated Ti 40 Zr 10 Cu 36 Pd 14 bulk metallic glasses (BMGs) was studied. The surface morphology of Ti-coated and uncoated Ti 40 Zr 10 Cu 36 Pd 14 BMG was investigated by scanning electron microscopy and energy dispersive X-ray spectroscopy. The results revealed that the alkali pretreatment in 5 M NaOH solution at 60degC for 24 h had a beneficial effect on the formation of porous sodium titanate on Ti-coated Ti 40 Zr 10 Cu 36 Pd 14 BMG. A bone-like hydroxyapatite layer was able to form on the alkali-treated Ti-coated Ti 40 Zr 10 Cu 36 Pd 14 BMG after a short-time immersion in simulated body fluid (SBF). On the contrary, hydroxyapatite formation was not observed on the uncoated Ti 40 Zr 10 Cu 36 Pd 14 BMG after the same chemical treatments. (author)

  3. Whiskers growth and self-healing in Ti-based metallic glasses during ion irradiation

    Science.gov (United States)

    Zhang, Kun; Hu, Zheng; Zhao, Ziqiang; Wei, Bingchen; Li, Yansen; Wei, Yuhang

    2018-04-01

    Ti-based metallic glasses were subjected to a 20 MeV Cl4+ ion radiation under liquid-nitrogen cooling. Their responses, as well as effects of the electronic excitation and nucleus-nucleus collision were evaluated. The collision cascade during irradiation typically changes the structure by increasing the liquid-like zone/cluster, or the content of the free volume. However, along the ion incident depth, the structure change is inhomogeneous. Numerous whiskers appear and aggregate on the side of the irradiation surface, which are several micrometers away from the edge. This corresponds with the maximum collision depth obtained by the Monte Carlo simulation, where nuclear loss plays a dominant role. Moreover, the liquid-like zone continually forms, which add to the whiskers growth and subsequent self-healing. Results suggest that the irradiation-induced local shear stress combines with the well-localized liquid-like zone results in the observed phenomena. This study demonstrates that metallic glasses have high morphological instability under ion irradiation, which assets can pave new paths for their further applications.

  4. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses.

    Science.gov (United States)

    Liu, Yanhui; Padmanabhan, Jagannath; Cheung, Bettina; Liu, Jingbei; Chen, Zheng; Scanley, B Ellen; Wesolowski, Donna; Pressley, Mariyah; Broadbridge, Christine C; Altman, Sidney; Schwarz, Udo D; Kyriakides, Themis R; Schroers, Jan

    2016-05-27

    Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design.

  5. Dynamical heterogeneity in a glass-forming ideal gas.

    Science.gov (United States)

    Charbonneau, Patrick; Das, Chinmay; Frenkel, Daan

    2008-07-01

    We conduct a numerical study of the dynamical behavior of a system of three-dimensional "crosses," particles that consist of three mutually perpendicular line segments of length sigma rigidly joined at their midpoints. In an earlier study [W. van Ketel, Phys. Rev. Lett. 94, 135703 (2005)] we showed that this model has the structural properties of an ideal gas, yet the dynamical properties of a strong glass former. In the present paper we report an extensive study of the dynamical heterogeneities that appear in this system in the regime where glassy behavior sets in. On the one hand, we find that the propensity of a particle to diffuse is determined by the structure of its local environment. The local density around mobile particles is significantly less than the average density, but there is little clustering of mobile particles, and the clusters observed tend to be small. On the other hand, dynamical susceptibility results indicate that a large dynamical length scale develops even at moderate densities. This suggests that propensity and other mobility measures are an incomplete measure of the dynamical length scales in this system.

  6. An interatomic potential for studying CuZr bulk metallic glasses

    DEFF Research Database (Denmark)

    Paduraru, Anca; Kenoufi, Abdel; Bailey, Nicholas

    2007-01-01

    -scale deformation events and may furthermore involve localization through formation of shear bands. In this paper, an Effective Medium Theory (EMT) potential optimized for modeling the mechanical and thermodynamic properties of CuZr bulk metallic glass is studied. The late transition metals crystallizing in close......The mechanical properties of BMGs are remarkably different from the ones of ordinary metallic alloys due to the atomic level disorder in the glassy state. Unlike crystalline materials plastic deformation in metallic glasses cannot be caused by lattice defects but takes place through atomic...

  7. Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature.

    Science.gov (United States)

    Mallamace, Francesco; Branca, Caterina; Corsaro, Carmelo; Leone, Nancy; Spooren, Jeroen; Chen, Sow-Hsin; Stanley, H Eugene

    2010-12-28

    It is becoming common practice to partition glass-forming liquids into two classes based on the dependence of the shear viscosity η on temperature T. In an Arrhenius plot, ln η vs 1/T, a strong liquid shows linear behavior whereas a fragile liquid exhibits an upward curvature [super-Arrhenius (SA) behavior], a situation customarily described by using the Vogel-Fulcher-Tammann law. Here we analyze existing data of the transport coefficients of 84 glass-forming liquids. We show the data are consistent, on decreasing temperature, with the onset of a well-defined dynamical crossover η(×), where η(×) has the same value, η(×) ≈ 10(3) Poise, for all 84 liquids. The crossover temperature, T(×), located well above the calorimetric glass transition temperature T(g), marks significant variations in the system thermodynamics, evidenced by the change of the SA-like T dependence above T(×) to Arrhenius behavior below T(×). We also show that below T(×) the familiar Stokes-Einstein relation D/T ∼ η(-1) breaks down and is replaced by a fractional form D/T ∼ η(-ζ), with ζ ≈ 0.85.

  8. Effect of ion irradiation on tensile ductility, strength and fictive temperature in metallic glass nanowires

    International Nuclear Information System (INIS)

    Magagnosc, D.J.; Kumar, G.; Schroers, J.; Felfer, P.; Cairney, J.M.; Gianola, D.S.

    2014-01-01

    Ion irradiation of thermoplastically molded Pt 57.5 Cu 14.3 Ni 5.7 P 22.5 metallic glass nanowires is used to study the relationship between glass structure and tensile behavior across a wide range of structural states. Starting with the as-molded state of the glass, ion fluence and irradiated volume fraction are systematically varied to rejuvenate the glass, and the resulting plastic behavior of the metallic glass nanowires probed by in situ mechanical testing in a scanning electron microscope. Whereas the as-molded nanowires exhibit high strength, brittle-like fracture and negligible inelastic deformation, ion-irradiated nanowires show tensile ductility and quasi-homogeneous plastic deformation. Signatures of changes to the glass structure owing to ion irradiation as obtained from electron diffraction are subtle, despite relatively large yield strength reductions of hundreds of megapascals relative to the as-molded condition. To reconcile changes in mechanical behavior with glass properties, we adapt previous models equating the released strain energy during shear banding to a transit through the glass transition temperature by incorporating the excess enthalpy associated with distinct structural states. Our model suggests that ion irradiation increases the fictive temperature of our glass by tens of degrees – the equivalent of many orders of magnitude change in cooling rate. We further show our analytical description of yield strength to quantitatively describe literature results showing a correlation between severe plastic deformation and hardness in a single glass system. Our results highlight not only the capacity for room temperature ductile plastic flow in nanoscaled metallic glasses, but also processing strategies capable of glass rejuvenation outside of the realm of traditional thermal treatments

  9. Influence of Y, Gd and Sm on the glass forming ability and thermal crystallization of aluminum based alloy

    International Nuclear Information System (INIS)

    Aliaga, L.C.R.; Bolfarini, C.; Kiminami, C.S.; Botta Filho, W.J.; Danez, G.P.

    2010-01-01

    Al-based amorphous alloys represent an important family of metals and a great scientific activity has been devoted to determine the main features of both glass forming ability (GFA) and crystallization behavior in order to have a comprehensive framework aimed at potential technological applications. Nowadays, it is well known that the best Al-based amorphous alloys are formed in ternary systems such as Al- RE-TM, where RE is a rare earth and TM a transition metal. This paper presents results of research in Al 85 Ni 10 RE 5 alloys (RE = Y, Gd and Sm). Amorphous ribbons were processed by melt-spinning under the same conditions and subsequently characterized by x-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results show appreciable micro structural differences as function of the rare earth, thus crystal is obtained for Y, nano-glassy for Gd and, fully amorphous structure for Sm. (author)

  10. Linking Equilibrium and Nonequilibrium Dynamics in Glass-Forming Systems

    DEFF Research Database (Denmark)

    Mauro, John C.; Guo, Xiaoju; Smedskjær, Morten Mattrup

    , we show that the nonequilibrium glassy dynamics are intimately connected with the equilibrium liquid dynamics. This is accomplished by deriving a new functional form for the thermal history dependence of nonequilibrium viscosity, which is validated against experimental measurements of industrial...

  11. New Ti-based Ti–Cu–Zr–Fe–Sn–Si–Ag bulk metallic glass for biomedical applications

    International Nuclear Information System (INIS)

    Pang, Shujie; Liu, Ying; Li, Haifei; Sun, Lulu; Li, Yan; Zhang, Tao

    2015-01-01

    Highlights: • Novel Ti 47 Cu 38 Zr 7.5 Fe 2.5 Sn 2 Si 1 Ag 2 (at.%) bulk metallic glass (BMG) with a critical diameter of 7 mm was discovered. • The present BMG is the largest Ni- and Be-free Ti-based BMG containing low content of noble metal reported to date. • The glassy alloy possesses high specific strength, low Young’s modulus, and good corrosion resistance and bio-compatibility. • Combination of high glass-forming ability and good mechano- and bio-compatibility for the Ti-based BMG demonstrates the potential for use in biomedical applications. - Abstract: A novel Ni-free Ti 47 Cu 38 Zr 7.5 Fe 2.5 Sn 2 Si 1 Ag 2 (at.%) bulk metallic glass (BMG) with superior glass-forming ability, good mechanical properties and excellent biocompatibility was discovered. The Ti-based BMG with a diameter of 7 mm can be prepared by copper mold casting and the supercooled liquid region was 52 K. Compressive strength, specific strength, Young’s modulus and microhardness of the Ti-based BMG were about 2.08 GPa, 3.2 × 10 5 N m/kg, 100 GPa and 588 Hv, respectively. Electrochemical measurements indicated that the Ti-based glassy alloy possesses higher corrosion resistance than Ti–6Al–4V alloy in a simulated body fluid environment. Attachment, spreading out and proliferation of MC3T3-E1 cells on the Ti-based BMG surface demonstrated the excellent biocompatibility. Mechanisms of the formation and properties for the Ti-based glassy alloy are also discussed. The combination of high glass-forming ability, excellent mechanical properties, high corrosion resistance and good biocompatibility demonstrates the potential of the Ni-free Ti-based BMG for use in biomedical applications

  12. Glass Forming Ability of Amorphous Drugs Investigated by Continuous Cooling and Isothermal Transformation.

    Science.gov (United States)

    Blaabjerg, Lasse I; Lindenberg, Eleanor; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas

    2016-09-06

    The aim of this study was to investigate the glass forming ability of 12 different drugs by the determination of continuous cooling and isothermal transformation diagrams in order to elucidate if an inherent differentiation between the drugs with respect to their the glass forming ability can be made. Continuous-cooling-transformation (CCT) and time-temperature-transformation (TTT) diagrams of the drugs were developed in order to predict the critical cooling rate necessary to convert the drug from the melt into an amorphous form. While TTT diagrams overestimated the actual critical cooling rate, they allowed an inherent differentiation of glass forming ability for the investigated drugs into drugs that are extremely difficult to amorphize (>750 °C/min), drugs that require modest cooling rates (>10 °C/min), and drugs that can be made amorphous even at very slow cooling rates (>2 °C/min). Thus, the glass forming ability can be predicted by the use of TTT diagrams. In contrast to TTT diagrams, CCT diagrams may not be suitable for small organic molecules due to poor separation of exothermic events, which makes it difficult to determine the zone of recrystallization. In conclusion, this study shows that glass forming ability of drugs can be predicted by TTT diagrams.

  13. Magnetic properties of 3d-transition metal and rare earth fluoride glasses

    International Nuclear Information System (INIS)

    Renard, J.P.; Dupas, C.; Velu, E.; Jacobini, C.; Fonteneau, G.; Lucas, J.

    1981-01-01

    The ac susceptibility of fluoride glasses in the ternary systems PbF 2 -MnF 2 -FeF 3 , ThF 4 -BaF 2 -MnF 2 , ZnF 2 -BaF 2 -RF 3 (R = Dy-Ho) has been studied down to 0.3 K. The susceptibility of rare earth glasses exhibits a broad maximum strongly dependent on the measuring frequency ν while a spin glass transition with a sharp susceptibility cusp nearly independent on ν is observed in 3d-transition metal glasses. Magnetic after effects are observed below the spin freezing temperature. (orig.)

  14. Effect of different glass and zeolite A compositions on the leach resistance of ceramic waste forms

    International Nuclear Information System (INIS)

    Lewis, M.A.; Hash, M.; Glandorf, D.

    1996-01-01

    A ceramic waste form is being developed for waste generated during electrometallurgical treatment of spent nuclear fuel. The waste is generated when fission products are removed from the electrolyte, LiCl-KCl eutectic. The waste form is a composite fabricated by hot isostatic pressing a mixture of glass frit and zeolite occluded with fission products and salt. Normalized release rate is less than 1 g/m 2 d for all elements in MCC-1 leach test run for 28 days in deionized water at 90 C. This leach resistance is comparable to that of early Savannah River glasses. We are investigating how leach resistance is affected by changes in cationic form of zeolite and in glass composition. Composites were made with 3 forms of zeolite A and 6 glasses. We used 3-day ASTM C1220-92 (formerly MCC-1) leach tests to screen samples for development purposes only. The leach test results show that the glass composites of zeolites 5A and 4A retain fission products equally well. Loss of Cs is small (0.1-0.5 wt%), while the loss of divalent and trivalent fission products is one or more orders of magnitude smaller. Composites of 5A retain chloride ion better in these short-term screens than 4A and 3A. The more leach resistant composites were made with durable glasses rich in silica and poor in alkaline earth oxides. XRD show that a salt phase was absent in the leach resistant composites of 5A and the better glasses but was present in the other composites with poorer leach performance. Thus, absence of salt phase corresponds to improved leach resistance. Interactions between zeolite and glass depend on composition of both

  15. A Comparative Study of Natural Fiber and Glass Fiber Fabrics Properties with Metal or Oxide Coatings

    International Nuclear Information System (INIS)

    Lusis, Andrej; Pentjuss, Evalds; Bajars, Gunars; Sidorovicha, Uljana; Strazds, Guntis

    2015-01-01

    Rapidly growing global demand for technical textiles industries is stimulated to develop new materials based on hybrid materials (yarns, fabrics) made from natural and glass fibres. The influence of moisture on the electrical properties of metal and metal oxide coated bast (flax, hemp) fibre and glass fibre fabrics are studied by electrical impedance spectroscopy and thermogravimetry. The bast fibre and glass fiber fabrics are characterized with electrical sheet resistance. The method for description of electrical sheet resistance of the metal and metal oxide coated technical textile is discussed. The method can be used by designers to estimate the influence of moisture on technical data of new metal coated hybrid technical textile materials and products

  16. PIXE characterization of tissues surrounding metallic prostheses coated with biological glasses

    International Nuclear Information System (INIS)

    Barbotteau, Y.; Irigaray, J.L.; Moretto, Ph.

    2004-01-01

    Biological glasses can be used as coatings for metallic prostheses in order to prevent corrosion. According to their composition, these glasses have different properties. We studied, in vivo, two glasses referred to as BVA and BVH. They are used as coatings of Ti6Al4V metallic implant. BVA glass disappears after 3 months of implantation and is replaced by bone. Prostheses initially coated by this glass have a larger osseous contact perimeter compared to the uncoated prostheses. This ensures a better anchoring of the implant and limits the micro-motions which cause wear debris. BVH glass keeps a constant composition during implantation and it is used like a layer which isolates metal implant from biological environment. In order to characterize the bony environment surrounding implants, we have used PIXE and RBS methods. This paper shows results of the behavior of bony tissue under micro-beam, the quality tests of new bone which replaces the BVA glass coating and the evaluation of corrosion effects. Titanium release in bony tissues begins when the metal surface of the prosthesis is exposed to biological fluids. After a few months of implantation, the titanium contamination is stabilized and remains localized within the first tens of micrometers of surrounding bone

  17. Development of Fe-B Based Bulk Metallic Glasses: Morphology of Residual Phases in Fe50Ni16Mo6B18Zr10 Glass

    Directory of Open Access Journals (Sweden)

    Tiburce A. Aboki

    2013-04-01

    Full Text Available Iron-boron based bulk metallic glasses (BMG development has been initiated using Fe40Ni38Mo4B18 as precursor. Addition of zirconium up to 10 atomic % along with the reduction of Ni proportion improves the glass forming ability (GFA, which is optimum when Ni is suppressed in the alloy. However melting instability occurred during the materials fabrication resulting in the formation of residual crystalline phases closely related to the amorphous phase. Microstructure study shows an evolution from amorphous structure to peculiar acicular structure, particularly for Fe50Ni16Mo6B18Zr10, suggesting the amorphous structure as interconnected atomic sheets like “atomic mille feuilles” whose growth affects the alloys’ GFA.

  18. Polyphase ceramic and glass-ceramic forms for immobilizing ICPP high-level nuclear waste

    International Nuclear Information System (INIS)

    Harker, A.B.; Flintoff, J.F.

    1984-01-01

    Polyphase ceramic and glass-ceramic forms have been consolidated from simulated Idaho Chemical Processing Plant wastes by hot isostatic pressing calcined waste and chemical additives by 1000 0 C or less. The ceramic forms can contain over 70 wt% waste with densities ranging from 3.5 to 3.85 g/cm 3 , depending upon the formulation. Major phases are CaF 2 , CaZrTi 207 , CaTiO 3 , monoclinic ZrO 2 , and amorphous intergranular material. The relative fraction of the phases is a function of the chemical additives (TiO 2 , CaO, and SiO 2 ) and consolidation temperature. Zirconolite, the major actinide host, makes the ceramic forms extremely leach resistant for the actinide simulant U 238 . The amorphous phase controls the leach performance for Sr and Cs which is improved by the addition of SiO 2 . Glass-ceramic forms were also consolidated by HIP at waste loadings of 30 to 70 wt% with densities of 2.73 to 3.1 g/cm 3 using Exxon 127 borosilicate glass frit. The glass-ceramic forms contain crystalline CaF 2 , Al 203 , and ZrSi 04 (zircon) in a glass matrix. Natural mineral zircon is a stable host for 4+ valent actinides. 17 references, 3 figures, 5 tables

  19. Physical stability of drugs after storage above and below the glass transition temperature: Relationship to glass-forming ability.

    Science.gov (United States)

    Alhalaweh, Amjad; Alzghoul, Ahmad; Mahlin, Denny; Bergström, Christel A S

    2015-11-10

    Amorphous materials are inherently unstable and tend to crystallize upon storage. In this study, we investigated the extent to which the physical stability and inherent crystallization tendency of drugs are related to their glass-forming ability (GFA), the glass transition temperature (Tg) and thermodynamic factors. Differential scanning calorimetry was used to produce the amorphous state of 52 drugs [18 compounds crystallized upon heating (Class II) and 34 remained in the amorphous state (Class III)] and to perform in situ storage for the amorphous material for 12h at temperatures 20°C above or below the Tg. A computational model based on the support vector machine (SVM) algorithm was developed to predict the structure-property relationships. All drugs maintained their Class when stored at 20°C below the Tg. Fourteen of the Class II compounds crystallized when stored above the Tg whereas all except one of the Class III compounds remained amorphous. These results were only related to the glass-forming ability and no relationship to e.g. thermodynamic factors was found. The experimental data were used for computational modeling and a classification model was developed that correctly predicted the physical stability above the Tg. The use of a large dataset revealed that molecular features related to aromaticity and π-π interactions reduce the inherent physical stability of amorphous drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Structure alterations in Al-Y-based metallic glasses with La and Ni addition

    Energy Technology Data Exchange (ETDEWEB)

    Shi, X. M.; Wang, X. D., E-mail: wangxd@zju.edu.cn, E-mail: jiangjz@zju.edu.cn; Yu, Q.; Cao, Q. P.; Jiang, J. Z., E-mail: wangxd@zju.edu.cn, E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, D. X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China); Zhang, J.; Hu, T. D. [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Lai, L. H.; Xie, H. L.; Xiao, T. Q. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201203 (China)

    2016-03-21

    The atomic structures of Al{sub 89}Y{sub 11}, Al{sub 90}Y{sub 6.5}La{sub 3.5}, and Al{sub 82.8}Y{sub 6.07}Ni{sub 8}La{sub 3.13} metallic glasses have been studied by using high energy X-ray diffraction, X-ray absorption fine structure combined with the ab initio molecular dynamics and reverse Monte Carlo simulations. It is demonstrated that the partial replacement of Y atoms by La has limited improvement of the glass forming ability (GFA), although La atoms reduce the ordering around Y atoms and also the fractions of icosahedron-like polyhedra centered by Al atoms. In contrast, Ni atoms can significantly improve the GFA, which are inclined to locate in the shell of polyhedra centered by Al, Y, and La atoms, mainly forming Ni-centered icosahedron-like polyhedra to enhance the spatial connectivity between clusters and suppress the crystallization.

  1. Direct observation of atomic-level nucleation and growth processes from an ultrathin metallic glass films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K. Q.; Cao, C. R.; Sun, Y. T.; Li, J.; Bai, H. Y.; Zheng, D. N., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn; Wang, W. H., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Gu, L., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)

    2016-01-07

    Till date, there have been no direct atomic-level experimental observations of the earliest stages of the nucleation and growth processes of nanocrystals formed by thermally induced crystallization in ultrathin metallic glasses (MGs). Here, we present a study of the crystallization process in atomically thin and highly stable MG films using double spherical aberration-corrected scanning transmission electron microscopy (Cs-TEM). Taking advantage of the stability of MG films with a slow crystallization process and the atomic-level high resolution of Cs-TEM, we observe the formation of the nucleus precursor of nanocrystals formed by atom aggregation followed by concomitant coalescence and stepwise evolution of the shape of the nanocrystals with a monodispersed and separated bimodal size distribution. Molecular dynamics simulation of the atomic motion in the glass film on a rigid amorphous substrate confirms the stepwise evolution processes of atom aggregation, cluster formation, cluster movement on the substrate, and cluster coalescence into larger crystalline particles. Our results might provide a better fundamental understanding of the nucleation and growth processes of nanocrystals in thin MG films.

  2. Cluster-based bulk metallic glass formation in Fe-Si-B-Nb alloy systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, C L; Wang, Q; Li, F W; Li, Y H; Wang, Y M; Dong, C [State Key Laboratory of Materials Modification, Dalian University of Technology (DUT), Dalian 116024 (China); Zhang, W; Inoue, A, E-mail: dong@dlut.edu.c [Institute for Materials Research (IMR), Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2009-01-01

    Bulk metallic glass formations have been explored in Fe-B-Si-Nb alloy system using the so-called atomic cluster line approach in combination with minor alloying guideline. The atomic cluster line refers to a straight line linking binary cluster to the third element in a ternary system. The basic ternary compositions in Fe-B-Si system are determined by the inetersection points of two cluster lines, namely Fe-B cluster to Si and Fe-Si cluster to B, and then further alloyed with 3-5 at. % Nb for enhancing glass forming abilities. BMG rods with a diameter of 3 mm are formed under the case of minor Nb alloying the basic intersecting compositions of Fe{sub 8}B{sub 3}-Si with Fe{sub 12}Si-B and Fe{sub 8}B{sub 2}-Si with Fe{sub 9}Si-B. The BMGs also exhibit high Vickers hardness (H{sub v}) of 1130-1164 and high Young's modulous (E) of 170-180 GPa

  3. Effect of irradiation on the evolution of alteration layer formed during nuclear glass leaching

    International Nuclear Information System (INIS)

    Mougnaud, Sarah

    2016-01-01

    High-level radioactive waste (HLW) remaining after spent nuclear fuel reprocessing is immobilized within a glass matrix, eventually destined for geological disposal. Water intrusion into the repository is expected after several thousand years. The alteration of a non-radioactive surrogate for nuclear glass has been extensively studied and it has been determined that successive leaching mechanisms lead to the formation of a 'passivating' alteration layer and to the establishment of a residual rate regime in the long term. However, glass packages are submitted to the radioactivity of confined radioelements. This work focuses on the influence of irradiation on the alteration layer formed during the residual rate regime, in a structural and mechanistic point of view. Three focal areas have been selected. Non-radioactive simple glasses have been leached and externally irradiated in order to determine modifications induced by electronic effects (irradiations with electrons and alpha particles). The same type of glass samples have been previously irradiated with heavy ions and their leaching behavior have been studied in order to assess the impact of ballistic dose cumulated by the glass before water intrusion. Leaching behavior of a complex radioactive glass, doped with an alpha-emitter, has been studied to consider a more realistic situation. (author) [fr

  4. Reversible and Irreversible Behavior of Glass-forming Materials from the Standpoint of Hierarchical Dynamical Facilitation

    Science.gov (United States)

    Keys, Aaron

    2013-03-01

    Using molecular simulation and coarse-grained lattice models, we study the dynamics of glass-forming liquids above and below the glass transition temperature. In the supercooled regime, we study the structure, statistics, and dynamics of excitations responsible for structural relaxation for several atomistic models of glass-formers. Excitations (or soft spots) are detected in terms of persistent particle displacements. At supercooled conditions, we find that excitations are associated with correlated particle motions that are sparse and localized, and the statistics and dynamics of these excitations are facilitated and hierarchical. Excitations at one point in space facilitate the birth and death of excitations at neighboring locations, and space-time excitation structures are microcosms of heterogeneous dynamics at larger scales. Excitation-energy scales grow logarithmically with the characteristic size of the excitation, giving structural-relaxation times that can be predicted quantitatively from dynamics at short time scales. We demonstrate that these same physical principles govern the dynamics of glass-forming systems driven out-of-equilibrium by time-dependent protocols. For a system cooled and re-heated through the glass transition, non-equilibrium response functions, such as heat capacities, are notably asymmetric in time, and the response to melting a glass depends markedly on the cooling protocol by which the glass was formed. We introduce a quantitative description of this behavior based on the East model, with parameters determined from reversible transport data, that agrees well with irreversible differential scanning calorimetry. We find that the observed hysteresis and asymmetric response is a signature of an underlying dynamical transition between equilibrium melts with no trivial spatial correlations and non-equilibrium glasses with correlation lengths that are both large and dependent upon the rate at which the glass is prepared. The correlation

  5. Comprehension and modelling of chromia-forming alloys corrosion mechanisms in nuclear glasses

    International Nuclear Information System (INIS)

    Schmucker, Eric

    2016-01-01

    Nuclear wastes management consists in the confinement of the radioactive wastes in a glass matrix. This is made by inductive melting in a hot crucible at an operating temperature around 1150 C. These crucibles are constituted of nickel based superalloys with high chromium content. They are submitted to a harsh corrosion by the molten glass, eventually leading to their replacement. The protection of the crucible against corrosion is best provided by the establishment of a protective chromium oxide layer at the surface of the alloy. A binary chromia-forming alloy (Ni-30Cr) is studied in this work. Three different binary and ternary glass compositions are chosen in order to understand the influence of the glass basicity and glass viscosity on the corrosion kinetics. Besides, the de-correlation of the formation and dissolution kinetics of the oxide layer allows the modelling of the overall oxide growth in the molten glass. For that purpose, the oxide formation kinetics in molten glass media is assimilated to the oxidation kinetics of the alloy in gaseous media with oxygen partial pressure that are representative of the redox properties of the glasses. Studies of the oxidation kinetics and of the diffusion mechanisms have shown that the oxidation kinetics is independent on the oxygen pressure in the range of 10"-"1"3 up to 10"-"3 atm O_2 at 1150 C. The present work has shown that the dissolution kinetics of the oxide layer is governed by the diffusion of Cr(III) in the glass melt. This dissolution kinetics has been evaluated from the diffusion coefficient and the solubility limit of Cr(III) in the glass. Finally, the overall growth kinetics of the Cr_2O_3 layer in the glass has been successfully modelled for each glass, thanks to the knowledge of (i) the solubility limit of Cr(III), (ii) its diffusion coefficient in the glasses and (iii) the oxidation kinetics of the alloy. The presented model also allows quantifying the influence of each of these parameters on the

  6. Economic comparison of crystalline ceramic and glass waste forms for HLW disposal

    International Nuclear Information System (INIS)

    McKee, R.W.; Daling, P.M.; Wiles, L.E.

    1983-05-01

    A titanate-based, crystalline ceramic produced by hot isostatic pressing has been proposed as a potentially more stable and improved waste form for high-level nuclear waste disposal compared to the currently favored borosilicate glass waste form. This paper describes the results of a study to evaluate the relative costs for disposal of high-level waste from a 70,000 metric ton equivalent (MTE) system. The entire waste management system, including waste processing and encapsulation, transportation, and final repository disposal, was included in this analysis. The repository concept is based on the current basalt waste isolation project (BWIP) reference design. A range of design basis alternatives is considered to determine if this would influence the relative economics of the two waste forms. A thermal analysis procedure was utilized to define optimum canister sizes to assure that each waste form was compared under favorable conditions. Repository costs are found to favor the borosilicate glass waste form while transportation costs greatly favor the crystalline ceramic waste form. The determining component in the cost comparison is the waste processing cost, which strongly favors the borosilicate glass process because of its relative simplicity. A net cost advantage on the order of 12% to 15% on a waste management system basis is indicated for the glass waste form

  7. Glass-Ceramic Waste Forms for Uranium and Plutonium Residues Wastes - 13164

    International Nuclear Information System (INIS)

    Stewart, Martin W.A.; Moricca, Sam A.; Zhang, Yingjie; Day, R. Arthur; Begg, Bruce D.; Scales, Charlie R.; Maddrell, Ewan R.; Hobbs, Jeff

    2013-01-01

    A program of work has been undertaken to treat plutonium-residues wastes at Sellafield. These have arisen from past fuel development work and are highly variable in both physical and chemical composition. The principal radiological elements present are U and Pu, with small amounts of Th. The waste packages contain Pu in amounts that are too low to be economically recycled as fuel and too high to be disposed of as lower level Pu contaminated material. NNL and ANSTO have developed full-ceramic and glass-ceramic waste forms in which hot-isostatic pressing is used as the consolidation step to safely immobilize the waste into a form suitable for long-term disposition. We discuss development work on the glass-ceramic developed for impure waste streams, in particular the effect of variations in the waste feed chemistry glass-ceramic. The waste chemistry was categorized into actinides, impurity cations, glass formers and anions. Variations of the relative amounts of these on the properties and chemistry of the waste form were investigated and the waste form was found to be largely unaffected by these changes. This work mainly discusses the initial trials with Th and U. Later trials with larger variations and work with Pu-doped samples further confirmed the flexibility of the glass-ceramic. (authors)

  8. Radiation effects in glass waste forms for high-level waste and plutonium disposal

    International Nuclear Information System (INIS)

    Weber, W.J.; Ewing, R.C.

    1997-01-01

    A key challenge in the permanent disposal of high-level waste (HLW), plutonium residues/scraps, and excess weapons plutonium in glass waste forms is the development of predictive models of long-term performance that are based on a sound scientific understanding of relevant phenomena. Radiation effects from β-decay and α-decay can impact the performance of glasses for HLW and Pu disposition through the interactions of the α-particles, β-particles, recoil nuclei, and γ-rays with the atoms in the glass. Recently, a scientific panel convened under the auspices of the DOE Council on Materials Science to assess the current state of understanding, identify important scientific issues, and recommend directions for research in the area of radiation effects in glasses for HLW and Pu disposition. The overall finding of the panel was that there is a critical lack of systematic understanding on radiation effects in glasses at the atomic, microscopic, and macroscopic levels. The current state of understanding on radiation effects in glass waste forms and critical scientific issues are presented

  9. Infrared spectroscopy study of structural changes in glass-forming salol.

    Science.gov (United States)

    Baran, J; Davydova, N A

    2010-03-01

    We report the investigation of glass-forming salol upon different courses of the temperature changes from liquid to glass state and back using FT-IR spectroscopy measurements in the wide spectral and temperature ranges. The formation of the ordered clusters in supercooled liquid salol has been observed at 250 K. When the temperature is decreased further to 11 K these ordered clusters become an element of the glass structure. With increasing temperature to 270 K through the glass transition noticeable evolutions of the IR spectrum occurs up till the ordered clusters are developed into crystal. So produced crystal melts in the temperature range 300-310 K, that corresponds to the melting temperature of the metastable phase (Tmelt=302 K) . Thus, the crystalline structure of the ordered clusters corresponds to the structure of metastable phase and is monoclinic.

  10. Studies of glass waste form performance at Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Banba, Tsunetaka; Kamizono, Hiroshi; Nakayama, Shinichi; Tashiro, Shingo

    1989-08-01

    The recent studies of glass waste form performance at Japan Atomic Energy Research Institute can be classified into the following three categories; (1) Study on the volatilization of radionuclides from the waste glass, which is necessary to estimate the safety in relation to operation of a storage facility. (2) Study on the radiation (alpha-radiation) effects which have relation to the long-term stability of the waste glass. (3) Study on the leaching behavior of actinides under the repository conditions, which is necessary to predict the long-term release rate of radionuclides from the waste glass. In the present report, the recent results corresponding to the above categories are described. (author)

  11. Atomic-level structures and physical properties of magnetic CoSiB metallic glasses

    International Nuclear Information System (INIS)

    Shan, Guangcun; Liang Zhang, Ji; Li, Jiong; Zhang, Shuo; Jiang, Zheng; Huang, Yuying; Shek, Chan-Hung

    2014-01-01

    Two CoSiB metallic glasses of low Co contents, which consist of different clusters, have recently been developed by addition of solute atoms. In this work, the atomic structure and the magnetic properties of the two CoBSi metallic glasses were elucidated by state-of-the-art extended X-ray absorption fine structure spectroscopy (EXAFS) combining with ab initio molecular-dynamics (AIMD) computational techniques. Besides, the origin of these magnetic behaviors was discussed in view of the EXAFS results and atomic structures of the metallic glasses. - Graphical abstract: The atomic structure and the origins of the magnetic properties of two ternary CoBSi metallic glasses were elucidated by state-of-the-art extended X-ray absorption fine structure spectroscopy (EXAFS) combining with ab initio molecular-dynamics (AIMD) techniques. - Highlights: • The atomic structure and the origins of the magnetic properties of two ternary CoBSi metallic glasses were revealed. • The atomic structures were elucidated by state-of-the-art extended X-ray absorption fine structure spectroscopy (EXAFS) combining with ab initio molecular-dynamics (AIMD) techniques. • The experimental spectra were in good agreement with the predictions of ab initio full multiple scattering theory using the FEFF8.4 code. • The origin of these magnetic behaviors was discussed in view of the EXAFS results and atomic structures of the metallic glasses. • These two metallic glasses consist of different clusters, and hence different magnetic properties, which are dominated by short-range orders (SROs)

  12. Sub-micrometer-scale patterning on Zr-based metallic glass using focused ion beam irradiation and chemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Kawasegi, Noritaka [Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Morita, Noboru [Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Yamada, Shigeru [Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Takano, Noboru [Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Oyama, Tatsuo [Department of Mechanical and Intellectual Systems Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Ashida, Kiwamu [Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan); Momota, Sadao [Department of Intelligent Mechanical Systems Engineering, Kochi University of Technology, 185 Tosayamada, Kochi 782-8502 (Japan); Taniguchi, Jun [Department of Applied Electronics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Miyamoto, Iwao [Department of Applied Electronics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Ofune, Hitoshi [YKK Corporation, 200 Yoshida, Kurobe, Toyama 938-8601 (Japan)

    2007-09-19

    This report describes a method of sub-micrometer-scale rapid patterning on a Zr-based metallic glass surface using a combination of focused ion beam irradiation and wet chemical etching. We found that a Zr-based metallic glass surface irradiated with Ga{sup +} ions could be selectively etched; a concave structure with a width and depth of several tens to hundreds of nanometers rapidly formed in the irradiated area. Moreover, we determined that the etching was enhanced by the presence of Ga{sup +} ions rather than a change in the crystal structure, and the structure could be fabricated while the substrate remained amorphous. The shape of the structure was principally a function of the dose and the etch time.

  13. Evaluation of liquid fragility and thermal stability of Al-based metallic glasses by equivalent structure parameter

    International Nuclear Information System (INIS)

    Li Xuelian; Bian Xiufang; Hu Lina

    2010-01-01

    Based on extended Ideal-Atomic-Packing model, we propose an equivalent structure parameter '6x+11y' to evaluate fragility and thermal stability of Al-TM-RE metallic glasses, where x and y are composition concentrations of transition metal (TM) and rare earth (RE), respectively. Experimental results show that glass forming compositions with '6x+11y' near 100 have the smallest fragility parameter and best structure stability. In addition, '6x+11y' parameter has a positive relationship with onset-crystallization temperature, T x . Al-TM-RE glassy alloys with (6x+11y)≤100 undergo primary crystallization of fcc-Al nanocrystals, while alloys with (6x+11y)>100 exhibit nanoglassy or glassy crystallization behavior.

  14. Changes in glass formation and glass forming ability of Nd2Fe14B by the addition of TiC

    International Nuclear Information System (INIS)

    Branagan, D.J.; Iowa State Univ. of Science and Technology, Ames, IA; McCallum, R.W.; Iowa State Univ. of Science and Technology, Ames, IA

    1996-01-01

    The glass forming ability (GFA) of a stoichiometric Nd 2 Fe 14 B alloy modified with TiC additions was studied. Structural, magnetic, and thermal measurements of as-quenched melt-spun ribbons indicate increasing enhancement of GFA with increasing amounts of TiC addition. The limit of the glass formation range and the amount of glass formed at a particular cooling rate also increased with TiC addition. Enhanced GFA was concurrent with changes in the intrinsic properties of the glass. The crystallization temperature, as well as the transformation rate of crystallization, was raised by TiC addition. The intrinsic magnetic properties of the glass were changed with reductions in saturation magnetization and Curie temperature T c with increasing amounts of TiC addition. The intrinsic glass changes were related to changes in the local short range order of the glass and are consistent with a reduction in free volume and an increased packing efficiency. These changes in local structure of the glass increase the glass stability, which means that less undercooling is needed to prevent crystallization. Thus, at a particular cooling rate, a higher percentage of glass will be formed and the GFA is increased. (orig.)

  15. Lens of controllable optical field with thin film metallic glasses for UV-LEDs.

    Science.gov (United States)

    Pan, C T; Chen, Y C; Lin, Po-Hung; Hsieh, C C; Hsu, F T; Lin, Po-Hsun; Chang, C M; Hsu, J H; Huang, J C

    2014-06-16

    In the exposure process of photolithography, a free-form lens is designed and fabricated for UV-LED (Ultraviolet Light-Emitting Diode). Thin film metallic glasses (TFMG) are adopted as UV reflection layers to enhance the irradiance and uniformity. The Polydimethylsiloxane (PDMS) with high transmittance is used as the lens material. The 3-D fast printing is attempted to make the mold of the lens. The results show that the average irradiance can be enhanced by 6.5~6.7%, and high uniformity of 85~86% can be obtained. Exposure on commercial thick photoresist using this UV-LED system shows 3~5% dimensional deviation, lower than the 6~8% deviation for commercial mercury lamp system. This current system shows promising potential to replace the conventional mercury exposure systems.

  16. Fabrication of Metallic Glass Powder for Brazing Paste for High-Temperature Thermoelectric Modules

    Science.gov (United States)

    Seo, Seung-Ho; Kim, Suk Jun; Lee, Soonil; Seo, Won-Seon; Kim, Il-Ho; Choi, Soon-Mok

    2018-06-01

    Metallic glass (MG) offers the advantage of outstanding oxidation resistance, since it has disordered atomic-scale structure without grain boundaries. We fabricated Al-based MG ribbons (Al84.5Y10Ni5.5) by a melt spinning process. We evaluated the adhesion strength of interfaces between the Al-based MG and a Ni-coated Cu electrode formed under various conditions at high temperature. In addition, we attempted to optimize the process conditions for pulverizing MG ribbons to high-energy ball milling and planetary milling. We confirmed that the electrical resistivity of the Al-based MG ribbon was substantially reduced after annealing at high temperature (over 300°C) due to crystallization.

  17. Studies on the crystallization of a metal glass by ferromagnetic resonance

    International Nuclear Information System (INIS)

    Rodrigues, R.W.D.

    1983-01-01

    The crystallization of the metal glass METGLAS 2826A has been studied with the ferromagnetic resonance technique. The first-derivative linewidth of the absorption curve was measured for several times and temperatures of isothermal treatments, in the range 350 0 C - 375 0 C. After an initial decrease, attributed to stress relaxation, the linewidth increases linearly with the transformed fraction of the first crystallization phase. The measured apparent activation energy for this first phase is 306 KJ/mol. The experimental results for larger aging times show that, for all aging temperature, the second crystallization phase starts to form when the transformed fraction of the first phase is of the order of 50%. (Author) [pt

  18. Superconductivity and spin fluctuations in M-Zr metallic glasses (M = Cu, Ni, Co, and Fe)

    International Nuclear Information System (INIS)

    Altounian, Z.; Strom-Olsen, J.O.

    1983-01-01

    The superconducting transition temperature, upper critical field, and magnetic susceptibility have been measured in four binary metallic glass systems: Cu-Zr, Ni-Zr, Co-Zr, and Fe-Zr. For each alloy system, a full and continuous range of Zr-rich compositions accessible by melt spinning has been examined. For Cu-Zr, the range is 0.75>x>0.30; for Ni-Zr, 0.80>x>0.30; for Co-Zr, 0.80>x>0.48, and for Fe-Zr, 0.80>x>0.55 (x being the concentration of Zr in at. %). The results show clearly the influence of spin fluctuations in reducing the superconducting transition temperature. The data have been successfully analyzed using a modified form of the McMillan equation together with expressions for the Stoner enhanced magnetic susceptibility and the Ginsburg-Landau-Abrikosov-Gor'kov expression for the upper critical field

  19. Absence of isotope effect of diffusion in a metallic glass

    International Nuclear Information System (INIS)

    Heesemann, A.; Raetzke, K.; Faupel, F.; Hoffmann, J.; Heinemann, K.

    1995-01-01

    The isotope effect E = d ln(D)/d ln (1/√m) of Co diffusion in structurally relaxed Co 86 Zr 14 and Co 81 Zr 19 glasses has been measured by means of a radiotracer technique. Within experimental accuracy no isotope effect was detected (E < 0.04). This suggests a highly cooperative diffusion mechanism. The connection between diffusion and collective low-frequency relaxations in glasses is discussed. (orig.)

  20. Atomic structure and formation of CuZrAl bulk metallic glasses and composites

    International Nuclear Information System (INIS)

    Kaban, I.; Jóvári, P.; Escher, B.; Tran, D.T.; Svensson, G.; Webb, M.A.; Regier, T.Z.; Kokotin, V.; Beuneu, B.; Gemming, T.; Eckert, J.

    2015-01-01

    Graphical abstract: Partial radial distribution functions for Cu 47.5 Zr 47.5 Al 5 metallic glass and relevant crystal structures. - Abstract: Cu 47.5 Zr 47.5 Al 5 metallic glass is studied experimentally by high-energy X-ray diffraction, neutron diffraction with isotopic substitution, electron diffraction and X-ray absorption spectroscopy. The atomic structure of the glass is modeled by reverse Monte-Carlo and molecular dynamics simulations. RMC modeling of seven experimental datasets enabled reliable separation of all partial pair distribution functions for Cu 47.5 Zr 47.5 Al 5 metallic glass. A peculiar structural feature of the ternary alloy is formation of the strong Al–Zr bonds, which are supposed to determine its high viscosity and enhanced bulk glass formation. Analysis of the local atomic order in Cu 47.5 Zr 47.5 Al 5 glass and Cu 10 Zr 7 , CuZr 2 and CuZr B2 crystalline structures elucidates their similarities and differences explaining the phase formation sequence by devitrification of the glass.

  1. The Production of Advanced Glass Ceramic HLW Forms using Cold Crucible Induction Melter

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J Rutledge; Vince Maio

    2013-10-01

    Cold Crucible Induction Melters (CCIMs) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in the 21st century. Unlike the existing Joule-Heated Melters (JHMs) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIMs offer unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. This paper discusses advantageous features of the CCIM, with emphasis on features that overcome the historical issues with the JHMs presently utilized, as well as the benefits of glass ceramic waste forms over borosilicate glass waste forms. These advantages are then validated based on recent INL testing to demonstrate a first-of-a-kind formulation of a non-radioactive ceramic-based waste form utilizing a CCIM.

  2. Measurements of the Poisson ratio and fragility of glass-forming liquids

    DEFF Research Database (Denmark)

    Christensen, Tage Emil; Olsen, Niels Boye

    Recently much attention has been given to models and phenomenology of glass-forming liquids that correlates fast and slow degrees of freedom . In particular the Poisson ratio has been correlated with fragility. We present data on shear - and bulk modulus obtained by the techniques...... of the piezoelectric transducers PBG and PSG on a number of glass-forming liquids. Hereby the Poisson ratio can be found. Furthermore the PSG also gives the temperature dependence of shear viscosity and thereby the fragility. The validity of the conjectured relation is discussed...

  3. The electronic and optical properties of germanium tellurite glasses containing various transition metal oxides

    International Nuclear Information System (INIS)

    Khan, M.N.

    1988-01-01

    Various transition metal oxides, such as TiO 2 , V 2 O 5 , NiO, CuO, and ZnO are added to germanium-tellurite glass and measurements are reported of the electrical conductivity, density, optical absorption, infra-red absorption spectra, and electron spin resonance. It is found that the d.c. conductivity of glasses containing the same amount of V 2 O 5 is higher than that of germanium tellurite glasses containing a similar amount of other transition metal oxides, and is due to hopping between localized states. The optical absorption measurements show that the fundamental absorption edge is a function of glass composition and the optical absorption is due to forbidden indirect transitions. From the infra-red absorption spectra, it is found that the addition of transition metal oxides does not introduce any new absorption band in the infra-red spectrum of germanium tellurite glasses. A small shift of existing absorptions toward higher wave number is observed. The ESR measurements revealed that some transition metal ions are diamagnetic while others are paramagnetic in the glass network. (author)

  4. Crystal growth nucleation and Fermi energy equalization of intrinsic spherical nuclei in glass-forming melts

    Directory of Open Access Journals (Sweden)

    Robert F Tournier

    2009-01-01

    Full Text Available The energy saving resulting from the equalization of Fermi energies of a crystal and its melt is added to the Gibbs free-energy change ΔG2ls associated with a crystal formation in glass-forming melts. This negative contribution being a fraction ε ls(T of the fusion heat is created by the electrostatic potential energy −U0 resulting from the electron transfer from the crystal to the melt and is maximum at the melting temperature Tm in agreement with a thermodynamics constraint. The homogeneous nucleation critical temperature T2, the nucleation critical barrier ΔG2ls*/kBT and the critical radius R*2ls are determined as functions of εls(T. In bulk metallic glass forming melts, εls(T and T2 only depend on the free-volume disappearance temperature T0l, and εls(Tm is larger than 1 (T0l>Tm/3; in conventional undercooled melts εls(Tm is smaller than 1 (T0l>Tm/3. Unmelted intrinsic crystals act as growth nuclei reducing ΔG2ls*/kBT and the nucleation time. The temperature-time transformation diagrams of Mg65Y10 Cu25, Zr41.2Ti13.8 Cu12.5Ni10Be22.5, Pd43Cu27 Ni10P20, Fe83B17 and Ni melts are predicted using classic nucleation models including time lags in transient nucleation, by varying the intrinsic nucleus contribution to the reduction of ΔG2ls*/kBT. The energy-saving coefficient ε nm(T of an unmelted crystal of radius Rnm is reduced when Rnm LtR*2ls; εnm is quantified and corresponds to the first energy level of one s-electron moving in vacuum in the same spherical attractive potential −U0 despite the fact that the charge screening is built by many-body effects.

  5. Glass composite waste forms for iodine confined in bismuth-embedded SBA-15

    Science.gov (United States)

    Yang, Jae Hwan; Park, Hwan Seo; Ahn, Do-Hee; Yim, Man-Sung

    2016-11-01

    The aim of this study was to stabilize bismuth-embedded SBA-15 that captured iodine gas by fabrication of monolithic waste forms. The iodine containing waste was mixed with Bi2O3 (a stabilizing additive) and low-temperature sintering glass followed by pelletizing and the sintering process to produce glass composite materials. Iodine volatility during the sintering process was significantly affected by the ratio of Bi2O3 and the glass composition. It was confirmed that BiI3, the main iodine phase within bismuth-embedded SBA-15, was effectively transformed to the mixed phases of Bi5O7I and BiOI. The initial leaching rates of iodine from the glass composite waste forms ranged 10-3-10-2 g/m2 day, showing the stability of the iodine phases encapsulated by the glassy networks. It was also observed that common groundwater anions (e.g., chloride, carbonate, sulfite, and fluoride) elevated the iodine leaching rate by anion exchange reactions. The present results suggest that the glass composite waste form of bismuth-embedded SBA-15 could be a candidate material for stable storage of 129I.

  6. Understanding the glass-forming ability of active pharmaceutical ingredients for designing supersaturating dosage forms.

    Science.gov (United States)

    Kawakami, Kohsaku; Usui, Toshinori; Hattori, Mitsunari

    2012-09-01

    Amorphous solid dispersions have great potential for enhancing oral absorption of poorly soluble drugs. Crystallization behavior during storage and after exposure to aqueous media must be examined in detail for designing stable and effective amorphous formulations, and it is significantly affected by the intrinsic properties of an amorphous drug. Many attempts have been made to correlate various thermodynamic parameters of pharmaceutical glasses with their crystallization behavior; however, variations in model drugs that could be used for such investigation has been limited because the amorphous characteristics of drugs possessing a high crystallization tendency are difficult to evaluate. In this study, high-speed differential scanning calorimetry, which could inhibit their crystallization using high cooling rates up to 2000°C/s, was employed for assessing such drugs. The thermodynamic parameters of the glasses, including glass transition temperature (T(g)) and fragility, were obtained to show that their crystallization tendency cannot be explained simply by the parameters, although there have been general thought that fragility may be correlated with crystallization tendency. Also investigated was correlation between the thermodynamic parameters and crystallization tendency upon contact with water, which influences in vivo efficacy of amorphous formulations. T(g) was correlated well with the crystallization tendency upon contact with water. Copyright © 2012 Wiley Periodicals, Inc.

  7. Solvent dynamics in a glass-forming liquid from 300 K to 3 K : What photon echoes can teach us

    NARCIS (Netherlands)

    Lazonder, Kees; Pshenichnikov, Maxim S.

    2007-01-01

    The temperature dependence of the optical non-linear response of dye molecules dissolved in a glass-forming liquid over a temperature range that includes the glass transition is investigated. Cooling down to temperatures below the glass transition dramatically slows the diffusive motion of the

  8. TXRF study of electrochemical deposition of metals on glass-ceramic carbon electrode surfaces

    International Nuclear Information System (INIS)

    Alov, N.; Oskolok, K.; Wittershagen, A.; Mertens, M.; Rittmeyer, C.; Kolbesen, B.O.

    2000-01-01

    Nowadays the methods of solid surface analysis are widely used to study the thermodynamic and kinetic aspects of joint electrochemical deposition of metals on solid substrates. In this work the surfaces of some binary and ternary metal electrodeposits on disc glass-ceramic carbon electrodes were studied by total-reflection x-ray fluorescence spectroscopy (TXRF). Metal alloys were obtained as a result of electrochemical co-deposition of copper, cadmium and lead from n x 10 -4 M (Cu, Cd, Pb)(NO 3 ) 2 + 0.01 M HNO 3 solutions under mixing. TXRF measurements were performed with an ATOMIKA EXTRA II A spectrometer using Mo K α and W (Brems) primary excitation. The serious advantage of TXRF as a method of near-surface analysis is very high element sensitivity. Apart from main elements (Cu, Cd, Pb) we have detected trace elements (Cl, Ag, Pt, Hg) which are present in working solution and has an effect to the electrodeposit formation. The comparison of TXRF data with information obtained by X-ray photoelectron spectroscopy and electron-probe x-ray microanalysis permits to realize depth profiling electrochemical alloys. In particular it was found that in binary systems Cu-Pb and Cu-Cd the relative lead and cadmium content on the electrodeposit surface is considerably greater than in the bulk. These phenomena are due to the features of metal nucleation and growth mechanisms. High sensitivity of TXRF to surface morphology and the correlation of TXRF and scanning electron microscopy data allow to determine the area of prevailing location of metal in the heterogeneous alloy surface. So we have established that in Cu-Pb and Cu-Cd-Pb systems solid solution of copper and lead is formed: significant part of lead is deposited not only in specific 3D-clusters but also in copper thin film. It was demonstrated that the near-surface TXRF analysis of metal electrodeposits on solid electrodes is highly effective to study the mechanisms of metal nucleation, metal cluster and thin film

  9. Simulation of the ductile damage under the metal forming

    International Nuclear Information System (INIS)

    Bogatov, A. A.

    2003-01-01

    Potentiality of metal forming is limited by ductile damage. The damage degree is estimated by the scalar value ω, that is equal to 0(ω=0) before plastic strain and is equal to 1(ω=1) at the macro cracks moment. There are two criteria that describe micro damage. The value ω=ω * corresponds to the generation of micro voids that couldn't be recovered by recrystallization but do not reduce the metal strength. The value ω=ω ** corresponds to the generation of micro voids that reduce the metal strength and material long life. The models of metal damage accumulation under pure and alternate strain also the model of metal damage recovery under the recrystallization are developed. The specimen testing at high loading parameters gives the basic equations of the ductile damage mechanics. All of that gives the method to study ductile damage under the metal forming. The methodology damage nucleation and growing is shown on various examples: the void and crack development in the areas ductile damage and unlimited ductility; mathematical simulation of the metal damage under the sheet and wire drawing and others. The problems of physical simulating at the ductile damage under metal forming are shown too in this paper. The method and equipment of metal damage physical simulation are proposed. (Original)

  10. Explosive force of primacord grid forms large sheet metal parts

    Science.gov (United States)

    1966-01-01

    Primacord which is woven through fish netting in a grid pattern is used for explosive forming of large sheet metal parts. The explosive force generated by the primacord detonation is uniformly distributed over the entire surface of the sheet metal workpiece.

  11. Experimental study on the surface characteristics of Pd-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang; Sun, Bingli [School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001 (China); National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001 (China); Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001 (China); Zhao, Na [National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001 (China); Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001 (China); National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002 (China); Li, Qian, E-mail: qianli@zzu.edu.cn [School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001 (China); National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001 (China); Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001 (China); National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002 (China); Hou, Jianhua; Feng, Weina [School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001 (China); National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001 (China); Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001 (China)

    2014-12-01

    Highlights: • Wetting behavior of four polymer melts on Pd-based bulk metallic glass was investigated. • From results, in general, the contact angle of polymer on Pd-based BMG decreases with temperature increasing. • We find a critical temperature for each polymer, above this temperature, contact angle on Pd-based BMG does not decrease with temperature increasing. • Surface free energy of Pd-based BMG was estimated by Owens–Wendt method. - Abstract: The metallic glass has many unique and desirable physical and chemical characteristics for their long-range disordered atomic structure, among them the interfacial properties of the metallic glasses are crucial for their applications and manufacturing. In this work, the contact wetting angles between the polymer melts and Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} bulk metallic glass (Pd-BMG) with four kinds of roughness were analyzed. Experiments show the order of four polymers wettability on Pd-BMG was PP > HDPE > COC > PC. The surface free energy of Pd-BMG was estimated by Owens–Wendt method using the contact angles of three testing liquids. Neumann method was also used to further evidence the surface free energy of Pd-BMG comparing with PTFE, mold steels NAK80 and LKM2343ESR. The results provide theoretical and technical supports for the fabrication of metallic glass micro mold and the parameter optimization of polymer micro injection molding.

  12. Design, fabrication, and application of a directional thermal processing system for controlled devitrification of metallic glasses

    Science.gov (United States)

    Meyer, Megan Anne Lamb

    The potential of using metallic glass as a pathway to obtaining novel morphologies and metastable phases has been garnering attention since their discovery. Several rapid solidification techniques; such as gas atomization, melt spinning, laser melting, and splat quenching produce amorphous alloys. A directional thermal processing system (DTPS) was designed, fabricated and characterized for the use of zone processing or gradient-zone processing of materials. Melt-spun CuZr metallic glass alloy was subjected to the DTPS and the relaxation and crystallization responses of the metallic glass were characterized. A range of processing parameters were developed and analyzed that would allow for devitrification to occur. The relaxation and crystallization responses were compared with traditional heat treatment methods of metallic glasses. The new processing method accessed equilibrium and non-equilibrium phases of the alloy and the structures were found to be controllable and sensitive to processing conditions. Crystallized fraction, crystallization onset temperature, and structural relaxation were controlled through adjusting the processing conditions, such as the hot zone temperature and sample velocity. Reaction rates computed from isothermal (TTT) transformation data were not found to be reliable, suggesting that the reaction kinetics are not additive. This new processing method allows for future studying of the thermal history effects of metallic glasses.

  13. Short-range order in Fe-based metallic glasses: Wide-angle X-ray scattering studies

    International Nuclear Information System (INIS)

    Babilas, Rafał; Hawełek, Łukasz; Burian, Andrzej

    2014-01-01

    The local atomic structure of the Fe 80 B 20 , Fe 70 Nb 10 B 20 and Fe 62 Nb 8 B 30 glasses prepared in the form of ribbons has been studied by wide-angle X-ray scattering. Structural information about the amorphous ribbons has been derived from analysis of the radial distribution functions using the least-squares curve-fitting method. The obtained structural parameters indicate that Fe–Fe, Fe–B, Fe–Nb and Nb–B contributions are involved in the near-neighbor coordination spheres. The possible similarities of the local atomic arrangement in the investigated glasses and the crystalline Fe 3 B, Fe 23 B 6 and bcc Fe structures are also discussed. - Graphical abstract: Pair distribution functions (a) and best-fit model and experimental radial distribution functions for Fe 80 B 20 (b), Fe 70 Nb 10 B 20 (c) and Fe 62 Nb 8 B 30 (d) metallic glasses. - Highlights: • The short-range ordering in the Fe-based metallic glasses is presented. • The results of RDF function have been analyzed using the least-squares method. • The Fe–Fe, Fe–B, Fe–Nb or Nb–B contributions are involved in coordination spheres. • The structural unit is distorted triangular prism containing B, Fe or Nb atoms. • Similarities of atomic arrangement in glassy and crystalline structures are discussed

  14. Low-density to high-density transition in Ce75Al23Si2 metallic glass

    International Nuclear Information System (INIS)

    Zeng, Q S; Lou, H B; Gong, Y; Wang, X D; Jiang, J Z; Fang, Y Z; Wu, F M; Yang, K; Li, A G; Yan, S; Yu, X H; Lathe, C

    2010-01-01

    Using in situ high-pressure x-ray diffraction (XRD), we observed a pressure-induced polyamorphic transition from the low-density amorphous (LDA) state to the high-density amorphous (HDA) state in Ce 75 Al 23 Si 2 metallic glass at about 2 GPa and 300 K. The thermal stabilities of both LDA and HDA metallic glasses were further investigated using in situ high-temperature and high-pressure XRD, which revealed different pressure dependences of the onset crystallization temperature (T x ) between them with a turning point at about 2 GPa. Compared with Ce 75 Al 25 metallic glass, minor Si doping shifts the onset polyamorphic transition pressure from 1.5 to 2 GPa and obviously stabilizes both LDA and HDA metallic glasses with higher T x and changes their slopes dT x /dP. The results obtained in this work reveal another polyamorphous metallic glass system by minor alloying (e.g. Si), which could modify the transition pressure and also properties of LDA and HDA metallic glasses. The minor alloying effect reported here is valuable for the development of more polyamorphous metallic glasses, even multicomponent bulk metallic glasses with modified properties, which will trigger more investigations in this field and improve our understanding of polyamorphism and metallic glasses.

  15. Secondary phases formed during nuclear waste glass-water interactions: Thermodynamic and derived properties

    International Nuclear Information System (INIS)

    McKenzie, W.F.

    1992-08-01

    The thermodynamic properties of secondary phases observed to form during nuclear waste glass-water interactions are of particular interest as it is with the application of these properties together with the thermodynamic properties of other solid phases, fluid phases, and aqueous species that one may predict the environmental consequences of introducing radionuclides contained in the glass into groundwater at a high-level nuclear waste repository. The validation of these predicted consequences can be obtained from laboratory experiments and field observations at natural analogue sites. The purpose of this report is to update and expand the previous compilation (McKenzie, 1991) of thermodynamic data retrieved from the literature and/or estimated for secondary phases observed to form (and candidate phases from observed chemical compositions) during nuclear waste glass-water interactions. In addition, this report includes provisionally recommended thermodynamic data of secondary phases

  16. Cold crucible induction melter studies for making glass ceramic waste forms: A feasibility assessment

    International Nuclear Information System (INIS)

    Crum, Jarrod; Maio, Vince; McCloy, John; Scott, Clark; Riley, Brian; Benefiel, Brad; Vienna, John; Archibald, Kip; Rodriguez, Carmen; Rutledge, Veronica; Zhu, Zihua; Ryan, Joe; Olszta, Matthew

    2014-01-01

    Glass ceramics are being developed to immobilize fission products, separated from used nuclear fuel by aqueous reprocessing, into a stable waste form suitable for disposal in a geological repository. This work documents the glass ceramic formulation at bench scale and for a scaled melter test performed in a pilot-scale (∼1/4 scale) cold crucible induction melter (CCIM). Melt viscosity, electrical conductivity, and crystallization behavior upon cooling were measured on a small set of compositions to select a formulation for melter testing. Property measurements also identified a temperature range for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form. Bench scale and melter run results successfully demonstrate the processability of the glass ceramic using the CCIM melter technology

  17. Mineralogy and thermodynamic properties of magnesium phyllosilicates formed during the alteration of a simplified nuclear glass

    Energy Technology Data Exchange (ETDEWEB)

    Debure, Mathieu, E-mail: m.debure@brgm.fr [CEA, DEN, DTCD, SECM, F-30207 Bagnols-sur-Ceze (France); MINES-ParisTech, PSL Research University, Centre de Géosciences, 77305 Fontainebleau (France); De Windt, Laurent [MINES-ParisTech, PSL Research University, Centre de Géosciences, 77305 Fontainebleau (France); Frugier, Pierre; Gin, Stéphane [CEA, DEN, DTCD, SECM, F-30207 Bagnols-sur-Ceze (France); Vieillard, Philippe [IC2MP-CNRS-UMR 7285, 5 Ave. Albert Turpain TSA 51106, 86073 Poitiers Cedex 09 (France)

    2016-07-15

    The precipitation of crystallized magnesium phyllosilicates generally sustains the alteration rate of nuclear waste containment glass. However, glass alteration slows down to a residual rate as soon as Mg disappears from the solution. The identification of the phyllosilicates formed is therefore crucial for modeling the long-term behavior of nuclear glass. This study deals with batch alteration of the simplified nuclear glass ISG in presence of magnesium, and the characterization of the secondary phases. Morphological, chemical and structural analyses (MET, EDX, XRD) were performed to determine the nature and structure of the precipitated phases identified as trioctahedral smectites. Analyses conducted on the secondary phases proved the presence of Al, Na and Ca in the Mg-phyllosilicate phases. Such elements had been suspected but never quantitatively measured. The experimental results were then used to determine the thermodynamic solubility constants for each precipitated secondary phase at various temperatures. The calculated values were consistent with those available for sodium and magnesium saponites in the existing thermodynamic databases. - Highlights: • The international simple glass dissolution rate increases in presence of magnesium. • Mg added in solution combines with Si from glass to yield trioctahedral smectites. • Their calculated logK are close to smectite thermodynamic constants reported in databases. • It confirms assumptions on Mg-silicates phases made in previous geochemical modeling.

  18. Development and testing of a glass waste form for the immobilization of plutonium

    International Nuclear Information System (INIS)

    Chamberlain, D.B.; Hanchar, J.M.; Emery, J.W.; Hoh, J.C.; Wolf, S.F.; Finch, R.J.; Bates, J.K.; Ellison, A.J.G.; Dingwell, D.B.

    1996-01-01

    The United States has declared about 50 metric tons of weapons-grade Pu surplus to national security needs. The President has directed that this Pu be placed in a form that provides a high degree of proliferation resistance in which the surplus Pu is both unattractive and inaccessible for use by others [I]. Three alternatives are being evaluated for the disposal 2048 of this material: (1) use of the Pu as a fuel source for commercial reactors; (2) immobilization, where Pu is fixed in a glass or ceramic matrix that also contains or is surrounded by highly radioactive material; and (3) deep bore hole, where Pu is emplaced at depths of several kilometers. The immobilization alternative is being directed by the staff at Lawrence Livermore National Laboratory (LLNL). The staff at ANL are assisting by developing a glass for the immobilization of Pu and in the corrosion testing of glass and ceramic material prepared both at ANL and at other DOE laboratories. As part of this program, we have developed an ATS glass into which 5-7 wt percent Pu has been dissolved. The ATS glass was engineered to accommodate high Pu loading and to be durable under conditions likely to accelerate glass reactions in the geological environment during long-term storage

  19. Fluctuations in an Inorganic Glass Forming System Capable of Liquid-Liquid Phase Separation

    Science.gov (United States)

    Bogdanov, V.; Maksimov, L.; Anan'ev, A.; Nemilov, S.; Rusan, V.

    2012-08-01

    Rayleigh and Mandel'shtam-Brillouin scattering (RMBS) spectroscopy and high temperature ultrasonic study (HTUS) are applied to PbO-Al2O3-B2O3 glass forming system characterized by over liquidus miscibility gap. Temperature dependences of ultrasonic velocity of glass melts were measured in 600-1200°C range. "Frozen-in" density fluctuations in two phase glasses were estimated from HTUS data by Macedo-Shroeder formulation. Landau-Placzek ratios were found from RMBS spectra of single phase glasses at room temperature. Results of RMBS and HTUS were compared with well-known SAXS data. It was found that contribution of "frozen-in" density fluctuations into light scattering by two-phase glasses is much smaller than the scattering on particles of the second glassy phase causing opalescence of the glasses. Abnormal "water-like" growth of ultrasonic velocity with melt temperature can be explained by coexistence of two types of packaging of structural elements.

  20. Primary hafnium metal sponge and other forms, approved standard 1973

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    A specification is presented covering virgin hafnium metal commonly designated as sponge because of its porous, sponge-like texture; it may also be in other forms such as chunklets. The specification does not cover crystal bar