WorldWideScience

Sample records for metallic electronic states

  1. Electron states in thulium and other rare-earth metals

    Strange, P.; Fairbairn, W.M.; Lee, P.M.

    1983-01-01

    The LMTO method has been applied to calculate band structures for the heavier rare-earth metals. The calculations are relativistic. Thulium in particular has been considered, where a frozen core approximation is used, and the outer electrons are treated selfconsistently. Problems associated with the localisation and interactions of the 4f electrons are discussed. Teh comparisons between experimental data and calculated quantities are encouraging, but more data on high-purity single crystals would be helpful. (author)

  2. Influence of metallic surface states on electron affinity of epitaxial AlN films

    Mishra, Monu; Krishna, Shibin; Aggarwal, Neha [Advanced Materials and Devices Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Gupta, Govind, E-mail: govind@nplindia.org [Advanced Materials and Devices Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2017-06-15

    The present article investigates surface metallic states induced alteration in the electron affinity of epitaxial AlN films. AlN films grown by plasma-assisted molecular beam epitaxy system with (30% and 16%) and without metallic aluminium on the surface were probed via photoemission spectroscopic measurements. An in-depth analysis exploring the influence of metallic aluminium and native oxide on the electronic structure of the films is performed. It was observed that the metallic states pinned the Fermi Level (FL) near valence band edge and lead to the reduction of electron affinity (EA). These metallic states initiated charge transfer and induced changes in surface and interface dipoles strength. Therefore, the EA of the films varied between 0.6–1.0 eV due to the variation in contribution of metallic states and native oxide. However, the surface barrier height (SBH) increased (4.2–3.5 eV) adversely due to the availability of donor-like surface states in metallic aluminium rich films.

  3. Electronic and structural ground state of heavy alkali metals at high pressure

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; Haskel, D.; Schilling, J. S.

    2015-02-01

    Alkali metals display unexpected properties at high pressure, including emergence of low-symmetry crystal structures, which appear to occur due to enhanced electronic correlations among the otherwise nearly free conduction electrons. We investigate the high-pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with a b i n i t i o theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the o C 84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of the valence electrons characterized by pseudogap formation near the Fermi level and strong s p d hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.

  4. Determination of electronic states in crystalline semiconductors and metals by angle-resolved photoemission

    Mills, K.A.

    1979-08-01

    An important part of the theoretical description of the solid state is band structure, which relies on the existence of dispersion relations connecting the electronic energy and wavevector in materials with translational symmetry. These relations determine the electronic behavior of such materials. The elaboration of accurate band structures, therefore, is of considerable fundamental and practical importance. Angle-resolved photoemission (ARP) spectroscopy provides the only presently available method for the detailed experimental investigation of band structures. This work is concerned with its application to both semiconducting and metallic single crystals

  5. Theory of Correlated Pairs of Electrons Oscillating in Resonant Quantum States to Reach the Critical Temperature in a Metal

    Aroche, Raúl Riera; Rosas-Cabrera, Rodrigo Arturo; Burgos, Rodrigo Arturo Rosas; Betancourt-Riera, René; Betancourt-Riera, Ricardo

    2017-01-01

    The formation of Correlated Electron Pairs Oscillating around the Fermi level in Resonant Quantum States (CEPO-RQS), when a metal is cooled to its critical temperature T=Tc, is studied. The necessary conditions for the existence of CEPO-RQS are analyzed. The participation of electron-electron interaction screened by an electron dielectric constant of the form proposed by Thomas Fermi is considered and a physical meaning for the electron-phonon-electron interaction in the formation of the CEPO...

  6. Metal centre effects on HNO binding in porphyrins and the electronic origin: metal's electronic configuration, position in the periodic table, and oxidation state.

    Yang, Liu; Fang, Weihai; Zhang, Yong

    2012-04-21

    HNO binds to many different metals in organometallic and bioinorganic chemistry. To help understand experimentally observed metal centre effects, a quantum chemical investigation was performed, revealing clear general binding trends with respect to metal centre characteristics and the electronic origin for the first time. This journal is © The Royal Society of Chemistry 2012

  7. Electronic structure of metal clusters

    Wertheim, G.K.

    1989-01-01

    Photoemission spectra of valence electrons in metal clusters, together with threshold ionization potential measurements, provide a coherent picture of the development of the electronic structure from the isolated atom to the large metallic cluster. An insulator-metal transition occurs at an intermediate cluster size, which serves to define the boundary between small and large clusters. Although the outer electrons may be delocalized over the entire cluster, a small cluster remains insulating until the density of states near the Fermi level exceeds 1/kT. In large clusters, with increasing cluster size, the band structure approaches that of the bulk metal. However, the bands remain significantly narrowed even in a 1000-atom cluster, giving an indication of the importance of long-range order. The core-electron binding-energy shifts of supported metal clusters depend on changes in the band structure in the initial state, as well as on various final-state effects, including changes in core hole screening and the coulomb energy of the final-state charge. For cluster supported on amorphous carbon, this macroscopic coulomb shift is often dominant, as evidenced by the parallel shifts of the core-electron binding energy and the Fermi edge. Auger data confirm that final-state effects dominate in cluster of Sn and some other metals. Surface atom core-level shifts provide a valuable guide to the contributions of initial-state changes in band structure to cluster core-electron binding energy shifts, especially for Au and Pt. The available data indicate that the shift observed in supported, metallic clusters arise largely from the charge left on the cluster by photoemission. As the metal-insulator transition is approached from above, metallic screening is suppressed and the shift is determined by the local environment. (orig.)

  8. Electronic states of Ca/PC61BM: Mechanism of low work function metal as interfacial material

    Ying-Ying Du

    2018-03-01

    Full Text Available We have studied the electronic states at Ca/PC61BM interface using photoemission spectroscopy. It is found that the state of unoccupied molecular orbitals of the top molecular layer (TML becomes occupied by the electrons transferred from the Ca atoms. The work function of the heavily doped TML of PC61BM film is smaller than that of metal Ca, and thus the contact between the TML and metal Ca is Ohmic. A transition layer (TL of several molecular layers forms beneath the TML due to the diffusion of the Ca atoms. The TL is conductive and aligns its Fermi level with the negative integer charge transfer level of the interior PC61BM. The built-in electric field in the TL facilitates the electron transport from the interior of the PC61BM film to the TML.

  9. Electronic and thermodynamic properties of the transition between metallic and nonmetallic states in dense media

    Fortin, Xavier

    1971-01-01

    The effects of thermal excitation are introduced in the study of a simple electronic structure model for condensed media. The choice of a particle-interaction potential leads to a self-consistent calculation performed on a computer. This calculation gives a metal - nonmetal transition similar to the MOTT transition. We consider the effects of temperature and density variations upon this transition. It is possible to make use of this electronic structure to obtain the thermodynamic properties near the transition: pressure, free energy, sound velocity. The numerical results of this simple model are satisfactory. Particularly, if a dielectric constant is taken into account, the transition temperature and density are of the same order of magnitude as those observed experimentally in semiconductors. (author) [fr

  10. Electron energies in metals

    Mahan, G.D.; Tennessee Univ., Knoxville, TN

    1991-01-01

    The modern era of electron-electron interactions began a decade ago. Plummer's group initiated a program of using angular resolved photoemission to examine the band structure of the simple metals. Beginning with aluminum, and carrying on to sodium and potassium, they always found that the occupied energy bands were much narrower than expected. For example, the compressed energy bands for metallic potassium suggest a band effective mass of m* = 1.33m e . This should be compared to the band mass found from optical conductivity m*/m e = 1.01 ± 0.01. The discrepancy between these results is startling. It was this great difference which started my group doing calculations. Our program was two-fold. On one hand, we reanalyzed the experimental data, in order to see if Plummer's result was an experimental artifact. On the other hand, we completely redid the electron-electron self-energy calculations for simple metals, using the most modern choices of local-field corrections and vertex corrections. Our results will be reported in these lectures. They can be summarized as following: Our calculations give the same effective masses as the older calculations, so the theory is relatively unchanged; Our analysis of the experiments suggests that the recent measurements of band narrowing are an experimental artifact. 38 refs., 9 figs

  11. Electronic structure and electron dynamics at an organic molecule/metal interface: interface states of tetra-tert-butyl-imine/Au(111)

    Hagen, Sebastian; Wolf, Martin; Tegeder, Petra; Luo Ying; Haag, Rainer

    2010-01-01

    Time- and angle-resolved two-photon photoemission (2PPE) spectroscopies have been used to investigated the electronic structure, electron dynamics and localization at the interface between tetra-tert-butyl imine (TBI) and Au(111). At a TBI coverage of one monolayer (ML), the two highest occupied molecular orbitals, HOMO and HOMO-1, are observed at an energy of -1.9 and -2.6 eV below the Fermi level (E F ), respectively, and coincide with the d-band features of the Au substrate. In the unoccupied electronic structure, the lowest unoccupied molecular orbital (LUMO) has been observed at 1.6 eV with respect to E F . In addition, two delocalized states that arise from the modified image potential at the TBI/metal interface have been identified. Their binding energies depend strongly on the adsorption structure of the TBI adlayer, which is coverage dependent in the submonolayer (≤1 ML) regime. Thus the binding energy of the lower interface state (IS) shifts from 3.5 eV at 1.0 ML to 4.0 eV at 0.5 ML, which is accompanied by a pronounced decrease in its lifetime from 100 fs to below 10 fs. This is a result of differences in the wave function overlap with electronic states of the Au(111) substrate at different binding energies. This study shows that in order to fully understand the electronic structure of organic adsorbates at metal surfaces, not only adsorbate- and substrate-induced electronic states have to be considered but also ISs, which are the result of a potential formed by the interaction between the adsorbate and the substrate.

  12. Electron paramagnetic resonance studies on conformation states and metal ion exchange properties of vanadium bromoperoxidase

    de Boer, E.; Boon, K.; Wever, R.

    1988-01-01

    An electron paramagnetic resonance (EPR) study was carried out to examine structural aspects of vanadium-containing bromoperoxidase from the brown seaweed Ascophyllum nodosum. At high pH, the reduced form of bromoperoxidase showed an apparently axially symmetric EPR signal with 16 hyperfine lines. When the pH was lowered, a new EPR spectrum was formed. When EPR spectra of the reduced enzyme were recorded in the pH range from 4.2 to 8.4, it appeared that these changes were linked to a functional group with an apparent pK/sub a/ of about 5.4. In D 2 O this value for the pK/sub a/ was 5.3. It is suggested that these effects arise from protonation of histidine or aspartate/glutamate residues near the metal ion. The values for the isotropic hyperfine coupling constant of the reduced enzyme at both high and low pH are also consistent with a ligand field containing nitrogen and/or oxygen donor atoms. When reduced bromoperoxidase was dissolved in D 2 O or H 2 17 O instead of H 2 16 O, vanadium (IV) hyperfine line widths were markedly affected, demonstrating that water is a ligand of the metal ion. Together with previous work these findings suggest that vanadium (IV) is not involved in catalytic turnover and confirm the model in which the vanadium (V) ion of the native enzyme only serves to bind both hydrogen peroxide and bromide. After excess vanadate was added to a homogeneous preparation of purified bromoperoxidase, the extent of vanadium bound to the protein increased from 0.5 to 1.1, with a concomitant enhancement of enzymic activity. Finally, it is demonstrated that both vanadate (VO 4 3- ) and molybdate (MoO 4 2- ) compete for the same site on apobromoperoxidase

  13. Properties and modification of two-dimensional electronic states on noble metals; Eigenschaften und Modifikation zweidimensionaler Elektronenzustaende auf Edelmetallen

    Forster, F.

    2007-07-06

    In this thesis investigations on two-dimensional electronic structures of (111)-noble metal surfaces and the influence of various adsorbates upon them is presented. It chiefly focuses on the surface-localized Shockley states of Cu, Ag and Au and their band dispersion (binding energy, band mass, and spin-orbit splitting) which turns out to be a sensitive probe for surface modifications induced by adsorption processes. Angular resolved photoelectron spectroscopy enables the observation of even subtle changes in the electronic band structure of these two dimensional systems. Different mechanisms taking place at surfaces and the substrate/adsorbate interfaces influence the Shockley state in a different manner and will be analyzed using suitable adsorbate model systems. The experimental results are matched with appropriate theoretical models like the phase accumulation model and the nearly-free electron model and - if possible - with ab initio calculations based on density functional theory. This allows for the integration of the results into a stringent overall picture. The influence of sub-monolayer adsorption of Na upon the surface state regarding the significant change in surface work function is determined. A systematic study of the physisorption of noble gases shows the effect of the repulsive adsorbate-substrate interaction upon the electrons of the surface state. A step-by-step coverage of the Cu and Au(111) surfaces by monolayers of Ag creates a gradual change in the surface potential and causes the surface state to become increasingly Ag-like. For N=7 ML thick and layer-by-layer growing Ag films on Au(111), new two-dimensional electronic structures can be observed, which are attributed to the quantum well states of the Ag adsorbate. The question whether they are localized within the Ag-layer or substantially within the substrate is resolved by the investigation of their energetic and spatial evolution with increasing Ag-film thicknesses N. For this, beside the

  14. Spiral magnetic order, non-uniform states and electron correlations in the conducting transition metal systems

    Igoshev, P. A.; Timirgazin, M. A.; Arzhnikov, A. K.; Antipin, T. V.; Irkhin, V. Yu.

    2017-10-01

    The ground-state magnetic phase diagram is calculated within the Hubbard and s-d exchange (Kondo) models for square and simple cubic lattices vs. band filling and interaction parameter. The difference of the results owing to the presence of localized moments in the latter model is discussed. We employ a generalized Hartree-Fock approximation (HFA) to treat commensurate ferromagnetic (FM), antiferromagnetic (AFM), and incommensurate (spiral) magnetic phases. The electron correlations are taken into account within the Hubbard model by using the Kotliar-Ruckenstein slave boson approximation (SBA). The main advantage of this approach is a correct qualitative description of the paramagnetic phase: its energy becomes considerably lower as compared with HFA, and the gain in the energy of magnetic phases is substantially reduced.

  15. Electronic spectral study of interaction of electron donor – acceptor dyes in the ground and excited state with a metal ion. Effect of molecular structure of the dye

    Sardar, Sanjib Kr; Mandal, Prasun K.; Bagchi, Sanjib

    2014-01-01

    Interaction of manganese (II) ion with electron donor (D)–acceptor (A) dyes having symmetric D–A–D configuration of chromophores (ketocyanine dye) and the corresponding parent merocyanines (D–A configuration) in acetonitrile has been compared by monitoring the electronic absorption, and steady state and time resolved fluorescence characteristics of the dyes. Absorption spectral studies point to the formation of a 1:1 metal ion–dye (S 0 -state) complex. Equilibrium constant (K 0 ) and other thermodynamic parameters for complex formation have been determined for all the systems. Symmetric ketocyanine dyes (D–A–D) form stronger complex than the corresponding dye with D–A configuration. Quenching of fluorescence is caused due to complex formation with the cation. However, for very low concentration of salts, where complex formation is insignificant, an enhancement of fluorescence intensity takes place due to addition of salt. The absorption band of the dye undergoes a slight blue shift in the same concentration range of the metal ion. Fluorescence life time of the excited state also increases with an increase in salt concentration in that concentration range. Results have been explained in terms of formation of a weak association complex where one or more cations replace equivalent solvent molecules in the cybotatic region around the dye. The binding constant of the association complex involving cation and the dye (S 1 -state) has been determined. While the value of the binding constant is higher for a symmetric D–A–D dye relative to that for the corresponding dye with D–A configuration, the extent of fluorescence enhancement for the latter is larger. Values of decay constant for the different photophysical processes have been calculated. Formation of association complex in the S 1 -state is characterised by a slower nonradiative decay of S 1 -state of the dyes. -- Highlights: • A ketocyanine dye forms 1:1 complex with metal ions. • Slight

  16. The calculation of electron chemical potential and ion charge state and their influence on plasma conductivity in electrical explosion of metal wire

    Shi, Zongqian; Wang, Kun; Li, Yao; Shi, Yuanjie; Wu, Jian; Jia, Shenli

    2014-01-01

    The electron chemical potential and ion charge state (average ion charge and ion distribution) are important parameters in calculating plasma conductivity in electrical explosion of metal wire. In this paper, the calculating method of electron chemical potential and ion charge state is discussed at first. For the calculation of electron chemical potential, the ideal free electron gas model and Thomas-Fermi model are compared and analyzed in terms of the coupling constant of plasma. The Thomas-Fermi ionization model, which is used to calculate ion charge state, is compared with the method based on Saha equation. Furthermore, the influence of electron degenerated energy levels and ion excited states in Saha equation on the ion charge state is also analyzed. Then the influence of different calculating methods of electron chemical potential and ion charge state on plasma conductivity is discussed by applying them in the Lee-More conductivity model

  17. Interaction between extended and localized electronic states in the region of the metal to insulator transition in semiconductor alloys

    Teubert, Joerg

    2008-07-01

    The first part of this work addresses the influence of those isovalent localized states on the electronic properties of (B,Ga,In)As. Most valuable were the measurements under hydrostatic pressure that revealed a pressure induced metal-insulator transition. One of the main ideas in this context is the trapping of carriers in localized B-related cluster states that appear in the bandgap at high pressure. The key conclusion that can be drawn from the experimental results is that boron atoms seem to have the character of isovalent electron traps, rendering boron as the first known isovalent trap induced by cationic substitution. In the second part, thermoelectric properties of (B,Ga,In)As and (Ga,In)(N,As) are studied. It was found that although the electric-field driven electronic transport in n-type (Ga,In)(N,As) and (B,Ga,In)As differs considerably from that of n-type GaAs, the temperature-gradient driven electronic transport is very similar for the three semiconductors, despite distinct differences in the conduction band structure of (Ga,In)(N,As) and (B,Ga,In)As compared to GaAs. The third part addresses the influence of magnetic interactions on the transport properties near the metal-insulator transition (MIT). Here, two scenarios are considered: Firstly the focus is set on ZnMnSe:Cl, a representative of so called dilute magnetic semiconductors (DMS). In this material Mn(2+) ions provide a large magnetic moment due to their half filled inner 3d-shell. It is shown that magnetic interactions in conjunction with disorder effects are responsible for the unusual magnetotransport behavior found in this and other II-Mn-VI semiconductor alloys. In the second scenario, a different magnetic compound, namely InSb:Mn, is of interest. It is a representative of the III-Mn-V DMS, where the magnetic impurity Mn serves both as the source of a large localized magnetic moment and as the source of a loosely bound hole due to its acceptor character. Up to now, little is known about

  18. Interaction between extended and localized electronic states in the region of the metal to insulator transition in semiconductor alloys

    Teubert, Joerg

    2008-01-01

    The first part of this work addresses the influence of those isovalent localized states on the electronic properties of (B,Ga,In)As. Most valuable were the measurements under hydrostatic pressure that revealed a pressure induced metal-insulator transition. One of the main ideas in this context is the trapping of carriers in localized B-related cluster states that appear in the bandgap at high pressure. The key conclusion that can be drawn from the experimental results is that boron atoms seem to have the character of isovalent electron traps, rendering boron as the first known isovalent trap induced by cationic substitution. In the second part, thermoelectric properties of (B,Ga,In)As and (Ga,In)(N,As) are studied. It was found that although the electric-field driven electronic transport in n-type (Ga,In)(N,As) and (B,Ga,In)As differs considerably from that of n-type GaAs, the temperature-gradient driven electronic transport is very similar for the three semiconductors, despite distinct differences in the conduction band structure of (Ga,In)(N,As) and (B,Ga,In)As compared to GaAs. The third part addresses the influence of magnetic interactions on the transport properties near the metal-insulator transition (MIT). Here, two scenarios are considered: Firstly the focus is set on ZnMnSe:Cl, a representative of so called dilute magnetic semiconductors (DMS). In this material Mn(2+) ions provide a large magnetic moment due to their half filled inner 3d-shell. It is shown that magnetic interactions in conjunction with disorder effects are responsible for the unusual magnetotransport behavior found in this and other II-Mn-VI semiconductor alloys. In the second scenario, a different magnetic compound, namely InSb:Mn, is of interest. It is a representative of the III-Mn-V DMS, where the magnetic impurity Mn serves both as the source of a large localized magnetic moment and as the source of a loosely bound hole due to its acceptor character. Up to now, little is known about

  19. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    Chen, Lin X; Shelby, Megan L; Lestrange, Patrick J

    2016-01-01

    This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(ii) tetramesitylporphyrin (NiTMP) were measured...... on the low-energy shoulder of the edge, which is aided by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of the electronic configuration on specific metal...

  20. One-electron theory of metals

    Skriver, H.L.

    1984-12-01

    The work described in the report and the 16 accompanying publications is based upon a one-electron theory obtained within the local approximation to density-functional theory, and deals with the ground state of metals as obtained from self-consistent electronic-structure calculations performed by means of the Linear Muffin-Tin Orbital (LMTO) method. It has been the goal of the work to establish how well this one-electron approach describes physical properties such as the crystal structures of the transition metals, the structural phase transitions in the alkali, alkaline earth, and rare earth metals, and the localization of 3d, 4f, and 5f electrons in the 3d metal monoxides, the light lanthanides, and the actinides, respectively, as well as the cohesive properties of metals in general. (orig.)

  1. The electronic structure and the state of compositional order in metallic alloys

    Gyorffy, B.L.; Johnson, D.D.; Pinski, F.J.; Nicholson, D.M.; Stocks, G.M.

    1987-01-01

    Many two-component (A,B) systems crystallize into a random solid solution. In such a state the atoms occupy a more or less regular array of lattice sites but each site can be A or B in a random fashion. Then, on lowering the temperature, the system will either phase separate or order, starting at some transition temperature T/sub c/. The aim of these lectures is to present a microscopic approach to the understanding of these scientifically interesting and technologically important processes. 64 refs., 19 figs

  2. Electron-phonon coupling at metal surfaces

    Hellsing, B.; Eiguren, A.; Chulkov, E.V.

    2002-01-01

    Chemical reactions at metal surfaces are influenced by inherent dissipative processes which involve energy transfer between the conduction electrons and the nuclear motion. We shall discuss how it is possible to model this electron-phonon coupling in order to estimate its importance. A relevant quantity for this investigation is the lifetime of surface-localized electron states. A surface state, quantum well state or surface image state is located in a surface-projected bandgap and becomes relatively sharp in energy. This makes a comparison between calculations and experimental data most attractive, with a possibility of resolving the origin of the lifetime broadening of electron states. To achieve more than an order of magnitude estimate we point out the importance of taking into account the phonon spectrum, electron surface state wavefunctions and screening of the electron-ion potential. (author)

  3. Interface States in AlGaN/GaN Metal-Insulator-Semiconductor High Electron Mobility Transistors

    Feng Qian; Du Kai; Li Yu-Kun; Shi Peng; Feng Qing

    2013-01-01

    Frequency-dependent capacitance and conductance measurements are performed on AlGaN/GaN high electron mobility transistors (HEMTs) and NbAlO/AlGaN/GaN metal-insulator-semiconductor HEMTs (MISHEMTs) to extract density and time constants of the trap states at NbAlO/AlGaN interface and gate/AlGaN interface with the gate-voltage biased into the accumulation region and that at the AlGaN/GaN interface with the gate-voltage biased into the depletion region in different circuit models. The measurement results indicate that the trap density at NbAlO/AlGaN interface is about one order lower than that at gate/AlGaN interface while the trap density at AlGaN/GaN interface is in the same order, so the NbAlO film can passivate the AlGaN surface effectively, which is consistent with the current collapse results

  4. Two electron Rydberg states

    Cooke, W.E.

    1981-01-01

    This paper addresses the study of two-electron Rydberg atoms. With Multichannel Quantum Defect Theory (MQDT), there is a technique for characterizing a spectra in terms of a small number of parameters. A survey of some important effects specific to two-electon Rydberg states, using primarily the alkaline earth atoms for examples, is made. The remainder of the paper deals with a discussion of the electron-electron interaction, including some of the basic points of MQDT. Energy exchange between two electrons is also addressed

  5. Electronic transport properties of carbon nanotube metal-semiconductor-metal

    F Khoeini

    2008-07-01

    Full Text Available  In this work, we study electronic transport properties of a quasi-one dimensional pure semi-conducting Zigzag Carbon Nanotube (CNT attached to semi-infinite clean metallic Zigzag CNT leads, taking into account the influence of topological defect in junctions. This structure may behave like a field effect transistor. The calculations are based on the tight-binding model and Green’s function method, in which the local density of states(LDOS in the metallic section to semi-conducting section, and muli-channel conductance of the system are calculated in the coherent and linear response regime, numerically. Also we have introduced a circuit model for the system and investigated its current. The theoretical results obtained, can be a base, for developments in designing nano-electronic devices.

  6. Electronic structure of hcp transition metals

    Jepsen, O.; Andersen, O. Krogh; Mackintosh, A. R.

    1975-01-01

    Using the linear muffin-tin-orbital method described in the previous paper, we have calculated the electronic structures of the hcp transition metals, Zr, Hf, Ru, and Os. We show how the band structures of these metals may be synthesized from the sp and d bands, and illustrate the effects...... of hybridization, relativistic band shifts, and spin-orbit coupling by the example of Os. By making use of parameters derived from the muffin-tin potential, we discuss trends in the positions and widths of the energy bands, especially the d bands, as a function of the location in the periodic table. The densities...... of states of the four metals are presented, and the calculated heat capacities compared with experiment. The Fermi surfaces of both Ru and Os are found to be in excellent quantitative agreement with de Haas-van Alphen measurements, indicating that the calculated d-band position is misplaced by less than 10...

  7. Photoionization of image states around metallic nanotubes

    Segui, Silvina; Arista, Nestor R; Gervasoni, Juana L [Centro Atomico Bariloche (CNEA) 8400, Rio Negro (Argentina); Bocan, Gisela A, E-mail: segui@cab.cnea.gov.a, E-mail: gbocan@iafe.uba.a, E-mail: arista@cab.cnea.gov.a, E-mail: gervason@cab.cnea.gov.a [Institute de AstronomIa y Fisica del Espacio, CC 67, Sue 28, 1428, Ciudad Universitaria, Buenos Aires (Argentina)

    2009-11-01

    In this work we study a theoretical approach to the ionization of electrons bound in an image state around a metallic nanotube by the impact of photons. In a close analogy to the already studied case of ionization by electron impact [1], we calculate and analyze photoionization cross sections of tubular image states [2] within a first Born approximation. We consider various situations, including different energies and polarizations of the incident photon, ejection directions of the outgoing electron, and angular momenta of the image state.

  8. Electrical Control of Metallic Heavy-Metal-Ferromagnet Interfacial States

    Bi, Chong; Sun, Congli; Xu, Meng; Newhouse-Illige, Ty; Voyles, Paul M.; Wang, Weigang

    2017-09-01

    Voltage-control effects provide an energy-efficient means of tailoring material properties, especially in highly integrated nanoscale devices. However, only insulating and semiconducting systems can be controlled so far. In metallic systems, there is no electric field due to electron screening effects and thus no such control effect exists. Here, we demonstrate that metallic systems can also be controlled electrically through ionic rather than electronic effects. In a Pt /Co structure, the control of the metallic Pt /Co interface can lead to unprecedented control effects on the magnetic properties of the entire structure. Consequently, the magnetization and perpendicular magnetic anisotropy of the Co layer can be independently manipulated to any desired state, the efficient spin toques can be enhanced about 3.5 times, and the switching current can be reduced about one order of magnitude. This ability to control a metallic system may be extended to control other physical phenomena.

  9. Metal induced gap states at alkali halide/metal interface

    Kiguchi, Manabu; Yoshikawa, Genki; Ikeda, Susumu; Saiki, Koichiro

    2004-01-01

    The electronic state of a KCl/Cu(0 0 1) interface was investigated using the Cl K-edge near-edge X-ray absorption fine structure (NEXAFS). A pre-peak observed on the bulk edge onset of thin KCl films has a similar feature to the peak at a LiCl/Cu(0 0 1) interface, which originates from the metal induced gap state (MIGS). The present result indicates that the MIGS is formed universally at alkali halide/metal interfaces. The decay length of MIGS to an insulator differs from each other, mainly due to the difference in the band gap energy of alkali halide

  10. Steady-State Spectroscopic Analysis of Proton-Dependent Electron Transfer on Pyrazine-Appended Metal Dithiolenes [Ni(pdt)2], [Pd(pdt)2], and [Pt(pdt)2] (pdt = 2,3-Pyrazinedithiol).

    Kennedy, Steven R; Kozar, Morgan N; Yennawar, Hemant P; Lear, Benjamin J

    2016-09-06

    We report the structural, electronic, and acid/base properties of a series of ML2 metal dithiolene complexes, where M = Ni, Pd, Pt and L = 2,3-pyrazinedithiol. These complexes are non-innocent and possess strong electronic coupling between ligands across the metal center. The electronic coupling can be readily quantified in the monoanionic mixed valence state using Marcus-Hush theory. Analysis of the intervalence charge transfer (IVCT) band reveals that that electronic coupling in the mixed valence state is 5800, 4500, and 5700 cm(-1) for the Ni, Pd, and Pt complexes, respectively. We then focus on their response to acid titration in the mixed valence state, which generates the asymmetrically protonated mixed valence mixed protonated state. For all three complexes, protonation results in severe attenuation of the electronic coupling, as measured by the IVCT band. We find nearly 5-fold decreases in electronic coupling for both Ni and Pt, while, for the Pd complex, the electronic coupling is reduced to the point that the IVCT band is no longer observable. We ascribe the reduction in electronic coupling to charge pinning induced by asymmetric protonation. The more severe reduction in coupling for the Pd complex is a result of greater energetic mismatch between ligand and metal orbitals, reflected in the smaller electronic coupling for the pure mixed valence state. This work demonstrates that the bridging metal center can be used to tune the electronic coupling in both the mixed valence and mixed valence mixed protonated states, as well as the magnitude of change of the electronic coupling that accompanies changes in protonation state.

  11. Correlation of interface states/border traps and threshold voltage shift on AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors

    Wu, Tian-Li, E-mail: Tian-Li.Wu@imec.be; Groeseneken, Guido [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, Leuven (Belgium); Marcon, Denis; De Jaeger, Brice; Lin, H. C.; Franco, Jacopo; Stoffels, Steve; Van Hove, Marleen; Decoutere, Stefaan [imec, Kapeldreef 75, 3001 Leuven (Belgium); Bakeroot, Benoit [imec, Kapeldreef 75, 3001 Leuven (Belgium); Centre for Microsystems Technology, Ghent University, 9052 Gent (Belgium); Roelofs, Robin [ASM, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-08-31

    In this paper, three electrical techniques (frequency dependent conductance analysis, AC transconductance (AC-g{sub m}), and positive gate bias stress) were used to evaluate three different gate dielectrics (Plasma-Enhanced Atomic Layer Deposition Si{sub 3}N{sub 4}, Rapid Thermal Chemical Vapor Deposition Si{sub 3}N{sub 4}, and Atomic Layer Deposition (ALD) Al{sub 2}O{sub 3}) for AlGaN/GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors. From these measurements, the interface state density (D{sub it}), the amount of border traps, and the threshold voltage (V{sub TH}) shift during a positive gate bias stress can be obtained. The results show that the V{sub TH} shift during a positive gate bias stress is highly correlated to not only interface states but also border traps in the dielectric. A physical model is proposed describing that electrons can be trapped by both interface states and border traps. Therefore, in order to minimize the V{sub TH} shift during a positive gate bias stress, the gate dielectric needs to have a lower interface state density and less border traps. However, the results also show that the commonly used frequency dependent conductance analysis technique to extract D{sub it} needs to be cautiously used since the resulting value might be influenced by the border traps and, vice versa, i.e., the g{sub m} dispersion commonly attributed to border traps might be influenced by interface states.

  12. Metallurgical recovery of metals from electronic waste: A review

    Cui Jirang; Zhang Lifeng

    2008-01-01

    Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the

  13. Metallurgical recovery of metals from electronic waste: A review

    Cui Jirang [Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Alfred Getz vei 2, N-7491 Trondheim (Norway)], E-mail: Jirang.Cui@material.ntnu.no; Zhang Lifeng [Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Alfred Getz vei 2, N-7491 Trondheim (Norway)], E-mail: zhanglife@mst.edu

    2008-10-30

    Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the

  14. Conditions for formation of electron pairs in a metal

    Shekhtman, A.Z., E-mail: shekhtmanalexander@gmail.com

    2015-04-15

    Highlights: • A new approach has been developed for consideration of electron pairing in metals. • Binding energy of a single pair induced by electron-phonon interaction is very small. • A new mechanism for electron pairing in metals has been considered. • Conditions for feasibility of the mechanism give conditions for electron pairing. • The mechanism gives wide opportunities to study new conditions for electron pairing. - Abstract: In an isotropic model of the electron system of metal that is presented by the Fröhlich’s initial Hamiltonian, in the approximation of a weak electron–phonon interaction at T = 0, first time, we show that the ground state of the system is the state with pairing correlations of electrons (the pair correlations of occupied electron states). In contrast to the BCS approach, the initial point in our approach is not electron pairing but is the maximum reduction of the energy of the considered system due to virtual processes of the electron–phonon interaction and to the exchange effect for the indirect electron–electron interaction (which is induced by certain phonon modes separately from others). In contrast to the BCS approach, we take into account the portion of the energy of the electron system that is connected with the above exchange effect. In the BCS approach, the corresponding portion is missed, and its role is prescribed to the portion that does not relate to the electron pairing. We show that expectation values of the above Hamiltonian for different wave functions for two interacting electrons above the Fermi sea of the non-interacting system (with interaction between the electrons that is induced by different phonon modes separately from others) are minimum for a certain structure of these functions and simultaneously for phonon modes that can induce the transitions of the interacting electrons between electron states in which they are (without violation of the Pauli exclusion principle and at everything else

  15. Electronic structure of metallic glasses

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (ΔH) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides

  16. Metal shadowing for electron microscopy.

    Hendricks, Gregory M

    2014-01-01

    Metal shadowing of bacteria, viruses, isolated molecules, and macromolecular assemblies is another high-resolution method for observing the ultrastructure of biological specimens. The actual procedure for producing a metal shadow is relatively simple; a heavy metal is evaporated from a source at an oblique angle to the specimen. The metal atoms pile up on the surfaces that face the source, but the surfaces away from the source are shielded and receive little metal deposit, creating a "shadow." However, the process of producing biological specimens that are suitable for metal shadowing can be very complex. There are a whole host of specimen preparation techniques that can precede metal shadowing, and all provide superior preservation in comparison to air drying, a required step in negative staining procedures. The physical forces present during air drying (i.e., surface tension of the water-air interface) will literally crush most biological specimens as they dry. In this chapter I explain the development of and procedures for the production of biological specimens from macromolecular assemblies (e.g., DNA and RNA), purified isolated molecules (e.g., proteins), and isolated viruses and bacteria preparations suitable for metal shadowing. A variation on this basic technique is to rotate the specimen during the metal deposition to produce a high-resolution three-dimensional rendering of the specimen.

  17. State-to-state dynamics at the gas-liquid metal interface: rotationally and electronically inelastic scattering of NO[2Π(1/2)(0.5)] from molten gallium.

    Ziemkiewicz, Michael P; Roscioli, Joseph R; Nesbitt, David J

    2011-06-21

    Jet cooled NO molecules are scattered at 45° with respect to the surface normal from a liquid gallium surface at E(inc) from 1.0(3) to 20(6) kcal/mol to probe rotationally and electronically inelastic scattering from a gas-molten metal interface (numbers in parenthesis represent 1σ uncertainty in the corresponding final digits). Scattered populations are detected at 45° by confocal laser induced fluorescence (LIF) on the γ(0-0) and γ(1-1) A(2)Σ ← X(2)Π(Ω) bands, yielding rotational, spin-orbit, and λ-doublet population distributions. Scattering of low speed NO molecules results in Boltzmann distributions with effective temperatures considerably lower than that of the surface, in respectable agreement with the Bowman-Gossage rotational cooling model [J. M. Bowman and J. L. Gossage, Chem. Phys. Lett. 96, 481 (1983)] for desorption from a restricted surface rotor state. Increasing collision energy results in a stronger increase in scattered NO rotational energy than spin-orbit excitation, with an opposite trend noted for changes in surface temperature. The difference between electronic and rotational dynamics is discussed in terms of the possible influence of electron hole pair excitations in the conducting metal. While such electronically non-adiabatic processes can also influence vibrational dynamics, the γ(1-1) band indicates rotational energy transfer is compared from a hard cube model perspective with previous studies of NO scattering from single crystal solid surfaces. Despite a lighter atomic mass (70 amu), the liquid Ga surface is found to promote translational to rotational excitation more efficiently than Ag(111) (108 amu) and nearly as effectively as Au(111) (197 amu). The enhanced propensity for Ga(l) to transform incident translational energy into rotation is discussed in terms of temperature-dependent capillary wave excitation of the gas-liquid metal interface. © 2011 American Institute of Physics

  18. Microstructured liquid metal electron and ion sources (MILMES/MILMIS)

    Mitterauer, J [Technische Universitaet Wien (Austria). Institut fuer Allgemeine Elektrotechnik und Elektronik

    1997-12-31

    Ion or electron beams can be emitted from liquid metal wetted needles, or from capillaries or slits into which the liquid metal is allowed to flow. Large-area liquid metal field emission sources have been proposed recently, using either two-dimensional, regular arrays of cones or capillaries, or even a substrate with an intrinsically microstructured surface covered by a liquid metal film. This latter concept has been realized in a pilot experiment by in situ wicking and wetting of a porous sintered metal disc. Microstructured liquid metal ion or electron sources are capable of operating in a pulsed mode at a current level which is orders of magnitude above that for steady-state operation. (author). 3 figs., 10 refs.

  19. Stretchable and Soft Electronics using Liquid Metals.

    Dickey, Michael D

    2017-07-01

    The use of liquid metals based on gallium for soft and stretchable electronics is discussed. This emerging class of electronics is motivated, in part, by the new opportunities that arise from devices that have mechanical properties similar to those encountered in the human experience, such as skin, tissue, textiles, and clothing. These types of electronics (e.g., wearable or implantable electronics, sensors for soft robotics, e-skin) must operate during deformation. Liquid metals are compelling materials for these applications because, in principle, they are infinitely deformable while retaining metallic conductivity. Liquid metals have been used for stretchable wires and interconnects, reconfigurable antennas, soft sensors, self-healing circuits, and conformal electrodes. In contrast to Hg, liquid metals based on gallium have low toxicity and essentially no vapor pressure and are therefore considered safe to handle. Whereas most liquids bead up to minimize surface energy, the presence of a surface oxide on these metals makes it possible to pattern them into useful shapes using a variety of techniques, including fluidic injection and 3D printing. In addition to forming excellent conductors, these metals can be used actively to form memory devices, sensors, and diodes that are completely built from soft materials. The properties of these materials, their applications within soft and stretchable electronics, and future opportunities and challenges are considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. One-Electron Theory of Metals. Cohesive and Structural Properties

    Skriver, Hans Lomholt

    The work described in the report r.nd the 16 accompanying publications is based upon a one-electron theory obtained within the local approximation to density-functional theory, and deals with the ground state of metals as obtained from selfconsistent electronic-structure calculations performed...... by means of the Linear Muffin-Tin Orbital (LMTO) method. It has been the goal of the work to establish how well this one-electron approach describes physical properties such as the crystal structures of the transition metals, the structural phase transitions in the alkali, alkaline earth, and rare earth...

  1. Electronic states of myricetin

    Vojta, Danijela; Karlsen, Eva; Spanget-Larsen, Jens

    2017-01-01

    Myricetin (3,3',4',5,5',7'-hexahydroxyflavone) was investigated by linear dichroism spectroscopy on molecular samples partially aligned in stretched poly(vinyl alcohol) (PVA). At least five electronic transitions in the range 40000 – 20000 cm–1 were characterized with respect to their wavenumbers......, relative intensities, and transition moment directions. The observed bands were assigned to electronic transitions predicted with TD-B3LYP/6-31+G(d,p)....

  2. Electron beam selectively seals porous metal filters

    Snyder, J. A.; Tulisiak, G.

    1968-01-01

    Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.

  3. Electron scattering on metal clusters and fullerenes

    Solov'yov, A.V.

    2001-01-01

    This paper gives a survey of physical phenomena manifesting themselves in electron scattering on atomic clusters. The main emphasis is made on electron scattering on fullerenes and metal clusters, however some results are applicable to other types of clusters as well. This work is addressed to theoretical aspects of electron-cluster scattering, however some experimental results are also discussed. It is demonstrated that the electron diffraction plays important role in the formation of both elastic and inelastic electron scattering cross sections. It is elucidated the essential role of the multipole surface and volume plasmon excitations in the formation of electron energy loss spectra on clusters (differential and total, above and below ionization potential) as well as the total inelastic scattering cross sections. Particular attention is paid to the elucidation of the role of the polarization interaction in low energy electron-cluster collisions. This problem is considered for electron attachment to metallic clusters and the plasmon enhanced photon emission. Finally, mechanisms of electron excitation widths formation and relaxation of electron excitations in metal clusters and fullerenes are discussed. (authors)

  4. Stability and electronic properties of groups IIB to VB metal ions in unusual oxidation states and the 2S /SUB 1/2/ electronic state in lithium borate glasses

    Aleksandrov, A.I.; Bubnov, N.N.; Kraevskii, S.L.; Prokof'ev, A.I.; Raspertova, Z.I.; Solinov, V.F.

    1986-01-01

    The authors study lithium borate glasses containing groups IIB to VB metal oxides. Chemically pure reagents were used to synthesize the glasses which were subjected to gamma-rays at 77 and 300 K with doses of up to 100 kR. The EST spectra were recorded on a Varian E-12 spectrometer in the 3 cm CW frequency region with a 100 kHz magnetic field modulation. It was established that after gamma-irradiation at 77 and 300 K of the lithium borate glass system containing up to 10% of cadmium, tin, thalium, and lead oxides, additional ESR lines arise in the free electron g factor region. The authors have determined the missing ESR spectra for nonactivated lithium borate glasses by studying glasses with additions of Zn, Ge, and Sb oxides

  5. One-electron reduction of 1,2-dihydroxy-9,10-anthraquinone and some of its transition metal complexes in aqueous solution and in aqueous isopropanol-acetone-mixed solvent: a steady-state and pulse radiolysis study

    Das, S.; Bhattacharya, A.; Mandal, P.C.; Rath, M.C.; Mukherjee, T.

    2002-01-01

    One-electron reduction of 1,2-dihydroxy-9,10-anthraquinone (DHA) and its complexes with Cu(II), Ni(II) and Fe(III), by acetone ketyl radical, (CH 3 ) 2 C·OH, was carried out in aqueous solution and in aqueous isopropanol acetone mixed solvent using both steady-state gamma radiolysis and pulse radiolysis techniques. The rate constants for the reduction of DHA at different pH values by the ketyl radical are in the order of ∼10 9 dm 3 mol -1 s -1 , whereas those for the metal complexes are comparatively less. These rate constants are, however, in conformity with the one-electron reduction potentials of the ligand in free DHA and in its metal complexes. Decay kinetics of the one-electron reduced semiquinones of the free ligand and its metal complexes suggest disproportionation of the semiquinone in the case of the free ligand and intermolecular electron transfer from the co-ordinated semiquinone radical to the metal centre in the case of the metal complexes

  6. Electronic specific heat of transition metal carbides

    Conte, R.

    1964-07-01

    The experimental results that make it possible to define the band structure of transition metal carbides having an NaCI structure are still very few. We have measured the electronic specific heat of some of these carbides of varying electronic concentration (TiC, either stoichiometric or non-stoichiometric, TaC and mixed (Ti, Ta) - C). We give the main characteristics (metallography, resistivity, X-rays) of our samples and we describe the low temperature specific heat apparatus which has been built. In one of these we use helium as the exchange gas. The other is set up with a mechanical contact. The two use a germanium probe for thermometer. The measurement of the temperature using this probe is described, as well as the various measurement devices. The results are presented in the form of a rigid band model and show that the density of the states at the Fermi level has a minimum in the neighbourhood of the group IV carbides. (author) [fr

  7. State promotion and neutralization of ions near metal surface

    Zinoviev, A.N.

    2011-01-01

    Research highlights: → Multiply charged ion and the charge induced in the metal form a dipole. → Dipole states are promoted into continuum with decreasing ion-surface distance. → These states cross the states formed from metal atom. → Proposed model explains the dominant population of deep bound states. → Observed spectra of emitted Auger electrons prove this promotion model. -- Abstract: When a multiply charged ion with charge Z approaches the metal surface, a dipole is formed by the multiply charged ion and the charge induced in the metal. The states for such a dipole are promoted into continuum with decreasing ion-surface distance and cross the states formed from metal atom. The model proposed explains the dominant population of deep bound states in collisions considered.

  8. Transmission electron microscopy of mercury metal

    Anjum, Dalaver H.

    2016-03-28

    Summary: Transmission electron microcopy (TEM) analysis of liquid metals, especially mercury (Hg), is difficult to carry out because their specimen preparation poses a daunting task due to the unique surface properties of these metals. This paper reports a cryoTEM study on Hg using a novel specimen preparation technique. Hg metal is mixed with water using sonication and quenched in liquid ethane cryogen. This technique permits research into the morphological, phase and structural properties of Hg at nanoscale dimensions. © 2016 Royal Microscopical Society.

  9. Interaction between electrons and tunneling levels in metallic glasses

    Black, J.L.; Gyorffy, B.L.

    1978-01-01

    A simple model in which the conduction electrons of a metallic glass experience a local time-dependent potential due to two-level tunneling states is considered. The model exhibits interesting divergent behavior which is quite different from that predicted by an earlier ''s-d Kondo'' model

  10. Electronic transport properties of (fluorinated) metal phthalocyanine

    Fadlallah, M M; Eckern, U; Romero, A H; Schwingenschlö gl, Udo

    2015-01-01

    The magnetic and transport properties of the metal phthalocyanine (MPc) and F16MPc (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ag) families of molecules in contact with S–Au wires are investigated by density functional theory within the local density approximation, including local electronic correlations on the central metal atom. The magnetic moments are found to be considerably modified under fluorination. In addition, they do not depend exclusively on the configuration of the outer electronic shell of the central metal atom (as in isolated MPc and F16MPc) but also on the interaction with the leads. Good agreement between the calculated conductance and experimental results is obtained. For M = Ag, a high spin filter efficiency and conductance is observed, giving rise to a potentially high sensitivity for chemical sensor applications.

  11. Electronic transport properties of (fluorinated) metal phthalocyanine

    Fadlallah, M M

    2015-12-21

    The magnetic and transport properties of the metal phthalocyanine (MPc) and F16MPc (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ag) families of molecules in contact with S–Au wires are investigated by density functional theory within the local density approximation, including local electronic correlations on the central metal atom. The magnetic moments are found to be considerably modified under fluorination. In addition, they do not depend exclusively on the configuration of the outer electronic shell of the central metal atom (as in isolated MPc and F16MPc) but also on the interaction with the leads. Good agreement between the calculated conductance and experimental results is obtained. For M = Ag, a high spin filter efficiency and conductance is observed, giving rise to a potentially high sensitivity for chemical sensor applications.

  12. The Raman effect and its application to electronic spectroscopies in metal-centered species : Techniques and investigations in ground and excited states

    Browne, W.R.; J. McGarvey, J.

    In the decades since its discovery and somewhat limited early applications, Raman scattering has become the basis for the development of a variety of methods for probing molecular structure both in ground and electronically excited states. In this review, following a brief look at the underlying

  13. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    Hegde, Ganesh, E-mail: ghegde@purdue.edu; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard, E-mail: gekco@purdue.edu [Network for Computational Nanotechnology (NCN), Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Boykin, Timothy [Department of Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama (United States)

    2014-03-28

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.

  14. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard; Boykin, Timothy

    2014-01-01

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales

  15. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard

    2014-03-01

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.

  16. Effects of lattice fluctuations on electronic transmission in metal/conjugated-oligomer/metal structures

    Yu, Z.G.; Smith, D.L.; Saxena, A.; Bishop, A.R.

    1997-01-01

    The electronic transmission across metal/conjugated-oligomer/metal structures in the presence of lattice fluctuations is studied for short oligomer chains. The lattice fluctuations are approximated by static white noise disorder. Resonant transmission occurs when the energy of an incoming electron coincides with a discrete electronic level of the oligomer. The corresponding transmission peak diminishes in intensity with increasing disorder strength. Because of disorder there is an enhancement of the electronic transmission for energies that lie within the electronic gap of the oligomer. If fluctuations are sufficiently strong, a transmission peak within the gap is found at the midgap energy E=0 for degenerate conjugated oligomers (e.g., trans-polyacetylene) and E≠0 for AB-type degenerate oligomers. These results can be interpreted in terms of soliton-antisoliton states created by lattice fluctuations. copyright 1997 The American Physical Society

  17. Introduction to solid state electronics

    Wang, FFY

    1989-01-01

    This textbook is specifically tailored for undergraduate engineering courses offered in the junior year, providing a thorough understanding of solid state electronics without relying on the prerequisites of quantum mechanics. In contrast to most solid state electronics texts currently available, with their generalized treatments of the same topics, this is the first text to focus exclusively and in meaningful detail on introductory material. The original text has already been in use for 10 years. In this new edition, additional problems have been added at the end of most chapters. These proble

  18. Electronic processes in organic electronics bridging nanostructure, electronic states and device properties

    Kudo, Kazuhiro; Nakayama, Takashi; Ueno, Nobuo

    2015-01-01

    The book covers a variety of studies of organic semiconductors, from fundamental electronic states to device applications, including theoretical studies. Furthermore, innovative experimental techniques, e.g., ultrahigh sensitivity photoelectron spectroscopy, photoelectron yield spectroscopy, spin-resolved scanning tunneling microscopy (STM), and a material processing method with optical-vortex and polarization-vortex lasers, are introduced. As this book is intended to serve as a textbook for a graduate level course or as reference material for researchers in organic electronics and nanoscience from electronic states, fundamental science that is necessary to understand the research is described. It does not duplicate the books already written on organic electronics, but focuses mainly on electronic properties that arise from the nature of organic semiconductors (molecular solids). The new experimental methods introduced in this book are applicable to various materials (e.g., metals, inorganic and organic mater...

  19. Transient thermal and nonthermal electron and phonon relaxation after short-pulsed laser heating of metals

    Giri, Ashutosh; Hopkins, Patrick E.

    2015-01-01

    Several dynamic thermal and nonthermal scattering processes affect ultrafast heat transfer in metals after short-pulsed laser heating. Even with decades of measurements of electron-phonon relaxation, the role of thermal vs. nonthermal electron and phonon scattering on overall electron energy transfer to the phonons remains unclear. In this work, we derive an analytical expression for the electron-phonon coupling factor in a metal that includes contributions from equilibrium and nonequilibrium distributions of electrons. While the contribution from the nonthermal electrons to electron-phonon coupling is non-negligible, the increase in the electron relaxation rates with increasing laser fluence measured by thermoreflectance techniques cannot be accounted for by only considering electron-phonon relaxations. We conclude that electron-electron scattering along with electron-phonon scattering have to be considered simultaneously to correctly predict the transient nature of electron relaxation during and after short-pulsed heating of metals at elevated electron temperatures. Furthermore, for high electron temperature perturbations achieved at high absorbed laser fluences, we show good agreement between our model, which accounts for d-band excitations, and previous experimental data. Our model can be extended to other free electron metals with the knowledge of the density of states of electrons in the metals and considering electronic excitations from non-Fermi surface states

  20. The electronic structure of normal metal-superconductor bilayers

    Halterman, Klaus; Elson, J Merle [Sensor and Signal Sciences Division, Naval Air Warfare Center, China Lake, CA 93355 (United States)

    2003-09-03

    We study the electronic properties of ballistic thin normal metal-bulk superconductor heterojunctions by solving the Bogoliubov-de Gennes equations in the quasiclassical and microscopic 'exact' regimes. In particular, the significance of the proximity effect is examined through a series of self-consistent calculations of the space-dependent pair potential {delta}(r). It is found that self-consistency cannot be neglected for normal metal layer widths smaller than the superconducting coherence length {xi}{sub 0}, revealing its importance through discernible features in the subgap density of states. Furthermore, the exact self-consistent treatment yields a proximity-induced gap in the normal metal spectrum, which vanishes monotonically when the normal metal length exceeds {xi}{sub 0}. Through a careful analysis of the excitation spectra, we find that quasiparticle trajectories with wavevectors oriented mainly along the interface play a critical role in the destruction of the energy gap.

  1. Electron pairing in dilute liquid metal-metal halide solutions

    Selloni, A.; Car, R.; Parrinello, M.; Carnevali, P.

    1987-09-10

    Spin density functional theory is used to describe the interaction between solvated electrons in KCl in the high dilution limit. In agreement with recent calculations based on the path integral method our results for antiparallel spin predict a strong tendency to form localized bielectronic complexes. At variance with numerical path integral, our method can efficiently treat the case of parallel spins. For this case we find that electrons repel each other and localize into separate F-center-like states.

  2. Electronic and thermodynamic properties of transition metal elements and compounds

    Haeglund, J.

    1993-01-01

    This thesis focuses on the use of band-structure calculations for studying thermodynamic properties of solids. We discuss 3d-, 4d- and 5d-transition metal carbides and nitrides. Through a detailed comparison between theoretical and experimental results, we draw conclusions on the character of the atomic bonds in these materials. We show how electronic structure calculations can be used to give accurate predictions for bonding energies. Part of the thesis is devoted to the application of the generalized gradient approximation in electronic structure calculations on transition metals. For structures with vibrational disorder, we present a method for calculating averaged phonon frequencies without using empirical information. For magnetic excitations, we show how a combined use of theoretical results and experimental data can yield information on magnetic fluctuations at high temperatures. The main results in the thesis are: Apart for an almost constant shift, theoretically calculated bonding energies for transition metal carbides and nitrides agree with experimental data or with values from analysis of thermochemical information. The electronic spectrum of transition metal carbides and nitrides can be separated into bonding, antibonding and nonbonding electronic states. The lowest enthalpy of formation for substoichiometric vanadium carbide VC 1-X at zero temperature and pressure occurs for a structure containing vacancies (x not equal to 0). The generalized gradient approximation improves theoretical calculated cohesive energies for 3d-transition metals. Magnetic phase transitions are sensitive to the description of exchange-correlation effects in electronic structure calculations. Trends in Debye temperatures can be successfully analysed in electronic structure calculations on disordered lattices. For the elements, there is a clear dependence on the crystal structure (e.g., bcc, fcc or hcp). Chromium has fluctuating local magnetic moments at temperatures well above

  3. Dynamic screening and electron dynamics in low-dimensional metal systems

    Silkin, V.M.; Quijada, M.; Vergniory, M.G.; Alducin, M.; Borisov, A.G.; Diez Muino, R.; Juaristi, J.I.; Sanchez-Portal, D.; Chulkov, E.V.; Echenique, P.M.

    2007-01-01

    Recent advances in the theoretical description of dynamic screening and electron dynamics in metallic media are reviewed. The time-dependent building-up of screening in different situations is addressed. Perturbative and non-perturbative theories are used to study electron dynamics in low-dimensional systems, such as metal clusters, image states, surface states and quantum wells. Modification of the electronic lifetimes due to confinement effects is analyzed as well

  4. Molecular electronics with single molecules in solid-state devices

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-01-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule...

  5. Electronic properties of iron impurity in hcp metals from Moessbauer studies

    Janot, C.; Delcroix, P.

    1975-01-01

    Moessbauer spectroscopy was used in quantitative investigating the electronic properties of iron impurities in hexagonal close-packed metals. Beryllium of the highest commercially obtainable purity containing about 300 ppm residual impurities was used as a host element. Experimental evidence is given for the existence of localized electronic states which have non-spherical distribution and obviously contribute especially to the electric field gradient. Iron impurity seems to retain the same electronic behaviour as long as the host hcp metal is a normal one (Mg, Cd, Zn), but the localized electronic states seem to disappear when the host is a transition hcp metal (Co, Ti, Sc, Zr, etc.). (Z.S.)

  6. Metal-nanoparticle single-electron transistors fabricated using electromigration

    Bolotin, K I; Kuemmeth, Ferdinand; Pasupathy, A N

    2004-01-01

    We have fabricated single-electron transistors from individual metal nanoparticles using a geometry that provides improved coupling between the particle and the gate electrode. This is accomplished by incorporating a nanoparticle into a gap created between two electrodes using electromigration, all...... on top of an oxidized aluminum gate. We achieve sufficient gate coupling to access more than ten charge states of individual gold nanoparticles (5–15 nm in diameter). The devices are sufficiently stable to permit spectroscopic studies of the electron-in-a-box level spectra within the nanoparticle as its...

  7. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    Richard T. Scalettar; Warren E. Pickett

    2005-01-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals

  8. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    Scalettar, Richard T.; Pickett, Warren E.

    2004-07-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals.

  9. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  10. Metal oxide semiconductor thin-film transistors for flexible electronics

    Petti, Luisa; Vogt, Christian; Büthe, Lars; Cantarella, Giuseppe; Tröster, Gerhard [Electronics Laboratory, Swiss Federal Institute of Technology, Zürich (Switzerland); Münzenrieder, Niko [Electronics Laboratory, Swiss Federal Institute of Technology, Zürich (Switzerland); Sensor Technology Research Centre, University of Sussex, Falmer (United Kingdom); Faber, Hendrik; Bottacchi, Francesca; Anthopoulos, Thomas D. [Department of Physics and Centre for Plastic Electronics, Imperial College London, London (United Kingdom)

    2016-06-15

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In

  11. Electron confinement in thin metal films. Structure, morphology and interactions

    Dil, J.H.

    2006-05-15

    This thesis investigates the interplay between reduced dimensionality, electronic structure, and interface effects in ultrathin metal layers (Pb, In, Al) on a variety of substrates (Si, Cu, graphite). These layers can be grown with such a perfection that electron confinement in the direction normal to the film leads to the occurrence of quantum well states in their valence bands. These quantum well states are studied in detail, and their behaviour with film thickness, on different substrates, and other parameters of growth are used here to characterise a variety of physical properties of such nanoscale systems. The sections of the thesis deal with a determination of quantum well state energies for a large data set on different systems, the interplay between film morphology and electronic structure, and the influence of substrate electronic structure on their band shape; finally, new ground is broken by demonstrating electron localization and correlation effects, and the possibility to measure the influence of electron-phonon coupling in bulk bands. (orig.)

  12. 21 CFR 886.4400 - Electronic metal locator.

    2010-04-01

    ...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4400 Electronic metal locator. (a) Identification. An electronic metal locator is an AC-powered device with probes intended to locate metallic foreign bodies in the eye or eye socket. (b) Classification. Class II. ...

  13. Spectroscopic properties of the low-lying electronic states of RbHen (n = 1, 2) and their comparison with lighter alkali metal-helium systems

    Chattopadhyay, Anjan

    2012-01-01

    Ab initio-based configuration interaction studies on RbHe and He–Rb–He have explored some key features of the low-lying electronic states of these van der Waals systems. The radiative lifetime of the Rb*He exciplex has been calculated to be around 24.5 ns, which is slightly higher than the HeRb*He lifetime (∼20 ns) and lower than the atomic fluorescence lifetime of Rb, by roughly 3.5 ns. Better exciplex stability of the symmetric triatomic system is evidenced by its higher binding energy value in comparison to the diatomic system by a substantial margin. BSSE-corrected spin–orbit calculations of RbHe have predicted a potential barrier of the 1 2 Π 1/2 state with a height of 15 cm −1 and width of 2.57 Å. The 2 Π u state of the triatomic molecule shows a conical intersection of its Renner–Teller components (1 2 A 1 and 1 2 B 2 ) near a 99° bond angle along the bending path. Their unstable higher excited states (1 2 Σ + 1/2 or 1 2 Σ + g, 1/2 ) can trigger the pumping of the blue side of the ns 2 S 1/2 → np 2 P 3/2 transition, and this may eventually lead to the np 2 P 1/2 →ns 2 S 1/2 lasing transition. The broad fluorescence band with a peak near 11 900 cm −1 is found to arise from the 1 2 Π 3/2 –X 2 Σ + 1/2 transition of RbHe. (paper)

  14. Electron beam welding of dissimilar metals

    Metzger, G.; Lison, R.

    1976-01-01

    Thirty-three two-memeber combinations of dissimilar metals were electron beam welded as square-groove butt joints in 0.08 and 0.12 in. sheet material. Many joints were ''braze welded'' by offsetting the electron beam about 0.02 in. from the butt joint to achieve fusion of the lower melting point metal, but no significant fusion of the other member of the pair. The welds were evaluated by visual and metallographic examination, transverse tensile tests, and bend tests. The welds Ag/Al, Ag/Ni15Cr7Fe, Cu/Ni15Cr7Fe, Cu/V, Cu20Ni/Ni15Cr7Fe, Fe18Cr8Ni/Ni, Fe18Cr8Ni/Ni15Cr7Fe, Nb/Ti, Nb/V, Ni/Ni15Cr7Fe, and Cb/V10Ti were readily welded and weld properties were excellent. Others which had only minor defects included the Ag/Cu20Ni, Ag/Ti, Ag/V, Cu/Fe18Cr8Ni, Cu/V10Ti, Cu20Ni/Fe18Cr8Ni, and Ti/Zr2Sn welds. The Cu/Ni weld had deep undercut, but was in other respects excellent. The mechanical properties of the Ag/Fe18Cr8Ni weld were poor, but the defect could probably be corrected. Difficulty with cracking was experienced with the Al/Ni and Fe18Cr8Ni/V welds, but sound welds had excellent mechanical properties. The remaining welds Al-Cu, Al/Cu20Ni, Al/Fe18Cr8Ni, Al/Ni15Cr7Fe, Cu20Ni/V, Cu20Ni/V10Ti, Cb/Zr2Sn, Ni/Ti, Ni15Cr7Fe/V, Ni15Cr7Fe/V10Ti, and Ti/V were unsuccessful, due to brittle phases, primarily at the weld metal-base metal interface. In addition to the two-member specimens, several joints were made by buttering. Longitudinal weld specimens of the three-member combination Al/Ni/Fe18Cr8Ni and the five member combination Fe18Cr8Ni/V/Cb/Ti/Zr2Sn showed good tensile strength and satisfactory elongation. 6 tables, 16 figures

  15. Magnetism in heavy-electron metals

    Ott, H.R.

    1997-01-01

    Originally it was believed that the presence of heavy-mass charge carriers at low temperatures in some special rare-earth or actinide compounds was simply the result of a suppression of magnetic order in these materials. Various experiments reveal, however, that magnetic order may occur from a heavy-electron state or that a heavy-electron state may also develop within a magnetically ordered materix. It turned out that pure compounds without any sign of a cooperative phase transition down to very low temperatures are rare but examples are known where microscopic experimental probes give evidence for strong magnetic correlations involving moments of much reduced magnitude (≤ 0.1μ Β ) in such cases. It apperas that electronic and magnetic inhomogeneities, both in real and reciprocal space occur which are not simply the result of chemical inhomogeneities. Long range magnetic order among strongly reduced magnetic moments seems to be a particular feature of some heavy-electron materials. Other examples show, that disorder may lead to a suppression of cooperative phase transitions and both macroscopic and microscopic physical properties indicate that conservative model calculations are not sufficient to describe the experimental observations. The main difficulty is to find a suitable theoretical approach that considers the various interactions of similar strength on an equal footing. Different examples of these various features are demonstrated and discussed. (au)

  16. High temperature equation of state of metallic hydrogen

    Shvets, V. T.

    2007-01-01

    The equation of state of liquid metallic hydrogen is solved numerically. Investigations are carried out at temperatures from 3000 to 20 000 K and densities from 0.2 to 3 mol/cm 3 , which correspond both to the experimental conditions under which metallic hydrogen is produced on earth and the conditions in the cores of giant planets of the solar system such as Jupiter and Saturn. It is assumed that hydrogen is in an atomic state and all its electrons are collectivized. Perturbation theory in the electron-proton interaction is applied to determine the thermodynamic potentials of metallic hydrogen. The electron subsystem is considered in the randomphase approximation with regard to the exchange interaction and the correlation of electrons in the local-field approximation. The proton-proton interaction is taken into account in the hard-spheres approximation. The thermodynamic characteristics of metallic hydrogen are calculated with regard to the zero-, second-, and third-order perturbation theory terms. The third-order term proves to be rather essential at moderately high temperatures and densities, although it is much smaller than the second-order term. The thermodynamic potentials of metallic hydrogen are monotonically increasing functions of density and temperature. The values of pressure for the temperatures and pressures that are characteristic of the conditions under which metallic hydrogen is produced on earth coincide with the corresponding values reported by the discoverers of metallic hydrogen to a high degree of accuracy. The temperature and density ranges are found in which there exists a liquid phase of metallic hydrogen

  17. Phase stability and electronic structure of transition-metal aluminides

    Carlsson, A.E.

    1992-01-01

    This paper will describe the interplay between die electronic structure and structural energetics in simple, complex, and quasicrystalline Al-transition metal (T) intermetallics. The first example is the Ll 2 -DO 22 competition in Al 3 T compounds. Ab-initio electronic total-energy calculations reveal surprisingly large structural-energy differences, and show that the phase stability of both stoichiometric and ternary-substituted compounds correlates closely with a quasigap in the electronic density of states (DOS). Secondly, ab-initio calculations for the structural stability of the icosahedrally based Al 12 W structure reveal similar quasigap effects, and provide a simple physical explanation for the stability of the complex aluminide structures. Finally, parametrized tight-binding model calculations for the Al-Mn quasicrystal reveal a large spread in the local Mn DOS behavior, and support a two-site model for the quasicrystal's magnetic behavior

  18. Energy of ground state of laminar electron-hole liquid

    Andryushin, E.A.

    1976-01-01

    The problem of a possible existence of metal electron-hole liquid in semiconductors is considered. The calculation has been carried out for the following model: two parallel planes are separated with the distance on one of the planes electrons moving, on the other holes doing. Transitions between the planes are forbidden. The density of particles for both planes is the same. The energy of the ground state and correlation functions for such electron-and hole system are calculated. It is shown that the state of a metal liquid is more advantageous against the exciton gas. For the mass ratio of electrons and holes, msub(e)/msub(h) → 0 a smooth rearrangement of the system into a state with ordered heavy particles is observed

  19. Angular distribution of scattered electron and medium energy electron spectroscopy for metals

    Oguri, Takeo; Ishioka, Hisamichi; Fukuda, Hisashi; Irako, Mitsuhiro

    1986-01-01

    The angular distribution (AD) of scattered electrons produced by medium energy incident electrons (E P = 50 ∼ 300 eV) from polycrystalline Ti, Fe, Ni, Cu and Au were obtained by the angle-resolved medium energy electron spectrometer. The AD of the energy loss peaks are similar figures to AD of the elastically reflected electron peaks. Therefore, the exchanged electrons produced by the knock-on collision between the incident electrons and those of metals without momentum transfer are observed as the energy loss spectra (ELS). This interpretation differs from the inconsequent interpretation by the dielectric theory or the interband transition. The information depth and penetration length are obtained from AD of the Auger electron peaks. The contribution of the surface to spectra is 3 % at the maximum for E P = 50 eV. The true secondary peaks representing the secondary electron emission spectroscopy (SES) are caused by the emissions of the energetic electrons (kT e ≥ 4 eV), and SES is the inversion of ELS. The established fundamental view is that the medium energy electron spectra represent the total bulk density of states. (author)

  20. State-selective electron capture

    Dunford, R.W.; Liu, C.J.; Berry, H.G.; Pardo, R.C.; Raphaelian, M.L.A.

    1988-01-01

    We report results from a new atomic physics program using the Argonne PII ECR ion source which is being built as part of the upgrade of the Argonne Tandem-Linear Accelerator (ATLAS). Our initial experiments have been aimed at studying state-selective electron capture in ion-atom collisions using the technique of Photon Emission Spectroscopy. We are extending existing cross section measurements at low energy ( 6+ and O 7+ on He and H 2 targets in the energy range from 1-105 keV/amu. We also present uv spectra obtained in collisions of O 6+ , O 5+ and N 5+ on a sodium target. 4 refs., 2 figs., 1 tab

  1. Electronic specific heats in metal--hydrogen systems

    Flotow, H.E.

    1979-01-01

    The electronic specific heats of metals and metal--hydrogen systems can in many cases be evaluated from the measured specific heats at constant pressure, C/sub p/, in the temperature range 1 to 10 K. For the simplest case, C/sub p/ = γT + βT 3 , where γT represents the specific heat contribution associated with the conduction electrons, and βT 3 represents lattice specific heat contribution. The electronic specific heat coefficient, γ, is important because it is proportional to electron density of states at the Fermi surface. A short description of a low temperature calorimetric cryostat employing a 3 He/ 4 He dilution refrigeration is given. Various considerations and complications encountered in the evaluation of γ from specific heat data are discussed. Finally, the experimental values of γ for the V--Cr--H system and for the Lu--H system are summarized and the variations of γ as function of alloy composition are discussed

  2. Metallization of bacterial cellulose for electrical and electronic device manufacture

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  3. Laser photoelectron spectroscopy of MnH - and FeH - : Electronic structures of the metal hydrides, identification of a low-spin excited state of MnH, and evidence for a low-spin ground state of FeH

    Stevens, Amy E.; Feigerle, C. S.; Lineberger, W. C.

    1983-05-01

    The laser photoelectron spectra of MnH- and MnD-, and FeH- and FeD- are reported. A qualitative description of the electronic structure of the low-spin and high-spin states of the metal hydrides is developed, and used to interpret the spectra. A diagonal transition in the photodetachment to the known high-spin, 7Σ+, ground state of MnH is observed. An intense off-diagonal transition to a state of MnH, at 1725±50 cm-1 excitation energy, is attributed to loss of an antibonding electron from MnH-, to yield a low-spin quintet state of MnH. For FeH- the photodetachment to the ground state is an off-diagonal transition, attributed to loss of the antibonding electron from FeH-, to yield a low-spin quartet ground state of FeH. A diagonal transition results in an FeH state at 1945±55 cm-1; this state of FeH is assigned as the lowest-lying high-spin sextet state of FeH. An additional excited state of MnH and two other excited states of FeH are observed. Excitation energies for all the states are reported; vibrational frequencies and bond lengths for the ions and several states of the neutrals are also determined from the spectra. The electron affinity of MnH is found to be 0.869±0.010 eV; and the electron affinity of FeH is determined to be 0.934±0.011 eV. Spectroscopic constants for the various deuterides are also reported.

  4. Magnetic Ground State Properties of Transition Metals

    Andersen, O. K.; Madsen, J.; Poulsen, U. K.

    1977-01-01

    We review a simple one-electron theory of the magnetic and cohesive properties of ferro- and nearly ferromagnetic transition metals at 0 K. The theory is based on the density functional formalism, it makes use of the local spin density and atomic sphere approximations and it may, with further app...

  5. States of light positive particles in metals

    Klamt, A.G.

    1987-01-01

    The states of light positively charged particles in metals are treated in tight-binding approximation. The polaron states of the particles are investigated. The 'molecular crystal model' and an interstitial model' are treated. Moreover, the particle-lattice coupling of excited particles is treated for fcc and bcc lattices. (BHO)

  6. Molecular electronics with single molecules in solid-state devices.

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-09-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong.

  7. Ultrafast electronic relaxation of excited state vitamin B12 in the gas phase

    Shafizadeh, Niloufar; Poisson, Lionel; Soep, Benoit

    2008-01-01

    The time evolution of electronically excited vitamin B 12 (cyanocobalamin) has been observed for the first time in the gas phase. It reveals an ultrafast decay to a state corresponding to metal excitation. This decay is interpreted as resulting from a ring to metal electron transfer. This opens the observation of the excited state of other complex biomimetic systems in the gas phase, the key to the characterisation of their complex evolution through excited electronic states

  8. States of the electron in hydrocarbon liquids

    Mozumder, A.

    2005-01-01

    Some features of the stationary and dynamic states of the electron are critically examined. Outline of a quantum mechanical description of electron thermalization is attempted qualitatively. The effects of both the mean free path and the reaction inefficiency on electron-ion geminate escape probability are investigated by a recently developed Metropolis method. The trapped state is interpreted in terms of Anderson localization, yielding an approximate number of molecules interacting with the trapped electron

  9. Methods for recovering metals from electronic waste, and related systems

    Lister, Tedd E; Parkman, Jacob A; Diaz Aldana, Luis A; Clark, Gemma; Dufek, Eric J; Keller, Philip

    2017-10-03

    A method of recovering metals from electronic waste comprises providing a powder comprising electronic waste in at least a first reactor and a second reactor and providing an electrolyte comprising at least ferric ions in an electrochemical cell in fluid communication with the first reactor and the second reactor. The method further includes contacting the powders within the first reactor and the second reactor with the electrolyte to dissolve at least one base metal from each reactor into the electrolyte and reduce at least some of the ferric ions to ferrous ions. The ferrous ions are oxidized at an anode of the electrochemical cell to regenerate the ferric ions. The powder within the second reactor comprises a higher weight percent of the at least one base metal than the powder in the first reactor. Additional methods of recovering metals from electronic waste are also described, as well as an apparatus of recovering metals from electronic waste.

  10. Electronic structure and dynamics of metal and metal-covered surfaces

    Yang, Shu.

    1992-01-01

    The unoccupied electronic states of;Ni(111) and Al(111) have been studied using angle-resolved inverse-photoemission (IPE) spectroscopy. We have characterized the n = 1 image potential state on Ni(111) measuring an effective mass of m * /m = 1, consistent with recent two-photon photoemission results as well as theoretical calculations using a phase-analysis model, but differing considerably from the earlier angle-resolved IPE measurements. The bulk related features on Ni(111) observed in our experiment agree very well with an empirical Ni band structure calculation. On Al(111), we have conducted an extensive study of the image potential resonance using both angle-resolved IPE spectroscopy and tunneling spectroscopy with the scanning tunneling microscope. We have used Al as a testing case for both nearly-free-electron model and first-principles calculations were needed to obtain a semi-quantitative account of the bulk features of Al, a simple metal. Improved quantitative agreement occurred when excitation effects were considered. In addition, several surface resonance features have been identified and characterized on Al(111). We have also conducted a geometric structural investigation of a metal overlayer system, Ni/Cu(111), using high-resolution electron energy loss spectroscopy with CO as a probe molecule. The results indicate island formation and two-dimensional mixing at the initial stage of bimetallic interface formation. A new adsorption site with CO bonded to both Ni and Cu has been discovered on the Ni-Cu intermixed surface. IPE results for the Cu-covered Ni(111) surface show an enhanced angular range for the Cu image state. Finally, the unique ability of Auger-photoelectron coincidence spectroscopy to probing local valence electronic structure has been tested in a case study of TaC(111). A novel Auger decay channel has also been observed

  11. Reconfigurable electronics using conducting metal-organic frameworks

    Allendorf, Mark D.; Talin, Albert Alec; Leonard, Francois; Stavila, Vitalie

    2017-07-18

    A device including a porous metal organic framework (MOF) disposed between two terminals, the device including a first state wherein the MOF is infiltrated by a guest species to form an electrical path between the terminals and a second state wherein the electrical conductivity of the MOF is less than the electrical conductivity in the first state. A method including switching a porous metal organic framework (MOF) between two terminals from a first state wherein a metal site in the MOF is infiltrated by a guest species that is capable of charge transfer to a second state wherein the MOF is less electrically conductive than in the first state.

  12. The secondary electron yield of noble metal surfaces

    L. A. Gonzalez

    2017-11-01

    Full Text Available Secondary electron yield (SEY curves in the 0-1000 eV range were measured on polycrystalline Ag, Au and Cu samples. The metals were examined as introduced in the ultra-high vacuum chamber and after having been cleaned by Ar+ ion sputtering. The comparison between the curves measured on the clean samples and in the presence of contaminants, due to the permanence in atmosphere, confirmed that the SEY behavior is strongly influenced by the chemical state of the metal surface. We show that when using very slow primary electrons the sample work function can be determined with high accuracy from the SEY curves. Moreover we prove that SEY is highly sensitive to the presence of adsorbates even at submonolayer coverage. Results showing the effect of small quantities of CO adsorbed on copper are presented. Our findings demonstrate that SEY, besides being an indispensable mean to qualify technical materials in many technological fields, can be also used as a flexible and advantageous diagnostics to probe surfaces and interfaces.

  13. Cluster perturbation theory for calculation of electronic properties of ensembles of metal nanoclusters

    Zhumagulov, Yaroslav V.; Krasavin, Andrey V.; Kashurnikov, Vladimir A.

    2018-05-01

    The method is developed for calculation of electronic properties of an ensemble of metal nanoclusters with the use of cluster perturbation theory. This method is applied to the system of gold nanoclusters. The Greens function of single nanocluster is obtained by ab initio calculations within the framework of the density functional theory, and then is used in Dyson equation to group nanoclusters together and to compute the Greens function as well as the electron density of states of the whole ensemble. The transition from insulator state of a single nanocluster to metallic state of bulk gold is observed.

  14. Multiple electron generation in a sea of electronic states

    Witzel, Wayne; Shabaev, Andrew; Efros, Alexander; Hellberg, Carl; Verne, Jacobs

    2009-03-01

    In traditional bulk semiconductor photovoltaics (PVs), each photon may excite a single electron-hole, wasting excess energy beyond the band-gap as heat. In nanocrystals, multiple excitons can be generated from a single photon, enhancing the PV current. Multiple electron generation (MEG) may result from Coulombic interactions of the confined electrons. Previous investigations have been based on incomplete or over-simplified electronic-state representations. We present results of quantum simulations that include hundreds of thousands of configuration states and show how the complex dynamics, even in a closed electronic system, yields a saturated MEG effect on a femtosecond timescale. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Electronic properties of semiconductor surfaces and metal/semiconductor interfaces

    Tallarida, M.

    2005-05-15

    This thesis reports investigations of the electronic properties of a semiconductor surface (silicon carbide), a reactive metal/semiconductor interface (manganese/silicon) and a non-reactive metal/semiconductor interface (aluminum-magnesium alloy/silicon). The (2 x 1) reconstruction of the 6H-SiC(0001) surface has been obtained by cleaving the sample along the (0001) direction. This reconstruction has not been observed up to now for this compound, and has been compared with those of similar elemental semiconductors of the fourth group of the periodic table. This comparison has been carried out by making use of photoemission spectroscopy, analyzing the core level shifts of both Si 2p and C 1s core levels in terms of charge transfer between atoms of both elements and in different chemical environments. From this comparison, a difference between the reconstruction on the Si-terminated and the C-terminated surface was established, due to the ionic nature of the Si-C bond. The growth of manganese films on Si(111) in the 1-5 ML thickness range has been studied by means of LEED, STM and photoemission spectroscopy. By the complementary use of these surface science techniques, two different phases have been observed for two thickness regimes (<1 ML and >1 ML), which exhibit a different electronic character. The two reconstructions, the (1 x 1)-phase and the ({radical}3 x {radical}3)R30 -phase, are due to silicide formation, as observed in core level spectroscopy. The growth proceeds via island formation in the monolayer regime, while the thicker films show flat layers interrupted by deep holes. On the basis of STM investigations, this growth mode has been attributed to strain due to lattice mismatch between the substrate and the silicide. Co-deposition of Al and Mg onto a Si(111) substrate at low temperature (100K) resulted in the formation of thin alloy films. By varying the relative content of both elements, the thin films exhibited different electronic properties

  16. Separating and recycling metals from mixed metallic particles of crushed electronic wastes by vacuum metallurgy.

    Zhan, Lu; Xu, Zhenming

    2009-09-15

    During the treatment of electronic wastes, a crushing process is usually used to strip metals from various base plates. Several methods have been applied to separate metals from nonmetals. However, mixed metallic particles obtained from these processes are still a mixture of various metals, including some toxic heavy metals such as lead and cadmium. With emphasis on recovering copper and other precious metals, there have hitherto been no satisfactory methods to recover these toxic metals. In this paper, the criterion of separating metals from mixed metallic particles by vacuum metallurgy is built. The results show that the metals with high vapor pressure have been almost recovered completely, leading to a considerable reduction of environmental pollution. In addition, the purity of copper in mixed particles has been improved from about 80 wt % to over 98 wt %.

  17. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    Baba, Shintaro; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture. 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electric field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.

  18. Electronic structure of metal overlayers on rhodium

    Feibelman, P.J.; Hamann, D.R.

    1983-01-01

    We have evaluated work functions, surface core-level shifts, and surface band dispersions for clean, Ag-covered, and Pd-covered Rh(100) surfaces, and for clean and Ag-covered Rh(111). The calculations were performed self-consistently, using the surface-linearized augmented-plane-wave method. As expected from the Pauling electronegativities, Ag adsorption lowers the work function from the clean Rh value, by several tenths of an eV, while Pd has an almost negligible effect. The values calculated for the core-level shifts of various films are shown to correspond to expectations based on surface band narrowing and layerwise charge neutrality. Using the core-level shifts, we predict heat-of-adsorption differences (for Ag on Pd vs Ag on Rh, etc.) that are in quite good agreement with the empirical predictions of Miedema and Dorleijn. Finally, the chemical inactivity of the Ag-covered Rh surface is associated with the fact that, for that system, the outer-layer local density of states is essentially that of Ag, with a characteristically low value at the Fermi energy. On the other hand, the Pd-covered Rh surface should behave much like clean Rh with an extra electron per surface atom. The surface band dispersions for the Pd-covered and clean Rh surfaces are closely similar. This result contrasts sharply with the case of Pd-covered Nb, for which, because of the appreciable electronegativity difference, the Pd overlayer is effectively ''noble.''

  19. Size-dependent electronic properties of metal nanostructures

    First page Back Continue Last page Overview Graphics. Size-dependent electronic properties of metal nanostructures. G.U. Kulkarni. Chemistry and Physics of Materials Unit. Jawaharlal Nehru Centre for Advanced Scientific Research. Bangalore, India. kulkarni@jncasr.ac.in.

  20. Ion-induced electron emission from clean metals

    Baragiola, R.A.; Alonso, E.V.; Ferron, J.; Oliva-Florio, A.; Universidad Nacional de Cuyo, San Carlos de Bariloche

    1979-01-01

    We report recent experimental work on electron emission from clean polycrystalline metal surfaces under ion bombardment. We critically discuss existing theories and point out the presently unsolved problems. (orig.)

  1. Electron emission during multicharged ion-metal surface interactions

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Hughes, I.G.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    The electron emission during multicharged ion-metal surface interactions will be discussed. The interactions lead to the emission of a significant number of electrons. Most of these electrons have energies below 30 eV. For incident ions with innershell vacancies the emission of Auger electrons that fill these vacancies has been found to occur mainly below the surface. We will present recently measured electron energy distributions which will be used to discuss the mechanisms that lead to the emission of Auger and of low-energy electrons

  2. Electronic self-organization in layered transition metal dichalcogenides

    Ritschel, Tobias

    2015-10-30

    The interplay between different self-organized electronically ordered states and their relation to unconventional electronic properties like superconductivity constitutes one of the most exciting challenges of modern condensed matter physics. In the present thesis this issue is thoroughly investigated for the prototypical layered material 1T-TaS{sub 2} both experimentally and theoretically. At first the static charge density wave order in 1T-TaS{sub 2} is investigated as a function of pressure and temperature by means of X-ray diffraction. These data indeed reveal that the superconductivity in this material coexists with an inhomogeneous charge density wave on a macroscopic scale in real space. This result is fundamentally different from a previously proposed separation of superconducting and insulating regions in real space. Furthermore, the X-ray diffraction data uncover the important role of interlayer correlations in 1T-TaS{sub 2}. Based on the detailed insights into the charge density wave structure obtained by the X-ray diffraction experiments, density functional theory models are deduced in order to describe the electronic structure of 1T-TaS{sub 2} in the second part of this thesis. As opposed to most previous studies, these calculations take the three-dimensional character of the charge density wave into account. Indeed the electronic structure calculations uncover complex orbital textures, which are interwoven with the charge density wave order and cause dramatic differences in the electronic structure depending on the alignment of the orbitals between neighboring layers. Furthermore, it is demonstrated that these orbital-mediated effects provide a route to drive semiconductor-to-metal transitions with technologically pertinent gaps and on ultrafast timescales. These results are particularly relevant for the ongoing development of novel, miniaturized and ultrafast devices based on layered transition metal dichalcogenides. The discovery of orbital textures

  3. Electronic properties of antiferromagnetic UBi2 metal by exact exchange for correlated electrons method

    E Ghasemikhah

    2012-03-01

    Full Text Available This study investigated the electronic properties of antiferromagnetic UBi2 metal by using ab initio calculations based on the density functional theory (DFT, employing the augmented plane waves plus local orbital method. We used the exact exchange for correlated electrons (EECE method to calculate the exchange-correlation energy under a variety of hybrid functionals. Electric field gradients (EFGs at the uranium site in UBi2 compound were calculated and compared with the experiment. The EFGs were predicted experimentally at the U site to be very small in this compound. The EFG calculated by the EECE functional are in agreement with the experiment. The densities of states (DOSs show that 5f U orbital is hybrided with the other orbitals. The plotted Fermi surfaces show that there are two kinds of charges on Fermi surface of this compound.

  4. Limitations in cooling electrons using normal-metal-superconductor tunnel junctions.

    Pekola, J P; Heikkilä, T T; Savin, A M; Flyktman, J T; Giazotto, F; Hekking, F W J

    2004-02-06

    We demonstrate both theoretically and experimentally two limiting factors in cooling electrons using biased tunnel junctions to extract heat from a normal metal into a superconductor. First, when the injection rate of electrons exceeds the internal relaxation rate in the metal to be cooled, the electrons do not obey the Fermi-Dirac distribution, and the concept of temperature cannot be applied as such. Second, at low bath temperatures, states within the gap induce anomalous heating and yield a theoretical limit of the achievable minimum temperature.

  5. Solid-state physics for electronics

    Moliton, Andre

    2009-01-01

    Describing the fundamental physical properties of materials used in electronics, the thorough coverage of this book will facilitate an understanding of the technological processes used in the fabrication of electronic and photonic devices. The book opens with an introduction to the basic applied physics of simple electronic states and energy levels. Silicon and copper, the building blocks for many electronic devices, are used as examples. Next, more advanced theories are developed to better account for the electronic and optical behavior of ordered materials, such as diamond, and disordered ma

  6. Structure of liquid alkali metals as electron-ion plasmas

    Chaturvedi, D.K.; Senatore, G.; Tosi, M.P.

    1980-08-01

    The static structure factor of liquid alkali metals near freezing, and its dependence on temperature and pressure, are evaluated in an electron-ion plasma model from an accurate theoretical determination of the structure factor of the one-component classical plasma and electron-screening theory. Very good agreement is obtained with the available experimental data. (author)

  7. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    Lichtenberger, D.L.

    1991-10-01

    The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies has been developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. This relationship has been used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. We have been able to obtain a direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal. The ionization energies have also been used to correlate the rates of carbonyl substitution reactions of (η 5 -C 5 H 4 X)Rh(CO) 2 complexes, and to reveal the electronic factors that control the stability of the transition state. The extent that the electronic features of these bonding interactions transfer to other chemical systems is being investigated in terms of the principle of additivity of ligand electronic effects. Specific examples under study include metal- phosphines, metal-halides, and metallocenes. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C 60 molecule, buckminsterfullerene, and its interaction with a metal surface. The high-resolution valence ionizations in the gas phase reveal the high symmetry of the molecule, and studies of thin films of C 60 reveal weak intermolecular interactions. Scanning tunneling and atomic force microscopy reveal the arrangement of spherical molecules on gold substrates, with significant delocalization of charge from the metal surface. 21 refs

  8. The electronic structure of core states under extreme compressions

    Straub, G.K.

    1992-01-01

    At normal density and for modest compressions, the electronic structure of a metal can be accurately described by treating the conduction electrons and their interactions with the usual methods of band theory. The core electrons remain essentially the same as for an isolated free atom and do not participate in the bonding forces responsible for creating a condensed phase. As the density increases, the core electrons begin to ''see'' one another as the overlap of the tails of wave functions can no longer be neglected. The electronic structure of the core electrons is responsible for an effective repulsive interaction that eventually becomes free-electron-like at very high compressions. The electronic structure of the interacting core electrons may be treated in a simple manner using the Atomic Surface Method (ASM). The ASM is a first-principles treatment of the electronic structure involving a rigorous integration of the Schroedinger equation within the atomic-sphere approximation. Solid phase wave functions are constructed from isolated atom wave functions and the band width W l and the center of gravity of the band C l are obtained from simple formulas. The ASM can also utilize analytic forms of the atomic wave functions and thus provide direct functional dependence of various aspects of the electronic structure. Of particular use in understanding the behavior of the core electrons, the ASM provides the ability to analytically determine the density dependence of the band widths and positions. The process whereby core states interact with one another is best viewed as the formation of narrow electron bands formed from atomic states. As the core-core overlap increases, the bands increase in width and mean energy. In Sec.3 this picture is further developed and from the ASM one obtains the analytic dependence on density of the relative motion of the different bands. Also in Sec. 3 is a discussion of the transition to free electron bands

  9. Electron transfer from electronic excited states to sub-vacuum electron traps in amorphous ice

    Vichnevetski, E.; Bass, A.D.; Sanche, L.

    2000-01-01

    We investigate the electron stimulated yield of electronically excited argon atoms (Ar * ) from monolayer quantities of Ar deposited onto thin films of amorphous ice. Two peaks of narrow width ( - electron-exciton complex into exciton states, by the transfer of an electron into a sub-vacuum electron state within the ice film. However, the 10.7 eV feature is shifted to lower energy since electron attachment to Ar occurs within small pores of amorphous ice. In this case, the excess electron is transferred into an electron trap below the conduction band of the ice layer

  10. Role of scanning electron microscope )SEM) in metal failure analysis

    Shaiful Rizam Shamsudin; Hafizal Yazid; Mohd Harun; Siti Selina Abd Hamid; Nadira Kamarudin; Zaiton Selamat; Mohd Shariff Sattar; Muhamad Jalil

    2005-01-01

    Scanning electron microscope (SEM) is a scientific instrument that uses a beam of highly energetic electrons to examine the surface and phase distribution of specimens on a micro scale through the live imaging of secondary electrons (SE) and back-scattered electrons (BSE) images. One of the main activities of SEM Laboratory at MINT is for failure analysis on metal part and components. The capability of SEM is excellent for determining the root cause of metal failures such as ductility or brittleness, stress corrosion, fatigue and other types of failures. Most of our customers that request for failure analysis are from local petrochemical plants, manufacturers of automotive components, pipeline maintenance personnel and engineers who involved in the development of metal parts and component. This paper intends to discuss some of the technical concepts in failure analysis associated with SEM. (Author)

  11. Scattering of polarized low-energy electrons by ferromagnetic metals

    Helman, J.S.

    1981-01-01

    A source of spin polarized electrons with remarkable characteristics based on negative electron affinity (NEA) GaAs has recently been developed. It constitutes a unique tool to investigate spin dependent interactions in electron scattering processes. The characteristics and working principles of the source are briefly described. Some theoretical aspects of the scattering of polarized low-energy electrons by ferromagnetic metals are discussed. Finally, the results of the first polarized low-energy electron diffraction experiment using the NEA GaAs source are reviewed; they give information about the surface magnetization of ferromagnetic Ni (110). (Author) [pt

  12. Secondary-electron cascade in attosecond photoelectron spectroscopy from metals

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2009-01-01

    an analytical model based on an approximate solution to Boltzmann's transport equation to account for the amount and energy distribution of these secondary electrons. Our theory is in good agreement with the electron spectrum found in a recent attosecond streaking experiment. To suppress the background and gain......Attosecond spectroscopy is currently restricted to photon energies around 100 eV. We show that under these conditions, electron-electron scatterings, as the photoelectrons leave the metal, give rise to a tail of secondary electrons with lower energies and hence a significant background. We develop...

  13. Analysis on a electron gun for metal fusion

    Paes, A.C.J.; Galvao, R.M.O.; Boscolo, P.; Passaro, A.

    1987-09-01

    The characteristics of the electron beam of the HK-011600 Δ, electron gun for metal fusion at the 'Divisao de Materiais do Instituto de Pesquisa e Desenvolvimento do CTA (PMR/IPD/CTA)', is analyzed. In this analysis, the Pierce gun model and the SLAC computational code for electron optics are used. The electron beam R and Z profiles are obtained in the gun region and in the magnetic lenses region. The behaviour of the electron beam in the prism region is also discussed using a simple model. (author) [pt

  14. Electron spectroscopy of nanodiamond surface states

    Belobrov, P.I.; Bursill, L.A.; Maslakov, K.I.; Dementjev, A.P

    2003-06-15

    Electronic states of nanodiamond (ND) were investigated by PEELS, XPS and CKVV Auger spectra. Parallel electron energy loss spectra (PEELS) show that the electrons inside of ND particles are sp{sup 3} hybridized but there is a surface layer containing distinct hybridized states. The CKVV Auger spectra imply that the HOMO of the ND surface has a shift of 2.5 eV from natural diamond levels of {sigma}{sub p} up to the Fermi level. Hydrogen (H) treatment of natural diamond surface produces a chemical state indistinguishable from that of ND surfaces using CKVV. The ND electronic structure forms {sigma}{sub s}{sup 1}{sigma}{sub p}{sup 2}{pi}{sup 1} surface states without overlapping of {pi}-levels. Surface electronic states, including surface plasmons, as well as phonon-related electronic states of the ND surface are also interesting and may also be important for field emission mechanisms from the nanostructured diamond surface.

  15. Electronic structure, bonding and chemisorption in metallic hydrides

    Ward, J.W.

    1980-01-01

    Problems that can arise during the cycling steps for a hydride storage system usually involve events at surfaces. Chemisorption and reaction processes can be affected by small amounts of contaminants that may act as catalytic poisons. The nature of the poisoning process can vary greatly for the different metals and alloys that form hydrides. A unifying concept is offered, which satisfactorily correlates many of the properties of transition-metal, rare-earth and actinide hydrides. The metallic hydrides can be differentiated on the basis of electronegativity, metallic radius (valence) and electronic structure. For those systems where there are d (transition metals) or f (early actinides) electrons near the Fermi level a broad range of chemical and catalytic behaviors are found, depending on bandwidth and energy. The more electropositive metals (rare-earths, actinides, transition metals with d > 5) dissolve hydrogen and form hydrides by an electronically somewhat different process, and as a class tend to adsorb electrophobic molecules. The net charge-transfer in either situation is subtle; however, the small differences are responsible for many of the observed structural, chemical, and catalytic properties in these hydride systems

  16. Energy level alignment and electron transport through metal/organic contacts. From interfaces to molecular electronics

    Abad, Enrique

    2013-07-01

    A new calculational approach to describing metal/organic interfaces. A valuable step towards a better understanding of molecular electronics. Nominated as an outstanding contribution by the Autonomous University of Madrid. In recent years, ever more electronic devices have started to exploit the advantages of organic semiconductors. The work reported in this thesis focuses on analyzing theoretically the energy level alignment of different metal/organic interfaces, necessary to tailor devices with good performance. Traditional methods based on density functional theory (DFT), are not appropriate for analyzing them because they underestimate the organic energy gap and fail to correctly describe the van der Waals forces. Since the size of these systems prohibits the use of more accurate methods, corrections to those DFT drawbacks are desirable. In this work a combination of a standard DFT calculation with the inclusion of the charging energy (U) of the molecule, calculated from first principles, is presented. Regarding the dispersion forces, incorrect long range interaction is substituted by a van der Waals potential. With these corrections, the C60, benzene, pentacene, TTF and TCNQ/Au(111) interfaces are analyzed, both for single molecules and for a monolayer. The results validate the induced density of interface states model.

  17. Chemical modulation of electronic structure at the excited state

    Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.

    2017-12-01

    Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.

  18. Nanoscale electron manipulation in metals with intense THz electric fields

    Takeda, Jun; Yoshioka, Katsumasa; Minami, Yasuo; Katayama, Ikufumi

    2018-03-01

    Improved control over the electromagnetic properties of metals on a nanoscale is crucial for the development of next-generation nanoelectronics and plasmonic devices. Harnessing the terahertz (THz)-electric-field-induced nonlinearity for the motion of electrons is a promising method of manipulating the local electromagnetic properties of metals, while avoiding undesirable thermal effects and electronic transitions. In this review, we demonstrate the manipulation of electron delocalization in ultrathin gold (Au) films with nanostructures, by intense THz electric-field transients. On increasing the electric-field strength of the THz pulses, the transmittance in the THz-frequency region abruptly decreases around the percolation threshold. The observed THz-electric-field-induced nonlinearity is analysed, based on the Drude-Smith model. The results suggest that ultrafast electron delocalization occurs by electron tunnelling across the narrow insulating bridge between the Au nanostructures, without material breakdown. In order to quantitatively discuss the tunnelling process, we perform scanning tunnelling microscopy with carrier-envelope phase (CEP)-controlled single-cycle THz electric fields. By applying CEP-controlled THz electric fields to the 1 nm nanogap between a metal nanotip and graphite sample, many electrons could be coherently driven through the quantum tunnelling process, either from the nanotip to the sample or vice versa. The presented concept, namely, electron tunnelling mediated by CEP-controlled single-cycle THz electric fields, can facilitate the development of nanoscale electron manipulation, applicable to next-generation ultrafast nanoelectronics and plasmonic devices.

  19. On the valence state of Yb and Ce in transition metal intermetallic compounds

    Boer, F.R. de; Dijkman, W.H.; Mattens, W.C.M.

    1979-01-01

    In the pure state Yb is a divalent metal, similar to Ca; in alloys it can become trivalent like the majority of the rare earth metals. Using a value of 38 kJ (mol Yb) -1 for the energy difference between divalent and trivalent Yb metal and using model calculations for the heat of formation of intermetallic compounds, the authors are able to account for the existing information on the valence state of Yb in transition metal compounds. A similar analysis of compounds of Ce with transition metals shows that a model in which the 4f electron is treated as a core electron, i.e. being absent in the tetravalent modification of Ce and present as a fully localized electron in trivalent Ce, does not apply. (Auth.)

  20. Correlated electron pseudopotentials for 3d-transition metals

    Trail, J. R.; Needs, R. J.

    2015-01-01

    A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc − Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature

  1. Electron microscopy and plastic deformation of HCP metals and alloys

    Poirier, J.-P.; Le Hazif, Roger

    1976-01-01

    The recent literature on the slip systems of the h.c.p. metals is reviewed and the contribution of transmission electron microscopy assessed. It is now clear that the stress-strain curves and the dislocation configurations in the slip plane are very similar, whether the principal slip system is basal or prismatic. The important problem of the relative ease of slip systems is linked to the ease of splitting of dislocations in the slip planes and to the electronic band structure of the metal [fr

  2. Investigation of metal coatings for the free electron laser

    Scott, M.L.; Arendt, P.N.; Springer, R.W.; Cordi, R.C.; McCreary, W.J.

    1985-01-01

    We are investigating the deposition and characteristics of metal coatings for use in environments such as the Free Electron Laser where the radiation resistance of metal coatings could prove to be of great benefit. We have concentrated our initial efforts on silver laminate coatings due to the high reflectance of silver at 1 micron wavelength. Our initial laminate coatings have utilized thin layers of titanium oxide to break up the columnar structure of the silver during electron-beam deposition on fused silica substrates. Our initial results on equal coating thickness samples indicate an improvement in damage threshold that ranges from 1.07 to 1.71 at 351 nm

  3. Innovative electron-beam welding of high-melting metals

    Behr, W.; Reisgen, U.

    2007-01-01

    Since its establishment as nuclear research plant Juelich in the year 1956, the research centre Juelich (FZJ) is concerned with the material processing of special metals. Among those are, above all, the high-melting refractory metals niobium, molybdenum and tungsten. Electron beam welding has always been considered to be an innovative special welding method; in the FZJ, electron beam welding has, moreover, always been adapted to the increasing demands made by research partners and involved manufacturing and design sectors. From the manual equipment technology right up to highly modern multi-beam technique, the technically feasible for fundamental research has, this way, always been realised. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [de

  4. Evaporation equipment with electron beam heating for the evaporation of metals and other conducting materials

    Mueller, P.

    1977-01-01

    Equipment for the evaporation of metals and other conducting materials by electron beam heating is to be improved by surrou nding the evaporation equipment with a grid, which has a negative voltage compared to the cathode. This achieves the state where the cathode is hit and damaged less by the ions formed, so that its life period is prolonged. (UWI) [de

  5. Electronic relaxation dynamics of a metal atom deposited on argon cluster

    Awali, Slim

    2014-01-01

    This thesis is a study on the interaction between electronically excited atomic states and a non-reactive environment. We have theoretically and experimentally studied situations where a metal atom (Ba or K) is placed in a finite size environment (argon cluster). The presence of the medium affects the electronic levels of the atom. On the other side, the excitation of the atom induces a relaxation dynamics of the electronic energy through the deformation of the cluster. The experimental part of this work focuses on two aspects: the spectroscopy and the dynamics. In both cases a first laser electronically excites the metal atom and the second ionizes the excited system. The observable is the photoelectron spectrum recorded after photoionization and possibly information on the photoion which are also produced. This pump/probe technique, with also two lasers, provide the ultrafast dynamic when the lasers pulses used are of ultrashort (60 fs). The use of nanosecond lasers leads to resonance spectroscopic measurement, unresolved temporally, which give information on the position of the energy levels of the studied system. From a theoretical point-of-view, the excited states of M-Ar n were calculated at the ab initio level, using large core pseudo-potential to limit the active electrons of the metal to valence electrons. The study of alkali metals (potassium) is especially well adapted to this method since only one electron is active. The ab-initio calculation and a Monte-Carlo simulation where coupled to optimize the geometry of the KAr n (n = 1-10) cluster when K is in the ground state of the neutral and the ion, or excited in the 4p or 5s state. Calculations were also conducted in collaboration with B. Gervais (CIMAP, Caen) on KAr n clusters having several tens of argon atoms. Absorption spectra were also calculated. From an experimental point-of-view, we were able to characterize the excited states of potassium and barium perturbed by the clusters. In both cases a

  6. Electron beam welding of the dissimilar Zr-based bulk metallic glass and Ti metal

    Kim, Jonghyun [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)], E-mail: joindoc@kumamoto-u.ac.jp; Kawamura, Y. [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)

    2007-04-15

    We successfully welded 3 mm thick Zr{sub 41}Be{sub 23}Ti{sub 14}Cu{sub 12}Ni{sub 10} bulk metallic glass plate to Ti metal by electron beam welding with a beam irradiated 0.4 mm on the BMG side of the interface. There was no crystallization or defects in the weld because changes in the chemical composition of the weld metal were prevented. Bending showed that the welded sample had a higher strength than the Ti base metal. The interface had a 10 {mu}m thick interdiffusion layer of Zr and Ti.

  7. Secondary electron emission from metals and semi-conductor compounds

    Ono, Susumu; Kanaya, Koichi

    1979-01-01

    Attempt was made to present the sufficient solution of the secondary electron yield of metals and semiconductor compounds except insulators, applying the free electron scattering theory to the absorption of secondary electrons generated within a solid target. The paper is divided into the sections describing absorption coefficient and escape depth, quantitative characteristics of secondary yield, angular distribution of secondary electron emission, effect of incident angle to secondary yield, secondary electron yield transmitted, and lateral distribution of secondary electron emission, besides introduction and conclusion. The conclusions are as follows. Based on the exponential power law for screened atomic potential, secondary electron emission due to both primary and backscattered electrons penetrating into metallic elements and semi-conductive compounds is expressed in terms of the ionization loss in the first collision for escaping secondary electrons. The maximum yield and the corresponding primary energy can both consistently be derived as the functions of three parameters: atomic number, first ionization energy and backscattering coefficient. The yield-energy curve as a function of the incident energy and the backscattering coefficient is in good agreement with the experimental results. The energy dependence of the yield in thin films and the lateral distribution of secondary yield are derived as the functions of the backscattering coefficient and the primary energy. (Wakatsuki, Y.)

  8. Solid-state electronic devices an introduction

    Papadopoulos, Christo

    2014-01-01

    A modern and concise treatment of the solid state electronic devices that are fundamental to electronic systems and information technology is provided in this book. The main devices that comprise semiconductor integrated circuits are covered in a clear manner accessible to the wide range of scientific and engineering disciplines that are impacted by this technology. Catering to a wider audience is becoming increasingly important as the field of electronic materials and devices becomes more interdisciplinary, with applications in biology, chemistry and electro-mechanical devices (to name a few) becoming more prevalent. Updated and state-of-the-art advancements are included along with emerging trends in electronic devices and their applications. In addition, an appendix containing the relevant physical background will be included to assist readers from different disciplines and provide a review for those more familiar with the area. Readers of this book can expect to derive a solid foundation for understanding ...

  9. Electronic structure and magnetism in transition metals doped 8-hydroxy-quinoline aluminum.

    Baik, Jeong Min; Shon, Yoon; Lee, Seung Joo; Jeong, Yoon Hee; Kang, Tae Won; Lee, Jong-Lam

    2008-10-15

    We report the room-temperature ferromagnetism in transition metals (Co, Ni)-doped 8-hydroxy-quinoline aluminum (Alq3) by thermal coevaporation of high purity metal and Alq3 powders. For 5% Co-doped Alq3, a maximum magnetization of approximately 0.33 microB/Co at 10 K was obtained and ferromagnetic behavior was observed up to 300 K. The Co atoms interact chemically with O atoms and provide electrons to Alq3, forming new states acting as electron trap sites. From this, it is suggested that ferromagnetism may be associated with the strong chemical interaction of Co atoms and Alq3 molecules.

  10. Metal-Insulator-Metal Single Electron Transistors with Tunnel Barriers Prepared by Atomic Layer Deposition

    Golnaz Karbasian

    2017-03-01

    Full Text Available Single electron transistors are nanoscale electron devices that require thin, high-quality tunnel barriers to operate and have potential applications in sensing, metrology and beyond-CMOS computing schemes. Given that atomic layer deposition is used to form CMOS gate stacks with low trap densities and excellent thickness control, it is well-suited as a technique to form a variety of tunnel barriers. This work is a review of our recent research on atomic layer deposition and post-fabrication treatments to fabricate metallic single electron transistors with a variety of metals and dielectrics.

  11. NATO International Symposium on the Electronic Structure and Properties of Hydrogen in Metals

    Satterthwaite, C

    1983-01-01

    Hydrogen is the smallest impurity atom that can be implanted in a metallic host. Its small mass and strong interaction with the host electrons and nuclei are responsible for many anomalous and interesting solid state effects. In addition, hydrogen in metals gives rise to a number of technological problems such as hydrogen embrittlement, hydrogen storage, radiation hardening, first wall problems associated with nuclear fusion reactors, and degradation of the fuel cladding in fission reactors. Both the fundamental effects and applied problems have stimulated a great deal of inter­ est in the study of metal hydrogen systems in recent years. This is evident from a growing list of publications as well as several international conferences held in this field during the past decade. It is clear that a fundamental understanding of these problems re­ quires a firm knowledge of the basic interactions between hydrogen, host metal atoms, intrinsic lattice defects and electrons. This understanding is made particularly di...

  12. Electronic States in Thorium under Pressure

    Skriver, Hans Lomholt; Jan, J. P.

    1980-01-01

    We have used the local-density formalism and the atomic-sphere approximation to calculate self-consistently the electronic properties of thorium at pressures up to 400 kbar. The derived equation of state agrees very well with static pressure experiments and shock data. Below the Fermi level (EF......) the electronic band structure is formed by 7s and 6d states while the bottom of a relatively broad 5f band is positioned 0.07 Ry above EF. The calculated extremal areas of the Fermi surface and their calculated pressure dependence agree with earlier calculations and with de Haas-van Alphen measurements...

  13. Metallic Na formation in NaCl crystals with irradiation of electron or vacuum ultraviolet photon

    Owaki, Shigehiro [Osaka Prefecture Univ., Sakai, Osaka (Japan). Coll. of Integrated Arts and Sciences; Koyama, Shigeko; Takahashi, Masao; Kamada, Masao; Suzuki, Ryouichi

    1997-03-01

    Metallic Na was formed in NaCl single crystals with irradiation of a variety of radiation sources and analyzed the physical states with several methods. In the case of irradiation of 21 MeV electron pulses to the crystal blocks, the optical absorption and lifetime measurement of positron annihilation indicated appearance of Na clusters inside. Radiation effects of electron beam of 30 keV to the crystals in vacuum showed the appearance of not only metallic Na but atomic one during irradiation with Auger electron spectroscopy. Intense photon fluxes in vacuum ultraviolet region of synchrotron radiation were used as another source and an analyzing method of ultraviolet photoelectron spectroscopy. The results showed the metallic Na layered so thick that bulk plasmon can exist. (author)

  14. Test-beds for molecular electronics: metal-molecules-metal junctions based on Hg electrodes.

    Simeone, Felice Carlo; Rampi, Maria Anita

    2010-01-01

    Junctions based on mesoscopic Hg electrodes are used to characterize the electrical properties of the organic molecules organized in self-assembled monolayers (SAMs). The junctions M-SAM//SAM-Hg are formed by one electrode based on metals (M) such as Hg, Ag, Au, covered by a SAM, and by a second electrode always formed by a Hg drop carrying also a SAM. The electrodes, brought together by using a micromanipulator, sandwich SAMs of different nature at the contact area (approximately = 0.7 microm2). The high versatility of the system allows a series of both electrical and electrochemical junctions to be assembled and characterized: (i) The compliant nature of the Hg electrodes allows incorporation into the junction and measurement of the electrical behavior of a large number of molecular systems and correlation of their electronic structure to the electrical behavior; (ii) by functionalizing both electrodes with SAMs exposing different functional groups, X and Y, it is possible to compare the rate of electron transfer through different X...Y molecular interactions; (iii) when the junction incorporates one of the electrode formed by a semitransparent film of Au, it allows electrical measurements under irradiation of the sandwiched SAMs. In this case the junction behaves as a photoswitch; iv) incorporation of redox centres with low lying, easily reachable energy levels, provides electron stations as indicated by the hopping mechanism dominating the current flow; (v) electrochemical junctions incorporating redox centres by both covalent and electrostatic interactions permit control of the potential of the electrodes with respect to that of the redox state by means of an external reference electrode. Both these junctions show an electrical behavior similar to that of conventional diodes, even though the mechanism generating the current flow is different. These systems, demonstrating high mechanical stability and reproducibility, easy assembly, and a wide variety of

  15. Observation of Electronic Raman Scattering in Metallic Carbon Nanotubes

    Farhat, H.; Berciaud, S.; Kalbáč, Martin; Saito, R.; Heinz, T. F.; Dresselhaus, M. S.; Kong, J.

    2011-01-01

    Roč. 107, č. 15 (2011), s. 157401 ISSN 0031-9007 R&D Projects: GA MŠk ME09060 Institutional research plan: CEZ:AV0Z40400503 Keywords : spectroscopy * electronic Raman scattering * metallic carbon nanotubes Subject RIV: CG - Electrochemistry Impact factor: 7.370, year: 2011

  16. Microscopic Electron Dynamics in Metal Nanoparticles for Photovoltaic Systems

    Katarzyna Kluczyk

    2018-06-01

    Full Text Available Nanoparticles—regularly patterned or randomly dispersed—are a key ingredient for emerging technologies in photonics. Of particular interest are scattering and field enhancement effects of metal nanoparticles for energy harvesting and converting systems. An often neglected aspect in the modeling of nanoparticles are light interaction effects at the ultimate nanoscale beyond classical electrodynamics. Those arise from microscopic electron dynamics in confined systems, the accelerated motion in the plasmon oscillation and the quantum nature of the free electron gas in metals, such as Coulomb repulsion and electron diffusion. We give a detailed account on free electron phenomena in metal nanoparticles and discuss analytic expressions stemming from microscopic (Random Phase Approximation—RPA and semi-classical (hydrodynamic theories. These can be incorporated into standard computational schemes to produce more reliable results on the optical properties of metal nanoparticles. We combine these solutions into a single framework and study systematically their joint impact on isolated Au, Ag, and Al nanoparticles as well as dimer structures. The spectral position of the plasmon resonance and its broadening as well as local field enhancement show an intriguing dependence on the particle size due to the relevance of additional damping channels.

  17. Electronic structure of metallic alloys through Auger and photoemission spectroscopy

    Kleiman, G.G.; Rogers, J.D.; Sundaram, V.S.

    1981-01-01

    A review is presented of experimental results of electron spectroscopy studies for various series of transition metal alloys as well as a model for their interpretation which leads to the possibility for the first time to determine independently relative variations in the dipole barrier and Fermi energy contributions to the work function. (L.C.) [pt

  18. Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides

    Shi, Wenwu; Wang, Zhiguo

    2018-05-01

    The mechanical and electronic properties of Janus monolayer transition metal dichalcogenides MXY (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; X/Y  =  S, Se, Te) were investigated using density functional theory. Results show that breaking the out-of-plane structural symmetry can be used to tune the electronic and mechanical behavior of monolayer transition metal dichalcogenides. The band gaps of monolayer WXY and MoXY are in the ranges of 0.16–1.91 and 0.94–1.69 eV, respectively. A semiconductor to metallic phase transition occurred in Janus monolayer MXY (M  =  Ti, Zr and Hf). The monolayers MXY (M  =  V, Nb, Ta and Cr) show metallic characteristics, which show no dependence on the structural symmetry breaking. The mechanical properties of MXY depended on the composition. Monolayer MXY (M  =  Mo, Ti, Zr, Hf and W) showed brittle characteristic, whereas monolayer CrXY and VXY are with ductile characteristic. The in-plane stiffness of pristine and Janus monolayer MXY are in the range between 22 and 158 N m‑1. The tunable electronic and mechanical properties of these 2D materials would advance the development of ultra-sensitive detectors, nanogenerators, low-power electronics, and energy harvesting and electromechanical systems.

  19. Kinetics of the reactions of hydrated electrons with metal complexes

    Korsse, J.

    1983-01-01

    The reactivity of the hydrated electron towards metal complexes is considered. Experiments are described involving metal EDTA and similar complexes. The metal ions studied are mainly Ni 2+ , Co 2+ and Cu 2+ . Rates of the reactions of the complexes with e - (aq) were measured using the pulse radiolysis technique. It is shown that the reactions of e - (aq) with the copper complexes display unusually small kinetic salt effects. The results suggest long-range electron transfer by tunneling. A tunneling model is presented and the experimental results are discussed in terms of this model. Results of approximate molecular orbital calculations of some redox potentials are given, for EDTA chelates as well as for series of hexacyano and hexaquo complexes. Finally, equilibrium constants for the formation of ternary complexes are reported. (Auth./G.J.P.)

  20. Excitation of lowest electronic states of thymine by slow electrons

    Chernyshova, I. V.; Kontros, E. J.; Markush, P. P.; Shpenik, O. B.

    2013-11-01

    Excitation of lowest electronic states of the thymine molecules in the gas phase is studied by elec- tron energy loss spectroscopy. In addition to dipole-allowed transitions to singlet states, transitions to the lowest triplet states were observed. The low-energy features of the spectrum at 3.66 and 4.61 eV are identified with the excitation of the first triplet states 13 A' (π → π*) and 13 A″ ( n → π*). The higher-lying features at 4.96, 5.75, 6.17, and 7.35 eV are assigned mainly to the excitation of the π → π* transitions to the singlet states of the molecule. The excitation dynamics of the lowest states is studied. It is found that the first triplet state 13 A'(π → π*) is most efficiently excited at a residual energy close to zero, while the singlet 21 A'(π → π*) state is excited with almost identical efficiency at different residual energies.

  1. Electronic behavior of highly correlated metals

    Reich, A.

    1988-10-01

    This thesis addresses the question of the strongly interacting many-body problem: that is, systems where the interparticle correlations are so strong as to defy perturbative approaches. These subtle correlations occur in narrow band materials, such as the lanthanides and actinides, wherein the f-electrons are so localized that a variety of new phenomena, including intermediate-valence and heavy-fermionic behavior, may occur. As well, one has the alloying problem, where local interactions are paramount in determining the overall behavior. The technique employed in dealing with these systems is the Small Cluster method, wherein the full many-body Hamiltonian for a small grouping of atoms, coupled with periodic boundary conditions, is solved exactly. This is tantamount to solving a bulk crystal at the high points of symmetry in the Brillouin Zone. The mathematical overhead is further reduced by employing the full space group and spin symmetries. By its very nature, the Small Cluster method is well able to handle short-range interactions, as well as the combinatorial complexity of the many-body problem, on an equal footing. The nature of long-range order and phase transition behavior cannot be incorporated, but sometimes clues as to their origin can be discerned. The calculations presented include: a two-band Anderson model for an intermediate-valence system, wherein photoemission and fluctuation behavior is examined; a single-band Hubbard model for a ternary alloy system, such as copper-silver-gold; and a Hubbard model for a heavy- fermion system, wherein Fermi surface, transport, magnetic and superconducting properties are discussed. 148 refs., 31 figs., 24 tabs

  2. Ferromagnetism and temperature-dependent electronic structure in metallic films

    Herrmann, T.

    1999-01-01

    In this work the influence of the reduced translational symmetry on the magnetic properties of thin itinerant-electron films and surfaces is investigated within the strongly correlated Hubbard model. Firstly, the possibility of spontaneous ferromagnetism in the Hubbard model is discussed for the case of systems with full translational symmetry. Different approximation schemes for the solution of the many-body problem of the Hubbard model are introduced and discussed in detail. It is found that it is vital for a reasonable description of spontaneous ferromagnetism to be consistent with exact results concerning the general shape of the single-electron spectral density in the limit of strong Coulomb interaction between the electrons. The temperature dependence of the ferromagnetic solutions is discussed in detail by use of the magnetization curves as well as the spin-dependent quasi particle spectrum. For the investigation of thin films and surfaces the approximation schemes for the bulk system have to be generalized to deal with the reduced translational symmetry. The magnetic behavior of thin Hubbard films is investigated by use of the layer dependent magnetization as a function of temperature as well as the thickness of the film. The Curie-temperature is calculated as a function of the film thickness. Further, the magnetic stability at the surface is discussed in detail. Here it is found that for strong Coulomb interaction the magnetic stability at finite temperatures is reduced at the surface compared to the inner layers. This observation clearly contradicts the well-known Stoner picture of band magnetism and can be explained in terms of general arguments which are based on exact results in the limit of strong Coulomb interaction. The magnetic behavior of the Hubbard films can be analyzed in detail by inspecting the local quasi particle density of states as well as the wave vector dependent spectral density. The electronic structure is found to be strongly spin

  3. Localized versus collective behaviour of d-electrons in transition metal oxide systems of perovskite systems

    Rao, C N.R. [Indian Inst. of Tech., Kanpur

    1974-12-01

    The behavior of d-electrons in perovskites of the type LnZO/sub 3/ (Z = trivalent transition metal ion and Ln = rare earth or yttrium) depends on the spin configuration of the transition metal ion. LaTiO/sub 3/ and LaNiO/sub 3/ with low-spin transition metal ions (S = 1/2) are metallic while LaCrO/sub 3/, LnMnO/sub 3/ and LnFeO/sub 3/ with high-spin ions are poor semiconductors exhibiting localized behavior of d-electrons. In rare earth cobaltites, the cobalt ions are present mainly in the diamagnetic low-spin Co /sup III/ state at low temperatures. The Co/sup III/ ions transform to high-spin Co/sup 3 +/ ions with increase in temperature. At higher temperatures, there is electron-transfer from Co/sup 3 +/ to Co/sup III/ions producing intermetallic states. Spin-state transitions are seen in these cobaltites in the range 150-870/sup 0/K. At high temperatures, the cobaltites show evidence for localized-itinerant electron transitions. In La/sub 1-x/ Sr/sub x/CoO/sub 3/ there is onset of ferromagnetism at x > 0.125, at which point there is a structural dicontinuity and electrons become itinerant. The composition with x = 0.5 is metallic and T/sub c/ = 230/sup 0/K. The ferromagnetic component in La/sub 1-x/Sr/sub x/ CoO/sub 3/ increases with x in the range 0.125-0.50. Catalytic properties of rare earth cobaltites appear to be related to the spin state equilibria. (auth)

  4. Orbital-exchange and fractional quantum number excitations in an f-electron metal, Yb2Pt2Pb

    Wu, L.S.; Gannon, W.J.; Zaliznyak, I.A.; Tsvelik, A.M.; Brockmann, M.; Caux, J.-S.; Kim, M.S.; Qiu, Y.; Copley, J.R.D.; Ehlers, G.; Podlesnyak, A.; Aronson, M.C.

    2016-01-01

    Exotic quantum states and fractionalized magnetic excitations, such as spinons in one-dimensional chains, are generally expected to occur in 3d transition metal systems with spin 1/2. Our neutron-scattering experiments on the 4f-electron metal Yb2Pt 2 Pb overturn this conventional wisdom. We observe

  5. Size-dependent single electron transfer and semi-metal-to-insulator transitions in molecular metal oxide electronics.

    Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M; Skoulatakis, George; Kennou, Stella; Glezos, Nikos

    2018-07-06

    All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV-vis spectroscopy and AFM measurements show that this functionality stems from the films' ability to structurally tune their HOMO-LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO 2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures' plausibility for on-chip molecular electronics operative at room temperature.

  6. Size-dependent single electron transfer and semi-metal-to-insulator transitions in molecular metal oxide electronics

    Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M.; Skoulatakis, George; Kennou, Stella; Glezos, Nikos

    2018-07-01

    All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV–vis spectroscopy and AFM measurements show that this functionality stems from the films’ ability to structurally tune their HOMO–LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures’ plausibility for on-chip molecular electronics operative at room temperature.

  7. Hydrogen collisions with transition metal surfaces: Universal electronically nonadiabatic adsorption

    Dorenkamp, Yvonne; Jiang, Hongyan; Köckert, Hansjochen; Hertl, Nils; Kammler, Marvin; Janke, Svenja M.; Kandratsenka, Alexander; Wodtke, Alec M.; Bünermann, Oliver

    2018-01-01

    Inelastic scattering of H and D atoms from the (111) surfaces of six fcc transition metals (Au, Pt, Ag, Pd, Cu, and Ni) was investigated, and in each case, excitation of electron-hole pairs dominates the inelasticity. The results are very similar for all six metals. Differences in the average kinetic energy losses between metals can mainly be attributed to different efficiencies in the coupling to phonons due to the different masses of the metal atoms. The experimental observations can be reproduced by molecular dynamics simulations based on full-dimensional potential energy surfaces and including electronic excitations by using electronic friction in the local density friction approximation. The determining factors for the energy loss are the electron density at the surface, which is similar for all six metals, and the mass ratio between the impinging atoms and the surface atoms. Details of the electronic structure of the metal do not play a significant role. The experimentally validated simulations are used to explore sticking over a wide range of incidence conditions. We find that the sticking probability increases for H and D collisions near normal incidence—consistent with a previously reported penetration-resurfacing mechanism. The sticking probability for H or D on any of these metals may be represented as a simple function of the incidence energy, Ein, metal atom mass, M, and incidence angle, 𝜗i n. S =(S0+a ṡEi n+b ṡM ) *(1 -h (𝜗i n-c ) (1 -cos(𝜗 i n-c ) d ṡh (Ei n-e ) (Ei n-e ) ) ) , where h is the Heaviside step function and for H, S0 = 1.081, a = -0.125 eV-1, b =-8.40 ṡ1 0-4 u-1, c = 28.88°, d = 1.166 eV-1, and e = 0.442 eV; whereas for D, S0 = 1.120, a = -0.124 eV-1, b =-1.20 ṡ1 0-3 u-1, c = 28.62°, d = 1.196 eV-1, and e = 0.474 eV.

  8. Difference in x-ray scattering between metallic and non-metallic liquids due to conduction electrons

    Chihara, Junzo

    1987-01-01

    X-ray scattered intensity from a liquid metal as an electron-ion mixture is described using the structure factors, which are exactly expressed in terms of the static and dynamic direct correlation functions. This intensity for a metal is shown to differ from the usual scattered intensity from a non-metal in two points: the atomic form factor and the incoherent (Compton) scattering factor. It is shown that the valence electron form factor, which constitutes the atomic form factor in a liquid metal, leads to a determination of the electron-electron and electron-ion structure factors by combining the ionic structure factor. It is also shown that a part of the electron structure factor, which appears as the incoherent x-ray scattering, is usually approximated as the electron structure factor of the jellium model in the case of a simple metal. As a by-product, the x-ray scattered intensity from a crystalline metal and the inelastic scattering from a liquid metal are given by taking account of the presence of conduction electrons. In this way, we clarify some confusion which appeared in the proposal by Egelstaff et al for extracting the electron-electron correlation function in a metal from x-ray and neutron scattering experiments. A procedure to extract the electron-electron and electron-ion structure factors in a liquid metal is proposed on the basis of formula for scattered intensity derived here. (author)

  9. Electron affinity and excited states of methylglyoxal

    Dauletyarov, Yerbolat; Dixon, Andrew R.; Wallace, Adam A.; Sanov, Andrei

    2017-07-01

    Using photoelectron imaging spectroscopy, we characterized the anion of methylglyoxal (X2A″ electronic state) and three lowest electronic states of the neutral methylglyoxal molecule: the closed-shell singlet ground state (X1A'), the lowest triplet state (a3A″), and the open-shell singlet state (A1A″). The adiabatic electron affinity (EA) of the ground state, EA(X1A') = 0.87(1) eV, spectroscopically determined for the first time, compares to 1.10(2) eV for unsubstituted glyoxal. The EAs (adiabatic attachment energies) of two excited states of methylglyoxal were also determined: EA(a3A″) = 3.27(2) eV and EA(A1A″) = 3.614(9) eV. The photodetachment of the anion to each of these two states produces the neutral species near the respective structural equilibria; hence, the a3A″ ← X2A″ and A1A″ ← X2A″ photodetachment transitions are dominated by intense peaks at their respective origins. The lowest-energy photodetachment transition, on the other hand, involves significant geometry relaxation in the X1A' state, which corresponds to a 60° internal rotation of the methyl group, compared to the anion structure. Accordingly, the X1A' ← X2A″ transition is characterized as a broad, congested band, whose vertical detachment energy, VDE = 1.20(4) eV, significantly exceeds the adiabatic EA. The experimental results are in excellent agreement with the ab initio predictions using several equation-of-motion methodologies, combined with coupled-cluster theory.

  10. The electronic properties of mixed metal oxides

    Cussen, E.J.

    1999-01-01

    The properties of Fe and Mn in a variety of perovskite-related crystal structures have been studied by X-ray and neutron diffraction, magnetometry, high resolution electron microscopy and Moessbauer spectroscopy. The structure of Sr 2 FeTaO 6 is of the GdFeO 3 type with a disordered arrangement of Fe and Ta over the octahedrally coordinated sites in contrast to the partial ordering, 0.795(6)Fe/0.205(6)Sb, observed in Sr 2 FeSbO 6 . Sr 2 FeTaO 6 is a spin glass below 23 K whereas Sr 2 FeSbO 6 forms a type I antiferromagnetically ordered phase below T N = 37(2) K with an ordered moment of 3.06(9) μ B Fe -1 at 1.5 K on the Fe-rich site. Susceptibility measurements in the magnetically dilute series Sr 2 Fe 1-x Ga x TaO 6 indicate that magnetic ordering in these Fe 3+ perovskites is partially controlled by next-nearest-neighbour superexchange. A new 15R perovskite structure containing face-sharing dimers of octahedra linked to one another by vertices or bridging octahedra has been - found for the composition SrMn 0.915(5) Fe 0.085(5) O 2.979(3) . The Mn 4+ cations align antiferromagnetically below T N = 220(5) K showing an ordered moment of 2.25(3) μ B at 3 K. The Fe cations remain disordered to 3 K. This composition forms a 6-layered hexagonal perovskite in the temperature range 1200 6 Mn 4 MO 15 (M = Cu, Zn) form pseudo 1-dimensional phases related to Ba 6 Ni 5 O 15 . The trigonal prismatic sites in this structure are preferentially occupied by Zn/Cu; the latter is displaced from the centre of the trigonal prism to give pseudo square-planar coordination. At 1.7 K antiferromagnetic superexchange within a highly frustrated crystal structure leads to a magnetic structure exhibiting rotation of 120 deg. between spins in neighbouring chains. The magnetic moments refined to 0.7(1) and 0.6(1) μ B per octahedral site in the Cu and Zn compounds respectively. The magnetic susceptibilities have been rationalised in terms of 1-dimensional ordering of the octahedrally

  11. Efficient electronic structure methods applied to metal nanoparticles

    Larsen, Ask Hjorth

    of efficient approaches to density functional theory and the application of these methods to metal nanoparticles. We describe the formalism and implementation of localized atom-centered basis sets within the projector augmented wave method. Basis sets allow for a dramatic increase in performance compared....... The basis set method is used to study the electronic effects for the contiguous range of clusters up to several hundred atoms. The s-electrons hybridize to form electronic shells consistent with the jellium model, leading to electronic magic numbers for clusters with full shells. Large electronic gaps...... and jumps in Fermi level near magic numbers can lead to alkali-like or halogen-like behaviour when main-group atoms adsorb onto gold clusters. A non-self-consistent NewnsAnderson model is used to more closely study the chemisorption of main-group atoms on magic-number Au clusters. The behaviour at magic...

  12. Excited state electron affinity calculations for aluminum

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  13. One electron reduction of 1,2 dihydroxy 9,10 anthraquinone and its transition metal complexes in aqueous-isopropanol-acetone mixed solvent: a steady state-state and pulse radiolysis study

    Das, Saurabh; Mandal, Parikshit C.; Rath, Madhab C.; Mukherjee, Tulsi

    1998-01-01

    One electron reduction of 1,2 dihydroxy 9,10 anthraquinone and its Cu(II) and Ni(II) and Fe(III) complexes have been studied in aqueous-isopropanol-acetone solvent. Results indicate that the reducing ketyl radical generated reacts with the ligand forming semiquinones which undergoes a disproportionation reaction. Formation and decay rates of semiquinones was calculated using pulse radiolysis. (author)

  14. Semiconducting states and transport in metallic armchair-edged graphene nanoribbons

    Chen Xiongwen; Wang Haiyan; Wan Haiqing; Zhou Guanghui; Song Kehui

    2011-01-01

    Based on the nonequilibrium Green's function method within the tight-binding approximation scheme, through a scanning tunneling microscopy (STM) model, we study the low-energy electronic states and transport properties of carbon chains in armchair-edged graphene nanoribbons (AGNRs). We show that semiconducting AGNRs possess only semiconducting chains, while metallic ones possess not only metallic chains but also unconventional semiconducting chains located at the 3jth (j≠0) column from the edge (the first chain) due to the vanishing of the metallic component in the electron wavefunction. The two types of states for carbon chains in a metallic AGNR system are demonstrated by different density of states and STM tunneling currents. Moreover, a similar phenomenon is predicted in the edge region of very wide AGNRs. However, there is remarkable difference in the tunneling current between narrow and wide ribbons.

  15. The Simple Metals and New Models of the Interacting-Electron-Gas Type: I. Anomalous Plasmon Dispersion Relations in Heavy Alkali Metals

    Okuda, Takashi; Horio, Kohji; Ohmura, Yoshihiro; Mizuno, Yukio

    2018-06-01

    The well-known interacting-electron-gas model of metallic states is modified by replacing the Coulomb interaction by a truncated one to weaken the repulsive force between electrons at short distances. The new model is applied to the so-called simple metals and is found far superior to the old one. Most of the calculations are carried out successfully on the basis of the random-phase-approximation (RPA), which is known much too poor for the old familiar model. In the present paper the numerical value of the new parameter peculiar to the new model is determined systematically with the help of the observed plasmon spectrum for each metal.

  16. Damage generation by electronic excitations in crystalline metals

    Dunlop, A.; Lesueur, D.

    1992-01-01

    This paper will give a rapid overview of the main experimental results concerning the effects of high electronic energy deposition in metallic targets and present a tentative model based on the Coulomb explosion mechanism. More detailed reviews have been made recently concerning both the experiments and the theoretical model. High levels of localized energy deposition in electronic excitation are easily obtained using GeV heavy ions which during their slowing-down typically transfer a few keV/A to the electronic system of the target and a few eV/A in elastic collisions with target nuclei. In insulators and organic materials, it is well-known that both slowing-down processes contribute to damage creation, whereas in metals it has been claimed for a long time that the sole nuclear collisions are involved in damage processes. Although this last assertion remains true for some metals such as Cu, Ag, W, Cu 3 Au...[2], high levels of electronic excitation can induce a partial annealing of the defects resulting from nuclear collisions in Fe, Ni, Nb, Pt..., lead to additional defect creation in Fe, Co, Zr, Ti...[2] or even to phase transformations in NiZr 2 [5], Ni 3 B [6], NiTi [7], Ti [8]... In the following, we shall only focus on the last two effects. (author). 15 refs

  17. Superconducting state parameters of ternary metallic glasses

    Administrator

    to binary metallic glasses. They are of interest since third element can modify the physical properties of binary metallic glasses and can also be used as a probe to study the host. ..... conducting nature in the present case. When we. Figure 6. Variation of transition temperature (TC) with valance (Z) of ternary metallic glasses.

  18. Organic/metal interfaces. Electronic and structural properties

    Duhm, Steffen

    2008-07-17

    This work addresses several important topics of the field of organic electronics. The focus lies on organic/metal interfaces, which exist in all organic electronic devices. Physical properties of such interfaces are crucial for device performance. Four main topics have been covered: (i) the impact of molecular orientation on the energy levels, (ii) energy level tuning with strong electron acceptors, (iii) the role of thermodynamic equilibrium at organic/ organic homo-interfaces and (iv) the correlation of interfacial electronic structure and bonding distance. To address these issues a broad experimental approach was necessary: mainly ultraviolet photoelectron spectroscopy was used, supported by X-ray photoelectron spectroscopy, metastable atom electron spectroscopy, X-ray diffraction and X-ray standing waves, to examine vacuum sublimed thin films of conjugated organic molecules (COMs) in ultrahigh vacuum. (i) A novel approach is presented to explain the phenomenon that the ionization energy in molecular assemblies is orientation dependent. It is demonstrated that this is due to a macroscopic impact of intramolecular dipoles on the ionization energy in molecular assemblies. Furthermore, the correlation of molecular orientation and conformation has been studied in detail for COMs on various substrates. (ii) A new approach was developed to tune hole injection barriers ({delta}{sub h}) at organic/metal interfaces by adsorbing a (sub-) monolayer of an organic electron acceptor on the metal electrode. Charge transfer from the metal to the acceptor leads to a chemisorbed layer, which reduces {delta}{sub h} to the COM overlayer. This concept was tested with three acceptors and a lowering of {delta}{sub h} of up to 1.2 eV could be observed. (iii) A transition from vacuum-level alignment to molecular level pinning at the homo-interface between a lying monolayer and standing multilayers of a COM was observed, which depended on the amount of a pre-deposited acceptor. The

  19. Electronic and atomic structure at metal-oxide heterointerfaces

    Schlueter, Christoph Friedrich

    2013-07-01

    The results of a series of investigations on modern oxide materials using hard X-ray photoelectron spectroscopy (HAXPES) combined with the X-ray standing wave (XSW) method are described in this thesis. The combination of hard X-ray photoelectron spectroscopy and X-ray standing waves enables the electronic structure to be measured with a spatial resolution in the picometer range. Under suitable preparation conditions, a quasi two-dimensional electron gas (2DEG) is formed at the heterointerfaces of strontium titanate (SrTiO{sub 3}) with polar oxides, such as lanthanum aluminate (LaAlO{sub 3}) or lanthanum gallate (LaGaO{sub 3}). Samples were grown at the ESRF and in Naples and surface X-ray diffraction confirmed the excellent epitaxial quality of the films. The XSW-method was used to reconstruct images of the structure of LaAlO{sub 3} layers in real space. These images give evidence of distortions in the LaAlO{sub 3} structure which facilitate the compensation of the potential differences. Furthermore, XSW/HAXPES measurements permit the Ti and Sr,O contributions to the 2DEG close to the Fermi level to be identified unambiguously. The analysis shows that the 3d band crosses the Fermi level and that some density of states is associated with oxygen vacancies. Superlattices of SrTiO{sub 3} with polar calcium cuprate (CaCuO{sub 2}) were investigated by HAXPES. Similar to the case of SrTiO{sub 3}/LaAlO{sub 3}, the polarity of CaCuO{sub 2} should lead to a diverging surface potential. The core level spectra from Ca, Sr, and Ti show that there is a redistribution mechanism for oxygen which compensates the potential differences. When the oxygen concentration is enhanced these superstructures become superconducting (T{sub C} = 40 K). The increased oxidation of the superconducting material is revealed by the additional components in the core level spectra of the metal atoms and in the appearance of a new screening channel in Cu 2p core level spectra, which signals the hole

  20. Electronic and atomic structure at metal-oxide heterointerfaces

    Schlueter, Christoph Friedrich

    2013-01-01

    The results of a series of investigations on modern oxide materials using hard X-ray photoelectron spectroscopy (HAXPES) combined with the X-ray standing wave (XSW) method are described in this thesis. The combination of hard X-ray photoelectron spectroscopy and X-ray standing waves enables the electronic structure to be measured with a spatial resolution in the picometer range. Under suitable preparation conditions, a quasi two-dimensional electron gas (2DEG) is formed at the heterointerfaces of strontium titanate (SrTiO 3 ) with polar oxides, such as lanthanum aluminate (LaAlO 3 ) or lanthanum gallate (LaGaO 3 ). Samples were grown at the ESRF and in Naples and surface X-ray diffraction confirmed the excellent epitaxial quality of the films. The XSW-method was used to reconstruct images of the structure of LaAlO 3 layers in real space. These images give evidence of distortions in the LaAlO 3 structure which facilitate the compensation of the potential differences. Furthermore, XSW/HAXPES measurements permit the Ti and Sr,O contributions to the 2DEG close to the Fermi level to be identified unambiguously. The analysis shows that the 3d band crosses the Fermi level and that some density of states is associated with oxygen vacancies. Superlattices of SrTiO 3 with polar calcium cuprate (CaCuO 2 ) were investigated by HAXPES. Similar to the case of SrTiO 3 /LaAlO 3 , the polarity of CaCuO 2 should lead to a diverging surface potential. The core level spectra from Ca, Sr, and Ti show that there is a redistribution mechanism for oxygen which compensates the potential differences. When the oxygen concentration is enhanced these superstructures become superconducting (T C = 40 K). The increased oxidation of the superconducting material is revealed by the additional components in the core level spectra of the metal atoms and in the appearance of a new screening channel in Cu 2p core level spectra, which signals the hole doping of the CaCuO 2 blocks. Magnetoresistive

  1. Electron-doping by hydrogen in transition-metal dichalcogenides

    Oh, Sehoon; Im, Seongil; Choi, Hyoung Joon

    Using first-principles calculations, we investigate the atomic and electronic structures of 2H-phase transition-metal dichalcogenides (TMDC), 2H-MX2, with and without defects, where M is Mo or W and X is S, Se or Te. We find that doping of atomic hydrogen on 2H-MX2 induces electron doping in the conduction band. To understand the mechanism of this electron doping, we analyze the electronic structures with and without impurities. We also calculate the diffusion energy barrier to discuss the spatial stability of the doping. Based on these results, we suggest a possible way to fabricate elaborately-patterned circuits by modulating the carrier type of 2H-MoTe2. We also discuss possible applications of this doping in designing nano-devices. This work was supported by NRF of Korea (Grant No. 2011-0018306) and KISTI supercomputing center (Project No. KSC-2016-C3-0052).

  2. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei

    2014-12-01

    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Relation of radiation damage of metallic solids to electronic structure. Pt. 5

    Shalaev, A.M.; Adamenko, A.A.

    1977-01-01

    The problem of relating a damage in metal solids to the parameters of radiation fluxes and the physical nature of a target is considered. Basing upon experimental and theoretical investigations into the processes of interaction of particle fluxes with solids, the following conclusions have been reached. Threshold energy of ion displacement in the crystal lattice of a metal solid is dependent on the energy of a bombarding particle, which is due to ionization and electroexcitation stimulated by energy transfer from a fast particle to a system of collectivized electrons. The rate of metal solid damage by radiation depends on the state of the crystal lattice, in particular on its defectness. Variations of local electron density in the vicinity of a defect are related with changing thermodynamic characteristics of radiation-induced defect formation. A type of atomic bond in a solid affects the rate of radiation damage. The greatest damage occurs in materials with a covalent bond

  4. Electron core ionization in compressed alkali metal cesium

    Degtyareva, V. F.

    2018-01-01

    Elements of groups I and II in the periodic table have valence electrons of s-type and are usually considered as simple metals. Crystal structures of these elements at ambient pressure are close-packed and high-symmetry of bcc and fcc-types, defined by electrostatic (Madelung) energy. Diverse structures were found under high pressure with decrease of the coordination number, packing fraction and symmetry. Formation of complex structures can be understood within the model of Fermi sphere-Brillouin zone interactions and supported by Hume-Rothery arguments. With the volume decrease there is a gain of band structure energy accompanied by a formation of many-faced Brillouin zone polyhedra. Under compression to less than a half of the initial volume the interatomic distances become close to or smaller than the ionic radius which should lead to the electron core ionization. At strong compression it is necessary to assume that for alkali metals the valence electron band overlaps with the upper core electrons, which increases the valence electron count under compression.

  5. Electronic structure and optical properties of metal doped tetraphenylporphyrins

    Shah, Esha V.; Roy, Debesh R.

    2018-05-01

    A density functional scrutiny on the structure, electronic and optical properties of metal doped tetraphenylporphyrins MTPP (M=Fe, Co, Ni) is performed. The structural stability of the molecules is evaluated based on the electronic parameters like HOMO-LUMO gap (HLG), chemical hardness (η) and binding energy of the central metal atom to the molecular frame etc. The computed UltraViolet-Visible (UV-Vis) optical absorption spectra for all the compounds are also compared. The molecular structures reported are the lowest energy configurations. The entire calculations are carried out with a widely reliable functional, viz. B3LYP with a popular basis set which includes a scaler relativistic effect, viz. LANL2DZ.

  6. Electronic structure of vacancies and vacancy clusters in simple metals

    Manninen, M.; Nieminen, R.M.

    1978-05-01

    The self-consistent density functional approach has been applied in a study of electronic properties of vacancies and vacancy clusters in simple metals. The electron density profiles and potentials have been obtained for spherical voids of varying size. The formation energies and residual resistivities have been calculated for vacancies using both perturbational and variational inclusion of discrete lattice effects. The relation of the void properties to the plane surface ones is studied, and the inadequacy of the jellium-based methods to high-index faces is demonstrated. (author)

  7. Runaway electron beam control for longitudinally pumped metal vapor lasers

    Kolbychev, G. V.; Kolbycheva, P. D.

    1995-08-01

    Physics and techniques for producing of the pulsed runaway electron beams are considered. The main obstacle for increasing electron energies in the beams is revealed to be a self- breakdown of the e-gun's gas-filled diode. Two methods to suppress the self-breakdown and enhance the volumetric discharge producing the e-beam are offered and examined. Each of them provides 1.5 fold increase of the ceiling potential on the gun. The methods also give the ways to control several guns simultaneously. Resulting in the possibility of realizing the powerful longitudinal pumping of metal-vapor lasers on self-terminated transitions of atoms or ions.

  8. Size-dependent electronic properties of metal nanostructures

    Table of contents. Size-dependent electronic properties of metal nanostructures · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Nanocrystalline film at liquid-liquid interface · Slide 21 · Slide 22.

  9. Proton location in metal hydrides using electron spin resonance

    Venturini, E.L.

    1979-01-01

    Electron spin resonance (ESR) of dilute paramagnetic ions establishes the site symmetry of these ions. In the case of metal hydrides the site symmetry is determined by the number and location of neighboring protons. Typical ESR spectra for trivalent erbium in scandium and yttrium hydrides are presented and analyzed, and this technique is shown to be a versatile microscopic probe of the location, net charge and occupation probability of nearby protons

  10. Stopping power of degenerate electron liquid at metallic densities

    Tanaka, Shigenori; Ichimaru, Setsuo

    1985-01-01

    We calculate the stopping power of the degenerate electron liquid at metallic densities in the dielectric formalism. The strong Coulomb-coupling effects beyond the random-phase approximation are taken into account through the static and dynamic local-field corrections. It is shown that those strong-coupling and dynamic effects act to enhance the stopping power substantially in the low-velocity regime, leading to an improved agreement with experimental data. (author)

  11. Polymer-metal hybrid transparent electrodes for flexible electronics

    Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee

    2015-03-01

    Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius 95% and a sheet resistance solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides.

  12. Correlated electron motion, flux states and superconductivity

    Lederer, P.; Poilblanc, D.; Rice, T.K.

    1989-01-01

    This paper discusses how, when the on-site correlation is strong, electrons can move by usual hopping only on to empty sites but they can exchange position with their neighbors by a correlated motion. The phase in the former process is fixed and it favors Bloch states. When the concentration of empty sites is small then the latter process dominates and one is free to introduce a phase provided it is chosen to be the same for ↑ and ↓-spin electrons. Since for a partly filled band of non-interacting electrons the introduction of a uniform commensurate flux lowers the energy, the correlated motion can lead to a physical mechanism to generate flux states. These states have a collective gauge variable which is the same for ↑ and ↓-spins and superconducting properties are obtained by expanding around the optimum gauge determined by the usual kinetic energy term. If this latter term has singularities at special fillings then these may affect the superconducting properties

  13. General approach to understanding the electronic structure of graphene on metals

    Voloshina, E N; Dedkov, Yu S

    2014-01-01

    This manuscript presents the general approach to the understanding of the connection between bonding mechanism and electronic structure of graphene on metals. To demonstrate its validity, two limiting cases of ‘weakly’ and ‘strongly’ bonded graphene on Al(111) and Ni(111) are considered, where the Dirac cone is preserved or fully destroyed, respectively. Furthermore, the electronic structure, i.e. doping level, hybridization effects, as well as a gap formation at the Dirac point of the intermediate system, graphene/Cu(111), is fully understood in the framework of the proposed approach. This work summarises the long-term debates regarding connection of the bonding strength and the valence band modification in the graphene/metal systems and paves a way for the effective control of the electronic states of graphene in the vicinity of the Fermi level. (paper)

  14. Electronic properties of adsorbates and clean surfaces of metals and semiconductors

    Lecante, J.

    1980-01-01

    This paper surveys recent progress in experimental studies on electronic properties of adsorbates and clean metal surfaces. Electron spectroscopy and particularly angle resolved photoelectron spectroscopy appears to be a very powerful tool to get informations on electronic levels of adsorbates or clean surfaces. Moreover this technique may also give informations about the atomic geometry of the surface. Experimental investigation about surface plasmons, surface states, core level shifts are presented for clean surfaces. As examples of adsorbate covered surfaces two typical cases are chosen: two dimensional band structure and oriented molecules. Finally the photoelectron diffraction may be used for surface structure determination either in the case of an adsorbate or a clean metal surface [fr

  15. Electronic hybridisation implications for the damage-tolerance of thin film metallic glasses.

    Schnabel, Volker; Jaya, B Nagamani; Köhler, Mathias; Music, Denis; Kirchlechner, Christoph; Dehm, Gerhard; Raabe, Dierk; Schneider, Jochen M

    2016-11-07

    A paramount challenge in materials science is to design damage-tolerant glasses. Poisson's ratio is commonly used as a criterion to gauge the brittle-ductile transition in glasses. However, our data, as well as results in the literature, are in conflict with the concept of Poisson's ratio serving as a universal parameter for fracture energy. Here, we identify the electronic structure fingerprint associated with damage tolerance in thin film metallic glasses. Our correlative theoretical and experimental data reveal that the fraction of bonds stemming from hybridised states compared to the overall bonding can be associated with damage tolerance in thin film metallic glasses.

  16. Investigation of electronic transport properties of some liquid transition metals

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.

    2018-04-01

    We investigated electronic transport properties of some liquid transition metals (V, Cr, Mn, Fe, Co and Pt) using Ziman formalism. Our parameter free model potential which is realized on ionic and atomic radius has been incorporated with the Hard Sphere Yukawa (HSY) reference system to study the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q). The screening effect on aforesaid properties has been studied by using different screening functions. The correlations of our results and others data with in addition experimental values are profoundly promising to the researchers working in this field. Also, we conclude that our newly constructed parameter free model potential is capable to explain the aforesaid electronic transport properties.

  17. About the free electron model in electric conduction of metals

    Hoffmann, C.

    1991-01-01

    In the model proposed by Drude to describe, among others, the electric conduction in metals, it is supposed that electrons move freely in the material with a time interval between encounters T and a probability distribution g(t). The name, 'electron pause time', will be assigned to the time T with that probability distribution. The calculations made by Drude turned out to be erroneous. The error can be corrected observing that the random variable 'pause time' appearing in this intuitive idea is not the previously defined random variable T, 'electron pause time', but another random variable S, which will be called 'observed pause time' whose probability density is Csg(s), where C is a normalization constant. With this distribution, the characteristics of the distribution, q(u), of the wait time can be obtained. (Author) [es

  18. Enhanced Electron-Phonon Coupling at Metal Surfaces

    Plummer, Ward E.

    2010-08-04

    The Born-Oppenheimer approximation (BOA) decouples electronic from nuclear motion, providing a focal point for most quantum mechanics textbooks. However, a multitude of important chemical, physical and biological phenomena are driven by violations of this approximation. Vibronic interactions are a necessary ingredient in any process that makes or breaks a covalent bond, for example, conventional catalysis or enzymatically delivered biological reactions. Metastable phenomena associated with defects and dopants in semiconductors, oxides, and glasses entail violation of the BOA. Charge exchange in inorganic polymers, organic slats and biological systems involves charge- induced distortions of the local structure. A classic example is conventional superconductivity, which is driven by the electron-lattice interaction. High-resolution angle-resolved photoemission experiments are yielding new insight into the microscopic origin of electron-phonon coupling (EPC) in anisotropic two-dimensional systems. Our recent surface phonon measurement on the surface of a high-Tc material clearly indicates an important momentum dependent EPC in these materials. In the last few years we have shifted our research focus from solely looking at electron phonon coupling to examining the structure/functionality relationship at the surface of complex transition metal compounds. The investigation on electron phonon coupling has allowed us to move to systems where there is coupling between the lattice, the electrons and the spin.

  19. Electronic states in a quantum lens

    Rodriguez, Arezky H.; Trallero-Giner, C.; Ulloa, S. E.; Marin-Antuna, J.

    2001-01-01

    We present a model to find analytically the electronic states in self-assembled quantum dots with a truncated spherical cap (''lens'') geometry. A conformal analytical image is designed to map the quantum dot boundary into a dot with semispherical shape. The Hamiltonian for a carrier confined in the quantum lens is correspondingly mapped into an equivalent operator and its eigenvalues and eigenfunctions for the corresponding Dirichlet problem are analyzed. A modified Rayleigh-Schro''dinger perturbation theory is presented to obtain analytical expressions for the energy levels and wave functions as a function of the spherical cap height b and radius a of the circular cross section. Calculations for a hard wall confinement potential are presented, and the effect of decreasing symmetry on the energy values and eigenfunctions of the lens-shape quantum dot is studied. As the degeneracies of a semicircular geometry are broken for b≠a, our perturbation approach allows tracking of the split states. Energy states and electronic wave functions with m=0 present the most pronounced influence on the reduction of the lens height. The method and expressions presented here can be straightforwardly extended to deal with more general Hamiltonians, including strains and valence-band coupling effects in Group III--V and Group II--VI self-assembled quantum dots

  20. Compression-Driven Enhancement of Electronic Correlations in Simple Alkali Metals

    Fabbris, Gilberto; Lim, Jinhyuk; Veiga, Larissa; Haskel, Daniel; Schilling, James

    2015-03-01

    Alkali metals are the best realization of the nearly free electron model. This scenario appears to change dramatically as the alkalis are subjected to extreme pressure, leading to unexpected properties such as the departure from metallic behavior in Li and Na, and the occurrence of remarkable low-symmetry crystal structures in all alkalis. Although the mechanism behind these phase transitions is currently under debate, these are believed to be electronically driven. In this study the high-pressure electronic and structural ground state of Rb and Cs was investigated through low temperature XANES and XRD measurements combined with ab initio calculations. The results indicate that the pressure-induced localization of the conduction band triggers a Peierls-like mechanism, inducing the low symmetry phases. This localization process is evident by the pressure-driven increase in the number of d electrons, which takes place through strong spd hybridization. These experimental results indicate that compression turns the heavy alkali metals into strongly correlated electron systems. Work at Argonne was supported by DOE No. DE-AC02-06CH11357. Research at Washington University was supported by NSF DMR-1104742 and CDAC/DOE/NNSA DE-FC52-08NA28554.

  1. Low-energy electron collisions with metal clusters: Electron capture and cluster fragmentation

    Kresin, V.V.; Scheidemann, A.; Knight, W.D.

    1993-01-01

    The authors have carried out the first measurement of absolute cross sections for the interaction between electrons and size-resolved free metal clusters. Integral inelastic scattering cross sections have been determined for electron-Na n cluster collisions in the energy range from 0.1 eV to 30 eV. At energies ≤1 eV, cross sections increase with decreasing impact energies, while at higher energies they remain essentially constant. The dominant processes are electron attachment in the low-energy range, and collision-induced fragmentation at higher energies. The magnitude of electron capture cross sections can be quantitatively explained by the effect of the strong polarization field induced in the cluster by the incident electron. The cross sections are very large, reaching values of hundreds of angstrom 2 ; this is due to the highly polarizable nature of metal clusters. The inelastic interaction range for fragmentation collisions is also found to considerably exceed the cluster radius, again reflecting the long-range character of electron-cluster interactions. The important role played by the polarization interaction represents a bridge between the study of collision processes and the extensive research on cluster response properties. Furthermore, insight into the mechanisms of electron scattering is important for understanding production and detection of cluster ions in mass spectrometry and related processes

  2. Electrorecycling of Critical and Value Metals from Mobile Electronics

    Lister, Tedd E.; Wang, Peming; Anderko, Andre

    2014-09-01

    Mobile electronic devices such as smart phones and tablets are a significant source of valuable metals that should be recycled. Each year over a billion devices are sold world-wide and the average life is only a couple years. Value metals in phones are gold, palladium, silver, copper, cobalt and nickel. Devices now contain increasing amounts of rare earth elements (REE). In recent years the supply chain for REE has moved almost exclusively to China. They are contained in displays, speakers and vibrators within the devices. By US Department of Energy (DOE) classification, specific REEs (Nd, Dy, Eu, Tb and Y) are considered critical while others (Ce, La and Pr) are deemed near critical. Effective recycling schemes should include the recovery of these critical materials. By including more value materials in a recovery scheme, more value can be obtained by product diversification and less waste metals remains to be disposed of. REEs are mined as a group such that when specific elements become critical significantly more ore must be processed to capture the dilute but valuable critical elements. Targeted recycling of items containing the more of the less available critical materials could address their future criticality. This presentation will describe work in developing aqueous electrochemistry-based schemes for recycling metals from scrap mobile electronics. The electrorecycling process generates oxidizing agents at an anode while reducing dissolved metals at the cathode. E vs pH diagrams and metals dissolution experiments are used to assess effectiveness of various solution chemistries. Although several schemes were envisioned, a two stages process has been the focus of work: 1) initial dissolution of Cu, Sn, Ag and magnet materials using Fe+3 generated in acidic sulfate and 2) final dissolution of Pd and Au using Cl2 generated in an HCl solution. Experiments were performed using simulated metal mixtures. Both Cu and Ag were recovered at ~ 97% using Fe+3 while

  3. Evaluation of Wet Digestion Methods for Quantification of Metal Content in Electronic Scrap Material

    Subhabrata Das

    2017-11-01

    Full Text Available Recent advances in the electronics sector and the short life-span of electronic products have triggered an exponential increase in the generation of electronic waste (E-waste. Effective recycling of E-waste has thus become a serious solid waste management challenge. E-waste management technologies include pyrometallurgy, hydrometallurgy, and bioleaching. Determining the metal content of an E-waste sample is critical in evaluating the efficiency of a metal recovery method in E-waste recycling. However, E-waste is complex and of diverse origins. The lack of a standard digestion method for E-waste has resulted in difficulty in comparing the efficiencies of different metal recovery processes. In this study, several solid digestion protocols including American Society for Testing and Materials (ASTM-D6357-11, United States Environment Protection Agency Solid Waste (US EPA SW 846 Method 3050b, ultrasound-assisted, and microwave digestion methods were compared to determine the metal content (Ag, Al, Au, Cu, Fe, Ni, Pb, Pd, Sn, and Zn of electronic scrap materials (ESM obtained from two different sources. The highest metal recovery (mg/g of ESM was obtained using ASTM D6357-11 for most of the metals, which remained mainly bound to silicate fractions, while a microwave-assisted digestion protocol (MWD-2 was more effective in solubilizing Al, Pb, and Sn. The study highlights the need for a judicious selection of digestion protocol, and proposes steps for selecting an effective acid digestion method for ESM.

  4. Electronic Contributions to the Phonon Damping in Metals

    Johnson, Rune

    1968-07-15

    An imaginary part of the dielectric matrix is derived based on a first order perturbation expansion of the valence electron states in a local potential model of the crystal. The results are used to estimate the electronic contributions to the phonon damping in aluminum and lead. The corrections which have been obtained are of the same order of magnitude at small phonon momenta as the damping earlier calculated for the free electrons. However, the discrepancies between the theoretical and experimental results still remain. The major contribution to damping seems to originate in anharmonic effects, even at 80 deg K.

  5. Contribution to a research on electron beam welding of metals

    Stohr, J.

    1964-03-01

    The electron beam welding of metals is performed by the travelling of the focusing point along the junction of two pieces to be connected. Welding parameters are the electron gun power W, the value of the electron impact surface S, the welding speed s. From the beginning of our research in 1954, the preponderant part played by specific power W/s on the shape of the welded zone and the penetrating depth, became evident. A more methodical research has been undertaken in the laboratories of C.E.N. under the patronage of Professor CHAUDRON, in order to define in a better way the importance of the different welding parameters and to determine their influence on the metallurgical qualities of welded assemblies. This research induced us to define an electron gun adapted as well as possible to the performance of weldings, not only from the point of view of behaviour, especially during the passage from the atmospheric to a low pressure at 10 -5 Torr, necessary for the carrying out of a welding, but also from the point of view of adjustment conveniences of the different welding parameters, indispensable to the intended research work. The variations of welding parameters show that the shape of the molten zone turns from a circle segment to that of a very high triangle, which implies a continual change of the mode of heat transmission. Tests have been made, in order to confirm this way of looking, especially in order to achieve isotherms in dynamic operating and also the comparison of these isotherms with that recorded while using a method of argon arc welding. The thermal balance of energy supplied to the part, the necessary welding energy, and the energy loss (through conduction, radiation and evaporation) has also been established. These results proved that almost the whole of energy has been used for melting, that the different losses are negligible and that heat transmission can not occur by thermal conduction through the part during 'welding' time, when operating under

  6. An electron microscopy appraisal of tensile fracture in metallic glasses

    Matthews, D.T.A.; Ocelik, V.; Bronsveld, P.M.; De Hosson, J.Th.M.

    2008-01-01

    Three glass-forming alloy compositions were chosen for ribbon production and subsequent electron microscopy studies. In situ tensile testing with transmission electron microscopy (TEM), followed by ex situ TEM and ex situ scanning electron microscopy (SEM), allowed the deformation processes in tensile fracture of metallic glasses to be analysed. In situ shear band propagation was found to be jump-like, with the jump sites correlating with the formation of secondary shear bands. The effect of structural relaxation by in situ heating is also discussed. Nanocrystallization near the fracture surface was observed; however, no crystallization was also reported in the same sample and the reasons for this are discussed. Both the TEM and the SEM observations confirmed the presence of a liquid-like layer on or near the fracture surface of the ribbons. The formation of a liquid-like layer was characterized by the vein geometries and vein densities on the fracture surfaces and its dependence on shear displacement, δ, is discussed. A simple model is adapted to relate the temperature rise during shear banding to the glass transition and melting temperatures and this is used to explain the variety of fracture surfaces which are developed for macroscopically identical tensile testing of metallic glasses together with features which exhibit local melting

  7. Electron and nuclear magnetic resonances in compounds and metallic hydrides

    Brasil Filho, N.

    1985-11-01

    Proton pulsed Nuclear Magnetic Resonance measurements were performed on the metallic hydrides ZrCr 2 H x (x = 2, 3, 4) and ZrV 2 H y (y = 2, 3, 4, 5) as a function of temperature between 180 and 400K. The ultimate aim was the investigation of the relaxation mechanisms in these systems by means of the measurement of both the proton ( 1 H) spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times and to use these data to obtain information about the diffusive motion of the hydrogen atoms. The diffusional activation energies, the jump frequencies and the Korringa constant, C k , related with the conduction electron contribution to the 1 H relaxation were determined for the above hydrides as a function of hydrogen concentration. Our results were analysed in terms of the relaxation models described by Bloembergen, Purcell and Pound (BPP model) and by Torrey. The Korringa type relaxation due to the conduction electrons in metallic systems was also used to interpret the experimental results. We also present the Electron Paramagnetic Ressonance (EPR) study of Gd 3+ , Nd 3+ and Er 3+ ions as impurities in several AB 3 intermetallic compounds where A = LA, Ce, Y, Sc, Th, Zr and B = Rh, Ir, Pt. The results were analysed in terms of the multiband model previously suggested to explain the behaviour of the resonance parameter in AB 2 Laves Phase compounds. (author) [pt

  8. Light induced electron transfer reactions of metal complexes

    Sutin, N.; Creutz, C.

    1980-01-01

    Properties of the excited states of tris(2,2'-bipyridine) and tris(1,10-phenanthroline) complexes of chromium(III), iron(II), ruthenium(II), osmium(II), rhodium(III), and iridium(III) are described. The electron transfer reactions of the ground and excited states are discussed and interpreted in terms of the driving force for the reaction and the distortions of the excited states relative to the corresponding ground states. General considerations relevant to the conversion of light into chemical energy are presented and progress in the use of polypyridine complexes to effect the light decomposition of water into hydrogen and oxygen is reviewed

  9. Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet

    P. A. Bhobe

    2015-10-01

    Full Text Available Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K_{2}Cr_{8}O_{16}, which exhibits a temperature-dependent (T-dependent paramagnetic-to-ferromagnetic-metal transition at T_{C}=180  K and transforms into a ferromagnetic insulator below T_{MI}=95  K. We observe clear T-dependent dynamic valence (charge fluctuations from above T_{C} to T_{MI}, which effectively get pinned to an average nominal valence of Cr^{+3.75} (Cr^{4+}∶Cr^{3+} states in a 3∶1 ratio in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0∼3.5(k_{B}T_{MI}∼35  meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U∼4  eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr and the half-metallic ferromagnetism in the t_{2g} up-spin band favor a low-energy Peierls metal-insulator transition.

  10. Origin of Power Laws for Reactions at Metal Surfaces Mediated by Hot Electrons

    Olsen, Thomas; Schiøtz, Jakob

    2009-01-01

    A wide range of experiments have established that certain chemical reactions at metal surfaces can be driven by multiple hot-electron-mediated excitations of adsorbates. A high transient density of hot electrons is obtained by means of femtosecond laser pulses and a characteristic feature of such...... density functional theory and the delta self-consistent field method. With a simplifying assumption, the power law becomes exact and we obtain a simple physical interpretation of the exponent n, which represents the number of adsorbate vibrational states participating in the reaction....

  11. Silicon-based metallic micro grid for electron field emission

    Kim, Jaehong; Jeon, Seok-Gy; Kim, Jung-Il; Kim, Geun-Ju; Heo, Duchang; Shin, Dong Hoon; Sun, Yuning; Lee, Cheol Jin

    2012-01-01

    A micro-scale metal grid based on a silicon frame for application to electron field emission devices is introduced and experimentally demonstrated. A silicon lattice containing aperture holes with an area of 80 × 80 µm 2 and a thickness of 10 µm is precisely manufactured by dry etching the silicon on one side of a double-polished silicon wafer and by wet etching the opposite side. Because a silicon lattice is more rigid than a pure metal lattice, a thin layer of Au/Ti deposited on the silicon lattice for voltage application can be more resistant to the geometric stress caused by the applied electric field. The micro-fabrication process, the images of the fabricated grid with 88% geometric transparency and the surface profile measurement after thermal feasibility testing up to 700 °C are presented. (paper)

  12. Local electronic structure at organic–metal interface studied by UPS, MAES, and first-principles calculation

    Aoki, M., E-mail: cmaoki@mail.ecc.u-tokyo.ac.jp; Masuda, S.

    2015-10-01

    Understanding and controlling local electronic structures at organic–metal interfaces are crucial for fabricating novel organic-based electronics, as in the case of heterojunctions in semiconductor devices. Here, we report recent studies of valence electronic states at organic–metal interfaces (especially those near the Fermi level of a metal substrate) by the combined analysis of ultraviolet photoemission spectroscopy (UPS), metastable atom electron spectroscopy (MAES), and first-principles calculations. New electronic states in the HOMO (highest occupied molecular orbital)–LUMO (lowest unoccupied molecular orbital) gap formed at an organic–metal interface are classified as a chemisorption-induced gap state (CIGS) and a complex-based gap state (CBGS). The CIGS is further characterized by an asymptotic feature of the metal wave function in the chemisorbed species. The CIGSs in alkanethiolates on Pt(1 1 1) and C{sub 60} on Pt(1 1 1) can be regarded as damping and propagating types, respectively. The CBGSs in K-doped dibenzopentacene (DBP) are composed of DBP-derived MOs and K sp states and distributed over the complex film. No metallic structures were found in the K{sub 1}DBP and K{sub 3}DBP phases, suggesting that they are Mott–Hubbard insulators due to strong electron correlation. The local electronic structures of a pentacene film bridged by Au electrodes under bias voltages were examined by an FET-like specimen. The pentacene-derived bands were steeply shifted at the positively biased electrode, reflecting the p-type character of the film.

  13. The ion-electron correlation function in liquid metals

    Takeda, S.; Tamaki, S.; Waseda, Y.

    1985-01-01

    The structure factors of liquid Zn at 723 K, Sn at 523 K and Bi at 573 K have been determined by neutron diffraction with sufficient accuracy and compared with those of X-ray diffraction. A remarkable difference in the structural information between the two methods is clearly found around the first peak region as well as in the slightly varied peak positions, and it is apparently larger than the experimental errors. With these facts in mind, a new method evaluating the ion-electron correlation function in liquid metals has been proposed by using the measured structural data of X-rays and neutrons, with the help of theoretical values of the electron-electron correlation function by he Utsumi-Ichimaru scheme. This method has been applied to liquid Zn, Sn and Bi, and the radial distribution function of valence electrons around an ion has been estimated, from which the ionic radius and the schematic diagram of the electron distribution map are obtained. The ionic radii evaluated in this work have been found to agree well with those proposed by Pauling. (author)

  14. Electronic transport and dielectric properties of low-dimensional structures of layered transition metal dichalcogenides

    Kumar, Ashok, E-mail: ashok.1777@yahoo.com; Ahluwalia, P.K., E-mail: pk_ahluwalia7@yahoo.com

    2014-02-25

    Graphical abstract: We present electronic transport and dielectric response of layered transition metal dichalcogenides nanowires and nanoribbons. Illustration 1: Conductance (G) and corresponding local density of states(LDOS) for LTMDs wires at applied bias. I–V characterstics are shown in lowermost panels. Highlights: • The studied configurations show metallic/semiconducting nature. • States around the Fermi energy are mainly contributed by the d orbitals of metal atoms. • The studied configurations show non-linear current–voltage (I–V) characteristics. • Additional plasmonic features at low energy have been observed for both wires and ribbons. • Dielectric functions for both wires and ribbons are anisotropic (isotropic) at low (high) energy range. -- Abstract: We present first principle study of the electronic transport and dielectric properties of nanowires and nanoribbons of layered transition metal dichalcogenides (LTMDs), MX{sub 2} (M = Mo, W; X = S, Se, Te). The studied configuration shows metallic/semiconducting nature and the states around the Fermi energy are mainly contributed by the d orbitals of metal atoms. Zero-bias transmission show 1G{sub 0} conductance for the ribbons of MoS{sub 2} and WS{sub 2}; 2G{sub 0} conductance for MoS{sub 2}, WS{sub 2}, WSe{sub 2} wires, and ribbons of MoTe{sub 2} and WTe{sub 2}; and 3G{sub 0} conductance for WSe{sub 2} ribbon. The studied configurations show non-linear current–voltage (I–V) characteristics. Negative differential conductance (NDC) has also been observed for the nanoribbons of the selenides and tellurides of both Mo and W. Furthermore, additional plasmonic features below 5 eV energy have been observed for both wires and ribbons as compared to the corresponding monolayers, which is found to be red-shifted on going from nanowires to nanoribbons.

  15. Model potential for the description of metal/organic interface states

    Armbrust, Nico; Schiller, Frederik; Güdde, Jens; Höfer, Ulrich

    2017-01-01

    We present an analytical one-dimensional model potential for the description of electronic interface states that form at the interface between a metal surface and flat-lying adlayers of π-conjugated organic molecules. The model utilizes graphene as a universal representation of these organic adlayers. It predicts the energy position of the interface state as well as the overlap of its wave function with the bulk metal without free fitting parameters. We show that the energy of the interface state depends systematically on the bond distance between the carbon backbone of the adayers and the metal. The general applicability and robustness of the model is demonstrated by a comparison of the calculated energies with numerous experimental results for a number of flat-lying organic molecules on different closed-packed metal surfaces that cover a large range of bond distances. PMID:28425444

  16. Thermohydraulic behavior of liquid metal pool submitted to electronic bombardment

    Brun, Patrice

    1998-01-01

    This thesis deals with the thermohydraulics of liquid metal molten by an electron beam. We study the relationship between the liquid metal pool and the vapor rate. The aim is to find good conditions increasing the metal vapor rate. In first place, energy losses are identified. Mains are convection (buoyancy and thermo-capillary) strengthen by the deformation of the molten pool. The first action is to reduce the liquid interface deformation with a transient spot realized by scanning the electron beam. I find that in this case, the optimum vapor rate is obtained when the crossing time of the beam is smaller than characteristic time of formation of the cavity, but greater than the heating time of the surface. Secondly, I impose forces to change the morphology of the flow. Two actions are tried: magnetic field application and rotating motion of the crucible. External magnetic field application may reduce convective flow, by the creation of a magnetic brake. But in my experiment, magnetic field deteriorates electron beam before to be effective. Results obtained by the rotating motion of the crucible approve this choice to reduce energy losses and increase vapor rate. This growth of vapor rate is due to an expansion of the emitted vapor source and an increase of the central temperature of the molten pool. Nevertheless with the increase of the rotation velocity and after the optimum vapor rate, I note that the flow is not axisymmetric. My observation give to think about instabilities that are developed by baroclinic waves. The comparison of my works with the Eady's linear theory gives good results. (author) [fr

  17. Hard X-ray PhotoElectron Spectroscopy of transition metal oxides: Bulk compounds and device-ready metal-oxide interfaces

    Borgatti, F., E-mail: francesco.borgatti@cnr.it [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna I-40129 (Italy); Torelli, P.; Panaccione, G. [Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Area Science Park, Trieste I-34149 (Italy)

    2016-04-15

    Highlights: • Hard X-ray PhotoElectron Spectroscopy (HAXPES) applied to buried interfaces of systems involving Transition Metal Oxides. • Enhanced contribution of the s states at high kinetic energies both for valence and core level spectra. • Sensitivity to chemical changes promoted by electric field across metal-oxide interfaces in resistive switching devices. - Abstract: Photoelectron spectroscopy is one of the most powerful tool to unravel the electronic structure of strongly correlated materials also thanks to the extremely large dynamic range in energy, coupled to high energy resolution that this form of spectroscopy covers. The kinetic energy range typically used for photoelectron experiments corresponds often to a strong surface sensitivity, and this turns out to be a disadvantage for the study of transition metal oxides, systems where structural and electronic reconstruction, different oxidation state, and electronic correlation may significantly vary at the surface. We report here selected Hard X-ray PhotoElectron Spectroscopy (HAXPES) results from transition metal oxides, and from buried interfaces, where we highlight some of the important features that such bulk sensitive technique brings in the analysis of electronic properties of the solids.

  18. Hard X-ray PhotoElectron Spectroscopy of transition metal oxides: Bulk compounds and device-ready metal-oxide interfaces

    Borgatti, F.; Torelli, P.; Panaccione, G.

    2016-01-01

    Highlights: • Hard X-ray PhotoElectron Spectroscopy (HAXPES) applied to buried interfaces of systems involving Transition Metal Oxides. • Enhanced contribution of the s states at high kinetic energies both for valence and core level spectra. • Sensitivity to chemical changes promoted by electric field across metal-oxide interfaces in resistive switching devices. - Abstract: Photoelectron spectroscopy is one of the most powerful tool to unravel the electronic structure of strongly correlated materials also thanks to the extremely large dynamic range in energy, coupled to high energy resolution that this form of spectroscopy covers. The kinetic energy range typically used for photoelectron experiments corresponds often to a strong surface sensitivity, and this turns out to be a disadvantage for the study of transition metal oxides, systems where structural and electronic reconstruction, different oxidation state, and electronic correlation may significantly vary at the surface. We report here selected Hard X-ray PhotoElectron Spectroscopy (HAXPES) results from transition metal oxides, and from buried interfaces, where we highlight some of the important features that such bulk sensitive technique brings in the analysis of electronic properties of the solids.

  19. Exchange energy of inhomogenous electron gas near a metal surface

    Miglio, L.; Tosi, M.P.; March, N.H.

    1980-12-01

    Using the first-order density matrix of an infinite-barrier model of a metal surface, the exchange energy density can be evaluated exactly as a function of distance z from the barrier. This result is compared with the local approximation -3/4e 2 (3/π)sup(1/3) rhosup(4/3)(z) where rho is the electron density in the model. The local approximation is demonstrated to be quantitatively accurate at all z. The integrated surface exchange energy is given to within 3% by the local theory. (author)

  20. Electrocatalytic oxidation of methanol by the [Ru3O(OAc6(py2(CH3OH]3+cluster: improving the metal-ligand electron transfer by accessing the higher oxidation states of a multicentered system

    Henrique E. Toma

    2010-01-01

    Full Text Available The [Ru3O(Ac6(py2(CH3OH]+ cluster provides an effective electrocatalytic species for the oxidation of methanol under mild conditions. This complex exhibits characteristic electrochemical waves at -1.02, 0.15 and 1.18 V, associated with the Ru3III,II,II/Ru3III,III,II/Ru 3III,III,III /Ru3IV,III,III successive redox couples, respectively. Above 1.7 V, formation of two RuIV centers enhances the 2-electron oxidation of the methanol ligand yielding formaldehyde, in agreement with the theoretical evolution of the HOMO levels as a function of the oxidation states. This work illustrates an important strategy to improve the efficiency of the oxidation catalysis, by using a multicentered redox catalyst and accessing its multiple higher oxidation states.

  1. Simulated electron affinity tuning in metal-insulator-metal (MIM) diodes

    Mistry, Kissan; Yavuz, Mustafa; Musselman, Kevin P.

    2017-05-01

    Metal-insulator-metal diodes for rectification applications must exhibit high asymmetry, nonlinearity, and responsivity. Traditional methods of improving these figures of merit have consisted of increasing insulator thickness, adding multiple insulator layers, and utilizing a variety of metal contact combinations. However, these methods have come with the price of increasing the diode resistance and ultimately limiting the operating frequency to well below the terahertz regime. In this work, an Airy Function Transfer Matrix simulation method was used to observe the effect of tuning the electron affinity of the insulator as a technique to decrease the diode resistance. It was shown that a small increase in electron affinity can result in a resistance decrease in upwards of five orders of magnitude, corresponding to an increase in operating frequency on the same order. Electron affinity tuning has a minimal effect on the diode figures of merit, where asymmetry improves or remains unaffected and slight decreases in nonlinearity and responsivity are likely to be greatly outweighed by the improved operating frequency of the diode.

  2. Single electron probes of fractional quantum hall states

    Venkatachalam, Vivek

    When electrons are confined to a two dimensional layer with a perpendicular applied magnetic field, such that the ratio of electrons to flux quanta (nu) is a small integer or simple rational value, these electrons condense into remarkable new phases of matter that are strikingly different from the metallic electron gas that exists in the absence of a magnetic field. These phases, called integer or fractional quantum Hall (IQH or FQH) states, appear to be conventional insulators in their bulk, but behave as a dissipationless metal along their edge. Furthermore, electrical measurements of such a system are largely insensitive to the detailed geometry of how the system is contacted or even how large the system is... only the order in which contacts are made appears to matter. This insensitivity to local geometry has since appeared in a number of other two and three dimensional systems, earning them the classification of "topological insulators" and prompting an enormous experimental and theoretical effort to understand their properties and perhaps manipulate these properties to create robust quantum information processors. The focus of this thesis will be two experiments designed to elucidate remarkable properties of the metallic edge and insulating bulk of certain FQH systems. To study such systems, we can use mesoscopic devices known as single electron transistors (SETs). These devices operate by watching single electrons hop into and out of a confining box and into a nearby wire (for measurement). If it is initially unfavorable for an electron to leave the box, it can be made favorable by bringing another charge nearby, modifying the energy of the confined electron and pushing it out of the box and into the nearby wire. In this way, the SET can measure nearby charges. Alternatively, we can heat up the nearby wire to make it easier for electrons to enter and leave the box. In this way, the SET is a sensitive thermometer. First, by operating the SET as an

  3. Electronic structures and water reactivity of mixed metal sulfide cluster anions

    Saha, Arjun; Raghavachari, Krishnan [Department of Chemistry, Indiana University, Bloomington, Indiana 47405 (United States)

    2014-08-21

    The electronic structures and chemical reactivity of the mixed metal sulfide cluster anion (MoWS{sub 4}{sup −}) have been investigated with density functional theory. Our study reveals the presence of two almost isoenergetic structural isomers, both containing two bridging sulfur atoms in a quartet state. However, the arrangement of the terminal sulfur atoms is different in the two isomers. In one isomer, the two metals are in the same oxidation state (each attached to one terminal S). In the second isomer, the two metals are in different oxidation states (with W in the higher oxidation state attached to both terminal S). The reactivity of water with the two lowest energy isomers has also been studied, with an emphasis on pathways leading to H{sub 2} release. The reactive behavior of the two isomers is different though the overall barriers in both systems are small. The origin of the differences are analyzed and discussed. The reaction pathways and barriers are compared with the corresponding behavior of monometallic sulfides (Mo{sub 2}S{sub 4}{sup −} and W{sub 2}S{sub 4}{sup −}) as well as mixed metal oxides (MoWO{sub 4}{sup −})

  4. The powerful pulsed electron beam effect on the metallic surfaces

    Neklyudov, I.M.; Yuferov, V.B.; Kosik, N.A.; Druj, O.S.; Skibenko, E.I.

    2001-01-01

    Experimental results of the influence of powerful pulsed electron beams on the surface structure,hardness and corrosion resistance of the Cr18ni10ti steel are presented. The experiments were carried out in the powerful electron accelerators of directional effect VGIK-1 and DIN-2K with an energy up to approx 300 KeV and a power density of 10 9 - 10 11 W/cm 2 for micro- and nanosecond range. The essential influence of the irradiation power density on the material structure was established. Pulsed powerful beam action on metallic surface leads to surface melting,modification of the structure and structure-dependent material properties. The gas emission and mass-spectrometer analysis of the beam-surface interaction were defined

  5. Electron correlations in solid state physics

    Freericks, J.K.

    1991-04-01

    Exactly solvable models of electron correlations in solid state physics are presented. These models include the spinless Falicov- Kimball model, the t-t'-J model, and the Hubbard model. The spinless Falicov-Kimball model is analyzed in one-dimension. Perturbation theory and numerical techniques are employed to determine the phase diagram at zero temperature. A fractal structure is found where the ground-state changes (discontinuously) at each rational electron filling. The t-t'-J model (strongly interacting limit of a Hubbard model) is studied on eight-site small clusters in the simple-cubic, body-centered-cubic, face-centered-cubic, and square lattices. Symmetry is used to simplify the problem and determine the exact many-body wavefunctions. Ground states are found that exhibit magnetic order or heavy-fermionic character. Attempts to extrapolate to the thermodynamic limit are also made. The Hubbard model is examined on an eight-site square-lattice cluster in the presence of and in the absence of a ''magnetic field'' that couples only to orbital motion. A new magnetic phase is discovered for the ordinary Hubbard model at half-filling. In the ''magnetic field'' case, it is found that the strongly frustrated Heisenberg model may be studied from adiabatic continuation of a tight-binding model (from weak to strong coupling) at one point. The full symmetries of the Hamiltonian are utilized to make the exact diagonalization feasibile. Finally, the presence of ''hidden'' extra symmetry for finite size clusters with periodic boundary conditions is analyzed for a variety of clusters. Moderately sized systems allow nonrigid transformations that map a lattice onto itself preserving its neighbor structure; similar operations are not present in smaller or larger systems. The additional symmetry requires particular representations of the space group to stick together explaining many puzzling degeneracies found in exact diagonalization studies

  6. Modeling small-signal response of GaN-based metal-insulator-semiconductor high electron mobility transistor gate stack in spill-over regime: Effect of barrier resistance and interface states

    Capriotti, M.; Fleury, C.; Oposich, M.; Bethge, O.; Strasser, G.; Pogany, D.; Lagger, P.; Ostermaier, C.

    2015-01-01

    We provide theoretical and simulation analysis of the small signal response of SiO 2 /AlGaN/GaN metal insulator semiconductor (MIS) capacitors from depletion to spill over region, where the AlGaN/SiO 2 interface is accumulated with free electrons. A lumped element model of the gate stack, including the response of traps at the III-N/dielectric interface, is proposed and represented in terms of equivalent parallel capacitance, C p , and conductance, G p . C p -voltage and G p -voltage dependences are modelled taking into account bias dependent AlGaN barrier dynamic resistance R br and the effective channel resistance. In particular, in the spill-over region, the drop of C p with the frequency increase can be explained even without taking into account the response of interface traps, solely by considering the intrinsic response of the gate stack (i.e., no trap effects) and the decrease of R br with the applied forward bias. Furthermore, we show the limitations of the conductance method for the evaluation of the density of interface traps, D it , from the G p /ω vs. angular frequency ω curves. A peak in G p /ω vs. ω occurs even without traps, merely due to the intrinsic frequency response of gate stack. Moreover, the amplitude of the G p /ω vs. ω peak saturates at high D it , which can lead to underestimation of D it . Understanding the complex interplay between the intrinsic gate stack response and the effect of interface traps is relevant for the development of normally on and normally off MIS high electron mobility transistors with stable threshold voltage

  7. Application of Degenerately Doped Metal Oxides in the Study of Photoinduced Interfacial Electron Transfer.

    Farnum, Byron H; Morseth, Zachary A; Brennaman, M Kyle; Papanikolas, John M; Meyer, Thomas J

    2015-06-18

    Degenerately doped In2O3:Sn semiconductor nanoparticles (nanoITO) have been used to study the photoinduced interfacial electron-transfer reactivity of surface-bound [Ru(II)(bpy)2(4,4'-(PO3H2)2-bpy)](2+) (RuP(2+)) molecules as a function of driving force over a range of 1.8 eV. The metallic properties of the ITO nanoparticles, present within an interconnected mesoporous film, allowed for the driving force to be tuned by controlling their Fermi level with an external bias while their optical transparency allowed for transient absorption spectroscopy to be used to monitor electron-transfer kinetics. Photoinduced electron transfer from excited-state -RuP(2+*) molecules to nanoITO was found to be dependent on applied bias and competitive with nonradiative energy transfer to nanoITO. Back electron transfer from nanoITO to oxidized -RuP(3+) was also dependent on the applied bias but without complication from inter- or intraparticle electron diffusion in the oxide nanoparticles. Analysis of the electron injection kinetics as a function of driving force using Marcus-Gerischer theory resulted in an experimental estimate of the reorganization energy for the excited-state -RuP(3+/2+*) redox couple of λ* = 0.83 eV and an electronic coupling matrix element, arising from electronic wave function overlap between the donor orbital in the molecule and the acceptor orbital(s) in the nanoITO electrode, of Hab = 20-45 cm(-1). Similar analysis of the back electron-transfer kinetics yielded λ = 0.56 eV for the ground-state -RuP(3+/2+) redox couple and Hab = 2-4 cm(-1). The use of these wide band gap, degenerately doped materials provides a unique experimental approach for investigating single-site electron transfer at the surface of oxide nanoparticles.

  8. Growth and electronic structure of single-layered transition metal dichalcogenides

    Dendzik, Maciej

    2016-01-01

    only a weak interaction between SL MoS2 and graphene, which leads to a quasi-freestanding band structure, but also to the coexistence of multiple rotational domains. Measurements of SL WS2 on Ag(111), on the other hand, reveals formation of interesting in-gap states which make WS2 metallic. Low...... different from graphene’s. For example, semiconducting TMDCs undergo an indirectdirect band gap transition when thinned to a single layer (SL); this results in greatly enhanced photoluminescence, making those materials attractive for applications in optoelectronics. Furthermore, metallic TMDCs can host......-quality SL TMDCs. We demonstrate the synthesis of SL MoS2, WS2 and TaS2 on Au(111), Ag(111) and graphene on SiC. The morphology and crystal structure of the synthesized materials is characterized by scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED). The electronic structure of SL...

  9. On the effect of image states on resonant neutralization of hydrogen anions near metal surfaces

    Chakraborty, Himadri S.; Niederhausen, Thomas; Thumm, Uwe

    2005-01-01

    We directly assess the role of image state electronic structures on the ion-survival by comparing the resonant charge transfer dynamics of hydrogen anions near Pd(1 1 1), Pd(1 0 0), and Ag(1 1 1) surfaces. Our simulations show that image states that are degenerate with the metal conduction band favor the recapture of electrons by outgoing ions. In sharp contrast, localized image states that occur inside the band gap hinder the recapture process and thus enhance the ion-neutralization probability

  10. Electronic structure, Fermi surface and optical properties of metallic compound Be8(B48)B2

    Reshak, A.H.; Azam, Sikander; Alahmed, Z.A.; Chyský, Jan

    2014-01-01

    The band structure, density of states, electronic charge density, Fermi surface and optical properties for B 8 (Be 48 )B 2 compound has been investigated in the support of density functional theory (DFT). The atomic positions of B 8 (Be 48 )B 2 compound were optimized by minimization of the forces acting on the atoms using the full potential linear augmented plane wave (FPLAPW) method. We have employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engal-Vosko GGA (EVGGA) to indulgence the exchange correlation potential by solving Kohn–Sham equations. The result shows that the compound is metallic with sturdy hybridization near the Fermi energy level (E F ). The density of states at Fermi energy, N(E F ), is determined by the overlaping between B-p, B-s and Be-s states. This overlaping is strong enough indicating metallic origin with different values of N(E F ). These values are 16.4, 16.27 and 14.89 states/eV, and the corresponding bare linear low-temperature electronic specific heat coefficient (γ) is found to be 2.84, 2.82 and 2.58 mJ/mol K 2 for EVGGA, GGA and LDA respectively. There exists a strong hybridization between B-s and B-p states, also between B-s and Be-p states around the Fermi level. The Fermi surface is composed of three sheets. These sheets consist of set of holes and electrons. The bonding features of the compounds are analyzed using the electronic charge density in the (101 and −101) crystallographic planes and also the analyzing of charge density shows covalent bonding between B and B. The linear optical properties are also deliberated and discussed in particulars. - Highlights: • The compound is metallic. • The density of states at the Fermi energy is calculated. • The bare linear low-temperature electronic specific heat coefficient is obtained. • Fermi surface is composed of three sheets. • The bonding features are analyzed using the electronic charge density

  11. Elements including metals in the atomizer and aerosol of disposable electronic cigarettes and electronic hookahs.

    Monique Williams

    Full Text Available Our purpose was to quantify 36 inorganic chemical elements in aerosols from disposable electronic cigarettes (ECs and electronic hookahs (EHs, examine the effect of puffing topography on elements in aerosols, and identify the source of the elements.Thirty-six inorganic chemical elements and their concentrations in EC/EH aerosols were determined using inductively coupled plasma optical emission spectroscopy, and their source was identified by analyzing disassembled atomizers using scanning electron microscopy and energy dispersive X-ray spectroscopy.Of 36 elements screened, 35 were detected in EC/EH aerosols, while only 15 were detected in conventional tobacco smoke. Some elements/metals were present in significantly higher concentrations in EC/EH aerosol than in cigarette smoke. Concentrations of particular elements/metals within EC/EH brands were sometimes variable. Aerosols generated at low and high air-flow rates produced the same pattern of elements, although the total element concentration decreased at the higher air flow rate. The relative amount of elements in the first and last 60 puffs was generally different. Silicon was the dominant element in aerosols from all EC/EH brands and in cigarette smoke. The elements appeared to come from the filament (nickel, chromium, thick wire (copper coated with silver, brass clamp (copper, zinc, solder joints (tin, lead, and wick and sheath (silicon, oxygen, calcium, magnesium, aluminum. Lead was identified in the solder and aerosol of two brands of EHs (up to 0.165 μg/10 puffs.These data show that EC/EH aerosols contain a mixture of elements, including heavy metals, with concentrations often significantly higher than in conventional cigarette smoke. While the health effects of inhaling mixtures of heated metals is currently not known, these data will be valuable in future risk assessments involving EC/EH elements/metals.

  12. Electronic energy states of HfSe/sub 2/ and NbSe/sub 2/ by low energy electron loss spectroscopy study

    Ito, T; Iwami, M; Hiraki, A [Osaka Univ., Suita (Japan). Faculty of Engineering

    1981-06-01

    Low energy electron loss spectroscopy (ELS) study was performed on 1T-HfSe/sub 2/ (group IVB metal compound) and 2H-NbSe/sub 2/ (group VB metal compound) by using incident electron energies of 30-250 eV. From the loss data in the second derivative form, maxima in density-of-states in the conduction band of the compounds were deduced through the information on the filled core states by X-ray photoelectron spectroscopy. The conduction band of the transition-metal dichalcogenides could be divided into two parts. The results are discussed in relation to the previous work on WS/sub 2/ (group VIB metal compound), and also to proposals based on band calculations and experimental studies on the transition-metal dichalcogenides with constituent metals of group IVB, VB and VIB.

  13. Electronic structure and magnetic properties of dilute U impurities in metals

    Mohanta, S. K.; Cottenier, S.; Mishra, S. N.

    2016-05-01

    The electronic structure and magnetic moment of dilute U impurity in metallic hosts have been calculated from first principles. The calculations have been performed within local density approximation of the density functional theory using Augmented plane wave+local orbital (APW+lo) technique, taking account of spin-orbit coupling and Coulomb correlation through LDA+U approach. We present here our results for the local density of states, magnetic moment and hyperfine field calculated for an isolated U impurity embedded in hosts with sp-, d- and f-type conduction electrons. The results of our systematic study provide a comprehensive insight on the pressure dependence of 5f local magnetism in metallic systems. The unpolarized local density of states (LDOS), analyzed within the frame work of Stoner model suggest the occurrence of local moment for U in sp-elements, noble metals and f-block hosts like La, Ce, Lu and Th. In contrast, U is predicted to be nonmagnetic in most transition metal hosts except in Sc, Ti, Y, Zr, and Hf consistent with the results obtained from spin polarized calculation. The spin and orbital magnetic moments of U computed within the frame of LDA+U formalism show a scaling behavior with lattice compression. We have also computed the spin and orbital hyperfine fields and a detail analysis has been carried out. The host dependent trends for the magnetic moment, hyperfine field and 5f occupation reflect pressure induced change of electronic structure with U valency changing from 3+ to 4+ under lattice compression. In addition, we have made a detailed analysis of the impurity induced host spin polarization suggesting qualitatively different roles of f-band electrons on moment stability. The results presented in this work would be helpful towards understanding magnetism and spin fluctuation in U based alloys.

  14. Electronically shielded solid state charged particle detector

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-01-01

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig

  15. Multi-Stable Conductance States in Metallic Double-Walled Carbon Nanotubes

    Ci Lijie

    2009-01-01

    Full Text Available Abstract Electrical transport properties of individual metallic double-walled carbon nanotubes (DWCNTs were measured down to liquid helium temperature, and multi-stable conductance states were found in DWCNTs. At a certain temperature, DWCNTs can switch continuously between two or more electronic states, but below certain temperature, DWCNTs are stable only at one of them. The temperature for switching is always different from tube to tube, and even different from thermal cycle to cycle for the same tube. In addition to thermal activation, gate voltage scanning can also realize such switching among different electronic states. The multi-stable conductance states in metallic DWCNTs can be attributed to different Fermi level or occasional scattering centers induced by different configurations between their inner and outer tubes.

  16. Electronic Transport Parameter of Carbon Nanotube Metal-Semiconductor On-Tube Heterojunction

    Sukirno

    2009-03-01

    Full Text Available Carbon Nanotubes research is one of the top five hot research topics in physics since 2006 because of its unique properties and functionalities, which leads to wide-range applications. One of the most interesting potential applications is in term of nanoelectronic device. It has been modeled carbon nanotubes heterojunction, which was built from two different carbon nanotubes, that one is metallic and the other one is semiconducting. There are two different carbon nanotubes metal-semiconductor heterojunction. The first one is built from CNT(10,10 as metallic carbon nanotube and CNT (17,0 as semiconductor carbon nanotube. The other one is built from CNT (5,5 as metallic carbon nanotube and CNT (8,0. All of the semiconducting carbon nanotubes are assumed to be a pyridine-like N-doped. Those two heterojunctions are different in term of their structural shape and diameter. It has been calculated their charge distribution and potential profile, which would be useful for the simulation of their electronic transport properties. The calculations are performed by using self-consistent method to solve Non-Homogeneous Poisson’s Equation with aid of Universal Density of States calculation method for Carbon Nanotubes. The calculations are done by varying the doping fraction of the semiconductor carbon nanotubes The electron tunneling transmission coefficient, for low energy region, also has been calculated by using Wentzel-Kramer-Brillouin (WKB approximation. From the calculation results, it is obtained that the charge distribution as well as the potential profile of this device is doping fraction dependent. It is also inferred that the WKB method is fail to be used to calculate whole of the electron tunneling coefficient in this system. It is expected that further calculation for electron tunneling coefficient in higher energy region as well as current-voltage characteristic of this system will become an interesting issue for this carbon nanotube based

  17. Many-electron effect in the resonant L23-M23V Auger-electron spectrum of Ti metal

    Ohno, Masahide

    2006-01-01

    Above the L23 absorption edge the L 23 -M 23 V resonant Auger-electron spectroscopy (RAES) spectrum of Ti metal shows a normal L 23 -M 23 V Auger decay spectrum at a constant kinetic energy (K.E.). Here LX and MY are the atomic shells Lx and My, respectively. Apart from a weak spectral feature of the L2-M23V Auger transition appearing around the L2 edge, the RAES spectra of Ti meal show a very little difference between the L2 and L3 regions [P. Le Fevre, J. Danger, H. Magnan, D. Chandesris, J. Jupille, S. Bourgeois, M.-A. Arrio, R. Gotter, A. Verdini, A. Morgante, Phys. Rev. B69 (2004) 155421]. It is shown that the time scale of relaxation of the resonantly excited L23-hole state to the L23-electron ionized state is much shorter than that of the L23-hole decay so that the L 23 -M 23 V RAES spectrum of Ti metal resembles much the normal L 23 -M 23 V Auger decay spectrum. The relaxation of the resonantly excited L23-hole state to the fully relaxed L23-hole state before the L23-hole decays, explains the extra width which is the primary cause of the discrepancy between the experimental high resolution near edge X-ray absorption spectroscopy (XAS) spectrum of Ti metal and the one calculated by the particle-hole Green's function including the Coulomb exchange interaction between the 2p hole and the 3d electron. The time scale of relaxation of the L3V two-hole state created by the L2-L3V Coster-Kronig (CK) decay to the single L3-hole state is much shorter than that of the L3-hole decay so that the L2-L3V-L3-M23V CK preceded Auger decay spectrum resembles much the L3-M23V Auger decay one

  18. The electronic structure and metal-insulator transitions in vanadium oxides

    Mossanek, Rodrigo Jose Ochekoski

    2010-01-01

    The electronic structure and metal-insulator transitions in vanadium oxides (SrVO_3, CaVO_3, LaVO_3 and YVO_3) are studied here. The purpose is to show a new interpretation to the spectra which is coherent with the changes across the metal-insulator transition. The main experimental techniques are the X-ray photoemission (PES) and X-ray absorption (XAS) spectroscopies. The spectra are interpreted with cluster model, band structure and atomic multiplet calculations. The presence of charge-transfer satellites in the core-level PES spectra showed that these vanadium oxides cannot be classified in the Mott-Hubbard regime. Further, the valence band and core-level spectra presented a similar behavior across the metal insulator transition. In fact, the structures in the spectra and their changes are determined by the different screening channels present in the metallic or insulating phases. The calculated spectral weight showed that the coherent fluctuations dominate the spectra at the Fermi level and give the metallic character to the SrVO_3 and CaVO_3 compounds. The vanishing of this charge fluctuation and the replacement by the Mott-Hubbard screening in the LaVO_3 and YVO_3 systems is ultimately responsible for the opening of a band gap and the insulating character. Further, the correlation effects are, indeed, important to the occupied electronic structure (coherent and incoherent peaks). On the other hand, the unoccupied electronic structure is dominated by exchange and crystal field effects (t2g and eg sub-bands of majority and minority spins). The optical conductivity spectrum was obtained by convoluting the removal and addition states. It showed that the oxygen states, as well as the crystal field and exchange effects are necessary to correctly compare and interpret the experimental results. Further, a correlation at the charge-transfer region of the core-level and valence band optical spectra was observed, which could be extended to other transition metal oxides

  19. Saturated bonds and anomalous electronic transport in transition-metal aluminides

    Schmidt, T.

    2006-05-22

    This thesis deals with the special electronic properties of the transition-metal aluminides. Following quasicrystals and their approximants it is shown that even materials with small elementary cells exhibit the same surprising effects. So among the transition-metal aluminides also semi-metallic and semiconducting compounds exist, although if they consist of classic-metallic components like Fe, Al, or Cr. These properties are furthermore coupled with a deep pseusogap respectively gap in the density of states and strongly covalent bonds. Bonds are described in this thesis by two eseential properties. First by the bond charge and second by the energetic effect of the bond. It results that in the caes of semiconducting transition-metal aluminides both a saturation of certain bonds and a bond-antibond alteration in the Fermi level is present. By the analysis of the near-order in form of the so-calles coordination polyeders it has been succeeded to establish a simple rule for semiconductors, the five-fold coordination for Al. This rule states that aluminium atoms with their three valence electrons are not able to build more than five saturated bonds to their nearest transition-metal neighbours. In excellent agreement with the bond angles predicted theoretically under assumption of equal-type bonds it results that all binary transition-element aluminide semiconductors exhibit for the Al atoms the same near order. Typical values for specific resistances of the studied materials at room temperature lie in the range of some 100 {mu}{omega}cm, which is farly larger than some 10 {mu}{omega}cm as in the case of the unalloyed metals. SUrprising is furthermore a high transport anisotropy with a ratio of the specific resistances up to 3.0. An essential result of this thesis can be seen in the coupling of the properties of the electronic transport and the bond properties. The small conducitivities could be explained by small values in the density of states and a bond

  20. Plexciton quenching by resonant electron transfer from quantum emitter to metallic nanoantenna.

    Marinica, D C; Lourenço-Martins, H; Aizpurua, J; Borisov, A G

    2013-01-01

    Coupling molecular excitons and localized surface plasmons in hybrid nanostructures leads to appealing, tunable optical properties. In this respect, the knowledge about the excitation dynamics of a quantum emitter close to a plasmonic nanoantenna is of importance from fundamental and practical points of view. We address here the effect of the excited electron tunneling from the emitter into a metallic nanoparticle(s) in the optical response. When close to a plasmonic nanoparticle, the excited state localized on a quantum emitter becomes short-lived because of the electronic coupling with metal conduction band states. We show that as a consequence, the characteristic features associated with the quantum emitter disappear from the optical absorption spectrum. Thus, for the hybrid nanostructure studied here and comprising quantum emitter in the narrow gap of a plasmonic dimer nanoantenna, the quantum tunneling might quench the plexcitonic states. Under certain conditions the optical response of the system approaches that of the individual plasmonic dimer. Excitation decay via resonant electron transfer can play an important role in many situations of interest such as in surface-enhanced spectroscopies, photovoltaics, catalysis, or quantum information, among others.

  1. Mesoscopic Electronics in Solid State Nanostructures

    Heinzel, Thomas

    2007-01-01

    This text treats electronic transport in the regime where conventional textbook models are no longer applicable, including the effect of electronic phase coherence, energy quantization and single-electron charging. This second edition is completely updated and expanded, and now comprises new chapters on spin electronics and quantum information processing, transport in inhomogeneous magnetic fields, organic/molecular electronics, and applications of field effect transistors. The book also provides an overview of semiconductor processing technologies and experimental techniques. With a number of

  2. The role of substrate electrons in the wetting of a metal surface

    Schiros, T.; Takahashi, O.; Andersson, Klas Jerker

    2010-01-01

    We address how the electronic and geometric structures of metal surfaces determine water-metal bonding by affecting the balance between Pauli repulsion and electrostatic attraction. We show how the rigid d-electrons and the softer s-electrons utilize different mechanisms for the redistribution...

  3. Bond of donor-acceptor interaction in metal-ligand system with energies of Fermi electrons

    Vlasov, Yu.V.; Khentov, V.Ya.; Velikanova, L.N.; Semchenko, V.V.

    1993-01-01

    Role of quantum nature of metal (W, Mo and others) in donor-acceptor interaction of metal salicylalaniline - aprotic solvent was discussed. The dependence of dissolution rate and activation energy of donor-acceptor interaction on electron energy was established

  4. X-ray spectroscopic characterization of Co(IV) and metal–metal interactions in Co4O4: Electronic structure contributions to the formation of high-valent states relevant to the oxygen evolution reaction

    Hadt, Ryan G.; Hayes, Dugan; Brodsky, Casey N.; Ullman, Andrew M.; Casa, Diego M.; Upton, Mary H.; Nocera, Daniel G; Chen, Lin X.

    2016-08-12

    In this paper, the formation of high-valent states is a key factor in making highly active transition metal-based catalysts of the oxygen-evolving reaction (OER). These high oxidation states will be strongly influenced by the local geometric and electronic structures of the metal ion, which is difficult to study due to spectroscopically active and complex backgrounds, short lifetimes, and limited concentrations. Here, we use a wide range of complementary X-ray spectroscopies coupled to DFT calculations to study Co4O4 cubanes, which provide insight into the high-valent Co(IV) centers responsible for the activity of molecular and heterogeneous OER catalysts. The combination of X-ray absorption and 1s3p resonant inelastic X-ray scattering (Kβ RIXS) allow Co(IV) to be isolated and studied against a spectroscopically active Co(III) background. Co K- and L-edge X-ray absorption data allow for a detailed characterization of the 3d-manifold of effectively localized Co(IV) centers and provide a direct handle on the ligand field environment and covalency of the t2g-based redox active molecular orbital. Kβ RIXS is also shown to provide a powerful probe of Co(IV), and specific spectral features are sensitive to the degree of oxo-mediated metal-metal coupling across Co4O4. Guided by the data, calculations show electron-hole delocalization can actually oppose Co(IV) formation. Computational extension of Co4O4 to CoM3O4 structures (M = redox-inactive metal) defines electronic structure contri-butions to Co(IV) formation. Redox activity is shown to be linearly related to covalency, and M(III) oxo inductive effects on Co(IV) oxo bonding can tune the covalency of high-valent sites over a large range and thereby tune E0 over hundreds of mVs.

  5. Study of the electronic properties of organic molecules within a metal-molecule-metal junction

    Lambert, Mathieu

    2003-01-01

    This ph-D thesis is about electronic transport through organic molecules inserted in a metal molecule-metal junction. We describe first a simple process to prepare sub-3 nm gaps by controllable breakage (under an electrical stress) of gold wires lithographed on a SiO 2 Si substrate at low temperature (4.2 K). We show that the involved mechanism is thermally assisted electromigration. We observe that current-voltage (I-V) characteristics of resulting electrodes are stable up to ∼5 V. which gives access to the well-known Fowler-Nordheim regime in the I-V, allowing an accurate characterisation of the gap size. The average gap is found lo be between 1.5 nm in width and 2.5 eV in height. Molecules and nanoparticles have then been inserted in the junction in the case of nanoparticles for example. The resulting IV clearly shows the suppression of electrical current at low bias known as Coulomb blockade. Characteristic of single-electron tunnelling through nanometer-sized structures, finally we fabricated a single-electron tunneling device based on Au nanoparticles connected to the electrodes via terthiophene (T3) molecule. We use the silicon substrate, separated from the planar structure by a silicon oxide of 200 nm, as an electrostatic gate and observed clear current modulation with possible signature of the transport properties of the terthiophene molecules. (author) [fr

  6. Relaxation and final-state structure in XPS of atoms, molecules, and metals

    Shirley, D.A.; Martin, R.L.; McFeely, F.R.; Kowalczyk, S.P.; Ley, L.

    1975-03-01

    Photoemission from a many-electron system is a many-electron process, even though the transition operator may affect only one electron directly. Relaxation and ''shake-up'' structure are related by a sum rule. When one is present, the other must be also. Shake-up structure is shown to be accurately predictable in atomic neon and molecular HF if the CI calculations are done carefully. In metals the sum rule also applies but final-state effects usually appear as relaxation energy, which is large even for valence electrons. Finally, in rare-earth metals discrete shake-up structure is observable in the 4p region. (7 figs, 30 refs) (auth)

  7. Results from operation of metal melting electron gun

    Balloni, A.J.; Paes, A.C.J.; Miliano, A.C.

    1988-09-01

    The first results obtained during the operation of metal melting electron gun, of power 30Kw and current 1,2A, developed at IEAv, are presented. Details on operation of beam transport system (composed by magnetic lens and prism), from generation to fusion chamber and cathode construction. Into the fusion chamber the presssure can reach 10 -4 Pa, seeing that the gun test consisted in fusion for purification of approximatelly 1Kg titanium bar. The input average power was 12Kw, and the fusion remainded during 16 minutes. The calculated thermal efficiency was of the order of 10% consistent with the results found out in literature, for this type of gun. (M.C.K.) [pt

  8. Evidence for Single Metal Two Electron Oxidative Addition and Reductive Elimination at Uranium

    Gardner, Benedict M; Kefalidis, Christos E; Lu, Erli; Patel, Dipti; Mcinnes, Eric; Tuna, Floriana; Wooles, Ashley; Maron, Laurent; Liddle, Stephen

    2017-01-01

    Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here, we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido compl...

  9. Effect of contact area on electron transport through graphene-metal interface.

    Liu, Hongmei; Kondo, Hisashi; Ohno, Takahisa

    2013-08-21

    We perform first-principles investigations of electron transport in armchair graphene nanoribbons adsorbed on Cu(111) and Ni(111) surfaces with various contact areas. We find that the contact area between metals and graphene has different influences on the conductance. The Cu-graphene system shows an increase in differential conductance for more contact area at a low bias voltage, primarily originating from the shift of transmission peaks relative to the Fermi energy. As the bias increases, there is an irregular change of conductance, including a weak negative differential conductance for more contact area. In contrast, the conductance of the Ni-graphene junction is monotonically enhanced with increasing overlap area. The minority spin which shows a broad transmission is responsible for the conductance increase of Ni-graphene. These behaviors can be attributed to different mechanisms of the interfacial electron transport: Charge transfer between graphene and Cu largely dominates the transmission enhancement of Cu-graphene, whereas hybridization between graphene and Ni states plays a more important role in the transmission enhancement of Ni-graphene. The different behaviors of transmission increase correlate with not only the strength of the graphene-metal interaction but also the location of metal d states.

  10. Phase engineering of monolayer transition-metal dichalcogenide through coupled electron doping and lattice deformation

    Ouyang, Bin; Lan, Guoqiang; Song, Jun; Guo, Yinsheng; Mi, Zetian

    2015-01-01

    First-principles calculations were performed to investigate the phase stability and transition within four monolayer transition-metal dichalcogenide (TMD) systems, i.e., MX 2 (M = Mo or W and X = S or Se) under coupled electron doping and lattice deformation. With the lattice distortion and electron doping density treated as state variables, the energy surfaces of different phases were computed, and the diagrams of energetically preferred phases were constructed. These diagrams assess the competition between different phases and predict conditions of phase transitions for the TMDs considered. The interplay between lattice deformation and electron doping was identified as originating from the deformation induced band shifting and band bending. Based on our findings, a potential design strategy combining an efficient electrolytic gating and a lattice straining to achieve controllable phase engineering in TMD monolayers was demonstrated

  11. Diagnostics of metal state in steam lines

    Gofman, Yu.M.; Kazantseva, N.S.; Losev, L.Ya.; Nevolina, G.S.

    1986-01-01

    A series of micropore detection methods is suggested: light microscopy, electron microscopy, hydrostatic weighing; and comparative investigations of pore-formation processes in 12Kh1MF steel steam lines, which have operated for about 100 thousand hours at t=550 deg C and 47-55 MPa stresses are conducted using these methods. It is shown, that electron microscpy method can be applied at the early stages damaging, when embrionic micropores of 0.1 μm in size appear. Optical metallography allows one to detect pores of about 1 μm in size. Damage in density using the hydrostatic weighing method is estimated in the following way: at creep stages 1-2-0.1; at stage 3-0.4-0.6; at predestruction stage the degree of damage equals to 0.7-0.8

  12. Metal Induced Gap States on Pt/Ge(001)

    Oncel, N.; van Beek, W.J.; Poelsema, Bene; Zandvliet, Henricus J.W.

    2007-01-01

    Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) we have studied the electronic properties of a novel, planar, metal semiconductor contact. For this purpose we take advantage of the unique properties of the Pt-modified Ge(001) surface, which consist of coexisting

  13. Theoretical microcontact spectra of metal electron-phonon coupling

    Kulagina, T.N.; Zhernov, A.P.

    1987-01-01

    Theoretical and experimental microcontact spectra of simple and certain transition metals are discussed. The Eliashberg thermodynamic functions for the metals are considered, as well as correlations between spectra peculiarities and parameters of metals and microbridge models

  14. On the electron density localization in elemental cubic ceramic and FCC transition metals by means of a localized electrons detector.

    Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro

    2017-06-14

    The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.

  15. Magnetic states, correlation effects and metal-insulator transition in FCC lattice

    Timirgazin, M. A.; Igoshev, P. A.; Arzhnikov, A. K.; Irkhin, V. Yu

    2016-12-01

    The ground-state magnetic phase diagram (including collinear and spiral states) of the single-band Hubbard model for the face-centered cubic lattice and related metal-insulator transition (MIT) are investigated within the slave-boson approach by Kotliar and Ruckenstein. The correlation-induced electron spectrum narrowing and a comparison with a generalized Hartree-Fock approximation allow one to estimate the strength of correlation effects. This, as well as the MIT scenario, depends dramatically on the ratio of the next-nearest and nearest electron hopping integrals {{t}\\prime}/t . In contrast with metallic state, possessing substantial band narrowing, insulator one is only weakly correlated. The magnetic (Slater) scenario of MIT is found to be superior over the Mott one. Unlike simple and body-centered cubic lattices, MIT is the first order transition (discontinuous) for most {{t}\\prime}/t . The insulator state is type-II or type-III antiferromagnet, and the metallic state is spin-spiral, collinear antiferromagnet or paramagnet depending on {{t}\\prime}/t . The picture of magnetic ordering is compared with that in the standard localized-electron (Heisenberg) model.

  16. Freezing hot electrons. Electron transfer and solvation dynamics at D{sub 2}O and NH{sub 3}-metal interfaces

    Staehler, A.J.

    2007-05-15

    The present work investigates the electron transfer and solvation dynamics at the D{sub 2}O/Cu(111), D{sub 2}O/Ru(001), and NH{sub 3}/Cu(111) interfaces using femtosecond time-resolved two-photon photoelectron spectroscopy. Within this framework, the influence of the substrate, adsorbate structure and morphology, solvation site, coverage, temperature, and solvent on the electron dynamics are studied, yielding microscopic insight into the underlying fundamental processes. Transitions between different regimes of ET, substrate-dominated, barrier-determined, strong, and weak coupling are observed by systematic variation of the interfacial properties and development of empirical model descriptions. It is shown that the fundamental steps of the interfacial electron dynamics are similar for all investigated systems: Metal electrons are photoexcited to unoccupied metal states and transferred into the adlayer via the adsorbate's conduction band. The electrons localize at favorable sites and are stabilized by reorientations of the surrounding polar solvent molecules. Concurrently, they decay back two the metal substrate, as it offers a continuum of unoccupied states. However, the detailed characteristics vary for the different investigated interfaces: For amorphous ice-metal interfaces, the electron transfer is initially, right after photoinjection, dominated by the substrate's electronic surface band structure. With increasing solvation, a transient barrier evolves at the interface that increasingly screens the electrons from the substrate. Tunneling through this barrier becomes the rate-limiting step for ET. The competition of electron decay and solvation leads to lifetimes of the solvated electrons in the order of 100 fs. Furthermore, it is shown that the electrons bind in the bulk of the ice layers, but on the edges of adsorbed D{sub 2}O clusters and that the ice morphology strongly influences the electron dynamics. For the amorphous NH{sub 3}/Cu(111

  17. Electron holography at atomic dimensions -- Present state

    Lehmann, M.; Lichte, H.

    1999-01-01

    An electron microscope is a wave optical instrument where the object information is carried by an electron wave. However, an important information, the phase of the electron wave, is lost, because only intensities can be recorded in a conventional electron micrograph. Off-axis electron holography solves this phase problem by encoding amplitude and phase information in an interference pattern, the so-called hologram. After reconstruction, a rather unrestricted wave optical analysis can be performed on a computer. The possibilities as well as the current limitations of off-axis electron holography at atomic dimensions are discussed, and they are illustrated at two applications of structure characterization of ε-NbN and YBCO-1237. Finally, an electron microscope equipped with a Cs-corrector, a monochromator, and a Moellenstedt biprism is outlined for subangstrom holography

  18. Coherent states of an electron in a quantized electromagnetic wave

    Bagrov, V.G.; Bukhbinder, I.L.; Gitman, D.M.; Lavrov, P.M.

    1977-01-01

    Coherent states for interacting electrons and photons in a plane elecmagnetic wave are found. Trajectories of the electron and the characteristics of the electromagnetic field are investigated. Limiting transition to the given external field is studied

  19. Synthesis of one-dimensional metal-containing insulated molecular wire with versatile properties directed toward molecular electronics materials.

    Masai, Hiroshi; Terao, Jun; Seki, Shu; Nakashima, Shigeto; Kiguchi, Manabu; Okoshi, Kento; Fujihara, Tetsuaki; Tsuji, Yasushi

    2014-02-05

    We report, herein, the design, synthesis, and properties of new materials directed toward molecular electronics. A transition metal-containing insulated molecular wire was synthesized through the coordination polymerization of a Ru(II) porphyrin with an insulated bridging ligand of well-defined structure. The wire displayed not only high linearity and rigidity, but also high intramolecular charge mobility. Owing to the unique properties of the coordination bond, the interconversion between the monomer and polymer states was realized under a carbon monoxide atmosphere or UV irradiation. The results demonstrated a high potential of the metal-containing insulated molecular wire for applications in molecular electronics.

  20. Electron work function of metallic surfaces, covered with by metal adatoms, and two-dimensional structure of adlayer

    Rudnitskij, L.A.

    1986-01-01

    Change in electron work function during metal adatom (Ti, W, Ag, Au) adsorption on different tungsten surfaces in ''polycrystalline'' and epitaxial types of adsorpted layers is studied. Calculational and experimental dependences of work function change on coating thickness are built

  1. Role of contact bonding on electronic transport in metal-carbon nanotube-metal systems

    Deretzis, I; La Magna, A

    2006-01-01

    We have investigated the effects of the interfacial bond arrangement on the electronic transport features of metal-nanotube-metal systems. The transport properties of finite, defect-free armchair and zigzag single-walled carbon nanotubes attached to Au(111) metallic contacts have been calculated by means of the non-equilibrium Green functional formalism with the tight-binding and the extended Hueckel Hamiltonians. Our calculations show that the electrode material is not the only factor which rules contact transparency. Indeed, for the same electrode, but changing nanotube helicities, we have observed an overall complex behaviour of the transmission spectra due to band mixing and interference. A comparison of the two models shows that the tight-binding approach fails to give a satisfactory representation of the transmission function when a more accurate description of the C-C and Au-C chemical bonds has to be considered. We have furthermore examined the effect of interface geometry variance on conduction and found that the contact-nanotube distance has a significant impact, while the contact-nanotube symmetry plays a marginal, yet evident role

  2. Empty-electronic-state evolution for Sc and electron dynamics at the 3p-3d giant dipole resonance

    Hu, Y.; Wagener, T.J.; Gao, Y.; Weaver, J.H.

    1989-01-01

    Inverse photoemission has been used to study the developing electronic states of an early transition metal, Sc, during thin-film growth and to investigate the effects of these states on the 3p-3d giant dipole resonance. Energy- and coverage-dependent intensity variations of the empty Sc states show that the 3d maximum moves 1.1 eV toward the Fermi level as the thickness of the Sc film increases from 1 to 300 A as measured with an incident electron energy of 41.25 eV, an effect attributed to metallic band formation via hybridization of atomic 4s and 3d states. Incident-energy-dependent intensity variations for these empty Sc features show resonant photon emission for incident electron energies above the 3p threshold, with maxima at 43 and 44 eV for 300- and 5-A-thick films, respectively. Considerations of hybridization-induced energy shifts of the empty Sc 3d states demonstrate that the radiative energy changes very little with Sc coverages. These studies indicate coupling of decay channels involving the inverse photoemission continuum and the recombination of the atomic 3p-3d giant dipole transition, the energy of the latter being determined by atomic 3p-3d excitation processes

  3. Trends in elasticity and electronic structure of 5d transition metal diborides: first-principles calculations

    Hao Xianfeng; Wu Zhijian; Xu Yuanhui; Zhou Defeng; Liu Xiaojuan; Meng Jian

    2007-01-01

    We investigate the cohesive energy, heat of formation, elastic constant and electronic band structure of transition metal diborides TMB 2 (TM = Hf, Ta, W, Re, Os and Ir, Pt) in the Pmmn space group using the ab initio pseudopotential total energy method. Our calculations indicate that there is a relationship between elastic constant and valence electron concentration (VEC): the bulk modulus and shear modulus achieve their maximum when the VEC is in the range of 6.8-7.2. In addition, trends in the elastic constant are well explained in terms of electronic band structure analysis, e.g., occupation of valence electrons in states near the Fermi level, which determines the cohesive energy and elastic properties. The maximum in bulk modulus and shear modulus is attributed to the nearly complete filling of TM d-B p bonding states without filling the antibonding states. On the basis of the observed relationship, we predict that alloying W and Re in the orthorhombic structure OsB 2 might be harder than alloying the Ir element. Indeed, the further calculations confirmed this expectation

  4. Trends in elasticity and electronic structure of 5d transition metal diborides: first-principles calculations

    Hao Xianfeng [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Wu Zhijian [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Xu Yuanhui [School of Biological Engineering, Changchun University of Technology, Changchun 130012 (China); Zhou Defeng [School of Biological Engineering, Changchun University of Technology, Changchun 130012 (China); Liu Xiaojuan [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng Jian [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2007-05-16

    We investigate the cohesive energy, heat of formation, elastic constant and electronic band structure of transition metal diborides TMB{sub 2} (TM = Hf, Ta, W, Re, Os and Ir, Pt) in the Pmmn space group using the ab initio pseudopotential total energy method. Our calculations indicate that there is a relationship between elastic constant and valence electron concentration (VEC): the bulk modulus and shear modulus achieve their maximum when the VEC is in the range of 6.8-7.2. In addition, trends in the elastic constant are well explained in terms of electronic band structure analysis, e.g., occupation of valence electrons in states near the Fermi level, which determines the cohesive energy and elastic properties. The maximum in bulk modulus and shear modulus is attributed to the nearly complete filling of TM d-B p bonding states without filling the antibonding states. On the basis of the observed relationship, we predict that alloying W and Re in the orthorhombic structure OsB{sub 2} might be harder than alloying the Ir element. Indeed, the further calculations confirmed this expectation.

  5. Structural and electronic properties of OsB2 : A hard metallic material

    Chen, Z. Y.; Xiang, H. J.; Yang, Jinlong; Hou, J. G.; Zhu, Qingshi

    2006-07-01

    We calculate the structural and electronic properties of OsB2 using density functional theory with or without taking into account the spin-orbit (SO) interaction. Our results show that the bulk modulus with and without SO interactions are 364 and 365GPa , respectively, both are in good agreement with experiment (365-395GPa) . The evidence of covalent bonding of Os-B, which plays an important role to form a hard material, is indicated both in charge density, atoms in molecules analysis, and density of states analysis. The good metallicity and hardness of OsB2 might suggest its potential application as hard conductors.

  6. Electronic structure at metal-smiconductor surfaces and interfaces: effects of disorder

    Rodrigues, D.E.

    1988-01-01

    The main concern of this work is the study of the electronic structure at metal and semiconductor surfaces or interfaces, with special emphasis in the effects of disorder and local microstructure upon them. Various factors which determine this structure are presented and those of central importance are identified. A model that allows the efficient and exact calculation of the local density of states at disordered interfaces is described. This model is based on a tight-binding hamiltonian that has enough flexibility so as to allow an adequate description of real solids. The disorder is taken into account by including stochastic perturbations in the diagonal elements of the hamiltonian in a site orbital basis. These perturbations are taken at each layer from a lorentzian probability distribution. An exact expression for the calculation of the local density of states is derived and applied to a model surface built up from a type orbitals arranged in a simple cubic lattice. The effects of disorder on the local densities of states and on the existence of surface Tamm states are studied. The properties of the electronic states with this kind of model of disorder are considered. The self-consistent calculation of the electronic structure of the Si(111) - (1x1) surface is presented. The effects of disorder on the electronic properties such as the work function or the position of surface states within the gap are evaluated. The surface of the metallic compound NiSi 2 is also treated. The first self-consistent calculation of the electronic structure of its (111) surface is presented. The electronic structure of the Si/NiSi 2 (111) interfaces is calculated for the two types of junctions that can be grown experimentally. The origin of the difference between the Schottky barrier heights at both interfaces is discussed. The results are compared with available experimental data. The implications of this calculation on existing theories about the microscopic mechanism that causes

  7. Resizing metal-coated nanopores using a scanning electron microscope.

    Chansin, Guillaume A T; Hong, Jongin; Dusting, Jonathan; deMello, Andrew J; Albrecht, Tim; Edel, Joshua B

    2011-10-04

    Electron beam-induced shrinkage provides a convenient way of resizing solid-state nanopores in Si(3) N(4) membranes. Here, a scanning electron microscope (SEM) has been used to resize a range of different focussed ion beam-milled nanopores in Al-coated Si(3) N(4) membranes. Energy-dispersive X-ray spectra and SEM images acquired during resizing highlight that a time-variant carbon deposition process is the dominant mechanism of pore shrinkage, although granular structures on the membrane surface in the vicinity of the pores suggest that competing processes may occur. Shrinkage is observed on the Al side of the pore as well as on the Si(3) N(4) side, while the shrinkage rate is observed to be dependent on a variety of factors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electron localization, polarons and clustered states in manganites

    Mannella, N.

    2004-01-01

    Full text: A recent multi-spectroscopic study of prototypical colossal magnetoresistance (CMR) compounds La 1-x Sr x MnO 3 (LSMO, x = 0.3, 0.4) using photoemission (PE), x-ray absorption (XAS), x-ray emission (XES) and extended x-ray absorption e structure (EXAFS) has exposed a dramatic change in the electronic structure on crossing the ferromagnetic-to-paramagnetic transition temperature (T C ). In particular, this investigation revealed an increase of the Mn magnetic moment by ca. 1 Bohr magneton and charge transfer to the Mn atom on crossing T C concomitant with the presence of Jahn-Teller distortions, thus providing direct evidence of lattice polaron formation. These results thus challenge the belief of some authors that the LSMO compounds are canonical double-exchange (DE) systems in which polaron formation is unimportant, and thus help to unify the theoretical description of the CMR oxides. The relationship of these data to other recent work suggesting electron localization, polarons and phase separation, along with additional measurements of magnetic susceptibility indicating the formation of ferromagnetic clusters in the metallic paramagnetic state above T C will be discussed

  9. High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission

    Hojati-Talemi, Pejman; Gibson, Mark A.; East, Daniel; Simon, George P.

    2011-01-01

    We report the preparation of new nanocomposites based on a combination of bulk metallic glass and carbon nanotubes for electron field emission applications. The use of bulk metallic glass as the matrix ensures high electrical and thermal conductivity, high thermal stability, and ease of processing, whilst the well dispersed carbon nanotubes act as highly efficient electron emitters. These advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

  10. High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission

    Hojati-Talemi, Pejman [Department of Materials Engineering, Monash University, Clayton, Vic 3800 (Australia); Mawson Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Gibson, Mark A. [Process Science and Engineering, Commonwealth Scientific and Industrial Research Organisation, Clayton, Vic 3168 (Australia); East, Daniel; Simon, George P. [Department of Materials Engineering, Monash University, Clayton, Vic 3800 (Australia)

    2011-11-07

    We report the preparation of new nanocomposites based on a combination of bulk metallic glass and carbon nanotubes for electron field emission applications. The use of bulk metallic glass as the matrix ensures high electrical and thermal conductivity, high thermal stability, and ease of processing, whilst the well dispersed carbon nanotubes act as highly efficient electron emitters. These advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

  11. All-electron ab initio investigation of the electronic states of the PdC molecule

    Shim, Irene; Gingerich, Karl A.

    2001-01-01

    The electronic structure of transition metal containing molecules are extremely complicated and extensive calculations are required for reliable descriptions. In spite of this the results can often be interpreted in simple terms. The electronic structure of PdC is consistent with the molecular or...

  12. a Study on SODIUM(110) and Other Nearly Free Electron Metals Using Angle Resolved Photoemission Spectroscopy.

    Lyo, In-Whan

    Electronic properties of the epitaxially grown Na(110) film have been studied using angle resolved ultraviolet photoemission spectroscopy with synchrotron radiation as the light source. Na provides an ideal ground to study the fundamental aspects of the electron-electron interactions in metals, because of its simple Fermi surface and small pseudopotential. The absolute band structure of Na(110) using angle resolved photoemission spectroscopy has been mapped out using the extrema searching method. The advantage of this approach is that the usual assumption of the unoccupied state dispersion is not required. We have found that the dispersion of Na(1l0) is very close to the parabolic band with the effective mass 1.21 M_{rm e} at 90 K. Self-consistent calculations of the self-energy for the homogeneous electron gas have been performed using the Green's function technique within the framework of the GW approximation, in the hope of understanding the narrowing mechanism of the bandwidth observed for all the nearly-free-electron (NFE) metals. Good agreements between the experimental data and our calculated self-energy were obtained not only for our data on k-dependency from Na(l10), but also for the total bandwidth corrections for other NFE metals, only if dielectric functions beyond the random phase approximation were used. Our findings emphasize the importance of the screening by long wavelength plasmons. Off-normal spectra of angle resolved photoemission from Na(110) show strong asymmetry of the bulk peak intensity for the wide range of photon energies. Using a simple analysis, we show this asymmetry has an origin in the interference of the surface Umklapp electrons with the normal electrons. We have also performed the detailed experimental studies of the anomalous Fermi level structure observed in the forbidden gap region of Na. This was claimed by A. W. Overhauser as the evidence of the charge density wave in the alkali metal. The possibility of this hypothesis is

  13. Charge state of ions scattered by metal surface

    Kishinevsky, L.M.; Parilis, E.S.; Verleger, V.K.

    1976-01-01

    A model for description of charge distributions for scattering of heavy ions in the keV region, on metal surfaces developing and improving the method of Van der Weg and Bierman, and taking into account the connection between the ion charge state and scattering kinematics, is proposed. It is shown that multiple charged particles come from ions with a vacancy in the inner shell while the outer shell vacancies give only single charged ions and neutrals. The approximately linear increase of degree of ionization with normal velocity, and the non-monotonic charge dependence of the energy spectrum established by Chicherov and Buck et al is explained by considering irreversible neutralization in the depth of the metal, taking into account the connection of the charge state with the shape of trajectory and its location relative to the metal surface. The dependence of charge state on surface structure is discussed. Some new experiments are proposed. (author)

  14. Metal/Polymer Based Stretchable Antenna for Constant Frequency Far-Field Communication in Wearable Electronics

    Hussain, Aftab M.

    2015-10-06

    Body integrated wearable electronics can be used for advanced health monitoring, security, and wellness. Due to the complex, asymmetric surface of human body and atypical motion such as stretching in elbow, finger joints, wrist, knee, ankle, etc. electronics integrated to body need to be physically flexible, conforming, and stretchable. In that context, state-of-the-art electronics are unusable due to their bulky, rigid, and brittle framework. Therefore, it is critical to develop stretchable electronics which can physically stretch to absorb the strain associated with body movements. While research in stretchable electronics has started to gain momentum, a stretchable antenna which can perform far-field communications and can operate at constant frequency, such that physical shape modulation will not compromise its functionality, is yet to be realized. Here, a stretchable antenna is shown, using a low-cost metal (copper) on flexible polymeric platform, which functions at constant frequency of 2.45 GHz, for far-field applications. While mounted on a stretchable fabric worn by a human subject, the fabricated antenna communicated at a distance of 80 m with 1.25 mW transmitted power. This work shows an integration strategy from compact antenna design to its practical experimentation for enhanced data communication capability in future generation wearable electronics.

  15. Theoretical study of electronic and dynamic properties of simple metal clusters in jellium model

    El-Amine Madjet, M.

    1994-01-01

    We have studied the electronic properties of alkali-metal clusters in various theoretical approximations and in the framework of the spherical jellium model. We have investigated the ground state properties of alkali clusters both in the LDA (local density approximation) and in HF (Hartree-Fock) theory. We have compared the LDA predictions of the ground state properties to predictions obtained within the HF theory. Such a comparison permitted us to check the validity of the local density functional theory in describing the ground state of a finite fermion system. For the study of collective dipolar excitations in clusters, we have considered an electromagnetic excitation. We have investigated the collective modes in the following approximations: random phase approximation (RPA), time-dependent local-density approximation (TDLDA) and the sum-rules approach. An assessment of the approximation for the continuum state within the RPA is made by comparing with TDLDA calculations for the static and dynamic electronic properties. The comparative study that we have done on the exchange-correlation effects on the electronic and optical properties have shown that the discrepancies with measured data are due mostly to the jellium approximation for the ionic background. (author). 69 refs., 30 figs., 18 tabs

  16. Guide to state-of-the-art electron devices

    2013-01-01

    Concise, high quality and comparative overview of state-of-the-art electron device development, manufacturing technologies and applications Guide to State-of-the-Art Electron Devices marks the 60th anniversary of the IEEE Electron Devices Committee and the 35th anniversary of the IEEE Electron Devices Society, as such it defines the state-of-the-art of electron devices, as well as future directions across the entire field. Spans full range of electron device types such as photovoltaic devices, semiconductor manufacturing and VLSI technology and circuits, covered by IEEE Electron and Devices Society Contributed by internationally respected members of the electron devices community A timely desk reference with fully-integrated colour and a unique lay-out with sidebars to highlight the key terms Discusses the historical developments and speculates on future trends to give a more rounded picture of the topics covered A valuable resource R&D managers; engineers in the semiconductor industry; applied scientists...

  17. Adsorption on metal oxides Studies with the metastable impact electron spectroscopy

    Krischok, S; Kempter, V

    2002-01-01

    An overview is given on the application of metastable impact electron spectroscopy, in combination with UPS, to the study of clean magnesia and titania surfaces and their interaction with metal atoms and small molecules. The mechanisms for metal adsorption on reducible (titania) and non-reducible (magnesia) substrates are different: while on titania the metal atom often bonds by electron transfer to Ti3d states, it is hybridization of the adsorbate and anion wavefunctions which accounts for the bonding on MgO. In the case of H sub 2 O, molecular adsorption takes place both on MgO and TiO sub 2; on the other hand, water-alkali coadsorption leads to hydroxide formation. In the case of CO sub 2 , chemisorption takes place in form of carbonate (CO sub 3) species. These originate from the CO sub 2 interaction with O sup 2 sup - surface anions. While for CaO chemisorption takes place at regular oxygen sites, for MgO this occurs at low-coordinated oxygen ions only; for TiO sub 2 chemisorption requires alkali coadsor...

  18. Electronic and magnetic properties of SnS2 monolayer doped with 4d transition metals

    Xiao, Wen-Zhi; Xiao, Gang; Rong, Qing-Yan; Chen, Qiao; Wang, Ling-Ling

    2017-09-01

    We investigate the electronic structures and magnetic properties of SnS2 monolayers substitutionally doped with 4-d transition-metal through systematic first principles calculations. The doped complexes exhibit interesting electronic and magnetic behaviors, depending on the interplay between crystal field splitting, Hund's rule, and 4d levels. The system doped with Y is nonmagnetic metal. Both the Zr- and Pd-doped systems remain nonmagnetic semiconductors. Doping results in half-metallic states for Nb-, Ru-, Rh-, Ag, and Cd doped cases, and magnetic semiconductors for systems with Mo and Tc dopants. In particular, the Nb- and Mo-doped systems display long-ranged ferromagnetic ordering with Curie temperature above room temperature, which are primarily attributable to the double-exchange mechanism, and the p-d/p-p hybridizations, respectively. Moreover, The Mo-doped system has excellent energetic stability and flexible mechanical stability, and also possesses remarkable dynamic and thermal (500 K) stability. Our studies demonstrate that Nb- and Mo-doped SnS2 monolayers are promising candidates for preparing 2D diluted magnetic semiconductors, and hence will be a helpful clue for experimentalists.

  19. Adsorption on metal oxides: Studies with the metastable impact electron spectroscopy

    Krischok, S.; Hoefft, O.; Kempter, V.

    2002-01-01

    An overview is given on the application of metastable impact electron spectroscopy, in combination with UPS, to the study of clean magnesia and titania surfaces and their interaction with metal atoms and small molecules. The mechanisms for metal adsorption on reducible (titania) and non-reducible (magnesia) substrates are different: while on titania the metal atom often bonds by electron transfer to Ti3d states, it is hybridization of the adsorbate and anion wavefunctions which accounts for the bonding on MgO. In the case of H 2 O, molecular adsorption takes place both on MgO and TiO 2 ; on the other hand, water-alkali coadsorption leads to hydroxide formation. In the case of CO 2 , chemisorption takes place in form of carbonate (CO 3 ) species. These originate from the CO 2 interaction with O 2- surface anions. While for CaO chemisorption takes place at regular oxygen sites, for MgO this occurs at low-coordinated oxygen ions only; for TiO 2 chemisorption requires alkali coadsorption

  20. Ultrafast electron dynamics at alkali/ice structures adsorbed on a metal surface

    Meyer, Michael

    2011-01-01

    The goal of this work is to study the interaction between excess electrons in water ice structures adsorbed on metal surfaces and other charged or neutral species, like alkali ions, or chemically reactive molecules, like chlorofluorocarbons (CFC), respectively. The excess electrons in the ice can interact with the ions directly or indirectly via the hydrogen bonded water molecules. In both cases the presence of the alkali influences the population, localization, and lifetime of electronic states of excess electrons in the ice adlayer. These properties are of great relevance when considering the highly reactive character of the excess electrons, which can mediate chemical reactions by dissociative electron attachment (DEA). The influence of alkali adsorption on electron solvation and transfer dynamics in ice structures is investigated for two types of adsorption configurations using femtosecond time-resolved two-photon photoelectron spectroscopy. In the first system alkali atoms are coadsorbed on top of a wetting amorphous ice film adsorbed on Cu(111). At temperatures between 60 and 100 K alkali adsorption leads to the formation of positively charged alkali ions at the ice/vacuum interface. The interaction between the alkali ions at the surface and the dipole moments of the surrounding water molecules results in a reorientation of the water molecules. As a consequence new electron trapping sites, i.e. at local potential minima, are formed. Photoinjection of excess electrons into these alkali-ion covered amorphous ice layers, results in the trapping of a solvated electron at an alkali-ion/water complex. In contrast to solvation in pure amorphous ice films, where the electrons are located in the bulk of the ice layer, solvated electrons at alkali-ion/water complexes are located at the ice/vacuum interface. They exhibit lifetimes of several picoseconds and show a fast energetic stabilization. With ongoing solvation, i.e. pump-probe time delay, the electron transfer is

  1. Electronic Excited States of Tungsten(0) Arylisocyanides

    Kvapilová, Hana; Sattler, W.; Sattler, A.; Sazanovich, I.; Clark, I. P.; Towrie, M.; Gray, H. B.; Záliš, Stanislav; Vlček, Antonín

    2015-01-01

    Roč. 54, č. 17 (2015), s. 8518-8528 ISSN 0020-1669 R&D Projects: GA MŠk LH13015 Grant - others:COST(XE) CM1202 Institutional support: RVO:61388955 Keywords : TRANSITION-METAL-COMPLEXES * FEMTOSECOND FLUORESCENCE * CHARGE-TRANSFER Subject RIV: CG - Electrochemistry Impact factor: 4.820, year: 2015

  2. Electronic properties of metal-In{sub 2}O{sub 3} interfaces

    Nazarzadehmoafi, Maryam

    2017-02-22

    The behavior of the electronic properties of as-cleaved melt-grown In{sub 2}O{sub 3} (111) single crystals was studied upon noble metals, In and Sn deposition using angle-resolved photoemission spectroscopy. The stoichiometry, structural quality and crystal orientation, surface morphology, and the electron concentration were examined by energy dispersive X-ray spectroscopy, Laue diffraction, scanning tunneling microscopy (STM), and Hall-effect measurement, respectively. The similarity of the measured-fundamental and surface-band gaps reveals the nearly flat behavior of the bands at the as-cleaved surface of the crystals. Ag and Au/In{sub 2}O{sub 3} interfaces show Schottky behavior, while an ohmic one was observed in Cu, In, and Sn/In{sub 2}O{sub 3} contacts. From agreement of the bulk and surface band gaps, rectifying contact formation as well as the occurrence of photovoltage effect at the pristine surface of the crystals, it can be deduced that SEAL is not an intrinsic property of the as-cleaved surface of the studied crystals. Moreover, for thick Au and Cu overlayer regime at room temperature, Shockley-like surface states were observed. Additionally, the initial stage of Cu and In growth on In{sub 2}O{sub 3} was accompanied by the formation of a two dimensional electron gas (2DEG) fading away for higher coverages which are not associated with the earlier-detected 2DEG at the surface of In{sub 2}O{sub 3} thin films. The application of the Schottky-Mott rule, using in situ-measured work functions of In{sub 2}O{sub 3} and the metals, showed a strong disagreement for all the interfaces except for Ag/In{sub 2}O{sub 3}. The experimental data also disagree with more advanced theories based on the electronegativity concept and metal-induced gap states models.

  3. On the applicability of nearly free electron model for resistivity calculations in liquid metals

    Gorecki, J.; Popielawski, J.

    1982-09-01

    The calculations of resistivity based on the nearly free electron model are presented for many noble and transition liquid metals. The triple ion correlation is included in resistivity formula according to SCQCA approximation. Two different methods for describing the conduction band are used. The problem of applicability of the nearly free electron model for different metals is discussed. (author)

  4. Exact many-electron ground states on diamond and triangle Hubbard chains

    Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter

    2009-01-01

    We construct exact ground states of interacting electrons on triangle and diamond Hubbard chains. The construction requires (1) a rewriting of the Hamiltonian into positive semidefinite form, (2) the construction of a many-electron ground state of this Hamiltonian, and (3) the proof of the uniqueness of the ground state. This approach works in any dimension, requires no integrability of the model, and only demands sufficiently many microscopic parameters in the Hamiltonian which have to fulfill certain relations. The scheme is first employed to construct exact ground state for the diamond Hubbard chain in a magnetic field. These ground states are found to exhibit a wide range of properties such as flat-band ferromagnetism and correlation induced metallic, half-metallic or insulating behavior, which can be tuned by changing the magnetic flux, local potentials, or electron density. Detailed proofs of the uniqueness of the ground states are presented. By the same technique exact ground states are constructed for triangle Hubbard chains and a one-dimensional periodic Anderson model with nearest-neighbor hybridization. They permit direct comparison with results obtained by variational techniques for f-electron ferromagnetism due to a flat band in CeRh 3 B 2 . (author)

  5. A state of the art on metallic fuel technology development

    Hwang, Woan; Kang, Hee Young; Nam, Cheol; Kim, Jong Oh

    1997-01-01

    Since worldwide interest turned toward ceramic fuels before the full potential of metallic fuel could be achieved in the late 1960's, the development of metallic fuels continued throughout the 1970's at ANL's experimental breeder reactor II (EBR-II) because EBR-II continued to be fueled with the metallic uranium-fissium alloy, U-5Fs. During this decade the performance limitations of metallic fuel were satisfactorily resolved resolved at EBR-II. The concept of the IFR developed at ANL since 1984. The technical feasibility had been demonstrated and the technology database had been established to support its practicality. One key features of the IFR is that the fuel is metallic, which brings pronounced benefits over oxide in improved inherent safety and lower processing costs. At the outset of the 1980's, it appeared that metallic fuels are recognized as a professed viable option with regard to safety, integral fuel cycle, waste minimization and deployment economics. This paper reviews the key advances in the last score and summarizes the state-of the art on metallic fuel technology development. (author). 29 refs., 1 tab

  6. A state of the art on metallic fuel technology development

    Hwang, Woan; Kang, Hee Young; Nam, Cheol; Kim, Jong Oh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Since worldwide interest turned toward ceramic fuels before the full potential of metallic fuel could be achieved in the late 1960`s, the development of metallic fuels continued throughout the 1970`s at ANL`s experimental breeder reactor II (EBR-II) because EBR-II continued to be fueled with the metallic uranium-fissium alloy, U-5Fs. During this decade the performance limitations of metallic fuel were satisfactorily resolved resolved at EBR-II. The concept of the IFR developed at ANL since 1984. The technical feasibility had been demonstrated and the technology database had been established to support its practicality. One key features of the IFR is that the fuel is metallic, which brings pronounced benefits over oxide in improved inherent safety and lower processing costs. At the outset of the 1980`s, it appeared that metallic fuels are recognized as a professed viable option with regard to safety, integral fuel cycle, waste minimization and deployment economics. This paper reviews the key advances in the last score and summarizes the state-of the art on metallic fuel technology development. (author). 29 refs., 1 tab.

  7. Metal-dielectric interfaces in gigascale electronics thermal and electrical stability

    He, Ming

    2012-01-01

    Metal-dielectric interfaces are ubiquitous in modern electronics. As advanced gigascale electronic devices continue to shrink, the stability of these interfaces is becoming an increasingly important issue that has a profound impact on the operational reliability of these devices. In this book, the authors present the basic science underlying  the thermal and electrical stability of metal-dielectric interfaces and its relationship to the operation of advanced interconnect systems in gigascale electronics. Interface phenomena, including chemical reactions between metals and dielectrics, metallic-atom diffusion, and ion drift, are discussed based on fundamental physical and chemical principles. Schematic diagrams are provided throughout the book to illustrate  interface phenomena and the principles that govern them. Metal-Dielectric Interfaces in Gigascale Electronics  provides a unifying approach to the diverse and sometimes contradictory test results that are reported in the literature on metal-dielectric i...

  8. Equation of state and thermodynamic properties of BCC metals

    Vu Van Hung, N.T. Hoa

    2017-10-01

    Full Text Available The moment method in statistical dynamics is used to study the equation of state and thermodynamic properties of the bcc metals taking into account the anharmonicity effects of the lattice vibrations and hydrostatic pressures. The explicit expressions of the lattice constant, thermal expansion  oefficient, and the specific heats of the bcc metals are derived within the fourth order moment approximation. The termodynamic quantities of W, Nb, Fe,and Ta metals are calculated as a function of the pressure, and they are in good agreement with the corresponding results obtained from the first principles calculations and experimental results. The effective pair potentials work well for the calculations of bcc metals.

  9. First-principles calculations of heat capacities of ultrafast laser-excited electrons in metals

    Bévillon, E.; Colombier, J.P.; Recoules, V.; Stoian, R.

    2015-01-01

    Ultrafast laser excitation can induce fast increases of the electronic subsystem temperature. The subsequent electronic evolutions in terms of band structure and energy distribution can determine the change of several thermodynamic properties, including one essential for energy deposition; the electronic heat capacity. Using density functional calculations performed at finite electronic temperatures, the electronic heat capacities dependent on electronic temperatures are obtained for a series of metals, including free electron like, transition and noble metals. The effect of exchange and correlation functionals and the presence of semicore electrons on electronic heat capacities are first evaluated and found to be negligible in most cases. Then, we tested the validity of the free electron approaches, varying the number of free electrons per atom. This shows that only simple metals can be correctly fitted with these approaches. For transition metals, the presence of localized d electrons produces a strong deviation toward high energies of the electronic heat capacities, implying that more energy is needed to thermally excite them, compared to free sp electrons. This is attributed to collective excitation effects strengthened by a change of the electronic screening at high temperature

  10. The electronic and optical properties of germanium tellurite glasses containing various transition metal oxides

    Khan, M.N.

    1988-01-01

    Various transition metal oxides, such as TiO 2 , V 2 O 5 , NiO, CuO, and ZnO are added to germanium-tellurite glass and measurements are reported of the electrical conductivity, density, optical absorption, infra-red absorption spectra, and electron spin resonance. It is found that the d.c. conductivity of glasses containing the same amount of V 2 O 5 is higher than that of germanium tellurite glasses containing a similar amount of other transition metal oxides, and is due to hopping between localized states. The optical absorption measurements show that the fundamental absorption edge is a function of glass composition and the optical absorption is due to forbidden indirect transitions. From the infra-red absorption spectra, it is found that the addition of transition metal oxides does not introduce any new absorption band in the infra-red spectrum of germanium tellurite glasses. A small shift of existing absorptions toward higher wave number is observed. The ESR measurements revealed that some transition metal ions are diamagnetic while others are paramagnetic in the glass network. (author)

  11. Electronic states in systems of reduced dimensionality

    Ulloa, S.E.

    1992-01-01

    This report briefly discusses the following research: magnetically modulated systems, inelastic magnetotunneling, ballistic transport review, screening in reduced dimensions, raman and electron energy loss spectroscopy; and ballistic quantum interference effects. (LSP)

  12. Theoretical studies of the electronic properties of transition metals and transition metal compounds

    Alward, J.F. Jr.

    1976-01-01

    An efficient new technique is presented for rapidly determining a near-optimum pseudopotential for use in electronic energy band structure calculations. The electronic energy band structures of TiC and ZrC have been obtained and the corresponding reflectivity spectra are in fair agreement with the data. The TiC wavefunctions have been used to determine the electronic charge distribution in the (100) plane, and the results indicate that there is a net transfer of electronic charge from the titanium atom to the carbon atom. By also calculating the energy band structures of TiN and ZrN, and comparing with the carbide results, it was shown that the rigid-band model is not valid. Using the reflectivity data of Weaver, Lynch, and Olson, the electronic energy band structures of tantalum and vanadium were calculated. The vanadium density of valence states is in good agreement with Eastman's photoemission data. Furthermore, the Ta and V reflectivity spectra have been shown to be in good agreement with the data. Finally, the Fermi surfaces calculated for both Ta and V are in very good agreement with Fermi surface data

  13. Promotion of atomic hydrogen recombination as an alternative to electron trapping for the role of metals in the photocatalytic production of H2.

    Joo, Ji Bong; Dillon, Robert; Lee, Ilkeun; Yin, Yadong; Bardeen, Christopher J; Zaera, Francisco

    2014-06-03

    The production of hydrogen from water with semiconductor photocatalysts can be promoted by adding small amounts of metals to their surfaces. The resulting enhancement in photocatalytic activity is commonly attributed to a fast transfer of the excited electrons generated by photon absorption from the semiconductor to the metal, a step that prevents deexcitation back to the ground electronic state. Here we provide experimental evidence that suggests an alternative pathway that does not involve electron transfer to the metal but requires it to act as a catalyst for the recombination of the hydrogen atoms made via the reduction of protons on the surface of the semiconductor instead.

  14. Pressure-induced changes in the electronic structure of americium metal

    Söderlind, Per; Moore, K. T.; Landa, A.; Sadigh, B.; Bradley, J. A.

    2011-08-01

    We have conducted electronic-structure calculations for Am metal under pressure to investigate the behavior of the 5f-electron states. Density-functional theory (DFT) does not reproduce the experimental photoemission spectra for the ground-state phase where the 5f electrons are localized, but the theory is expected to be correct when 5f delocalization occurs under pressure. The DFT prediction is that peak structures of the 5f valence band will merge closer to the Fermi level during compression indicating the presence of itinerant 5f electrons. Existence of such 5f bands is argued to be a prerequisite for the phase transitions, particularly to the primitive orthorhombic AmIV phase, but does not agree with modern dynamical-mean-field theory (DMFT) results. Our DFT model further suggests insignificant changes of the 5f valence under pressure in agreement with recent resonant x-ray emission spectroscopy, but in contradiction to the DMFT predictions. The influence of pressure on the 5f valency in the actinides is discussed and is shown to depend in a nontrivial fashion on 5f-band position and occupation relative to the spd valence bands.

  15. Electron momentum spectroscopy of the group I and Il metal and oxides

    Ford, M.J.; Dorsett, H.E.; Sashin, V.A.; Bolorizadeh, M.A.; Mikajlo, E.A.; Soule de Bas, B.; Nixon, K.L.; Coleman, V.A.

    2002-01-01

    Full text: The group I and Il metals and oxides are relatively simple condensed phase systems that are easily accessible to theoretical studies. For this reason they have been the subject of a number of studies using a range of theoretical techniques. Calculated electronic band structures have traditionally been compared with optical, X-ray and photo emissions measurements. While these techniques provide excellent data for testing theoretical predictions they generally probe certain aspects of the electronic structure, such as special point energies or densities of states, or require considerable theoretical input for their interpretation. In this paper we present our electron momentum spectroscopy (EMS) measurements for the lighter group Il metals and oxides and group I oxides. EMS can measure directly the full band dispersions and intensities and provides a sensitive test of theoretical predictions. We compare our measurements with Hartree-Fock (HF) and density functional theory (DFT) calculations carried out within the linear combination of atomic orbitals approximation. As expected HF significantly overestimates the bandwidths and bandgaps. DFT gives reasonable overall agreement, albeit with slight overestimation of bandwidths for the oxides. The intensity distribution for the oxides show a systematic difference from all the calculations which cannot easily be explained by experimental effects such as multiple scattering in the target. This work was funded by the Australian Research Council and Flinders University. EA Mikajlo and K L Nixon acknowledge receipt of SENRAC and Ferry scholarships respectively

  16. (Electronic structure and reactivities of transition metal clusters)

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  17. A large economic liquid metal reactor for United States utilities

    Rodwell, E.

    1985-01-01

    The United States has demonstrated its ability to build and operate small and medium sized liquid metal reactors and continues to operate the Experimental Breeder Reactor II and the Fast Flux Test Facility to demonstrate long life fuel designs. Similar-sized liquid metal reactors in Europe have been followed by a step-up to the 1200 MWe capacity of the Superphenix plant. To permit the United States to make a similar step-up in capacity, a 1320 MWe liquid metal reactor plant has been designed with the main emphasis on minimizing the specific capital cost in order to be competitive with light water reactor plant and fossil plant alternatives. The design is based on a four parallel heat transport loops arrangement and complies with current regulatory requirements. The primary heat transport loops are now being integrated into the reactor vessel to achieve further reduction in the capital cost

  18. Quantum State-Resolved Collision Dynamics of Nitric Oxide at Ionic Liquid and Molten Metal Surfaces

    Zutz, Amelia Marie

    Detailed molecular scale interactions at the gas-liquid interface are explored with quantum state-to-state resolved scattering of a jet-cooled beam of NO(2pi1/2; N = 0) from ionic liquid and molten metal surfaces. The scattered distributions are probed via laser-induced fluorescence methods, which yield rotational and spin-orbit state populations that elucidate the dynamics of energy transfer at the gas-liquid interface. These collision dynamics are explored as a function of incident collision energy, surface temperature, scattering angle, and liquid identity, all of which are found to substantially affect the degree of rotational, electronic and vibrational excitation of NO via collisions at the liquid surface. Rotational distributions observed reveal two distinct scattering pathways, (i) molecules that trap, thermalize and eventually desorb from the surface (trapping-desorption, TD), and (ii) those that undergo prompt recoil (impulsive scattering, IS) prior to complete equilibration with the liquid surface. Thermally desorbing NO molecules are found to have rotational temperatures close to, but slightly cooler than the surface temperature, indicative of rotational dependent sticking probabilities on liquid surfaces. Nitric oxide is a radical with multiple low-lying electronic states that serves as an ideal candidate for exploring nonadiabatic state-changing collision dynamics at the gas-liquid interface, which induce significant excitation from ground (2pi1/2) to excited (2pi 3/2) spin-orbit states. Molecular beam scattering of supersonically cooled NO from hot molten metals (Ga and Au, Ts = 300 - 1400 K) is also explored, which provide preliminary evidence for vibrational excitation of NO mediated by thermally populated electron-hole pairs in the hot, conducting liquid metals. The results highlight the presence of electronically nonadiabatic effects and build toward a more complete characterization of energy transfer dynamics at gas-liquid interfaces.

  19. Relationship between the electronic structure and the glide in the hexagonal close packed metals

    Legrand, B.; Le Hazif, R.

    1983-06-01

    In all hexagonal close-packed metals (HCP), deformation is performed by slip on a mean glide system (MGS) and on several secondary systems. There are no reliable predictions of the MGS choice. In this paper is shown the role played by the electronic structure on the choice of glide system in HCP metals. MGS is basal for all normal metals and is a function of the electron number in HCP transition metals. The different SFE's were calculated using appropriate total energy models, for different metals. Thus pseudopotentials were used (or empirical pair potentials) for normal metals, and a tight-binding model for transition metals. The most important results are the following: prismatic SFE (PSFE) is smaller than basal SFE (BSFE) for Y, Ti, Zr, Hf, Ru and Os; BSFE is smaller than PSFE for Co and all normal metals; BSFE and PSFe and about the same for RE and Tc

  20. Magnetic and electronic properties of half-metallic ferromagnetic Mn-stabilised zirconia

    Maznichenko, Igor; Daene, Markus; Hergert, Wolfram; Mertig, Ingrid [Martin-Luther-Univ. Halle-Wittenberg, Inst. Phys., 06099 Halle (Germany); Ernst, Arthur; Ostanin, Sergey; Sandratskii, Leonid; Bruno, Patrick [Max-Planck-Inst. Mikrostrukturphys., Weinberg 2, 06120 Halle (Germany); Bergqvist, Lars [Dept. Phys., Uppsala Univ., Box 530, 751 21 Uppsala (Sweden); Hughes, Ian; Staunton, Julie [Dept. Phys., Univ. Warwick, Coventry CV4 7AL (United Kingdom); Kudrnovsky, Josef [Max-Planck-Inst. Mikrostrukturphys., Weinberg 2, 06120 Halle (Germany); Inst. Phys., Acad. Sci. of the Czech Republic, Na Slovance 2, 18221 Prague (Czech Republic)

    2007-07-01

    The investigations of the manganese stabilised cubic zirconia (Mn-SZ) show that this dilute magnetic semiconductors possess unique magnetic properties. Based on ab-initio electronic structure calculations which include the effects of thermally excited magnetic fluctuations, the autors predict Mn-SZ to be ferromagnetic for a wide range of Mn concentration up to high T{sub C}. It was found that this material, which is well known both as a diamond imitation and as a catalyst, is halfmetallic with majority and minority spin states of the Mn impurities lying in the wide band gap of zirconia. The high T{sub C} ferromagnetism is robust against oxygen vacancies and against the distribution of Mn impurities on the Zr fcc sublattice. This work responds to the question concerning the key electronic and structure factors behind an optimal doping. The autors propose this stable half-metallic ferromagnet to be a promising candidate for future spintronics applications.

  1. Liquid-metal-jet anode electron-impact x-ray source

    Hemberg, O.; Otendal, M.; Hertz, H.M.

    2003-01-01

    We demonstrate an anode concept, based on a liquid-metal jet, for improved brightness in compact electron-impact x-ray sources. The source is demonstrated in a proof-of-principle experiment where a 50 keV, ∼100 W electron beam is focused on a 75 μm liquid-solder jet. The generated x-ray flux and brightness is quantitatively measured in the 7-50 keV spectral region and found to agree with theory. Compared to rotating-anode sources, whose brightness is limited by intrinsic thermal properties, the liquid-jet anode could potentially be scaled to achieve a brightness >100x higher than current state-of-the-art sources. Applications such as mammography, angiography, and diffraction would benefit from such a compact high-brightness source

  2. Quasiparticles in the superconducting state of high-Tc metals

    Amusia, M.Ya.; Shaginyan, V.R.

    2003-01-01

    The behavior of quasiparticles in the superconducting state of high-T c metals within the framework of the theory of superconducting state based on the fermion condensation quantum phase transition is considered. It is shown that the behavior coincides with the behavior of Bogoliubov quasiparticles, whereas the maximum value of the superconducting gap and other exotic properties are determined by the presence of the fermion condensate. If at low temperatures the normal state is recovered by the application of a magnetic field suppressing the superconductivity, the induced state can be viewed as Landau-Fermi liquid. These observations are in good agreement with recent experimental facts [ru

  3. Electronic Structure of the fcc Transition Metals Ir, Rh, Pt, and Pd

    Andersen, O. Krogh

    1970-01-01

    We give a complete description of a relativistic augmented-plane-wave calculation of the band structures of the paramagnetic fcc transition metals Ir, Rh, Pt, and Pd. The width and position of the d band decrease in the sequence Ir, Pt, Rh, Pd; and N(EF)=13.8,23.2,18.7, and 32.7 (states/atom)/Ry,......We give a complete description of a relativistic augmented-plane-wave calculation of the band structures of the paramagnetic fcc transition metals Ir, Rh, Pt, and Pd. The width and position of the d band decrease in the sequence Ir, Pt, Rh, Pd; and N(EF)=13.8,23.2,18.7, and 32.7 (states....../atom)/Ry, respectively. Spin-orbit coupling is important for all four metals and the coupling parameter varies by 30% over the d bandwidth. Detailed comparisons with de Haas—van Alphen Fermi-surface dimensions have previously been presented and the agreement was very good. Comparison with measured electronic specific...

  4. Overlap of electron core states for very high compressions

    Straub, G.

    1985-01-01

    At normal density and for modest compressions, the electronic structure of a metal can be accurately described by treating the conduction electrons and their interactions with the usual methods of band theory. The core electrons remain essentially the same as for an isolated free atom and do not participate in the bonding forces responsible for creating a condensed phase. As the density increases, the core electrons begin to ''see'' one another as the overlap of the tails of wave functions can no longer be neglected. The electronic structure of the core electrons is responsible for an effective repulsive interaction that eventually becomes free-electron-like at very high compressions. The electronic structure of the interacting core electrons may be treated in a simple manner using the Atomic Surface Method (ASM). The ASM is a first-principles treatment of the electronic structure involving a rigorous integration of the Schroedinger equation within the atomic-sphere approximation. Solid phase wave functions are constructed from isolated atom wave functions and the band width W/sub l/ and the center of gravity of the band C/sub l/ are obtained from simple formulas. The ASM can also utilize analytic forms of the atomic wave functions and thus provide direct functional dependence of various aspects of the electronic structure. Of particular use in understanding the behavior of the core electrons, the ASM provides the analytic density dependence of the band widths and positions. 8 refs., 2 figs., 1 tab

  5. The electronic structure of vanadium monochloride cation (VCl+): Tackling the complexities of transition metal species

    DeYonker, Nathan J.; Halfen, DeWayne T.; Allen, Wesley D.; Ziurys, Lucy M.

    2014-11-01

    Six electronic states (X 4Σ-, A 4Π, B 4Δ, 2Φ, 2Δ, 2Σ+) of the vanadium monochloride cation (VCl+) are described using large basis set coupled cluster theory. For the two lowest quartet states (X 4Σ- and A 4Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T0) and spectroscopic constants (re, r0, Be, B0, bar De, He, ωe, v0, αe, ωexe) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling. Due to the delicate interplay between dynamical and static electronic correlation, single reference coupled cluster theory is able to provide the correct ground electronic state (X 4Σ-), while multireference configuration interaction theory cannot. Perturbations from the first- and second-order spin orbit coupling of low-lying states with quartet spin multiplicity reveal an immensely complex rotational spectrum relative to the isovalent species VO, VS, and TiCl. Computational data on the doublet manifold suggest that the lowest-lying doublet state (2Γ) has a Te of ˜11 200 cm-1. Overall, this study shows that laboratory and theoretical rotational spectroscopists must work more closely in tandem to better understand the bonding and structure of molecules containing transition metals.

  6. Structural, electronic and magnetic properties of transition-metal embedded zigzag-edged graphene nanoribbons

    Yu Guodong; Lü Xiaoling; Jiang Liwei; Gao Wenzhu; Zheng Yisong

    2013-01-01

    By means of ab initio calculations within density-functional theory, the structural, electronic and magnetic properties of a zigzag-edged graphene nanoribbon (ZGNR) with 3d transition-metal atoms (TMAs) (Sc–Zn) embedded in the periodically distributed single vacancies are systematically studied. Different from the pristine ZGNR, all of these composite structures show the subband structures with nontrivial spin polarizations, regardless of the type and the embedding position of the TMA. Embedding one kind of these atoms (V, Cr, Ni, Cu or Zn) near one ribbon edge can cause a notable edge distortion. Except for the cases of Sc, Fe and Co doping, other kinds of TMAs embedded near an edge of the ribbon can suppress the inherent magnetism of the zigzag edge. By further analysis, we find that two effects are responsible for the suppression of edge magnetism. One is the variation of the occupied spin-polarized subbands due to the hybridization of the edge state of the ZGNR and 3d atomic states of the dopant. The other is the delocalization of the edge state caused by the exotic TMA. The unilateral magnetism of these TMA-embedded ZGNRs can be utilized to realize the spin-polarized electronic transport, which is the key electronic property in the context of spintronics applications of carbon-based materials. (paper)

  7. Ground-state properties of rare-earth metals: an evaluation of density-functional theory

    Söderlind, Per; Turchi, P E A; Landa, A; Lordi, V

    2014-01-01

    The rare-earth metals have important technological applications due to their magnetic properties, but are scarce and expensive. Development of high-performance magnetic materials with less rare-earth content is desired, but theoretical modeling is hampered by complexities of the rare earths electronic structure. The existence of correlated (atomic-like) 4f electrons in the vicinity of the valence band makes any first-principles theory challenging. Here, we apply and evaluate the efficacy of density-functional theory for the series of lanthanides (rare earths), investigating the influence of the electron exchange and correlation functional, spin-orbit interaction, and orbital polarization. As a reference, the results are compared with those of the so-called ‘standard model’ of the lanthanides in which electrons are constrained to occupy 4f core states with no hybridization with the valence electrons. Some comparisons are also made with models designed for strong electron correlations. Our results suggest that spin–orbit coupling and orbital polarization are important, particularly for the magnitude of the magnetic moments, and that calculated equilibrium volumes, bulk moduli, and magnetic moments show correct trends overall. However, the precision of the calculated properties is not at the level of that found for simpler metals in the Periodic Table of Elements, and the electronic structures do not accurately reproduce x-ray photoemission spectra. (paper)

  8. A unique metal-semiconductor interface and resultant electron transfer phenomenon

    Taft, S. L.

    2012-01-01

    An unusual electron transfer phenomenon has been identified from an n-type semiconductor to Schottky metal particles, the result of a unique metal semiconductor interface that results when the metal particles are grown from the semiconductor substrate. The unique interface acts as a one-way (rectifying) open gateway and was first identified in reduced rutile polycrystalline titanium dioxide (an n-type semiconductor) to Group VIII (noble) metal particles. The interface significantly affects th...

  9. Key electronic states in lithium battery materials probed by soft X-ray spectroscopy

    Yang, Wanli; Liu, Xiaosong; Qiao, Ruimin; Olalde-Velasco, Paul; Spear, Jonathan D.; Roseguo, Louis; Pepper, John X.; Chuang, Yi-de; Denlinger, Jonathan D.; Hussain, Zahid

    2013-01-01

    Highlights: •Key electronic states in battery materials revealed by soft X-ray spectroscopy. •Soft X-ray absorption consistently probes Mn oxidation states in different systems. •Soft X-ray absorption and emission fingerprint battery operations in LiFePO 4 . •Spectroscopic guidelines for selecting/optimizing polymer materials for batteries. •Distinct SEI formation on same electrode material with different crystal orientations. -- Abstract: The formidable challenges for developing a safe, low-cost, high-capacity, and high-power battery necessitate employing advanced tools that are capable of directly probing the key electronic states relevant to battery performance. Synchrotron based soft X-ray spectroscopy directly measures both the occupied and unoccupied states in the vicinity of the Fermi level, including transition-metal-3d and anion-p states. This article presents the basic concepts on how fundamental physics in electronic structure could provide valuable information for lithium-ion battery applications. We then discuss some of our recent studies on transition-metal oxide based cathodes, silicon based anode, and solid-electrolyte-interphase through soft X-ray absorption and emission spectroscopy. We argue that spectroscopic results reveal the evolution of electronic states for fingerprinting, understanding, and optimizing lithium-ion battery operations

  10. Control of two-dimensional electronic states at anatase Ti O2(001 ) surface by K adsorption

    Yukawa, R.; Minohara, M.; Shiga, D.; Kitamura, M.; Mitsuhashi, T.; Kobayashi, M.; Horiba, K.; Kumigashira, H.

    2018-04-01

    The nature of the intriguing metallic electronic structures appearing at the surface of anatase titanium dioxide (a-Ti O2 ) remains to be elucidated, mainly owing to the difficulty of controlling the depth distribution of the oxygen vacancies generated by photoirradiation. In this study, K atoms were adsorbed onto the (001) surface of a-Ti O2 to dope electrons into the a-Ti O2 and to confine the electrons in the surface region. The success of the electron doping and its controllability were confirmed by performing in situ angle-resolved photoemission spectroscopy as well as core-level measurements. Clear subband structures were observed in the surface metallic states, indicating the creation of quasi-two-dimensional electron liquid (q2DEL) states in a controllable fashion. With increasing electron doping (K adsorption), the q2DEL states exhibited crossover from polaronic liquid states with multiple phonon-loss structures originating from the long-range Fröhlich interaction to "weakly correlated metallic" states. In the q2DEL states in the weakly correlated metallic region, a kink due to short-range electron-phonon coupling was clearly observed at about 80 ±10 meV . The characteristic energy is smaller than that previously observed for the metallic states of a-Ti O2 with three-dimensional nature (˜110 meV ) . These results suggest that the dominant electron-phonon coupling is modulated by anisotropic carrier screening in the q2DEL states.

  11. Electron states in semiconductor quantum dots

    Dhayal, Suman S.; Ramaniah, Lavanya M.; Ruda, Harry E.; Nair, Selvakumar V.

    2014-01-01

    In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications

  12. Electronic computer prediction of properties of binary refractory transition metal compounds on the base of their simplificated electronic structure

    Kutolin, S.A.; Kotyukov, V.I.

    1979-01-01

    An attempt is made to obtain calculation equations of macroscopic physico-chemical properties of transition metal refractory compounds (density, melting temperature, Debye characteristic temperature, microhardness, standard formation enthalpy, thermo-emf) using the method of the regression analysis. Apart from the compound composition the argument of the regression equation is the distribution of electron bands of d-transition metals, created by the energy electron distribution in the simplified zone structure of transition metals and approximated by Chebishev polynoms, by the position of Fermi energy on the map of distribution of electron band energy depending upon the value of quasi-impulse, multiple to the first, second and third Brillouin zone for transition metals. The maximum relative error of the regressions obtained as compared with the literary data is 15-20 rel.%

  13. Electronic and optical properties of vacancy defects in single-layer transition metal dichalcogenides

    Khan, M. A.; Erementchouk, Mikhail; Hendrickson, Joshua; Leuenberger, Michael N.

    2017-06-01

    A detailed first-principles study has been performed to evaluate the electronic and optical properties of single-layer (SL) transition metal dichalcogenides (TMDCs) (M X 2 ; M = transition metal such as Mo, W, and X = S, Se, Te), in the presence of vacancy defects (VDs). Defects usually play an important role in tailoring electronic, optical, and magnetic properties of semiconductors. We consider three types of VDs in SL TMDCs: (i) X vacancy, (ii) X2 vacancy, and (iii) M vacancy. We show that VDs lead to localized defect states (LDS) in the band structure, which in turn gives rise to sharp transitions in in-plane and out-of-plane optical susceptibilities, χ∥ and χ⊥. The effects of spin-orbit coupling (SOC) are also considered. We find that SOC splitting in LDS is directly related to the atomic number of the transition metal atoms. Apart from electronic and optical properties we also find magnetic signatures (local magnetic moment of ˜μB ) in MoSe2 in the presence of the Mo vacancy, which breaks the time-reversal symmetry and therefore lifts the Kramers degeneracy. We show that a simple qualitative tight-binding model (TBM), involving only the hopping between atoms surrounding the vacancy with an on-site SOC term, is sufficient to capture the essential features of LDS. In addition, the existence of the LDS can be understood from the solution of the two-dimensional Dirac Hamiltonian by employing infinite mass boundary conditions. In order to provide a clear description of the optical absorption spectra, we use group theory to derive the optical selection rules between LDS for both χ∥ and χ⊥.

  14. Electron Tunneling in Junctions Doped with Semiconductors and Metals.

    Bell, Lloyd Douglas, II

    In this study, tunnel junctions incorporating thin layers of semiconductors and metals have been analyzed. Inelastic electron tunneling spectroscopy (IETS) was employed to yield high-resolution vibrational spectra of surface species deposited at the oxide-M_2 interface of M_1-M_1O _{rm x}-M _2 tunneling samples. Analysis was also performed on the elastic component of the tunneling current, yielding information on the tunnel barrier shape. The samples in this research exhibit a wide range of behavior. The IETS for Si, SiO_2, and Ge doped samples show direct evidence of SiH _{rm x} and GeH_ {rm x} formation. The particular species formed is shown to depend on the form of the evaporated dopant. Samples were also made with organic dopants deposited over the evaporated dopants. Many such samples show marked effects of the evaporated dopants on the inelastic peak intensities of the organic dopants. These alterations are correlated with the changed reactivity of the oxide surface coupled with a change in the OH dipole layer density on the oxide. Thicker organic dopant layers cause large changes in the elastic tunneling barrier due to OH layer alterations or the low barrier attributes of the evaporated dopant. In the cases of the thicker layers an extra current-carrying mechanism is shown to be contributing. Electron ejection from charge traps is proposed as an explanation for this extra current. The trend of barrier shape with dopant thickness is examined. Many of these dopants also produce a voltage-induced shift in the barrier shape which is stable at low temperature but relaxes at high temperature. This effect is similar to that produced by certain organic dopants and is explained by metastable bond formation between the surface OH and dopant. Other dopants, such as Al, Mg, and Fe, produce different effects. These dopants cause large I-V nonlinearity at low voltages. This nonlinearity is modeled as a giant zero-bias anomaly (ZBA) and fits are presented which show good

  15. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    Scheuerlein, C; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis results are compared with electron dose dependent secondary electron and electron stimulated desorption yield measurements. Initially the electron irradiation causes a surface cleaning through electron stimulated desorption, in particular of hydrogen. During this period both the electron stimulated desorption and secondary electron yield decrease as a function of electron dose. When the electron dose exceeds 10-4 C mm-2 electron stimulated desorption yields are reduced by several orders of magnitude and the electron beam indu...

  16. All electron ab initio investigations of the electronic states of the FeC molecule

    Shim, Irene; Gingerich, Karl A.

    1999-01-01

    The low lying electronic states of the molecule FeC have been investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) and multi reference configuration interaction (MRCI) calculations. The relativistic corrections for the one electron Darwin contact term...

  17. All Electron ab initio Investigations of the Electronic States of the MoN Molecule

    Shim, Irene; Gingerich, Karl A.

    1999-01-01

    The low lying electronic states of the molecule MoN have been investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) calculations. The relativistic corrections for the one electron Darwin contact term and the relativistic mass-velocity correction have...

  18. All-electron ab initio investigations of the electronic states of the NiC molecule

    Shim, Irene; Gingerich, Karl. A.

    1999-01-01

    The low-lying electronic states of NiC are investigated by all-electron ab initio multi-configuration self-consistent-field (CASSCF) calculations including relativistic corrections. The electronic structure of NiC is interpreted as perturbed antiferromagnetic couplings of the localized angular...

  19. Electron density measurement for steady state plasmas

    Kawano, Yasunori; Chiba, Shinichi; Inoue, Akira

    2000-01-01

    Electron density of a large tokamak has been measured successfully by the tangential CO 2 laser polarimeter developed in JT-60U. The tangential Faraday rotation angles of two different wavelength of 9.27 and 10.6 μm provided the electron density independently. Two-color polarimeter concept for elimination of Faraday rotation at vacuum windows is verified for the first time. A system stability for long time operation up to ∼10 hours is confirmed. A fluctuation of a signal baseline is observed with a period of ∼3 hours and an amplitude of 0.4 - 0.7deg. In order to improve the polarimeter, an application of diamond window for reduction of the Faraday rotation at vacuum windows and another two-color polarimeter concept for elimination of mechanical rotation component are proposed. (author)

  20. Direct conversion of graphite into diamond through electronic excited states

    Nakayama, H

    2003-01-01

    An ab initio total energy calculation has been performed for electronic excited states in diamond and rhombohedral graphite by the full-potential linearized augmented plane wave method within the framework of the local density approximation (LDA). First, calculations for the core-excited state in diamond have been performed to show that the ab initio calculations based on the LDA describe the wavefunctions in the electronic excited states as well as in the ground state quite well. Fairly good coincidence with both experimental data and theoretical prediction has been obtained for the lattice relaxation of the core exciton state. The results of the core exciton state are compared with nitrogen-doped diamond. Next, the structural stability of rhombohedral graphite has been investigated to examine the possibility of the transition into the diamond structure through electronic excited states. While maintaining the rhombohedral symmetry, rhombohedral graphite can be spontaneously transformed to cubic diamond. Tota...

  1. Direct Solid-State Conversion of Recyclable Metals and Alloys

    Feng, Z; Manchiraju, K [Southwire Co.

    2012-02-22

    This project is to develop and demonstrate the concept feasibility of a highly energy-efficient solid-state material synthesis process, friction stir extrusion (FSE) technology. Specifically, the project seeks to explore and demonstrate the feasibility to recycle metals, produce nano-particle dispersion strengthened bulk materials and/or nano-composite materials from powders, chips or other recyclable feedstock metals or scraps through mechanical alloying and thermo-mechanical processing in a single-step. In this study, we focused on metal recycling, producing nano-engineered wires and evaluating their potential use in future generation long-distance electric power delivery infrastructure. More comprehensive R&D on the technology fundamentals and system scale-up toward early-stage applications in two targeted “showcase” fields of use: nano engineered bulk materials and Al recycling will be considered and planned as part of Project Continuation Plan.

  2. Ground state of a hydrogen ion molecule immersed in an inhomogeneous electron gas

    Diaz-Valdes, J.; Gutierrez, F.A.; Matamala, A.R.; Denton, C.D.; Vargas, P.; Valdes, J.E.

    2007-01-01

    In this work we have calculated the ground state energy of the hydrogen molecule, H 2 + , immersed in the highly inhomogeneous electron gas around a metallic surface within the local density approximation. The molecule is perturbed by the electron density of a crystalline surface of Au with the internuclear axis parallel to the surface. The surface spatial electron density is calculated through a linearized band structure method (LMTO-DFT). The ground state of the molecule-ion was calculated using the Born-Oppenheimer approximation for a fixed-ion while the screening effects of the inhomogeneous electron gas are depicted by a Thomas-Fermi like electrostatic potential. We found that within our model the molecular ion dissociates at the critical distance of 2.35a.u. from the first atomic layer of the solid

  3. Mechanics of metal-catecholate complexes: The roles of coordination state and metal types

    Xu, Zhiping

    2013-01-01

    There have been growing evidences for the critical roles of metal-coordination complexes in defining structural and mechanical properties of unmineralized biological materials, including hardness, toughness, and abrasion resistance. Their dynamic (e.g. pH-responsive, self-healable, reversible) properties inspire promising applications of synthetic materials following this concept. However, mechanics of these coordination crosslinks, which lays the ground for predictive and rational material design, has not yet been well addressed. Here we present a first-principles study of representative coordination complexes between metals and catechols. The results show that these crosslinks offer stiffness and strength near a covalent bond, which strongly depend on the coordination state and type of metals. This dependence is discussed by analyzing the nature of bonding between metals and catechols. The responsive mechanics of metal-coordination is further mapped from the single-molecule level to a networked material. The results presented here provide fundamental understanding and principles for material selection in metal-coordination-based applications. PMID:24107799

  4. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film

    Zhou Hai-Chun; Yang Guang; Lu Pei-Xiang; Wang Kai; Long Hua

    2012-01-01

    The coupling between two optical Tamm states (OTSs) with the same eigenenergy is numerically investigated in a planar dielectric mirror structure containing a thin metal film. The reflectivity map in this structure at normal incidence is obtained by applying the transfer matrix method. Two splitting branches appear in the photonic bandgap region when both adjacent dielectric layers of metal film are properly set. The splitting energy of two branches strongly depends on the thickness of the metal film. According to the electric field distribution in this structure, it is found that the high-energy branch corresponds to the antisymmetric coupling between two OTSs, while the low-energy branch is associated with the symmetric coupling between two OTSs. Moreover, the optical difference frequency of two branches is located in a broad terahertz region. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Peripherally Metalated Porphyrins with Applications in Catalysis, Molecular Electronics and Biomedicine.

    Longevial, Jean-François; Clément, Sébastien; Wytko, Jennifer A; Ruppert, Romain; Weiss, Jean; Richeter, Sébastien

    2018-04-24

    Porphyrins are conjugated, stable chromophores with a central core that binds a variety of metal ions and an easily functionalized peripheral framework. By combining the catalytic, electronic or cytotoxic properties of selected transition metal complexes with the binding and electronic properties of porphyrins, enhanced characteristics of the ensemble are generated. This review article focuses on porphyrins bearing one or more peripheral transition metal complexes and discusses their potential applications in catalysis or biomedicine. Modulation of the electronic properties and intramolecular communication through coordination bond linkages in bis-porphyrin scaffolds is also presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Accelerated electron exchange between U4+ and UO22+ by foreign metal ions

    Obanawa, Heiichiro; Onitsuka, Hatsuki; Takeda, Kunihiko

    1990-01-01

    The rate constant of U 4+ -UO 2 2+ electron exchange (k et ) was increased by more than 100 times in the presence of various metal ions. The larger rate constant was observed for the smaller difference of the standard reduction potential strength between metal ion and UO 2 2+ ion (Δμ θ e ). Detailed investigation of the electron exchange reaction in the presence of Mo 5+ suggested that the mechanism of the electron transfer reaction catalyzed by metal ions is the outer-sphere type independent of U-Clcomplex ions. (author)

  7. Electron spin relaxation in a transition-metal dichalcogenide quantum dot

    Pearce, Alexander J.; Burkard, Guido

    2017-06-01

    We study the relaxation of a single electron spin in a circular quantum dot in a transition-metal dichalcogenide monolayer defined by electrostatic gating. Transition-metal dichalcogenides provide an interesting and promising arena for quantum dot nano-structures due to the combination of a band gap, spin-valley physics and strong spin-orbit coupling. First we will discuss which bound state solutions in different B-field regimes can be used as the basis for qubits states. We find that at low B-fields combined spin-valley Kramers qubits to be suitable, while at large magnetic fields pure spin or valley qubits can be envisioned. Then we present a discussion of the relaxation of a single electron spin mediated by electron-phonon interaction via various different relaxation channels. In the low B-field regime we consider the spin-valley Kramers qubits and include impurity mediated valley mixing which will arise in disordered quantum dots. Rashba spin-orbit admixture mechanisms allow for relaxation by in-plane phonons either via the deformation potential or by piezoelectric coupling, additionally direct spin-phonon mechanisms involving out-of-plane phonons give rise to relaxation. We find that the relaxation rates scale as \\propto B 6 for both in-plane phonons coupling via deformation potential and the piezoelectric effect, while relaxation due to the direct spin-phonon coupling scales independant to B-field to lowest order but depends strongly on device mechanical tension. We will also discuss the relaxation mechanisms for pure spin or valley qubits formed in the large B-field regime.

  8. Enhancing the Electronic Conductivity of Vanadium-tellurite Glasses by Tuning the Redox State

    Kjeldsen, Jonas; Yue, Yuanzheng

    Transition metal oxides are used in a variety of electronic purposes, e.g., vanadium tellurite as cathode material in high-power demanding batteries. By tuning the redox state of vanadium, it is possible to achieve a lower internal resistance within the entire battery unit, thus a higher capacity....... In this work we vary the redox state of a given vanadium tellurite system by performing post heat-treatment in controlled atmosphere. This process is in theory not limited only to varying electronic conductivity, but also varying the glass structure, and hence, changing properties of the glasses, e.g, thermal...... and mechanical properties. Finally we give insight into the relation between the redox state and electronic conductivity....

  9. Conformable liquid metal printed epidermal electronics for smart physiological monitoring and simulation treatment

    Wang, Xuelin; Zhang, Yuxin; Guo, Rui; Wang, Hongzhang; Yuan, Bo; Liu, Jing

    2018-03-01

    Conformable epidermal printed electronics enabled from gallium-based liquid metals (LMs), highly conductive and low-melting-point alloys, are proposed as the core to achieving immediate contact between skin surface and electrodes, which can avoid the skin deformation often caused by conventional rigid electrodes. When measuring signals, LMs can eliminate resonance problems with shorter time to reach steady state than Pt and gelled Pt electrodes. By comparing the contact resistance under different working conditions, it is demonstrated that both ex vivo and in vivo LM electrode-skin models have the virtues of direct and immediate contact with skin surface without the deformation encountered with conventional rigid electrodes. In addition, electrocardio electrodes composed of conformable LM printed epidermal electronics are adopted as smart devices to monitor electrocardiogram signals of rabbits. Furthermore, simulation treatment for smart defibrillation offers a feasible way to demonstrate the effect of liquid metal electrodes (LMEs) on the human body with less energy loss. The remarkable features of soft epidermal LMEs such as high conformability, good conductivity, better signal stability, and fine biocompatibility represent a critical step towards accurate medical monitoring and future smart treatments.

  10. Metallic Interface Emerging at Magnetic Domain Wall of Antiferromagnetic Insulator: Fate of Extinct Weyl Electrons

    Youhei Yamaji

    2014-05-01

    Full Text Available Topological insulators, in contrast to ordinary semiconductors, accompany protected metallic surfaces described by Dirac-type fermions. Here, we theoretically show that another emergent two-dimensional metal embedded in the bulk insulator is realized at a magnetic domain wall. The domain wall has long been studied as an ingredient of both old-fashioned and leading-edge spintronics. The domain wall here, as an interface of seemingly trivial antiferromagnetic insulators, emergently realizes a functional interface preserved by zero modes with robust two-dimensional Fermi surfaces, where pyrochlore iridium oxides proposed to host the condensed-matter realization of Weyl fermions offer such examples at low temperatures. The existence of in-gap states that are pinned at domain walls, theoretically resembling spin or charge solitons in polyacetylene, and protected as the edges of hidden one-dimensional weak Chern insulators characterized by a zero-dimensional class-A topological invariant, solves experimental puzzles observed in R_{2}Ir_{2}O_{7} with rare-earth elements R. The domain wall realizes a novel quantum confinement of electrons and embosses a net uniform magnetization that enables magnetic control of electronic interface transports beyond the semiconductor paradigm.

  11. Metallic vapor supplying by the electron bombardment for a metallic ion production with an ECR ion source

    Kitagawa, Atsushi; Sasaki, Makoto; Muramatsu, Masayuki [National Inst. of Radiological Sciences, Chiba (Japan); Jincho, Kaoru; Sasaki, Noriyuki; Sakuma, Tetsuya; Takasugi, Wataru; Yamamoto, Mitsugu [Accelerator Engineering Corporation, Chiba (Japan)

    2001-11-19

    To produce the metallic ion beam for the injection into the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS), a new gas supply method has been developed for an 18 GHz ECR ion source (NIRS-HEC). A metallic target rod at a high positive potential is melted by the electron bombardment technique. The evaporated gas with a maximum flow rate of 50A/sec is supplied into the ECR plasma in case of Fe metal. (author)

  12. Metallic vapor supplying by the electron bombardment for a metallic ion production with an ECR ion source

    Kitagawa, Atsushi; Sasaki, Makoto; Muramatsu, Masayuki; Jincho, Kaoru; Sasaki, Noriyuki; Sakuma, Tetsuya; Takasugi, Wataru; Yamamoto, Mitsugu

    2001-01-01

    To produce the metallic ion beam for the injection into the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS), a new gas supply method has been developed for an 18 GHz ECR ion source (NIRS-HEC). A metallic target rod at a high positive potential is melted by the electron bombardment technique. The evaporated gas with a maximum flow rate of 50A/sec is supplied into the ECR plasma in case of Fe metal. (author)

  13. Pseudoclassical approach to electron and ion density correlations in simple liquid metals

    Vericat, F.; Tosi, M.P.; Pastore, G.

    1986-04-01

    Electron-electron and electron-ion structural correlations in simple liquid metals are treated by using effective pair potentials to incorporate quantal effects into a pseudoclassical description of the electron fluid. An effective pair potential between simultaneous electron density fluctuations is first constructed from known properties of the degenerate jellium model, which are the plasmon sum rule, the Kimball-Niklasson relation and Yasuhara's values of the electron pair distribution function at contact. An analytic expression is thereby obtained in the Debye-Hueckel approximation for the electronic structure factor in jellium over a range of density appropriate to metals, with results which compare favourably with those of fully quantal evaluations. A simple pseudoclassical model is then set up for a liquid metal: this involves a model of charged hard spheres for the ion-ion potential and an empty core model for the electron-ion potential, the Coulombic tails being scaled as required by the relation between the long-wavelength partial structure factors and the isothermal compressibility of the metal. The model is solved analytically by a pseudoclassical linear response treatment of the electron-ion coupling and numerical results are reported for partial structure factors in liquid sodium and liquid beryllium. Contact is made for the latter system with data on the electron-electron structure factor in the crystal from inelastic X-ray scattering experiments of Eisenberger, Marra and Brown. (author)

  14. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications

    Xuelin Wang

    2016-11-01

    Full Text Available This article presents an overview on typical properties, technologies, and applications of liquid metal based flexible printed electronics. The core manufacturing material—room-temperature liquid metal, currently mainly represented by gallium and its alloys with the properties of excellent resistivity, enormous bendability, low adhesion, and large surface tension, was focused on in particular. In addition, a series of recently developed printing technologies spanning from personal electronic circuit printing (direct painting or writing, mechanical system printing, mask layer based printing, high-resolution nanoimprinting, etc. to 3D room temperature liquid metal printing is comprehensively reviewed. Applications of these planar or three-dimensional printing technologies and the related liquid metal alloy inks in making flexible electronics, such as electronical components, health care sensors, and other functional devices were discussed. The significantly different adhesions of liquid metal inks on various substrates under different oxidation degrees, weakness of circuits, difficulty of fabricating high-accuracy devices, and low rate of good product—all of which are challenges faced by current liquid metal flexible printed electronics—are discussed. Prospects for liquid metal flexible printed electronics to develop ending user electronics and more extensive applications in the future are given.

  15. Non-equilibrium thermionic electron emission for metals at high temperatures

    Domenech-Garret, J. L.; Tierno, S. P.; Conde, L.

    2015-08-01

    Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.

  16. Metallic stereostructured layer: An approach for broadband polarization state manipulation

    Xiong, Xiang; Hu, Yuan-Sheng; Jiang, Shang-Chi; Hu, Yu-Hui; Fan, Ren-Hao; Ma, Guo-Bin; Shu, Da-Jun; Peng, Ru-Wen; Wang, Mu

    2014-01-01

    In this letter, we report a full-metallic broadband wave plate assembled by standing metallic L-shaped stereostructures (LSSs). We show that with an array of LSSs, high polarization conversion ratio is achieved within a broad frequency band. Moreover, by rotating the orientation of the array of LSSs, the electric components of the reflection beam in two orthogonal directions and their phase difference can be independently tuned. In this way, all the polarization states on the Poincaré sphere can be realized. As examples, the functionalities of a quarter wave plate and a half wave plate are experimentally demonstrated with both reflection spectra and focal-plane-array imaging. Our designing provides a unique approach in realizing the broadband wave plate to manipulate the polarization state of light

  17. Metal prices in the United States through 2010

    ,

    2013-01-01

    This report, which updates and revises the U.S. Geological Survey (USGS) (1999) publication, “Metal Prices in the United States Through 1998,” presents an extended price history for a wide range of metals available in a single document. Such information can be useful for the analysis of mineral commodity issues, as well as for other purposes. The chapter for each mineral commodity includes a graph of annual current and constant dollar prices for 1970 through 2010, where available; a list of significant events that affected prices; a brief discussion of the metal and its history; and one or more tables that list current dollar prices. In some cases, the metal prices presented herein are for some alternative form of an element or, instead of a price, a value, such as the value for an import as appraised by the U.S. Customs Service. Also included are the prices for steel, steel scrap, and iron ore—steel because of its importance to the elements used to alloy with it, and steel scrap and iron ore because of their use in steelmaking. A few minor metals, such as calcium, potassium, sodium, strontium, and thorium, for which price histories were insufficient, were excluded. The annual prices given may be averages for the year, yearend prices, or some other price as appropriate for a particular commodity. Certain trade journals have been the source of much of this price information—American Metal Market, ICIS Chemical Business, Engineering and Mining Journal, Industrial Minerals, Metal Bulletin, Mining Journal, Platts Metals Week, Roskill Information Services Ltd. commodity reports, and Ryan’s Notes. Price information also is available in minerals information publications of the USGS (1880–1925, 1996–present) and the U.S. Bureau of Mines (1926–95), such as Mineral Commodity Summaries, Mineral Facts and Problems, Mineral Industry Surveys, and Minerals Yearbook. In addition to prices themselves, these journals and publications contain information relevant to

  18. Equilibrium state of colliding electron beams

    R. L. Warnock

    2003-10-01

    Full Text Available We study a nonlinear integral equation that is a necessary condition on the equilibrium phase-space distribution function of stored, colliding electron beams. It is analogous to the Haïssinski equation, being derived from Vlasov-Fokker-Planck theory, but is quite different in form. The equation is analyzed for the case of the Chao-Ruth model of the beam-beam interaction in 1 degree of freedom, a so-called strong-strong model with nonlinear beam-beam force. We prove the existence of a unique solution, for sufficiently small beam current, by an application of the implicit function theorem. We have not yet proved that this solution is positive, as would be required to establish existence of an equilibrium. There is, however, numerical evidence of a positive solution. We expect that our analysis can be extended to more realistic models.

  19. Effect of suprathermal electrons on the impurity ionization state

    Ochando, M A; Medina, F; Zurro, B; McCarthy, K J; Pedrosa, M A; Baciero, A; Rapisarda, D; Carmona, J M; Jimenez, D

    2006-01-01

    The effect of electron cyclotron resonance heating induced suprathermal electron tails on the ionization of iron impurities in magnetically confined plasmas is investigated. The behaviour of plasma emissivity immediately after injection provides evidence of a spatially localized 'shift' towards higher charge states of the impurity. Bearing in mind that the non-inductive plasma heating methods generate long lasting non-Maxwellian distribution functions, possible implications on the deduced impurity transport coefficients, when fast electrons are present, are discussed

  20. Electron beam melting state-of-the-art 1984

    Bakish, R.

    1984-01-01

    In 1984 electron beam melting and refining appear poised for an important new growth phase. The driving force for this phase is improved production economics made possible by technological advances. There is also a new and exciting growth application for electron beam melting: its use for surface properties beneficiation. This article is based in part on the content of the Conference on Electron Beam Melting and Refining, The State-of-the-Art 1983, held in November 1983 in Reno, Nevada

  1. Imaging quasiperiodic electronic states in a synthetic Penrose tiling

    Collins, Laura C.; Witte, Thomas G.; Silverman, Rochelle; Green, David B.; Gomes, Kenjiro K.

    2017-06-01

    Quasicrystals possess long-range order but lack the translational symmetry of crystalline solids. In solid state physics, periodicity is one of the fundamental properties that prescribes the electronic band structure in crystals. In the absence of periodicity and the presence of quasicrystalline order, the ways that electronic states change remain a mystery. Scanning tunnelling microscopy and atomic manipulation can be used to assemble a two-dimensional quasicrystalline structure mapped upon the Penrose tiling. Here, carbon monoxide molecules are arranged on the surface of Cu(111) one at a time to form the potential landscape that mimics the ionic potential of atoms in natural materials by constraining the electrons in the two-dimensional surface state of Cu(111). The real-space images reveal the presence of the quasiperiodic order in the electronic wave functions and the Fourier analysis of our results links the energy of the resonant states to the local vertex structure of the quasicrystal.

  2. Study of the nanostructure of Gum Metal using energy-filtered transmission electron microscopy

    Yano, T.; Murakami, Y.; Shindo, D.; Kuramoto, S.

    2009-01-01

    The nanostructure of Gum Metal, which has many anomalous mechanical properties, was investigated using transmission electron microscopy with energy filtering. A precise analysis of the weak diffuse electron scattering that was observed in the electron diffraction patterns of the Gum Metal specimen revealed that Gum Metal contains a substantial amount of the nanometer-sized ω phase. The morphology of the ω phase appeared to have a correlation with the faulting in the {2 1 1} planes, which are one of the characteristic lattice imperfections of the Gum Metal specimen. It is likely that the nanometer-sized ω phase may be a type of obstacle related to the restriction of the dislocation movement, which has been a significant problem in research on Gum Metal

  3. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  4. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy

    Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus

    2017-12-01

    Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—`SQUIRRELS'—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron-matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.

  5. SEM evaluation of metallization on semiconductors. [Scanning Electron Microscope

    Fresh, D. L.; Adolphsen, J. W.

    1974-01-01

    A test method for the evaluation of metallization on semiconductors is presented and discussed. The method has been prepared in MIL-STD format for submittal as a proposed addition to MIL-STD-883. It is applicable to discrete devices and to integrated circuits and specifically addresses batch-process oriented defects. Quantitative accept/reject criteria are given for contact windows, other oxide steps, and general interconnecting metallization. Figures are provided that illustrate typical types of defects. Apparatus specifications, sampling plans, and specimen preparation and examination requirements are described. Procedures for glassivated devices and for multi-metal interconnection systems are included.

  6. Surface-electronic-state effects in electron emission from the Be(0001) surface

    Archubi, C. D.; Gravielle, M. S.; Silkin, V. M.

    2011-01-01

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  7. Surface-electronic-state effects in electron emission from the Be(0001) surface

    Archubi, C. D. [Instituto de Astronomia y Fisica del Espacio, casilla de correo 67, sucursal 28, C1428EGA, Buenos Aires (Argentina); Gravielle, M. S. [Instituto de Astronomia y Fisica del Espacio, casilla de correo 67, sucursal 28, C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Silkin, V. M. [Donostia International Physics Center, E-20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Facultad de Ciencias Quimicas, Universidad del Pais Vasco, Apartado 1072, E-20080 San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao (Spain)

    2011-07-15

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  8. D-state Rydberg electrons interacting with ultracold atoms

    Krupp, Alexander Thorsten

    2014-10-02

    This thesis was established in the field of ultracold atoms where the interaction of highly excited D-state electrons with rubidium atoms was examined. This work is divided into two main parts: In the first part we study D-state Rydberg molecules resulting from the binding of a D-state Rydberg electron to a ground state rubidium atom. We show that we can address specific rovibrational molecular states by changing our laser detuning and thus create perfectly aligned axial or antialigned toroidal molecules, in good agreement with our theoretical calculations. Furthermore the influence of the electric field on the Rydberg molecules was investigated, creating novel states which show a different angular dependence and alignment. In the second part of this thesis we excite single D-state Rydberg electrons in a Bose-Einstein condensate. We study the lifetime of these Rydberg electrons, the change of the shape of our condensate and the atom losses in the condensate due to this process. Moreover, we observe quadrupolar shape oscillations of the whole condensate created by the consecutive excitation of Rydberg atoms and compare all results to previous S-state measurements. In the outlook we propose a wide range of further experiments including the proposal of imaging a single electron wavefunction by the imprint of its orbit into the Bose-Einstein condensate.

  9. Localized electronic states: the small radius potential approximation

    Steslicka, M.; Jurczyszyn, L.

    1984-09-01

    Using a quasi three-dimensional crystal model we investigate the localized electronic states, generated by the crystal surface covered by foreign atoms. Two such states are found in the first forbidden energy gap and, because of their localization properties, called the Tamm-like and adsorption-like states. Using the small radius potential approximation, the properties of both types of states were discussed in detail. (author)

  10. Energy modulation of nonrelativistic electrons in an optical near field on a metal microslit

    R., Ishikawa; Jongsuck, Bae; K., Mizuno

    2001-01-01

    Energy modulation of nonrelativistic electrons with a laser beam using a metal microslit as an interaction circuit has been investigated. An optical near field is induced in the proximity of the microslit by illumination of the laser beam. The electrons passing close to the slit are accelerated or decelerated by an evanescent wave contained in the near field whose phase velocity is equal to the velocity of the electrons. The electron-evanescent wave interaction in the microslit has been analy...

  11. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    Krishnan Balasubramanian

    2009-07-18

    This is a continuing DOE-BES funded project on transition metal and actinide containing species, aimed at the electronic structure and spectroscopy of transition metal and actinide containing species. While a long term connection of these species is to catalysis and environmental management of high-level nuclear wastes, the immediate relevance is directly to other DOE-BES funded experimental projects at DOE-National labs and universities. There are a number of ongoing gas-phase spectroscopic studies of these species at various places, and our computational work has been inspired by these experimental studies and we have also inspired other experimental and theoretical studies. Thus our studies have varied from spectroscopy of diatomic transition metal carbides to large complexes containing transition metals, and actinide complexes that are critical to the environment. In addition, we are continuing to make code enhancements and modernization of ALCHEMY II set of codes and its interface with relativistic configuration interaction (RCI). At present these codes can carry out multi-reference computations that included up to 60 million configurations and multiple states from each such CI expansion. ALCHEMY II codes have been modernized and converted to a variety of platforms such as Windows XP, and Linux. We have revamped the symbolic CI code to automate the MRSDCI technique so that the references are automatically chosen with a given cutoff from the CASSCF and thus we are doing accurate MRSDCI computations with 10,000 or larger reference space of configurations. The RCI code can also handle a large number of reference configurations, which include up to 10,000 reference configurations. Another major progress is in routinely including larger basis sets up to 5g functions in thee computations. Of course higher angular momenta functions can also be handled using Gaussian and other codes with other methods such as DFT, MP2, CCSD(T), etc. We have also calibrated our RECP

  12. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    Balasubramanian, Krishnan

    2009-01-01

    This is a continuing DOE-BES funded project on transition metal and actinide containing species, aimed at the electronic structure and spectroscopy of transition metal and actinide containing species. While a long term connection of these species is to catalysis and environmental management of high-level nuclear wastes, the immediate relevance is directly to other DOE-BES funded experimental projects at DOE-National labs and universities. There are a number of ongoing gas-phase spectroscopic studies of these species at various places, and our computational work has been inspired by these experimental studies and we have also inspired other experimental and theoretical studies. Thus our studies have varied from spectroscopy of diatomic transition metal carbides to large complexes containing transition metals, and actinide complexes that are critical to the environment. In addition, we are continuing to make code enhancements and modernization of ALCHEMY II set of codes and its interface with relativistic configuration interaction (RCI). At present these codes can carry out multi-reference computations that included up to 60 million configurations and multiple states from each such CI expansion. ALCHEMY II codes have been modernized and converted to a variety of platforms such as Windows XP, and Linux. We have revamped the symbolic CI code to automate the MRSDCI technique so that the references are automatically chosen with a given cutoff from the CASSCF and thus we are doing accurate MRSDCI computations with 10,000 or larger reference space of configurations. The RCI code can also handle a large number of reference configurations, which include up to 10,000 reference configurations. Another major progress is in routinely including larger basis sets up to 5g functions in thee computations. Of course higher angular momenta functions can also be handled using Gaussian and other codes with other methods such as DFT, MP2, CCSD(T), etc. We have also calibrated our RECP

  13. Development of high current electron source using photoemission from metals with ultrashort laser pulses

    Tsang, T.; Srinivasan-Rao, T.; Fischer, J.

    1990-10-01

    We summarize the studies of photoemission from metal photocathodes using picosecond pulses in the UV (4.66 eV) wavelength and femtosecond laser pulses in the visible (2 eV) wavelengths. To achieve high current density yield from metal photocathodes, multiphoton photoemission using femtosecond laser pulses are suggested. Electron yield improvement incorporating surface photoemission and surface plasmon resonance in metals and metal films are demonstrated. We examine the possibility of the nonlinear photoemission process overtaking the linear process, and identity some possible complexity. To extract the large amount of electrons free of space charge, a pulsed high voltage is designed; the results of the preliminary test are presented. Finally, for the first time, the width of the electron temporal profiles are measured, utilizing the nonlinear photoelectric effect, to below 100 fsec time regime. The results indicated that the electron pulse duration follows the laser pulses and are not limited by the material. 8 refs., 15 figs

  14. Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria

    Ilyas, Sadia; Anwar, Munir A.; Niazi, Shahida B.; Ghauri, M. Afzal

    The present work was aimed at studying the bioleachability of metals from electronic scrap by the selected moderately thermophilic strains of acidophilic chemolithotrophic and acidophilic heterotrophic bacteria. These included Sulfobacillus thermosulfidooxidans and an unidentified acidophilic

  15. Liquid alkali metals and alkali-based alloys as electron-ion plasmas

    Tosi, M.P.

    1981-06-01

    The article reviews the theory of thermodynamic and structural properties of liquid alkali metals and alkali-based alloys, within the framework of linear screening theory for the electron-ion interactions. (author)

  16. Electronic excitations in metallic systems: from defect annihilation to track formation

    Dunlop, A.; Lesueur, D.

    1991-01-01

    This paper presents an overview of the effects of high electronic energy deposition in metallic targets irradiated with GeV heavy ions. The main result of these investigations is that high electronic excitations lead to various and sometimes conflicting effects according to the nature of the target: - partial annealing of the defects induced by elastic collisions, - creation of additional disorder, - phase transformation (tracks formation and amorphization), - anisotropic growth. These different effects of high electronic energy deposition in metallic targets are probably manifestations at various degrees of the same basic energy transfer process between the excited electrons and the target atoms. Up to now no theoretical model explains these effects. 24 refs

  17. Electronic structure of the 3d metals. An investigation by L-shell-photoionisation

    Richter, T.S.

    2007-12-03

    The 3d transition metal elements from Sc to Cu have been investigated by both photo electron emission and photo absorption. Experimental spectra in the 2p energy range are discussed based on atomic multiplet models and Hartree- Fock calculations. The samples have been evaporated from an electron bombardment crucible and excited/ionized by monochromatized synchrotron radiation. Fundamental effects and the main interactions which govern the electronic structure of the 3d metal atoms are covered. Common spectral features and trends in the series are discussed as well as the importance of many body electron correlation effects. (orig.)

  18. Image-potential states on the metallic (111) surface of bismuth

    Muntwiler, Matthias; Zhu, X-Y

    2008-01-01

    An extended series (up to n=6, in quantum beats) of image-potential states (IPS) is observed in time-resolved two-photon photoelectron (TR-2PPE) spectroscopy of the Bi(111) surface. Although mainly located in the vacuum, these states probe various properties of the electronic structure of the surface as reflected in their energetics and dynamics. Based on the observation of IPS a projected gap in the surface normal direction is inferred in the region from 3.57 to 4.27 eV above the Fermi level. Despite this band gap, the lifetimes of the IPS are shorter than on comparable metals, which is an indication of the metallic character of the Bi(111) surface.

  19. Nonequilibrium electron energy-loss kinetics in metal clusters

    Guillon, C; Fatti, N D; Vallee, F

    2003-01-01

    Ultrafast energy exchanges of a non-Fermi electron gas with the lattice are investigated in silver clusters with sizes ranging from 4 to 26 nm using a femtosecond pump-probe technique. The results yield evidence for a cluster-size-dependent slowing down of the short-time energy losses of the electron gas when it is strongly athermal. A constant rate is eventually reached after a few hundred femtoseconds, consistent with the electron gas internal thermalization kinetics, this behaviour reflecting evolution from an individual to a collective electron-lattice type of coupling. The timescale of this transient regime is reduced in small nanoparticles, in agreement with speeding up of the electron-electron interactions with size reduction. The experimental results are in quantitative agreement with numerical simulations of the electron kinetics.

  20. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-01

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.

  1. Heat transport and electron cooling in ballistic normal-metal/spin-filter/superconductor junctions

    Kawabata, Shiro; Vasenko, Andrey S.; Ozaeta, Asier; Bergeret, Sebastian F.; Hekking, Frank W.J.

    2015-01-01

    We investigate electron cooling based on a clean normal-metal/spin-filter/superconductor junction. Due to the suppression of the Andreev reflection by the spin-filter effect, the cooling power of the system is found to be extremely higher than that for conventional normal-metal/nonmagnetic-insulator/superconductor coolers. Therefore we can extract large amount of heat from normal metals. Our results strongly indicate the practical usefulness of the spin-filter effect for cooling detectors, sensors, and quantum bits

  2. Heat transport and electron cooling in ballistic normal-metal/spin-filter/superconductor junctions

    Kawabata, Shiro, E-mail: s-kawabata@aist.go.jp [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Vasenko, Andrey S. [LPMMC, Université Joseph Fourier and CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble (France); Ozaeta, Asier [Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, Manuel de Lardizabal 5, E-20018 San Sebastián (Spain); Bergeret, Sebastian F. [Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, Manuel de Lardizabal 5, E-20018 San Sebastián (Spain); Donostia International Physics Center (DIPC), Manuel de Lardizabal 5, E-20018 San Sebastián (Spain); Hekking, Frank W.J. [LPMMC, Université Joseph Fourier and CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble (France)

    2015-06-01

    We investigate electron cooling based on a clean normal-metal/spin-filter/superconductor junction. Due to the suppression of the Andreev reflection by the spin-filter effect, the cooling power of the system is found to be extremely higher than that for conventional normal-metal/nonmagnetic-insulator/superconductor coolers. Therefore we can extract large amount of heat from normal metals. Our results strongly indicate the practical usefulness of the spin-filter effect for cooling detectors, sensors, and quantum bits.

  3. High pressure metallization of Mott Insulators: Magnetic, structural and electronic properties

    Pasternak, M.P.; Hearne, G.; Sterer, E.; Taylor, R.D.; Jeanloz, R.

    1993-01-01

    High pressure studies of the insulator-metal transition in the (TM)I 2 (TM = V, Fe, Co and Ni) compounds are described. Those divalent transition-metal iodides are structurally isomorphous and classified as Mott Insulators. Resistivity, X-ray diffraction and Moessbauer Spectroscopy were employed to investigate the electronic, structural, and magnetic properties as a function of pressure both on the highly correlated and on the metallic regimes

  4. Spin flip inelastic scattering in electron energy loss spectroscopy of a ferromagnetic metal

    Bocchetta, C.J.; Tosatti, E.; Yin, S.

    1986-11-01

    A model ferromagnetic metal is used to calculate the spin-polarization which occurs during inelastic electron-metal scattering with the production of an electron-hole pair. The polarization is found to have contributions from unequal spin-flip as well as non-flip energy loss rates. Our results indicate an asymmetry of the order of a few percent with parameters roughly modelling iron. (author)

  5. Dosimetric impact of a CT metal artefact suppression algorithm for proton, electron and photon therapies

    Wei Jikun; Sandison, George A; Hsi, W-C; Ringor, Michael; Lu Xiaoyi

    2006-01-01

    Accurate dose calculation is essential to precision radiation treatment planning and this accuracy depends upon anatomic and tissue electron density information. Modern treatment planning inhomogeneity corrections use x-ray CT images and calibrated scales of tissue CT number to electron density to provide this information. The presence of metal in the volume scanned by an x-ray CT scanner causes metal induced image artefacts that influence CT numbers and thereby introduce errors in the radiation dose distribution calculated. This paper investigates the dosimetric improvement achieved by a previously proposed x-ray CT metal artefact suppression technique when the suppressed images of a patient with bilateral hip prostheses are used in commercial treatment planning systems for proton, electron or photon therapies. For all these beam types, this clinical image and treatment planning study reveals that the target may be severely underdosed if a metal artefact-contaminated image is used for dose calculations instead of the artefact suppressed one. Of the three beam types studied, the metal artefact suppression is most important for proton therapy dose calculations, intermediate for electron therapy and least important for x-ray therapy but still significant. The study of a water phantom having a metal rod simulating a hip prosthesis indicates that CT numbers generated after image processing for metal artefact suppression are accurate and thus dose calculations based on the metal artefact suppressed images will be of high fidelity

  6. Transmission electron microscope examination of rare-gas bubbles in metals: analysis of observed contrast effects

    Levy, V.

    1964-01-01

    Metallic samples containing rare gas bubbles have been examined by transmission electron microscopy. The different features of the contrast patterns of the bubbles have been explained by the dynamical theory of contrast, assuming that the bubble behaves as a hole in the metal. Experimental results are in good agreement with the theory. (author) [fr

  7. One-dimensional versus two-dimensional electronic states in vicinal surfaces

    Ortega, J E; Ruiz-Oses, M; Cordon, J; Mugarza, A; Kuntze, J; Schiller, F

    2005-01-01

    Vicinal surfaces with periodic arrays of steps are among the simplest lateral nanostructures. In particular, noble metal surfaces vicinal to the (1 1 1) plane are excellent test systems to explore the basic electronic properties in one-dimensional superlattices by means of angular photoemission. These surfaces are characterized by strong emissions from free-electron-like surface states that scatter at step edges. Thereby, the two-dimensional surface state displays superlattice band folding and, depending on the step lattice constant d, it splits into one-dimensional quantum well levels. Here we use high-resolution, angle-resolved photoemission to analyse surface states in a variety of samples, in trying to illustrate the changes in surface state bands as a function of d

  8. Adsorbates in a Box: Titration of Substrate Electronic States

    Cheng, Zhihai; Wyrick, Jonathan; Luo, Miaomiao; Sun, Dezheng; Kim, Daeho; Zhu, Yeming; Lu, Wenhao; Kim, Kwangmoo; Einstein, T. L.; Bartels, Ludwig

    2010-08-01

    Nanoscale confinement of adsorbed CO molecules in an anthraquinone network on Cu(111) with a pore size of ≈4nm arranges the CO molecules in a shell structure that coincides with the distribution of substrate confined electronic states. Molecules occupy the states approximately in the sequence of rising electron energy. Despite the sixfold symmetry of the pore boundary itself, the adsorbate distribution adopts the threefold symmetry of the network-substrate system, highlighting the importance of the substrate even for such quasi-free-electron systems.

  9. The law of corresponding states and surface tension of metals

    Digilov, R.

    2001-01-01

    Full Text: Surface tension of liquid metals is one of fundamental and most important quantities in theory and practice of material processing and its temperature dependence leads to the well-known Marangoni convection. Although currently methods are sufficiently precise to measure the surface tension, there are uncertainties in experimental data and its temperature dependence mainly due to impurity, which even a trace of it strongly affects the results of measurements. The theoretical treatment from the first principles is unwieldy and not always permits one to calculate the surface tension with certainty. Another active research field deals with empirical correlation between the surface tension and bulk thermodynamic properties, which we interpret as a simple consequence of the law of corresponding states. In order to relate the surface tension and to bulk properties of liquid metals the reduced formula is derived by scaling with the melting point T m (0) at p = 0 and atomic volume Ω 0 2/3 at T = 0 K as macroscopic parameters for scaling ε and a characterizing the interatomic potential in metals. The reduced surface tension and the reduced surface entropy obtained in high temperature limit are discussed and compared with the experiment. The reduced temperature coefficient of the surface tension found is a universal constant for the metals of the same structure. It is shown that pressure dependence of the surface tension, so called baric coefficient of the surface tension, can be described by pressure dependence of scaling parameters T m (p) and Ω 0 (p). (author)

  10. Communication: Electronic flux induced by crossing the transition state

    Jia, Dongming; Manz, Jörn; Yang, Yonggang

    2018-01-01

    We present a new effect of chemical reactions, e.g., isomerizations, that occurs when the reactants pass along the transition state, on the way to products. It is based on the well-known fact that at the transition state, the electronic structure of one isomer changes to the other. We discover that this switch of electronic structure causes a strong electronic flux that is well distinguishable from the usual flux of electrons that travel with the nuclei. As a simple but clear example, the effect is demonstrated here for bond length isomerization of Na2 (21Σu+), with adiabatic crossing the barrier between the inner and outer wells of the double minimum potential that support different "Rydberg" and "ionic" type electronic structures, respectively.

  11. Magnetic collimation and metal foil filtering for electron range and fluence modulation

    Phaisangittisakul, N.; D'Souza, W.D.; Ma Lijun

    2004-01-01

    We investigated the use of magnetically collimated electron beams together with metal filters for electron fluence and range modulation. A longitudinal magnetic field collimation method was developed to reduce skin dose and to improve the electron beam penumbra. Thin metal foils were used to adjust the energies of magnetically collimated electrons. The effects for different types of foils such as Al, Be, Cu, Pb, and Ti were studied using Monte Carlo calculations. An empirical pencil beam dose calculation model was developed to calculate electron dose distributions under magnetic collimation and foil modulation. An optimization method was developed to produce conformal dose distributions for simulated targets such as a horseshoe-shaped target. Our results show that it is possible to produce an electron depth dose enhancement peak using similar techniques of producing a spread-out Bragg peak. In conclusion, our study demonstrates new aspects of using magnetic collimation and foil filtration for producing fluence and range modulated electron dose distributions

  12. Equations of state of heavy metals: ab initio approaches; Equations d'etat des metaux lourds: approches ab initio

    Bernard, S.; Jollet, F.; Jomard, G.; Siberchicot, B.; Torrent, M.; Zerah, G.; Amadon, B.; Bouchet, J.; Richard, N.; Robert, G. [CEA Bruyeres-le-Chatel, 91 (France)

    2005-07-01

    The determination of equations of states of heavy metals through ab initio calculation, i.e. without any adjustable parameter, allows to access to pressure and temperature thermodynamic conditions sometimes inaccessible to experiment. To perform such calculations, density functional theory (DFT) is a good starting point: when electronic densities are homogeneous enough, the local density approximation (LDA) remarkably accounts for thermodynamic properties of heavy metals, such as tantalum, or the light actinides, as well for static properties - equilibrium volume, elastic constants - as for dynamical quantities like phonon spectra. For heavier elements, like neptunium or plutonium, relativistic effects and strong electronic interactions must be taken into account, which requires more sophisticated theoretical approaches. (authors)

  13. Electron transfer reactions of metal complexes in solution

    Sutin, N.

    1977-01-01

    A few representative electron-transfer reactions are selected and their kinetic parameters compared with the predictions of activated complex models. Since Taube has presented an elegant treatment of intramolecular electron-transfer reactions, emphasis is on bimolecular reactions. The latter electron-transfer reactions are more complicated to treat theoretically since the geometries of their activated complexes are not as well known as for the intramolecular case. In addition in biomolecular reactions, the work required to bring the two reactants together needs to be calculated. Since both reactants generally carry charges this presents a non-trivial problem at the ionic strengths usually used to study bimolecular electron transfer

  14. Electronically excited negative ion resonant states in chloroethylenes

    Khvostenko, O.G., E-mail: khv@mail.ru; Lukin, V.G.; Tuimedov, G.M.; Khatymova, L.Z.; Kinzyabulatov, R.R.; Tseplin, E.E.

    2015-02-15

    Highlights: • Several novel dissociative negative ion channels were revealed in chloroethylenes. • The electronically excited resonant states were recorded in all chloroethylenes under study. • The states were assigned to the inter-shell types, but not to the core-excited Feshbach one. - Abstract: The negative ion mass spectra of the resonant electron capture by molecules of 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans, trichloroethylene and tetrachloroethylene have been recorded in the 0–12 eV range of the captured electron energy using static magnetic sector mass spectrometer modified for operation in the resonant electron capture regime. As a result, several novel low-intensive dissociation channels were revealed in the compounds under study. Additionally, the negative ion resonant states were recorded at approximately 3–12 eV, mostly for the first time. These resonant states were assigned to the electronically excited resonances of the inter-shell type by comparing their energies with those of the parent neutral molecules triplet and singlet electronically excited states known from the energy-loss spectra obtained by previous studies.

  15. The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires

    Prades, J D; Hernandez-Ramirez, F; Jimenez-Diaz, R; Manzanares, M; Andreu, T; Cirera, A; Romano-Rodriguez, A; Morante, J R

    2008-01-01

    The responses of individual ZnO nanowires to UV light demonstrate that the persistent photoconductivity (PPC) state is directly related to the electron-hole separation near the surface. Our results demonstrate that the electrical transport in these nanomaterials is influenced by the surface in two different ways. On the one hand, the effective mobility and the density of free carriers are determined by recombination mechanisms assisted by the oxidizing molecules in air. This phenomenon can also be blocked by surface passivation. On the other hand, the surface built-in potential separates the photogenerated electron-hole pairs and accumulates holes at the surface. After illumination, the charge separation makes the electron-hole recombination difficult and originates PPC. This effect is quickly reverted after increasing either the probing current (self-heating by Joule dissipation) or the oxygen content in air (favouring the surface recombination mechanisms). The model for PPC in individual nanowires presented here illustrates the intrinsic potential of metal oxide nanowires to develop optoelectronic devices or optochemical sensors with better and new performances.

  16. Metal-Halide Perovskite Transistors for Printed Electronics: Challenges and Opportunities

    Lin, Yen-Hung

    2017-10-12

    Following the unprecedented rise in photovoltaic power conversion efficiencies during the past five years, metal-halide perovskites (MHPs) have emerged as a new and highly promising class of solar-energy materials. Their extraordinary electrical and optical properties combined with the abundance of the raw materials, the simplicity of synthetic routes, and processing versatility make MHPs ideal for cost-efficient, large-volume manufacturing of a plethora of optoelectronic devices that span far beyond photovoltaics. Herein looks beyond current applications in the field of energy, to the area of large-area electronics using MHPs as the semiconductor material. A comprehensive overview of the relevant fundamental material properties of MHPs, including crystal structure, electronic states, and charge transport, is provided first. Thereafter, recent demonstrations of MHP-based thin-film transistors and their application in logic circuits, as well as bi-functional devices such as light-sensing and light-emitting transistors, are discussed. Finally, the challenges and opportunities in the area of MHPs-based electronics, with particular emphasis on manufacturing, stability, and health and environmental concerns, are highlighted.

  17. Metal-Halide Perovskite Transistors for Printed Electronics: Challenges and Opportunities.

    Lin, Yen-Hung; Pattanasattayavong, Pichaya; Anthopoulos, Thomas D

    2017-12-01

    Following the unprecedented rise in photovoltaic power conversion efficiencies during the past five years, metal-halide perovskites (MHPs) have emerged as a new and highly promising class of solar-energy materials. Their extraordinary electrical and optical properties combined with the abundance of the raw materials, the simplicity of synthetic routes, and processing versatility make MHPs ideal for cost-efficient, large-volume manufacturing of a plethora of optoelectronic devices that span far beyond photovoltaics. Herein looks beyond current applications in the field of energy, to the area of large-area electronics using MHPs as the semiconductor material. A comprehensive overview of the relevant fundamental material properties of MHPs, including crystal structure, electronic states, and charge transport, is provided first. Thereafter, recent demonstrations of MHP-based thin-film transistors and their application in logic circuits, as well as bi-functional devices such as light-sensing and light-emitting transistors, are discussed. Finally, the challenges and opportunities in the area of MHPs-based electronics, with particular emphasis on manufacturing, stability, and health and environmental concerns, are highlighted. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electron radiation damage of metals and nature of point defects by high voltage electron microscopy

    Kiritani, M.

    1975-01-01

    The formation of point defect clusters by electron irradiation in a variety of metals (Al, Au, Cu, Fe, Ni, Mo, Pt, W) in a wide range of temperatures 10 to 1000 0 K are observed. A unified explanation is given for their nucleation and growth from the viewpoint of the migration and interaction of point defects. The effect of free surfaces and other permanent sinks are examined. Analysis of the systematic variation of the nucleation of interstitial clustered defects lead to confirm the free migration of interstitials with fairly small activation energies. Their apparent values obtained from the impurity sensitive nucleation at medium temperatures are 0.08 (Al), 0.19 (Au), 0.26 (Fe), 0.18 (Mo) and 0.21 eV (W), and their values obtained from low temperature irradiation are 0.03 (Al), 0.04 (Au) and 0.05 eV (Mo). The trapping of interstitials by foreign atoms and heterogeneous effects on nucleation of interstitial clusters are discussed

  19. Transferred metal electrode films for large-area electronic devices

    Yang, Jin-Guo; Kam, Fong-Yu; Chua, Lay-Lay

    2014-01-01

    The evaporation of metal-film gate electrodes for top-gate organic field-effect transistors (OFETs) limits the minimum thickness of the polymer gate dielectric to typically more than 300 nm due to deep hot metal atom penetration and damage of the dielectric. We show here that the self-release layer transfer method recently developed for high-quality graphene transfer is also capable of giving high-quality metal thin-film transfers to produce high-performance capacitors and OFETs with superior dielectric breakdown strength even for ultrathin polymer dielectric films. Dielectric breakdown strengths up to 5–6 MV cm −1 have been obtained for 50-nm thin films of polystyrene and a cyclic olefin copolymer TOPAS ® (Zeon). High-quality OFETs with sub-10 V operational voltages have been obtained this way using conventional polymer dielectrics and a high-mobility polymer semiconductor poly[2,5-bis(3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene-2,5-diyl]. The transferred metal films can make reliable contacts without damaging ultrathin polymer films, self-assembled monolayers and graphene, which is not otherwise possible from evaporated or sputtered metal films

  20. First-principles investigation of the electronic states at perovskite and pyrite hetero-interfaces

    Nazir, Safdar

    2012-09-01

    Oxide heterostructures are attracting huge interest in recent years due to the special functionalities of quasi two-dimensional quantum gases. In this thesis, the electronic states at the interface between perovskite oxides and pyrite compounds have been studied by first-principles calculations based on density functional theory. Optimization of the atomic positions are taken into account, which is considered very important at interfaces, as observed in the case of LaAlO3/SrTiO3. The creation of metallic states at the interfaces thus is explained in terms of charge transfer between the transition metal and oxygen atoms near the interface. It is observed that with typical thicknesses of at least 10-12 °A the gases still extend considerably in the third dimension, which essentially determines the magnitude of quantum mechanical effects. To overcome this problem, we propose incorporation of highly electronegative cations (such as Ag) in the oxides. A fundamental interest is also the thermodynamic stability of the interfaces due to the possibility of atomic intermixing in the interface region. Therefore, different cation intermixed configurations are taken into account for the interfaces aiming at the energetically stable state. The effect of O vacancies is also discussed for both polar and non-polar heterostructures. The interface metallicity is enhanced for the polar system with the creation of O vacancies, while the clean interface at the non-polar heterostructure exhibits an insulating state and becomes metallic in presence of O vacancy. The O vacancy formation energies are calculated and explained in terms of the increasing electronegativity and effective volume of A the side cation. Along with these, the electronic and magnetic properties of an interface between the ferromagnetic metal CoS2 and the non-magnetic semiconductor FeS2 is investigated. We find that this contact shows a metallic character. The CoS2 stays quasi half metallic at the interface, while the

  1. Energetic, structural and electronic properties of metal vacancies in strained AlN/GaN interfaces.

    Kioseoglou, J; Pontikis, V; Komninou, Ph; Pavloudis, Th; Chen, J; Karakostas, Th

    2015-04-01

    AlN/GaN heterostructures have been studied using density-functional pseudopotential calculations yielding the formation energies of metal vacancies under the influence of local interfacial strains, the associated charge distribution and the energies of vacancy-induced electronic states. Interfaces are built normal to the polar direction of the wurtzite structure by joining two single crystals of AlN and GaN that are a few atomic layers thick; thus, periodic boundary conditions generate two distinct heterophase interfaces. We show that the formation energy of vacancies is a function of their distance from the interfaces: the vacancy-interface interaction is found repulsive or attractive, depending on the type of the interface. When the interaction is attractive, the vacancy formation energy decreases with increasing the associated electric charge, and hence the equilibrium vacancy concentration at the interface is greater. This finding can reveal the well-known morphological differences existing between the two types of investigated interfaces. Moreover, we found that the electric charge is strongly localized around the Ga vacancy, while in the case of Al vacancies is almost uniformly distributed throughout the AlN/GaN heterostructure. Crucially, for the applications of heterostructures, metal vacancies introduce deep states in the calculated bandgap at energy levels from 0.5 to 1 eV above the valence band maximum (VBM). It is, therefore, predicted that vacancies could initiate 'green luminescence' i.e. light emission in the energy range of 2.5 eV stemming from electronic transitions between these extra levels, and the conduction band, or energy levels, due to shallow donors.

  2. Induced Rashba splitting of electronic states in monolayers of Au, Cu on a W(110) substrate

    Shikin, A M; Rybkina, A A; Rybkin, A G; Marchenko, D; Korshunov, A S; Kudasov, Yu B; Frolova, N V; Sánchez-Barriga, J; Varykhalov, A; Rader, O

    2013-01-01

    The paper sums up a theoretical and experimental investigation of the influence of the spin–orbit coupling in W(110) on the spin structure of electronic states in deposited Au and Cu monolayers. Angle-resolved photoemission spectroscopy reveals that in the case of monolayers of Au and Cu spin–orbit split bands are formed in a surface-projected gap of W(110). Spin resolution shows that these states are spin polarized and that, therefore, the spin–orbit splitting is of Rashba type. The states evolve from hybridization of W 5d, 6p-derived states with the s, p states of the deposited metal. Interaction with Au and Cu shifts the original W 5d-derived states from the edges toward the center of the surface-projected gap. The size of the spin–orbit splitting of the formed states does not correlate with the atomic number of the deposited metal and is even higher for Cu than for Au. These states can be described as W-derived surface resonances modified by hybridization with the p, d states of the adsorbed metal. Our electronic structure calculations performed in the framework of the density functional theory correlate well with the experiment and demonstrate the crucial role of the W top layer for the spin–orbit splitting. It is shown that the contributions of the spin–orbit interaction from W and Au act in opposite directions which leads to a decrease of the resulting spin–orbit splitting in the Au monolayer on W(110). For the Cu monolayer with lower spin–orbit interaction the resulting spin splitting is higher and mainly determined by the W. (paper)

  3. Electron momentum spectroscopy of aniline taking account of nuclear dynamics in the initial electronic ground state

    Farasat, M; Golzan, M M; Shojaei, S H R; Morini, F; Deleuze, M S

    2016-01-01

    The electronic structure, electron binding energy spectrum and (e, 2e) momentum distributions of aniline have been theoretically predicted at an electron impact energy of 1.500 keV on the basis of Born–Oppenheimer molecular dynamical simulations, in order to account for thermally induced nuclear motions in the initial electronic ground state. Most computed momentum profiles are rather insensitive to thermally induced alterations of the molecular structure, with the exception of the profiles corresponding to two ionization bands at electron binding energies comprised between ∼10.0 and ∼12.0 eV (band C) and between ∼16.5 and ∼20.0 eV (band G). These profiles are found to be strongly influenced by nuclear dynamics in the electronic ground state, especially in the low momentum region. The obtained results show that thermal averaging smears out most generally the spectral fingerprints that are induced by nitrogen inversion. (paper)

  4. Decal electronics for printed high performance cmos electronic systems

    Hussain, Muhammad Mustafa; Sevilla, Galo Torres; Cordero, Marlon Diaz; Kutbee, Arwa T.

    2017-01-01

    High performance complementary metal oxide semiconductor (CMOS) electronics are critical for any full-fledged electronic system. However, state-of-the-art CMOS electronics are rigid and bulky making them unusable for flexible electronic applications

  5. Femtosecond Soft X-ray Spectroscopy of Solvated Transition-Metal Complexes: Deciphering the Interplay of Electronic and Structural Dynamics

    Huse, Nils; Cho, Hana; Hong, Kiryong; Jamula, Lindsey; de Groot, Frank M. F.; Kim, Tae Kyu; McCusker, James K.; Schoenlein, Robert W.

    2011-04-21

    We present the first implementation of femtosecond soft X-ray spectroscopy as an ultrafast direct probe of the excited-state valence orbitals in solution-phase molecules. This method is applied to photoinduced spin crossover of [Fe(tren(py)3)]2+, where the ultrafast spinstate conversion of the metal ion, initiated by metal-to-ligand charge-transfer excitation, is directly measured using the intrinsic spin-state selectivity of the soft X-ray L-edge transitions. Our results provide important experimental data concerning the mechanism of ultrafast spin-state conversion and subsequent electronic and structural dynamics, highlighting the potential of this technique to study ultrafast phenomena in the solution phase.

  6. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    Wang, R.; Williams, C. C., E-mail: clayton@physics.utah.edu [Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-09-15

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.

  7. Delayed electron emission in strong-field driven tunnelling from a metallic nanotip in the multi-electron regime

    Yanagisawa, Hirofumi; Schnepp, Sascha; Hafner, Christian; Hengsberger, Matthias; Kim, Dong Eon; Kling, Matthias F.; Landsman, Alexandra; Gallmann, Lukas; Osterwalder, Jürg

    2016-01-01

    Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources. PMID:27786287

  8. Electron-phonon coupling in the rare-earth metals

    Skriver, Hans Lomholt; Mertig, I.

    1990-01-01

    -phonon parameters were calculated within the Gaspari-Gyorffy formulation. For the heavier rare earths Gd–Tm spin polarization was included both in the band-structure calculations and in the treatment of the electron-phonon coupling to take into account the spin splitting of the conduction electrons induced by the 4...

  9. Azobenzenes as light-controlled molecular electronic switches in nanoscale metal-molecule-metal junctions.

    Mativetsky, Jeffrey M; Pace, Giuseppina; Elbing, Mark; Rampi, Maria A; Mayor, Marcel; Samorì, Paolo

    2008-07-23

    Conductance switching associated with the photoisomerization of azobenzene-based (Azo) molecules was observed in nanoscopic metal-molecule-metal junctions. The junctions were formed by using a conducting atomic force microscope (C-AFM) approach, where a metallic AFM tip was used to electrically contact a gold-supported Azo self-assembled monolayer. The measured 30-fold increase in conductance is consistent with the expected decrease in tunneling barrier length resulting from the conformational change of the Azo molecule.

  10. Magnetotransport investigations of the two-dimensional metallic state in silicon metal-oxid-semiconductor structures

    Prinz, A.

    2002-03-01

    For more than two decades it was the predominant view among the physical community that the every two-dimensional (2D) disordered electron system becomes insulating as the temperature approaches the absolute zero temperature (0 Kelvin or -273.15 o C). Two-dimensional means that the movement of the charge carriers is confined in one direction by a potential so that the carriers can move freely only perpendicular to the confinement. The most famous physical realization of a 2D system is the silicon metal-oxide-semiconductor field effect transistor (Si-MOSFET). It is one of the basic elements of most electronic devices in our daily life. The working principle is very simple. Charges are attracted to the semiconductor-oxide interface by an electric field applied between the metallic gate and the semiconductor, so that a 2D conductive channel is formed. The charge density can be adjusted by the voltage from zero up to 10 13 cm -2 . In 1994 Kravchenko and coworkers made a very important discovery. They studied high mobility Si-MOSFETs and found that for densities below a certain critical value, nc, the resistivity increases as the temperature is decreased below 2 K, whereas for densities above $n c $ the resistivity decreases unexpectedly. The transition from insulating to metallic behavior, known as metal-insulator transition (MIT), was obviously a contradiction to the commonly accepted theories which predict insulating behavior for any density. The insulating behavior is a consequence of the wave properties of electrons which leads to interference in disordered media and thus to enhanced backscattering. In the subsequent years, experimental studies were performed on a variety of 2D systems, which qualitatively showed a similar behavior. All the investigated samples had one thing in common. The interaction energy between the carriers was considerable higher than their mean kinetic energy due to their movement in the 2D plane. Since the electron-electron interaction was

  11. Electronic Structure of Rare-Earth Metals. II. Positron Annihilation

    Williams, R. W.; Mackintosh, Allan

    1968-01-01

    of Loucks shows that the independent-particle model gives a good first approximation to the angular distribution, although correlation effects probably smear out some of the structure. The angular distributions from the heavy rare-earth metals are very similar to that from Y and can be understood....... In the spiral phase of Ho, the structure in the c-axis distribution is much reduced, indicating that the Fermi surface is substantially modified by the magnetic ordering, as expected. The photon distribution from the equiatomic Ho-Er alloy is very similar to those from the constituent metals, although...

  12. Solid state effects on the electronic structure of H2OEP.

    Marsili, M; Umari, P; Di Santo, G; Caputo, M; Panighel, M; Goldoni, A; Kumar, M; Pedio, M

    2014-12-28

    We present the results of a joint experimental and theoretical investigation concerning the effect of crystal packing on the electronic properties of the H2OEP molecule. Thin films, deposited in ultra high vacuum on metal surfaces, are investigated by combining valence band photoemission, inverse photoemission, and X-ray absorption spectroscopy. The spectra of the films are compared, when possible, with those measured in the gas phase. Once many-body effects are included in the calculations through the GW method, the electronic structure of H2OEP in the film and gas phase are accurately reproduced for both valence and conduction states. Upon going from an isolated molecule to the film phase, the electronic gap shrinks significantly and the lowest unoccupied molecular orbital (LUMO) and LUMO + 1 degeneracy is removed. The calculations show that the reduction of the transport gap in the film is entirely addressable to the enhancement of the electronic screening.

  13. Chemical potential pinning due to equilibrium electron transfer at metal/C60-doped polymer interfaces

    Heller, C. M.; Campbell, I. H.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.

    1997-04-01

    We report electroabsorption measurements of the built-in electrostatic potential in metal/C60-doped polymer/metal structures to investigate chemical potential pinning due to equilibrium electron transfer from a metal contact to the electron acceptor energy level of C60 molecules in the polymer film. The built-in potentials of a series of structures employing thin films of both undoped and C60-doped poly[2-methoxy, 5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) were measured. For undoped MEH-PPV, which has an energy gap of about 2.4 eV, the maximum built-in potential is about 2.1 eV, whereas for C60-doped MEH-PPV the maximum built-in potential decreases to 1.5 eV. Electron transfer to the C60 molecules close to the metal interface pins the chemical potential of the metal contact near the electron acceptor energy level of C60 and decreases the built-in potential of the structure. From the systematic dependence of the built-in potential on the metal work function we find that the electron acceptor energy level of C60 in MEH-PPV is about 1.7 eV above the hole polaron energy level of MEH-PPV.

  14. A pulsed electron injector using a metal photocathode irradiated by an excimer laser

    Kauppila, T.J.; Builta, L.A.; Crutcher, J.K.; Elliott, J.C.; Moir, D.C.

    1987-01-01

    The hot cathode of an electron gun is replaced by a metallic photocathode driven by an excimer laser. The current, current density, and emittance of the 500-kV electron beam produced by the photoelectron source are presented. In addition, the temperature of the photocathode is varied to study the possibility of a hybrid source

  15. Metal-Organic Frameworks as Active Materials in Electronic Sensor Devices.

    Campbell, Michael G; Dincă, Mircea

    2017-05-12

    In the past decade, advances in electrically conductive metal-organic frameworks (MOFs) and MOF-based electronic devices have created new opportunities for the development of next-generation sensors. Here we review this rapidly-growing field, with a focus on the different types of device configurations that have allowed for the use of MOFs as active components of electronic sensor devices.

  16. Exchange corrections to the bulk plasmon cross section of slow electrons in metals

    Yin, S.; Goodman, B.; Tosatti, E.

    1981-08-01

    We present a calculation of the simplest exchange correction to the low-energy electron cross section for plasmon creation in a free-electron-like metal with the density of Al. The resulting cancellation effect is found to be much too small to account for the anomalous delayed onset of plasmon losses, found in core level photo emission for Al. (author)

  17. The kinetics of low-temperature electron-phonon relaxation in a metallic film following instantaneous heating of the electrons

    Bezuglyi, A.I.; Shklovskii, V.A.

    1997-01-01

    The theoretical analysis of experiments on pulsed laser irradiation of metallic films sputtered on insulating supports is usually based on semiphenomenological dynamical equations for the electron and phonon temperatures, an approach that ignores the nonuniformity and the nonthermal nature of the phonon distribution function. In this paper we discuss a microscopic model that describes the dynamics of the electron-phonon system in terms of kinetic equations for the electron and phonon distribution functions. Such a model provides a microscopic picture of the nonlinear energy relaxation of the electron-phonon system of a rapidly heated film. We find that in a relatively thick film the energy relaxation of electrons consists of three stages: the emission of nonequilibrium phonons by 'hot' electrons, the thermalization of electrons and phonons due to phonon reabsorption, and finally the cooling of the thermalized electron-phonon system as a result of phonon exchange between film and substrate. In thin films, where there is no reabsorption of nonequilibrium phonons, the energy relaxation consists of only one stage, the first. The relaxation dynamics of an experimentally observable quantity, the phonon contribution to the electrical conductivity of the cooling film, is directly related to the dynamics of the electron temperature, which makes it possible to use the data of experiments on the relaxation of voltage across films to establish the electron-phonon and phonon-electron collision times and the average time of phonon escape from film to substrate

  18. Electron dynamics in metals and semiconductors in strong THz fields

    Jepsen, Peter Uhd

    2017-01-01

    Semiconductors and metals respond to strong electric fields in a highly nonlinear fashion. Using single-cycle THz field transients it is possible to investigate this response in regimes not accessible by transport-based measurements. Extremely high fields can be applied without material damage...

  19. Reactions of metal-substituted myoglobins with excess electrons studied by pulse radiolysis and low-temperature gamma-radiolysis

    Miki, Hideho; Nakajima, Atushi; Ogasawara, Masaaki; Tamura, Mamoru

    1990-01-01

    Reactions of metal-substituted myoglobins with excess electrons in electron-pulse-irradiated aqueous solutions at room temperature and γ-irradiated aqueous matrices at 77 K were studied for the purpose of probing the functional role of heme iron. The rate constants for the reactions of various myoglobins with hydrated electrons were not much different from each other, and were close to those of diffusion-controlled reactions. In contrast, the reduction rates of myoglobins with dithionite depended markedly on the kind of central metals in the myoglobins. The difference was interpreted in terms of Marcus' theory for electron-transfer reactions. Effects of the 6-coordinate structure of the cobalt(III) species on the reaction with dithionite was also discussed. The steady-state optical-absorption measurements of γ-irradiated matrices containing cobaltimyoglobin at 77 K demonstrated the reduction of cobalt(III) species by excess electrons produced by the action of ionizing radiation. It was shown, by electron-spin resonance spectroscopy, that a 6-coordinated cobalt(II) species produced at 77 K transformed to a 5-coordinate one at higher temperatures, as reported previously. However, structural relaxation was not observed by optical spectroscopy either in the solutions or in the low-temperature matrices. It was concluded, therefore, that the intermediate 6-coordinate cobalt(II) species gave an optical absorption spectrum which was indistinguishable from that of the relaxed 5-coordinate cobalt(II) species. (author)

  20. The correlation between acoustic and magnetic properties in the long working metal boiler drum with the parameters of the electron microscope

    Ababkov, Nikolai, E-mail: n.ababkov@rambler.ru; Smirnov, Alexander, E-mail: galvas.kem@gmail.com [T.F. Gorbachev Kuzbass State Technical University, Vesennjaja str 28, Kemerovo, 650000 Russian Federation (Russian Federation)

    2016-01-15

    The present paper presents comparative analysis of measurement results of acoustic and magnetic properties in long working metal of boiler drums and the results obtained by methods of electronic microscopy. The structure of the metal sample from the fracture zone to the base metal (metal working sample long) and the center of the base metal before welding (weld metal sample) was investigated by electron microscopy. Studies performed by spectral acoustic, magnetic noise and electron microscopic methods were conducted on the same plots and the same samples of long working and weld metal of high-pressure boiler drums. The analysis of research results showed high sensitivity of spectral-acoustic and magnetic-noise methods to definition changes of microstructure parameters. Practical application of spectral-acoustic and magnetic noise NDT method is possible for the detection of irregularities and changes in structural and phase state of the long working and weld metal of boiler drums, made of a special molybdenum steel (such as 20M). The above technique can be used to evaluate the structure and physical-mechanical properties of the long working metal of boiler drums in the energy sector.

  1. Electronic structure and quantum transport properties of metallic and semiconducting nanowires

    Simbeck, Adam J.

    in opposition to the situation in the bulk where the conductivity of aluminum is well known to be the lowest amongst these four metals. The better performance of aluminum is attributed to its higher density of states near the Fermi energy, which is the determining factor in the ballistic limit. The results from the finite systems are corroborated by the study of the electronic structure of truly one-dimensional atomic wires where it is confirmed that aluminum is more conductive than copper, gold, or silver. The one-dimensional results are attributed to the higher number of eigenchannels available in aluminum wires, which is the determining factor in the periodic structure. For the semiconducting wires, ultra-thin and fully hydrogen-passivated silicon and germanium systems oriented along the [110] direction are considered in an attempt to understand the role of the substrate in modulating the band structure of the wire. The electronic structures of free-standing and graphene supported SiH2 and GeH2 atomic wires are investigated using a combination of first-principles density functional theory and many-body perturbation theory. The band gaps predicted from density functional theory are essentially unaffected by the presence of the graphene substrate, whereas the quasiparticle gaps computed under the GW approximation are substantially reduced. The quasiparticle band gaps of the SiH2 and GeH2 wires decrease by ˜1.1 eV when supported by graphene. This decrease is attributed to a substrate-induced polarization effect which is more effective at screening the Coulomb interaction. These results extend the substrate-induced quasiparticle band gap renormalization to semiconducting wires composed of silicon and germanium, and shows that besides size and orientation, the substrate can also be used to engineer the band gap of semiconducting wires. Finally, for both metallic and semiconducting nanowires, the role of oxygen edge functionalization in armchair graphene nanoribbons is

  2. Design of nanophotonic, hot-electron solar-blind ultraviolet detectors with a metal-oxide-semiconductor structure

    Wang, Zhiyuan; Wang, Xiaoxin; Liu, Jifeng

    2014-01-01

    Solar-blind ultraviolet (UV) detection refers to photon detection specifically in the wavelength range of 200 nm–320 nm. Without background noises from solar radiation, it has broad applications from homeland security to environmental monitoring. The most commonly used solid state devices for this application are wide band gap (WBG) semiconductor photodetectors (Eg > 3.5 eV). However, WBG semiconductors are difficult to grow and integrate with Si readout integrated circuits (ROICs). In this paper, we design a nanophotonic metal-oxide-semiconductor structure on Si for solar-blind UV detectors. Instead of using semiconductors as the active absorber, we use Sn nano-grating structures to absorb UV photons and generate hot electrons for internal photoemission across the Sn/SiO 2 interfacial barrier, thereby generating photocurrent between the metal and the n-type Si region upon UV excitation. Moreover, the transported hot electron has an excess kinetic energy >3 eV, large enough to induce impact ionization and generate another free electron in the conduction band of n-Si. This process doubles the quantum efficiency. On the other hand, the large metal/oxide interfacial energy barrier (>3.5 eV) also enables solar-blind UV detection by blocking the less energetic electrons excited by visible photons. With optimized design, ∼75% UV absorption and hot electron excitation can be achieved within the mean free path of ∼20 nm from the metal/oxide interface. This feature greatly enhances hot electron transport across the interfacial barrier to generate photocurrent. The simple geometry of the Sn nano-gratings and the MOS structure make it easy to fabricate and integrate with Si ROICs compared to existing solar-blind UV detection schemes. The presented device structure also breaks through the conventional notion that photon absorption by metal is always a loss in solid-state photodetectors, and it can potentially be extended to other active metal photonic devices. (paper)

  3. Surface effect on the electronic and the magnetic properties of rock-salt alkaline-earth metal silicides

    Bialek, Beata; Lee, Jaeil

    2011-01-01

    An all electron ab-initio method was employed to study the electronic and the magnetic properties of the (001) surface of alkaline-earth metal silicides, CaSi, SrSi, and BaSi, in the rock-salt structure. The three compounds retain their ferromagnetic metallic properties at the surface. Due to the surface effects, the magnetism of the topmost layer is changed as compared with the bulk. This is a short-range effect. In CaSi, the magnetism of the surface layer is noticeably reduced, as compared with the bulk: magnetic moments (MMs) on both Ca and Si atoms are reduced. In SrSi (001), the polarization of electrons in the surface atoms is similar to that in the bulk atoms, and the values of MMs on the component atoms in the topmost layer do not change as much as in CaSi. In BaSi (001), the magnetic properties of Si surface atoms are enhanced slightly, and the magnetism of Ba atoms is not affected considerably by the surface effect. The calculated densities of states confirm the short-range effect of the surface on the electronic properties of the metal silicides.

  4. Presence and Character of the 5f Electrons in the Actinide Metals

    Johansson, B.; Skriver, Hans Lomholt; Mårtensson, N.

    1980-01-01

    The sensitivity of the Image level binding energy to the occupation of the 5f orbital is pointed out and used to demonstrate the presence of 5f electrons in the uranium metal. It is suggested that the valence band spectrum of uranium might contain satellites originating from excitations...... to localized 5f-electron configurations. Different kinds of core-hole screenings are discussed for the actinide metals as well as the difference between inner and outer core electron ionizations. Finally, the question of itinerant versus localized 5f behaviour is treated by means of a total energy comparison...

  5. The effect of electron scattering from disordered grain boundaries on the resistivity of metallic nanostructures

    Arenas, Claudio; Henriquez, Ricardo; Moraga, Luis; Muñoz, Enrique; Munoz, Raul C.

    2015-01-01

    Highlights: • Quantum theory of the resistivity arising from electron-grain boundary scattering in nanometric metallic structures. • The resistivity is controlled by the collective properties of the grain assembly, by the allowed Kronig-Penney (KP) bands and by the electron transmission probability across successive grains. • When the grain diameter d is larger than the electron mean free path l, the increase in resistivity arises mainly from a decrease of the number of states at the Fermi surface that are allowed KP bands. • When the grain diameter d is smaller than the electron mean free path l, the increase in resistivity arises primarily from Anderson localization caused by electron transmission across successive grains. - Abstract: We calculate the electrical resistivity of a metallic specimen, under the combined effects of electron scattering by impurities, grain boundaries, and rough surfaces limiting the film, using a quantum theory based upon the Kubo formalism. Grain boundaries are represented by a one-dimensional periodic array of Dirac delta functions separated by a distance “d” giving rise to a Kronig–Penney (KP) potential. We use the Green's function built from the wave functions that are solutions of this KP potential; disorder is included by incorporating into the theory the probability that an electron is transmitted through several successive grain boundaries. We apply this new theory to analyze the resistivity of samples S1, S2, S7 and S8 measured between 4 and 300 K reported in Appl. Surf. Science273, 315 (2013). Although both the classical and the quantum theories predict a resistivity that agrees with experimental data to within a few percent or better, the phenomena giving rise to the increase of resistivity over the bulk are remarkably different. Classically, each grain boundary contributes to the electrical resistance by reflecting a certain fraction of the incoming electrons. In the quantum description, there are states

  6. The effect of electron scattering from disordered grain boundaries on the resistivity of metallic nanostructures

    Arenas, Claudio [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile); Synopsys Inc., Avenida Vitacura 5250, Oficina 708, Vitacura, Santiago (Chile); Henriquez, Ricardo [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso (Chile); Moraga, Luis [Universidad Central de Chile, Toesca 1783, Santiago (Chile); Muñoz, Enrique [Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 7820436 (Chile); Munoz, Raul C., E-mail: ramunoz@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile)

    2015-02-28

    Highlights: • Quantum theory of the resistivity arising from electron-grain boundary scattering in nanometric metallic structures. • The resistivity is controlled by the collective properties of the grain assembly, by the allowed Kronig-Penney (KP) bands and by the electron transmission probability across successive grains. • When the grain diameter d is larger than the electron mean free path l, the increase in resistivity arises mainly from a decrease of the number of states at the Fermi surface that are allowed KP bands. • When the grain diameter d is smaller than the electron mean free path l, the increase in resistivity arises primarily from Anderson localization caused by electron transmission across successive grains. - Abstract: We calculate the electrical resistivity of a metallic specimen, under the combined effects of electron scattering by impurities, grain boundaries, and rough surfaces limiting the film, using a quantum theory based upon the Kubo formalism. Grain boundaries are represented by a one-dimensional periodic array of Dirac delta functions separated by a distance “d” giving rise to a Kronig–Penney (KP) potential. We use the Green's function built from the wave functions that are solutions of this KP potential; disorder is included by incorporating into the theory the probability that an electron is transmitted through several successive grain boundaries. We apply this new theory to analyze the resistivity of samples S1, S2, S7 and S8 measured between 4 and 300 K reported in Appl. Surf. Science273, 315 (2013). Although both the classical and the quantum theories predict a resistivity that agrees with experimental data to within a few percent or better, the phenomena giving rise to the increase of resistivity over the bulk are remarkably different. Classically, each grain boundary contributes to the electrical resistance by reflecting a certain fraction of the incoming electrons. In the quantum description, there are states

  7. Bulk-surface relationship of an electronic structure for high-throughput screening of metal oxide catalysts

    Kweun, Joshua Minwoo; Li, Chenzhe; Zheng, Yongping; Cho, Maenghyo; Kim, Yoon Young; Cho, Kyeongjae

    2016-01-01

    Graphical abstract: - Highlights: • Bulk-surface relationship was predicted by the ligand field nature of metal oxides. • Antibonding and bonding d-bands occupancy clarified the bulk-surface relationship. • Different surface relaxations were explained by the bulk electronic structures. • Transition from the bulk to the surface state was simulated by oxygen adsorption. - Abstract: Designing metal-oxides consisting of earth-abundant elements has been a crucial issue to replace precious metal catalysts. To achieve efficient screening of metal-oxide catalysts via bulk descriptors rather than surface descriptors, we investigated the relationship between the electronic structure of bulk and that of the surface for lanthanum-based perovskite oxides, LaMO_3 (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu). Through density functional theory calculations, we examined the d-band occupancy of the bulk and surface transition-metal atoms (n_B_u_l_k and n_S_u_r_f) and the adsorption energy of an oxygen atom (E_a_d_s) on (001), (110), and (111) surfaces. For the (001) surface, we observed strong correlation between the n_B_u_l_k and n_S_u_r_f with an R-squared value over 94%, and the result was interpreted in terms of ligand field splitting and antibonding/bonding level splitting. Moreover, the E_a_d_s on the surfaces was highly correlated with the n_B_u_l_k with an R-squared value of more than 94%, and different surface relaxations could be explained by the bulk electronic structure (e.g., LaMnO_3 vs. LaTiO_3). These results suggest that a bulk-derived descriptor such as n_B_u_l_k can be used to screen metal-oxide catalysts.

  8. Rational design of metal-organic electronic devices: A computational perspective

    Chilukuri, Bhaskar

    Organic and organometallic electronic materials continue to attract considerable attention among researchers due to their cost effectiveness, high flexibility, low temperature processing conditions and the continuous emergence of new semiconducting materials with tailored electronic properties. In addition, organic semiconductors can be used in a variety of important technological devices such as solar cells, field-effect transistors (FETs), flash memory, radio frequency identification (RFID) tags, light emitting diodes (LEDs), etc. However, organic materials have thus far not achieved the reliability and carrier mobility obtainable with inorganic silicon-based devices. Hence, there is a need for finding alternative electronic materials other than organic semiconductors to overcome the problems of inferior stability and performance. In this dissertation, I research the development of new transition metal based electronic materials which due to the presence of metal-metal, metal-pi, and pi-pi interactions may give rise to superior electronic and chemical properties versus their organic counterparts. Specifically, I performed computational modeling studies on platinum based charge transfer complexes and d 10 cyclo-[M(mu-L)]3 trimers (M = Ag, Au and L = monoanionic bidentate bridging (C/N~C/N) ligand). The research done is aimed to guide experimental chemists to make rational choices of metals, ligands, substituents in synthesizing novel organometallic electronic materials. Furthermore, the calculations presented here propose novel ways to tune the geometric, electronic, spectroscopic, and conduction properties in semiconducting materials. In addition to novel material development, electronic device performance can be improved by making a judicious choice of device components. I have studied the interfaces of a p-type metal-organic semiconductor viz cyclo-[Au(mu-Pz)] 3 trimer with metal electrodes at atomic and surface levels. This work was aimed to guide the device

  9. The effect of atoms excited by electron beam on metal evaporation

    Xie Guo Feng; Ying Chun Tong

    2002-01-01

    In atomic vapor laser isotope separation (AVLIS), the metal is heated to melt by electron beams. The vapor atoms may be excited by electrons when flying through the electron beam. The excited atoms may be deexcited by inelastic collision during expansion. The electronic energy transfers translational energy. In order to analyse the effect of reaction between atoms and electron beams on vapor physical parameters, such as density, velocity and temperature, direct-simulation Monte Carlo method (DSMC) is used to simulate the 2-D gadolinium evaporation from long and narrow crucible. The simulation results show that the velocity and temperature of vapor increase, and the density decreases

  10. Photoionization of furan from the ground and excited electronic states.

    Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nađa; Decleva, Piero

    2016-02-28

    Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.

  11. Stability of the antiferromagnetic state in the electron doped iridates

    Bhowal, Sayantika; Moradi Kurdestany, Jamshid; Satpathy, Sashi

    2018-06-01

    Iridates such as Sr2IrO4 are of considerable interest owing to the formation of the Mott insulating state driven by a large spin–orbit coupling. However, in contrast to the expectation from the Nagaoka theorem that a single doped hole or electron destroys the anti-ferromagnetic (AFM) state of the half-filled Hubbard model in the large U limit, the anti-ferromagnetism persists in the doped Iridates for a large dopant concentration beyond half-filling. With a tight-binding description of the relevant states by the third-neighbor (t 1, t 2, t 3, U) Hubbard model on the square lattice, we examine the stability of the AFM state to the formation of a spin spiral state in the strong coupling limit. The third-neighbor interaction t 3 is important for the description of the Fermi surface of the electron doped system. A phase diagram in the parameter space is obtained for the regions of stability of the AFM state. Our results qualitatively explain the robustness of the AFM state in the electron doped iridate (such as Sr2‑x La x IrO4), observed in many experiments, where the AFM state continues to be stable until a critical dopant concentration.

  12. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles.

    Bauer, Christophe; Abid, Jean-Pierre; Fermin, David; Girault, Hubert H

    2004-05-15

    The use of 4.2 nm gold nanoparticles wrapped in an adsorbates shell and embedded in a TiO2 metal oxide matrix gives the opportunity to investigate ultrafast electron-electron scattering dynamics in combination with electronic surface phenomena via the surface plasmon lifetimes. These gold nanoparticles (NPs) exhibit a large nonclassical broadening of the surface plasmon band, which is attributed to a chemical interface damping. The acceleration of the loss of surface plasmon phase coherence indicates that the energy and the momentum of the collective electrons can be dissipated into electronic affinity levels of adsorbates. As a result of the preparation process, gold NPs are wrapped in a shell of sulfate compounds that gives rise to a large density of interfacial molecules confined between Au and TiO2, as revealed by Fourier-transform-infrared spectroscopy. A detailed analysis of the transient absorption spectra obtained by broadband femtosecond transient absorption spectroscopy allows separating electron-electron and electron-phonon interaction. Internal thermalization times (electron-electron scattering) are determined by probing the decay of nascent nonthermal electrons (NNEs) and the build-up of the Fermi-Dirac electron distribution, giving time constants of 540 to 760 fs at 0.42 and 0.34 eV from the Fermi level, respectively. Comparison with literature data reveals that lifetimes of NNEs measured for these small gold NPs are more than four times longer than for silver NPs with similar sizes. The surprisingly long internal thermalization time is attributed to an additional decay mechanism (besides the classical e-e scattering) for the energy loss of NNEs, identified as the ultrafast chemical interface scattering process. NNEs experience an inelastic resonant scattering process into unoccupied electronic states of adsorbates, that directly act as an efficient heat bath, via the excitation of molecular vibrational modes. The two-temperature model is no longer

  13. Preserving half-metallic surface states in Cr O2 : Insights into surface reconstruction rules

    Deng, Bei; Shi, X. Q.; Chen, L.; Tong, S. Y.

    2018-04-01

    The issue of whether the half-metallic (HM) nature of Cr O2 could be retained at its surface has been a standing problem under debate for a few decades, but until now is still controversial. Here, based on the density functional theory calculations we show, in startling contrast to the previous theoretical understandings, that the surfaces of Cr O2 favorably exhibit a half-metallic-semiconducting (SmC) transition driven by means of a surface electronic reconstruction largely attributed to the participation of the unexpected local charge carriers (LCCs), which convert the HM double exchange surface state into a SmC superexchange state and in turn, stabilize the surface as well. On the basis of the LCCs model, a new insight into the surface reconstruction rules is attained. Our novel finding not only provided an evident interpretation for the widely observed SmC character of Cr O2 surface, but also offered a novel means to improve the HM surface states for a variety of applications in spintronics and superconductors, and promote the experimental realization of the quantum anomalous Hall effect in half-metal based systems.

  14. Electron capture to autoionizing states of multiply charged ions

    Mack, E.M.

    1987-01-01

    The present thesis investigates electron capture reactions resulting from slow collisions (V q+ ) and neutral gas targets (B). The energy spectra of the emitted electrons are measured; detection angle is 50 0 . Mainly, autoionizing double capture resulting from collisions with two-electron targets (He, H 2 ) is studied; then, the emitted electrons stem from doubly excited projectile states. The projectiles used are bare C 6+ , the H-like and He-like ions of C, N and O, He-like Ne 8+ and Ne-like Ar 8+ . Excited metastable projectiles used are C 5+ (2s), He-like projectiles A q+ (1s2s 3 S) and Ar 8+ (...2p 5 3s). Comparison is made with the predictions of a recently proposed extended classical barrier model, that was developed in connection with the work. This model assumes sequential capture of the electrons ('two-step' process); it predicts the realized binding enegies of the captured electrons - which may be directly determined from the autoionization spectra using only the projectile charge, the ionization potentials of the target and the collision velocity as parameters. No adjustable parameter enters into the calculations. The term energies and decay modes of the highly excited product ions themselves are studied. Generally, the autoionizing decay of these states is found to proceed preferentially to the directly adjacent lower singly excited state. Experimental evidence is presented, that triply excited states decay by successive emission of two electrons, whenever this is energetically possible. Finally, the L-MM decay in few-electron systems is considered. 314 refs.; 96 figs.; 29 tabs

  15. Integral cross sections for electron impact excitation of vibrational and electronic states in phenol

    Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid (Spain); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Ratnavelu, K. [Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-05-21

    We report on measurements of integral cross sections (ICSs) for electron impact excitation of a series of composite vibrational modes and electronic-states in phenol, where the energy range of those experiments was 15–250 eV. There are currently no other results against which we can directly compare those measured data. We also report results from our independent atom model with screened additivity rule correction computations, namely, for the inelastic ICS (all discrete electronic states and neutral dissociation) and the total ionisation ICS. In addition, for the relevant dipole-allowed excited electronic states, we also report f-scaled Born-level and energy-corrected and f-scaled Born-level (BEf-scaled) ICS. Where possible, our measured and calculated ICSs are compared against one another with the general level of accord between them being satisfactory to within the measurement uncertainties.

  16. Electron momentum spectroscopy of the core state of solid carbon

    Caprari, R.S.; Clark, S.A.C.; McCarthy, I.E.; Storer, P.J.; Vos, M.; Weigold, E.

    1994-08-01

    Electron momentum spectroscopy (binary encounter (e,2e)) experimental results are presented for the core state of an amorphous carbon allotrope. The (e,2e) cross section has two identifiable regions. One is a narrow energy width 'core band peak' that does not disperse with momentum. At higher binding energies there is an energy diffuse 'multiple scattering continuum', which is a consequence of (e,2e) collisions with core electrons that are accompanied by inelastic scattering of one or more of the incoming or outgoing electrons. Comparisons of experimental momentum distributions with the Hartree-Fock atomic carbon ls orbital are presented for both regions. 16 refs., 4 figs

  17. States and properties of metallic systems at a threshold breakdown of the through holes under power laser action (part 2. Susceptibility

    Kalashnikov E.

    2016-01-01

    Full Text Available Threshold breakdown of the through holes by power laser radiation of metallic foils is considered as response of metallic system to laser radiation. Binding experimentally determined response to the absolute temperature scale allows to determine the value of the imaginary part of the generalized susceptibility depending on temperature, the critical temperature of the transition “liquid metal - gas”, states of the electronic subsystems at this temperature, and the reflectance coefficient values.

  18. Dipole-bound states as doorways in (dissociative) electron attachment

    Sommerfeld, Thomas

    2005-01-01

    This communication starts with a comparison of dissociative recombination and dissociative attachment placing emphasis on the role of resonances as reactive intermediates. The main focus is then the mechanism of electron attachment to polar molecules at very low energies (100 meV). The scheme considered consists of two steps: First, an electron is captured in a diffuse dipole-bound state depositing its energy in the vibrational degrees of freedom, in other words, a vibrational Feshbach resonance is formed. Then, owing to the coupling with a valence state, the electron is transferred into a compact valence orbital, and depending on the electron affinities of the valence state and possible dissociation products, as well as on the details of the intramolecular redistribution of vibrational energy, long-lived anions can be generated or dissociation reactions can be initiated. The key property in this context is the electronic coupling strength between the diffuse dipole-bound and the compact valence states. We describe how the coupling strength can be extracted from ab initio data, and present results for Nitromethane, Uracil and Cyanoacetylene

  19. Electron-nuclear magnetic resonance in the inverted state

    Ignatchenko, V.A.; Tsifrinovich, V.I.

    1975-01-01

    The paper considers the susceptibility of the electron-nucleus system of a ferromagnet when nuclear magnetization is inverted with respect to the hyperfine field direction. The inverted state is a situation in which nuclear magnetization is turned through π relative to its equilibrium orientation, whereas electron magnetization is in an equilibrium state with respect to an external magnetic field. The consideration is carried out for a thin plate magnetized in its plane. Amplification of a weak radiofrequency signal can be attained under the fulfilment of an additional inequality relating the interaction frequency with electron and nuclear relaxation parameters. The gain may exceed the gain for an inverted nuclear system in magnetically disordered substances. In the range of strong interaction between the frequencies of ferromagnetic (FMR) and nuclear magnetic (NMR) resonances the electron-nuclear magnetic resonance (ENMR) spectrum possesses a fine structure which is inverse to that obtained for the ENMR spectrum in a normal state. The inverted state ENMR line shape is analysed in detail for the case of so weak HF fields that the relaxation conditions may be regarded as stationary. The initial (linear) stages of a forced transient process arising in an electron-nuclear system under the effect of a strong HF field are briefly analysed

  20. Evidence for single metal two electron oxidative addition and reductive elimination at uranium.

    Gardner, Benedict M; Kefalidis, Christos E; Lu, Erli; Patel, Dipti; McInnes, Eric J L; Tuna, Floriana; Wooles, Ashley J; Maron, Laurent; Liddle, Stephen T

    2017-12-01

    Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido complex in a reaction that satisfies all criteria of a single-metal two-electron oxidative addition. Thermolysis of this complex promotes extrusion of azobenzene, where H-/D-isotopic labelling finds no isotopomer cross-over and the non-reactivity of a nitrene-trap suggests that nitrenes are not generated and thus a reductive elimination has occurred. Though not optimally balanced in this case, this work presents evidence that classical d-block redox chemistry can be performed reversibly by f-block metals, and that uranium can thus mimic elementary transition metal reactivity, which may lead to the discovery of new f-block catalysis.

  1. Adaptation of quantum chemistry software for the electronic structure calculations on GPU for solid-state systems

    Gusakov, V.E.; Bel'ko, V.I.; Dorozhkin, N.N.

    2015-01-01

    We report on adaptation of quantum chemistry software - Quantum Espresso and LASTO - for the electronic structure calculations for the complex solid-state systems on the GeForce series GPUs using the nVIDIA CUDA technology. Specifically, protective covering based on transition metal nitrides are considered. (authors)

  2. Leaky electronic states for photovoltaic photodetectors based on asymmetric superlattices

    Penello, Germano Maioli; Pereira, Pedro Henrique; Pires, Mauricio Pamplona; Sivco, Deborah; Gmachl, Claire; Souza, Patricia Lustoza

    2018-01-01

    The concept of leaky electronic states in the continuum is used to achieve room temperature operation of photovoltaic superlattice infrared photodetectors. A structural asymmetric InGaAs/InAlAs potential profile is designed to create states in the continuum with the preferential direction for electron extraction and, consequently, to obtain photovoltaic operation at room temperature. Due to the photovoltaic operation and virtual increase in the bandoffset, the device presents both low dark current and low noise. The Johnson noise limited specific detectivity reaches values as high as 1.4 × 1011 Jones at 80 K. At 300 K, the detectivity obtained is 7.0 × 105 Jones.

  3. Direct Solid-State Conversion of Recyclable Metals and Alloys

    Kiran Manchiraju

    2012-03-27

    Friction Stir Extrusion (FSE) is a novel energy-efficient solid-state material synthesis and recycling technology capable of producing large quantity of bulk nano-engineered materials with tailored, mechanical, and physical properties. The novelty of FSE is that it utilizes the frictional heating and extensive plastic deformation inherent to the process to stir, consolidate, mechanically alloy, and convert the powders, chips, and other recyclable feedstock materials directly into useable product forms of highly engineered materials in a single step (see Figure 1). Fundamentally, FSE shares the same deformation and metallurgical bonding principles as in the revolutionary friction stir welding process. Being a solid-state process, FSE eliminates the energy intensive melting and solidification steps, which are necessary in the conventional metal synthesis processes. Therefore, FSE is highly energy-efficient, practically zero emissions, and economically competitive. It represents a potentially transformational and pervasive sustainable manufacturing technology for metal recycling and synthesis. The goal of this project was to develop the technological basis and demonstrate the commercial viability of FSE technology to produce the next generation highly functional electric cables for electricity delivery infrastructure (a multi-billion dollar market). Specific focus of this project was to (1) establish the process and material parameters to synthesize novel alloys such as nano-engineered materials with enhanced mechanical, physical, and/or functional properties through the unique mechanical alloying capability of FSE, (2) verifying the expected major energy, environmental, and economic benefits of FSE technology for both the early stage 'showcase' electric cable market and the anticipated pervasive future multi-market applications across several industry sectors and material systems for metal recycling and sustainable manufacturing.

  4. Heavy-Ion-Induced Electronic Desorption of Gas from Metals

    Molvik, A W; Mahner, E; Kireeff Covo, M; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Krämer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2007-01-01

    During heavy-ion operation in several particle accelerators worldwide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion-induced gas desorption scales with the electronic energy loss (dEe/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  5. Spin-polarized spin-orbit-split quantum-well states in a metal film

    Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)

    2008-07-01

    Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.

  6. Optically induced bistable states in metal/tunnel-oxide/semiconductor /MTOS/ junctions

    Lai, S. K.; Dressendorfer, P. V.; Ma, T. P.; Barker, R. C.

    1981-01-01

    A new switching phenomenon in metal-oxide semiconductor tunnel junction has been discovered. With a sufficiently large negative bias applied to the electrode, incident visible light of intensity greater than about 1 microW/sq cm causes the reverse-biased junction to switch from a low-current to a high-current state. It is believed that hot-electron-induced impact ionization provides the positive feedback necessary for switching, and causes the junction to remain in its high-current state after the optical excitation is removed. The junction may be switched back to the low-current state electrically. The basic junction characteristics have been measured, and a simple model for the switching phenomenon has been developed.

  7. Adsorption-induced gap states of h-BN on metal surfaces

    Preobrajenski, A. B.; Krasnikov, S. A.; Vinogradov, A. S.; Ng, May Ling; Käämbre, T.; Cafolla, A. A.; Mårtensson, N.

    2008-02-01

    The formation of hexagonal boron nitride (h-BN) monolayers on Ni(111), Rh(111), and Pt(111) has been studied by a combination of x-ray emission, angle-resolved valence band photoemission, and x-ray absorption in search for interface-induced gap states of h-BN . A significant density of both occupied and unoccupied gap states with N2p and B2p characters is observed for h-BN/Ni(111) , somewhat less for h-BN/Rh(111) and still less for h-BN/Pt(111) . X-ray emission shows that the h-BN monolayer is chemisorbed strongly on Ni(111) and very weakly on Pt(111). We associate the gap states of h-BN adsorbed on the transition metal surfaces with the orbital mixing and electron sharing at the interface because their density increases with the growing strength of chemisorption.

  8. Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells.

    Trost, S; Becker, T; Zilberberg, K; Behrendt, A; Polywka, A; Heiderhoff, R; Görrn, P; Riedl, T

    2015-01-16

    ZnO and TiOx are commonly used as electron extraction layers (EELs) in organic solar cells (OSCs). A general phenomenon of OSCs incorporating these metal-oxides is the requirement to illuminate the devices with UV light in order to improve device characteristics. This may cause severe problems if UV to VIS down-conversion is applied or if the UV spectral range (λ work, silver nanoparticles (AgNP) are used to plasmonically sensitize metal-oxide based EELs in the vicinity (1-20 nm) of the metal-oxide/organic interface. We evidence that plasmonically sensitized metal-oxide layers facilitate electron extraction and afford well-behaved highly efficient OSCs, even without the typical requirement of UV exposure. It is shown that in the plasmonically sensitized metal-oxides the illumination with visible light lowers the WF due to desorption of previously ionosorbed oxygen, in analogy to the process found in neat metal oxides upon UV exposure, only. As underlying mechanism the transfer of hot holes from the metal to the oxide upon illumination with hν < Eg is verified. The general applicability of this concept to most common metal-oxides (e.g. TiOx and ZnO) in combination with different photoactive organic materials is demonstrated.

  9. Photoelectron spectroscopic studies of the electronic structure of some metals and ionic solids

    Poole, R.T.

    1974-01-01

    The source of u.v. radiation used was a d.c. glow discharge in either helium or neon gas. Photons of energy 40.81 eV from a helium discharge were used predominantly for measurements on solid state materials. The design, construction and operating characteristics of the inert gas discharge lamp are presented and the operating characteristics of the lamp were investigated in order to improve progressively the design of the lamp and also to determine under what operating conditions the production of 40.81 eV radiation is maximized. The electron optics of a spherical electrostatic (π/2) -sector, electron energy analyzer and its transmission properties, for monoenergetic and nonmonoenergetic photoelectron sources, under constant resolution mode of operation are presented. In order to perform quantitative measurements energy calibration techniques for solid and gaseous samples and an intensity calibration technique for angular distribution measurements was developed. Measurements of the splittings of the 3d, 4d and 5d bands in some metals in the atomic number range Z = 29 - 83 are compared to free atom values and evidence for crystal field effects is presented. Measurements on eighteen alkali halides are compared with the predictions of the Born model for strongly ionic crystals. (author)

  10. Can Electron-Rich Oxygen (O2-) Withdraw Electrons from Metal Centers? A DFT Study on Oxoanion-Caged Polyoxometalates.

    Takazaki, Aki; Eda, Kazuo; Osakai, Toshiyuki; Nakajima, Takahito

    2017-10-12

    The answer to the question "Can electron-rich oxygen (O 2- ) withdraw electrons from metal centers?" is seemingly simple, but how the electron population on the M atom behaves when the O-M distance changes is a matter of controversy. A case study has been conducted for Keggin-type polyoxometalate (POM) complexes, and the first-principles electronic structure calculations were carried out not only for real POM species but also for "hypothetical" ones whose heteroatom was replaced with a point charge. From the results of natural population analysis, it was proven that even an electron-rich O 2- , owing to its larger electronegativity as a neutral atom, withdraws electrons when electron redistribution occurs by the change of the bond length. In the case where O 2- coexists with a cation having a large positive charge (e.g., P 5+ (O 2- ) 4 = [PO 4 ] 3- ), the gross electron population (GEP) on the M atom seemingly increases as the O atom comes closer, but this increment in GEP is not due to the role of the O atom but due to a Coulombic effect of the positive charge located on the cation. Furthermore, it was suggested that not GEP but net electron population (NEP) should be responsible for the redox properties.

  11. Soft x-ray spectroscopy for probing electronic and chemical states of battery materials

    Yang Wanli; Qiao Ruimin

    2016-01-01

    The formidable challenge of developing high-performance battery system stems from the complication of battery operations, both mechanically and electronically. In the electrodes and at the electrode–electrolyte interfaces, chemical reactions take place with evolving electron states. In addition to the extensive studies of material synthesis, electrochemical, structural, and mechanical properties, soft x-ray spectroscopy provides unique opportunities for revealing the critical electron states in batteries. This review discusses some of the recent soft x-ray spectroscopic results on battery binder, transition-metal based positive electrodes, and the solid-electrolyte-interphase. By virtue of soft x-ray’s sensitivity to electron states, the electronic property, the redox during electrochemical operations, and the chemical species of the interphases could be fingerprinted by soft x-ray spectroscopy. Understanding and innovating battery technologies need a multimodal approach, and soft x-ray spectroscopy is one of the incisive tools to probe the chemical and physical evolutions in batteries. (topical review)

  12. Ab initio study on half-metallic, electronic and thermodynamic attributes of LaFeO3

    Tariq, Saad; Saad, Saher; Jamil, M. Imran; Sohail Gilani, S. M.; Mahmood Ramay, Shahid; Mahmood, Asif

    2018-03-01

    By using the density functional theory (DFT) the systematic study of the structural, electronic and thermodynamic properties of lanthanum ferrite (LaFeO3) has been conducted. The elastic stability criterion and structural tolerance factor reveal that LaFeO3 exists in the cubic phase and is found to be stable under the ambient conditions. In electronic properties, the optical spectrum of the compound has been found to fall in the range of 488 to 688nm which has been calculated from the electronic band gap values by using the PBE-GGA and mBJ-GGA techniques. The light between 488 to 688nm would cause the valence electrons to jump in the conduction band showing the photoconductivity. The pronounced half-metallic character has been discussed by using the projected electronic density of states. The ferromagnetic response has been observed which may be attributed to the Fe-O bonding situation. The compound exhibits ductile, indirect band gap and half-metallic traits in the bulk phase. We expect the compound to be felicitous for the novel spintronic applications.

  13. Electrons and Spin Waves in Heavy Rare Earth Metals

    Mackintosh, A. R.

    1972-01-01

    this understanding on a more quantitative basis. The experimental evidence on the electronic structure of the rare earths is still rather meager but, so far as it goes, is in accord with the detailed description provided by band structure calculations. On the other hand, the experimental study of the magnon...

  14. Pervasive liquid metal based direct writing electronics with roller-ball pen

    Yi Zheng

    2013-11-01

    Full Text Available A roller-ball pen enabled direct writing electronics via room temperature liquid metal ink was proposed. With the rolling to print mechanism, the metallic inks were smoothly written on flexible polymer substrate to form conductive tracks and electronic devices. The contact angle analyzer and scanning electron microscope were implemented to disclose several unique inner properties of the obtained electronics. An ever high writing resolution with line width and thickness as 200 μm and 80 μm, respectively was realized. Further, with the administration of external writing pressure, GaIn24.5 droplets embody increasing wettability on polymer which demonstrates the pervasive adaptability of the roller-ball pen electronics.

  15. Spherical electron momentum density distribution and Bayesian analysis of the renormalization parameter in Li metal

    Dobrzynski, Ludwik

    2000-01-01

    The Bayesian analysis of the spherical part of the electron momentum density was carried out with the goal of finding the best estimation of the spherically averaged renormalization parameter, z , quantifying the discontinuity in the electron momentum density distribution in Li metal. Three models parametrizing the electron momentum density were considered and nuisance parameters integrated out. The analysis show that the most likely value of z following from the data of Sakurai et al is in the range of 0.45-0.50, while 0.55 is obtained for the data of Schuelke et al . In the maximum entropy reconstruction of the spherical part of the electron momentum density three different algorithms were used. It is shown that all of them produce essentially the same results. The paper shows that the accurate Compton scattering experiments are capable of bringing information on this very important Fermiological aspect of the electron gas in a metal. (author)

  16. Synthesis of biocidal polymers containing metal NPs using an electron beam

    Choi, Kwonyong; Kim, Seong-Eun; Kim, Hee-Yeon; Yoon, Jeyong; Lee, Jong-Chan

    2012-01-01

    Metal containing antibacterial polymers were prepared by the polymerization of methylmethacrylate and methacrylic acid with copper or zinc. When the thin film of the polymers coated on a glass was irradiated with an electron beam, nanoparticles were obtained. It was found that these polymers exhibited a potent antibacterial activity against the Gram-negative bacteria, Escherichia coli. The metal containing polymers showed a 99.999% (5.0 logs) reduction in E. coli at a contact time of 12 h. In addition, polymers had a good antifouling effect against marine organisms. - Graphical abstract: Biocidal activity of Cu nanoparticle/polymer composite film against Gram-negative bacteria. Highlights: ► Metal containing antibacterial polymers were prepared with copper. ► Using the electron beam, nanoparticles were obtained. ► It was found that these polymers exhibited potent biocidal activity against E. coli. ► The metal containing polymers showed a 99.999% reduction of E. coli.

  17. Electronic states of graphene nanoribbons and analytical solutions

    Katsunori Wakabayashi, Ken-ichi Sasaki, Takeshi Nakanishi and Toshiaki Enoki

    2010-01-01

    Full Text Available Graphene is a one-atom-thick layer of graphite, where low-energy electronic states are described by the massless Dirac fermion. The orientation of the graphene edge determines the energy spectrum of π-electrons. For example, zigzag edges possess localized edge states with energies close to the Fermi level. In this review, we investigate nanoscale effects on the physical properties of graphene nanoribbons and clarify the role of edge boundaries. We also provide analytical solutions for electronic dispersion and the corresponding wavefunction in graphene nanoribbons with their detailed derivation using wave mechanics based on the tight-binding model. The energy band structures of armchair nanoribbons can be obtained by making the transverse wavenumber discrete, in accordance with the edge boundary condition, as in the case of carbon nanotubes. However, zigzag nanoribbons are not analogous to carbon nanotubes, because in zigzag nanoribbons the transverse wavenumber depends not only on the ribbon width but also on the longitudinal wavenumber. The quantization rule of electronic conductance as well as the magnetic instability of edge states due to the electron–electron interaction are briefly discussed.

  18. Multiscale models of metal behaviour and structural change under the action of high-current electron irradiation

    Mayer, A E; Krasnikov, V S; Mayer, P N; Pogorelko, V V

    2017-01-01

    We present our models of the tensile fracture of metals in the solid and molten states, the melting and the plastic deformation of the solid metals. Also we discuss implementation of these models for simulation of the high current electron beam impact on metals. The models are constructed in the following way: the atomistic simulations are used at the first stage for investigation of dynamics and kinetics of structural defects in material (voids, dislocations, melting cites); equations describing evolution of such defects are constructed, verified, and their parameters are identified by means of comparison with the atomistic simulation result; finally, the defects evolution equations are incorporated into the continuum model of the substance behaviour on the macroscopic scale. The obtained continuum models with accounting of defects subsystems are tested in comparison with the experimental results known from literature. The proposed models not only allow one to describe the metal behaviour under the conditions of intensive electron irradiation, but they also allow one to determine the structural changes in the irradiated material. (paper)

  19. New trends in the optical and electronic applications of polymers containing transition-metal complexes.

    Liu, Shu-Juan; Chen, Yang; Xu, Wen-Juan; Zhao, Qiang; Huang, Wei

    2012-04-13

    Polymers containing transition-metal complexes exhibit excellent optical and electronic properties, which are different from those of polymers with a pure organic skeleton and combine the advantages of both polymers and metal complexes. Hence, research about this class of polymers has attracted more and more interest in recent years. Up to now, a number of novel polymers containing transition-metal complexes have been exploited, and significant advances in their optical and electronic applications have been achieved. In this article, we summarize some new research trends in the applications of this important class of optoelectronic polymers, such as chemo/biosensors, electronic memory devices and photovoltaic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources

    Oguchi, Masahiro; Murakami, Shinsuke; Sakanakura, Hirofumi; Kida, Akiko; Kameya, Takashi

    2011-01-01

    Highlights: → End-of-life electrical and electronic equipment (EEE) as secondary metal resources. → The content and the total amount of metals in specific equipment are both important. → We categorized 21 EEE types from contents and total amounts of various metals. → Important equipment types as secondary resources were listed for each metal kind. → Collectability and possible collection systems of various EEE types were discussed. - Abstract: End-of-life electrical and electronic equipment (EEE) has recently received attention as a secondary source of metals. This study examined characteristics of end-of-life EEE as secondary metal resources to consider efficient collection and metal recovery systems according to the specific metals and types of EEE. We constructed an analogy between natural resource development and metal recovery from end-of-life EEE and found that metal content and total annual amount of metal contained in each type of end-of-life EEE should be considered in secondary resource development, as well as the collectability of the end-of-life products. We then categorized 21 EEE types into five groups and discussed their potential as secondary metal resources. Refrigerators, washing machines, air conditioners, and CRT TVs were evaluated as the most important sources of common metals, and personal computers, mobile phones, and video games were evaluated as the most important sources of precious metals. Several types of small digital equipment were also identified as important sources of precious metals; however, mid-size information and communication technology (ICT) equipment (e.g., printers and fax machines) and audio/video equipment were shown to be more important as a source of a variety of less common metals. The physical collectability of each type of EEE was roughly characterized by unit size and number of end-of-life products generated annually. Current collection systems in Japan were examined and potentially appropriate collection

  1. Trapped electronic states in YAG crystal excited by femtosecond radiation

    Zavedeev, E.V.; Kononenko, V.V.; Konov, V.I. [General Physics Institute of RAS, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2017-07-15

    The excitation of an electronic subsystem of an yttrium aluminum garnet by 800 nm femtosecond radiation was studied theoretically and experimentally. The spatio-temporal dynamics of the refractive index (n) inside the beam waist was explored by means of the pump-probe interferometric technique with a submicron resolution. The observed increase in n indicated the formation of bound electronic states relaxed for ∝ 150 ps. We showed that the experimental data agreed with the computational simulation based on the numerical solution of the nonlinear Schroedinger equation only if these transient states were considered to arise from a direct light-induced process but not from the decay of radiatively generated free-electron-hole pairs. (orig.)

  2. Photoemission electronic states of epitaxially grown magnetite films

    Zalecki, R.; Kolodziejczyk, A.; Korecki, J.; Spiridis, N.; Zajac, M.; Kozlowski, A.; Kakol, Z.; Antolak, D.

    2007-01-01

    The valence band photoemission spectra of epitaxially grown 300 A single crystalline magnetite films were measured by the angle-resolved ultraviolet photoemission spectroscopy (ARUPS) at 300 K. The samples were grown either on MgO(0 0 1) (B termination) or on (0 0 1) Fe (iron-rich A termination), thus intentionally presenting different surface stoichiometry, i.e. also different surface electronic states. Four main features of the electron photoemission at about -1.0, -3.0, -5.5 and -10.0 eV below a chemical potential show systematic differences for two terminations; this difference depends on the electron outgoing angle. Our studies confirm sensitivity of angle resolved PES technique on subtleties of surface states

  3. Nonlocal Response of Metallic Nanospheres Probed by Light, Electrons, and Atoms

    Christensen, Thomas; Yan, Wei; Raza, Søren

    2014-01-01

    Inspired by recent measurements on individual metallic nanospheres that cannot be explained with traditional classical electrodynamics, we theoretically investigate the effects of nonlocal response by metallic nanospheres in three distinct settings: atomic spontaneous emission, electron energy loss...... blueshifted surface plasmon but also an infinite series of bulk plasmons that have no counterpart in a local-response approximation. We show that these increasingly blueshifted multipole plasmons become spectrally more prominent at shorter probe-to-surface separations and for decreasing nanosphere radii...

  4. Ground-state electronic structure of actinide monocarbides and mononitrides

    Petit, Leon; Svane, Axel; Szotek, Z.

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually increa...

  5. Electron beam charge state amplifier (EBQA)--a conceptual evaluation

    Dooling, J. C.

    1998-01-01

    A concept is presented for stripping low-energy, radioactive ions from 1+ to higher charge states. Referred to as an Electron Beam Charge State Amplifier (EBQA), this device accepts a continuous beam of singly-charged, radioactive ions and passes them through a high-density electron beam confined by a solenoidal magnetic field. Singly-charged ions may be extracted from standard Isotope-Separator-Online (ISOL) sources. An EBQA is potentially useful for increasing the charge state of ions prior to injection into post-acceleration stages at ISOL radioactive beam facilities. The stripping efficiency from q=1+ to 2+ (η 12 ) is evaluated as a function of electron beam radius at constant current with solenoid field, injected ion energy, and ion beam emittance used as parameters. Assuming a 5 keV, 1 A electron beam, η 12 = 0.38 for 0.1 keV, 132 Xe ions passing through an 8 Tesla solenoid, 1 m in length. Multi-pass configurations to achieve 3+ or 4+ charge states are also conceivable. The calculated efficiencies depend inversely on the initial ion beam emittances. The use of a helium-buffer-gas, ion-guide stage to improve the brightness of the 1+ beams [1] may enhance the performance of an EBQA

  6. Ground state oxygen holes and the metal-insulator transition in rare earth nickelates

    Schmitt, Thorsten; Bisogni, Valentina; Huang, Yaobo; Strocov, Vladimir [Research Department Synchrotron Radiation and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Catalano, Sara; Gibert, Marta; Scherwitzl, Raoul; Zubko, Pavlo; Triscone, Jean-Marc [Departement de Physique de la Matiere Condensee, University of Geneva (Switzerland); Green, Robert J.; Balandeh, Shadi; Sawatzky, George [Department of Physics and Astronomy, University of British Columbia, Vancouver (Canada)

    2015-07-01

    Perovskite rare-earth (Re) nickelates ReNiO{sub 3} continue to attract a lot of interest owing to their intriguing properties like a sharp metal to insulator transition (MIT), unusual magnetic order and expected superconductivity in specifically tuned super-lattices. Full understanding of these materials, however, is hampered by the difficulties in describing their electronic ground state (GS). From X-ray absorption (XAS) at the Ni 2p{sub 3/2} edge of thin films of NdNiO{sub 3} and corresponding RIXS maps vs. incident and transferred photon energies we reveal that the electronic GS configuration of NdNiO{sub 3} is composed of delocalized and localized components. Our study conveys that a Ni 3d{sup 8}-like configuration with holes at oxygen takes on the leading role in the GS and the MIT of ReNiO{sub 3} as proposed by recent model theories.

  7. Magnetic properties of metallic impurities with strongly correlated electrons

    Janiš, Václav; Ringel, Matouš

    2009-01-01

    Roč. 115, č. 1 (2009), s. 30-35 ISSN 0587-4246 R&D Projects: GA ČR GA202/07/0644 Institutional research plan: CEZ:AV0Z10100520 Keywords : And erson impurity * strong electron correlations * spin-polarized solution * three-channel parquet equations * magnetic field Subject RIV: BE - Theoretical Physics Impact factor: 0.433, year: 2009 http://przyrbwn.icm.edu.pl/APP/ABSTR/115/a115-1-5.html

  8. Electron density in non-ideal metal complexes. Pt. 1

    Varghese, J.N.; Maslen, E.N.

    1985-01-01

    The structure of copper sulphate pentahydrate was refined using an accurate set of X-ray data: Msub(r)=249.68, triclinic, Panti 1, a=6.1224(4), b=10.7223(4), c=5.9681(4) A, α=82.35(2), β=107.33(2), γ=102.60(4) 0 , V=364.02(3) A 3 , Z=2, Dsub(x)=2.278 Mg m -3 , Mo Kα, lambda=0.71069 A, μ=3.419 mm -1 , F(000)=254.0, T=298 K, R=0.039 for 7667 reflections. The structural parameters are compared with those obtained by neutron diffraction. The differences between X-ray and neutron positions are related to the hydrogen bonding in the structure. The dominant features in the residual density near the two crystallographically independent Cu atoms result from the redistribution of 3d electrons due to bonding. The density is anisotropic, as expected in view of the Jahn-Teller distortion in the structure. Marked differences in the d-electron distributions for the two Cu atoms correlate with small variations in molecular geometry. Second-nearest-neighbour effects, such as those arising from differently oriented ligating waters, are significant in this structure. Sharp features in the difference density close to the Cu nuclei are similar to those in other Cu 2+ complexes, indicating that the electron density in this region is more reliable than previously believed. (orig.)

  9. Experiments in electron microscopy: from metals to nerves

    Unwin, Nigel

    2015-01-01

    Electron microscopy has advanced remarkably as a tool for biological structure research since the development of methods to examine radiation-sensitive unstained specimens and the introduction of cryo-techniques. Structures of biological molecules at near-atomic resolution can now be obtained from images of single particles as well as crystalline arrays. It has also become possible to analyze structures of molecules in their functional context, i.e. in their natural membrane or cellular setting, and in an ionic environment like that in living tissue. Electron microscopy is thus opening ways to answer definitively questions about physiological mechanisms. Here I recall a number of experiments contributing to, and benefiting from the technical advances that have taken place. I begin—in the spirit of this crystallography series—with some biographical background, and then sketch the path to an analysis by time-resolved microscopy of the opening mechanism of an ion channel (nicotinic acetylcholine receptor). This analysis illustrates how electron imaging can be combined with freeze-trapping to illuminate a transient biological event: in our case, chemical-to-electrical transduction at the nerve-muscle synapse. (invited comment)

  10. Influence of scattering processes on electron quantum states in nanowires

    Pozdnyakov Dmitry

    2007-01-01

    Full Text Available AbstractIn the framework of quantum perturbation theory the self-consistent method of calculation of electron scattering rates in nanowires with the one-dimensional electron gas in the quantum limit is worked out. The developed method allows both the collisional broadening and the quantum correlations between scattering events to be taken into account. It is an alternativeper seto the Fock approximation for the self-energy approach based on Green’s function formalism. However this approach is free of mathematical difficulties typical to the Fock approximation. Moreover, the developed method is simpler than the Fock approximation from the computational point of view. Using the approximation of stable one-particle quantum states it is proved that the electron scattering processes determine the dependence of electron energy versus its wave vector.

  11. Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors

    Marrs, Michael

    A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs

  12. Direct Observation of Cr3+ 3d States in Ruby: Toward Experimental Mechanistic Evidence of Metal Chemistry.

    Hunault, Myrtille O J Y; Harada, Yoshihisa; Miyawaki, Jun; Wang, Jian; Meijerink, Andries; de Groot, Frank M F; van Schooneveld, Matti M

    2018-04-26

    The role of transition metals in chemical reactions is often derived from probing the metal 3d states. However, the relation between metal site geometry and 3d electronic states, arising from multielectronic effects, makes the spectral data interpretation and modeling of these optical excited states a challenge. Here we show, using the well-known case of red ruby, that unique insights into the density of transition metal 3d excited states can be gained with 2p3d resonant inelastic X-ray scattering (RIXS). We compare the experimental determination of the 3d excited states of Cr 3+ impurities in Al 2 O 3 with 190 meV resolution 2p3d RIXS to optical absorption spectroscopy and to simulations. Using the crystal field multiplet theory, we calculate jointly for the first time the Cr 3+ multielectronic states, RIXS, and optical spectra based on a unique set of parameters. We demonstrate that (i) anisotropic 3d multielectronic interactions causes different scaling of Slater integrals, and (ii) a previously not observed doublet excited state exists around 3.35 eV. These results allow to discuss the influence of interferences in the RIXS intermediate state, of core-hole lifetime broadenings, and of selection rules on the RIXS intensities. Finally, our results demonstrate that using an intermediate excitation energy between L 3 and L 2 edges allows measurement of the density of 3d excited states as a fingerprint of the metal local structure. This opens up a new direction to pump-before-destroy investigations of transition metal complex structures and reaction mechanisms.

  13. Energy modulation of nonrelativistic electrons with a CO2 laser using a metal microslit

    Jongsuck, Bae; Ryo, Ishikawa; Sumio, Okuyama; Takashi, Miyajima; Taiji, Akizuki; Tatsuya, Okamoto; Koji, Mizuno

    2000-01-01

    A metal microslit has been used as an interaction circuit between a CO2 laser beam and nonrelativistic free electrons. Evanescent waves which are induced on the slit by illumination of the laser light modulate the energy of electrons passing close to the surface of the slit. The electron-energy change of more than ±5 eV for the 80 keV electron beam has been observed using the 7 kW laser beam at the wavelength of 10.6 μm.

  14. Energy modulation of nonrelativistic electrons with a CO2 laser using a metal microslit

    Bae, Jongsuck; Ishikawa, Ryo; Okuyama, Sumio; Miyajima, Takashi; Akizuki, Taiji; Okamoto, Tatsuya; Mizuno, Koji

    2000-04-01

    A metal microslit has been used as an interaction circuit between a CO2 laser beam and nonrelativistic free electrons. Evanescent waves which are induced on the slit by illumination of the laser light modulate the energy of electrons passing close to the surface of the slit. The electron-energy change of more than ±5 eV for the 80 keV electron beam has been observed using the 7 kW laser beam at the wavelength of 10.6 μm.

  15. Metal-support interactions in electrocatalysis: Hydrogen effects on electron and hole transport at metal-support contacts

    Heller, A.

    1986-01-01

    This paper discusses the effects of hydrogen on electron and hole transport at metal support contacts during electrocatalysis. When hydrogen dissolves in high work function metals such as Pt, Rh or Ru the contact forms between the semiconductor and the hydrogenated metal, which has a work function that is lower than that of the pure metal. Thus by changing the gaseous atmosphere that envelopes metal-substrate contacts, it is possible to reversibly change their diode characteristics. In some cases, such as Pt on n-TiO/sub 2/, Rh on n-TiO/sub 2/ and Ru on n-TiO/sub 2/, it is even possible to reversibly convert Schottky diodes into ohmic contacts by changing the atmosphere from air to hydrogen. In contacts between hydrogen dissolving group VIII metals and semiconducting substrates, one can test for interfacial reaction of the catalysts and the substrate by examining the electrical characteristics of the contacts in air (oxygen) and in hydrogen. In the absence of interfacial reaction, large hydrogen induced variation in the barrier heights is observed and the hydrogenated contacts, approach ideality (i.e. their non-ideality factor is close to unity). When a group VIII metal and a substrate do react, the reaction often produces a phase that blocks hydrogen transport to the interface between the substrate and the reaction product. In this case the hydrogen effect is reduced or absent. Furthermore, because such reaction often introduces defects into the surface of the semiconductor, the contacts have non-ideal diode characteristics

  16. Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type

    Gu, Zhi-Gang [Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou (China); Heinke, Lars, E-mail: Lars.Heinke@KIT.edu; Wöll, Christof [Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Neumann, Tobias; Wenzel, Wolfgang; Li, Qiang; Fink, Karin [Institute of Nanotechnology (INT), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gordan, Ovidiu D.; Zahn, Dietrich R. T. [Semiconductor Physics, Technische Universität Chemnitz, 09107 Chemnitz (Germany)

    2015-11-02

    The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly “simple” MOF, the excitation spectra cannot be explained by a superposition of “intra-unit” excitations within the individual building blocks. Instead, “inter-unit” excitations also have to be considered.

  17. Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type

    Gu, Zhi-Gang; Heinke, Lars; Wöll, Christof; Neumann, Tobias; Wenzel, Wolfgang; Li, Qiang; Fink, Karin; Gordan, Ovidiu D.; Zahn, Dietrich R. T.

    2015-11-01

    The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly "simple" MOF, the excitation spectra cannot be explained by a superposition of "intra-unit" excitations within the individual building blocks. Instead, "inter-unit" excitations also have to be considered.

  18. Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type

    Gu, Zhi-Gang; Heinke, Lars; Wöll, Christof; Neumann, Tobias; Wenzel, Wolfgang; Li, Qiang; Fink, Karin; Gordan, Ovidiu D.; Zahn, Dietrich R. T.

    2015-01-01

    The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly “simple” MOF, the excitation spectra cannot be explained by a superposition of “intra-unit” excitations within the individual building blocks. Instead, “inter-unit” excitations also have to be considered

  19. Metal-induced changes in photosynthetic electron transport in poplar Ieaves

    Kralova, K.; Gaplovsky, A.; Masarovicova, E.; Havranek, E.

    2001-01-01

    This study reports the effect of different toxic metals (Cu, Hg and Cd) on dark-induced changes in the photochemical activity of detached poplar leaves that were submersed in solutions of tested metals at different pH level, on the metal accumulation in poplar leaves as well as on fluorescence quenching ability of the tested metals. Cu and Hg inhibited the photosynthetic electron transport (PET) in chloroplast prepared from the leaves of P. nigra and the corresponding IC 50 values were 32.7 and 512.7 μmol dm -3 , respectively. We could not determine the IC 50 value for CdCl 2 due to its very low PET-inhibiting activity. These results are in agreement with previous findings concerning PET inhibition by the studied metals in spinach chloroplasts. The accumulated metal amounts in poplar leaves were determined using radionuclide X-ray fluorescence analysis. The accumulated metal amount increased with the increasing metal concentration and with the decreasing pH value of the applied metal solution. (authors)

  20. Electronic and spectroscopic properties of early 3d metal atoms on a graphite surface

    Rakotomahevitra, A.; Garreau, G.; Demangeat, C.; Parlebas, J. C.

    1995-07-01

    High-sensitivity magneto-optic Kerr effect experiments failed to detect manifestations of magnetism in epitaxial films of V on Ag(100) substrates. More recently V 3s XPS of freshly evaporated V clusters on graphite exhibited the appearance of a satellite structure which has then been interpreted by the effect of surface magnetic moments on V. It is the absence of unambiguous results on the electronic properties of early 3d supported metals that prompts us to examine the problem. Our purpose is twofold. In a first part, after a total energy calculation within a tight-binding method which yields the equilibrium position of a given adatom, we use the Hartree-Fock approximation to find out a possible magnetic solution of V (or Cr) upon graphite for a reasonable value of the exchange integral Jdd. In a second part the informations given by the density of states of the graphite surface as well as the additional states of the adsorbed atom are taken into account through a generalised impurity Anderson Hamiltonian which incorporates the various Coulomb and exchange interactions necessary to analyse the 3s XPS results.

  1. Spin-dependent electronic transport properties of transition metal atoms doped α-armchair graphyne nanoribbons

    Fotoohi, Somayeh; Haji-Nasiri, Saeed

    2018-04-01

    Spin-dependent electronic transport properties of single 3d transition metal (TM) atoms doped α-armchair graphyne nanoribbons (α-AGyNR) are investigated by non-equilibrium Green's function (NEGF) method combined with density functional theory (DFT). It is found that all of the impurity atoms considered in this study (Fe, Co, Ni) prefer to occupy the sp-hybridized C atom site in α-AGyNR, and the obtained structures remain planar. The results show that highly localized impurity states are appeared around the Fermi level which correspond to the 3d orbitals of TM atoms, as can be derived from the projected density of states (PDOS). Moreover, Fe, Co, and Ni doped α-AGyNRs exhibit magnetic properties due to the strong spin splitting property of the energy levels. Also for each case, the calculated current-voltage characteristic per super-cell shows that the spin degeneracy in the system is obviously broken and the current becomes strongly spin dependent. Furthermore, a high spin-filtering effect around 90% is found under the certain bias voltages in Ni doped α-AGyNR. Additionally, the structure with Ni impurity reveals transfer characteristic that is suitable for designing a spin current switch. Our findings provide a high possibility to design the next generation spin nanodevices with novel functionalities.

  2. Electronic structure of metal phthalocyanines on Ag (100)

    Krull, Cornelius

    2012-01-01

    El uso de moléculas orgánicas en dispositivos tecnológicos ofrece una serie de ventajas: su tamaño (~nm), su capacidad de auto ensamblan dando lugar a la formación de estructuras funcionales, y la posibilidad de adaptar sus propiedades electrónicas y magnéticas a través de los métodos de síntesis molecular. Sin embargo, la implementación de dispositivos orgánicos depende fundamentalmente de la comprensión entre la interacción de las moléculas y los electrodos de metal, así como las interaccio...

  3. Electron spin resonance of radicals and metal complexes

    1993-01-01

    The materials are a collection of extended synopsis of papers presented at the conference sessions. The broad area of magnetic techniques applications has been described as well as their spectra interpretation methods. The ESR, NMR, ENDOR and spin echo were applied for studying the radiation and UV induced radicals in chemical and biological systems. Also in the study of complexes of metallic ions (having the paramagnetic properties) and their interaction with the matrix, the magnetic techniques has been commonly used. They are also very convenient tool for the study of reaction kinetics and mechanism as well as interaction of paramagnetic species with themselves and crystal lattice or with the surface as for thee catalytic processes

  4. Spin-dependent electron emission from metals in the neutralization of He+ ions

    Alducin, M.; Roesler, M.; Juaristi, J.I.; Muino, R. Diez; Echenique, P.M.

    2005-01-01

    We calculate the spin-polarization of electrons emitted in the neutralization of He + ions interacting with metals. All stages of the emission process are included: the spin-dependent perturbation induced by the projectile, the excitation of electrons in Auger neutralization processes, the creation of a cascade of secondaries, and the escape of the electrons through the surface potential barrier. The model allows us to explain in quantitative terms the measured spin-polarization of the yield in the interaction of spin-polarized He + ions with paramagnetic surfaces, and to disentangle the role played by each of the involved mechanisms. We show that electron-electron scattering processes at the surface determine the spin-polarization of the total yield. High energy emitted electrons are the ones providing direct information on the He + ion neutralization process and on the electronic properties of the surface

  5. Energy modulation of nonrelativistic electrons in an optical near field on a metal microslit

    Ishikawa, R.; Bae, J.; Mizuno, K.

    2001-04-01

    Energy modulation of nonrelativistic electrons with a laser beam using a metal microslit as an interaction circuit has been investigated. An optical near field is induced in the proximity of the microslit by illumination of the laser beam. The electrons passing close to the slit are accelerated or decelerated by an evanescent wave contained in the near field whose phase velocity is equal to the velocity of the electrons. The electron-evanescent wave interaction in the microslit has been analyzed theoretically and experimentally. The theory has predicted that electron energy can be modulated at optical frequencies. Experiments performed in the infrared region have verified theoretical predictions. The electron-energy changes of more than ±5 eV with a 10 kW CO2 laser pulse at the wavelength of 10.6 μm has been successfully observed for an electron beam with an energy of less than 80 keV.

  6. Metal-like transport in proteins: A new paradigm for biological electron transfer

    Malvankar, Nikhil; Vargas, Madeline; Tuominen, Mark; Lovley, Derek

    2012-02-01

    Electron flow in biologically proteins generally occurs via tunneling or hopping and the possibility of electron delocalization has long been discounted. Here we report metal-like transport in protein nanofilaments, pili, of bacteria Geobacter sulfurreducens that challenges this long-standing belief [1]. Pili exhibit conductivities comparable to synthetic organic metallic nanostructures. The temperature, magnetic field and gate-voltage dependence of pili conductivity is akin to that of quasi-1D disordered metals, suggesting a metal-insulator transition. Magnetoresistance (MR) data provide evidence for quantum interference and weak localization at room temperature, as well as a temperature and field-induced crossover from negative to positive MR. Furthermore, pili can be doped with protons. Structural studies suggest the possibility of molecular pi stacking in pili, causing electron delocalization. Reducing the disorder increases the metallic nature of pili. These electronically functional proteins are a new class of electrically conductive biological proteins that can be used to generate future generation of inexpensive and environmentally-sustainable nanomaterials and nanolectronic devices such as transistors and supercapacitors. [1] Malvankar et al. Nature Nanotechnology, 6, 573-579 (2011)

  7. Universal Quantum Criticality in the Metal-Insulator Transition of Two-Dimensional Interacting Dirac Electrons

    Yuichi Otsuka

    2016-03-01

    Full Text Available The metal-insulator transition has been a subject of intense research since Mott first proposed that the metallic behavior of interacting electrons could turn to an insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite-size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. Thereby, we find that the transition is continuous, and we determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. Furthermore, we discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: The metal-insulator transition is triggered only by the vanishing of the quasiparticle weight, not by the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture but is rather consistent with the low-energy behavior of the Gross-Neveu model.

  8. Investigation of metal/carbon-related materials for fuel cell applications by electronic structure calculations

    Kong, Ki-jeong [Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of)]. E-mail: kong@krict.re.kr; Choi, Youngmin [Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of); Ryu, Beyong-Hwan [Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of); Lee, Jeong-O [Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of); Chang, Hyunju [Korea Research Institute of Chemical Technology, P.O.Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of)

    2006-07-15

    The potential of carbon-related materials, such as carbon nanotubes (CNTs) and graphite nanofibers (GNFs), supported metal catalysts as an electrode for fuel cell application was investigated using the first-principle electronic structure calculations. The stable binding geometries and energies of metal catalysts are determined on the CNT surface and the GNF edge. The catalyst metal is more tightly bound to the GNF edge than to the CNT surface because of the existence of active dangling bonds of edge carbon atoms. The diffusion barrier of metal atoms on the surface and edge is also obtained. From our calculation results, we have found that high dispersity is achievable for GNF due to high barrier against the diffusion of metal atoms, while CNT appears less suitable. The GNF with a large edge-to-wall ratio is more suitable for the high-performance electrode than perfect crystalline graphite or CNT.

  9. Investigation of metal/carbon-related materials for fuel cell applications by electronic structure calculations

    Kong, Ki-jeong; Choi, Youngmin; Ryu, Beyong-Hwan; Lee, Jeong-O; Chang, Hyunju

    2006-01-01

    The potential of carbon-related materials, such as carbon nanotubes (CNTs) and graphite nanofibers (GNFs), supported metal catalysts as an electrode for fuel cell application was investigated using the first-principle electronic structure calculations. The stable binding geometries and energies of metal catalysts are determined on the CNT surface and the GNF edge. The catalyst metal is more tightly bound to the GNF edge than to the CNT surface because of the existence of active dangling bonds of edge carbon atoms. The diffusion barrier of metal atoms on the surface and edge is also obtained. From our calculation results, we have found that high dispersity is achievable for GNF due to high barrier against the diffusion of metal atoms, while CNT appears less suitable. The GNF with a large edge-to-wall ratio is more suitable for the high-performance electrode than perfect crystalline graphite or CNT

  10. Topotactic Solid-State Metal Hydride Reductions of Sr2MnO4.

    Hernden, Bradley C; Lussier, Joey A; Bieringer, Mario

    2015-05-04

    We report novel details regarding the reactivity and mechanism of the solid-state topotactic reduction of Sr2MnO4 using a series of solid-state metal hydrides. Comprehensive details describing the active reducing species are reported and comments on the reductive mechanism are provided, where it is shown that more than one electron is being donated by H(-). Commonly used solid-state hydrides LiH, NaH, and CaH2, were characterized in terms of reducing power. In addition the unexplored solid-state hydrides MgH2, SrH2, and BaH2 are evaluated as potential solid-state reductants and characterized in terms of their reductive reactivities. These 6 group I and II metal hydrides show the following trend in terms of reactivity: MgH2 < SrH2 < LiH ≈ CaH2 ≈ BaH2 < NaH. The order of the reductants are discussed in terms of metal electronegativity and bond strengths. NaH and the novel use of SrH2 allowed for targeted synthesis of reduced Sr2MnO(4-x) (0 ≤ x ≤ 0.37) phases. The enhanced control during synthesis demonstrated by this soft chemistry approach has allowed for a more comprehensive and systematic evaluation of Sr2MnO(4-x) phases than previously reported phases prepared by high temperature methods. Sr2MnO3.63(1) has for the first time been shown to be monoclinic by powder X-ray diffraction and the oxidative monoclinic to tetragonal transition occurs at 450 °C.

  11. Foucault's Pendulum, Analog for an Electron Spin State

    Linck, Rebecca

    2012-11-01

    The classical Lagrangian that describes the coupled oscillations of Foucault's pendulum presents an interesting analog to an electron's spin state in an external magnetic field. With a simple modification, this classical Lagrangian yields equations of motion that directly map onto the Schrodinger-Pauli Equation. This analog goes well beyond the geometric phase, reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  12. Two Electron States in a Quantum Ring on a Sphere

    Kazaryan, Eduard M.; Shahnazaryan, Vanik A.; Sarkisyan, Hayk A.

    2014-01-01

    Two electron states in a quantum ring on a spherical surface are discussed. The problem is discussed within the frameworks of Russell–Saunders coupling scheme, that is, the spin–orbit coupling is neglected. Treating Coulomb interaction as a perturbation, the energy correction for different states is calculated. The dependence of the Coulomb interaction energy on external polar boundary angle of quantum ring is obtained. In analogue with the helium atom the concept of states exchange time is introduced, and its dependence on geometrical parameters of the ring is shown. (author)

  13. Tool Monitoring and Electronic Event Logging for Sheet Metal Forming Processes

    Gerd Heiserich

    2010-06-01

    Full Text Available This contribution describes some innovative solutions regarding sensor systems for tool monitoring in the sheet metal industry. Autonomous and tamper-proof sensors, which are integrated in the forming tools, can detect and count the strokes carried out by a sheet metal forming press. Furthermore, an electronic event logger for documentary purposes and quality control was developed. Based on this technical solution, new business models such as leasing of sheet metal forming tools can be established for cooperation among enterprises. These models allow usage-based billing for the contractors, taking the effectively produced number of parts into account.

  14. Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation

    Ahmad, Sohail; Miró, Pere; Audiffred, Martha; Heine, Thomas

    2018-04-01

    The deposition, intercalation and co-intercalation of heavy alkali metals and light halogens atoms in graphene mono- and bilayers have been studied using first principles density-functional calculations. Both the deposition and the intercalation of alkali metals gives rise to n-type doping due to the formation of M+-C- pairs. The co-intercalation of a 1:1 ratio of alkali metals and halogens derives into the formation of ionic pairs among the intercalated species, unaltering the electronic structure of the layered material.

  15. Inkjet printing metals on flexible materials for plastic and paper electronics

    Al-Shamery, K.; Raut, N. C.

    2018-01-01

    Inorganic printed electronics is now recognized as an area of tremendous commercial, potential and technical progress. Many research groups are actively involved worldwide in developing metal nanoparticle inks and precursors for printing inorganic/organic materials using different printing....... Besides some examples demonstrating aspects on ink formulation via patterning solid surfaces such as glass and silicon oxide, special emphasis will be placed on compatibility for usage in plastic and paper electronics. Printing of nanoparticles of copper, silver, gold etc. will be discussed...... and will be compared to printing of a variety of metal-organic precursor inks. Finally, a brief account on exemplary applications using the printed inorganic nanoparticles/materials is provided....

  16. Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides

    Qing-Hua, Zhang; Dong-Dong, Xiao; Lin, Gu

    2016-06-01

    Lattice, charge, orbital, and spin are the four fundamental degrees of freedom in condensed matter, of which the interactive coupling derives tremendous novel physical phenomena, such as high-temperature superconductivity (high-T c SC) and colossal magnetoresistance (CMR) in strongly correlated electronic system. Direct experimental observation of these freedoms is essential to understanding the structure-property relationship and the physics behind it, and also indispensable for designing new materials and devices. Scanning transmission electron microscopy (STEM) integrating multiple techniques of structure imaging and spectrum analysis, is a comprehensive platform for providing structural, chemical and electronic information of materials with a high spatial resolution. Benefiting from the development of aberration correctors, STEM has taken a big breakthrough towards sub-angstrom resolution in last decade and always steps forward to improve the capability of material characterization; many improvements have been achieved in recent years, thereby giving an in-depth insight into material research. Here, we present a brief review of the recent advances of STEM by some representative examples of perovskite transition metal oxides; atomic-scale mapping of ferroelectric polarization, octahedral distortions and rotations, valence state, coordination and spin ordering are presented. We expect that this brief introduction about the current capability of STEM could facilitate the understanding of the relationship between functional properties and these fundamental degrees of freedom in complex oxides. Project supported by the National Key Basic Research Project, China (Grant No. 2014CB921002), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), and the National Natural Science Foundation of China (Grant Nos. 51522212 and 51421002).

  17. Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number

    Levy, Mel, E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, North Carolina A and T State University, Greensboro, North Carolina 27411 (United States); Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W., E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario (Canada)

    2014-05-14

    Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.

  18. Electronic Properties of Metallic Nanoclusters on Semiconductor Surfaces: Implications for Nanoelectronic Device Applications

    Lee, Takhee; Liu Jia; Chen, N.-P.; Andres, R.P.; Janes, D.B.; Reifenberger, R.

    2000-01-01

    We review current research on the electronic properties of nanoscale metallic islands and clusters deposited on semiconductor substrates. Reported results for a number of nanoscale metal-semiconductor systems are summarized in terms of their fabrication and characterization. In addition to the issues faced in large-area metal-semiconductor systems, nano-systems present unique challenges in both the realization of well-controlled interfaces at the nanoscale and the ability to adequately characterize their electrical properties. Imaging by scanning tunneling microscopy as well as electrical characterization by current-voltage spectroscopy enable the study of the electrical properties of nanoclusters/semiconductor systems at the nanoscale. As an example of the low-resistance interfaces that can be realized, low-resistance nanocontacts consisting of metal nanoclusters deposited on specially designed ohmic contact structures are described. To illustrate a possible path to employing metal/semiconductor nanostructures in nanoelectronic applications, we also describe the fabrication and performance of uniform 2-D arrays of such metallic clusters on semiconductor substrates. Using self-assembly techniques involving conjugated organic tether molecules, arrays of nanoclusters have been formed in both unpatterned and patterned regions on semiconductor surfaces. Imaging and electrical characterization via scanning tunneling microscopy/spectroscopy indicate that high quality local ordering has been achieved within the arrays and that the clusters are electronically coupled to the semiconductor substrate via the low-resistance metal/semiconductor interface

  19. Foucault's pendulum, a classical analog for the electron spin state

    Linck, Rebecca A.

    Spin has long been regarded as a fundamentally quantum phenomena that is incapable of being described classically. To bridge the gap and show that aspects of spin's quantum nature can be described classically, this work uses a classical Lagrangian based on the coupled oscillations of Foucault's pendulum as an analog for the electron spin state in an external magnetic field. With this analog it is possible to demonstrate that Foucault's pendulum not only serves as a basis for explaining geometric phase, but is also a basis for reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured electron spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  20. Long-range intramolecular electron transfer in aromatic radical anions and binuclear transition metal complexes

    Kuznetsov, A. M.; Ulstrup, Jens

    1981-01-01

    Intramolecular electron transfer (ET) over distances up to about 10 Å between states in which the electron is localized on donor and acceptor groups by interaction with molecular or external solvent nuclear motion occurs, in particular, in two classes of systems. The excess electron in anionic ra...

  1. Superatom spectroscopy and the electronic state correlation between elements and isoelectronic molecular counterparts.

    Peppernick, Samuel J; Gunaratne, K D Dasitha; Castleman, A W

    2010-01-19

    Detailed in the present investigation are results pertaining to the photoelectron spectroscopy of negatively charged atomic ions and their isoelectronic molecular counterparts. Experiments utilizing the photoelectron imaging technique are performed on the negative ions of the group 10 noble metal block (i.e. Ni-, Pd-, and Pt-) of the periodic table at a photon energy of 2.33 eV (532 nm). The accessible electronic transitions, term energies, and orbital angular momentum components of the bound electronic states in the atom are then compared with photoelectron images collected for isoelectronic early transition metal heterogeneous diatomic molecules, M-X- (M = Ti,Zr,W; X = O or C). A superposition principle connecting the spectroscopy between the atomic and molecular species is observed, wherein the electronic structure of the diatomic is observed to mimic that present in the isoelectronic atom. The molecular ions studied in this work, TiO-, ZrO-, and WC- can then be interpreted as possessing superatomic electronic structures reminiscent of the isoelectronic elements appearing on the periodic table, thereby quantifying the superatom concept.

  2. Rigid muffin-tin approximation for the electron-phonon interaction in transition metals

    Butler, W.H.

    1980-01-01

    Progress in calculating the electron-phonon parameters of transition metals has been based on either the rigid muffin-tin approximation (RMTA) or the fitted modified tight-binding approximation (FMTBA). The RMTA has been shown to be remarkably accurate for average electron-phonon properties, but there are indications that RMTA matrix elements may be too small at low momentum transfer. An attempt is made to demonstrate these assertions concerning the accuracy of RMTA and the numerous electron-phonon calculations are placed in a broader perspective by a demonstration of how they can be used to explain the trends in the strength of the electron-phonon coupling among the transition metals and the A-15 compounds

  3. Variations in erosive wear of metallic materials with temperature via the electron work function

    Huang, Xiaochen; Yu, Bin; Yan, X.G.; Li, D.Y.

    2016-01-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  4. Rigid muffin-tin approximation for the electron-phonon interaction in transition metals

    Butler, W.H.

    1980-01-01

    Progress in calculating the electron-phonon parameters of transition metals has been based on either the rigid muffin-tin approximation (RMTA) or the fitted modified tight-binding approximation (FMTBA). The RMTA has been shown to be remarkably accurate for average electron-phonon properties, but there are indications that RMTA matrix elements may be too small at low momentum transfer. An attempt is made to demonstrate these assertions concerning the accuracy of RMTA and the numerous electron-phonon calculations are placed in a broader perspective by a demonstration of how they can be used to explain the trends in the strength of the electron-phonon coupling among the transition metals and the A-15 compounds. (GHT)

  5. Single-electron states near a current-carrying core

    Masale, M.

    2004-01-01

    The energy spectrum of an electron confined near a current-carrying core is obtained as a function of the azimuthal applied magnetic field within the effective-mass approximation. The double degeneracy of the non-zero electron's axial wave number (k z ) states is lifted by the current-induced magnetic field while that of the non-zero azimuthal quantum number (m) states is preserved. A further analysis is the evaluations of the oscillator strengths for optical transitions involving the lowest-order pair of the electron's energy subbands within the dipole approximation. The radiation field is taken as that of elliptically polarized light incident along the core axis. In this polarization and within the dipole approximation, the allowed transitions are only those governed by the following specific selection rules. The azimuthal quantum numbers of the initial and final states must differ by unity while the electron's axial wave number is conserved. The azimuthal magnetic field is also found to lift the multiple degeneracies of the k z ≠0 interaction integrals as well as those of the oscillator strengths for optical transitions

  6. High pressure and synchrotron radiation studies of solid state electronic instabilities

    Pifer, J.H.; Croft, M.C.

    1992-04-01

    This report discusses Eu and General Valence Instabilities; Ce Problem: L 3 Spectroscopy Emphasis; Bulk Property Emphasis; Transition Metal Compound Electronic Structure; Electronic Structure-Phonon Coupling Studies; High Temperature Superconductivity and Oxide Materials; and Novel Materials Collaboration with Chemistry

  7. On stationary states of electron beams in drift space

    Kovalev, N.F.

    2002-01-01

    The article is devoted to studying the conditions of formation and existence of virtual cathodes. The problem on stationary states of the strongly magnetized electron beams in the homogeneous drift channels is discussed. The problem on the planar and coaxial moduli of the drift spaces is considered. The possibility of existing the virtual cathodes in the coaxial tubular beams by the injection currents, smaller than the threshold ones is highly proved. The inaccuracy of results of a number of works, studying the properties of the virtual cathodes in the strongly magnetized electron beams, is shown [ru

  8. Surface study of liquid 3He using surface state electrons

    Shirahama, K.; Ito, S.; Suto, H.; Kono, K.

    1995-01-01

    We have measured the mobility of surface state electrons (SSE) on liquid 3 He, μ 3 , aiming to study the elementary surface excitations of the Fermi liquid. A gradual increase of μ 3 below 300 mK is attributed to the scattering of electrons by ripplons. Ripplons do exist in 3 He down to 100 mK. We observe an abrupt decrease of μ 3 , due to the transition to the Wigner solid (WS). The dependences of the WS conductivity and mobility on temperature and magnetic field differ from the SSE behavior on liquid 4 He

  9. Spin-flip inelastic scattering in electron energy loss spectroscopy of a ferromagnetic metal

    Yin, S.; Tosatti, E.

    1981-08-01

    We calculate the spin polarization occuring during electron inelastic scattering from electron-hole pairs in a model ferromagnetic metal. The polarization is found to have contributions from unequal spin flip as well as non-flip energy loss rates. Our results indicate an asymmetry of the order of a few percent with parameters roughly modeling Fsub(e). The possibilities of comparison with experiments in the presence of simultaneous spin-polarizing elastic scattering are discussed. (author)

  10. Optical and electronic properties of polyvinyl alcohol doped with pairs of mixed valence metal ions

    Bulinski, Mircea; Kuncser, Victor; Plapcianu, Carmen; Krautwald, Stefan; Franke, Hilmar; Rotaru, P; Filoti, George

    2004-01-01

    The electronic mechanisms induced by the UV exposure of thin films of polyvinyl alcohol doped with pairs of mixed valence metal ions were studied in relation to their optical behaviour by Moessbauer spectroscopy and optical absorption. The results obtained definitely point to the role of each element from the pair in the electronic mechanism involved, with influence on the optical properties regarding applications in real-time holography and integrated optics

  11. Diverse and tunable electronic structures of single-layer metal phosphorus trichalcogenides for photocatalytic water splitting

    Liu, Jian; Li, Xi-Bo; Wang, Da; Liu, Li-Min; Lau, Woon-Ming; Peng, Ping

    2014-01-01

    The family of bulk metal phosphorus trichalcogenides (APX 3 , A = M II , M 0.5 I M 0.5 III ; X = S, Se; M I , M II , and M III represent Group-I, Group-II, and Group-III metals, respectively) has attracted great attentions because such materials not only own magnetic and ferroelectric properties, but also exhibit excellent properties in hydrogen storage and lithium battery because of the layered structures. Many layered materials have been exfoliated into two-dimensional (2D) materials, and they show distinct electronic properties compared with their bulks. Here we present a systematical study of single-layer metal phosphorus trichalcogenides by density functional theory calculations. The results show that the single layer metal phosphorus trichalcogenides have very low formation energies, which indicates that the exfoliation of single layer APX 3 should not be difficult. The family of single layer metal phosphorus trichalcogenides exhibits a large range of band gaps from 1.77 to 3.94 eV, and the electronic structures are greatly affected by the metal or the chalcogenide atoms. The calculated band edges of metal phosphorus trichalcogenides further reveal that single-layer ZnPSe 3 , CdPSe 3 , Ag 0.5 Sc 0.5 PSe 3 , and Ag 0.5 In 0.5 PX 3 (X = S and Se) have both suitable band gaps for visible-light driving and sufficient over-potentials for water splitting. More fascinatingly, single-layer Ag 0.5 Sc 0.5 PSe 3 is a direct band gap semiconductor, and the calculated optical absorption further convinces that such materials own outstanding properties for light absorption. Such results demonstrate that the single layer metal phosphorus trichalcogenides own high stability, versatile electronic properties, and high optical absorption, thus such materials have great chances to be high efficient photocatalysts for water-splitting

  12. Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices

    Wünscher, S.; Abbel, R.; Perelaer, J.; Schubert, U.S.

    2014-01-01

    Well-defined high resolution structures with excellent electrical conductivities are key components of almost every electronic device. Producing these by printing metal based conductive inks on polymer foils represents an important step forward towards the manufacturing of plastic electronic

  13. Unambiguously identifying spin states of transition-metal ions in the Earth (Invited)

    Hsu, H.

    2010-12-01

    The spin state of a transition-metal ion in crystalline solids, defined by the number of unpaired electrons in the ion’s incomplete 3d shell, may vary with many factors, such as temperature, pressure, strain, and the local atomic configuration, to name a few. Such a phenomenon, known as spin-state crossover, plays a crucial role in spintronic materials. Recently, the pressure-induced spin-state crossover in iron-bearing minerals has been recognized to affect the minerals’ structural and elastic properties. However, the detailed mechanism of such crossover in iron-bearing magnesium silicate perovskite, the most abundant mineral in the Earth, remains unclear. A significant part of this confusion arises from the difficulty in reliably extracting the spin state from experiments. For the same reason, the thermally-induced spin-state crossover in lanthanum cobaltite (LaCoO3) has been controversial for more than four decades. In this talk, I will discuss how first-principle calculations can help clarifying these long-standing controversies. In addition to the total energy, equation of state, and elastic properties of each spin state, first-principle calculations also predict the electric field gradient (EFG) at the nucleus of each transition-metal ion. Our calculations showed that the nuclear EFG, a quantity that can be measured via Mössbauer or nuclear magnetic resonance (NMR) spectroscopy, depends primarily on the spin state, irrespective of the concentration or configuration of transition-metal ions. Such robustness makes EFG a unique fingerprint to identify the spin state. The combination of first-principle calculations and Mössbauer/NMR spectroscopy can therefore be a reliable and efficient approach in tackling spin-state crossover problems in the Earth. This work was primarily supported by the MRSEC Program of NSF under Awards Number DMR-0212302 and DMR-0819885, and partially supported by NSF under ATM-0428774 (V-Lab), EAR-1019853, and EAR-0810272. The

  14. Electronic structure of some 3D transition-metal pyrites

    Folkerts, W.; Sawatzky, G.A.; Haas, C.; Groot, R.A. de; Hillebrecht, F.U.

    1987-01-01

    Bremsstrahlung Isochromat spectra of FeS2, NiS2, NiS1.2Se0.8 and NiSe2 are reported. These are the first direct experimental evidence for a sharp antibonding p-like state above the Fermi level. A comparison is made with experimental results in the literature. For FeS2, band-structure calculations

  15. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    Zhang, Jing; Zhang, Guilong; Cai, Dongqing; Wu, Zhengyan

    2015-01-01

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  16. Electron emission from a double-layer metal under femtosecond laser irradiation

    Li, Shuchang; Li, Suyu; Jiang, Yuanfei; Chen, Anmin, E-mail: amchen@jlu.edu.cn; Ding, Dajun; Jin, Mingxing, E-mail: mxjin@jlu.edu.cn

    2015-01-01

    In this paper we theoretically investigate electron emission during femtosecond laser ablation of single-layer metal (copper) and double-layer structures. The double-layer structure is composed of a surface layer (copper) and a substrate layer (gold or chromium). The calculated results indicate that the double-layer structure brings a change to the electron emission from the copper surface. Compared with the ablation of a single-layer, a double-layer structure may be helpful to decrease the relaxation time of the electron temperature, and optimize the electron emission by diminishing the tailing phenomenon under the same absorbed laser fluence. With the increase of the absorbed laser fluence, the effect of optimization becomes significant. This study provides a way to optimize the electron emission which can be beneficial to generate laser induced ultrafast electron pulse sources.

  17. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    Zhang, Jing; Zhang, Guilong [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China)

    2015-03-21

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  18. The Two-Dimensional MnO2/Graphene Interface: Half-metallicity and Quantum Anomalous Hall State

    Gan, Liyong

    2015-10-07

    We explore the electronic properties of the MnO2/graphene interface by first-principles calculations, showing that MnO2 becomes half-metallic. MnO2 in the MnO2/graphene/MnO2 system provides time-reversal and inversion symmetry breaking. Spin splitting by proximity occurs at the Dirac points and a topologically nontrivial band gap is opened, enabling a quantum anomalous Hall state. The half-metallicity, spin splitting, and size of the band gap depend on the interfacial interaction, which can be tuned by strain engineering.

  19. The Two-Dimensional MnO2/Graphene Interface: Half-metallicity and Quantum Anomalous Hall State

    Gan, Liyong; Zhang, Qingyun; Guo, Chun-Sheng; Schwingenschlö gl, Udo; Zhao, Yong

    2015-01-01

    We explore the electronic properties of the MnO2/graphene interface by first-principles calculations, showing that MnO2 becomes half-metallic. MnO2 in the MnO2/graphene/MnO2 system provides time-reversal and inversion symmetry breaking. Spin splitting by proximity occurs at the Dirac points and a topologically nontrivial band gap is opened, enabling a quantum anomalous Hall state. The half-metallicity, spin splitting, and size of the band gap depend on the interfacial interaction, which can be tuned by strain engineering.

  20. Study of electron transmission through thin metallic films by the electron moessbauer spectroscopy

    Babikova, Yu.F.; Vakar, O.M.; Gruzin, O.M.; Petrikin, Yu.V.

    1983-01-01

    Results of the experimental study of the transmission of conversion electrons through aluminium, iron, tin and gold films are presented. Absorption of resonance electrons of the Moessbauer nuclide 57 Fe, formed during target irradiation with γ-quanta of 57 Co source in chromium matrix has been studied. It is asserted that absorption of conversion electrons in films of different elements is similar; at that, like in the case of β-particles, the law of absorption of resonance electrons, emitted from the flat layer, is exponential For conversion electrons of the Moessbauer nuclide 57 Fe the absorption coefficient is (0.025+-0.002) cm 2 /μg, which in the case of iron absorbing film corresponds to (20.0+-1.0)x10 4 cm -1

  1. Electron-electron scattering-induced channel hot electron injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors with high-k/metal gate stacks

    Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Ho, Szu-Han; Tseng, Tseung-Yuen; Cheng, Osbert; Huang, Cheng-Tung; Lu, Ching-Sen

    2014-01-01

    This work investigates electron-electron scattering (EES)-induced channel hot electron (CHE) injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors (n-MOSFETs) with high-k/metal gate stacks. Many groups have proposed new models (i.e., single-particle and multiple-particle process) to well explain the hot carrier degradation in nanoscale devices and all mechanisms focused on Si-H bond dissociation at the Si/SiO 2 interface. However, for high-k dielectric devices, experiment results show that the channel hot carrier trapping in the pre-existing high-k bulk defects is the main degradation mechanism. Therefore, we propose a model of EES-induced CHE injection to illustrate the trapping-dominant mechanism in nanoscale n-MOSFETs with high-k/metal gate stacks.

  2. Stability and electronic structure of Zr-based ternary metallic glasses and relevant compounds

    Hasegawa, M.; Soda, K.; Sato, H.; Suzuki, T.; Taketomi, T.; Takeuchi, T.; Kato, H.; Mizutani, U.

    2007-01-01

    The electronic structure of the Zr-based metallic glasses has been investigated by theoretical and experimental approaches. One approach is band calculations of the Zr 2 Ni (Zr 66.7 Ni 33.3 ) compound to investigate the electronic structure of the Zr 66.7 Ni 33.3 metallic glass (ΔT x = 0 K) of which the local atomic structure is similar to that of the Zr 2 Ni compound. The other is photoemission spectroscopy of the Zr 50 Cu 35 Al 15 bulk metallic glass (BMG) (ΔT x = 69 K). Here ΔT x = T x - T g where T x and T g are crystallization and glass transition temperature, respectively. Both results and previous ones on the Zr 55 Cu 30 Ni 5 Al 10 BMG indicate that there is a pseudogap at the Fermi level in the electronic structure of these Zr-based metallic glasses, independent of the value of the ΔT x . This implies that the pseudogap at the Fermi level is one of the factors that stabilize the glass phase of Zr-based metallic glasses

  3. Quantum–classical simulations of the electronic stopping force and charge on slow heavy channelling ions in metals

    Race, C P; Mason, D R; Foo, M H F; Foulkes, W M C; Sutton, A P; Horsfield, A P

    2013-01-01

    By simulating the passage of heavy ions along open channels in a model crystalline metal using semi-classical Ehrenfest dynamics we directly investigate the nature of non-adiabatic electronic effects. Our time-dependent tight-binding approach incorporates both an explicit quantum mechanical electronic system and an explicit representation of a set of classical ions. The coupled evolution of the ions and electrons allows us to explore phenomena that lie beyond the approximations made in classical molecular dynamics simulations and in theories of electronic stopping. We report a velocity-dependent charge-localization phenomenon not predicted by previous theoretical treatments of channelling. This charge localization can be attributed to the excitation of electrons into defect states highly localized on the channelling ion. These modes of excitation only become active when the frequency at which the channelling ion moves from interstitial point to equivalent interstitial point matches the frequency corresponding to excitations from the Fermi level into the localized states. Examining the stopping force exerted on the channelling ion by the electronic system, we find broad agreement with theories of slow ion stopping (a stopping force proportional to velocity) for a low velocity channelling ion (up to about 0.5 nm fs −1 from our calculations), and a reduction in stopping power attributable to the charge localization effect at higher velocities. By exploiting the simplicity of our electronic structure model we are able to illuminate the physics behind the excitation processes that we observe and present an intuitive picture of electronic stopping from a real-space, chemical perspective. (paper)

  4. Electron states and electron Raman scattering in semiconductor double cylindrical quantum well wire

    Munguía-Rodríguez, M; Riera, R; Betancourt-Riera, Ri; Betancourt-Riera, Re; Nieto Jalil, J M

    2016-01-01

    The differential cross section for an electron Raman scattering process in a semiconductor GaAs/AlGaAs double quantum well wire is calculated, and expressions for the electronic states are presented. The system is modeled by considering T = 0 K and also with a single parabolic conduction band, which is split into a subband system due to the confinement. The gain and differential cross-section for an electron Raman scattering process are obtained. In addition, the emission spectra for several scattering configurations are discussed, and interpretations of the singularities found in the spectra are given. The electron Raman scattering studied here can be used to provide direct information about the efficiency of the lasers. (paper)

  5. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching.

    Priya, Anshu; Hait, Subrata

    2017-03-01

    Waste electrical and electronic equipment (WEEE) or electronic waste (e-waste) is one of the fastest growing waste streams in the urban environment worldwide. The core component of printed circuit board (PCB) in e-waste contains a complex array of metals in rich quantity, some of which are toxic to the environment and all of which are valuable resources. Therefore, the recycling of e-waste is an important aspect not only from the point of waste treatment but also from the recovery of metals for economic growth. Conventional approaches for recovery of metals from e-waste, viz. pyrometallurgical and hydrometallurgical techniques, are rapid and efficient, but cause secondary pollution and economically unviable. Limitations of the conventional techniques have led to a shift towards biometallurgical technique involving microbiological leaching of metals from e-waste in eco-friendly manner. However, optimization of certain biotic and abiotic factors such as microbial species, pH, temperature, nutrients, and aeration rate affect the bioleaching process and can lead to profitable recovery of metals from e-waste. The present review provides a comprehensive assessment on the metallurgical techniques for recovery of metals from e-waste with special emphasis on bioleaching process and the associated factors.

  6. Scenarios for Demand Growth of Metals in Electricity Generation Technologies, Cars, and Electronic Appliances

    2018-01-01

    This study provides scenarios toward 2050 for the demand of five metals in electricity production, cars, and electronic appliances. The metals considered are copper, tantalum, neodymium, cobalt, and lithium. The study shows how highly technology-specific data on products and material flows can be used in integrated assessment models to assess global resource and metal demand. We use the Shared Socio-economic Pathways as implemented by the IMAGE integrated assessment model as a starting point. This allows us to translate information on the use of electronic appliances, cars, and renewable energy technologies into quantitative data on metal flows, through application of metal content estimates in combination with a dynamic stock model. Results show that total demand for copper, neodymium, and tantalum might increase by a factor of roughly 2 to 3.2, mostly as a result of population and GDP growth. The demand for lithium and cobalt is expected to increase much more, by a factor 10 to more than 20, as a result of future (hybrid) electric car purchases. This means that not just demographics, but also climate policies can strongly increase metal demand. This shows the importance of studying the issues of climate change and resource depletion together, in one modeling framework. PMID:29533657

  7. Scenarios for Demand Growth of Metals in Electricity Generation Technologies, Cars, and Electronic Appliances.

    Deetman, Sebastiaan; Pauliuk, Stefan; van Vuuren, Detlef P; van der Voet, Ester; Tukker, Arnold

    2018-04-17

    This study provides scenarios toward 2050 for the demand of five metals in electricity production, cars, and electronic appliances. The metals considered are copper, tantalum, neodymium, cobalt, and lithium. The study shows how highly technology-specific data on products and material flows can be used in integrated assessment models to assess global resource and metal demand. We use the Shared Socio-economic Pathways as implemented by the IMAGE integrated assessment model as a starting point. This allows us to translate information on the use of electronic appliances, cars, and renewable energy technologies into quantitative data on metal flows, through application of metal content estimates in combination with a dynamic stock model. Results show that total demand for copper, neodymium, and tantalum might increase by a factor of roughly 2 to 3.2, mostly as a result of population and GDP growth. The demand for lithium and cobalt is expected to increase much more, by a factor 10 to more than 20, as a result of future (hybrid) electric car purchases. This means that not just demographics, but also climate policies can strongly increase metal demand. This shows the importance of studying the issues of climate change and resource depletion together, in one modeling framework.

  8. Electronic coupling effects and charge transfer between organic molecules and metal surfaces

    Forker, Roman

    2010-07-01

    We employ a variant of optical absorption spectroscopy, namely in situ differential reflectance spectroscopy (DRS), for an analysis of the structure-properties relations of thin epitaxial organic films. Clear correlations between the spectra and the differently intense coupling to the respective substrates are found. While rather broad and almost structureless spectra are obtained for a quaterrylene (QT) monolayer on Au(111), the spectral shape resembles that of isolated molecules when QT is grown on graphite. We even achieve an efficient electronic decoupling from the subjacent Au(111) by inserting an atomically thin organic spacer layer consisting of hexa-peri-hexabenzocoronene (HBC) with a noticeably dissimilar electronic behavior. These observations are further consolidated by a systematic variation of the metal substrate (Au, Ag, and Al), ranging from inert to rather reactive. For this purpose, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) is chosen to ensure comparability of the molecular film structures on the different metals, and also because its electronic alignment on various metal surfaces has previously been studied with great intensity. We present evidence for ionized PTCDA at several interfaces and propose the charge transfer to be related to the electronic level alignment governed by interface dipole formation on the respective metals. (orig.)

  9. OBSERVATION OF MAGNETIC DOMAINS IN IRRADIATED TRANSITION METALS BY HIGH VOLTAGE ELECTRON MICROSCOPY

    Ono , F.; Jakubovics , J.; Maeta , H.

    1988-01-01

    The effect of irradiation on the movement of domain walls was studied in ferromagnetic transition metals by using a high voltage electron microscope. In iron, a domain wall became easily movable at a 300 kV irradiation. The mobility was less affected in cobalt, while in nickel the effect was the greatest.

  10. Hot electrons and the approach to metallic behavior in Kx(KCl)1-x

    Silvestrelli, P.L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The approach to the metallic phase of molten Kx(KCl)1-x mixtures is studied using ab initio molecular dynamics based on finite-temperature density functional theory. The finite electronic temperature is found to result in new and unexpected effects. In particular, we observe a thermally induced

  11. Electron density in reasonably real metallic surfaces, including interchange and correlation effects

    Moraga, L.A.; Martinez, G.

    1981-01-01

    By means of a new method, the electron density in a jellium surface is calculated taking in account interchange and correlation effects; reproducing, in this way, the Lang and Kohn results. The new method is self-consistent but not iterative and hence is possible extend it to the solution of the same problem in more reasonably real metallic surfaces. (L.C.) [pt

  12. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    Peng, Hui, E-mail: penghui@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Liu, Chang [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Guo, Hongbo, E-mail: guo.hongbo@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Yuan, Yuan [Zhuzhou Seed Cemented Carbide Technology Co. Ltd, No. 1099 Xiangda Road, Zhuzhou, Hunan 412000 (China); Gong, Shengkai; Xu, Huibin [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China)

    2016-06-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  13. Structure Determination of Anionic Metal Clusters via Infrared Resonance Enhanced Multiple Photon Electron Detachment Spectroscopy

    Haertelt, M.; Lapoutre, V. J. F.; Bakker, J. M.; Redlich, B.; Harding, D. J.; Fielicke, A.; Meijer, G.

    2011-01-01

    We report vibrational spectra of anionic metal clusters, measured via electron detachment following resonant absorption of multiple infrared photons. To facilitate the sequential absorption of the required large number of photons, the cluster beam interacts with the infrared radiation inside the

  14. Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides

    Calle-Vallejo, Federico; Inoglu, Nilay G.; Su, Hai-Yan

    2013-01-01

    The trends in adsorption energies of the intermediates of the oxygen reduction and evolution reactions on transition metals and their oxides are smoothly captured by the number of outer electrons. This unique descriptor permits the construction of predictive adsorption-energy grids and explains t...

  15. Direct observation of surface reconstruction and termination on a complex metal oxide catalyst by electron microscopy

    Zhu, Yihan

    2012-03-19

    On the surface: The surface reconstruction of an MoVTeO complex metal oxide catalyst was observed directly by various electron microscopic techniques and the results explain the puzzling catalytic behavior. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ferromagnetic semiconductor-metal transition in heterostructures of electron doped europium monoxide

    Stollenwerk, Tobias

    2013-09-01

    In the present work, we develop and solve a self-consistent theory for the description of the simultaneous ferromagnetic semiconductor-metal transition in electron doped Europium monoxide. We investigate two different types of electron doping, Gadolinium impurities and Oxygen vacancies. Besides the conduction band occupation, we can identify low lying spin fluctuations on magnetic impurities as the driving force behind the doping induced enhancement of the Curie temperature. Moreover, we predict the signatures of these magnetic impurities in the spectra of scanning tunneling microscope experiments. By extending the theory to allow for inhomogeneities in one spatial direction, we are able to investigate thin films and heterostructures of Gadolinium doped Europium monoxide. Here, we are able to reproduce the experimentally observed decrease of the Curie temperature with the film thickness. This behavior is attributed to missing coupling partners of the localized 4f moments as well as to an electron depletion at the surface which leads to a reduction of the number of itinerant electrons. By investigating the influence of a metallic substrate onto the phase transition in Gadolinium doped Europium monoxide, we find that the Curie temperature can be increased up to 20%. However, as we show, the underlying mechanism of metal-interface induced charge carrier accumulation is inextricably connected to a suppression of the semiconductor-metal transition.

  17. Ferromagnetic semiconductor-metal transition in heterostructures of electron doped europium monoxide

    Stollenwerk, Tobias

    2013-09-15

    In the present work, we develop and solve a self-consistent theory for the description of the simultaneous ferromagnetic semiconductor-metal transition in electron doped Europium monoxide. We investigate two different types of electron doping, Gadolinium impurities and Oxygen vacancies. Besides the conduction band occupation, we can identify low lying spin fluctuations on magnetic impurities as the driving force behind the doping induced enhancement of the Curie temperature. Moreover, we predict the signatures of these magnetic impurities in the spectra of scanning tunneling microscope experiments. By extending the theory to allow for inhomogeneities in one spatial direction, we are able to investigate thin films and heterostructures of Gadolinium doped Europium monoxide. Here, we are able to reproduce the experimentally observed decrease of the Curie temperature with the film thickness. This behavior is attributed to missing coupling partners of the localized 4f moments as well as to an electron depletion at the surface which leads to a reduction of the number of itinerant electrons. By investigating the influence of a metallic substrate onto the phase transition in Gadolinium doped Europium monoxide, we find that the Curie temperature can be increased up to 20%. However, as we show, the underlying mechanism of metal-interface induced charge carrier accumulation is inextricably connected to a suppression of the semiconductor-metal transition.

  18. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    Peng, Hui; Liu, Chang; Guo, Hongbo; Yuan, Yuan; Gong, Shengkai; Xu, Huibin

    2016-01-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  19. Effect of the coupling between electronic structure and crystalline structure on some properties of transition metals

    Nastar, M.

    1994-01-01

    The elastic constants, energetic stabilities and vacancy formation energies in transition metals are calculated within a Tight Binding model. In order to outline the effect of the electronic structure, these properties are represented as functions of band filling. The variation of the shear elastic constants of hexagonal close packed (HCP), body centered cubic (BCC) and face centered cubic (FCC) structures, is in contrast with the roughly parabolic behavior of bulk modulus. The general trends are in very good agreement with available experimental and 'ab initio' data. The vacancy formation energy in the BCC structure shows strong deviations from bell shape behavior with a maximum corresponding approximately to the band filling of group 6. This band filling effect contributes to the noticeable decrease of the self diffusion rate between group 4 and group 6. We demonstrate that the abrupt increase of the C' elastic constant, the NT 1 (0.-1.1) phonon frequency, the energy differences between BCC and HCP and between FCC and HCP as well as the vacancy formation energy, that occurs when going from Zr to Mo, is related to the presence of a pseudo-gap in the density of states of the BCC structure. Using the recursion method, we show that the general trends of these properties are correctly reproduced when considering only a few moments of the density of states (about 6). On the other hand, details such as the elastic constant singularities, are displayed only with an exact calculation of the density of states. (Author). 173 refs., 84 figs., 5 tabs

  20. Electronic money in russia: current state and problems of development

    T. G. Bondarenko

    2016-01-01

    Full Text Available Article is devoted to urgent problems of non-cash methods of calculation development by using electronic money – as one of the modern economically developed state strategic tasks. On modern economic science strong influence appears informatization process. The control expansion tendency, influence and distribution of commerce due to informatization of society led to emergence of the new phenomenon – information economy. Information economy brought new economic events which owing to their novelty are insufficiently studied to life. It is possible to carry electronic money to such phenomena of modern network economy Relevance and, in our opinion, timeliness of this scientific work, consisting in novelty of this non-cash payment method, its prospects and innovation within non-cash methods of calculations. Authors set as the purpose – studying of problems and the prospects of development of electronic money in the Russian Federation. In article theoretical bases of electronic money functioning are described. Determinations and classifications dismissed non-cash a method, and also the principles of electronic money functioning are considered, the questions of their historical development are raised.Authors analyzed statistical data on development of electronic services and channels of their using. Features, benefits and shortcomings of the current state of the market of electronic money are studied. The emphasis on that fact that in modern conditions considerable number of economic actors perform the activities, both in the real environment of economy, and within the virtual environment that promotes expansion of methods of their customer interaction by means of technical devices of personal computers, mobile phones is placed. In article common problems and tendencies of payments with using an electronic money are designated, the research on assessment of the current state and the prospects of electronic money