WorldWideScience

Sample records for metal-ion affinity chromatography

  1. Comparison of different transition metal ions for immobilized metal affinity chromatography of selenoprotein P from human plasma

    DEFF Research Database (Denmark)

    Sidenius, U; Farver, O; Jøns, O

    1999-01-01

    Cu2+, Ni2+, Zn2+, Co2+ and Cd2+ were evaluated in metal ion affinity chromatography for enrichment of selenoprotein P, and immobilized Co2+ affinity chromatography was found to be the most selective chromatographic method. The chromatography was performed by fast protein liquid chromatography...

  2. Phosphopeptide enrichment by immobilized metal affinity chromatography

    DEFF Research Database (Denmark)

    Thingholm, Tine E.; Larsen, Martin R.

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively...... charged metal ions such as Fe3+, Ga3+, Al3+, Zr4+, and Ti4+ has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from...

  3. Adsorption of endotoxins on Ca2+ -iminodiacetic acid by metal ion affinity chromatography.

    Science.gov (United States)

    Lopes, André Moreni; Romeu, Jorge Sánchez; Meireles, Rolando Páez; Perera, Gabriel Marquez; Morales, Rolando Perdomo; Pessoa, Adalberto; Cárdenas, Lourdes Zumalacárregui

    2012-11-01

    Endotoxins (also known as lipopolysaccharides (LPS)) are undesirable by-products of recombinant proteins, purified from Escherichia coli. LPS can be considered stable under a wide range of temperature and pH, making their removal one of the most difficult tasks in downstream processes during protein purification. The inherent toxicity of LPS makes their removal an important step for the application of these proteins in several biological assays and for a safe parenteral administration. Immobilized metal affinity chromatography (IMAC) enables the affinity interactions between the metal ions (immobilized on the support through the chelating compound) and the target molecules, thus enabling high-efficiency separation of the target molecules from other components present in a mixture. Affinity chromatography is applied with Ca2+ -iminodiacetic acid (IDA) to remove most of the LPS contaminants from the end product (more than 90%). In this study, the adsorption of LPS on an IDA-Ca2+ was investigated. The adsorption Freundlich isotherm of LPS-IDA-Ca2+ provides a theoretical basis for LPS removal. It was found that LPS is bound mainly by interactions between the phosphate group in LPS and Ca2+ ligands on the beads. The factors such as pH (4.0 or 5.5) and ionic strength (1.0 mol/L) are essential to obtain effective removal of LPS for contaminant levels between endotoxin' concentration values less than 100 EU/mL and 100 000 EU/mL. This new protocol represents a substantial advantage in time, effort, and production costs.

  4. Enrichment and characterization of phosphopeptides by immobilized metal affinity chromatography (IMAC) and mass spectrometry

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Jensen, Ole N

    2009-01-01

    The combination of immobilized metal affinity chromatography (IMAC) and mass spectrometry is a widely used technique for enrichment and sequencing of phosphopeptides. In the IMAC method, negatively charged phosphate groups interact with positively charged metal ions (Fe3+, Ga3+, and Al3...

  5. Immobilised metal-ion affinity chromatography purification of histidine-tagged recombinant proteins : a wash step with a low concentration of EDTA

    NARCIS (Netherlands)

    Westra, DF; Welling, GW; Koedijk, DGAM; Scheffer, AJ; The, TH; Welling-Wester, S

    2001-01-01

    Immobilised metal-ion affinity chromatography (IMAC) is widely used for the purification of recombinant proteins in which a poly-histidine tag is introduced. However, other proteins may also bind to IMAC columns. We describe the use of a washing buffer with a low concentration of EDTA (0.5 mM) for

  6. Specific capture of uranyl protein targets by metal affinity chromatography

    International Nuclear Information System (INIS)

    Basset, C.; Dedieu, A.; Guerin, P.; Quemeneur, E.; Meyer, D.; Vidaud, C.

    2008-01-01

    To improve general understanding of biochemical mechanisms in the field of uranium toxicology, the identification of protein targets needs to be intensified. Immobilized metal affinity chromatography (IMAC) has been widely developed as a powerful tool for capturing metal binding proteins from biological extracts. However uranyl cations (UO 2 2+ ) have particular physico-chemical characteristics which prevent them from being immobilized on classical metal chelating supports. We report here on the first development of an immobilized uranyl affinity chromatography method, based on the cation-exchange properties of amino-phosphonate groups for uranyl binding. The cation distribution coefficient and loading capacity on the support were determined. Then the stability of the uranyl-bonded phase under our chromatographic conditions was optimized to promote affinity mechanisms. The successful enrichment of uranyl binding proteins from human serum was then proven using proteomic and mass spectral analysis. (authors)

  7. Two-step purification of His-tagged Nef protein in native condition using heparin and immobilized metal ion affinity chromatographies.

    Science.gov (United States)

    Finzi, Andrés; Cloutier, Jonathan; Cohen, Eric A

    2003-07-01

    The Nef protein encoded by human immunodeficiency virus type 1 (HIV-1) has been shown to be an important factor of progression of viral growth and pathogenesis in both in vitro and in vivo. The lack of a simple procedure to purify Nef in its native conformation has limited molecular studies on Nef function. A two-step procedure that includes heparin and immobilized metal ion affinity chromatographies (IMACs) was developed to purify His-tagged Nef (His(6)-Nef) expressed in bacteria in native condition. During the elaboration of this purification procedure, we identified two closely SDS-PAGE-migrating contaminating bacterial proteins, SlyD and GCHI, that co-eluted with His(6)-Nef in IMAC in denaturing condition and developed purification steps to eliminate these contaminants in native condition. Overall, this study describes a protocol that allows rapid purification of His(6)-Nef protein expressed in bacteria in native condition and that removes metal affinity resin-binding bacterial proteins that can contaminate recombinant His-tagged protein preparation.

  8. PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS OF AFFINITY CHROMATOGRAPHY: RECENT TRENDS AND DEVELOPMENTS

    Science.gov (United States)

    Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei

    2012-01-01

    Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083

  9. Affinity monolith chromatography: A review of principles and recent analytical applications

    Science.gov (United States)

    Pfaunmiller, Erika L.; Paulemond, Marie Laura; Dupper, Courtney M.; Hage, David S.

    2012-01-01

    Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically-related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis or studies of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments or applications of this method, with particular emphasis being given to work that has appeared in the last five years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal-ions and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing and biotechnology. Current trends and possible future directions in AMC are also discussed. PMID:23187827

  10. New polymer-supported ion-complexing agents: Design, preparation and metal ion affinities of immobilized ligands

    International Nuclear Information System (INIS)

    Alexandratos, Spiro D.

    2007-01-01

    Polymer-supported reagents are comprised of crosslinked polymer networks that have been modified with ligands capable of selective metal ion complexation. Applications of these polymers are in environmental remediation, ion chromatography, sensor technology, and hydrometallurgy. Bifunctional polymers with diphosphonate/sulfonate ligands have a high selectivity for actinide ions. The distribution coefficient for the uranyl ion from 1 M nitric acid is 70,000, compared to 900 for the monophosphonate/sulfonate polymer and 200 for the sulfonic acid ion-exchange resin. A bifunctional trihexyl/triethylammonium polymer has a high affinity and selectivity for pertechnetate and perchlorate anions from groundwater. In one example, its distribution coefficient for perchlorate ions in the presence of competing anions is 3,300,000, compared to 203,180 for a commercially available anion-exchange resin. Polystyrene modified with N-methyl-D-glucamine ligands is capable of selectively complexing arsenate from groundwater. It complexes 99% of the arsenate present in a solution of 100 mg/L arsenate with 560 mg/L sulfate ions. Its selectivity is retained even in the presence of 400 mg/L phosphate. There is no affinity for arsenate above pH 9, allowing for the polymer to be regenerated with moderate alkali solution. In studies aimed at developing a Hg(II)-selective resin, simple amine resins were found to have a high Hg(II) affinity and that affinity is dependent upon the solution pH and the counterion

  11. Affinity monolith chromatography: A review of general principles and applications.

    Science.gov (United States)

    Li, Zhao; Rodriguez, Elliott; Azaria, Shiden; Pekarek, Allegra; Hage, David S

    2017-11-01

    Affinity monolith chromatography, or AMC, is a liquid chromatographic method in which the support is a monolith and the stationary phase is a biological-binding agent or related mimic. AMC has become popular for the isolation of biochemicals, for the measurement of various analytes, and for studying biological interactions. This review will examine the principles and applications of AMC. The materials that have been used to prepare AMC columns will be discussed, which have included various organic polymers, silica, agarose, and cryogels. Immobilization schemes that have been used in AMC will also be considered. Various binding agents and applications that have been reported for AMC will then be described. These applications will include the use of AMC for bioaffinity chromatography, immunoaffinity chromatography, dye-ligand affinity chromatography, and immobilized metal-ion affinity chromatography. The use of AMC with chiral stationary phases and as a tool to characterize biological interactions will also be examined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fractionation of Aspergillus niger cellulases by combined ion exchange affinity chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, R.F.; Allen, T.L.; Dykema, P.A.

    1987-02-05

    Eight chemically modified cellulose supports were tested for their ability to adsorb components of the Aspergillus niger cellulase system. At least two of the most effective adsorbents, aminoethyl cellulose and carboxymethyl cellulose, were shown to be useful for the fractionation of cellulases. These supports apparently owe their resolving capacity to both ion exchange and biospecific binding effects; however, the relative importance of each effect is unknown. These observations form the basis for a new cellulase fractionation technique, combined ion exchange-affinity chromatography. 22 references.

  13. Chromatography Of Metal Ions On Wood Cellulose Impregnated ...

    African Journals Online (AJOL)

    Adsorption chromatography of some heavy metal ions on wood cellulose of saw dust (wood waste dust) modified with hydrochloric acid, urea and thiourea was studied. Atomic absorption spectrophotometry (AAS) was used to determine the initial concentration of solutions of Zn2+, Cu2+, Ni2+, Pb2+, and Fe3+ metal ions.

  14. Report: Affinity Chromatography.

    Science.gov (United States)

    Walters, Rodney R.

    1985-01-01

    Supports, affinity ligands, immobilization, elution methods, and a number of applications are among the topics considered in this discussion of affinity chromatography. An outline of the basic principles of affinity chromatography is included. (JN)

  15. APPLICATION OF IMMUNOGLOBULIN-BINDING PROTEINS A, G, L IN THE AFFINITY CHROMATOGRAPHY

    Directory of Open Access Journals (Sweden)

    О. V. Sviatenko

    2014-04-01

    Full Text Available Proteins A, G and L are native or recombinant proteins of microbial origin that bind to mammalian immunoglobulins. Preferably recombinant variants of proteins A, G, L are used in biotechnology for affinity sorbents production. Сomparative characteristics of proteins A, G, L and affinity sorbents on the basis of them, advantages and disadvantages of these proteins application as ligands in the affinity chromatography are done. Analysis of proteins A, G, L properties is presented. Binding specificities and affinities of these proteins differ between species and antibody subclass. Protein А has high affinity to human IgG1, IgG2, IgG4, mouse IgG2a, IgG2b, IgG3, goat and sheep IgG2, dog, cat, guinea pig, rabbit IgG. Protein G binds strongly to human, mouse, cow, goat, sheep and rabbit IgG. Protein L has ability of strong binding to immunoglobulin kappa-chains of human, mouse, rat and pig. Expediency of application of affinity chromatography with usage of sorbents on the basis of immobilized proteins A, G, L are shown for isolation and purification of antibodies different classes. Previously mentioned method is used as an alternative to conventional methods of protein purification, such as ion-exchange, hydrophobic interactions, metal affinity chromatography, ethanol precipitation due to simplicity in usage, possibility of one-step purification process, obtaining of proteins high level purity, multiuse at maintenance of proper storage and usage conditions. Affinity sorbents on the basis of immobilized proteins A, G, L are used not only for antibodies purification, but also for extraction of different antibodies fractions from blood serum.

  16. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine.

    Science.gov (United States)

    Kikot, Pamela; Polat, Aise; Achilli, Estefania; Fernandez Lahore, Marcelo; Grasselli, Mariano

    2014-11-01

    Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Evaluation of complexing agents and column temperature in ion chromatographic separation of alkali metals, alkaline earth metals and transition metals ion

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Name, Anil B.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    The aim of ion chromatography method development is the resolution of all metal ions of interests. Resolution can be improved by changing the selectivity. Selectivity in chromatography can be altered by changes in mobile phase (eg eluent type, eluent strength) or through changes in stationary phase. Temperature has been used in altering the selectivity of particularly in reversed phase liquid chromatography and ion exchange chromatography. Present paper describe the retention behaviour of alkali metals, alkaline earth metals and transition metal ions on a silica based carboxylate function group containing analyte column. Alkali metals, alkaline earth metals and transition metal ions were detected by ion conductivity and UV-VIS detectors respectively

  18. Fundamental and practical studies on high-performance liquid affinity chromatography of biopolymers with novel stationary phases

    Energy Technology Data Exchange (ETDEWEB)

    Bacolod, M.D.

    1992-01-01

    Rigid microparticulate stationary phases having surface-bound metal chelating functions were developed and evaluated in high performance metal chelate affinity chromatography of proteins. Silica- and polystyrene-divinylbenzene-based metal chelate sorbents were produced in wide pore and in non-porous type of column packings. A major effort has been placed on development of non-porous highly crosslinked polystyrene-divinylbenzene (PSDVB). These PSDVB microparticles were produced by a two-step swelling polymerization, and exhibited excellent mechanical strength over a wide range of flow-rates and composition used in high performance liquid chromatography (HPLC). Simple and reproducible hydrophilic coatings were developed for the surface modification of hydrophobic PSDVB supports. A tetradentate metal chelating ligand, ethylenediamine-N, N[prime]-diacetic acid (EDDA), was covalently bound to the surface of the various supports. Sorbents having iminodiacetic acid (IDA) metal chelating functions were also evaluated. The hydrophilic character and surface coverage of various stationary phases were assessed chromatographically. Studies concerning the effects of eluent pH as well as the nature and concentration of salts on retention and selectivity with different metal chelate stationary phases having various immobilized metal ions were carried out. Elution schemes were developed for rapid separation of proteins in metal chelate affinity chromatography. EDDA stationary phases in metal forms can be viewed as complementary to IDA stationary phases since they afforded different selectivity and retentivity toward proteins. Hydrophilic PSDVB could be functionalized with IDA or EDDA metal chelating ligands or lectins. The non-porous metal chelate stationary phases afforded rapid separation of proteins by the development of multiple gradient systems, which permitted higher column peak capacity, enabling the separation of a greater number of proteins in a single chromatographic run.

  19. Immobilized metal-affinity chromatography protein-recovery screening is predictive of crystallographic structure success

    International Nuclear Information System (INIS)

    Choi, Ryan; Kelley, Angela; Leibly, David; Nakazawa Hewitt, Stephen; Napuli, Alberto; Van Voorhis, Wesley

    2011-01-01

    An overview of the methods used for high-throughput cloning and protein-expression screening of SSGCID hexahistidine recombinant proteins is provided. It is demonstrated that screening for recombinant proteins that are highly recoverable from immobilized metal-affinity chromatography improves the likelihood that a protein will produce a structure. The recombinant expression of soluble proteins in Escherichia coli continues to be a major bottleneck in structural genomics. The establishment of reliable protocols for the performance of small-scale expression and solubility testing is an essential component of structural genomic pipelines. The SSGCID Protein Production Group at the University of Washington (UW-PPG) has developed a high-throughput screening (HTS) protocol for the measurement of protein recovery from immobilized metal-affinity chromatography (IMAC) which predicts successful purification of hexahistidine-tagged proteins. The protocol is based on manual transfer of samples using multichannel pipettors and 96-well plates and does not depend on the use of robotic platforms. This protocol has been applied to evaluate the expression and solubility of more than 4000 proteins expressed in E. coli. The UW-PPG also screens large-scale preparations for recovery from IMAC prior to purification. Analysis of these results show that our low-cost non-automated approach is a reliable method for the HTS demands typical of large structural genomic projects. This paper provides a detailed description of these protocols and statistical analysis of the SSGCID screening results. The results demonstrate that screening for proteins that yield high recovery after IMAC, both after small-scale and large-scale expression, improves the selection of proteins that can be successfully purified and will yield a crystal structure

  20. Removal of PCR error products and unincorporated primers by metal-chelate affinity chromatography.

    Directory of Open Access Journals (Sweden)

    Indhu Kanakaraj

    Full Text Available Immobilized Metal Affinity Chromatography (IMAC has been used for decades to purify proteins on the basis of amino acid content, especially surface-exposed histidines and "histidine tags" genetically added to recombinant proteins. We and others have extended the use of IMAC to purification of nucleic acids via interactions with the nucleotide bases, especially purines, of single-stranded RNA and DNA. We also have demonstrated the purification of plasmid DNA from contaminating genomic DNA by IMAC capture of selectively-denatured genomic DNA. Here we describe an efficient method of purifying PCR products by specifically removing error products, excess primers, and unincorporated dNTPs from PCR product mixtures using flow-through metal-chelate affinity adsorption. By flowing a PCR product mixture through a Cu(2+-iminodiacetic acid (IDA agarose spin column, 94-99% of the dNTPs and nearly all the primers can be removed. Many of the error products commonly formed by Taq polymerase also are removed. Sequencing of the IMAC-processed PCR product gave base-calling accuracy comparable to that obtained with a commercial PCR product purification method. The results show that IMAC matrices (specifically Cu(2+-IDA agarose can be used for the purification of PCR products. Due to the generality of the base-specific mechanism of adsorption, IMAC matrices may also be used in the purification of oligonucleotides, cDNA, mRNA and micro RNAs.

  1. Selection of imprinted nanoparticles by affinity chromatography.

    Science.gov (United States)

    Guerreiro, António R; Chianella, Iva; Piletska, Elena; Whitcombe, Michael J; Piletsky, Sergey A

    2009-04-15

    Soluble molecularly imprinted nanoparticles were synthesised via iniferter initiated polymerisation and separated by size via gel permeation chromatography. Subsequent fractionation of these particles by affinity chromatography allowed the separation of high affinity fractions from the mixture of nanoparticles. Fractions selected this way possess affinity similar to that of natural antibodies (K(d) 6.6x10(-8)) M and were also able to discriminate between related functional analogues of the template.

  2. High-performance ion-exchange chromatography of alkali metals with conductivity detection

    International Nuclear Information System (INIS)

    Ahmad, M.; Khan, A.R.

    1981-01-01

    High-performance ion-exchange chromatography of alkali metal and ammonium ions was studied using a conductivity meter as detector. Elution with 0.003 N mitric acid gave excellent resolution. Sensitivity levels, for a 200 micro litre injection, vary from 5 ppm for potassium to 0.1 ppm for lithium. A method to decrease retention times by reducing the exchange capacity of the cation exchange column used by loading it with calciumions, without affecting the resolation, has been described. Application of the method to water, soil and uranium dioxide samples has been demonstrated. (author)

  3. Indirect ultraviolet detection of alkaline earth metal ions using an imidazolium ionic liquid as an ultraviolet absorption reagent in ion chromatography.

    Science.gov (United States)

    Liu, Yong-Qiang; Yu, Hong

    2017-04-01

    A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg 2+ , Ca 2+ , and Sr 2+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV-absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg 2+ , Ca 2+ , and Sr 2+ were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg 2+ , Ca 2+ , and Sr 2+ within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Determination of residual fluoroquinolones in honey by liquid chromatography using metal chelate affinity chromatography.

    Science.gov (United States)

    Yatsukawa, Yoh-Ichi; Ito, Hironobu; Matsuda, Takahiro; Nakamura, Munetomo; Watai, Masatoshi; Fujita, Kazuhiro

    2011-01-01

    A new analytical method for the simultaneous determination of seven fluoroquinolones, namely, norfloxacin, ciprofloxacin, danofloxacin, enrofloxacin, orbifloxacin, sarafloxacin, and difloxacin, especially in dark-colored honey, has been developed. Fluoroquinolone antibiotics were extracted from samples with MacIlvaine buffer solution (pH 4.0) containing EDTA disodium salt dihydrate. The extracts were treated with both a polymeric cartridge and a metal chelate affinity column preloaded with ferric ion (Fe3+). LC separation with fluorescence detection was performed at 40 degrees C using an Inertsil ODS-4 analytical column (150 x 4.6 mm, 3 microm). The mobile phase was composed of 20 mM/L citrate buffer solution (pH 3.1)-acetonitrile mixture (70 + 30, v/v) containing 1 mM/L sodium dodecyl sulfate. Lomefloxacin was used as an internal standard. The developed method was validated according to the criteria of European Commission Decision 2002/657/EC. Decision limits and detection capabilities were below 2.9 and 4.4 microg/kg, respectively.

  5. Validation of ion chromatography for the determination of transition metal ions along with alkali, alkaline earth metal elements for uranium oxide fuel

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Prakash, Amrit; Afzal, Mohd.; Panakkal, J.P.

    2009-02-01

    The present report describes the use of Ion chromatography (IC) methods with spectrophotometric and direct conductivity detection for the determination of transition metal elements and alkali alkaline earth metal ions in UO 2 pellets. Transmet analytical column and Metrosep- cation 1-2 column were used for the separation of transition metal elements and alkali and alkaline earth metal elements respectively. Oxalic acid and mixture of pyridine 2,6-dicarboxylic acid (PDCA), Na 2 SO 4 and NaCl were used as mobile phase for the separation of transition metal ions and monitored after post - column reaction with 4,2-pyridylazo resorcinol (PAR) at 520nm spectrophotometrically. In the determination of alkali and alkaline earth metal ions the interference of transition metals are removed by complexing them with PDCA. Mixture of tartaric acid and PDCA employed in the separation of alkali and alkaline earth metal ions and monitored on direct conductivity detector. Mobile phase composition was optimised for the base line separation. Calibration plots of Fe 3+ , Cu 2+ , Ni 2+ , Co 2+ , Cd 2+ , Mn 2+ , Li + , Na + , K + , Mg 2+ , Ca 2+ and Sr 2+ were linear over a wide dynamic range with regression coefficient better than 0.999. Detection limit of above ions were between 5-30ppb. To prevent the overloading of the cation exchange column, uranium matrix was removed from UO 2 sample by solvent extraction with 30% TBP - TOPO/CCl 4 . Ten sintered UO2 pellets of same lot were analysed and R.S.D. ±10% was obtained. These methods were validated by analysis of ILCE standards of UO 2 . (author)

  6. Pseudo-affinity chromatography of rumen microbial cellulase on ...

    African Journals Online (AJOL)

    Pseudo-affinity chromatography of rumen microbial cellulase on Sepharose- Cibacron Blue F3GA. ... African Journal of Biotechnology ... Pseudo affinity adsorption of bioproducts on Sepharose-cibacron blue F3-GA was subjected to rumen microbial enzyme evaluation through batch binding and column chromatography of ...

  7. Compound immobilization and drug-affinity chromatography.

    Science.gov (United States)

    Rix, Uwe; Gridling, Manuela; Superti-Furga, Giulio

    2012-01-01

    Bioactive small molecules act through modulating a yet unpredictable number of targets. It is therefore of critical importance to define the cellular target proteins of a compound as an entry point to understanding its mechanism of action. Often, this can be achieved in a direct fashion by chemical proteomics. As with any affinity chromatography, immobilization of the bait to a solid support is one of the earliest and most crucial steps in the process. Interfering with structural features that are important for identification of a target protein will be detrimental to binding affinity. Also, many molecules are sensitive to heat or to certain chemicals, such as acid or base, and might be destroyed during the process of immobilization, which therefore needs to be not only efficient, but also mild. The subsequent affinity chromatography step needs to preserve molecular and conformational integrity of both bait compound and proteins in order to result in the desired specific enrichment while ensuring a high level of compatibility with downstream analysis by mass spectrometry. Thus, the right choice of detergent, buffer, and protease inhibitors is also essential. This chapter describes a widely applicable procedure for the immobilization of small molecule drugs and for drug-affinity chromatography with subsequent protein identification by mass spectrometry.

  8. Metal ion-improved complexation countercurrent chromatography for enantioseparation of dihydroflavone enantiomers.

    Science.gov (United States)

    Han, Chao; Wang, Wenli; Xue, Guimin; Xu, Dingqiao; Zhu, Tianyu; Wang, Shanshan; Cai, Pei; Luo, Jianguang; Kong, Lingyi

    2018-01-12

    Cu(II) ion was selected as an additive to improve the enantioseparation efficiency of three dihydroflavone enantiomers in high-speed counter-current chromatography (HSCCC), using hydroxypropyl-β-cyclodextrin (HP-β-CyD) as the chiral selector. The influences of important parameters, including the metal ion, the concentrations of HP-β-CyD and the Cu(II) ion, and the sample size were investigated. Under optimal conditions, three dihydroflavone enantiomers, including (±)-hesperetin, (±)-naringenin, and (±)-farrerol, were successfully enantioseparated. The chiral recognition mechanism was investigated. The enantioseparation was attributed to the different thermodynamic stabilities of the binary complexes of HP-β-CyD and (±)-hesperetin, and Cu(II) ion could enhance this difference by forming ternary complexes with the binary complexes. This Cu(II) ion-improved complexation HSCCC system exhibited improved performance for chiral separation, and therefore it has great application potential in the preparative enantioseparation of other compounds with similar skeletons. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Preparation of Affinity Column Based on Zr4+ Ion for Phosphoproteins Isolation

    International Nuclear Information System (INIS)

    Lee, Seon Mi; Bae, In Ae; Park, Jung Hyen; Kim, Tae Dong; Choi, Seong Ho

    2009-01-01

    This paper has described about preparation of Zr 4+ affinity column based on the poly(styreneco- glycidyl methacrylate) prepared by emulsion polymerization of styrene and glycidyl methacrylate in order to isolate phosphopeptide. The Zr 4+ ions were introduced after the phophonation of an epoxy group on polymeric microspheres. The successful preparation of Zr 4+ -immobilized polymeric microsphere stationary phase was confirmed through Fourier transform infrared spectra, optical microscopy, scanning electron microscopy, X-ray photoelectron spectra and inductively coupled plasma-atomic emission spectrometer. The separation efficiency for Zr 4+ affinity column prepared by slurry packing was tested to phosphonated casein and dephosphonated casein. The resolution time (min) of the phosphonated casein was higher than that of dephosphated casein for Zr 4+ affinity polymeric microsphere by liquid chromatography. This Zr 4+ affinity column can be used for isolation of phosphonated casein from casein using liquid chromatography

  10. [PHEMA/PEI]–Cu(II) based immobilized metal affinity chromatography cryogels: Application on the separation of IgG from human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bakhshpour, Monireh; Derazshamshir, Ali; Bereli, Nilay [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey); Elkak, Assem [Laboratory of “Valorisation des Ressources Naturelles et Produits de Santé (VRNPS)”, Doctoral School of Sciences and Technology, Lebanese University, Rafic Hariri University Campus, Hadath (Lebanon); Denizli, Adil, E-mail: denizli@hacettepe.edu [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey)

    2016-04-01

    The immobilized metal-affinity chromatography (IMAC) has gained significant interest as a widespread separation and purification tool for therapeutic proteins, nucleic acids and other biological molecules. The enormous potential of IMAC for proteins with natural surface exposed-histidine residues and for recombinant proteins with histidine clusters. Cryogels as monolithic materials have recently been proposed as promising chromatographic adsorbents for the separation of biomolecules in downstream processing. In the present study, IMAC cryogels have been synthesized and utilized for the adsorption and separation of immunoglobulin G (IgG) from IgG solution and whole human plasma. For this purpose, Cu(II)-ions were coupled to poly(hydroxyethyl methacrylate) PHEMA using poly(ethylene imine) (PEI) as the chelating ligand. In this study the cryogels formation optimized by the varied proportion of PEI from 1% to 15% along with different amounts of Cu (II) as chelating metal. The prepared cryogels were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The [PHEMA/PEI]–Cu(II) cryogels were assayed for their capability to bind the human IgG from aqueous solutions. The IMAC cryogels were found to have high affinity toward human IgG. The adsorption of human IgG was investigated onto the PHEMA/PEI cryogels with (10% PEI) and the concentration of Cu (II) varied as 10, 50, 100 and 150 mg/L. The separation of human IgG was achieved in one purification step at pH 7.4. The maximum adsorption capacity was observed at the [PHEMA/PEI]–Cu(II) (10% PEI) with 72.28 mg/g of human IgG. The purification efficiency and human IgG purity were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). - Highlights: • Cu(II)-ions were coupled to PHEMA using PEI as the chelating ligand. • Cu(II) chelated [PHEMA/PEI] cryogels for IgG separation were produced. • Maximum IgG adsorption capacity

  11. [PHEMA/PEI]–Cu(II) based immobilized metal affinity chromatography cryogels: Application on the separation of IgG from human plasma

    International Nuclear Information System (INIS)

    Bakhshpour, Monireh; Derazshamshir, Ali; Bereli, Nilay; Elkak, Assem; Denizli, Adil

    2016-01-01

    The immobilized metal-affinity chromatography (IMAC) has gained significant interest as a widespread separation and purification tool for therapeutic proteins, nucleic acids and other biological molecules. The enormous potential of IMAC for proteins with natural surface exposed-histidine residues and for recombinant proteins with histidine clusters. Cryogels as monolithic materials have recently been proposed as promising chromatographic adsorbents for the separation of biomolecules in downstream processing. In the present study, IMAC cryogels have been synthesized and utilized for the adsorption and separation of immunoglobulin G (IgG) from IgG solution and whole human plasma. For this purpose, Cu(II)-ions were coupled to poly(hydroxyethyl methacrylate) PHEMA using poly(ethylene imine) (PEI) as the chelating ligand. In this study the cryogels formation optimized by the varied proportion of PEI from 1% to 15% along with different amounts of Cu (II) as chelating metal. The prepared cryogels were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The [PHEMA/PEI]–Cu(II) cryogels were assayed for their capability to bind the human IgG from aqueous solutions. The IMAC cryogels were found to have high affinity toward human IgG. The adsorption of human IgG was investigated onto the PHEMA/PEI cryogels with (10% PEI) and the concentration of Cu (II) varied as 10, 50, 100 and 150 mg/L. The separation of human IgG was achieved in one purification step at pH 7.4. The maximum adsorption capacity was observed at the [PHEMA/PEI]–Cu(II) (10% PEI) with 72.28 mg/g of human IgG. The purification efficiency and human IgG purity were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). - Highlights: • Cu(II)-ions were coupled to PHEMA using PEI as the chelating ligand. • Cu(II) chelated [PHEMA/PEI] cryogels for IgG separation were produced. • Maximum IgG adsorption capacity

  12. Ion chromatography of transition metals: specific alteration of retention by complexation reactions in the mobile and on the stationary phase

    International Nuclear Information System (INIS)

    Baumgartner, S.

    1992-05-01

    Ion chromatography of mono- and bivalent cations was performed on a conventional cation exchanger. The pH influence of an ethylene-diamine/citrate eluent was significant for the retention of alkaline earth and transition metals, but negligible for alkali ions. This was dealt with from a mechanistic point of view. Mobile phase optimization allowed fast isocratic analysis of mono- and bivalent cations and the separation of the radionuclides Cs-137 and Sr-90. A newly synthesized stationary phase containing iminodiacetate (IDA) function was investigated for cation chromatography using ethylenediamine/citrate eluents, polyhydroxy acid and dipicolinic acid. The column's high selectivity for transition metal ions in comparison to alkali and alkaline earth metals may be governed by the choice of complexing ability and pH of the eluent. Applications verified by atomic absorption spectroscopy include alkaline earth metals in beverages and the determination of Co, Cd and Zn in solutions containing more than 10 14 -fold excess of Na and Mg, such as sea water

  13. Preparation of Affinity Column Based on Zr{sup 4+} Ion for Phosphoproteins Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seon Mi; Bae, In Ae; Park, Jung Hyen; Kim, Tae Dong; Choi, Seong Ho [Hannam University, Daejeon (Korea, Republic of)

    2009-06-15

    This paper has described about preparation of Zr{sup 4+} affinity column based on the poly(styreneco- glycidyl methacrylate) prepared by emulsion polymerization of styrene and glycidyl methacrylate in order to isolate phosphopeptide. The Zr{sup 4+} ions were introduced after the phophonation of an epoxy group on polymeric microspheres. The successful preparation of Zr{sup 4+}-immobilized polymeric microsphere stationary phase was confirmed through Fourier transform infrared spectra, optical microscopy, scanning electron microscopy, X-ray photoelectron spectra and inductively coupled plasma-atomic emission spectrometer. The separation efficiency for Zr{sup 4+} affinity column prepared by slurry packing was tested to phosphonated casein and dephosphonated casein. The resolution time (min) of the phosphonated casein was higher than that of dephosphated casein for Zr{sup 4+} affinity polymeric microsphere by liquid chromatography. This Zr{sup 4+} affinity column can be used for isolation of phosphonated casein from casein using liquid chromatography.

  14. A new biotechnology for recovering heavy metal ions from wastewater

    International Nuclear Information System (INIS)

    Darnall, D.W.; Gabel, A.

    1989-01-01

    This paper reports that bio-recovery systems has developed a new sorption process for removing toxic metal ions from water. This process is based upon the natural, very strong affinity for biological materials, such as the cell walls of plants and microorganisms, for heavy metal ions such as uranium, cadmium, cobalt, nickel, etc.. Biological materials, primarily algae, have been immobilized in a polymer to produce a biological ion exchange resin, AlgaSORB. The material has a remarkable affinity for heavy metal ions and is capable of concentrating these ions by a factor of may thousand-fold. Additionally, the bound metals can be stripped and recovered from the algal material in a manner similar to conventional resins

  15. Mathematical analysis of frontal affinity chromatography in particle and membrane configurations.

    Science.gov (United States)

    Tejeda-Mansir, A; Montesinos, R M; Guzmán, R

    2001-10-30

    The scaleup and optimization of large-scale affinity-chromatographic operations in the recovery, separation and purification of biochemical components is of major industrial importance. The development of mathematical models to describe affinity-chromatographic processes, and the use of these models in computer programs to predict column performance is an engineering approach that can help to attain these bioprocess engineering tasks successfully. Most affinity-chromatographic separations are operated in the frontal mode, using fixed-bed columns. Purely diffusive and perfusion particles and membrane-based affinity chromatography are among the main commercially available technologies for these separations. For a particular application, a basic understanding of the main similarities and differences between particle and membrane frontal affinity chromatography and how these characteristics are reflected in the transport models is of fundamental relevance. This review presents the basic theoretical considerations used in the development of particle and membrane affinity chromatography models that can be applied in the design and operation of large-scale affinity separations in fixed-bed columns. A transport model for column affinity chromatography that considers column dispersion, particle internal convection, external film resistance, finite kinetic rate, plus macropore and micropore resistances is analyzed as a framework for exploring further the mathematical analysis. Such models provide a general realistic description of almost all practical systems. Specific mathematical models that take into account geometric considerations and transport effects have been developed for both particle and membrane affinity chromatography systems. Some of the most common simplified models, based on linear driving-force (LDF) and equilibrium assumptions, are emphasized. Analytical solutions of the corresponding simplified dimensionless affinity models are presented. Particular

  16. Determination of Na+ and K+ ions in the high-level liquid waste by ion chromatography (IC)

    International Nuclear Information System (INIS)

    Chen Lianzhong; Ma Guilan

    1992-01-01

    The determination of Na + and k + ions in the high-level liquid waste is investigated using ion chromatography. In order to protect the low capacity ion exchange resin in single column IC and remove the transition metal as well as other heavy metal ions that are contained in liquid waste, the pretreatment column with EDTA chelating resin is used. Those impurity metal ions are strongly absorbed by EDTA chelating resin and 100% of Na + and K + ions in the solution are eluted. The ability of the decontamination of EDTA chelating resin is satisfactory. The sample of the high-level liquid waste is diluted appropriately, then an aliquot of the sample is passed through the pretreatment column with EDTA chelating resin, the eluate is analysed by single column ion chromatography. The precision of this method is better than 5% for the determination of Na + and K + ions (at μg· ml -1 level)

  17. Application of liquid column chromatography to preconcentration, separation and determination of platinum metals

    International Nuclear Information System (INIS)

    Alimarin, I.P.; Basova, E.M.; Bol'shova, T.A.; Ivanov, V.M.

    1986-01-01

    Separation and determination of platimum metals using the methods of adsorption, ion-pair, ion-exchange, distributing and sieve chromatography are discussed in the review of literature in 1971-1984. Separation and determination of metals as chelates using the method of adsorption and ion-pair chromatograpy are noted to be most perspective directions of developing highly effective liquid chromatography of inorganic systems

  18. Affinity chromatography: A versatile technique for antibody purification.

    Science.gov (United States)

    Arora, Sushrut; Saxena, Vikas; Ayyar, B Vijayalakshmi

    2017-03-01

    Antibodies continue to be extremely utilized entities in myriad applications including basic research, imaging, targeted delivery, chromatography, diagnostics, and therapeutics. At production stage, antibodies are generally present in complex matrices and most of their intended applications necessitate purification. Antibody purification has always been a major bottleneck in downstream processing of antibodies, due to the need of high quality products and associated high costs. Over the years, extensive research has focused on finding better purification methodologies to overcome this holdup. Among a plethora of different techniques, affinity chromatography is one of the most selective, rapid and easy method for antibody purification. This review aims to provide a detailed overview on affinity chromatography and the components involved in purification. An array of support matrices along with various classes of affinity ligands detailing their underlying working principles, together with the advantages and limitations of each system in purifying different types of antibodies, accompanying recent developments and important practical methodological considerations to optimize purification procedure are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.

    Science.gov (United States)

    Estelrich, J.; Pouplana, R.

    1988-01-01

    Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)

  20. Immobilized Metal Affinity Chromatography Co-Purifies TGF-β1 with Histidine-Tagged Recombinant Extracellular Proteins

    Science.gov (United States)

    Kaur, Jasvir; Reinhardt, Dieter P.

    2012-01-01

    Extracellular recombinant proteins are commonly produced using HEK293 cells as histidine-tagged proteins facilitating purification by immobilized metal affinity chromatography (IMAC). Based on gel analyses, this one-step purification typically produces proteins of high purity. Here, we analyzed the presence of TGF-β1 in such IMAC purifications using recombinant extracellular fibrillin-1 fragments as examples. Analysis of various purified recombinant fibrillin-1 fragments by ELISA consistently revealed the presence of picomolar concentrations of active and latent TGF-β1, but not of BMP-2. These quantities of TGF-β1 were not detectable by Western blotting and mass spectrometry. However, the amounts of TGF-β1 were sufficient to consistently trigger Smad2 phosphorylation in fibroblasts. The purification mechanism was analyzed to determine whether the presence of TGF-β1 in these protein preparations represents a specific or non-specific co-purification of TGF-β1 with fibrillin-1 fragments. Control purifications using conditioned medium from non-transfected 293 cells yielded similar amounts of TGF-β1 after IMAC. IMAC of purified TGF-β1 and the latency associated peptide showed that these proteins bound to the immobilized nickel ions. These data clearly demonstrate that TGF-β1 was co-purified by specific interactions with nickel, and not by specific interactions with fibrillin-1 fragments. Among various chromatographic methods tested for their ability to eliminate TGF-β1 from fibrillin-1 preparations, gel filtration under high salt conditions was highly effective. As various recombinant extracellular proteins purified in this fashion are frequently used for experiments that can be influenced by the presence of TGF-β1, these findings have far-reaching implications for the required chromatographic schemes and quality controls. PMID:23119075

  1. Affinity of Smectite and Divalent Metal Ions (Mg(2+), Ca(2+), Cu(2+)) with L-leucine: An Experimental and Theoretical Approach Relevant to Astrobiology.

    Science.gov (United States)

    Pandey, Pramod; Pant, Chandra Kala; Gururani, Kavita; Arora, Priyanka; Pandey, Neetu; Bhatt, Preeti; Sharma, Yogesh; Negi, Jagmohan Singh; Mehata, Mohan Singh

    2015-12-01

    Earth is the only known planet bestowed with life. Several attempts have been made to explore the pathways of the origin of life on planet Earth. The search for the chemistry which gave rise to life has given answers related to the formation of biomonomers, and their adsorption on solid surfaces has gained much attention for the catalysis and stabilization processes related to the abiotic chemical evolution of the complex molecules of life. In this communication, surface interactions of L-leucine (Leu) on smectite (SMT) group of clay (viz. bentonite and montmorillonite) and their divalent metal ion (Mg(2+), Ca(2+) and Cu(2+)) incorporated on SMT has been studied to find the optimal conditions of time, pH, and concentration at ambient temperature (298 K). The progress of adsorption was followed spectrophotometrically and further characterized by FTIR, SEM/EDS and XRD. Leu, a neutral/non polar amino acid, was found to have more affinity in its zwitterionic form towards Cu(2+)- exchanged SMT and minimal affinity for Mg(2+)- exchanged SMT. The vibrational frequency shifts of -NH3 (+) and -COO(-) favor Van der Waal's forces during the course of surface interaction. Quantum calculations using density functional theory (DFT) have been applied to investigate the absolute value of metal ion affinities of Leu (Leu-M(2+) complex, M = Mg(2+), Ca(2+), Cu(2+)) with the help of their physico-chemical parameters. The hydration effect on the relative stability and geometry of the individual species of Leu-M(2+) × (H2O)n, (n =2 and 4) has also been evaluated within the supermolecule approach. Evidence gathered from investigations of surface interactions, divalent metal ions affinities and hydration effects with biomolecules may be important for better understanding of chemical evolution, the stabilization of biomolecules on solid surfaces and biomolecular-metal interactions. These results may have implications for understanding the origin of life and the preservation of

  2. Analysis of Biological Interactions by Affinity Chromatography: Clinical and Pharmaceutical Applications.

    Science.gov (United States)

    Hage, David S

    2017-06-01

    The interactions between biochemical and chemical agents in the body are important in many clinical processes. Affinity chromatography and high-performance affinity chromatography (HPAC), in which a column contains an immobilized biologically related binding agent, are 2 methods that can be used to study these interactions. This review presents various approaches that can be used in affinity chromatography and HPAC to characterize the strength or rate of a biological interaction, the number and types of sites that are involved in this process, and the interactions between multiple solutes for the same binding agent. A number of applications for these methods are examined, with an emphasis on recent developments and high-performance affinity methods. These applications include the use of these techniques for fundamental studies of biological interactions, high-throughput screening of drugs, work with modified proteins, tools for personalized medicine, and studies of drug-drug competition for a common binding agent. The wide range of formats and detection methods that can be used with affinity chromatography and HPAC for examining biological interactions makes these tools attractive for various clinical and pharmaceutical applications. Future directions in the development of small-scale columns and the coupling of these methods with other techniques, such as mass spectrometry or other separation methods, should continue to increase the flexibility and ease with which these approaches can be used in work involving clinical or pharmaceutical samples. © 2016 American Association for Clinical Chemistry.

  3. The connection between metal ion affinity and ligand affinity in integrin I domains

    DEFF Research Database (Denmark)

    Vorup-Jensen, Thomas; Waldron, TT; Astrof, N

    2007-01-01

    Integrins are cell-surface heterodimeric proteins that mediate cell-cell, cell-matrix, and cell-pathogen interactions. Half of the known integrin alpha subunits contain inserted domains (I domains) that coordinate ligand through a metal ion. Although the importance of conformational changes withi...

  4. Column liquid chromatography applied to concentrating, separating, and determining platinum metals

    International Nuclear Information System (INIS)

    Alimarin, I.P.; Basova, E.M.; Bol'shova, T.A.; Ivanov, V.M.

    1986-01-01

    The present survey deals with high-performance liquid chromatography (HPLC) in relation to the chromatographic behavior of the platinum metals, including separation and determination. The data shows that HPLC is the most promising and effective method of separating metals, including platinum ones. The method provides efficient separation of microgram amoounts of mixtures with a resolving power 3-20 times that of thin-layer chromatography. It is shown that the most promising line of advance in HPLC for inorganic systems lies in the separation and determination of metals as chelates by absorption or ion-pair chromatography. Examples of using HPLC for determining noble metals in particular cases indicate that the metrological characteristics are favorable

  5. Integrated sampling vs ion chromatography: Mathematical considerations

    International Nuclear Information System (INIS)

    Sundberg, L.L.

    1992-01-01

    This paper presents some general purpose considerations that can be utilized when comparisons are made between the results of integrated sampling over several hours or days, and ion chromatography where sample collection times are measured in minutes. The discussion is geared toward the measurement of soluble transition metal ions in BWR feedwater. Under steady-state conditions, the concentrations reported by both techniques should be in reasonable agreement. Transient operations effect both types of measurements. A simplistic model, applicable to both sampling techniques, is presented that demonstrates the effect of transients which occur during the acquisition of a steady-state sample. For a common set of conditions, the integrated concentration is proportional to the concentration and duration of the transient, and inversely proportional to the sample collection time. The adjustment of the collection period during a known transient allows an estimation of peak transient concentration. Though the probability of sampling a random transient with the integrated sampling technique is very high, the magnitude is severely diluted with long integration times. Transient concentrations are magnified with ion chromatography, but the probability of sampling a transient is significantly lower using normal ion chromatography operations. Various data averaging techniques are discussed for integrated sampling and IC determinations. The use of time-weighted averages appears to offer more advantages over arithmetic and geometric means for integrated sampling when the collection period is variable. For replicate steady-state ion chromatography determinations which bracket a transient sample, it may be advantageous to ignore the calculation of averages, and report the data as trending information only

  6. Toxic metals (Ni2+, Pb2+, Hg2+) binding affinity of dissolved organic matter (DOM) derived from different ages municipal landfill leachate

    Science.gov (United States)

    Rikta, S. Y.; Tareq, Shafi M.; Uddin, M. Khabir

    2018-03-01

    Solid waste production is rapidly increasing in Bangladesh and landfill leachate is the consequence of the decomposition of this waste. These leachates contain heavy metals and significant amount of dissolved organic matter (DOM). DOM is known to have considerable role in heavy metals speciation. Hence, it is important to characterize DOM/leachate and evaluate toxic metals binding affinity of DOM. The objectives of this study were to characterize the DOM in landfill leachate through physico-chemical and optical analyses and to investigate the toxic metals (Ni2+, Pb2+ and Hg2+) binding affinity of three different ages (fresh sample L-1, young sample L-2 and mature sample L-3) DOM samples. Results suggested that leachate is a potential pollutant which contained very high organic pollutant load. Conditional stability constant (Log K) and percentages of fluorophores that correspond to metal binding (% f) values indicated that young DOM sample (L-2) had the highest binding affinity to all the three metals ions. In general, DOM samples showed the following order affinity to the metal ions; Ni2+ binding affinity: L-2 > L-3 > L-1, Pb2+ binding affinity: L-2 > L-3 > L-1 and Hg2+ binding affinity: L-2 > L-1 > L-3.

  7. Role of ion chromatography in the chemical characterization of PFBR MOX fuel

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Das, D.K.; Prakash, Amrit; Behere, P.G.; Afzal, Mohd

    2012-01-01

    Ion chromatography (IC) is multi-element technique with the feasibility of determination of metallic as well as non metallic impurities on a single instrument. IC has been used for various analytical purposes in nuclear industry. lt has advantages of low capital investment, small sample size, less radioactive waste generation, comparable precision to spectroscopic techniques and ease of fume hood/glove box adaptation. Present paper describes the determination of trace metallic (alkali, alkaline earth, transition and lanthanide metal ions) and non metallic impurities in PFBR MOX fuel

  8. Efficient fabrication of high-capacity immobilized metal ion affinity chromatographic media: The role of the dextran-grafting process and its manipulation.

    Science.gov (United States)

    Zhao, Lan; Zhang, Jingfei; Huang, Yongdong; Li, Qiang; Zhang, Rongyue; Zhu, Kai; Suo, Jia; Su, Zhiguo; Zhang, Zhigang; Ma, Guanghui

    2016-03-01

    Novel high-capacity Ni(2+) immobilized metal ion affinity chromatographic media were prepared through the dextran-grafting process. Dextran was grafted to an allyl-activated agarose-based matrix followed by functionalization for the immobilized metal ion affinity chromatographic media. With elaborate regulation of the allylation degree, dextran was completely or partly grafted to agarose microspheres, namely, completely dextran-grafted agarose microspheres and partly dextran-grafted ones, respectively. Confocal laser scanning microscope results demonstrated that a good adjustment of dextran-grafting degree was achieved, and dextran was distributed uniformly in whole completely dextran-grafted microspheres, while just distributed around the outside of the partly dextran-grafted ones. Flow hydrodynamic properties were improved greatly after the dextran-grafting process, and the flow velocity increased by about 30% compared with that of a commercial chromatographic medium (Ni Sepharose FF). A significant improvement of protein binding performance was also achieved by the dextran-grafting process, and partly dextran-grafted Ni(2+) chelating medium had a maximum binding capacity for His-tagged lactate dehydrogenase about 2.5 times higher than that of Ni Sepharose FF. The results indicated that this novel chromatographic medium is promising for applications in high-efficiency and large-scale protein purification. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Affinity capillary electrophoresis and density functional theory employed for the characterization of hexaarylbenzene-based receptor complexation with alkali metal ions

    Czech Academy of Sciences Publication Activity Database

    Ehala, Sille; Toman, Petr; Rathore, R.; Makrlík, E.; Kašička, Václav

    2011-01-01

    Roč. 32, č. 9 (2011), s. 981-987 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA203/08/1428; GA ČR(CZ) GA203/09/0675; GA ČR(CZ) GAP205/10/2280; GA AV ČR 1ET400500402 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40500505 Keywords : affinity capillary electrophoresis * alkali metal ions * binding constant Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.303, year: 2011

  10. Interaction of Hydroxyproline with Bivalent Metal Ions in Chemical ...

    African Journals Online (AJOL)

    NICO

    The stability constants of the ML and ML2 complex species of some metal ions, namely beryllium(II) and cobalt(II), with hydroxyproline were ... metal ions have several significant applications in biological systems.3–20 Beryllium is one ... 1 filter paper for chromatography was used for the purpose of electrophoresis. An Elico ...

  11. Accumulation of metal ions by pectinates

    Science.gov (United States)

    Deiana, S.; Deiana, L.; Palma, A.; Premoli, A.; Senette, C.

    2009-04-01

    The knowledge of the mechanisms which regulate the interactions of metal ions with partially methyl esterified linear polymers of α-1,4 linked D-galacturonic acid units (pectinates), well represented in the root inner and outer apoplasm, is of great relevance to understand the processes which control their accumulation at the soil-root interface as well as their mobilization by plant metabolites. Accumulation of a metal by pectinates can be affected by the presence of other metals so that competition or distribution could be expected depending on the similar or different affinity of the metal ions towards the binding sites, mainly represented by the carboxylate groups. In order to better understand the mechanism of accumulation in the apoplasm of several metal ions, the sorption of Cd(II), Zn(II), Cu(II), Pb(II) and Cr(III) by a Ca-polygalacturonate gel, used as model of the soil-root interface, with a degree of esterification of 18% (PGAE1) and 65% (PGAE2) was studied at pH 3.0, 4.0, 5.0 and 6.0 in the presence of CaCl2 2.5 mM.. The results show that sorption increases with increasing both the initial metal concentration and pH. A similar sorption trend was evidenced for Cu(II) and Pb(II) and for Zn(II) and Cd(II), indicating that the mechanism of sorption for these two ionic couples is quite different. As an example, at pH 6.0 and an initial metal concentration equal to 2.0 mM, the amount of Cu(II) and Pb(II) sorbed was about 1.98 mg-1 of PGAE1 while that of Cd(II) and Zn(II) was about 1.2 mg-1. Cr(III) showed a rather different sorption trend and a much higher amount (2.8 mg-1of PGAE1 at pH 6.0) was recorded. The higher affinity of Cr(III) for the polysaccharidic matrix is attributable to the formation of Cr(III) polynuclear species in solution, as shown by the distribution diagrams obtained through the MEDUSA software. On the basis of these findings, the following affinity towards the PGAE1 can be assessed: Cr(III) > Cu(II) ? Pb(II) > Zn (II) ? Cd

  12. Thin-layer chromatography of 49 metal ions on stannic antimonate in aqueous and mixed solvent systems containing dimethylsulfoxide: quantitative separation of uranium from numerous metal ions

    International Nuclear Information System (INIS)

    Qureshi, M.; Varshney, K.G.; Rajput, R.P.S.

    1976-01-01

    Thin-layer chromatography of 40 metal ions in 31 aqueous and mixed solvent systems has been performed on stannic antimonate ion-exchange material. Dimethylsulfoxide has been utilized to resolve such binary mixtures as La 3+ and Ce 3+ from Pr 3+ , Nd 3+ , and Sm 3+ ; VO 2+ from Ti 4+ , Nb 5+ , and Ta 5+ ; Ga 3+ from In 3+ , Tl + , and Y 3+ ; Fe 3+ from VO 2+ ; and Mg 2+ from Al 3+ . Quantitative separation of 200 to 800 μg U from its binary mixtures and from the synthetic mixtures containing Mg 2+ , Bi 3+ , Fe 3+ , Th 4+ , Ce 4+ , Cr 3+ , Zr 4+ , Hf 4+ , Ti 4+ Mn 2+ , Cu 2+ , Ce 3+ , In 3+ , Y 3+ , Ca 2+ , Co 2+ , Tl + , Nb 5+ , and Ag + has been obtained

  13. Weak affinity chromatography for evaluation of stereoisomers in early drug discovery.

    Science.gov (United States)

    Duong-Thi, Minh-Dao; Bergström, Maria; Fex, Tomas; Svensson, Susanne; Ohlson, Sten; Isaksson, Roland

    2013-07-01

    In early drug discovery (e.g., in fragment screening), recognition of stereoisomeric structures is valuable and guides medicinal chemists to focus only on useful configurations. In this work, we concurrently screened mixtures of stereoisomers and estimated their affinities to a protein target (thrombin) using weak affinity chromatography-mass spectrometry (WAC-MS). Affinity determinations by WAC showed that minor changes in stereoisomeric configuration could have a major impact on affinity. The ability of WAC-MS to provide instant information about stereoselectivity and binding affinities directly from analyte mixtures is a great advantage in fragment library screening and drug lead development.

  14. Fatty acid and drug binding to a low-affinity component of human serum albumin, purified by affinity chromatography

    DEFF Research Database (Denmark)

    Vorum, H; Pedersen, A O; Honoré, B

    1992-01-01

    Binding equilibria for decanoate to a defatted, commercially available human serum albumin preparation were investigated by dialysis exchange rate determinations. The binding isotherm could not be fitted by the general binding equation. It was necessary to assume that the preparation was a mixture...... of two albumin components about 40% of the albumin having high affinity and about 60% having low affinity. By affinity chromatography we succeeded in purifying the low-affinity component from the mixture. The high-affinity component, however, could not be isolated. We further analyzed the fatty acid...... and drug binding abilities of the low-affinity component. The fatty acids decanoate, laurate, myristate and palmitate were bound with higher affinity to the mixture than to the low-affinity component. Diazepam was bound with nearly the same affinity to the low-affinity component as to the albumin mixture...

  15. Ion chromatography with the indirect ultraviolet detection of alkali metal ions and ammonium using imidazolium ionic liquid as ultraviolet absorption reagent and eluent.

    Science.gov (United States)

    Liu, Yong-Qiang; Yu, Hong

    2016-08-01

    Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Frontal affinity chromatography: A unique research tool for biospecific interaction that promotes glycobiology

    Science.gov (United States)

    KASAI, Kenichi

    2014-01-01

    Combination of bioaffinity and chromatography gave birth to affinity chromatography. A further combination with frontal analysis resulted in creation of frontal affinity chromatography (FAC). This new versatile research tool enabled detailed analysis of weak interactions that play essential roles in living systems, especially those between complex saccharides and saccharide-binding proteins. FAC now becomes the best method for the investigation of saccharide-binding proteins (lectins) from viewpoints of sensitivity, accuracy, and efficiency, and is contributing greatly to the development of glycobiology. It opened a door leading to deeper understanding of the significance of saccharide recognition in life. The theory is also concisely described. PMID:25169774

  17. Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon.

    Science.gov (United States)

    Choi, Moonjung; Jang, Jyongsik

    2008-09-01

    Polypyrrole-impregnated porous carbon was readily synthesized using vapor infiltration polymerization of pyrrole monomers. The results show that the functionalized polymer layer was successfully coated onto the pore surface of carbon without collapse of mesoporous structure. The modified porous carbon exhibited an improved complexation affinity for heavy metal ions such as mercury, lead, and silver ions due to the amine group of polypyrrole. The introduced polypyrrole layer could provide the surface modification to be applied for heavy metal ion adsorbents. Especially, polymer-impregnated porous carbon has an enhanced heavy metal ion uptake, which is 20 times higher than that of adsorbents with amine functional groups. Furthermore, the relationship between the coated polymer amount and surface area was also investigated in regard to adsorption capacity.

  18. Effects of metal ions on the catalytic degradation of dicofol by cellulase.

    Science.gov (United States)

    Zhai, Zihan; Yang, Ting; Zhang, Boya; Zhang, Jianbo

    2015-07-01

    A new technique whereby cellulase immobilized on aminated silica was applied to catalyze the degradation of dicofol, an organochlorine pesticide. In order to evaluate the performance of free and immobilized cellulase, experiments were carried out to measure the degradation efficiency. The Michaelis constant, Km, of the reaction catalyzed by immobilized cellulase was 9.16 mg/L, and the maximum reaction rate, Vmax, was 0.40 mg/L/min, while that of free cellulase was Km=8.18 mg/L, and Vmax=0.79 mg/L/min, respectively. The kinetic constants of catalytic degradation were calculated to estimate substrate affinity. Considering that metal ions may affect enzyme activity, the effects of different metal ions on the catalytic degradation efficiency were explored. The results showed that the substrate affinity decreased after immobilization. Monovalent metal ions had no effect on the reaction, while divalent metal ions had either positive or inhibitory effects, including activation by Mn2+, reversible competition with Cd2+, and irreversible inhibition by Pb2+. Ca2+ promoted the catalytic degradation of dicofol at low concentrations, but inhibited it at high concentrations. Compared with free cellulase, immobilized cellulase was affected less by metal ions. This work provided a basis for further studies on the co-occurrence of endocrine-disrupting chemicals and heavy metal ions in the environment. Copyright © 2015. Published by Elsevier B.V.

  19. Facile synthesis of Fe3O4@PDA core-shell microspheres functionalized with various metal ions: A systematic comparison of commonly-used metal ions for IMAC enrichment.

    Science.gov (United States)

    Jiang, Jiebing; Sun, Xueni; Li, Yan; Deng, Chunhui; Duan, Gengli

    2018-02-01

    Metal ions differed greatly in affinity towards phosphopeptides, and thus it is essential to systematically compare the phosphopeptides enrichment ability of different metal ions usually used in the IMAC techniques. In this work, for the first time, eight metal ions, including Nb 5+ , Ti 4+ , Zr 4+ , Ga 3+ , Y 3+ , In 3+ , Ce 4+ , Fe 3+ , were immobilized on the polydopamine (PDA)-coated Fe 3 O 4 (denoted as Fe 3 O 4 @PDA-M n+ ), and systematically compared by the real biosamples, in addition to standard phosphopeptides. Fe 3 O 4 microspheres were synthesized via the solvothermal reaction, followed by self-polymerization of dopamine on the surface. Then through taking advantage of the hydroxyl and amino group of PDA, the eight metal ions were easily adhered to the surface of Fe 3 O 4 @PDA. After characterization, the resultant Fe 3 O 4 @PDA-M n+ microspheres were applied to phosphopeptides enrichment based on the binding affinity between metal ions and phosphopeptides. According to the results, different metal ions presented diverse phosphopeptides enrichment efficiency in terms of selectivity, sensitivity and the enrichment ability from real complex samples, and Fe 3 O 4 @PDA-Nb 5+ and Fe 3 O 4 @PDA-Ti 4+ showed obvious advantages of the phosphopeptides enrichment effect after the comparison. This systematic comparison may provide certain reference for the use and development of IMAC materials in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Complexation ion-exchange chromatography of some metal ions on papers impregnated with Ti(IV)-based inorganic ion exchangers.

    Science.gov (United States)

    Sharma, S D; Gupta, R

    2000-02-01

    The chromatographic behavior of 40 metal ions is studied on titanium (IV) arsenate, titanium (IV) phosphate-, titanium (IV) molybdate-, titanium(IV) tungstate-, and titanium(IV) selenite-impregnated papers in 0.1M oxalic, citric, and tartaric acid as mobile phases. Similar studies are carried out on Whatman No. 1 papers for comparison. The ion-exchange capacity of these papers is determined, and their selectivity for different cations is discussed. The mechanism of migration is explained in terms of ion-exchange, precipitation, and adsorption. The prediction of elution sequence from RF values is also checked. The average Ri is found to be almost linearly dependent on the charge of the metal ions. The effect of the pKa of complexing acids on average RF values of 3d series metal ions is explained. A number of binary and ternary separations are achieved.

  1. Ion Chromatography Applications in Wastewater Analysis

    Directory of Open Access Journals (Sweden)

    Rajmund Michalski

    2018-02-01

    Full Text Available Wastewater analysis is an important area in analytical and environmental chemistry. It can be performed with both the classic wet methods and instrumental techniques. The development of new methods, and modification of the existing ones, constitute a major task for researchers. Ion chromatography plays a predominant role in ion determinations with the instrumental methods. It offers several advantages over the conventional methods, such as simultaneous determinations of alkali and alkaline earth cations and ammonia. Ammonium ions cannot be determined by spectroscopic methods. Ion chromatography has been accepted world-wide as a reference method for analyzing anions and cations in water and wastewater due to the fact that it enables the replacement of several individual wet chemistry methods for common ions with one instrumental technique. The following article describes the principles of ion chromatography, such as stationary phases, eluents, detectors, and sample preparation methods. Moreover, the applications of ion chromatography in wastewater analyses and international standards are presented.

  2. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies

    Science.gov (United States)

    Schlothauer, Tilman; Rueger, Petra; Stracke, Jan Olaf; Hertenberger, Hubert; Fingas, Felix; Kling, Lothar; Emrich, Thomas; Drabner, Georg; Seeber, Stefan; Auer, Johannes; Koch, Stefan; Papadimitriou, Apollon

    2013-01-01

    The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn. This method allows the separation of molecular IgG isoforms, degradation products and engineered molecules based on their affinity to FcRn. Human FcRn was immobilized on the column and a linear pH gradient from pH 5.5 to 8.8 was applied. FcRn chromatography was used in comparison to surface plasmon resonance to characterize different monoclonal IgG preparations, e.g., oxidized or aggregated species. Wild-type and engineered IgGs were compared in vitro by FcRn chromatography and in vivo by PK studies in huFcRn transgenic mice. Analytical FcRn chromatography allows differentiation of IgG samples and variants by peak pattern and retention time profile. The method can distinguish: 1) IgGs with different Fabs, 2) oxidized from native IgG, 3) aggregates from monomer and 4) antibodies with mutations in the Fc part from wild-type IgGs. Changes in the FcRn chromatographic behavior of mutant IgGs relative to the wild-type IgG correlate to changes in the PK profile in the FcRn transgenic mice. These results demonstrate that FcRn affinity chromatography is a useful new method for the assessment of IgG integrity. PMID:23765230

  3. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    Science.gov (United States)

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  4. Chromatography of metal ions with a triazine chelating resin

    International Nuclear Information System (INIS)

    Wang, W.N.

    1979-05-01

    The synthesis, characterization, and some analytical applications of a new triazine resin are described. Separation of group IB, IIB, VIB, and VIIB metal ions from group VIII metal ions is achieved by this PDT-4 resin. Calcium(II) and magnesium(II) are taken up at pH = 6, 0.1 M acetate and are eluted at pH = 6, 0.1 M sodium nitrate. Copper(II) is retained at pH = 6, 0.1 M acetate and pH = 1 hydrochloric acid and is eluted subsequently by 5 M perchloric acid. Molybdenum(VI) is sorbed selectively from 0.1 N sulfuric acid or hydrochloric acid and is eluted in a tight band by 0.1 N sodium hydroxide. Numerous rapid column chromatographic separations are reported using this new resin, including analysis of NBS standard samples

  5. Separation of alkali and alkaline earth metals by polyethers using extraction chromatography

    International Nuclear Information System (INIS)

    Smulek, W.; Lada, W.A.

    1979-01-01

    The separation of alkali and alkaline earth metals by means of an acyclic polyether, 1,13-bis(8-chinolinyl)-1, 4, 7, 10, 13-pentaoxatridecane (CPOD), and cyclic polyethers, benzo-15-crown-5 (BC), dibenzo-18-crown-6 (DBC) and dicyclohexyl-18-crown-6 (DCHC), using extraction chromatography has been studied. The alkali metals can be effectively separated using SCN - as the accompanying ion. For alkaline earth metals, the best results were obtained with ClO 4 - ions. Different elution sequences for these groups were observed using chloroform and/meen=/ sitylene as diluents for the polyethers. (author)

  6. Heavy metal ions are potent inhibitors of protein folding

    International Nuclear Information System (INIS)

    Sharma, Sandeep K.; Goloubinoff, Pierre; Christen, Philipp

    2008-01-01

    Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd 2+ , Hg 2+ and Pb 2+ proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC 50 in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far

  7. The application of transition metal ion chromatography to the determination of elemental and radiochemical species in PWR primary coolant

    International Nuclear Information System (INIS)

    Bridle, D.A.; Brown, G.R.; Johnson, P.A.V.

    1992-01-01

    The accurate determination of both elemental and radiochemical transition metal corrosion products, particularly cobalt and nickel, in PWR coolants is necessary if the transport mechanisms and their role in the development of out-of-core radiation fields are to be fully understood. AEA Technology, Winfrith, has collaborated for several years with a number of PWR utilities in Europe, developing advanced sampling and analytical techniques for the determination of both soluble and insoluble corrosion products in primary coolant. The design and installation of continuously flowing isokinetic capillary modifications to the existing sampling systems has been shown to be an effective method of providing a low, but representative, sample flow from high pressure systems for on-line determination of corrosion product species. Transition metal ion chromatography coupled with gamma-spectrometry has been used to determine both insoluble and soluble elemental and radiochemical species in reactor coolant, with particular attention being given to the determination of soluble elemental cobalt at levels as low as 1 ng per kg. Soluble species were determined directly following their concentration from up to 1 litre of coolant. Insoluble species collected on 0.45 micron filter membranes, following filtration of up to 1500 litres of coolant, were solubilised by fusion with potassium hydrogen sulphate before the application of ion chromatography. In each case the eluant from the chromatographic column was collected and the radionuclides determined by gamma-spectrometry

  8. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino,J.; Tetenbaum-Novatt, J.; White, A.; Berkovitch, F.; Ringe, D.

    2005-01-01

    The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10{sup -7}, binding site 2 (primary) is a low-affinity binding site with a binding constant of 6.3 x 10{sup -4}. These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A, C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.

  9. The determination of cyanide in hydrometallurgical process solutions and effluents by ion chromatography

    International Nuclear Information System (INIS)

    Pohlandt, C.

    1984-01-01

    Three methods are described for the determination of cyanide species in hydrometallurgical process solutions and in effluents. The determination of excess cyanide in the presence of weak metal cyanide complexes was achieved by the use of a flow-injection system with 0,05mM sodium chloride as the carrier stream. The procedure was found to be fast, precise (S(sub r)0,0142), and reasonably accurate. Free cyanide and cyanide derived from weak metal cyanide complexes were determined by ion chromatography. This method is free from interferences and precise (s(sub r)0,0112), and has a limit of determination of 10μg0l. The 'total' cyanide content of solutions was determined by ion chromatography after the strong metal cyanide complexes had been dissociated in hypophosphorous acid by ultraviolet irradiation. The procedure (of 10 minutes duration) is faster than conventional distillation methods, and is accurate and precise (S(sub r)0,027)

  10. Ion mobility: its role in plasma chromatography

    International Nuclear Information System (INIS)

    Mason, E.A.

    1984-01-01

    This paper is a review of the basic physical theory underlying plasma chromatography. Essentially, plasma chromatography simply measures ion mobility. The new feature of plasma chromatography, as compared to aqueous electrophoresis, is the existence of a highly-developed and accurate body of theory that connects gaseous ion mobility and diffusion to the ion molecule interactions in the drift tube. Attention is restricted to phenomena occurring in the drift tube portion of the apparatus

  11. Fluorine and chlorine determination in oxides and metals by ion chromatography

    International Nuclear Information System (INIS)

    Evseeva, T.I.; Poletaeva, I.L.; Zemlyanukhina, N.A.; Pavlova, I.V.; Rybin, A.M.; Malykh, M.Yu.; Fedorova, L.A.

    1989-01-01

    Method for simultaneous determination of fluorine and chlorine microquantitie in tantalum, uranium and plutonium oxides, based on combined methods of pyrohydrolysis (1000-1100 deg C) and two-column ion chromatography with conductometric detection is suggested. The relative root-mean-square deviation of determination error is 0.2, the fluorine and chlorine content being 5·10 -4 mass%

  12. Simulated electron affinity tuning in metal-insulator-metal (MIM) diodes

    Science.gov (United States)

    Mistry, Kissan; Yavuz, Mustafa; Musselman, Kevin P.

    2017-05-01

    Metal-insulator-metal diodes for rectification applications must exhibit high asymmetry, nonlinearity, and responsivity. Traditional methods of improving these figures of merit have consisted of increasing insulator thickness, adding multiple insulator layers, and utilizing a variety of metal contact combinations. However, these methods have come with the price of increasing the diode resistance and ultimately limiting the operating frequency to well below the terahertz regime. In this work, an Airy Function Transfer Matrix simulation method was used to observe the effect of tuning the electron affinity of the insulator as a technique to decrease the diode resistance. It was shown that a small increase in electron affinity can result in a resistance decrease in upwards of five orders of magnitude, corresponding to an increase in operating frequency on the same order. Electron affinity tuning has a minimal effect on the diode figures of merit, where asymmetry improves or remains unaffected and slight decreases in nonlinearity and responsivity are likely to be greatly outweighed by the improved operating frequency of the diode.

  13. Selective removal of heavy metal ions by disulfide linked polymer networks

    DEFF Research Database (Denmark)

    Ko, Dongah; Sung Lee, Joo; Patel, Hasmukh A.

    2017-01-01

    Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has...... a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal...... sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions―copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water....

  14. High-performance liquid ion-pair chromatography in inorganic analysis

    International Nuclear Information System (INIS)

    Alimarin, I.P.; Basova, E.M.; Bol'shova, T.A.; Ivanov, V.M.

    1990-01-01

    In literature review for the recent 15 years theoretical foundations, regularities and mechanisms of ionized compound retention in reverse-phase ion-pair chromatography are considered, possibilities and prospects of its application in inorganic analysis being demonstrated. Analytic characteristics of the methods for the determination of inorganic anions (I - , IO 3 - , MoO 4 2- , etc.), as well as metals (Zr, Hf, V, Nb, Mo, W, Ru, lanthanides, etc.) in the form of chelates, are given

  15. Application of ion chromatography in the analysis of metals

    International Nuclear Information System (INIS)

    Doepke, T.; Braun, N.; Wuensch, G.

    1992-01-01

    Methods for the determination of chloride in molybdenum, tungsten, niobium and tantalum and of phosphorus in molybdenum and tungsten are presented. After oxidative digestion the analytes are separated from the matrix and accumulated in a small volume of liquid. Unsuppressed ion chromatography serves as the final determination method. The trace-matrix-separation and enrichment of chloride is largely independent of the kind of matrix. The procedure is therefore also applicable to concentrated solutions of various salts. A closed system ensures chloride blanks around 0.2 ppm and detection limits in the higher ppb range. A modification allows an enrichment of bromide and the simultaneous determination of chloride and bromide. (orig.) [de

  16. Binding Affinity of a Highly Sensitive Au/Ag/Au/Chitosan-Graphene Oxide Sensor Based on Direct Detection of Pb2+ and Hg2+ Ions

    Directory of Open Access Journals (Sweden)

    Nur Hasiba Kamaruddin

    2017-10-01

    Full Text Available The study of binding affinity is essential in surface plasmon resonance (SPR sensing because it allows researchers to quantify the affinity between the analyte and immobilised ligands of an SPR sensor. In this study, we demonstrate the derivation of the binding affinity constant, K, for Pb2+ and Hg2+ ions according to their SPR response using a gold/silver/gold/chitosan–graphene oxide (Au/Ag/Au/CS–GO sensor for the concentration range of 0.1–5 ppm. The higher affinity of Pb2+ to binding with the CS–GO sensor explains the outstanding sensitivity of 2.05 °ppm−1 against 1.66 °ppm−1 of Hg2+. The maximum signal-to-noise ratio (SNR upon detection of Pb2+ is 1.53, and exceeds the suggested logical criterion of an SNR. The Au/Ag/Au/CS–GO SPR sensor also exhibits excellent repeatability in Pb2+ due to the strong bond between its functional groups and this cation. The adsorption data of Pb2+ and Hg2+ on the CS–GO sensor fits well with the Langmuir isotherm model where the affinity constant, K, of Pb2+ and Hg2+ ions is computed. The affinity of Pb2+ ions to the Au/Ag/Au/CS–GO sensor is significantly higher than that of Hg2+ based on the value of K, 7 × 105 M−1 and 4 × 105 M−1, respectively. The higher shift in SPR angles due to Pb2+ and Hg2+ compared to Cr3+, Cu2+ and Zn2+ ions also reveals the greater affinity of the CS–GO SPR sensor to them, thus supporting the rationale for obtaining K for these two heavy metals. This study provides a better understanding on the sensing performance of such sensors in detecting heavy metal ions.

  17. Selective removal of heavy metal ions by disulfide linked polymer networks

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Dongah [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Lee, Joo Sung [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); Patel, Hasmukh A. [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Jakobsen, Mogens H. [Department of Micro and Nano technology, Technical University of Denmark, Ørsteds Plads, 345B, 2800 Kgs. Lyngby (Denmark); Hwang, Yuhoon [Department of Environmental Engineering, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 01811 (Korea, Republic of); Yavuz, Cafer T. [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); Hansen, Hans Chr. Bruun [Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Andersen, Henrik R., E-mail: henrik@ndersen.net [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark)

    2017-06-15

    Highlights: • Disulfide/thiol polymer networks are promising as sorbent for heavy metals. • Rapid sorption and high Langmuir affinity constant (a{sub L}) for stormwater treatment. • Selective sorption for copper, cadmium, and zinc in the presence of calcium. • Reusability likely due to structure stability of disulfide linked polymer networks. - Abstract: Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions–copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water.

  18. Study of ion exchange equilibrium and determination of heat of ion exchange by ion chromatography

    International Nuclear Information System (INIS)

    Liu Kailu; Yang Wenying

    1996-01-01

    Ion chromatography using pellicularia ion exchange resins and dilute solution can be devoted to the study of ion exchange thermodynamics and kinetics. Ion exchange equilibrium equation was obtained, and examined by the experiments. Based on ion exchange equilibrium, the influence of eluent concentration and resin capacity on adjusted retention volumes was examined. The effect of temperature on adjusted retention volumes was investigated and heats of ion exchange of seven anions were determined by ion chromatography. The interaction between anions and skeleton structure of resins were observed

  19. Determination of dibutylphosphate and monobutylphosphate in TBP by ion chromatography

    International Nuclear Information System (INIS)

    Siva Kumar, B.; Vijayalakshmi, S.; Sankaran, K.; Ganesan, V.

    2012-01-01

    Tri-n-butyl phosphate (TBP) is used as solvent in the PUREX (Plutonium Uranium Refining by Extraction) process of nuclear fuel reprocessing. TBP undergoes chemical and radiological degradation to give DBP and MBP which in turn extracts the heavy metal such as U, Pu thereby affecting the performance of the extraction process. Analytical method using ion chromatography (IC) was developed for the determination of dibutyl phosphate (DBP) and monobutyl phosphate (MBP) in TBP. In this method, DBP and MBP were extracted from tri-n-butyl phosphate using carbonate-bicarbonate mixture of eluent composition and the aqueous phase was analyzed using suppressed ion chromatography employing carbonate as eluent. Standardization of extraction was carried out by standard addition studies. The detection limits for both DBP and MBP are found to be in sub ppm level. This method was applied to the analysis of TBP supplied by different suppliers

  20. Poisoning of liquid membrane carriers in extraction of metal ions

    International Nuclear Information System (INIS)

    Wang, Yuchun; Wang, Dexian

    1992-01-01

    As means of effective separation and preconcentration, emulsion liquid membranes (ELMs) have found application in many fields including biochemical separation, wastewater treatment, hydrometallurgy, and preconcentration in analytical chemistry. In the extraction of desired metal (scandium, mixed rare earths) ions using chelating extractants (TTA, HDEHP) as liquid membrane carriers, the carriers will become poisoned owing to the presence of even minute quantity of certain high ionic potential ions in the feed solution. The reason for the poisoning of carriers is that those ions have so much greater affinity than the desired ions for the membrane carrier that the ion-carrier coordination compound cannot be stripped at the interior interface of the membrane and gradually no more free carrier transports any metal ions across the membrane. The calculated results are in agreement with the experiments, and methods to avoid the poisoning are given in the paper

  1. Ferromagnetic Levan Composite: An Affinity Matrix to Purify Lectin

    Directory of Open Access Journals (Sweden)

    Renata Angeli

    2009-01-01

    Full Text Available A simple and inexpensive procedure used magnetite and levan to synthesize a composite recovered by a magnetic field. Lectins from Canavalia ensiformis (Con A and Cratylia mollis (Cramoll 1 and Cramoll 1,4 did bind specifically to composite. The magnetic property of derivative favored washing out contaminating proteins and recovery of pure lectins with glucose elution. Cramoll 1 was purified by this affinity binding procedure in two steps instead of a previous three-step protocol with ammonium sulfate fractionation, affinity chromatography on Sephadex G-75, and ion exchange chromatography through a CM-cellulose column.

  2. Ion exchange of alkaline metals on the thin-layer zinc ferrocyanide

    International Nuclear Information System (INIS)

    Betenekov, N.D.; Buklanov, G.V.; Ipatova, E.G.; Korotkin, Yu.S.

    1991-01-01

    Basic regularities of interphase distribution in the system of thin-layer sorbent on the basis of mixed zinc ferrocyanide (FZ)-alkaline metal solution (Na, K, Rb, Cs, Fr) in the column chromatography made are studied. It is established that interphase distribution of microgram amounts of alkaline metals in the systems thin-layer FZ-NH 4 NO 3 electrolyte solutions is of ion-exchange character and subjected to of law effective mass. It is shown that FZ thin-layer material is applicable for effective chromatographic separation of alkaline metal trace amounts. An approach to the choice of a conditions of separate elution of Na, K, Rb, Cs, Fr in the column chromatography mode

  3. Glycoproteins of axonal transport: affinity chromatography on fucose-specific lectins

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, S.; Ohlson, C.; Karlsson, J.O.

    1982-03-01

    Rapidly transported fucose-labeled glycoproteins from axons of rabbit retinal ganglion cells were solubilized with nonionic detergents. The solubilized components were subjected to affinity chromatography on three different fucose-specific lectins. A recently characterized fucose-specific lectin from Aleuria aurantia bound reversibly approximately 60% of the applied protein-bound radioactivity. The lectins from Lotus tetragonolobus and Ulex europaeus bound are very small proportions of the labeled rapidly transported glycoproteins.

  4. N-terminal processing of affinity-tagged recombinant proteins purified by IMAC procedures.

    Science.gov (United States)

    Mooney, Jane T; Fredericks, Dale P; Christensen, Thorkild; Bruun Schiødt, Christine; Hearn, Milton T W

    2015-07-01

    The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S-transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine-containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7-triazacyclononane (tacn). The use of this tag-tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli-expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP-1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI-TOF MS analysis of the cleaved products from the DAP-1 digestion of the recombinant N-terminally tagged proteins confirmed the complete removal of the tag within 4-12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn-based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli-expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes. Copyright © 2015 John Wiley & Sons, Ltd.

  5. The Binding of Biotin to Sepharose-Avidin Column: Demonstration of the Affinity Chromatography Technique

    Science.gov (United States)

    Landman, A. D.; Landman, N. N.

    1976-01-01

    Describes a biochemistry experiment that illustrates the methodology of affinity chromatography by attaching avidin, a glycoprotein in egg white, to a Sepharose matrix in order to bind biotin-containing proteins. (MLH)

  6. The sorption of metal ions on nanoscale zero-valent iron

    Directory of Open Access Journals (Sweden)

    Suponik Tomasz

    2017-01-01

    Full Text Available The injection of the colloidal suspensions of nano-iron (nZVI into an aquifer is a novel method of removing metal ions from acidic water. In the batch tests, the equilibrium study of the sorption of metal ions, Cu(II and Zn(II, on Green Tea nanoscale Zero-Valent Ion (GT-nZVI was carried out. The sorption of metal ions on this reactive material was described using the Langmuir, Freundlich and Sips models. This last model described in a better way the sorption equilibrium in the tested range of concentrations and temperature. The value of determination coefficient (R2 for the Sips model, for copper and zinc, was 0.9735 to 0.9995, respectively. GT-nZVI has very good properties in removing Cu(II and Zn(II from acidic water. The high values of qmaxS, the maximum adsorption capacity in the Sips model, amounting to 348.0 and 267.3 mg/g for Cu(II and Zn(II, indicate the high adsorption capacity of GT-nZVI. The analyzed metals have good or very good affinity with GT-nZVI.

  7. Metal-organic frameworks in chromatography.

    Science.gov (United States)

    Yusuf, Kareem; Aqel, Ahmad; ALOthman, Zeid

    2014-06-27

    Metal-organic frameworks (MOFs) emerged approximately two decades ago and are the youngest class of porous materials. Despite their short existence, MOFs are finding applications in a variety of fields because of their outstanding chemical and physical properties. This review article focuses on the applications of MOFs in chromatography, including high-performance liquid chromatography (HPLC), gas chromatography (GC), and other chromatographic techniques. The use of MOFs in chromatography has already had a significant impact; however, the utilisation of MOFs in chromatography is still less common than other applications, and the number of MOF materials explored in chromatography applications is limited. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Application of coupled affinity-sizing chromatography for the detection of proteolyzed HSA-tagged proteins.

    Science.gov (United States)

    London, Anne Serdakowski; Patel, Kunal; Quinn, Lisa; Lemmerer, Martin

    2015-04-01

    Coupled affinity liquid chromatography and size exclusion chromatography (ALC-SEC) is a technique that has been shown to successfully report product quality of proteins during cell expression and prior to the commencement of downstream processing chromatography steps. This method was applied to monitoring the degradation and subsequent partial remediation of a HSA-tagged protein which showed proteolysis, allowing for rapid cell line development to address this product quality dilemma. This paper outlines the novel application of this method for measuring and addressing protease-induced proteolysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Optimisation, simulation, and training in ion chromatography - all for free!

    International Nuclear Information System (INIS)

    Dicinoski, G.W.; Shaw, M.J.; Madden, J.E.; Haddad, P.R.

    2001-01-01

    Since its inception in 1975, ion chromatography (IC) has grown to become a powerful separation tool for the analytical chemist. Today, when scientists refer to the term IC, they mean a collection of chromatographic techniques suitable for the separation of inorganic ions and low molecular weight, water-soluble, organic compounds. The range of chromatographic techniques covered by this designation includes: ion-exchange chromatography; reversed-phase ion-interaction chromatography; and ion-exclusion chromatography. The optimization of the IC separation process is extremely time-consuming. A computer simulation software, Virtual Column 2, that accurately mimic retention behaviour in IC, is presented. It is based on large datasets of experimentally measured retention times; an ideal tool for chromatographers

  10. Multiheteromacrocycles that Complex Metal Ions. Sixth Progress Report, 1 May 1979-30 April 1980

    Science.gov (United States)

    Cram, D. J.

    1980-01-15

    Objective is to design synthesize, and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; number of binding sites; character of binding sites; and valences. During this period, hemispherands based on an aryloxy or cyclic urea unit, spherands based on aryloxyl units only, and their complexes with alkali metals and alkaline earths were investigated. An attempt to separate {sup 6}Li and {sup 7}Li by gel permeation chromatography of lithiospherium chloride failed. (DLC)

  11. Poultry litter-based activated carbon for removing heavy metal ions in water.

    Science.gov (United States)

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  12. Effects of metal-ion replacement on pyrazinamidase activity: A quantum mechanical study.

    Science.gov (United States)

    Khadem-Maaref, Mahmoud; Mehrnejad, Faramarz; Phirouznia, Arash

    2017-05-01

    Pyrazinamidase (PZase), a metalloenzyme, is responsible for acidic modification of pyrazinamide (PZA), a drug used in tuberculosis treatment. The metal coordination site of the enzyme is able to coordinate various divalent metal cofactors. Previous experimental studies have demonstrated that metal ions, such as Co 2+ , Mn 2+ , and Zn 2+ , are able to reactivate metal-depleted PZase, while others including Cu 2+ , Fe 2+ , and Mg 2+ , cannot restore activity. In this study, we investigated binding of various metal ions to the metal coordination site (MCS) of the enzyme using quantum mechanical calculations. We calculated the metal-ligand (residue) binding energy and the atomic partial charges in the presence of various ions. The results indicated that the tendency of alkaline earth metals to bind to PZase MCS is very low and not suitable for enzyme structural and catalytic function. In contrast, Co 2+ and Ni 2+ ions have very high binding affinity and are favorable to the structural and functional properties of the enzyme. Furthermore, we observed that the rate at which Ni 2+ , Co 2+ and Fe 2+ ions in PZase MCS polarize the OH bond of coordinated water molecules is much higher than the polarization rate created by other ions. This finding suggests that the coordination of Ni 2+ , Co 2+ , or Fe 2+ to PZase facilitates the deprotonation of coordinated water molecules to generate a nucleophile that catalyzes the enzymatic reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Large-scale analysis of in Vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry

    DEFF Research Database (Denmark)

    Nühse, Thomas S; Stensballe, Allan; Jensen, Ole N

    2003-01-01

    specificity. We investigated the potential of IMAC in combination with capillary liquid chromatography coupled to tandem mass spectrometry for the identification of plasma membrane phosphoproteins of Arabidopsis. Without chemical modification of peptides, over 75% pure phosphopeptides were isolated from...... plasma membrane digests and detected and sequenced by mass spectrometry. We present a scheme for two-dimensional peptide separation using strong anion exchange chromatography prior to IMAC that both decreases the complexity of IMAC-purified phosphopeptides and yields a far greater coverage...... of monophosphorylated peptides. Among the identified sequences, six originated from different isoforms of the plasma membrane H(+)-ATPase and defined two previously unknown phosphorylation sites at the regulatory C terminus. The potential for large-scale identification of phosphorylation sites on plasma membrane...

  14. Fragment screening for drug leads by weak affinity chromatography (WAC-MS).

    Science.gov (United States)

    Ohlson, Sten; Duong-Thi, Minh-Dao

    2018-02-23

    Fragment-based drug discovery is an important tool for design of small molecule hit-to-lead compounds against various biological targets. Several approved drugs have been derived from an initial fragment screen and many such candidates are in various stages of clinical trials. Finding fragment hits, that are suitable for optimisation by medicinal chemists, is still a challenge as the binding between the small fragment and its target is weak in the range of mM to µM of K d and irrelevant non-specific interactions are abundant in this area of transient interactions. Fortunately, there are methods that can study weak interactions quite efficiently of which NMR, surface plasmon resonance (SPR) and X-ray crystallography are the most prominent. Now, a new technology based on zonal affinity chromatography, weak affinity chromatography (WAC), has been introduced which has remedied many of the problems with other technologies. By combining WAC with mass spectrometry (WAC-MS), it is a powerful tool to identify binders quantitatively in terms of affinity and kinetics either from fragment libraries or from complex mixtures of biological extracts. As WAC-MS can be multiplexed by analysing mixtures of fragments (20-100 fragments) in one sample, this approach yields high throughput, where a whole library of e.g. >2000 fragments can be analysed quantitatively within a day. WAC-MS is easy to perform, where the robustness and quality of HPLC is fully utilized. This review will highlight the rationale behind the application of WAC-MS for fragment screening in drug discovery. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Fragment screening of cyclin G-associated kinase by weak affinity chromatography.

    Science.gov (United States)

    Meiby, Elinor; Knapp, Stefan; Elkins, Jonathan M; Ohlson, Sten

    2012-11-01

    Fragment-based drug discovery (FBDD) has become a new strategy for drug discovery where lead compounds are evolved from small molecules. These fragments form low affinity interactions (dissociation constant (K(D)) = mM - μM) with protein targets, which require fragment screening methods of sufficient sensitivity. Weak affinity chromatography (WAC) is a promising new technology for fragment screening based on selective retention of fragments by a drug target. Kinases are a major pharmaceutical target, and FBDD has been successfully applied to several of these targets. In this work, we have demonstrated the potential to use WAC in combination with mass spectrometry (MS) detection for fragment screening of a kinase target-cyclin G-associated kinase (GAK). One hundred seventy fragments were selected for WAC screening by virtual screening of a commercial fragment library against the ATP-binding site of five different proteins. GAK protein was immobilized on a capillary HPLC column, and compound binding was characterized by frontal affinity chromatography. Compounds were screened in sets of 13 or 14, in combination with MS detection for enhanced throughput. Seventy-eight fragments (46 %) with K(D) < 200 μM were detected, including a few highly efficient GAK binders (K(D) of 2 μM; ligand efficiency = 0.51). Of special interest is that chiral screening by WAC may be possible, as two stereoisomeric fragments, which both contained one chiral center, demonstrated twin peaks. This ability, in combination with the robustness, sensitivity, and simplicity of WAC makes it a new method for fragment screening of considerable potential.

  16. Ion-pair chromatography of nucleic acid derivatives

    International Nuclear Information System (INIS)

    Perrone, P.A.; Brown, P.R.

    1985-01-01

    Little work has been done on the ion-pair chromatography of nucleic acid constituents, although there is a great potential for the use of this technique in the field. Since the classic work in 1949, nucleotides, as well as nucleosides and bases, have been separated by ion-exchange chromatography. However, ion exchange is a difficult mode and most researchers prefer the use of reversed-phase whenever possible. Although reversed-phase is now the method of choice, ionic compounds like nucleotides and some of the more polar bases are not adequately retained by many systems of this type. In addition, it is difficult to analyze simultaneously members of all three classes of nucleic acid compounds (bases, nucleosides, and nucleotides) using a reversed-phase system, even with gradient elution. Ion pairing can be a useful technique because, theoretically, the separation of nonionic bases and nucleosides along with the ionic nucleotides can be achieved. Additionally, each group of compounds may be separated isocratically. In this chapter, they will discuss ion-pair chromatography as applied to nucleic acid constituents. The current theories, advantages and disadvantages, a limited number of applications, and potential for future work are presented

  17. Metal ion complex formation in small lakes of the Western Siberian Arctic zone

    Science.gov (United States)

    Kremleva, Tatiana; Dinu, Marina

    2017-04-01

    The paper is based on joint investigation of the Tyumen State University (Russia, Tyumen) and the Geochemistry and Analytical Chemistry Vernadsky Institute of Russian Academy of Sciences (Moscow, Russia) during 2012-2014 period. It presents the results of research of chemical composition of about 70 small lakes located in the area of tundra and northern taiga of West Siberia (Russia, Yamal-Nenets and Khanty-Mansi Autonomous Districts of the Tyumen region). The investigation includes determination of different parameters of natural water samples: • content of trace elements (Al, Fe, Mn, Cr, Cu, Ni, Zn, Cd, Co, Pb, etc., total more than 60 elements) by emission method with an inductively coupled plasma (ICP-MS) using mass spektrometrometre Element 2 equipment; • content of inorganic and total carbon (TIC and TC) by elemental analysis and the difference between the total and inorganic carbon gives the organic carbon content (TOC); • pH value by potentiometric method; • content of basic ions (Na+, Ca2+, K+, Mg2+, NH4+, Cl-, SO42-, NO3-, PO43-) by ion chromatography. Determination of the chemical composition of samples was conducted in the accredited laboratory according to standard procedures with regular quality control of results. Heavy metals in natural waters can exist in various forms: free (hydrated) ions bound in complexes with organic or inorganic ligands, as well as in the form of suspensions. The form of metal existence has a significant influence on their availability to transport in aquatic organisms. Metal ions associated in stable complexes with organic substances are considered less toxic. From the previous investigations state that the most stable complexes are ligands with organic ions Fe3+, Al3+. The main conclusion of the present research states that if the total content of aluminum, iron and manganese ions (meq/dm3) is equal to or greater than the concentration of dissolved organic carbon (TOC, mg/dm3) in lakes water other heavy metals will

  18. High Performance Affinity Chromatography of Antithrombin III Based on Monodisperse Poly (glycidyl methacrylate) Beads

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new approach for the separation of antithrombin III with high performance affinity chromatography (HPAC) was described. A novel monodisperse,non-porous,cross-linked poly (glycidyl methacrylate) beads (PGMA) were used as the affinity support. With the water-soluble carbodiimide,heparin was linked covalently to amino-PGMA-beads,which was prepared by amination of PGMA. The adsorbent obtained exhibits high binding activity to antithrombin III (ATIII),good resolution and excellent mechanical properties and can be used under high flow rate.

  19. Purification of infectious canine parvovirus from cell culture by affinity chromatography with monoclonal antibodies.

    NARCIS (Netherlands)

    J. Groen (Jan); N. Juntti; J.S. Teppema; F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert); G.F. Rimmelzwaan (Guus)

    1987-01-01

    textabstractImmuno affinity chromatography with virus neutralizing monoclonal antibodies, directed to the haemagglutinating protein of canine parvovirus (CPV) was used to purify and concentrate CPV from infected cell culture. The procedure was monitored by testing the respective fractions in an

  20. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.

    Science.gov (United States)

    Dokmanić, Ivan; Sikić, Mile; Tomić, Sanja

    2008-03-01

    Metal ions are constituents of many metalloproteins, in which they have either catalytic (metalloenzymes) or structural functions. In this work, the characteristics of various metals were studied (Cu, Zn, Mg, Mn, Fe, Co, Ni, Cd and Ca in proteins with known crystal structure) as well as the specificity of their environments. The analysis was performed on two data sets: the set of protein structures in the Protein Data Bank (PDB) determined with resolution metal ion and its electron donors and the latter was used to assess the preferred coordination numbers and common combinations of amino-acid residues in the neighbourhood of each metal. Although the metal ions considered predominantly had a valence of two, their preferred coordination number and the type of amino-acid residues that participate in the coordination differed significantly from one metal ion to the next. This study concentrates on finding the specificities of a metal-ion environment, namely the distribution of coordination numbers and the amino-acid residue types that frequently take part in coordination. Furthermore, the correlation between the coordination number and the occurrence of certain amino-acid residues (quartets and triplets) in a metal-ion coordination sphere was analysed. The results obtained are of particular value for the identification and modelling of metal-binding sites in protein structures derived by homology modelling. Knowledge of the geometry and characteristics of the metal-binding sites in metalloproteins of known function can help to more closely determine the biological activity of proteins of unknown function and to aid in design of proteins with specific affinity for certain metals.

  1. Simultaneous Determination of Chelating Agents by Ion-Suppression and Ion-Pair Chromatography in Wastewater

    International Nuclear Information System (INIS)

    Dodi, Alain; Bouscarel, Maelle

    2008-01-01

    This article describes two methods for analysing chelating agents found in nuclear waste. First, ion-suppression chromatography using an anion exchange stationary phase and mobile phase consisting of a nitric acid solution and pure water gradient. UV detection was performed at 330 nm after the reaction with a post-column reagent composed of iron nitrate in perchloric acid. Secondly, ion-pair chromatography with a mobile phase consisting of a mixture of nitric acid, tetra-butyl-ammonium hydrogeno-sulphate, tetra-butyl-ammonium hydroxide and iron chloride. A reversed-phase material was used as a stationary phase and detection was performed by direct measurement of the UV absorption at 260 nm. The quantification limits were lower for ion-pair chromatography than for ion-suppression chromatography. Both methods were easy to implement and allow a multi-element separation in less than 30 min with low detection limits. (authors)

  2. Simultaneous Determination of Chelating Agents by Ion-Suppression and Ion-Pair Chromatography in Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Dodi, Alain; Bouscarel, Maelle [Commissariat a l' energie atomique - C.E.A, Centre d' Etude de Cadarache, Laboratoire d' Analyses Radiochimiques et Chimiques, St Paul lez Durance (France)

    2008-07-01

    This article describes two methods for analysing chelating agents found in nuclear waste. First, ion-suppression chromatography using an anion exchange stationary phase and mobile phase consisting of a nitric acid solution and pure water gradient. UV detection was performed at 330 nm after the reaction with a post-column reagent composed of iron nitrate in perchloric acid. Secondly, ion-pair chromatography with a mobile phase consisting of a mixture of nitric acid, tetra-butyl-ammonium hydrogeno-sulphate, tetra-butyl-ammonium hydroxide and iron chloride. A reversed-phase material was used as a stationary phase and detection was performed by direct measurement of the UV absorption at 260 nm. The quantification limits were lower for ion-pair chromatography than for ion-suppression chromatography. Both methods were easy to implement and allow a multi-element separation in less than 30 min with low detection limits. (authors)

  3. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    International Nuclear Information System (INIS)

    Zhang, Yuxiao; Zhang, Jianming; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2012-01-01

    Highlights: ► Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. ► MPCS was covalently modified by cysteine (MPCS–CO–Cys). ► MPCS–CO–Cys was first time used in electrochemical detection of heavy metal ions. ► Heavy metal ions such as Pb 2+ and Cd 2+ can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  4. Lanthanide and actinide ion phytoextraction: investigations of biosorption chemistry

    International Nuclear Information System (INIS)

    Rayson, Gary D.; Serna, Debbie D.; Moore, Jessica L.

    2009-01-01

    Investigations of the chemical interactions responsible for passive biosorption of a lanthanide (Eu (III)) and an actinide (U (VI)) metal ion is described. Spectroscopic methods for the elucidation of chemical functionalities on cultured anther cell walls from the plant Datura innoxia include metal ion luminescence measurements. These have revealed the presence of distinctly different binding environments involving one, two, and three carboxylate moieties for Eu (III) and UO 2 2+ binding and sulfonates (or sulfates) and phosphates for sequestration of Eu (III) on the uranyl ion, respectively. Additional investigations of the apparent affinities of these metals to this material have revealed the presence of both low and high affinity sites for the binding of Eu (III) with weak electrostatic attractions proposed for binding at high metal concentrations (i.e., low affinities) and surface coordination interactions responsible for higher affinities. Conversely, total uranyl ion binding revealed only a single distribution of interactions based on apparent affinities. (author)

  5. Chromium Speciation Analysis by Ion Chromatography Coupled ...

    African Journals Online (AJOL)

    Two methods coupling ion chromatography with inductively coupled plasma - optical emission spectroscopy (ICP-OES) were developed for the simultaneous separation and determination of Cr(III) and Cr(VI) species. In the first method, anion chromatography with sodium bicarbonate/carbonate solution as the eluent was ...

  6. Determination of γ-hydroxybutyrate in human urine samples by ion exclusion and ion exchange two-dimensional chromatography system.

    Science.gov (United States)

    Liu, Junwei; Deng, Zhifen; Zhu, Zuoyi; Wang, Yong; Wang, Guoqing; Sun, Yu-An; Zhu, Yan

    2017-12-15

    A two-dimensional ion chromatography system was developed for the determination of γ-hydroxybutyrate (GHB) in human urine samples. Ion exclusion chromatography was used in the first dimensional separation for elimination of urine matrices and detection of GHB above 10mgL -1 , ion exchange chromatography was used in the second dimensional separation via column-switching technique for detection of GHB above 0.08mgL -1 . Under the optimized chromatographic conditions, the ion exclusion and ion exchange chromatography separation system exhibited satisfactory repeatability (RSDchromatography system was convenient and practical for the determination of GHB in human urine samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Combining metal oxide affinity chromatography (MOAC and selective mass spectrometry for robust identification of in vivo protein phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Weckwerth Wolfram

    2005-11-01

    Full Text Available Abstract Background Protein phosphorylation is accepted as a major regulatory pathway in plants. More than 1000 protein kinases are predicted in the Arabidopsis proteome, however, only a few studies look systematically for in vivo protein phosphorylation sites. Owing to the low stoichiometry and low abundance of phosphorylated proteins, phosphorylation site identification using mass spectrometry imposes difficulties. Moreover, the often observed poor quality of mass spectra derived from phosphopeptides results frequently in uncertain database hits. Thus, several lines of evidence have to be combined for a precise phosphorylation site identification strategy. Results Here, a strategy is presented that combines enrichment of phosphoproteins using a technique termed metaloxide affinity chromatography (MOAC and selective ion trap mass spectrometry. The complete approach involves (i enrichment of proteins with low phosphorylation stoichiometry out of complex mixtures using MOAC, (ii gel separation and detection of phosphorylation using specific fluorescence staining (confirmation of enrichment, (iii identification of phosphoprotein candidates out of the SDS-PAGE using liquid chromatography coupled to mass spectrometry, and (iv identification of phosphorylation sites of these enriched proteins using automatic detection of H3PO4 neutral loss peaks and data-dependent MS3-fragmentation of the corresponding MS2-fragment. The utility of this approach is demonstrated by the identification of phosphorylation sites in Arabidopsis thaliana seed proteins. Regulatory importance of the identified sites is indicated by conservation of the detected sites in gene families such as ribosomal proteins and sterol dehydrogenases. To demonstrate further the wide applicability of MOAC, phosphoproteins were enriched from Chlamydomonas reinhardtii cell cultures. Conclusion A novel phosphoprotein enrichment procedure MOAC was applied to seed proteins of A. thaliana and to

  8. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuxiao; Zhang, Jianming [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. Black-Right-Pointing-Pointer MPCS was covalently modified by cysteine (MPCS-CO-Cys). Black-Right-Pointing-Pointer MPCS-CO-Cys was first time used in electrochemical detection of heavy metal ions. Black-Right-Pointing-Pointer Heavy metal ions such as Pb{sup 2+} and Cd{sup 2+} can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  9. Isotopic separation by ion chromatography

    International Nuclear Information System (INIS)

    Albert, M.G.; Barre, Y.; Neige, R.

    1994-01-01

    The isotopic exchange reaction and the isotopic separation factor are first recalled; the principles of ion chromatography applied to lithium isotope separation are then reviewed (displacement chromatography) and the process is modelled in the view of dimensioning and optimizing the industrial process; the various dimensioning parameters are the isotopic separation factor, the isotopic exchange kinetics and the material flow rate. Effects of the resin type and structure are presented. Dimensioning is also affected by physico-chemical and hydraulic parameters. Industrial implementation features are also discussed. 1 fig., 1 tab., 5 refs

  10. Characterization of the human cerebrospinal fluid phosphoproteome by titanium dioxide affinity chromatography and mass spectrometry

    DEFF Research Database (Denmark)

    Bahl, Justyna Maria Czarna; Jensen, Søren Skov; Larsen, Martin R

    2008-01-01

    of phosphorylation aberrations in health and disease. Toward that goal we here describe a method for a comprehensive isolation and identification of phosphorylated tryptic peptides derived from CSF proteins using a simple sample preparation step and titanium dioxide-affinity chromatography followed by MALDI...

  11. Comprehensive two-dimensional liquid chromatography: Ion chromatography × reversed-phase liquid chromatography for separation of low-molar-mass organic acids

    NARCIS (Netherlands)

    Brudin, S.S.; Shellie, R.A.; Haddad, P.R.; Schoenmakers, P.J.

    2010-01-01

    In the work presented here a novel approach to comprehensive two-dimensional liquid chromatography is evaluated. Ion chromatography is chosen for the first-dimension separation and reversed-phase liquid chromatography is chosen for the second-dimension separation mode. The coupling of these modes is

  12. Influence of column type and chromatographic conditions on the ion-exchange chromatography of immunoglobulins.

    Science.gov (United States)

    Yang, Y B; Harrison, K

    1996-08-30

    Immunoglobulins are often purified by affinity chromatography. However, this technique is costly, can result in poor resolution for subclasses (or is only group specific), and leads to possible leaching of contaminants into the purified products. Ion-exchange chromatography has shown great potential and has found an increased usage in the purification of immunoglobulins. The aim of this study is to further understand the separation mechanism with emphasis on the influence of column type and chromatographic conditions on the peak shape, selectivity and changes in the elution patterns. Included are strong cation-exchange, strong anion-exchange and weak anion-exchange columns. Five immunoglobulin G antibodies were used as test probes. Some sera and ascites were also used in the study. Among the chromatographic conditions examined were mobile phase pH, buffer type, buffer concentration, gradient rate, and column temperature. Significant differences in the chromatographic behavior (elution pattern, peak shape and selectivity) of the test samples are discussed in regard to the column type and the chromatographic conditions.

  13. Characteristics of the interaction of calcium with casein submicelles as determined by analytical affinity chromatography

    International Nuclear Information System (INIS)

    Jang, H.D.; Swaisgood, H.E.

    1990-01-01

    Interaction of calcium with casein submicelles was investigated in CaCl2 and calcium phosphate buffers and with synthetic milk salt solutions using the technique of analytical affinity chromatography. Micelles that had been prepared by size exclusion chromatography with glycerolpropyl controlled-pore glass from fresh raw skim milk that had never been cooled, were dialyzed at room temperature against calcium-free imidazole buffer, pH 6.7. Resulting submicelles were covalently immobilized on succinamidopropyl controlled-pore glass (300-nm pore size). Using 45Ca to monitor the elution retardation, the affinity of free Ca2+ and calcium salt species was determined at temperatures of 20 to 40 degrees C and pH 6.0 to 7.5. Increasing the pH in this range or increasing the temperature strengthened the binding of calcium to submicelles, similar to previous observations with individual caseins. However, the enthalpy change obtained from the temperature dependence was considerably greater than that reported for alpha s1- and beta-caseins. Furthermore, the elution profiles for 45Ca in milk salt solutions were decidedly different from those in CaCl2 or calcium phosphate buffers and the affinities were also greater. For example, at pH 6.7 and 30 degrees C the average dissociation constant for the submicelle-calcium complex is 0.074 mM for CaCl2 and calcium phosphate buffers, vs 0.016 mM for the milk salt solution. The asymmetric frontal boundaries and higher average affinities observed with milk salts may be due to binding of calcium salts with greater affinity in addition to the binding of free Ca2+ in these solutions

  14. Metal ion release from metallothioneins: proteolysis as an alternative to oxidation.

    Science.gov (United States)

    Peroza, Estevão A; dos Santos Cabral, Augusto; Wan, Xiaoqiong; Freisinger, Eva

    2013-09-01

    Metallothioneins (MTs) are among others involved in the cellular regulation of essential Zn(II) and Cu(I) ions. However, the high binding affinity of these proteins requires additional factors to promote metal ion release under physiological conditions. The mechanisms and efficiencies of these processes leave many open questions. We report here a comprehensive analysis of the Zn(II)-release properties of various MTs with special focus on members of the four main subfamilies of plant MTs. Zn(II) competition experiments with the metal ion chelator 4-(2-pyridylazo)resorcinol (PAR) in the presence of the cellular redox pair glutathione (GSH)/glutathione disulfide (GSSG) show that plant MTs from the subfamilies MT1, MT2, and MT3 are remarkably more affected by oxidative stress than those from the Ec subfamily and the well-characterized human MT2 form. In addition, we evaluated proteolytic digestion with trypsin and proteinase K as an alternative mechanism for selective promotion of metal ion release from MTs. Also here the observed percentage of liberated metal ions depends strongly on the MT form evaluated. Closer evaluation of the data additionally allowed deducing the thermodynamic and kinetic properties of the Zn(II) release processes. The Cu(I)-form of chickpea MT2 was used to exemplify that both oxidation and proteolysis are also effective ways to increase the transfer of copper ions to other molecules. Zn(II) release experiments with the individual metal-binding domains of Ec-1 from wheat grain reveal distinct differences from the full-length protein. This triggers the question about the roles of the long cysteine-free peptide stretches typical for plant MTs.

  15. Application of ion chromatography in clinical studies and pharmaceutical industry.

    Science.gov (United States)

    Michalski, Rajmund

    2014-01-01

    Ion chromatography is a well-established regulatory method for analyzing anions and cations in environmental, food and many other samples. It offers an enormous range of possibilities for selecting stationary and mobile phases. Additionally, it usually helps to solve various separation problems, particularly when it is combined with different detection techniques. Ion chromatography can also be used to determine many ions and substances in clinical and pharmaceutical samples. It provides: availability of high capacity stationary phases and sensitive detectors; simple sample preparation; avoidance of hazardous chemicals; decreased sample volumes; flexible reaction options on a changing sample matrix to be analyzed; or the option to operate a fully-automated system. This paper provides a short review of the ion chromatography applications for determining different inorganic and organic substances in clinical and pharmaceutical samples.

  16. Enrichment and Determination of radionuclides by ion chromatography

    International Nuclear Information System (INIS)

    ZAFIMANJATO, J.L.R.

    1996-01-01

    The fundamentals of Ion Chromatography (IC) and Liquid Scintillation Counting (LSC) are reviewed. Ion Chromatography as separation method for cations is coupled with Liquid Scintillation Counting for the determination of Radionuclides in water samples. An experimental arrangement for investigations on the applicability of guard columns for cationic radionuclide enrichment is shown. The saturation behaviour of single and bivalentic cations and their combination is presented. Our results show that radioactive bivalentic cations like strontium-90 and radium-226 are enriched on a Ion Pac CG 12 Dionex guard column from 100 to 300ml natural water in one single step. The procedure is suitable for their determination in concentrations down to 10 -2 Bq.l -1 [fr

  17. Metal ion transporters and homeostasis.

    OpenAIRE

    Nelson, N

    1999-01-01

    Transition metals are essential for many metabolic processes and their homeostasis is crucial for life. Aberrations in the cellular metal ion concentrations may lead to cell death and severe diseases. Metal ion transporters play a major role in maintaining the correct concentrations of the various metal ions in the different cellular compartments. Recent studies of yeast mutants revealed key elements in metal ion homeostasis, including novel transport systems. Several of the proteins discover...

  18. Obtaining sorbents of metal ions based on yeast cells Rhodotorula glutinis

    Directory of Open Access Journals (Sweden)

    Zh. Tattibayeva

    2013-05-01

    Full Text Available Ability to separate Cu2+ and Pb2+ ions from solution using yeast cells Rhodotorulа glutinis were considered. The degree of water purification in this case is of 60-70%. To increase the degree of binding of metal ions with cells and facilitate separation processes of water sorbents their immobilization on the surface of the water in the presence of polyethyleneimine was carried out. It is shown that under optimal conditions on the surface of 1 g diatomite 18 ∙ 106 cells is adsorbed. The high sorption capacity of diatomite justified its porosity. IR spectroscopic study of the interaction of the ions Cu2+ and Pb2+ with cell surface showed that high affinity Pb2 + ions to the surface of yeast cells is connected with form of slightly soluble compounds with the phosphate ions.

  19. Molecular electron affinities

    International Nuclear Information System (INIS)

    Fukuda, E.K.

    1983-01-01

    Molecular electron affinities have historically been difficult quantities to measure accurately. These difficulties arise from differences in structure between the ion and neutral as well as the existence of excited negative ion states. To circumvent these problems, relative electron affinities were determined in this dissertation by studying equilibrium electron transfer reactions using a pulsed ion cyclotron resonance (ICR) spectrometer. Direct measurement of ion and neutral concentrations for reactions of the general type, A - + B = B - + A, allow calculation of the equilibrium constant and, therefore, the free energy change. The free energy difference is related to the difference in electron affinities between A and B. A relative electron affinity scale covering a range of about 45 kcal/mol was constructed with various substituted p-benzoquinones, nitrobenzenes, anhydrides, and benzophenones. To assign absolute electron affinities, various species with accurately known electron affinities are tied to the scale via ion-cyclotron double resonance bracketing techniques. After the relative scale is anchored to these species with well-known electron affinities, the scale is then used as a check on other electron affinity values as well as generating new electron affinity values. Many discrepancies were found between the electron affinities measured using the ICR technique and previous literature determinations

  20. Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture.

    Science.gov (United States)

    Pollock, James; Bolton, Glen; Coffman, Jon; Ho, Sa V; Bracewell, Daniel G; Farid, Suzanne S

    2013-04-05

    This paper presents an integrated experimental and modelling approach to evaluate the potential of semi-continuous chromatography for the capture of monoclonal antibodies (mAb) in clinical and commercial manufacture. Small-scale single-column experimental breakthrough studies were used to derive design equations for the semi-continuous affinity chromatography system. Verification runs with the semi-continuous 3-column and 4-column periodic counter current (PCC) chromatography system indicated the robustness of the design approach. The product quality profiles and step yields (after wash step optimisation) achieved were comparable to the standard batch process. The experimentally-derived design equations were incorporated into a decisional tool comprising dynamic simulation, process economics and sizing optimisation. The decisional tool was used to evaluate the economic and operational feasibility of whole mAb bioprocesses employing PCC affinity capture chromatography versus standard batch chromatography across a product's lifecycle from clinical to commercial manufacture. The tool predicted that PCC capture chromatography would offer more significant savings in direct costs for early-stage clinical manufacture (proof-of-concept) (∼30%) than for late-stage clinical (∼10-15%) or commercial (∼5%) manufacture. The evaluation also highlighted the potential facility fit issues that could arise with a capture resin (MabSelect) that experiences losses in binding capacity when operated in continuous mode over lengthy commercial campaigns. Consequently, the analysis explored the scenario of adopting the PCC system for clinical manufacture and switching to the standard batch process following product launch. The tool determined the PCC system design required to operate at commercial scale without facility fit issues and with similar costs to the standard batch process whilst pursuing a process change application. A retrofitting analysis established that the direct cost

  1. Spectrophotometric study of some metal ions using some Schiff's bases

    International Nuclear Information System (INIS)

    Elnager, Nawal Mohomed Ibrahim

    2000-05-01

    In this work two schiff bases namely N,N Bis(benzoyl acetone)-o-phenylene diamine (NNBBPD) and N,N Bis(benzoyl acetone)-isopropylene diamine (NNBBAID) were prepared by direct coupling of benzoyl acetone with o-phenylene and isopropylene diamine respectively. The two reagents were identified by IR spectra, thin layer chromatography (TLC) and determination of the percentage of nitrogen contents (N%). It is found that the two reagents form coloured chelates with Fe (II), Fe (III), Cu (II), U (VI), Ni (II) and Co (II). The two reagents were used for the determination of Fe (II), Fe (III) and U (VI). The formulate of these metal ion complexes were obtained using continuous variations, mole ratio and slope ratio methods. Effect of two micelles, namely sodium n-dodecyl sulphate (SDS) and hexadecyl pyridinum broinide monohydrate (HPB) on metal ion complexes were studied. It is found that both of them increase the solubility and the absorbances of the metal ion complexes with variable effects of the absorption maxima. Calibration curves for Fe (II), Fe (II) and U (VI) were obtained in optimum conditions of pH and micelles solutions. (Author)

  2. The use of ion chromatography in environmental and process control in the nuclear industry. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, M M [Ultra Tech Inc, 28 Teiba St. Dokki-Cairo, (Egypt)

    1996-03-01

    Ion chromatography has become the method choice for determining sub ppb for inorganic anions and cations, such as chloride, sulfide, fluoride, sodium, potassium, and ammonium, in aqueous matrices. Steam generators in pressurized water reactors nuclear power plants occasionally experience tubing degradation by a variety of corrosion related mechanisms which depends on water chemistry. Ion chromatography is also used in other environmental applications such as air pollution, industrial hygiene, drinking water quality, and industrial waste treatment. In this paper, several methods of separation and detection are present and also a number of examples of samples for various types of water are shown. The examples will include sub ppb amounts of chloride, sulfate, sodium, potassium, and ammonium in high purity turbine steam. Testing of chlorinated drinking water for inorganic anions including chlorite, chloride chlorate nitrite, nitrate as other organic anions using chemically suppressed conductivity. The role of chemical suppression is discussed. The analysis of ppb levels of transition moles in high purity water using ion chromatography with post column derivatization and UV detection are reviewed. Testing of disinfected drinking water with ozone for bromate, the detection of cyanide in waste after acid digestion, and the detection of highly toxic hexavalent in the presence of trivalent chromium is discussed. A fast method for the analysis of rain water for anions and cations is described. The presentation will also show new method (chelation ion chromatography) which enables ppb levels of heavy metals to be determined as pollutants in difficult environmental matrices such seawater, and oyster tissue. 4 figs.

  3. The use of ion chromatography in environmental and process control in the nuclear industry. Vol. 4

    International Nuclear Information System (INIS)

    Mohamed, M.M.

    1996-01-01

    Ion chromatography has become the method choice for determining sub ppb for inorganic anions and cations, such as chloride, sulfide, fluoride, sodium, potassium, and ammonium, in aqueous matrices. Steam generators in pressurized water reactors nuclear power plants occasionally experience tubing degradation by a variety of corrosion related mechanisms which depends on water chemistry. Ion chromatography is also used in other environmental applications such as air pollution, industrial hygiene, drinking water quality, and industrial waste treatment. In this paper, several methods of separation and detection are present and also a number of examples of samples for various types of water are shown. The examples will include sub ppb amounts of chloride, sulfate, sodium, potassium, and ammonium in high purity turbine steam. Testing of chlorinated drinking water for inorganic anions including chlorite, chloride chlorate nitrite, nitrate as other organic anions using chemically suppressed conductivity. The role of chemical suppression is discussed. The analysis of ppb levels of transition moles in high purity water using ion chromatography with post column derivatization and UV detection are reviewed. Testing of disinfected drinking water with ozone for bromate, the detection of cyanide in waste after acid digestion, and the detection of highly toxic hexavalent in the presence of trivalent chromium is discussed. A fast method for the analysis of rain water for anions and cations is described. The presentation will also show new method (chelation ion chromatography) which enables ppb levels of heavy metals to be determined as pollutants in difficult environmental matrices such seawater, and oyster tissue. 4 figs

  4. [Separation of osteoclasts by lectin affinity chromatography].

    Science.gov (United States)

    Itokazu, M; Tan, A; Tanaka, S

    1991-09-01

    Newborn rat calvaria bone cells obtained by digestion were fractionated on columns of wheat-germ agglutinin (WGA) sepharose 6MB for osteoclast isolation. The initial nonspecific binding cells which were passed through the WGA sepharose column by a buffer acquired a high enzyme activity of alkaline phosphatase, but not that of acid phosphatase. However, elution of cells using a buffer with the addition of N-acetyl-D-glucosamine resulted in a high acid phosphatase activity but no alkaline phosphatase activity. The former WGA binding negative fraction enriched osteoblasts averaging 30 microns in size. The latter WGA binding positive fraction enriched osteoclasts ranging from 20 microns to 60 microns in size. The electron-microscope clearly demonstrated the cellular details of osteoclasts. Isolated cell counts showed a ratio of six to four. These results indicate that our method of osteoclast isolation is simple and useful in lectin affinity chromatography because all cells have sugar moieties on their surface and the binding of osteoclasts can be reversed by the addition of specific lectin-binding sugars to the eluting buffer.

  5. Extraction of alginate biopolymer present in marine alga sargassum filipendula and bioadsorption of metallic ions

    Directory of Open Access Journals (Sweden)

    Sirlei Jaiana Kleinübing

    2013-04-01

    Full Text Available This paper studies the bioadsorption of Pb2+, Cu2+, Cd2+ and Zn2+ ions by marine alga Sargassum filipendula and by the alginate biopolymer extracted from this alga. The objective is to evaluate the importance of this biopolymer in removing different metallic ions by the marine alga S. filipendula. In the equilibrium study, the same affinity order was observed for both bioadsorbents: Pb2+ > Cu2+ > Zn2+ > Cd2+. For Pb2+ and Cu2+ ions when the alginate is isolated and acting as bioadsorbents, adsorption capacities greater than those found for the alga were observed, indicating that it is the main component responsible for the removal of metallic ions. For Zn2+ and Cd2+ ions, greater bioadsorption capacities were observed for the alga, indicating that other functional groups of the alga, such as sulfates and amino, are also important in the bioadsorption of these ions.

  6. Ion implantation and amorphous metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Rauschenbach, B.

    1981-01-01

    This review deals with ion implantation of metals in the high concentration range for preparing amorphous layers (>= 10 at%, implantation doses > 10 16 ions/cm 2 ). Different models are described concerning formation of amorphous phases of metals by ion implantation and experimental results are given. The study of amorphous phases has been carried out by the aid of Rutherford backscattering combined with the channeling technique and using transmission electron microscopy. The structure of amorphous metals prepared by ion implantation has been discussed. It was concluded that amorphous metal-metalloid compounds can be described by a dense-random-packing structure with a great portion of metal atoms. Ion implantation has been compared with other techniques for preparing amorphous metals and the adventages have been outlined

  7. Ion implantation in metals

    International Nuclear Information System (INIS)

    Vook, F.L.

    1977-02-01

    The application of ion beams to metals is rapidly emerging as a promising area of research and technology. This report briefly describes some of the recent advances in the modification and study of the basic properties of metals by ion implantation techniques. Most of the research discussed illustrates some of the new and exciting applications of ion beams to metals which are under active investigation at Sandia Laboratories, Albuquerque

  8. Investigation of electrostatic ion chromatography for the separation of inorganic ions

    OpenAIRE

    Twohill, Eadaoin

    2002-01-01

    The new technique of ‘electrostatic ion chromatography’ (ion chromatography using a zwittenomc stationary phase) has been applied to the separation of ions using pure water as an eluent, without the addition of any inorganic buffers or organic modifiers. The nature of the separation, le cationic or anionic, is dependent upon the nature of the zwittenomc stationary phase. In the work presented here, the zwittenomc surfactant Zwittergent 3-14 was used to functionalise an octadecylsihca stationa...

  9. Electron-capture process and ion mobility spectra in plasma chromatography

    International Nuclear Information System (INIS)

    Karasek, F.W.; Spangler, G.E.

    1981-01-01

    The basic principles of plasma chromatography are introduced and ion mobility relationships presented. The relationships of plasma chromatography to electron-capture detector mechanisms are discussed, including electron energy considerations and electron-capture reactions. A number of experimental studies by plasma chromatography are described. (C.F.)

  10. Titanium dioxide as chemo-affinity chromatographic sorbent of biomolecular compounds - Applications in acidic modification-specific proteomics

    DEFF Research Database (Denmark)

    Engholm-Keller, Kasper; Larsen, Martin R

    2011-01-01

    biomolecules due to its unique ion and ligand exchange properties and high stability towards pH and temperature. Recently, titanium dioxide chromatography was introduced in proteomics as a highly specific method for enriching phosphorylated peptides - a method, which has been widely adapted by the field...... matrices for further characterization is affinity chromatography, which relies on the specific interaction between an analyte in solution and a solid adsorbent. Titanium dioxide-based affinity chromatography has proven to be a versatile tool in enrichment of various compounds such as phosphorylated....... The development of TiO(2)-based chromatographic strategies for separation of various biomolecules from its introduction for small molecules more than 20years ago until recent proteomics applications today will be reviewed here....

  11. Production and Characterization of Desmalonichrome Relative Binding Affinity for Uranyl Ions in Relation to Other Siderophores

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Kai-For; Dai, Ziyu; Wunschel, David S.

    2016-06-24

    Siderophores are Fe binding secondary metabolites that have been investigated for their uranium binding properties. Much of the previous work has focused on characterizing hydroxamate types of siderophores, such as desferrioxamine B, for their uranyl binding affinity. Carboxylate forms of these metabolites hold potential to be more efficient chelators of uranyl, yet they have not been widely studied and are more difficult to obtain. Desmalonichrome is a carboxylate siderophore which is not commercially available and so was obtained from the ascomycete fungus Fusarium oxysporum cultivated under Fe depleted conditions. The relative affinity for uranyl binding of desmalonichrome was investigated using a competitive analysis of binding affinities between uranyl acetate and different concentrations of iron(III) chloride using electrospray ionization mass spectrometry (ESI-MS). In addition to desmalonichrome, three other siderophores, including two hydroxamates (desferrioxamine B and desferrichrome) and one carboxylate (desferrichrome A) were studied to understand their relative affinities for the uranyl ion at two pH values. The binding affinities of hydroxymate siderophores to uranyl ion were found to decrease to a greater degree at lower pH as the concentration of Fe (III) ion increases. On the other hand, lowering pH has little impact on the binding affinities between carboxylate siderophores and uranyl ion. Desmalonichrome was shown to have the greatest relative affinity for uranyl at any pH and Fe(III) concentration. These results suggest that acidic functional groups in the ligands are critical for strong chelation with uranium at lower pH.

  12. An improved value for the electron affinity of the negative hydrogen ion

    International Nuclear Information System (INIS)

    Scherk, L.R.

    1979-01-01

    An expression is derived for the lifetime of a negative ion in a weak and static electric field. Using this expression, existing experimental data are analyzed to improve the empirical value of the electron affinity of the negative hydrogen ion by an order of magnitude. (author)

  13. PVA-Glutaraldehyde as support for lectin immobilization and affinity chromatography

    Directory of Open Access Journals (Sweden)

    Moacyr Jesus Barreto de Melo Rêgo

    2016-12-01

    Full Text Available Immobilized lectins are a powerful biotechnological tool for separation and isolation of glycoconjugates. In the present study, polyvinyl alcohol (PVA and glutaraldehyde (GA were used as a support for Concanavalin A (Con A covalent immobilization and for entrapment of Parkia pendula seed gum (PpeG. Con A immobilization yielded approximately 30% and 0.6 M glucose solution was the minimum concentration able to elute fetuin from column. PVA-GA-PpeG column was efficiently recognized by pure P. pendula lectin (PpeL. These findings indicate that PVA-GA interpenetrated network showed to be an efficient support for lectin covalent immobilization and as affinity chromatography matrix after trapping of PpeG.

  14. Aflatoxin metabolism in humans: detection of metabolites and nucleic acid adducts in urine by affinity chromatography

    International Nuclear Information System (INIS)

    Groopman, J.D.; Donahue, P.R.; Zhu, J.Q.; Chen, J.S.; Wogan, G.N.

    1985-01-01

    A high-affinity IgM monoclonal antibody specific for aflatoxins was covalently bound to Sepharose 4B and used as a preparative column to isolate aflatoxin derivatives from the urine of people and experimental animals who had been exposed to the carcinogen environmentally or under laboratory conditions. Aflatoxin levels were quantified by radioimmunoassay and high-performance liquid chromatography after elution from the affinity column. In studies on rats injected with [ 14 C]aflatoxin B1, the authors identified the major aflatoxin-DNA adduct, 2,3-dihydro-2-(N7-guanyl)-3-hydroxy-aflatoxin B1 (AFB1-N7-Gua), and the oxidative metabolites M1 and P1 as the major aflatoxin species present in the urine. When this methodology was applied to human urine samples obtained from people from the Guangxi Province of China exposed to aflatoxin B1 through dietary contamination, the aflatoxin metabolites detected were also AFB1-N7-Gua and aflatoxins M1 and P1. Therefore, affinity chromatography using a monoclonal antibody represents a useful and rapid technique with which to isolate this carcinogen and its metabolites in biochemical epidemiology and for subsequent quantitative measurements, providing exposure information that can be used for risk assessment

  15. Template-directed synthesis of oligoguanylic acids - Metal ion catalysis

    Science.gov (United States)

    Bridson, P. K.; Fakhrai, H.; Lohrmann, R.; Orgel, L. E.; Van Roode, M.

    1981-01-01

    The effects of Zn(2+), Pb(2+) and other metal ions on the efficiency and stereo-selectivity of the template-directed oligomerization of guanosine 5'-phosphorimidazolide are investigated. Reactions were run in the presence of a polyC template in a 2,6-lutidine buffer, and products analyzed by high-performance liquid chromatography on an RPC-5 column. The presence of the Pb(2+) ion is found to lead to the formation of 2'-5' linked oligomers up to the 40-mer, while Zn(2+) favors the formation of predominantly 3'-5' linked oligomers up to the 35-mer. When amounts of uracil, cytidine or adenosine 5'-phosphorimidazole equal to those of the guanosine derivative are included in the reaction mixture, the incorrect base is incorporated into the oligomer about 10% of the time with a Pb(2+) catalyst, but less than 0.5% of the time with Zn(2+). The Sn(2+), Sb(3+) and Bi(3+) ions are also found to promote the formation of 2'-5' oligomers, although not as effectively as Pb(2+), while no metal ions other than Zn(2+) promote the formation of the 3'-5' oligomers. The results may be important for the understanding of the evolution of nucleic acid replication in the absence of enzymes.

  16. A control on hydrophobic and hydrophilic interactions between HEWL and metal Schiff-base complexes comprising of different metal ions and ligands

    Energy Technology Data Exchange (ETDEWEB)

    Koley Seth, Banabithi; Ray, Aurkie; Basu, Samita, E-mail: samita.basu@saha.ac.in

    2015-05-15

    The structural effects of different copper(II) and nickel(II) Schiff base complexes on hen egg white lysozyme (HEWL) have been investigated through steady state and time resolved absorption and fluorescence, and circular dichroism spectroscopy. The Schiff base ligands with N{sub 4} donor atoms show both hydrophobic and hydrophilic interactions, however hydrophilic interaction prevails with ligands having N{sub 2}O{sub 2} donor atoms. Variation of metal ions from Cu{sup 2+} to Ni{sup 2+} with each type of Schiff base ligand increases the probability of hydrophilic over hydrophobic interactions, which supports their significance in regulating the binding affinity between HEWL and metal complexes. On photo-excitation the complexes comprising of Cu{sup 2+} ion instead of Ni{sup 2+} ion and ligands with N{sub 4} donor system rather than N{sub 2}O{sub 2} donor system, increases the probability of intersystem crossing to populate the corresponding triplet state as observed from laser flash photolysis study. The better binding affinity of nickel complexes with different selectivities compared to copper complexes towards HEWL emphasizes the potentiality of less explored nickel complexes in drug–protein interactions. - Highlights: • Ni{sup II} and Cu{sup II} -Schiff base complexes bind hen egg white lysozyme spontaneously. • Both hydrophobic and hydrophilic interactions are effective for N{sub 4} ligands. • For N{sub 2}O{sub 2} ligands the hydrophilic is predominant over hydrophobic interaction. • Binding affinity and selectivity of Ni{sup II}-complexes are better than Cu{sup II}-complexes. • Replacement of Cu{sup 2+} by Ni{sup 2+} in a ligand enhances chance of hydrophilic interaction.

  17. Nanomaterials as stationary phases and supports in liquid chromatography.

    Science.gov (United States)

    Beeram, Sandya R; Rodriguez, Elliott; Doddavenkatanna, Suresh; Li, Zhao; Pekarek, Allegra; Peev, Darin; Goerl, Kathryn; Trovato, Gianfranco; Hofmann, Tino; Hage, David S

    2017-10-01

    The development of various nanomaterials over the last few decades has led to many applications for these materials in liquid chromatography (LC). This review will look at the types of nanomaterials that have been incorporated into LC systems and the applications that have been explored for such systems. A number of carbon-based nanomaterials and inorganic nanomaterials have been considered for use in LC, ranging from carbon nanotubes, fullerenes and nanodiamonds to metal nanoparticles and nanostructures based on silica, alumina, zirconia and titanium dioxide. Many ways have been described for incorporating these nanomaterials into LC systems. These methods have included covalent immobilization, adsorption, entrapment, and the synthesis or direct development of nanomaterials as part of a chromatographic support. Nanomaterials have been used in many types of LC. These applications have included the reversed-phase, normal-phase, ion-exchange, and affinity modes of LC, as well as related methods such as chiral separations, ion-pair chromatography and hydrophilic interaction liquid chromatography. Both small and large analytes (e.g., dyes, drugs, amino acids, peptides and proteins) have been used to evaluate possible applications for these nanomaterial-based methods. The use of nanomaterials in columns, capillaries and planar chromatography has been considered as part of these efforts. Potential advantages of nanomaterials in these applications have included their good chemical and physical stabilities, the variety of interactions many nanomaterials can have with analytes, and their unique retention properties in some separation formats. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ion exchange of some transition metal cations on hydrated titanium dioxide in aqueous ammonia solutions

    International Nuclear Information System (INIS)

    Bilewicz, A.; Narbutt, J.; Dybczynski, R.

    1992-01-01

    The adsorption of transition metal cations on hydrated titanium dioxide in complexing ammonia and amine solutions has been studied as a function of ammonia (amine) concentration. The relationships between the distribution coefficients and ammonia concentration as well as the effects of various amines on sorption of transition metals indicate that a coordinate bond is formed between the metal ions and the hydroxy groups of the sorbent. The distribution coefficients of silver(I) and cobalt(II), which form strong ammonia complexes in aqueous solutions, decrease with increasing concentration of ammonia already at concentrations exceeding 10 -3 *mol*dm -3 . Cations of zinc, manganese and mercury which form much weaker ammonia complexes do not exhibit any effect of ammonia concentration in the whole range investigated. In the case of sorption of macroamounts of ammonia or amine complexes of silver, the molecular sieve effect plays an important role. The differences in the affinity of hydrated titanium dioxide for ammonia solvates of various transition metal ions can serve as a tool for effective separation of these ions in ammonia solutions. (author) 10 refs.; 4 figs.; 1 tab

  19. Dual-affinity peptides to generate dense surface coverages of nanoparticles

    International Nuclear Information System (INIS)

    Del Re, Julia; Blum, Amy Szuchmacher

    2014-01-01

    Graphical abstract: - Highlights: • Stable nanoparticles were created with the Flg-A3 fusion peptide as a ligand. • Interactions of transition metal ions with Flg control aggregation of the nanoparticles in solution. • The QBP1-A3 fusion peptide improves surface attachment of gold nanoparticles. • Solution pre-aggregation of nanoparticles results in dense surface coverage. - Abstract: Depositing gold nanoparticles is of great interest because of the many potential applications of nanoparticle films; however, generating dense surface nanoparticle coverage remains a difficult challenge. Using dual-affinity peptides we have synthesized gold nanoparticles and then pre-aggregated the particles in solution via interactions with metal ions. These nanoparticle aggregates were then deposited onto silicon dioxide surfaces using another dual-affinity peptide to control binding to the substrate. The results demonstrate that when divalent ions like Zn 2+ or Ni 2+ are used, densely packed gold nanoparticle monolayers are formed on the silicon dioxide substrate, which may have applications in fields like molecular electronics

  20. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    Science.gov (United States)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  1. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    Science.gov (United States)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-07-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.

  2. An Empirical Formula From Ion Exchange Chromatography and Colorimetry.

    Science.gov (United States)

    Johnson, Steven D.

    1996-01-01

    Presents a detailed procedure for finding an empirical formula from ion exchange chromatography and colorimetry. Introduces students to more varied techniques including volumetric manipulation, titration, ion-exchange, preparation of a calibration curve, and the use of colorimetry. (JRH)

  3. Application of ion chromatography to batchwise activated sludge process for simultaneous removal of thiosulfate, acetate and ammonium ions.

    OpenAIRE

    田中, 一彦; 黒川, 利一; 中島, 良三

    1988-01-01

    Ion chromatography (IC) with conductivity detection for determining anions and ion-exclusion chromatography (IEC) with conductivity detection for determining cations were investigated. Both techniques were applied to the establishment of the optimal conditions for the simultaneous removal of thiosulfate, acetate, and ammonium ions by a batchwise activated sludge process. The process consists of the combination of aerobic and anaerobic biological treatment processes by a sequential automatic p...

  4. Wave packet study of the secondary emission of negatively charged, monoatomic ions from sputtered metals

    Energy Technology Data Exchange (ETDEWEB)

    Sindona, A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy) and Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)]. E-mail: sindona@fis.unical.it; Riccardi, P. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Maletta, S. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Rudi, S.A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Falcone, G. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)

    2007-05-15

    Secondary emission of Ag{sup -} and Au{sup -} particles, following the sputtering of clean Ag(1 0 0) and Au(1 0 0) targets, respectively, is studied with a Crank-Nicholson wave-packet propagation method. A one-electron pseudo-potential is used to describe the plane metal surface, with a projected band gap, the ejected ion, whose charge state is investigated, and its nearest-neighbor substrate ion, put in motion by the collision cascade generated by the primary ion beam. Time-dependent Schroedinger equation is solved backwards in time to determine the evolution of the affinity orbital of the negative particles from an instant when they are unperturbed, at distances of the order of {approx}10{sup 2} a.u. from the surface, to the instant of ejection. The probability that a band electron will be eventually detected in affinity state of the ejected particle is, thus, calculated and compared with the result of another method based on the spectral decomposition of the one-electron Hamiltonian.

  5. Partition/Ion-Exclusion Chromatographic Ion Stacking for the Analysis of Trace Anions in Water and Salt Samples by Ion Chromatography.

    Science.gov (United States)

    Akter, Fouzia; Saito, Shingo; Tasaki-Handa, Yuiko; Shibukawa, Masami

    2018-01-01

    A new analytical methodology for a simple and efficient on-line preconcentration of trace inorganic anions in water and salt samples prior to ion chromatographic determination is proposed. The preconcentration method is based on partition/ion-exclusion chromatographic ion stacking (PIEC ion stacking) with a hydrophilic polymer gel column containing a small amount of fixed anionic charges. The developed on-line PIEC ion stacking-ion chromatography method was validated by recovery experiments for the determination of nitrate in tap water in terms of both accuracy and precision, and the results showed the reliability of the method. The method proposed was also successfully applied to the determination of trace impurity nitrite and nitrate in reagent-grade salts of sodium sulfate. A low background level can be achieved since pure water is used as the eluant for the PIEC ion stacking. It is possible to reach sensitive detection at sub-μg L -1 levels by on-line PIEC ion stacking-ion chromatography.

  6. Influence of metallic surface states on electron affinity of epitaxial AlN films

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Monu; Krishna, Shibin; Aggarwal, Neha [Advanced Materials and Devices Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Gupta, Govind, E-mail: govind@nplindia.org [Advanced Materials and Devices Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2017-06-15

    The present article investigates surface metallic states induced alteration in the electron affinity of epitaxial AlN films. AlN films grown by plasma-assisted molecular beam epitaxy system with (30% and 16%) and without metallic aluminium on the surface were probed via photoemission spectroscopic measurements. An in-depth analysis exploring the influence of metallic aluminium and native oxide on the electronic structure of the films is performed. It was observed that the metallic states pinned the Fermi Level (FL) near valence band edge and lead to the reduction of electron affinity (EA). These metallic states initiated charge transfer and induced changes in surface and interface dipoles strength. Therefore, the EA of the films varied between 0.6–1.0 eV due to the variation in contribution of metallic states and native oxide. However, the surface barrier height (SBH) increased (4.2–3.5 eV) adversely due to the availability of donor-like surface states in metallic aluminium rich films.

  7. Metal Ion Controlled Polymorphism of a Peptide

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Jancso, Attila; Szunyogh, Daniel

    2011-01-01

    ions on fully or partially unstructured proteins, or the effect of metal ions on protein aggregation. Metal ions may be employed to fold (or misfold) individual peptides in a controlled manner depending on the potential metal ion coordinating amino acid side chains (Cys, His, Asp, Glu......In this work a metal ion binding model dodecapeptide was investigated in terms of its capacity to adopt different structures depending on the metal ion to peptide stoichiometry. The dodecapeptide is much simpler than real proteins, yet displays sufficient complexity to model the effect of metal......, …) in the peptide, and the ligand and structural preferences of the metal ion (in our studies Zn2+, Cd2+, Hg2+, Cu+/2+). Simultaneously, new species such as metal ion bridged ternary complexes or even oligomers may be formed. In recent previous studies we have observed similar polymorphism of zinc finger model...

  8. Micellar liquid chromatography

    International Nuclear Information System (INIS)

    Basova, Elena M; Ivanov, Vadim M; Shpigun, Oleg A

    1999-01-01

    Background and possibilities of practical applications of micellar liquid chromatography (MLC) are considered. Various retention models in MLC, the effects of the nature and concentration of surfactants and organic modifiers, pH, temperature and ionic strength on the MLC efficiency and selectivity are discussed. The advantages and limitations of MLC are demonstrated. The performance of MLC is critically evaluated in relationship to the reversed-phase HPLC and ion-pair chromatography. The potential of application of MLC for the analysis of pharmaceuticals including that in biological fluids and separation of inorganic anions, transition metal cations, metal chelates and heteropoly compounds is described. The bibliography includes 146 references.

  9. Laser photoelectron spectroscopy of MnH - 2, FeH - 2, CoH - 2, and NiH - 2: Determination of the electron affinities for the metal dihydrides

    Science.gov (United States)

    Miller, Amy E. S.; Feigerle, C. S.; Lineberger, W. C.

    1986-04-01

    The laser photoelectron spectra of MnH-2, FeH-2, CoH-2, and NiH-2 and the analogous deuterides are reported. Lack of vibrational structure in the spectra suggests that all of the dihydrides and their negative ions have linear geometries, and that the transitions observed in the spectra are due to the loss of nonbonding d electrons. The electron affinities for the metal dihydrides are determined to be 0.444±0.016 eV for MnH2, 1.049±0.014 eV for FeH2, 1.450±0.014 eV for CoH2, and 1.934±0.008 eV for NiH2. Electronic excitation energies are provided for excited states of FeH2, CoH2, and NiH2. Electron affinities and electronic excitation energies for the dideuterides are also reported. A limit on the electron affinity of CrH2 of ≥2.5 eV is determined. The electron affinities of the dihydrides directly correlate with the electron affinities of the high-spin states of the monohydrides, and with the electron affinities of the metal atoms. These results are in agreement with a qualitative model developed for bonding in the monohydrides.

  10. Proceedings of the DAE-BRNS theme meeting on ion chromatography separations - state of art and perspectives

    International Nuclear Information System (INIS)

    Jeyakumar, S.; Ramakumar, K.L.

    2012-01-01

    Ion Chromatography (IC) plays a vital role in all disciplines of science and technology. In the field of trace separations and speciation studies, use of IC techniques becomes indispensable. In nuclear technology, IC plays a pivotal role in the reactor water chemistry, in the front end of fuel cycle especially in the characterization of nuclear materials including the reactor fuels, post irradiation examination, actinide speciation studies and in understanding the interaction and migration of actinide species in the geo environment. Ion chromatography is also useful in the studies related to waste management particularly for the separation and determination of fission products. The aim of this meeting is to provide a forum to all the researchers in the area of ion chromatography to discuss their recent findings and information, to learn from the mutual experiences and interests, and to promote cooperation both nationally and internationally. Ion chromatography techniques including Ion Chromatography Separations and Nuclear Materials, Speciation Studies by Ion chromatography, Hyphenated -IC Techniques, Reactor Water Chemistry and Ion Chromatography, Solid Phase Extraction and Sample Preparations for IC and Separation of Bio-molecules and Environmental aspects etc are discussed. Papers relevant to INIS are indexed separately

  11. Metal ion implantation: Conventional versus immersion

    International Nuclear Information System (INIS)

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.

    1994-01-01

    Vacuum-arc-produced metal plasma can be used as the ion feedstock material in an ion source for doing conventional metal ion implantation, or as the immersing plasma for doing plasma immersion ion implantation. The basic plasma production method is the same in both cases; it is simple and efficient and can be used with a wide range of metals. Vacuum arc ion sources of different kinds have been developed by the authors and others and their suitability as a metal ion implantation tool has been well established. Metal plasma immersion surface processing is an emerging tool whose characteristics and applications are the subject of present research. There are a number of differences between the two techniques, both in the procedures used and in the modified surfaces created. For example, the condensibility of metal plasma results in thin film formation and subsequent energetic implantation is thus done through the deposited layer; in the usual scenario, this recoil implantation and the intermixing it produces is a feature of metal plasma immersion but not of conventional energetic ion implantation. Metal plasma immersion is more suited (but not limited) to higher doses (>10 17 cm -2 ) and lower energies (E i < tens of keV) than the usual ranges of conventional metal ion implantation. These and other differences provide these vacuum-arc-based surface modification tools with a versatility that enhances the overall technological attractiveness of both

  12. Variation in one residue associated with the metal ion-dependent adhesion site regulates αIIbβ3 integrin ligand binding affinity.

    Directory of Open Access Journals (Sweden)

    Joel Raborn

    Full Text Available The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala(252 and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala(252 to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion.

  13. Remediation of groundwater containing radionuclides and heavy metals using ion exchange and the AlgaSORB reg-sign biosorbent system

    International Nuclear Information System (INIS)

    Feiler, H.D.; Darnall, D.W.

    1991-01-01

    Bio-Recovery Systems, Inc. (BRS) studied the application of an immobilized algal biomass, termed AlgaSORB reg-sign, which has high affinity for heavy metal ions to DOE-contaminated groundwaters. The material can be packed into columns similar to commercial ion exchange resins. Dilute solutions containing heavy metals are passed through columns where metals are absorbed by the AlgaSORB reg-sign resins. Once saturated, metal ions can be stripped from the resin biomass in a highly concentrated solution. Groundwaters contaminated with heavy metal ions from three different Department of Energy (DOE) sites: Savannah River, Hanford and the Oak Ridge Y-12 Plant were studied. The objective was to perform bench-scale treatability studies to establish treatment protocols and to optimize an AlgaSORB reg-sign/ion exchange technology system to remove and recover toxic metal ions from these contaminated groundwaters. The specialty ion exchange/AlgaSORB reg-sign resins tested in these studies show promise for selectively removing chromium, mercury and uranium from contaminated groundwater at DOE sites. The data show that effluents which satisfy the allowable metal ion limits are possible and most likely achievable. The use of these highly selective resins also offer advantages in terms of cost/benefit, risk and scheduling. Their high selectivity allows for high capacity and opportunities for recovery of removed constituents due to high pollutant concentration possible (3 to 4 orders of magnitude). Ion exchange is a proven technology which is easily automated and can be cost-effective, depending on the application

  14. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method.

    Science.gov (United States)

    Ma, Weina; Yang, Liu; Lv, Yanni; Fu, Jia; Zhang, Yanmin; He, Langchong

    2017-06-23

    The equilibrium dissociation constant (K D ) of drug-membrane receptor affinity is the basic parameter that reflects the strength of interaction. The cell membrane chromatography (CMC) method is an effective technique to study the characteristics of drug-membrane receptor affinity. In this study, the K D value of CMC relative standard method for the determination of drug-membrane receptor affinity was established to analyze the relative K D values of drugs binding to the membrane receptors (Epidermal growth factor receptor and angiotensin II receptor). The K D values obtained by the CMC relative standard method had a strong correlation with those obtained by the frontal analysis method. Additionally, the K D values obtained by CMC relative standard method correlated with pharmacological activity of the drug being evaluated. The CMC relative standard method is a convenient and effective method to evaluate drug-membrane receptor affinity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Investigation of the potential of silica-bonded macrocyclic ligands for separation of metal ions from nuclear waste

    International Nuclear Information System (INIS)

    Camaioni, D.M.; Colton, N.G.; Bruening, R.L.

    1992-01-01

    This report describes the testing of some novel separations materials known as SuperLig trademark materials for their ability to separate efficiently and selectively certain metal ions from a synthetic, nonradioactive nuclear waste solution. The materials, developed and patented by IBC Advanced Technologies, are highly selective macrocyclic ligands that have been covalently bonded to silica gel. The SuperLig trademark materials that were tested are: (1) SuperLig trademark 601 for barium (Ba 2+ ) and strontium (Sr 2+ ) separation, (2) SuperLig trademark 602 for cesium (Cs + ) and rubidium (Rb + ) separation, (3) SuperLig trademark 27 for palladium (Pd 2+ ) separation, and (4) SuperLig trademark II for silver (Ag + ) and ruthenium (Ru 3+ ) separation. Our observations show that the technology for separating metal ions using silica-bonded macrocycles is essentially sound and workable to varying degrees of success that mainly depend on the affinity of the macrocycle for the metal ion of interest. It is expected that ligands will be discovered or synthesized that are amenable to separating metal ions of interest using this technology. Certainly more development, testing, and evaluation is warranted. 3 figs., 11 tabs

  16. Application of ion chromatography to the control of materials of nuclear interest

    International Nuclear Information System (INIS)

    Pires, M.A.F.

    1989-01-01

    The present work concerns ion chromatrography (IC) with conductometric detection as analytical technique for controling several materials of nuclear interest by determining the chemical elements present in them. Priority has been given to the individual determination of the lanthanide elements and yttrium. Complexing agents were used as eluents for the elements studied. Several experiments were performed in which the eluent composition as well as its pH were varied, so obtaining the eluent's iso-pH and iso-concentration values for each of the lanthanide and yttrium. The importance of the presence of the ethylenediamine ion on the separation and elution of the rare-earths was investigated. The determination of the alkaline metals and ammonium ion, alkaline-earth elements, fluoride, chloride, nitrate and phosphate anions in several solutions and in different materials that are involved in the chemical processes belonging to the fuel cycle was carried out. Single column ion chromatography technique was applied for determining all the lanthanide elements as well as yttrium, magnesium, calcium, strontium and barium and the sensibility of the measurements determined. A rapid chromatographic method for determining gadolinium in urania-gadolinia matrix is also proposed. Quantitative data on the separation of the lanthanide elements and yttrium from large amounts or other ions, rare earths for example, are presented. (author) [pt

  17. New developments in metal ion implantation by vacuum arc ion sources and metal plasma immersion

    International Nuclear Information System (INIS)

    Brown, I.G.; Anders, A.; Anders, S.

    1996-01-01

    Ion implantation by intense beams of metal ions can be accomplished using the dense metal plasma formed in a vacuum arc discharge embodied either in a vacuum arc ion source or in a metal plasma immersion configuration. In the former case high energy metal ion beams are formed and implantation is done in a more-or-less conventional way, and in the latter case the substrate is immersed in the plasma and repetitively pulse-biased so as to accelerate the ions at the high voltage plasma sheath formed at the substrate. A number of advances have been made in the last few years, both in plasma technology and in the surface modification procedures, that enhance the effectiveness and versatility of the methods, including for example: controlled increase of the in charge states produced; operation in a dual metal-gaseous ion species mode; very large area beam formation; macroparticle filtering; and the development of processing regimes for optimizing adhesion, morphology and structure. These complementary ion processing techniques provide the plasma tools for doing ion surface modification over a very wide parameter regime, from pure ion implantation at energies approaching the MeV level, through ion mixing at energies in the ∼1 to ∼100 keV range, to IBAD-like processing at energies from a few tens of eV to a few keV. Here the authors review the methods, describe a number of recent developments, and outline some of the surface modification applications to which the methods have been put. 54 refs., 9 figs

  18. Metal ion-assisted self-assembly of complexes for controlled and sustained release of minocycline for biomedical applications

    International Nuclear Information System (INIS)

    Zhang, Zhiling; Wang, Zhicheng; Nong, Jia; Nix, Camilla A; Zhong, Yinghui; Ji, Hai-Feng

    2015-01-01

    This study reports the development of novel drug delivery complexes self-assembled by divalent metal ion-assisted coacervation for controlled and sustained release of a hydrophilic small drug molecule minocycline hydrochloride (MH). MH is a multifaceted agent that has demonstrated therapeutic effects in infection, inflammation, tumor, as well as cardiovascular, renal, and neurological disorders due to its anti-microbial, anti-inflammatory, and cytoprotective properties. However, the inability to translate the high doses used in experimental animals to tolerable doses in human patients limits its clinical application. Localized delivery can potentially expose the diseased tissue to high concentrations of MH that systemic delivery cannot achieve, while minimizing the side effects from systemic exposure. The strong metal ion binding-assisted interaction enabled high drug entrapment and loading efficiency, and stable long term release for more than 71 d. Released MH demonstrated potent anti-biofilm, anti-inflammatory, and neuroprotective activities. Furthermore, MH release from the complexes is pH-sensitive as the chelation between minocycline and metal ions decreases with pH, allowing ‘smart’ drug release in response to the severity of pathology-induced tissue acidosis. This novel metal ion binding-mediated drug delivery mechanism can potentially be applied to other drugs that have high binding affinity for metal ions and may lead to the development of new delivery systems for a variety of drugs. (paper)

  19. Matrix influences on the determination of common ions by using ion chromatography part 1--determination of inorganic anions.

    Science.gov (United States)

    Michalski, Rajmund; Lyko, Aleksandra; Kurzyca, Iwona

    2012-07-01

    Ion chromatography is the most popular instrumental analytical method used for the determination of anions and cations in water and wastewater. Isocratic ion chromatography with suppressed conductivity detection is frequently used in laboratories carrying out routine analyses of inorganic anions. The paper presents the results of the research into the influence of selected inorganic anions dominant in environmental samples (Cl(-), NO(3)(-), SO(4)(2-)) on the possibility of simultaneous determination of F(-), Cl(-), NO(2)(-), NO(3)(-), PO(4)(3-) and SO(4)(2-) with the application of this most popular ion chromatography type in standard separation conditions. Four Dionex and four Metrohm anion-exchange columns were tested in standard separation conditions recommended by their manufacturers with both standard solutions and environmental samples with complex matrix.

  20. Ion exchange separation of nitrate from uranium compounds and its determination by spectrophotometry and ion chromatography

    International Nuclear Information System (INIS)

    Pires, M.A.F.; Atalla, L.T.; Abrao, A.

    1985-11-01

    A procedure for the separation of nitrate from uranium compounds by retaintion of uranyl ion on a cationic ion exchanger and its determination in the effluent is described. Nitrate is analysed by the spectrometric method with 1-phenol-2,4-dissulphonic acid. This determination covers the 1 to 10 μg NO - 3 /mL range and requires an amount of 10 to 100 μg NO - 3 . The main interference is uranium (VI) due its own intense yellow color. This difficulty is overcome by the complete separation of UO 2 ++ with the cationic resin. Alternatively, the ion chromatography technique is used for the determination of nitrate in the effluent of the cationic resin. The determination was easily made by the comparison of the nitrate peak hights of the analyte and the standard solutions. The ion chromatography method is very sensitive (0,3 μg NO - 3 /mL), reproducible and suitable for routine analysis and permits the determination of fraction of part per million of nitrate in uranium. The results of nitrate determination using both spectrophotometric and ion chromatography techniques are compared. The method is being routinely applied for the quality control of uranium compounds in the fuel cycle, specially uranium oxide, ammonium diuranate, uranium peroxide and ammonium uranyl tricarbonate. (Author) [pt

  1. Sample displacement chromatography as a method for purification of proteins and peptides from complex mixtures

    Science.gov (United States)

    Gajdosik, Martina Srajer; Clifton, James; Josic, Djuro

    2012-01-01

    Sample displacement chromatography (SDC) in reversed-phase and ion-exchange modes was introduced approximately twenty years ago. This method takes advantage of relative binding affinities of components in a sample mixture. During loading, there is a competition among different sample components for the sorption on the surface of the stationary phase. SDC was first used for the preparative purification of proteins. Later, it was demonstrated that this kind of chromatography can also be performed in ion-exchange, affinity and hydrophobic-interaction mode. It has also been shown that SDC can be performed on monoliths and membrane-based supports in both analytical and preparative scale. Recently, SDC in ion-exchange and hydrophobic interaction mode was also employed successfully for the removal of trace proteins from monoclonal antibody preparations and for the enrichment of low abundance proteins from human plasma. In this review, the principals of SDC are introduced, and the potential for separation of proteins and peptides in micro-analytical, analytical and preparative scale is discussed. PMID:22520159

  2. Ion implantation of metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1976-01-01

    In this part of the paper descriptions are given of the effects of ion implantation on (a) friction and wear in metals; and (b) corrosion of metals. In the study of corrosion, ion implantation can be used either to introduce a constituent that is known to convey corrosion resistance, or more generally to examine the parameters which control corrosion. (U.K.)

  3. Separation of transition-metal and 8-hydroxyquinoline-5-sulfonic acid complexes using ion-pair liquid chromatography

    International Nuclear Information System (INIS)

    Basova, E.M.; Demurov, L.M.; Shpigun, O.A.; Van Iyuchun'

    1994-01-01

    The retention of chelates of Fe(3), Cu(2), Co(2), Ni(2), Zn(2), Cd(2), Hg(2), and Pb)(2) with 8-hydroxyquinoline-5-sulfonic acid depending on the concentration of cetyltrimethylammonium bromide, acetonitrile, and pH of the mobile phase was investigated using the ion-pair reversed-phase high-performance liquid chromatography on separon C 18 . Under the optimum conditions, the separation of mixtures of Fe(3), Co(2) and Ni(2) is performed within 8 to 12 min

  4. Ion exchange and liquid column chromatography

    International Nuclear Information System (INIS)

    Walton, H.F.

    1980-01-01

    Major accomplishments in liquid chromatography for the past two years and reported in journals available to December 31, 1979 are reviewed. Emphasis has been placed on principles and methodology with some representative examples of application included. Applications are illustrated in two rather lenghtly tables, one covering inorganic ions and the other covering organic compounds. 544 references, 8 books, and 15 reviews are listed in the bibliography

  5. Ion-Exchange Chromatography: Basic Principles and Application.

    Science.gov (United States)

    Cummins, Philip M; Rochfort, Keith D; O'Connor, Brendan F

    2017-01-01

    Ion-Exchange Chromatography (IEC) allows for the separation of ionizable molecules on the basis of differences in charge properties. Its large sample-handling capacity, broad applicability (particularly to proteins and enzymes), moderate cost, powerful resolving ability, and ease of scale-up and automation have led to it becoming one of the most versatile and widely used of all liquid chromatography (LC) techniques. In this chapter, we review the basic principles of IEC, as well as the broader criteria for selecting IEC conditions. By way of further illustration, we outline basic laboratory protocols to partially purify a soluble serine peptidase from bovine whole brain tissue, covering crude tissue extract preparation through to partial purification of the target enzyme using anion-exchange chromatography. Protocols for assaying total protein and enzyme activity in both pre- and post-IEC fractions are also described.

  6. High-capacity cation-exchange column for enhanced resolution of adjacent peaks of cations in ion chromatography.

    Science.gov (United States)

    Rey, M A

    2001-06-22

    One of the advantages of ion chromatography [Anal Chem. 47 (1975) 1801] as compared to other analytical techniques is that several ions may be analyzed simultaneously. One of the most important contributions of cation-exchange chromatography is its sensitivity to ammonium ion, which is difficult to analyze by other techniques [J. Weiss, in: E.L. Johnson (Ed.), Handbook of Ion Chromatography, Dionex, Sunnyvale, CA, USA]. The determination of low concentrations of ammonium ion in the presence of high concentrations of sodium poses a challenge in cation-exchange chromatography [J. Weiss, Ion Chromatography, VCH, 2nd Edition, Weinheim, 1995], as both cations have similar selectivities for the common stationary phases containing either sulfonate or carboxylate functional groups. The task was to develop a new cation-exchange stationary phase (for diverse concentration ratios of adjacent peaks) to overcome limitations experienced in previous trails. Various cation-exchange capacities and column body formats were investigated to optimize this application and others. The advantages and disadvantages of two carboxylic acid columns of different cation-exchange capacities and different column formats will be discussed.

  7. Cellulose Nanocrystals Obtained from Rice By-Products and Their Binding Potential to Metallic Ions

    Directory of Open Access Journals (Sweden)

    Vanessa L. Albernaz

    2015-01-01

    Full Text Available The present study aimed to develop and optimize a method to obtain cellulose nanocrystals from the agricultural by-products rice husk and straw and to evaluate their electrostructural modifications in the presence of metallic ions. First, different particle formation conditions and routes were tested and analyzed by spectrophotometry, dynamic light scattering (DLS, and Zeta potential measurements. Then, electrostructural effects of ions Na(I, Cd(II, and Al(III on the optimized nanoparticles were analyzed by atomic force microscopy (AFM, scanning electron microscopy (SEM, and electrical conductivity (EC assessments. The produced cellulose nanocrystals adopted a rod-like shape. AFM height distribution and EC data indicated that the nanocrystals have more affinity in binding with Na(I > Al(III > Cd(II. These data suggest that the use of these cellulose nanocrystals in the bioremediation field is promising, both in metal sorption from wastewater and as an alternative for water desalination.

  8. A bis(3-hydroxy-4-pyridinone)-EDTA derivative as a strong chelator for M3+ hard metal ions: complexation ability and selectivity.

    Science.gov (United States)

    Gama, Sofia; Dron, Paul; Chaves, Silvia; Farkas, Etelka; Santos, M Amélia

    2009-08-21

    The study of chelating compounds is very important to solve problems related to human metal overload. 3-Hydroxy-3-pyridinones (HP), namely deferiprone, have been clinically used for chelating therapy of Fe and Al over the last decade. A multi-disciplinary search for alternative molecules led us to develop poly-(3-hydroxy-4-pyridinones) to increase metal chelation efficacy. We present herein a complexation study of a new bis-(3-hydroxy-4-pyridinone)-EDTA derivative with a set of M(3+) hard metal ions (M = Fe, Al, Ga), as well as Zn(2+), a biologically relevant metal ion. Thus a systematic aqueous solution equilibrium study was performed using potentiometric and spectroscopic techniques (UV-Vis, NMR methods). These set of results enables the establishment of specific models as well as the determination of thermodynamic stability constants and coordination modes of the metal complexes. The results indicate that this ligand has a higher affinity for chelating to these hard metal ions than deferiprone, and that the coordination occurs mostly through the HP moieties. Furthermore, it was also found that this ligand has a higher selectivity for chelating to M(3+) hard metal ions (M = Fe, Al, Ga) than Zn(2+).

  9. Separation of metal ions using an o-hydroxypropiophenoxime resin

    International Nuclear Information System (INIS)

    King, J.N.

    1977-12-01

    A chelating ion-exchange resin incorporating an o-hydroxypropiophenoxime functional group onto an XAD-4 polymer matrix has been synthesized. This resin has been used for the separation and quantitative determination of both copper and molybdenum by high-speed liquid chromatography. Iron, uranium, citrate, and fluoride were found to interfere in the determination of copper. Of the ions tested, none were found to interfere with the determination of molybdenum. Several NBS Standard samples were successfully analyzed for copper and molybdenum. The new method is both accurate and fast. Most samples can be analyzed in less than ten minutes. Bis(2-hydroxyethyl) dithiocarbamate was shown to be superior to PAR as a color-forming reagent for the continuous spectrophotometric detection of copper. Thiolactic acid was shown to be adaptable to the continuous spectrophotometric detection of molybdenum. Both dyes gave linear responses when peak height was plotted against micrograms of metal

  10. Radiogas chromatography mass spectrometry in the selected ion monitoring mode

    International Nuclear Information System (INIS)

    Doerfler, D.L.; Rosenblum, E.R.; Malloy, J.M.; Naworal, J.D.; McManus, I.R.; Campbell, I.M.

    1980-01-01

    The value of selected ion monitoring in analyzing biological radio isotope incorporation experiments by radiogas chromatography mass spectrometry is illustrated with reference to the biosynthesis of the mycotoxin mycophenolic acid in Penicillium brevicompactum and the mode of action of the anticholesterolemic drug 20,25-diazacholesterol. Both examples used 1-[ 14 C]acetate precursors. It is shown that the increased sensitivity and specificity of the selected ion monitoring mode detector permits straightforward detection and identification of the relatively small cellular pools associated with metabolic intermediates. The computer program RADSIM is described. Problems that still exist in using radiogas gas chromatography mass spectrometry technology to analyse isotope incorporation experiments are discussed. (author)

  11. The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1), Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo.

    Science.gov (United States)

    Sankova, Tatiana P; Orlov, Iurii A; Saveliev, Andrey N; Kirilenko, Demid A; Babich, Polina S; Brunkov, Pavel N; Puchkova, Ludmila V

    2017-11-03

    There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST) and the N-terminal domain (ectodomain) of human high affinity copper transporter CTR1 (hNdCTR1), which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell's copper metabolism and its chelating properties are discussed.

  12. Engineering of microorganisms towards recovery of rare metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Kouichi; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences

    2010-06-15

    The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of metal-binding proteins in the cytoplasm. As an alternative, the cell surface design of microorganisms by cell surface engineering is an emerging strategy for bioadsorption and recovery of metal ions. Cell surface engineering was firstly applied to the construction of a bioadsorbent to adsorb heavy metal ions for bioremediation. Cell surface adsorption of metal ions is rapid and reversible. Therefore, adsorbed metal ions can be easily recovered without cell breakage, and the bioadsorbent can be reused or regenerated. These advantages are suitable for the recovery of rare metal ions. Actually, the cell surface display of a molybdate-binding protein on yeast led to the enhanced adsorption of molybdate, one of the rare metal ions. An additional advantage is that the cell surface display system allows high-throughput screening of protein/peptide libraries owing to the direct evaluation of the displayed protein/peptide without purification and concentration. Therefore, the creation of novel metal-binding protein/ peptide and engineering of microorganisms towards the recovery of rare metal ions could be simultaneously achieved. (orig.)

  13. Interaction of d(10) metal ions with thioether ligands: a thermodynamic and theoretical study.

    Science.gov (United States)

    Melchior, Andrea; Peralta, Elena; Valiente, Manuel; Tavagnacco, Claudio; Endrizzi, Francesco; Tolazzi, Marilena

    2013-05-07

    Thermodynamic parameters of complex formation between d(10) metal ions, such as Zn(2+), Cd(2+), Hg(2+) and Ag(+), and the macrocyclic thioether 1,4,7-trithiacyclononane ([9]AneS3) or the monodentate diethylsulfide (Et(2)S), in acetonitrile (AN) at 298.15 K, were studied by a systematic methodology including potentiometry, calorimetry and polarography. [9]AneS3 is able to form complexes with all the target cations, Et(2)S only reacts with Hg(2+) and Ag(+). Mononuclear ML(j) (j = 1, 2) complexes are formed with all the metal ions investigated, where the affinity order is Hg(2+) > Ag(+) > Cd(2+) ≈ Zn(2+) when L = [9]AneS3 and Hg(2+) > Ag(+) when L = Et(2)S. Enthalpy and entropy values are generally negative, as a consequence of both metal ion interactions with neutral ligands, the reagents' loss of degrees of freedom and the release of solvating molecules. DFT calculations on the complexes formed with [9]AneS3 in vacuum and in AN are also carried out, to correlate experimental and theoretical thermodynamic values and to highlight the interplay between the direct metal-thioether interaction and the solvation effects. Trends obtained for the stability constants and enthalpies of the 1 : 1 and 1 : 2 complexes in solvent well reproduce the experimental ones for all the divalent metal ion complexes with [9]AneS3 and indicate the release of 3 AN molecules in the formation of each consecutive octahedral complex. In addition, calculated and experimental values for Ag(+) complex formation in solution suggest that in AgL(2) species [9]AneS3 ligands are not both tridentate.

  14. Versatile high current metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1992-01-01

    A metal ion implantation facility has been developed with which high current beams of practically all the solid metals of the periodic table can be produced. A multicathode, broad-beam, metal vapor vacuum arc ion source is used to produce repetitively pulsed metal ion beams at an extraction voltage of up to 100 kV, corresponding to an ion energy of up to several hundred kiloelectronvolts because of the ion charge state multiplicity, and with a beam current of up to several amps peak pulsed and several tens of milliamps time averaged delivered onto a downstream target. Implantation is done in a broad-beam mode, with a direct line of sight from ion source to target. Here we summarize some of the features of the ion source and the implantation facility that has been built up around it. (orig)

  15. Metal-conjugated affinity labels: A new concept to create enantioselective artificial metalloenzymes

    KAUST Repository

    Reiner, Thomas

    2013-02-20

    How to train a protein: Metal-conjugated affinity labels were used to selectively position catalytically active metal centers in the binding pocket of proteases. The resulting artificial metalloenzymes achieve up to 82% e.r. in the hydrogenation of ketones. The modular setup enables a rapid generation of artificial metalloenzyme libraries, which can be adapted to a broad range of catalytic conditions. 2013 The Authors.

  16. Metal-conjugated affinity labels: A new concept to create enantioselective artificial metalloenzymes

    KAUST Repository

    Reiner, Thomas; Jantke, Dominik; Marziale, Alexander N.; Raba, Andreas; Eppinger, Jö rg

    2013-01-01

    How to train a protein: Metal-conjugated affinity labels were used to selectively position catalytically active metal centers in the binding pocket of proteases. The resulting artificial metalloenzymes achieve up to 82% e.r. in the hydrogenation of ketones. The modular setup enables a rapid generation of artificial metalloenzyme libraries, which can be adapted to a broad range of catalytic conditions. 2013 The Authors.

  17. Ion chromatography of anions in the primary and secondary circuit

    International Nuclear Information System (INIS)

    Brandt, F.; Trost, R.

    1984-01-01

    Ion chromatography - though based on the same, well-established basic principles as gas chromatography and high pressure fluid chromatography - has made an actual breakthrough only in recent years. The adaptability of the process permits the measurement of samples of different composition or concentration. Some of the experience which has been accumulated in the laboratory at Goesgen nuclear power station during the last two years, is reported. This relates particularly to the composition of the samples, the need to use extremely pure calibration samples, the choice of special laboratory accessories and the like. (orig.) [de

  18. Chemical partitioning of heavy metals in suspended particulates of Tajan River

    International Nuclear Information System (INIS)

    Nikoosepehr, E.

    2002-01-01

    In this investigation samples of river water sediments were collected at Takam bridge in Tajan River. In order to evaluate various chemical bonds ( loosely bonded ions, sulphides and organics), 120 A A S reading on Zn, Mn, Ni was carried out. The results indicates that Zn and Ni have more affinity towards sulphides while Cu and Mn are rather concentrated in loosely bonded ions. We have found out the following trends: Affinity of metals in loosely bonded ions in 63 and 40 μm fraction in Mn>Cu>Ni>Zn. Affinity of metals in organic bonds in 63 and 40 μm fraction is Zn>Ni>Mn>Cu and Zn>Ni>Cu>Mn respectively. It should be pointed out that metals do not show any regular pattern with sulphides: however in 63 μm fraction the trend is Zn>Ni>Cu>Mn

  19. Coprecipitation of alkali metal ions with calcium carbonate

    International Nuclear Information System (INIS)

    Okumura, Minoru; Kitano, Yasushi

    1986-01-01

    The coprecipitation of alkali metal ions Li + , Na + , K + and Rb + with calcium carbonate has been studied experimentally and the following results have been obtained: (1) Alkali metal ions are more easily coprecipitated with aragonite than with calcite. (2) The relationship between the amounts of alkali metal ions coprecipitated with aragonite and their ionic radii shows a parabolic curve with a peak located at Na + which has approximately the same ionic radius as Ca 2+ . (3) However, the amounts of alkali metal ions coprecipitated with calcite decrease with increasing ionic radius of alkali metals. (4) Our results support the hypothesis that (a) alkali metals are in interstitial positions in the crystal structure of calcite and do not substitute for Ca 2+ in the lattice, but (b) in aragonite, alkali metals substitute for Ca 2+ in the crystal structure. (5) Magnesium ions in the parent solution increase the amounts of alkali metal ions (Li + , Na + , K + and Rb + ) coprecipitated with calcite but decrease those with aragonite. (6) Sodium-bearing aragonite decreases the incorporation of other alkali metal ions (Li + , K + and Rb + ) into the aragonite. (author)

  20. Isolation of a new ssDNA aptamer against staphylococcal enterotoxin B based on CNBr-activated sepharose-4B affinity chromatography.

    Science.gov (United States)

    Hedayati Ch, Mojtaba; Amani, Jafar; Sedighian, Hamid; Amin, Mohsen; Salimian, Jafar; Halabian, Raheleh; Imani Fooladi, Abbas Ali

    2016-09-01

    Staphylococcus aureus are potent human pathogens possessing arsenal of virulence factors. Staphylococcal food poisoning (SFP) and respiratory infections mediated by staphylococcal enterotoxin B (SEB) are common clinical manifestations. Many diagnostic techniques are based on serological detection and quantification of SEB in different food and clinical samples. Aptamers are known as new therapeutic and detection tools which are available in different ssDNA, dsDNA and protein structures. In this study, we used a new set of ssDNA aptamers against SEB. The methods used included preparation of a dsDNA library using standard SEB protein as the target analyte, affinity chromatography matrix in microfuge tubes, SELEX procedures to isolate specific ssDNA-aptamer as an affinity ligand, aptamer purification using ethanol precipitation method, affinity binding assay using ELISA, aptamer cloning and specificity test. Among 12 readable sequences, three of them were selected as the most appropriate aptamer because of their affinity and specificity to SEB. This study presents a new set of ssDNA aptamer with favorable selectivity to SEB through 12 rounds of SELEX. Selected aptamers were used to detect SEB in infected serum samples. Results showed that SEB c1 aptamer (2 µg SEB/100 nM aptamer) had favorable specificity to SEB (kd  = 2.3 × 10(-11) ). In conclusion, aptamers can be considered as useful tools for detecting and evaluating SEB. The results showed that affinity chromatography was an affordable assay with acceptable accuracy to isolate sensitive and selective novel aptamers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Advances in silver ion chromatography for the analysis of fatty acids and triacylglycerols-2001 to 2011.

    Science.gov (United States)

    Momchilova, Svetlana M; Nikolova-Damyanova, Boryana M

    2012-01-01

    An effort is made to critically present the achievements in silver ion chromatography during the last decade. Novelties in columns, mobile-phase compositions and detectors are described. Recent applications of silver ion chromatography in the analysis of fatty acids and triacylglycerols are presented while stressing novel analytical strategies or new objects. The tendencies in the application of the method in complementary ways with reversed-phase chromatography, chiral chromatography and, especially, mass detection are outlined.

  2. Metal vapor vacuum arc ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-06-01

    We have developed a family of metal vapor vacuum are (MEVVA) high current metal ion sources. The sources were initially developed for the production of high current beams of metal ions for heavy ion synchrotron injection for basic nuclear physics research; more recently they have also been used for metal ion implantation. A number of different embodiments of the source have been developed for these specific applications. Presently the sources operate in a pulsed mode, with pulse width of order 1 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, and since the ions produced in the vacuum arc plasma are in general multiply ionized the ion energy is up to several hundred keV. Beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Nearly all of the solid metals of the Periodic Table have been use to produce beam. A number of novel features have been incorporated into the sources, including multiple cathodes and the ability to switch between up to 18 separate cathode materials simply and quickly, and a broad beam source version as well as miniature versions. here we review the source designs and their performance. 45 refs., 7 figs

  3. Novel metal ion surface modification technique

    International Nuclear Information System (INIS)

    Brown, I.G.; Godechot, X.; Yu, K.M.

    1990-10-01

    We describe a method for applying metal ions to the near-surface region of solid materials. The added species can be energetically implanted below the surface or built up as a surface film with an atomically mixed interface with the substrate; the metal ion species can be the same as the substrate species or different from it, and more than one kind of metal species can be applied, either simultaneously or sequentially. Surface structures can be fabricated, including coatings and thin films of single metals, tailored alloys, or metallic multilayers, and they can be implanted or added onto the surface and ion beam mixed. We report two simple demonstrations of the method: implantation of yttrium into a silicon substrate at a mean energy of 70 keV and a dose of 1 x 10 16 atoms/cm 2 , and the formation of a titanium-yttrium multilayer structure with ion beam mixing to the substrate. 17 refs., 3 figs

  4. Metallic vapor supplying by the electron bombardment for a metallic ion production with an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kitagawa, Atsushi; Sasaki, Makoto; Muramatsu, Masayuki [National Inst. of Radiological Sciences, Chiba (Japan); Jincho, Kaoru; Sasaki, Noriyuki; Sakuma, Tetsuya; Takasugi, Wataru; Yamamoto, Mitsugu [Accelerator Engineering Corporation, Chiba (Japan)

    2001-11-19

    To produce the metallic ion beam for the injection into the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS), a new gas supply method has been developed for an 18 GHz ECR ion source (NIRS-HEC). A metallic target rod at a high positive potential is melted by the electron bombardment technique. The evaporated gas with a maximum flow rate of 50A/sec is supplied into the ECR plasma in case of Fe metal. (author)

  5. Metallic vapor supplying by the electron bombardment for a metallic ion production with an ECR ion source

    International Nuclear Information System (INIS)

    Kitagawa, Atsushi; Sasaki, Makoto; Muramatsu, Masayuki; Jincho, Kaoru; Sasaki, Noriyuki; Sakuma, Tetsuya; Takasugi, Wataru; Yamamoto, Mitsugu

    2001-01-01

    To produce the metallic ion beam for the injection into the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS), a new gas supply method has been developed for an 18 GHz ECR ion source (NIRS-HEC). A metallic target rod at a high positive potential is melted by the electron bombardment technique. The evaporated gas with a maximum flow rate of 50A/sec is supplied into the ECR plasma in case of Fe metal. (author)

  6. Ion-beam-mixing in metal-metal systems and metal-silicon systems

    International Nuclear Information System (INIS)

    Hung, L.

    1984-01-01

    The influence of energetic ion bombardment on the composition and structure of thin film materials and utilization of ion-beam-mixing techniques to modify interfacial reactions are reported in this thesis. The phase formation in metals by using ion mixing techniques has been studied. Upon ion irradiation of Al/Pt, Al/Pd and Al/Ni thin films, only the simplest intermetallic compounds of PdAl and NiAl were formed in crystalline structure, while the amorphous phase has been observed over a large range of composition. Ion mixing of Au/Cu bilayers resulted in the formation of substitutional solid solutions with no trace of ordered compounds. The formation of the ordered compound CuAu was achieved either by irradiation of bilayers with Ar ions at elevated substrate temperature or by irradiation of the mixed layers with He ions at relatively low temperature. In the Au/Al system several crystal compounds existed in the as-deposited samples. These phases remained crystalline or transformed into other equilibrium compounds upon ion irradiation. The results suggest that the phase formation by ion mixing is dependent on the high quench rate in the collision cascade region and the atomic mobility at the irradiation temperature. The argument can be applied to silicide forming systems. With near-noble metals, the mixed atoms are mobile and form metallurgically distinct phases. With refractory metals, amorphous phases are formed due to lack of atomic mobility

  7. High charge state metal ion production in vacuum arc ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.; Anders, A.; Anders, S.

    1994-01-01

    The vacuum arc is a rich source of highly ionized metal plasma that can be used to make a high current metal ion source. Vacuum arc ion sources have been developed for a range of applications including ion implantation for materials surface modification, particle accelerator injection for fundamental nuclear physics research, and other fundamental and applied purposes. Typically the source is repetitively pulsed with pulse length of order a millisecond and duty cycle or order 1% and operation of a dc embodiment has been demonstrated also. Beams have been produced from over 50 of the solid metals of the periodic table, with mean ion energy up to several hundred keV and with peak (pulsed) beam current up to several amperes. The ion charge state distribution has been extensively studied. Ion spectra have been measured for a wide range of metallic cathode materials, including Li, C, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Pd, Ag, Cd, In, Sn, Sb, Ba, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Tm, Yb, Hf, Ta, W, Ir, Pt, Au, Pb, Bi, Th and U, as well as compound and alloy cathode materials such as TiC, SiC, UC, PbS, brass, and stainless steel. The ions generated are in general multiply-stripped with a mean charge state of from 1 to 3, depending on the particular metal species, and the charge state distribution can have components from Q = 1+ to 6+. Here the authors review the characteristics of vacuum arc ion sources from the perspective of their high charge state metal ion production

  8. Adsorption of heavy metal ions on different clays

    International Nuclear Information System (INIS)

    Kruse, K.

    1992-01-01

    The aim of the present dissertation is to study the adsorption of heavy metal ions (Cd 2+ , Cu 2+ , Pb 2+ , Zn 2+ ) and their mixtures on clays. Different clays and bentonites (Ca 2+ -bentonite, activated Na + -bentonite, special heavy metal adsorber bentonite, two organophilic bentonites and a mixed layer clay) were used. The adsorbed metal ions were desorbed by appropriate solutions of HCl, EDTA and dioctadecyl dimethylammonium bromide. High concentrations of the heavy metal ions in the solutions can be reached. The desorption guarantees economical recycling. After desorption the clays were used (up to three times) for purification of contaminated water. The best experimental conditions, i.e. the highest adsorption of heavy metal ions from aqueous solutions was found for the greatest ratio of adsorbent/adsorbate. The adsorption was very fast. Calcium, sodium bentonites and the heavy metal adsorber bentonite attained the highest adsorption and desorption for Cu 2+, Zn 2+ and Pb 2+ ions. Cd 2+ ions were only absorbed by Silitonit, a special heavy metal absorber bentonite. The mixed layer clay (Opalit) ranges in adsorption and desorption properties below the unmodified Ca 2+ -bentonite (Montigel) or the activated Na + -bentonite. Only Tixosorb and Tixogel (organophilic bentonites) reach the lowest value of heavy metal adsorption. Only lead cations which are characterised by good polarizability were adsorbed at higher rates, therefore the organophilic bentonites are not appropriate for adsorption of heavy metal ions from aqueous solutions. Mixing of the metal ions generally decreases the adsorption of Pb 2+ and increases the adsorption of Cd 2+ . From mixtures if heavy metal ions adsorption and desorption of Cu 2+ ions reached a maximum for all clays. (author) figs., tabs., 56 refs

  9. Cation exchange separation of 16 rare earth metals by microscale high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Ishii, D.; Hirose, A.; Iwasaki, Y.

    1978-01-01

    The separation of rare earth metals has been studied with a microcolumn of 0.5 mm i.d. and 75 mm length, packed with TSK LS-212 high-performance cation exchange resin. A micro-feeder (Model MF-2, from Azumadenki Kogyo) was used to drive carrier and sample solutions through the ion exchange column and detection cell. By combining a 250 μl syringe and a 0.5 mm i.d. sampling tube the micro-feeder, 0.1-1.0 μl rare earth metals were separated within 38 min, using only 304 μl of 0.4M α-hydroxy-isobutyric acid solution adjusted to pH 3.1-6.0 with ammonia solution as gradient carrier solution. The gradient elution was successfully performed by applying a new technique developed for microscale liquid chromatography. (author)

  10. Application of the zeta potential for stationary phase characterization in ion chromatography.

    Science.gov (United States)

    Buszewski, Bogusław; Jaćkowska, Magdalena; Bocian, Szymon; Dziubakiewicz, Ewelina

    2013-01-01

    Two series of homemade stationary bonded phases for ion chromatography were investigated according to their zeta potential. One set of dendrimer anion exchanger was synthesized on the polymer support whereas the second material was prepared on the silica gel. The zeta potential data in water environment as well as buffered water solution were obtained. The influence of the length of anion-exchanger chains, the type of the support of the modified surface, and charge distribution on these data was investigated. Additionally, the zeta potential was correlated with retention factor of inorganic ions to describe their influence on the retention mechanism in ion chromatography. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Single step purification of recombinant proteins using the metal ion-inducible autocleavage (MIIA) domain as linker for tag removal.

    Science.gov (United States)

    Ibe, Susan; Schirrmeister, Jana; Zehner, Susanne

    2015-08-20

    For fast and easy purification, proteins are typically fused with an affinity tag, which often needs to be removed after purification. Here, we present a method for the removal of the affinity tag from the target protein in a single step protocol. The protein VIC_001052 of the coral pathogen Vibrio coralliilyticus ATCC BAA-450 contains a metal ion-inducible autocatalytic cleavage (MIIA) domain. Its coding sequence was inserted into an expression vector for the production of recombinant fusion proteins. Following, the target proteins MalE and mCherry were produced as MIIA-Strep fusion proteins in Escherichia coli. The target proteins could be separated from the MIIA-Strep part simply by the addition of calcium or manganese(II) ions within minutes. The cleavage is not affected in the pH range from 5.0 to 9.0 or at low temperatures (6°C). Autocleavage was also observed with immobilized protein on an affinity column. The protein yield was similar to that achieved with a conventional purification protocol. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Non-Native Metal Ion Reveals the Role of Electrostatics in Synaptotagmin 1-Membrane Interactions.

    Science.gov (United States)

    Katti, Sachin; Nyenhuis, Sarah B; Her, Bin; Srivastava, Atul K; Taylor, Alexander B; Hart, P John; Cafiso, David S; Igumenova, Tatyana I

    2017-06-27

    C2 domains are independently folded modules that often target their host proteins to anionic membranes in a Ca 2+ -dependent manner. In these cases, membrane association is triggered by Ca 2+ binding to the negatively charged loop region of the C2 domain. Here, we used a non-native metal ion, Cd 2+ , in lieu of Ca 2+ to gain insight into the contributions made by long-range Coulombic interactions and direct metal ion-lipid bridging to membrane binding. Using X-ray crystallography, NMR, Förster resonance energy transfer, and vesicle cosedimentation assays, we demonstrate that, although Cd 2+ binds to the loop region of C2A/B domains of synaptotagmin 1 with high affinity, long-range Coulombic interactions are too weak to support membrane binding of individual domains. We attribute this behavior to two factors: the stoichiometry of Cd 2+ binding to the loop regions of the C2A and C2B domains and the impaired ability of Cd 2+ to directly coordinate the lipids. In contrast, electron paramagnetic resonance experiments revealed that Cd 2+ does support membrane binding of the C2 domains in full-length synaptotagmin 1, where the high local lipid concentrations that result from membrane tethering can partially compensate for lack of a full complement of divalent metal ions and specific lipid coordination in Cd 2+ -complexed C2A/B domains. Our data suggest that long-range Coulombic interactions alone can drive the initial association of C2A/B with anionic membranes and that Ca 2+ further augments membrane binding by the formation of metal ion-lipid coordination bonds and additional Ca 2+ ion binding to the C2 domain loop regions.

  13. Alkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism.

    Science.gov (United States)

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F Matthias

    2016-06-01

    We have analyzed the structure and bonding of gas-phase Cl-X and [HCl-X](+) complexes for X(+)= H(+), CH3 (+), Li(+), and Na(+), using relativistic density functional theory (DFT). We wish to establish a quantitative trend in affinities of the anionic and neutral Lewis bases Cl(-) and HCl for the various cations. The Cl-X bond becomes longer and weaker along X(+) = H(+), CH3 (+), Li(+), and Na(+). Our main purpose is to understand the heterolytic bonding mechanism behind the intrinsic (i.e., in the absence of solvent) alkali metal cation affinities (AMCA) and how this compares with and differs from those of the proton affinity (PA) and methyl cation affinity (MCA). Our analyses are based on Kohn-Sham molecular orbital (KS-MO) theory in combination with a quantitative energy decomposition analysis (EDA) that pinpoints the importance of the different features in the bonding mechanism. Orbital overlap appears to play an important role in determining the trend in cation affinities.

  14. Homochiral metal-organic frameworks and their application in chromatography enantioseparations.

    Science.gov (United States)

    Peluso, Paola; Mamane, Victor; Cossu, Sergio

    2014-10-10

    The last frontier in the chiral stationary phases (CSPs) field for chromatography enantioseparations is represented by homochiral metal-organic frameworks (MOFs), a class of organic-inorganic hybrid materials built from metal-connecting nodes and organic-bridging ligands. The modular nature of these materials allows to design focused structures by combining properly metal, organic ligands and rigid polytopic spacers. Intriguingly, chiral ligands introduce molecular chirality in the MOF-network as well as homochirality in the secondary structure of materials (such as homohelicity) producing homochiral nets in a manner mimicking biopolymers (proteins, polysaccharides) which are characterized by a definite helical sense associated with the chirality of their building blocks (amino acids or sugars). Nowadays, robust and flexible materials characterized by high porosity and surface area became available by using preparative procedures typical of the so-called reticular synthesis. This review focuses on recent developments in the synthesis and applications of homochiral MOFs as supports for chromatography enantioseparations. Indeed, despite this field is in its infancy, interesting results have been produced and a critical overview of the 12 reported applications for gas chromatography (GC) and high-performance liquid chromatography (HPLC) can orient the reader approaching the field. Mechanistic aspects are shortly discussed and a view regarding future trends in this field is provided. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Phospholipid bilayer affinities and solvation characteristics by electrokinetic chromatography with a nanodisc pseudostationary phase.

    Science.gov (United States)

    Penny, William M; Steele, Harmen B; Ross, J B Alexander; Palmer, Christopher P

    2017-03-01

    Phospholipid bilayer nanodiscs composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and synthetic maleic acid-styrene copolymer belts have been introduced as a pseudostationary phase (PSP) in electrokinetic chromatography and demonstrated good performance. The nanodiscs provide a suitable migration range and high theoretical plate counts. Using this nanodisc pseudostationary phase, the affinity of the bilayer structure for probe solutes was determined and characterized. Good correlation is observed between retention factors and octanol water partition coefficients for particular categories of solutes, but the general correlation is weak primarily because the nanodiscs show stronger affinity than octanol for hydrogen bond donors. This suggests that a more appropriate application of this technology is to measure and characterize interactions between solutes and lipid bilayers directly. Linear solvation energy relationship analysis of the nanodisc-solute interactions in this study demonstrates that the nanodiscs provide a solvation environment with low cohesivity and weak hydrogen bond donating ability, and provide relatively strong hydrogen bond acceptor strength. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods

    Directory of Open Access Journals (Sweden)

    Amira M. Mahmoud

    2015-03-01

    Full Text Available Environmental pollution by heavy metal is arising as the most endangering tasks to both water sources and atmosphere quality today. The treatment of heavy metals is of special concern due to their recalcitrance and persistence in the environment. To limit the spread of the heavy metals within water sources, nickel oxide nanoparticles adsorbents were synthesized and characterized with the aim of removal of one of the aggressive heavy elements, namely; lead ions. Nano nickel oxide adsorbents were prepared using NaOH and oxalic acid dissolved in ethanol as precursors. The results indicated that adsorption capacity of Pb(II ion by NiO-org catalyst is favored than that prepared using NaOH as a precipitant. Nickel oxide nanoparticles prepared by the two methods were characterized structurally and chemically through XRD, DTA, TGA, BET and FT-IR. Affinity and efficiency sorption parameters of the solid nano NiO particles, such as; contact time, initial concentration of lead ions and the dosage of NiO nano catalyst and competitive adsorption behaviors were studied. The results showed that the first-order reaction law fit the reduction of lead ion, also showed good linear relationship with a correlation coefficient (R2 larger than 0.9.

  17. Protein selectivity with immobilized metal ion-tacn sorbents: chromatographic studies with human serum proteins and several other globular proteins.

    Science.gov (United States)

    Jiang, W; Graham, B; Spiccia, L; Hearn, M T

    1998-01-01

    The chromatographic selectivity of the immobilized chelate system, 1,4,7-triazocyclononane (tacn), complexed with the borderline metal ions Cu2+, Cr3+, Mn2+, Co2+, Zn2+, and Ni2+ has been investigated with hen egg white lysozyme, horse heart cytochrome c, and horse skeletal muscle myoglobin, as well as proteins present in partially fractionated preparations of human plasma. The effects of ionic strength and pH of the loading and elution buffers on protein selectivities of these new immobilized metal ion affinity chromatographic (IMAC) systems have been examined. The results confirm that immobilized Mn;pl-tacn sorbents exhibit a novel type of IMAC behavior with proteins. In particular, the chromatographic properties of these immobilized M(n+)-tacn ligand systems were significantly different compared to the IMAC behavior observed with other types of immobilized tri- and tetradentate chelating ligands, such as iminodiacetic acid, O-phosphoserine, or nitrilotriacetic acid, when complexed with borderline metal ions. The experimental results have consequently been evaluated in terms of the additional contributions to the interactive processes mediated by effects other than solely the conventional lone pair Lewis soft acid-Lewis soft base coordination interactions, typically found for the IMAC of proteins with borderline and soft metal ions, such as Cu2+ or Ni2+.

  18. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-09-01

    Full Text Available In this work, amidoxime polyacrylonitrile (AOPAN nanofibrous membrane was prepared by a reaction between PAN nanofibers and hydroxylamine hydrochloride. The AOPAN nanofibrous membranes were used for four metal ions (Fe3+, Cu2+, Ni2+, Cd2+ chelation under different conditions. Further, the competition of different metal ions coordinating with AOPAN nanofibrous membrane was also studied. The AOPAN chelated with individual metal ion (Fe3+, Cu2+, Ni2+, Cd2+ and also the four mixed metal ions were further used for laccase (Lac immobilization. Compared with free laccase, the immobilized laccase showed better resistance to pH and temperature changes as well as improved storage stability. Among the four individual metal ion chelated membranes, the stability of the immobilized enzymes generally followed the order as Fe–AOPAN–Lac > Cu–AOPAN–Lac > Ni–AOPAN–Lac > Cd–AOPAN–Lac. In addition, the immobilized enzyme on the carrier of AOPAN chelated with four mixed metal ions showed the best properties.

  19. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  20. The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1, Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo

    Directory of Open Access Journals (Sweden)

    Tatiana P. Sankova

    2017-11-01

    Full Text Available There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST and the N-terminal domain (ectodomain of human high affinity copper transporter CTR1 (hNdCTR1, which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell’s copper metabolism and its chelating properties are discussed.

  1. Ion exclusion chromatography for the purification of L-glutamine; Ion haijo chromatography ni yoru L-glutamine no seiseiho no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H.; Nishi, A.; Naruse, M. [Ajinomoto Co. Inc., Kawasaki (Japan)

    1998-09-05

    Ion exclusion chromatography for the purification of L-glutamine is studied. L-glutamine is usually produced by fermentation and used in pharmaceuticals. By using a model solution of L-glutamine and L-glutamic acid, the optimum cation exchange resin is examined. As a result of the experiments, it is found that a cation exchange resin which has smaller crosslinkage and smaller diameter is better. Ammonium sulfate, L-glutamic acid and pyrrolidonecarboxylic acid, which are usually contained in fermentation broth as impurities, are effectively separated by this method. Moreover, the experimental data of the chromatography is expressed fairly well by the differential equations which express the mass transfer in the fixed bed. 8 refs., 5 figs., 2 tabs.

  2. Metallic ions in the upper atmosphere

    International Nuclear Information System (INIS)

    Kumar, S.

    1979-01-01

    During the past 20 years considerable progress has been made in establishing the presence of metallic ions in the sporadic E layers at mid latitudes and as discrete patches at high altitudes in the equatorial ionosphere. The E-region observations have been based on rocket flights, which represent local conditions faithfully. But the global distribution of metallic ions and variations relating to changes in season, local time, magnetic activity, etc., which require satellite data, have been largely unexamined. This work presents a few aspects of this missing global distribution over an altitude range of 100 to 1000 km, using the data from AE-C, AE-D, and OGO-6 satellites and the rocket flights 18.117 and 18.118 from Wallops Island on July 12 and 13, 1971. The rocket data provide a day-night pair of vertical profiles that include altitudes not covered by the satellites. Results are presented for Mg + , Al + , Si + and Fe + ions in terms of their detection probabilities, median concentrations and relative abundances with respect to Mg + ions as a function of significant geophysical parameters. Na + and K + ions have been excluded from this study because alkali metal ions driven off the spacecraft hamper the measurement of ambient Na + and K + ions. This study has indicated that in general different metallic ions appear together in comparable concentrations except for Al + , which is an order of magnitude smaller than the others

  3. Metal ion-mediated agonism and agonist enhancement in melanocortin MC1 and MC4 receptors

    DEFF Research Database (Denmark)

    Holst, Birgitte; Elling, Christian E; Schwartz, Thue W

    2002-01-01

    -melanocortin stimulating hormone (alpha-MSH) in the MC1 and MC4 receptors, respectively. In the presence of peptide agonist, Zn(II) acted as an enhancer on both receptors, because it shifted the dose-response curves to the left: most pronounced was a 6-fold increase in alpha-MSH potency on the MC1 receptor. The effect......An endogenous metal-ion site in the melanocortin MC1 and MC4 receptors was characterized mainly in transiently transfected COS-7 cells. ZnCl(2) alone stimulated signaling through the Gs pathway with a potency of 11 and 13 microm and an efficacy of 50 and 20% of that of alpha...... affinities and profiles were similar for a number of the 2,2'-bipyridine and 1,10-phenanthroline analogs in complex with Zn(II) in the MC1 and MC4 receptors. However, the potencies and efficacies of the metal-ion complexes were very different in the two receptors, and close to full agonism was obtained...

  4. Ion counting method and it's operational characteristics in gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Fujii, Toshihiro

    1976-01-01

    Ion counting method with continuous channel electron multiplier which affords the direct detection of very small ion currents and it's operational characteristics were studied in gas chromatography-mass spectrometry. Then this method was applied to the single ion detection technique of GC-MS. A detection limit was measured, using various standard samples of low level concentration. (auth.)

  5. Analysis of metal ion release from biomedical implants

    Directory of Open Access Journals (Sweden)

    Ivana Dimić

    2013-06-01

    Full Text Available Metallic biomaterials are commonly used for fixation or replacement of damaged bones in the human body due to their good combination of mechanical properties. The disadvantage of metals as implant materials is their susceptibility to corrosion and metal ion release, which can cause serious health problems. In certain concentrations metals and metal ions are toxic and their presence can cause diverse inflammatory reactions, genetic mutations or even cancer. In this paper, different approaches to metal ion release examination, from biometallic materials sample preparation to research results interpretation, will be presented. An overview of the analytical techniques, used for determination of the type and concentration of released ions from implants in simulated biofluids, is also given in the paper.

  6. Ion-pairing reversed-phased chromatography/mass spectrometry of heparin

    DEFF Research Database (Denmark)

    Henriksen, Jens; Roepstorff, Peter; Ringborg, Lene H.

    2006-01-01

    not well characterised. In order to further characterise such mixtures, two on-line ion-pairing reverse-phased chromatography electrospray ionisation (ESI) mass spectrometry methods have been developed. One of the systems allows the determination of more than 200 components in a medium molecular weight...

  7. Nanostructured Block Polymer Membranes as High Capacity Adsorbers for the Capture of Metal Ions from Water

    Science.gov (United States)

    Boudouris, Bryan; Weidman, Jacob; Mulvenna, Ryan; Phillip, William

    The efficient removal of metal ions from aqueous streams is of significant import in applications ranging from industrial waste treatment to the purification of drinking water. An emerging paradigm associated with this separation is one that utilizes membrane adsorbers as a means by which to bind metal salt contaminants. Here, we demonstrate that the casting of an A-B-C triblock polymer using the self-assembly and non-solvent induced phase separation (SNIPS) methodology results in a nanoporous membrane geometry. The nature of the triblock polymer affords an extremely high density of binding sites within the membrane. As such, we demonstrate that the membranes with binding capacities equal to that of state-of-the-art packed bed columns. Moreover, because the affinity of the C moiety can be tuned, highly selective binding events can occur based solely on the chemistry of the block polymer and the metal ions in solution (i.e., in a manner that is independent of the size of the metal ions). Due to these combined facts, these membranes efficiently remove heavy metal (e.g., lead- and cadmium-based) salts from contaminated water streams with greater than 95% efficiency. Finally, we show that the membranes can be regenerated through a simple treatment in order to provide long-lasting adsorber systems as well. Thus, it is anticipated that these nanostructured triblock polymer membranes are a platform by which to obtain next-generation water purification processes.

  8. Single-column ion chromatography with determination of hydrazoic acid produced in spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Ma Guilan; Tan Shuping

    2006-01-01

    The reaction of hydrazine and its derivative with ammonium metavanadate may produce hydrazoic acid (HN 3 ). A single-column ion chromatography is used for the determination of HN 3 after neutralizing the rest acid in the sample with sodium hydroxide. Chromatography separation of HN 3 is carried out on a 25 cm x 0.46 cm (inside diameter) stainless steel column packed with Vydac IC302 ion Chromatography packing. The eluent is 1 mmol/L o-phthalic acid, and the ion is detected by conductivity detector. The detection limit in the presence chromatography is 5 μg/mL, the linear range is from 5 to 201 μg/mL, the linear correlation coefficient is 0.9994, respectively. The analysis accuracy is 2% for standard sample, and the detection limit is 51 μg/mL for HN 3 in the real sample. (authors)

  9. Amorphization of metals by ion implantation and ion beam mixing

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Heera, V.

    1988-01-01

    Amorphous metallic systems can be formed either by high-fluence ion implantation of glassforming species or by irradiation of layered metal systems with inert gas ions. Both techniques and experimental examples are presented. Empirical rules are discussed which predict whether a given system can be transformed into an amorphous phase. Influence of temperature, implantation dose and pre-existing crystalline metal composition on amorphization is considered. Examples are given of the implantation induced amorphous structure, recrystallization and formation of quasicrystalline structures. (author)

  10. Pseudo ribbon metal ion beam source

    International Nuclear Information System (INIS)

    Stepanov, Igor B.; Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-01-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface

  11. Pseudo ribbon metal ion beam source.

    Science.gov (United States)

    Stepanov, Igor B; Ryabchikov, Alexander I; Sivin, Denis O; Verigin, Dan A

    2014-02-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  12. Plasma immersion surface modification with metal ion plasma

    International Nuclear Information System (INIS)

    Brown, I.G.; Yu, K.M.; Godechot, X.

    1991-04-01

    We describe here a novel technique for surface modification in which metal plasma is employed and by which various blends of plasma deposition and ion implantation can be obtained. The new technique is a variation of the plasma immersion technique described by Conrad and co-workers. When a substrate is immersed in a metal plasma, the plasma that condenses on the substrate remains there as a film, and when the substrate is then implanted, qualitatively different processes can follow, including' conventional' high energy ion implantation, recoil implantation, ion beam mixing, ion beam assisted deposition, and metallic thin film and multilayer fabrication with or without species mixing. Multiple metal plasma guns can be used with different metal ion species, films can be bonded to the substrate through ion beam mixing at the interface, and multilayer structures can be tailored with graded or abrupt interfaces. We have fabricated several different kinds of modified surface layers in this way. 22 refs., 4 figs

  13. Fungitoxicity of metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Somers, E

    1961-01-01

    The in vitro fungistatic activity of some twenty-four metal cations has been determine against Alternaria tenuis and Botrytis fabae. The metal salts, mainly nitrates, were tested in aqueous solution without added spore germination stimulant. The logarithm of the metal ion concentration at the ED 50 value has been found to conform to the exponenttial relationship with electronegativity proposed by Danielli and Davies (1951). These results are discussed in relation to the site of action of metal cations on the fungal cell.

  14. Modulating uranium binding affinity in engineered calmodulin EF-hand peptides: effect of phosphorylation.

    Directory of Open Access Journals (Sweden)

    Romain Pardoux

    Full Text Available To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9TKE(12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d = 25±6 nM to K(d = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d = 0.25±0.06 nM. FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as(P-O and ν(s(P-O IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as(UO(2(2+ vibration (from 923 cm(-1 to 908 cm(-1 was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.

  15. Modulating uranium binding affinity in engineered Calmodulin EF-hand peptides: effect of phosphorylation

    International Nuclear Information System (INIS)

    Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Guilloreau, Luc; Berthomieu, Catherine; Delangle, Pascale; Adriano, Jean-Marc

    2012-01-01

    To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T 9 TKE 12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K d =25±6 nM to K d =5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the sub-nanomolar range (K d = 0.25±0.06 nM). FTIR analyses showed that the phospho-threonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν as (P-O) and ν s (P-O) IR modes of phospho-threonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν as (UO 2 ) 2+ vibration (from 923 cm -1 to 908 cm -1 ) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. (authors)

  16. Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics.

    Science.gov (United States)

    Garnett, Graham A E; Starke, Melissa J; Shaurya, Alok; Li, Janessa; Hof, Fraser

    2016-04-05

    Proteome-wide studies of post-translationally methylated species using mass spectrometry are complicated by high sample diversity, competition for ionization among peptides, and mass redundancies. Antibody-based enrichment has powered methylation proteomics until now, but the reliability, pan-specificity, polyclonal nature, and stability of the available pan-specific antibodies are problematic and do not provide a standard, reliable platform for investigators. We have invented an anionic supramolecular host that can form host-guest complexes selectively with methyllysine-containing peptides and used it to create a methylysine-affinity column. The column resolves peptides on the basis of methylation-a feat impossible with a comparable commercial cation-exchange column. A proteolyzed nuclear extract was separated on the methyl-affinity column prior to standard proteomics analysis. This experiment demonstrates that such chemical methyl-affinity columns are capable of enriching and improving the analysis of methyllysine residues from complex protein mixtures. We discuss the importance of this advance in the context of biomolecule-driven enrichment methods.

  17. Sequential elution from IMAC (SIMAC)

    DEFF Research Database (Denmark)

    Thingholm, Tine E.; Larsen, Martin R.

    2016-01-01

    Phosphoproteomics relies on methods for efficient purification and sequencing of phosphopeptides from highly complex biological systems, especially when using low amounts of starting material. Current methods for phosphopeptide enrichment, e.g., Immobilized Metal ion Affinity Chromatography and t...

  18. Upgraded vacuum arc ion source for metal ion implantation

    International Nuclear Information System (INIS)

    Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.; Brown, I. G.

    2012-01-01

    Vacuum arc ion sources have been made and used by a large number of research groups around the world over the past twenty years. The first generation of vacuum arc ion sources (dubbed ''Mevva,'' for metal vapor vacuum arc) was developed at Lawrence Berkeley National Laboratory in the 1980s. This paper considers the design, performance parameters, and some applications of a new modified version of this kind of source which we have called Mevva-V.Ru. The source produces broad beams of metal ions at an extraction voltage of up to 60 kV and a time-averaged ion beam current in the milliampere range. Here, we describe the Mevva-V.Ru vacuum arc ion source that we have developed at Tomsk and summarize its beam characteristics along with some of the applications to which we have put it. We also describe the source performance using compound cathodes.

  19. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2017-11-01

    Full Text Available Recently, the rapid emergence of antibiotic-resistant pathogens has caused a serious health problem. Scientists respond to the threat by developing new antimicrobial materials to prevent or control infections caused by these pathogens. Polymer-based nanocomposite hydrogels are versatile materials as an alternative to conventional antimicrobial agents. Cross-linking of polymeric materials by metal ions or the combination of polymeric hydrogels with nanoparticles (metals and metal oxide is a simple and effective approach for obtaining a multicomponent system with diverse functionalities. Several metals and metal oxides such as silver (Ag, gold (Au, zinc oxide (ZnO, copper oxide (CuO, titanium dioxide (TiO2 and magnesium oxide (MgO have been loaded into hydrogels for antimicrobial applications. The incorporation of metals and metal oxide nanoparticles into hydrogels not only enhances the antimicrobial activity of hydrogels, but also improve their mechanical characteristics. Herein, we summarize recent advances in hydrogels containing metal ions, metals and metal oxide nanoparticles with potential antimicrobial properties.

  20. Metal-loaded SBA-16-like silica – Correlation between basicity and affinity towards hydrogen

    International Nuclear Information System (INIS)

    Ouargli-Saker, R.; Bouazizi, N.; Boukoussa, B.; Barrimo, Diana; Paola-Nunes-Beltrao, Ana; Azzouz, A.

    2017-01-01

    Highlights: • Metal dispersion in longitudinal channels confers adsorption properties to SBA-16. • Both Fe"0-NPs and Cu"0-NPs seem to be responsible of this effect. • Effect of the repetitive adsorption-desorption cycles on CO_2 and water sorption. • Hydrogen storage on the functionalized materials. - Abstract: Nanoparticles of Cu"o (CuNPs) and Fe"o (FeNPs) were dispersed in SBA-16-like silica, resulting metal-loaded materials (Cu-SBA-16 and Fe-SBA-16) with improved affinity towards hydrogen. Electron microscopy and X-ray diffraction showed that MNP dispersion occurs mainly inside SBA-16 channels. MNP incorporation was found to confer affinity to the silica surface, since higher CO_2 retention capacity (CRC) was registered Cu/SBA-16 and Fe/SBA-16. This was accompanied by a significant improvement of the affinity towards hydrogen, as supported by hydrogen adsorption tests. This was explained in terms of strong hydrogen interaction with MNP and lattice oxygen atoms. The results reported herein open new prospects for SBA-16 as potential adsorbents for hydrogen storage.

  1. Metal-loaded SBA-16-like silica – Correlation between basicity and affinity towards hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ouargli-Saker, R. [Department of Materials Engineering, University of Science and Technology, El M’naouer, BP 1505, Oran (Algeria); Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Bouazizi, N. [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Unité de recherche, Electrochimie, Matériaux et Environnement, Faculté des Sciences de Gabès, Université de Gabès, Cité Erriadh, 6072 Gabès (Tunisia); Boukoussa, B. [Department of Materials Engineering, University of Science and Technology, El M’naouer, BP 1505, Oran (Algeria); Lqamb, Laboratório de Química Analítica Ambiental, Faculdade de Química, Pontifícia Universidade Católica do Rio Grande do Sul (Brazil); Barrimo, Diana [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Paola-Nunes-Beltrao, Ana [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada); Laboratory of Materials Chemistry L.C.M, University of Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran (Algeria); Azzouz, A., E-mail: azzouz.a@uqam.ca [Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C3P8 (Canada)

    2017-07-31

    Highlights: • Metal dispersion in longitudinal channels confers adsorption properties to SBA-16. • Both Fe{sup 0}-NPs and Cu{sup 0}-NPs seem to be responsible of this effect. • Effect of the repetitive adsorption-desorption cycles on CO{sub 2} and water sorption. • Hydrogen storage on the functionalized materials. - Abstract: Nanoparticles of Cu{sup o} (CuNPs) and Fe{sup o} (FeNPs) were dispersed in SBA-16-like silica, resulting metal-loaded materials (Cu-SBA-16 and Fe-SBA-16) with improved affinity towards hydrogen. Electron microscopy and X-ray diffraction showed that MNP dispersion occurs mainly inside SBA-16 channels. MNP incorporation was found to confer affinity to the silica surface, since higher CO{sub 2} retention capacity (CRC) was registered Cu/SBA-16 and Fe/SBA-16. This was accompanied by a significant improvement of the affinity towards hydrogen, as supported by hydrogen adsorption tests. This was explained in terms of strong hydrogen interaction with MNP and lattice oxygen atoms. The results reported herein open new prospects for SBA-16 as potential adsorbents for hydrogen storage.

  2. Yeast enolase: mechanism of activation by metal ions.

    Science.gov (United States)

    Brewer, J M

    1981-01-01

    Yeast enolase as prepared by current procedures is inherently chemically homogeneous, though deamidation and partial denaturation can produce electrophoretically distinct forms. A true isozyme of the enzyme exists but does not survive the purification procedure. The chemical sequence for both has been established. The enzyme behaves in solution like a compact, nearly spherical molecule of moderate hydration. Strong intramolecular forces maintain the structure of the individual subunits. The enzyme as isolated is dimeric. If dissociated in the presence of magnesium ions and substrate, then the subunits are active, but if the dissociation occurs in the absence of metal ions, they are inactive until they have reassociated and undergone a first order "annealing" process. Magnesium (II) enhances association. The interaction between the subunits is hydrophobic in character. The enzyme can bind up to 2 mol of most metal ions in "conformational" sites which then allows up to 2 mol of substrate or some substrate analogue to bind. This is not sufficient for catalysis, but conformational metal ions do more than just allow substrate binding. A change in the environment of the metal ions occurs on substrate or substrate analogue binding. There is an absolute correlation between the occurrence of a structural change undergone by the 3-amino analogue of phosphoenolpyruvate and whether the metal ions produce any level of enzymatic activity. For catalysis, two more moles of metal ions, called "catalytic", must bind. There is evidence that the enzymatic reaction involves a carbanion mechanism. It is likely that two more moles of metal ion can bind which inhibit the reaction. The requirement for 2 mol of metal ion per subunit which contribute in different ways to catalysis is exhibited by a number of other enzymes.

  3. Plasma chromatography

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    This book examines the fundamental theory and various applications of ion mobility spectroscopy. Plasma chromatography developed from research on the diffusion and mobility of ions. Topics considered include instrument design and description (e.g., performance, spectral interpretation, sample handling, mass spectrometry), the role of ion mobility in plasma chromatography (e.g., kinetic theory of ion transport), atmospheric pressure ionization (e.g., rate equations), the characterization of isomers by plasma chromatography (e.g., molecular ion characteristics, polynuclear aromatics), plasma chromatography as a gas chromatographic detection method (e.g., qualitative analysis, continuous mobility monitoring, quantitative analysis), the analysis of toxic vapors by plasma chromatography (e.g., plasma chromatograph calibration, instrument control and data processing), the analysis of semiconductor devices and microelectronic packages by plasma chromatography/mass spectroscopy (e.g., analysis of organic surface contaminants, analysis of water in sealed electronic packages), and instrument design and automation (hardware, software)

  4. Covalent modifications of the amyloid beta peptide by hydroxynonenal: Effects on metal ion binding by monomers and insights into the fibril topology.

    Science.gov (United States)

    Grasso, G; Komatsu, H; Axelsen, P H

    2017-09-01

    Amyloid β peptides (Aβ) and metal ions are associated with oxidative stress in Alzheimer's disease (AD). Oxidative stress, acting on ω-6 polyunsaturated fatty acyl chains, produces diverse products, including 4-hydroxy-2-nonenal (HNE), which can covalently modify the Aβ that helped to produce it. To examine possible feedback mechanisms involving Aβ, metal ions and HNE production, the effects of HNE modification and fibril formation on metal ion binding was investigated. Results indicate that copper(II) generally inhibits the modification of His side chains in Aβ by HNE, but that once modified, copper(II) still binds to Aβ with high affinity. Fibril formation protects only one of the three His residues in Aβ from HNE modification, and this protection is consistent with proposed models of fibril structure. These results provide insight into a network of biochemical reactions that may be operating as a consequence of oxidative stress in AD, or as part of the pathogenic process. Copyright © 2016. Published by Elsevier Inc.

  5. Ionic Liquids as Extraction Media for Metal Ions

    Science.gov (United States)

    Hirayama, Naoki

    In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.

  6. Oxidation of cyclohexane catalyzed by metal-ion-exchanged zeolites.

    Science.gov (United States)

    Sökmen, Ilkay; Sevin, Fatma

    2003-08-01

    The ion-exchange rates and capacities of the zeolite NaY for the Cu(II), Co(II), and Pb(II) metal ions were investigated. Ion-exchange equilibria were achieved in approximately 72 h for all the metal ions. The maximum ion exchange of metal ions into the zeolite was found to be 120 mg Pb(II), 110 mg Cu(II), and 100 mg Co(II) per gram of zeolite NaY. It is observed that the exchange capacity of a zeolite varies with the exchanged metal ion and the amount of metal ions exchanged into zeolite decreases in the sequence Pb(II) > Cu(II) > Co(II). Application of the metal-ion-exchanged zeolites in oxidation of cyclohexane in liquid phase with visible light was examined and it is observed that the order of reactivity of the zeolites for the conversion of cyclohexane to cyclohexanone and cyclohexanol is CuY > CoY > PbY. It is found that conversion increases by increase of the empty active sites of a zeolite and the formation of cyclohexanol is favored initially, but the cyclohexanol is subsequently converted to cyclohexanone.

  7. Metal ion interaction with phosphorylated tyrosine analogue monolayers on gold.

    Science.gov (United States)

    Petoral, Rodrigo M; Björefors, Fredrik; Uvdal, Kajsa

    2006-11-23

    Phosphorylated tyrosine analogue molecules (pTyr-PT) were assembled onto gold substrates, and the resulting monolayers were used for metal ion interaction studies. The monolayers were characterized by X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRAS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), both prior to and after exposure to metal ions. XPS verified the elemental composition of the molecular adsorbate and the presence of metal ions coordinated to the phosphate groups. Both the angle-dependent XPS and IRAS results were consistent with the change in the structural orientation of the pTyr-PT monolayer upon exposure to metal ions. The differential capacitance of the monolayers upon coordination of the metal ions was evaluated using EIS. These metal ions were found to significantly change the capacitance of the pTyr-PT monolayers in contrast to the nonphosphorylated tyrosine analogue (TPT). CV results showed reduced electrochemical blocking capabilities of the phosphorylated analogue monolayer when exposed to metal ions, supporting the change in the structure of the monolayer observed by XPS and IRAS. The largest change in the structure and interfacial capacitance was observed for aluminum ions, compared to calcium, magnesium, and chromium ions. This type of monolayer shows an excellent capability to coordinate metal ions and has a high potential for use as sensing layers in biochip applications to monitor the presence of metal ions.

  8. Ion implantation and ion assisted coatings for wear resistance in metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1986-01-01

    The implantation of electrically accelerated ions of chosen elements into the surface of material provides a method for improving surface properties such as wear resistance. High concentrations of nitrogen implanted into metals create obstacles to dislocation movement, and certain combinations of metallic and non-metallic species will also strengthen the surface. The process is best applied to situations involving mild abrasive wear and operating temperatures that are not too high. Some dramatic increases in life have been reported under such favourable conditions. A more recent development has been the combination of a thin coating with reactive ion bombardment designed to enhance adhesion by ion mixing at the interface and so provide hardness by the formation of finely dispersed nitrides, including cubic boron nitride. These coatings often possess vivid and decorative colours as an added benefit. Developments in the equipment for industrial ion implantation now offer more attractive costs per unit area and a potentially greater throughput of work. A versatile group of related hard vacuum treatments is now emerging, involving the use of intense beams of nitrogen ions for the purpose of tailoring metal surfaces to resist wear. (author)

  9. Protein scaffolds for selective enrichment of metal ions

    Science.gov (United States)

    He, Chuan; Zhou, Lu; Bosscher, Michael

    2016-02-09

    Polypeptides comprising high affinity for the uranyl ion are provided. Methods for binding uranyl using such proteins are likewise provided and can be used, for example, in methods for uranium purification or removal.

  10. A biosystem for removal of metal ions from water

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II.

    1990-01-01

    The presence of heavy metal ions in ground and surface waters constitutes a potential health risk and is an environmental concern. Moreover, processes for the recovery of valuable metal ions are of interest. Bioaccumulation or biosorption is not only a factor in assessing the environmental risk posed by metal ions; it can also be used as a means of decontamination. A biological system for the removal and recovery of metal ions from contaminated water is reported here. Exopolysaccharide-producing microorganisms, including a methanotrophic culture, are demonstrated to have superior metal binding ability, compared with other microbial cultures. This paper describes a biosorption process in which dried biomass obtained from exopolysaccharide-producing microorganisms is encapsulated in porous plastic beads and is used for metal ion binding and recovery. 22 refs., 13 figs.

  11. PSEUDOAFFINITY CHROMATOGRAPHY ENRICHMENT OF GLYCATED PEPTIDES FOR MONITORING ADVANCED GLYCATION END PRODUCTS (AGES IN METABOLIC DISORDERS

    Directory of Open Access Journals (Sweden)

    Rajasekar R. Prasanna

    2016-09-01

    Full Text Available Advanced Glycation End (AGE products are produced due to diabetic progression and they are responsible for many complications in the diabetic disorder. The diabetic progression is measured, particularly following glycated hemoglobin using specific antibodies. However, the most abundant protein in blood, human serum albumin, is also found to be glycated which has a much shorter half life and gives information on short term glycemic control. In addition, glycated albumins are considered as markers of diabetic complications such as nephropathy, peripheral vascular calcification and also in Alzheimer’s disease. The glycation proceeds from the interaction between aldehyde group of sugar and the free amino group of the protein, resulting in the formation of Schiff’s base, which undergoes a series of modifications leading to generation of imidazoyl derivatives of amino acids known as Amadori rearrangement products. The imidazoyl derivatives from arginine and lysine are the most prominent modifications observed in proteins in the presence of reducing sugar and these imidazoyl derivatives have an affinity towards certain transition metal ions. Based on our earlier exhaustive work on trapping the histidine peptides using transition metal ion, Cu(II linked to imino-diacetate complex, we explored Cu(II immobilized metal affinity chromatography (IMAC as a potential tool for specific detection of glycated peptides of human serum albumin. Our results clearly demonstrate that Cu(II IMAC is able to detect glycated peptides very efficiently while the non-glycated forms were not retained on the Cu (II column as confirmed by LC-MS/MS analysis. We further discuss the utility of IMAC technology to enrich the detection of AGE products in plasma. We anticipate that these studies may provide valuable information on understanding disease pathologies and the potential of AGE products as biomarkers of various diseases including neurodegenerative, renal and

  12. Metal ion-dependent DNAzymes and their applications as biosensors.

    Science.gov (United States)

    Lan, Tian; Lu, Yi

    2012-01-01

    Long considered to serve solely as the genetic information carrier, DNA has been shown in 1994 to be able to act as DNA catalysts capable of catalyzing a trans-esterification reaction similar to the action of ribozymes and protein enzymes. Although not yet found in nature, numerous DNAzymes have been isolated through in vitro selection for catalyzing many different types of reactions in the presence of different metal ions and thus become a new class of metalloenzymes. What remains unclear is how DNA can carry out catalysis with simpler building blocks and fewer functional groups than ribozymes and protein enzymes and how DNA can bind metal ions specifically to perform these functions. In the past two decades, many biochemical and biophysical studies have been carried out on DNAzymes, especially RNA-cleaving DNAzymes. Important insights have been gained regarding their metal-dependent activity, global folding, metal binding sites, and catalytic mechanisms for these DNAzymes. Because of their high metal ion selectivity, one of the most important practical applications for DNAzymes is metal ion detection, resulting in highly sensitive and selective fluorescent, colorimetric, and electrochemical sensors for a wide range of metal ions such as Pb(2+), UO2 2 +,[Formula: see text] including paramagnetic metal ions such as Cu(2+). This chapter summarizes recent progresses in in vitro selection of metal ion-selective DNAzymes, their biochemical and biophysical studies and sensing applications.

  13. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    OpenAIRE

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screen...

  14. State promotion and neutralization of ions near metal surface

    International Nuclear Information System (INIS)

    Zinoviev, A.N.

    2011-01-01

    Research highlights: → Multiply charged ion and the charge induced in the metal form a dipole. → Dipole states are promoted into continuum with decreasing ion-surface distance. → These states cross the states formed from metal atom. → Proposed model explains the dominant population of deep bound states. → Observed spectra of emitted Auger electrons prove this promotion model. -- Abstract: When a multiply charged ion with charge Z approaches the metal surface, a dipole is formed by the multiply charged ion and the charge induced in the metal. The states for such a dipole are promoted into continuum with decreasing ion-surface distance and cross the states formed from metal atom. The model proposed explains the dominant population of deep bound states in collisions considered.

  15. A rapid method for the separation and estimation of uranium in geological materials using ion chromatography

    International Nuclear Information System (INIS)

    Prakash, Satya; Bangroo, P.N.

    2013-01-01

    Ion Chromatography is an elegant analytical technique which was primarily developed for the analysis of anionic species and over the years it has been used successfully to analyse various elements in different matrices. In this work the potential of Ion Chromatography has been used for the rapid separation and estimation of uranium in hydrogeochemical and other geological materials

  16. Iminodiacetic acid functionalised organopolymer monoliths: application to the separation of metal cations by capillary high-performance chelation ion chromatography.

    Science.gov (United States)

    Moyna, Áine; Connolly, Damian; Nesterenko, Ekaterina; Nesterenko, Pavel N; Paull, Brett

    2013-03-01

    Lauryl methacrylate-co-ethylene dimethacrylate monoliths were polymerised within fused silica capillaries and subsequently photo-grafted with varying amounts of glycidyl methacrylate (GMA). The grafted monoliths were then further modified with iminodiacetic acid (IDA), resulting in a range of chelating ion-exchange monoliths of increasing capacity. The IDA functional groups were attached via ring opening of the epoxy group on the poly(GMA) structure. Increasing the amount of attached poly(GMA), via photo-grafting with increasing concentrations of GMA, from 15 to 35%, resulted in a proportional and controlled increase in the complexation capacity of the chelating monoliths. Scanning capacitively coupled contactless conductivity detection (sC(4)D) was used to characterise and verify homogenous distribution of the chelating ligand along the length of the capillaries non-invasively. Chelation ion chromatographic separations of selected transition and heavy metals were carried out, with retention factor data proportional to the concentration of grafted poly(GMA). Average peak efficiencies of close to 5,000 N/m were achieved, with the isocratic separation of Na, Mg(II), Mn(II), Co(II), Cd(II) and Zn(II) possible on a 250-mm-long monolith. Multiple monolithic columns produced to the same recipes gave RSD data for retention factors of ions). The monolithic chelating ion-exchanger was applied to the separation of alkaline earth and transition metal ions spiked in natural and potable waters.

  17. Understanding the self-assembly of proteins onto gold nanoparticles and quantum dots driven by metal-histidine coordination.

    Science.gov (United States)

    Aldeek, Fadi; Safi, Malak; Zhan, Naiqian; Palui, Goutam; Mattoussi, Hedi

    2013-11-26

    Coupling of polyhistidine-appended biomolecules to inorganic nanocrystals driven by metal-affinity interactions is a greatly promising strategy to form hybrid bioconjugates. It is simple to implement and can take advantage of the fact that polyhistidine-appended proteins and peptides are routinely prepared using well established molecular engineering techniques. A few groups have shown its effectiveness for coupling proteins onto Zn- or Cd-rich semiconductor quantum dots (QDs). Expanding this conjugation scheme to other metal-rich nanoparticles (NPs) such as AuNPs would be of great interest to researchers actively seeking effective means for interfacing nanostructured materials with biology. In this report, we investigated the metal-affinity driven self-assembly between AuNPs and two engineered proteins, a His7-appended maltose binding protein (MBP-His) and a fluorescent His6-terminated mCherry protein. In particular, we investigated the influence of the capping ligand affinity to the nanoparticle surface, its density, and its lateral extension on the AuNP-protein self-assembly. Affinity gel chromatography was used to test the AuNP-MPB-His7 self-assembly, while NP-to-mCherry-His6 binding was evaluated using fluorescence measurements. We also assessed the kinetics of the self-assembly between AuNPs and proteins in solution, using time-dependent changes in the energy transfer quenching of mCherry fluorescent proteins as they immobilize onto the AuNP surface. This allowed determination of the dissociation rate constant, Kd(-1) ∼ 1-5 nM. Furthermore, a close comparison of the protein self-assembly onto AuNPs or QDs provided additional insights into which parameters control the interactions between imidazoles and metal ions in these systems.

  18. Mussel inspired preparation of amine-functionalized Kaolin for effective removal of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiang; Liu, Meiying; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China); Huang, Hongye; Xu, Dazhuang; Zeng, Guangjian [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wei, Yen [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-09-15

    Adsorption has been well regarded as a promising and efficient method for the removal of low concentration heavy metal ions in aqueous solutions. And kaolin has been considered as a kind of low cost and environment-friendly adsorbent for its abundant in nature. But the low adsorption capacity to heavy metal ions and severe aggregation in solution restrains its application. In this work, an environment-friendly adsorbent (denoted as Kaolin-PDA-PEI) was prepared based on mussel inspired chemistry and Michael addition reaction between high reaction activity of polydopamine (PDA) and polyethyleneimine (PEI), which was possesses a number of amine groups. The amine groups have displayed strong adsorption affinity towards copper ions. The successful modification of Kaolin by PDA and PEI was confirmed by a series of analyses, such as Fourier transform infrared spectroscopy, transmission electron microscopy, thermal gravimetry analysis and X-ray photoelectron spectroscopy. The effects of various parameters such as contact time, pH, initial concentrations of copper ions and temperature on copper ion adsorption by Kaolin-PDA-PEI were investigated. Kaolin-PDA-PEI shows higher adsorption capacity as compared with the raw Kaolin. The kinetic adsorption data were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion model. The Langmuir isotherm and Freundlich isotherm equilibrium model were applied to adsorption isotherm data to find the better fit isotherm. The results showed that adsorption process was well fitted by Langmuir isotherm model. The values of thermodynamics constants such as entropy change (ΔS{sup 0}), enthalpy change (ΔH{sup 0}) and Gibbs free energy (ΔG{sup 0}) were also calculated. The results indicated that the adsorption process of Kaolin-PDA-PEI were endothermic and spontaneous. - Graphical abstract: Amino groups functionalized Kaolin was facilely prepared via mussel inspired chemistry. The modified Kaolin exhibited much

  19. Mussel inspired preparation of amine-functionalized Kaolin for effective removal of heavy metal ions

    International Nuclear Information System (INIS)

    Huang, Qiang; Liu, Meiying; Deng, Fengjie; Wang, Ke; Huang, Hongye; Xu, Dazhuang; Zeng, Guangjian; Zhang, Xiaoyong; Wei, Yen

    2016-01-01

    Adsorption has been well regarded as a promising and efficient method for the removal of low concentration heavy metal ions in aqueous solutions. And kaolin has been considered as a kind of low cost and environment-friendly adsorbent for its abundant in nature. But the low adsorption capacity to heavy metal ions and severe aggregation in solution restrains its application. In this work, an environment-friendly adsorbent (denoted as Kaolin-PDA-PEI) was prepared based on mussel inspired chemistry and Michael addition reaction between high reaction activity of polydopamine (PDA) and polyethyleneimine (PEI), which was possesses a number of amine groups. The amine groups have displayed strong adsorption affinity towards copper ions. The successful modification of Kaolin by PDA and PEI was confirmed by a series of analyses, such as Fourier transform infrared spectroscopy, transmission electron microscopy, thermal gravimetry analysis and X-ray photoelectron spectroscopy. The effects of various parameters such as contact time, pH, initial concentrations of copper ions and temperature on copper ion adsorption by Kaolin-PDA-PEI were investigated. Kaolin-PDA-PEI shows higher adsorption capacity as compared with the raw Kaolin. The kinetic adsorption data were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion model. The Langmuir isotherm and Freundlich isotherm equilibrium model were applied to adsorption isotherm data to find the better fit isotherm. The results showed that adsorption process was well fitted by Langmuir isotherm model. The values of thermodynamics constants such as entropy change (ΔS"0), enthalpy change (ΔH"0) and Gibbs free energy (ΔG"0) were also calculated. The results indicated that the adsorption process of Kaolin-PDA-PEI were endothermic and spontaneous. - Graphical abstract: Amino groups functionalized Kaolin was facilely prepared via mussel inspired chemistry. The modified Kaolin exhibited much enhanced adsorption

  20. A new BODIPY/nanoparticle/Ni affinity system for binding of cytochrome c

    Energy Technology Data Exchange (ETDEWEB)

    Maltas, Esra, E-mail: maltasesra@gmail.com [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Selcuk University, Faculty of Science, Department of Biochemistry, 42075 Konya (Turkey); Kursunlu, Ahmed Nuri [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Arslan, Gulsin [Selcuk University, Faculty of Science, Department of Biochemistry, 42075 Konya (Turkey); Selcuk University, Advanced Research Technology and Application Center, 42075 Konya (Turkey); Ozmen, Mustafa [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Selcuk University, Advanced Research Technology and Application Center, 42075 Konya (Turkey)

    2015-09-15

    Highlights: • BODIPY was synthesized, and then attached to magnetic nanoparticles. • Ni(II) ions were chelated on prepared material. • The binding of cytochrome c to obtained material was studied. - Abstract: In this study, 3,5-{Bis[4,4-difluoro, 8-(2,6-diethyl, 1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene)]}benzoylchloride (BODIPY) was synthesized for the improving of a new immobilized metal affinity supporting material. Firstly, the synthesized BODIPY was immobilized on iron oxide superparamagnetic nanoparticles (SPIONs) and then, Ni(II) ions were chelated with the active terminals of BODIPY on nanoparticles surfaces to prepare an immobilized metal affinity (IMA) adsorbent for protein adsorption. The amount of BODIPY coated on SPIONs was about 29.7 μM at 10 mg nanoparticles. 738 μmol of Ni(II) ions were loaded to 10 mg of the SPIONs/BODIPY. The binding amount of cytochrome c was found to be 170 μg to the SPIONs/BODIPY/Ni at pH 7.4. The binding amount of the molecules on SPIONs was analyzed by using UV–vis, fluorescence and atomic absorption spectroscopy. The characterization of the prepared surfaces was performed by FT-IR, SEM and TEM.

  1. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    Science.gov (United States)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  2. Determination of inorganic ions in natural water by ion chromatography

    International Nuclear Information System (INIS)

    Nazaratul Ashifa Abdullah Salim; Mohd Suhaimi Hamzah; Eewiat Edin Put; Abdul Khalik Wood; Shamsiah Abdul Rahman; Md Suhaimi Elia

    2010-01-01

    Ion chromatography (IC) is a well established methodology for analysis of ionic species. The concentration of ionic species was determined using suppressed IC with conductivity detection. Anion species were determined in a single 15-min run with Na 2 CO 3 and NaHCO 3 eluent. Cation species were analysed by direct injection of 1 ml and isocratic elution with a methanesulfonic acid (MSA) eluent. Natural water were collected from various sources such as rainwater, lake, river and groundwater. Analysis performance of IC system was validated by evaluating the linear regression of calibration curve, recovery of spike sample and quality control sample. (author)

  3. Multi-column step-gradient chromatography system for automated ion exchange separations

    International Nuclear Information System (INIS)

    Rucker, T.L.

    1985-01-01

    A multi-column step-gradient chromatography system has been designed to perform automated sequential separations of radionuclides by ion exchange chromatography. The system consists of a digital programmer with automatic stream selection valve, two peristaltic pumps, ten columns, and a fraction collector. The automation allows complicated separations of radionuclides to be made with minimal analyst attention and allows for increased productivity and reduced cost of analyses. Results are reported for test separations on mixtures of radionuclides by the system

  4. Comparative study of metal and non-metal ion implantation in polymers: Optical and electrical properties

    International Nuclear Information System (INIS)

    Resta, V.; Quarta, G.; Farella, I.; Maruccio, L.; Cola, A.; Calcagnile, L.

    2014-01-01

    The implantation of 1 MeV metal ( 63 Cu + , 107 Ag + , 197 Au + ) and non-metal ( 4 He + , 12 C + ) ions in a polycarbonate (PC) matrix has been studied in order to evaluate the role of ion species in the modification of optical and electrical properties of the polymer. When the ion fluence is above ∼1 × 10 13 ions cm −2 , the threshold for latent tracks overlapping is overcome and π-bonded carbon clusters grow and aggregate forming a network of conjugated C=C bonds. For fluences around 1 × 10 17 ions cm −2 , the aggregation phenomena induce the formation of amorphous carbon and/or graphite like structures. At the same time, nucleation of metal nanoparticles (NPs) from implanted species can take place when the supersaturation threshold is overcome. The optical absorption of the samples increases in the visible range and the optical band gap redshifts from 3.40 eV up to 0.70 eV mostly due to the carbonization process and the formation of C 0x clusters and cluster aggregates. Specific structures in the extinction spectra are observed when metal ions are selected in contrast to the non-metal ion implanted PC, thus revealing the possible presence of noble metal based NPs interstitial to the C 0x cluster network. The corresponding electrical resistance decreases much more when metal ions are implanted with at least a factor of 2 orders of magnitude difference than the non-metal ions based samples. An absolute value of ∼10 7 Ω/sq has been measured for implantation with metals at doses higher than 5 × 10 16 ions cm −2 , being 10 17 Ω/sq the corresponding sheet resistance for pristine PC

  5. Comparative study of metal and non-metal ion implantation in polymers: Optical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Resta, V., E-mail: vincenzo.resta@le.infn.it [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy); Quarta, G. [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy); Farella, I. [Institute for Microelectronics and Microsystems – Unit of Lecce, National Council of Research (IMM/CNR), Lecce I-73100 (Italy); Maruccio, L. [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy); Cola, A. [Institute for Microelectronics and Microsystems – Unit of Lecce, National Council of Research (IMM/CNR), Lecce I-73100 (Italy); Calcagnile, L. [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy)

    2014-07-15

    The implantation of 1 MeV metal ({sup 63}Cu{sup +}, {sup 107}Ag{sup +}, {sup 197}Au{sup +}) and non-metal ({sup 4}He{sup +}, {sup 12}C{sup +}) ions in a polycarbonate (PC) matrix has been studied in order to evaluate the role of ion species in the modification of optical and electrical properties of the polymer. When the ion fluence is above ∼1 × 10{sup 13} ions cm{sup −2}, the threshold for latent tracks overlapping is overcome and π-bonded carbon clusters grow and aggregate forming a network of conjugated C=C bonds. For fluences around 1 × 10{sup 17} ions cm{sup −2}, the aggregation phenomena induce the formation of amorphous carbon and/or graphite like structures. At the same time, nucleation of metal nanoparticles (NPs) from implanted species can take place when the supersaturation threshold is overcome. The optical absorption of the samples increases in the visible range and the optical band gap redshifts from 3.40 eV up to 0.70 eV mostly due to the carbonization process and the formation of C{sub 0x} clusters and cluster aggregates. Specific structures in the extinction spectra are observed when metal ions are selected in contrast to the non-metal ion implanted PC, thus revealing the possible presence of noble metal based NPs interstitial to the C{sub 0x} cluster network. The corresponding electrical resistance decreases much more when metal ions are implanted with at least a factor of 2 orders of magnitude difference than the non-metal ions based samples. An absolute value of ∼10{sup 7} Ω/sq has been measured for implantation with metals at doses higher than 5 × 10{sup 16} ions cm{sup −2}, being 10{sup 17} Ω/sq the corresponding sheet resistance for pristine PC.

  6. Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations

    International Nuclear Information System (INIS)

    Moaddel, Ruin; Wainer, Irving W.

    2006-01-01

    Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K d values) and non-linear chromatography can be used to assess the association (k on ) and dissociation (k off ) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein

  7. Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations

    Energy Technology Data Exchange (ETDEWEB)

    Moaddel, Ruin [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States); Wainer, Irving W. [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States)]. E-mail: Wainerir@grc.nia.nih.gov

    2006-03-30

    Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K {sub d} values) and non-linear chromatography can be used to assess the association (k {sub on}) and dissociation (k {sub off}) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein.

  8. Uptake of Radionuclide Metals by SPME Fibers

    International Nuclear Information System (INIS)

    Duff, M; S Crump, S; Robert Ray, R; Keisha Martin, K; Donna Beals, D

    2006-08-01

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) and fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of HE and FD residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolved radionuclide ( 239/240 Pu, 238 U, 237 Np, 85 Sr, 133 Ba, 137 Cs, 60 Co and 226 Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE and FD residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE and FD residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection

  9. Solution chemistry and separation of metal ions in leached solution

    International Nuclear Information System (INIS)

    Shibata, J.

    1991-01-01

    The method to presume a dissolved state of metal ions in an aqueous solution and the technology to separate and concentrate metal ions in a leached solution are described in this paper. It is very important for the separation of metal ions to know the dissolved state of metal ions. If we know the composition of an aqueous solution and the stability constants of metal-ligand complexes, we can calculate and estimate the concentration of each species in the solution. Then, we can decide the policy to separate and concentrate metal ions. There are several methods for separation and purification; hydroxide precipitation method, sulfide precipitation method, solvent extraction method and ion exchange resin method. Solvent extraction has been used in purification processes of copper refinery, uranium refinery, platinum metal refinery and rare earth metal refinery. Fundamental process of solvent extraction, a kind of commercial extractants, a way of determining a suitable extractant and an equipment are discussed. Finally, it will be emphasized how the separation of rare earths is improved in solvent extraction. (author) 21 figs., 8 tabs., 8 refs

  10. Calcium isotope fractionation in ion-exchange chromatography

    International Nuclear Information System (INIS)

    Russell, W.A.; Papanastassiou, D.A.

    1978-01-01

    Significant fractionation of the isotopes of calcium has been observed during elution through short ion-exchange columns packed with Dowex 50W-X8 resin. A double isotopic tracer was used to provide correction for instrumental fractionation effects. The absolute 40 Ca/ 44 Ca ratio is determined by this method to 0.05% and provides a measure of the fractionation of all Ca isotopes. It is found that the lighter isotopes are preferentially retained by the resin, with variations in 40 Ca/ 44 Ca between the first and last fractions of up to 1.1%. An estimate of the separation factor between batch solute and resin gives epsilon = 2.1 x 10 -4 . Details of the chemical or physical mechanisms causing isotope fractionation of Li, Na, Ca, and other elements during ion-exchange chromatography are not yet clear

  11. Development of a four-zone carousel process packed with metal ion-imprinted polymer for continuous separation of copper ions from manganese ions, cobalt ions, and the constituent metal ions of the buffer solution used as eluent.

    Science.gov (United States)

    Jo, Se-Hee; Park, Chanhun; Yi, Sung Chul; Kim, Dukjoon; Mun, Sungyong

    2011-08-19

    A three-zone carousel process, in which Cu(II)-imprinted polymer (Cu-MIP) and a buffer solution were employed as adsorbent and eluent respectively, has been developed previously for continuous separation of Cu²⁺ (product) from Mn²⁺ and Co²⁺ (impurities). Although this process was reported to be successful in the aforementioned separation task, the way of using a buffer solution as eluent made it inevitable that the product stream included the buffer-related metal ions (i.e., the constituent metal ions of the buffer solution) as well as copper ions. For a more perfect recovery of copper ions, it would be necessary to improve the previous carousel process such that it can remove the buffer-related metal ions from copper ions while maintaining the previous function of separating copper ions from the other 2 impure heavy-metal ions. This improvement was made in this study by proposing a four-zone carousel process based on the following strategy: (1) the addition of one more zone for performing the two-step re-equilibration tasks and (2) the use of water as the eluent of the washing step in the separation zone. The operating conditions of such a proposed process were determined on the basis of the data from a series of single-column experiments. Under the determined operating conditions, 3 runs of carousel experiments were carried out. The results of these experiments revealed that the feed-loading time was a key parameter affecting the performance of the proposed process. Consequently, the continuous separation of copper ions from both the impure heavy-metal ions and the buffer-related metal ions could be achieved with a purity of 91.9% and a yield of 92.8% by using the proposed carousel process based on a properly chosen feed-loading time. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Rapid and Convenient Separation of Chitooligosaccharides by Ion-Exchange Chromatography

    Science.gov (United States)

    Wu, Yuxiao; Lu, Wei-Peng; Wang, Jianing; Gao, Yunhua; Guo, Yanchuan

    2017-12-01

    Pervious methods for separation of highly purified chitooligosaccharides was time-consuming and labor-intensive, which limited the large-scale production. This study developed a convenient ion-exchange chromatography using the ÄKTA™ avant 150 chromatographic system. Five fractions were automatically collected under detecting the absorption at 210 nm. The fractions were analyzed by high-performance liquid chromatography. It proved that they primarily comprised chitobiose, chitotriose, chitotetraose, chitopentaose, and chitohexaose, respectively, with chromatographic purities over 90%. The separation process was rapid, convenient and could be monitored on-line, which would be benefit for the mass production of chitooligosaccharides.

  13. Rechargeable dual-metal-ion batteries for advanced energy storage.

    Science.gov (United States)

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  14. Breast milk metal ion levels in a young and active patient with a metal-on-metal hip prosthesis.

    Science.gov (United States)

    Nelis, Raymond; de Waal Malefijt, Jan; Gosens, Taco

    2013-01-01

    Metal-on-metal resurfacing arthroplasty of the hip has been used increasingly over the last 10 years in younger active patients. The dissolution of the metal wear particles results in measurable increases in cobalt and chromium ions in the serum and urine of patients with a metal-on-metal bearing. We measured the cobalt, chromium, and molybdenum ion levels in urine; serum; and breast milk in a young and active patient with a metal-on-metal hip prosthesis after a pathologic fracture of the femoral neck. Metal-on-metal hip prosthesis leads to increasing levels of molybdenum in breast milk in the short-term follow-up. There are no increasing levels of chromium and cobalt ions in breast milk. Besides the already known elevated concentrations in serum of chromium and cobalt after implantation of a metal-on-metal hip prosthesis, we found no increasing levels of chromium and cobalt in urine. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Extracting metal ions with diphosphonic acid, or derivative thereof

    Science.gov (United States)

    Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.

    1994-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  16. Electrical properties of polymer modified by metal ion implantation

    International Nuclear Information System (INIS)

    Wu Yuguang; Zhang Tonghe; Zhang Huixing; Zhang Xiaoji; Deng Zhiwei; Zhou Gu

    2000-01-01

    Polyethylene terephthalate (PET) has been modified by Ag, Cr, Cu and Si ion implantation with a dose range from 1x10 16 to 2x10 17 ions cm -2 using a metal vapor vacuum arc (MEVVA) source. The electrical properties of PET have been changed after metal ion implantation. The resistivity of implanted PET decreased obviously with an increase of ion dose. When metal ion dose of 2x10 17 cm -2 was selected, the resistivity of PET could be less than 10 Ω cm, but when Si ions are implanted, the resistivity of PET would be up to several hundred Ω cm. The results show that the conductive behavior of a metal ion implanted sample is obviously different from Si implantation one. The changes of the structure and composition have been observed with transmission electron microscope (TEM) and X-ray diffraction (XRD). The surface structure is varying after ion implantation and it is believed that the change would cause the improvement of the conductive properties. The mechanism of electrical conduction will be discussed

  17. Potential of ethylenediaminedi(o-hydroxyphenylacetic acid) and N,N'-bis(hydroxybenzyl)ethylenediamine-N,N'-diacetic acid for the determination of metal ions by capillary electrophoresis.

    Science.gov (United States)

    Krokhin, O V; Kuzina, O V; Hoshino, H; Shpigun, O A; Yotsuyanagi, T

    2000-08-25

    Two aromatic polyaminocarboxylate ligands, ethylenediaminedi(o-hydroxyphenylacetic acid) (EDDHA) and N,N'-bis(hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED), were applied for the separation of transition and heavy metal ions by the ion-exchange variant of electrokinetic chromatography. EDDHA structure contains two chiral carbon centers. It makes it impossible to use the commercially available ligand. All the studied metal ions showed two peaks, which correspond to meso and rac forms of the ligand. The separation of metal-HBED chelates was performed using poly(diallyldimethylammonium) polycations in mixed acetate-hydroxide form. Simultaneous separation of nine single- and nine double-charged HBED chelates, including In(III), Ga(III), Co(II)-(III) and Mn(II)-(III) pairs demonstrated the efficiency of 40,000-400,000 theoretical plates. The separation of Co(III), Fe(III) complexes with different arrangements of donor groups and oxidation of Co(II), Mn(H), Fe(II) ions in reaction with HBED have been discussed.

  18. Fabrication of Ceramic Membrane Chromatography for Biologics Purification

    Directory of Open Access Journals (Sweden)

    Maizirwan Mel

    2011-12-01

    pemfabrikatan membran. Dalam projek ini, serbuk HA dihasilkan menggunakan kanji sebagai agen penghasilan liang. Proses pencirian dilakukan terhadap membran seramik menggunakan radas yang sesuai. Tiga parameter proses pemfabrikatan (peratusan berat kanji, tekanan padatan dan suhu pensinteran dimanipulasikan untuk mendapatkan prestasi membran yang optima. Membran yang difabrikatkan diletakkan dalam sistem FPLC (Fast Protein Liquid Chromatography untuk diuji prestasinya sebagai membran serap. Proses IMAC (Immobilized Metal Affinity Chromatography dijalankan dengan memegunkan ion Ni2+ pada permukaan zarah membran. Nucleoprotein dari NDV (Newcastle disease virus digunakan untuk menguji kebolehan membran terikat dengan protein yang dilabelkan dengan Hisditina. Set parameter proses yang optima yang menghasilkan keliangan tertinggi dan kromatogram yang baik ditentukan pada berat kanji 5 %, tekanan padatan 3000 psi dan suhu pensinteran 1100°C.KEYWORDS: Membrane Chromatography, Porous Ceramic Membrane, IMAC, Hydroxyapatite, Chromatography.

  19. Progress in liquid ion exchangers

    International Nuclear Information System (INIS)

    Nakagawa, Genkichi

    1974-01-01

    Review is made on the extraction with anion exchangers and the extraction with liquid cation exchangers. On the former, explanation is made on the extraction of acids, the relation between anion exchange and the extraction of metals, the composition of the metallic complexes that are extracted, and the application of the extraction with anion exchangers to analytical chemistry. On the latter, explanation is made on the extraction of metals and its application to analytical chemistry. The extraction with liquid ion exchangers is suitable for the operation in chromatography, because the distribution of extracting agents into aqueous phase is small, and extraction equilibrium is quickly reached, usually within 1 to several minutes. The separation by means of anion exchangers is usually made from hydrochloric acid solution. For example, Brinkman et al. determined Rf values for more than 50 elements by thin layer chromatography. Tables are given for showing the structure of the liquid ion exchangers and the polymerized state of various amines. (Mori, K.)

  20. Calmodulin-lanthanide ion exchange kinetics

    International Nuclear Information System (INIS)

    Buccigross, J.; O'Donnell, C.; Nelson, D.

    1985-01-01

    A flow dialysis apparatus suitable for the study of high affinity metal binding proteins has been utilized to study calmodulin-metal exchange kinetics. Calmodulin labeled with Eu-155 and Gd-153 was dialyzed against buffer containing various competing metal ions. The rate of metal exchange was monitored by a gamma-ray scintillation detector. The kinetics of exchange are first order, and the rates fall into two categories: Ca (II) and CD (II) in one, and the lanthanides Eu (III), Gd (III), and La (III) in the other

  1. Extracting metal ions with diphosphonic acid, or derivative thereof

    Science.gov (United States)

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1994-07-26

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  2. Determination of trimethylselenonium ion in urine by ion chromatography and inductively coupled plasma mass spectrometry detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jessen, K.D.; Kristensen, F.H.

    2000-01-01

    The selenium species selenite, selenate, selenomethionine (SeMet), and trimethylselenonium iodide (TMSe+) were separated in aqueous solution by ion chromatography. The separation was performed on an Ionpac CS5 cation exchange column by elution with 10 mM oxalic acid and 20 mM potassium sulphate, p...

  3. Effective charge of energetic ions in metals

    International Nuclear Information System (INIS)

    Kitagawa, M.; Brandt, W.

    1983-01-01

    The effective charge of energetic ion, as derived from stopping power of metals, is calculated by use of a dielectronic-response function method. The electronic distribution in the ion is described through the variational principle in a statistical approximation. The dependences of effective charge on the ion velocity, atomic number and r/sub s/-value of metal are derived at the low-velocity region. The effective charge becomes larger than the real charge of ion due to the close collisions. We obtain the quasi-universal equation of the fractional effective electron number of ion as a function of the ratio between the ionic size and the minimum distance approach. The comparsion between theoretical and experimental results of the effective charge is performed for the cases of N ion into Au, C and Al. We also discuss the equipartition rule of partially ionized ion at the high-velocity region

  4. New Proton-Ionizable, Calixarene-Based Ligands for Selective Metal Ion Separations

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Richard A.

    2012-06-04

    The project objective was the discovery of new ligands for performing metal ion separations. The research effort entailed the preparation of new metal ion complexing agents and polymers and their evaluation in metal ion separation processes of solvent extraction, synthetic liquid membrane transport, and sorption. Structural variations in acyclic, cyclic, and bicyclic organic ligands were used to probe their influence upon the efficiency and selectivity with which metal ion separations can be performed. A unifying feature of the ligand structures is the presence of one (or more) side arm with a pendent acidic function. When a metal ion is complexed within the central cavity of the ligand, ionization of the side arm(s) produces the requisite anion(s) for formation of an overall electroneutral complex. This markedly enhances extraction/transport efficiency for separations in which movement of aqueous phase anions of chloride, nitrate, or sulfate into an organic medium would be required. Through systematic structural variations, new ligands have been developed for efficient and selective separations of monovalent metal ions (e.g., alkali metal, silver, and thallium cations) and of divalent metal ion species (e.g., alkaline earth metal, lead, and mercury cations). Research results obtained in these fundamental investigations provide important insight for the design and development of ligands suitable for practical metal ion separation applications.

  5. Designer ligands: The search for metal ion selectivity

    Directory of Open Access Journals (Sweden)

    Perry T. Kaye

    2011-03-01

    Full Text Available The paper reviews research conducted at Rhodes University towards the development of metal-selective ligands. The research has focused on the rational design, synthesis and evaluation of novel ligands for use in the formation of copper complexes as biomimetic models of the metalloenzyme, tyrosinase, and for the selective extraction of silver, nickel and platinum group metal ions in the presence of contaminating metal ions. Attention has also been given to the development of efficient, metal-selective molecular imprinted polymers.

  6. The isotope separation by ion exchange chromatography. Application to the lithium isotopes separation; La separation isotopique par chromatographie ionique

    Energy Technology Data Exchange (ETDEWEB)

    Albert, M G; Barre, Y; Neige, R

    1994-12-31

    In this work is described the used study step to demonstrate the industrial feasibility of a lithium isotopes separation process by ion exchange chromatography. After having recalled how is carried out the exchange reaction between the lithium isotopes bound on the cations exchanger resin and those which are in solution and gave the ion exchange chromatography principle, the authors establish a model which takes into account the cascade theory already used for enriched uranium production. The size parameters of this model are: the isotopic separation factor (which depends for lithium of the ligands nature and of the coordination factor), the isotopic exchange kinetics and the mass flow (which depends of the temperature, the lithium concentration, the resins diameter and the front advance). The way they have to be optimized and the implementation of the industrial process are given. (O.M.). 5 refs.

  7. Ion microprobe analysis of metallic pigments

    International Nuclear Information System (INIS)

    Pelicon, P.; Simcic, J.; Budnar, M.; Klanjsek-Gunde, M.; Kunavaer, M.

    2001-01-01

    Full text: Metallic paints consist of metallic flakes dispersed m a resinous binder, i.e. a light-element polymer matrix. The spatial distribution and orientation of metallic flakes inside the matrix determines the covering efficiency of the paint, glossiness, and its angular-dependent properties such as lightness flop or color flop (two-tone). Such coatings are extensively used for a functional (i.e. security) as well as decorative purpose. The ion microbeam analysis of two types of silver paint with imbedded metallic flake has been performed to test the ability of the ion microbeam spectroscopic methods on this type of samples. The average sizes of the aluminium flakes were 23 (size distribution 10-37) and 49 (size distribution 34-75) micrometers, respectively. The proton beam with the size of 2x2 micrometers at Ljubljana ion microprobe has been used to scan the surface of the pigments. PIXE mapping of Al Kα map shows lateral distribution of the aluminum flakes, whereas the RBS slicing method reveals tomographic image of the flakes in uppermost 5 micrometers of the pigment layer. The flake distribution in the larger layer depths has been accessed by RBS analysis in a point mode. (author)

  8. Chromium and cobalt ion concentrations in blood and serum following various types of metal-on-metal hip arthroplasties

    DEFF Research Database (Denmark)

    Jantzen, Christopher; Jørgensen, Henrik L; Duus, Benn R

    2013-01-01

    Widely different metal ion concentrations in blood and serum have been reported with metal-on-metal (MoM) implants. We reviewed the literature on blood and serum ion concentrations of chromium (Cr) and cobalt (Co) following various MoM hip arthroplasties.......Widely different metal ion concentrations in blood and serum have been reported with metal-on-metal (MoM) implants. We reviewed the literature on blood and serum ion concentrations of chromium (Cr) and cobalt (Co) following various MoM hip arthroplasties....

  9. A protein engineered to bind uranyl selectively and with femtomolar affinity

    Science.gov (United States)

    Zhou, Lu; Bosscher, Mike; Zhang, Changsheng; Özçubukçu, Salih; Zhang, Liang; Zhang, Wen; Li, Charles J.; Liu, Jianzhao; Jensen, Mark P.; Lai, Luhua; He, Chuan

    2014-03-01

    Uranyl (UO22+), the predominant aerobic form of uranium, is present in the ocean at a concentration of ~3.2 parts per 109 (13.7 nM) however, the successful enrichment of uranyl from this vast resource has been limited by the high concentrations of metal ions of similar size and charge, which makes it difficult to design a binding motif that is selective for uranyl. Here we report the design and rational development of a uranyl-binding protein using a computational screening process in the initial search for potential uranyl-binding sites. The engineered protein is thermally stable and offers very high affinity and selectivity for uranyl with a Kd of 7.4 femtomolar (fM) and >10,000-fold selectivity over other metal ions. We also demonstrated that the uranyl-binding protein can repeatedly sequester 30-60% of the uranyl in synthetic sea water. The chemical strategy employed here may be applied to engineer other selective metal-binding proteins for biotechnology and remediation applications.

  10. Metal ion separations with proton-ionizable Lariat Ethers and their polymers

    International Nuclear Information System (INIS)

    Bartsch, R.A.

    1993-01-01

    The preparation of novel and specific organic complexing agents may lead to the development of new separation systems for aqueous metal ions. Thus the introduction of highly lipophilic oximes led to the current utilization of these compounds as commercial extractants for the hydrometallurgy of nonferrous metals. Crown ethers (macrocyclic polyethers) have been employed in the laboratory-scale solvent extraction of alkali-metal, alkaline-earth, and other metal cations into organic phases. Attachment of side arms to crown ethers gives lariat ethers. The presence of one or more potential coordination sites in the side arm of the lariat ether may produce substantial changes in the selectivity and efficiency of metal ion complexation. It has been demonstrated that concomitant transfer of an aqueous phase anion into the organic medium is not required for metal ion extraction. This factor is of immense importance to potential practical applications of these proton-ionizable crown ethers in which the common, hard, aqueous phase anions would be involved. Another advantage of proton-ionizable lariat ethers is the ease with which extracted metal ions may be stripped from the organic phase by shaking with aqueous mineral acid. Thus both metal ion extraction and stripping are facilitated by pendent proton-ionizable groups. Most of the hazardous metal ion species in the Hanford Site tank wastes are members of the alkali-metal, alkaline-earth, lanthanide, and actinide families. These hard metal ion species prefer association with hard donor atoms, such as oxygens. Therefore, crown and lariat ethers are well-suited for complexation with such metal ion species

  11. Studies on the biofilm produced by Pseudomonas aeruginosa grown in different metal fatty acid salt media and its application in biodegradation of fatty acids and bioremediation of heavy metal ions.

    Science.gov (United States)

    Abinaya Sindu, P; Gautam, Pennathur

    2017-01-01

    Metal fatty acid salts (MFAS) in untreated industrial effluents cause environmental pollution. The use of biocompatible agents for remediation may help in reducing the harm caused to the ambient aquatic organism. Pseudomonas aeruginosa is a ubiquitous organism that thrives under harsh conditions and is resistant to toxic metal ions. The present study shows a proof-of-concept of using this organism in the biodegradation of MFAS. MFAS were prepared and we studied their effect on the growth of the planktonic form and the formation of biofilm by P. aeruginosa. We observed biofilm formation in the presence of all the MFAS when used as the sole carbon source, albeit the quantity of biofilm formed in the presence of cadmium and copper was less. There was no effect on the planktonic form of the organism but the formation of biofilm increased in the presence of magnesium palmitate. This study shows that metal ions play a pivotal role in the formation of biofilm. HPLC (high-performance liquid chromatography) analysis of the biofilm polysaccharide showed that hexose sugar was a major component when compared with pentose sugar. The structure of biofilm polysaccharide and the coordination of the metal ion with the biofilm polysaccharide were confirmed by FTIR (Fourier transform infrared spectroscopy) and Raman spectroscopy.

  12. Separation of metals in the form of ion associates by the method of thin-layer chromatography

    International Nuclear Information System (INIS)

    Shapovalova, E.N.; Timerbaev, A.R.; Bol'shova, T.A.; Mel'nik, S.V.; Kordejro, E.

    1990-01-01

    Behaviour of pyridylazo resorcinates of certain metals (Ga, In, Fe, Co) in the form of ionic pairs with tri-n-octylamine (TOA) under conditions of thin-layer chromatography (TLC) has been studied. For all eluents investigated Ga and In complexes possess the highest mobility. Selectivity of ionic associate separation decreases with an increase in mobile phase polarity. Mixtures with 10-15 % content of isopropanol in eluating solution are the optimal ones. Separation of Ga and In from Fe 3+ and Co takes place with separation criterion 3.1 and 4.1 respectively. An attempt to separate ionic associates of In and Ga failed owing to similar stability of their pyridylazoresorcinates. Solution of the problem of In and Ga determination in the presence of iron can contribute to concrete application of the method

  13. Separations chemistry of toxic metals

    International Nuclear Information System (INIS)

    Smith, P.; Barr, M.; Barrans, R.

    1996-01-01

    Sequestering and removing toxic metal ions from their surroundings is an increasingly active area of research and is gaining importance in light of current environmental contamination problems both within the DOE complex and externally. One method of separating metal ions is to complex them to a molecule (a ligand or chelator) which exhibits specific binding affinity for a toxic metal, even in the presence of other more benign metals. This approach makes use of the sometimes subtle differences between toxic and non-toxic metals resulting from variations in size, charge and shape. For example, toxic metals such as chromium, arsenic, and technetium exist in the environment as oxyanions, negatively charged species with a characteristic tetrahedral shape. Other toxic metals such as actinides and heavy metals are positively charged spheres with specific affinities for particular donor atoms such as oxygen (for actinides) and nitrogen (for heavy metals). In most cases the toxic metals are found in the presence of much larger quantities of less toxic metals such as sodium, calcium and iron. The selectivity of the chelators is critical to the goal of removing the toxic metals from their less toxic counterparts. The approach was to build a ligand framework that complements the unique characteristics of the toxic metal (size, charge and shape) while minimizing interactions with non-toxic metals. The authors have designed ligands exhibiting specificity for the target metals; they have synthesized, characterized and tested these ligands; and they have shown that they exhibit the proposed selectivity and cooperative binding effects

  14. Complexation-induced supramolecular assembly drives metal-ion extraction.

    Science.gov (United States)

    Ellis, Ross J; Meridiano, Yannick; Muller, Julie; Berthon, Laurence; Guilbaud, Philippe; Zorz, Nicole; Antonio, Mark R; Demars, Thomas; Zemb, Thomas

    2014-09-26

    Combining experiment with theory reveals the role of self-assembly and complexation in metal-ion transfer through the water-oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X-ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long-range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu(3+)-3(NO3(-)) ion pairs involves incorporation of the "hard" metal complex into the core of "soft" aggregates. This seeds the formation of reverse micelles that draw the water and "free" amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod-shaped polynuclear Eu(III) -containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O-donor ligands and anions, provide improved Eu(III) solvation environments that help drive interfacial transfer, as is reflected by the increasing Eu(III) partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal-ion coordination with nanoscale structure to reveal the free-energy balance that drives the phase transfer of neutral metal salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Metal ion sequestration: An exciting dimension for molecularly ...

    African Journals Online (AJOL)

    The use of a tight binding macrocyclic ligand to complex a metal ion so that this serves as receptee on the Molecularly Imprinted Polymer (MIP) receptor as described here affords a sequestration route for a targeted metal ion, with potential for environmental remediation and restoration applications. Ethylene glycol ...

  16. Application of ion chromatography in pharmaceutical and drug analysis.

    Science.gov (United States)

    Jenke, Dennis

    2011-08-01

    Ion chromatography (IC) has developed and matured into an important analytical methodology in a number of diverse applications and industries, including pharmaceuticals. This manuscript provides a review of IC applications for the determinations of active and inactive ingredients, excipients, degradation products, and impurities relevant to pharmaceutical analyses and thus serves as a resource for investigators looking for insights into the use of the IC methodology in this field of application.

  17. Adsorption of Heavy Metal Ions from Aqueous Solutions by Bentonite Nanocomposites.

    Science.gov (United States)

    Ma, Jing; Su, Guojun; Zhang, Xueping; Huang, Wen

    2016-08-01

    A series of bentonite nanocomposites have been synthesized by modifying bentonite with hexadecyltrimethylammonium bromide (CTMAB) and the common complexing agents, complexone (ethylene diamine tetraacetic acid, EDTA) or mercaptocomplexant (2-Mercaptobenzothiazole, MBT). These adsorbents are used to remove heavy metal ions (Cu(2+), Zn(2+), Mn(2+),Co(2+)). The Bent-CTMAB-MBT adsorbed metal ions are higher than Bent-CTMAB-EDTA under the same ion concentration in AAS. Compared with the single ion system, the adsorption of the mixed ion system of Cu(2+), Zn(2+), Mn(2+), Co(2+) had decreased differently. In the mixed system, the adsorption of Mn(2+) is significantly lower, but the adsorption of Cu(2+) was highest. The adsorption sequence of these four metal ions was Cu(2+) > Zn(2+) > Co(2+) > Mn(2+), and the selective adsorption was closely related to the hydration energy of heavy metal ions. We could remove more metal ions in different stages with the adsorption sequence.

  18. Simultaneous determination of inorganic and organic anions by ion chromatography

    International Nuclear Information System (INIS)

    Park, Yang Soon; Joe, Ki Soo; Han, Sun Ho; Park, Soon Dal; Choi, Kwang Soon

    1999-06-01

    Four methods were investigated for the simultaneous determination of several inorganic and organic anions in aqueous solution by ion chromatography. The first is two columns coupled system. The second is the gradient elution system with an anion exchange column. The third is the system with a mixed-mode stationary phase. The fourth is the system with an anion exchange column and the eluant of low conductivity without ion suppressor. The advantages and disadvantages of individual systems were discussed. The suitable methods were proposed for the application to the samples of the nuclear power industry and the environment. (author)

  19. Metal ion removal from aqueous solution using physic seed hull.

    Science.gov (United States)

    Mohammad, Masita; Maitra, Saikat; Ahmad, Naveed; Bustam, Azmi; Sen, T K; Dutta, Binay K

    2010-07-15

    The potential of physic seed hull (PSH), Jantropha curcas L. as an adsorbent for the removal of Cd(2+) and Zn(2+) metal ions from aqueous solution has been investigated. It has been found that the amount of adsorption for both Cd(2+) and Zn(2+) increased with the increase in initial metal ions concentration, contact time, temperature, adsorbent dosage and the solution pH (in acidic range), but decreased with the increase in the particle size of the adsorbent. The adsorption process for both metal ions on PSH consists of three stages-a rapid initial adsorption followed by a period of slower uptake of metal ions and virtually no uptake at the final stage. The kinetics of metal ions adsorption on PSH followed a pseudo-second-order model. The adsorption equilibrium data were fitted in the three adsorption isotherms-Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The data best fit in the Langmuir isotherm indication monolayer chemisorption of the metal ions. The adsorption capacity of PSH for both Zn(2+) and Cd(2+) was found to be comparable with other available adsorbents. About 36-47% of the adsorbed metal could be leached out of the loaded PSH using 0.1M HCl as the eluting medium. 2010 Elsevier B.V. All rights reserved.

  20. Bioavailability of Metal Ions and Evolutionary Adaptation

    Directory of Open Access Journals (Sweden)

    Rolando P. Hong Enriquez

    2012-10-01

    Full Text Available The evolution of life on earth has been a long process that began nearly 3,5 x 109 years ago. In their initial moments, evolution was mainly influenced by anaerobic environments; with the rise of O2 and the corresponding change in bioavailability of metal ions, new mechanisms of survival were created. Here we review the relationships between ancient atmospheric conditions, metal ion bioavailability and adaptation of metals homeostasis during early evolution. A general picture linking geochemistry, biochemistry and homeostasis is supported by the reviewed literature and is further illustrated in this report using simple database searches.

  1. Determination of some trace metals in elsaraf dam (GEDAREF)

    International Nuclear Information System (INIS)

    Yagoob, T. I.

    2001-07-01

    In this study the part of the plant analyzed was the root, while by the soil we mean the soil which is in direct contact with the plant root. This analysis was carried to find the relation between the concentrations of the free ions in water, the mobile ions in the soil in contact with the root of the plant and the ions uptake by the plant as well as the movement of these ions between different reservoirs. The nutrient elements, (Fe, Mn, Zn, Cu, Co) showed higher concentrations than toxic elements (Cr, Ni, Cd). Because of its natural abundance, iron has the highest concentration (54900/56600, 33580/36800), manganese has shown the second highest concentration, followed by nickel and zinc. Copper, cobalt and chromium have shown relatively similar concentrations, while cadmium has shown the lowest concentration. In general, almost for all elements the soils have shown higher concentration followed by the plant and then water. Cyperus rotandus has shown high affinity towards most of the metal ions, while the rest of plants have shown almost similar affinity. Because of the generally low concentration of metal ions in water, preconcentration was used using 8-hydroxyquinoline (oxine) and ammonium pyrolidine dithiocarbamate APDC to extract (pre concentrate) the metal ions at the optimum parameters before measurement in AAS.(Author)

  2. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    Science.gov (United States)

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  3. Metal hydride compositions and lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Young, Kwo; Nei, Jean

    2018-04-24

    Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH.sub.2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.

  4. Recent progress of task-specific ionic liquids in chiral resolution and extraction of biological samples and metal ions.

    Science.gov (United States)

    Wu, Datong; Cai, Pengfei; Zhao, Xiaoyong; Kong, Yong; Pan, Yuanjiang

    2018-01-01

    Ionic liquids have been functionalized for modern applications. The functional ionic liquids are also called task-specific ionic liquids. Various task-specific ionic liquids with certain groups have been constructed and exploited widely in the field of separation. To take advantage of their properties in separation science, task-specific ionic liquids are generally used in techniques such as liquid-liquid extraction, solid-phase extraction, gas chromatography, high-performance liquid chromatography, and capillary electrophoresis. This review mainly covers original research papers published in the last five years, and we will focus on task-specific ionic liquids as the chiral selectors in chiral resolution and as extractant or sensor for biological samples and metal ion purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Application of ion chromatography to the determination of water-soluble inorganic and organic ions in atmospheric aerosols.

    Science.gov (United States)

    Yu, Xue-Chun; He, Ke-Bin; Ma, Yong-Liang; Yang, Fu-Mo; Duan, Feng-Kui; Zheng, Ai-Hua; Zhao, Cheng-Yi

    2004-01-01

    A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic anions(F- , Cl- , NO2(-), NO3(-), SO3(2-), SO4(2-) , PO4(3-)), and fifteen water-soluble organic ions(formate, acetate, MSA, oxalate, malonate, succinate, phthalates, etc.) in atmospheric aerosols. The linear concentrations ranged from 0.005 microg/m3 to 500 microg/m3 ( r = 0.999-0.9999). The relative standard deviation (RSD) were 0.43%-2.00% and the detection limits were from 2.7 ng/m3 to 88 ng/m3. The proposed method was successfully applied to the simultaneous determination of those inorganic ions and organic ions in PM2.5 of Beijing.

  6. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography.

    Science.gov (United States)

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.

  7. Calibration of shahid's analytical method for adulterated Zn-edta fertilizers by ion chromatography and atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Khan, M.S.A.; Akram, M.; Qazi, M.A.

    2010-01-01

    Chelated zinc fertilizers are usually recommended in calcareous alkaline soils to provide Zn nutrition in order to prevent possible Zn precipitation. In Punjab (Pakistan), Zn EDTA products are being manufactured, and marketed to meet the zinc requirement of various crops grown in Zn deficient soils. Under fertilizer control order, 1973 (amended), their quality has to be monitored by the Agriculture Department, Government of the Punjab. None of the traditional method was found suitable which can separate the mineral fraction from that of chelated adulterated fertilizer except for those methods based on ion chromatography. Calibration of ion chromatography method was carried out by determining the mineral Zn fraction leading to estimate remaining Zn EDTA fraction in fertilizer samples of adulterated nature i.e. mixture of chelated and mineral fraction. In order to achieve the objective atomic absorption spectroscopy was coupled with ion chromatography. The method offers a specific, reliable technique for determination of chelated zinc in fertilizers. In the first step chelation was broken down with concentrated sulphuric acid treatment and total zinc contents were determined by atomic absorption spectroscopy. In second step, non-chelated (mineral) portion of zinc was determined by ion chromatography using cation column and conductivity detector. Chelated zinc was calculated by subtracting non-chelated (mineral) fraction from total zinc contents. (author)

  8. Application of ion implantation in metals and alloys

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1981-01-01

    Ion implantation first became established as a precise method of introducing dopant elements into semiconductors. It is now appreciated that there may be equally important applications in metallic tools or components with the purpose of improving their resistance to wear, fatigue or corrosion. Nitrogen ions implanted into steels pin dislocations and thereby harden the metal. Some metallic ions such as yttrium reduce the tendency for oxidative wear. There is a fairly good understanding of how both treatments can provide a long-lasting protection that extends to many times the original depth of implantation. Nitrogen implantation also improves the wear resistance of Co-cemented tungsten carbide and of hard chromium electroplated coatings. These treatments have wide application in press tools, molds, dies and other metal-forming tools as well as in a more limited variety of cutting tools. Some striking improvements can be achieved in the corrosion field, but there are economic and technical reasons for concluding that practical applications of ion implantation will be more restricted and specialized in this area. The most promising area is that in which mechanical stress and oxidation coexist. When a metallic species has to be introduced, a promising new development is to bombard a thin coating of the metal at an elevated temperature. Several powerful mechanisms of radiation-enhanced diffusion can bring about a complete intermixing. Examples of how this has been used to produce wear resistant surfaces in titanium are given. Finally, the equipment developed for the large scale application of the ion implantation process in the engineering field is described

  9. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  10. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P J; Chu, J W; Johnson, E P; Noorman, J T [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D K [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  11. Ion beam analysis of metal ion implanted surfaces

    International Nuclear Information System (INIS)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T.; Sood, D.K.

    1993-01-01

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs

  12. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source

    Science.gov (United States)

    Pilz, W.; Laufer, P.; Tajmar, M.; Böttger, R.; Bischoff, L.

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi2+ ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  13. Alkali Metal Cation Affinities of Anionic Main Group-Element Hydrides Across the Periodic Table

    NARCIS (Netherlands)

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F. Matthias

    2017-01-01

    We have carried out an extensive exploration of gas-phase alkali metal cation affinities (AMCA) of archetypal anionic bases across the periodic system using relativistic density functional theory at ZORA-BP86/QZ4P//ZORA-BP86/TZ2P. AMCA values of all bases were computed for the lithium, sodium,

  14. Progress in metal ion separation and preconcentration: an overview

    International Nuclear Information System (INIS)

    Bond, A. H.

    1998-01-01

    A brief historical perspective covering the most mature chemically-based metal ion separation methods is presented, as is a summary of the recommendations made in the 1987 National Research Council (NRC) report entitled ''Separation and Purification: Critical Needs and Opportunities''. A review of Progress in Metal Ion Separation and Preconcentration shows that advances are occurring in each area of need cited by the NRC. Following an explanation of the objectives and general organization of this book, the contents of each chapter are briefly summarized and some future research opportunities in metal ion separations are presented

  15. Fractal and multifractal characteristics of swift heavy ion induced self-affine nanostructured BaF{sub 2} thin film surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, R. P.; Mittal, A. K. [Department of Physics, University of Allahabad, Allahabad 211002 (India); Kumar, Manvendra, E-mail: kmanav@gmail.com; Pandey, A. C. [Nanotechnology Application Centre, University of Allahabad, Allahabad 211002 (India)

    2015-08-15

    Fractal and multifractal characteristics of self-affine surfaces of BaF{sub 2} thin films, deposited on crystalline Si 〈1 1 1〉 substrate at room temperature, were studied. Self-affine surfaces were prepared by irradiation of 120 MeV Ag{sup 9+} ions which modified the surface morphology at nanometer scale. The surface morphology of virgin thin film and those irradiated with different ion fluences are characterized by atomic force microscopy technique. The surface roughness (interface width) shows monotonic decrease with ion fluences, while the other parameters, such as lateral correlation length, roughness exponent, and fractal dimension, did not show either monotonic decrease or increase in nature. The self-affine nature of the films is further confirmed by autocorrelation function. The power spectral density of thin films surfaces exhibits inverse power law variation with spatial frequency, suggesting the existence of fractal component in surface morphology. The multifractal detrended fluctuation analysis based on the partition function approach is also performed on virgin and irradiated thin films. It is found that the partition function exhibits the power law behavior with the segment size. Moreover, it is also seen that the scaling exponents vary nonlinearly with the moment, thereby exhibiting the multifractal nature.

  16. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Nicholas B. [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  17. Ion beam induced nanosized Ag metal clusters in glass

    International Nuclear Information System (INIS)

    Mahnke, H.-E.; Schattat, B.; Schubert-Bischoff, P.; Novakovic, N.

    2006-01-01

    Silver metal clusters have been formed in soda lime glass by high-energy heavy-ion irradiation at ISL. The metal cluster formation was detected with X-ray absorption spectroscopy (EXAFS) in fluorescence mode, and the shape of the clusters was imaged with transmission electron microscopy. While annealing in reducing atmosphere alone, leads to the formation of metal clusters in Ag-containing glasses, where the Ag was introduced by ion-exchange, such clusters are not very uniform in size and are randomly distributed over the Ag-containing glass volume. Irradiation with 600-MeV Au ions followed by annealing, however, results in clusters more uniform in size and arranged in chains parallel to the direction of the ion beam

  18. Fluorescence signalling of the transition metal ions: Design strategy ...

    Indian Academy of Sciences (India)

    Unknown

    strategy based on the choice of the fluorophore component. N B SANKARAN, S ... skill for the development of fluorosensors of this kind. Further, the ... salts of the transition metal ions have been used for studying the influence of the metal ions.

  19. Metal ion concentrations in body fluids after implantation of hip replacements with metal-on-metal bearing--systematic review of clinical and epidemiological studies.

    Directory of Open Access Journals (Sweden)

    Albrecht Hartmann

    Full Text Available INTRODUCTION: The use of metal-on-metal (MoM total hip arthroplasty (THA increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. OBJECTIVE: To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. METHODS: Systematic review of clinical trials (RCTs and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor, patient characteristics as well as study quality characteristics (secondary explanatory factors. RESULTS: Overall, 104 studies (11 RCTs, 93 epidemiological studies totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L. Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. DISCUSSION: Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed "time out" for stemmed large-head MoM-THA and recommend a restricted

  20. Studies on indigenous ion exchange resins: alkali metal ions-hydrogen ion exchange equilibria

    International Nuclear Information System (INIS)

    Shankar, S.; Kumar, Surender; Venkataramani, B.

    2001-01-01

    With a view to select a suitable ion exchange resin for the removal of radionuclides (such as cesium, strontium etc.) from low level radioactive effluents, alkali metal ion -H' exchanges on nine indigenous gel- and macroporous-type and nuclear grade resins have been studied at a total ionic strength of 0.1 mol dm .3 (in the case ofCs' -H' exchange it was 0.05 mol dm .3 ). The expected theoretical capacities were not attained by all the resins for the alkali metal ions. The water content (moles/equiv.) of the fully swollen resins for different alkali metal ionic forms do not follow the usual sequence of greater the tendency of the cation to hydrate the higher the water uptake, but a reverse trend. The ion exchange isotherms (plots of equivalent fractions of the ion in resin phase, N M1 to that in solution, N M ) were not satisfactory and sorption of cations, for most of the resins, was possible only when the acidity of the solution was lowered. The variations of the selectivity coefficient, K, with N M show that the resins are highly cross linked and the selectivity sequence: Cs + >K + >Na + >Li + , obtained for all the resins indicate that hydrated ions were involved in the exchange process. However, the increase in the selectivity was not accompanied by the release of water, but unusual uptake of water, during the exchange process. The characteristics of macroporous resins were not significantly different from those of the gel-type resins. The results are discussed in terms of heterogeneity in the polymer net work, improper sulphonation process resulting in the formation of functional groups at inaccessible sites with weak acidic character and the overall lack of control in the preparation of different resins. (author)

  1. Simultaneous ionization and analysis of 84 anabolic androgenic steroids in human urine using liquid chromatography-silver ion coordination ionspray/triple-quadrupole mass spectrometry.

    Science.gov (United States)

    Kim, So-Hee; Cha, Eun-Ju; Lee, Kang Mi; Kim, Ho Jun; Kwon, Oh-Seung; Lee, Jaeick

    2014-01-01

    Metal ion coordination ionspray (M(+) CIS) ionization is a powerful technique to enhance ionization efficiency and sensitivity. In this study, we developed and validated an analytical method for simultaneous ionization and analysis of 84 anabolic androgenic steroids (65 exogenous and 19 endogenous) using liquid chromatography-silver ion coordination ionspray/triple-quadrupole mass spectrometry (LC-Ag(+) CIS/MS/MS). The concentrations of silver ions and organic solvents have been optimized to increase the amount of silver ion coordinated complexes. A combination of 25 μM of silver ions and methanol showed the best sensitivity. The validation results showed the intra- (0.8-9.2%) and inter-day (2.5-14.9%) precisions, limits of detection (0.0005-5.0 ng/mL), and matrix effect (71.8-100.3%) for the screening analysis. No significant ion suppression was observed. In addition, this method was successfully applied to analysis of positive samples from suspected abusers and useful for the detection of the trace levels of anabolic steroids in human urine samples. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Reversed-phase liquid chromatography coupled on-line with capillary gas chromatography use of an anion-exchange membrane to remove an ion-pair reagent from the eluent.

    NARCIS (Netherlands)

    Brinkman, U.A.T.; Goosens, E.C.; de Jong, D.; de Jong, G.J.; Beerthuizen, I.M.

    1995-01-01

    In order to enable the coupling of reversed-phase liquid chromatography (RPLC) with capillary gas chromatography (GC), the performance of an anion-exchange micromembrane device has been studied to remove the ion-pair reagent methanesulphonic acid from an acetonitrile/water LC eluent. The regenerant

  3. Modification of metallic corrosion by ion implantation

    International Nuclear Information System (INIS)

    Clayton, C.R.

    1981-01-01

    This review will consider some of the properties of surface alloys, formed by ion implantation, which are effective in modifying corrosion behaviour. Examples will be given of the modification of the corrosion behaviour of pure metals, steels and other engineering alloys, resulting from implantation with metals and metalloids. Emphasis will be given to the modification of anodic processes produced by ion implantation since a review will be given elsewhere in the proceedings concerning the modification of cathodic processes. (orig.)

  4. Adsorption preference for divalent metal ions by Lactobacillus casei JCM1134.

    Science.gov (United States)

    Endo, Rin; Aoyagi, Hideki

    2018-05-09

    The removal of harmful metals from the intestinal environment can be inhibited by various ions which can interfere with the adsorption of target metal ions. Therefore, it is important to understand the ion selectivity and adsorption mechanism of the adsorbent. In this study, we estimated the adsorption properties of Lactobacillus casei JCM1134 by analyzing the correlation between its maximum adsorption level (q max ) for seven metals and their ion characteristics. Some metal ions showed altered adsorption levels by L. casei JCM1134 as culture growth time increased. Although it was impossible to identify specific adsorption components, adsorption of Sr and Ba may depend on capsular polysaccharide levels. The maximum adsorption of L. casei JCM1134 (9 h of growth in culture) for divalent metal ions was in the following order: Cu 2+  > Ba 2+  > Sr 2+  > Cd 2+  > Co 2+  > Mg 2+  > Ni 2+ . The q max showed a high positive correlation with the ionic radius. Because this tendency is similar to adsorption occurring through an ion exchange mechanism, it was inferred that an ion exchange mechanism contributed greatly to adsorption by L. casei JCM1134. Because the decrease in the amount of adsorption due to prolonged culture time was remarkable for metals with a large ion radius, it is likely that the adsorption components involved in the ion exchange mechanism decomposed over time. These results and analytical concept may be helpful for designing means to remove harmful metals from the intestinal tract.

  5. Surface modification of metals by ion implantation

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1988-01-01

    Ion implantation in metals has attracted the attention as a useful technology for the formation of new metastable alloys and compounds in metal surface layers without thermal equilibrium. Current studies of metal surface modification by ion implantation with high fluences have expanded from basic research areas and to industrial applications for the improvement of life time of tools. Many results suggest that the high fluence implantation produces the new surface layers with un-expected microscopic characteristics and macroscopic properties due to implant particles, radiation damage, sputtering, and knock-on doping. In this report, the composition, structure and chemical bonding state in surface layers of iron, iron-based alloy and aluminum sheets implanted with high fluences have been investigated by means of secondary ion mass spectroscopy (SIMS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Tribological properties such as hardness, friction and wear are introduced. (author)

  6. Very broad beam metal ion source for large area ion implantation application

    International Nuclear Information System (INIS)

    Brown, I.; Anders, S.; Dickinson, M.R.; MacGill, R.A.; Yao, X.

    1993-01-01

    The authors have made and operated a very broad beam version of vacuum arc ion source and used it to carry out high energy metal ion implantation of a particularly large substrate. A multiple-cathode vacuum arc plasma source was coupled to a 50 cm diameter beam extractor (multiple aperture, accel-decel configuration) operated at a net extraction voltage of up to 50 kV. The metal ion species chosen were Ni and Ta. The mean ion charge state for Ni and Ta vacuum arc plasmas is 1.8 and 2.9, respectively, and so the mean ion energies were up to about 90 and 145 keV, respectively. The ion source was operated in a repetitively pulsed mode with pulse length 250 μs and repetition rate several pulses per second. The extracted beam had a gaussian profile with FWHM about 35 cm, giving a nominal beam area of about 1,000 cm 2 . The current of Ni or Ta metal ions in the beam was up to several amperes. The targets for the ion implantation were a number of 24-inch long, highly polished Cu rails from an electromagnetic rail gun. The rails were located about 80 cm away from the ion source extractor grids, and were moved across a diameter of the vessel in such a way as to maximize the uniformity of the implant along the rail. The saturation retained dose for Ta was limited to about 4 x 10 16 cm -2 because of the rather severe sputtering, in accordance with the theoretical expectations for these implantation conditions. Here they describe the ion source, the implantation procedure, and the kinds of implants that can be produced in this way

  7. Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: Two-dimensional liquid chromatography-mass spectrometry vs. liquid chromatography-trapped-ion-mobility-mass spectrometry.

    Science.gov (United States)

    Baglai, Anna; Gargano, Andrea F G; Jordens, Jan; Mengerink, Ynze; Honing, Maarten; van der Wal, Sjoerd; Schoenmakers, Peter J

    2017-12-29

    Recent advancements in separation science have resulted in the commercialization of multidimensional separation systems that provide higher peak capacities and, hence, enable a more-detailed characterization of complex mixtures. In particular, two powerful analytical tools are increasingly used by analytical scientists, namely online comprehensive two-dimensional liquid chromatography (LC×LC, having a second-dimension separation in the liquid phase) and liquid chromatography-ion mobility-spectrometry (LC-IMS, second dimension separation in the gas phase). The goal of the current study was a general assessment of the liquid-chromatography-trapped-ion-mobility-mass spectrometry (LC-TIMS-MS) and comprehensive two-dimensional liquid chromatography-mass spectrometry (LC×LC-MS) platforms for untargeted lipid mapping in human plasma. For the first time trapped-ion-mobility spectrometry (TIMS) was employed for the separation of the major lipid classes and ion-mobility-derived collision-cross-section values were determined for a number of lipid standards. The general effects of a number of influencing parameters have been inspected and possible directions for improvements are discussed. We aimed to provide a general indication and practical guidelines for the analyst to choose an efficient multidimensional separation platform according to the particular requirements of the application. Analysis time, orthogonality, peak capacity, and an indicative measure for the resolving power are discussed as main characteristics for multidimensional separation systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Preparation of Dithizone Functionalized Polystyrene for Detecting Heavy Metal Ion

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyeon Ho; Kim, Younghun [Kwangwoon University, Seoul (Korea, Republic of)

    2015-04-15

    Colorimetric sensors were usually used to detect specific metal ions using selective color change of solutions. While almost organic dye in colorimetric sensors detected single molecule, dithizone (DTZ) solution could be separately detected above 5 kinds of heavy metal ions by the change of clear color. Namely, DTZ could be used as multicolorimetric sensors. However, DTZ was generally used as aqueous type and paper/pellet-type DTZ was not reported yet. Therefore, in this work, polystyrene (PS) was prepared to composite with DTZ and then DTZ/PS pellet was obtained, which was used to selectively detect 10 kinds of heavy metal ions. When 10 ppm of Hg and Co ions was exposed in DTZ/PS pellets, clear color change was revealed. It is noted that DTZ/PS pellet could be used in detecting of heavy metal ion as dry type.

  9. Direct electrochemical sensing of glucose using glucose oxidase immobilized on functionalized carbon nanotubes via a novel metal chelate-based affinity method

    International Nuclear Information System (INIS)

    Tu, X.; Zhao, Y.; Luo, S.; Luo, X.; Feng, L.

    2012-01-01

    We report on a novel amperometric glassy carbon biosensing electrode for glucose. It is based on the immobilization of a highly sensitive glucose oxidase (GOx) by affinity interaction on carbon nanotubes (CNTs) functionalized with iminodiacetic acid and metal chelates. The new technique for immobilization is exploiting the affinity of Co(II) ions to the histidine and cysteine moieties on the surface of GOx. The direct electrochemistry of immobilized GOx revealed that the functionalized CNTs greatly improve the direct electron transfer between GOx and the surface of the electrode to give a pair of well-defined and almost reversible redox peaks and undergoes fast heterogeneous electron transfer with a rate constant (k s) of 0. 59 s -1 . The GOx immobilized in this way fully retained its activity for the oxidation of glucose. The resulting biosensor is capable of detecting glucose at levels as low as 0.01 mM, and has excellent operational stability (with no decrease in the activity of enzyme over a 10 days period). The method of immobilizing GOx is easy and also provides a model technique for potential use with other redox enzymes and proteins. (author)

  10. Broad-beam, high current, metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the 'seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs

  11. Establishing the analytical procedure for acetate in water by ion chromatography method

    International Nuclear Information System (INIS)

    Nguyen Thi Hong Thinh; Ha Lan Anh; Vo Thi Anh

    2015-01-01

    In recent studies of contamination sources of arsenic, ammonium, iron, organic carbon in groundwater, acetate is measured a lot because it is the main decomposition product of organic compounds from sediment into groundwater. In order to better support for the study of the origin and mobilization mechanism of the pollutants, acetate was studied analysis method in Isotopes Hydrology Laboratory using ion chromatography technique. Project Researchers used Ion Chromatography system - DX-600 including IonPac ICE-AS1 column for separating acetate and conductivity detector CD 25 to quantify acetate in water samples. The study results showed that project team has successfully developed analytical procedures of acetate in water with acetate’s retention time is 12 minutes, limit of detection (LOD) of the method was 0.01 ppm. The accuracy of the method was established by calculating the precision and bias of 10 analysis times of a standard sample at content levels 1 ppm and 8 ppm. The results of the 10 measurements are satisfiable about precision and bias with repeated standard deviation coefficient CVR were 1.3% and 0.2% and the recoveries R were 99.92% and 101.72%. (author)

  12. Progress in metal ion separation and preconcentration : an overview.

    Energy Technology Data Exchange (ETDEWEB)

    Bond, A. H.

    1998-05-19

    A brief historical perspective covering the most mature chemically-based metal ion separation methods is presented, as is a summary of the recommendations made in the 1987 National Research Council (NRC) report entitled ''Separation and Purification: Critical Needs and Opportunities''. A review of Progress in Metal Ion Separation and Preconcentration shows that advances are occurring in each area of need cited by the NRC. Following an explanation of the objectives and general organization of this book, the contents of each chapter are briefly summarized and some future research opportunities in metal ion separations are presented.

  13. Thermodynamic and structural properties of the specific binding between Ag⁺ ion and C:C mismatched base pair in duplex DNA to form C-Ag-C metal-mediated base pair.

    Science.gov (United States)

    Torigoe, Hidetaka; Okamoto, Itaru; Dairaku, Takenori; Tanaka, Yoshiyuki; Ono, Akira; Kozasa, Tetsuo

    2012-11-01

    Metal ion-nucleic acid interactions have attracted considerable interest for their involvement in structure formation and catalytic activity of nucleic acids. Although interactions between metal ion and mismatched base pair duplex are important to understand mechanism of gene mutations related to heavy metal ions, they have not been well-characterized. We recently found that the Ag(+) ion stabilized a C:C mismatched base pair duplex DNA. A C-Ag-C metal-mediated base pair was supposed to be formed by the binding between the Ag(+) ion and the C:C mismatched base pair to stabilize the duplex. Here, we examined specificity, thermodynamics and structure of possible C-Ag-C metal-mediated base pair. UV melting indicated that only the duplex with the C:C mismatched base pair, and not of the duplexes with the perfectly matched and other mismatched base pairs, was specifically stabilized on adding the Ag(+) ion. Isothermal titration calorimetry demonstrated that the Ag(+) ion specifically bound with the C:C base pair at 1:1 molar ratio with a binding constant of 10(6) M(-1), which was significantly larger than those for nonspecific metal ion-DNA interactions. Electrospray ionization mass spectrometry also supported the specific 1:1 binding between the Ag(+) ion and the C:C base pair. Circular dichroism spectroscopy and NMR revealed that the Ag(+) ion may bind with the N3 positions of the C:C base pair without distorting the higher-order structure of the duplex. We conclude that the specific formation of C-Ag-C base pair with large binding affinity would provide a binding mode of metal ion-DNA interactions, similar to that of the previously reported T-Hg-T base pair. The C-Ag-C base pair may be useful not only for understanding of molecular mechanism of gene mutations related to heavy metal ions but also for wide variety of potential applications of metal-mediated base pairs in various fields, such as material, life and environmental sciences. Copyright © 2012 Elsevier

  14. Highly sensitive colour change system within slight differences in metal ion concentrations based on homo-binuclear complex formation equilibrium for visual threshold detection of trace metal ions

    International Nuclear Information System (INIS)

    Mizuguchi, Hitoshi; Atsumi, Hiroshi; Hashimoto, Keigo; Shimada, Yasuhiro; Kudo, Yuki; Endo, Masatoshi; Yokota, Fumihiko; Shida, Junichi; Yotsuyanagi, Takao

    2004-01-01

    A new technique of expressing slight differences in metal ion concentrations by clear difference in colour was established for visual threshold detection of trace metal ions. The proposed method is based on rapid change of the mole fraction of the homo-binuclear complex (M 2 L) about a ligand in a narrow range of the total metal ion concentration (M T ) in a small excess, in case the second metal ion is bound to the reagent molecule which can bind two metal ions. Theoretical simulations showed that the highly sensitive colour change within slight differences in metal ion concentrations would be realized under the following conditions: (i) both of the stepwise formation constants of complex species are sufficiently large; (ii) the stepwise formation constant of the 1:1 complex (ML) is larger than that of M 2 L; and (iii) the absorption spectrum of M 2 L is far apart from the other species in the visible region. Furthermore, the boundary of the colour region in M T would be readily controlled by the total ligand concentration (L T ). Based on this theory, the proposed model was verified with the 3,3'-bis[bis(carboxymethyl)amino]methyl derivatives of sulphonephthalein dyes such as xylenol orange (XO), methylthymol blue (MTB), and methylxylenol blue (MXB), which can bind two metal ions at both ends of a π-electron conjugated system. The above-mentioned model was proved with the iron(III)-XO system at pH 2. In addition, MTB and MXB were suitable reagents for the visual threshold detection of trivalent metal ions such as iron(III), aluminium(III), gallium(III) and indium(III) ion in slightly acidic media. The proposed method has been applied successfully as a screening test for aluminium(III) ion in river water sampled at the downstream area of an old mine

  15. Metal ion transport quantified by ICP-MS in intact cells

    Science.gov (United States)

    Figueroa, Julio A. Landero; Stiner, Cory A.; Radzyukevich, Tatiana L.; Heiny, Judith A.

    2016-01-01

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181

  16. Application of Ion Chromatography to the Investigation of Real-World Samples

    Science.gov (United States)

    Whelan, Rebecca J.; Hannon, Theresa E.; Zare, Richard N.

    2004-01-01

    The use of ion chromatography (IC) as a means to teach important analytical concepts while giving the students a valuable opportunity to identify and investigate a real-world system of interest to them is described. A single IC apparatus can be tailored for different classes of analyses by the selection of different column-eluent combinations.

  17. Use of heavy ions to model radiation damage of metals

    International Nuclear Information System (INIS)

    Shirokov, S.V.; Vyshemirskij, M.P.

    2011-01-01

    The methods for modeling radiation damage of metals using heavy ions are reviewed and the results obtained are analyzed. It is shown that irradiation of metals with heavy ion can simulate neutron exposure with the equivalent dose with adequate accuracy and permits a detailed analysis of radiation damage of metals

  18. Ion mobility spectrometry after supercritical fluid chromatography

    International Nuclear Information System (INIS)

    Morrissey, M.A.

    1988-01-01

    In this work, a Fourier transform ion mobility spectrometer (FT-IMS) was constructed and evaluated as a detector for supercritical fluid chromatography (SFC). The FT-IMS provides both quantitative and qualitative data of a wide range of compounds, selective and nonselective modes of chromatographic detection, and it is compatible with a wide range of SFC mobile phases. Drift spectra are presented for a number of samples, including polymers, lipids, herbicides, antibiotics, and pharmaceuticals. The unique properties of supercritical fluids made it possible to introduce these compounds into the spectrometer. While the drift spectra presented are generally simple, showing only a quasi-molecular ion, a few are surprising complex. Examples of selective and non-selective detection demonstrate the usefulness of the detector. Examples are presented for fish oil concentrate, bacon grease extract, soil extract, and polymer mixtures. In the case of Triton X-100, a non-ionic surfactant, the FT-IMS was able to selectively detect individual oligomers in the polymer mixture. In the case of a polydimethylsilicone mixture the detector isolated a contaminant in the mixture

  19. Purification of CD47-streptavidin fusion protein from bacterial lysate using biotin-agarose affinity chromatography.

    Science.gov (United States)

    Salehi, Nasrin; Peng, Ching-An

    2016-07-08

    CD47 is a widely expressed transmembrane glycoprotein that modulates the activity of a plethora of immune cells via its extracellular domain. Therefore, CD47 plays important roles in the regulation of immune responses and may serve as targets for the development of immunotherapeutic agents. To make sure CD47 functionality is intact under the process of protein conjugation, CD47-streptavidin fusion protein was expressed and purified because it can easily bind to biotin-tagged materials via the unique biotin-streptavidin affinity. In this study, gene sequences of CD47 extracellular domain (CD47ECD) and core streptavidin (coreSA) with a total 834 bp were inserted into pET20b plasmid to construct recombinant plasmid encoding CD47-SA fusion gene. After bacteria transformation, the CD47-SA fusion protein was expressed by isopropyl-β-d-thiogalactopyranoside (IPTG) induction. The collected bacteria lysate was loaded on biotinylated agarose to proceed the purification of CD47-SA fusion protein. Due to the unexpected high affinity between biotin and coreSA, standard washing and elution approaches (e.g., varying pH, using biotin, and applying guanidine hydrochloride) reported for biotin-streptavidin affinity chromatography were not able to separate the target fusion protein. Instead, using low concentration of the non-ionic detergent Triton X-100 followed with alkaline buffer could efficiently weaken the binding between biotin and coreSA, thereby eluting out CD47-SA fusion protein from the biotin agarose column. The purified CD47-SA fusion protein was further characterized by molecular biology methods and its antiphagocytic functionality was confirmed by the phagocytosis assay. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:949-958, 2016. © 2016 American Institute of Chemical Engineers.

  20. Applications of extraction chromatography in the development of radionuclide generator systems for nuclear medicine

    International Nuclear Information System (INIS)

    Dietz, M.L.; Horwitz, E.P.

    2000-01-01

    Numerous methods have been described for the separation and purification of radionuclides for application in diagnostic and therapeutic nuclear medicine, among them ion exchange, solvent extraction, and various forms of chromatography. Although extraction chromatography has previously been shown to provide a means of performing a number of separations of potential use in radionuclide generator systems, the application of the technique to generator development has thus far been limited. Recent work directed at improved methods for the determination of radionuclides in biological and environmental samples has led to the development of a series of novel extraction chromatographic resins exhibiting enhanced metal ion retention from strongly acidic media and excellent selectivity, among them materials suitable for the isolation of 212 Bi, 90 Y, and 213 Bi. These resins, along with extraction chromatographic materials employing functionalized supports to improve their physical stability or metal ion retention properties, are shown to offer promise in the development of improved radionuclide generators

  1. Ion beam assisted deposition of metal-coatings on beryllium

    International Nuclear Information System (INIS)

    Tashlykov, I.S.; Tul'ev, V.V.

    2015-01-01

    Thin films were applied on beryllium substrates on the basis of metals (Cr, Ti, Cu and W) with method of the ion-assisted deposition in vacuum. Me/Be structures were prepared using 20 kV ions irradiation during deposition on beryllium neutral fraction generated from vacuum arc plasma. Rutherford back scattering and computer simulation RUMP code were applied to investigate the composition of the modified beryllium surface. Researches showed that the superficial structure is formed on beryllium by thickness ~ 50-60 nm. The covering composition includes atoms of the deposited metal (0.5-3.3 at. %), atoms of technological impurity carbon (0.8-1.8 at. %) and oxygen (6.3-9.9 at. %), atoms of beryllium from the substrate. Ion assisted deposition of metals on beryllium substrate is accompanied by radiation enhanced diffusion of metals, oxygen atoms in the substrate, out diffusion of beryllium, carbon atoms in the deposited coating and sputtering film-forming ions assists. (authors)

  2. Hydrolysis of metal ions. Vol. 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Paul L. [Geochem Australia, Kiama, NSW (Australia); Ekberg, Christian [Chalmers Univ. of Technology, Goeteborg (Sweden). Nuclear Chemistry/Industrial Materials Recycling

    2016-07-01

    Filling the need for a comprehensive treatment that covers the theory, methods and the different types of metal ion complexes with water (hydrolysis), this handbook and ready reference is authored by a nuclear chemist from academia and an industrial geochemist. The book includes both cation and anion complexes, and approaches the topic of metal ion hydrolysis by first covering the background, before proceeding with an overview of the dissociation of water and then all different metal-water hydrolysis complexes and compounds. A must-have for scientists in academia and industry working on this interdisciplinary topic.

  3. Charge state of ions scattered by metal surface

    International Nuclear Information System (INIS)

    Kishinevsky, L.M.; Parilis, E.S.; Verleger, V.K.

    1976-01-01

    A model for description of charge distributions for scattering of heavy ions in the keV region, on metal surfaces developing and improving the method of Van der Weg and Bierman, and taking into account the connection between the ion charge state and scattering kinematics, is proposed. It is shown that multiple charged particles come from ions with a vacancy in the inner shell while the outer shell vacancies give only single charged ions and neutrals. The approximately linear increase of degree of ionization with normal velocity, and the non-monotonic charge dependence of the energy spectrum established by Chicherov and Buck et al is explained by considering irreversible neutralization in the depth of the metal, taking into account the connection of the charge state with the shape of trajectory and its location relative to the metal surface. The dependence of charge state on surface structure is discussed. Some new experiments are proposed. (author)

  4. Adhesive, abrasive and oxidative wear in ion-implanted metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1985-01-01

    Ion implantation is increasingly being used to provide wear resistance in metals and cemented tungsten carbides. Field trials and laboratory tests indicate that the best performance is achieved in mild abrasive wear. This can be understood in terms of the classification of wear modes (adhesive, abrasive, oxidative etc.) introduced by Burwell. Surface hardening and work hardenability are the major properties to be enhanced by ion implantation. The implantation of nitrogen or dual implants of metallic and interstitial species are effective. Recently developed techniques of ion-beam-enhanced deposition of coatings can further improve wear resistance by lessening adhesion and oxidation. In order to support such hard coatings, ion implantation of nitrogen can be used as a preliminary treatment. There is thus emerging a versatile group of related hard vacuum treatments involving intense beams of nitrogen ions for the purpose of tailoring metal surfaces to resist wear. (Auth.)

  5. Metal Ion Concentrations in Body Fluids after Implantation of Hip Replacements with Metal-on-Metal Bearing – Systematic Review of Clinical and Epidemiological Studies

    Science.gov (United States)

    Hartmann, Albrecht; Hannemann, Franziska; Lützner, Jörg; Seidler, Andreas; Drexler, Hans; Günther, Klaus-Peter; Schmitt, Jochen

    2013-01-01

    Introduction The use of metal-on-metal (MoM) total hip arthroplasty (THA) increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds) in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. Objective To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. Methods Systematic review of clinical trials (RCTs) and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum) in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor), patient characteristics as well as study quality characteristics (secondary explanatory factors). Results Overall, 104 studies (11 RCTs, 93 epidemiological studies) totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine) irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L). Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. Discussion Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed „time out“ for stemmed large-head MoM-THA and recommend a restricted indication for hip

  6. Solution thermodynamics of rare-earth metal ions - physicochemical study-

    Energy Technology Data Exchange (ETDEWEB)

    Amerkhanova, Sh K; Shlyapov, R M; Uali, A S [Buketov Karaganda state university, University str., 28, Karaganda, 100028 (Kazakhstan)], E-mail: amerkhanova_sh@mail.ru

    2009-02-01

    The results of the studying of interactions in multicomponent systems 'polyvinyl alcohol (PVA) - rare-earth element ion - nitrate of sodium - water' are represented. It is established that for rubidium (I) ions temperature and ionic strength is render destroying action, and for yttrium (III) ions the influence of these factors has return character which is connected with features of an electronic structure of metal ion. It is revealed that a dominating role of non-electrostatic formation composed, hence, the formation of donor-acceptor connection of 'metal - ligand' occurs through atom of oxygen.

  7. Competition effects in cation binding to humic acid: Conditional affinity spectra for fixed total metal concentration conditions

    Science.gov (United States)

    David, Calin; Mongin, Sandrine; Rey-Castro, Carlos; Galceran, Josep; Companys, Encarnació; Garcés, José Luis; Salvador, José; Puy, Jaume; Cecilia, Joan; Lodeiro, Pablo; Mas, Francesc

    2010-09-01

    Information on the Pb and Cd binding to a purified Aldrich humic acid (HA) is obtained from the influence of different fixed total metal concentrations on the acid-base titrations of this ligand. NICA (Non-Ideal Competitive Adsorption) isotherm has been used for a global quantitative description of the binding, which has then been interpreted by plotting the Conditional Affinity Spectra of the H + binding at fixed total metal concentrations (CAScTM). This new physicochemical tool, here introduced, allows the interpretation of binding results in terms of distributions of proton binding energies. A large increase in the acidity of the phenolic sites as the total metal concentration increases, especially in presence of Pb, is revealed from the shift of the CAScTM towards lower affinities. The variance of the CAScTM distribution, which can be used as a direct measure of the heterogeneity, also shows a significant dependence on the total metal concentration. A discussion of the factors that influence the heterogeneity of the HA under the conditions of each experiment is provided, so that the smoothed pattern exhibited by the titration curves can be justified.

  8. Accumulation of some metal ions on Bacillus licheniformis

    International Nuclear Information System (INIS)

    Hafez, M.B.; El-Desouky, W.; Fouad, A.

    2001-01-01

    Pure species of Bacillus licheniformis was used to remove ions from aqueous and simulated waste solutions. Metal ion accumulation on B. licheniformis was fast. Maximum uptake occurred at pH 4± 0.5 and at 25 ± 3 deg C. One gram of dry B. licheniformis was found to accumulate 115 mg cerium, 34 mg copper and 11 mg cobalt from aqueous solutions. The presence of certain foreign ions such as calcium, sodium and potassium decreased the uptake of ions by B. licheniformis, while citrate and EDTA prevent the uptake. Electron microscopic investigations showed that cerium (III), copper (II) and cobalt (II) accumulated extracellulary around the surface wall of B. licheniformis cells. A bio-adsorption mechanism between the metal ions and B. licheniformis cell wall was proposed. (author)

  9. Development of complexation ion chromatography for the determination of metal ions

    OpenAIRE

    Bashir, Wasim

    2002-01-01

    A simple ion chromatographic method was developed for the determination of Pb(II) in river and polluted water samples. The method was based upon the use of a colourforming complexing eluent and direct visible detection of the eluting Pb(II) complex. Using the combination of a strong cation exchange column and an eluent consisting of 20 mM sodium acetate-acetic acid buffer and 0.2 mM xylenol orange (XO) (~pH = 4.2), Pb(II) was detected at 572 nm eluting in under 6.5 min. The developed method p...

  10. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  11. Improved liquid chromatography-MS/MS of heparan sulfate oligosaccharides via chip-based pulsed makeup flow.

    Science.gov (United States)

    Huang, Yu; Shi, Xiaofeng; Yu, Xiang; Leymarie, Nancy; Staples, Gregory O; Yin, Hongfeng; Killeen, Kevin; Zaia, Joseph

    2011-11-01

    Microfluidic chip-based hydrophilic interaction chromatography (HILIC) is a useful separation system for liquid chromatography-mass spectrometry (LC-MS) in compositional profiling of heparan sulfate (HS) oligosaccharides; however, ions observed using HILIC LC-MS are low in charge. Tandem MS of HS oligosaccharide ions with low charge results in undesirable losses of SO(3) from precursor ions during collision induced dissociation. One solution is to add metal cations to stabilize sulfate groups. Another is to add a nonvolatile, polar compound such as sulfolane, a molecule known to supercharge proteins, to produce a similar effect for oligosaccharides. We demonstrate use of a novel pulsed makeup flow (MUF) HPLC-chip. The chip enables controlled application of additives during specified chromatographic time windows and thus minimizes the extent to which nonvolatile additives build up in the ion source. The pulsed MUF system was applied to LC-MS/MS of HS oligosaccharides. Metal cations and sulfolane were tested as additives. The most promising results were obtained for sulfolane, for which supercharging of the oligosaccharide ions increased their signal strengths relative to controls. Tandem MS of these supercharged precursor ions showed decreased abundances of product ions from sulfate losses yet more abundant product ions from backbone cleavages.

  12. Metal binding proteins, recombinant host cells and methods

    Science.gov (United States)

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  13. Applications of ion plating in metals fabrication

    International Nuclear Information System (INIS)

    Bell, R.T.; Thompson, J.C.

    1974-01-01

    Use of ion plating at the Oak Ridge Y-12 Plant to solve problems encountered in metals fabrication and processing are discussed. Three typical areas are covered. The first is the use of strike coats on various substrates for subsequent electrodeposition. The second area in which ion plating is shown to contribute to a process is in cold welding or room temperature bonding of metals. The third application involves plating U to promote safe handling, fission-product retention, and corrosion protection in nuclear reactors

  14. Characterization of poly(allylamine) as a polymeric ligand for ion-exchange protein chromatography.

    Science.gov (United States)

    Li, Ming; Li, Yanying; Yu, Linling; Sun, Yan

    2017-02-24

    This work reports poly(allylamine) (PAA), as a polymeric ion-exchange ligand for protein chromatography. Sepharose FF was modified with PAA, and six anion exchangers with ionic capacities (ICs) from 165 to 618mmol/L were prepared. Inverse size exclusion chromatography, adsorption equilibrium, uptake kinetics and column elution were performed. It was found that both the adsorption capacity and effective diffusivity maintained low values in the IC range of 165-373mmol/L, but they started to increase beyond 373mmol/L, and increased by 80% and 23 times, respectively, when the IC reached 618mmol/L. Interestingly, a drastic decrease of pore size was observed around the IC of 373mmol/L. The results suggest that the PAA chains played an important role in protein adsorption by altering the inner pore structure of the gels. It is considered that, PAA chains turn from inextensible states with multipoint-grafting on the pore surface at low coupling densities (IC373mmol/L). These characters of the grafted chains at higher IC values benefit in protein adsorption by three-dimensional binding and encouraged the happening of "chain delivery" of bound proteins on the chains. Besides, the ion exchangers showed favorable adsorption and uptake properties in a wide ionic strength range, 0-500mmol/L NaCl, indicating much better salt tolerance feature than the so-far reported ion exchangers. Moreover, a mild condition of pH 5.0 offered effective recovery of bound proteins in elution chromatography. The results indicate that the PAA-based anion exchanger of a high IC value is promising for high-capacity protein chromatography dealing with feedstock of a wide range of ionic strengths. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Biomass as biosorbent for molybdenum ions

    International Nuclear Information System (INIS)

    Yamaura, Mitiko; Santos, Jacinete L. dos; Damasceno, Marcos O.; Egute, Nayara dos S.; Moraes, Adeniane A.N.; Santos, Bruno Z.

    2013-01-01

    Biosorbents have been focused as renewable materials of low cost, and have been used for metal removal from the wastewater by adsorption phenomenon. Biosorbents are prepared of biomass, whose reactive sites in its chemical structure have affinity to bind to metal ions. In this work, performance of corn husk, sugarcane bagasse, coir, banana peel, fish scale, chitin and chitosan as biosorbents of molybdenum (VI) ions in aqueous medium was evaluated. The adsorption experiments were investigated in a batch system varying the pH solution from 0.5 to 12 and the contact time between the phases from 2 min to 70 min. 99 Mo radioisotope was used as radioactive tracer for analysis of molybdenum ions by gamma spectroscopy using a HPGe detector. Results revealed that acidity of the solution favored the adsorption of Mo (VI) ions on the all biosorbents. Adsorption values higher than 85% were found on sugarcane bagasse, coir, corn husk, chitin and chitosan at pH 2.0. Only the chitosan was dissolved at pH 0.5 and a gel was formed. The models of pseudo-second order and external film diffusion described the kinetics of adsorption of Mo ions on the coir. This work showed that the studied biomass has high potential to be used as biosorbent of molybdenum ions from acidic wastewater, and the kinetics of Mo adsorption on the coir suggested high-affinity adsorption governed by chemisorption. (author)

  16. Biomass as biosorbent for molybdenum ions

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, Mitiko; Santos, Jacinete L. dos; Damasceno, Marcos O.; Egute, Nayara dos S.; Moraes, Adeniane A.N.; Santos, Bruno Z., E-mail: myamaura@ipen.br, E-mail: jlsantos@ipen.br, E-mail: molidam@ipen.br, E-mail: nayara.egute@usp.br, E-mail: adenianemrs@ig.com.br, E-mail: bzsantos@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Biosorbents have been focused as renewable materials of low cost, and have been used for metal removal from the wastewater by adsorption phenomenon. Biosorbents are prepared of biomass, whose reactive sites in its chemical structure have affinity to bind to metal ions. In this work, performance of corn husk, sugarcane bagasse, coir, banana peel, fish scale, chitin and chitosan as biosorbents of molybdenum (VI) ions in aqueous medium was evaluated. The adsorption experiments were investigated in a batch system varying the pH solution from 0.5 to 12 and the contact time between the phases from 2 min to 70 min. {sup 99}Mo radioisotope was used as radioactive tracer for analysis of molybdenum ions by gamma spectroscopy using a HPGe detector. Results revealed that acidity of the solution favored the adsorption of Mo (VI) ions on the all biosorbents. Adsorption values higher than 85% were found on sugarcane bagasse, coir, corn husk, chitin and chitosan at pH 2.0. Only the chitosan was dissolved at pH 0.5 and a gel was formed. The models of pseudo-second order and external film diffusion described the kinetics of adsorption of Mo ions on the coir. This work showed that the studied biomass has high potential to be used as biosorbent of molybdenum ions from acidic wastewater, and the kinetics of Mo adsorption on the coir suggested high-affinity adsorption governed by chemisorption. (author)

  17. Cooperative adsorption of critical metal ions using archaeal poly-γ-glutamate.

    Science.gov (United States)

    Hakumai, Yuichi; Oike, Shota; Shibata, Yuka; Ashiuchi, Makoto

    2016-06-01

    Antimony, beryllium, chromium, cobalt (Co), gallium (Ga), germanium, indium (In), lithium, niobium, tantalum, the platinoids, the rare-earth elements (including dysprosium, Dy), and tungsten are generally regarded to be critical (rare) metals, and the ions of some of these metals are stabilized in acidic solutions. We examined the adsorption capacities of three water-soluble functional polymers, namely archaeal poly-γ-glutamate (L-PGA), polyacrylate (PAC), and polyvinyl alcohol (PVA), for six valuable metal ions (Co(2+), Ni(2+), Mn(2+), Ga(3+), In(3+), and Dy(3+)). All three polymers showed apparently little or no capacity for divalent cations, whereas L-PGA and PAC showed the potential to adsorb trivalent cations, implying the beneficial valence-dependent selectivity of anionic polyelectrolytes with multiple carboxylates for metal ions. PVA did not adsorb metal ions, indicating that the crucial role played by carboxyl groups in the adsorption of crucial metal ions cannot be replaced by hydroxyl groups under the conditions. In addition, equilibrium studies using the non-ideal competitive adsorption model indicated that the potential for L-PGA to be used for the removal (or collection) of water-soluble critical metal ions (e.g., Ga(3+), In(3+), and Dy(3+)) was far superior to that of any other industrially-versatile PAC materials.

  18. Reactions of metal ions and their clusters in the gas phase using laser ionization: ion cyclotron resonance spectroscopy

    International Nuclear Information System (INIS)

    Freiser, B.S.

    1981-04-01

    Two subjects are discussed in this report: advances in proposed studies on metal ion chemistry and expansion of laboratory facilities. The development of a combined pulsed laser source-ion cyclotron resonance spectrometer has proven to be a convenient and powerful method for generating metal ions and for studying their subsequent chemistry in the gas phase. The main emphasis of this research has been on the application of metal ions as a selective chemical ionization reagents and progress in this area are discussed. The goal is to identify trends in reactivity i.e. mechanisms useful in interpreting the chemical ionization spectra of unknown compounds and to test for the functional group selectivity of the various metal ions. The feasibility of these goals have been demonstrated in extensive studies on Cu + with esters and ketones, on Fe + with ethers, ketones, and hydrocarbons, and on Ti + with hydrocarbons. In addition, preliminary results on sulfur containing compounds and on a variety of other metallic ions have been obtained. Laboratory facilities were expanded from one ion cyclotron resonance (ICR) spectrometer to two, plus a third instrument the Fourier Transform Ion Cyclotron Resonance (FTICR) spectrometer

  19. Hepatitis C virus expressing flag-tagged envelope protein 2 has unaltered infectivity and density, is specifically neutralized by flag antibodies and can be purified by affinity chromatography

    DEFF Research Database (Denmark)

    Prentø, Jannick Cornelius; Bukh, Jens

    2011-01-01

    to the original virus. Flag-tagged virus was susceptible to flag-specific antibody neutralization, and infected cells could be immuno-stained by anti-flag antibodies. Using affinity chromatography with anti-flag resin we repeatedly obtained ~30% recovery of infectious particles. The full viability and unaltered...

  20. A simple alkali-metal and noble gas ion source for SIMS equipments with mass separation of the primary ions

    International Nuclear Information System (INIS)

    Duesterhoeft, H.; Pippig, R.

    1986-01-01

    An alkali-metal ion source working without a store of alkali-metals is described. The alkali-metal ions are produced by evaporation of alkali salts and ionization in a low-voltage arc discharge stabilized with a noble gas plasma or in the case of small alkali-metal ion currents on the base of the well known thermic ionization at a hot tungsten wire. The source is very simple in construction and produces a stable ion current of 0.3 μA for more than 100 h. It is possible to change the ion species in a short time. This source is applicable to all SIMS equipments using mass separation for primary ions. (author)

  1. Analysis of catecholamines in urine by unique LC/MS suitable ion-pairing chromatography.

    Science.gov (United States)

    Bergmann, Marianne L; Sadjadi, Seyed; Schmedes, Anne

    2017-07-01

    The catecholamines, epinephrine (E) and norepinephrine (NE) are small polar, hydrophilic molecules, posing significant challenges to liquid chromatography - tandem mass spectrometry (LC-MS/MS) method development. Specifically, these compounds show little retention on conventional reversed-phase liquid chromatography columns. This work presents development and validation of an LC-MS/MS method for determining catecholamines in urine, based on a new approach to ion-pairing chromatography (IPC), in which the ion-pairing reagent (IPR), 1-Heptane Sulfonic Acid (HSA), is added to the extracted samples instead of the mobile phases. A Hamilton STARlet workstation carried out the solid phase extraction of urine samples. The extracted samples were diluted with 60mmol/L HSA and injected on a Kinetex core-shell biphenyl column with conventional LC-MS/MS suitable mobile phases. Chromatographic separation of E and NE was achieved successfully with very stable retention times (RT). In 484 injections, the RTs were steady with a CV of less than ±4%. Furthermore, HSA was separated from E and NE, allowing HSA to be diverted to waste instead of entering the mass spectrometer ion chamber. The method was validated with good analytical performance, and even though the analysis for urinary catecholamines is increasingly being replaced by plasma free metanephrines in diagnosing pheochromocytomas, this work represents the application of a new analytical technique that can be transferred to other small polar molecules, that are difficult to chromatograph on traditional reversed phase columns. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Biosorption of heavy metal ions from aqueous solution by red macroalgae.

    Science.gov (United States)

    Ibrahim, Wael M

    2011-09-15

    Biosorption is an effective process for the removal and recovery of heavy metal ions from aqueous solutions. The biomass of marine algae has been reported to have high biosorption capacities for a number of heavy metal ions. In this study, four species of red seaweeds Corallina mediterranea, Galaxaura oblongata, Jania rubens and Pterocladia capillacea were examined to remove Co(II), Cd(II), Cr(III) and Pb(II) ions from aqueous solution. The experimental parameters that affect the biosorption process such as pH, contact time and biomass dosage were studied. The maximum biosorption capacity of metal ions was 105.2mg/g at biomass dosage 10 g/L, pH 5 and contact time 60 min. The biosorption efficiency of algal biomass for the removal of heavy metal ions from industrial wastewater was evaluated for two successive cycles. Galaxaura oblongata biomass was relatively more efficient to remove metal ions with mean biosorption efficiency of 84%. This study demonstrated that these seaweeds constitute a promising, efficient, cheap and biodegradable sorbent biomaterial for lowering the heavy metal pollution in the environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Microstructured liquid metal electron and ion sources (MILMES/MILMIS)

    Energy Technology Data Exchange (ETDEWEB)

    Mitterauer, J [Technische Universitaet Wien (Austria). Institut fuer Allgemeine Elektrotechnik und Elektronik

    1997-12-31

    Ion or electron beams can be emitted from liquid metal wetted needles, or from capillaries or slits into which the liquid metal is allowed to flow. Large-area liquid metal field emission sources have been proposed recently, using either two-dimensional, regular arrays of cones or capillaries, or even a substrate with an intrinsically microstructured surface covered by a liquid metal film. This latter concept has been realized in a pilot experiment by in situ wicking and wetting of a porous sintered metal disc. Microstructured liquid metal ion or electron sources are capable of operating in a pulsed mode at a current level which is orders of magnitude above that for steady-state operation. (author). 3 figs., 10 refs.

  4. The isotope separation by ion exchange chromatography. Application to the lithium isotopes separation

    International Nuclear Information System (INIS)

    Albert, M.G.; Barre, Y.; Neige, R.

    1993-01-01

    In this work is described the used study step to demonstrate the industrial feasibility of a lithium isotopes separation process by ion exchange chromatography. After having recalled how is carried out the exchange reaction between the lithium isotopes bound on the cations exchanger resin and those which are in solution and gave the ion exchange chromatography principle, the authors establish a model which takes into account the cascade theory already used for enriched uranium production. The size parameters of this model are: the isotopic separation factor (which depends for lithium of the ligands nature and of the coordination factor), the isotopic exchange kinetics and the mass flow (which depends of the temperature, the lithium concentration, the resins diameter and the front advance). The way they have to be optimized and the implementation of the industrial process are given. (O.M.)

  5. Ultraviolet spectroscopy and metal ions detection

    International Nuclear Information System (INIS)

    Chaudry, M.A.

    1995-01-01

    The spectrochemical analysis is based on the interaction of radiation with the chemical species and depends on their nature, having pi, sigma or electrons, or d and f electrons, UV. Visible spectrophotometry has been used extensively in the detection and determination of both organics and inorganics. In UV detection the sensitivity is proportional to the bath length and the excitation coefficient of the given sample. It may be insensitive to many species unless these are converted to UV, absorbing derivatives. The technique has been applied for the monitoring of the effluents from HPLC, as chlorides or other complexes of various elements in this article the utility of HCl as reagent for the spectrophotometric determination of the metal ions like Al(III), As(III,IV), Ba(II), Cd(II), Ca(II) Ce(III), Cs(i), Cr(III,VI), Co(II), Cu(II), Dy(III), Eu(III), Gd(III), Au(III), Hf(IV), Ho(III), In(III), Fe(III), La(III), Pb(II), Lu (III), Mg(II), Mn(II), Hg(II), Mo(VI), Ni(II), Pd(II), Pt(IV), K(I), Pr(III), Re(VII), Ru(IV), Sm(III), Sc(III), Ag(I), Sr(II) Te(III), Th(IV), Sn(II,IV), Ti(III,IV), W(VI), U(VI), V(IV,V), Yb(III), Zn(II) AND Zr(IV) Ions i.e. for meta ions from d of the most of these metal ions has been found sufficient permit their detection in HPLC. Their molar absorptive have also been reported. Reference has also been provided to post column derivatization of some metal ions from d and f block elements for their detection in HPLC. (author) 12 figs.; 6 tabs.; 27 refs

  6. Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal.

    Science.gov (United States)

    Song, Jooyoung; Oh, Hyuntaek; Kong, Hyeyoung; Jang, Jyongsik

    2011-03-15

    Polyrhodanine was immobilized onto the inner surface of anodic aluminum oxide (AAO) membrane via vapor deposition polymerization method. The polyrhodanine modified membrane was applied to remove heavy metal ions from aqueous solution because polyrhodanine could be coordinated with specific metal ions. Several parameters such as initial metal concentration, contact time and metal species were evaluated systematically for uptake efficiencies of the fabricated membrane under continuous flow condition. Adsorption isotherms of Hg(II) ion on the AAO-polyrhodanine membrane were analyzed with Langmuir and Freundlich isotherm models. The adsorption rate of Hg(II) ion on the membrane was obeyed by a pseudo-second order equation, indicating the chemical adsorption. The maximum removal capacity of Hg(II) ion onto the fabricated membrane was measured to be 4.2 mmol/g polymer. The AAO-polyrhodanine membrane had also remarkable uptake performance toward Ag(I) and Pb(II) ions. Furthermore, the polyrhodanine modified membrane could be recycled after recovery process. These results demonstrated that the polyrhodanine modified AAO membrane provided potential applications for removing the hazardous heavy metal ions from wastewater. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Determination of chloride and sulphur in sodium by ion chromatography and its application to PFBR sodium samples

    International Nuclear Information System (INIS)

    Vijayalakshmi, S.; Ushalakshmi, K.

    2011-01-01

    Analytical method using ion chromatography was developed for the determination of chloride and sulphur in sodium. In this method, sodium was dissolved in water and various sulphur species present in the sample was oxidized to sulphate using hydrogen peroxide. Carbon dioxide gas was passed through the solution to convert sodium hydroxide to carbonate solution. The resulting sample solution was analysed using suppressed Ion chromatography employing carbonate eluent. This method was applied to the analysis of sodium samples procured for prototype fast breeder reactor. (author)

  8. Utilization of Ion-Exclusion Chromatography for Water Quality Monitoring in a Suburban River in Jakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Daisuke Kozaki

    2014-07-01

    Full Text Available We evaluated the use of ion-exclusion chromatographic systems for analyzing the behavior of inorganic ions (e.g., bicarbonate, sulfate, chloride, nitrate, phosphate, dissolved silicate, sodium, ammonium, potassium, magnesium, and calcium ions in a suburban river located in Jakarta, Indonesia. Carbonate, phosphate, and silicate ion concentrations were determined using ion-exclusion chromatography (IEC on a weakly acidic cation-exchange resin column (WCX in the H+-form with water eluent. Other ions were identified by ion-exclusion/cation-exchange chromatography (IEC/CEC on a WCX column with tartaric acid eluent. The use of IEC systems for water quality monitoring was advantageous for the following reasons: (1 the concentrations of analyte ions, except NO3− and silicate ions, increased from upstream to downstream; and (2 the speciation of inorganic nitrogen ions could be analyzed by single injection into the IEC/CEC. The IEC approach provided beneficial information for the construction of sewage treatment facilities in our study area. Results showed that (1 the analyte concentrations for samples obtained in the downstream area were higher than those in the upstream area owing to contamination by domestic sewage; (2 the concentrations of NO3− and NH4+ correlated with the concentration of dissolved oxygen; and (3 bicarbonate concentrations increased downstream, likely due to respiration of bacteria and dissolution of concrete under low-oxygen conditions.

  9. Emission of positive oxygen ions from ion bombardment of adsorbate-covered metal surfaces

    International Nuclear Information System (INIS)

    Kaurin, M.G.

    1989-01-01

    During ion bombardment of metal surfaces, collision cascades can result in the emission of sputtered secondary ions. Recent experiments, however, have suggested that the emission of positive ions of electronegative adsorbates can result from electronic processes rather than from processes involving elastic collisions. This dissertation presents the results of experiments studying the emission of positive oxygen ions from oxygen- and carbon-monoxide-covered transition metal surfaces during bombardment by 25-250 keV ions of neon, argon, and krypton. The systems studied may be grouped into four categories. For a nickel substrate with adsorbed oxygen, the emission of positive oxygen ions proceeds through collision cascades. For titanium and niobium with adsorbed oxygen, the emission of positive oxygen ions is proportional to the primary ion velocity, consistent with emission from electronic processes; for a given primary ion velocity, the oxygen ion yield is independent of primary ion species. For substrates of molybdenum and tungsten, the oxygen yield is proportional to primary ion velocity, but the yield also depends on the primary ion species for a given primary ion velocity in a manner that is consistent with emission resulting from electronic processes. For these two groups, except for titanium, the yields during neon ion bombardment do not extrapolate (assuming linearity with primary ion velocity) to a nonzero value at zero beam velocity. The magnitude of the oxygen ion yields from these targets is not consistent with that expected if the emission were induced by secondary electrons emitted during the ion bombardment

  10. Chromatography of 49 metal ions on stannic antimonate papers in dimethylsulfoxide: nitric acid systems and aqueous nitric acid systems

    International Nuclear Information System (INIS)

    Qureshi, M.; Varshney, K.G.; Rajput, R.P.S.

    1975-01-01

    Chromatographic separations of 49 metal ions on stannic antimonate papers have been performed using mixed solvent systems containing DMSO. Aqueous HNO 3 systems have also been used. The utility of the papers has been demonstrated by achieving various difficult separations. Some of the important separations (R/sub f/ values given in parentheses) are: Cs + (0.20)-K + (0.30) and Sm 3+ (0.00)-Pr 3+ (0.72) in pure DMSO; Nb 5+ (0.14)-VO 2+ (0.95) in DMSO-6M HNO 3 (1:1); Ti 4+ (0.00)-VO 2 (0.97) in DMSO-0.5M HNO 3 (1:1); and Ba 2+ (0.06)-K + (0.52)-Sr 2+ (0.95), Ba 2+ (0.04)-Cs + (0.41)-Mg 2+ (0.93), and Ca 2+ (0.10)-Sr 2+ (0.94) in DMSO-0.1M HNO 3 (1:1). The time of development in each case is two hours. A discussion is presented on the dependence of Ri, log R/sub f/, and R/sub M/ on pH of the solvent to understand the mechanism of the movement of metal ions on papers impregnated with inorganic materials. (U.S.)

  11. High-current pulsed ion source for metallic ions

    International Nuclear Information System (INIS)

    Gavin, B.; Abbott, S.; MacGill, R.; Sorensen, R.; Staples, J.; Thatcher, R.

    1981-03-01

    A new sputter-ion PIG source and magnet system, optimized for intermediate charge states, q/A of 0.02 to 0.03, is described. This source will be used with the new Wideroe-based injector for the SuperHILAC. Pulsed electrical currents of several emA of heavy metal ions have been produced in a normalized emittance area of .05π cm-mr. The source system is comprised of two electrically separate anode chambers, one in operation and one spare, which can be selected by remote control. The entire source head is small and quickly removable

  12. Ion Chromatography-on-a-chip for Water Quality Analysis

    Science.gov (United States)

    Kidd, R. D.; Noell, A.; Kazarians, G.; Aubrey, A. D.; Scianmarello, N.; Tai, Y.-C.

    2015-01-01

    We report progress towards developing a Micro-Electro-Mechanical Systems (MEMS)- based ion chromatograph (IC) for crewed spacecraft water analysis. This IC-chip is an offshoot of a NASA-funded effort to produce a high performance liquid chromatograph (HPLC)-chip. This HPLC-chip system would require a desalting (i.e. ion chromatography) step. The complete HPLC instrument consists of the Jet Propulsion Labortory's (JPL's) quadrupole ion trap mass spectrometer integrated with a state-of-the-art MEMS liquid chromatograph (LC) system developed by the California Institute of Technology's (Caltech's) Micromachining Laboratory. The IC version of the chip consist of an electrolysis-based injector, a separation column, two electrolysis pumps for gradient generation, mixer, and a built-in conductivity detector. The HPLC version of the chip also includes a nanospray tip. The low instrument mass, coupled with its high analytical capabilities, makes the LC chip ideally suitable for wide range of applications such as trace contaminant, inorganic analytical science and, when coupled to a mass spectrometer, a macromolecular detection system for either crewed space exploration vehicles or robotic planetary missions.

  13. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    Science.gov (United States)

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screening assays, which has been used as a tool in the identification and characterization of new anti-cancer agents, is discussed. In addition, a critical evaluation of the recently emerged ligands fishing assays in complex mixtures is also discussed. PMID:27306095

  14. Alzheimer’s disease: How metal ions define β-amyloid function

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    focuses on the essential coordination chemistry and biochemistry that relate transition metal ions iron, copper, and zinc to β-amyloid (Aβ) and most likely define the peptide's roles in neurons. The metal-Aβ interactions have elements of both gain of toxic function, as usually considered, but also loss......Alzheimer’s disease is increasingly recognized to be linked to the function and status of metal ions, and recently, the amyloid hypothesis has been strongly intertwined with the metal ion hypothesis; in fact, these two hypotheses fit well together and are not mutually contradictory. This review...... of natural functions, as emphasized in this review. Both these aspects and their relationships are discussed and their implications for future therapeutic strategies are outlined....

  15. Adsorption of heavy metal ions by sawdust of deciduous trees

    International Nuclear Information System (INIS)

    Bozic, D.; Stankovic, V.; Gorgievski, M.; Bogdanovic, G.; Kovacevic, R.

    2009-01-01

    The adsorption of heavy metal ions from synthetic solutions was performed using sawdust of beech, linden and poplar trees. The adsorption depends on the process time, pH of the solution, type of ions, initial concentration of metals and the sawdust concentration in suspension. The kinetics of adsorption was relatively fast, reaching equilibrium for less than 20 min. The adsorption equilibrium follows Langmuir adsorption model. The ion exchange mechanism was confirmed assuming that the alkali-earth metals from the adsorbent are substituted by heavy metal ions and protons. On lowering the initial pH, the adsorption capacity decreased, achieving a zero value at a pH close to unity. The maximum adsorption capacity (7-8 mg g -1 of sawdust) was achieved at a pH between 3.5 and 5 for all the studied kinds of sawdust. The initial concentration of the adsorbate and the concentration of sawdust strongly affect the process. No influence of particles size was evidenced. A degree of adsorption higher than 80% can be achieved for Cu 2+ ions but it is very low for Fe 2+ ions, not exceeding 10%.

  16. Alkali Metal Cation Affinities of Anionic Main Group-Element Hydrides Across the Periodic Table.

    Science.gov (United States)

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F Matthias

    2017-10-05

    We have carried out an extensive exploration of gas-phase alkali metal cation affinities (AMCA) of archetypal anionic bases across the periodic system using relativistic density functional theory at ZORA-BP86/QZ4P//ZORA-BP86/TZ2P. AMCA values of all bases were computed for the lithium, sodium, potassium, rubidium and cesium cations and compared with the corresponding proton affinities (PA). One purpose of this work is to provide an intrinsically consistent set of values of the 298 K AMCAs of all anionic (XH n-1 - ) constituted by main group-element hydrides of groups 14-17 along the periods 2-6. In particular, we wish to establish the trend in affinity for a cation as the latter varies from proton to, and along, the alkali cations. Our main purpose is to understand these trends in terms of the underlying bonding mechanism using Kohn-Sham molecular orbital theory together with a quantitative bond energy decomposition analyses (EDA). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effects of complexing compounds on sorption of metal ions to cement

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Lars [Umeaa Univ. (Sweden). Inorganic chemistry

    2005-12-15

    This present report is a literature review addressing the effects of complexing ligands on the sorption of radionuclides to solid materials of importance for repositories of radioactive waste. Focus is put on laboratory studies of metal ion adsorption to cement in presence of chelating agents under strongly alkaline conditions. As background information, metal sorption to different mineral and cement phases in ligand free systems is described. Furthermore, surface complexation model (SCM) theories are introduced. According to surface complexation theories these interactions occur at specific binding sites at the particle/water interface. Adsorption of cationic metals is stronger at high pH, and the adsorption of anions occurs preferentially at low pH. The adsorption of ions to mineral surfaces is a result of both chemical bonding and electrostatic attraction between the ions and charged mineral surfaces. By combining uptake data with spectroscopic information the sorption can be explained on a molecular level by structurally sound surface complexation models. Most of the metal sorption studies reviewed are dealing with minerals exhibiting oxygen atoms at their surfaces, mainly oxides of Fe(II,III) and Al(III), and aluminosilicates. Investigations of radionuclides are focused on clay minerals, above all montmorillonite and illite. Which mechanism that is governing the metal ion adsorption to a given mineral is to a large extent depending on the metal adsorbed. For instance, sorption of Ni to montmorillonite can occur by formation of inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and by formation of a Ni phyllosilicate phase parallel to montmorillonite layers. Also metal uptake to cement materials can occur by different mechanisms. Cationic metals can both be attached to cement (calcium silicate hydrate, CSH) and hardened cement paste (HCP) by formation of inner-sphere complexes at specific surface sites and by

  18. Metal-ion interactions and the structural organization of Sepia eumelanin.

    Science.gov (United States)

    Liu, Yan; Simon, John D

    2005-02-01

    The structural organization of melanin granules isolated from ink sacs of Sepia officinalis was examined as a function of metal ion content by scanning electron microscopy and atomic force microscopy. Exposing Sepia melanin granules to ethelenediaminetetraacetic acid (EDTA) solution or to metal salt solutions changed the metal content in the melanin, but did not alter granular morphology. Thus ionic forces between the organic components and metal ions in melanin are not required to sustain the natural morphology once the granule is assembled. However, when aqueous suspensions of Sepia melanin granules of varying metal content are ultra-sonicated, EDTA-washed and Fe-saturated melanin samples lose material to the solution more readily than the corresponding Ca(II) and Mg(II)-loaded samples. The solubilized components are found to be 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-rich constituents. Associated with different metal ions, Na(I), Ca(II) and Mg(II) or Fe(III), these DHICA-rich entities form distinct two-dimensional aggregation structures when dried on the flat surface of mica. The data suggest multiply-charged ions play an important role in assisting or templating the assembly of the metal-free organic components to form the three-dimensional substructure distributed along the protein scaffold within the granule.

  19. Determination of chlorine in graphite by combustion-ion chromatography

    International Nuclear Information System (INIS)

    Chen Lianzhong; Watanabe, Kazuo; Itoh, Mitsuo.

    1995-09-01

    A combustion/ion chromatographic method has been studied for the sensitive determination of chlorine in graphite. A graphite sample was burnt at 900degC in a silica reaction tube at an oxygen flow rate of 200 ml/min. Chlorine evolved was absorbed in 20 ml of a 0.1 mM sodium carbonate solution. The solution was evaporated to dryness. The residue was dissolved with a small volume of water. Chlorine in the solution was determined using ion chromatography. The method was applied to JAERI graphite certified reference materials and practical graphite materials. The detection limit was about 0.8 μgCl/g for a 2.0 g sample. The precision was about 2.5% (relative standard deviation) for samples with chlorine content of 70 μg/g level. The method is also usable for coal samples. (author)

  20. Defect-impurity interactions in ion-implanted metals

    International Nuclear Information System (INIS)

    Turos, A.

    1986-01-01

    An overview of defect-impurity interactions in metals is presented. When point defects become mobile they migrate towards the sinks and on the way can be captured by impurity atoms forming stable associations so-called complexes. In some metallic systems complexes can also be formed athermally during ion implantation by trapping point defects already in the collision cascade. An association of a point defect with an impurity atom leads to its displacement from the lattice site. The structure and stability of complexes are strongly temperature dependent. With increasing temperature they dissociate or grow by multiple defect trapping. The appearance of freely migrating point defects at elevated temperatures, due to ion bombardment or thermal annealing, causes via coupling with defect fluxes, important impurity redistribution. Because of the sensitivity of many metal-in-metal implanted systems to radiation damage the understanding of this processes is essential for a proper interpretation of the lattice occupancy measurements and the optimization of implantation conditions. (author)

  1. Purification and characterization of a new type lactose-binding Ulex europaeus lectin by affinity chromatography.

    Science.gov (United States)

    Konami, Y; Yamamoto, K; Osawa, T

    1991-02-01

    A new type lactose-binding lectin was purified from extracts of Ulex europaeus seeds by affinity chromatography on a column of galactose-Sepharose 4B, followed by gel filtration on Sephacryl S-300. This lectin, designated as Ulex europaeus lectin III (UEA-III), was found to be inhibited by lactose. The dimeric lectin is a glycoprotein with a molecular mass of 70,000 Da; it consists of two apparently identical subunits of a molecular mass of 34,000 Da. Compositional analysis showed that this lectin contains 30% carbohydrate and a large amount of aspartic acid, serine and valine, but no sulfur-containing amino acids. The N-terminal amino-acid sequences of L-fucose-binding Ulex europaeus lectin I (UEA-I) and di-N-acetylchitobiose-binding Ulex europaeus lectin II (UEA-II), both of which we have already purified and characterized, and that of UEA-III were determined and compared.

  2. Metal ion interaction of an oligopeptide fragment representing the regulatory metal binding site of a CueR protein

    DEFF Research Database (Denmark)

    Jancsó, Attila; Szokolai, Hajnalka; Roszahegyi, Livia

    2013-01-01

    Metalloregulatory proteins of the MerR family are transcriptional activators that sense/control the concentration of various metal ions inside bacteria.1 The Cu+ efflux regulator CueR, similarly to other MerR proteins, possesses a short multiple Cys-containing metal binding loop close to the C...... of cognate metal ions.2 Nevertheless, it is an interesting question whether the same sequence, when removed from the protein, shows a flexibility to adopt different coordination environments and may efficiently bind metal ions having preferences for larger coordination numbers....

  3. Heavy metal ion uptake properties of polystyrene-supported ...

    Indian Academy of Sciences (India)

    Unknown

    concentration on the uptake of metal ions have been studied. The uptake ... employed for the removal of heavy metal pollutants from industrial waste water. ... nitrate, mercuric chloride, cadmium nitrate and potassium dichromate salts. ... polymer resin was determined by reacting 50, 100, 150, 200, 250 and 300 ppm of metal.

  4. Investigation of metal ions in fusion plasmas using emission spectroscopy

    International Nuclear Information System (INIS)

    Tale, I.

    2005-01-01

    Full text: The Latvian and Portugal Associations are performing development of advanced plasma - facing system using the liquid metal limiter. The objectives of this project require study of the influence of the liquid metal limiter on the main plasma parameters, including concentration of evaporated metal atoms in plasma. The fusion plasmas are related to the dense hot plasmas. The required average ion temperature according to the ITER project (International Thermonuclear Experimental Reactor) is 8,0 keV (9,3 x 10 7 0 K), the average electron temperature - 8,9 keV (1,04 x 10 8 0 K). Plasma temperature operated in the research tokamak ISSTOK, involved in testing of liquid metal limiter concept is considerably less, being of order of 10 50 K. The ionization degree of metal atoms considerably depends on the plasma ion temperature. Density of metal vapours in plasma can be estimated using the following two spectroscopic methods: The fluorescence of the multiple ionised metal ions in steady state concentration; The charge exchange emission during ionisation of evaporated metal ions. In the first step of development of testing system of metal vapours the equipment and instrumentation for charge exchange spectroscopy of Ga and In has been elaborated taking into account the following features of plasma emission. The Ga emission lines occur on the background high temperature plasma black body emission and stray light. Radial distribution of Ga in plasma in the facing plane of Ga flux is desirable

  5. The analysis of aqueous mixtures using liquid chromatography-electrospray mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Steven [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    The focus of this dissertation is the use of chromatographic methods coupled with electrospray mass spectrometry (ES-MS) for the determination of both organic and inorganic compounds in aqueous solutions. The combination of liquid chromatography (LC) methods and ES-MS offers one of the foremost methods for determining compounds in complex aqueous solutions. In this work, LC-ES-MS methods are devised using ion exclusion chromatography, reversed phase chromatography, and ion exchange chromatography, as well as capillary electrophoresis (CE). For an aqueous sample, these LC-ES-MS and CE-ES-MS techniques require no sample preparation or analyte derivatization, which makes it possible to observe a wide variety of analytes as they exist in solution. The majority of this work focuses on the use of LC-ES-MS for the determination of unknown products and intermediates formed during electrochemical incineration (ECI), an experimental waste remediation process. This report contains a general introduction to the project and the general conclusions. Four chapters have been removed for separate processing. Titles are: Chapter 2: Determination of small carboxylic acids by ion exclusion chromatography with electrospray mass spectrometry; Chapter 3: Electrochemical incineration of benzoquinone in aqueous media using a quaternary metal oxide electrode in the absence of a soluble supporting electrolyte; Chapter 4: The determination of electrochemical incineration products of 4-chlorophenol by liquid chromatography-electrospray mass spectrometry; and Chapter 5: Determination of small carboxylic acids by capillary electrophoresis with electrospray mass spectrometry.

  6. Application of monocarboxylic acids for the extraction of metal ions-literature survey

    International Nuclear Information System (INIS)

    Brzozka, Z.; Rozycki, C.

    1980-01-01

    In the paper there is presented a literature review concerning the application of monocarboxylic acids for extraction of metal ions. The following problems are discussed: characteristic of monocarboxylic acids and their mixtures, the equilibria between the acid solution in organic solvent and aqueous phase, the mechanism of acid partition, complexes of carboxylic acids and metal ions in aqueous phase, mechanism of extraction by means of carboxylic acids as well as the problems concerning the extraction of individual metal ions. Data about the extraction of metal ions are presented in table. The 138 references are given. (author)

  7. Uptake of metal ions by a silica-based tetraphenylporphyrin sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Pyrzynska, K.; Sadowska, M.; Trojanowicz, M.

    1999-09-01

    The [5-p-carboxyphenyl-10,15,20-triphenyl]porphyrin (TPP) covalently attached to aminopropyl silica gel was examined with respect to the sorption of transition metal ions. The distribution coefficients (K{sub d}) are reported for some metal ions with this new sorbent as a function of pH. It was found that in optimum pH conditions the sorption of Cu(II) and Fe(III) is much faster than that of Co(II) and Cr(III). The binding of metal ions is strongly affected by the presence of various species accelerating the complex formation. The application of porphyrin ligands for preconcentration and metal-matrix separation was also examined using complex formation in solution coupled with an anion exchange resin and column chelation procedure, e.g. sorption of metal on an anion exchanger previously loaded with tetra(4-carboxyphenyl)porphyrin.

  8. The O-H Bond Dissociation Energies of Substituted Phenols and Proton Affinities of Substituted Phenoxide Ions: A DFT Study

    Directory of Open Access Journals (Sweden)

    Tadafumi Uchimaru

    2002-04-01

    Full Text Available Abstract: The accurate O-H bond dissociation enthalpies for a series of meta and para substituted phenols (X-C6H4-OH, X=H, F, Cl, CH3, OCH3, OH, NH2, CF3, CN, and NO2 have been calculated by using the (ROB3LYP procedure with 6-311G(d,p and 6-311++G(2df,2p basis sets. The proton affinities of the corresponding phenoxide ions (XC6H4-O- have also been computed at the same level of theory. The effect of change of substituent position on the energetics of substituted phenols has been analyzed. The correlations of Hammett’s substituent constants with the bond dissociation enthalpies of the O-H bonds of phenols and proton affinities of phenoxide ions have been explored.

  9. Can we beat the biotin-avidin pair?: cucurbit[7]uril-based ultrahigh affinity host-guest complexes and their applications.

    Science.gov (United States)

    Shetty, Dinesh; Khedkar, Jayshree K; Park, Kyeng Min; Kim, Kimoon

    2015-12-07

    The design of synthetic, monovalent host-guest molecular recognition pairs is still challenging and of particular interest to inquire into the limits of the affinity that can be achieved with designed systems. In this regard, cucurbit[7]uril (CB[7]), an important member of the host family cucurbit[n]uril (CB[n], n = 5-8, 10, 14), has attracted much attention because of its ability to form ultra-stable complexes with multiple guests. The strong hydrophobic effect between the host cavity and guests, ion-dipole and dipole-dipole interactions of guests with CB portals helps in cooperative and multiple noncovalent interactions that are essential for realizing such strong complexations. These highly selective, strong yet dynamic interactions can be exploited in many applications including affinity chromatography, biomolecule immobilization, protein isolation, biological catalysis, and sensor technologies. In this review, we summarize the progress in the development of high affinity guests for CB[7], factors affecting the stability of complexes, theoretical insights, and the utility of these high affinity pairs in different challenging applications.

  10. Coordination of cassava starch to metal ions and thermolysis of ...

    African Journals Online (AJOL)

    Cassava starch formed Werner-type complexes with ions of metals from the transition groups. This was proven by conductivity and electron paramagnetic resonance measurements. The coordination of starch to central metal ions influenced the thermal decomposition of starch. As a rule complexes started to decompose at ...

  11. Metal is not inert: role of metal ions released by biocorrosion in aseptic loosening--current concepts.

    Science.gov (United States)

    Cadosch, Dieter; Chan, Erwin; Gautschi, Oliver P; Filgueira, Luis

    2009-12-15

    Metal implants are essential therapeutic tools for the treatment of bone fractures and joint replacements. The metals and metal alloys used in contemporary orthopedic and trauma surgery are well tolerated by the majority of patients. However, complications resulting from inflammatory and immune reactions to metal implants have been well documented. This review briefly discusses the different mechanisms of metal implant corrosion in the human body, which lead to the release of significant levels of metal ions into the peri-implant tissues and the systemic blood circulation. Additionally, this article reviews the effects of the released ions on bone metabolism and the immune system and discusses their involvement in the pathophysiological mechanisms of aseptic loosening and metal hypersensitivity in patients with metal implants.

  12. Modeling the adsorption of metal ions (Cu 2+, Ni 2+, Pb 2+) onto ACCs using surface complexation models

    Science.gov (United States)

    Faur-Brasquet, Catherine; Reddad, Zacaria; Kadirvelu, Krishna; Le Cloirec, Pierre

    2002-08-01

    Activated carbon cloths (ACCs), whose efficiency has been demonstrated for microorganics adsorption from water, were here studied in the removal of metal ions from aqueous solution. Two ACCs are investigated, they are characterized in terms of porosity parameters (BET specific surface area, percentage of microporosity) and chemical characteristics (acidic surface groups, acidity constants, point of zero charge). A first part consists in the experimental study of three metal ions removal (Cu 2+, Ni 2+ and Pb 2+) in a batch reactor. Isotherms modeling by Freundlich and Brunauer-Emmett-Teller (BET) equations enables the following adsorption order: Cu 2+>Ni 2+>Pb 2+ to be determined for adsorption capacities on a molar basis. It may be related to adsorbates characteristics in terms of electronegativity and ionic radius. The influence of adsorbent's microporosity is also shown. Adsorption experiments carried out for pH values ranging from 2 to 10 demonstrate: (i) an adsorption occurring below the precipitation pH; (ii) the strong influence of pH, with a decrease of electrostatic repulsion due to the formation of less charged hydrolyzed species coupled with a decrease of activated carbon surface charge as pH increases. The second part focuses on the modeling of adsorption versus the pH experimental data by the diffuse layer model (DLM) using Fiteql software. The model is efficient to describe the system behavior in the pH range considered. Regarding complexation constants, they show the following affinity for ACC: Pb 2+>Cu 2+>Ni 2+. They are related to initial concentrations used for the three metal ions.

  13. Real-time detection of metal ions using conjugated polymer composite papers.

    Science.gov (United States)

    Lee, Ji Eun; Shim, Hyeon Woo; Kwon, Oh Seok; Huh, Yang-Il; Yoon, Hyeonseok

    2014-09-21

    Cellulose, a natural polymeric material, has widespread technical applications because of its inherent structural rigidity and high surface area. As a conjugated polymer, polypyrrole shows practical potential for a diverse and promising range of future technologies. Here, we demonstrate a strategy for the real-time detection and removal of metal ions with polypyrrole/cellulose (PPCL) composite papers in solution. Simply, the conjugated polymer papers had different chemical/physical properties by applying different potentials to them, which resulted in differentiable response patterns and adsorption efficiencies for individual metal ions. First, large-area PPCL papers with a diameter of 5 cm were readily obtained via vapor deposition polymerization. The papers exhibited both mechanical flexibility and robustness, in which polypyrrole retained its redox property perfectly. The ability of the PPCL papers to recognize metal ions was examined in static and flow cells, in which real-time current change was monitored at five different applied potentials (+1, +0.5, 0, -0.5, and -1 V vs. Ag/AgCl). Distinguishable signals in the PPCL paper responses were observed for individual metal ions through principal component analysis. Particularly, the PPCL papers yielded unique signatures for three metal ions, Hg(ii), Ag(i), and Cr(iii), even in a real sample, groundwater. The sorption of metal ions by PPCL papers was examined in the flow system. The PPCL papers had a greatly superior adsorption efficiency for Hg(ii) compared to that of the other metal ions. With the strong demand for the development of inexpensive, flexible, light-weight, and environmentally friendly devices, the fascinating characteristics of these PPCL papers are likely to provide good opportunities for low-cost paper-based flexible or wearable devices.

  14. Separation of strontium ions from other alkaline earth metal ions using masking reagent

    International Nuclear Information System (INIS)

    Komatsu, Y.

    1996-01-01

    Cs + and Sr 2+ have been well known as serious elements in high level radioactive waste. Separation of Cs + has already been successful when using an ion-exchange method from solution in the presence of other alkali metal ions. The separation of Sr 2+ is, however, not so easy by any known separation method such as solvent-extraction and ion-exchange methods. This is because Sr 2+ is in the middle of the selectivity series, which is Mg 2+ > Ca 2+ > Sr 2+ > Ba 2+ for the solvent-extraction method and Ba 2+ > Sr 2+ > Ca 2+ > Mg 2+ for the ion- exchange method. In the present study, separation of strontium from other alkaline earth metal ions was studied by a combined use of three types of separation methods at 298 K: the solvent-extraction method was applied for the first separation, in which thenoyltrifluoroacetone (TTA, extractant) and trioctylphosphine oxide ( TOPO, adduct forming ligand) were used for the organic phase of the system. The separation factors for each combination of four alkaline earth metal ions were determined by the values of the distribution ratio. The Mg 2+ was well separated from Sr 2+ by the TTA-TOPO system. However, the separation of the combinations of Ca 2+ -Sr 2+ and Sr 2+ -Ba 2+ was not complete by the above solvent-extraction system. The second separation method, an ion-exchange method was applied using dihydrogen tetratitanate hydrate fibers (H 2 Ti 4 O 9 nH 2 O) as an ion exchanger to separate Sr 2+ and Ba 2+ . The separation factors for each combination of four alkaline earth metal ions were calculated by the values of the distribution coefficients. Ba 2+ was well separated from Sr 2+ by the ion-exchange method. To separate Ca 2+ and Sr 2+ , however, a modified solvent-extraction method was finally used in which H 2 Ti 4 O 9 nH 2 O was used as a masking reagent of Sr 2+ . After the dihydrogen tetratitanate hydrate fibers were contacted with the aqueous solution containing Ca 2+ and Sr 2+ , the organic solution containing TTA and TOPO

  15. Ultraefficient separation and sensing of mercury and methylmercury ions in drinking water by using aminonaphthalimide-functionalized Fe(3)O(4)@SiO(2) core/shell magnetic nanoparticles.

    Science.gov (United States)

    Park, Minsung; Seo, Sungmin; Lee, In Su; Jung, Jong Hwa

    2010-07-07

    A new fluorogenic based aminonaphthalimide-functionalized Fe(3)O(4)@SiO(2) core/shell magnetic nanoparticles 1 has been prepared, and its abilities to sense and separate metal ions were evaluated by fluorophotometry. The nanoparticles 1 exhibited a high affinity and selectivity for Hg(2+) and CH(3)Hg(+) ions over competing metal ions.

  16. Dynamic affinity chromatography in the separation of sulfated lignins binding to thrombin

    Science.gov (United States)

    Liang, Aiye; Thakkar, Jay N.; Hindle, Michael; Desai, Umesh R.

    2013-01-01

    Sulfated low molecular weight lignins (LMWLs), a mixture of chemo-enzymatically prepared oligomers, have been found to be potent antagonists of coagulation. However, structures that induce anticoagulation remain unidentified. The highly polar sulfate groups on these molecules and the thousands of different structures present in these mixtures make traditional chromatographic resolution of sulfated LMWLs difficult. We performed dynamic thrombin affinity chromatography monitored using chromogenic substrate hydrolysis assay to isolate sulfated LMWL fractions that differed significantly in their biophysical and biochemical properties. Three fractions, I35, I55 and Peak II, were isolated from the starting complex mixture. Independent plasma clotting assays suggested that I35 possessed good anticoagulation potential (APTT = 4.2 μM; PT = 6.8 μM), while I55 and Peak II were approximately 10- and 100-fold less potent. The ESI-MS spectrum of this oligomeric fraction showed multiple peaks at 684.8, 610.6, 557.4, 541.4, 536.5, and 519.4 m/z, which most probably arise from variably functionalized (β-O4—β-β-linked trimers and/or a β-O4—β-O4-linked dimers. The first direct observation of these structures in sulfated LMWLs will greatly assist in the discovery of more potent sulfated LMWL-based anticoagulants. PMID:23122400

  17. Development of a method employing chitosan to remove metallic ions from wastewater

    International Nuclear Information System (INIS)

    Janegitz, Bruno Campos; Lourencao, Bruna Claudia; Lupetti, Karina Omuro; Fatibello-Filho, Orlando

    2007-01-01

    In this work a method was developed for removing metallic ions from wastewaters by co-precipitation of Cu 2+ , Pb 2+ , Cd 2+ , Cr 3+ and Hg 2+ with chitosan and sodium hydroxide solution. Solutions of these metallic ions in the range from 0.55 to 2160 mg L -1 were added to chitosan dissolved in 0.05 mol L -1 HCl. For the co-precipitation of metal-chitosan-hydroxide a 0.17 mol L -1 NaOH solution was added until pH 8.5-9.5. A parallel study was carried out applying a 0.17 mol L -1 NaOH solution to precipitate those metallic ions. Also, a chitosan solid phase column was used for removing those metallic ions from wastewaters. (author)

  18. Application of the zone-melting technique to metal chelate systems-VI A new apparatus for zone-melting chromatography.

    Science.gov (United States)

    Maeda, S; Kobayashi, H; Ueno, K

    1973-07-01

    An improved apparatus has been constructed for zone-melting chromatography. An essential feature of the apparatus is that the length of the molten zone can be kept constant during a zone-melting operation, by employing heating and cooling compartments which are separated from each other by double partition plates. Each compartment is heated or cooled with jets of hot or cold air. The apparatus is suitable for organic materials melting in the range between 40 degrees and 180 degrees . The distribution of metal ion along the column after zone melting of copper acetylacetonate in 2-methoxynaphthalene was a smooth curve. The plot of the position of maximum concentration, x(max), against the number of zone passes, n, gave a relationship in accordance with theoretical prediction.

  19. Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed

    Directory of Open Access Journals (Sweden)

    T.M. Zewail

    2015-03-01

    Full Text Available Spouted bed contactor is a hybrid of fixed and fluidized bed contactors, which retains the advantages of each with good hydrodynamic conditions. The aim of the present study is to investigate the performance of a batch conical air spouted vessel for heavy metal removal by strong cation exchange resins (AMBERJET 1200 Na. The effect of various parameters such as type of heavy metal ions (Ni+2 and Pb+2, contact time, superficial air velocity and initial heavy metal ion concentration on % heavy metal ion removal has been investigated. It has been found that under optimum conditions 98% and 99% removal of Ni+2 and Pb+2 were achieved respectively. Several kinetic models were used to test the experimental data and to examine the controlling mechanism of the sorption process. The present results of Ni+2 and Pb+2 well fit pseudo second order kinetic model with a high correlation coefficient. Both film diffusion and intra-particle diffusion contribute to the ion exchange process. The present study revealed that spouted bed vessel may provide an effective alternative for conducting ion exchange reactions.

  20. Ion chromatography for the precise analysis of chloride and sodium in sweat for the diagnosis of cystic fibrosis

    NARCIS (Netherlands)

    Doorn, J.; Storteboom, T. T. R.; Mulder, A. M.; de Jong, W. H. A.; Rottier, B. L.; Kema, I. P.

    BACKGROUND: Measurement of chloride in sweat is an essential part of the diagnostic algorithm for cystic fibrosis. The lack in sensitivity and reproducibility of current methods led us to develop an ion chromatography/high-performance liquid chromatography (IC/HPLC) method, suitable for the analysis

  1. MCTBI: a web server for predicting metal ion effects in RNA structures.

    Science.gov (United States)

    Sun, Li-Zhen; Zhang, Jing-Xiang; Chen, Shi-Jie

    2017-08-01

    Metal ions play critical roles in RNA structure and function. However, web servers and software packages for predicting ion effects in RNA structures are notably scarce. Furthermore, the existing web servers and software packages mainly neglect ion correlation and fluctuation effects, which are potentially important for RNAs. We here report a new web server, the MCTBI server (http://rna.physics.missouri.edu/MCTBI), for the prediction of ion effects for RNA structures. This server is based on the recently developed MCTBI, a model that can account for ion correlation and fluctuation effects for nucleic acid structures and can provide improved predictions for the effects of metal ions, especially for multivalent ions such as Mg 2+ effects, as shown by extensive theory-experiment test results. The MCTBI web server predicts metal ion binding fractions, the most probable bound ion distribution, the electrostatic free energy of the system, and the free energy components. The results provide mechanistic insights into the role of metal ions in RNA structure formation and folding stability, which is important for understanding RNA functions and the rational design of RNA structures. © 2017 Sun et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  2. The ion implantation of metals and engineering materials

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1978-01-01

    An entirely new method of metal finishing, by the process of ion implantation, is described. Introduced at first for semiconductor device applications, this method has now been demonstrated to produce major and long-lasting improvements in the durability of material surfaces, as regards both wear and corrosion. The process is distinct from that of ion plating, and it is not a coating technique. After a general description of ion implantation examples are given of its effects on wear behaviour (mostly in steels and cemented carbides) and on corrosion, in a variety of metals and alloys. Its potential for producing decorative finishes is mentioned briefly. The equipment necessary for carrying out ion implantation for engineering applications has now reached the prototype stage, and manufacture of plant for treating a variety of tools and components is about to commence. These developments are outlined. (author)

  3. Metal ion binding with dehydroannulenes – Plausible two ...

    Indian Academy of Sciences (India)

    WINTEC

    Theoretical investigations have been carried out at B3LYP/6-311++G** level of theory to study the binding ... Alkali metals; dehydroannulenes; binding energy; penetration barrier. 1. .... can be discriminated from larger metal ions by running.

  4. Metal negative ion beam extraction from a radio frequency ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, S.; Yamada, N.; Kasuya, T.; Romero, C. F. P.; Wada, M.

    2015-04-08

    A metal ion source of magnetron magnetic field geometry has been designed and operated with a Cu hollow target. Radio frequency power at 13.56 MHz is directly supplied to the hollow target to maintain plasma discharge and induce self-bias to the target for sputtering. The extraction of positive and negative Cu ion beams have been tested. The ion beam current ratio of Cu{sup +} to Ar{sup +} has reached up to 140% when Ar was used as the discharge support gas. Cu{sup −} ion beam was observed at 50 W RF discharge power and at a higher Ar gas pressure in the ion source. Improvement of poor RF power matching and suppression of electron current is indispensable for a stable Cu{sup −} ion beam production from the source.

  5. Ion-induced effects on metallic nanoparticles

    International Nuclear Information System (INIS)

    Klimmer, Andreas

    2010-01-01

    This work deals with the ion-irradiation of metallic nanoparticles in combination with various substrates. Particle diameters were systematically varied within the range of 2.5-14 nm, inter-particle distances range from 30-120 nm. Irradiations were performed with various inert gas ions with energies of 200 keV, resulting in an average ion range larger than the particle dimensions and therefore the effects of irradiation are mainly due to creation of structural defects within the particles and the underlying substrate as well. The main part of this work deals with ion-induced burrowing of metallic nanoparticles into the underlying substrate. The use of micellar nanoparticles with sharp size distribution combined with AFM and TEM analysis allows a much more detailed look at this effect than other works on that topic so far. With respect to the particle properties also a detailed look on the effect of irradiation on the particle structure would be interesting, which might lead to a deliberate influence on magnetic properties, for example. Within the context of this work, first successful experiments were performed on FePt particles, showing a significant reduction of the ordering temperature leading to the magnetically interesting, ordered L1 0 phase. (orig.)

  6. Adaptation of metal arc plasma source to plasma source ion implantation

    International Nuclear Information System (INIS)

    Shamim, M.M.; Fetherston, R.P.; Conrad, J.R.

    1995-01-01

    In Plasma Source Ion Implantation (PSII) a target is immersed in a plasma and a train of high negative voltage pulses is applied to accelerate ions into the target and to modify the properties in the near surface region. In PSII, until now the authors have been using gaseous species to generate plasmas. However metal ion plasma may be used to modify the surface properties of material for industrial applications. Conventionally the ion implantation of metal ions is performed using beam line accelerators which have complex engineering and high cost. The employment of a metal arc source to PSII has tremendous potential due to its ability to process the conformal surfaces, simple engineering and cost effectiveness. They have installed metal arc source for generation of titanium plasma. Currently, they are investigating the properties of titanium plasma and material behavior of titanium implanted aluminum and 52100 steel. The recent results of this investigation are presented

  7. Purification and characterization of a branched-chain amino acid aminotransferase from Lactobacillus paracasei subsp paracasei CHCC 2115

    DEFF Research Database (Denmark)

    Thage, B.V.; Rattray, F.P.; Laustsen, M.W.

    2004-01-01

    Purification and characterization of an aminotransferase (AT) specific for the degradation of branched-chain amino acids from Lactobacillus paracasei subsp. paracasei CHCC 2115. Methods and Results: The purification protocol consisted of anion exchange chromatography, affinity chromatography...... of other metal ions, thiol- and carbonyl-binding agents. The N-terminal sequence of the enzyme was SVNIDWNNLGFDYMQLPYRYVAHXKDGVXD, and had at the amino acid level, 60 and 53% identity to a branched-chain amino acid AT of Lact. plantarum and Lactococcus lactis, respectively. Conclusions: The results suggest...

  8. Determination of sulphite in wines using suppressed ion chromatography.

    Science.gov (United States)

    Yoshikawa, Kenji; Uekusa, Yuki; Sakuragawa, Akio

    2015-05-01

    Suppressed ion chromatography with the use of a conductivity detector was developed for the determination of sulphite ions in wine samples. When a mixed solution of sodium carbonate, sodium bicarbonate, and acetone was used as the mobile phase, simultaneous determination of eight inorganic anions (i.e., fluoride, chloride, nitrite, nitrate, sulphite, phosphate, sulphate, and thiosulphate) was completed in approximately 25 min. Linearity, reproducibility, and detection limits were determined for the proposed method. In the case of sulphite detection, a linear calibration curve with a good correlation coefficient of 0.9992 was obtained from the peak height of sulphite with a relative standard deviation (n = 6) 1.48%. In addition, the detection limit of sulphite was 0.27 mg/L at a signal-to-noise ratio of 3. Further, the developed method was applied for the determination of sulphite contained in several wine samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Adsorption of heavy metal ions by activated charcoal

    International Nuclear Information System (INIS)

    Fujikawa, Mitsuo

    1978-01-01

    The adsorption effect was measured for several kinds of heavy metal ions, Pb 2+ , Cd 2+ , Cu 2+ and Zn 2+ by passing them through activated charcoal beds and changing the pH values of solutions. The test procedure is to keep the pH value of solution more than 10 at first, filter heavy metal hydroxide deposit, measure the remaining ion concentration in filtrate, and also test the influence of the addition of alkali to each kind of ions. The individual test procedure for each kind of ions is explained. As for the Cd ions, after the detailed experimental procedure is explained, the adsorption characteristic line is shown as the relation between the adsorption quantity and the equilibrium concentration of Cd 2+ . The similar test procedure and the adsorption characteristic lines are shown and evaluated about Pb 2+ , Cu 2+ and Zn 2+ . These lines are all linear, but have different adsorption quantity and inclination in relation to heavy metal ion concentration. Concerning the influence of pH to adsorption, the characteristics of pH increase are presented, when alkali is added by various quantities to Zn 2+ , Cu 2+ , Pb 2+ and Cd 2+ . The pH of Pb 2+ increased to about 10 by adding 0.4 cc alkali and saturates, but the pH of the other ions did not saturate by adding less than 1.5 cc alkali. When the water containing heavy metals are treated, Cd 2+ , Pb 2+ , Cu 2+ and Zn 2+ are removed almost satisfactorily by passing them through active charcoal filters and keeping pH at 10. The experimental concentrations are 0.05 ppm at pH 10 in Cd, 0.86 ppm at 10.3 in Pb, 0 ppm at pH 9.6 in Cu, 0.06 ppm at pH 8.8 and 12.4 ppm at pH 9.8 in Zn. (Nakai, Y.)

  10. Intercomparison of the measurements of oxalic acid in aerosols by gas chromatography and ion chromatography

    Science.gov (United States)

    Kawamura, Kimitaka; Barrie, Leonard A.; Toom-Sauntry, Desiree

    2010-12-01

    Oxalate, the anion of oxalic acid, is one of the most abundant measurable organic species in atmospheric aerosols. Traditionally, this bifunctional species has been measured by gas chromatography (GC) after derivatization to butyl ester and by ion chromatography (IC) without derivatization. However, there are few published comparisons of the two techniques. Here, we report the results of an intercomparison study for the measurement of oxalic acid in Arctic aerosols (oxalic acid by GC ranged from 6.5-59.1 ng m -3 (av. 26.0 ng m -3, median 26.2 ng m -3) whereas those by IC ranged from 6.6-52.1 ng m -3 (av. 26.6 ng m -3, median 25.4 ng m -3). They showed a good correlation ( r = 0.84) with a slope of 0.96. Thus, observations of oxalate obtained by GC employing dibutyl esters are almost equal to those by IC. Because the accuracy of oxalic acid by GC method largely depends on the method used, it is important to strictly examine the recovery in each study.

  11. Fatigue and wear of metalloid-ion-implanted metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Richter, E.; Rauschenbach, B.; Blochwitz, C.

    1985-01-01

    The effect of metalloid ion implantation on the fatigue behaviour and wear of nickel and two steels has been investigated. These metals were implanted with boron, carbon and nitrogen ions at energies from 30 to 60 keV and with doses from 1 X 10 16 to 1 X 10 18 ions cm -2 at room temperature. The mechanical behaviour of fatigued nickel was studied in push-pull tests at room temperature. Wear measurements were made using a pin-and-disc technique. The surface structure, dislocation arrangement and modification of the implantation profile resulting from mechanical tests on metals which had been implanted with metalloid ions were examined using high voltage electron microscopy, transmission high energy electron diffraction, scanning electron microscopy and Auger electron spectroscopy. It is reported that nitrogen and boron ion implantation improves the fatigue lifetime, changes the number and density of the slip bands and modifies the dislocation arrangements in nickel. The cyclic deformation leads to recrystallization of the boron-ion-induced amorphous structure of nickel and to diffusion of the boron and nitrogen in the direction of the surface. The wear behaviour of steels was improved by implantation of mass-separated ions and by implantation of ions without mass separation. (Auth.)

  12. Neutralization by metal ions of the toxicity of sodium selenide.

    Directory of Open Access Journals (Sweden)

    Marc Dauplais

    Full Text Available Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag⁺, Cd²⁺, Cu²⁺, Hg²⁺, Pb²⁺ and Zn²⁺, (ii metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co²⁺ and Ni²⁺ and, finally, (iii metal ions which do not afford protection and do not interact (Ca²⁺, Mg²⁺, Mn²⁺ or weakly interact (Fe²⁺ with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB, the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds.

  13. Solid phase microextraction sampling of high explosive residues in the presence of radionuclides and radionuclide surrogate metals

    International Nuclear Information System (INIS)

    Duff, M.C.; Crump, S.L.; Ray, R.J.; Beals, D.; Cotham, W.E.; Mount, K.; Koons, R.D.; Leggitt, J.

    2008-01-01

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) evidence while maintaining evidentiary value. One experimental method for the isolation of HE residue involves using solid phase microextraction (SPME) fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolved radionuclide ( 239/240 Pu, 238 U, 237 Np, 85 Sr, 133 Ba, 137 Cs, 60 Co and 226 Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection. (author)

  14. Metal ion binding to iron oxides

    Science.gov (United States)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  15. Polystyrene Sulfonate Threaded through a Metal-Organic Framework Membrane for Fast and Selective Lithium-Ion Separation.

    Science.gov (United States)

    Guo, Yi; Ying, Yulong; Mao, Yiyin; Peng, Xinsheng; Chen, Banglin

    2016-11-21

    Extraction of lithium ions from salt-lake brines is very important to produce lithium compounds. Herein, we report a new approach to construct polystyrene sulfonate (PSS) threaded HKUST-1 metal-organic framework (MOF) membranes through an in situ confinement conversion process. The resulting membrane PSS@HKUST-1-6.7, with unique anchored three-dimensional sulfonate networks, shows a very high Li + conductivity of 5.53×10 -4  S cm -1 at 25 °C, 1.89×10 -3  S cm -1 at 70 °C, and Li + flux of 6.75 mol m -2  h -1 , which are five orders higher than that of the pristine HKUST-1 membrane. Attributed to the different size sieving effects and the affinity differences of the Li + , Na + , K + , and Mg 2+ ions to the sulfonate groups, the PSS@HKUST-1-6.7 membrane exhibits ideal selectivities of 78, 99, and 10296 for Li + /Na + , Li + /K + , Li + /Mg 2+ and real binary ion selectivities of 35, 67, and 1815, respectively, the highest ever reported among ionic conductors and Li + extraction membranes. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electrospray droplet exposure to organic vapors: metal ion removal from proteins and protein complexes.

    Science.gov (United States)

    DeMuth, J Corinne; McLuckey, Scott A

    2015-01-20

    The exposure of aqueous nanoelectrospray droplets to various organic vapors can dramatically reduce sodium adduction on protein ions in positive ion mass spectra. Volatile alcohols, such as methanol, ethanol, and isopropanol lead to a significant reduction in sodium ion adduction but are not as effective as acetonitrile, acetone, and ethyl acetate. Organic vapor exposure in the negative ion mode, on the other hand, has essentially no effect on alkali ion adduction. Evidence is presented to suggest that the mechanism by which organic vapor exposure reduces alkali ion adduction in the positive mode involves the depletion of alkali metal ions via ion evaporation of metal ions solvated with organic molecules. The early generation of metal/organic cluster ions during the droplet desolvation process results in fewer metal ions available to condense on the protein ions formed via the charged residue mechanism. These effects are demonstrated with holomyoglobin ions to illustrate that the metal ion reduction takes place without detectable protein denaturation, which might be revealed by heme loss or an increase in charge state distribution. No evidence is observed for denaturation with exposure to any of the organic vapors evaluated in this work.

  17. Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry

    NARCIS (Netherlands)

    Coulier, L.; Bas, R.; Jespersen, S.; Verheij, E.; Werf, M.J. van der; Hankemeier, T.

    2006-01-01

    We have developed an analytical method, consisting of ion-pair liquid chromatography coupled to electrospray ionization mass spectrometry (IP-LC-ESI-MS), for the simultaneous quantitative analysis of several key classes of polar metabolites, like nucleotides, coenzyme A esters, sugar nucleotides,

  18. Long range implantation by MEVVA metal ion source

    International Nuclear Information System (INIS)

    Zhang Tonghe; Wu Yuguang; Ma Furong; Liang Hong

    2001-01-01

    Metal vapor vacuum arc (MEVVA) source ion implantation is a new technology used for achieving long range ion implantation. It is very important for research and application of the ion beam modification of materials. The results show that the implanted atom diffusion coefficient increases in Mo implanted Al with high ion flux and high dose. The implanted depth is 311.6 times greater than that of the corresponding ion range. The ion species, doses and ion fluxes play an important part in the long-range implantation. Especially, thermal atom chemistry have specific effect on the long-range implantation during high ion flux implantation at transient high target temperature

  19. Isotherms of ion exchange on titanates of alkaline metals

    International Nuclear Information System (INIS)

    Fillina, L.P.; Belinskaya, F.A.

    1986-01-01

    Present article is devoted to isotherms of ion exchange on titanates of alkaline metals. Therefore, finely dispersed hydrated titanates of alkaline metals (lithium, sodium, potassium) with ion exchange properties are obtained by means of alkaline hydrolysis of titanium chloride at high ph rates. Sorption of cations from salts solution of Li 2 SO 4 , NaNO 3 , Ca(NO 3 ) 2 , AgNO 3 by titanates is studied.

  20. Ion irradiation effect on metallic condensate adhesion to glass

    International Nuclear Information System (INIS)

    Kovalenko, V.V.; Upit, G.P.

    1984-01-01

    The ion irradiation effect on metallic condensate adhesion to glass is investigated. It has been found that in case of indium ion deposition the condensate adhesion to glass cleavages being in contact with atmosphere grows up to the level corresponding to a juvenile surface while in case of argon ion irradiation - exceeds it. It is shown that the observed adhesion growth is determined mainly by the surfwce modification comparising charge accumulation on surface, destruction of a subsurface layer and an interlayer formation in the condensate-substrate interface. The role of these factors in the course of various metals deposition is considered

  1. A computational study of adsorption of divalent metal ions on graphene oxide

    Directory of Open Access Journals (Sweden)

    Somphob Thompho

    2017-12-01

    Full Text Available Adsorption of divalent metal ions (Pb2+,Cd2+, Zn2+,Cu2+ on graphene oxide (GO was studied using density functional theory (DFT. Adsorption geometries and energies, as well as the nature of the binding energy, were calculated for the interaction of divalent metal ions with oxygen-containing groups on the surface of GO. The configurations of the complexes were modeled by placing the divalent metal ions above the center and perpendicular to the surface. Binding of Cu2+ to the GO sheet was predicted to be much stronger than that for other divalent metal ions. Calculated results show good agreement with experimental observations and provide useful information for environmental pollution cleanup.

  2. Removal of the metal ions from aqueous solutions by nanoscaled low molecular pectin isolated from seagrass Phyllospadix iwatensis

    International Nuclear Information System (INIS)

    Khozhaenko, Elena; Kovalev, Valeri; Podkorytova, Elena; Khotimchenko, Maksim

    2016-01-01

    Pectins from sea grasses are considered as promising substances with pronounced metal-binding activity. Due to the high molecular weight and heterogeneous structure, the use of pectins for removal of metal ions is difficult. Technology of directed pectin degradation was developed and homogenous degraded nanoscaled pectin polymers were synthesized. Experimental samples of degraded pectin isolated from Phyllospadix iwatensis were tested for their metal binding activity in comparison with native pectin from this seagrass and commercial citrus pectin. The metal uptake of all pectin compounds was highest within the pH range from 4.0 to 6.0. The Langmuir, Freundlich and BET sorption models were applied to describe the isotherms and constants. Results showed that depolymerized pectin exerts highest lead and cadmium binding activity with pronounced affinity. All pectin compounds were suggested to be favorable sorbents. Therefore, it can be concluded that degraded pectin is a prospective material for creation of metal-removing water treatment systems. - Highlights: • Low molecular nanoscaled pectin was obtained using original hydrolysis method • Metal binding activity of pectin compounds was studied in a batch sorption system • Pectins exert highest metal binding activity at pH 6.0 • Metal binding isotherms of all pectins are best described by the Langmuir equation • Low molecular pectin from seagrasses is more effective than high-molecular pectins

  3. Removal of the metal ions from aqueous solutions by nanoscaled low molecular pectin isolated from seagrass Phyllospadix iwatensis

    Energy Technology Data Exchange (ETDEWEB)

    Khozhaenko, Elena [Far Eastern Federal University, School of Biomedicine, 8, Sukhanova str., Vladivostok 690091 (Russian Federation); A.V. Zhirmunsky Institute of Marine Biology Far Eastern Branch of Russian Academy of Sciences, 17, Palchevskgo str., Vladivostok 690059 (Russian Federation); Kovalev, Valeri; Podkorytova, Elena [A.V. Zhirmunsky Institute of Marine Biology Far Eastern Branch of Russian Academy of Sciences, 17, Palchevskgo str., Vladivostok 690059 (Russian Federation); Khotimchenko, Maksim, E-mail: maxkhot@yandex.ru [Far Eastern Federal University, School of Biomedicine, 8, Sukhanova str., Vladivostok 690091 (Russian Federation); A.V. Zhirmunsky Institute of Marine Biology Far Eastern Branch of Russian Academy of Sciences, 17, Palchevskgo str., Vladivostok 690059 (Russian Federation)

    2016-09-15

    Pectins from sea grasses are considered as promising substances with pronounced metal-binding activity. Due to the high molecular weight and heterogeneous structure, the use of pectins for removal of metal ions is difficult. Technology of directed pectin degradation was developed and homogenous degraded nanoscaled pectin polymers were synthesized. Experimental samples of degraded pectin isolated from Phyllospadix iwatensis were tested for their metal binding activity in comparison with native pectin from this seagrass and commercial citrus pectin. The metal uptake of all pectin compounds was highest within the pH range from 4.0 to 6.0. The Langmuir, Freundlich and BET sorption models were applied to describe the isotherms and constants. Results showed that depolymerized pectin exerts highest lead and cadmium binding activity with pronounced affinity. All pectin compounds were suggested to be favorable sorbents. Therefore, it can be concluded that degraded pectin is a prospective material for creation of metal-removing water treatment systems. - Highlights: • Low molecular nanoscaled pectin was obtained using original hydrolysis method • Metal binding activity of pectin compounds was studied in a batch sorption system • Pectins exert highest metal binding activity at pH 6.0 • Metal binding isotherms of all pectins are best described by the Langmuir equation • Low molecular pectin from seagrasses is more effective than high-molecular pectins.

  4. Investigation of metal ions sorption of brown peat moss powder

    Science.gov (United States)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  5. Modification of solid surface by intense pulsed light-ion and metal-ion beams

    Science.gov (United States)

    Nakagawa, Y.; Ariyoshi, T.; Hanjo, H.; Tsutsumi, S.; Fujii, Y.; Itami, M.; Okamoto, A.; Ogawa, S.; Hamada, T.; Fukumaru, F.

    1989-03-01

    Metal surfaces of Al, stainless-steel and Ti were bombarded with focused intense pulsed proton and carbon ion beams (energy ˜ 80 keV, current density ≲ 1000 A/cm 2, pulse width ˜ 300 ns). Thin titanium carbide layers were produced by carbon-ion irradiation on the titanium surface. The observed molten surface structures and recrystallized layer (20 μm depth) indicated that the surfaces reached high temperatures as a result of the irradiation. The implantation of intense pulsed metal ion beams (Al +, ˜ 20 A/cm 2) with simultaneous deposition of anode metal vapor on Ti and Fe made a mixed layer of AlTi and AlFe of about 0.5 μm depth. Ti and B multilayered films evaporated on glass substrates were irradiated by intense pulsed proton beams of relatively lower current density (10-200 A/cm 2). Ti films containing B atoms above 10 at.% were obtained. When the current density was about 200 A/cm 2 diffraction peaks of TiB 2 appeared.

  6. Pure high dose metal ion implantation using the plasma immersion technique

    International Nuclear Information System (INIS)

    Zhang, T.; Tang, B.Y.; Zeng, Z.M.; Kwok, T.K.; Chu, P.K.; Monteiro, O.R.; Brown, I.G.

    1999-01-01

    High energy implantation of metal ions can be carried out using conventional ion implantation with a mass-selected ion beam in scanned-spot mode by employing a broad-beam approach such as with a vacuum arc ion source, or by utilizing plasma immersion ion implantation with a metal plasma. For many high dose applications, the use of plasma immersion techniques offers a high-rate process, but the formation of a surface film along with the subsurface implanted layer is sometimes a severe or even fatal detriment. We describe here an operating mode of the metal plasma immersion approach by which pure implantation can be obtained. We have demonstrated the technique by carrying out Ti and Ta implantations at energies of about 80 and 120 keV for Ti and Ta, respectively, and doses on the order of 1x10 17 ions/cm 2 . Our experiments show that virtually pure implantation without simultaneous surface deposition can be accomplished. Using proper synchronization of the metal arc and sample voltage pulse, the applied dose that deposits as a film versus the part that is energetically implanted (the deposition-to-implantation ratio) can be precisely controlled.copyright 1999 American Institute of Physics

  7. Selectivity of externally facing ion-binding sites in the Na/K pump to alkali metals and organic cations.

    Science.gov (United States)

    Ratheal, Ian M; Virgin, Gail K; Yu, Haibo; Roux, Benoît; Gatto, Craig; Artigas, Pablo

    2010-10-26

    The Na/K pump is a P-type ATPase that exchanges three intracellular Na(+) ions for two extracellular K(+) ions through the plasmalemma of nearly all animal cells. The mechanisms involved in cation selection by the pump's ion-binding sites (site I and site II bind either Na(+) or K(+); site III binds only Na(+)) are poorly understood. We studied cation selectivity by outward-facing sites (high K(+) affinity) of Na/K pumps expressed in Xenopus oocytes, under voltage clamp. Guanidinium(+), methylguanidinium(+), and aminoguanidinium(+) produced two phenomena possibly reflecting actions at site III: (i) voltage-dependent inhibition (VDI) of outwardly directed pump current at saturating K(+), and (ii) induction of pump-mediated, guanidinium-derivative-carried inward current at negative potentials without Na(+) and K(+). In contrast, formamidinium(+) and acetamidinium(+) induced K(+)-like outward currents. Measurement of ouabain-sensitive ATPase activity and radiolabeled cation uptake confirmed that these cations are external K(+) congeners. Molecular dynamics simulations indicate that bound organic cations induce minor distortion of the binding sites. Among tested metals, only Li(+) induced Na(+)-like VDI, whereas all metals tested except Na(+) induced K(+)-like outward currents. Pump-mediated K(+)-like organic cation transport challenges the concept of rigid structural models in which ion specificity at site I and site II arises from a precise and unique arrangement of coordinating ligands. Furthermore, actions by guanidinium(+) derivatives suggest that Na(+) binds to site III in a hydrated form and that the inward current observed without external Na(+) and K(+) represents cation transport when normal occlusion at sites I and II is impaired. These results provide insights on external ion selectivity at the three binding sites.

  8. Peroxotitanates for Biodelivery of Metals

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, David; Elvington, M.

    2009-02-11

    Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion exchange materials with high affinity for several heavy metal ions, and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APT are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 h in vitro, then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials vs. metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THP1 monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that 'biodelivery' by metal-APT materials may be cell type-specific. Therefore, it appears that APT are plausible solid phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect.

  9. Acetabular bone density and metal ions after metal-on-metal versus metal-on-polyethylene total hip arthroplasty; short-term results

    NARCIS (Netherlands)

    Zijlstra, Wierd P.; van der Veen, Hugo C.; van den Akker-Scheek, Inge; Zee, Mark J. M.; Bulstra, Sjoerd K.; van Raay, Jos J. A. M.

    Information on periprosthetic acetabular bone density is lacking for metal-on-metal total hip arthroplasties. These bearings use cobalt-chromium instead of titanium acetabular components, which could lead to stress shielding and hence periprosthetic bone loss. Cobalt and chromium ions have

  10. Selective transport and incorporation of highly charged metal and metal complex ions in self-assembled polyelectrolyte multilayer membranes

    International Nuclear Information System (INIS)

    Toutianoush, Ali; Tieke, Bernd

    2002-01-01

    The transport of aqueous salts containing mono-, di- and trivalent metal and tetravalent metal complex ions across ultrathin polyvinylammonium/polyvinylsulphate (PVA/PVS) membranes is described. The membranes were prepared by electrostatic layer-by-layer (LBL) assembly of the two polyelectrolytes. Using spectroscopic measurements and permeability studies, it is demonstrated that the transport of copper(II) chloride, lanthanum(III) chloride, barium chloride and potassium hexacyanoferrate(II) is accompanied by the permanent incorporation of the metal and metal complex ions in the membrane. Upon the uptake of copper, lanthanum and hexacyanoferrate ions, the membranes become cross-linked so that the permeation rates of other salts not taken up by the membrane, e.g. sodium chloride, potassium chloride and magnesium chloride, are decreased. The uptake of barium ions leads to a decrease of the cross-linking density of the membrane so that the permeation rate of NaCl is increased. Possible mechanisms for the ion uptake are discussed

  11. The use of ion chromatography for the determination of impurities in crude phosphoric acid

    International Nuclear Information System (INIS)

    Pires, M.A.F.; Atalla, L.T.; Abrao, A.

    1988-07-01

    The determination of fluoride, nitrate, sulphate and phosphate ions in crude phosphoric acid by means of ion chromatography is described. A previous separation of interferent cations was made by using a cationic resin or EDTA complexation. The last alternative allowed more reproductible results. The technique described is very quick and is being applied for the simultaneous determination of impurities in phosphoric acid and its own phosphospate concentration. The method is quick and has good reprodutibility. (author) [pt

  12. Applications of liquid phase chromatographies for the analysis of streams arising at the back end of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Deshingkar, D.S.; Yalmali, Vrunda S.; Wattal, P.K.

    2000-06-01

    India has opted for a closed fuel cycle comprising of reprocessing and recycling technology. The back end of such nuclear fuel cycle involves the reprocessing of spent nuclear fuels for recovery of plutonium and depleted uranium by Purex technology. Wastes arising from the reprocessing plant are classified as high, intermediate and low level wastes (HLW, ILW, LLW). HLW is mixture of over 50 elements present in different chemical forms. The accurate analyses of dissolver solution and HLW are the most challenging but essential tasks for reprocessing plant operations and also for further development of treatment methods. Inductively coupled plasma - atomic emission spectroscopy and atomic absorption spectroscopy techniques are suitable for analysis of metallic anions. Ion chromatography has proven capability to analyse number of cations or anions at ppm or even ppb level in single run. The report reviews the literature regarding the title subject. To assess the technical feasibility of ion chromatography for waste analysis, a simulated PHWR-HLW analogue was prepared. The PHWR-HLW analogue and ground water samples were analysed on DIONEX-DX 500 and Metrohm IC. Results obtained clearly demonstrated the usefulness of ion chromatography as vital analytical tool. HLW and other process or waste streams arising at the back end of nuclear fuel cycle can be analysed for alkali, alkaline earth, rare earth and transition metal cations and important anions. Use of fraction collector along with ion chromatography can enhance it's sensitivity to few Bq/ml for radioactive samples. (author)

  13. Understanding Ion Binding Affinity and Selectivity in β-Parvalbumin Using Molecular Dynamics and Mean Spherical Approximation Theory.

    Science.gov (United States)

    Kucharski, Amir N; Scott, Caitlin E; Davis, Jonathan P; Kekenes-Huskey, Peter M

    2016-08-25

    Parvalbumin (PV) is a globular calcium (Ca(2+))-selective protein expressed in a variety of biological tissues. Our computational studies of the rat β-parvalbumin (β-PV) isoform seek to elucidate the molecular thermodynamics of Ca(2+) versus magnesium (Mg(2+)) binding at the protein's two EF-hand motifs. Specifically, we have utilized molecular dynamics (MD) simulations and a mean-field electrolyte model (mean spherical approximation (MSA) theory) to delineate how the EF-hand scaffold controls the "local" thermodynamics of Ca(2+) binding selectivity over Mg(2+). Our MD simulations provide the probability density of metal-chelating oxygens within the EF-hand scaffolds for both Ca(2+) and Mg(2+), as well the conformational strain induced by Mg(2+) relative to Ca(2+) binding. MSA theory utilizes the binding domain oxygen and charge distributions to predict the chemical potential of ion binding, as well as their corresponding concentrations within the binding domain. We find that the electrostatic and steric contributions toward ion binding were similar for Mg(2+) and Ca(2+), yet the latter was 5.5 kcal/mol lower in enthalpy when internal strain within the EF hand was considered. We therefore speculate that beyond differences in dehydration energies for the Ca(2+) versus Mg(2+), strain induced in the β-PV EF hand by cation binding significantly contributes to the nearly 10,000-fold difference in binding affinity reported in the literature. We further complemented our analyses of local factors governing cation binding selectivity with whole-protein (global) contributions, such as interhelical residue-residue contacts and solvent exposure of hydrophobic surface. These contributions were found to be comparable for both Ca(2+)- and Mg(2+)-bound β-PV, which may implicate local factors, EF-hand strain, and dehydration, in providing the primary means of selectivity. We anticipate these methods could be used to estimate metal binding thermodynamics across a broad range of

  14. Accelerated electron exchange between U4+ and UO22+ by foreign metal ions

    International Nuclear Information System (INIS)

    Obanawa, Heiichiro; Onitsuka, Hatsuki; Takeda, Kunihiko

    1990-01-01

    The rate constant of U 4+ -UO 2 2+ electron exchange (k et ) was increased by more than 100 times in the presence of various metal ions. The larger rate constant was observed for the smaller difference of the standard reduction potential strength between metal ion and UO 2 2+ ion (Δμ θ e ). Detailed investigation of the electron exchange reaction in the presence of Mo 5+ suggested that the mechanism of the electron transfer reaction catalyzed by metal ions is the outer-sphere type independent of U-Clcomplex ions. (author)

  15. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Broecker, Jana; Vargas, Carolyn; Fanghänel, Jörg; Keller, Sandro

    2012-12-18

    A fast and reliable quantification of the binding thermodynamics of hydrophobic high-affinity ligands employing a new calorimetric competition experiment is described. Although isothermal titration calorimetry is the method of choice for a quantitative characterization of intermolecular interactions in solution, a reliable determination of a dissociation constant (K(D)) is typically limited to the range 100 μM > K(D) > 1 nM. Interactions displaying higher or lower K(D) values can be assessed indirectly, provided that a suitable competing ligand is available whose K(D) falls within the directly accessible affinity window. This established displacement assay, however, requires the high-affinity ligand to be soluble at high concentrations in aqueous buffer and, consequently, poses serious problems in the study of protein binding involving small-molecule ligands dissolved in organic solvents--a familiar case in many drug-discovery projects relying on compound libraries. The calorimetric competition assay introduced here overcomes this limitation, thus allowing for a detailed thermodynamic description of high-affinity receptor-ligand interactions involving poorly water-soluble compounds. Based on a single titration of receptor into a dilute mixture of the two competing ligands, this competition assay provides accurate and precise values for the dissociation constants and binding enthalpies of both high- and moderate-affinity ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation and high-affinity protein-inhibitor interactions, and explore its potential and limitations with the aid of simulations and statistical analyses.

  16. Removal and recovery of toxic metal ions from aqueous waste sites using polymer pendant ligands

    International Nuclear Information System (INIS)

    Fish, D.

    1996-01-01

    The purpose of this project is to investigate the use of polymer pendant ligand technology to remove and recover toxic metal ions from DOE aqueous waste sites. Polymer pendant lgiands are organic ligands, anchored to crosslinked, modified divinylbenzene-polystyrene beads, that can selectively complex metal ions. The metal ion removal step usually occurs through a complexation or ion exchange phenomena, thus recovery of the metal ions and reuse of the beads is readily accomplished

  17. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF.

    Science.gov (United States)

    Cantu-Bustos, J Enrique; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Galbraith, David W; McEvoy, Megan M; Zarate, Xristo

    2016-05-01

    Production of recombinant proteins in Escherichia coli has been improved considerably through the use of fusion proteins, because they increase protein solubility and facilitate purification via affinity chromatography. In this article, we propose the use of CusF as a new fusion partner for expression and purification of recombinant proteins in E. coli. Using a cell-free protein expression system, based on the E. coli S30 extract, Green Fluorescent Protein (GFP) was expressed with a series of different N-terminal tags, immobilized on self-assembled protein microarrays, and its fluorescence quantified. GFP tagged with CusF showed the highest fluorescence intensity, and this was greater than the intensities from corresponding GFP constructs that contained MBP or GST tags. Analysis of protein production in vivo showed that CusF produces large amounts of soluble protein with low levels of inclusion bodies. Furthermore, fusion proteins can be exported to the cellular periplasm, if CusF contains the signal sequence. Taking advantage of its ability to bind copper ions, recombinant proteins can be purified with readily available IMAC resins charged with this metal ion, producing pure proteins after purification and tag removal. We therefore recommend the use of CusF as a viable alternative to MBP or GST as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Some aspects of metallic ion chemistry and dynamics in the mesosphere and thermosphere

    Science.gov (United States)

    Mathews, J. D.

    1987-01-01

    The relationship between the formation of sporadic layers of metallic ion and the dumping of these ions into the upper mesosphere is discussed in terms of the tidal wind, classical (i.e., windshear) and other more complex, perhaps highly nonlinear layer formation mechanisms, and a possible circulation mechanism for these ions. Optical, incoherent scatter radar, rocket, and satellite derived evidence for various layer formation mechanisms and for the metallic ion circulation system is reviewed. The results of simple one dimensional numerical model calculations of sporadic E and intermediate layer formation are presented along with suggestions for more advanced models of intense or blanketing sporadic E. The flux of metallic ions dumped by the tidal wind system into the mesosphere is estimated and compared with estimates of total particle flux of meteoric origin. Possible effects of the metallic ion flux and of meteoric dust on D region ion chemistry are discussed.

  19. Ranges of ions in metals for use in particle treatment planning

    International Nuclear Information System (INIS)

    Jaekel, Oliver

    2006-01-01

    In proton and ion radiotherapy, the range of particles is calculated from x-ray computed tomography (CT) numbers. Due to the strong absorption of x-rays in a metal and a cut-off for large Hounsfield units (HU) in the software of most CT-scanners, a range calculation in metals cannot be based on the measured HU. This is of special importance when metal implants such as gold fillings or hip prostheses are close to the treatment volume. In order to overcome this problem in treatment planning for heavy charged particles, the correct ranges of ions in the metal relative to water have to be assigned in the CT data. Measurements and calculations of carbon ion ranges in various metals are presented that can be used in treatment planning to allow for a more accurate range calculation of carbon ion beams in titanium, steel, tungsten and gold. The suggested values for the relative water-equivalent range and their uncertainties are 3.13 (±3%) for titanium, 5.59 (±3%) for stainless steel and 10.25 (±4%) for gold. (note)

  20. Sensing of heavy metal ions by intrinsic TMV coat protein fluorescence

    Science.gov (United States)

    Bayram, Serene S.; Green, Philippe; Blum, Amy Szuchmacher

    2018-04-01

    We propose the use of a cysteine mutant of TMV coat protein as a signal transducer for the selective sensing and quantification of the heavy metal ions, Cd2+, Pb2+, Zn2+ and Ni2+ based on intrinsic tryptophan quenching. TMV coat protein is inexpensive, can be mass-produced since it is expressed and extracted from E-coli. It also displays several different functional groups, enabling a wide repertoire of bioconjugation chemistries; thus it can be easily integrated into functional devices. In addition, TMV-ion interactions have been widely reported and utilized for metallization to generate organic-inorganic hybrid composite novel materials. Building on these previous observations, we herein determine, for the first time, the TMV-ion binding constants assuming the static fluorescence quenching model. We also show that by comparing TMV-ion interactions between native and denatured coat protein, we can distinguish between chemically similar heavy metal ions such as cadmium and zinc ions.

  1. Smart responsive microcapsules capable of recognizing heavy metal ions.

    Science.gov (United States)

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions. Copyright 2010 Elsevier Inc. All rights reserved.

  2. A dual protease approach for expression and affinity purification of recombinant proteins.

    Science.gov (United States)

    Raran-Kurussi, Sreejith; Waugh, David S

    2016-07-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to "stick" to its fusion partners during affinity purification. Published by Elsevier Inc.

  3. Automated Hydrophobic Interaction Chromatography Column Selection for Use in Protein Purification

    Science.gov (United States)

    Murphy, Patrick J. M.; Stone, Orrin J.; Anderson, Michelle E.

    2011-01-01

    In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein 1. The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification. HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH4)2SO4). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) 2. As salt concentrations decrease, the protein-ligand interaction dissipates, the protein again becomes mobile and elutes from the column. Several HIC media are commercially available in pre-packed columns, each containing one of several hydrophobic ligands (e.g. S-butyl, butyl, octyl, and phenyl) cross-linked at varying densities to agarose beads of a specific diameter 3. Automated column scouting allows for an efficient approach for determining which HIC media

  4. Do soft drinks affect metal ions release from orthodontic appliances?

    Science.gov (United States)

    Mikulewicz, Marcin; Wołowiec, Paulina; Loster, Bartłomiej W; Chojnacka, Katarzyna

    2015-01-01

    The effect of orange juice and Coca Cola(®) on the release of metal ions from fixed orthodontic appliances. A continuous flow system designed for in vitro testing of orthodontic appliances was used. Orange juice/Coca Cola(®) was flowing through the system alternately with artificial saliva for 5.5 and 18.5h, respectively. The collected samples underwent a multielemental ICP-OES analysis in order to determine the metal ions release pattern in time. The total mass of ions released from the appliance into orange juice and Coca Cola(®) (respectively) during the experiment was calculated (μg): Ni (15.33; 37.75), Cr (3.604; 1.052), Fe (48.42; ≥ 156.1), Cu (57.87, 32.91), Mn (9.164; 41.16), Mo (9.999; 30.12), and Cd (0.5967; 2.173). It was found that orange juice did not intensify the release of metal ions from orthodontic appliances, whereas Coca Cola(®) caused increased release of Ni ions. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Metallization of ion beam synthesized Si/3C-SiC/Si layer systems by high-dose implantation of transition metal ions

    International Nuclear Information System (INIS)

    Lindner, J.K.N.; Wenzel, S.; Stritzker, B.

    2001-01-01

    The formation of metal silicide layers contacting an ion beam synthesized buried 3C-SiC layer in silicon by means of high-dose titanium and molybdenum implantations is reported. Two different strategies to form such contact layers are explored. The titanium implantation aims to convert the Si top layer of an epitaxial Si/SiC/Si layer sequence into TiSi 2 , while Mo implantations were performed directly into the SiC layer after selectively etching off all capping layers. Textured and high-temperature stable C54-TiSi 2 layers with small additions of more metal-rich silicides are obtained in the case of the Ti implantations. Mo implantations result in the formation of the high-temperature phase β-MoSi 2 , which also grows textured on the substrate. The formation of cavities in the silicon substrate at the lower SiC/Si interface due to the Si consumption by the growing silicide phase is observed in both cases. It probably constitutes a problem, occurring whenever thin SiC films on silicon have to be contacted by silicide forming metals independent of the deposition technique used. It is shown that this problem can be solved with ion beam synthesized contact layers by proper adjustment of the metal ion dose

  6. Determination of metal-hydrogen bond dissociation energies by the deprotonation of transition metal hydride ions: application to MnH +

    Science.gov (United States)

    Stevens, Amy E.; Beauchamp, J. L.

    1981-03-01

    ICR trapped ion techniques are used to examine the kinetics of proton transfer from MnH + (formed as a fragment ion from HMn (CO) 5 by electron impact) to bases of varying strength. Deprotonation is rapid with bases whose proton affinity exceeds 196±3 kcal mol -1. This value for PA (Mn) yields the homolytic bond dissociation energy D0(Mn +-H) = 53±5 kcal mol -1.

  7. Affinity chromatography of tetanus toxin, tetanus toxoid, and botulinum A toxin on synaptosomes, and differentiation of their acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Habermann, E [Giessen Univ. (Germany, F.R.). Pharmakologisches Inst.

    1976-01-01

    /sup 125/I-labelled tetanus toxin and /sup 125/I-labelled botulinum A neurotoxin are known to be specifically bound to brain synaptosomes. In order to discriminate between active toxin and inactive admixtures present in the starting material or arising during iodination, synaptosome columns were prepared using bromacetylcellulose and/or kieselgur (Celite) as carriers. Both types of columns adsorb the toxins from low ionic strength medium and release them if the pH and ionic strength are raised. Botulinum toxin was eluted with lower ionic strength than tetanus toxin, and could be freed from nontoxic admixtures. Analysis by affinity chromatography disclosed partially toxoided tetanus toxin in both labelled and unlabelled toxin samples. High concentrations of formaldehyde (0.5%) destroyed both toxicity and affinity to the synaptosomes of tetanus toxin. Low concentrations of formaldehyde (0.05%) yielded a derivative of low toxicity which was still, however less firmly, bound to synaptosomes. Tetanus and botulinum toxin differ by their acceptors. Whereas unlabelled botulinum toxin is unable to compete with labelled tetanus toxin, unlabelled tetanus toxin slightly competes with botulinum toxin. Both labelled toxins display anomalous binding behaviour in that they cannot be displaced completely even with a large excess of unlabelled toxin.

  8. Affinity chromatography of tetanus toxin, tetanus toxoid, and botulinum A toxin on synaptosomes, and differentiation of their acceptors

    International Nuclear Information System (INIS)

    Habermann, E.

    1976-01-01

    125 I-labelled tetanus toxin and 125 I-labelled botulinum A neurotoxin are known to be specifically bound to brain synaptosomes. In order to discriminate between active toxin and inactive admixtures present in the starting material or arising during iodination, synaptosome columns were prepared using bromacetylcellulose and/or kieselgur (Celite) as carriers. Both types of columns adsorb the toxins from low ionic strength medium and release them if the pH and ionic strength are raised. Botulinum toxin was eluted with lower ionic strength than tetanus toxin, and could be freed from nontoxic admixtures. Analysis by affinity chromatography disclosed partially toxoided tetanus toxin in both labelled and unlabelled toxin samples. High concentrations of formaldehyde (0.5%) destroyed both toxicity and affinity to the synaptosomes of tetanus toxin. Low concentrations of formaldehyde (0.05%) yielded a derivative of low toxicity which was still, however less firmly, bound to synaptosomes. Tetanus and botulinum toxin differ by their acceptors. Whereas unlabelled botulinum toxin is unable to compete with labelled tetanus toxin, unlabelled tetanus toxin slightly competes with botulinum toxin. Both labelled toxins display anomalous binding behaviour in that they cannot be displaced completely even with a large excess of unlabelled toxin. (orig.) [de

  9. The Cutting Edge of Affinity Electrophoresis Technology.

    Science.gov (United States)

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-03-18

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years.

  10. Submicrometer Metallic Barcodes

    Science.gov (United States)

    Nicewarner-Peña, Sheila R.; Freeman, R. Griffith; Reiss, Brian D.; He, Lin; Peña, David J.; Walton, Ian D.; Cromer, Remy; Keating, Christine D.; Natan, Michael J.

    2001-10-01

    We synthesized multimetal microrods intrinsically encoded with submicrometer stripes. Complex striping patterns are readily prepared by sequential electrochemical deposition of metal ions into templates with uniformly sized pores. The differential reflectivity of adjacent stripes enables identification of the striping patterns by conventional light microscopy. This readout mechanism does not interfere with the use of fluorescence for detection of analytes bound to particles by affinity capture, as demonstrated by DNA and protein bioassays.

  11. Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff.

    Science.gov (United States)

    Vijayaraghavan, K; Teo, Ting Ting; Balasubramanian, R; Joshi, Umid Man

    2009-05-30

    The ability of Sargassum sp. to biosorb four metal ions, namely lead, copper, zinc, and manganese from a synthetic multi-solute system and real storm water runoff has been investigated for the first time. Experiments on synthetic multi-solute systems revealed that Sargassum performed well in the biosorption of all four metal ions, with preference towards Pb, followed by Cu, Zn, and Mn. The solution pH strongly affected the metal biosorption, with pH 6 being identified as the optimal condition for achieving maximum biosorption. Experiments at different biosorbent dosages revealed that good biosorption capacity as well as high metal removal efficiency was observed at 3g/L. The biosorption kinetics was found to be fast with equilibrium being attained within 50 min. According to the Langmuir isotherm model, Sargassum exhibited maximum uptakes of 214, 67.5, 24.2 and 20.2mg/g for lead, copper, zinc, and manganese, respectively in single-solute systems. In multi-metal systems, strong competition between four metal ions in terms of occupancy binding sites was observed, and Sargassum showed preference in the order of Pb>Cu>Zn>Mn. The application of Sargassum to remove four heavy metal ions in real storm water runoff revealed that the biomass was capable of removing the heavy metal ions. However, the biosorption performance was slightly lower compared to that of synthetic metal solutions. Several factors were responsible for this difference, and the most important factor is the presence of other contaminants such as anions, organics, and other trace metals in the runoff.

  12. Ion-induced electron emission from clean metals

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Alonso, E.V.; Ferron, J.; Oliva-Florio, A.; Universidad Nacional de Cuyo, San Carlos de Bariloche

    1979-01-01

    We report recent experimental work on electron emission from clean polycrystalline metal surfaces under ion bombardment. We critically discuss existing theories and point out the presently unsolved problems. (orig.)

  13. Ionic liquids used in extraction and separation of metal ions

    International Nuclear Information System (INIS)

    Shen Xinghai; Xu Chao; Liu Xinqi; Chu Taiwei

    2006-01-01

    Ionic liquids as green solvents now have become a research hotspot in the field of separation of metal ions by solvent extraction. Experimental results of extraction of various metal ions with ionic liquids as solvents, including that of alkali metals, alkaline earths, transition metals rare earths and actinides are introduced. The extraction of uranium, plutonium and fission products that are involved in spent nuclear fuel reprocessing is also reviewed. The possible extraction mechanisms are discussed. Finally, the prospect of replacement of volatile and/or toxic organic solvents with environmentally benign ionic liquids for solvent extraction and the potency of applications of ionic liquids in solvent extraction are also commented. (authors)

  14. Cleavage reactions of the complex ions derived from self-complementary deoxydinucleotides and alkali-metal ions using positive ion electrospray ionization with tandem mass spectrometry.

    Science.gov (United States)

    Xiang, Yun; Abliz, Zeper; Takayama, Mitsuo

    2004-05-01

    The dissociation reactions of the adduct ions derived from the four self-complementary deoxydinucleotides, d(ApT), d(TpA), d(CpG), d(GpC), and alkali-metal ions were studied in detail by positive ion electrospray ionization multiple-stage mass spectrometry (ESI-MS(n)). For the [M + H](+) ions of the four deoxydinucleotides, elimination of 5'-terminus base or loss of both of 5'-terminus base and a deoxyribose were the major dissociation pathway. The ESI-MS(n) spectra showed that Li(+), Na(+), and Cs(+) bind to deoxydinucleotides mainly by substituting the H(+) of phosphate group, and these alkali-metal ions preferred to bind to pyrimidine bases rather than purine bases. For a given deoxydinucleotide, the dissociation pathway of [M + K](+) ions differed clearly from that of [M + Li](+), [M + Na](+), and [M + Cs](+) ions. Some interesting and characteristic cleavage reactions were observed in the product-ion spectra of [M + K](+) ions, including direct elimination of deoxyribose and HPO(3) from molecular ions. The fragmentation behavior of the [M + K](+) and [M + W](+) (W = Li, Na, Cs) adduct ions depend upon the sequence of bases, the interaction between alkali-metal ions and nucleobases, and the steric hindrance caused by bases.

  15. Damage induced by helium ion irradiation in Fe-based metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaonan; Mei, Xianxiu, E-mail: xxmei@dlut.edu.cn; Zhang, Qi; Li, Xiaona; Qiang, Jianbing; Wang, Younian

    2017-07-15

    The changes in structure and surface morphology of metallic glasses Fe{sub 80}Si{sub 7.43}B{sub 12.57} and Fe{sub 68}Zr{sub 7}B{sub 25} before and after the irradiation of He ions with the energy of 300 keV were investigated, and were compared with that of the tungsten. The results show that after the He{sup 2+} irradiation, metallic glass Fe{sub 68}Zr{sub 7}B{sub 25} still maintained amorphous. While a small amount of metastable β-Mn type phase nanocrystals formed in metallic glass Fe{sub 80}Si{sub 7.43}B{sub 12.57} at the fluence of 4.0 × 10{sup 17}ions/cm{sup 2} (19dpa). The nanocrystals transformed into α-Fe phase and tetragonal Fe{sub 2}B phase as the fluence increased to 1.0 × 10{sup 18}ions/cm{sup 2} (47dpa). Then the new orthogonal Fe{sub 3}B phase and β-Mn type phase nanocrystals appeared when the fluence increased further, and the quantities of nanocrystals increased. Blisters and cracks appeared on the surface of tungsten under the irradiation fluence of 1.0 × 10{sup 18}ions/cm{sup 2}, however only when the fluence was up to 1.6 × 10{sup 18}ions/cm{sup 2}, could cracks and spalling appear on the surfaces of metallic glasses. - Highlights: •Metallic glass Fe{sub 68}Zr{sub 7}B{sub 25} could maintain amorphous state after the irradiation. •A series of crystallization behaviors occurred in metallic glass Fe{sub 80}Si{sub 7.43}B{sub 12.57}. •The surface of tungsten appeared blisters at the fluence of 1.0 × 10{sup 18} ions/cm{sup 2}. •Surfaces of Fe-based metallic glasses cracked at the fluence of 1.6 × 10{sup 18}ions/cm{sup 2}.

  16. Application of linear pH gradients for the modeling of ion exchange chromatography: Separation of monoclonal antibody monomer from aggregates.

    Science.gov (United States)

    Kluters, Simon; Wittkopp, Felix; Jöhnck, Matthias; Frech, Christian

    2016-02-01

    The mobile phase pH is a key parameter of every ion exchange chromatography process. However, mechanistic insights into the pH influence on the ion exchange chromatography equilibrium are rare. This work describes a mechanistic model capturing salt and pH influence in ion exchange chromatography. The pH dependence of the characteristic protein charge and the equilibrium constant is introduced to the steric mass action model based on a protein net charge model considering the number of amino acids interacting with the stationary phase. This allows the description of the adsorption equilibrium of the chromatographed proteins as a function of pH. The model parameters were determined for a monoclonal antibody monomer, dimer, and a higher aggregated species based on a manageable set of pH gradient experiments. Without further modification of the model parameters the transfer to salt gradient elution at fixed pH is demonstrated. A lumped rate model was used to predict the separation of the monoclonal antibody monomer/aggregate mixture in pH gradient elution and for a pH step elution procedure-also at increased protein loadings up to 48 g/L packed resin. The presented model combines both salt and pH influence and may be useful for the development and deeper understanding of an ion exchange chromatography separation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The fabrication of metal silicide nanodot arrays using localized ion implantation

    International Nuclear Information System (INIS)

    Han, Jin; Kim, Tae-Gon; Min, Byung-Kwon; Lee, Sang Jo

    2010-01-01

    We propose a process for fabricating nanodot arrays with a pitch size of less than 25 nm. The process consists of localized ion implantation in a metal thin film on a Si wafer using a focused ion beam (FIB), followed by chemical etching. This process utilizes the etching resistivity changes of the ion beam irradiated region that result from metal silicide formation by ion implantation. To control the nanodot diameter, a threshold ion dose model is proposed using the Gaussian distribution of the ion beam intensities. The process is verified by fabricating nanodots with various diameters. The mechanism of etching resistivity is investigated via x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES).

  18. A high current metal vapour vacuum arc ion source for ion implantation studies

    International Nuclear Information System (INIS)

    Evans, P.J.; Noorman, J.T.; Watt, G.C.; Cohen, D.D.; Bailey, G.M.

    1989-01-01

    The main features of the metal vapour vacuum arc(MEVA) as an ion source are presented. The technology utilizes the plasma production capabilities of a vacuum arc cathode. Some of the ions produced in this discharge flow through the anode and the 3 extraction grids to form an extracted ion beam. The high beam current and the potential for generating broad beams, make this technology suitable for implantation of large surface areas. The composition of the vacuum arc cathode determines the particular ions obtained from the MEVA source. 3 refs., 1 tab., 2 figs

  19. Na+,K+-ATPase Na+ affinity in rat skeletal muscle fiber types

    DEFF Research Database (Denmark)

    Kristensen, Michael; Juel, Carsten

    2010-01-01

    Previous studies in expression systems have found different ion activation of the Na(+)/K(+)-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used to quantify Na(+),K(+)-ATPase activity, and the Na(+) affinity of Na(+),K(+)-ATPase...

  20. Gas-Phase Reactions of Doubly Charged Lanthanide Cations with Alkanes and Alkenes. Trends in Metal(2+) Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, John K.; Marcalo, Joaquim; Santos, Marta; Pires de Matos, Antonio; Haire, Richard G.

    2008-12-08

    The gas-phase reactivity of doubly-charged lanthanide cations, Ln2+ (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), with alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) was studied by Fourier transform ion cyclotron resonance mass spectrometry. The reaction products consisted of different combinations of doubly-charged organometallic ions?adducts or species formed via metal-ion-induced hydrogen, dihydrogen, alkyl, or alkane eliminations from the hydrocarbons?and singly-charged ions that resulted from electron, hydride, or methide transfers from the hydrocarbons to the metal ions. The only lanthanide cations capable of activating the hydrocarbons to form doubly-charged organometallic ions were La2+, Ce2+, Gd2+, and Tb2+, which have ground-state or low-lying d1 electronic configurations. Lu2+, with an accessible d1 electronic configuration but a rather high electron affinity, reacted only through transfer channels. The remaining Ln2+ reacted via transfer channels or adduct formation. The different accessibilities of d1 electronic configurations and the range of electron affinities of the Ln2+ cations allowed for a detailed analysis of the trends for metal(2+) reactivity and the conditions for occurrence of bond activation, adduct formation, and electron, hydride, and methide transfers.

  1. Bovine plasma protein fractionation by ion exchange chromatography.

    Science.gov (United States)

    Moure, F; Rendueles, M; Díaz, M

    2004-12-01

    An ion exchange chromatography process was developed to separate the main protein fractions of bovine blood plasma using a composite material, Q-HyperD resin, and a gel material, DEAE-Sepharose. The experiments were carried out at semipreparative scale. It was necessary to establish analytical methods of electrophoresis and HPLC to identify the fractionated proteins. Results show that these materials are able to adequately fractionate different protein groups from the raw blood plasma. This method may be used to avoid chemical fractionation using agents such as ethanol or PEG and, thus, decrease protein denaturation of the different fractions to be used for research or pharmaceutical purposes. The Q-HyperD resin presents a better retention capacity for plasma protein than DEAE-Sepharose under the experimental conditions employed.

  2. Separation of Binding Protein of Celangulin V from the Midgut of Mythimna separata Walker by Affinity Chromatography

    Directory of Open Access Journals (Sweden)

    Lina Lu

    2015-05-01

    Full Text Available Celangulin V, an insecticidal compound isolated from the root bark of Chinese bittersweet, can affect the digestive system of insects. However, the mechanism of how Celangulin V induces a series of symptoms is still unknown. In this study, affinity chromatography was conducted through coupling of Celangulin V-6-aminoacetic acid ester to the CNBr-activated Sepharose 4B. SDS-PAGE was used to analyze the collected fraction eluted by Celangulin V. Eight binding proteins (Zinc finger protein, Thioredoxin peroxidase (TPx, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH, SUMO E3 ligase RanBP2, Transmembrane protein 1, Actin, APN and V-ATPase were obtained and identified by LC/Q-TOF-MS from the midgut of Mythimna separata larvae. The potential of these proteins to serve as target proteins involved in the insecticidal activity of Celangulin V is discussed.

  3. Polymer-supported reagents with enhanced metal ion recognition: Application to separations science

    International Nuclear Information System (INIS)

    Alexandratos, S.D.

    1993-01-01

    The design and development of polymer-supported reagents with ever-increasing specificities for targeted metal ions remains an important areas of research. The need for efficient separation schemes for both ions and molecules has been outlined in a report by the National Research Council (King) and will gain increased emphasis as environmental restoration is pursued. Polymer-supported reagents are unique in their ability to be applied in an environmentally benign manner to a host of challenges. Such reagents, in the form of beads, can be applied to continuous separation processes ranging from the removal of metal ions in water to the recovery of medicinal drugs produced through biotechnological means. The application of polymer-supported reagents to metal ion separations still requires developing a fundamental understanding of ligand-metal interactions, the role of the polymer in those interactions, and the methods of synthesizing such polymeric reagents in a readily applicable form. Ion exchange resins with sulfonic acid ligands are the prototypical polymer-supported reagents, and their properties have been exhaustively studied (Helfferich). The high acidity of the sulfonic acid group, however, precludes much selectivity, and it displays a very limited range of reaction free energy values with different metal ions (Boyd et al.). The carboxylic acid ligand, present in the acrylate resins, is more selective, though its weak acidity requires relatively high pH solutions for it to be effective. Research has thus been focused on the preparation of polymer-supported reagents with high levels of specificity for targeted metal ions

  4. Chromatography of phosphorus oxoacids

    International Nuclear Information System (INIS)

    Ohashi, S.

    1975-01-01

    The present state of studies on the chromatographic separation of phosphorus oxoacids is surveyed. In this paper, chromatographic techniques are divided into four groups, i.e. paper and thin-layer chromatography, paper electrophoresis, ion-exchange chromatography, and gel chromatography. The separation mechanisms and characteristics for these chromatographic methods are discussed and some examples for the separation of phosphorus oxoacids are described. As examples of the application of ion-exchange and gel chromatography, studies on the hot atom chemistry of 32 P in solid inorganic phosphates and those on the substitution reactions between diphosphonate (diphosphite) and polyphosphates are reported. (author)

  5. Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity.

    Science.gov (United States)

    Zhu, Ying; Zhang, Yu; Shi, Guosheng; Yang, Jinrong; Zhang, Jichao; Li, Wenxin; Li, Aiguo; Tai, Renzhong; Fang, Haiping; Fan, Chunhai; Huang, Qing

    2015-02-05

    Nanomaterials hold great promise for applications in the delivery of various molecules with poor cell penetration, yet its potential for delivery of metal ions is rarely considered. Particularly, there is limited insight about the cytotoxicity triggered by nanoparticle-ion interactions. Oxidative stress is one of the major toxicological mechanisms for nanomaterials, and we propose that it may also contribute to nanoparticle-ion complexes induced cytotoxicity. To explore the potential of nanodiamonds (NDs) as vehicles for metal ion delivery, we used a broad range of experimental techniques that aimed at getting a comprehensive assessment of cell responses after exposure of NDs, metal ions, or ND-ion mixture: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Trypan blue exclusion text, optical microscope observation, synchrotron-based scanning transmission X-ray microscopy (STXM) and micro X-ray fluorescence (μXRF) microscopy, inductively coupled plasma-mass spectrometry (ICP-MS), reactive oxygen species (ROS) assay and transmission electron microscopy (TEM) observation. In addition, theoretical calculation and molecular dynamics (MD) computation were used to illustrate the adsorption properties of different metal ion on NDs as well as release profile of ion from ND-ion complexes at different pH values. The adsorption capacity of NDs for different metal ions was different, and the adsorption for Cu2+ was the most strong among divalent metal ions. These different ND-ion complexes then had different cytotoxicity by influencing the subsequent cellular responses. Detailed investigation of ND-Cu2+ interaction showed that the amount of released Cu2+ from ND-Cu2+ complexes at acidic lysosomal conditions was much higher than that at neutral conditions, leading to the elevation of intracellular ROS level, which triggered cytotoxicity. By theoretical approaches, we demonstrated that the functional carbon surface and cluster structures of NDs made them

  6. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya, E-mail: divya@chem.unipune.ac.in

    2015-05-15

    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu{sup 2+}, Fe{sup 2+}, Ni{sup 2+} and Zn{sup 2+} in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu{sup 2+}, Fe{sup 2+} and Ni{sup 2+} caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe{sup 2+}, Cu{sup 2+}, Ni{sup 2+} and Zn{sup 2+}. • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions.

  7. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya

    2015-01-01

    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu 2+ , Fe 2+ , Ni 2+ and Zn 2+ in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu 2+ , Fe 2+ and Ni 2+ caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe 2+ , Cu 2+ , Ni 2+ and Zn 2+ . • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions

  8. Effect of metal ions on the growth and metabolites production of ...

    African Journals Online (AJOL)

    Effect of metal ions on the growth and metabolites production of Ganoderma lucidum in submerged culture. YH Cui, KC Zhang. Abstract. The effects of several metal ions on the cell growth, production of polysaccharides by Ganoderma lucidum in submerged fermentation were studied. The results showed that 50 ppm Se2+ ...

  9. Ion-Exclusion Chromatography for Analyzing Organics in Water

    Science.gov (United States)

    Sauer, Richard; Rutz, Jeffrey A.; Schultz, John R.

    2006-01-01

    A liquid-chromatography technique has been developed for use in the quantitative analysis of urea (and of other nonvolatile organic compounds typically found with urea) dissolved in water. The technique involves the use of a column that contains an ion-exclusion resin; heretofore, this column has been sold for use in analyzing monosaccharides and food softeners, but not for analyzing water supplies. The prior technique commonly used to analyze water for urea content has been one of high-performance liquid chromatography (HPLC), with reliance on hydrophobic interactions between analytes in a water sample and long-chain alkyl groups bonded to an HPLC column. The prior technique has proven inadequate because of a strong tendency toward co-elution of urea with other compounds. Co-elution often causes the urea and other compounds to be crowded into a narrow region of the chromatogram (see left part of figure), thereby giving rise to low chromatographic resolution and misidentification of compounds. It is possible to quantitate urea or another analyte via ultraviolet- and visible-light absorbance measurements, but in order to perform such measurements, it is necessary to dilute the sample, causing a significant loss of sensitivity. The ion-exclusion resin used in the improved technique is sulfonated polystyrene in the calcium form. Whereas the alkyl-chain column used in the prior technique separates compounds on the basis of polarity only, the ion-exclusion-resin column used in the improved technique separates compounds on the basis of both molecular size and electric charge. As a result, the degree of separation is increased: instead of being crowded together into a single chromatographic peak only about 1 to 2 minutes wide as in the prior technique, the chromatographic peaks of different compounds are now separated from each other and spread out over a range about 33 minutes wide (see right part of figure), and the urea peak can readily be distinguished from the other

  10. Stability of the neurotensin receptor NTS1 free in detergent solution and immobilized to affinity resin.

    Directory of Open Access Journals (Sweden)

    Jim F White

    2010-09-01

    Full Text Available Purification of recombinant membrane receptors is commonly achieved by use of an affinity tag followed by an additional chromatography step if required. This second step may exploit specific receptor properties such as ligand binding. However, the effects of multiple purification steps on protein yield and integrity are often poorly documented. We have previously reported a robust two-step purification procedure for the recombinant rat neurotensin receptor NTS1 to give milligram quantities of functional receptor protein. First, histidine-tagged receptors are enriched by immobilized metal affinity chromatography using Ni-NTA resin. Second, remaining contaminants in the Ni-NTA column eluate are removed by use of a subsequent neurotensin column yielding pure NTS1. Whilst the neurotensin column eluate contained functional receptor protein, we observed in the neurotensin column flow-through misfolded NTS1.To investigate the origin of the misfolded receptors, we estimated the amount of functional and misfolded NTS1 at each purification step by radio-ligand binding, densitometry of Coomassie stained SDS-gels, and protein content determination. First, we observed that correctly folded NTS1 suffers damage by exposure to detergent and various buffer compositions as seen by the loss of [(3H]neurotensin binding over time. Second, exposure to the neurotensin affinity resin generated additional misfolded receptor protein.Our data point towards two ways by which misfolded NTS1 may be generated: Damage by exposure to buffer components and by close contact of the receptor to the neurotensin affinity resin. Because NTS1 in detergent solution is stabilized by neurotensin, we speculate that the occurrence of aggregated receptor after contact with the neurotensin resin is the consequence of perturbations in the detergent belt surrounding the NTS1 transmembrane core. Both effects reduce the yield of functional receptor protein.

  11. Molten salt oxidation of ion-exchange resins doped with toxic metals and radioactive metal surrogates

    International Nuclear Information System (INIS)

    Yang, Hee-Chul; Cho, Yong-Jun; Yoo, Jae-Hyung; Kim, Joon-Hyung; Eun, Hee-Chul

    2005-01-01

    Ion-exchange resins doped with toxic metals and radioactive metal surrogates were test-burned in a bench-scale molten salt oxidation (MSO) reactor system. The purposes of this study are to confirm the destruction performance of the two-stage MSO reactor system for the organic ion-exchange resin and to obtain an understanding of the behavior of the fixed toxic metals and the sulfur in the cationic exchange resins. The destruction of the organics is very efficient in the primary reactor. The primarily destroyed products such as carbon monoxide are completely oxidized in the secondary MSO reactor. The overall collection of the sulfur and metals in the two-stage MSO reactor system appeared to be very efficient. Over 99.5% of all the fixed toxic metals (lead and cadmium) and radioactive metal surrogates (cesium, cobalt, strontium) remained in the MSO reactor bottom. Thermodynamic equilibrium calculations and the XRD patterns of the spent salt samples revealed that the collected metals existed in the form of each of their carbonates or oxides, which are non-volatile species at the MSO system operating conditions. (author)

  12. Synthesis, Characterizations, and Applications of Metal-Ions Incorporated High Quality MCM-41 Catalysts

    International Nuclear Information System (INIS)

    Lim, Steven S.; Haller, Gary L.

    2013-01-01

    Various metal ions (transition and base metals) incorporated MCM-41 catalysts can be synthesized using colloidal and soluble silica with non-sodium involved process. Transition metal ion-typically V 5+ , Co 2+ , and Ni 2+ -incorporated MCM-41 catalysts were synthesized by isomorphous substitution of Si ions in the framework. Each incorporated metal ion created a single species in the silica framework, single-site solid catalyst, showing a substantial stability in reduction and catalytic activity. Radius of pore curvature effect was investigated with Co-MCM-41 by temperature programmed reduction (TPR). The size of metallic Co clusters, sub-nanometer, could be controlled by a proper reduction treatment of Co-MCM-41 having different pore size and the initial pH adjustment of the Co-MCM-41 synthesis solution. These small metallic clusters showed a high stability under a harsh reaction condition without serious migration, resulting from a direct anchoring of small metallic clusters to the partially or unreduced metal ions on the surface. After a complete reduction, partial occlusion of the metallic cluster surface by amorphous silica stabilized the particles against aggregations. As a probe reaction of particle size sensitivity, carbon single wall nanotubes (SWNT) were synthesized using Co-MCM-41. A metallic cluster stability test was performed by CO methanation using Co- and Ni-MCM-41. Methanol and methane partial oxidations were carried out with V-MCM-41, and the radius of pore curvature effect on the catalytic activity was investigated

  13. Potentiometric titration of metal ions in ethanol.

    Science.gov (United States)

    Gibson, Graham T T; Mohamed, Mark F; Neverov, Alexei A; Brown, R S

    2006-09-18

    The potentiometric titrations of Zn2+, Cu2+ and 12 Ln3+ metal ions were obtained in ethanol to determine the titration constants (defined as the at which the [-OEt]/[Mx+]t ratios are 0.5, 1.5, and 2.5) and in two cases (La3+ and Zn2+) a complete speciation diagram. Several simple monobasic acids and aminium ions were also titrated to test the validity of experimental titration measurements and to establish new constants in this medium that will be useful for the preparation of buffers and standard solutions. The dependence of the titration constants on the concentration and type of metal ion and specific counterion effects is discussed. In selected cases, the titration profiles were analyzed using a commercially available fitting program to obtain information about the species present in solution, including La3+ for which a dimer model is proposed. The fitting provides the microscopic values for deprotonation of one to four metal-bound ethanol molecules. Kinetics for the La3+-catalyzed ethanolysis of paraoxon as a function of are presented and analyzed in terms of La3+ speciation as determined by the analysis of potentiometric titration curves. The stability constants for the formation of Zn2+ and Cu2+ complexes with 1,5,9-triazacyclododecane as determined by potentiometric titration are presented.

  14. Poly(2-FurylMethylenesulfide as a Resin to Uptake of Metal Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Damasceno J.

    2002-01-01

    Full Text Available The polymerization of poly (2- furyl methylenesulfide -- POLYTHIOFURFURAL -- was performed in an 0.36 mol/L aqueous solution of furfuraldehyde, saturated by bubbling hydrogen sulfide for 2 h at different temperatures. The reaction product was thoroughly washed and dried at 40 °C under vacuum. Poly (2-furyl methylenesulfyde is a yellow powder with a rather unpleasant odor. The polythiofurfural obtained [ -CH(C4H3O-S-] is a furan with thiols end groups. These are active adsorption centers for metal ions. The polythiofurfural was soluble in acetone and chloroform and its yields attained 80%. Morphological analysis by Scanning Eletronic Microscopy indicates a regular and dense surface in an interesting spacial arrangement. Preliminary isotherms adsorption studies indicate specific affinity forNi (II and Co (II and different capacity adsorption, 0.022 and 0.045 mmol per gram, respectively.

  15. What can in situ ion chromatography offer for Mars exploration?

    Science.gov (United States)

    Shelor, C Phillip; Dasgupta, Purnendu K; Aubrey, Andrew; Davila, Alfonso F; Lee, Michael C; McKay, Christopher P; Liu, Yan; Noell, Aaron C

    2014-07-01

    The successes of the Mars exploration program have led to our unprecedented knowledge of the geological, mineralogical, and elemental composition of the martian surface. To date, however, only one mission, the Phoenix lander, has specifically set out to determine the soluble chemistry of the martian surface. The surprising results, including the detection of perchlorate, demonstrated both the importance of performing soluble ion measurements and the need for improved instrumentation to unambiguously identify all the species present. Ion chromatography (IC) is the state-of-the-art technique for soluble ion analysis on Earth and would therefore be the ideal instrument to send to Mars. A flight IC system must necessarily be small, lightweight, low-power, and have low eluent consumption. We demonstrate here a breadboard system that addresses these issues by using capillary IC at low flow rates with an optimized eluent generator and suppressor. A mix of 12 ions known or plausible for the martian soil, including 4 (oxy)chlorine species, has been separated at flow rates ranging from 1 to 10 μL/min, requiring as little as 200 psi at 1.0 μL/min. This allowed the use of pneumatic displacement pumping from a pressurized aluminum eluent reservoir and the elimination of the high-pressure pump entirely (the single heaviest and most energy-intensive component). All ions could be separated and detected effectively from 0.5 to 100 μM, even when millimolar concentrations of perchlorate were present in the same mixtures.

  16. Determination of anionic concentrations in ground water samples using ion chromatography

    International Nuclear Information System (INIS)

    Prathibha, P.; Saradhi, I.V.; Pandit, G.G.; Puranik, V.D.

    2011-01-01

    Ion chromatography is a powerful separation technique for the quantitative measurement of anions in aqueous samples as well as in soil, sediment and air particulate samples leached in aqueous solutions. Ion chromatographic technique is developed by making use of suppressed ion conductivity detection (Small et.al.,1975) and it is a rapid multi ion analysis technique. The time, processing and effort required for the analysis of anions is much less compared to other techniques available such as ion selective electrode technique. In the present paper ground water samples collected around New BARC campus, Visakhapatnam are analyzed for anions using Ion chromatograph. The data generated will establish the current baseline status of the ionic contaminants in the study area. Groundwater samples are collected at 13 locations around BARC Vizag campus covering 30 km radius in September, 2009, April and July, 2010. The water samples include samples from hand pump and open wells in villages. The water samples are analyzed for fluoride, chloride, nitrate and sulphate using Metrohm make Ion chromatograph. The fluoride concentration in samples varied from 0.22 to 1.26 ppm, chloride from 18.7 to 810.9, nitrate from 1.34 to 378.5 ppm and sulphate from 13.29 to 250.69 ppm. No significant seasonal variations are observed in the samples collected from various locations except chloride at two locations. Ions Chromatograph is found to be a useful tool for simultaneous analysis of environmental samples with good accuracy where the concentrations of anions vary within an order of magnitude among them themselves. (author)

  17. Multiheteromacrocycles that complex metal ions. Third progress report, 1 May 1976--30 April 1977

    International Nuclear Information System (INIS)

    Cram, D.J.

    1977-01-01

    The overall objective of this research is to design, synthesize and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes and clusters. Host organic compounds consist of strategically placed solvating, coordinating and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions, or metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; numbers of binding sites; characters of binding sites; and valences. The specific compounds synthesized and their complexing and lipophilizing properties are summarized

  18. Removal and recovery of metal ions from process and waste streams using polymer filtration

    International Nuclear Information System (INIS)

    Jarvinen, G.D.; Smith, B.F.; Robison, T.W.; Kraus, K.M.; Thompson, J.A.

    1999-01-01

    Polymer Filtration (PF) is an innovative, selective metal removal technology. Chelating, water-soluble polymers are used to selectively bind the desired metal ions and ultrafiltration is used to concentrate the polymer-metal complex producing a permeate with low levels of the targeted metal ion. When applied to the treatment of industrial metal-bearing aqueous process streams, the permeate water can often be reused within the process and the metal ions reclaimed. This technology is applicable to many types of industrial aqueous streams with widely varying chemistries. Application of PF to aqueous streams from nuclear materials processing and electroplating operations will be described

  19. The Metal Cation Chelating Capacity of Astaxanthin. Does This Have Any Influence on Antiradical Activity?

    Directory of Open Access Journals (Sweden)

    Ana Martínez

    2012-01-01

    Full Text Available In this Density Functional Theory study, it became apparent that astaxanthin (ASTA may form metal ion complexes with metal cations such as Ca+2, Cu+2, Pb+2, Zn+2, Cd+2 and Hg+2. The presence of metal cations induces changes in the maximum absorption bands which are red shifted in all cases. Therefore, in the case of compounds where metal ions are interacting with ASTA, they are redder in color. Moreover, the antiradical capacity of some ASTA-metal cationic complexes was studied by assessing their vertical ionization energy and vertical electron affinity, reaching the conclusion that metal complexes are slightly better electron donors and better electron acceptors than ASTA.

  20. Effect of Heavy Metal Ions and Carbohydrates on the Activity of Cauliflower (Brassica oleracea Var. botrytis Myrosinase

    Directory of Open Access Journals (Sweden)

    Prakash, Om

    2013-04-01

    Full Text Available Myrosinase is an enzyme of cruciferous vegetables, hydrolyse glucosinolates. The breakdown products are involved in plant defence against insect and also have anti-fungal property. Myrosinase has been purified to apparent homogeneity from 5 days old germinated cauliflower seedlings having a specific activity of 12.71 units/mg proteins with 54.6 % recovery, using ammonium sulfate fractionation followed by gel filtration chromatography on Sephadex G-100. Effect of some metal ions and carbohydrates on the activity of partially purified cauliflower myrosinase was studied. Sr+2 at 4 mM concentration exhibited marked activating effect on the activity up to 2.7 fold while Fe+2 significantly inhibited. However, Sn+2 and Ba+2 increased the activity to a certain extent and then suppressed. On the other hand, some metal ions [Fe+2, Fe+3, Cu+2 and Zn+2] strongly inhibited the activity even at lower concentrations. Several carbohydrates viz., glucose, fructose, sucrose, maltose and sorbitol even at comparatively higher concentrations had little detectable inhibitory effects. Activation kinetics of myrosinase in presence of Sn+2 and Sr+2 were studied between 0- 20min. The rate of reaction was almost constant till 15 min and then slight deactivation was recorded at various concentrations used.

  1. Identification of chemical components in Baidianling Capsule based on gas chromatography-mass spectrometry and high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Wu, Wenying; Chen, Yu; Wang, Binjie; Sun, Xiaoyang; Guo, Ping; Chen, Xiaohui

    2017-08-01

    Baidianling Capsule, which is made from 16 Chinese herbs, has been widely used for treating vitiligo clinically. In this study, the sensitive and rapid method has been developed for the analysis of chemical components in Baidianling Capsule by gas chromatography-mass spectrometry in combination with retention indices and high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Firstly, a total of 110 potential volatile compounds obtained from different extraction procedures including alkanes, alkenes, alkynes, ketones, ethers, aldehydes, alcohols, phenols, organic acids, esters, furans, pyrrole, acid amides, heterocycles, and oxides were detected from Baidianling Capsule by gas chromatography-mass spectrometry, of which 75 were identified by mass spectrometry in combination with the retention index. Then, a total of 124 components were tentatively identified by high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Fifteen constituents from Baidianling Capsule were accurately identified by comparing the retention times with those of reference compounds, others were identified by comparing the retention times and mass spectrometry data, as well as retrieving the reference literature. This study provides a practical strategy for rapidly screening and identifying the multiple constituents of a complex traditional Chinese medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sorption of Molecular Oxygen by Metal-Ion Exchanger Nanocomposites

    Science.gov (United States)

    Krysanov, V. A.; Plotnikova, N. V.; Kravchenko, T. A.

    2018-03-01

    Kinetic features are studied of the chemisorption and reduction of molecular oxygen from water by metal-ion exchanger nanocomposites that differ in the nature of the dispersed metal and state of oxidation. In the Pd equilibrium sorption coefficient for oxygen dissolved in water ranges from 20 to 50, depending on the nature and oxidation state of the metal component.

  3. Removal of heavy-metal ions from dilute waste streams using membrane-based hybrid systems

    International Nuclear Information System (INIS)

    Friesen, D.T.; Edlund, D.J.

    1993-01-01

    At Bend research, the authors have developed hybrid systems that couple a process that removes solvent (water) and a process that removes solute (metal ions) such that toxic heavy-metal ions can be efficiently and selectively removed to very low levels while simultaneously concentrating the heavy-metal ions in relatively pure form. Although this technology is broadly applicable, the authors are focusing on the development of a system to treat groundwater that is contaminated with heavy-metal ions. The process utilizes coupled transport and reverse osmosis to reduce chromium and uranium concentration down to parts-per-billion levels

  4. Biosorption of heavy metals from wastewater by biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Orhan, Y.; Bueyuekguengoer, H. [Ondokuz Mayis University, Engineering Faculty, Environmental Engineering Department, 55139 Samsun (Turkey); Hrenovic, J. [University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10000 Zagreb (Croatia)

    2006-08-15

    In a study where the removal of heavy metals from wastewater is the primary aim, the biosorption of heavy metals onto biosolids prepared as Pseudomonas aeruginosa immobilized onto granular activated carbon was investigated in batch and column systems. In the batch system, adsorption equilibriums of heavy metals were reached between 20 and 50 min, and the optimal dosage of biosolids was 0.3 g/L. The biosorption efficiencies were 84, 80, 79, 59 and 42 % for Cr(VI), Ni(II), Cu(II), Zn(II) and Cd(II) ions, respectively. The rate constants of biosorption and pore diffusion of heavy metals were 0.013-0.089 min{sup -1} and 0.026-0.690 min{sup -0.5}. In the column systems, the biosorption efficiencies for all heavy metals increased up to 81-100 %. The affinity of biosorption for various metal ions towards biosolids was decreased in the order: Cr = Ni > Cu > Zn > Cd. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  5. A simple liquid extraction protocol for overcoming the ion suppression of triacylglycerols by phospholipids in liquid chromatography mass spectrometry studies.

    Science.gov (United States)

    Araujo, Pedro; Tilahun, Ephrem; Breivik, Joar Fjørtoft; Abdulkader, Bashir M; Frøyland, Livar; Zeng, Yingxu

    2016-02-01

    It is well-known that triacylglycerol (TAG) ions are suppressed by phospholipid (PL) ions in regiospecific analysis of TAG by mass spectrometry (MS). Hence, it is essential to remove the PL during sample preparation prior to MS analysis. The present article proposes a cost-effective liquid-liquid extraction (LLE) method to remove PL from TAG in different kinds of biological samples by using methanol, hexane and water. High performance thin layer chromatography confirmed the lack of PL in krill oil and salmon liver samples, submitted to the proposed LLE protocol, and liquid chromatography tandem MS confirmed that the identified TAG ions were highly enhanced after implementing the LLE procedure. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. No association between pseudotumors, high serum metal-ion levels and metal hypersensitivity in large-head metal-on-metal total hip arthroplasty at 5-7-year follow-up

    DEFF Research Database (Denmark)

    Hjorth, Mette Holm; Stilling, Maiken; Soballe, Kjeld

    2015-01-01

    -ion concentrations were measured, metal allergy and atopic dermatitis were evaluated, and the questionnaires of the Oxford Hip Score (OHS), Harris Hip Score (HHS) and the Short-Form Health Survey (SF-36) were completed. RESULTS: Pseudotumors were found in eight patients, but they were asymptomatic and their serum...... pseudotumor formation, serum metal-ion levels, metal patch test reactivity, and atopic dermatitis. However, clinicians should be aware of asymptomatic pseudotumors, and we advise further exploration into the mechanisms involved in the pathogenesis of pseudotumors.......OBJECTIVE: The relationship between metal wear debris, pseudotumor formation and metal hypersensitivity is complex and not completely understood. The purpose of this study was to assess the prevalence of pseudotumor formation in a consecutive series of metal-on-metal (MoM) total hip arthroplasty...

  7. Metal ion reactive thin films using spray electrostatic LbL assembly.

    Science.gov (United States)

    Krogman, Kevin C; Lyon, Katharine F; Hammond, Paula T

    2008-11-20

    By using the spray-layer-by-layer (Spray-LbL) technique, the number of metal counterions trapped within LbL coatings is significantly increased by kinetically freezing the film short of equilibrium, potentially limiting interchain penetration and forcing chains to remain extrinsically compensated to a much greater degree than observed in the traditional dipped LbL technique. The basis for the enhanced entrapment of metal ions such as Cu2+, Fe2+, and Ag+ is addressed, including the equilibrium driving force for extrinsic compensation by soft versus hard metal ions and the impact of Spray-LbL on the kinetics of polymer-ion complexation. These polymer-bound metal-ion coatings are also demonstrated to be effective treatments for air filtration, functionalizing existing filters with the ability to strongly bind toxic industrial compounds such as ammonia or cyanide gases, as well as chemical warfare agent simulants such as chloroethyl ethyl sulfide. On the basis of results reported here, future work could extend this method to include other toxic soft-base ligands such as carbon monoxide, benzene, or organophosphate nerve agents.

  8. Metal-ion catalyzed polymerization in the eutectic phase in water-ice

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain; Szostak, Jack W.

    2008-01-01

    The emergence of an RNA world requires among other processes the non-enzymatic, template-directed replication of genetic polymers such as RNA or related nucleic acids, possibly catalyzed by metal ions. The absence of uridilate derivative polymerization on adenine containing templates has been...... the main issue preventing an efficient template-directed RNA polymerization. We report here the investigation of template-directed RNA polymerization in the eutectic phase in water-ice. In particular, it was found that activated Uridilate monomers in the presence of metal-ion catalysts could efficiently......-pairing opportunities. These results suggest that a template-directed RNA polymerization catalyzed by metal-ions could be carried out under eutectic phase in water-ice conditions....

  9. Copper Removal from A-01 Outfall by Ion Exchange

    International Nuclear Information System (INIS)

    Oji, L.N.

    1999-01-01

    Chelex100, a commercially available ion exchange resin, has been identified in this study as having a significant affinity for copper and zinc in the A-01 outfall water. Removal of copper and zinc from A-01 outfall water will ensure that the outfall meets the state of South Carolina's limit on these heavy metals

  10. Comprehensive analysis of pharmaceutical products using simultaneous mixed-mode (ion-exchange/reversed-phase) and hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Kazarian, Artaches A; Nesterenko, Pavel N; Soisungnoen, Phimpha; Burakham, Rodjana; Srijaranai, Supalax; Paull, Brett

    2014-08-01

    Liquid chromatographic assays were developed using a mixed-mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve-mediated column switching and was based upon a single high-performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion-exchange, (ii) mixed-mode interactions under an applied dual gradient (reversed-phase/ion-exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed-mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well-resolved unknown peaks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Analysis of metallic pigments by ion microbeam

    International Nuclear Information System (INIS)

    Pelicon, P.; Klanjsek-Gunde, M.; Kunaver, M.; Simcic, J.; Budnar, M.

    2002-01-01

    Metallic paints consist of metallic flakes dispersed in a resinous binder, i.e. a light-element polymer matrix. The spatial distribution and orientation of metallic flakes inside the matrix determines the covering efficiency of the paint, glossiness, and its angular-dependent properties such as lightness flop or color flop (two-tone). Such coatings are extensively used for a functional (i.e. security) as well as decorative purpose. The ion microbeam analysis of two types of silver paint with imbedded metallic flakes has been performed to determine the spatial distribution of the aluminum flakes in paint layer. The average sizes of the aluminum flakes were 23 μm (size distribution 10-37) and 49 μm (size distribution 34-75), respectively. The proton beam with the size of 2x2 μm 2 at Ljubljana ion microprobe has been used to scan the surface of the pigments. PIXE mapping of Al Kα map shows lateral distribution of the aluminum flakes, whereas the RBS slicing method reveals tomograms of the flakes in uppermost 7 μm of the pigment layer. The series of point analysis aligned over the single flake reveal the flake angle in respect to the polymer matrix surface. The angular sensitivity is well below 1 angular degree

  12. The Cutting Edge of Affinity Electrophoresis Technology

    Science.gov (United States)

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  13. Separation of polar betalain pigments from cacti fruits of Hylocereus polyrhizus by ion-pair high-speed countercurrent chromatography.

    Science.gov (United States)

    Wybraniec, Sławomir; Stalica, Paweł; Jerz, Gerold; Klose, Bettina; Gebers, Nadine; Winterhalter, Peter; Spórna, Aneta; Szaleniec, Maciej; Mizrahi, Yosef

    2009-10-09

    Polar betacyanin pigments together with betaxanthins from ripe cactus fruits of Hylocereus polyrhizus (Cactaceae) were fractionated by means of preparative ion-pair high-speed countercurrent chromatography (IP-HSCCC) also using the elution-extrusion (EE) approach for a complete pigment recovery. HSCCC separations were operated in the classical 'head-to-tail' mode with an aqueous mobile phase. Different CCC solvent systems were evaluated in respect of influence and effectiveness of fractionation capabilities to separate the occurring pigment profile of H. polyrhizus. For that reason, the additions of two different volatile ion-pair forming perfluorinated carboxylic acids (PFCA) were investigated. For a direct comparison, five samples of Hylocereus pigment extract were run on preparative scale (900 mg) in 1-butanol-acetonitrile-aqueous TFA 0.7% (5:1:6, v/v/v) and the modified systems tert.-butyl methyl ether-1-butanol-acetonitrile-aqueous PFCA (2:2:1:5, v/v/v/v) using 0.7% and 1.0% trifluoroacetic acid (TFA) or heptafluorobutyric acid (HFBA) in the aqueous phase, respectively. The chemical affinity to the organic stationary CCC solvent phases and in consequence the retention of these highly polar betalain pigments was significantly increased by the use of the more lipophilic fluorinated ion-pair reagent HFBA instead of TFA. The HFBA additions separated more effectively the typical cacti pigments phyllocactin and hylocerenin from betanin as well as their iso-forms. Unfortunately, similar K(D) ratios and selectivity factors alpha around 1.0-1.1 in all tested solvent systems proved that the corresponding diastereomers, 15S-type pigments cannot be resolved from the 15R-epimers (iso-forms). Surprisingly, additions of the stronger ion-pair reagent (HFBA) resulted in a partial separation of hylocerenin from phyllocactin which were not resolved in the other solvent systems. The pigments were detected by means of HPLC-DAD and HPLC-electrospray ionization-MS using also

  14. NOTE: Ranges of ions in metals for use in particle treatment planning

    Science.gov (United States)

    Jäkel, Oliver

    2006-05-01

    In proton and ion radiotherapy, the range of particles is calculated from x-ray computed tomography (CT) numbers. Due to the strong absorption of x-rays in a metal and a cut-off for large Hounsfield units (HU) in the software of most CT-scanners, a range calculation in metals cannot be based on the measured HU. This is of special importance when metal implants such as gold fillings or hip prostheses are close to the treatment volume. In order to overcome this problem in treatment planning for heavy charged particles, the correct ranges of ions in the metal relative to water have to be assigned in the CT data. Measurements and calculations of carbon ion ranges in various metals are presented that can be used in treatment planning to allow for a more accurate range calculation of carbon ion beams in titanium, steel, tungsten and gold. The suggested values for the relative water-equivalent range and their uncertainties are 3.13 (±3%) for titanium, 5.59 (±3%) for stainless steel and 10.25 (±4%) for gold.

  15. Nitrate and nitrite content in bottled beverages by ion-pair high-performance liquid chromatography.

    Science.gov (United States)

    Song, Yang; Deng, Gui-Fang; Xu, Xiang-Rong; Chen, Yong-Hong; Chen, Feng; Li, Hua-Bin

    2013-01-01

    Nitrate and nitrite levels in six types of beverages--total of 292 individual samples from 73 brands (four bottles each)--from Guangzhou city in China were evaluated by ion-pair high-performance liquid chromatography. All samples contained nitrate. Nitrate and nitrite ranges were 0.43-46.08 and safety of Chinese bottled beverages.

  16. Analysis of wax esters by silver-ion high-performance liquid chromatography-tandem mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Vrkoslav, Vladimír; Urbanová, Klára; Háková, Martina; Cvačka, Josef

    2013-01-01

    Roč. 1302, Aug 9 (2013), s. 105-110 ISSN 0021-9673 R&D Projects: GA ČR GA203/09/0139 Institutional support: RVO:61388963 Keywords : jojoba * human hair * wax esters * mass spectrometry * silver-ion liquid chromatography * long-chain esters Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.258, year: 2013

  17. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms.

    Science.gov (United States)

    Bansod, BabanKumar; Kumar, Tejinder; Thakur, Ritula; Rana, Shakshi; Singh, Inderbir

    2017-08-15

    Heavy metal ions are non-biodegradable and contaminate most of the natural resources occurring in the environment including water. Some of the heavy metals including Lead (Pb), Mercury (Hg), Arsenic (As), Chromium (Cr) and Cadmium (Cd) are considered to be highly toxic and hazardous to human health even at trace levels. This leads to the requirement of fast, accurate and reliable techniques for the detection of heavy metal ions. This review presents various electrochemical detection techniques for heavy metal ions those are user friendly, low cost, provides on-site and real time monitoring as compared to other spectroscopic and optical techniques. The categorization of different electrochemical techniques is done on the basis of different types of detection signals generated due to presence of heavy metal ions in the solution matrix like current, potential, conductivity, electrochemical impedance, and electrochemiluminescence. Also, the recent trends in electrochemical detection of heavy metal ions with various types of sensing platforms including metals, metal films, metal oxides, nanomaterials, carbon nano tubes, polymers, microspheres and biomaterials have been evoked. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Consequences of transition from liquid chromatography to supercritical fluid chromatography on the overall performance of a chiral zwitterionic ion-exchanger.

    Science.gov (United States)

    Wolrab, Denise; Frühauf, Peter; Gerner, Christopher; Kohout, Michal; Lindner, Wolfgang

    2017-09-29

    Major differences in the chromatographic performance of a zwitterion ion-exchange type (ZWIX) chiral stationary phase (CSP) in supercritical fluid chromatography (SFC) and high-performance liquid chromatography (HPLC) have been observed. To explain these differences, transition from HPLC to SFC conditions has been performed. The amount of a protic organic modifier in supercritical carbon dioxide (scCO 2 ) was stepwise increased and the effect of this change studied using acidic, basic and ampholytic analytes. At the same time, the effect of various basic additives to the mobile phase and transient acidic buffer species, formed by the reaction of scCO 2 with the organic modifier and additives, was assessed. Evidence is provided that a transient acid together with the intrinsic counter-ions present in the ZWIX selector structure drive the elution of analytes even when no buffer is employed. We show that the tested analytes can be enantioseparated under both SFC and HPLC conditions; the best conditions for the resolution of ampholytes are in the so-called enhanced-fluidity mobile phase region. As a consequence, subcritical fluid and enhanced-fluidity mobile phase regions seem to be chromatographic modes with a high potential for operating ZWIX CSPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Decreased Sensitivity to Changes in the Concentration of Metal Ions as the Basis for the Hyperactivity of DtxR(E175K)

    Energy Technology Data Exchange (ETDEWEB)

    D’Aquino, J. Alejandro; Denninger, Andrew R.; Moulin, Aaron G.; D’Aquino, Katharine E.; Ringe, Dagmar; (Harvard-Med); (Brandeis)

    2010-01-12

    The metal-ion-activated diphtheria toxin repressor (DtxR) is responsible for the regulation of virulence and other genes in Corynebacterium diphtheriae. A single point mutation in DtxR, DtxR(E175K), causes this mutant repressor to have a hyperactive phenotype. Mice infected with Mycobacterium tuberculosis transformed with plasmids carrying this mutant gene show reduced signs of the tuberculosis infection. Corynebacterial DtxR is able to complement mycobacterial IdeR and vice versa. To date, an explanation for the hyperactivity of DtxR(E175K) has remained elusive. In an attempt to address this issue, we have solved the first crystal structure of DtxR(E175K) and characterized this mutant using circular dichroism, isothermal titration calorimetry, and other biochemical techniques. The results show that although DtxR(E175K) and the wild type have similar secondary structures, DtxR(E175K) gains additional thermostability upon activation with metal ions, which may lead to this mutant requiring a lower concentration of metal ions to reach the same levels of thermostability as the wild-type protein. The E175K mutation causes binding site 1 to retain metal ion bound at all times, which can only be removed by incubation with an ion chelator. The crystal structure of DtxR(E175K) shows an empty binding site 2 without evidence of oxidation of Cys102. The association constant for this low-affinity binding site of DtxR(E175K) obtained from calorimetric titration with Ni(II) is K{sub a} = 7.6 {+-} 0.5 x 10{sup 4}, which is very similar to the reported value for the wild-type repressor, K{sub a} = 6.3 x 10{sup 4}. Both the wild type and DtxR(E175K) require the same amount of metal ion to produce a shift in the electrophoretic mobility shift assay, but unlike the wild type, DtxR(E175K) binding to its cognate DNA [tox promoter-operator (toxPO)] does not require metal-ion supplementation in the running buffer. In the timescale of these experiments, the Mn(II)-DtxR(E175K)-toxPO complex

  20. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    Science.gov (United States)

    Kaur, Sukhmanpreet; Kumar, Vijay; Chawla, Mohit; Cavallo, Luigi; Poater, Albert; Upadhyay, Niraj

    2017-07-01

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4±0.05, 7±0.05 and 9±0.05) and three different temperatures (15±0.5°C, 30±0.5°C and 45±0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  1. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    KAUST Repository

    Kaur, Sukhmanpreet

    2017-07-04

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4 ± 0.05, 7 ± 0.05 and 9 ± 0.05) and three different temperatures (15 ± 0.5°C, 30 ± 0.5°C and 45 ± 0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  2. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    KAUST Repository

    Kaur, Sukhmanpreet; Kumar, Vijay; Chawla, Mohit; Cavallo, Luigi; Poater, Albert; Upadhyay, Niraj

    2017-01-01

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4 ± 0.05, 7 ± 0.05 and 9 ± 0.05) and three different temperatures (15 ± 0.5°C, 30 ± 0.5°C and 45 ± 0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  3. Unified superresolution experiments and stochastic theory provide mechanistic insight into protein ion-exchange adsorptive separations.

    Science.gov (United States)

    Kisley, Lydia; Chen, Jixin; Mansur, Andrea P; Shuang, Bo; Kourentzi, Katerina; Poongavanam, Mohan-Vivekanandan; Chen, Wen-Hsiang; Dhamane, Sagar; Willson, Richard C; Landes, Christy F

    2014-02-11

    Chromatographic protein separations, immunoassays, and biosensing all typically involve the adsorption of proteins to surfaces decorated with charged, hydrophobic, or affinity ligands. Despite increasingly widespread use throughout the pharmaceutical industry, mechanistic detail about the interactions of proteins with individual chromatographic adsorbent sites is available only via inference from ensemble measurements such as binding isotherms, calorimetry, and chromatography. In this work, we present the direct superresolution mapping and kinetic characterization of functional sites on ion-exchange ligands based on agarose, a support matrix routinely used in protein chromatography. By quantifying the interactions of single proteins with individual charged ligands, we demonstrate that clusters of charges are necessary to create detectable adsorption sites and that even chemically identical ligands create adsorption sites of varying kinetic properties that depend on steric availability at the interface. Additionally, we relate experimental results to the stochastic theory of chromatography. Simulated elution profiles calculated from the molecular-scale data suggest that, if it were possible to engineer uniform optimal interactions into ion-exchange systems, separation efficiencies could be improved by as much as a factor of five by deliberately exploiting clustered interactions that currently dominate the ion-exchange process only accidentally.

  4. Polymer Catalysts Imprinted with Metal Ions as Biomimics of Metalloenzymes

    Directory of Open Access Journals (Sweden)

    Joanna Czulak

    2013-01-01

    Full Text Available This work presents the preparation and properties of molecularly imprinted polymers (MIPs with catalytic centers that mimic the active sites of metalloenzymes. The MIP synthesis was based on suspension polymerization of functional monomers (4-vinylpyridine and acrylonitrile with trimethylolpropane trimethacrylate as a crosslinker in the presence of transition metal ions and 4-methoxybenzyl alcohol as a template. Four metal ions have been chosen for imprinting from among the microelements that are the most essential in the native enzymes: Cu2+, Co2+, Mn2+, and Zn2+. To prepare catalysts, the required loading of metal ions was obtained during sorption process. The catalysts imprinted with Cu2+, Co2+, and Zn2+ were successfully used for hydroquinone oxidation in the presence of hydrogen peroxide. The Mn2+-imprinted catalyst showed no activity due to the insufficient metal loading. Cu2+ MIP showed the highest efficiency. In case of Cu- and Co-MIP catalysts, their activity was additionally increased by the use of surface imprinting technique.

  5. Separation of alkali metals by extraction chromatography using polyethers

    International Nuclear Information System (INIS)

    Smulek, W.; Lada, W.

    1977-01-01

    Separation of alkali metals by means of acyclic polyether 1,13 bis(8-chinolinyl)1, 4, 7, 10, 13 pentaoxatridecane (CPOD) and cyclic polyether dibenzo-18-crown-6 (DBC) using extraction chromatography is described. Solutions of NaSCN were used as eluting agents. The separation ability of the polyether columns strongly depends on pH and temperature. The following radioisotopes were used in the experiments: Na-22, K-42, Rb-86 and Cs-137. The radionuclide purity of the tracers was examined by γ-ray spectrometry using a Ge(Li) detector and a multichannel γ-ray spectrometer. (T.I.)

  6. Electrochemical membrane reactor: In situ separation and recovery of chromic acid and metal ions

    International Nuclear Information System (INIS)

    Khan, Jeeshan; Tripathi, Bijay P.; Saxena, Arunima; Shahi, Vinod K.

    2007-01-01

    An electrochemical membrane reactor with three compartments (anolyte, catholyte and central compartment) based on in-house-prepared cation- and anion-exchange membrane was developed to achieve in situ separation and recovery of chromic acid and metal ions. The physicochemical and electrochemical properties of the ion-exchange membrane under standard operating conditions reveal its suitability for the proposed reactor. Experiments using synthetic solutions of chromate and dichromate of different concentrations were carried out to study the feasibility of the process. Electrochemical reactions occurring at the cathode and anode under operating conditions are proposed. It was observed that metal ion migrated through the cation-exchange membrane from central compartment to catholyte and OH - formation at the cathode leads to the formation of metal hydroxide. Simultaneously, chromate ion migrated through the anion-exchange membrane from central compartment to the anolyte and formed chromic acid by combining H + produced their by oxidative water splitting. Thus a continuous decay in the concentration of chromate and metal ion was observed in the central compartment, which was recovered separately in the anolyte and catholyte, respectively, from their mixed solution. This process was completely optimized in terms of operating conditions such as initial concentration of chromate and metal ions in the central compartment, the applied cell voltage, chromate and metal ion flux, recovery percentage, energy consumption, and current efficiency. It was concluded that chromic acid and metal ions can be recovered efficiently from their mixed solution leaving behind the uncharged organics and can be reused as their corresponding acid and base apart from the purifying water for further applications

  7. An Inverse Relationship Links Temperature and Substrate Apparent Affinity in the Ion-Coupled Cotransporters rGAT1 and KAAT1

    Directory of Open Access Journals (Sweden)

    Antonio Peres

    2012-11-01

    Full Text Available The effects of temperature on the operation of two ion-coupled cotransporters of the SLC6A family, namely rat GAT1 (SLC6A1 and KAAT1 (SLC6A19 from Manduca sexta, have been studied by electrophysiological means in Xenopus laevis oocytes expressing these proteins. The maximal transport-associated current (Imax and the apparent substrate affinity (K05 were measured. In addition to the expected increase in transport rate (Q10 = 3–6, both transporters showed greater K05 values (i.e., a decrease in apparent affinity at higher temperatures. The transport efficiency, estimated as Imax/K05, increased at negative potentials in both transporters, but did not show statistically significant differences with temperature. The observation that the apparent substrate affinity is inversely related to the transport rate suggests a kinetic regulation of this parameter. Furthermore, the present results indicate that the affinities estimated at room temperature for mammalian cotransporters may not be simply extrapolated to their physiological operating conditions.

  8. LC-IMS-MS Feature Finder: detecting multidimensional liquid chromatography, ion mobility and mass spectrometry features in complex datasets.

    Science.gov (United States)

    Crowell, Kevin L; Slysz, Gordon W; Baker, Erin S; LaMarche, Brian L; Monroe, Matthew E; Ibrahim, Yehia M; Payne, Samuel H; Anderson, Gordon A; Smith, Richard D

    2013-11-01

    The addition of ion mobility spectrometry to liquid chromatography-mass spectrometry experiments requires new, or updated, software tools to facilitate data processing. We introduce a command line software application LC-IMS-MS Feature Finder that searches for molecular ion signatures in multidimensional liquid chromatography-ion mobility spectrometry-mass spectrometry (LC-IMS-MS) data by clustering deisotoped peaks with similar monoisotopic mass, charge state, LC elution time and ion mobility drift time values. The software application includes an algorithm for detecting and quantifying co-eluting chemical species, including species that exist in multiple conformations that may have been separated in the IMS dimension. LC-IMS-MS Feature Finder is available as a command-line tool for download at http://omics.pnl.gov/software/LC-IMS-MS_Feature_Finder.php. The Microsoft.NET Framework 4.0 is required to run the software. All other dependencies are included with the software package. Usage of this software is limited to non-profit research to use (see README). rds@pnnl.gov. Supplementary data are available at Bioinformatics online.

  9. New inorganic (an)ion exchangers with a higher affinity for arsenate and a competitive removal capacity towards fluoride, bromate, bromide, selenate, selenite, arsenite and borate

    KAUST Repository

    Chubar, Natalia

    2011-12-01

    Highly selective materials and effective technologies are needed to meet the increasingly stronger drinking water standards for targeted ionic species. Inorganic ion exchangers based on individual and mixed-metal hydrous oxides (or mixed adsorbents that contain inorganic ion exchangers in their composition) are adsorptive materials that are capable of lowering the concentrations of anionic contaminants, such as H 2AsO 4 -, H 3AsO 3, F -, Br -, BrO 3 -, HSeO 4 -, HSeO 3 - and H 3BO 3, to 10 μg/L or less. To achieve a higher selectivity towards arsenate, a new ion exchanger based on Mg-Al hydrous oxides was developed by a novel, cost-effective and environmentally friendly synthesis method via a non-traditional (alkoxide-free) sol-gel approach. The exceptional adsorptive capacity of the Mg-Al hydrous oxides towards H 2AsO 4 - (up to 200 mg[As]/gdw) is due to the high affinity of this sorbent towards arsenate (steep equilibrium isotherms) and its fast adsorption kinetics. Because of the mesoporous (as determined by N 2 adsorption and SEM) and layered (as determined by XRD and FTIR) structure of the ion-exchange material as well as the abundance of anion exchange sites (as determined by XPS and potentiometric titration) on its surface the material demonstrated very competitive (or very high) removal capacity towards other targeted anions, including fluoride, bromide, bromate, selenate, selenite, and borate. © 2011 IWA Publishing.

  10. Transition metal ions mediated tyrosine based short peptide amphiphile nanostructures inhibit bacterial growth.

    Science.gov (United States)

    Joshi, Khashti Ballabh; Singh, Ramesh; Mishra, Narendra Kumar; Kumar, Vikas; Vinayak, Vandana

    2018-05-17

    We report the design and synthesis of biocompatible small peptide based molecule for the controlled and targeted delivery of the encapsulated bioactive metal ions via transforming their internal nanostructures. Tyrosine based short peptide amphiphile (sPA) was synthesized which self-assembled into β-sheet like secondary structures. The self assembly of the designed sPA was modulated by using different bioactive transition metal ions which is confirmed by spectroscopic and microscopic techniques. These bioactive metal ions conjugated sPA hybrid structures are further used to develop antibacterial materials. It is due to the excellent antibacterial activity of zinc ions that the growth of clinically relevant bacteria such as E. Coli was inhibited in the presence of zinc-sPA conjugate. The bacterial test demonstrated that owing to high biocompatibility with bacterial cell, the designed sPA worked as metal ions delivery agent and therefore it can show great potential in locally addressing bacterial infections. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of transition metal ions on the conductivity and stability of stabilized zirconia

    DEFF Research Database (Denmark)

    Lybye, D.; Mogensen, Mogens Bjerg

    2007-01-01

    the effect of co-doping with smaller transition metal ions such as Ti-, Fe- and Mn-ions. Many of the ionic radii of the transition metal ions are too small compared to the host lattice ionic radius of zirconium. Here we explore the effect of a) the small ionic radii compared to the large ionic radii...

  12. Spectrophotometric determination of some metal ions using hydrazones

    International Nuclear Information System (INIS)

    Mohammed, M. S.

    2000-05-01

    In this research many starting materials were prepared, like methyl salicylate and salicylic acid hydrazide from which different derivatives of hydrazones were synthesized by coupling with carbonyl compounds like benzil monoxime and benzil mono hydrazone which are prepared and others like salicylaldehyde and benzoin. The hydrazones that were synthesized are salicylaldehyde salicylic acid hydrazone, benzoin salicylic acid hydrazone, benzil mono hydrazone salicylic acid hydrazone and benzil monoxime salicylic acid hydrazone. These reagents were determined by different methods, IR spectrophotometric determination, the nitrogen content method and melting point determination. These hydrazones act as ligands for determination of some metal ions by making different coloured complexes that were prepared for eight hydrazones with eight metal ions U (VI), Fe (II), Fe (III), Co (II), V (II), Mo (VI), Ni (II) and Cu (II). These complexes were determined by ultraviolet and visible spectrophotometer (UV/VIS) to detect their absorbance and wavelengths (λ max). The two hydrazones salicylaldehyde salicylic acid-hydrazone and benzoin salicylic acid hydrazone, were selected for determination of five metal ions (Fe (II), Fe (III), U (VI), Ni (II) and Cu (II)), using two micelles sodium n-dodecyl sulphate and pyridinium hexa decyl bromide mono hydrate. Their absorbance and wavelengths were detected using UV/VIS spectrophotometer. (Author)

  13. Elucidating differences in metal absorption efficiencies between terrestrial soft-bodied and aquatic species

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Veltman, Karin; Hauschild, Michael Zwicky

    2014-01-01

    species, with the covalent index being the best predictor. It is hypothesized that metal absorption by soft-bodied species in soil systems is influenced by the rate of metal supply to the membrane, while in aquatic systems accumulation is solely determined by metal affinity to membrane bound transport...... proteins. Our results imply that developing predictive terrestrial bioaccumulation and toxicity models for metals must consider metal interactions with soil solids. This may include desorption of a cation bound to soil solids through ion exchange, or metal release from soil surfaces involving breaking...

  14. Insights into chromatographic separation using core-shell metal-organic frameworks: Size exclusion and polarity effects.

    Science.gov (United States)

    Qin, Weiwei; Silvestre, Martin E; Kirschhöfer, Frank; Brenner-Weiss, Gerald; Franzreb, Matthias

    2015-09-11

    Porous metal-organic frameworks (MOFs) [Cu3(BTC)2(H2O)3]n (also known as HKUST-1; BTC, benzene-1,3,5-tricarboxylic acid) were synthesized as homogeneous shell onto carboxyl functionalized magnetic microparticles through a liquid phase epitaxy (LPE) process. The as-synthesized core-shell HKUST-1 magnetic microparticles composites were characterized by XRD and SEM, and used as stationary phase in high performance liquid chromatography (HPLC). The effects of the unique properties of MOFs onto the chromatographic performance are demonstrated by the experiments. First, remarkable separation of pyridine and bipyridine is achieved, although both molecules show a strong interaction between the Cu-ions in HKUST-1 and the nitrogen atoms in their heterocyles. The difference can be explained due to size exclusion of bipyridine from the well defined pore structure of crystalline HKUST-1. Second, the enormous variety of possible interactions of sample molecules with the metal ions and linkers within MOFs allows for specifically tailored solid phases for challenging separation tasks. For example, baseline separation of three chloroaniline (CLA) isomers tested can be achieved without the need for gradient elution modes. Along with the experimental HPLC runs, in-depth modelling with a recently developed chromatography modelling software (ChromX) was applied and proofs the software to be a powerful tool for exploring the separation potential of thin MOF films. The pore diffusivity of pyridine and CLA isomers within HKUST-1 are found to be around 2.3×10(-15)m(2)s(-1). While the affinity of HKUST-1 to the tested molecules strongly differs, the maximum capacities are in the same range, with 0.37molL(-1) for pyridine and 0.23molL(-1) for CLA isomers, corresponding to 4.0 and 2.5 molecules per MOF unit cell, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Ouabain affinity determining residues lie close to the Na/K pump ion pathway.

    Science.gov (United States)

    Artigas, Pablo; Gadsby, David C

    2006-08-15

    The Na/K pump establishes essential ion concentration gradients across animal cell membranes. Cardiotonic steroids, such as ouabain, are specific inhibitors of the Na/K pump. We exploited the marine toxin, palytoxin, to probe both the ion translocation pathway through the Na/K pump and the site of its interaction with ouabain. Palytoxin uncouples the pump's gates, which normally open strictly alternately, thus allowing both gates to sometimes be open, so transforming the pump into an ion channel. Palytoxin therefore permits electrophysiological analysis of even a single Na/K pump. We used outside-out patch recording of Xenopus alpha1beta3 Na/K pumps, which were made ouabain-resistant by point mutation, after expressing them in Xenopus oocytes. Endogenous, ouabain-sensitive, Xenopus alpha1beta3 Na/K pumps were silenced by continuous exposure to ouabain. We found that side-chain charge of two residues at either end of the alpha subunit's first extracellular loop, known to make a major contribution to ouabain affinity, strongly influenced conductance of single palytoxin-bound pump-channels by an electrostatic mechanism. The effects were mimicked by modification of cysteines introduced at those two positions with variously charged methanethiosulfonate reagents. The consequences of these modifications demonstrate that both residues lie in a wide vestibule near the mouth of the pump's ion pathway. Bound ouabain protects the site with the strongest influence on conductance from methanethiosulfonate modification, while leaving the site with the weaker influence unprotected. The results suggest a method for mapping the footprint of bound cardiotonic steroid on the extracellular surface of the Na/K pump.

  16. Metallic Sn-Based Anode Materials: Application in High-Performance Lithium-Ion and Sodium-Ion Batteries.

    Science.gov (United States)

    Ying, Hangjun; Han, Wei-Qiang

    2017-11-01

    With the fast-growing demand for green and safe energy sources, rechargeable ion batteries have gradually occupied the major current market of energy storage devices due to their advantages of high capacities, long cycling life, superior rate ability, and so on. Metallic Sn-based anodes are perceived as one of the most promising alternatives to the conventional graphite anode and have attracted great attention due to the high theoretical capacities of Sn in both lithium-ion batteries (LIBs) (994 mA h g -1 ) and sodium-ion batteries (847 mA h g -1 ). Though Sony has used Sn-Co-C nanocomposites as its commercial LIB anodes, to develop even better batteries using metallic Sn-based anodes there are still two main obstacles that must be overcome: poor cycling stability and low coulombic efficiency. In this review, the latest and most outstanding developments in metallic Sn-based anodes for LIBs and SIBs are summarized. And it covers the modification strategies including size control, alloying, and structure design to effectually improve the electrochemical properties. The superiorities and limitations are analyzed and discussed, aiming to provide an in-depth understanding of the theoretical works and practical developments of metallic Sn-based anode materials.

  17. Ion implantation enhanced metal-Si-metal photodetectors

    Science.gov (United States)

    Sharma, A. K.; Scott, K. A. M.; Brueck, S. R. J.; Zolper, J. C.; Myers, D. R.

    1994-05-01

    The quantum efficiency and frequency response of simple Ni-Si-Ni metal-semiconductor-metal (MSM) photodetectors at long wavelengths are significantly enhanced with a simple, ion-implantation step to create a highly absorbing region approx. 1 micron below the Si surface. The internal quantum efficiency is improved by a factor of approx. 3 at 860 nm (to 64%) and a full factor of ten at 1.06 microns (to 23%) as compared with otherwise identical unimplanted devices. Dark currents are only slightly affected by the implantation process and are as low as 630 pA for a 4.5-micron gap device at 10-V bias. Dramatic improvement in the impulse response is observed, 100 ps vs. 600 ps, also at 10-V bias and 4.5-micron gap, due to the elimination of carrier diffusion tails in the implanted devices. Due to its planar structure, this device is fully VLSI compatible. Potential applications include optical interconnections for local area networks and multi-chip modules.

  18. Novel Glucose-1-Phosphatase with High Phytase Activity and Unusual Metal Ion Activation from Soil Bacterium Pantoea sp. Strain 3.5.1.

    Science.gov (United States)

    Suleimanova, Aliya D; Beinhauer, Astrid; Valeeva, Liia R; Chastukhina, Inna B; Balaban, Nelly P; Shakirov, Eugene V; Greiner, Ralf; Sharipova, Margarita R

    2015-10-01

    Phosphorus is an important macronutrient, but its availability in soil is limited. Many soil microorganisms improve the bioavailability of phosphate by releasing it from various organic compounds, including phytate. To investigate the diversity of phytate-hydrolyzing bacteria in soil, we sampled soils of various ecological habitats, including forest, private homesteads, large agricultural complexes, and urban landscapes. Bacterial isolate Pantoea sp. strain 3.5.1 with the highest level of phytase activity was isolated from forest soil and investigated further. The Pantoea sp. 3.5.1 agpP gene encoding a novel glucose-1-phosphatase with high phytase activity was identified, and the corresponding protein was purified to apparent homogeneity, sequenced by mass spectroscopy, and biochemically characterized. The AgpP enzyme exhibits maximum activity and stability at pH 4.5 and at 37°C. The enzyme belongs to a group of histidine acid phosphatases and has the lowest Km values toward phytate, glucose-6-phosphate, and glucose-1-phosphate. Unexpectedly, stimulation of enzymatic activity by several divalent metal ions was observed for the AgpP enzyme. High-performance liquid chromatography (HPLC) and high-performance ion chromatography (HPIC) analyses of phytate hydrolysis products identify dl-myo-inositol 1,2,4,5,6-pentakisphosphate as the final product of the reaction, indicating that the Pantoea sp. AgpP glucose-1-phosphatase can be classified as a 3-phytase. The identification of the Pantoea sp. AgpP phytase and its unusual regulation by metal ions highlight the remarkable diversity of phosphorus metabolism regulation in soil bacteria. Furthermore, our data indicate that natural forest soils harbor rich reservoirs of novel phytate-hydrolyzing enzymes with unique biochemical features. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Hydrometallurgical recovery of metal values by the use of ion exchange

    International Nuclear Information System (INIS)

    Higgins, I.R.

    1982-01-01

    This paper presented what had been accomplished to date using Packed Bed Continuous Countercurrent Ion Exchange (CCIX) and proposed plans for more comprehensive systems that include many soluble metals of value. Frontiers of hydrometallurgy cannot be breached until advantage is taken of a multitude of metal ions in solution. The future utilization of hydrometallurgical methodology depends on the success of extraction and separation unit operations and being accepted by mining companies. Examples are presented of CCIX projects in operation and pilot plants tested as proof of the special attractive features of the Chem-Seps CCIX system. An overall plan was presented for processing of sulfide type mineralization, with emphasis on making an effort to get ''complete'' dissolution of all metals of value. Continuous Countercurrent Ion Exchange plays a vital role in hydrometallurical processing because of the need to handle prodigious volumes of solution, tremendous tonnages of salts, and to compensate for poor ion exchange equilibrium. 11 figures. (DP)

  20. 1/f Fluctuations in ion implanted metal semiconductor contacts

    International Nuclear Information System (INIS)

    Stojanovic, M.; Marjanovic, N.; Radojevic, B.

    1998-01-01

    Ion implanted Metal-Semiconductor contacts is the most widely used structures in electrical devices. Weather complete devices or some parts are of interest, properties of metal-semiconductor junction strongly influence the quality and external characteristic of electronic devices. That is the reason why special attention is paid to the investigation of factor (noise for example) that could influence given junction. Low frequency 1/f fluctuations (noise) are constantly present in metal-semiconductor junction, so measurement of their level as well as the dependence on factors such as temperature must be taken into account in detailed analysis of electrical characteristics of devices such as contact, nuclear detector with surface barrier etc. In this paper we present the results of low frequency noise level measurements on TiN-Ti-Si structures produced by As + ion implantation. (author)