WorldWideScience

Sample records for metal-induced toxic effects

  1. Effect of Pre-Gamma Irradiation Induction of Metallothionein on potentially Radiation-Induced Toxic Heavy Metals Ions In Rats

    International Nuclear Information System (INIS)

    El-Shamy, El.

    2004-01-01

    Metallothionein, which is a cystein-rich metal binding protein, can act as free radical scavenger and involved in resistance to heavy metal toxicity. The induction of synthesis has been shown to protect organs from the toxic effect of radiation. This study aimed to stud the effects of pre-irradiation induction of by heavy metal (Zinc sulfate) on potentially gamma radiation-induced toxic heavy metals ions in rate liver and kidney tissues. Forty eight albino rats were included in this study. They were divided into eight groups each of six animals. Two control groups injected with saline. Two Zinc sulfate-treated groups injected with zinc sulfate, two Irradiated groups exposed to a single dose level (7 Gy) of whole body gamma irradiation and two combined zinc sulfate and irradiation groups injected with zinc sulfate and exposed to whole body gamma irradiation (at dose 7 Gy). Animals of all groups were sacrificed 24 and 48 hours after last either zinc sulfate dose or irradiation. Samples of liver and kidney's tissues were subjected to the following investigations: Estimation of tissue heavy Metals (Zinc, Iron and Copper), and tissue (MT). After irradiation, liver and kidney MT were increased approximately 10-fold and 2-fold respectively after irradiation. Accumulation of zinc and iron in both liver and kidney tissues were detected, while accumulation of copper only in the liver tissues. The pre-irradiation treatment with zinc sulfate (Zn SO4) resulted in highly significant decrease in zinc, iron, and copper levels in both liver and kidney tissues in comparison with irradiation groups. Conclusion, it can be supposed that pre-irradiation injection of ZnSO 4 exerted protective effect against the potentially radiation-induced toxic heavy metals ions through MT induction

  2. Toxicity effects on metal sequestration by microbially-induced carbonate precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Mugwar, Ahmed J. [Cardiff School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); College of Engineering, Al-Muthanna University, Samawah (Iraq); Harbottle, Michael J., E-mail: harbottlem@cardiff.ac.uk [Cardiff School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom)

    2016-08-15

    Highlights: • Minimum inhibitory concentrations (MIC) are determined for S. pasteurii with a range of metals. • Zinc & cadmium bioprecipitation is strongly linked to microbial carbonate generation. • Lead & copper carbonate bioprecipitation is limited & abiotic processes may be significant. • Bioprecipitation allows survival at & remediation of higher metal concentrations than expected. - Abstract: Biological precipitation of metallic contaminants has been explored as a remedial technology for contaminated groundwater systems. However, metal toxicity and availability limit the activity and remedial potential of bacteria. We report the ability of a bacterium, Sporosarcina pasteurii, to remove metals in aerobic aqueous systems through carbonate formation. Its ability to survive and grow in increasingly concentrated aqueous solutions of zinc, cadmium, lead and copper is explored, with and without a metal precipitation mechanism. In the presence of metal ions alone, bacterial growth was inhibited at a range of concentrations depending on the metal. Microbial activity in a urea-amended medium caused carbonate ion generation and pH elevation, providing conditions suitable for calcium carbonate bioprecipitation, and consequent removal of metal ions. Elevation of pH and calcium precipitation are shown to be strongly linked to removal of zinc and cadmium, but only partially linked to removal of lead and copper. The dependence of these effects on interactions between the respective metal and precipitated calcium carbonate are discussed. Finally, it is shown that the bacterium operates at higher metal concentrations in the presence of the urea-amended medium, suggesting that the metal removal mechanism offers a defence against metal toxicity.

  3. Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Cobbina, Samuel J.; Chen, Yao [School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu (China); Zhou, Zhaoxiang; Wu, Xueshan; Zhao, Ting [School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 (China); Zhang, Zhen [School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu (China); Feng, Weiwei; Wang, Wei [School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu (China); Li, Qian [School of Pharmacy, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu (China); Wu, Xiangyang, E-mail: wuxy@ujs.edu.cn [School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu (China); Yang, Liuqing, E-mail: yangliuqing@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 (China)

    2015-08-30

    Highlights: • Low dose single and mixtures of toxic metals had adverse effect on mice. • Metal mixtures exhibited higher toxicities compared to individual metals. • Mixtures of low dose Pb + Hg + Cd induced neuronal degeneration in brain of mice. • Exposure to Pb + Hg + As + Cd showed renal tubular necrosis in kidney. - Abstract: Humans are exposed to a cocktail of heavy metal toxicants in the environment. Though heavy metals are deleterious, there is a paucity of information on toxicity of low dose mixtures. In this study, lead (Pb) (0.01 mg/L), mercury (Hg) (0.001 mg/L), cadmium (Cd) (0.005 mg/L) and arsenic (As) (0.01 mg/L) were administered individually and as mixtures to 10 groups of 40 three-week old mice (20 males and 20 females), for 120 days. The study established that low dose exposures induced toxicity to the brain, liver, and kidney of mice. Metal mixtures showed higher toxicities compared to individual metals, as exposure to low dose Pb + Hg + Cd reduced brain weight and induced structural lesions, such as neuronal degeneration in 30-days. Pb + Hg + Cd and Pb + Hg + As + Cd exposure induced hepatocellular injury to mice evidenced by decreased antioxidant activities with marginal increases in MDA. These were accentuated by increases in ALT, AST and ALP. Interactions in metal mixtures were basically synergistic in nature and exposure to Pb + Hg + As + Cd induced renal tubular necrosis in kidneys of mice. This study underlines the importance of elucidating the toxicity of low dose metal mixtures so as to protect public health.

  4. Effect of stress at dosing on organophosphate and heavy metal toxicity

    International Nuclear Information System (INIS)

    Jortner, Bernard S.

    2008-01-01

    This paper reviews recent studies assessing the effect of well-defined, severe, transient stress at dosing on two classical models of toxicity. These are the acute (anticholinesterase) toxicity seen following exposure to the organophosphate insecticide chlorpyrifos, and the nephrotoxicity elicited by the heavy metal depleted uranium, in rats. Stress was induced by periods of restraint and forced swimming in days to weeks preceding toxicant exposure. Forced swimming was far more stressful, as measured by marked, if transient, elevation of plasma corticosterone. This form of stress was administered immediately prior to administration of chlorpyrifos or depleted uranium. Chlorpyrifos (single 60 mg/kg subcutaneously) elicited marked inhibition of brain acetylcholinesterase 4-day post-dosing. Depleted uranium (single intramuscular doses of 0.1, 0.3 or 1.0 mg/kg uranium) elicited dose-dependent increase in kidney concentration of the metal, with associated injury to proximal tubular epithelium and increases in serum blood urea nitrogen and creatinine during the 30-day post-dosing period. Stress at dosing had no effect on these toxicologic endpoints

  5. Cytoprotective effects of dietary flavonoids against cadmium-induced toxicity.

    Science.gov (United States)

    Li, Xia; Jiang, Xinwei; Sun, Jianxia; Zhu, Cuijuan; Li, Xiaoling; Tian, Lingmin; Liu, Liu; Bai, Weibin

    2017-06-01

    Cadmium (Cd) damages the liver, kidney, bones, reproductive system, and other organs. Flavonoids, such as anthocyanins and flavonols, which are commonly found in plant foods, have shown protective effects against Cd-induced damage. The cytoprotective effects of flavonoids against Cd-induced diseases are mainly attributable to three mechanisms. First, flavonoids clear reactive oxygen species, thereby reducing lipid peroxide production and improving the activity of antioxidation enzymes. Second, flavonoids chelate Cd, thus reducing the accumulation of Cd and altering the levels of other essential metal ions in vivo. Third, flavonoids reduce DNA damage and inhibit apoptosis. In addition, flavonoids were found to inhibit inflammation and fibrosis and improve glycometabolism and the secretion of reproductive hormones. We introduce the daily dosage and absorption rate of flavonoids and then focus on their bioactive effects against Cd-induced toxicity and reveal the underlying metabolic pathway, which provides a basis for further study of the nutritional prevention of Cd-induced injury. In particular, a better understanding is needed of the structure-activity relationship of flavonoids against Cd toxicity, which has not yet been reported. © 2017 New York Academy of Sciences.

  6. Effects of subchronic oral toxic metal exposure on the intestinal microbiota of mice

    Institute of Scientific and Technical Information of China (English)

    Qixiao Zhai; Tianqi Li; Leilei Yu; Yue Xiao; Saisai Feng; Jiangping Wu; Jianxin Zhao; Hao Zhang; Wei Chen

    2017-01-01

    Oral exposure to toxic metals such as cadmium (Cd),lead (Pb),copper (Cu) and aluminum (Al) can induce various adverse health effects in humans and animals.However,the effects of these metals on the gut microbiota have received limited attention.The present study demonstrated that long-term toxic metal exposure altered the intestinal microbiota of mice in a metal-specific and time-dependent manner.Subchronic oral Cu exposure for eight weeks caused a profound decline in gut microbial diversity in mice,whereas no significant changes were observed in groups treated with other metals.Cd exposure significantly increased the relative abundances of organisms from the genera Alistipes and Odoribacter and caused marked decreases in Mollicutes and unclassified Ruminococcaceae.Pb exposure significantly decreased the abundances of eight genera:unclassified and uncultured Ruminococcaceae,unclassified Lachnospiraceae,Ruminiclostridium_9,Rikenellaceae_RC9_gut_group,Oscillibacter,Anaerotruncus and Lachnoclostridium.Cu exposure affected abundances of the genera Alistipes,Bacteroides,Ruminococcaceae_UCG-014,Allobaculum,Mollicutes_RFg_norank,Rikenellaceae_RC9_gut_group,Ruminococcaceae_unclassified and Turicibacter.Al exposure increased the abundance of Odoribacter and decreased that of Anaerotruncus.Exposure to any metal for eight weeks significantly decreased the abundance of Akkermansia.These results provide a new understanding regarding the role of toxic metals in the pathogenesis of intestinal and systemic disorders in the host within the gut microbiota framework.

  7. Studying the effect of CO2-induced acidification on sediment toxicity using acute amphipod toxicity test.

    Science.gov (United States)

    Basallote, M Dolores; De Orte, Manoela R; DelValls, T Ángel; Riba, Inmaculada

    2014-01-01

    Carbon capture and storage is increasingly being considered one of the most efficient approaches to mitigate the increase of CO2 in the atmosphere associated with anthropogenic emissions. However, the environmental effects of potential CO2 leaks remain largely unknown. The amphipod Ampelisca brevicornis was exposed to environmental sediments collected in different areas of the Gulf of Cádiz and subjected to several pH treatments to study the effects of CO2-induced acidification on sediment toxicity. After 10 days of exposure, the results obtained indicated that high lethal effects were associated with the lowest pH treatments, except for the Ría of Huelva sediment test. The mobility of metals from sediment to the overlying seawater was correlated to a pH decrease. The data obtained revealed that CO2-related acidification would lead to lethal effects on amphipods as well as the mobility of metals, which could increase sediment toxicity.

  8. Separations chemistry of toxic metals

    International Nuclear Information System (INIS)

    Smith, P.; Barr, M.; Barrans, R.

    1996-01-01

    Sequestering and removing toxic metal ions from their surroundings is an increasingly active area of research and is gaining importance in light of current environmental contamination problems both within the DOE complex and externally. One method of separating metal ions is to complex them to a molecule (a ligand or chelator) which exhibits specific binding affinity for a toxic metal, even in the presence of other more benign metals. This approach makes use of the sometimes subtle differences between toxic and non-toxic metals resulting from variations in size, charge and shape. For example, toxic metals such as chromium, arsenic, and technetium exist in the environment as oxyanions, negatively charged species with a characteristic tetrahedral shape. Other toxic metals such as actinides and heavy metals are positively charged spheres with specific affinities for particular donor atoms such as oxygen (for actinides) and nitrogen (for heavy metals). In most cases the toxic metals are found in the presence of much larger quantities of less toxic metals such as sodium, calcium and iron. The selectivity of the chelators is critical to the goal of removing the toxic metals from their less toxic counterparts. The approach was to build a ligand framework that complements the unique characteristics of the toxic metal (size, charge and shape) while minimizing interactions with non-toxic metals. The authors have designed ligands exhibiting specificity for the target metals; they have synthesized, characterized and tested these ligands; and they have shown that they exhibit the proposed selectivity and cooperative binding effects

  9. Nanotoxicity: the toxicity research progress of metal and metal-containing nanoparticles.

    Science.gov (United States)

    Ding, Lingling; Liu, Zhidong; Aggrey, Mike Okweesi; Li, Chunhua; Chen, Jing; Tong, Ling

    2015-01-01

    Along with the exuberant development of nanotechnology, a large number of nanoformulations or non materials are successfully applied in the clinics, biomedicine, cosmetics and industry. Despite some unique advantages of nanoformulations, there exist potentially worrying toxic effects, particularly those related to metal and metal-containing nanoparticles (NPs). Although various researches have been conducted to assess the metallic and metal-containing nanoparticles toxic effects, only little is known about the toxicity expressive types and evaluation, reasons and mechanisms, influencing factors and research methods of metal and metal-containing nanotoxicity. Therefore, it is of importance to acquire a better understanding of metal and metal-containing nanoparticles toxicity for medical application. This review presents a summary on the metal and metal-containing nanoparticles toxicity research progress consulting relevant literature.

  10. Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles.

    Science.gov (United States)

    Sarkar, Abhijit; Ghosh, Manoranjan; Sil, Parames Chandra

    2014-01-01

    Metal and metal oxide nanoparticles are often used as industrial catalysts or to improve product's functional properties. Recent advanced nanotechnology have been expected to be used in various fields, ranging from sensors, environmental remediation to biomedicine, medical biology and imaging, etc. However, the growing use of nanoparticles has led to their release into environment and increased levels of these particles at nearby sites or the surroundings of their manufacturing factories become obvious. The toxicity of metal and metal oxide nanoparticles on humans, animals, and certainly to the environment has become a major concern to our community. However, controversies still remain with respect to the toxic effects and the mechanisms of these nanoparticles. The scientific community now feels that an understanding of the toxic effects is necessary to handle these nanoparticles and their use. A new discipline, named nanotoxicology, has therefore been developed that basically refers to the study of the interactions of nanoparticles with biological systems and also measures the toxicity level related to human health. Nanoparticles usually generate reactive oxygen species to a greater extent than micro-sized particles resulting in increased pro-inflammatory reactions and oxidative stress via intracellular signaling pathways. In this review, we mainly focus on the routes of exposure of some metal and metal oxide nanoparticles and how these nanoparticles affect us or broadly the cells of our organs. We would also like to discuss the responsible mechanism(s) of the nanoparticle-induced reactive oxygen species mediated organ pathophysiology. A brief introduction of the characterization and application of these nanoparticles has also been included in the article.

  11. Disentangling the effects of low pH and metal mixture toxicity on macroinvertebrate diversity

    Science.gov (United States)

    Fornaroli, Riccardo; Ippolito, Alessio; Tolkkinen, Mari J.; Mykrä, Heikki; Muotka, Timo; Balistrieri, Laurie S.; Schmidt, Travis S.

    2018-01-01

    One of the primary goals of biological assessment of streams is to identify which of a suite of chemical stressors is limiting their ecological potential. Elevated metal concentrations in streams are often associated with low pH, yet the effects of these two potentially limiting factors of freshwater biodiversity are rarely considered to interact beyond the effects of pH on metal speciation. Using a dataset from two continents, a biogeochemical model of the toxicity of metal mixtures (Al, Cd, Cu, Pb, Zn) and quantile regression, we addressed the relative importance of both pH and metals as limiting factors for macroinvertebrate communities. Current environmental quality standards for metals proved to be protective of stream macroinvertebrate communities and were used as a starting point to assess metal mixture toxicity. A model of metal mixture toxicity accounting for metal interactions was a better predictor of macroinvertebrate responses than a model considering individual metal toxicity. We showed that the direct limiting effect of pH on richness was of the same magnitude as that of chronic metal toxicity, independent of its influence on the availability and toxicity of metals. By accounting for the direct effect of pH on macroinvertebrate communities, we were able to determine that acidic streams supported less diverse communities than neutral streams even when metals were below no-effect thresholds. Through a multivariate quantile model, we untangled the limiting effect of both pH and metals and predicted the maximum diversity that could be expected at other sites as a function of these variables. This model can be used to identify which of the two stressors is more limiting to the ecological potential of running waters.

  12. Disentangling the effects of low pH and metal mixture toxicity on macroinvertebrate diversity.

    Science.gov (United States)

    Fornaroli, Riccardo; Ippolito, Alessio; Tolkkinen, Mari J; Mykrä, Heikki; Muotka, Timo; Balistrieri, Laurie S; Schmidt, Travis S

    2018-04-01

    One of the primary goals of biological assessment of streams is to identify which of a suite of chemical stressors is limiting their ecological potential. Elevated metal concentrations in streams are often associated with low pH, yet the effects of these two potentially limiting factors of freshwater biodiversity are rarely considered to interact beyond the effects of pH on metal speciation. Using a dataset from two continents, a biogeochemical model of the toxicity of metal mixtures (Al, Cd, Cu, Pb, Zn) and quantile regression, we addressed the relative importance of both pH and metals as limiting factors for macroinvertebrate communities. Current environmental quality standards for metals proved to be protective of stream macroinvertebrate communities and were used as a starting point to assess metal mixture toxicity. A model of metal mixture toxicity accounting for metal interactions was a better predictor of macroinvertebrate responses than a model considering individual metal toxicity. We showed that the direct limiting effect of pH on richness was of the same magnitude as that of chronic metal toxicity, independent of its influence on the availability and toxicity of metals. By accounting for the direct effect of pH on macroinvertebrate communities, we were able to determine that acidic streams supported less diverse communities than neutral streams even when metals were below no-effect thresholds. Through a multivariate quantile model, we untangled the limiting effect of both pH and metals and predicted the maximum diversity that could be expected at other sites as a function of these variables. This model can be used to identify which of the two stressors is more limiting to the ecological potential of running waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Characterizing toxicity of metal-contaminated sediments from mining areas

    International Nuclear Information System (INIS)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    Highlights: • We review methods for testing toxicity of sediments affected by metals. • Toxicity testing provides site-specific assessment of impacts on resident biota. • Goals are to document extent of toxicity and associations with metal exposure. • Need to characterize bioavailability of metals in sediment and pore water. • Toxicity data is basis for guidelines used to predict hazards of metal toxicity. - Abstract: This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate

  14. General aspects of metal toxicity.

    Science.gov (United States)

    Kozlowski, H; Kolkowska, P; Watly, J; Krzywoszynska, K; Potocki, S

    2014-01-01

    This review is focused on the general mechanisms of metal toxicity in humans. The possible and mainly confirmed mechanisms of their action are discussed. The metals are divided into four groups due to their toxic effects. First group comprises of metal ions acting as Fenton reaction catalyst mainly iron and copper. These types of metal ions participate in generation of the reactive oxygen species. Metals such as nickel, cadmium and chromium are considered as carcinogenic agents. Aluminum, lead and tin are involved in neurotoxicity. The representative of the last group is mercury, which may be considered as a generally toxic metal. Fenton reaction is a naturally occurring process producing most active oxygen species, hydroxyl radical: Fe(2+) + He2O2 ↔ Fe(3+) + OH(-) + OH(•) It is able to oxidize most of the biomolecules including DNA, proteins, lipids etc. The effect of toxicity depends on the damage of molecules i.e. production site of the hydroxyl radical. Chromium toxicity depends critically on its oxidation state. The most hazardous seems to be Cr(6+) (chromates) which are one of the strongest inorganic carcinogenic agents. Cr(6+) species act also as oxidative agents damaging among other nucleic acids. Redox inactive Al(3+), Cd(2+) or Hg(2+) may interfere with biology of other metal ions e.g. by occupying metal binding sites in biomolecules. All these aspects will be discussed in the review.

  15. Principles for prevention of toxic effects from metals

    DEFF Research Database (Denmark)

    Landrigan, Philip J.; Kotelchuk, David; Grandjean, Philippe

    2007-01-01

    of the Toxic Effects of Metals Aluminum Antimony Arsenic Barium Beryllium Bismuth Cadmium Chromium Cobalt Copper Gallium and Semiconductor Compounds Germanium Indium Iron Lead Manganese Mercury Molybdenum Nickel Palladium Platinum Selenium Silver Tellurium Thallium Tin Titanium Tungsten Uranium Vanadium Zinc...

  16. Characterizing toxicity of metal-contaminated sediments from mining areas

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate communities can help document causal relationships between metal contamination and biological effects. Total or total-recoverable metal concentrations in sediments are the most common measure of metal contamination in sediments, but metal concentrations in labile sediment fractions (e.g., determined as part of selective sediment extraction protocols) may better represent metal bioavailability. Metals released by the weak-acid extraction

  17. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    Science.gov (United States)

    Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman M.; Cingolani, Roberto; Stellacci, Francesco; Pompa, Pier Paolo

    2014-05-01

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where particles are abundantly internalized - is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a ``lysosome-enhanced Trojan horse effect'' since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments.The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where

  18. Time-response characteristic and potential biomarker identification of heavy metal induced toxicity in zebrafish.

    Science.gov (United States)

    Yin, Jian; Wang, Ai-Ping; Li, Wan-Fang; Shi, Rui; Jin, Hong-Tao; Wei, Jin-Feng

    2018-01-01

    The present work aims to explore the time-response (from 24 h to 96 h) characteristic and identify early potential sensitive biomarkers of copper (Cu) (as copper chloride dihydrate), cadmium (Cd) (as cadmium acetate), lead (Pb) (as lead nitrate) and chromium (Cr) (as potassium dichromate) exposure in adult zebrafish, focusing on reactive oxygen species (ROS), SOD activity, lipid peroxidation and gene expression related to oxidative stress and inflammatory response. Furthermore, the survival rate decreased apparently by a concentration-dependent manner after Cu, Cr, Cd and Pb exposure, and we selected non-lethal concentrations 0.05 mg/L for Cu, 15 mg/L for Cr, 3 mg/L for Cd and 93.75μg/L for Pb to test the effect on the following biological indicators. Under non-lethal concentration, the four heavy metals have no apparent histological change in adult zebrafish gills. Similar trends in ROS production, MDA level and SOD activity were up-regulated by the four heavy metals, while MDA level responded more sensitive to Pb by time-dependent manner than the other three heavy metals. In addition, mRNA levels related to antioxidant system (SOD1, SOD2 and Nrf2) were up-regulated by non-lethal concentration Cu, Cr, Cd and Pb exposure. MDA level and SOD1 gene have a more delayed response to heavy metals. Genes related to immunotoxicity were increased significantly after heavy metals exposure at non-lethal concentrations. TNF-α and IL-1β gene have similar sensibility to the four heavy metals, while IL-8 gene was more responsive to Cr, Cd and Pb exposure at 48 h groups and IFN-γ gene showed more sensitivity to Cu at 48 h groups than the other heavy metals. In conclusion, the present works have suggested that the IFN-γ gene may applied as early sensitive biomarker to identify Cu-induced toxicity, while MDA content and IL-8 gene may use as early sensitive biomarkers for evaluating the risk of Pb exposure. Moreover, IL-8 and IFN-γ gene were more responsive to heavy

  19. Toxic effect of heavy metals on aquatic environment | Baby ...

    African Journals Online (AJOL)

    Toxic effect of heavy metals on aquatic environment. ... International Journal of Biological and Chemical Sciences ... The indiscriminate discharge of industrial effluents, raw sewage wastes and other waste pollute most of the environments and ...

  20. Speciation in Metal Toxicity and Metal-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Douglas M. Templeton

    2015-04-01

    Full Text Available Metallic elements, ions and compounds produce varying degrees of toxicity in organisms with which they come into contact. Metal speciation is critical to understanding these adverse effects; the adjectives “heavy” and “toxic” are not helpful in describing the biological properties of individual elements, but detailed chemical structures are. As a broad generalization, the metallic form of an element is inert, and the ionic salts are the species that show more significant bioavailability. Yet the salts and other chelates of a metal ion can give rise to quite different toxicities, as exemplified by a range of carcinogenic potential for various nickel species. Another important distinction comes when a metallic element is organified, increasing its lipophilicity and hence its ability to penetrate the blood brain barrier, as is seen, for example, with organic mercury and tin species. Some metallic elements, such as gold and platinum, are themselves useful therapeutic agents in some forms, while other species of the same element can be toxic, thus focusing attention on species interconversions in evaluating metal-based drugs. The therapeutic use of metal-chelating agents introduces new species of the target metal in vivo, and this can affect not only its desired detoxification, but also introduce a potential for further mechanisms of toxicity. Examples of therapeutic iron chelator species are discussed in this context, as well as the more recent aspects of development of chelation therapy for uranium exposure.

  1. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    KAUST Repository

    Sabella, Stefania

    2014-04-09

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment-where particles are abundantly internalized-is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a "lysosome-enhanced Trojan horse effect" since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments. The Royal Society of Chemistry 2014.

  2. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    KAUST Repository

    Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman; Cingolani, Roberto; Stellacci, Francesco; Pompa, Pier Paolo

    2014-01-01

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment-where particles are abundantly internalized-is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a "lysosome-enhanced Trojan horse effect" since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments. The Royal Society of Chemistry 2014.

  3. Role of Bioadsorbents in Reducing Toxic Metals

    OpenAIRE

    Mathew, Blessy Baby; Jaishankar, Monisha; Biju, Vinai George; Krishnamurthy Nideghatta Beeregowda

    2016-01-01

    Industrialization and urbanization have led to the release of increasing amounts of heavy metals into the environment. Metal ion contamination of drinking water and waste water is a serious ongoing problem especially with high toxic metals such as lead and cadmium and less toxic metals such as copper and zinc. Several biological materials have attracted many researchers and scientists as they offer both cheap and effective removal of heavy metals from waste water. Therefore it is urgent to st...

  4. Study on the Effect of Heavy metals toxicity according to changing Hardness concentration using D.magna

    Science.gov (United States)

    Chun Sang, H.

    2016-12-01

    n order to determine and prevent the number of ecological effects of heavy metals in the materials, we have to accurately measure the heavy metals present in the water-based protection ecosystems and may determine the effects to humans. Heavy metals occurred in the industrial effluent which is a state in which the monitor, based on the emission standards are made by the Ministry of Environment and managed and waste water contained Copper, Zinc, lead, etc. These heavy metals are able to express the toxic effects only when present in the free-ions in the aqueous condition, which appears differently affected by the degree to hardness change in accordance with the season, precipitation. Generally changing hardness concentration can not precisely evaluate toxic effects of heavy metals in the water system. Anderson announced a study on bioassay for heavy metals from industrial waste water using Daphnia magna(Anderson, 1944, 1948). Breukelman published study the resitivity difference for the mercury Chloride(HgCl2). Braudouin(1974) compared the zooplankton(Daphnia sp.) acute toxicity of the different heavy metals and confirmed the sensitivity. Shcherban(1979) presented for toxicity evaluation results for the heavy metal of the Daphnia magna according to different temperature conditions. In the United States Environmental Protection Agency(EPA) established a standard test method for water fleas, managed and supervised water ecosystems, and announced the adoption of a bioassay standard method. This study was performed to evaluate acute inhibition using the Daphnia magna for the biological effect of heavy metal ions in water-based toxicity in the hardness change. Evaluation methods were conducted in EPA Water Quality process test criteria. TU(Toxic Unit), NOEC (No Observable Effect Concentration), LOEC (Lowest Observable Effect Concentration), EC50 (Median Effective Concentration) was calculated by Toxcalc 5.0 Program. Keywords : D. magna, Hardness, Toxic Unit, Heavy metal

  5. Chemopreventive effect of natural dietary compounds on xenobiotic-induced toxicity

    Directory of Open Access Journals (Sweden)

    Jia-Ching Wu

    2017-01-01

    Full Text Available Contaminants (or pollutants that affect human health have become an important issue, spawning a myriad of studies on how to prevent harmful contaminant-induced effects. Recently, a variety of biological functions of natural dietary compounds derived from consumed foods and plants have been demonstrated in a number of studies. Natural dietary compounds exhibited several beneficial effects for the prevention of disease and the inhibition of chemically-induced carcinogenesis. Contaminant-induced toxicity and carcinogenesis are mostly attributed to the mutagenic activity of reactive metabolites and the disruption of normal biological functions. Therefore, the metabolic regulation of hazardous chemicals is key to reducing contaminant-induced adverse health effects. Moreover, promoting contaminant excretion from the body through Phase I and II metabolizing enzymes is also a useful strategy for reducing contaminant-induced toxicity. This review focuses on summarizing the natural dietary compounds derived from common dietary foods and plants and their possible mechanisms of action in the prevention/suppression of contaminant-induced toxicity.

  6. Heavy metals, PAHs and toxicity in stormwater wet detention ponds

    DEFF Research Database (Denmark)

    Wium-Andersen, Tove; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild

    2011-01-01

    Concentrations of 6 different heavy metals and total Polycyclic Aromatic Hydrocarbons (PAH) were determined in stormwater runoff and in the pond water of two Danish wet detention ponds. The pond water samples were analyzed for toxic effects, using the algae Selenastrum capricornutum as a test...... organism. Stormwater and pond water from a catchment with light industry showed high levels of heavy metals, especially zinc and copper. The pond water showed high toxic effects and copper were found to be the main toxicant. Additionally, a large part of the copper was suspected to be complex bound......, reducing the potential toxicity of the metal. Another catchment (residential) produced stormwater and pond water with moderate concentration of heavy metals. The pond water occasionally showed toxic effects but no correlation between heavy metals and toxicity was identified. PAHs concentrations were...

  7. Investigating Epigenetic Effects of Prenatal Exposure to Toxic Metals in Newborns: Challenges and Benefits.

    Science.gov (United States)

    Nye, Monica D; Fry, Rebecca C; Hoyo, Cathrine; Murphy, Susan K

    2014-01-01

    Increasing evidence suggest that epigenetic alterations can greatly impact human health, and that epigenetic mechanisms (DNA methylation, histone modifications, and microRNAs) may be particularly relevant in responding to environmental toxicant exposure early in life. The epigenome plays a vital role in embryonic development, tissue differentiation and disease development by controlling gene expression. In this review we discuss what is currently known about epigenetic alterations in response to prenatal exposure to inorganic arsenic (iAs) and lead (Pb), focusing specifically on their effects on DNA methylation. We then describe how epigenetic alterations are being studied in newborns as potential biomarkers of in utero environmental toxicant exposure, and the benefits and challenges of this approach. In summary, the studies highlighted herein indicate how epigenetic mechanisms are impacted by early life exposure to iAs and Pb, and the research that is being done to move towards understanding the relationships between toxicant-induced epigenetic alterations and disease development. Although much remains unknown, several groups are working to understand the correlative and causal effects of early life toxic metal exposure on epigenetic changes and how these changes may result in later development of disease.

  8. Toxic effect of metal cation binary mixtures to the seaweed Gracilaria domingensis (Gracilariales, Rhodophyta).

    Science.gov (United States)

    Mendes, Luiz Fernando; Stevani, Cassius Vinicius; Zambotti-Villela, Leonardo; Yokoya, Nair Sumie; Colepicolo, Pio

    2014-01-01

    The macroalga Gracilaria domingensis is an important resource for the food, pharmaceutical, cosmetic, and biotechnology industries. G. domingensis is at a part of the food web foundation, providing nutrients and microelements to upper levels. As seaweed storage metals in the vacuoles, they are considered the main vectors to magnify these toxic elements. This work describes the evaluation of the toxicity of binary mixtures of available metal cations based on the growth rates of G. domingensis over a 48-h exposure. The interactive effects of each binary mixture were determined using a toxic unit (TU) concept that was the sum of the relative contribution of each toxicant and calculated using the ratio between the toxicant concentration and its endpoint. Mixtures of Cd(II)/Cu(II) and Zn(II)/Ca(II) demonstrated to be additive; Cu(II)/Zn(II), Cu(II)/Mg(II), Cu(II)/Ca(II), Zn(II)/Mg(II), and Ca(II)/Mg(II) mixtures were synergistic, and all interactions studied with Cd(II) were antagonistic. Hypotheses that explain the toxicity of binary mixtures at the molecular level are also suggested. These results represent the first effort to characterize the combined effect of available metal cations, based on the TU concept on seaweed in a total controlled medium. The results presented here are invaluable to the understanding of seaweed metal cation toxicity in the marine environment, the mechanism of toxicity action and how the tolerance of the organism.

  9. Metal uptake and acute toxicity in zebrafish: Common mechanisms across multiple metals

    Energy Technology Data Exchange (ETDEWEB)

    Alsop, Derek, E-mail: alsopde@mcmaster.ca [Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1 (Canada); Wood, Chris M. [Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1 (Canada)

    2011-10-15

    All metals tested reduced calcium uptake in zebrafish larvae. However, it was whole body sodium loss that was functionally related to toxicity. The zebrafish larvae acute toxicity assay save time, space and resources. - Abstract: Zebrafish larvae (Danio rerio) were used to examine the mechanisms of action and acute toxicities of metals. Larvae had similar physiological responses and sensitivities to waterborne metals as adults. While cadmium and zinc have previously been shown to reduce Ca{sup 2+} uptake, copper and nickel also decreased Ca{sup 2+} uptake, suggesting that the epithelial transport of all these metals is through Ca{sup 2+} pathways. However, exposure to cadmium, copper or nickel for up to 48 h had little or no effect on total whole body Ca{sup 2+} levels, indicating that the reduction of Ca{sup 2+} uptake is not the acute toxic mechanism of these metals. Instead, mortalities were effectively related to whole body Na{sup +}, which decreased up to 39% after 48 h exposures to different metals around their respective 96 h LC50s. Decreases in whole body K{sup +} were also observed, although they were not as pronounced or frequent as Na{sup +} losses. None of the metals tested inhibited Na{sup +} uptake in zebrafish (Na{sup +} uptake was in fact increased with exposure) and the observed losses of Na{sup +}, K{sup +}, Ca{sup 2+} and Mg{sup 2+} were proportional to the ionic gradients between the plasma and water, indicating diffusive ion loss with metal exposure. This study has shown that there is a common pathway for metal uptake and a common mechanism of acute toxicity across groups of metals in zebrafish. The disruption of ion uptake accompanying metal exposure does not appear to be responsible for the acute toxicity of metals, as has been previously suggested, but rather the toxicity is instead due to total ion loss (predominantly Na{sup +}).

  10. Metal interrelationships in plant nutrition. I. Effects of some metal toxicities on sugar beet, tomato, oat, potato, and Marrowstem kale grown in sand culture

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, E J

    1953-02-01

    Sugar beet, tomato, potato, oat, and kale were grown in sand cultures with additions of several heavy metals including Cr, Mn, Co, Ni, Cu, Zn, Pb, Cd, V, Mo, in equivalent concentrations. In sugar beet Cu/sup + +/, Co/sup + +/, Cd/sup + +/ were usually highly active in causing chlorosis mainly suggestive of iron deficiency. The effect of Cr depended on valency and was greater as CrO/sub 4//sup - -/, Zn/sup + +/, VO/sub 3//sup - -/, Cr/sup + + +/, Mn/sup + +/, and Pb/sup + +/ were less active in order. The visual responses to Co/sup + +/ and Ni/sup + +/ varied greatly with the crop tested. Cu/sup + +/, however, always induced typical iron deficiency. Crop susceptibility also varied greatly. For example, Cu/sup + +/ readily caused chlorosis in beet and also in tomato, and potato, but not in oat and kale. Ni/sup + +/ induced symptoms resembling manganese deficiency in potato and tomato and unusual oblique white and green banding leaves of oat. Zn/sup + +/ induced apparent manganese deficiency in sugar beet and Co/sup + +/ toxicity in tomato initially resembled manganese deficiency. Ni/sup + +/ and Co/sup + +/ were the most toxic of the metals tested.

  11. Pulmonary toxicity after exposure to military-relevant heavy metal tungsten alloy particles

    International Nuclear Information System (INIS)

    Roedel, Erik Q.; Cafasso, Danielle E.; Lee, Karen W.M.; Pierce, Lisa M.

    2012-01-01

    Significant controversy over the environmental and public health impact of depleted uranium use in the Gulf War and the war in the Balkans has prompted the investigation and use of other materials including heavy metal tungsten alloys (HMTAs) as nontoxic alternatives. Interest in the health effects of HMTAs has peaked since the recent discovery that rats intramuscularly implanted with pellets containing 91.1% tungsten/6% nickel/2.9% cobalt rapidly developed aggressive metastatic tumors at the implantation site. Very little is known, however, regarding the cellular and molecular mechanisms associated with the effects of inhalation exposure to HMTAs despite the recognized risk of this route of exposure to military personnel. In the current study military-relevant metal powder mixtures consisting of 92% tungsten/5% nickel/3% cobalt (WNiCo) and 92% tungsten/5% nickel/3% iron (WNiFe), pure metals, or vehicle (saline) were instilled intratracheally in rats. Pulmonary toxicity was assessed by cytologic analysis, lactate dehydrogenase activity, albumin content, and inflammatory cytokine levels in bronchoalveolar lavage fluid 24 h after instillation. The expression of 84 stress and toxicity-related genes was profiled in lung tissue and bronchoalveolar lavage cells using real-time quantitative PCR arrays, and in vitro assays were performed to measure the oxidative burst response and phagocytosis by lung macrophages. Results from this study determined that exposure to WNiCo and WNiFe induces pulmonary inflammation and altered expression of genes associated with oxidative and metabolic stress and toxicity. Inhalation exposure to both HMTAs likely causes lung injury by inducing macrophage activation, neutrophilia, and the generation of toxic oxygen radicals. -- Highlights: ► Intratracheal instillation of W–Ni–Co and W–Ni–Fe induces lung inflammation in rats. ► W–Ni–Co and W–Ni–Fe alter expression of oxidative stress and toxicity genes. ► W

  12. A novel approach for rapidly and cost-effectively assessing toxicity of toxic metals in acidic water using an acidophilic iron-oxidizing biosensor.

    Science.gov (United States)

    Yang, Shih-Hung; Cheng, Kuo-Chih; Liao, Vivian Hsiu-Chuan

    2017-11-01

    Contamination by heavy metals and metalloids is a serious environmental and health concern. Acidic wastewaters are often associated with toxic metals which may enter and spread into agricultural soils. Several biological assays have been developed to detect toxic metals; however, most of them can only detect toxic metals in a neutral pH, not in an acidic environment. In this study, an acidophilic iron-oxidizing bacterium (IOB) Strain Y10 was isolated, characterized, and used to detect toxic metals toxicity in acidic water at pH 2.5. The colorimetric acidophilic IOB biosensor was based on the inhibition of the iron oxidizing ability of Strain Y10, an acidophilic iron-oxidizing bacterium, by metals toxicity. Our results showed that Strain Y10 is acidophilic iron-oxidizing bacterium. Thiobacillus caldus medium (TCM) (pH 2.5) supplied with both S 4 O 6 2- and glucose was the optimum growth medium for Strain Y10. The optimum temperature and pH for the growth of Strain Y10 was 45 °C and pH 2.5, respectively. Our study demonstrates that the color-based acidophilic IOB biosensor can be semi-quantitatively observed by eye or quantitatively measured by spectrometer to detect toxicity from multiple toxic metals at pH 2.5 within 45 min. Our study shows that monitoring toxic metals in acidic water is possible by using the acidophilic IOB biosensor. Our study thus provides a novel approach for rapid and cost-effective detection of toxic metals in acidic conditions that can otherwise compromise current methods of chemical analysis. This method also allows for increased efficiency when screening large numbers of environmental samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dietary toxicity of field-contaminated invertebrates to marine fish: effects of metal doses and subcellular metal distribution.

    Science.gov (United States)

    Dang, Fei; Rainbow, Philip S; Wang, Wen-Xiong

    2012-09-15

    There is growing awareness of the toxicological effects of metal-contaminated invertebrate diets on the health of fish populations in metal-contaminated habitats, yet the mechanisms underlying metal bioaccumulation and toxicity are complex. In the present study, marine fish Terapon jurbua terepon were fed a commercial diet supplemented with specimens of the polychaete Nereis diversicolor or the clam Scrobicularia plana, collected from four metal-impacted estuaries (Tavy, Restronguet Creek, West Looe, Gannel) in southwest England, as environmentally realistic metal sources. A comparative toxicological evaluation of both invertebrates showed that fish fed S. plana for 21 d exhibited evident mortality compared to those fed N. diversicolor. Furthermore, a spatial effect on mortality was observed. Differences in metal doses rather than subcellular metal distributions between N. diversicolor and S. plana appeared to be the cause of such different mortalities. Partial least squares regression was used to evaluate the statistical relationship between multiple-metal doses and fish mortality, revealing that Pb, Fe, Cd and Zn in field-collected invertebrates co-varied most strongly with the observed mortality. This study provides a step toward exploring the underlying mechanism of dietary toxicity and identifying the potential causality in complex metal mixture exposures in the field. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Cyclophosphamide-induced pulmonary toxicity

    International Nuclear Information System (INIS)

    Siemann, D.W.; Macler, L.; Penney, D.P.

    1986-01-01

    Unlike radiation effects, pulmonary toxicity following drug treatments may develop soon after exposure. The dose-response relationship between Cyclophosphamide and lung toxicity was investigated using increased breathing frequency assays used successfully for radiation induced injury. The data indicate that release of protein into the alveolus may play a significant role in Cy induced pulmonary toxicity. Although the mechanism responsible for the increased alveolar protein is as yet not identified, the present findings suggest that therapeutic intervention to inhibit protein release may be an approach to protect the lungs from toxic effects. (UK)

  15. Advances in metal-induced oxidative stress and human disease

    International Nuclear Information System (INIS)

    Jomova, Klaudia; Valko, Marian

    2011-01-01

    Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha

  16. Effect of new soil metal immobilizing agents on metal toxicity to terrestrial invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Lock, K.; Janssen, C.R

    2003-01-01

    Organisms with different exposure routes should be used to simultaneously assess risks of metals in soils. - Application of 5% (w:w) novel metal immobilizing agent reduced the water soluble, the calcium chloride extracted as well as the pore water concentration of zinc in soils from Maatheide, a metal contaminated site in the northeast of Belgium. Addition of the metal immobilizing agents also eliminated acute toxicity to the potworm Enchytraeus albidus and the earthworm Eisenia fetida and chronic toxicity to the springtail Folsomia candida. Cocoon production by E. fetida, however, was still adversely affected. These differences may be explained by the species dependent routes of metal uptake: F. candida is probably mainly exposed via pore water while in E. fetida dietary exposure is probably also important. From these results it is clear that organisms with different exposure routes should be used simultaneously to assess the environmental risk of metal contaminated soils.

  17. The Effects of Temperature and Hydrostatic Pressure on Metal Toxicity: Insights into Toxicity in the Deep Sea.

    Science.gov (United States)

    Brown, Alastair; Thatje, Sven; Hauton, Chris

    2017-09-05

    Mineral prospecting in the deep sea is increasing, promoting concern regarding potential ecotoxicological impacts on deep-sea fauna. Technological difficulties in assessing toxicity in deep-sea species has promoted interest in developing shallow-water ecotoxicological proxy species. However, it is unclear how the low temperature and high hydrostatic pressure prevalent in the deep sea affect toxicity, and whether adaptation to deep-sea environmental conditions moderates any effects of these factors. To address these uncertainties we assessed the effects of temperature and hydrostatic pressure on lethal and sublethal (respiration rate, antioxidant enzyme activity) toxicity in acute (96 h) copper and cadmium exposures, using the shallow-water ecophysiological model organism Palaemon varians. Low temperature reduced toxicity in both metals, but reduced cadmium toxicity significantly more. In contrast, elevated hydrostatic pressure increased copper toxicity, but did not affect cadmium toxicity. The synergistic interaction between copper and cadmium was not affected by low temperature, but high hydrostatic pressure significantly enhanced the synergism. Differential environmental effects on toxicity suggest different mechanisms of action for copper and cadmium, and highlight that mechanistic understanding of toxicity is fundamental to predicting environmental effects on toxicity. Although results infer that sensitivity to toxicants differs across biogeographic ranges, shallow-water species may be suitable ecotoxicological proxies for deep-sea species, dependent on adaptation to habitats with similar environmental variability.

  18. Behavior as a sentry of metal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, B.

    1978-01-01

    Many of the toxic properties of metals are expressed as behavioral aberrations. Some of these arise from direct actions on the central nervous system. Others arise from primary events elsewhere, but still influence behavior. Toxicity may be expressed either as objectively measurable phenomena, such as ataxia, or as subjective complaints, such as depression. In neither instance is clinical medicine equipped to provide assessments of subtle, early indices of toxicity. Reviewers of visual disturbances, paresthesia, and mental retardation exemplify the potential contribution of psychology to the toxicology of metals. Behavior and nervous system functions act as sensitive mirrors of metal toxicity. Sensitivity is the prime aim in environmental health assessments. Early detection of adverse effects, before they progress to irreversibility, underlies the strategy for optimal health protection. Some of the toxic actions of metals originate in direct nervous system dysfunction. Others may reflect disturbances of systems less directly linked to behavior than the central nervous system. But behavior, because it expresses the integrated functioning of the organism, can indicate flaws in states and processes outside the nervous system.

  19. An in vitro cytotoxic approach to assess the toxicity of heavy metals and their binary mixtures on hippocampal HT-22 cell line.

    Science.gov (United States)

    Karri, Venkatanaidu; Kumar, Vikas; Ramos, David; Oliveira, Eliandre; Schuhmacher, Marta

    2018-01-05

    Humans are exposed to a cocktail of heavy metal toxicants in the environment. Though heavy metals are deleterious, there is a paucity of information on the toxicity of mixtures. In this study, four common neurotoxicity heavy metals lead (Pb) cadmium (Cd), arsenic (As), and methylmercury (MeHg) were exposed individually and as mixtures to HT-22 cell line for 8days. The study established that low dose exposures induced toxicity to the HT-22 cell line during 8days. The results indicates potency dependent response, the toxicity of single metals on the HT-22 cells; MeHg > As > Cd > Pb. The cytotoxicity data of single metals were used to determine the mixtures interaction profile by using the dose additivity and effect additivity method. Metal mixtures showed higher toxicities compared to individual metals. Synergistic, antagonistic or additive effects of the toxicity were observed in different mixtures in low dose exposure. The interactive responses of mixtures depend on the co-exposure metal and their respective concentration. We concluded that the combined effects should be considered in the risk assessment of heavy metal co-exposure and potency. In future, comprehensive mechanistic based investigations needed for understanding the real interactive mixtures effects at molecular level. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Plant responses to metal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Briat, J.F. [Montpellier-2 Univ., 34 (France). Biochimie et physiologie moleculaire des plantes, CNRS, URA 2133; Lebrun, M. [Montpellier-2 Univ., 34 (France). Biochimie et physiologie vegetale appliquee

    1999-01-01

    Increased metal concentration in the soils, up to toxic levels, is becoming an important environmental problem. Safety rule evolution will require solutions in order to cope with food safety rules, and to freeze metal leakage from heavily metal-poisoned soils, such as those from industrial fallows. In this context, plants could serve to develop bio-assays in order to promote new standards, more realistic than the mass of a given metal per kg of soil, that does not consider the metal bio-disponibility. Plants could also be used for phyto-extraction and/or phyto-stabilization. To reach these objectives, a genetic approach could be useful to generate metal-tolerant plants with enough biomass. In this work is more particularly studied the plant responses to metal toxicity. Metal toxicity for living organisms involves oxidative and /or genotoxic mechanisms. Plant protection against metal toxicity occurs, at least in part, through control of root metal uptake and of long distance metal transport. Inside cells, proteins such as ferritins and metallothioneins, and glutathione-derived peptides named phyto-chelatins, participate in excess metal storage and detoxification. Low molecular weight organic molecules, mainly organic acids and amino acids and their derivatives, also play an important role in plant metal homeostasis. When these systems are overloaded, oxidative stress defense mechanisms are activated. Molecular and cellular knowledge of these processes will be necessary to improve plant metal resistance. Occurrence of naturally tolerant plants which hyper accumulate metals provides helpful tools for this research. (authors) 130 refs.

  1. Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines.

    Science.gov (United States)

    Zhang, Yanfeng; Han, Yuwei; Yang, Jinxi; Zhu, Lingyan; Zhong, Wenjue

    2017-12-01

    The occurrence, toxicities, and ecological risks of five heavy metals (Pb, Cu, Cd, Zn and Ni) in the sediment of Taihu Lake were investigated in this study. To evaluate the toxicities caused by the heavy metals, the toxicities induced by organic contaminants and ammonia in the sediments were screened out with activated carbon and zeolite. The toxicities of heavy metals in sediments were tested with benthic invertebrates (tubificid and chironomid). The correlations between toxicity of sediment and the sediment quality guidelines (SQGs) derived previously were evaluated. There were significant correlations (pheavy metals based on SQGs, indicating that threshold effect level (TEL) and probable effect level (PEL) were reliable to predict the toxicities of heavy metals in the sediments of Taihu Lake. By contrast, the method based on acid volatile sulfides (AVS) and simultaneously extracted metals (SEM), such as ∑SEM/AVS and ∑SEM-AVS, did not show correlations with the toxicities. Moreover, the predictive ability of SQGs was confirmed by a total predicting accuracy of 77%. Ecological risk assessment based on TELs and PELs showed that the contaminations of Pb, Cu, Cd and Zn in the sediments of Taihu Lake were at relatively low or medium levels. The risks caused by heavy metals in the sediments of northern bay of the lake, which received more wastewater discharge from upper stream, were higher than other area of the lake. Copyright © 2017. Published by Elsevier B.V.

  2. Effects of Cr III and Pb on the bioaccumulation and toxicity of Cd in tropical periphyton communities: Implications of pulsed metal exposures

    International Nuclear Information System (INIS)

    Bere, Taurai; Chia, Mathias Ahii; Tundisi, José Galizia

    2012-01-01

    Metal exposure pattern, timing, frequency, duration, recovery period, metal type and interactions, has obscured effects on periphyton communities in lotic systems. The objective of this study was to investigate the effects of intermittent exposures of Cr III and Pb on Cd toxicity and bioaccumulation in tropical periphyton communities. Natural periphyton communities were transferred to artificial stream chambers and exposed to metal mixtures at different pulse timing, duration, frequency and recovery periods. Chlorophyll a, dry mass and metal accumulation kinetics were recorded. Cr and Pb decrease the toxic effects of Cd on periphyton communities. Periphyton has high Cd, Cr and Pb accumulation capacity. Cr and Pb reduced the levels of Cd sequestrated by periphyton communities. The closer the frequency and duration of the pulse is to a continuous exposure, the greater the effects of the contaminant on periphyton growth and metal bioaccumulation. Light increased toxic and accumulative effects of metals on the periphyton community. - Highlights: ► We investigated toxicity effects of pulsed metal exposures on bioaccumulation and toxicity in periphyton. ► High frequency of short duration pulses has effects equal to long duration exposures. ► Important role of light in modulating metal toxicity on periphyton demonstrated. ► Factors other than magnitude and duration must be considered in water quality criteria. ► Accurate prediction of metal effects on biofilms requires data on effluent variability. - The study highlights the importance of pulse timing, frequency, duration, recovery period and chemical type on aquatic life.

  3. Effect of toxic metals on indigenous soil ß-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria

    NARCIS (Netherlands)

    Stephen, J.R.; Chang, Y.J.; MacNaughton, S.J.; Kowalchuk, G.A.; Leung, K.T.; Flemming, C.A.; White, D.C.

    1999-01-01

    Contamination of soils with toxic metals is a major problem on military, industrial, and mining sites worldwide. Of particular interest to the field of bioremediation is the selection of biological markers for the end point of remediation, In this microcosm study, we focus on the effect of addition

  4. Role of Bioadsorbents in Reducing Toxic Metals

    Directory of Open Access Journals (Sweden)

    Blessy Baby Mathew

    2016-01-01

    Full Text Available Industrialization and urbanization have led to the release of increasing amounts of heavy metals into the environment. Metal ion contamination of drinking water and waste water is a serious ongoing problem especially with high toxic metals such as lead and cadmium and less toxic metals such as copper and zinc. Several biological materials have attracted many researchers and scientists as they offer both cheap and effective removal of heavy metals from waste water. Therefore it is urgent to study and explore all possible sources of agrobased inexpensive adsorbents for their feasibility in the removal of heavy metals. The objective was to study inexpensive adsorbents like various agricultural wastes such as sugarcane bagasse, rice husk, oil palm shell, coconut shell, and coconut husk in eliminating heavy metals from waste water and their utilization possibilities based on our research and literature survey. It also shows the significance of developing and evaluating new potential biosorbents in the near future with higher adsorption capacity and greater reusable options.

  5. Role of Bioadsorbents in Reducing Toxic Metals.

    Science.gov (United States)

    Mathew, Blessy Baby; Jaishankar, Monisha; Biju, Vinai George; Krishnamurthy Nideghatta Beeregowda

    2016-01-01

    Industrialization and urbanization have led to the release of increasing amounts of heavy metals into the environment. Metal ion contamination of drinking water and waste water is a serious ongoing problem especially with high toxic metals such as lead and cadmium and less toxic metals such as copper and zinc. Several biological materials have attracted many researchers and scientists as they offer both cheap and effective removal of heavy metals from waste water. Therefore it is urgent to study and explore all possible sources of agrobased inexpensive adsorbents for their feasibility in the removal of heavy metals. The objective was to study inexpensive adsorbents like various agricultural wastes such as sugarcane bagasse, rice husk, oil palm shell, coconut shell, and coconut husk in eliminating heavy metals from waste water and their utilization possibilities based on our research and literature survey. It also shows the significance of developing and evaluating new potential biosorbents in the near future with higher adsorption capacity and greater reusable options.

  6. Role of Bioadsorbents in Reducing Toxic Metals

    Science.gov (United States)

    Jaishankar, Monisha; Biju, Vinai George; Krishnamurthy Nideghatta Beeregowda

    2016-01-01

    Industrialization and urbanization have led to the release of increasing amounts of heavy metals into the environment. Metal ion contamination of drinking water and waste water is a serious ongoing problem especially with high toxic metals such as lead and cadmium and less toxic metals such as copper and zinc. Several biological materials have attracted many researchers and scientists as they offer both cheap and effective removal of heavy metals from waste water. Therefore it is urgent to study and explore all possible sources of agrobased inexpensive adsorbents for their feasibility in the removal of heavy metals. The objective was to study inexpensive adsorbents like various agricultural wastes such as sugarcane bagasse, rice husk, oil palm shell, coconut shell, and coconut husk in eliminating heavy metals from waste water and their utilization possibilities based on our research and literature survey. It also shows the significance of developing and evaluating new potential biosorbents in the near future with higher adsorption capacity and greater reusable options. PMID:28090207

  7. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment.

    Science.gov (United States)

    Wu, Xiangyang; Cobbina, Samuel J; Mao, Guanghua; Xu, Hai; Zhang, Zhen; Yang, Liuqing

    2016-05-01

    The rational for the study was to review the literature on the toxicity and corresponding mechanisms associated with lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As), individually and as mixtures, in the environment. Heavy metals are ubiquitous and generally persist in the environment, enabling them to biomagnify in the food chain. Living systems most often interact with a cocktail of heavy metals in the environment. Heavy metal exposure to biological systems may lead to oxidation stress which may induce DNA damage, protein modification, lipid peroxidation, and others. In this review, the major mechanism associated with toxicities of individual metals was the generation of reactive oxygen species (ROS). Additionally, toxicities were expressed through depletion of glutathione and bonding to sulfhydryl groups of proteins. Interestingly, a metal like Pb becomes toxic to organisms through the depletion of antioxidants while Cd indirectly generates ROS by its ability to replace iron and copper. ROS generated through exposure to arsenic were associated with many modes of action, and heavy metal mixtures were found to have varied effects on organisms. Many models based on concentration addition (CA) and independent action (IA) have been introduced to help predict toxicities and mechanisms associated with metal mixtures. An integrated model which combines CA and IA was further proposed for evaluating toxicities of non-interactive mixtures. In cases where there are molecular interactions, the toxicogenomic approach was used to predict toxicities. The high-throughput toxicogenomics combines studies in genetics, genome-scale expression, cell and tissue expression, metabolite profiling, and bioinformatics.

  8. Potential risks of metal toxicity in contaminated sediments of Deule river in Northern France

    International Nuclear Information System (INIS)

    Lourino-Cabana, Beatriz; Lesven, Ludovic; Charriau, Adeline; Billon, Gabriel; Ouddane, Baghdad; Boughriet, Abdel

    2011-01-01

    Research highlights: → A historical environmental pollution is evidenced with reference to background levels. → Sedimentary trace metals partitioning is examined under undisturbed conditions. → Anoxia and diagenetic processes induce geochemical and mineralogical variabilities. → Do metals present in particles and pore waters exhibit a potential toxicity risk? → Behaviour of binding fractions contributes to trace metals scavenging. - Abstract: The aim of this paper was to evaluate the potential sediment cumulative damage and toxicity due to metal contamination in a polluted zone of Deule river (in northern France) from nearby two smelters. Metal-enrichment factors and geoaccumulation indices measured with sediment depth revealed that - compared to background levels either in local reference soils or in world rivers sediments/suspended particulate matter - Cd contributed to the highest pollution levels, followed by Zn, Pb and to a much lesser extent Cu and Ni. A comparison of the vertical distribution of AVS (acid volatile sulfides), SEM (simultaneously extracted metals), TMC (total metal concentrations), TOC (total organic carbon) and interstitial water-metal concentrations in the sediment allowed us to highlight the extent of toxicity caused by Cd, Pb, Zn, Ni and Cu and to raise the possibility of their association with certain geochemical phases. To assess the actual environmental impacts of these metals in Deule river, numerical sediment quality guidelines were further used in the present work. Sedimentary Pb, Zn, and Cd contents largely exceeded PEC (probable effect concentration) values reported as consensus-based sediment quality guidelines for freshwater ecosystems. As for risks of toxicity from pore waters, metal concentrations reached their maxima at the surficial layers of the sediment (1-3 cm) and IWCTU (Interstitial Water Criteria Toxicity Unit) observed for Pb and to a lesser extent Cd, violated the corresponding water quality data recommended

  9. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil.

    Science.gov (United States)

    Beesley, Luke; Inneh, Onyeka S; Norton, Gareth J; Moreno-Jimenez, Eduardo; Pardo, Tania; Clemente, Rafael; Dawson, Julian J C

    2014-03-01

    Amending contaminated soils with organic wastes can influence trace element mobility and toxicity. Soluble concentrations of metals and arsenic were measured in pore water and aqueous soil extracts following the amendment of a heavily contaminated mine soil with compost and biochar (10% v:v) in a pot experiment. Speciation modelling and toxicity assays (Vibrio fischeri luminescence inhibition and Lolium perenne germination) were performed to discriminate mechanisms controlling metal mobility and assess toxicity risk thereafter. Biochar reduced free metal concentrations furthest but dissolved organic carbon primarily controlled metal mobility after compost amendment. Individually, both amendments induced considerable solubilisation of arsenic to pore water (>2500 μg l(-1)) related to pH and soluble phosphate but combining amendments most effectively reduced toxicity due to simultaneous reductions in extractable metals and increases in soluble nutrients (P). Thus the measure-monitor-model approach taken determined that combining the amendments was most effective at mitigating attendant toxicity risk. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Assessment of mechanisms of metal-induced reproductive toxicity in aquatic species as a biomarker of exposure

    International Nuclear Information System (INIS)

    Anderson, M.; George, W.; Sikka, S.; Kamath, B.; Preslan, J.; Agrawal, K.; Rege, A.

    1993-01-01

    This project is designed to identify heavy metals and organic contaminants of concern which could impact on the biota in the Louisiana wetlands by assessment of uptake and bioaccumulation of contaminants and their effects on reproductive processes as biomarkers of exposure. Heavy metals (lead, cadmium, cobalt, and mercury) have been demonstrated to have toxic effects on reproduction in mammals and several aquatic species. Hexachlorobenzene (HCB) is an persistent environmental contaminant which has been measured in human serum, fat, semen, and follicular fluid. HCB has been shown to be a reproductive toxin in rats and primates. Polychlorinated biphenyls (PCBs) are prevalent chlorinated hydrocarbons currently contaminating our environment. PCBs resist degradation and are insoluble in water; however, they bioaccumulate in aquatic species. Disturbances of the reproductive systems are not only sensitive indicators of toxicity but threatens the propagation of a species

  11. The fungicide mancozeb induces toxic effects on mammalian granulosa cells

    International Nuclear Information System (INIS)

    Paro, Rita; Tiboni, Gian Mario; Buccione, Roberto; Rossi, Gianna; Cellini, Valerio; Canipari, Rita; Cecconi, Sandra

    2012-01-01

    The ethylene-bis-dithiocarbamate mancozeb is a widely used fungicide with low reported toxicity in mammals. In mice, mancozeb induces embryo apoptosis, affects oocyte meiotic spindle morphology and impairs fertilization rate even when used at very low concentrations. We evaluated the toxic effects of mancozeb on the mouse and human ovarian somatic granulosa cells. We examined parameters such as cell morphology, induction of apoptosis, and p53 expression levels. Mouse granulosa cells exposed to mancozeb underwent a time- and dose-dependent modification of their morphology, and acquired the ability to migrate but not to proliferate. The expression level of p53, in terms of mRNA and protein content, decreased significantly in comparison with unexposed cells, but no change in apoptosis was recorded. Toxic effects could be attributed, at least in part, to the presence of ethylenthiourea (ETU), the main mancozeb catabolite, which was found in culture medium. Human granulosa cells also showed dose-dependent morphological changes and reduced p53 expression levels after exposure to mancozeb. Altogether, these results indicate that mancozeb affects the somatic cells of the mammalian ovarian follicles by inducing a premalignant-like status, and that such damage occurs to the same extent in both mouse and human GC. These results further substantiate the concept that mancozeb should be regarded as a reproductive toxicant. Highlights: ► The fungicide mancozeb affects oocyte spindle morphology and fertilization rate. ► We investigated the toxic effects of mancozeb on mouse and human granulosa cells. ► Granulosa cells modify their morphology and expression level of p53. ► Mancozeb induces a premalignant-like status in exposed cells.

  12. The fungicide mancozeb induces toxic effects on mammalian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Paro, Rita [Department of Health Sciences, University of L' Aquila, Via Vetoio, L' Aquila (Italy); Tiboni, Gian Mario [Department of Medicine and Aging, Section of Reproductive Sciences, University “G. D' Annunzio”, Chieti-Pescara (Italy); Buccione, Roberto [Tumor Cell Invasion Laboratory, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti (Italy); Rossi, Gianna; Cellini, Valerio [Department of Health Sciences, University of L' Aquila, Via Vetoio, L' Aquila (Italy); Canipari, Rita [Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Embryology, School of Pharmacy and Medicine, “Sapienza” University of Rome, Rome (Italy); Cecconi, Sandra, E-mail: sandra.cecconi@cc.univaq.it [Department of Health Sciences, University of L' Aquila, Via Vetoio, L' Aquila (Italy)

    2012-04-15

    The ethylene-bis-dithiocarbamate mancozeb is a widely used fungicide with low reported toxicity in mammals. In mice, mancozeb induces embryo apoptosis, affects oocyte meiotic spindle morphology and impairs fertilization rate even when used at very low concentrations. We evaluated the toxic effects of mancozeb on the mouse and human ovarian somatic granulosa cells. We examined parameters such as cell morphology, induction of apoptosis, and p53 expression levels. Mouse granulosa cells exposed to mancozeb underwent a time- and dose-dependent modification of their morphology, and acquired the ability to migrate but not to proliferate. The expression level of p53, in terms of mRNA and protein content, decreased significantly in comparison with unexposed cells, but no change in apoptosis was recorded. Toxic effects could be attributed, at least in part, to the presence of ethylenthiourea (ETU), the main mancozeb catabolite, which was found in culture medium. Human granulosa cells also showed dose-dependent morphological changes and reduced p53 expression levels after exposure to mancozeb. Altogether, these results indicate that mancozeb affects the somatic cells of the mammalian ovarian follicles by inducing a premalignant-like status, and that such damage occurs to the same extent in both mouse and human GC. These results further substantiate the concept that mancozeb should be regarded as a reproductive toxicant. Highlights: ► The fungicide mancozeb affects oocyte spindle morphology and fertilization rate. ► We investigated the toxic effects of mancozeb on mouse and human granulosa cells. ► Granulosa cells modify their morphology and expression level of p53. ► Mancozeb induces a premalignant-like status in exposed cells.

  13. Toxicity from Metals, Old Menaces and New Threats

    Directory of Open Access Journals (Sweden)

    Wayne Briner

    2010-12-01

    Full Text Available Metals make up the bulk of the periodic table and range from the very light (e.g., beryllium to the very heavy (e.g., the actinides. Metals are important constituents of life, drive economic activity and industry, but can also be a hazard to human health. The metals can be roughly divided into three groups. The first being those metals, such as iron and zinc, that are essential to human life and have a wide therapeutic dose range. The second group of metals, such as lead, mercury, and uranium, has no known biological role and are toxic even at low doses. The third group of metals, such as selenium and manganese, has a role in maintaining human health but has a very narrow dose range that, when exceeded, produces toxic effects. [...

  14. Effects of toxic metals and chemicals on biofilm and biocorrosion.

    Science.gov (United States)

    Fang, Herbert H P; Xu, Li-Chong; Chan, Kwong-Yu

    2002-11-01

    Microbes in marine biofilms aggregated into clusters and increased the production of extracellular polymeric substances (EPS), by over 100% in some cases, when the seawater media containing toxic metals and chemicals, such as Cd(II), Cu(II), Pb(II), Zn(II), AI(III), Cr(III), glutaraldehyde, and phenol. The formation of microbial cluster and the increased production of EPS, which contained 84-92% proteins and 8-16% polysaccharides, accelerated the corrosion of the mild steel. However, there was no quantitative relationship between the degree of increased corrosion and the toxicity of metals/chemicals towards sulfate-reducing bacteria, or the increased EPS production.

  15. Dietary compounds as modulators of metals and metalloids toxicity.

    Science.gov (United States)

    Jadán-Piedra, Carlos; Chiocchetti, Gabriela Matuoka; Clemente, María Jesús; Vélez, Dinoraz; Devesa, Vicenta

    2017-07-07

    A large part of the population is exposed to metals and metalloids through the diet. Most of the in vivo studies on its toxicokinetics and toxicity are conducted by means of exposure through drinking water or by intragastric or intraperitoneal administration of aqueous standards, and therefore they do not consider the effect of the food matrix on the exposure. Numerous studies show that some components of the diet can modulate the toxicity of these food contaminants, reducing their effect on a systemic level. Part of this protective role may be due to a reduction of intestinal absorption and subsequent tissue accumulation of the toxic element, although it may also be a consequence of their ability to counteract the toxicity directly by their antioxidant and/or anti-inflammatory activity, among other factors. The present review provides a compilation of existing information about the effect that certain components of the diet have on the toxicokinetics and toxicity of the metals and metalloids of greatest toxicological importance that are present in food (arsenic, cadmium, lead, and mercury), and of their most toxic chemical species.

  16. Metal and proton toxicity to lake zooplankton: A chemical speciation based modelling approach

    International Nuclear Information System (INIS)

    Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Fott, Jan; Garmo, Øyvind A.; Hruska, Jakub; Keller, Bill; Löfgren, Stefan; Maberly, Stephen C.; Majer, Vladimir; Nierzwicki-Bauer, Sandra A.; Persson, Gunnar; Schartau, Ann-Kristin; Thackeray, Stephen J.

    2014-01-01

    The WHAM-F TOX model quantifies the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (F TOX ), a linear combination of the products of organism-bound cation and a toxic potency coefficient for each cation. We describe the application of the model to predict an observable ecological field variable, species richness of pelagic lake crustacean zooplankton, studied with respect to either acidification or the impacts of metals from smelters. The fitted results give toxic potencies increasing in the order H + TOX to relate combined toxic effects of protons and metal cations towards lake crustacean zooplankton. • The fitted results give toxic potencies increasing in the order H + TOX model has been applied to field data for pelagic lake crustacean zooplankton. The fitted results give metal toxic potencies increasing in the order H + < Al < Cu < Zn < Ni

  17. Metal toxicity affects predatory stream invertebrates less than other functional feeding groups

    International Nuclear Information System (INIS)

    Liess, Matthias; Gerner, Nadine V.; Kefford, Ben J.

    2017-01-01

    Ecosystem effects of heavy metals need to be identified for a retrospective risk assessment, and potential impacts need to be predicted for a prospective risk assessment. In this study, we established a strong correlation between the toxic pressure of dissolved metals and invertebrate species. We compiled available data from a wide geographical range of Australian streams that were contaminated with heavy metals [mainly copper (Cu) and zinc (Zn)] and the corresponding invertebrate communities. Heavy metal toxicity is positively related to the proportion of predators within the invertebrate community, represented by the predator ratio , with an effect threshold range of 2.6 μg/L - 26 μg/L for Cu and 62 μg/L - 617 μg/L for Zn. These effect concentrations are in the ranges of the concentrations identified in model ecosystems and other field investigations and are just above the existing guideline limits. Heavy metals also affects the taxa richness negatively. Other community measures, such as the evenness, number of EPT (Ephemeroptera, Plecoptera, and Trichoptera) taxa, SPEcies At Risk (SPEAR) pesticides or SPEAR salinity were relatively poorly correlated with heavy metal toxicity in the streams. Therefore, we suggest applying the predator ratio within the community as a starting point for an indicator of the dissolved metal toxicity, the SPEAR metals . - Highlights: • Data on dissolved metals and invertebrates were compiled for a wide geographical range. • Heavy metal toxicity was strongly related to the predator ratio. • Ecologically relevant thresholds identified for Cu and Zn were above the guideline limits. - Increasing metal toxicity for Cu and Zn in streams could be related to an increasing predator ratio within the invertebrate community.

  18. Surface interactions affect the toxicity of engineered metal oxide nanoparticles toward Paramecium.

    Science.gov (United States)

    Li, Kungang; Chen, Ying; Zhang, Wen; Pu, Zhichao; Jiang, Lin; Chen, Yongsheng

    2012-08-20

    To better understand the potential impacts of engineered metal oxide nanoparticles (NPs) in the ecosystem, we investigated the acute toxicity of seven different types of engineered metal oxide NPs against Paramecium multimicronucleatum, a ciliated protozoan, using the 48 h LC(50) (lethal concentration, 50%) test. Our results showed that the 48 h LC(50) values of these NPs to Paramecium ranged from 0.81 (Fe(2)O(3) NPs) to 9269 mg/L (Al(2)O(3) NPs); their toxicity to Paramecium increased as follows: Al(2)O(3) Paramecium; this implies that metal oxide NPs with strong association with the cell surface might induce more severe cytotoxicity in unicellular organisms.

  19. Chemical and biological properties of toxic metals and use of chelating agents for the pharmacological treatment of metal poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Sinicropi, Maria Stefania; Caruso, Anna [University of Calabria, Department of Pharmaceutical Sciences, Rende (Italy); Amantea, Diana [University of Calabria, Department of Pharmacobiology, Rende (Italy); Saturnino, Carmela [University of Salerno, Department of Pharmaceutical Sciences, Fisciano (Italy)

    2010-07-15

    Exposure to toxic metals is a well-known problem in industrialized countries. Metals interfere with a number of physiological processes, including central nervous system (CNS), haematopoietic, hepatic and renal functions. In the evaluation of the toxicity of a particular metal it is crucial to consider many parameters: chemical forms (elemental, organic or inorganic), binding capability, presence of specific proteins that selectively bind metals, etc. Medical treatment of acute and chronic metal toxicity is provided by chelating agents, namely organic compounds capable of interacting with metal ions to form structures called chelates. The present review attempts to provide updated information about the mechanisms, the cellular targets and the effects of toxic metals. (orig.)

  20. Heavy metal toxicity and iron chlorosis

    Energy Technology Data Exchange (ETDEWEB)

    DeKock, P C

    1956-01-01

    The toxicity of copper, nickel, cobalt, zinc, chromium, and manganese to mustard was studied in water culture, utilizing either the ionic form or the EDTA chelate of the metal in the presence of either ferric chloride or ferric EDTA. In presence of ferric chloride the activity of the metals in producing chlorosis was as given above, i.e. in the order of stability of their chelates. In the presence of ferric versenate, toxicity of the ionic metal was much reduced. The metal chelates gave very little indication of toxicity with either form of iron. It was found that the ratio of total phosphorus to total iron was higher in chlorotic plants than in green plants, irrespective of which metal was causing the toxicity. Copper could be demonstrated in the phloem cells of the root using biscyclohexanone-oxalydihydrazone as histochemical reagent. It is postulated that transport of iron probably takes place in the phloem as an active process. It would appear that as a major part of the iron in plant cells is attached to nucleo- or phospho-proteins, the heavy metals must be similarly attached to phospho-proteins.

  1. Protective Effect of Morocco Carob Honey Against Lead-Induced Anemia and Hepato-Renal Toxicity

    Directory of Open Access Journals (Sweden)

    Aicha Fassi Fihri

    2016-06-01

    Full Text Available Background/Aims: Natural honey has many biological activities including protective effect against toxic materials. The aim of this study was to evaluate the protective effect of carob honey against lead-induced hepato-renal toxicity and lead-induced anemia in rabbits. Methods: Twenty four male rabbits were allocated into four groups six rabbits each; group 1: control group, received distilled water (0.1 ml / kg.b.wt /daily; group 2: received oral lead acetate (2 g/kg.b.wt/daily; group 3: treated with oral honey (1g /kg.b.wt/daily and oral lead (2 g/kg.b.wt/daily, and group 4: received oral honey (1 g/kg.b.wt/daily. Honey and lead were given daily during 24 days of experimentation. Laboratory tests and histopathological evaluations of kidneys were done. Results: Oral administration of lead induced hepatic and kidney injury and caused anemia during three weeks of the exposure. Treatment with honey prevented hepato-renal lead toxicity and ameliorated lead-induced anemia when honey was given to animals during lead exposure. Conclusion: It might be concluded that honey has a protective effect against lead-induced blood, hepatic and renal toxic effects.

  2. Protective Effect of Morocco Carob Honey Against Lead-Induced Anemia and Hepato-Renal Toxicity.

    Science.gov (United States)

    Fihri, Aicha Fassi; Al-Waili, Noori S; El-Haskoury, Redouan; Bakour, Meryem; Amarti, Afaf; Ansari, Mohammad J; Lyoussi, Badiaa

    2016-01-01

    Natural honey has many biological activities including protective effect against toxic materials. The aim of this study was to evaluate the protective effect of carob honey against lead-induced hepato-renal toxicity and lead-induced anemia in rabbits. Twenty four male rabbits were allocated into four groups six rabbits each; group 1: control group, received distilled water (0.1 ml / kg.b.wt /daily); group 2: received oral lead acetate (2 g/kg.b.wt/daily); group 3: treated with oral honey (1g /kg.b.wt/daily) and oral lead (2 g/kg.b.wt/daily), and group 4: received oral honey (1 g/kg.b.wt/daily). Honey and lead were given daily during 24 days of experimentation. Laboratory tests and histopathological evaluations of kidneys were done. Oral administration of lead induced hepatic and kidney injury and caused anemia during three weeks of the exposure. Treatment with honey prevented hepato-renal lead toxicity and ameliorated lead-induced anemia when honey was given to animals during lead exposure. It might be concluded that honey has a protective effect against lead-induced blood, hepatic and renal toxic effects. © 2016 The Author(s) Published by S. Karger AG, Basel.

  3. Toxic and biochemical effects of divalent metal ions in Drosophila: correlation to effects in mice and to chemical softness parameters

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, K B; Turner, J E; Christie, N T; Owenby, R K

    1983-01-01

    The mechanism of toxicity of 11 divalent cations was evaluated by determining the effects of dietary administration to Drosophila melanogaster and measurement of the frequency of lethality at 4 days, alterations in the developmental patterns of proteins, and changes in specific transfer RNAs. The relative effectiveness of divalent cations to kill Drosophila is significantly correlated to the relative values of the coordinate bond energy of the metal ions. The resistance of Drosophila to cadmium toxicity appears to be genetically determined since different inbred strains vary markedly. Also, the resistance is maximal in the young adult. Two different genetic strains seem to respond to different cations (Cd/sup 2 +/, Hg/sup 2 +/, Cu/sup 2 +/, Co/sup 2 +/, Ba/sup 2 +/, and Sr/sup 2 +/) in a similar manner. Basic mechanisms of toxicity may be studied in Drosophila as well as mice since the chemical properties of the metals reflect their toxic effects on the former as closely as the latter. 25 references, 5 figures, 1 table.

  4. Prion Protein Does Not Confer Resistance to Hippocampus-Derived Zpl Cells against the Toxic Effects of Cu2+, Mn2+, Zn2+ and Co2+ Not Supporting a General Protective Role for PrP in Transition Metal Induced Toxicity.

    Science.gov (United States)

    Cingaram, Pradeep Kumar Reddy; Nyeste, Antal; Dondapati, Divya Teja; Fodor, Elfrieda; Welker, Ervin

    2015-01-01

    The interactions of transition metals with the prion protein (PrP) are well-documented and characterized, however, there is no consensus on their role in either the physiology of PrP or PrP-related neurodegenerative disorders. PrP has been reported to protect cells from the toxic stimuli of metals. By employing a cell viability assay, we examined the effects of various concentrations of Cu2+, Zn2+, Mn2+, and Co2+ on Zpl (Prnp-/-) and ZW (Prnp+/+) hippocampus-derived mouse neuronal cells. Prnp-/- Zpl cells were more sensitive to all four metals than PrP-expressing Zw cells. However, when we introduced PrP or only the empty vector into Zpl cells, we could not discern any protective effect associated with the presence of PrP. This observation was further corroborated when assessing the toxic effect of metals by propidium-iodide staining and fluorescence activated cell sorting analysis. Thus, our results on this mouse cell culture model do not seem to support a strong protective role for PrP against transition metal toxicity and also emphasize the necessity of extreme care when comparing cells derived from PrP knock-out and wild type mice.

  5. Webinar Presentation: Vitamins, Minerals and Metals: Do Healthy Diets Counteract Health Effects of Toxicants?

    Science.gov (United States)

    This presentation, Vitamins, Minerals and Metals: Do Healthy Diets Counteract Health Effects of Toxicants?, was given at the NIEHS/EPA Children's Centers 2015 Webinar Series: Food and Children's Health held on Dec. 9, 2015.

  6. Gender differences in the disposition and toxicity of metals

    International Nuclear Information System (INIS)

    Vahter, Marie; Akesson, Agneta; Liden, Carola; Ceccatelli, Sandra; Berglund, Marika

    2007-01-01

    There is increasing evidence that health effects of toxic metals differ in prevalence or are manifested differently in men and women. However, the database is small. The present work aims at evaluating gender differences in the health effects of cadmium, nickel, lead, mercury and arsenic. There is a markedly higher prevalence of nickel-induced allergy and hand eczema in women compared to men, mainly due to differences in exposure. Cadmium retention is generally higher in women than in men, and the severe cadmium-induced Itai-itai disease was mainly a woman's disease. Gender differences in susceptibility at lower exposure are uncertain, but recent data indicate that cadmium has estrogenic effects and affect female offspring. Men generally have higher blood lead levels than women. Lead accumulates in bone and increased endogenous lead exposure has been demonstrated during periods of increased bone turnover, particularly in women in pregnancy and menopause. Lead and mercury, in the form of mercury vapor and methylmercury, are easily transferred from the pregnant women to the fetus. Recent data indicate that boys are more susceptible to neurotoxic effects of lead and methylmercury following exposure early in life, while experimental data suggest that females are more susceptible to immunotoxic effects of lead. Certain gender differences in the biotransformation of arsenic by methylation have been reported, and men seem to be more affected by arsenic-related skin effect than women. Experimental studies indicate major gender differences in arsenic-induced cancer. Obviously, research on gender-related differences in health effects caused by metals needs considerable more focus in the future

  7. Effect of keratin on heavy metal chelation and toxicity to aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Coello, W.F.; Khan, M.A.Q. [Univ. of Illinois, Chicago, IL (United States). Dept. of Biological Sciences

    1998-12-31

    The presence of fresh scales and human hair in water can reduce the toxicity of lead nitrate at and above 6 ppb to fish. This ability is lost on drying and storage, but can be restored if dried hair or scales are treated with a solution of amino acids. The chelation ability of keratin in amino acid-treated scales or hair is retained for months on dry storage. Addition of these hair and/or scales to solutions of lead nitrate, mercuric chloride and a mixture of both, and cupric sulfate reduced the toxicity of these solutions to Daphnia magna and Dreissena polymorpha (zebra mussels). Toxicity of 10 ppm solutions of salts of 27 different metals to daphnids was similarly reduced after filtration through scales or hair. A mixture of a 2 ppb concentration of each of these 27 metals also became nonlethal to daphnids in the presence of, or filtration through, treated scales or hair. 0.25 g of treated hair or scale can be used indefinitely, again and again, to remove the mixture of these 27 metals from their fresh solution in 1 L water if the keratin is frequently rinsed with 0.1% nitric acid to remove the bound metals. The keratin in scales, this, may be the most important ectodermal secretion in absorbing metals from polluted environments and in providing protection against their toxic levels.

  8. Coping With Metal Toxicity – Cues From Halophytes

    Directory of Open Access Journals (Sweden)

    Ganesh C. Nikalje

    2018-06-01

    Full Text Available Being the native flora of saline soil, halophytes are well studied for their salt tolerance and adaptation mechanism at the physiological, biochemical, molecular and metabolomic levels. However, these saline habitats are getting contaminated due to various anthropogenic activities like urban waste, agricultural runoff, mining, industrial waste that are rich in toxic metals and metalloids. These toxic metals impose detrimental effects on growth and development of most plant species. Halophytes by virtue of their tolerance to salinity also show high tolerance to heavy metals which is attributed to the enhanced root to shoot metal translocation and bioavailability. Halophytes rapidly uptake toxic ions from the root and transport them toward aerial parts by using different transporters which are involved in metal tolerance and homeostasis. A number of defense related physiological and biochemical strategies are known to be crucial for metal detoxification in halophytes however; there is paucity of information on the molecular regulators. Understanding of the phenomenon of cross-tolerance of salinity with other abiotic stresses in halophytes could very well boost their potential use in phytoremediation. In this article, we present an overview of heavy metal tolerance in case of halophytes, associated mechanisms and cross-tolerance of salinity with other abiotic stresses.

  9. Toxicity of heavy metals in the environment

    National Research Council Canada - National Science Library

    Oehme, F.W

    1978-01-01

    ... as the fundamental mechanisms of toxicity resulting from heavy metal chemicals. The more common toxic heavy metals, along with their biochemistry and associated clinical syndromes, are then described...

  10. Predicting dietborne metal toxicity from metal influxes

    Science.gov (United States)

    Croteau, M.-N.; Luoma, S.N.

    2009-01-01

    Dietborne metal uptake prevails for many species in nature. However, the links between dietary metal exposure and toxicity are not well understood. Sources of uncertainty include the lack of suitable tracers to quantify exposure for metals such as copper, the difficulty to assess dietary processes such as food ingestion rate, and the complexity to link metal bioaccumulation and effects. We characterized dietborne copper, nickel, and cadmium influxes in a freshwater gastropod exposed to diatoms labeled with enriched stable metal isotopes. Metal influxes in Lymnaea stagnalis correlated linearly with dietborne metal concentrations over a range encompassing most environmental exposures. Dietary Cd and Ni uptake rate constants (kuf) were, respectively, 3.3 and 2.3 times higher than that for Cu. Detoxification rate constants (k detox) were similar among metals and appeared 100 times higher than efflux rate constants (ke). Extremely high Cu concentrations reduced feeding rates, causing the relationship between exposure and influx to deviate from linearity; i.e., Cu uptake rates leveled off between 1500 and 1800 nmol g-1 day-1. L. stagnalis rapidly takes up Cu, Cd, and Ni from food but detoxifies the accumulated metals, instead of reducing uptake or intensifying excretion. Above a threshold uptake rate, however, the detoxification capabilities of L. stagnalis are overwhelmed.

  11. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.

    Science.gov (United States)

    Shahid, Muhammad; Pourrut, Bertrand; Dumat, Camille; Nadeem, Muhammad; Aslam, Muhammad; Pinelli, Eric

    2014-01-01

    As a result of the industrial revolution, anthropogenic activities have enhanced there distribution of many toxic heavy metals from the earth's crust to different environmental compartments. Environmental pollution by toxic heavy metals is increasing worldwide, and poses a rising threat to both the environment and to human health.Plants are exposed to heavy metals from various sources: mining and refining of ores, fertilizer and pesticide applications, battery chemicals, disposal of solid wastes(including sewage sludge), irrigation with wastewater, vehicular exhaust emissions and adjacent industrial activity.Heavy metals induce various morphological, physiological, and biochemical dysfunctions in plants, either directly or indirectly, and cause various damaging effects. The most frequently documented and earliest consequence of heavy metal toxicity in plants cells is the overproduction of ROS. Unlike redox-active metals such as iron and copper, heavy metals (e.g, Pb, Cd, Ni, AI, Mn and Zn) cannot generate ROS directly by participating in biological redox reactions such as Haber Weiss/Fenton reactions. However, these metals induce ROS generation via different indirect mechanisms, such as stimulating the activity of NADPH oxidases, displacing essential cations from specific binding sites of enzymes and inhibiting enzymatic activities from their affinity for -SH groups on the enzyme.Under normal conditions, ROS play several essential roles in regulating the expression of different genes. Reactive oxygen species control numerous processes like the cell cycle, plant growth, abiotic stress responses, systemic signalling, programmed cell death, pathogen defence and development. Enhanced generation of these species from heavy metal toxicity deteriorates the intrinsic antioxidant defense system of cells, and causes oxidative stress. Cells with oxidative stress display various chemical,biological and physiological toxic symptoms as a result of the interaction between ROS and

  12. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  13. Nail toxicity induced by cancer chemotherapy.

    Science.gov (United States)

    Gilbar, Peter; Hain, Alice; Peereboom, Veta-Marie

    2009-09-01

    To provide a comprehensive literature review of chemotherapy-induced nail toxicity, including clinical presentation, implicated drugs and approaches for prevention and management. A search of MEDLINE and EMBASE (1966-2008) databases was conducted using the terms (and variations of the terms) antineoplastic agents, nails, nail toxicity, onycholysis, and paronychia. Bibliographies from selected articles were reviewed for appropriate references. The retrieved literature was reviewed to include all articles relevant to the clinical presentation, diagnosis, incidence, prevention, and treatment of chemotherapy-induced nail toxicity. Nail toxicity is a relatively uncommon adverse effect linked to a number of chemotherapeutic agents. Clinical presentation varies, depending on which nail structure is affected and the severity of the insult. Nail changes may involve all or some nails. Toxicity may be asymptomatic and limited to cosmetic concerns, however, more severe effects, involving pain and discomfort can occur. Taxanes and anthracyclines are the antineoplastic drug groups most commonly implicated. It is suggested that the administration schedule may influence the incidence of nail abnormalities, for example reported cases linked to the weekly administration of paclitaxel.Before instituting chemotherapy, patients should be educated regarding potential nail toxicities and strategies for prevention implemented. Management includes appropriate nail cutting, avoiding potential irritants, topical, or oral antimicrobials, and possibly cessation or dose reduction of the offending agent. Cryotherapy, through the application of frozen gloves or socks, has been beneficial in reducing docetaxel-induced nail toxicity and may be effective for other drugs.

  14. Curcumin mitigates fenthion-induced testicular toxicity in rats ...

    African Journals Online (AJOL)

    Fenthion is a widely used organophosphorus pesticide in agriculture that induces different cytotoxic effects, including male reproductive toxicity. The present work aimed to study the ameliorative effects of curcumin, a potential therapeutic agent against several chronic diseases, on reproductive toxicity induced by the ...

  15. Effects of multi-metal toxicity on the performance of sewage treatment system during the festival of colors (Holi) in India.

    Science.gov (United States)

    Tyagi, Vinay Kumar; Bhatia, Akanksha; Gaur, Rubia Zahid; Khan, Abid Ali; Ali, Muntajir; Khursheed, Anwar; Kazmi, Absar Ahmad

    2012-12-01

    The present study investigated the effects of heavy metals (Ni, Zn, Cd, Cu, and Pb) toxicity on the performance of 18 MLD activated sludge process-based sewage treatment plant (STP) during celebration of Holi (festival of colors in India). The composite sampling (n = 32) was carried out during the entire study period. The findings show a significant decrease in chemical oxygen demand removal efficiency (20%) of activated sludge system, after receiving the heavy metals laden wastewater. A significant reduction of 40% and 60% were observed in MLVSS/MLSS ratio and specific oxygen uptake rate, which eventually led to a substantial decrease in biomass growth yield (from 0.54 to 0.17). The toxic effect of metals ions was also observed on protozoan population. Out of the 12 mixed liquor species recorded, only two ciliates species of Vorticella and Epistylis exhibited the greater tolerance against heavy metals toxicity. Furthermore, activated sludge shows the highest metal adsorption affinity for Cu, followed by Zn, Pb, Ni, and Cd (Cu > Zn > Pb > Ni > Cd). Finally, this study proves the robustness of activated sludge system against the sudden increase in heavy metal toxicity since it recovered the earlier good quality performance within 5 days.

  16. Parkinson Disease Protein DJ-1 Binds Metals and Protects against Metal-induced Cytotoxicity*

    Science.gov (United States)

    Björkblom, Benny; Adilbayeva, Altynai; Maple-Grødem, Jodi; Piston, Dominik; Ökvist, Mats; Xu, Xiang Ming; Brede, Cato; Larsen, Jan Petter; Møller, Simon Geir

    2013-01-01

    The progressive loss of motor control due to reduction of dopamine-producing neurons in the substantia nigra pars compacta and decreased striatal dopamine levels are the classically described features of Parkinson disease (PD). Neuronal damage also progresses to other regions of the brain, and additional non-motor dysfunctions are common. Accumulation of environmental toxins, such as pesticides and metals, are suggested risk factors for the development of typical late onset PD, although genetic factors seem to be substantial in early onset cases. Mutations of DJ-1 are known to cause a form of recessive early onset Parkinson disease, highlighting an important functional role for DJ-1 in early disease prevention. This study identifies human DJ-1 as a metal-binding protein able to evidently bind copper as well as toxic mercury ions in vitro. The study further characterizes the cytoprotective function of DJ-1 and PD-mutated variants of DJ-1 with respect to induced metal cytotoxicity. The results show that expression of DJ-1 enhances the cells' protective mechanisms against induced metal toxicity and that this protection is lost for DJ-1 PD mutations A104T and D149A. The study also shows that oxidation site-mutated DJ-1 C106A retains its ability to protect cells. We also show that concomitant addition of dopamine exposure sensitizes cells to metal-induced cytotoxicity. We also confirm that redox-active dopamine adducts enhance metal-catalyzed oxidation of intracellular proteins in vivo by use of live cell imaging of redox-sensitive S3roGFP. The study indicates that even a small genetic alteration can sensitize cells to metal-induced cell death, a finding that may revive the interest in exogenous factors in the etiology of PD. PMID:23792957

  17. [The umbilical blood levels of lead and some other toxic metals as a biomarker of environment-induced exposure].

    Science.gov (United States)

    Privalova, L I; Malykh, O L; Matiukhina, G V; Gnezdilova, S V

    2007-01-01

    Groups of pregnant women, which made up in Revda, Pervouralsk, Krasnouralsk, and Verkh-Isetsky District of Yekaterinburg, were studied. Tests of umbilical blood samples (UB) for the levels of calcium, iron, chromium, manganese, zinc, nickel, cadmium, lead, arsenic, copper, and mercury have established that the mean concentration of lead and the proportion of samples with elevated UB lead concentrations depend on how close the residential area is located to the major industrial source of emission of this toxic metal into ambient air. This correlation is less marked for other metals or it is not found. The particular position of lead is likely to be explained by the fact that it is entirely foreign to an organism and by the comparative unimportance of a contribution of the sources of exposure to this metal, which are unassociated with man-caused environmental and food pollution. As far as other metals are concerned, the situation is complicated by the fact that they are not only toxic, but when upon minor exposures, also essential biotrace elements with controlled and interdependent toxic kinetics. It is also shown that when a pregnant woman takes a complex of biological protectors promoting a reduction in her body's levels of lead, its concentrations in her body, its UB concentration is much lower than such a bioprophylactic effect is absent.

  18. Metal metabolism and toxicity

    International Nuclear Information System (INIS)

    Bhattacharyya, M.H.; Larsen, R.P.; Whelton, B.D.; Moretti, E.S.; Peterson, D.P.; Oldham, R.D.

    1985-01-01

    This research focuses on the role of pregnancy and lactation in susceptibility to the toxic effects of cadmium and lead. Responses under investigation include lead-induced changes in pathways for vitamin D and calcium metabolism and cadmium-induced alterations in kidney function and skeletal structure. The second area focuses on the gastrointestinal absorption of plutonium and other actinide elements. Studies currently being conducted in nonhuman primates to develop a procedure to determine GI absorption values of uranium and plutonium that does not require sacrifice of the animal. 6 refs

  19. Sulfur polymer cement encapsulation of RCRA toxic metals and metal oxides

    International Nuclear Information System (INIS)

    Calhoun, C.L. Jr.; Nulf, L.E.; Gorin, A.H.

    1995-06-01

    A study was conducted to determine the suitability of Sulfur Polymer Cement (SPC) encapsulation technology for the stabilization of RCRA toxic metal and metal oxide wastes. In a series of bench-scale experiments, the effects of sodium sulfide additions to the waste mixture, residence time, and temperature profile were evaluated. In addition, an effort was made to ascertain the degree to which SPC affords chemical stabilization as opposed to physical encapsulation. Experimental results have demonstrated that at the 25 wt % loading level, SPC can effectively immobilize Cr, Cr 2 O 3 , Hg, Pb, and Se to levels below regulatory limits. SPC encapsulation also has been shown to significantly reduce the leachability of other toxic compounds including PbO, PbO 2 , As 2 O 3 , BaO, and CdO. In addition, data has confirmed sulfide conversion of Hg, Pb, PbO, PbO 2 , and BaO as the product of their reaction with SPC

  20. Protective Effect of Morocco Carob Honey Against Lead-Induced Anemia and Hepato-Renal Toxicity

    OpenAIRE

    Aicha Fassi Fihri; Noori S. Al-Waili; Redouan El-Haskoury; Meryem Bakour; Afaf Amarti; Mohammad J. Ansari; Badiaa Lyoussi

    2016-01-01

    Background/Aims: Natural honey has many biological activities including protective effect against toxic materials. The aim of this study was to evaluate the protective effect of carob honey against lead-induced hepato-renal toxicity and lead-induced anemia in rabbits. Methods: Twenty four male rabbits were allocated into four groups six rabbits each; group 1: control group, received distilled water (0.1 ml / kg.b.wt /daily); group 2: received oral lead acetate (2 g/kg.b.wt/daily); group 3: tr...

  1. Presence of toxic metals and their effects in finished leather goods

    International Nuclear Information System (INIS)

    Rana, B.B.; Ehsan, A.M.

    2016-01-01

    This study examines the presence of heavy metals in different types of leather finished goods. Various leather items like gloves, shoe soles and leather pieces for jackets were tested using Atomic Absorption Spectrophotometry and their toxic effects in our environment are discussed. Cadmium, lead and chromium are the most common heavy metals present in leather finished goods and are a cause for concern. Many countries in Europe and America have banned or limited their use in leather processing. This study reveals that the levels of heavy metals in most of the leather goods manufactured by different companies in Pakistan are within permissible limits. However, in some of the samples tested in this study, the amounts of cadmium, lead and chromium are considerably high which requires special attention from all stakeholders to bring it down to acceptable level. Failing to do so will be detrimental for export of these leather goods to Europe and America. (author)

  2. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops.

    Science.gov (United States)

    Islam, Ejaz ul; Yang, Xiao-e; He, Zhen-li; Mahmood, Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  3. Potentially toxic metals in ombrotrophic peat along a 400 km English-Scottish transect

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.J. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Hughes, S. [Centre for Ecology and Hydrology (Bangor), Deiniol Road, Bangor, Gwynedd LL57 2UP (United Kingdom); Lawlor, A.J. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Lofts, S. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Simon, B.M. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Stevens, P.A. [Centre for Ecology and Hydrology (Bangor), Deiniol Road, Bangor, Gwynedd LL57 2UP (United Kingdom); Stidson, R.T. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom); Tipping, E. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom)]. E-mail: et@ceh.ac.uk; Vincent, C.D. [Centre for Ecology and Hydrology (Lancaster), Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP (United Kingdom)

    2005-07-15

    Four samples of ombrotrophic peat were collected from each of 10 upland locations in a transect from the southern Pennines to the Highland Boundary Fault, a total distance of ca. 400 km. Bulk compositions and other properties were determined. Total contents of Al and heavy metals (Ni, Cu, Zn, Cd, Pb) were determined following digestion with hydrofluoric acid, and concentrations of metals extractable with dilute nitric acid were also measured. Supernatants obtained from aqueous extractions of the peat samples were analysed for pH, major cations and anions, dissolved organic carbon and dissolved metals, and concentrations of free metal ions (Al{sup 3+}, Ni{sup 2+}, etc.) were estimated by applying a chemical speciation model. Both total and HNO{sub 3}-extractable metal concentrations varied along the transect, the highest values being found at locations close to industrial and former mining areas. The HNO{sub 3}-extractable soil metal contents of Ni, Cu and Cd were appreciably lower than lowest-observed-effect-concentrations (LOEC) for toxicity towards microorganisms in acid, organic rich soils. However, the contents of Zn at two locations, and of Pb at five locations exceeded LOECs, suggesting that they may be exerting toxic effects in the peats. Soil solution concentrations of free heavy metal ions (Cu{sup 2+}, Zn{sup 2+}, Cd{sup 2+}, Pb{sup 2+}) were substantially lower than LOECs for toxicity towards vascular plants, whereas concentrations of Al{sup 3+} were near to toxic levels at two locations. - P eat metal contents depend upon proximity to industrial and mining areas; the metals may be exerting toxic effects in some places.

  4. "Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: strategies and challenges."

    Directory of Open Access Journals (Sweden)

    Paul eRay

    2014-07-01

    Full Text Available Exposure to toxic metals poses a serious human health hazard based on ubiquitous environmental presence, the extent of exposure, and the toxicity and disease states associated with exposure. This global health issue warrants accurate and reliable models derived from the risk assessment process to predict disease risk in populations. There has been considerable interest recently in the impact of environmental toxicants such as toxic metals on the epigenome. Epigenetic modifications are somatically inherited alterations to an individual’s genome without a change in the DNA sequence, and include, but are not limited to, three commonly studied alterations: DNA methylation, histone modification, and non-coding RNA expression. Given the role of epigenetic alterations in regulating gene and thus protein expression, there is the potential for the integration of toxic metal-induced epigenetic alterations as informative factors in the risk assessment process. In the present review, epigenetic alterations induced by five high priority toxic metals/metalloids are prioritized for analysis and their possible inclusion into the risk assessment process is discussed.

  5. Modelling chelate-Induced phytoextraction: functional models predicting bioavailability of metals in soil, metal uptake and shoot biomass

    Directory of Open Access Journals (Sweden)

    Pasqualina Sacco

    2006-06-01

    Full Text Available Chelate-induced phytoextraction of heavy metals from contaminated soils requires special care to determine, a priori, the best method of chelate application, in terms of both dose and timing. In fact, the chelate dose must assure the bioavailability of the metal to the plant without increasing leaching risk and giving toxic effects. Three mathematical models are here proposed for usefully interpreting the processes taking place: a increased soil bioavailability of metals by chelants; b metal uptake by plants; c variation in plant biomass. The models are implemented and validated using data from pot and lysimeter trials. Both the chelate dose and the time elapsed since its application affected metal bioavailability and plant response. Contrariwise, the distribution strategy (single vs. split application seems to produce significant differences both in plant growth and metal uptake, but not in soil metal bioavailability. The proposed models may help to understand and predict the chelate dose – effect relationship with less experimental work.

  6. Modelling chelate-Induced phytoextraction: functional models predicting bioavailability of metals in soil, metal uptake and shoot biomass

    Directory of Open Access Journals (Sweden)

    Pasqualina Sacco

    Full Text Available Chelate-induced phytoextraction of heavy metals from contaminated soils requires special care to determine, a priori, the best method of chelate application, in terms of both dose and timing. In fact, the chelate dose must assure the bioavailability of the metal to the plant without increasing leaching risk and giving toxic effects. Three mathematical models are here proposed for usefully interpreting the processes taking place: a increased soil bioavailability of metals by chelants; b metal uptake by plants; c variation in plant biomass. The models are implemented and validated using data from pot and lysimeter trials. Both the chelate dose and the time elapsed since its application affected metal bioavailability and plant response. Contrariwise, the distribution strategy (single vs. split application seems to produce significant differences both in plant growth and metal uptake, but not in soil metal bioavailability. The proposed models may help to understand and predict the chelate dose – effect relationship with less experimental work.

  7. Effects of artificial sweeteners on metal bioconcentration and toxicity on a green algae Scenedesmus obliquus.

    Science.gov (United States)

    Hu, Hongwei; Deng, Yuanyuan; Fan, Yunfei; Zhang, Pengfei; Sun, Hongwen; Gan, Zhiwei; Zhu, Hongkai; Yao, Yiming

    2016-05-01

    The ecotoxicity of heavy metals depends much on their speciation, which is influenced by other co-existing substances having chelating capacity. In the present study, the toxic effects of Cd(2+) and Cu(2+) on a green algae Scenedesmus obliquus were examined in the presence of two artificial sweeteners (ASs), acesulfame (ACE) and sucralose (SUC) by comparing the cell specific growth rate μ and pulse-amplitude-modulated (PAM) parameters (maximal photosystem II photochemical efficiency Fv/Fm, actual photochemical efficiency Yield, and non-photochemical quenching NPQ) of the algae over a 96-h period. Simultaneously, the bioconcentration of the metals by the algal cells in the presence of the ASs was measured. The presence of ACE enhanced the growth of S. obliquus and promoted the bioconcentration of Cd(2+) in S. obliquus, while the impacts of SUC were not significant. Meanwhile, EC50 values of Cd(2+) on the growth of S. obliquus increased from 0.42 mg/L to 0.54 mg/L and 0.48 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. As for Cu(2+), EC50 values increased from 0.13 mg/L to 0.17 mg/L and 0.15 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. In summary, the two ASs reduced the toxicity of the metals on the algae, with ACE showing greater effect than SUC. Although not as sensitive as the cell specific growth rate, PAM parameters could disclose the mechanisms involved in metal toxicity at subcellular levels. This study provides the first evidence for the possible impact of ASs on the ecotoxicity of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Study on the toxic effects induced by different arsenicals in primary cultured rat astroglia

    International Nuclear Information System (INIS)

    Jin Yaping; Sun Guifan; Li Xin; Li Gexin; Lu Chunwei; Qu Long

    2004-01-01

    Arsenic toxicity is a global health problem affecting millions of people. The objectives of this study were to determine if the toxic effects on primary cultured rat astroglia would be induced by different arsenicals. Based on alamarBlue assay and the single cell gel electrophoresis (SCGE, comet assay), the cell viability and DNA damage in the cells exposed to different arsenicals were evaluated. Treatment of astroglia with methylated arsenicals, that is, pentavalent monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV), resulted in no obvious changes in cell viability and DNA damage at micromolar concentrations. However, treatment of astroglia with inorganic arsenicals, that is, arsenite and arsenate, caused decreased cell viability and increased DNA damage at micromolar levels, and showing a dose-related decrease in mean alamarBlue reduced rate and a dose-related increase in mean comet length. Our study is therefore highly suggestive for a link between inorganic exposure and cellular toxicity or DNA damage. Based on the results of this study, the toxic effects induced by arsenite were stronger than those induced by arsenate

  9. Protective Effect of Vitamins E and C on Endosulfan-Induced Reproductive Toxicity in Male Rats

    Directory of Open Access Journals (Sweden)

    Hussain Kargar

    2012-09-01

    Full Text Available Background: The role of oxidative stress in endosulfan-induced reproductive toxicity has been implicated. This study was performed to evaluate the possible protective effect of vitamins E and C, against endosulfan-induced reproductive toxicity in rats.Methods: Fifty adult male Sprague–Dawley rats were randomly divided into five groups (n=10 each. The groups included a control receiving vehicle, a group treated with endosulfan (10 mg/kg/day alone, and three endosulfan-treated group receiving vitamin C (20 mg/kg/day, vitamin E (200 mg/kg/day, or vitamine C+vitamin E at the same doses. After 10 days of treatment, sperm parameters, plasma lactate dehydrogenase (LDH, plasma testosterone and malondialdehyde (MDA levels in the testis were determined. Results: Oral administration of endosulfan caused a reduction in the sperm motility, viability, daily sperm production (DSP and increased the number of sperm with abnormal chromatin condensation. Endosulfan administration increased testis MDA and plasma LDH. Supplementation of vitamin C and vitamin E to endosulfan-treated rats reduced the toxic effect of endosulfan on sperm parameters and lipid peroxidation in the testis. Vitamin E was more protective than vitamin C in reducing the adverse effects of the endosulfan.Conclusion: The findings data suggest that administration of vitamins C and E ameliorated the endosulfan-induced oxidative stress and sperm toxicity in rat. The effect of vitamin E in preventing endosulfan-induced sperm toxicity was superior to that of vitamin C.

  10. Protective effect of vitamins e and C on endosulfan-induced reproductive toxicity in male rats.

    Science.gov (United States)

    Takhshid, Mohammad Ali; Tavasuli, Ali Reza; Heidary, Yazdan; Keshavarz, Mojtaba; Kargar, Hussain

    2012-09-01

    The role of oxidative stress in endosulfan-induced reproductive toxicity has been implicated. This study was performed to evaluate the possible protective effect of vitamins E and C, against endosulfan-induced reproductive toxicity in rats. Fifty adult male Sprague-Dawley rats were randomly divided into five groups (n=10 each). The groups included a control receiving vehicle, a group treated with endosulfan (10 mg/kg/day) alone, and three endosulfan-treated group receiving vitamin C (20 mg/kg/day), vitamin E (200 mg/kg/day), or vitamine C+vitamin E at the same doses. After 10 days of treatment, sperm parameters, plasma lactate dehydrogenase (LDH), plasma testosterone and malondialdehyde (MDA) levels in the testis were determined. Oral administration of endosulfan caused a reduction in the sperm motility, viability, daily sperm production (DSP) and increased the number of sperm with abnormal chromatin condensation. Endosulfan administration increased testis MDA and plasma LDH. Supplementation of vitamin C and vitamin E to endosulfan-treated rats reduced the toxic effect of endosulfan on sperm parameters and lipid peroxidation in the testis. Vitamin E was more protective than vitamin C in reducing the adverse effects of the endosulfan. The findings data suggest that administration of vitamins C and E ameliorated the endosulfan-induced oxidative stress and sperm toxicity in rat. The effect of vitamin E in preventing endosulfan-induced sperm toxicity was superior to that of vitamin C.

  11. Removal of soluble toxic metals from water

    International Nuclear Information System (INIS)

    Buckley, L.P.; Vijayan, S.; McConeghy, G.J.; Maves, S.R.; Martin, J.F.

    1990-05-01

    The removal of selected, soluble toxic metals from aqueous solutions has been accomplished using a combination of chemical treatment and ultrafiltration. The process has been evaluated at the bench-scale and is undergoing pilot-scale testing. Removal efficiencies in excess of 95-99% have been realized. The test program at the bench-scale investigated the limitations and established the optimum range of operating parameters for the process, while the tests conducted with the pilot-scale process equipment are providing information on longer-term process efficiencies, effective processing rates, and fouling potential of the membranes. With the typically found average concentrations of the toxic metals in groundwaters at Superfund sites used as the feed solution, the process has decreased levels up to 100-fold or more. Experiments were also conducted with concentrated solutions to determine their release from silica-based matrices. The solidified wastes were subjected to EP Toxicity test procedures and met the criteria successfully. The final phase of the program involving a field demonstration at a uranium tailings site will be outlined

  12. Lithium attenuates lead induced toxicity on mouse non-adherent bone marrow cells.

    Science.gov (United States)

    Banijamali, Mahsan; Rabbani-Chadegani, Azra; Shahhoseini, Maryam

    2016-07-01

    Lead is a poisonous heavy metal that occurs in all parts of environment and causes serious health problems in humans. The aim of the present study was to investigate the possible protective effect of lithium against lead nitrate induced toxicity in non-adherent bone marrow stem cells. Trypan blue and MTT assays represented that exposure of the cells to different concentrations of lead nitrate decreased viability in a dose dependent manner, whereas, pretreatment of the cells with lithium protected the cells against lead toxicity. Lead reduced the number and differentiation status of bone marrow-derived precursors when cultured in the presence of colony stimulating factor (CSF), while the effect was attenuated by lithium. The cells treated with lead nitrate exhibited cell shrinkage, DNA fragmentation, anion superoxide production, but lithium prevented lead action. Moreover, apoptotic indexes such as PARP cleavage and release of HMGB1 induced by lead, were protected by lithium, suggesting anti-apoptotic effect of lithium. Immunoblot analysis of histone H3K9 acetylation indicated that lithium overcame lead effect on acetylation. In conclusion, lithium efficiently reduces lead toxicity suggesting new insight into lithium action which may contribute to increased cell survival. It also provides a potentially new therapeutic strategy for lithium and a cost-effective approach to minimize destructive effects of lead on bone marrow stem cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Biodegradation of metal citrate complexes and implications for toxic-metal mobility

    International Nuclear Information System (INIS)

    Francis, A.J.; Dodge, C.J.; Gillow, J.B.

    1992-01-01

    The presence of synthetic and naturally occurring chelating agents in nuclear and toxic-metal wastes is a major concern because of their potential to enhance mobilization of metal ions away from the disposal sites. Of particular interest is citric acid, which is present in low-level and transuranic radioactive wastes and in domestic and industrial wastes (as washing fluids, for instance), as well as being found naturally. Citrate ions form multidentate, stable complexes with a variety of toxic metals and radionuclides; but biodegradation of these complexes, precipitating the metal ions as insoluble hydroxides, oxides or other salts, may retard migration. Here we report a study of the biodegradation of citrate complexes of Ca, Fe(II), Fe(III), Cd, Cu, Ni, Pb and U. Several of these complexes were not readily degraded by bacteria, and the biodegradability depended on the chemical nature of the complex, not on the toxicity of the metal to the bacteria. This resistance to biodegradation implies that citrate complexation may play an important part in migration of these hazardous wastes. (author)

  14. TOXIC METAL EMISSIONS FROM INCINERATION: MECHANISMS AND CONTROL

    Science.gov (United States)

    Toxic metals appear in the effluents of many combustion processes, and their release into the environment has come under regulatory scrutiny. This paper reviews the nature of the problems associated with toxic metals in combustion processes, and describes where these problems occ...

  15. Predicting toxic heavy metal movements in upper Sanyati catchment ...

    African Journals Online (AJOL)

    Water samples from boreholes located in areas where mining, mineral processing and agricultural activities were dominant, yielded the highest values of toxic heavy metals. Dilution Attenuation Factor (DAF) for each toxic heavy metal was calculated to observe metal behaviour along the contaminant path for each season.

  16. Metal-induced changes in photosynthetic electron transport in poplar Ieaves

    International Nuclear Information System (INIS)

    Kralova, K.; Gaplovsky, A.; Masarovicova, E.; Havranek, E.

    2001-01-01

    This study reports the effect of different toxic metals (Cu, Hg and Cd) on dark-induced changes in the photochemical activity of detached poplar leaves that were submersed in solutions of tested metals at different pH level, on the metal accumulation in poplar leaves as well as on fluorescence quenching ability of the tested metals. Cu and Hg inhibited the photosynthetic electron transport (PET) in chloroplast prepared from the leaves of P. nigra and the corresponding IC 50 values were 32.7 and 512.7 μmol dm -3 , respectively. We could not determine the IC 50 value for CdCl 2 due to its very low PET-inhibiting activity. These results are in agreement with previous findings concerning PET inhibition by the studied metals in spinach chloroplasts. The accumulated metal amounts in poplar leaves were determined using radionuclide X-ray fluorescence analysis. The accumulated metal amount increased with the increasing metal concentration and with the decreasing pH value of the applied metal solution. (authors)

  17. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice

    OpenAIRE

    Al-Attar, Atef M.

    2010-01-01

    Toxic heavy metals in water, air and soil are global problems that are a growing threat to humanity. Heavy metals are widely distributed in the environment and some of them occur in food, water, air and tissues even in the absence of occupational exposure. The antioxidant and protective influences of vitamin E on a mixture of some heavy metals (Pb, Hg, Cd and Cu)-induced oxidative stress and renal and testicular injuries were evaluated in male mice. Exposure of mice to these heavy metals in d...

  18. Effects of metals on enantioselective toxicity and biotransformation of cis-bifenthrin in zebrafish.

    Science.gov (United States)

    Yang, Ye; Ji, Dapeng; Huang, Xin; Zhang, Jianyun; Liu, Jing

    2017-08-01

    Co-occurrence of pyrethroids and metals in watersheds previously has been reported to pose great risk to aquatic species. Pyrethroids are a class of chiral insecticides that have been shown to have enantioselective toxicity and biotransformation. However, the influence of metals on enantioselectivity of pyrethroids has not yet been evaluated. In the present study, the effects of cadmium (Cd), copper (Cu), and lead (Pb) on the enantioselective toxicity and metabolism of cis-bifenthrin (cis-BF) were investigated in zebrafish at environmentally relevant concentrations. The addition of Cd, Cu, or Pb significantly increased the mortality of zebrafish in racemate and R-enantiomer of cis-BF-treated groups. In rac-cis-BF- or 1R-cis-BF-treated groups, the addition of Cd, Cu, or Pb caused a decrease in enantiomeric fraction (EF) and an increased ratio of R-enantiomer residues in zebrafish. In 1S-cis-BF-treated groups, coexposure to Cd led to a lower EF and decreased residue levels of S-enantiomer. In addition, coexposure to the 3 metals resulted in different biodegradation characteristics of each enantiomer accompanied with differential changes in the expression of cytochrome P450 (CYP)1, CYP2, and CYP3 genes, which might be responsible for the enantioselective biodegradation of cis-BF in zebrafish. These results suggest that the influence of coexistent metals should be considered in the ecological risk assessment of chiral pyrethroids in aquatic environments. Environ Toxicol Chem 2017;36:2139-2146. © 2017 SETAC. © 2017 SETAC.

  19. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    Science.gov (United States)

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits. © 2014 SETAC.

  20. Evaluation of metals, metalloids, and ash mixture toxicity using sediment toxicity testing.

    Science.gov (United States)

    Stojak, Amber; Bonnevie, Nancy L; Jones, Daniel S

    2015-01-01

    In December 2008, a release of 4.1 million m(3) of coal ash from the Tennessee Valley Authority Kingston Fossil Plant occurred. Ash washed into the Emory River and migrated downstream into the Clinch and Tennessee Rivers. A Baseline Ecological Risk Assessment evaluated risks to ecological receptors from ash in the river system post-dredging. This article describes the approach used and results from sediment toxicity tests, discussing any causal relationships between ash, metals, and toxicity. Literature is limited in the realm of aquatic coal combustion residue (CCR) exposures and the potential magnitude of effects on benthic invertebrates. Sediment samples along a spectrum of ash content were used in a tiered toxicity testing approach and included a combination of 10 day sediment toxicity acute tests and longer-term, partial life cycle "definitive" tests with 2 species (Hyalella azteca and Chironomus dilutus). Arsenic, and to a lesser extent Se, in the ash was the most likely toxicant causing observed effects in the laboratory toxicity tests. Sites in the Emory River with the greatest statistical and biologically significant effects had As concentrations in sediments twice the probable effects concentration of 33 mg/kg. These sites contained greater than 50% ash. Sites with less than approximately 50% ash in sediments exhibited fewer significant toxic responses relative to the reference sediment in the laboratory. The results discussed here present useful evidence of only limited effects occurring from a worst-case exposure pathway. These results provided a valuable line of evidence for the overall assessment of risks to benthic invertebrates and to other ecological receptors, and were crucial to risk management and development of project remediation goals. © 2014 SETAC.

  1. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron.

    Science.gov (United States)

    Guo, Jing; Kang, Yong; Feng, Ying

    2017-12-01

    A simple and valid toxicity evaluation of Zn 2+ , Mn 2+ and Cr 6+ on sulfate-reducing bacteria (SRB) and heavy metal removal were investigated using the SRB system and SRB+Fe 0 system. The heavy metal toxicity coefficient (β) and the heavy metal concentration resulting in 50% inhibition of sulfate reduction (I) from a modeling process were proposed to evaluate the heavy metal toxicity and nonlinear regression was applied to search for evaluation indices β and I. The heavy metal toxicity order was Cr 6+  > Mn 2+  > Zn 2+ . Compared with the SRB system, the SRB+Fe 0 system exhibited a better capability for sulfate reduction and heavy metal removal. The heavy metal removal was above 99% in the SRB+Fe 0 system, except for Mn 2+ . The energy-dispersive spectroscopy (EDS) analysis showed that the precipitates were removed primarily as sulfide for Zn 2+ and hydroxide for Mn 2+ and Cr 6+ .The method of evaluating the heavy metal toxicity on SRB was of great significance to understand the fundamentals of the heavy metal toxicity and inhibition effects on the microorganism and regulate the process of microbial sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Anil K.; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep [Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Orlicky, David J. [Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Agarwal, Chapla [Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); White, Carl W. [Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045USA (United States); Agarwal, Rajesh, E-mail: Rajesh.Agarwal@UCDenver.edu [Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States)

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. - Highlights: • Silibinin treatment attenuated nitrogen mustard (NM)-induced skin injury. • Silibinin affects pathways associated with DNA damage, inflammation and vesication. • The efficacy of silibinin could also be associated with oxidative stress. • These results support testing and optimization of

  3. Fatal Cobalt Toxicity after a Non-Metal-on-Metal Total Hip Arthroplasty

    Directory of Open Access Journals (Sweden)

    Rinne M. Peters

    2017-01-01

    Full Text Available This case illustrates the potential for systemic cobalt toxicity in non-metal-on-metal bearings and its potentially devastating consequences. We present a 71-year-old male with grinding sensations in his right hip following ceramic-on-ceramic total hip arthroplasty (THA. After diagnosing a fractured ceramic liner, the hip prosthesis was revised into a metal-on-polyethylene bearing. At one year postoperatively, X-rays and MARS-MRI showed a fixed reversed hybrid THA, with periarticular densities, flattening of the femoral head component, and a pattern of periarticular metal wear debris and pseudotumor formation. Before revision could take place, the patient was admitted with the clinical picture of systemic cobalt toxicity, supported by excessively high serum cobalt and chromium levels, and ultimately died. At autopsy dilated cardiomyopathy as cause of death was hypothesized. A third body wear reaction between ceramic remnants and the metal femoral head very likely led to excessive metal wear, which contributed systemic cobalt toxicity leading to neurotoxicity and heart failure. This case emphasizes that fractured ceramic-on-ceramic bearings should be revised to ceramic-on-ceramic or ceramic-on-polyethylene bearings, but not to metal-on-polyethylene bearings. We aim to increase awareness among orthopedic surgeons for clinical clues for systemic cobalt intoxication, even when there is no metal-on-metal bearing surface.

  4. Toxic metals in WEEE: Characterization and substance flow analysis in waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Masahiro, E-mail: oguchi.masahiro@nies.go.jp; Sakanakura, Hirofumi; Terazono, Atsushi

    2013-10-01

    Waste electrical and electronic equipment (WEEE) has received extensive attention as a secondary source of metals. Because WEEE also contains toxic substances such as heavy metals, appropriate management of these substances is important in the recycling and treatment of WEEE. As a basis for discussion toward better management of WEEE, this study characterizes various types of WEEE in terms of toxic metal contents. The fate of various metals contained in WEEE, including toxic metals, was also investigated in actual waste treatment processes. Cathode-ray tube televisions showed the highest concentration and the largest total amount of toxic metals such as Ba, Pb, and Sb, so appropriate recycling and disposal of these televisions would greatly contribute to better management of toxic metals in WEEE. A future challenge is the management of toxic metals in mid-sized items such as audio/visual and ICT equipment because even though the concentrations were not high in these items, the total amount of toxic metals contained in them is not negligible. In the case of Japan, such mid-sized WEEE items as well as small electronic items are subject to municipal solid waste treatment. A case study showed that a landfill was the main destination of toxic metals contained in those items in the current treatment systems. The case study also showed that changes in the flows of toxic metals will occur when treatment processes are modified to emphasize resource recovery. Because the flow changes might lead to an increase in the amount of toxic metals released to the environment, the flows of toxic metals and the materials targeted for resource recovery should be considered simultaneously. - Highlights: ► Appropriate management of toxic metals contained in WEEE is important during recycling and treatment of WEEE. ► CRT TVs contain large amount of toxic metals with high concentration and thus appropriate management is highly important. ► Mid-sized equipment is a future target for

  5. How Saccharomyces cerevisiae copes with toxic metals and metalloids.

    Science.gov (United States)

    Wysocki, Robert; Tamás, Markus J

    2010-11-01

    Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.

  6. In situ and laboratory bioassays with Chironomus riparius larvae to assess toxicity of metal contamination in rivers: the relative toxic effect of sediment versus water contamination.

    Science.gov (United States)

    Faria, Mafalda S; Lopes, Ricardo J; Nogueira, António J A; Soares, Amadeu M V M

    2007-09-01

    We used bioassays employing head capsule width and body length increase of Chironomus riparius larvae as end points to evaluate metal contamination in streams. Bioassays were performed in situ near an abandoned Portuguese goldmine in the spring of 2003 and 2004. Bioassays also were performed under laboratory conditions with water and sediment collected from each stream to verify if laboratory bioassays could detect in situ toxicity and to evaluate the relative contribution of sediment and water to overall toxicity. We used field sediments with control water and control sediments with field water to discriminate between metal contamination in water and sediment. Field water with dry and sieved, organic matter-free, and nontreated sediments was used to determine the toxicity of heavy metals that enter the organism through ingested material. In both in situ and laboratory bioassays, body length increase was significantly inhibited by metal contamination, whereas head capsule width was not affected. Body length increase was more affected by contaminated sediment compared to contaminated water. The lowest-effect level of heavy metals was observed in the dry and sieved sediment that prevented ingestion of sediment particles by larvae. These results suggest that body length increase of C. riparius larvae can be used to indicate the impact of metal contamination in rivers. Chironomus riparius larvae are more affected by heavy metals that enter the organism through ingested sediment than by heavy metals dissolved in the water column. Nevertheless, several factors, such as the particle size and organic matter of sediment, must be taken into account.

  7. Heavy metals toxicity after acute exposure of cultured renal cells. Intracellular accumulation and repartition

    International Nuclear Information System (INIS)

    Khodja, Hicham; Carriere, Marie; Avoscan, Laure; Gouget, Barbara

    2005-01-01

    Lead (Pb), cadmium (Cd) and uranium (U) present no known biological function but are toxic in various concentration ranges. Pb and Cd lead generally to nephrotoxicity consisting in proximal renal tubular dysfunction and accumulation while U has been reported to induce chemical kidney toxicity, functional and histological damages being as well mainly observed in proximal tubule cells. This work address the question of Cd, Pb, and U cytotoxicity, intracellular accumulation and repartition after acute intoxication of renal proximal tubule epithelial cells. After cells exposure to different concentrations of metals for various times, morphological changes were observed and intracellular concentrations and distributions of toxic metals were specified by PIXE coupled to RBS. Cell viability, measured by biochemical tests, was used as toxicity indicator. A direct correlation between cytotoxicity and intracellular accumulation in renal epithelial cells have been established. Finally, intracellular Pb and U localizations were detected while Cd was found to be uniformly distributed in renal cells. (author)

  8. Aflatoxin B1 Induced Systemic Toxicity in Poultry and Rescue Effects of Selenium and Zinc.

    Science.gov (United States)

    Mughal, Muhammad Jameel; Peng, Xi; Kamboh, Asghar Ali; Zhou, Yi; Fang, Jing

    2017-08-01

    Among many challenges, exposure to aflatoxins, particularly aflatoxin B 1 (AFB 1 ), is one of the major concerns in poultry industry. AFB 1 intoxication results in decreased meat/egg production, hepatotoxicity, nephrotoxicity, disturbance in gastrointestinal tract (GIT) and reproduction, immune suppression, and increased disease susceptibility. Selenium (Se) and zinc (Zn), in dietary supplementation, offer easy, cost-effective, and efficient ways to neutralize the toxic effect of AFB 1 . In the current review, we discussed the impact of AFB 1 on poultry industry, its biotransformation, and organ-specific noxious effects, along with the action mechanism of AFB 1 -induced toxicity. Moreover, we explained the biological and detoxifying roles of Se and Zn in avian species as well as the protection mechanism of these two trace elements. Ultimately, we discussed the use of Se and Zn supplementation against AFB 1 -induced toxicity in poultry birds.

  9. Evaluation the protective effect of diphenhydramine against acute toxicity induced by levamisole in male mice

    Directory of Open Access Journals (Sweden)

    M.Y. Matti

    2015-06-01

    Full Text Available The aim of this study was to evaluate the protective effect of different doses of diphenhydramine against acute toxicosis with Levamisole. The Mechanism of levamisole induced acute toxicity and that of protective effect of diphenhydramine against Levamisole toxicosis also examined on the level of cholinesterase (ChE activity. Subcutanous injection of 100mg/kg levamisole in male mice with induced cholinergic over stimulation and death in 100% of animals. The Toxicosis was not related to the significantly decreased in plasma, red blood cells and brain ChE activity. Injection low dose of diphenhydramin 2.5mg/kg S.C. 15 min before levamisole produced protective effect against acute toxicity with levamisole. Significantly decreased the severity of toxicosis and increased survival rates to 100%. Diphenhydramine at low dose alone or with acute dose of levamisole did not Produced Significantly inhibition in ChE activity.The data suggested that the toxic effect of Levamisole was not related to inhibition of ChE. The low dose of diphenhydramine protected mice from Levamisole toxicity. The antidoatal effect of diphenhydramine not at the level of protection from ChE inhibition. There was no adverse interaction between two drugs.

  10. Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia

    International Nuclear Information System (INIS)

    Tejeda-Benitez, Lesly; Flegal, Russell; Odigie, Kingsley; Olivero-Verbel, Jesus

    2016-01-01

    The Magdalena River is the most important river in Colombia, supplying over 70% of the population of fish and drinking water, and it also is the main river transportation way of the country. It receives effluents from multiple sources along its course such as contaminant agricultural and industrial discharges. To evaluate the toxicity profile of Magdalena River sediments through endpoints such as survival, locomotion, and growth, wild type strains of Caenorhabditis elegans were exposed to aqueous extracts of the sediments. To identify changes in gene expression, GFP transgenic strains were used as reporter genes. Physiological and biochemical data were correlated with metal concentration in the sediments, identifying patterns of toxicity along the course of the river. Levels of some metals such as Cd, Cu, and Ni were above TEC and PEC limits. Effects in survival, growth, and locomotion were observed in most of the samples, and changes in gene expression were evident in the genes mtl-2, sod-4, and gst-1 using fluorescence expression. Cadmium and lead were the metals which were primarily associated with sediment toxicity, and the sampling sites with the highest increased expression of stress response genes were Barrancabermeja and Girardot. However, the diverse nature of toxic profiles observed in C. elegans in the study area showed the pervasiveness of different types of discharges throughout the river system. - Highlights: • The Magdalena River has high levels of some metals such as Cd, Cu, and Ni. • Most sediment extracts affected lethality, growth, and locomotion of C. elegans. • Sediment extracts induced expression changes in mtl-2, sod-4, and gst-1. • Sediment toxicity was primarily associated with Cd and Pb. • Highest toxicity was observed for samples collected in mining and industrial areas. - In Magdalena River sediments, Cd and Pb were associated with toxicity in Caenorhabditis elegans and expression of stress response genes were related to

  11. Comparison of metal toxic impacts between aquatic and terrestrial organisms: is the free ion concentration a sufficient descriptor?

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Rosenbaum, Ralph K.; Larsen, Henrik Fred

    2011-01-01

    Characterization of metal toxic impacts in comparative risk assessment and life cycle impact assessment (LCIA) should take into account metal speciation and interactions with soil/water organic constituents, because these mechanisms control metal bioavailability and may influence their toxic...... that the free metal ion is an appropriate “general”descriptor of metal toxicity. Results for 128 laboratory tests on Daphnia magna exposed to copper ions (Cu2+) in water show that variation of several orders of magnitude are observed between the toxicity tests. These variations may be a result of the inability...... of magnitude difference occur for the extreme case of barley (Hordeum vulgare). Given the scarcity of terrestrial effect data compared to aquatic data, reliable and transparent, mechanistic-based predictions of terrestrial toxic impacts from aquatic effect data would be an important step ahead in the context...

  12. Toxic Heavy Metals: Materials Cycle Optimization

    Science.gov (United States)

    Ayres, Robert U.

    1992-02-01

    Long-term ecological sustainability is incompatible with an open materials cycle. The toxic heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, silver, uranium/plutonium, zinc) exemplify the problem. These metals are being mobilized and dispersed into the environment by industrial activity at a rate far higher than by natural processes. Apart from losses to the environment resulting from mine wastes and primary processing, many of these metals are utilized in products that are inherently dissipative. Examples of such uses include fuels, lubricants, solvents, fire retardants, stabilizers, flocculants, pigments, biocides, and preservatives. To close the materials cycle, it will be necessary to accomplish two things. The first is to ban or otherwise discourage (e.g., by means of high severance taxes on virgin materials) dissipative uses of the above type. The second is to increase the efficiency of recycling of those materials that are not replaceable in principle. Here, also, economic instruments (such as returnable deposits) can be effective in some cases. A systems view of the problem is essential to assess the cost and effectiveness of alternative strategies.

  13. Cadmium-induced fetal toxicity in the rat

    International Nuclear Information System (INIS)

    Levin, A.A.

    1980-01-01

    Cadmium, a heavy metal environment contaminant, induces fetal death and placental necrosis in the Wistar rat. This study investigated fetal, maternal, and placental responses to cadmium intoxication. Subcutaneous injection of CdCl 2 to dams on day 18 of pregnancy produced a high incidence of fetal death (75%) and placental necrosis. Death in the fetus was produced despite limited fetal accumulations of cadmium. Distribution studies using 109 Cd-labeled CdCl 2 demonstrated that less than 0.1% of the injected dose was associated with the fetus. To determine if fetuses were sensitive to these low levels of cadmium, direct injections of CdCl 2 into fetuses were performed in utero. Direct injections produced fetal accumulations 8-fold greater than those following maternal injections. The 8-fold greater fetal accumulations following direct injection were associated with only a 12% fetal mortality compared to the 75% mortality following maternal injections. The data indicated that the fetal toxicity of cadmium following maternal injections was not the result of direct effects of cadmium on the fetus. In conclusion, cadmium-induced fetal death was not the result of direct effects of cadmium on the fetus but may have been induced by placental cellular injury resulting from high accumulations of cadmium in the placenta. A vascular response to placental injury, leading to decreased utero-placental bood flow and cadmium-induced alterations in trophoblastic function, resulted in fetal death

  14. Effects of a chelating resin on metal bioavailability and toxicity to estuarine invertebrates: Divergent results of field and laboratory tests

    International Nuclear Information System (INIS)

    Wilkie, Emma M.; Roach, Anthony C.; Micevska, Tina; Kelaher, Brendan P.; Bishop, Melanie J.

    2010-01-01

    Benthic invertebrates can uptake metals through diffusion of free ion solutes, or ingestion of sediment-bound forms. This study investigated the efficacy of the metal chelating resin SIR 300 TM in adsorbing porewater metals and isolating pathways of metal exposure. A field experiment (Botany Bay, Sydney, Australia) and a laboratory toxicity test each manipulated the availability of porewater metals within contaminated and uncontaminated sediments. It was predicted that within contaminated sediments, the resin would adsorb porewater metals and reduce toxicity to invertebrates, but in uncontaminated sediments, the resin would not significantly affect these variables. Whereas in the laboratory, the resin produced the predicted results, in the field the resin increased porewater metal concentrations of contaminated sediments for at least 34 days and decreased abundances of four macroinvertebrate groups, and richness in all sediments. These contrasting findings highlight the limits of extrapolating the results of laboratory experiments to the field environment. - Laboratory experiments do not predict the effects on porewater metals or macroinvertebrates of adding a chelating resin to metal-contaminated field sediments.

  15. Effects of a chelating resin on metal bioavailability and toxicity to estuarine invertebrates: Divergent results of field and laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Wilkie, Emma M., E-mail: ewilkie@bio.mq.edu.a [Department of Environmental Sciences, University of Technology Sydney, Broadway, NSW 2007 (Australia); Ecotoxicology and Environmental Contaminants Section, Department of Environment and Climate Change, Lidcombe, NSW 1825 (Australia); Roach, Anthony C. [Ecotoxicology and Environmental Contaminants Section, Department of Environment and Climate Change, Lidcombe, NSW 1825 (Australia); Micevska, Tina [Centre for Environmental Contaminants Research, CSIRO Land and Water, Menai, NSW 2234 (Australia); Kelaher, Brendan P.; Bishop, Melanie J. [Department of Environmental Sciences, University of Technology Sydney, Broadway, NSW 2007 (Australia)

    2010-05-15

    Benthic invertebrates can uptake metals through diffusion of free ion solutes, or ingestion of sediment-bound forms. This study investigated the efficacy of the metal chelating resin SIR 300{sup TM} in adsorbing porewater metals and isolating pathways of metal exposure. A field experiment (Botany Bay, Sydney, Australia) and a laboratory toxicity test each manipulated the availability of porewater metals within contaminated and uncontaminated sediments. It was predicted that within contaminated sediments, the resin would adsorb porewater metals and reduce toxicity to invertebrates, but in uncontaminated sediments, the resin would not significantly affect these variables. Whereas in the laboratory, the resin produced the predicted results, in the field the resin increased porewater metal concentrations of contaminated sediments for at least 34 days and decreased abundances of four macroinvertebrate groups, and richness in all sediments. These contrasting findings highlight the limits of extrapolating the results of laboratory experiments to the field environment. - Laboratory experiments do not predict the effects on porewater metals or macroinvertebrates of adding a chelating resin to metal-contaminated field sediments.

  16. Attenuated effects of chitosan-capped gold nanoparticles on LPS-induced toxicity in laboratory rats

    International Nuclear Information System (INIS)

    Stefan, Marius; Melnig, Viorel; Pricop, Daniela; Neagu, Anca; Mihasan, Marius; Tartau, Liliana; Hritcu, Lucian

    2013-01-01

    The impact of nanoparticles in medicine and biology has increased rapidly in recent years. Gold nanoparticles (AuNP) have advantageous properties such as chemical stability, high electron density and affinity to biomolecules. However, the effects of AuNP on human body after repeated administration are still unclear. Therefore, the purpose of the present study was to evaluate the effects of gold-11.68 nm (AuNP1, 9.8 μg) and gold-22.22 nm (AuNP2, 19.7 μg) nanoparticles capped with chitosan on brain and liver tissue reactivity in male Wistar rats exposed to lipopolysaccharide (LPS from Escherichia coli serotype 0111:B4, 250 μg) upon 8 daily sessions of intraperitoneal administration. Our results suggest that the smaller size of chitosan-capped AuNP shows the protective effects against LPS-induced toxicity, suggesting a very high potential for biomedical applications. - Highlights: ► Smaller size of chitosan-capped gold nanoparticles acts against LPS-induced toxicity. ► Larger size of chitosan-capped gold nanoparticles agglomerated inside neurons and induced toxicity in combination with LPS. ► Chitosan has excellent biocompatible proprieties. ► Smaller size of chitosan-capped gold nanoparticles demonstrates great potential in biomedical applications.

  17. Combined toxicity and underlying mechanisms of a mixture of eight heavy metals.

    Science.gov (United States)

    Zhou, Qi; Gu, Yuanliang; Yue, Xia; Mao, Guochuan; Wang, Yafei; Su, Hong; Xu, Jin; Shi, Hongbo; Zou, Baobo; Zhao, Jinshun; Wang, Renyuan

    2017-02-01

    With the rapid development of modernization and industrialization in China, a large quantity of heavy metals, including zinc, copper, lead, cadmium and mercury, have been entering the atmosphere, soil and water, the latter being the primary route of pollution. In the present study, in vitro experiments were performed to examine the joint toxicity and the underlying mechanisms of the eight most common heavy metals contaminating offshore waters on the eastern coast of Ningbo region. Using a cell cycle assay, cell apoptosis and reactive oxygen species (ROS) detection methods, the present study demonstrated that the heavy metal mixture arrested JB6 cells at the S phase, induced the generation of ROS and cell apoptosis. A luciferase assay indicated that the levels of activator protein‑1 and nuclear factor‑κB transcription factors were upregulated. Upregulation of the protein levels of C‑jun and p65 were detected in the JB6 cells by western blot analysis; these two genes have important roles in cell carcinogenesis. These results provide a useful reference for further investigations on the combined toxicity of the exposure to multiple heavy metals.

  18. Mechanisms of chemotherapy-induced behavioral toxicities

    Directory of Open Access Journals (Sweden)

    Elisabeth G Vichaya

    2015-04-01

    Full Text Available While chemotherapeutic agents have yielded relative success in the treatment of cancer, patients are often plagued with unwanted and even debilitating side-effects from the treatment which can lead to dose reduction or even cessation of treatment. Common side effects (symptoms of chemotherapy include (i cognitive deficiencies such as problems with attention, memory and executive functioning; (ii fatigue and motivational deficit; and (iii neuropathy. These symptoms often develop during treatment but can remain even after cessation of chemotherapy, severely impacting long-term quality of life. Little is known about the underlying mechanisms responsible for the development of these behavioral toxicities, however, neuroinflammation is widely considered to be one of the major mechanisms responsible for chemotherapy-induced symptoms. Here, we critically assess what is known in regards to the role of neuroinflammation in chemotherapy-induced symptoms. We also argue that, based on the available evidence neuroinflammation is unlikely the only mechanism involved in the pathogenesis of chemotherapy-induced behavioral toxicities. We evaluate two other putative candidate mechanisms. To this end we discuss the mediating role of damage-associated molecular patterns (DAMPs activated in response to chemotherapy-induced cellular damage. We also review the literature with respect to possible alternative mechanisms such as a chemotherapy-induced change in the bioenergetic status of the tissue involving changes in mitochondrial function in relation to chemotherapy-induced behavioral toxicities. Understanding the mechanisms that underlie the emergence of fatigue, neuropathy, and cognitive difficulties is vital to better treatment and long-term survival of cancer patients.

  19. Dietary intake and health effects of selected toxic elements

    OpenAIRE

    Silva, André Luiz Oliveira da; Barrocas, Paulo R.G.; Jacob, Silvana do Couto; Moreira, Josino Costa

    2005-01-01

    Anthropogenic activities have being contributing to the spread of toxic chemicals into the environment, including several toxic metals and metalloids, increasing the levels of human exposure to many of them. Contaminated food is an important route of human exposure and may represent a serious threat to human health. This mini review covers the health effects caused by toxic metals, especially Cd, Hg, Pb and As, the most relevant toxic elements from a human health point of view. As atividad...

  20. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid.

    Science.gov (United States)

    Thrash-Williams, Bessy; Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Dhanasekaran, Muralikrishnan

    2016-06-01

    Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the

  1. Distribution, relationship, and risk assessment of toxic heavy metals in walnuts and growth soil.

    Science.gov (United States)

    Han, Yongxiang; Ni, Zhanglin; Li, Shiliang; Qu, Minghua; Tang, Fubin; Mo, Runhong; Ye, Caifen; Liu, Yihua

    2018-04-14

    Walnut is one of the most popular nuts worldwide and contains various mineral nutrients. Little is known, however, about the relationship between toxic heavy metals in walnuts and growth soil. In this study, we investigated the distribution, relationship, and risk assessment of five toxic heavy metals-lead (Pb), arsenic (As), chromium (Cr), cadmium (Cd), and mercury (Hg)-in walnuts and growth soil in the main production areas of China. The results showed that the main heavy metal pollution in walnut and soil was Pb and Cd. Regionally, positive relationships existed between heavy metals and the pH and organic matter of soil. In addition, we observed a notable uptake effect between walnut and growth soil. In this study, we found a significant correlation (r = 0.786, P toxic heavy metal pollution in walnuts and growth soil could be helpful to screen suitable planting sites to prevent and control heavy metal pollution and improve the quality and safety of walnut.

  2. Doxorubicin-Induced Gut Toxicity in Piglets fed Bovine Milk and Colostrum

    DEFF Research Database (Denmark)

    Shen, René Liang; Rathe, Mathias; Jiang, Pingping

    2016-01-01

    OBJECTIVE: Chemotherapy-induced intestinal toxicity is a common adverse effect of cancer treatment. We hypothesized that a milk diet containing bovine colostrum (BC) would reduce intestinal toxicity in doxorubicin-treated piglets. METHODS: Study 1 investigated intestinal parameters nine days after...... Colostrum supplementation had limited effects on doxorubicin-induced toxicity in milk-fed piglets suggesting that colostrum and a bovine milk diet enriched with whey protein provided similar...

  3. Hepatoprotective and Antioxidant Effect of Mangifera Indica Leaf Extracts against Mercuric Chloride-induced Liver Toxicity in Mice.

    Science.gov (United States)

    Karuppanan, Muthupillai; Krishnan, Manigandan; Padarthi, Pavankumar; Namasivayam, Elangovan

    2014-01-01

    To explore the antioxidant and hepatoprotective effect of ethanolic Mangifera indica (EMI) and methanolic Mangifera indica (MMI) leaf extracts in mercuric chloride (HgCl 2 ) induced toxicity in Swiss albino mice. Toxicity in mice was induced with HgCl 2 (5.0 mg/kg, i.p.), followed by oral intervention with EMI and MMI extracts (25 mg and 50 mg/kg. body wt.) for 30 days. The extent of liver damage was assessed from the extents of histopathological, morphological, antioxidant and liver enzymes. Mercuric chloride-induced mice showed an increased cellular damage whereas leaf extracts of EMI and MMI-treated mice showed recovery of damaged hepatocytes. Mercuric chloride intoxicated mice exhibited a significant (p Mangifera indica extract remarkably reduces hepatotoxicity in mice possibly through its antioxidant potentials. How to cite this article: Karuppanan M, Krishnan M, Padarthi P, Namasivayam E. Hepatoprotec-tive and Antioxidant Effect of Mangifera Indica Leaf Extracts against Mercuric Chloride-induced Liver Toxicity in Mice. Euroasian J Hepato-Gastroenterol 2014;4(1):18-24.

  4. Ameliorative effect of ascorbic acid on mercury chloride‑induced ...

    African Journals Online (AJOL)

    Introduction: Mercury is a highly toxic metal that exerts its adverse effects on the health of humans and animals through air, soil, water and food. Aim: The present study was aimed at the evaluation of the effects of ascorbic acid on mercury chloride-induced changes on the histomorphology of the spleen of adult Wistar Rats.

  5. Imprinted Genes and the Environment: Links to the Toxic Metals Arsenic, Cadmium and Lead

    Science.gov (United States)

    Smeester, Lisa; Yosim, Andrew E.; Nye, Monica D.; Hoyo, Cathrine; Murphy, Susan K.; Fry, Rebecca C.

    2014-01-01

    Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR), some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, and lead. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology. PMID:24921406

  6. Imprinted Genes and the Environment: Links to the Toxic Metals Arsenic, Cadmium and Lead

    Directory of Open Access Journals (Sweden)

    Lisa Smeester

    2014-06-01

    Full Text Available Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR, some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, lead and mercury. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology.

  7. THE IMPACT OF TOXIC HEAVY METALS ON THE HEMATOLOGICAL PARAMETERS IN COMMON CARP (CYPRINUS CARPIO L.

    Directory of Open Access Journals (Sweden)

    R. Vinodhini ، M. Narayanan

    2009-01-01

    Full Text Available The aim of the present investigation was to determine the effect of heavy metal pollutants such as cadmium, chromium, nickel and lead in aquatic system on common carp (Cyprinus carpio L. by using a set of biochemical parameters. The experimental group of fish was exposed to a sublethal concentration of 5 mg/L of combined (Cd+Pb+Cr+Ni metal solution containing 1.25 mg/L of each metal ion (1/10th of LC 50/48 h for a period of 32 days. The results indicated that the values of the hemoglobin were in the range of 55.30±1.20 g/L to 74.55±1.33 g/L (p<0.001 and the packed cell volume was in the range of 26.72±0.26% to 30.68±0.43% (p<0.01. Concentrations of red blood cells, blood glucose and total cholesterol were significantly elevated. The level of serum iron and copper was increased. The results showed the decreased activity of vitamin C during chronic exposure to toxic heavy metals, which indicates the presence of reactive oxygen species–induced peroxidation. The study suggested that the presence of toxic heavy metals in aquatic environment has strong influence on the hematological parameters in the fresh water fish common carp (Cyprinus carpio L..

  8. Effects of climate change on the toxicity of soils polluted by metal mine wastes to Enchytraeus crypticus

    NARCIS (Netherlands)

    Gonzalez Alcaraz, M.N.; Tsitsiou, E.; Wieldraaijer, R.; Verweij, R.A.; van Gestel, C.A.M.

    2015-01-01

    The present study aimed to assess the effects of climate change on the toxicity of metal-polluted soils. Bioassays with Enchytraeus crypticus were performed in soils polluted by mine wastes (mine tailing, forest, and watercourse) and under different combinations of temperature (20°C and 25°C) and

  9. Pretreatment Hepatoprotective Effect of the Marine Fungus Derived from Sponge on Hepatic Toxicity Induced by Heavy Metals in Rats

    Directory of Open Access Journals (Sweden)

    Nehad M. Abdel-Monem

    2013-01-01

    Full Text Available The aim of this study was to evaluate the pretreatment hepatoprotective effect of the extract of marine-derived fungus Trichurus spiralis Hasselbr (TS isolated from Hippospongia communis sponge on hepatotoxicity. Twenty-eight male Sprague-Dawley rats were divided into four groups (n=7. Group I served as −ve control, group II served as the induced group receiving subcutaneously for seven days 0.25 mg heavy metal mixtures, group III received (i.p. TS extract of dose 40 mg for seven days, and group IV served as the protected group pretreated with TS extract for seven days as a protection dose, and then treated with the heavy metal-mixture. The main pathological changes within the liver after heavy-metal mixtures administrations marked hepatic damage evidenced by foci of lobular necrosis with neutrophilic infiltration, adjacent to dysplastic hepatocytes. ALT and AST measurements show a significant increase in group II by 46.20% and 45.12%, respectively. Total protein, elevated by about 38.9% in induction group compared to the −ve control group, in contrast to albumin, decreased as a consequence of metal administration with significant elevation on bilirubin level. The results prove that TS extract possesses a hepatoprotective property due to its proven antioxidant and free-radical scavenging properties.

  10. Antibacterial properties and toxicity from metallic nanomaterials

    Directory of Open Access Journals (Sweden)

    Vimbela GV

    2017-05-01

    Full Text Available Gina V Vimbela,1,* Sang M Ngo,2,* Carolyn Fraze,3 Lei Yang,4,5 David A Stout5–7 1Department of Chemical Engineering, 2Department of Electrical Engineering, California State University, Long Beach, CA, 3Brigham Young University Idaho, Rexburg, ID, USA; 4Department of Orthopaedics, Orthopaedic Institute, The First Affiliated Hospital, 5International Research Center for Translational Orthopaedics (IRCTO, Soochow University, Suzhou, Jiangsu, People’s Republic of China; 6Department of Mechanical and Aerospace Engineering, 7Department of Biomedical Engineering, California State University, Long Beach, CA, USA *These authors contributed equally to this work Abstract: The era of antibiotic resistance is a cause of increasing concern as bacteria continue to develop adaptive countermeasures against current antibiotics at an alarming rate. In recent years, studies have reported nanoparticles as a promising alternative to antibacterial reagents because of their exhibited antibacterial activity in several biomedical applications, including drug and gene delivery, tissue engineering, and imaging. Moreover, nanomaterial research has led to reports of a possible relationship between the morphological characteristics of a nanomaterial and the magnitude of its delivered toxicity. However, conventional synthesis of nanoparticles requires harsh chemicals and costly energy consumption. Additionally, the exact relationship between toxicity and morphology of nanomaterials has not been well established. Here, we review the recent advancements in synthesis techniques for silver, gold, copper, titanium, zinc oxide, and magnesium oxide nanomaterials and composites, with a focus on the toxicity exhibited by nanomaterials of multidimensions. This article highlights the benefits of selecting each material or metal-based composite for certain applications while also addressing possible setbacks and the toxic effects of the nanomaterials on the environment. Keywords

  11. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Nicholas B. [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  12. Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity.

    Science.gov (United States)

    Calap-Quintana, Pablo; González-Fernández, Javier; Sebastiá-Ortega, Noelia; Llorens, José Vicente; Moltó, María Dolores

    2017-07-06

    Iron, copper and zinc are transition metals essential for life because they are required in a multitude of biological processes. Organisms have evolved to acquire metals from nutrition and to maintain adequate levels of each metal to avoid damaging effects associated with its deficiency, excess or misplacement. Interestingly, the main components of metal homeostatic pathways are conserved, with many orthologues of the human metal-related genes having been identified and characterized in Drosophila melanogaster . Drosophila has gained appreciation as a useful model for studying human diseases, including those caused by mutations in pathways controlling cellular metal homeostasis. Flies have many advantages in the laboratory, such as a short life cycle, easy handling and inexpensive maintenance. Furthermore, they can be raised in a large number. In addition, flies are greatly appreciated because they offer a considerable number of genetic tools to address some of the unresolved questions concerning disease pathology, which in turn could contribute to our understanding of the metal metabolism and homeostasis. This review recapitulates the metabolism of the principal transition metals, namely iron, zinc and copper, in Drosophila and the utility of this organism as an experimental model to explore the role of metal dyshomeostasis in different human diseases. Finally, a summary of the contribution of Drosophila as a model for testing metal toxicity is provided.

  13. IOLOGICAL IMPORTANCE AND TOXICITY OF HEAVY METALS FOR BIOTA OF FRESHWATER BODIES (REVIEW

    Directory of Open Access Journals (Sweden)

    I. Hrytsyniak

    2014-06-01

    Full Text Available Purpose. To investigate the sources of scientific information on biological functions of heavy metals (Fe, Zn, Mn, Cu, Ni, Co, Pb, Cd and their negative effect on biota of fresh water bodies. Findings. A review of works of a variety of scientists showed that the majority of the studied heavy metals (Fe, Zn, Mn, Cum and Co played an important role in vital functions of freshwater organisms. The significance of other studied heavy metals (Ni, Pb, and Cd is probable or unknown. Besides biological importance, we also know about toxicity of heavy metals – a group of mineral polluting substances, which are the most distributed and dangerous for biota. Their negative effect includes drastic deterioration of conditions for existence of the majority of aquatic organisms, some species disappear, others reduce their number, components of trophic chains are lost, links in ecosystems become broken, and productivity of biocenoses decreases. Practical value. An array of generalized information will be useful for scientists who investigate freshwater ecosystems and effect of toxicants on them, in particular heavy metals.

  14. Molten salt oxidation of ion-exchange resins doped with toxic metals and radioactive metal surrogates

    International Nuclear Information System (INIS)

    Yang, Hee-Chul; Cho, Yong-Jun; Yoo, Jae-Hyung; Kim, Joon-Hyung; Eun, Hee-Chul

    2005-01-01

    Ion-exchange resins doped with toxic metals and radioactive metal surrogates were test-burned in a bench-scale molten salt oxidation (MSO) reactor system. The purposes of this study are to confirm the destruction performance of the two-stage MSO reactor system for the organic ion-exchange resin and to obtain an understanding of the behavior of the fixed toxic metals and the sulfur in the cationic exchange resins. The destruction of the organics is very efficient in the primary reactor. The primarily destroyed products such as carbon monoxide are completely oxidized in the secondary MSO reactor. The overall collection of the sulfur and metals in the two-stage MSO reactor system appeared to be very efficient. Over 99.5% of all the fixed toxic metals (lead and cadmium) and radioactive metal surrogates (cesium, cobalt, strontium) remained in the MSO reactor bottom. Thermodynamic equilibrium calculations and the XRD patterns of the spent salt samples revealed that the collected metals existed in the form of each of their carbonates or oxides, which are non-volatile species at the MSO system operating conditions. (author)

  15. Differential effects of the ascorbyl and tocopheryl derivative on the methamphetamine-induced toxic behavior and toxicity

    International Nuclear Information System (INIS)

    Ito, Shinobu; Mori, Tomohisa; Kanazawa, Hideko; Sawaguchi, Toshiko

    2007-01-01

    A previous study showed that high doses of methamphetamine induce self-injurious behavior (SIB) in rodents. Furthermore, the combination of methamphetamine and morphine increased lethality in mice. We recently surmised that the rise in SIB and mortality induced by methamphetamine and/or morphine may be related to oxidative stress. The present study was designed to determine whether an antioxidant could inhibit SIB or mortality directly induced by methamphetamine and/or morphine. The SIB induced by 20 mg/kg of methamphetamine was abolished by the administration of Na L-ascorbyl-2-phosphate (APS: 300 mg/kg), but not Na DL-α-tocopheryl phosphate (TPNa: 200 mg/kg). In contrast, APS (300 mg/kg) and TPNa (200 mg/kg) each significantly attenuated the lethality induced by methamphetamine and morphine. The present study showed that the signal intensity of superoxide adduct was increased by 20 mg/kg of methamphetamine in the heart and lungs, and methamphetamine plus morphine tended to increase superoxide adduct in all of the tissues measured by ESR spin trap methods. Adduct signal induced in brain by methamphetamine administration increased in significance, but in mouse administrated methamphetamine plus morphine. There are differential effects of administration of methamphetamine and coadministration of methamphetamine plus morphine on adduct signal. These results suggest that APS and TPNa are effective for reducing methamphetamine-induced toxicity and/or toxicological behavior. While APS and TPNa each affected methamphetamine- and/or morphine-induced toxicology and/or toxicological behavior, indicating that both drugs have antioxidative effects, their effects differed

  16. Paracetamol: overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro.

    Science.gov (United States)

    Wang, Xu; Wu, Qinghua; Liu, Aimei; Anadón, Arturo; Rodríguez, José-Luis; Martínez-Larrañaga, María-Rosa; Yuan, Zonghui; Martínez, María-Aránzazu

    2017-11-01

    Paracetamol (APAP) is one of the most widely used and popular over-the-counter analgesic and antipyretic drugs in the world when used at therapeutic doses. APAP overdose can cause severe liver injury, liver necrosis and kidney damage in human beings and animals. Many studies indicate that oxidative stress is involved in the various toxicities associated with APAP, and various antioxidants were evaluated to investigate their protective roles against APAP-induced liver and kidney toxicities. To date, almost no review has addressed the APAP toxicity in relation to oxidative stress. This review updates the research conducted over the past decades into the production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and oxidative stress as a result of APAP treatments, and ultimately their correlation with the toxicity and metabolism of APAP. The metabolism of APAP involves various CYP450 enzymes, through which oxidative stress might occur, and such metabolic factors are reviewed within. The therapeutics of a variety of compounds against APAP-induced organ damage based on their anti-oxidative effects is also discussed, in order to further understand the role of oxidative stress in APAP-induced toxicity. This review will throw new light on the critical roles of oxidative stress in APAP-induced toxicity, as well as on the contradictions and blind spots that still exist in the understanding of APAP toxicity, the cellular effects in terms of organ injury and cell signaling pathways, and finally strategies to help remedy such against oxidative damage.

  17. Heavy metal-induced cytotoxicity to cultured human epidermal keratinocytes and effects of antioxidants.

    Science.gov (United States)

    Kappus, H; Reinhold, C

    1994-04-01

    Human epidermal keratinocytes which have been cultured were treated with the heavy metal ions of cadmium, mercury, copper and zinc. Cytotoxicity was measured either by protein estimation or by using the neutral red assay. Antioxidants were added in order to find out whether heavy metal-induced cytotoxicity is related to oxidative stress. All metals used showed considerable cytotoxic effects within 24 h in moderate concentrations. None of the antioxidants vitamin E (alpha-tocopherol), pyrogallol, propyl gallate, BHT or ebselen showed any protective or preventive effect. This indicates that oxidative stress may not be involved in the cytotoxicity induced by heavy metals in human epidermal keratinocytes. The cells used are, however, a valuable tool to study mechanisms of cytotoxicity.

  18. Hazard and risk assessment of human exposure to toxic metals using in vitro digestion assay

    Directory of Open Access Journals (Sweden)

    Hani A. Alhadrami

    2016-10-01

    Full Text Available Clean-up targets for toxic metals require that the site be “fit for purpose”. This means that targets are set with respect to defined receptors that reflect intended land-use. In this study, the likely threat of human exposure to toxic metals has been evaluated by simulating the human digestion process in vitro. The effects of key attributes (i.e. sample fraction size, pH, Kd and total metal concentrations on the bioavailability of Cu and Ni were also investigated. Total metal concentration was the key explanatory factor for Cu and Ni bioavailability. A comparative ranking of metal concentrations in the context of tolerable daily intakes for Cu and Ni confirmed that the pH has the greatest impact on metals bioavailability. Rapid screening of key attributes and total toxic metal doses can reveal the relative hazard imposed on human, and this approach should be considered when defining threshold values for human protection.

  19. Evaluation of levels of select toxic metals in commonly used herbal ...

    African Journals Online (AJOL)

    Even at low concentrations or levels of exposure, toxic metals have also been reported to pose health risks to man. Aim: To ... Materials/Methods :Herbal medicines (n=8) were purchased from on-the-street vendors and evaluated for levels of five toxic metals (Lead, Nickel, Mercury, Cadmium and Arsenic).Analysis of toxic ...

  20. Toxic metals in the atmosphere in Lahore, Pakistan

    International Nuclear Information System (INIS)

    Schneidemesser, Erika von; Stone, Elizabeth A.; Quraishi, Tauseef A.; Shafer, Martin M.; Schauer, James J.

    2010-01-01

    Aerosol mass (PM 10 and PM 2.5 ) and detailed elemental composition were measured in monthly composites during the calendar year of 2007 at a site in Lahore, Pakistan. Elemental analysis revealed extremely high concentrations of Pb (4.4 μg m -3 ), Zn (12 μg m -3 ), Cd (0.077 μg m -3 ), and several other toxic metals. A significant fraction of the concentration of Pb (84%), Zn (98%), and Cd (90%) was contained in the fine particulate fraction (PM 2.5 and smaller); in addition, Zn and Cd were largely (≥ 60%) water soluble. The 2007 annual average PM 10 mass concentration was 340 μg m -3 , which is well above the WHO guideline of 20 μg m -3 . Dust sources were found to contribute on average (maximum) 41% (70%) of PM 10 mass and 14% (29%) of PM 2.5 mass on a monthly basis. Seasonally, concentrations were found to be lowest during the monsoon season (July-September). Principle component analysis identified seven factors, which combined explained 91% of the variance of the measured components of PM 10 . These factors included three industrial sources, re-suspended soil, mobile sources, and two regional secondary aerosol sources likely from coal and/or biomass burning. The majority of the Pb was found to be associated with one industrial source, along with a number of other toxic metals including As and Cr. Cadmium, another toxic metal, was found at concentrations 16 times higher than the maximum exposure level recommended by the World Health Organization, and was concentrated in one industrial source that was also associated with Zn. These results highlight the importance of focusing control strategies not only on reducing PM mass concentration, but also on the reduction of toxic components of the PM as well, to most effectively protect human health and the environment.

  1. Metal mixture toxicity to aquatic biota in laboratory experiments: Application of the WHAM-F{sub TOX} model

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E., E-mail: et@ceh.ac.uk; Lofts, S.

    2013-10-15

    Highlights: •Metal accumulation by living organisms is successfully simulated with WHAM. •Modelled organism-bound metal provides a measure of toxic exposure. •The toxic potency of individual bound metals is quantified by fitting toxicity data. •Eleven laboratory mixture toxicity data sets were parameterised. •Relatively little variability amongst individual test organisms is indicated. -- Abstract: The WHAM-F{sub TOX} model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (F{sub TOX}), a linear combination of the products of organism-bound cation and a toxic potency coefficient (α{sub i}) for each cation. Organism-bound, metabolically-active, cation is quantified by the proxy variable, amount bound by humic acid (HA), as predicted by the WHAM chemical speciation model. We compared published measured accumulations of metals by living organisms (bacteria, algae, invertebrates) in different solutions, with WHAM predictions of metal binding to humic acid in the same solutions. After adjustment for differences in binding site density, the predictions were in reasonable line with observations (for logarithmic variables, r{sup 2} = 0.89, root mean squared deviation = 0.44), supporting the use of HA binding as a proxy. Calculated loadings of H{sup +}, Al, Cu, Zn, Cd, Pb and UO{sub 2} were used to fit observed toxic effects in 11 published mixture toxicity experiments involving bacteria, macrophytes, invertebrates and fish. Overall, WHAM-F{sub TOX} gave slightly better fits than a conventional additive model based on solution concentrations. From the derived values of α{sub i}, the toxicity of bound cations can tentatively be ranked in the order: H < Al < (Zn–Cu–Pb–UO{sub 2}) < Cd. The WHAM-F{sub TOX} analysis indicates much narrower ranges of differences amongst individual organisms in metal toxicity tests than was previously thought. The model potentially provides a means to

  2. Effects of temperature on the acute toxicity of heavy metals (Cr, Cd, and Hg) to the freshwater crayfish, Procambarus clarkii (Girard)

    Energy Technology Data Exchange (ETDEWEB)

    Del Ramo, J.; Diaz-Mayans, J.; Torreblanca, A.; Nunez, A.

    1987-05-01

    Chromium, an essential trace element for humans and animals is involved in normal carbohydrate metabolism; however, it is toxic at high concentrations. There is no evidence that cadmium and mercury are biologically essential but their toxicity for organisms is well known. Both cause toxic effects at low concentrations to most organisms, especially in combination with other environmental variables such as temperature. Lake Albufera and the surrounding rice field waters are subjected to very heavy loads of sewage and toxic industrial residues (including heavy metals) from the many urban and waste waters in this area. In 1978, the American red crayfish Procambarus clarkii appeared in lake Albufera and in the surrounding rice fields. Without adequate sanitary control, the crayfish is presently being fished commercially for human consumption. The purpose of the present study is to evaluate the degree of toxicity of various heavy metals (chromium, cadmium and mercury) to freshwater crayfish Procambarus clarkii at various temperatures.

  3. Evaluation of the threat of marine CO2 leakage-associated acidification on the toxicity of sediment metals to juvenile bivalves

    International Nuclear Information System (INIS)

    Basallote, M. Dolores; Rodríguez-Romero, Araceli; De Orte, Manoela R.; Del Valls, T. Ángel; Riba, Inmaculada

    2015-01-01

    Highlights: • Short-term tests using juveniles of bivalves to study the effects of CO 2 dissolved. • CO 2 causes effects if the threshold concentration of the organism is overlapped. • Flows of escaped CO 2 would affect the geochemical composition of sediment–seawater. • CO 2 -induced acidification would affect differently to marine sediment toxicity. - Abstract: The effects of the acidification associated with CO 2 leakage from sub-seabed geological storage was studied by the evaluation of the short-term effects of CO 2 -induced acidification on juveniles of the bivalve Ruditapes philippinarum. Laboratory scale experiments were performed using a CO 2 -bubbling system designed to conduct ecotoxicological assays. The organisms were exposed for 10 days to elutriates of sediments collected in different littoral areas that were subjected to various pH treatments (pH 7.1, 6.6, 6.1). The acute pH-associated effects on the bivalves were observed, and the dissolved metals in the elutriates were measured. The median toxic effect pH was calculated, which ranged from 6.33 to 6.45. The amount of dissolved Zn in the sediment elutriates increased in parallel with the pH reductions and was correlated with the proton concentrations. The pH, the pCO 2 and the dissolved metal concentrations (Zn and Fe) were linked with the mortality of the exposed bivalves

  4. A novel approach for predicting the uptake and toxicity of metallic and metalloid ions

    Science.gov (United States)

    Wang, Peng

    2011-01-01

    Electrostatic nature of plant plasma membrane (PM) plays significant roles in the ion uptake and toxicity. Electrical potential at the PM exterior surface (ψ0o) influences ion distribution at the PM exterior surface, and the depolarization of ψ0o negativity increases the electrical driving force for cation transport, but decreases the driving force for anion transport across the PMs. Assessing environmental risks of toxic ions has been a difficult task because the ion concentration (activity) in medium is not directly corrected to its potential effects. Medium characteristics like the content of major cations have important influences on the bioavailability and toxicity of ions in natural waters and soils. Models such as the Free Ion Activity Model (FIAM) and the Biotic Ligand Model (BLM), as usually employed, neglect the ψ0o and hence often lead to false conclusions about interaction mechanisms between toxic ions and major cations for biology. The neglect of ψ0o is not inconsistent with its importance, and possibly reflects the difficulty in the measurement of ψ0o. Based on the dual effects of the ψ0o, electrostatic models were developed to better predict the uptake and toxicity of metallic and metalloid ions. These results suggest that the electrostatic models provides a more robust mechanistic framework to assess metal(loid) ecotoxicity and predict critical metal(loid) concentrations linked to a biological effect, indicating its potential utility in risk assessment of metal(loid)s in water and terrestrial ecosystems. PMID:21386661

  5. Physicochemical and spectroscopic properties of natural organic matter (NOM) from various sources and implications for ameliorative effects on metal toxicity to aquatic biota

    Energy Technology Data Exchange (ETDEWEB)

    Al-Reasi, Hassan A.; Wood, Chris M. [Department of Biology, McMaster University, Hamilton, ON, L8S 4K1 (Canada); Smith, D. Scott, E-mail: ssmith@wlu.camailto [Department of Chemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5 (Canada)

    2011-06-15

    Natural organic matter (NOM), expressed as dissolved organic carbon (DOC in mg C L{sup -1}), is an ubiquitous complexing agent in natural waters, and is now recognized as an important factor mitigating waterborne metal toxicity. However, the magnitude of the protective effect, judged by toxicity measures (e.g. LC50), varies substantially among different NOM sources even for similar DOC concentrations, implying a potential role of NOM physicochemical properties or quality of NOM. This review summarizes some key quality parameters for NOM samples, obtained by reverse osmosis, and by using correlation analyses, investigates their contribution to ameliorating metal toxicity towards aquatic biota. At comparable and environmentally realistic DOC levels, molecular spectroscopic characteristics (specific absorbance coefficient, SAC, and fluorescence index, FI) as well as concentrations of fluorescent fractions obtained from mathematical mixture resolution techniques (PARAFAC), explain considerable variability in the protective effects. NOM quality clearly influences the toxicity of copper (Cu) and lead (Pb). NOM quality may also influence the toxicity of silver (Ag), cadmium (Cd) and inorganic mercury (Hg), but as yet insufficient data are available to unequivocally support the latter correlations between toxicity reduction and NOM quality predictors. Cu binding capacities, protein-to-carbohydrate ratio, and lipophilicity, show insignificant correlation to the amelioration offered by NOMs, but these conclusions are based on data for Norwegian NOMs with very narrow ranges for the latter two parameters. Certainly, various NOMs alleviate metal toxicity differentially and therefore their quality measures should be considered in addition to their quantity.

  6. Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: Complexation versus mixture

    International Nuclear Information System (INIS)

    Zhang Yu; Cai Xiyun; Lang Xianming; Qiao Xianliang; Li Xuehua; Chen Jingwen

    2012-01-01

    Co-contamination of ligand-like antibiotics (e.g., tetracyclines and quinolones) and heavy metals prevails in the environment, and thus the complexation between them is involved in environmental risks of antibiotics. To understand toxicological significance of the complex, effects of metal coordination on antibiotics' toxicity were investigated. The complexation of two antibiotics, oxytetracycline and ciprofloxacin, with three heavy metals, copper, zinc, and cadmium, was verified by spectroscopic techniques. The antibiotics bound metals via multiple coordination sites and rendered a mixture of various complexation speciations. Toxicity analysis indicated that metal coordination did modify the toxicity of the antibiotics and that antibiotic, metal, and their complex acted primarily as concentration addition. Comparison of EC 50 values revealed that the complex commonly was highest toxic and predominately correlated in toxicity to the mixture. Finally, environmental scenario analysis demonstrated that ignoring complexation would improperly classify environmental risks of the antibiotics. - Highlights: ► The complex of antibiotic with metal is a mixture of various complexation modes. ► Antibiotic and metal act as various combined interactions when their complexation is ignored. ► Antibiotic, metal, and their complex act as concentration addition interaction. ► Complex commonly is the highest toxicant. ► Neglecting complexation renders improper classification of risks for antibiotics. - Antibiotic, heavy metal and their complex act primarily as concentration addition interaction and the complex commonly is highest toxic.

  7. Comparison of the toxicity of some metals and their tetracyanide complexes on the respiration of non acclimated activated sludges.

    Science.gov (United States)

    Morozzi, G; Cenci, G

    1978-12-01

    The toxic effect of the metal ions of cadmium, zinc, nickel and mercury and their tetracyanide salt complexes, on the activated sludge not previously acclimated, has been studied. The evaluation of the effect was carried out using both the Warburg and TTC-method. The results obtained have shown that the toxicity of the cadmium and zinc complexes is higher than that of the corresponding metals, while the toxicity of Ni(CN)4(2-) is lower than that of the corresponding metals. No differences have been found between the effect of mercury and the corresponding tetracyanide complex. From the data obtained it appears that it is not possible to generalize about the biological effect of complexation with the CN- group, but it should be stated that, generally, there are substantial differences between metals and their cyanide complexes as far as toxicity for activated sludge is concerned.

  8. Select toxic metals status of pregnant women with history of ...

    African Journals Online (AJOL)

    Toxic metals are part of the most important groups of environmental pollutants that can bind to vital cellular components and interfere with their functions via inhalation, foods, water etc. The serum levels of toxic metals (lead, mercury, cadmium and arsenic) in pregnant women with history of pregnancy complications, ...

  9. Toxicity of heavy metals to fish: an important consideration for sucessful aquaculture

    OpenAIRE

    Nnaji, J.C.; Okoye, F.C.

    2007-01-01

    Heavy metals are toxic to man, animals and plants once safe limits are exceeded. Then ability to bio accumulate in plant and animal tissues makes them particularly hazardous. Heavy metals are toxic to all aquatic biota and cause high mortality of fish larva, fry, fingerling and adult fish. They accumulate in the gills, heart, liver, kidneys, brain, bones and muscles of fish. The physico-chemical forms of heavy metals determine their mobility, availability and toxicity to fish. These metals en...

  10. Metal and pharmaceutical mixtures: Is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish?

    Energy Technology Data Exchange (ETDEWEB)

    Alsop, Derek, E-mail: alsopde@mcmaster.ca; Wood, Chris M.

    2013-09-15

    Highlights: •Zebrafish larvae were used to test the acute toxicity of contaminant mixtures. •Interactions were observed between metals, ammonia and pharmaceuticals. •Larval Na{sup +} loss was observed with exposure to all acutely toxic contaminants tested. •Water quality criteria should recognize the toxic interactions between contaminants. -- Abstract: The acute toxicities and mechanisms of action of a variety of environmental contaminants were examined using zebrafish larvae (Danio rerio; 4–8 days post fertilization). Toxic interactions were observed between metals. For example, the addition of a sublethal level of nickel (15% of the LC{sub 50}, one third of the LC{sub 01}) to all copper treatments decreased the copper 96 h LC{sub 50} by 58%, while sublethal copper exposure (6% of the copper LC{sub 50}, 13% of the LC{sub 01}) decreased the cadmium 96 h LC{sub 50} by 47%. Two predictive models were assessed, the concentration addition (CA) model, which assumes similar mechanisms of action, and the independent action (IA) model, which assumes different mechanisms of action. Quantitative comparisons indicated the CA model performed better than the IA model; the latter tended to underestimate combined toxicity to a greater extent. The effects of mixtures with nickel or ammonia were typically additive, while mixtures with copper or cadmium were typically greater than additive. Larvae exposed to cadmium, copper or nickel experienced whole body ion loss. Decreases were greatest for Na{sup +} followed by K{sup +} (as high as 19% and 9%, respectively, in 24 h). Additive toxicity between copper and other pharmaceutical compounds such as fluoxetine (Prozac™), β-naphthoflavone, estrogen and 17α-ethinylestradiol were also observed. Similar to metals, acutely toxic concentrations of fluoxetine, β-naphthoflavone and ammonia all decreased whole body Na{sup +} and K{sup +}. Overall, whole body Na{sup +} loss showed the greatest correlation with mortality across a

  11. Metal and pharmaceutical mixtures: Is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish?

    International Nuclear Information System (INIS)

    Alsop, Derek; Wood, Chris M.

    2013-01-01

    Highlights: •Zebrafish larvae were used to test the acute toxicity of contaminant mixtures. •Interactions were observed between metals, ammonia and pharmaceuticals. •Larval Na + loss was observed with exposure to all acutely toxic contaminants tested. •Water quality criteria should recognize the toxic interactions between contaminants. -- Abstract: The acute toxicities and mechanisms of action of a variety of environmental contaminants were examined using zebrafish larvae (Danio rerio; 4–8 days post fertilization). Toxic interactions were observed between metals. For example, the addition of a sublethal level of nickel (15% of the LC 50 , one third of the LC 01 ) to all copper treatments decreased the copper 96 h LC 50 by 58%, while sublethal copper exposure (6% of the copper LC 50 , 13% of the LC 01 ) decreased the cadmium 96 h LC 50 by 47%. Two predictive models were assessed, the concentration addition (CA) model, which assumes similar mechanisms of action, and the independent action (IA) model, which assumes different mechanisms of action. Quantitative comparisons indicated the CA model performed better than the IA model; the latter tended to underestimate combined toxicity to a greater extent. The effects of mixtures with nickel or ammonia were typically additive, while mixtures with copper or cadmium were typically greater than additive. Larvae exposed to cadmium, copper or nickel experienced whole body ion loss. Decreases were greatest for Na + followed by K + (as high as 19% and 9%, respectively, in 24 h). Additive toxicity between copper and other pharmaceutical compounds such as fluoxetine (Prozac™), β-naphthoflavone, estrogen and 17α-ethinylestradiol were also observed. Similar to metals, acutely toxic concentrations of fluoxetine, β-naphthoflavone and ammonia all decreased whole body Na + and K + . Overall, whole body Na + loss showed the greatest correlation with mortality across a variety of toxicants. We theorize that a disruption of

  12. Enterobacter asburiae KE17 association regulates physiological changes and mitigates the toxic effects of heavy metals in soybean.

    Science.gov (United States)

    Kang, S-M; Radhakrishnan, R; You, Y-H; Khan, A-L; Lee, K-E; Lee, J-D; Lee, I-J

    2015-09-01

    This study aimed to elucidate the role played by Enterobacter asburiae KE17 in the growth and metabolism of soybeans during copper (100 μm Cu) and zinc (100 μm Zn) toxicity. When compared to controls, plants grown under Cu and Zn stress exhibited significantly lower growth rates, but inoculation with E. asburiae KE17 increased growth rates of stressed plants. The concentrations of plant hormones (abscisic acid and salicylic acid) and rates of lipid peroxidation were higher in plants under heavy metal stress, while total chlorophyll, carotenoid content and total polyphenol concentration were lower. While the bacterial treatment reduced the abscisic acid and salicylic acid content and lipid peroxidation rate of Cu-stressed plants, it also increased the concentration of photosynthetic pigments and total polyphenol. Moreover, the heavy metals induced increased accumulation of free amino acids such as aspartic acid, threonine, serine, glycine, alanine, leucine, isoleucine, tyrosine, proline and gamma-aminobutyric acid, while E. asburiae KE17 significantly reduced concentrations of free amino acids in metal-affected plants. Co-treatment with E. asburiae KE17 regulated nutrient uptake by enhancing nitrogen content and inhibiting Cu and Zn accumulation in soybean plants. The results of this study suggest that E. asburiae KE17 mitigates the effects of Cu and Zn stress by reprogramming plant metabolic processes. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Ion-induced effects on metallic nanoparticles

    International Nuclear Information System (INIS)

    Klimmer, Andreas

    2010-01-01

    This work deals with the ion-irradiation of metallic nanoparticles in combination with various substrates. Particle diameters were systematically varied within the range of 2.5-14 nm, inter-particle distances range from 30-120 nm. Irradiations were performed with various inert gas ions with energies of 200 keV, resulting in an average ion range larger than the particle dimensions and therefore the effects of irradiation are mainly due to creation of structural defects within the particles and the underlying substrate as well. The main part of this work deals with ion-induced burrowing of metallic nanoparticles into the underlying substrate. The use of micellar nanoparticles with sharp size distribution combined with AFM and TEM analysis allows a much more detailed look at this effect than other works on that topic so far. With respect to the particle properties also a detailed look on the effect of irradiation on the particle structure would be interesting, which might lead to a deliberate influence on magnetic properties, for example. Within the context of this work, first successful experiments were performed on FePt particles, showing a significant reduction of the ordering temperature leading to the magnetically interesting, ordered L1 0 phase. (orig.)

  14. Hepatoprotective Effect of Metadoxine on Acetaminophen-induced Liver Toxicity in Mice

    Directory of Open Access Journals (Sweden)

    Parvin Mazraati

    2018-01-01

    Full Text Available Background: Metadoxine (pyridoxine pyrrolidone carboxylate is considered to be a beneficial agent for the treatment of experimental hepatotoxicity due to alcohol, CCl4, and bile duct ligation. Hence, the therapeutic effect of metadoxine and N-acetylcysteine (NAC as reference drug was investigated in mice exposed to acute hepatotoxicity induced by a single oral toxic dose of acetaminophen (650 mg/kg. Materials and Methods: Metadoxine (200 and 400 mg/kg and NAC (300 mg/kg were given orally (p. o., 2 h after acetaminophen administration. Serum aminotransferases, aspartate transaminase (AST, alanine transaminase (ALT, alkaline phosphatase (ALP, total bilirubin, hepatic glutathione (GSH, and malondialdehyde (MDA levels were determined for evaluating the extent of hepatotoxicity due to acetaminophen and its protection by metadoxine. Results: Findings indicated that metadoxine significantly reduced the level of serum ALT, AST, and ALP but not total bilirubin which increased by acetaminophen intoxication. Administration of metadoxine also attenuated oxidative stress by suppressing lipid peroxidation (MDA and prevented the depletion of reduced GSH level which caused by acetaminophen toxicity. Besides, metadoxine ameliorated histopathological hepatic tissue injury induced by acetaminophen. Conclusion: In most parameters examined, the effect of metadoxine was comparable to NAC. Hence, metadoxine could be considered as a beneficial therapeutic candidate to protect against acute acetaminophen hepatotoxicity.

  15. Molecular and ionic mimicry and the transport of toxic metals

    Science.gov (United States)

    Bridges, Christy C.; Zalups, Rudolfs K.

    2008-01-01

    Despite many scientific advances, human exposure to, and intoxication by, toxic metal species continues to occur. Surprisingly, little is understood about the mechanisms by which certain metals and metal-containing species gain entry into target cells. Since there do not appear to be transporters designed specifically for the entry of most toxic metal species into mammalian cells, it has been postulated that some of these metals gain entry into target cells, through the mechanisms of ionic and/or molecular mimicry, at the site of transporters of essential elements and/or molecules. The primary purpose of this review is to discuss the transport of selective toxic metals in target organs and provide evidence supporting a role of ionic and/or molecular mimicry. In the context of this review, molecular mimicry refers to the ability of a metal ion to bond to an endogenous organic molecule to form an organic metal species that acts as a functional or structural mimic of essential molecules at the sites of transporters of those molecules. Ionic mimicry refers to the ability of a cationic form of a toxic metal to mimic an essential element or cationic species of an element at the site of a transporter of that element. Molecular and ionic mimics can also be sub-classified as structural or functional mimics. This review will present the established and putative roles of molecular and ionic mimicry in the transport of mercury, cadmium, lead, arsenic, selenium, and selected oxyanions in target organs and tissues. PMID:15845419

  16. Molecular and ionic mimicry and the transport of toxic metals

    International Nuclear Information System (INIS)

    Bridges, Christy C.; Zalups, Rudolfs K.

    2005-01-01

    Despite many scientific advances, human exposure to, and intoxication by, toxic metal species continues to occur. Surprisingly, little is understood about the mechanisms by which certain metals and metal-containing species gain entry into target cells. Since there do not appear to be transporters designed specifically for the entry of most toxic metal species into mammalian cells, it has been postulated that some of these metals gain entry into target cells, through the mechanisms of ionic and/or molecular mimicry, at the site of transporters of essential elements and/or molecules. The primary purpose of this review is to discuss the transport of selective toxic metals in target organs and provide evidence supporting a role of ionic and/or molecular mimicry. In the context of this review, molecular mimicry refers to the ability of a metal ion to bond to an endogenous organic molecule to form an organic metal species that acts as a functional or structural mimic of essential molecules at the sites of transporters of those molecules. Ionic mimicry refers to the ability of a cationic form of a toxic metal to mimic an essential element or cationic species of an element at the site of a transporter of that element. Molecular and ionic mimics can also be sub-classified as structural or functional mimics. This review will present the established and putative roles of molecular and ionic mimicry in the transport of mercury, cadmium, lead, arsenic, selenium, and selected oxyanions in target organs and tissues

  17. Effects of ICRF-187 and L-Carnitine on bleomycin-induced lung toxicity in rats

    International Nuclear Information System (INIS)

    Shouman, Samia A.; Abdel-Hamid, M.A.; Hassan, Zeinab A.; Mansour, Heba H.

    2002-01-01

    The possible modulatory effects of ICRF-187 and L-carnitine against bleomycin-induced pulmonary toxicity in male rats were investigated. Repeated administration of bleomycin (10 mg/kg, twice weekly for 6 consecutive weeks) produced significant lung toxicity. The toxicity was manifested by significant increase in normal contents of lipid peroxide (LPO, 91.7%) reduced glutathione (GSH, 73.2%) and oxidized glutathione (GSSG, 135.4%) as well as the activity of superoxide dismutase (SOD, 222.7%). Thirty minutes prior to bleomycin treatment, other groups of rats received either ICRF-187 (95 mg/kg) or L-carnitine (500 mg/kg) adopting the same schedule of treatment as in bleomycin-treated group. L-carnitine decreased bleomycin-induced elevations in SOD activity, GSH and GSSG contents, however, it failed to suppress the increase in LPO level. On the other hand, treatment with ICRF-187 returned back all the elevated biochemical parameters induced by bleomycin to nearly normal levels. In conclusion, the results of this study showed a potential capability of ICRF-187 to mitigate the bleomycin-induced lung injury. Moreover, despite the inability of L-carnitine to change the elevated LPO content, it was able however, to decrease the elevated endogenous antioxidant parameters. (author)

  18. Imprinted genes and the environment: links to the toxic metals arsenic, cadmium, lead and mercury.

    Science.gov (United States)

    Smeester, Lisa; Yosim, Andrew E; Nye, Monica D; Hoyo, Cathrine; Murphy, Susan K; Fry, Rebecca C

    2014-06-11

    Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR), some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, lead and mercury. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology.

  19. Environmentally induced epigenetic toxicity: potential public health concerns.

    Science.gov (United States)

    Marczylo, Emma L; Jacobs, Miriam N; Gant, Timothy W

    2016-09-01

    Throughout our lives, epigenetic processes shape our development and enable us to adapt to a constantly changing environment. Identifying and understanding environmentally induced epigenetic change(s) that may lead to adverse outcomes is vital for protecting public health. This review, therefore, examines the present understanding of epigenetic mechanisms involved in the mammalian life cycle, evaluates the current evidence for environmentally induced epigenetic toxicity in human cohorts and rodent models and highlights the research considerations and implications of this emerging knowledge for public health and regulatory toxicology. Many hundreds of studies have investigated such toxicity, yet relatively few have demonstrated a mechanistic association among specific environmental exposures, epigenetic changes and adverse health outcomes in human epidemiological cohorts and/or rodent models. While this small body of evidence is largely composed of exploratory in vivo high-dose range studies, it does set a precedent for the existence of environmentally induced epigenetic toxicity. Consequently, there is worldwide recognition of this phenomenon, and discussion on how to both guide further scientific research towards a greater mechanistic understanding of environmentally induced epigenetic toxicity in humans, and translate relevant research outcomes into appropriate regulatory policies for effective public health protection.

  20. Quantitative analysis of toxic metals lead and cadmium in water jet by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cheri, M. Sadegh; Tavassoli, S. H.

    2011-03-20

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of toxic metals Pb and Cd in Pb(NO{sub 3}){sub 2} and Cd(NO{sub 3}){sub 2}.4H{sub 2}O aqueous solutions, respectively. The plasma is generated by focusing a nanosecond Nd:YAG ({lambda}=1064 nm) laser on the surface of liquid in the homemade liquid jet configuration. With an assumption of local thermodynamic equilibrium (LTE), calibration curves of Pb and Cd were obtained at different delay times between 1 to 5 {mu}s. The temporal behavior of limit of detections (LOD) was investigated and it is shown that the minimum LODs for Pb and Cd are 4 and 68 parts in 10{sup 6} (ppm), respectively. In order to demonstrate the correctness of the LTE assumption, plasma parameters including plasma temperature and electron density are evaluated, and it is shown that the LTE condition is satisfied at all delay times.

  1. Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: Complexation versus mixture

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhang [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Cai Xiyun, E-mail: xiyuncai@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Xianming, Lang [Liaoning Academy of Environmental Sciences, Shenyang 110031 (China); Xianliang, Qiao; Xuehua, Li; Jingwen, Chen [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China)

    2012-07-15

    Co-contamination of ligand-like antibiotics (e.g., tetracyclines and quinolones) and heavy metals prevails in the environment, and thus the complexation between them is involved in environmental risks of antibiotics. To understand toxicological significance of the complex, effects of metal coordination on antibiotics' toxicity were investigated. The complexation of two antibiotics, oxytetracycline and ciprofloxacin, with three heavy metals, copper, zinc, and cadmium, was verified by spectroscopic techniques. The antibiotics bound metals via multiple coordination sites and rendered a mixture of various complexation speciations. Toxicity analysis indicated that metal coordination did modify the toxicity of the antibiotics and that antibiotic, metal, and their complex acted primarily as concentration addition. Comparison of EC{sub 50} values revealed that the complex commonly was highest toxic and predominately correlated in toxicity to the mixture. Finally, environmental scenario analysis demonstrated that ignoring complexation would improperly classify environmental risks of the antibiotics. - Highlights: Black-Right-Pointing-Pointer The complex of antibiotic with metal is a mixture of various complexation modes. Black-Right-Pointing-Pointer Antibiotic and metal act as various combined interactions when their complexation is ignored. Black-Right-Pointing-Pointer Antibiotic, metal, and their complex act as concentration addition interaction. Black-Right-Pointing-Pointer Complex commonly is the highest toxicant. Black-Right-Pointing-Pointer Neglecting complexation renders improper classification of risks for antibiotics. - Antibiotic, heavy metal and their complex act primarily as concentration addition interaction and the complex commonly is highest toxic.

  2. Heavy metal content of selected personal care products (PCPs available in Ibadan, Nigeria and their toxic effects

    Directory of Open Access Journals (Sweden)

    Sunday Samuel Omenka

    Full Text Available There is a growing concern on heavy metals in consumer products due to their potential human health risks and environmental effects. In this study, the levels of zinc, cadmium, lead and nickel were assessed in 3 different classes of personal care products commonly used in Ibadan, Nigeria. Samples were analysed for heavy metals using Atomic Absorption Spectrophotometer (AAS after acid digestion. Estimated daily intake (EDI of the metals and Health Risk Index (HRI were calculated to assess the human health risks associated with the use of these PCPs. The concentrations (mg/kg of zinc ranged from 3.75 to 19.3, 1.88 to 112,000 and 19.8 to 217 respectively in creams, powders and eyeliners. Cadmium ranged from ND—0.50, ND—36.3 and ND—0.50 mg/kg while lead ranged from ND—6.25, ND—468 and 3.73–27.5 mg/kg and nickel ranged from ND—6.25, 0.13–107 and 2.75–22.7 mg/kg respectively. There were high concentrations of Cd, Pb and Ni in some of the samples when compared with the available permissible limits in cosmetics (Cd: 0.3 ppm, Pb: 10 ppm and Ni: 0.6 ppm while there is no permissible limit for Zn in cosmetics currently available. Prolonged use of PCPs may pose human health and environmental risks due to toxic metal loading through dermal contact and accumulation over a period of time. Hence, the need for necessary government agencies to regulate and enforce toxic metals in consumer products including cosmetics produced and imported into Nigeria to safeguard public health and the environment, which is the final sink. Keywords: Heavy metals, Personal care products, Health effects, Dermal contact, Exposure

  3. Determination of toxic heavy metals in indigenous medicinal plants used in Rawalpindi and Islamabad cities, Pakistan.

    Science.gov (United States)

    Mahmood, Adeel; Rashid, Sadia; Malik, Riffat Naseem

    2013-06-21

    History of medicinal plants used in local healthcare systems dates back centuries as the user considers them safe from toxic effects. Present study was aimed to document the commonly used indigenous medicinal plants and to investigate the metal toxicity and impact of pollution load in most frequently used medicinal plants from study area. Semi-structured interviews and rapid appraisal approach were employed to record the ethnomedicinal information and toxic metals were analyzed through flame atomic absorption spectrophotometer. A total of 21 wild medicinal plants was reported, and 7 were screened for toxic metal analysis. Oral mode of application (93%) was the chief route of herbal remedy administration, and leaves were found to be used as major plant part against different diseases. Main sources of remedies were wild herb (68%) followed by wild trees (18%), wild spiny shrubs (09%) and wild shrubs (5%). Trend of metal concentration was found as Fe>Ni>Cr>Pb>Cu>Zn>Mn>Cd. Indigenous medicinal plants of both cities posed the toxicity risk for Ni, Cu, Fe and crossed the safety limits set by WHO. Medicinal plants of Rawalpindi were more toxic compared to the medicinal plants of Islamabad. Prolonged intake or over dose of these medicinal plants may lead to chronic accumulation of various elements that may cause severe hazardous effect upon human health. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Prediction of toxic metals concentration using artificial intelligence techniques

    Science.gov (United States)

    Gholami, R.; Kamkar-Rouhani, A.; Doulati Ardejani, F.; Maleki, Sh.

    2011-12-01

    Groundwater and soil pollution are noted to be the worst environmental problem related to the mining industry because of the pyrite oxidation, and hence acid mine drainage generation, release and transport of the toxic metals. The aim of this paper is to predict the concentration of Ni and Fe using a robust algorithm named support vector machine (SVM). Comparison of the obtained results of SVM with those of the back-propagation neural network (BPNN) indicates that the SVM can be regarded as a proper algorithm for the prediction of toxic metals concentration due to its relative high correlation coefficient and the associated running time. As a matter of fact, the SVM method has provided a better prediction of the toxic metals Fe and Ni and resulted the running time faster compared with that of the BPNN.

  5. Simulation of heavy metal contamination of fresh water bodies: toxic ...

    African Journals Online (AJOL)

    Michael Horsfall

    www.bioline.org.br/ja. Simulation of heavy metal contamination of fresh water bodies: toxic effects in the ... 96 hours (though sampling was done at the 48th hour). Biochemical markers of ... silver, while enhancing the bioavailability of mercury in Ceriodaphnia ..... Biochemical and molecular disorders of bilirubin metabolism.

  6. Assessment of sediment metal contamination in the Mar Menor coastal lagoon (SE Spain: Metal distribution, toxicity, bioaccumulation and benthic community structure

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available The Mar Menor coastal lagoon is one of the largest of the Mediterranean Sea. Ancient mining activities in the mountains near its southern basin have resulted in metal contamination in the sediment. The metal bioavailability of these sediments was determined through laboratory toxicity bioassays using three Mediterranean sea urchin species and two amphipod species, and by means of field bioaccumulation measurements involving the seagrass Cymodocea nodosa. The effect of sediment metal contamination on benthic communities was assessed through benthic infaunal analyses, applying classical descriptive parameters and multivariate techniques. The sediments affected by the mining activities presented high levels of toxicity and metals were also accumulated in the seagrass tissues, pointing to metal bioavailability. Although the classical benthic indices were not clear indicators of disturbance, the multivariate techniques applied provided more consistent conclusions.

  7. Hepatoprotective Effect of Citral on Acetaminophen-Induced Liver Toxicity in Mice

    Directory of Open Access Journals (Sweden)

    Nancy Sayuri Uchida

    2017-01-01

    Full Text Available High doses of acetaminophen (APAP lead to acute liver damage. In this study, we evaluated the effects of citral in a murine model of hepatotoxicity induced by APAP. The liver function markers alanine aminotransferase (ALT, aspartate aminotransferase (AST, alkaline phosphatase (ALP, and gamma-glutamyl transferase (γGT were determined to evaluate the hepatoprotective effects of citral. The livers were used to determine myeloperoxidase (MPO activity and nitric oxide (NO production and in histological analysis. The effect of citral on leukocyte migration and antioxidant activity was evaluated in vitro. Citral pretreatment decreased significantly the levels of ALT, AST, ALP, and γGT, MPO activity, and NO production. The histopathological analysis showed an improvement of hepatic lesions in mice after citral pretreatment. Citral inhibited neutrophil migration and exhibited antioxidant activity. Our results suggest that citral protects the liver against liver toxicity induced by APAP.

  8. Environment-friendly approach for the removal of toxic metals

    International Nuclear Information System (INIS)

    Zahra, N.; Mehmood, F.; Sheikh, S.T.; Javed, K.; Amin, A.

    2006-01-01

    Water pollution is serious economical problem and the presence of toxic metals like lead causes contamination of plants and then through nutritional chain it affects the health of humans and animals. This research work describes the removal of lead from wastewater using natural bentonites taken from various areas of Pakistan. The batch adsorption process was applied to remove this toxic metal. The quantities of lead metal before and after the treatment of standard solutions with different samples of bentonite were determined by atomic absorption spectroscopic method. The studies were carried out at room temperature, pH 7 and -200 mesh particle size using 50 ml of metal solutions. The time taken to maintain equilibrium was one hour. Then percentage adsorption was estimated on bentonite samples. (author)

  9. Effects of Ru(CO)3Cl-glycinate on the developmental toxicities induced by X-ray and carbon-ion irradiation in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Rong [Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000 (China); Song, Jing’e [School/Hospital of stomatology, Lanzhou University, Lanzhou 730000 (China); Si, Jing [Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000 (China); Zhang, Hong, E-mail: zhangh@impcas.ac.cn [Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000 (China); Liu, Bin [School/Hospital of stomatology, Lanzhou University, Lanzhou 730000 (China); Gan, Lu; Zhou, Xin [Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000 (China); and others

    2016-11-15

    Highlights: • CORM-3 pretreatment could significantly inhibit the X-ray irradiation-induced developmental toxicity and apoptosis with ROS generation. • CORM-3 pretreatment showed little effect on carbon-ion irradiation-induced developmental toxicity and apoptosis without ROS generation. • CORM-3 could inhibit apoptosis induced by ionizing radiation with low-LET as an effective ROS scavenger. • CORM-3 could suppress apoptosis and DNA damage by inhibiting the activation of P53 and the mitochondrial apoptotic pathway. - Abstract: The inhibitory effects of carbon monoxide (CO), generated by Ru(CO){sub 3}Cl-glycinate [CO-releasing molecule (CORM-3)], on developmental toxicity in zebrafish embryos induced by ionizing radiation with different linear energy transfer (LET) were studied. Zebrafish embryos at 5 h post-fertilization were irradiated with X-ray (low-LET) and carbon-ion (high-LET) with or without pretreatment of CORM-3 1 h before irradiation. CORM-3 pre-treatment showed a significant inhibitory effect on X-ray irradiation-induced developmental toxicity, but had little effect on carbon-ion irradiation-induced developmental toxicity. X-ray irradiation-induced significant increase in ROS levels and cell apoptosis could be modified by CORM-3 pretreatment. However, embryos exposed to carbon-ion irradiation showed significantly increase of cell apoptosis without obvious ROS generation, which could not be attenuated by CORM-3 pretreatment. CORM-3 could inhibit apoptosis induced by ionizing radiation with low-LET as an effective ROS scavenger. The expression of pro-apoptotic genes increased significantly after X-ray irradiation, but increased expression was reduced markedly when CORM-3 was applied before irradiation. Moreover, the protein levels of P53 and γ-H2AX increased markedly after X-ray irradiation, which could be modified by the presence of CORM-3. The protective effect of CORM-3 on X-ray irradiation occurred mainly by suppressing ROS generation and DNA

  10. Application of biotechnology in management of industrial wastes containing toxic metals

    Energy Technology Data Exchange (ETDEWEB)

    Barton, L L; Fekete, F A; Huybrechts, M M.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Biology; Sillerud, L O [Los Alamos National Lab., NM (United States); Blacke, II, R C [Meharry Medical Coll., Nashville, TN (United States); Pigg, C J [Sandia National Labs., Albuquerque, NM (United States)

    1994-01-01

    The role of microorganisms in transformation and absorption of metals in the environment is examined in this article. Understanding the metabolic processes by which microorganisms interact with toxic metals is paramount for any bioremediation process dealing with restoration of toxic waste site. Bacteria, fungi, and yeast that displayed resistance to lead, mercury, or chromium were isolated from the environment. Cotolerance studies revealed that many of these organisms could grow in high concentrations of several different toxic elements. Transformation of chromium, mercury, and lead was displayed by means of the isolated bacterial strains. Data regarding the activities of these organisms can provide a basis for use of metal/tolerant organisms in bioremediation of toxic wastes containing mercury, chromium, and lead. (author) 1 fig., 7 tabs., 28 refs.

  11. Comparative metal oxide nanoparticle toxicity using embryonic zebrafish

    Directory of Open Access Journals (Sweden)

    Leah C. Wehmas

    2015-01-01

    Full Text Available Engineered metal oxide nanoparticles (MO NPs are finding increasing utility in the medical field as anticancer agents. Before validation of in vivo anticancer efficacy can occur, a better understanding of whole-animal toxicity is required. We compared the toxicity of seven widely used semiconductor MO NPs made from zinc oxide (ZnO, titanium dioxide, cerium dioxide and tin dioxide prepared in pure water and in synthetic seawater using a five-day embryonic zebrafish assay. We hypothesized that the toxicity of these engineered MO NPs would depend on physicochemical properties. Significant agglomeration of MO NPs in aqueous solutions is common making it challenging to associate NP characteristics such as size and charge with toxicity. However, data from our agglomerated MO NPs suggests that the elemental composition and dissolution potential are major drivers of toxicity. Only ZnO caused significant adverse effects of all MO particles tested, and only when prepared in pure water (point estimate median lethal concentration = 3.5–9.1 mg/L. This toxicity was life stage dependent. The 24 h toxicity increased greatly (∼22.7 fold when zebrafish exposures started at the larval life stage compared to the 24 h toxicity following embryonic exposure. Investigation into whether dissolution could account for ZnO toxicity revealed high levels of zinc ion (40–89% of total sample were generated. Exposure to zinc ion equivalents revealed dissolved Zn2+ may be a major contributor to ZnO toxicity.

  12. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent

    Science.gov (United States)

    Exposure to metallic environmental toxicants has been demonstrated to induce a variety of oxidative stress responses in mammalian cells. The transcription factor Nrf2 is activated in response to oxidative stress and coordinates the expression of antioxidant gene products. In this...

  13. Hepatoprotective effect of Phytosome Curcumin against paracetamol-induced liver toxicity in mice

    Directory of Open Access Journals (Sweden)

    Bui Thanh Tung

    2017-04-01

    Full Text Available Abstract Curcuma longa, which contains curcumin as a major constituent, has been shown many pharmacological effects, but it is limited using in clinical due to low bioavailability. In this study, we developed a phytosome curcumin formulation and evaluated the hepatoprotective effect of phytosome curcumin on paracetamol induced liver damage in mice. Phytosome curcumin (equivalent to curcumin 100 and 200 mg/kg body weight and curcumin (200 mg/kg body weight were given by gastrically and toxicity was induced by paracetamol (500 mg/kg during 7 days. On the final day animals were sacrificed and liver function markers (ALT, AST, hepatic antioxidants (SOD, CAT and GPx and lipid peroxidation in liver homogenate were estimated. Our data showed that phytosome has stronger hepatoprotective effect compared to curcumin-free. Administration of phytosome curcumin effectively suppressed paracetamol-induced liver injury evidenced by a reduction of lipid peroxidation level, and elevated enzymatic antioxidant activities of superoxide dismutase, catalase, glutathione peroxidase in mice liver tissue. Our study suggests that phytosome curcumin has strong antioxidant activity and potential hepatoprotective effects.

  14. Protection against Radiotherapy-Induced Toxicity

    Directory of Open Access Journals (Sweden)

    Susan Hall

    2016-07-01

    Full Text Available Radiation therapy is a highly utilized therapy in the treatment of malignancies with up to 60% of cancer patients receiving radiation therapy as a part of their treatment regimen. Radiation therapy does, however, cause a wide range of adverse effects that can be severe and cause permanent damage to the patient. In an attempt to minimize these effects, a small number of compounds have been identified and are in use clinically for the prevention and treatment of radiation associated toxicities. Furthermore, there are a number of emerging therapies being developed for use as agents that protect against radiation-induced toxicities. The aim of this review was to evaluate and summarise the evidence that exists for both the known radioprotectant agents and the agents that show promise as future radioprotectant agents.

  15. An Examination of the Association of Selected Toxic Metals with Total and Central Obesity Indices: NHANES 99-02

    Directory of Open Access Journals (Sweden)

    Douglas M. Ruden

    2010-08-01

    Full Text Available It is conceivable that toxic metals contribute to obesity by influencing various aspects of metabolism, such as by substituting for essential micronutrients and vital metals, or by inducing oxidative stress. Deficiency of the essential metal zinc decreases adiposity in humans and rodent models, whereas deficiencies of chromium, copper, iron, and magnesium increases adiposity. This study utilized the NHANES 99-02 data to explore the association between waist circumference and body mass index with the body burdens of selected toxic metals (barium, cadmium, cobalt, cesium, molybdenum, lead, antimony, thallium, and tungsten. Some of the associations were significant direct relationships (barium and thallium, and some of the associations were significant inverse relationships (cadmium, cobalt, cesium, and lead. Molybdenum, antimony, and tungsten had mostly insignificant associations with waist circumference and body mass index. This is novel result for most of the toxic metals studied, and a surprising result for lead because high stored lead levels have been shown to correlate with higher rates of diabetes, and obesity may be a key risk factor for developing diabetes. These associations suggest the possibility that environmental exposure to metals may contribute to variations in human weight gain/loss. Future research, such as prospective studies rather than the cross-sectional studies presented here, is warranted to confirm these findings.

  16. An examination of the association of selected toxic metals with total and central obesity indices: NHANES 99-02.

    Science.gov (United States)

    Padilla, Miguel A; Elobeid, Mai; Ruden, Douglas M; Allison, David B

    2010-09-01

    It is conceivable that toxic metals contribute to obesity by influencing various aspects of metabolism, such as by substituting for essential micronutrients and vital metals, or by inducing oxidative stress. Deficiency of the essential metal zinc decreases adiposity in humans and rodent models, whereas deficiencies of chromium, copper, iron, and magnesium increases adiposity. This study utilized the NHANES 99-02 data to explore the association between waist circumference and body mass index with the body burdens of selected toxic metals (barium, cadmium, cobalt, cesium, molybdenum, lead, antimony, thallium, and tungsten). Some of the associations were significant direct relationships (barium and thallium), and some of the associations were significant inverse relationships (cadmium, cobalt, cesium, and lead). Molybdenum, antimony, and tungsten had mostly insignificant associations with waist circumference and body mass index. This is novel result for most of the toxic metals studied, and a surprising result for lead because high stored lead levels have been shown to correlate with higher rates of diabetes, and obesity may be a key risk factor for developing diabetes. These associations suggest the possibility that environmental exposure to metals may contribute to variations in human weight gain/loss. Future research, such as prospective studies rather than the cross-sectional studies presented here, is warranted to confirm these findings.

  17. Importance of dose metrics for lethal and sublethal sediment metal toxicity in the oligochaete worm Lumbriculus variegatus

    Energy Technology Data Exchange (ETDEWEB)

    Penttinen, O.P.; Kilpi-Koski, J.; Toivainen, K. [Helsinki Univ., Lahti (Finland). Dept. of Ecology end Environmental Sciences; Jokela, M. [Mikkeli Univ. of Applied Sciences, Mikkeli (Finland); Vaeisaenen, A. [Jyvaeskylae Univ. (Finland). Dept. of Chemistry

    2008-02-15

    Background, aims, and scope. There is an increasing demand for controlled toxicity tests to predict biological effects related to sediment metal contamination. In this context, questions of metal-specific factors, sensitivity of toxicity endpoints, and variability in exposure duration arise. In addition, the choice of the dose metrics for responses is equally important and is related to the applicability of the concept of critical body residue (CBR) in exposure assessments, as well as being the main focus of this study. Methods. Experiments were conducted to assess toxicity of Cd, Cr, Cu and Pb to the oligochaete worm Lumbriculus variegatus with the aim of determining CBRs for two response metrics. Mortality and feeding activity of worms exposed to sediment-spiked metals were used as end-points in connection with residue analyses from both the organisms and the surrounding media. Results. LC50 values were 0.3, 1.4, 5.2, and 6.7 mg/L (from 4.7 {mu}mol/L to 128.0 {mu}mol/L), and the order of toxicity, from most toxic to least toxic, was Cu > Cd > Pb>Cr. By relating toxicity to body residue, variability in toxicity among the metals decreased and the order of toxicity was altered. The highest lethal residue value was obtained for Cu (10.8 mmol/kg) and the lowest was obtained for Cd (2.3 mmol/kg). In the 10-d sublethal test, both time and metal exposure were an important source of variation in the feeding activity of worms. The significant treatment effects were observed from worms exposed to Cd or Pb, with the controls yielding the highest feeding rate. However, quantitative changes in the measured end-point did not correlate with the exposure concentrations or body residues, which remained an order of magnitude lower than in the acute exposures. (orig.)

  18. Effect of Physalis peruviana L. on cadmium-induced testicular toxicity in rats.

    Science.gov (United States)

    Othman, Mohamed S; Nada, Ahmed; Zaki, Hassan S; Abdel Moneim, Ahmed E

    2014-06-01

    Cadmium (Cd) stimulates the production of reactive oxygen species and causes tissue damage. We investigated here the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced testes toxicity in rats. Twenty-eight Wistar albino rats were used. They were divided into four groups (n=7). Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg body weight (bwt) of cadmium chloride for 5 days. Group 3 was orally treated with 200 mg/kg bwt of methanolic extract of physalis (MEPh). Group 4 was pretreated with MEPh before cadmium for 5 days. Changes in body and testes weights were determined. Oxidative stress markers, antioxidant enzymes, and testosterone level were measured. Histopathological changes of testes were examined, and the immunohistochemical staining for the proapoptotic (caspase-3) protein was performed. The injection of cadmium caused a significant decrease in body weight, while a significant increase in testes weight and testes weight index was observed. Pretreatment with MEPh was associated with significant reduction in the toxic effects of Cd as shown by reduced testicular levels of malondialdehyde, nitric oxide, and caspase-3 expression and increased glutathione content, and the activities of superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and testosterone were also increased. Testicular histopathology showed that Cd produced an extensive germ cell apoptosis, and the pretreatment of MEPh in Cd-treated rats significantly reduced Cd-induced testicular damage. On the basis of the above results, it can be hypothesized that P. peruviana L. has a protective effect against cadmium-induced testicular oxidative stress and apoptosis in the rat.

  19. Mercury Toxicity and Treatment: A Review of the Literature

    Science.gov (United States)

    Bernhoft, Robin A.

    2012-01-01

    Mercury is a toxic heavy metal which is widely dispersed in nature. Most human exposure results from fish consumption or dental amalgam. Mercury occurs in several chemical forms, with complex pharmacokinetics. Mercury is capable of inducing a wide range of clinical presentations. Diagnosis of mercury toxicity can be challenging but can be obtained with reasonable reliability. Effective therapies for clinical toxicity have been described. PMID:22235210

  20. Mercury Toxicity and Treatment: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Robin A. Bernhoft

    2012-01-01

    Full Text Available Mercury is a toxic heavy metal which is widely dispersed in nature. Most human exposure results from fish consumption or dental amalgam. Mercury occurs in several chemical forms, with complex pharmacokinetics. Mercury is capable of inducing a wide range of clinical presentations. Diagnosis of mercury toxicity can be challenging but can be obtained with reasonable reliability. Effective therapies for clinical toxicity have been described.

  1. Toxic metals contained in cosmetics: a status report.

    Science.gov (United States)

    Bocca, Beatrice; Pino, Anna; Alimonti, Alessandro; Forte, Giovanni

    2014-04-01

    The persistence of metals in the environment and their natural occurrence in rocks, soil and water cause them to be present in the manufacture of pigments and other raw materials used in the cosmetic industry. Thus, people can be exposed to metals as trace contaminants in cosmetic products they daily use. Cosmetics may have multiple forms, uses and exposure scenarios, and metals contained in them can cause skin local problems but also systemic effects after their absorption via the skin or ingestion. Even this, cosmetics companies are not obliged to report on this kind of impurities and so consumers have no way of knowing about their own risk. This paper reviewed both the concentration of metals in different types of cosmetics manufactured and sold worldwide and the data on metals' dermal penetration and systemic toxicology. The eight metals of concern for this review were antimony (Sb), arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), mercury (Hg), nickel (Ni) and lead (Pb). This was because they are banned as intentional ingredients in cosmetics, have draft limits as potential impurities in cosmetics and are known as toxic. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Lack of beneficial effect of activated charcoal in lead induced testicular toxicity in male albino rats

    Directory of Open Access Journals (Sweden)

    Samuel James Offor

    2017-09-01

    Full Text Available Objective: Lead is a multi-organ toxicant implicated in various diseases including testicular toxicity. In search of cheap and readily available antidote this study has investigated a beneficial role of activated charcoal in lead induced testicular toxicity in male albino rats. Materials and Method: Eighteen male albino rats were divided into three groups of six rats per group. Group 1 (control rats received deionised water (10 ml/kg, group 2 was given lead acetate solution 60 mg/kg and group 3 rats were given lead acetate (60 mg/kg followed by Activated charcoal, AC (1000 mg/kg by oral gavage daily for 28 days. Absolute and relative weights of testis, epididymal sperm reserve, testicular sperm count, percent sperm motility and percent sperm viability were monitored. Results: AC failed to show any significant beneficial effect in ameliorating lead induced testicular toxicity. Conclusions: There seem to be a poor adsorption on lead onto AC in vivo.

  3. Cytoprotective effects of essential oil of Pinus halepensis L. against aspirin-induced toxicity in IEC-6 cells.

    Science.gov (United States)

    Bouzenna, Hafsia; Hfaiedh, Najla; Bouaziz, Mouhamed; Giroux-Metges, Marie-Agnès; Elfeki, Abdelfattah; Talarmin, Hélène

    2017-12-01

    Essential oils from Pinus species have been reported to have various therapeutic properties. This study was undertaken to identify the chemical composition and cytoprotective effects of the essential oil of Pinus halepensis L. against aspirin-induced damage in cells in vitro. The cytoprotection of the oil against toxicity of aspirin on the small intestine epithelial cells IEC-6 was tested. The obtained results have shown that 35 different compounds were identified. Aspirin induced a decrease in cell viability, and exhibited significant damage to their morphology and an increase in superoxide dismutase (SOD) and catalase (CAT) activities. However, the co-treatment of aspirin with the essential oil of Pinus induced a significant increase in cell viability and a decrease in SOD and CAT activities. Overall, these finding suggest that the essential oil of Pinus halepensis L. has potent cytoprotective effect against aspirin-induced toxicity in IEC-6 cells.

  4. Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments.

    Science.gov (United States)

    Zimmermann, Sonja; Wolff, Carolina; Sures, Bernd

    2017-05-01

    Mainly due to automobile traffic, but also due to other sources, the platinum group elements (PGE) platinum (Pt), palladium (Pd) and rhodium (Rh) are introduced into aquatic biotopes where they accumulate in sediments of lakes and rivers. However, the toxicity of these noble metals to aquatic organisms is not well understood and especially toxicity studies under standardized condition are lacking. Thus, the toxicity of Pt, Pd and Rh to Daphnia magna was tested in single metal exposure experiments according to OECD guideline 202. Immobility and lethality was recorded after 24 h and 48 h of exposure and EC 50 and LC 50 , respectively, were determined. As the nominal exposure concentration of Pd differed significantly from the quantified concentration, the control of the real exposure concentration by chemical analysis is mandatory, especially for Pd. The toxicity decreased in the order Pd > Pt ≫ Rh with e.g. LC 50 (48 h) values of 14 μg/L for Pd, 157 μg/L for Pt and 56,800 μg/L for Rh. The exposure period had a clear effect on the toxicity of Pt, Pd and Rh. For Pt and Rh the endpoint immobility was more sensitive than the endpoint lethality whereas Pd toxicity was similar for both endpoints. The Hill slopes, which are a measure for the steepness of the concentration-response curves, showed no significant discrepancies between the different metals. The binary metal exposure to Pt and Pd revealed a more-than-additive, i.e. a synergistic toxicity using the toxic unit approach. The present study is a start to understand the toxicity of interacting PGE. The modes of action behind the synergistic effect are unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Protective effect of riboflavin on cisplatin induced toxicities: a gender-dependent study.

    Science.gov (United States)

    Naseem, Imrana; Hassan, Iftekhar; Alhazza, Ibrahim M; Chibber, Sandesh

    2015-01-01

    The toxicity exerted by the anticancer drug, cisplatin in vivo is functional to many factors such as dose, duration, gender and age etc. The present study is aimed to investigate if ameliorative potential of riboflavin on cisplatin induced toxicity is gender dependent. Eighty four adult mice from male and female sex were divided into seven groups (n=6) for both sexes. They were treated with riboflavin (2mg/kg), cisplatin (2mg/kg) and their two different combinations (cisplatin at 2mg/kg with 1mg/kg and 2mg/kg of riboflavin) under photoillumination with their respective controls for the combination groups without photoillumination. After treatment, all groups were sacrificed and their kidney, liver and serum were collected for biochemical estimations, comet assay and histopathology. In the present investigation, it was evident from antioxidant and detoxification studies (SOD, CAT, GSH, GST, MDA and carbonyl level) that the female mice exhibited better tolerance towards cisplatin inducted toxicity and the ameliorative effect of riboflavin against cisplatin toxicity was found stronger in their combination groups as compared to the male groups as the activity of all antioxidant enzymes were found better concomitant with lower level of MDA and carbonyl contents in the female combination groups than their male counterparts. Furthermore, single cell gel electrophoresis and histopathological examination confirmed that restoration of normal nuclear and cellular integrity was more prominent in female with respect to the males after treatment in the combination groups in a dose-dependent manner. Hence, this study reveals that cisplatin is more toxic in male mice and the ameliorative effect of riboflavin against cisplatin toxicity is stronger in female mice. Copyright © 2014. Published by Elsevier GmbH.

  6. The Role of Oxidative Stress in Carcinogenesis Induced by Metals and Xenobiotics

    International Nuclear Information System (INIS)

    Henkler, Frank; Brinkmann, Joep; Luch, Andreas

    2010-01-01

    In addition to a wide range of adverse effects on human health, toxic metals such as cadmium, arsenic and nickel can also promote carcinogenesis. The toxicological properties of these metals are partly related to generation of reactive oxygen species (ROS) that can induce DNA damage and trigger redox-dependent transcription factors. The precise mechanisms that induce oxidative stress are not fully understood. Further, it is not yet known whether chronic exposures to low doses of arsenic, cadmium or other metals are sufficient to induce mutations in vivo, leading to DNA repair responses and/or tumorigenesis. Oxidative stress can also be induced by environmental xenobiotics, when certain metabolites are generated that lead to the continuous release of superoxide, as long as the capacity to reduce the resulting dions (quinones) into hydroquinones is maintained. However, the specific significance of superoxide-dependent pathways to carcinogenesis is often difficult to address, because formation of DNA adducts by mutagenic metabolites can occur in parallel. Here, we will review both mechanisms and toxicological consequences of oxidative stress triggered by metals and dietary or environmental pollutants in general. Besides causing DNA damage, ROS may further induce multiple intracellular signaling pathways, notably NF-κB, JNK/SAPK/p38, as well as Erk/MAPK. These signaling routes can lead to transcriptional induction of target genes that could promote proliferation or confer apoptosis resistance to exposed cells. The significance of these additional modes depends on tissue, cell-type and is often masked by alternate oncogenic mechanisms being activated in parallel

  7. The use of sugar and alcohol industry waste in the adsorption of potentially toxic metals.

    Science.gov (United States)

    Santos, Oseas Silva; Mendonça, André Gustavo Ribeiro; Santos, Josué Carinhanha Caldas; Silva, Amanda Paulina Bezerra; Costa, Silvanio Silverio Lopes; Oliveira, Luciana Camargo; Carmo, Janaina Braga; Botero, Wander Gustavo

    2016-01-01

    One of the waste products of the industrial process of the sugar and alcohol agribusiness is filter cake (FC). This waste product has high levels of organic matter, mainly proteins and lipids, and is rich in calcium, nitrogen, potassium and phosphorous. In this work we characterized samples of FC from sugar and alcohol industries located in sugarcane-producing regions in Brazil and assessed the adsorption of potentially toxic metals (Cu(II), Cd(II), Pb(II), Ni(II) and Cr(III)) by this waste in mono- and multi-elemental systems, seeking to use FC as an adsorbent in contaminated environments. The characterization of FCs showed significant differences between the samples and the adsorption studies showed retention of over 90% of potentially toxic metals. In a competitive environment (multi-metallic solution), the FC was effective in adsorbing all metals except lead, but less effective compared to the mono-metallic solution. These results show the potential for use of this residue as an adsorbent in contaminated environments.

  8. Atmospheric toxic metals emission inventory and spatial characteristics from anthropogenic sources of Guangdong province, China

    Science.gov (United States)

    Cher, S.; Menghua, L.; Xiao, X.; Yuqi, W.; Zhuangmin, Z.; Zhijiong, H.; Cheng, L.; Guanglin, J.; Zibing, Y.; Junyu, Z.

    2017-12-01

    Atmospheric toxic metals (TMs) are part of particulate matters, and may create adverse effects on the environment and human health depending upon their bioavailability and toxicity. Localized emission inventory is fundamental for parsing of toxic metals to identify key sources in order to formulate efficient toxic metals control strategies. With the use of the latest municipal level environment statistical data, this study developed a bottom-up emission inventory of five toxic metals (Hg, As, Pb, Cd, Cr) from anthropogenic activities in Guangdong province for the year of 2014. Major atmospheric toxic metals sources including combustion sources (coal, oil, biomass, municipal solid waste) and industrial process sources (cement production, nonferrous metal smelting, iron and steel industry, battery and fluorescent lamp production) were investigated. Results showed that: (1) The total emissions of Hg, As, Pb, Cd, Cr in Guangdong province were 18.14, 32.59, 411.34, 13.13, 84.16 t, respectively. (2) Different pollutants have obvious characteristics of emission sources. For total Hg emission, 46% comes from combustion sources, of which 32% from coal combustion and 8% from MSW combustion. Other 54% comes from industrial processes, which dominated by the cement (19%), fluorescent lamp (18%) and battery production (13%). Of the total Hg emission, 69% is released as Hg0 , 29% as Hg2+ , and only 2% as Hgp due to strict particulate matters controls policies. For As emissions, coal combustion, nonferrous metal smelting and iron and steel industry contributed approximate 48%, 25% and 24%, respectively. Pb emissions primarily come from battery production (42%), iron and steel industry (21%) and on-road mobile gasoline combustion (17%). Cd and Cr emissions were dominated by nonferrous metal smelting (71%) and iron and steel industry (82%), respectively. (3) In term of the spatial distribution, emissions of atmospheric toxic metals are mainly concentrated in the central region of

  9. Evaluation of the threat of marine CO{sub 2} leakage-associated acidification on the toxicity of sediment metals to juvenile bivalves

    Energy Technology Data Exchange (ETDEWEB)

    Basallote, M. Dolores, E-mail: dolores.basallote@uca.es [Cátedra UNESCO/UNITWIN WiCop, Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Polígono Río San Pedro s/n, 11510 Puerto Real, Cádiz (Spain); Rodríguez-Romero, Araceli [Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Río San Pedro, 11510 Puerto Real, Cádiz (Spain); De Orte, Manoela R.; Del Valls, T. Ángel; Riba, Inmaculada [Cátedra UNESCO/UNITWIN WiCop, Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Polígono Río San Pedro s/n, 11510 Puerto Real, Cádiz (Spain)

    2015-09-15

    Highlights: • Short-term tests using juveniles of bivalves to study the effects of CO{sub 2} dissolved. • CO{sub 2} causes effects if the threshold concentration of the organism is overlapped. • Flows of escaped CO{sub 2} would affect the geochemical composition of sediment–seawater. • CO{sub 2}-induced acidification would affect differently to marine sediment toxicity. - Abstract: The effects of the acidification associated with CO{sub 2} leakage from sub-seabed geological storage was studied by the evaluation of the short-term effects of CO{sub 2}-induced acidification on juveniles of the bivalve Ruditapes philippinarum. Laboratory scale experiments were performed using a CO{sub 2}-bubbling system designed to conduct ecotoxicological assays. The organisms were exposed for 10 days to elutriates of sediments collected in different littoral areas that were subjected to various pH treatments (pH 7.1, 6.6, 6.1). The acute pH-associated effects on the bivalves were observed, and the dissolved metals in the elutriates were measured. The median toxic effect pH was calculated, which ranged from 6.33 to 6.45. The amount of dissolved Zn in the sediment elutriates increased in parallel with the pH reductions and was correlated with the proton concentrations. The pH, the pCO{sub 2} and the dissolved metal concentrations (Zn and Fe) were linked with the mortality of the exposed bivalves.

  10. Milk diets influence doxorubicin-induced intestinal toxicity in piglets

    DEFF Research Database (Denmark)

    Shen, R. L.; Pontoppidan, P. E.; Rathe, M.

    2016-01-01

    Chemotherapy-induced gastrointestinal (GI) toxicity is a common adverse effect of cancer treatment. We used preweaned piglets as models to test our hypothesis that the immunomodulatory and GI trophic effects of bovine colostrum would reduce the severity of GI complications associated with doxorub......Chemotherapy-induced gastrointestinal (GI) toxicity is a common adverse effect of cancer treatment. We used preweaned piglets as models to test our hypothesis that the immunomodulatory and GI trophic effects of bovine colostrum would reduce the severity of GI complications associated...... to assess markers of small intestinal function and inflammation. All DOX-treated animals developed diarrhea, growth deficits, and leukopenia. However, the intestines of DOX-Colos pigs had lower intestinal permeability, longer intestinal villi with higher activities of brush border enzymes, and lower tissue...

  11. Heavy-metal toxicity phenomena in laboratory-scale ANFLOW bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, A.L.

    1982-04-01

    An energy-conserving wastewater treatment system was developed based on an anaerobic, upflow (ANFLOW) bioreactor. Since many applications of the ANFLOW process could involve the treatment of wastewaters containing heavy metals, the potentially toxic effects of these metals on the biological processes occurring in ANFLOW columns (primarily acetogenesis and methanogenesis) were investigated. Both step and pulse inputs of zinc ranging from 100 to 1000 mg/L were added to synthetic wastewaters being treated in ANFLOW columns with 0.057-m/sup 3/ volumes. Column responses were used to develop descriptive models for toxicity phenomena in such systems. It was found that an inhibition function could be defined and used to modify a model based on plugflow with axial dispersion and first-order kinetics for soluble substrate removal. The inhibitory effects of zinc on soluble substrate removal were found to be predominantly associated with its sorption by biosolids. Sorption initially occurred in the lower regions of the column, but was gradually observed in higher regions as the sorption capacity of the lower regions was exhausted. Sorption phenomena could be described with the Freundlich equation. Sorption processes were accompanied by shifts of biological processes to regions higher in the columns. A regenerative process was observed when feeding of wastewaters without zinc was resumed. It was postulated that regeneration could be based on sloughing of layers of biofilms, or other biosolids involved in zinc sorption, followed by continued growth of lower layers of biofilms not involved in heavy-metal sorption.

  12. Toxicity and metal speciation in acid mine drainage treated by passive bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Neculita, C.M.; Vigneaul, B.; Zagury, G.J. [Ecole Polytechnic, Montreal, PQ (Canada)

    2008-08-15

    Sulfate-reducing passive bioreactors treat acid mine drainage (AMD) by increasing its pH and alkalinity and by removing metals as metal sulfide precipitates. In addition to discharge limits based on physicochemical parameters, however, treated effluent is required to be nontoxic. Acute and sublethal toxicity was assessed for effluent from 3.5-L column bioreactors filled with mixtures of natural organic carbon sources and operated at different hydraulic retention times (HRTs) for the treatment of a highly contaminated AMD. Effluent was first tested for acute (Daphnia magna and Oncorhynchus mykiss) and sublethal (Pseudokirchneriella subcapitata, Ceriodaphnia dabia, and Lemna minor) toxicity. Acute toxicity was observed for D. magna, and a toxicity identification evaluation (TIE) procedure was then performed to identify potential toxicants. Finally, metal speciation in the effluent was determined using ultrafiltration and geochemical modeling for the interpretation of the toxicity results. The 10-d HRT effluent was nonacutely lethal for 0. mykiss but acutely lethal for D. magna. The toxicity to D. magna, however, was removed by 2 h of aeration, and the TIE procedure suggested iron as a cause of toxicity. Sublethal toxicity of the 10-d HRT effluent was observed for all test species, but it was reduced compared to the raw AMD and to a 7.3-d HRT effluent. Data regarding metal speciation indicated instability of both effluents during aeration and were consistent with the toxicity being caused by iron. Column bioreactors in operation for more than nine months efficiently improved the physicochemical quality of highly contaminated AMD at different HRTs.

  13. The Alchemist’s Approach to Metal Poisoning: Transforming the Metal Burden

    Directory of Open Access Journals (Sweden)

    Wayne Briner

    2014-06-01

    Full Text Available Metal poisoning is a global problem with humans being exposed to a wide range of metals in varying doses and varying time frames. Traditionally, treatment involves removal of the toxic source or chelation therapy. An intermediate approach is needed. This review outlines the argument for the use of essential metal supplementation as a strategy to induce metallothionein expression and displace the toxic metal from important biological systems, improving the metal burden of the patient. Specific recommendations are given for supplementation with calcium, zinc and vitamin E as a broad strategy to improve the status of those exposed to toxic metals.

  14. Albendazole Induced Recurrent Acute Toxic Hepatitis: A Case Report.

    Science.gov (United States)

    Bilgic, Yilmaz; Yilmaz, Cengiz; Cagin, Yasir Furkan; Atayan, Yahya; Karadag, Nese; Harputluoglu, Murat Muhsin Muhip

    2017-01-01

    Drug induced acute toxic hepatitis can be idiosyncratic. Albendazole, a widely used broad spectrum antiparasitic drug is generally accepted as a safe drug. It may cause asymptomatic transient liver enzyme abnormalities but acute toxic hepatitis is very rare. Case Report : Herein, we present the case of 47 year old woman with recurrent acute toxic hepatitis after a single intake of albendazole in 2010 and 2014. The patient was presented with symptoms and findings of anorexia, vomiting and jaundice. For diagnosis, other acute hepatitis etiologies were excluded. Roussel Uclaf Causality Assessment Method (RUCAM) score was calculated and found to be 10, which meant highly probable drug hepatotoxicity. Within 2 months, all pathological findings came to normal. There are a few reported cases of albendazole induced toxic hepatitis, but at adults, there is no known recurrent acute toxic hepatitis due to albendazole at this certainty according to RUCAM score. Physicians should be aware of this rare and potentially fatal adverse effect of albendazole. © Acta Gastro-Enterologica Belgica.

  15. Calcium EDTA toxicity: renal excretion of endogenous trace metals and the effect of repletion on collagen degradation in the rat.

    Science.gov (United States)

    Braide, V B

    1984-01-01

    Studies on total hydroxyproline concentrations in urine of rats infused with toxic doses of CaEDTA at 6 mmol/kg per 24 hr for 48 hr or injected i.p. with the chelate at 4.8 mmol/kg/day for 10 days, indicate a two- to six-fold increase in urine excretion of the imino acid. This is due to increased degradation of collagen induced by CaEDTA. CaEDTA infusion was also shown to enhance urine excretion of some trace metals (Zn, Mn, Cu and Fe). Rats infused with CaEDTA for 36 hr showed a gradual fall in concentration of hydroxyproline in the urine, following cessation of chelate infusion. The decline in hydroxyproline concentrations was faster in rats receiving trace metal (Zn, Co, Mn or Ni) treatment during the post-CaEDTA infusion period; suggesting that the metals may affect collage, making the protein less susceptible to degradation in the body.

  16. Exposure of cultured human proximal tubular cells to cadmium, mercury, zinc and bismuth: toxicity and metallothionein induction.

    Science.gov (United States)

    Rodilla, V; Miles, A T; Jenner, W; Hawksworth, G M

    1998-08-14

    The kidney, in particular the proximal convoluted tubule, is a major target site for the toxic effects of various metals. However, little is known about the early effects of these metals after acute exposure in man. In the present study we have evaluated the toxicity of several inorganic metal compounds (CdCl2, HgCl2, ZnCl2, and Bi(NO3)3) and the induction of metallothionein by these compounds in cultured human proximal tubular (HPT) cells for up to 4 days. The results showed that bismuth was not toxic even at the highest dose (100 microM) used, while zinc, cadmium and mercury exhibited varying degrees of toxicity, zinc being the least toxic and mercury the most potent. A significant degree of interindividual variation between the different isolates used in these experiments was also observed. All metals used in the present study induced MT, as revealed by immunocytochemistry. All metals showed maximal induction between 1 and 3 days after treatment. Although a certain amount of constitutive MT was present in the cultures, the intensity of the staining varied with time in culture and between the different isolates studied. No correlation could be made between the intensity of the staining in control cultures (indicating total amount of constitutive MT) and the susceptibility of a given isolate to metal toxicity. Furthermore, no correlation could be made between metal-induced MT and the susceptibility of a given isolate to that particular metal.

  17. Spatiotemporal trend analysis of metal concentrations in sediments of a residential California stream with toxicity and regulatory implications.

    Science.gov (United States)

    Hall, Lenwood W; Anderson, Ronald D; Killen, William D

    2017-06-07

    The objective of this study was to determine if concentrations of arsenic, cadmium, chromium, copper, lead, nickel and zinc measured in the sediments of a residential stream in California (Pleasant Grove Creek) have changed temporally or spatially from 2006 to 2016. Threshold Effect Levels (TELs), conservative ecological effects benchmarks, and exceedances for the seven metals were also evaluated over the 11-year time period to provide insight into potential metal toxicity to resident benthic communities. In addition, the bioavailability of metals in sediments was also determined by calculating Simultaneous Extracted Metal/Acid Volatle Sulfide (SEM/AVS) ratios to allow an additional assessment of toxicity. Regulatory implications of this data set and the role of metal toxicity are also discussed. Stream-wide temporal trend analysis showed no statistically significant trends for any of the metals. However, spatial analysis for several sites located near storm drains did show a significant increase for most metals over the 11-year period. TEL exceedances during the 7 years of sampling, spanning 2006-2016, were reported for all metals with the number of exceedances ranging from 47 for copper and zinc to 1 for lead. A spatial analysis showed that the highest number of TEL exceedances and the highest number of SEM/AVS ratios greater than one with at least one metal exceeding a TEL occurred at upstream sites. The potentially toxic metal concentrations reported in Pleasant Grove Creek should be used in the 303 (d) listing process for impaired water bodies in California.

  18. Precipitation of metals in produced water : influence on contaminant transport and toxicity

    International Nuclear Information System (INIS)

    Azetsu-Scott, K.; Wohlgeschaffen, G.; Yeats, P.; Dalziel, J.; Niven, S.; Lee, K.

    2006-01-01

    Produced water contains a number of compounds of environmental concern and is the largest volume waste stream from oil and gas production activities. Recent studies have shown that chemicals dissolved in waste water from oil platforms stunted the growth of North Sea cod and affected their breeding patterns. Scientific research is needed to identify the impact of produced water discharges on the environment as well as to identify acceptable disposal limits for produced water. This presentation provided details of a study to characterize produced water discharged within the Atlantic regions of Canada. The study included dose response biological effect studies; research on processes controlling the transport and transformation of contaminants associated with produced water discharges and the development of risk assessment models. The sample location for the study was a site near Sable Island off the coast of Nova Scotia. Chemical analysis of the produced water was conducted as well as toxicity tests. Other tests included a time-series particulate matter sedimentation test; time-series metal and toxicity analysis; time-series change in metal precipitates tests and a produced water/seawater layering experiment. Dissolved and particulate fractions were presented, and the relationship between toxicity and particulate concentrations was examined. Results of the study suggested that produced water contaminants are variable over spatial and temporal scales due to source variations and changes in discharge rates. Chemical changes occur within 24 hours of produced water being mixed with seawater and facilitate contaminant partitioning between the surface micro layer, water column and sediments. Changes in the toxicity of the produced water are correlated with the partitioning of chemical components. The impact zone may be influenced by chemical kinetics that control the distribution of potential toxic metals. Further research is needed to investigate the effects of low level

  19. Oral bioaccessibility of toxic metals in contaminated oysters and relationships with metal internal sequestration.

    Science.gov (United States)

    Gao, Shi; Wang, Wen-Xiong

    2014-12-01

    The Hong Kong oysters Crassostrea hongkongensis are widely farmed in the estuarine waters of Southern China, but they accumulate Cu and Zn to alarmingly high concentrations in the soft tissues. Health risks of seafood consumption are related to contaminants such as toxic metals which are bioaccessible to humans. In the present study, we investigated the oral bioaccessibility of five toxic metals (Ag, Pb, Cd, Cu and Zn) in contaminated oysters collected from different locations of a large estuary in southern China. In all oysters, total Zn concentration was the highest whereas total Pb concentration was the lowest. Among the five metals, Ag had the lowest oral bioaccessibility (38.9-60.8%), whereas Cu and Zn had the highest bioaccessibility (72.3-93.1%). Significant negative correlation was observed between metal bioaccessibility and metal concentration in the oysters for Ag, Cd, and Cu. We found that the oral bioaccessibility of the five metals was positively correlated with their trophically available metal fraction (TAM) in the oyster tissues, and negatively correlated with metal distribution in the cellular debris. Thus, metal partitioning in the TAM and cellular debris controlled the oral bioaccessibility to humans. Given the dependence of oral bioaccessibility on tissue metal contamination, bioaccessibility needs to be incorporated in the risk assessments of contaminated shellfish. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Ameliorative effect of Zingiber officinale on diazinon -induced testicular toxicity: A biochemical, histopathological, and immunohistochemical study

    Directory of Open Access Journals (Sweden)

    S. Yaghubi Beklar

    2017-11-01

    Full Text Available Background and objectives: Diazinon (O,O-diethyl O-2-isopropyl-6- methyl pyrimidinyl-4-g-1- phosphorothioate is one of  the organophosphate insecticides for different agricultural and gardening uses, which can be highly toxic. Zingiber officinale(ginger, a spice and herbal medicine, has antioxidant and anti-inflammatory properties. This study has investigated the effects of ginger against DZN-induced testicular toxicity. Methods: Thirty two adult male mice were randomly divided into four groups. The control group; ginger group (200 mg/kg; DZN group (10 mg/kg and ginger + DZN group. Ginger and DZN were received for 30 consecutive days by gavage and DZN treat one hour after receiving ginger. Sperm parameters, testosterone levels, biochemical, histopathological and immunohistochemical assays of testis were evaluated. Results: The results revealed that treatment with DZN caused significant damage of sperm parameters (sperm motility, count, viability rate and abnormalities, increased oxidative stress (increased MDA and decreased GSH level, significant histopathological changes and decreased Johnsen’s Score, testosterone level and increased caspase-3 immunoreactivity. Ginger preserved sperm parameters and mitigated the toxic effects of DZN. Also, pretreatment with ginger significantly reduced caspase-3 immunoreactivity. Conclusion: Our results concluded that ginger probably with its antioxidant activity and scavenging free radicals protect against DZN-induced testicular toxicity.

  1. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells

    Directory of Open Access Journals (Sweden)

    Ohayon-Courtès Céline

    2011-03-01

    Full Text Available Abstract Background Some manufactured nanoparticles are metal-based and have a wide variety of applications in electronic, engineering and medicine. Until now, many studies have described the potential toxicity of NPs on pulmonary target, while little attention has been paid to kidney which is considered to be a secondary target organ. The objective of this study, on human renal culture cells, was to assess the toxicity profile of metallic nanoparticles (TiO2, ZnO and CdS usable in industrial production. Comparative studies were conducted, to identify whether particle properties impact cytotoxicity by altering the intracellular oxidative status. Results Nanoparticles were first characterized by size, surface charge, dispersion and solubility. Cytotoxicity of NPs was then evaluated in IP15 (glomerular mesangial and HK-2 (epithelial proximal cell lines. ZnO and CdS NPs significantly increased the cell mortality, in a dose-dependent manner. Cytotoxic effects were correlated with the physicochemical properties of NPs tested and the cell type used. Analysis of reactive oxygen species and intracellular levels of reduced and oxidized glutathione revealed that particles induced stress according to their composition, size and solubility. Protein involved in oxidative stress such as NF-κb was activated with ZnO and CdS nanoparticles. Such effects were not observed with TiO2 nanoparticles. Conclusion On glomerular and tubular human renal cells, ZnO and CdS nanoparticles exerted cytotoxic effects that were correlated with metal composition, particle scale and metal solubility. ROS production and oxidative stress induction clearly indicated their nephrotoxic potential.

  2. Cobalt toxicity in humans-A review of the potential sources and systemic health effects.

    Science.gov (United States)

    Leyssens, Laura; Vinck, Bart; Van Der Straeten, Catherine; Wuyts, Floris; Maes, Leen

    2017-07-15

    Cobalt (Co) and its compounds are widely distributed in nature and are part of numerous anthropogenic activities. Although cobalt has a biologically necessary role as metal constituent of vitamin B 12 , excessive exposure has been shown to induce various adverse health effects. This review provides an extended overview of the possible Co sources and related intake routes, the detection and quantification methods for Co intake and the interpretation thereof, and the reported health effects. The Co sources were allocated to four exposure settings: occupational, environmental, dietary and medical exposure. Oral intake of Co supplements and internal exposure through metal-on-metal (MoM) hip implants deliver the highest systemic Co concentrations. The systemic health effects are characterized by a complex clinical syndrome, mainly including neurological (e.g. hearing and visual impairment), cardiovascular and endocrine deficits. Recently, a biokinetic model has been proposed to characterize the dose-response relationship and effects of chronic exposure. According to the model, health effects are unlikely to occur at blood Co concentrations under 300μg/l (100μg/l respecting a safety factor of 3) in healthy individuals, hematological and endocrine dysfunctions are the primary health endpoints, and chronic exposure to acceptable doses is not expected to pose considerable health hazards. However, toxic reactions at lower doses have been described in several cases of malfunctioning MoM hip implants, which may be explained by certain underlying pathologies that increase the individual susceptibility for Co-induced systemic toxicity. This may be associated with a decrease in Co bound to serum proteins and an increase in free ionic Co 2+ . As the latter is believed to be the primary toxic form, monitoring of the free fraction of Co 2+ might be advisable for future risk assessment. Furthermore, future research should focus on longitudinal studies in the clinical setting of Mo

  3. Toxic metals in the atmosphere

    International Nuclear Information System (INIS)

    Munoz-Ribadeneira, F.J.; Mo, T.; Canoy, M.J.

    1975-05-01

    Methods used in Puerto Rico for monitoring toxic metals in the atmosphere are described. Air sampling machines are placed at heights from 15 to 25 ft above the surface and the tapes are subjected to neutron activation and γ spectroscopy. The concentrations of up to 33 elements can be determined with precision and sensitivity without destroying the tapes, which can then be used for analysis by other methods. (U.S.)

  4. Riboflavin ameliorates cisplatin induced toxicities under photoillumination.

    Directory of Open Access Journals (Sweden)

    Iftekhar Hassan

    Full Text Available BACKGROUND: Cisplatin is an effective anticancer drug that elicits many side effects mainly due to induction of oxidative and nitrosative stresses during prolonged chemotherapy. The severity of these side effects consequently restricts its clinical use under long term treatment. Riboflavin is an essential vitamin used in various metabolic redox reactions in the form of flavin adenine dinucleotide and flavin mononucleotide. Besides, it has excellent photosensitizing property that can be used to ameliorate these toxicities in mice under photodynamic therapy. METHODS AND FINDINGS: Riboflavin, cisplatin and their combinations were given to the separate groups of mice under photoilluminated condition under specific treatment regime. Their kidney and liver were excised for comet assay and histopathological studies. Furthermore, Fourier Transform Infrared Spectroscopy of riboflavin-cisplatin combination in vitro was also conducted to investigate any possible interaction between the two compounds. Their comet assay and histopathological examination revealed that riboflavin in combination with cisplatin was able to protect the tissues from cisplatin induced toxicities and damages. Moreover, Fourier Transform Infrared Spectroscopy analysis of the combination indicated a strong molecular interaction among their constituent groups that may be assigned for the protective effect of the combination in the treated animals. CONCLUSION: Inclusion of riboflavin diminishes cisplatin induced toxicities which may possibly make the cisplatin-riboflavin combination, an effective treatment strategy under chemoradiotherapy in pronouncing its antineoplastic activity and sensitivity towards the cancer cells as compared to cisplatin alone.

  5. Lead Intoxication Synergies of the Ethanol-Induced Toxic Responses in Neuronal Cells--PC12.

    Science.gov (United States)

    Kumar, V; Tripathi, V K; Jahan, S; Agrawal, M; Pandey, A; Khanna, V K; Pant, A B

    2015-12-01

    Lead (Pb)-induced neurodegeneration and its link with widespread neurobehavioral changes are well documented. Experimental evidences suggest that ethanol could enhance the absorption of metals in the body, and alcohol consumption may increase the susceptibility to metal intoxication in the brain. However, the underlying mechanism of ethanol action in affecting metal toxicity in brain cells is poorly understood. Thus, an attempt was made to investigate the modulatory effect of ethanol on Pb intoxication in PC12 cells, a rat pheochromocytoma. Cells were co-exposed to biological safe doses of Pb (10 μM) and ethanol (200 mM), and data were compared to the response of cells which received independent exposure to these chemicals at similar doses. Ethanol (200 mM) exposure significantly aggravated the Pb-induced alterations in the end points associated with oxidative stress and apoptosis. The finding confirms the involvement of reactive oxygen species (ROS)-mediated oxidative stress, and impairment of mitochondrial membrane potential, which subsequently facilitate the translocation of triggering proteins between cytoplasm and mitochondria. We further confirmed the apoptotic changes due to induction of mitochondria-mediated caspase cascade. These cellular changes were found to recover significantly, if the cells are exposed to N-acetyl cysteine (NAC), a known antioxidant. Our data suggest that ethanol may potentiate Pb-induced cellular damage in brain cells, but such damaging effects could be recovered by inhibition of ROS generation. These results open up further possibilities for the design of new therapeutics based on antioxidants to prevent neurodegeneration and associated health problems.

  6. Monitoring of heavy/toxic metals and halides in surface/ground water (abstract)

    International Nuclear Information System (INIS)

    Viqar-un-Nisa; Ahmed, R.; Husain, M.

    1999-01-01

    Water is essential for maintaining physical and social life. Human and animal consumption is perhaps the most evident essential use of water. Water quality and quantity have become critical issues, affecting all life. The importance of water in our lives, combined with the threats, make water resources use a global problem. Among the different pollutants toxic metals, metalloids and halides have special significance. Industrial effluents and municipal wastewater are normally drained into water streams, rivers and other reservoirs thus polluting these significantly. Quality of our water resources especially is an issue, which continues to arouse the attention of concerned scientists, legislators and the general public. Among various pollutant chemicals, the heavy metals and metalloids are present at trace levels in various compartments of the environment. Some metals become toxic even at trace levels because of the important features that distinguishes metals from other pollutants is that they are not biodegradable. The halides like Cl, Br, and I from different sources can enter easily into water systems and then they make their way directly into the human body. The intake of toxic as wells as essential elements through water and other food items like vegetables, milk wheat flour etc. is significant. The abundance or deficiency of these meals as well as halides results in abnormal metabolic functions. Due to excessive demand for trace analysis in water and other materials a variety of techniques and instrumentation has been developed. Determination of heavy metals ions is of the highest interest in environmental analysis. Among the food materials water is most important because of their large consumption by man. Also toxic metals in water may be in dissolved ionic form, which directly go into human metabolism and start their toxic action. Presence of even small amounts of toxic metals in drinking water can produce serious health hazards. (author)

  7. Toxicity and antinociceptive effects of Hamelia patens

    Directory of Open Access Journals (Sweden)

    Angel Josabad Alonso-Castro

    Full Text Available Abstract Many medicinal herbs are used in folk medicine without taking into account their toxicity. Hamelia patens Jacq. (Rubiaceae, a Mexican endemic species, is used for the empirical treatment of pain. The aim of this work was to evaluate the toxicity and antinociceptive effects of ethanolic extracts of H. patens leaves. The toxicity of H. patens leaves (500–5000 mg/kg was evaluated in acute (14 days and subacute (28 days assays. In the subacute assay, a blood analysis (both hematology and chemistry was carried out. The antinociceptive effects of H. patens leaves (50–200 mg/kg were evaluated using thermal-induced nociception (hot plate and the chemical-induced nociceptive tests (acid acetic and formalin. In the acute toxicity test, the LD50 estimated for H. patens leaves was 2964 mg/kg i.p. and >5000 mg/kg p.o., whereas in the subacute test HPE did not affect hematological or biochemical parameters. In chemical-induced nociception models, H. patens (100 and 200 mg/kg p.o. showed antinociceptive effects with similar activity than 100 mg/kg naproxen. In the hot plate test, HPE at 100 mg/kg (17% and 200 mg/kg (25% showed moderate antinociceptive effects. HPE could be a good source of antinociceptive agents because of its good activity and low toxicity.

  8. Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE™ bioassay

    International Nuclear Information System (INIS)

    Pokhrel, Lok R.; Silva, Thilini; Dubey, Brajesh; El Badawy, Amro M.; Tolaymat, Thabet M.; Scheuerman, Phillip R.

    2012-01-01

    Current understanding of potential toxicity of engineered nanomaterials to aquatic microorganisms is limited for risk assessment and management. Here we evaluate if the MetPLATE™ test can be used as an effective and rapid screening tool to test for potential aquatic toxicity of various metal-based nanoparticles (NPs). The MetPLATE bioassay is a heavy metal sensitive test based on β-galactosidase activity in Escherichia coli. Five different types of metal-based NPs were screened for toxicity: (1) citrate coated nAg (Citrate-nanosilver), (2) polyvinylpyrrolidone coated nAg (PVP-nAg), (3) uncoated nZnO, (4) uncoated nTiO 2 and (5) 1-Octadecylamine coated CdSe Quantum Dots (CdSe QDs); and compared with their corresponding ionic salt toxicity. Citrate-nAg was further fractionated into clean Citrate-nAg, unclean Citrate-nAg and permeate using a tangential flow filtration (TFF) system to eliminate residual ions and impurities from the stock Citrate-nAg suspension and also to differentiate between ionic- versus nano-specific toxicity. Our results showed that nAg, nZnO and CdSe QDs were less toxic than their corresponding ionic salts tested, while nano- or ionic form of TiO 2 was not toxic as high as 2.5 g L −1 to the MetPLATE™ bacteria. Although coating-dependent toxicity was noticeable between two types of Ag NPs evaluated, particle size and surface charge were not adequate to explain the observed toxicity; hence, the toxicity appeared to be material-specific. Overall, the toxicity followed the trend: CdCl 2 > AgNO 3 > PVP-nAg > unclean Citrate-nAg > clean Citrate-nAg > ZnSO 4 > nZnO > CdSe QDs > nTiO 2 /TiO 2 . These results indicate that an evaluation of β-galactosidase inhibition in MetPLATE™ E. coli can be an important consideration for rapid screening of metal-based NP toxicity, and should facilitate ecological risk assessment of these emerging contaminants. - Highlights: ► MetPLATE bioassay was evaluated as a rapid screening tool for nanotoxicity.

  9. Bioaccumulation and toxic effects of some heavy metals in ...

    African Journals Online (AJOL)

    The contamination of the aquatic systems with heavy metals from natural anthropogenic sources has become a global problem which poses threats to ecosystems and natural communities. Hence this study reviews the effects of heavy metals in freshwater fishes. Fishes bioaccumulate heavy metals (including cadmium, zinc ...

  10. Bioremediation of Toxic Heavy Metals: A Patent Review.

    Science.gov (United States)

    Verma, Neelam; Sharma, Rajni

    2017-01-01

    The global industrialization is fulfilling the demands of modern population at the cost of environmental exposure to various contaminants including heavy metals. These heavy metals affect water and soil quality. Moreover, these enter into the food chain and exhibit their lethal effects on the human health even when present at slightly higher concentration than required for normal metabolism. To the worst of their part, the heavy metals may become carcinogenic. Henceforth, the efficient removal of heavy metals is the demand of sustainable development. Remedy: Bioremediation is the 'green' imperative technique for the heavy metal removal without creating secondary metabolites in the ecosystem. The metabolic potential of several bacterial, algal, fungal as well as plant species has the efficiency to exterminate the heavy metals from the contaminated sites. Different strategies like bioaccumulation, biosorption, biotransformation, rhizofilteration, bioextraction and volatilization are employed for removal of heavy metals by the biological species. Bioremediation approach is presenting a splendid alternate for conventional expensive and inefficient methods for the heavy metal removal. The patents granted on the bioremediation of toxic heavy metals are summarized in the present manuscript which supported the applicability of bioremediation technique at commercial scale. However, the implementation of the present information and advanced research are mandatory to further explore the concealed potential of biological species to resume the originality of the environment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Essential and toxic metals in rice and fishes

    International Nuclear Information System (INIS)

    Chowdhury, M.Z.A.; Monir uddin, M.; Alam, F.; Reaz uddin, M.; Hossain, M.J.; Alam, M.S.

    2003-01-01

    The amount of essential metals such as Na, K, Ca, Mg, Fe, Zn, Cu and Mn in some selected rice and fishes consumed largely by the general people of Chittagong are determined by using the flame photometric and atomic absorption spectrophotometric methods, and are found to be in the range of human necessity. The amounts of some metals such as Pb, Cd, As and Cr in the same samples of rice and fishes are also determined with the help of AAS. The concentration of these toxic metals are actually higher than the tolerance limit of human body. Particularly, the samples produced in the land and hinterland of Chittagong are found to contain considerably higher concentration of lead and chromium than the samples collected from the sea. This indicates that the soil, water and air of land are more contaminated by these metals than the sea-water. The possible sources of lead and chromium are pointed out and the possible ways for remaining away from their contaminations are indicated. The information obtained from these studies are expected to be useful to the general people of this region to select any food for their daily diet on the basis of the abundances of the essential metals or to avoid any food by considering the concentration of the toxic metals. (author)

  12. Heavy metal toxicities in vegetable crops. VI. The effect of potassium and calcium concentration in the nutrient solution on manganese toxicities in vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Osawa, T; Ikeda, H

    1977-01-01

    Eight species of vegetable crops were grown in solution culture in order to investigate the effect of potassium and calcium concentration in the nutrient solution on manganese toxicities in vegetable crops. Manganese was supplied at levels of 0.5, 30, and 100 ppm. At each manganese level potassium or calcium was supplied at rates of 2, 6, and 18 me/l. The pH of the nutrient solution was adjusted to 5. Manganese excess induced interveinal chlorosis on upper leaves in bean, eggplant, pepper, and spinach, and marginal chlorosis on lower leaves in cabbage, lettuce, and celery. In Welsh onions chlorosis was induced on lower leaves. Increasing the supply of potassium and calcium reduced the severity of manganese-induced chlorosis. This beneficial effect was generally more marked with calcium than with potassium. Increasing the supply of potassium and calcium was effective in alleviating the growth reduction of vegetable crops due to manganese excess. This effect also was more marked with calcium than with potassium. With increasing manganese level in the nutrient solution the manganese concentration in leaves of vegetable crops increased. Increasing the supply of potassium and calcium inhibited excessive accumulation of manganese in leaves. The influence of calcium was stronger than that of potassium. In any of the vegetable crops tested, regardless of potassium and calcium treatments, manganese concentration in leaves was closely related to manganese toxicities; the more the accumulation of manganese in leaves increased, the more the severity of manganese-induced chlorosis and growth reduction increased.

  13. Analysis of toxic metals in branded Pakistani herbal products

    International Nuclear Information System (INIS)

    Saeed, M.; Muhammad, N.; Khan, H.

    2010-01-01

    The present study was designed to estimate the concentration of heavy toxic metals in Pakistani herbal products frequently used for the treatment of various ailments. For this purpose, twenty five herbal products of well reputed herbal manufacturers were selected. The results of our investigation revealed that the concentrations of lead, cadmium, nickel and chromium were far beyond the permissible limits proposed by the International Regulatory Authorities for herbal drugs. Therefore, this study conveys a strong message to the ministry of health to establish proper rules and regulations for the validation of herbal products on scientific grounds in order to protect the general public from the harmful effects of these heavy metals in herbal products. (author)

  14. Understanding the toxic potencies of xenobiotics inducing TCDD/TCDF-like effects.

    Science.gov (United States)

    Şahin, A D; Saçan, M T

    2018-02-01

    Toxic potencies of xenobiotics such as halogenated aromatic hydrocarbons inducing 2,3,7,8-tetrachlorodibenzo-p-dioxin/2,3,7,8-tetrachlorodibenzofuran (TCDD/TCDF)-like effects were investigated by quantitative structure-toxicity relationships (QSTR) using their aryl hydrocarbon receptor (AhR) binding affinity data. A descriptor pool was created using the SPARTAN 10, DRAGON 6.0 and ADMET 8.0 software packages, and the descriptors were selected using QSARINS (v.2.2.1) software. The QSTR models generated for AhR binding affinities of chemicals with TCDD/TCDF-like effects were internally and externally validated in line with the Organization of Economic Co-operation and Development (OECD) principles. The TCDD-based model had six descriptors from DRAGON 6.0 and ADMET 8.0, whereas the TCDF-based model had seven descriptors from DRAGON 6.0. The predictive ability of the generated models was tested on a diverse group of chemicals including polychlorinated/brominated biphenyls, dioxins/furans, ethers, polyaromatic hydrocarbons with fused heterocyclic rings (i.e. phenoxathiins, thianthrenes and dibenzothiophenes) and polyaromatic hydrocarbons (i.e. halogenated naphthalenes and phenanthrenes) with no AhR binding data. For the external set chemicals, the structural coverage of the generated models was 90% and 89% for TCDD and TCDF-like effects, respectively.

  15. Biosorption study of radiotoxic nuclide and toxic heavy metals using green adsorbent

    International Nuclear Information System (INIS)

    Bagla, Hemlata K.

    2014-01-01

    Our research scientifically illuminates the pioneering and successful application of the ancient Indian epitome of energy, Dry Cow Dung Powder, DCP, a combo humiresin, in its naive 'as it is form' for the bioremediation of toxic pollutants. The potential of DCP to sequester toxic heavy metal ions such as Cr(III), Cr(VI). Cd(II), Hg(II) and radionuclide 90 Sr(II) has been successfully demonstrated, employing tracer technique. The Batch equilibration method and all the important parameters such as pH, dose of sorbent, metal ion concentration, contact time, agitation speed, temperature and interference of different salts have been studied and optimized. The study on thermodynamic, kinetic and isotherm modeling of biosorption indicates that it is feasible, eco-friendly and efficient process to employ DCP for the removal of metal ions from aqueous medium. Spectroscopic analysis by FTIR and EDAX effectively explain the mechanism involved in the biosorption by DCP. The adsorption capacity and the pseudo-second order rate constant were also obtained by regression analysis. Thus DCP proves to be Eco-friendly resin for the removal of these toxic pollutants such as Cr(III), Cr(VI), Cd(II), Hg(II) and 90 Sr(II) from aqueous medium. (author)

  16. The toxic effects of chlorophenols and associated mechanisms in fish

    International Nuclear Information System (INIS)

    Ge, Tingting; Han, Jiangyuan; Qi, Yongmei; Gu, Xueyan; Ma, Lin; Zhang, Chen; Naeem, Sajid; Huang, Dejun

    2017-01-01

    Highlights: • We review the toxic effects of chlorophenols (CPs) and underlying mechanisms in fish. • CPs induce lethal effects, oxidative stress, endocrine disruption, reproductive toxicity and apoptosis in fish. • CPs exhibit toxicity through multiple signaling pathways in fish and different pathways co-exist under the same conditions. • Studies on DNA methylation provide new insights into our understanding of epigenetic mechanisms of CPs-induced toxicity. • Mechanisms studies on CPs toxicity performed under environmental concentrations need more attentions. - Abstract: Chlorophenols (CPs) are ubiquitous contaminants in the environment primarily released from agricultural and industrial wastewater. These compounds are not readily degraded naturally, and easily accumulate in organs, tissues and cells via food chains, further leading to acute and chronic toxic effects on aquatic organisms. Herein, we review the available literature regarding CP toxicity in fish, with special emphasis on the potential toxic mechanisms. CPs cause oxidative stress via generation of reactive oxygen species, induction of lipid peroxidation and/or oxidative DNA damage along with inhibition of antioxidant systems. CPs affect immune system by altering the number of mature B cells and macrophages, while suppressing phagocytosis and down-regulating the expression of immune factors. CPs also disrupt endocrine function by affecting hormone levels, or inducing abnormal gene expression and interference with hormone receptors. CPs at relatively higher concentrations induce apoptosis via mitochondria-mediated pathway, cell death receptor-mediated pathway, and/or DNA damage-mediated pathway. CPs at relatively lower concentrations promote cell proliferation, and foster cancers-prone environment by increasing the rate of point mutations and oxidative DNA lesions. These toxic effects in fish are induced directly by CPs per se or indirectly by their metabolic products. In addition, recent

  17. The toxic effects of chlorophenols and associated mechanisms in fish

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Tingting; Han, Jiangyuan; Qi, Yongmei; Gu, Xueyan; Ma, Lin; Zhang, Chen; Naeem, Sajid; Huang, Dejun, E-mail: huangdj@lzu.edu.cn

    2017-03-15

    Highlights: • We review the toxic effects of chlorophenols (CPs) and underlying mechanisms in fish. • CPs induce lethal effects, oxidative stress, endocrine disruption, reproductive toxicity and apoptosis in fish. • CPs exhibit toxicity through multiple signaling pathways in fish and different pathways co-exist under the same conditions. • Studies on DNA methylation provide new insights into our understanding of epigenetic mechanisms of CPs-induced toxicity. • Mechanisms studies on CPs toxicity performed under environmental concentrations need more attentions. - Abstract: Chlorophenols (CPs) are ubiquitous contaminants in the environment primarily released from agricultural and industrial wastewater. These compounds are not readily degraded naturally, and easily accumulate in organs, tissues and cells via food chains, further leading to acute and chronic toxic effects on aquatic organisms. Herein, we review the available literature regarding CP toxicity in fish, with special emphasis on the potential toxic mechanisms. CPs cause oxidative stress via generation of reactive oxygen species, induction of lipid peroxidation and/or oxidative DNA damage along with inhibition of antioxidant systems. CPs affect immune system by altering the number of mature B cells and macrophages, while suppressing phagocytosis and down-regulating the expression of immune factors. CPs also disrupt endocrine function by affecting hormone levels, or inducing abnormal gene expression and interference with hormone receptors. CPs at relatively higher concentrations induce apoptosis via mitochondria-mediated pathway, cell death receptor-mediated pathway, and/or DNA damage-mediated pathway. CPs at relatively lower concentrations promote cell proliferation, and foster cancers-prone environment by increasing the rate of point mutations and oxidative DNA lesions. These toxic effects in fish are induced directly by CPs per se or indirectly by their metabolic products. In addition, recent

  18. Effect of EDTA washing of metal polluted garden soils. Part I: Toxicity hazards and impact on soil properties.

    Science.gov (United States)

    Jelusic, Masa; Lestan, Domen

    2014-03-15

    We applied a multi-level approach assessing the quality, toxicity and functioning of Pb, Zn and Cd contaminated/remediated soil from a vegetable garden in Meza Valley, Slovenia. Contaminated soil was extracted with EDTA and placed into field experimental plots equipped with lysimeters. Soil properties were assessed by standard pedological analysis. Fractionation and leachability of toxic metals were analyzed by sequential extraction and TCLP and metal bioaccessibility by UBM tests. Soil respiration and enzyme activities were measured as indicators of soil functioning. Remediation reduced the metal burden by 80, 28 and 72% for Pb, Zn and Cd respectively, with a limited impact on soil pedology. Toxic metals associated with labile soil fractions were largely removed. No shifts between labile and residual fractions were observed during the seven months of the experiment. Initial metal leaching measured through lysimeters eventually ceased. However, remediation significantly diminished potential soil enzyme activity and no trends were observed of the remediated soil recovering its biological properties. Soil washing successfully removed available forms of Pb, Zn and Cd and thus lowered the human and environmental hazards of the remediated soil; however, remediation also extracted the trace elements essential for soil biota. In addition to reduced water holding capacity, soil health was not completely restored. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Toxic effects of selenium and copper on the planarian, Dugesia dorotocephala

    Energy Technology Data Exchange (ETDEWEB)

    Rauscher, J.D.

    1988-01-01

    Aquatic toxicologists have become increasingly concerned with the effects of sublethal concentrations of toxicants on aquatic organisms. Sublethal effects of toxicants on freshwater invertebrates were reviewed. Selenium (Se) and copper (Cu) are both essential trace elements and toxicants. Se has been reported to alter the toxicity of heavy metals. Planarians, Dugesia dorotocephala, were used as test animals. The objectives of this study were to determine: (1) acute toxicity of Se on planarians and the effect of the number of planarians per test chamber, (2) interaction of the acute toxicity of Se and Cu on planarians, and (3) sublethal effects of Se and Cu on planarians.

  20. Fluorescent bioassays for toxic metals in milk and yoghurt

    Science.gov (United States)

    2012-01-01

    Background From a human health viewpoint, contaminated milk and its products could be a source of long-term exposure to toxic metals. Simple, inexpensive, and on-site assays would enable constant monitoring of their contents. Bioassays that can measure toxic metals in milk or yoghurt might reduce the risk. For this purpose, the green fluorescent protein (GFP)-tagged trans factors, ArsR-GFP and CadC-GFP, together with their cis elements were used to develop such bioassays. Results ArsR-GFP or CadC-GFP, which binds either toxic metal or DNA fragment including cis element, was directly mixed with cow’s milk or yoghurt within a neutral pH range. The fluorescence of GFP, which is reflected by the association/dissociation ratio between cis element and trans factor, significantly changed with increasing externally added As (III) or Cd (II) whereas smaller responses to externally added Pb (II) and Zn (II) were found. Preparation and dilution of whey fraction at low pH were essential to intrinsic zinc quantification using CadC-GFP. Using the extraction procedure and bioassay, intrinsic Zn (II) concentrations ranging from 1.4 to 4.8 mg/l for milk brands and from 1.2 to 2.9 mg/kg for yoghurt brands were determined, which correlated to those determined using inductively coupled plasma atomic emission spectroscopy. Conclusions GFP-tagged bacterial trans factors and cis elements can work in the neutralized whole composition and diluted whey fraction of milk and yoghurt. The feature of regulatory elements is advantageous for establishment of simple and rapid assays of toxic metals in dairy products. PMID:23098077

  1. Fluorescent bioassays for toxic metals in milk and yoghurt

    Directory of Open Access Journals (Sweden)

    Siddiki Mohammad Shohel

    2012-10-01

    Full Text Available Abstract Background From a human health viewpoint, contaminated milk and its products could be a source of long-term exposure to toxic metals. Simple, inexpensive, and on-site assays would enable constant monitoring of their contents. Bioassays that can measure toxic metals in milk or yoghurt might reduce the risk. For this purpose, the green fluorescent protein (GFP-tagged trans factors, ArsR-GFP and CadC-GFP, together with their cis elements were used to develop such bioassays. Results ArsR-GFP or CadC-GFP, which binds either toxic metal or DNA fragment including cis element, was directly mixed with cow’s milk or yoghurt within a neutral pH range. The fluorescence of GFP, which is reflected by the association/dissociation ratio between cis element and trans factor, significantly changed with increasing externally added As (III or Cd (II whereas smaller responses to externally added Pb (II and Zn (II were found. Preparation and dilution of whey fraction at low pH were essential to intrinsic zinc quantification using CadC-GFP. Using the extraction procedure and bioassay, intrinsic Zn (II concentrations ranging from 1.4 to 4.8 mg/l for milk brands and from 1.2 to 2.9 mg/kg for yoghurt brands were determined, which correlated to those determined using inductively coupled plasma atomic emission spectroscopy. Conclusions GFP-tagged bacterial trans factors and cis elements can work in the neutralized whole composition and diluted whey fraction of milk and yoghurt. The feature of regulatory elements is advantageous for establishment of simple and rapid assays of toxic metals in dairy products.

  2. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels.

    Science.gov (United States)

    Lešková, Alexandra; Giehl, Ricardo F H; Hartmann, Anja; Fargašová, Agáta; von Wirén, Nicolaus

    2017-07-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis ( Arabidopsis thaliana ) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. © 2017 American Society of Plant Biologists. All Rights Reserved.

  3. [The Effectiveness of Cooling Packaging Care in Relieving Chemotherapy-Induced Skin Toxicity Reactions in Cancer Patients Receiving Chemotherapy: A Systematic Review].

    Science.gov (United States)

    Hsu, Ya-Hui; Hung, Hsing-Wei; Chen, Shu-Ching

    2017-08-01

    Anti-cancer chemotherapy may cause skin-toxicity reactions. Different types of cooling packages affect chemotherapy-induced skin toxicity reactions differently. To evaluate the effects of cooling packing care on chemotherapy-induced skin toxicity reactions in cancer patients receiving chemotherapy. A systematic review approach was used. Searches were conducted in databases including Cochrane Library, Embase, MEDLINE, PubMed and Airiti Library using the keywords "chemotherapy cutaneous toxicity", "chemotherapy skin reaction", "chemotherapy skin toxicity", "frozen glove", "frozen sock", "cooling packaging care", "ice gloves", "ice socks", "usual care", "severity", "comfort", "satisfaction", "severity", and "comfort". The search focused on articles published before December 2016. Based on the inclusion and exclusion criteria, 5 articles involving relevant randomized controlled trials were extracted for review. Elasto-Gel ice gloves or ice socks that were chilled to -25°C- -30°C and used for 15 mins during initial chemotherapy, for one hour during chemotherapy infusion, and for 15 mins after chemotherapy were shown to improve the frequency and severity of chemotherapy-induced skin toxicity reactions. Several studies were limited by small sample sizes and different types of cooling packing programs, temperature, timing, and frequency. Thus, further research is recommended to verify the effects of cooling packing care. Cancer patients who were treated with docetaxel or PLD and who used ice gloves or ice socks that were chilled to -25°C- -30°C for 15 mins during initial chemotherapy, for one hour during chemotherapy infusion, and for 15 mins after chemotherapy improved significantly in terms of the frequency and severity of their chemotherapy-induced skin toxicity reactions. Local cooling packing care is a non-pharmacotherapy approach that is low cost and free of side effects. This review is intended to provide a reference for clinical care.

  4. Metal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils

    International Nuclear Information System (INIS)

    Keller, Catherine; Hammer, Daniel

    2004-01-01

    Metal phytoextraction with hyperaccumulating plants could be a useful method to decontaminate soils, but it is not fully validated yet. In order to quantify the efficiency of Cd and Zn extraction from a calcareous soil with and without Fe amendment and an acidic soil, we performed a pot experiment with three successive croppings of Thlaspi caerulescens followed by 3 months without plant and 7 weeks with lettuce. We used a combined approach to assess total extraction efficiency (2 M HNO 3 -extractable metals), changes in metal bio/availability (0.1 M NaNO 3 -extractable metals and lettuce uptake) and toxicity (lettuce biomass and the BIOMETreg] biosensor). The soil solution was monitored over the whole experiment. In the calcareous soil large Cu concentrations were probably responsible for chlorosis symptoms observed on T. caerulescens. When this soil was treated with Fe, the amount of extracted metal by T. caerulescens increased and metal availability and soil toxicity decreased when compared to the untreated soil. In the acidic soil, T. caerulescens was most efficient: Cd and Zn concentrations in plants were in the range of hyperaccumulation and HNO 3 -extractable Cd and Zn, metal bio/availability, soil toxicity, and Cd and Zn concentrations in the soil solution decreased significantly. However, a reduced Cd concentration measured in the third T. caerulescens cropping indicated a decrease in metal availability below a critical threshold, whereas the increase of dissolved Cd and Zn concentrations after the third cropping may be the early sign of soil re-equilibration. This indicates that phytoextraction efficiency must be assessed by different approaches in order not to overlook any potential hazard and that an efficient phytoextraction scheme will have to take into account the different dynamics of the soil-plant system

  5. Evaluation of the Possible Sources and Controlling Factors of Toxic Metals/Metalloids in the Florida Everglades and Their Potential Risk of Exposure.

    Science.gov (United States)

    Li, Yanbin; Duan, Zhiwei; Liu, Guangliang; Kalla, Peter; Scheidt, Daniel; Cai, Yong

    2015-08-18

    The Florida Everglades is an environmentally sensitive wetland ecosystem with a number of threatened and endangered fauna species susceptible to the deterioration of water quality. Several potential toxic metal sources exist in the Everglades, including farming, atmospheric deposition, and human activities in urban areas, causing concerns of potential metal exposure risks. However, little is known about the pollution status of toxic metals/metalloids of potential concern, except for Hg. In this study, eight toxic metals/metalloids (Cd, Cr, Pb, Ni, Cu, Zn, As, and Hg) in Everglades soils were investigated in both dry and wet seasons. Pb, Cr, As, Cu, Cd, and Ni were identified to be above Florida SQGs (sediment quality guidelines) at a number of sampling sites, particularly Pb, which had a level of potential risk to organisms similar to that of Hg. In addition, a method was developed for quantitative source identification and controlling factor elucidation of toxic metals/metalloids by introducing an index, enrichment factor (EF), in the conventional multiple regression analysis. EFs represent the effects of anthropogenic sources on metals/metalloids in soils. Multiple regression analysis showed that Cr and Ni were mainly controlled by anthropogenic loading, whereas soil characteristics, in particular natural organic matter (NOM), played a more important role for Hg, As, Cd, and Zn. NOM may control the distribution of these toxic metals/metalloids by affecting their mobility in soils. For Cu and Pb, the effects of EFs and environmental factors are comparable, suggesting combined effects of loading and soil characteristics. This study is the first comprehensive research with a vast amount of sampling sites on the distribution and potential risks of toxic metals/metalloids in the Everglades. The finding suggests that in addition to Hg other metals/metalloids could also potentially be an environmental problem in this wetland ecosystem.

  6. Virgin coconut oil supplementation ameliorates cyclophosphamide-induced systemic toxicity in mice.

    Science.gov (United States)

    Nair, S S; Manalil, J J; Ramavarma, S K; Suseela, I M; Thekkepatt, A; Raghavamenon, A C

    2016-02-01

    Virgin coconut oil (VCO) is an unrefined kernal oil, prepared from Cocos nucifera L., having substantial nutritional and medicinal value. Experimental studies have suggested its antioxidant, anti-inflammatory, immunostimulatory and hypolipidemic effects. The present study assesses its effect on formalin-induced chronic inflammation and cyclophosphamide (CTX)-induced systemic toxicity in murine models. Oral administration of VCO effectively reduced formalin-induced paw oedema in mice with more or less similar efficacy as that of diclofenac. The CTX-induced hike in blood urea, creatinine, thiobarbituric acid reactive substances (TBARS) and liver marker enzymes in mice was marginally decreased by VCO (8 g/kg body weight) ingestion orally. The liver and kidney catalase, superoxide dismutase and glutathione peroxidase activities, together with cellular glutathione and TBARS levels, were found to be improved in these animals. Overall the study reveals the protective efficacy of VCO against secondary toxicity induced by CTX possibly through its antioxidant and anti-inflammatory properties. © The Author(s) 2015.

  7. Grading-System-Dependent Volume Effects for Late Radiation-Induced Rectal Toxicity After Curative Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Laan, Hans Paul van der; Bergh, Alphons van den; Schilstra, Cornelis; Vlasman, Renske; Meertens, Harm; Langendijk, Johannes A.

    2008-01-01

    Purpose: To assess the association between the dose distributions in the rectum and late Radiation Therapy Oncology Group and the European Organisation for Research and Treatment of Cancer (RTOG/EORTC), Late Effects of Normal Tissue SOMA, and Common Terminology Criteria for Adverse Events (CTCAE) version 3.0 graded rectal toxicity among patients with prostate cancer treated with RT. Methods and Materials: Included in the study were 124 patients who received three-dimensional conformal RT for prostate cancer to a total dose of 70 Gy in 2-Gy fractions. All patients completed questionnaires regarding rectum complaints before RT and during long-term follow-up. Late rectum Grade 2 or worse toxicity, according to RTOG/EORTC, LENT SOMA, and CTCAE v3.0 criteria, was analyzed in relation to rectal dose and volume parameters. Results: Dose-volume thresholds (V40 ≥65%, V50 ≥55%, V65 ≥45%, V70 ≥20%, and a rectum volume ≤140 cm 3 ), significantly discriminated patients with late Grade 0-1 and Grade 2 or worse rectal toxicity, particularly using the LENT SOMA and CTCAE v3.0 systems. The rectum volume receiving ≥70 Gy (V70) was most predictive for late Grade 2 or worse rectal toxicity with each of the grading systems. The associations were strongest, however, with use of the LENT SOMA system. Conclusions: Volume effects for late radiation-induced rectal toxicity are present, but their clinical significance depends on the grading system used. This should be taken into account in the interpretation of studies reporting on radiation-induced rectal toxicity

  8. [EFFECT OF ACETYLCYSTEINE, CORVITIN AND THEIR COMBINATION ON THE FUNCTIONAL STATE OF LIVER IN RATS WITH PARACETAMOL INDUCED TOXIC HEPATITIS].

    Science.gov (United States)

    Ghonghadze, M; Antelava, N; Liluashvili, K; Okujava, M; Pachkoria, K

    2017-02-01

    Nowadays drug-induced hepatotoxicity is urgent problem worldwide. Currently more than 1000 drugs are hepatotoxic and most often are the reason of acute fulminant hepatitis and hepatocellular failure, the states requiring liver transplantation. The paracetamol induced liver toxicity is related with accumulation of its toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), which is the free radical and enhances peroxidation of lipids, disturbs the energy status and causes death of hepatocytes. During our research we investigated and assessed the efficacy of acetylcysteine, corvitin and their combination in rat model of paracetamol induced acute toxic hepatitis. The study was performed on mature white male Wistar rates with body mass 150-180 g. 50 rats were randomly divided into 5 groups (10 rats in each group). To get the model of acute toxic hepatitis single intraperitoneal injection of paracetamol solution was used (750 mg/kg). Toxic hepatitis was treated with intrapertoneal administration of 40mg/kg acetylcysteine or 100mg/kg corvitin, as well as with combination of these drugs. Monotherapy with acetylcysteine and corvitin of paracetamol induced toxic hepatitis improved the liver function, decreased relative mass of the liver and animal mortality. The treatment of toxic hepatitis was most effective in the case of simultaneous administration of acetylcysteine and corvitin. The normal value of laboratory tests (ALT, ACT, alkaline phosphatase, total and unconjugated bilirubin) was reached and mortality was not more observed. On the bases of obtained data was concluded that acetylcysteine and corvitin have almost equal hepatoprotective activity. The combination of two drugs actually improves the liver function. The most pronounced hepatoprotective effect may be due to synergic action of acetylcysteine and corvitin and such regime can be recommended for correction of liver function.

  9. Protective effects of a by-product of the pecan nut industry (Carya illinoensis) on the toxicity induced by cyclophosphamide in rats Carya illinoensis protects against cyclophosphamide-induced toxicity.

    Science.gov (United States)

    Benvegnú, D; Barcelos, R C S; Boufleur, N; Reckziegel, P; Pase, C S; Müller, L G; Martins, N M B; Vareli, C; Bürger, M E

    2010-01-01

    This study investigated the antioxidant effects of pecan nut (Carya illinoensis) shell aqueous extract (AE) on toxicity induced by cyclophosphamide (CP) in the heart, kidney, liver, bladder, plasma and erythrocytes of rats. Rats were treated with water or pecan shell AE (5%) ad libitum, replacing drinking water for 37 days up to the end of the experiment. On day 30, half of each group received a single administration of vehicle or CP 200 mg/kg-ip. After 7 days, the organs were removed. Rats treated with CP showed an increase in lipid peroxidation (LP) and decrease in reduced glutathione (GSH) levels in all structures. Catalase (CAT) activity was increased in the heart and decreased in liver and kidney. Besides, CP treatment decreased plasmatic vitamin C (VIT C) levels and induced bladder macroscopical and microscopical damages. In contrast, co-treatment with pecan shell AE prevented the LP development and the GSH depletion in all structures, except in the heart and plasma, respectively. CAT activity in the heart and liver as well as the plasmatic VIT C levels remained unchanged. Finally, AE prevented CP-induced bladder injury. These findings revealed the protective role of pecan shell AE in CP-induced multiple organ toxicity.

  10. Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50.

    Science.gov (United States)

    Utgikar, V P; Chen, B Y; Chaudhary, N; Tabak, H H; Haines, J R; Govind, R

    2001-12-01

    Acid mine drainage from abandoned mines and acid mine pit lakes is an important environmental concern and usually contains appreciable concentrations of heavy metals. Because sulfate-reducing bacteria (SRB) are involved in the treatment of acid mine drainage, knowledge of acute metal toxicity levels for SRB is essential for the proper functioning of the treatment system for acid mine drainage. Quantification of heavy metal toxicity to mixed cultures of SRB is complicated by the confounding effects of metal hydroxide and sulfide precipitation, biosorption, and complexation with the constituents of the reaction matrix. The objective of this paper was to demonstrate that measurements of dissolved metal concentrations could be used to determine the toxicity parameters for mixed cultures of sulfate-reducing bacteria. The effective concentration, 100% (EC100), the lowest initial dissolved metal concentrations at which no sulfate reduction is observed, and the effective concentration, 50% (EC50), the initial dissolved metal concentrations resulting in a 50% decrease in sulfate reduction, for copper and zinc were determined in the present study by means of nondestructive, rapid physical and chemical analytical techniques. The reaction medium used in the experiments was designed specifically (in terms of pH and chemical composition) to provide the nutrients necessary for the sulfidogenic activity of the SRB and to preclude chemical precipitation of the metals under investigation. The toxicity-mitigating effects of biosorption of dissolved metals were also quantified. Anaerobic Hungate tubes were set up (at least in triplicate) and monitored for sulfate-reduction activity. The onset of SRB activity was detected by the blackening of the reaction mixture because of formation of insoluble ferrous sulfide. The EC100 values were found to be 12 mg/L for copper and 20 mg/L for zinc. The dissolved metal concentration measurements were effective as the indicators of the effect of the

  11. The Severity of Autism Is Associated with Toxic Metal Body Burden and Red Blood Cell Glutathione Levels

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J B; Mitchell, I J [Division of Basic Medical Sciences, Southwest College of Naturopathic Medicine, Tempe, AZ 85282 (United States); Baral, M; Bradstreet, J [Department of Pediatric Medicine, Southwest College of Naturopathic Medicine, Tempe, AZ 85282 (United States); Geis, E; Ingram, J; Hensley, A; Zappia, I; Gehn, E; Mitchell, K [Autism Research Institute, San Diego, CA 92116-2599 (United States); Newmark, S [Center for Integrative Pediatric Medicine, Tucson, AZ 85711 (United States); Rubin, R A [Department of Mathematics, Whittier College, Whittier, CA 90601-4413 (United States); Bradstreet, J [International Child Development Resource Center, Phoenix, AZ (United States); El-Dahrn, J M [Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112 (United States)

    2009-07-01

    This study investigated the relationship of children's autism symptoms with their toxic metal body burden and red blood cell (RBC) glutathione levels. In children ages 38 years, the severity of autism was assessed using four tools: ADOS, PDD-BI, ATEC, and SAS. Toxic metal body burden was assessed by measuring urinary excretion of toxic metals, both before and after oral dimercaptosuccinic acid (DMSA). Multiple positive correlations were found between the severity of autism and the urinary excretion of toxic metals. Variations in the severity of autism measurements could be explained, in part, by regression analyses of urinary excretion of toxic metals before and after DMSA and the level of RBC glutathione (adjusted R2 of 0.220.45, P<.005 in all cases). This study demonstrates a significant positive association between the severity of autism and the relative body burden of toxic metals.

  12. The Severity of Autism Is Associated with Toxic Metal Body Burden and Red Blood Cell Glutathione Levels

    International Nuclear Information System (INIS)

    Adams, J.B.; Mitchell, I.J.; Baral, M.; Bradstreet, J.; Geis, E.; Ingram, J.; Hensley, A.; Zappia, I.; Gehn, E.; Mitchell, K.; Newmark, S.; Rubin, R.A.; Bradstreet, J.; El-Dahrn, J.M.

    2009-01-01

    This study investigated the relationship of children's autism symptoms with their toxic metal body burden and red blood cell (RBC) glutathione levels. In children ages 38 years, the severity of autism was assessed using four tools: ADOS, PDD-BI, ATEC, and SAS. Toxic metal body burden was assessed by measuring urinary excretion of toxic metals, both before and after oral dimercaptosuccinic acid (DMSA). Multiple positive correlations were found between the severity of autism and the urinary excretion of toxic metals. Variations in the severity of autism measurements could be explained, in part, by regression analyses of urinary excretion of toxic metals before and after DMSA and the level of RBC glutathione (adjusted R2 of 0.220.45, P<.005 in all cases). This study demonstrates a significant positive association between the severity of autism and the relative body burden of toxic metals.

  13. Acute toxicity of heavy metals towards freshwater ciliated protists

    International Nuclear Information System (INIS)

    Madoni, Paolo; Romeo, Maria Giuseppa

    2006-01-01

    The acute toxicity of five heavy metals to four species of freshwater ciliates (Colpidium colpoda, Dexiotricha granulosa, Euplotes aediculatus, and Halteria grandinella) was examined in laboratory tests. After exposing the ciliates to soluble compound of cadmium, copper, chromium, lead, and nickel at several selected concentrations, the mortality rate was registered and the LC 5 values (with 95% confidence intervals) were calculated. Large differences appeared in sensitivities of the four species to the metals. H. grandinella showed the highest sensitivity for cadmium (0.07 mg l -1 , LC 5 ) and lead (0.12 mg l -1 , LC 5 ), whilst E. aediculatus showed the highest sensitivity for nickel (0.03 mg l -1 , LC 5 ). The comparison with data obtained with other species indicate that Halteria grandinella and Euplotes aediculatus are excellent and convenient bioindicator for evaluating the toxicity of waters and wastewaters polluted by heavy metals. The short time (24 h) and simplicity of the test procedure enable this test to be used in laboratory studies. - Ciliated protozoa are suitable bioindicators of heavy metal pollution in freshwater environments

  14. Protective effect of zinc aspartate against acetaminophen induced hepato-renal toxicity in albino rats

    International Nuclear Information System (INIS)

    Mohamed, E.T.; Said, A.I.; El-Sayed, S.A.

    2011-01-01

    significant protection against the toxic effect of acetaminophen, in comparison with that of acetaminophen treated group. In conclusion, biochemical evaluation revealed that zinc aspartate has a partial protective effect against acetaminophen induced hepato-renal toxicity and oxidative stress. Accordingly, zinc may be an effective therapeutic agent in prevention and treatment of acetaminophen hepatotoxicity, nephrotoxicity and free radical production

  15. Cardiac transplant due to metal toxicity associated with hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Sheldon Moniz, MBBS (UWA

    2017-09-01

    Full Text Available Concerns regarding metal-on-metal (MoM bearing couples in total hip arthroplasty are well documented in the literature with cobalt (Co and chromium (Cr toxicity causing a range of both local and systemic adverse reactions. We describe the case of a patient undergoing cardiac transplantation as a direct result of Co and Cr toxicity following a MoM hip replacement. Poor implant positioning led to catastrophic wear generating abundant wear particles leading to Co and Cr toxicity, metallosis, bony destruction, elevated metal ion levels, and adverse biological responses. Systemic symptoms continued for 3 years following cardiac transplantation with resolution only after revision hip arthroplasty. There was no realization in the initial cardiac assessment and subsequent transplant workup that the hip replacement was the likely cause of the cardiac failure, and the hip replacement was not recognized as the cause until years after the heart transplant. This case highlights the need for clinicians to be aware of systemic MoM complications as well as the importance of positioning when using these prostheses.

  16. Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay

    Energy Technology Data Exchange (ETDEWEB)

    Singh, I.B. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India)]. E-mail: ibsingh58@yahoo.com; Chaturvedi, K. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India); Morchhale, R.K. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India); Yegneswaran, A.H. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India)

    2007-03-06

    Waste generated from galvanizing and metal finishing processes is considered to be a hazardous due to the presence of toxic metals like Pb, Cu, Cr, Zn, etc. Thermal treatment of such types of wastes in the presence of clay and fly ash can immobilizes their toxic metals to a maximum level. After treatment solidified mass can be utilized in construction or disposed off through land fillings without susceptibility of re-mobilization of toxic metals. In the present investigation locally available clay and fly ash of particular thermal power plant were used as additives for thermal treatment of both of the wastes in their different proportions at 850, 900 and 950 deg. C. Observed results indicated that heating temperature to be a key factor in the immobilization of toxic metals of the waste. It was noticed that the leachability of metals of the waste reduces to a negligible level after heating at 950 deg. C. Thermally treated solidified specimen of 10% waste and remaining clay have shown comparatively a higher compressive strength than clay fired bricks used in building construction. Though, thermally heated specimens made of galvanizing waste have shown much better strength than specimen made of metal finishing waste. The lechability of toxic metals like Cr, Cu, Pb and Zn became far below from their regulatory threshold after heating at 950 deg. C. Addition of fly ash did not show any improvement either in engineering property or in leachability of metals from the solidified mass. X-ray diffraction (XRD) analysis of the solidified product confirmed the presence of mixed phases of oxides of metals.

  17. Neutralization by metal ions of the toxicity of sodium selenide.

    Directory of Open Access Journals (Sweden)

    Marc Dauplais

    Full Text Available Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag⁺, Cd²⁺, Cu²⁺, Hg²⁺, Pb²⁺ and Zn²⁺, (ii metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co²⁺ and Ni²⁺ and, finally, (iii metal ions which do not afford protection and do not interact (Ca²⁺, Mg²⁺, Mn²⁺ or weakly interact (Fe²⁺ with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB, the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds.

  18. Mechanisms of metal toxicity in plants

    Czech Academy of Sciences Publication Activity Database

    Küpper, Hendrik; Andresen, Elisa

    2016-01-01

    Roč. 8, č. 3 (2016), s. 269-285 ISSN 1756-5901 Institutional support: RVO:60077344 Keywords : Hyperaccumulator thlaspi-caerulescens * Induced oxidative stress * Iron toxicity Subject RIV: CE - Biochemistry Impact factor: 3.975, year: 2016

  19. Preparation of Zeolite/Zinc Oxide Nanocomposites for toxic metals removal from water

    Directory of Open Access Journals (Sweden)

    Abdullah A. Alswata

    Full Text Available This research work has proposed preparation of Zeolite/Zinc Oxide Nanocomposite (Zeolite/ZnO NCs by using a co-precipitation method. Then, the prepared Nanocomposite has been tested for adsorption of Lead Pb (II and Arsenic As (V from aqueous solution under the room pressure and temperature. After that, the prepared adsorbent has been studied by several techniques. For adsorption process; the effect of the adsorbent masses, contact time, PH and initial metals concentration as well as, the kinetics and isotherm for adsorption process have been investigated. The results revealed that; ZnO nanoparticles (NPs with average diameter 4.5 nm have successfully been loaded into Zeolite. The optimum parameters for the removal of the toxic metals 93% and 89% of Pb (II and As (V, respectively, in 100 mg/L aqua solutions were pH4, 0.15 g and 30 min. According to the obtained results; pseudo second-order kinetic and Langmuir isotherm model have higher correlation coefficients and provided a better agreement with the experimental data. The prepared sorbent showed an economical and effective way to remove the heavy toxic metals due to its ambient operation conditions, low- consumption energy and facile regeneration method. Keywords: Zeolite, ZnO, Nanocomposites, Adsorbent, Kinetic, Isotherm

  20. Chronic Toxic Metal Exposure and Cardiovascular Disease: Mechanisms of Risk and Emerging Role of Chelation Therapy.

    Science.gov (United States)

    Aneni, Ehimen C; Escolar, Esteban; Lamas, Gervasio A

    2016-12-01

    Over the last few decades, there has been a growing body of epidemiologic evidence linking chronic toxic metal exposure to cardiovascular disease-related morbidity and mortality. The recent and unexpectedly positive findings from a randomized, double-blind, multicenter trial of metal chelation for the secondary prevention of atherosclerotic cardiovascular disease (Trial to Assess Chelation Therapy (TACT)) have focused the discussion on the role of chronic exposure to toxic metals in the development and propagation of cardiovascular disease and the role of toxic metal chelation therapy in the secondary prevention of cardiovascular disease. This review summarizes the most recent evidence linking chronic toxic metal exposure to cardiovascular disease and examines the findings of TACT.

  1. Investigation of metal toxicity to tropical biota. Recommendations for revision of Australian water quality guidelines

    International Nuclear Information System (INIS)

    Marchich, S.

    1997-01-01

    The specific objectives of this study were to: review available data on the toxicity of metals to aquatic biota in tropical Australia; identify metals considered to be priority toxicants to aquatic biota in tropical Australia; and employ previously developed toxicity testing protocols for two tropical freshwater species to obtain preliminary toxicity data for two priority metals. From the literature review, it was concluded that insufficient metal toxicity data exist for Australian tropical species. Data were absent for a range of metals (eg Ag, As, Al, Cr, Hg, Ni, Sb and Se) listed in the current Australian water quality guidelines. Aluminium, Cd, Co, Cu, Ni, Mn, Pb, U, V and Zn were identified as priority metals of potential ecotoxicological concern in aquatic ecosystems of tropical Australia, largely as a consequence of mining activities, but also from urban impacts. Instead of testing the toxicity of the priority metals for which data do not currently exist (ie Al, Co, Ni and V), it was deemed more important to conduct further experimental work on Cu and U, in the context of elucidating the relatively high variability in the toxic response of these two metals. As a result, Cu and U were selected and toxicity tests conducted using two tropical freshwater species (green hydra (Hydra viridissima) and gudgeon fish (Mogurnda mogurnda)) from the Australian wet/dry tropics using test protocols designed to maximise the greatest sensitivity of metal response in the shortest period of time. Hydra viridissima was about eight times more sensitive to Cu than U, whereas M. mogurnda was about twenty times more sensitive. Once differences between the sublethal and lethal endpoints of the two organisms were corrected by statistical extrapolation, H. viridissima was approximately seven times more sensitive than M. mogurnda to U, but only about three times more sensitive to Cu. Both species were more sensitive to Cu than U. These results are generally consistent with those from

  2. Effects of Bee Venom on Glutamate-Induced Toxicity in Neuronal and Glial Cells

    Directory of Open Access Journals (Sweden)

    Sang Min Lee

    2012-01-01

    Full Text Available Bee venom (BV, which is extracted from honeybees, is used in traditional Korean medical therapy. Several groups have demonstrated the anti-inflammatory effects of BV in osteoarthritis both in vivo and in vitro. Glutamate is the predominant excitatory neurotransmitter in the central nervous system (CNS. Changes in glutamate release and uptake due to alterations in the activity of glutamate transporters have been reported in many neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. To assess if BV can prevent glutamate-mediated neurotoxicity, we examined cell viability and signal transduction in glutamate-treated neuronal and microglial cells in the presence and absence of BV. We induced glutamatergic toxicity in neuronal cells and microglial cells and found that BV protected against cell death. Furthermore, BV significantly inhibited the cellular toxicity of glutamate, and pretreatment with BV altered MAP kinase activation (e.g., JNK, ERK, and p38 following exposure to glutamate. These findings suggest that treatment with BV may be helpful in reducing glutamatergic cell toxicity in neurodegenerative diseases.

  3. NaCl protects against Cd and Cu-induced toxicity in the halophyte Atriplex halimus

    Energy Technology Data Exchange (ETDEWEB)

    Bankaji, I.; Sleimi, N.; Gómez-Cadenas, A.; Pérez-Clemente, R.M.

    2016-07-01

    The objective of the present work was to evaluate the extent of Cd- and Cu-induced oxidative stress and the antioxidant response triggered in the halophyte species Atriplex halimus after metallic trace elements exposure. Plants were treated for one month with Cd2+ or Cu2+ (400 µM) in the absence or presence of 200 mM NaCl in the irrigation solution. The interaction between salinity and heavy metal stress was analyzed in relation to plant growth, tissue ion contents (Na+, K+ and Mg2+), oxidative damage and antioxidative metabolism. Data indicate that shoot and root weight significantly decreased as a consequence of Cd2+- or Cu2+-induced stress. Metallic stress leads to unbalanced nutrient uptake by reducing the translocation of K+ and Mg2+ from the root to the shoot. The levels of malondialdehyde increased in root tissue when Cd, and especially Cu, were added to the irrigation solution, indicating that oxidative damage occurred. Results showed that NaCl gave a partial protection against Cd and Cu induced toxicity, although these contaminants had distinct influence on plant physiology. It can be concluded that salinity drastically modified heavy metal absorption and improved plant growth. Salinity also decreased oxidative damage, but differently in plants exposed to Cd or Cu stress.

  4. Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China.

    Science.gov (United States)

    Fu, Jie; Hu, Xin; Tao, Xiancong; Yu, Hongxia; Zhang, Xiaowei

    2013-11-01

    Heavy metal pollution is one of the most serous environmental issues globally. To evaluate the metal pollution in Jiangsu Province of China, the total concentrations of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake were analyzed. Ecological risk of sediments and human health risk of fish consumption were assessed respectively. Furthermore, toxicity of samples on expression of the stress responsive genes was evaluated using microbial live cell-array method. The results showed that the heavy metals concentrations in sediments from the Yangtze River were much higher than those in sediments from the Taihu Lake. However, the fishes from the Taihu Lake had higher concentrations of heavy metals than fishes from the Yangtze River. Ecological risk evaluation showed that the heavy metal contaminants in sediments from the Yangtze River posed higher risk of adverse ecological effects, while sediments from the study areas of Taihu Lake were relatively safe. Health risk assessment suggested that the heavy metals in fishes of both Yangtze River and Taihu Lake might have risk of adverse health effects to human. The toxicity assessment indicated that the heavy metals in these sediments and fishes showed transcriptional effects on the selected 21 stress responsive genes, which were involved in the pathways of DNA damage response, chemical stress, and perturbations of electron transport. Together, this field investigation combined with chemical analysis, risk assessment and toxicity bioassay would provide useful information on the heavy metal pollution in Jiangsu Province. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Vanadium toxicity in chickpea (Cicer arietinum L.) grown in red soil: Effects on cell death, ROS and antioxidative systems.

    Science.gov (United States)

    Imtiaz, Muhammad; Ashraf, Muhammad; Rizwan, Muhammad Shahid; Nawaz, Muhammad Amjad; Rizwan, Muhammad; Mehmood, Sajid; Yousaf, Balal; Yuan, Yuan; Ditta, Allah; Mumtaz, Muhammad Ali; Ali, Muhammad; Mahmood, Sammina; Tu, Shuxin

    2018-04-17

    The agricultural soil contaminated with heavy metals induces toxic effects on plant growth. The present study was conducted to evaluate the effects of vanadium (V) on growth, H 2 O 2 and enzyme activities, cell death, ion leakage, and at which concentration; V induces the toxic effects in chickpea plants grown in red soil. The obtained results indicated that the biomass (fresh and dry) and lengths of roots and shoots were significantly decreased by V application, and roots accumulated more V than shoots. The enzyme activities (SOD, CAT, and POD) and ion leakage were increased linearly with increasing V concentrations. However, the protein contents, and tolerance indices were significantly declined with the increasing levels of V. The results about the cell death indicated that the cell viability was badly damaged when plants were exposed to higher V, and induction of H 2 O 2 might be involved in this cell death. In conclusion, all the applied V levels affected the enzymatic activities, and induced the cell death of chickpea plants. Furthermore, our results also confirmed that vanadium ≥ 130 mg kg -1 induced detrimental effects on chickpea plants. Additional investigation is needed to clarify the mechanistic explanations of V toxicity at the molecular level and gene expression involved in plant cell death. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

    Science.gov (United States)

    Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.

    2001-01-01

    Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream

  7. Toxicity of Transition Metal Oxide Nanoparticles: Recent Insights from in vitro Studies

    Directory of Open Access Journals (Sweden)

    Robert S. Aronstam

    2010-10-01

    Full Text Available Nanotechnology has evolved to play a prominent role in our economy. Increased use of nanomaterials poses potential human health risk. It is therefore critical to understand the nature and origin of the toxicity imposed by nanomaterials (nanotoxicity. In this article we review the toxicity of the transition metal oxides in the 4th period that are widely used in industry and biotechnology. Nanoparticle toxicity is compellingly related to oxidative stress and alteration of calcium homeostasis, gene expression, pro-inflammatory responses, and cellular signaling events. The precise physicochemical properties that dictate the toxicity of nanoparticles have yet to be defined, but may include element-specific surface catalytic activity (e.g., metallic, semiconducting properties, nanoparticle uptake, or nanoparticle dissolution. These in vitro studies substantially advance our understanding in mechanisms of toxicity, which may lead to safer design of nanomaterials.

  8. Protective effect of thymoquinone against lead-induced hepatic toxicity in rats.

    Science.gov (United States)

    Mabrouk, Aymen; Bel Hadj Salah, Imen; Chaieb, Wafa; Ben Cheikh, Hassen

    2016-06-01

    Lead (Pb) intoxication is a worldwide health problem which frequently affects the liver. This study was carried out to investigate the potential protective effect of thymoquinone (TQ), the major active ingredient of volatile oil of Nigella sativa seeds, against Pb-induced liver damage. Adult male rats were randomized into four groups: Control group received no treatment, Pb group was exposed to 2000 ppm Pb acetate in drinking water, Pb-TQ group was cotreated with Pb plus TQ (5 mg/kg/day, per orally), and TQ group receiving only TQ. All treatments were applied for 5 weeks. Results indicated that Pb exposure increased hepatic Pb content, damaged hepatic histological structure (necrotic foci, hepatic strands disorganization, hypertrophied hepatocytes, cytoplasmic vacuolization, cytoplasmic loss, chromatin condensation, mononuclear cell infiltration, congestion, centrilobular swelling), and changed liver function investigated by plasma biochemical parameters (AST, ALT, ALP, γ-GT, LDH). Pb treatment also decreased total antioxidant status level and increased lipid peroxidation in the liver. Supplementation with TQ remarkably improved the Pb-induced adverse effects without significantly reducing the metal accumulation in the liver. In conclusion, our results indicate, for the first time, a protective effect of TQ against Pb-induced hepatotoxicity and suggest that this component might be clinically useful in Pb intoxication.

  9. Identifying Toxic Impacts of Metals Potentially Released during Deep-Sea Mining—A Synthesis of the Challenges to Quantifying Risk

    Directory of Open Access Journals (Sweden)

    Chris Hauton

    2017-11-01

    Full Text Available In January 2017, the International Seabed Authority released a discussion paper on the development of Environmental Regulations for deep-sea mining (DSM within the Area Beyond National Jurisdiction (the “Area”. With the release of this paper, the prospect for commercial mining in the Area within the next decade has become very real. Moreover, within nations' Exclusive Economic Zones, the exploitation of deep-sea mineral ore resources could take place on very much shorter time scales and, indeed, may have already started. However, potentially toxic metal mixtures may be released at sea during different stages of the mining process and in different physical phases (dissolved or particulate. As toxicants, metals can disrupt organism physiology and performance, and therefore may impact whole populations, leading to ecosystem scale effects. A challenge to the prediction of toxicity is that deep-sea ore deposits include complex mixtures of minerals, including potentially toxic metals such as copper, cadmium, zinc, and lead, as well as rare earth elements. Whereas the individual toxicity of some of these dissolved metals has been established in laboratory studies, the complex and variable mineral composition of seabed resources makes the a priori prediction of the toxic risk of DSM extremely challenging. Furthermore, although extensive data quantify the toxicity of metals in solution in shallow-water organisms, these may not be representative of the toxicity in deep-sea organisms, which may differ biochemically and physiologically and which will experience those toxicants under conditions of low temperature, high hydrostatic pressure, and potentially altered pH. In this synthesis, we present a summation of recent advances in our understanding of the potential toxic impacts of metal exposure to deep-sea meio- to megafauna at low temperature and high pressure, and consider the limitation of deriving lethal limits based on the paradigm of exposure to

  10. From basic physics to mechanisms of toxicity: the ``liquid drop'' approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles

    Science.gov (United States)

    Sizochenko, Natalia; Rasulev, Bakhtiyor; Gajewicz, Agnieszka; Kuz'min, Victor; Puzyn, Tomasz; Leszczynski, Jerzy

    2014-10-01

    Many metal oxide nanoparticles are able to cause persistent stress to live organisms, including humans, when discharged to the environment. To understand the mechanism of metal oxide nanoparticles' toxicity and reduce the number of experiments, the development of predictive toxicity models is important. In this study, performed on a series of nanoparticles, the comparative quantitative-structure activity relationship (nano-QSAR) analyses of their toxicity towards E. coli and HaCaT cells were established. A new approach for representation of nanoparticles' structure is presented. For description of the supramolecular structure of nanoparticles the ``liquid drop'' model was applied. It is expected that a novel, proposed approach could be of general use for predictions related to nanomaterials. In addition, in our study fragmental simplex descriptors and several ligand-metal binding characteristics were calculated. The developed nano-QSAR models were validated and reliably predict the toxicity of all studied metal oxide nanoparticles. Based on the comparative analysis of contributed properties in both models the LDM-based descriptors were revealed to have an almost similar level of contribution to toxicity in both cases, while other parameters (van der Waals interactions, electronegativity and metal-ligand binding characteristics) have unequal contribution levels. In addition, the models developed here suggest different mechanisms of nanotoxicity for these two types of cells.Many metal oxide nanoparticles are able to cause persistent stress to live organisms, including humans, when discharged to the environment. To understand the mechanism of metal oxide nanoparticles' toxicity and reduce the number of experiments, the development of predictive toxicity models is important. In this study, performed on a series of nanoparticles, the comparative quantitative-structure activity relationship (nano-QSAR) analyses of their toxicity towards E. coli and HaCaT cells were

  11. Protective effect of Moringa oleifera oil against HgCl2-induced hepato- and nephro-toxicity in rats.

    Science.gov (United States)

    Abarikwu, Sunny O; Benjamin, Sussan; Ebah, Sunday Godspower; Obilor, Godbless; Agbam, Goodluck

    2017-07-26

    Various parts of the Moringa oleifera (M. oleifera) tree are widely accepted to have ameliorative effects against metal toxicity. In the present study, M. oleifeira oil (MO) was tested against HgCl2-induced tissue pathologies and oxidative stress. Male Wistar rats were administered MO (1.798 mg/kg p.o.) or HgCl2 (5 mg/kg body wt) alone or in combination (5 mg/kg HgCl2+1.798 mg/kg MO p.o.) three times per week for 21 days. After exposure and treatment periods, rats were sacrificed; blood collected and the oxidative status of the liver and kidney homogenates were evaluated. In the liver, malondialdehyde (MDA) level, glutathione (GSH), and superoxide dismutase (SOD) activities were higher whereas catalase (CAT) activity was lower in the HgCl2 group than in the control group. In the kidney, MDA level, SOD, and CAT activities were higher whereas GSH activity was unchanged in the HgCl2 group compared to the control group. In the liver, MDA level, SOD, and CAT activities were lower in the HgCl2+MO group than in the HgCl2 group. In the kidney, MDA level, SOD and CAT activities were lower in the HgCl2+MO than in the HgCl2 group. Furthermore, Hg-induced increases in creatinine and bilirubin levels as well as the increase in γ-glutamyl transferase, lactate dehydrogenase, and alkaline phosphatase activities were attenuated in the combine exposure group and the animals showed improvement in the histology of the liver and kidney. MO decreased the negative effects of Hg-induced oxidative stress in rats.

  12. Soil metal concentrations and toxicity: Associations with distances to industrial facilities and implications for human health

    International Nuclear Information System (INIS)

    Aelion, C. Marjorie; Davis, Harley T.; McDermott, Suzanne; Lawson, Andrew B.

    2009-01-01

    Urban and rural areas may have different levels of environmental contamination and different potential sources of exposure. Many metals, i.e., arsenic (As), lead (Pb), and mercury (Hg), have well-documented negative neurological effects, and the developing fetus and young children are particularly at risk. Using a database of mother and child pairs, three areas were identified: a rural area with no increased prevalence of mental retardation and developmental delay (MR/DD) (Area A), and a rural area (Area B) and an urban area (Area C) with significantly higher prevalence of MR/DD in children as compared to the state-wide average. Areas were mapped and surface soil samples were collected from nodes of a uniform grid. Samples were analyzed for As, barium (Ba), beryllium (Be), chromium (Cr), copper (Cu), Pb, manganese (Mn), nickel (Ni), and Hg concentrations and for soil toxicity, and correlated to identify potential common sources. ArcGIS was used to determine distances between sample locations and industrial facilities, which were correlated with both metal concentrations and soil toxicity. Results indicated that all metal concentrations (except Be and Hg) in Area C were significantly greater than those in Areas A and B (p ≤ 0.0001) and that Area C had fewer correlations between metals suggesting more varied sources of metals than in rural areas. Area C also had a large number of facilities whose distances were significantly correlated with metals, particularly Cr (maximum r = 0.33; p = 0.0002), and with soil toxicity (maximum r = 0.25; p = 0.007) over a large spatial scale. Arsenic was not associated with distance to any facility and may have a different anthropogenic, or natural source. In contrast to Area C, both rural areas had lower concentrations of metals, lower soil toxicity, and a small number of facilities with significant associations between distance and soil metals

  13. Metal toxicity in a sediment-dwelling polychaete: Threshold body concentrations or overwhelming accumulation rates?

    International Nuclear Information System (INIS)

    Carmen Casado-Martinez, M.; Smith, Brian D.; Luoma, Samuel N.; Rainbow, Philip S.

    2010-01-01

    We followed the net accumulation of As, Cu and Zn in the deposit-feeding polychaete Arenicola marina exposed in the laboratory to natural metal-contaminated sediments, one exposure leading to mass mortality between day 10 and 20, and the other not causing lethality over a period of 60 days of exposure. The worms showed lower total accumulated metal concentrations just before mortality occurred (<20 days) at the lethal exposure, than after 30 days of exposure to sediments not causing mortality. Moreover rates of accumulation of As, Cu and Zn were significantly higher in the lethal exposure than in the sublethal exposure. Our results show that it is not possible to link mortality to a critical total body concentration, and we add to a growing body of literature indicating that metal toxicity occurs when organisms cannot cope with overwhelming influx and subsequent accumulation rates. - Laboratory exposures with the deposit-feeding polychaete Arenicola marina suggest that toxicity is not caused by the accumulated concentration of toxic metals in the body of the animal, but by the rate at which the toxic metal is accumulated.

  14. Acute toxicity of heavy metals towards freshwater ciliated protists

    Energy Technology Data Exchange (ETDEWEB)

    Madoni, Paolo [Dipartimento di Scienze Ambientali, Universita degli Studi di Parma, Parco Area delle Scienze 11/A, 43100 Parma (Italy)]. E-mail: paolo.madoni@unipr.it; Romeo, Maria Giuseppa [Dipartimento di Scienze Ambientali, Universita degli Studi di Parma, Parco Area delle Scienze 11/A, 43100 Parma (Italy)

    2006-05-15

    The acute toxicity of five heavy metals to four species of freshwater ciliates (Colpidium colpoda, Dexiotricha granulosa, Euplotes aediculatus, and Halteria grandinella) was examined in laboratory tests. After exposing the ciliates to soluble compound of cadmium, copper, chromium, lead, and nickel at several selected concentrations, the mortality rate was registered and the LC{sub 5} values (with 95% confidence intervals) were calculated. Large differences appeared in sensitivities of the four species to the metals. H. grandinella showed the highest sensitivity for cadmium (0.07 mg l{sup -1}, LC{sub 5}) and lead (0.12 mg l{sup -1}, LC{sub 5}), whilst E. aediculatus showed the highest sensitivity for nickel (0.03 mg l{sup -1}, LC{sub 5}). The comparison with data obtained with other species indicate that Halteria grandinella and Euplotes aediculatus are excellent and convenient bioindicator for evaluating the toxicity of waters and wastewaters polluted by heavy metals. The short time (24 h) and simplicity of the test procedure enable this test to be used in laboratory studies. - Ciliated protozoa are suitable bioindicators of heavy metal pollution in freshwater environments.

  15. Determination of Levels of Essential and Toxic Heavy Metals in ...

    African Journals Online (AJOL)

    The concentrations of trace essential metals (Co, Cu, Fe, Mn, Ni and Zn) and toxic heavy metals (Cd and Pb) in lentil samples collected from Dejen (East Gojjam), Boset (East Shewa) and Molale (North Shewa), Ethiopia, were determined by flame atomic absorption spectrometry. A wet digestion procedure, using mixtures of ...

  16. Metal Oxide Nanomaterial QNAR Models: Available Structural Descriptors and Understanding of Toxicity Mechanisms

    Directory of Open Access Journals (Sweden)

    Jiali Ying

    2015-10-01

    Full Text Available Metal oxide nanomaterials are widely used in various areas; however, the divergent published toxicology data makes it difficult to determine whether there is a risk associated with exposure to metal oxide nanomaterials. The application of quantitative structure activity relationship (QSAR modeling in metal oxide nanomaterials toxicity studies can reduce the need for time-consuming and resource-intensive nanotoxicity tests. The nanostructure and inorganic composition of metal oxide nanomaterials makes this approach different from classical QSAR study; this review lists and classifies some structural descriptors, such as size, cation charge, and band gap energy, in recent metal oxide nanomaterials quantitative nanostructure activity relationship (QNAR studies and discusses the mechanism of metal oxide nanomaterials toxicity based on these descriptors and traditional nanotoxicity tests.

  17. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder.

    Science.gov (United States)

    Bjørklund, Geir; Skalny, Anatoly V; Rahman, Md Mostafizur; Dadar, Maryam; Yassa, Heba A; Aaseth, Jan; Chirumbolo, Salvatore; Skalnaya, Margarita G; Tinkov, Alexey A

    2018-06-11

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, verbal and non-verbal communication, and stereotypic behaviors. Many studies support a significant relationship between many different environmental factors in ASD etiology. These factors include increased daily exposure to various toxic metal-based environmental pollutants, which represent a cause for concern in public health. This article reviews the most relevant toxic metals, commonly found, environmental pollutants, i.e., lead (Pb), mercury (Hg), aluminum (Al), and the metalloid arsenic (As). Additionally, it discusses how pollutants can be a possible pathogenetic cause of ASD through various mechanisms including neuroinflammation in different regions of the brain, fundamentally occurring through elevation of the proinflammatory profile of cytokines and aberrant expression of nuclear factor kappa B (NF-κB). Due to the worldwide increase in toxic environmental pollution, studies on the role of pollutants in neurodevelopmental disorders, including direct effects on the developing brain and the subjects' genetic susceptibility and polymorphism, are of utmost importance to achieve the best therapeutic approach and preventive strategies. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. The protective effect of Sambucus ebulus against lung toxicity induced by gamma irradiation in mice

    Directory of Open Access Journals (Sweden)

    Mohammad Karami

    2015-01-01

    Full Text Available The aim of present study was to investigate the potential antioxidant and lung protective activities of Sambucus ebulus (SE against toxicity induced by gamma irradiation. Hydroalcoholic extract of SE (20, 50 and 100 mg/kg was studied for its lung protective activity. Phenol and flavonoid contents of SE were determined. Male C57 mice were divided into ten groups with five mice per group. Only the first and second groups (as negative control received intraperitoneally normal saline fluid. Groups 3 to 5 received only SE extract at doses of 20 mg/kg, 50 mg/kg and 100 mg/kg intraperitoneally; three groups were repeatedly injected for 15 days as chronic group. Groups 6 to 8 received a single-dose of gamma irradiation just 2 hours before irradiation as acute group. The ninth and tenth groups (as positive control received only gamma rays. Animal was exposed whole-body to 6 Gy gamma radiation. After irradiation, tissue sections of lung parenchyma were examined by light microscope for any histopathologic changes. SE at doses 50 and 100 mg/kg improved markedly histopathological changes induced by gamma irradiation in lung. Lung protective effect of SE could be due to attention of lipid peroxidation. Our study demonstrated that SE as a natural product has a protective effect against lung toxicity induced by   gamma irradiation in animal.

  19. Flow-induced elastic anisotropy of metallic glasses

    International Nuclear Information System (INIS)

    Sun, Y.H.; Concustell, A.; Carpenter, M.A.; Qiao, J.C.; Rayment, A.W.; Greer, A.L.

    2016-01-01

    As-cast bulk metallic glasses are isotropic, but anisotropy can be induced by thermomechanical treatments. For example, the diffraction halo in the structure function S(Q) observed in transmission becomes elliptical (rather than circular) after creep in uniaxial tension or compression. Published studies associate this with frozen-in anelastic strain and bond-orientational anisotropy. Results so far are inconsistent on whether viscoplastic flow of metallic glasses can induce anisotropy. Preliminary diffraction data suggest that the anisotropy, if any, is very low, while measurements of the elastic properties suggest that there is induced anisotropy, opposite in sign to that due to anelastic strain. We study three bulk metallic glasses, Ce 65 Al 10 Cu 20 Co 5 , La 55 Ni 10 Al 35 , and Pd 40 Ni 30 Cu 10 P 20 . By using resonant ultrasound spectroscopy to determine the full elasticity tensor, the effects of relaxation and rejuvenation can be reliably separated from uniaxial anisotropy (of either sign). The effects of viscoplastic flow in tension are reported for the first time. We find that viscoplastic flow of bulk metallic glasses, particularly in tension, can induce significant anisotropy that is distinct from that associated with frozen-in anelastic strain. The conditions for inducing such anisotropy are explored in terms of the Weissenberg number (ratio of relaxation times for primary relaxation and for shear strain rate). There is a clear need for further work to characterize the structural origins of flow-induced anisotropy and to explore the prospects for improved mechanical and other properties through induced anisotropy.

  20. Mycorrhizal fungi modulate phytochemical production and antioxidant activity of Cichorium intybus L. (Asteraceae) under metal toxicity.

    Science.gov (United States)

    Rozpądek, P; Wężowicz, K; Stojakowska, A; Malarz, J; Surówka, E; Sobczyk, Ł; Anielska, T; Ważny, R; Miszalski, Z; Turnau, K

    2014-10-01

    Cichorium intybus (common chicory), a perennial plant, common in anthropogenic sites, has been the object of a multitude of studies in recent years due to its high content of antioxidants utilized in pharmacy and food industry. Here, the role of arbuscular mycorrhizal fungi (AMF) in the biosynthesis of plant secondary metabolites and the activity of enzymatic antioxidants under toxic metal stress was studied. Plants inoculated with Rhizophagus irregularis and non-inoculated were grown on non-polluted and toxic metal enriched substrata. The results presented here indicate that AMF improves chicory fitness. Fresh and dry weight was found to be severely affected by the fungi and heavy metals. The concentration of hydroxycinnamates was increased in the shoots of mycorrhizal plants cultivated on non-polluted substrata, but no differences were found in plants cultivated on metal enriched substrata. The activity of SOD and H2O2 removing enzymes CAT and POX was elevated in the shoots of mycorrhizal plants regardless of the cultivation environment. Photochemical efficiency of inoculated chicory was significantly improved. Our results indicate that R. irregularis inoculation had a beneficial role in sustaining the plants ability to cope with the deleterious effects of metal toxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. [Evaluation of Brodifacoum-induced Toxicity by Metabonomics Approach Based on HPLC-TOF-MS].

    Science.gov (United States)

    Yan, H; Zhuo, X Y; Shen, B H; Xiang, P; Shen, M

    2017-06-01

    To analyse the metabolic changes in urine of rats with brodifacoum intoxication, and to reveal the molecular mechanism of brodifacoum-induced toxicity on rats. By establishing a brodifacoum poisoning rats model, the urine metabolic profiling data of rats were acquired using high performance liquid chromatography-time of flight mass spectrometry (HPLC-TOF-MS). The orthogonal partial least squares analysis-discrimination analysis (OPLS-DA) was applied for the multivariate statistics and the discovery of differential metabolites closely related to toxicity of brodifacoum. OPLS-DA score plot showed that the urinary metabolic at different time points before and after drug administration had good similarity within time period and presented clustering phenomenon. Comparing the urine samples of rats before drug administration with which after drug administration, twenty-two metabolites related to brodifacoum-induced toxicity were selected. The toxic effect of brodifacoum worked by disturbing the metabolic pathways in rats such as tricarboxylic cycle, glycolysis, sphingolipid metabolism and tryptophan metabolism, and the toxicity of brodifacoum is characterized of accumulation effect. The metabonomic method based on urine HPLC-TOF-MS can provide a novel insight into the study on molecular mechanism of brodifacoum-induced toxicity. Copyright© by the Editorial Department of Journal of Forensic Medicine

  2. Evaluation of toxic metals in the industrial effluents and their segregation through peanut husk fence for pollution abatement

    International Nuclear Information System (INIS)

    Husaini, S.N.; Zaidi, J.H.; Matiullah; Akram, M.

    2011-01-01

    The industrial pollution is exponentially growing in the developing countries due to the discharge of untreated effluents from the industries in the open atmosphere. This may cause severe health hazards in the general public. To reduce this effect, it is essential to remove the toxic and heavy metals from the effluents before their disposal into the biosphere. In this context, samples of the effluents were collected from the textile/yarn, ceramics and pulp/paper industries and the concentrations of the toxic metal ions were determined using neutron activation analysis (NAA) technique. The observed concentration values of the As, Cr and Fe ions, in the unprocessed industrial effluents, were 4.91 ± 0.8, 9.67 ± 0.7 and 9.71 ± 0.8 mg/L, respectively which was well above the standard recommended limits (i.e. 1.0, 1.0 and 2.0 mg/L, respectively). In order to remove the toxic metal ions from the effluents, the samples were treated with pea nut husk fence. After this treatment, 91.5% arsenic, 81.9% chromium and 66.5% iron metal ions were successfully removed from the effluents. Then the treated effluents contained concerned toxic metal ions concentrations within the permissible limits as recommended by the national environmental quality standards (NEQS). (author)

  3. Effects of the interleukin-6 (IL-6) polymorphism on toxic metal and trace element levels in placental tissues

    International Nuclear Information System (INIS)

    Kayaalti, Zeliha; Tekin, Deniz; Aliyev, Vugar; Yalcin, Serap; Kurtay, Guelay; Soeylemezoglu, Tuelin

    2011-01-01

    The placenta is a crucial organ of fetal origin that functions in providing nutrients to the fetus from the mother. During pregnancy, the need for essential micronutrients, such as Fe and Zn, increases due to the requirements of the growing fetus. Maternal Fe deficiency induces an increase in Cu levels and can also affect cytokine levels in the placenta. On the other hand, Cu deficiency, although not as common, can also have destructive effects on the fetus. Interleukin-6 (IL-6) is a pleiotropic cytokine with a wide range of biological activities, including such as immune responses, acute-phase reactions, and inflammation. The placenta produces a significant amount of IL-6 during pregnancy. The effects of the IL-6 -174 G/C single nucleotide polymorphism (SNP) on IL-6 gene transcription and on plasma cytokine levels were assessed in the present study. We investigated the association between the IL-6 -174 G/C polymorphism and trace element/toxic metal levels in placental tissues. For the purposes of this study, 95 healthy volunteers were evaluated. Presence of the IL-6 polymorphism was determined using the standard polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) technique, and metal levels were analyzed by atomic absorption spectrometry (AAS). Based on our data, there were no significant associations between the IL-6 -174 G/C polymorphism and Pb, Cd, Fe, or Zn levels in the placental tissues (p > 0.05), but a statistically significant association was detected between the polymorphism and Cu levels (p = 0.016). We determined that the mean Cu levels in the placental tissues from individuals with GG, GC and CC genotypes were 5.62 ± 1.98, 6.22 ± 3.22 and 8.00 ± 1.32 ppm, respectively, whereas the overall mean Cu level from the placental tissues was 5.98 ± 2.51 ppm. - Highlights: → We studied between the association of IL-6 polymorphism and metal levels in the placenta tissues. → It was the first report evaluating the association

  4. Screen-Printed Electrodes Modified with "Green" Metals for Electrochemical Stripping Analysis of Toxic Elements.

    Science.gov (United States)

    Economou, Anastasios

    2018-03-29

    This work reviews the field of screen-printed electrodes (SPEs) modified with "green" metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of "green" metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  5. Corneal protection with high-molecular-weight hyaluronan against in vitro and in vivo sodium lauryl sulfate-induced toxic effects.

    Science.gov (United States)

    Pauloin, Thierry; Dutot, Mélody; Liang, Hong; Chavinier, Emilie; Warnet, Jean-Michel; Rat, Patrice

    2009-10-01

    The aim of this study was to investigate high-molecular-weight hyaluronan (HA-HMW) corneal protection against sodium lauryl sulfate (SLS)-induced toxic effects with in vitro and in vivo experimental approaches. In vitro experiments consisted of a human corneal epithelial cell line incubated with HA-HMW, rinsed, and incubated with SLS. Cell viability, oxidative stress, chromatin condensation, caspase-3, -8, -9, and P2X7 cell death receptor activation, interleukin-6, and interleukin-8 production were investigated. In vivo experiments consisted of 36 New Zealand white rabbits treated for 3 days, 3 times per day, with HA-HMW or phosphate-buffered salt solution. At day 4, eyes were treated with SLS. Clinical observation and in vivo confocal microscopy using the Rostock Cornea Module of the Heidelberg Retina Tomograph-II were performed to evaluate and to compare SLS-induced toxicity between eyes treated with HA-HMW and eyes treated with phosphate-buffered salt solution. In vitro data indicate that exposure of human corneal epithelial cells to HA-HMW significantly decreased SLS-induced oxidative stress, apoptosis, and inflammation cytokine production. In vivo data indicate that SLS cornea injuries, characterized by damaged corneal epithelium, damaged anterior stroma, and inflammatory infiltrations, were attenuated with HA-HMW treatment. A good correlation was seen between in vitro and in vivo findings showing that HA-HMW decreases SLS-induced toxic effects and protects cornea.

  6. Protective effects of some medicinal plants from Lamiaceae family against beta-amyloid induced toxicity in PC12 cell

    Directory of Open Access Journals (Sweden)

    Balali P

    2012-10-01

    Full Text Available Background: Excessive accumulation of beta-amyliod peptide (Aβ, the major component of senile plaques in Alzheimer's disease (AD, causes neuronal cell death through induction of oxidative stress. Therefore, antioxidants may be of use in the treatment of AD. The medicinal plants from the Lamiaceae family have been widely used in Iranian traditional medicine. These plants contain compounds with antioxidant activity and some species in this family have been reported to have neuroprotective properties. In the present study, methanolic extract of seven plants from salvia and satureja species were evaluated for their protective effects against beta-amyloid induced neurotoxicity.Methods: Aerial parts of the plants were extracted with ethyl acetate and methanol, respectively, by percolation at room temperature and subsequently, methanolic extracts of the plants were prepared. PC12 cells were incubated with different concentrations of the extracts in culture medium 1h prior to incubation with Aβ. Cell toxicity was assessed 24h after addition of Aβ by MTT assay.Results: Satureja bachtiarica, Salvia officinalis and Salvia macrosiphon methanolic extracts exhibited high protective effects against Aβ induced toxicity (P<0.001. Protective effects of Satureja bachtiarica and Salvia officinalis were dose-dependent.Conclusion: The main constituents of these extracts are polyphenolic and flavonoid compounds such as rosmarinic acid, naringenin, apigenin and luteolin which have antioxidant properties and may have a role in neuroprotection. Based on neuroprotective effect of these plants against Aβ induced toxicity, we recommend greater attention to their use in the treatment of Alzheimer disease.

  7. [Toxic nephropathy secondary to occupational exposure to metallic mercury].

    Science.gov (United States)

    Voitzuk, Ana; Greco, Vanina; Caputo, Daniel; Alvarez, Estela

    2014-01-01

    Toxic nephrophaties secondary to occupational exposure to metals have been widely studied, including membranous nephropathy by mercury, which is rare. Occupational poisoning by mercury is frequent, neurological symptoms are the main form of clinical presentation. Secondary renal involvement in chronic exposure to metallic mercury can cause glomerular disease by deposit of immune-complexes. Membranous glomerulopathy and minimal change disease are the most frequently reported forms. Here we describe the case of a patient with occupational exposure to metallic mercury, where nephrotic syndrome due to membranous glomerulonephritis responded favorably to both chelation and immunosuppressive therapy.

  8. Toxic effects of combined effects of anthracene and UV radiation on Brachionus plicatilis

    Science.gov (United States)

    Gao, Ceng; Zhang, Xinxin; Xu, Ningning; Tang, Xuexi

    2017-05-01

    Anthracene is a typical polycyclic aromatic hydrocarbon, with photo activity, can absorb ultraviolet light a series of chemical reactions, aquatic organisms in the ecosystem has a potential light induced toxicity. In this paper, the effects of anthracene and UV radiation on the light-induced toxicity of Brachionus plicatilis were studied. The main methods and experimental results were as follows: (1) The semi-lethal concentration of anthracene in UV light was much lower than that in normal light, The rotifers have significant light-induced acute toxicity. (2) Under UV irradiation, anthracene could induce the increase of ROS and MDA content in B. plicatilis, and the activity of antioxidant enzymes in B. plicatilis significantly changed, Where SOD, GPx activity was induced within 24 hours of the beginning of the experiment. And the content of GPX and CAT was inhibited after 48 hours. Therefore, the anthracite stress induced by UV radiation could more strongly interfere with the ant oxidative metabolism of B. plicatilis, and more seriously cause oxidative damage, significant light-induced toxicity.

  9. Toxic effects of lead and nickel nitrate on rat liver chromatin components.

    Science.gov (United States)

    Rabbani-Chadegani Iii, Azra; Fani, Nesa; Abdossamadi, Sayeh; Shahmir, Nosrat

    2011-01-01

    The biological activity of heavy metals is related to their physicochemical interaction with biological receptors. In the present study, the effect of low concentrations of nickel nitrate and lead nitrate (lead nitrate to chromatin compared to nickel nitrate. Also, the binding affinity of lead nitrate to histone proteins free in solution was higher than nickel. On the basis of the results, it is concluded that lead reacts with chromatin components even at very low concentrations and induce chromatin aggregation through histone-DNA cross-links. Whereas, nickel nitrate is less effective on chromatin at low concentrations, suggesting higher toxicity of lead nitrate on chromatin compared to nickel. Copyright © 2010 Wiley Periodicals, Inc.

  10. Low concentrations of metal mixture exposures have adverse effects on selected biomarkers of Xenopus laevis tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Yologlu, Ertan, E-mail: ertanyologlu82@gmail.com [Adiyaman University, Faculty of Education, Department of Science Education, 02040 Adiyaman (Turkey); Ozmen, Murat [Inonu University, Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts & Science, 44280 Malatya (Turkey)

    2015-11-15

    Highlights: • Selected metal mixtures were evaluated for toxicity of safety limit concentrations. • Xenopus laevis tadpoles were used as model test organism. • Combinations of LC{sub 50} and LC{sub 50}/2 caused 100% lethality for some metals. • Metals did not change metallothionein levels in low concentrations. • Selected enzyme activities showed induction after low concentration exposures. - Abstract: Polluted ecosystems may contain mixtures of metals, such that the combinations of metals, even in low concentrations, may cause adverse effects. In the present study, we focused on toxic effects of mixtures of selected metals, the LC{sub 50} values, and also their safety limit in aquatic systems imposed by the European legislation using a model organism. Xenopus laevis tadpoles were used as test organisms. They were exposed to metals or their combinations due to 96-h LC{sub 50} values. Glutathione S-transferase (GST), glutathione reductase (GR), acetylcholinesterase (AChE), carboxylesterase (CaE), glutathione peroxidase (GPx), and catalase (CAT) levels were evaluated. Metallothionein concentrations were also determined. The LC{sub 50}s for Cd, Pb, and Cu were calculated as 5.81 mg AI/L, 123.05 mg AI/L, and 0.85 mg AI/L, respectively. Low lethality ratios were observed with unary exposure of each metal in lower concentrations. Double or triple combinations of LC{sub 50} and LC{sub 50}/2 concentrations caused 100% lethality with Cd + Cu and Pb + Cd + Cu mixtures, while the Pb + Cu mixture also caused high lethal ratios. The selected enzyme activities were significantly affected by metals or mixtures, and dose-related effects were determined. The metallothionein levels generally increased as related to concentration in unary metals and mixtures. Acceptable limit values of unary metals and mixtures did not significantly change metallothionein levels. The results suggest that oxidative stress-related mechanisms are involved in the toxicity induced by selected

  11. Protective effect of some plant oils on diazinon induced hepatorenal toxicity in male rats

    Directory of Open Access Journals (Sweden)

    Atef M. Al-Attar

    2017-09-01

    Full Text Available Environmental pollution and exposure to environmental pollutants are still some of the major global health issues. Pesticides have been linked to a wide range of health hazards. The toxicity of pesticides depends on several factors such as its chemical properties, doses, exposure period, exposure methods, gender, genetics, age, nutritional status and physiological case of exposed individuals. Medicinal plants, natural products and nutrition continue to play a central role in the healthcare system of large proportions of the world’s population. Alternative medicine plays an important role in health services around the world. The aim of this study was to investigate the effect of olive, sesame and black seed oils on hepatorenal toxicity induced by diazinon (DZN in male rats. The experimental animals were divided into nine groups. The first group served as control. The second group was exposed to DZN. The third group was treated with olive oil and DZN. Rats of the fourth group were subjected to sesame oil and DZN. Rats of the fifth group were exposed to black seed oil and DZN. The sixth, seventh and eighth groups were supplemented with olive, sesame and black seed oils respectively. Rats of the ninth group were treated with corn oil. Levels of serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma glutamyl transferase, total bilirubin, creatinine, blood urea nitrogen and malondialdehyde were significantly increased in rats exposed to DZN. Moreover, levels of serum glutathione and superoxide dismutase were significantly decreased. Several histopathological changes were observed in the structures of liver and kidney due to DZN exposure. This study showed that these oils attenuated the physiological disturbances and histopathological alterations induced by DZN intoxication. Moreover, the antioxidant properties of these oils support the bioactive roles of its protective effects on DZN toxicity. This study therefore

  12. Influence of glyphosate and its formulation (Roundup[reg]) on the toxicity and bioavailability of metals to Ceriodaphnia dubia

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Martin T.K. [Department of Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong (China); Wang Wenxiong [Department of Biology, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong (China); Chu, L.M. [Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China)]. E-mail: leemanchu@cuhk.edu.hk

    2005-11-15

    This study examined the toxicological interaction between glyphosate (or its formulation, Roundup[reg]) and several heavy metals to a freshwater cladoceran, Ceriodaphnia dubia. We demonstrated that all binary combinations of Roundup[reg] and metals (Cd, Cu, Cr, Ni, Pb, Se and Zn) exhibited 'less than additive' mixture toxicity, with 48-h LC50 toxic unit>1. Addition of glyphosate alone could significantly reduce the acute toxicity of Ag, Cd, Cr, Cu, Ni, Pb and Zn (but not Hg and Se). The ratio between glyphosate and metal ions was important in determining the mitigation of metal toxicity by glyphosate. A bioaccumulation study showed that in the presence of glyphosate the uptake of some metals (e.g. Ag) was halted but that of others (e.g. Hg) was increased significantly. Therefore, our study strongly suggests that glyphosate and its commercial formulations can control the toxicity as well as the bioavailability of heavy metals in aquatic ecosystems where both groups of chemicals can co-occur. - Glyphosate can control the toxicity and bioavailability of many heavy metals in the aquatic environment.

  13. Influence of glyphosate and its formulation (Roundup[reg]) on the toxicity and bioavailability of metals to Ceriodaphnia dubia

    International Nuclear Information System (INIS)

    Tsui, Martin T.K.; Wang Wenxiong; Chu, L.M.

    2005-01-01

    This study examined the toxicological interaction between glyphosate (or its formulation, Roundup[reg]) and several heavy metals to a freshwater cladoceran, Ceriodaphnia dubia. We demonstrated that all binary combinations of Roundup[reg] and metals (Cd, Cu, Cr, Ni, Pb, Se and Zn) exhibited 'less than additive' mixture toxicity, with 48-h LC50 toxic unit>1. Addition of glyphosate alone could significantly reduce the acute toxicity of Ag, Cd, Cr, Cu, Ni, Pb and Zn (but not Hg and Se). The ratio between glyphosate and metal ions was important in determining the mitigation of metal toxicity by glyphosate. A bioaccumulation study showed that in the presence of glyphosate the uptake of some metals (e.g. Ag) was halted but that of others (e.g. Hg) was increased significantly. Therefore, our study strongly suggests that glyphosate and its commercial formulations can control the toxicity as well as the bioavailability of heavy metals in aquatic ecosystems where both groups of chemicals can co-occur. - Glyphosate can control the toxicity and bioavailability of many heavy metals in the aquatic environment

  14. Protective Effect of the Plant Extracts of Erythroxylum sp. against Toxic Effects Induced by the Venom of Lachesis muta Snake

    Directory of Open Access Journals (Sweden)

    Eduardo Coriolano de Oliveira

    2016-10-01

    Full Text Available Snake venoms are composed of a complex mixture of active proteins that induce toxic effects, such as edema, hemorrhage, and death. Lachesis muta has the highest lethality indices in Brazil. In most cases, antivenom fails to neutralize local effects, leading to disabilities in victims. Thus, alternative treatments are under investigation, and plant extracts are promising candidates. The objective of this work was to investigate the ability of crude extracts, fractions, or isolated products of Erythroxylum ovalifolium and Erythroxylum subsessile to neutralize some toxic effects of L. muta venom. All samples were mixed with L. muta venom, then in vivo (hemorrhage and edema and in vitro (proteolysis, coagulation, and hemolysis assays were performed. Overall, crude extracts or fractions of Erythroxylum spp. inhibited (20%–100% toxic effects of the venom, but products achieved an inhibition of 4%–30%. However, when venom was injected into mice before the plant extracts, hemorrhage and edema were not inhibited by the samples. On the other hand, an inhibition of 5%–40% was obtained when extracts or products were given before venom injection. These results indicate that the extracts or products of Erythroxylum spp. could be a promising source of molecules able to treat local toxic effects of envenomation by L. muta venom, aiding in the development of new strategies for antivenom treatment.

  15. Toxic metal tolerance in native plant species grown in a vanadium mining area.

    Science.gov (United States)

    Aihemaiti, Aikelaimu; Jiang, Jianguo; Li, De'an; Li, Tianran; Zhang, Wenjie; Ding, Xutong

    2017-12-01

    Vanadium (V) has been extensively mined in China and caused soil pollution in mining area. It has toxic effects on plants, animals and humans, posing potential health risks to communities that farm and graze cattle adjacent to the mining area. To evaluate in situ phytoremediation potentials of native plants, V, chromium, copper and zinc concentrations in roots and shoots were measured and the bioaccumulation (BAF) and translocation (TF) efficiencies were calculated. The results showed that Setaria viridis accumulated greater than 1000 mg kg -1 V in its shoots and exhibited TF > 1 for V, Cr, Zn and BAF > 1 for Cu. The V accumulation amount in the roots of Kochia scoparia also surpassed 1000 mg kg -1 and showed TF > 1 for Zn. Chenopodium album had BAF > 1 for V and Zn and Daucus carota showed TF > 1 for Cu. Eleusine indica presented strong tolerance and high metal accumulations. S. viridis is practical for in situ phytoextractions of V, Cr and Zn and phytostabilisation of Cu in V mining area. Other species had low potential use as phytoremediation plant at multi-metal polluted sites, but showed relatively strong resistance to V, Cr, Cu and Zn toxicity, can be used to vegetate the contaminated soils and stabilise toxic metals in V mining area.

  16. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels1[OPEN

    Science.gov (United States)

    2017-01-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis (Arabidopsis thaliana) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. PMID:28500270

  17. RESPIRATORY EFFECTS OF INHALED METAL-RICH PARTICULATE MATTER (PM) IN RATS: INFLUENCE OF SYSTEMIC ANTIOXIDANT DEPLETION

    Science.gov (United States)

    Metal-mediated generation of reactive oxygen species and resultant oxidative stress has been implicated in the pathogenesis of emission-source PM toxicity. We hypothesized that inducing an antioxidant deficit prior to inhalation of metal-rich PM would worsen adverse health outcom...

  18. Drug-induced liver toxicity and prevention by herbal antioxidants: an overview

    Directory of Open Access Journals (Sweden)

    Divya eSingh

    2016-01-01

    Full Text Available The liver is the center for drug and xenobiotic metabolism, which is influenced most with medication/xenobiotic-mediated toxic activity. Drug-induced hepatotoxicity is common and its actual frequency is hard to determine due to underreporting, difficulties in detection or diagnosis, and incomplete observation of exposure. The death rate is high, up to about 10% for medication instigated liver danger. Endorsed medications (counting acetaminophen represented >50% of instances of intense liver failure in a study from the Acute Liver Failure Study Group (ALFSG of the patients admitted in 17 US healing facilities. Albeit different studies are accessible uncovering the mechanistic aspects of medication prompted hepatotoxicity, we are in the dilemma about the virtual story. The expanding prevalence and effectiveness of Ayurveda and herbal products in the treatment of various disorders led the investigators to look into their potential in countering drug-induced liver toxicity. Several plant products have been reported to date to mitigate the drug-induced toxicity. The dietary nature and less side reactions of the herbs provide them an extra edge over other candidates of supplementary medication. In this paper, we have discussed on the mechanism involved in drug-induced liver toxicity and the potential of herbal antioxidants as supplementary medication.

  19. Nitrite addition to acidified sludge significantly improves digestibility, toxic metal removal, dewaterability and pathogen reduction

    Science.gov (United States)

    Du, Fangzhou; Keller, Jürg; Yuan, Zhiguo; Batstone, Damien J.; Freguia, Stefano; Pikaar, Ilje

    2016-12-01

    Sludge management is a major issue for water utilities globally. Poor digestibility and dewaterability are the main factors determining the cost for sludge management, whereas pathogen and toxic metal concentrations limit beneficial reuse. In this study, the effects of low level nitrite addition to acidified sludge to simultaneously enhance digestibility, toxic metal removal, dewaterability and pathogen reduction were investigated. Waste activated sludge (WAS) from a full-scale waste water treatment plant was treated at pH 2 with 10 mg NO2--N/L for 5 h. Biochemical methane potential tests showed an increase in the methane production of 28%, corresponding to an improvement from 247 ± 8 L CH4/kg VS to 317 ± 1 L CH4/kg VS. The enhanced removal of toxic metals further increased the methane production by another 18% to 360 ± 6 L CH4/kg VS (a total increase of 46%). The solids content of dewatered sludge increased from 14.6 ± 1.4% in the control to 18.2 ± 0.8%. A 4-log reduction for both total coliforms and E. coli was achieved. Overall, this study highlights the potential of acidification with low level nitrite addition as an effective and simple method achieving multiple improvements in terms of sludge management.

  20. Safety Evaluation of Potential Toxic Metals Exposure from Street Foods Consumed in Mid-West Nigeria

    Directory of Open Access Journals (Sweden)

    O. C. Ekhator

    2017-01-01

    Full Text Available Objective. Street-vended foods offer numerous advantages to food security; nevertheless, the safety of street food should be considered. This study has investigated the level of potential toxic metal (Pb, Cd, Hg, Sb, Mn, and Al contamination among street-vended foods in Benin City and Umunede. Methods. Twenty street food samples were purchased from vendors at bus stops. Metals were analyzed with atomic absorption spectrophotometry. The methods developed by the US EPA were employed to evaluate the potential health risk of toxic metals. Results. The concentrations of the toxic metals in mg/kg were in the range of Pb (0.014–1.37, Cd (0.00–0.00017, Hg (0.00–0.00014, Sb (0.00–0.021, Mn (0.00–0.012, and Al (0.00–0.22. All the toxic metals except Pb were below permissible limit set by WHO, EU, and USEPA. The daily intake, hazard quotient, and hazard index of all toxic metals except for Pb in some street foods were below the tolerable daily intake and threshold value of 1, indicating an insignificant health risk. Total cancer risk was within the priority risk level of 1.0E-04 but higher than the acceptable risk level of 1E-06. Conclusion. Consumption of some of these street foods is of public health concern.

  1. Acute and Chronic Toxicity of Soluble Fractions of Industrial Solid Wastes on Daphnia magna and Vibrio fischeri

    Directory of Open Access Journals (Sweden)

    Letícia Flohr

    2012-01-01

    Full Text Available Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3 induced the highest toxicity level to Daphnia magna(CE50,48 h=2.21%. A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE50,30 min=12.08%. All samples of pulp and paper wastes, and a textile waste (sample TX2 induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method.

  2. Toxicity of thallium on isolated rat liver mitochondria: the role of oxidative stress and MPT pore opening.

    Science.gov (United States)

    Eskandari, M R; Mashayekhi, Vida; Aslani, Majid; Hosseini, Mir-Jamal

    2015-02-01

    Thallium(I) is a highly toxic heavy metal; however, up to now, its mechanisms are poorly understood. The authors' previous studies showed that this compound could induce reactive oxygen species (ROS) formation, reduced glutathione (GSH) oxidation, membrane lipid peroxidation, and mitochondrial membrane potential (MMP) collapse in isolated rat hepatocyte. Because the liver is the storage site of thallium, it seems that the liver mitochondria are one of the important targets for hepatotoxicity. In this investigation, the effects of thallium on mitochondria were studied to investigate its mechanisms of toxicity. Mitochondria were isolated from rat liver and incubated with different concentrations of thallium (25-200 µM). Thallium(I)-treated mitochondria showed a marked elevation in oxidative stress parameters accompanied by MMP collapse when compared with the control group. These results showed that different concentrations of thallium (25-200 µM) induced a significant (P thallium(I)-induced liver toxicity is a result of the disruptive effect of this metal on the mitochondrial respiratory complexes (I, II, and IV), which are the obvious causes of metal-induced ROS formation and ATP depletion. The latter two events, in turn, trigger cell death signaling via opening of mitochondrial permeability transition pore and cytochrome c expulsion. © 2013 Wiley Periodicals, Inc.

  3. New metals

    International Nuclear Information System (INIS)

    Bergqvist, U.

    1983-12-01

    The aim of this report is to estimate the exposure to various metals and metal compounds and discuss the available information of the possible toxic effects of these metals and compounds. In the first section, some metals are defined as those with either a large or a fast increasing exposure to living organisms. The available information on toxicity is discussed in the second section. In the third section interesting metals are defined as compounds having a large exposure and an apparent insufficient knowledge of their possible toxic effects. Comments on each of these metals are also to be found in the third section. (G.B.)

  4. Acute toxicity of metals and reference toxicants to a freshwater ostracod, Cypris subglobosa Sowerby, 1840 and correlation to EC50 values of other test models

    International Nuclear Information System (INIS)

    Khangarot, B.S.; Das, Sangita

    2009-01-01

    The ostracod Cypris subglobosa Sowerby, 1840 static bioassay test on the basis of a 48 h of 50% of immobilization (EC 50 ) has been used to measure the toxicity of 36 metals and metalloids and 12 reference toxicants. Among the 36 metals and metalloids, osmium (Os) was found to be the most toxic in the test while boron (B), the least toxic. The EC 50 values of this study revealed positive linear relationship with the established test models of cladoceran (Daphnia magna), sludge worm (Tubifex tubifex), chironomid larvae (Chironomus tentans), protozoan (Tetrahymena pyriformis), fathead minnow (Pimephales promelas), bluegill sunfish (Lepomis macrochirus), and aquatic macrophyte duckweed (Lemna minor). Correlation coefficients (r 2 ) for 17 physicochemical properties of metals or metal ions and EC 50 s (as pM) were examined by linear regression analysis. The electronegativity, ionization potential, melting point, solubility product of metal sulfides (pK sp ), softness parameter and some other physicochemical characteristics were significantly correlated with EC 50 s of metals to C. subglobosa. The reproducibility of toxicity test was determined using 12 reference toxicants. The coefficient of variability of the EC 50 s ranged from 6.95% to 55.37% and variability was comparable to that noticed for D. magna and other aquatic test models. The study demonstrated the need to include crustacean ostracods in a battery of biotests to detect the presence of hazardous chemicals in soils, sewage sludges, sediments and aquatic systems.

  5. Ameliorative effect of pumpkin seed oil against emamectin induced toxicity in mice.

    Science.gov (United States)

    Abou-Zeid, Shimaa M; AbuBakr, Huda O; Mohamed, Mostafa A; El-Bahrawy, Amanallah

    2018-02-01

    The current study was conducted to evaluate the toxic effects of emamectin insecticide in mice and the possible protective effect of pumpkin seed oil. Treated mice received emamectin benzoate in the diet at 75-ppm for 8 weeks, while another group of animals received emamectin in addition to pumpkin seed oil at a dose of 4 ml/kg. Biochemical analysis of MDA, DNA fragmentation, GSH, CAT and SOD was performed in liver, kidney and brain as oxidant/antioxidant biomarkers. In addition, gene expression of CYP2E1 and Mgst1 and histopathological alterations in these organs were evaluated. Emamectin administration induced oxidative stress in liver and kidney evidenced by elevated levels of MDA and percentage of DNA fragmentation with suppression of GSH level and CAT and SOD activities. Brain showed increase of MDA level with inhibition of SOD activity. Relative expressions of CYP2E1 and Mgst1 genes were significantly elevated in both liver and kidney. Emamectin produced several histopathological changes in liver, kidney and brain. Co-administration of pumpkin seed oil produced considerable protection of liver and kidney and complete protection of brain. In conclusion, pumpkin seed oil has valuable value in ameliorating the toxic insult produced by emamectin in mice. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Glioprotective Effects of Ashwagandha Leaf Extract against Lead Induced Toxicity

    Directory of Open Access Journals (Sweden)

    Praveen Kumar

    2014-01-01

    Full Text Available Withania somnifera (Ashwagandha, also known as Indian Ginseng, is a well-known Indian medicinal plant due to its antioxidative, antistress, antigenotoxic, and immunomodulatory properties. The present study was designed to assess and establish the cytoprotective potential of Ashwagandha leaf aqueous extract against lead induced toxicity. Pretreatment of C6 cells with 0.1% Ashwagandha extract showed cytoprotection against 25 μM to 400 μM concentration of lead nitrate. Further pretreatment with Ashwagandha extract to lead nitrate exposed cells (200 μM resulted in normalization of glial fibrillary acidic protein (GFAP expression as well as heat shock protein (HSP70, mortalin, and neural cell adhesion molecule (NCAM expression. Further, the cytoprotective efficacy of Ashwagandha extract was studied in vivo. Administration of Ashwagandha extract provided significant protection to lead induced altered antioxidant defense that may significantly compromise normal cellular function. Ashwagandha also provided a significant protection to lipid peroxidation (LPx levels, catalase, and superoxide dismutase (SOD but not reduced glutathione (GSH contents in brain tissue as well as peripheral organs, liver and kidney, suggesting its ability to act as a free radical scavenger protecting cells against toxic insult. These results, thus, suggest that Ashwagandha water extract may have the potential therapeutic implication against lead poisoning.

  7. Hair Toxic Metal Concentrations and Autism Spectrum Disorder Severity in Young Children

    Directory of Open Access Journals (Sweden)

    Lisa K. Sykes

    2012-12-01

    Full Text Available Previous studies have found a higher body-burden of toxic metals, particularly mercury (Hg, among subjects diagnosed with an autism spectrum disorder (ASD in comparison to neurotypical controls. Moreover, Hg body-burden was associated with ASD severity. This cross-sectional study examined the potential correlation between hair toxic metal concentrations and ASD severity in a prospective cohort of participants diagnosed with moderate to severe ASD. The Institutional Review Board at the University of Texas Southwestern Medical Center at Dallas (Dallas, TX approved the present study. Qualifying study participants (n = 18 were evaluated for ASD severity using the Childhood Autism Rating Scale (CARS and quantitatively for arsenic, Hg, cadmium, lead, chromium, cobalt, nickel, aluminum, tin, uranium, and manganese using hair toxic element testing by Doctor’s Data (a CLIA-approved laboratory. CARS scoring and hair toxic element testing were blinded to one another. Increasing hair Hg concentrations significantly correlated with increased ASD severity. In contrast, no significant correlations were observed between any other of the hair toxic metals examined and ASD severity. This study helps to provide additional mechanistic support for Hg in the etiology of ASD severity, and is supported by an increasing number of recent critical reviews that provide biological plausibility for the role of Hg exposure in the pathogenesis of ASDs.

  8. Apoprotein Structure and Metal Binding Characterization of a de Novo Designed Peptide, α3DIV, that Sequesters Toxic Heavy Metals.

    Science.gov (United States)

    Plegaria, Jefferson S; Dzul, Stephen P; Zuiderweg, Erik R P; Stemmler, Timothy L; Pecoraro, Vincent L

    2015-05-12

    De novo protein design is a biologically relevant approach that provides a novel process in elucidating protein folding and modeling the metal centers of metalloproteins in a completely unrelated or simplified fold. An integral step in de novo protein design is the establishment of a well-folded scaffold with one conformation, which is a fundamental characteristic of many native proteins. Here, we report the NMR solution structure of apo α3DIV at pH 7.0, a de novo designed three-helix bundle peptide containing a triscysteine motif (Cys18, Cys28, and Cys67) that binds toxic heavy metals. The structure comprises 1067 NOE restraints derived from multinuclear multidimensional NOESY, as well as 138 dihedral angles (ψ, φ, and χ1). The backbone and heavy atoms of the 20 lowest energy structures have a root mean square deviation from the mean structure of 0.79 (0.16) Å and 1.31 (0.15) Å, respectively. When compared to the parent structure α3D, the substitution of Leu residues to Cys enhanced the α-helical content of α3DIV while maintaining the same overall topology and fold. In addition, solution studies on the metalated species illustrated metal-induced stability. An increase in the melting temperatures was observed for Hg(II), Pb(II), or Cd(II) bound α3DIV by 18-24 °C compared to its apo counterpart. Further, the extended X-ray absorption fine structure analysis on Hg(II)-α3DIV produced an average Hg(II)-S bond length at 2.36 Å, indicating a trigonal T-shaped coordination environment. Overall, the structure of apo α3DIV reveals an asymmetric distorted triscysteine metal binding site, which offers a model for native metalloregulatory proteins with thiol-rich ligands that function in regulating toxic heavy metals, such as ArsR, CadC, MerR, and PbrR.

  9. Abatement by Naringenin of Doxorubicin-Induced Cardiac Toxicity in Rats

    International Nuclear Information System (INIS)

    Arafa, H.M.; Abd-Ellah, M.F.; Hafez, H.F.

    2005-01-01

    Doxorubicin is one of the most active cytotoxic agents in current use. It has proven efficacy in various malignancies either alone or combined with other cytocidal agents. The clinical usefulness of the anthracycline drug has been precluded by cardiac toxicity. Many therapeutic interventions have been attempted to improve the therapeutic benefits of the drug. Few, however, have been efficacious in this setting. Purpose: We have addressed in the current study the possible protective effects of naringenin, a flavonoid known to have anti-oxidant properties, on doxorubicin induced cardiac toxicity in male Swiss albino rats. Methods: Forty male Swiss albino rats were used in this study. Naringenin (25 mg/kg body weight) was administered daily by gavage for 7 consecutive days before a cumulative single dose of doxorubicin (15 mg/kg body weight, ip). Doxorubicin induced marked biochemical alterations characteristic of cardiac toxicity including, elevated activities of serum total lactate dehydrogenase (LDH) and creatine phosphokinase (CPK), enhanced lipid peroxidation measured as malonaldehyde (MDA). The anthracycline drug has also reduced the cardiac enzymatic activities of superoxide dismutase (SOD), glutathione-Stransferase (GST) and catalase (CAT). Besides, it reduced significantly the reduced glutathione (GSH) level, but it increased the total NO content in heart tissue. Prior administration of naringenin ahead of doxorubicin challenge ameliorated all these biochemical markers. Taken together, one could conclude that naringenin has a protective role in the abatement of doxorubicin-induced cardiac toxicity that resides, at least in part, on its anti-radical effects and regulatory role on NO production

  10. Determination of Toxic Metals in Indian Smokeless Tobacco Products

    Directory of Open Access Journals (Sweden)

    Dhanashri Dhaware

    2009-01-01

    Full Text Available This study targets the lesser-known ingredients of smokeless tobacco products, i.e., the toxic metals, in Indian brands. The metals selected in the study included lead (Pb, cadmium (Cd, arsenic (As, copper (Cu, mercury (Hg, and selenium (Se. The differential pulse anodic stripping voltammetry (DPASV technique was used for estimating the metals Pb, Cd, and Cu; square wave voltammetry for As; and the cold vapor atomic absorption technique for Hg. The resulting levels of the metals were compared to the daily consumption of the smokeless tobacco products. It was observed that almost 30% of gutkha brand samples exceeded the permissible levels of metals Pb and Cu, when compared to the provisional tolerable intake limits determined by the FAO/WHO. The reliability of data was assured by analyzing standard reference materials.

  11. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements

    Directory of Open Access Journals (Sweden)

    Anastasios Economou

    2018-03-01

    Full Text Available This work reviews the field of screen-printed electrodes (SPEs modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of “green” metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  12. Effect of gley formation on leaching of radionuclides and toxic metals from soils

    International Nuclear Information System (INIS)

    Legin, E.K.; Trifonov, Yu.I.; Khokhlov, M.L.; Legina, E.E.; Strukov, V.N.; Kuznetsov, Yu.V.

    2002-01-01

    Radionuclides and toxic metals, entering the soil as a result of technogenic contamination, are not uniformly distributed throughout the soil body, but preferentially fixed on so-called gel films. The gel films represent colloid formations consisting of primarily amorphous iron hydroxides, coordination polymers of mixed Ca,Fe,Al fulvates and humates, and amorphous silica fixed on the muddy aluminosilicate fraction ( 238 U, 239,240 Pu, 152 Eu, 232 Th, 60 Co) and stable elements (Co, Eu) leached from soil samples directly correlates with that of iron, suggesting that under reducing conditions the drainage solution contains a mixture of iron, radionuclides, and microelements of nearly constant composition. This result is consistent with the existing views that radionuclides and microelements in soils are concentrated in the gel films. Furthermore, it reveal that in the investigated system solubilisation of the gel films is accompanied by a combined transfer of radionuclides and stable microelements to the aqueous phase. The most significant effect of leaching was observed for plutonium. (author)

  13. Transport of toxic metals through the major river systems of Bangladesh

    International Nuclear Information System (INIS)

    Alam, A.M.S.; Islam, M.A.; Rahman, M.A.; Ahmed, E.; Islam, S.; Sultana, K.S.; Siddique, M.N.A.

    2002-01-01

    Bangladesh having an area of about 144,000 sq. km with a population of more than 120 millions is situated in the north eastern part of the south Asia subcontinent and a vast area to the south in the Bay of Bengal. The largest delta in the world has a largest catchment area of about 1554,000 sq. km spread over five countries namely Bhutan, Nepal, China, India and Bangladesh. Environmental pollution usually refers to biological, chemical and physical materials introduced largely as a result of human activities. Water is one of the main source of the environmental pollution and the contamination of water by the metal ions at the trace level is generally occurred through natural process or anthropogenic sources. Buriganga, Sitalaksma, Karnafully, Bramhaputra and Jamuna were selected for the present study. The toxic metal ions concentration in water samples of various regions of different rivers were determined by ASS and GFAAS. Higher concentration of different toxic metal ions have been observed at different location of various rivers. This observation demand the need of regular monitoring of toxic metals ion concentration in different rivers especially Buriganga, Sitalaksma and Karnafully. The results of further study will reveal some important information that will certainly be useful for the GOB to instruct DOE and DPHE for the remedial measures. (author)

  14. Use of the MicroRespTM method to assess pollution-induced community tolerance to metals for lotic biofilms

    International Nuclear Information System (INIS)

    Tlili, Ahmed; Marechal, Marjorie; Montuelle, Bernard; Volat, Bernadette; Dorigo, Ursula; Berard, Annette

    2011-01-01

    Understanding the ecological status of aquatic ecosystems and the impact of anthropogenic contamination requires correlating exposure to toxicants with impact on biological communities. Several tools exist for assessing the ecotoxicity of substances, but there is still a need for new tools that are ecologically relevant and easy to use. We have developed a protocol based on the substrate-induced respiration of a river biofilm community, using the MicroResp TM technique, in a pollution-induced community tolerance approach. The results show that MicroResp TM can be used in bioassays to assess the toxicity toward biofilm communities of a wide range of metals (Cu, Zn, Cd, Ag, Ni, Fe, Co, Al and As). Moreover, a community-level physiological profile based on the mineralization of different carbon substrates was established. Finally, the utility of MicroResp TM was confirmed in an in-situ study showing gradient of tolerance to copper correlated to a contamination gradient of this metal in a small river. - A modified MicroResp TM technique as a tool for measuring induced tolerance to heavy metals of a microbial biofilm community. - Research highlights: → MicroResp TM allows to plot dose-response curves with various tested metals. → Induced-tolerance to copper of heterotrophic biofilm community was successfully measured. → No co-tolerance detected between copper, silver and cadmium by using MicroResp TM . → MicroResp TM allows assessment of change in catabolic diversity in microbial community.

  15. Study of the migration of toxic metals in steelmaking waste using radioactive tracing

    International Nuclear Information System (INIS)

    Andre, C.; Jauzein, M.; Charentus, T.; Margrita, R.; Dechelette, O.

    1991-01-01

    The danger presented by toxic metals contained in steelmaking wastes put into slag piles may be neutralized by suitably chosen alternation of these wastes when they are deposited. Presentation of a study method using radioactive tracing of the migration of toxic metal (cadmium, zinc, chromium) in steelmaking wastes (slag, blast furnace sludge). This non destructive method was used in columns in the laboratory, but may be used in on-site slag piles [fr

  16. Quinone-induced protein handling changes: Implications for major protein handling systems in quinone-mediated toxicity

    International Nuclear Information System (INIS)

    Xiong, Rui; Siegel, David; Ross, David

    2014-01-01

    Para-quinones such as 1,4-Benzoquinone (BQ) and menadione (MD) and ortho-quinones including the oxidation products of catecholamines, are derived from xenobiotics as well as endogenous molecules. The effects of quinones on major protein handling systems in cells; the 20/26S proteasome, the ER stress response, autophagy, chaperone proteins and aggresome formation, have not been investigated in a systematic manner. Both BQ and aminochrome (AC) inhibited proteasomal activity and activated the ER stress response and autophagy in rat dopaminergic N27 cells. AC also induced aggresome formation while MD had little effect on any protein handling systems in N27 cells. The effect of NQO1 on quinone induced protein handling changes and toxicity was examined using N27 cells stably transfected with NQO1 to generate an isogenic NQO1-overexpressing line. NQO1 protected against BQ–induced apoptosis but led to a potentiation of AC- and MD-induced apoptosis. Modulation of quinone-induced apoptosis in N27 and NQO1-overexpressing cells correlated only with changes in the ER stress response and not with changes in other protein handling systems. These data suggested that NQO1 modulated the ER stress response to potentiate toxicity of AC and MD, but protected against BQ toxicity. We further demonstrated that NQO1 mediated reduction to unstable hydroquinones and subsequent redox cycling was important for the activation of the ER stress response and toxicity for both AC and MD. In summary, our data demonstrate that quinone-specific changes in protein handling are evident in N27 cells and the induction of the ER stress response is associated with quinone-mediated toxicity. - Highlights: • Unstable hydroquinones contributed to quinone-induced ER stress and toxicity

  17. Quinone-induced protein handling changes: Implications for major protein handling systems in quinone-mediated toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Rui; Siegel, David; Ross, David, E-mail: david.ross@ucdenver.edu

    2014-10-15

    Para-quinones such as 1,4-Benzoquinone (BQ) and menadione (MD) and ortho-quinones including the oxidation products of catecholamines, are derived from xenobiotics as well as endogenous molecules. The effects of quinones on major protein handling systems in cells; the 20/26S proteasome, the ER stress response, autophagy, chaperone proteins and aggresome formation, have not been investigated in a systematic manner. Both BQ and aminochrome (AC) inhibited proteasomal activity and activated the ER stress response and autophagy in rat dopaminergic N27 cells. AC also induced aggresome formation while MD had little effect on any protein handling systems in N27 cells. The effect of NQO1 on quinone induced protein handling changes and toxicity was examined using N27 cells stably transfected with NQO1 to generate an isogenic NQO1-overexpressing line. NQO1 protected against BQ–induced apoptosis but led to a potentiation of AC- and MD-induced apoptosis. Modulation of quinone-induced apoptosis in N27 and NQO1-overexpressing cells correlated only with changes in the ER stress response and not with changes in other protein handling systems. These data suggested that NQO1 modulated the ER stress response to potentiate toxicity of AC and MD, but protected against BQ toxicity. We further demonstrated that NQO1 mediated reduction to unstable hydroquinones and subsequent redox cycling was important for the activation of the ER stress response and toxicity for both AC and MD. In summary, our data demonstrate that quinone-specific changes in protein handling are evident in N27 cells and the induction of the ER stress response is associated with quinone-mediated toxicity. - Highlights: • Unstable hydroquinones contributed to quinone-induced ER stress and toxicity.

  18. Biogeochemical controls on the speciation and aquatic toxicity of vanadium and other metals in sediments from a river reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Nedrich, Sara M.; Chappaz, Anthony; Hudson, Michelle L.; Brown, Steven S.; Burton, G. Allen

    2018-01-01

    Effects of hydrologic variability on reservoir biogeochemistry are relatively unknown, particularly for less studied metals like vanadium (V). Further, few studies have investigated the fate and effects of sediment-associated V to aquatic organisms in hydrologically variable systems. Our primary objective was to assess effects of hydrologic manipulation on speciation and toxicity of V (range: 635 to 1620 mg kg- 1) and other metals to Hyalella azteca and Daphnia magna. Sediments were collected from a reservoir located in a former mining area and microcosm experiments were conducted to emulate 7-day drying and inundation periods. Despite high sediment concentrations, V bioavailability remained low with no significant effects to organism survival, growth, or reproduction. The lack of V toxicity was attributed to reduced speciation (III, IV), non-labile complexation, and sorption to Al/Fe/Mn-oxyhydroxides. Zinc (Zn) increased in surface and porewater with inundation, for some sediments exceeding the U.S. EPA threshold for chronic toxicity. While no effects of Zn to organism survival or growth were observed, Zn body concentrations were negatively correlated with H. azteca growth. Results from this study indicate that V bioavailability and environmental risk is dependent on V-speciation, and V is less influenced by hydrologic variability than more labile metals such as Zn.

  19. NMR-based metabonomics study on the effect of Gancao in the attenuation of toxicity in rats induced by Fuzi.

    Science.gov (United States)

    Sun, Bo; Wang, Xubin; Cao, Ruili; Zhang, Qi; Liu, Qiao; Xu, Meifeng; Zhang, Ming; Du, Xiangbo; Dong, Fangting; Yan, Xianzhong

    2016-12-04

    Fuzi, the processed lateral root of Aconitum carmichaelii Debeaux, is a traditional Chinese medicine used for its analgesic, antipyretic, anti-rheumatoid arthritis and anti-inflammation effects; however, it is also well known for its toxicity. Gancao, the root of Glycyrrhiza uralensis Fisch., is often used concurrently with Fuzi to alleviate its toxicity. However, the mechanism of detoxication is still not well clear. In this study, the effect of Gancao on the metabolic changes induced by Fuzi was investigated by NMR-based metabonomic approaches. Fifty male Wistar rats were randomly divided into five groups (group A: control, group B: Fuzi decoction alone, group C: Gancao decoction alone, group D: Fuzi decoction and Gancao decoction simultaneously, group E: Fuzi decoction 5h after Gancao decoction) and urine samples were collected for NMR-based metabolic profiling analysis. Statistical analyses such as unsupervised PCA, t-test, hierarchical cluster, and pathway analysis were used to detect the effects of Gancao on the metabolic changes induced by Fuzi. The behavioral and biochemical characteristics showed that Fuzi exhibited toxic effects on treated rats (group B) and statistical analyses showed that their metabolic profiles were in contrast to those in groups A and C. However, when Fuzi was administered with Gancao, the metabolic profiles became similar to controls, whereby Gancao reduced the levels of trimethylamine N-oxide, betaine, dimethylglycine, valine, acetoacetate, citrate, fumarate, 2-ketoglutarate and hippurate, and regulated the concentrations of taurine and 3-hydroxybutyrate, resulting in a decrease in toxicity. Furthermore, important pathways that are known to be involved in the effect of Gancao on Fuzi, including phenylalanine, tyrosine and tryptophan biosynthesis, the synthesis and degradation of ketone bodies, and the TCA cycle, were altered in co-treated rats. Gancao treatment mitigated the metabolic changes altered by Fuzi administration in rats

  20. Acute toxicity of selected heavy metals to Oreochromis ...

    African Journals Online (AJOL)

    Copper was more toxic than lead and iron to both life stages. The species sensitivity distributions of O. mossambicus, as well as those of freshwater fish species from the ECOTOX database and literature, were closely predicted by the models for all three metals. The sensitivity of O. mossambicus to copper, iron and lead ...

  1. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils.

    Science.gov (United States)

    Habibul, Nuzahat; Hu, Yi; Sheng, Guo-Ping

    2016-11-15

    An investigation of the feasibility of in-situ electrokinetic remediation for toxic metal contaminated soil driven by microbial fuel cell (MFC) is presented. Results revealed that the weak electricity generated from MFC could power the electrokinetic remediation effectively. The metal removal efficiency and its influence on soil physiological properties were also investigated. With the electricity generated through the oxidation of organics in soils by microorganisms, the metals in the soils would mitigate from the anode to the cathode. The concentrations of Cd and Pb in the soils increased gradually through the anode to the cathode regions after remediation. After about 143days and 108 days' operation, the removal efficiencies of 31.0% and 44.1% for Cd and Pb at the anode region could be achieved, respectively. Soil properties such as pH and soil conductivity were also significantly redistributed from the anode to the cathode regions. The study shows that the MFC driving electrokinetic remediation technology is cost-effective and environmental friendly, with a promising application in soil remediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Toxic effects of various pollutants in 11B7501 lymphoma B cell line from harbour seal (Phoca vitulina)

    International Nuclear Information System (INIS)

    Frouin, Heloise; Fortier, Marlene; Fournier, Michel

    2010-01-01

    Although, heavy metals and polycyclic aromatic hydrocarbons (PAHs) have been reported at high levels in marine mammals, little is known about the toxic effects of some of these contaminants. In this study, we assessed the immunotoxic and genotoxic effects of seven heavy metals (arsenic, vanadium, selenium, iron, zinc, silver and chromium) and one PAH (benzo[a]pyrene or B[a]P) on a lymphoma B cell line from harbour seal (Phoca vitulina). A significant reduction in lymphocyte proliferation was registered following an exposure to 0.05 μM of B[a]P, 5 μM of arsenic or selenium, 50 μM of vanadium, 100 μM of silver and 200 μM of iron. On the contrary, zinc increased the lymphoproliferative response at 200 μM. Decreased phagocytosis was observed at 20 μM of arsenic, 50 μM of B[a]P or selenium, 200 μM of zinc and 500 μM of vanadium. Micronuclei induction occurred with 0.2 μM of B[a]P, 100 μM of vanadium and with 200 μM of arsenic or selenium. Exposure to 50 μM of arsenic decreased G 2 /M phase of the cell cycle. Chromium did not induce any effects at the concentrations tested. Concentrations of heavy metals (except silver and vanadium) and B[a]P inducing an toxic effect are within the environmental ranges reported in the blood tissue of pinnipeds. The reduction of some functional activities of the harbour seal immune system may cause a significant weakness capable of altering host resistance to disease in free-ranging pinnipeds.

  3. Toxic clinical hypoxic radiation sensitizers plus radiation-induced toxicity

    International Nuclear Information System (INIS)

    Richmond, R.C.

    1984-01-01

    The operational definition espoused twelve years ago that clinical hypoxic radiation sensitizers should be nontoxic interferes with the recognition and research of useful radiation sensitizers. Eight years ago the toxic antitumor drug cis-dichlorodiammineplatinum(II) was reported to be a hypoxic radiation sensitizer and the selective antitumor action of this drug was stressed as potentially creating tumor-targeted radiation sensitization. This rationale of oxidative antitumor drugs as toxic and targeted clinical sensitizers is useful, and has led to the study reported here. The antitumor drug cis-(1,1-cyclobutane-dicarboxylato)diammineplatinum(II), or JM-8, is being tested in clinical trials. Cells of S. typhimurium in PBS in the presence of 0.2mM JM-8 are found to be sensitized to irradiation under hypoxic, but not oxic, conditions. JM-8 is nontoxic to bacteria at this concentration, but upon irradiation the JM-8 solution becomes highly toxic. This radiation induced toxicity of JM-8 preferentially develops from hypoxic solution, and thus contributes to the rationale of hypoxic tumor cell destruction

  4. Assessment of toxic metals in waste personal computers

    International Nuclear Information System (INIS)

    Kolias, Konstantinos; Hahladakis, John N.; Gidarakos, Evangelos

    2014-01-01

    Highlights: • Waste personal computers were collected and dismantled in their main parts. • Motherboards, monitors and plastic housing were examined in their metal content. • Concentrations measured were compared to the RoHS Directive, 2002/95/EC. • Pb in motherboards and funnel glass of devices released <2006 was above the limit. • Waste personal computers need to be recycled and environmentally sound managed. - Abstract: Considering the enormous production of waste personal computers nowadays, it is obvious that the study of their composition is necessary in order to regulate their management and prevent any environmental contamination caused by their inappropriate disposal. This study aimed at determining the toxic metals content of motherboards (printed circuit boards), monitor glass and monitor plastic housing of two Cathode Ray Tube (CRT) monitors, three Liquid Crystal Display (LCD) monitors, one LCD touch screen monitor and six motherboards, all of which were discarded. In addition, concentrations of chromium (Cr), cadmium (Cd), lead (Pb) and mercury (Hg) were compared with the respective limits set by the RoHS 2002/95/EC Directive, that was recently renewed by the 2012/19/EU recast, in order to verify manufacturers’ compliance with the regulation. The research included disassembly, pulverization, digestion and chemical analyses of all the aforementioned devices. The toxic metals content of all samples was determined using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The results demonstrated that concentrations of Pb in motherboards and funnel glass of devices with release dates before 2006, that is when the RoHS Directive came into force, exceeded the permissible limit. In general, except from Pb, higher metal concentrations were detected in motherboards in comparison with plastic housing and glass samples. Finally, the results of this work were encouraging, since concentrations of metals referred in the RoHS Directive were found in

  5. Assessment of toxic metals in waste personal computers

    Energy Technology Data Exchange (ETDEWEB)

    Kolias, Konstantinos; Hahladakis, John N., E-mail: john_chach@yahoo.gr; Gidarakos, Evangelos, E-mail: gidarako@mred.tuc.gr

    2014-08-15

    Highlights: • Waste personal computers were collected and dismantled in their main parts. • Motherboards, monitors and plastic housing were examined in their metal content. • Concentrations measured were compared to the RoHS Directive, 2002/95/EC. • Pb in motherboards and funnel glass of devices released <2006 was above the limit. • Waste personal computers need to be recycled and environmentally sound managed. - Abstract: Considering the enormous production of waste personal computers nowadays, it is obvious that the study of their composition is necessary in order to regulate their management and prevent any environmental contamination caused by their inappropriate disposal. This study aimed at determining the toxic metals content of motherboards (printed circuit boards), monitor glass and monitor plastic housing of two Cathode Ray Tube (CRT) monitors, three Liquid Crystal Display (LCD) monitors, one LCD touch screen monitor and six motherboards, all of which were discarded. In addition, concentrations of chromium (Cr), cadmium (Cd), lead (Pb) and mercury (Hg) were compared with the respective limits set by the RoHS 2002/95/EC Directive, that was recently renewed by the 2012/19/EU recast, in order to verify manufacturers’ compliance with the regulation. The research included disassembly, pulverization, digestion and chemical analyses of all the aforementioned devices. The toxic metals content of all samples was determined using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The results demonstrated that concentrations of Pb in motherboards and funnel glass of devices with release dates before 2006, that is when the RoHS Directive came into force, exceeded the permissible limit. In general, except from Pb, higher metal concentrations were detected in motherboards in comparison with plastic housing and glass samples. Finally, the results of this work were encouraging, since concentrations of metals referred in the RoHS Directive were found in

  6. Acute toxicity of metals and reference toxicants to a freshwater ostracod, Cypris subglobosa Sowerby, 1840 and correlation to EC{sub 50} values of other test models

    Energy Technology Data Exchange (ETDEWEB)

    Khangarot, B.S., E-mail: bkhangarot@hotmail.com [Ecotoxicology Division, Indian Institute of Toxicology Research (Formerly: Industrial Toxicology Research Centre), Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India); Das, Sangita [Ecotoxicology Division, Indian Institute of Toxicology Research (Formerly: Industrial Toxicology Research Centre), Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001 (India)

    2009-12-30

    The ostracod Cypris subglobosa Sowerby, 1840 static bioassay test on the basis of a 48 h of 50% of immobilization (EC{sub 50}) has been used to measure the toxicity of 36 metals and metalloids and 12 reference toxicants. Among the 36 metals and metalloids, osmium (Os) was found to be the most toxic in the test while boron (B), the least toxic. The EC{sub 50} values of this study revealed positive linear relationship with the established test models of cladoceran (Daphnia magna), sludge worm (Tubifex tubifex), chironomid larvae (Chironomus tentans), protozoan (Tetrahymena pyriformis), fathead minnow (Pimephales promelas), bluegill sunfish (Lepomis macrochirus), and aquatic macrophyte duckweed (Lemna minor). Correlation coefficients (r{sup 2}) for 17 physicochemical properties of metals or metal ions and EC{sub 50}s (as pM) were examined by linear regression analysis. The electronegativity, ionization potential, melting point, solubility product of metal sulfides (pK{sub sp}), softness parameter and some other physicochemical characteristics were significantly correlated with EC{sub 50}s of metals to C. subglobosa. The reproducibility of toxicity test was determined using 12 reference toxicants. The coefficient of variability of the EC{sub 50}s ranged from 6.95% to 55.37% and variability was comparable to that noticed for D. magna and other aquatic test models. The study demonstrated the need to include crustacean ostracods in a battery of biotests to detect the presence of hazardous chemicals in soils, sewage sludges, sediments and aquatic systems.

  7. Effects of 12 metal ions on iron regulatory protein 1 (IRP-1) and hypoxia-inducible factor-1 alpha (HIF-1α) and HIF-regulated genes

    International Nuclear Information System (INIS)

    Li Qin; Chen Haobin; Huang Xi; Costa, Max

    2006-01-01

    protein which drives these other parameters was previously shown by us and others to involve a loss of cellular Fe as well as inhibition of HIF-1α-dependent prolyl hydroxylases which target the binding of VHL ubiquitin ligase and degrade HIF-1α. Even though there were small effects of some of the other metals on IRP and HIF-1α, downstream effects of HIF-1α activation and therefore robust hypoxia signaling were only observed with Ni(II), Co(II), and to much lesser extents with Mn(II) and V(V) in human A549 lung cells. It is of interest that the metal ions that were most effective in activating hypoxia signaling were the ones that were poor inducers of metallothionein protein and also decreased Ferritin levels, since both of these proteins can bind metal ions and protect the cell against toxicity in human lung cells. It is important to study effects of these metals in human lung cells since this represents a major route of human environmental and occupational exposure to these metal ions

  8. Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE Trade-Mark-Sign bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Lok R.; Silva, Thilini [Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37614 (United States); Dubey, Brajesh, E-mail: bdubey@uoguelph.ca [Environmental Engineering, School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario (Canada); El Badawy, Amro M. [Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Tolaymat, Thabet M. [USEPA, Office of Research and Development, National Risk Management Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45224 (United States); Scheuerman, Phillip R. [Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37614 (United States)

    2012-06-01

    Current understanding of potential toxicity of engineered nanomaterials to aquatic microorganisms is limited for risk assessment and management. Here we evaluate if the MetPLATE Trade-Mark-Sign test can be used as an effective and rapid screening tool to test for potential aquatic toxicity of various metal-based nanoparticles (NPs). The MetPLATE bioassay is a heavy metal sensitive test based on {beta}-galactosidase activity in Escherichia coli. Five different types of metal-based NPs were screened for toxicity: (1) citrate coated nAg (Citrate-nanosilver), (2) polyvinylpyrrolidone coated nAg (PVP-nAg), (3) uncoated nZnO, (4) uncoated nTiO{sub 2} and (5) 1-Octadecylamine coated CdSe Quantum Dots (CdSe QDs); and compared with their corresponding ionic salt toxicity. Citrate-nAg was further fractionated into clean Citrate-nAg, unclean Citrate-nAg and permeate using a tangential flow filtration (TFF) system to eliminate residual ions and impurities from the stock Citrate-nAg suspension and also to differentiate between ionic- versus nano-specific toxicity. Our results showed that nAg, nZnO and CdSe QDs were less toxic than their corresponding ionic salts tested, while nano- or ionic form of TiO{sub 2} was not toxic as high as 2.5 g L{sup -1} to the MetPLATE Trade-Mark-Sign bacteria. Although coating-dependent toxicity was noticeable between two types of Ag NPs evaluated, particle size and surface charge were not adequate to explain the observed toxicity; hence, the toxicity appeared to be material-specific. Overall, the toxicity followed the trend: CdCl{sub 2} > AgNO{sub 3} > PVP-nAg > unclean Citrate-nAg > clean Citrate-nAg > ZnSO{sub 4} > nZnO > CdSe QDs > nTiO{sub 2}/TiO{sub 2}. These results indicate that an evaluation of {beta}-galactosidase inhibition in MetPLATE Trade-Mark-Sign E. coli can be an important consideration for rapid screening of metal-based NP toxicity, and should facilitate ecological risk assessment of these emerging contaminants. - Highlights

  9. Toxicity and the fractional distribution of trace metals accumulated from contaminated sediments by the clam Scrobicularia plana exposed in the laboratory and the field

    Energy Technology Data Exchange (ETDEWEB)

    Kalman, J., E-mail: judit.kalman@uca.es [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Bonnail-Miguel, E. [Department of Physical-Chemistry, University of Cadiz, Poligono Industrial Rio San Pedro s/n, 11,510 Puerto Real, Cadiz (Spain); Smith, B.D. [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Bury, N.R. [Division of Diabetes and Nutritional Science, King' s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Rainbow, P.S. [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom)

    2015-02-15

    The relationship between the subcellular distribution of accumulated toxic metals into five operational fractions (subsequently combined into presumed detoxified and non-detoxified components) and toxicity in the clam Scrobicularia plana was investigated under different laboratory exposures. Clams were exposed to metal contaminated media (water and diet) and analysed for the partitioning of accumulated As, Cu and Zn into subcellular fractions. In general, metallothionein-like proteins, metal-rich granules and cellular debris in different proportions acted as main storage sites of accumulated metals in the clam soft tissues for these three metals. No significant differences were noted in the accumulation rates of As, Cu and Zn of groups of individuals with or without apparent signs of toxicity after up to 30 days of exposure to naturally contaminated sediment mixtures. There was, however, an increased proportional accumulation of Cu in the non-detoxified fraction with increased Cu accumulation rate in the clams, suggesting that the Cu uptake rate from contaminated sediments exceeded the combined rates of elimination and detoxification of Cu, with the subsequent likelihood for toxic effects in the clams. - Highlights: • Scrobicularia plana accumulated As, Cu and Zn from naturally toxic sediments. • Toxic metals were accumulated in detoxified and non-detoxified components. • Cu accumulation in the non-detoxified pool increased with increased Cu uptake rate. • Cu uptake rate exceeded combined loss and detoxification rates to cause toxicity.

  10. Toxicity and the fractional distribution of trace metals accumulated from contaminated sediments by the clam Scrobicularia plana exposed in the laboratory and the field

    International Nuclear Information System (INIS)

    Kalman, J.; Bonnail-Miguel, E.; Smith, B.D.; Bury, N.R.; Rainbow, P.S.

    2015-01-01

    The relationship between the subcellular distribution of accumulated toxic metals into five operational fractions (subsequently combined into presumed detoxified and non-detoxified components) and toxicity in the clam Scrobicularia plana was investigated under different laboratory exposures. Clams were exposed to metal contaminated media (water and diet) and analysed for the partitioning of accumulated As, Cu and Zn into subcellular fractions. In general, metallothionein-like proteins, metal-rich granules and cellular debris in different proportions acted as main storage sites of accumulated metals in the clam soft tissues for these three metals. No significant differences were noted in the accumulation rates of As, Cu and Zn of groups of individuals with or without apparent signs of toxicity after up to 30 days of exposure to naturally contaminated sediment mixtures. There was, however, an increased proportional accumulation of Cu in the non-detoxified fraction with increased Cu accumulation rate in the clams, suggesting that the Cu uptake rate from contaminated sediments exceeded the combined rates of elimination and detoxification of Cu, with the subsequent likelihood for toxic effects in the clams. - Highlights: • Scrobicularia plana accumulated As, Cu and Zn from naturally toxic sediments. • Toxic metals were accumulated in detoxified and non-detoxified components. • Cu accumulation in the non-detoxified pool increased with increased Cu uptake rate. • Cu uptake rate exceeded combined loss and detoxification rates to cause toxicity

  11. Comparative proteomic analysis of 2-MCPD- and 3-MCPD-induced heart toxicity in the rat.

    Science.gov (United States)

    Schultrich, Katharina; Frenzel, Falko; Oberemm, Axel; Buhrke, Thorsten; Braeuning, Albert; Lampen, Alfonso

    2017-09-01

    The chlorinated propanols 2- and 3-monochloropropanediol (MCPD), and their fatty acid esters have gained public attention due to their frequent occurrence as heat-induced food contaminants. Toxic properties of 3-MCPD in kidney and testis have extensively been characterized. Other 3-MCPD target organs include heart and liver, while 2-MCPD toxicity has been observed in striated muscle, heart, kidney, and liver. Inhibition of glycolysis appears to be important in 3-MCPD toxicity, whereas mechanisms of 2-MCPD toxicity are still unknown. It is thus not clear whether toxicity by the two isomeric compounds is dependent on similar or dissimilar modes of action. A 28-day oral feeding study in rats was conducted using daily non-toxic doses of 2-MCPD or 3-MCPD [10 mg/kg body weight], or an equimolar (53 mg/kg body weight) or a lower (13.3 mg/kg body weight) dose of 2-MCPD dipalmitate. Comprehensive comparative proteomic analyses of substance-induced alterations in the common target organ heart revealed striking similarities between effects induced by 2-MCPD and its dipalmitate ester, whereas the degree of effect overlap between 2-MCPD and 3-MCPD was much less. The present data demonstrate that even if exerting effects in the same organ and targeting similar metabolic networks, profound differences between molecular effects of 2-MCPD and 3-MCPD exist thus warranting the necessity of separate risk assessment for the two substances. This study for the first time provides molecular insight into molecular details of 2-MCPD toxicity. Furthermore, for the first time, molecular data on 3-MCPD toxicity in the heart are presented.

  12. Monitoring of essential and toxic metals in imported herbal teas ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... Teas are the most consumed beverage worldwide after water, and its consumption ... Key words: Herbal teas, food safety, health risk assessment, THQ, EDI, HI, toxic metals ...

  13. Neuro-endocrine effects of aqueous extract of Amaranthus viridis (Linn. leaf in male Wistar rat model of cyclophosphamide-induced reproductive toxicity

    Directory of Open Access Journals (Sweden)

    Oladele Abiodun Ayoka

    Full Text Available Cyclophosphamide (CP is a widely used cytotoxic alkylating agent with antitumor and immunosuppressant properties that is associated with various forms of reproductive toxicity. The significance of natural antioxidants of plant origin should be explored, especially in a world with increasing incidence of patients in need of chemotherapy. The neuro-endocrine effects of aqueous extract of Amaranthus viridis (Linn. leaf (AEAVL in Wistar rats with CP-induced reproductive toxicity was determined. Forty rats were used for this study such that graded doses of the extract were administered following CP-induced reproductive toxicity and comparisons were made against control, toxic and standard (vitamin E groups at p < 0.05. The synthetic drugs (CP, 65 mg/kg i.p. for 5 days; Vitamin E, 100 mg/kg p.o. for 30 days as well as the extract (100, 200 and 400 mg/kg p.o. for 30 days were administered to the rats at 0.2 mL/100 g. CP induced reproductive toxicity as evidenced by significantly lowered levels of FSH, LH and testosterone, perturbation of sperm characterization, deleterious disruptions of the antioxidant system as evidenced by decreased levels of GSH as well as elevation of TBARS activity. Histopathological examination showed hemorrhagic lesions with scanty and hypertrophied parenchymal cells in the pituitary while the testis showed ballooned seminiferous tubules with loosed connective tissues and vacuolation of testicular interstitium. These conditions were significantly reversed (p < 0.05 following administration of the graded doses of the extract. It was, therefore, concluded that AEAVL could potentially be a therapeutic choice in patients with CP-induced neuro-endocrine dysfunction and reproductive toxicity. Keywords: Cyclophosphamide, Neuro-endocrine dysfunction, Reproductive toxicity, Rats, Amaranthus viridis

  14. Sodium arsenite-induced reproductive toxicities in male Wistar rats ...

    African Journals Online (AJOL)

    Sodium arsenite-induced reproductive toxicities in male Wistar rats: role of Tridax procumbens leaf extract. ... Bulletin of Animal Health and Production in Africa ... In the present study, the effects of ethanol leaf extract of Tridax procumbens ... in Groups B to D as compared to Group A was significantly reduced (p<0.05).

  15. Ischemic or toxic injury: A challenging diagnosis and treatment of drug-induced stenosis of the sigmoid colon.

    Science.gov (United States)

    Zhang, Zong-Ming; Lin, Xiang-Chun; Ma, Li; Jin, An-Qin; Lin, Fang-Cai; Liu, Zhuo; Liu, Li-Min; Zhang, Chong; Zhang, Na; Huo, Li-Juan; Jiang, Xue-Liang; Kang, Feng; Qin, Hong-Jun; Li, Qiu-Yang; Yu, Hong-Wei; Deng, Hai; Zhu, Ming-Wen; Liu, Zi-Xu; Wan, Bai-Jiang; Yang, Hai-Yan; Liao, Jia-Hong; Luo, Xu; Li, You-Wei; Wei, Wen-Ping; Song, Meng-Meng; Zhao, Yue; Shi, Xue-Ying; Lu, Zhao-Hui

    2017-06-07

    A 48-year-old woman was admitted with 15-mo history of abdominal pain, diarrhea and hematochezia, and 5-mo history of defecation difficulty. She had been successively admitted to nine hospitals, with an initial diagnosis of inflammatory bowel disease with stenotic sigmoid colon. Findings from computed tomography virtual colonoscopy, radiography with meglumine diatrizoate, endoscopic balloon dilatation, metallic stent implantation and later overall colonoscopy, coupled with the newfound knowledge of compound Qingdai pill-taking, led to a subsequent diagnosis of ischemic or toxic bowel disease with sigmoid colon stenosis. The patient was successfully treated by laparoscopic sigmoid colectomy, and postoperative pathological examination revealed ischemic or toxic injury of the sigmoid colon, providing a final diagnosis of drug-induced sigmoid colon stenosis. This case highlights that adequate awareness of drug-induced colon stenosis has a decisive role in avoiding misdiagnosis and mistreatment. The diagnostic and therapeutic experiences learnt from this case suggest that endoscopic balloon expansion and colonic metallic stent implantation as bridge treatments were demonstrated as crucial for the differential diagnosis of benign colonic stenosis. Skillful surgical technique and appropriate perioperative management helped to ensure the safety of our patient in subsequent surgery after long-term use of glucocorticoids.

  16. Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles

    International Nuclear Information System (INIS)

    Tan, Cheng; Wang, Wen-Xiong

    2014-01-01

    Titanium dioxide (TiO 2 ) nanoparticles are widely used in water treatments, yet their influences on other contaminants in the water are not well studied. In this study, the aqueous uptake, assimilation efficiency, and toxicity of two ionic metals (cadmium-Cd, and zinc-Zn) in a freshwater zooplankton, Daphnia magna, were investigated following 2 days pre-exposure to nano-TiO 2 . Pre-exposure to 1 mg/L nano-TiO 2 resulted in a significant increase in Cd and Zn uptake from the dissolved phase. After the nano-TiO 2 in the guts were cleared, the uptake rates immediately recovered to the normal levels. Concurrent measurements of reactive oxygen species (ROS) and metallothioneins (MTs) suggested that the increased metal uptake was mainly due to the increased number of binding sites provided by nano-TiO 2 presented in the guts. Consistently, pre-exposure to nano-TiO 2 increased the toxicity of aqueous Cd and Zn due to enhanced uptake. Our study provides the evidence that nano-TiO 2 in the guts of animals could increase the uptake and toxicity of other contaminants. -- Highlights: • Dissolved Cd and Zn uptake in daphnids increased significantly after nano-TiO 2 pre-exposure. • Aqueous toxicity of Cd and Zn also increased after nano-TiO 2 pre-exposure. • Dietary assimilation of Cd and Zn was not affected after nano-TiO 2 pre-exposure. • Metal uptake recovered to normal levels after nano-TiO 2 in the guts were removed. • Nano-TiO 2 in the guts of animals could increase the uptake and toxicity of other contaminants. -- Nano-TiO 2 accumulation in Daphnia magna facilitated the uptake and toxicity of metal contaminants

  17. Depth Profiling (ICP-MS Study of Toxic Metal Buildup in Concrete Matrices: Potential Environmental Impact

    Directory of Open Access Journals (Sweden)

    Ghada Bassioni

    2010-10-01

    Full Text Available This paper explores the potential of concrete material to accumulate toxic trace elements using ablative laser technology (ICP-MS. Concrete existing in offshore structures submerged in seawater acts as a sink for hazardous metals, which could be gradually released into the ocean creating pollution and anoxic conditions for marine life. Ablative laser technology is a valuable tool for depth profiling concrete to evaluate the distribution of toxic metals and locate internal areas where such metals accumulate. Upon rapid degradation of concrete these “hotspots” could be suddenly released, thus posing a distinct threat to aquatic life. Our work simulated offshore drilling conditions by immersing concrete blocks in seawater and investigating accumulated toxic trace metals (As, Be, Cd, Hg, Os, Pb in cored samples by laser ablation. The experimental results showed distinct inhomogeneity in metal distribution. The data suggest that conditions within the concrete structure are favorable for random metal accumulation at certain points. The exact mechanism for this behavior is not clear at this stage and has considerable scope for extended research including modeling and remedial studies.

  18. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    International Nuclear Information System (INIS)

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic

  19. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  20. Neuroprotective Effect of Dexmedetomidine on Hyperoxia-Induced Toxicity in the Neonatal Rat Brain

    Directory of Open Access Journals (Sweden)

    Marco Sifringer

    2015-01-01

    Full Text Available Dexmedetomidine is a highly selective agonist of α2-receptors with sedative, anxiolytic, analgesic, and anesthetic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on neurodegeneration, oxidative stress markers, and inflammation following the induction of hyperoxia in neonatal rats. Six-day-old Wistar rats received different concentrations of dexmedetomidine (1, 5, or 10 µg/kg bodyweight and were exposed to 80% oxygen for 24 h. Sex-matched littermates kept in room air and injected with normal saline or dexmedetomidine served as controls. Dexmedetomidine pretreatment significantly reduced hyperoxia-induced neurodegeneration in different brain regions of the neonatal rat. In addition, dexmedetomidine restored the reduced/oxidized glutathione ratio and attenuated the levels of malondialdehyde, a marker of lipid peroxidation, after exposure to high oxygen concentration. Moreover, administration of dexmedetomidine induced downregulation of IL-1β on mRNA and protein level in the developing rat brain. Dexmedetomidine provides protections against toxic oxygen induced neonatal brain injury which is likely associated with oxidative stress signaling and inflammatory cytokines. Our results suggest that dexmedetomidine may have a therapeutic potential since oxygen administration to neonates is sometimes inevitable.

  1. Polyurethane and alginate immobilized algal biomass for the removal of aqueous toxic metals

    International Nuclear Information System (INIS)

    Fry, I.V.; Mehlhorn, R.J.

    1992-12-01

    We describe the development of immobilized, processed algal biomass for use as an adsorptive filter in the removal of toxic metals from waste water. To fabricate an adsorptive filter from precessed biomass several crucial criteria must be met, including: (1) high metal binding capacity, (2) long term stability (both mechanical and chemical), (3) selectivity for metals of concern (with regard to ionic competition), (4) acceptable flow capacity (to handle large volumes in short time frames), (5) stripping/regeneration (to recycle the adsorptive filter and concentrate the toxic metals to manageable volumes). This report documents experiments with processed algal biomass (Spirulina platensis and Spirulina maxima) immobilized in either alginate gel or preformed polyurethane foam. The adsorptive characteristics of these filters were assessed with regard to the criteria listed above

  2. Glutathione and its dependent enzymes' modulatory responses to toxic metals and metalloids in fish--a review.

    Science.gov (United States)

    Srikanth, K; Pereira, E; Duarte, A C; Ahmad, I

    2013-04-01

    Toxic metals and metalloid are being rapidly added from multiple pathways to aquatic ecosystem and causing severe threats to inhabiting fauna including fish. Being common in all the type of aquatic ecosystems such as freshwater, marine and brackish water fish are the first to get prone to toxic metals and metalloids. In addition to a number of physiological/biochemical alterations, toxic metals and metalloids cause enhanced generation of varied reactive oxygen species (ROS) ultimately leading to a situation called oxidative stress. However, as an important component of antioxidant defence system in fish, the tripeptide glutathione (GSH) directly or indirectly regulates the scavenging of ROS and their reaction products. Additionally, several other GSH-associated enzymes such as GSH reductase (GR, EC 1.6.4.2), GSH peroxidase (EC 1.11.1.9), and GSH sulfotransferase (glutathione-S-transferase (GST), EC 2.5.1.18) cumulatively protect fish against ROS and their reaction products accrued anomalies under toxic metals and metalloids stress conditions. The current review highlights recent research findings on the modulation of GSH, its redox couple (reduced glutathione/oxidised glutathione), and other GSH-related enzymes (GR, glutathione peroxidase, GST) involved in the detoxification of harmful ROS and their reaction products in toxic metals and metalloids-exposed fish.

  3. Criteria for solvent-induced chronic toxic encephalopathy: a systematic review

    NARCIS (Netherlands)

    van der Hoek, J. A.; Verberk, M. M.; Hageman, G.

    2000-01-01

    In 1985, a WHO Working Group presented diagnostic criteria and a classification for solvent-induced chronic toxic encephalopathy (CTE). In the same year, the "Workshop on neurobehavioral effects of solvents" in Raleigh, N.C., USA introduced a somewhat different classification for CTE. The objective

  4. Slag-based materials for toxic metal and radioactive waste stabilization

    International Nuclear Information System (INIS)

    Langton, C.A.

    1989-01-01

    This paper discusses a salt solution that is a hazardous waste and has both corrosive and metal toxicity characteristics. Objectives of a wasteform designed to stabilize this solution are presented. Disposal site characterization studies are examined

  5. Monitoring of essential and toxic metals in imported herbal teas ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: Teas are the most consumed beverage worldwide after water, and its consumption among. Nigerians has ... toxic metals in food and beverages with regards to the permissible ...... Risk assessment and risk management, in: D.R. ...

  6. Oxidative stress in chemical toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kappus, H.

    1986-05-01

    The toxic effect of compounds which undergo redox cycling enzymatic one-electron reduction are reviewed. First of all, the enzymatic reduction of these compounds leads to reactive intermediates, mainly radicals which react with oxygen, whereby superoxide anion radicals are formed. Further oxygen metabolites are hydrogen peroxide, singlet oxygen and hydroxyl radicals. The role of these oxygen metabolites in toxicity is discussed. The occurrence of lipid peroxidation during redox cycling of quinonoide compounds, e.g., adriamycin, and the possible relationship to their toxicity is critically evaluated. It is shown that iron ions play a crucial role in lipid peroxidation induced by redox cycling compounds. DNA damage by metal chelates, e.g., bleomycin, is discussed on the basis of findings that enzymatic redox cycling of a bleomycin-iron complex has been observed. The involvement of hydroxyl radicals in bleomycin-induced DNA damage occurring during redox cycling in cell nuclei is claimed. Redox cycling of other substances, e.g., aromatic amines, is discussed in relation to carcinogenesis. Other chemical groups, e.g., nitroaromatic compounds, hydroxylamines and azo compounds are included. Other targets for oxygen radical attack, e.g., proteins, are also dealt with. It is concluded that oxygen radical formation by redox cycling may be a critical event in toxic effects of several compounds if the protective mechanisms of cells are overwhelmed.

  7. Methotrexate-induced toxicity pharmacogenetics: an umbrella review of systematic reviews and meta-analyses.

    Science.gov (United States)

    Campbell, Jared M; Bateman, Emma; Stephenson, Matthew D; Bowen, Joanne M; Keefe, Dorothy M; Peters, Micah D J

    2016-07-01

    Methotrexate chemotherapy is associated with various toxicities which can result in the interruption or discontinuation of treatment and a subsequently raised risk of relapse. This umbrella systematic review was conducted to synthesize the results of all existing systematic reviews that investigate the pharmacogenetics of methotrexate-induced toxicity, with the aim of developing a comprehensive reference for personalized medicine. Databases searched were PubMed, Embase, JBI Database of Systematic Reviews and Implementation Reports, DARE, and ProQuest. Papers were critically appraised by two reviewers, and data were extracted using a standardized tool. Three systematic reviews on methotrexate-induced toxicity were included in the review. Meta-analyses were reported across Asian, Caucasian, pediatric and adult patients for the MTHFR C677T and A1298C polymorphisms. Toxicity outcomes included different forms of hematologic, ectodermal and hepatic toxicities. Results varied considerably depending on the patient groups and subgroups investigated in the different systematic reviews, as well as the genetic models utilized. However, significant associations were found between the MTHFR C677T allele and; hepatic toxicity, myelosuppression, oral mucositis, gastrointestinal toxicity, and skin toxicity. Additionally, limited evidence suggests that the MTHFR A1298C polymorphism may be associated with decreased risk of skin toxicity and leukopenia. This umbrella systematic review has synthesized the best available evidence on the pharmacogenetics of methotrexate toxicity. The next step in making personalized medicine for methotrexate therapy a clinical reality is research on the effectiveness and cost-effectiveness of MTHFR genotype testing to enable the close monitoring of at-risk patients for the timely initiation of rescue therapies.

  8. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks.

    Science.gov (United States)

    Karlsson, Kristin; Viklander, Maria; Scholes, Lian; Revitt, Mike

    2010-06-15

    Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelines and the toxicity results are assessed in relation to samples for which metal concentrations either exceed or conform to these values. The water phase metal concentrations were highest in the ponds whereas the sedimentation tanks exhibited a distinct decrease towards the outlet. However, none of the water samples demonstrated toxicity even though the concentrations of Cu, Pb, and Zn exceeded the threshold values for the compared guidelines. The facilities with higher traffic intensities had elevated sediment concentrations of Cr, Cu, Ni, and Zn which increased towards the outlet for the sedimentation tanks in agreement with the highest percentage of fine particles. The sediments in both treatment facilities exhibited the expected toxic responses in line with their affinity for heavy metals but the role of organic carbon content is highlighted. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Chinese proprietary medicine in Singapore: regulatory control of toxic heavy metals and undeclared drugs.

    Science.gov (United States)

    Koh, H L; Woo, S O

    2000-11-01

    Traditional Chinese medicine (TCM) is gaining popularity as a form of complementary and alternative medicine. Reports of efficacy of TCM are increasing in numbers. TCM includes both crude Chinese medicinal materials (plants, animal parts and minerals) and Chinese proprietary medicine (CPM) [final dosage forms]. Despite the belief that CPM and herbal remedies are of natural origin, unlike Western medicine, and are hence safe and without many adverse effects, there have been numerous reports of adverse effects associated with herbal remedies. Factors affecting the safety of herbal medicines include intrinsic toxicity, adulteration, substitution, contamination, misidentification, lack of standardisation, incorrect preparation and/or dosage and inappropriate labelling and/or advertising. Hence, new regulations on the control of CPM were enforced in Singapore with effect from 1 September 1999. These include licensing and labelling requirements, as well as control of microbial contamination. This article also reviews reports of excessive toxic heavy metals and undeclared drugs in CPM in Singapore between 1990 and 1997. The names, uses, toxic heavy metal or drug detected and the year of detection are tabulated. Information on the brand or manufacturer's name are provided whenever available. The public and healthcare professionals should be better informed of the basic concept of TCM and its usefulness, as well as the potential adverse effects associated with its use. Greater control over the safety and quality of CPM could be achieved through good manufacturing practice, regulatory control, research, education, reporting usage of Chinese medicine (as in drug history) as well as reporting of adverse events.

  10. Analysis of toxic and heavy metals in cataract extraction from human eyes

    International Nuclear Information System (INIS)

    Tanvir, R.; Qureshi, S.A.; Ahmed, R.

    1999-01-01

    Surma and many other substances are frequently used for the treatment of eyes and for cosmetic purposes, which may contain large quantities of toxic and heavy metals particularly lead. Toxic metals may also enter into the body through different food chain system and also due to heavy traffic and contaminated dusts in the air of the overcrowded cities. Eyes being exposed part of human body has maximum chances to get in contact with polluted atmosphere. This study has been undertaken to find the role of toxic elements in the formation of cataract in eyes. Samples of eye lenses were collected and carefully digested in 3 ml of conc. HClO/sub 4/ and 1 ml of conc. HNO/sub 3/. Then analysis of Zn, Cd, Pb, Cu, was carried out in 0.02 m HClO/sub 4/ using differential pulse anodic stripping voltametry. Levels of Zn, Cd, Pb and Cu in eye lenses are from 324 - 5746 mug/g, 3 - 240 mug/g, 3 - 240 mug/g, 25 - 120 mug /g and 23 - 485 mug/g, respectively. Chemical composition of ocular fluid indicates that Pb, Cd, Cu, Zn are not present in it normally. In addition to other factors , role of heavy and toxic metals in the formation of cataract cannot be overlooked. Therefore, use of surma and other cosmetics should be discouraged. (author)

  11. N-acetyl cysteine mitigates the acute effects of cocaine-induced toxicity in astroglia-like cells.

    Directory of Open Access Journals (Sweden)

    Ramesh B Badisa

    Full Text Available Cocaine has a short half-life of only about an hour but its effects, predominantly on the central nervous system (CNS, are fairly long-lasting. Of all cells within the CNS, astrocytes may be the first to display cocaine toxicity owing to their relative abundance in the brain. Cocaine entry could trigger several early response changes that adversely affect their survival, and inhibiting these changes could conversely increase their rate of survival. In order to identify these changes and the minimal concentrations of cocaine that can elicit them in vitro, rat C6 astroglia-like cells were treated with cocaine (2-4 mM for 1h and assayed for alterations in gross cell morphology, cytoplasmic vacuolation, viability, reactive oxygen species (ROS generation, glutathione (GSH levels, cell membrane integrity, F-actin cytoskeleton, and histone methylation. We report here that all of the above identified features are significantly altered by cocaine, and may collectively represent the key pathology underlying acute toxicity-mediated death of astroglia-like cells. Pretreatment of the cells with the clinically available antioxidant N-acetyl cysteine (NAC, 5 mM for 30 min inhibited these changes during subsequent application of cocaine and mitigated cocaine-induced toxicity. Despite repeated cocaine exposure, NAC pretreated cells remained highly viable and post NAC treatment also increased viability of cocaine treated cells to a smaller yet significant level. We show further that this alleviation by NAC is mediated through an increase in GSH levels in the cells. These findings, coupled with the fact that astrocytes maintain neuronal integrity, suggest that compounds which target and mitigate these early toxic changes in astrocytes could have a potentially broad therapeutic role in cocaine-induced CNS damage.

  12. Toxic metals in tissues of fishes from the Black Sea and associated human health risk exposure.

    Science.gov (United States)

    Plavan, Gabriel; Jitar, Oana; Teodosiu, Carmen; Nicoara, Mircea; Micu, Dragos; Strungaru, Stefan-Adrian

    2017-03-01

    The anthropogenic activities in the Black Sea area are responsible for toxic metal contamination of sea food products. In this study, several toxic metals: cadmium, lead, nickel, chromium, and copper were quantified in different tissues (digestive tract, muscle, skeleton, skin) of nine fish species (Neogobius melanostomus, Belone belone, Solea solea, Trachurus mediterraneus ponticus, Sardina pilchardus, Engraulis encrasicolus, Pomatomus saltatrix, Sprattus sprattus, Scorpaena porcus) by using atomic absorption spectrometer with a high-resolution continuum source and graphite furnace technique (HR-CS GF-AAS), and the risk of fish meat consumption by the young human population was evaluated. These metals are used in high amounts in industries located near the coastline such as shipyard construction and industrial plants. Toxic metal accumulation depends on fish feeding behavior, abiotic conditions, metal chemistry, and animal physiology. For instance, cadmium was measured in the muscle of the investigated species and average values of 0.0008-0.0338 mg kg -1 were obtained. The lowest average value of this metal was measured at benthic species N. melanostomus and the highest at the pelagic predator T. mediterraneus ponticus. Generally, the highest metal concentration was measured in the digestive tract that has the role of biofilter for these contaminants. The risk of contamination is significantly reduced by avoiding the consumption of certain fish tissues (digestive tract and skin for copper and skeleton for nickel). An estimation of the dietary metal intake to young consumers was realized for each of the studied species of fish from Romanian, Bulgarian, and Turkish waters, during the period 2001-2014 in order to evaluate the risks of chronic exposure in time due to metal toxicity. This estimation is important for the prevention of chronic exposure due to metal toxicity. Food exposure to studied metals showed a negative trend for Romania, Turkey, and Bulgaria based

  13. The effect of metallothionein 2A core promoter region single-nucleotide polymorphism on accumulation of toxic metals in sinonasal inverted papilloma tissues

    Energy Technology Data Exchange (ETDEWEB)

    Starska, Katarzyna, E-mail: katarzyna.starska@umed.lodz.pl [I Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Kopcinskiego 22, 90-153 Łódź (Poland); Bryś, Magdalena; Forma, Ewa [Department of Cytobiochemistry, University of Łódź, Pomorska 142/143, 90-236 Łódź (Poland); Olszewski, Jurek; Pietkiewicz, Piotr [II Department of Otolaryngology and Laryngological Oncology, Medical University of Łódź, Żeromskiego 113, 90-549 Łódź (Poland); Lewy-Trenda, Iwona; Danilewicz, Marian [Department of Pathology, Medical University of Łódź, Pomorska 251, 92-213 Łódź (Poland); Krześlak, Anna [Department of Cytobiochemistry, University of Łódź, Pomorska 142/143, 90-236 Łódź (Poland)

    2015-06-15

    Metallothioneins (MTs) are intracellular thiol-rich heavy metal-binding proteins which join trace metal ions protecting cells against heavy metal toxicity and regulate metal distribution and donation to various enzymes and transcription factors. The goal of this study was to identify the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene, and to investigate its effect on allele-specific gene expression and Cd, Zn, Cu and Ni content in sinonasal inverted papilloma tissue (IP), with non-cancerous sinonasal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was identified by restriction fragment length polymorphism using 117 IP and 132 NCM. MT2A gene analysis was performed by quantitative real-time PCR. Metal levels were analyzed by flame atomic absorption spectrometry. The frequency of A allele carriage was 99.2% and 100% in IP and NCM, respectively. The G allele carriage was detected in 23.9% of IP and in 12.1% of the NCM samples. As a result, a significant association of − 5 A/G SNP in MT2A gene with mRNA expression in both groups was determined. A significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. A highly significant association was detected between the rs28366003 genotype and Cd and Zn content in IP. Furthermore, significant differences were identified between A/A and A/G genotype with regard to the type of metal contaminant. The Spearman rank correlation results showed the MT2A gene expression and both Cd and Cu levels were negatively correlated. The results obtained in this study suggest that the − 5 A/G SNP in the MT2A gene may have an effect on allele-specific gene expression and toxic metal accumulation in sinonasal inverted papilloma. - Highlights: • MT2A gene expression and metal content in sinonasal inverted papilloma tissues • Association between SNP (rs28366003) and expression of MT2A • Significant

  14. Histopathological Study of Protective Effects of Honey on Subacute Toxicity of Acrylamide-Induced Tissue Lesions in Rats’ Brain and Liver

    OpenAIRE

    Parichehr Ahrari Roodi; Zahra Moosavi*; Amir Afkhami Goli; Mohammad Azizzadeh; Hossein Hosseinzadeh

    2018-01-01

    Background: The therapeutic potential of honey is related to antioxidant activity against reactive oxygen species because it contains compounds such as polyphenols; therefore, we evaluated the potential protective effect of honey on subacute toxicity of ACR by histopathologic study on tissue lesions in rat. Methods: In Ferdowsi University of Mashhad, Mashhad, Iran, 2016, male Wistar rats were divided into 7 groups. To induce toxicity, ACR was injected (50 mg/kg for 11 d) to rats in 5 group...

  15. In vitro profiling of epigenetic modifications underlying heavy metal toxicity of tungsten-alloy and its components

    International Nuclear Information System (INIS)

    Verma, Ranjana; Xu, Xiufen; Jaiswal, Manoj K.; Olsen, Cara; Mears, David; Caretti, Giuseppina; Galdzicki, Zygmunt

    2011-01-01

    Tungsten-alloy has carcinogenic potential as demonstrated by cancer development in rats with intramuscular implanted tungsten-alloy pellets. This suggests a potential involvement of epigenetic events previously implicated as environmental triggers of cancer. Here, we tested metal induced cytotoxicity and epigenetic modifications including H3 acetylation, H3-Ser10 phosphorylation and H3-K4 trimethylation. We exposed human embryonic kidney (HEK293), human neuroepithelioma (SKNMC), and mouse myoblast (C2C12) cultures for 1-day and hippocampal primary neuronal cultures for 1-week to 50-200 μg/ml of tungsten-alloy (91% tungsten/6% nickel/3% cobalt), tungsten, nickel, and cobalt. We also examined the potential role of intracellular calcium in metal mediated histone modifications by addition of calcium channel blockers/chelators to the metal solutions. Tungsten and its alloy showed cytotoxicity at concentrations > 50 μg/ml, while we found significant toxicity with cobalt and nickel for most tested concentrations. Diverse cell-specific toxic effects were observed, with C2C12 being relatively resistant to tungsten-alloy mediated toxic impact. Tungsten-alloy, but not tungsten, caused almost complete dephosphorylation of H3-Ser10 in C2C12 and hippocampal primary neuronal cultures with H3-hypoacetylation in C2C12. Dramatic H3-Ser10 dephosphorylation was found in all cobalt treated cultures with a decrease in H3 pan-acetylation in C2C12, SKNMC and HEK293. Trimethylation of H3-K4 was not affected. Both tungsten-alloy and cobalt mediated H3-Ser10 dephosphorylation were reversed with BAPTA-AM, highlighting the role of intracellular calcium, confirmed with 2-photon calcium imaging. In summary, our results for the first time reveal epigenetic modifications triggered by tungsten-alloy exposure in C2C12 and hippocampal primary neuronal cultures suggesting the underlying synergistic effects of tungsten, nickel and cobalt mediated by changes in intracellular calcium homeostasis and

  16. Metals and cocoa products: a study on characterization of toxic and essential metals in chocolates

    International Nuclear Information System (INIS)

    Rahman, S.; Husnain, S.M.

    2012-01-01

    Metals (Pb, Cd, Ni, Fe, Cu, Zn and Mn) were assessed in 32 commonly consumed cocoa products (chocolates) prepared by different national and multinational companies. Significant differences were observed between the micro element contents of these varieties (P < 0.01). Frequent consumption of chocolates can enhance the intake of toxic metals in children. The concentration of Pb and Cd in cocoa powder is found to be highest 492 and 197 mu g/L followed by cocoa based chocolates 306 and 46.8 mu g/L, sugar based chocolates 209.8 and 40.3 mu g/L whereas it is least in milk based chocolates samples 88.3 and 33 mu g/L respectively. Weekly intake of toxic metals Pb, Cd and Ni was also calculated. Mean concentration of Pb and Cd was found below the provisional tolerable weekly intake defined by FAO/WHO. All essential elements were assessed for their weekly intake with the dietary reference intakes (DRI). Results were validated through the analysis of certified reference materials and determined metals concentrations were quite in good agreement with certified levels. Data was interpreted through cluster analysis and pattern recognition as depicted. The concentrations of Pb, Cd, Ni and Fe were found to be highest in the cocoa-based followed by milk-based and sugar-based chocolates. The daily intake of cocoa-based chocolates must be reduced as lead and cadmium intake can otherwise cross the limits set by Codex Alimentarius (FAO/WHO 2006). Raw materials should be checked before use for metal contents in order to decrease the concentrations of these metals in final chocolate products. (Orig./A.B.)

  17. Amelioration of nandrolone decanoate-induced testicular and sperm toxicity in rats by taurine: Effects on steroidogenesis, redox and inflammatory cascades, and intrinsic apoptotic pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Maha A.E., E-mail: mahapharm@yahoo.com

    2015-02-01

    The wide abuse of the anabolic steroid nandrolone decanoate by athletes and adolescents for enhancement of sporting performance and physical appearance may be associated with testicular toxicity and infertility. On the other hand, taurine; a free β-amino acid with remarkable antioxidant activity, is used in taurine-enriched beverages to boost the muscular power of athletes. Therefore, the purpose of this study was to investigate the mechanisms of the possible protective effects of taurine on nandrolone decanoate-induced testicular and sperm toxicity in rats. To achieve this aim, male Wistar rats were randomly distributed into four groups and administered either vehicle, nandrolone decanoate (10 mg/kg/week, I.M.), taurine (100 mg/kg/day, p.o.) or combination of taurine and nandrolone decanoate, for 8 successive weeks. Results of the present study showed that taurine reversed nandrolone decanoate-induced perturbations in sperm characteristics, normalized serum testosterone level, and restored the activities of the key steroidogenic enzymes; 3β-HSD, and 17β-HSD. Moreover, taurine prevented nandrolone decanoate-induced testicular toxicity and DNA damage by virtue of its antioxidant, anti-inflammatory, and anti-apoptotic effects. This was evidenced by taurine-induced modulation of testicular LDH-x activity, redox markers (MDA, NO, GSH contents, and SOD activity), inflammatory indices (TNF-α, ICAM-1 levels, and MMP-9 gene expression), intrinsic apoptotic pathway (cytochrome c gene expression and caspase-3 content), and oxidative DNA damage markers (8-OHdG level and comet assay). In conclusion, at the biochemical and histological levels, taurine attenuated nandrolone decanoate-induced poor sperm quality and testicular toxicity in rats. - Highlights: • Nandrolone decanoate (ND) disrupts sperm profile and steroidogenesis in rats. • ND upregulates gene expression of inflammatory and apoptotic markers. • Taurine normalizes sperm profile and serum testosterone level

  18. Amelioration of nandrolone decanoate-induced testicular and sperm toxicity in rats by taurine: Effects on steroidogenesis, redox and inflammatory cascades, and intrinsic apoptotic pathway

    International Nuclear Information System (INIS)

    Ahmed, Maha A.E.

    2015-01-01

    The wide abuse of the anabolic steroid nandrolone decanoate by athletes and adolescents for enhancement of sporting performance and physical appearance may be associated with testicular toxicity and infertility. On the other hand, taurine; a free β-amino acid with remarkable antioxidant activity, is used in taurine-enriched beverages to boost the muscular power of athletes. Therefore, the purpose of this study was to investigate the mechanisms of the possible protective effects of taurine on nandrolone decanoate-induced testicular and sperm toxicity in rats. To achieve this aim, male Wistar rats were randomly distributed into four groups and administered either vehicle, nandrolone decanoate (10 mg/kg/week, I.M.), taurine (100 mg/kg/day, p.o.) or combination of taurine and nandrolone decanoate, for 8 successive weeks. Results of the present study showed that taurine reversed nandrolone decanoate-induced perturbations in sperm characteristics, normalized serum testosterone level, and restored the activities of the key steroidogenic enzymes; 3β-HSD, and 17β-HSD. Moreover, taurine prevented nandrolone decanoate-induced testicular toxicity and DNA damage by virtue of its antioxidant, anti-inflammatory, and anti-apoptotic effects. This was evidenced by taurine-induced modulation of testicular LDH-x activity, redox markers (MDA, NO, GSH contents, and SOD activity), inflammatory indices (TNF-α, ICAM-1 levels, and MMP-9 gene expression), intrinsic apoptotic pathway (cytochrome c gene expression and caspase-3 content), and oxidative DNA damage markers (8-OHdG level and comet assay). In conclusion, at the biochemical and histological levels, taurine attenuated nandrolone decanoate-induced poor sperm quality and testicular toxicity in rats. - Highlights: • Nandrolone decanoate (ND) disrupts sperm profile and steroidogenesis in rats. • ND upregulates gene expression of inflammatory and apoptotic markers. • Taurine normalizes sperm profile and serum testosterone level

  19. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China

    International Nuclear Information System (INIS)

    Shi Guitao; Chen Zhenlou; Xu Shiyuan; Zhang Ju; Wang Li; Bi Chunjuan; Teng Jiyan

    2008-01-01

    A detailed investigation was conducted to understand the contamination characteristics of a selected set of potentially toxic metals in Shanghai. The amount of Pb, Zn, Cu, Cr, Cd and Ni were determined from 273 soil/dust samples collected within urban area. The results indicated that concentration of all metals except Ni in soils was significant, and metal pollution was even severer in roadside dust. A series of metal spatial distribution maps were created through geostatistical analysis, and the pollution hotspots tended to associate with city core area, major road junctions, and the regions close to industrial zones. In attempt of identifying the source of metals through geostatistical and multivariate statistical analyses, it was concluded as follows: Pb, Zn and Cu mainly originated from traffic contaminants; soil Ni was associated with natural concentration; Cd largely came from point-sourced industrial pollution; and Cr, Ni in dust were mainly related to atmospheric deposition. - Human activities have led to high accumulation of potentially toxic metals in urban soils and roadside dust of Shanghai

  20. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China

    Energy Technology Data Exchange (ETDEWEB)

    Shi Guitao [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Chen Zhenlou [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China)], E-mail: gt_shi@163.com; Xu Shiyuan [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Zhang Ju [School of Environment and Planning, Liaocheng University, Liaocheng 252059 (China); Wang Li; Bi Chunjuan [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Teng Jiyan [Shanghai Chongming Dongtan National Nature Reserve, Shanghai 202183 (China)

    2008-11-15

    A detailed investigation was conducted to understand the contamination characteristics of a selected set of potentially toxic metals in Shanghai. The amount of Pb, Zn, Cu, Cr, Cd and Ni were determined from 273 soil/dust samples collected within urban area. The results indicated that concentration of all metals except Ni in soils was significant, and metal pollution was even severer in roadside dust. A series of metal spatial distribution maps were created through geostatistical analysis, and the pollution hotspots tended to associate with city core area, major road junctions, and the regions close to industrial zones. In attempt of identifying the source of metals through geostatistical and multivariate statistical analyses, it was concluded as follows: Pb, Zn and Cu mainly originated from traffic contaminants; soil Ni was associated with natural concentration; Cd largely came from point-sourced industrial pollution; and Cr, Ni in dust were mainly related to atmospheric deposition. - Human activities have led to high accumulation of potentially toxic metals in urban soils and roadside dust of Shanghai.

  1. Qualification of spontaneous undirected locomotor behavior of fish for sublethal toxicity testing. Part 2. Variability of measurement parameters under toxicant-induced stress

    Energy Technology Data Exchange (ETDEWEB)

    Grillitsch, B.; Vogl, C.; Wytek, R.

    1999-12-01

    Spontaneous locomotor behavior of semiadult zebra fish (Brachydanio rerio) was recorded under sublethal short-term exposure to the anionic technical surfactant, linear alkylbenzene sulfonate (C{sub 10-13}-LAS) and cadmium in single compound tests using an automated video-monitoring and object-tracing system. Vertical position and swimming velocity in the horizontal and vertical directions were used as behavioral measurement parameters. Data were analyzed by different statistical methods. In pairwise comparisons, consistent, statistically significant, and toxicant-induced alterations of locomotor behavior were observed only for test concentrations, which also caused aspectoric symptoms of intoxication. This comparatively low sensitivity of the behavioral indication criteria was related to high variation in the measurement parameters and corresponding high, minimum detectable, statistically significant, and toxicant-induced deviations. In contrast, results obtained by regression analysis showed significant trends in locomotor activity over the range of toxicant concentrations tested. Thus, the findings support the inappropriateness of no observed effect concentrations and the lowest observed effect concentrations as summary measures of toxicity and indicate that the regression analysis approach is superior to the analysis of variance approach.

  2. Sex differences in apolipoprotein A1 and nevirapine-induced toxicity

    OpenAIRE

    Aline Marinho; Clara Dias; Alexandra Antunes; Umbelina Caixas; Teresa Branco; Matilde Marques; Emília Monteiro; Sofia Pereira

    2014-01-01

    Nevirapine (NVP) is associated with severe liver and skin toxicity through sulfotransferase (SULT) bioactivation of the phase I metabolite 12-hydroxy-NVP [1–3]. The female sex, a well-known risk factor for NVP-induced toxicity, is associated with higher SULT expression [4] and lower plasma levels of 12-hydroxy-NVP [3]. Interestingly, apolipoprotein A1 (ApoA1) increases SULT2B1 activity and ApoA1 synthesis is increased by NVP [5, 6]. Herein, we explore the effect of ApoA1 levels on NVP metabol...

  3. Effect of Apitherapy Formulations against Carbon Tetrachloride-Induced Toxicity in Wistar Rats after Three Weeks of Treatment

    Directory of Open Access Journals (Sweden)

    Calin Vasile Andritoiu

    2014-08-01

    Full Text Available The human body is exposed nowadays to increasing attacks by toxic compounds in polluted air, industrially processed foods, alcohol and drug consumption that increase liver toxicity, leading to more and more severe cases of hepatic disorders. The present paper aims to evaluate the influence of the apitherapy diet in Wistar rats with carbon tetrachloride-induced hepatotoxicity, by analyzing the biochemical determinations (enzymatic, lipid and protein profiles, coagulation parameters, minerals, blood count parameters, bilirubin levels and histopathological changes at the level of liver, spleen and pancreas. The experiment was carried out on six groups of male Wistar rats. Hepatic lesions were induced by intraperitoneal injection of carbon tetrachloride (dissolved in paraffin oil, 10% solution. Two mL per 100 g were administered, every 2 days, for 2 weeks. Hepatoprotection was achieved with two apitherapy diet formulations containing honey, pollen, propolis, Apilarnil, with/without royal jelly. Biochemical results reveal that the two apitherapy diet formulations have a positive effect on improving the enzymatic, lipid, and protein profiles, coagulation, mineral and blood count parameters and bilirubin levels. The histopathological results demonstrate the benefits of the two apitherapy diet formulations on reducing toxicity at the level of liver, spleen and pancreas in laboratory animals.

  4. Hydroxycut-induced Liver Toxicity

    African Journals Online (AJOL)

    hanumantp

    Annals of Medical and Health Sciences Research | Jan-Feb 2014 | Vol 4 ... supplements can be responsible for documented or undocumented adverse drug effects. The ... Keywords: Hydroxycut, Liver toxicity, Nutritional supplements ... Caffeine anhydrous: 200 mg* ... series and review of liver toxicity from herbal weight loss.

  5. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides)

    International Nuclear Information System (INIS)

    Mehinto, Alvine C.; Prucha, Melinda S.; Colli-Dula, Reyna C.; Kroll, Kevin J.; Lavelle, Candice M.; Barber, David S.; Vulpe, Christopher D.; Denslow, Nancy D.

    2014-01-01

    Highlights: • Low-level acute cadmium exposure elicited tissue-specific gene expression changes. • Molecular initiating events included oxidative stress and disruption of DNA repair. • Metallothionein, a marker of metal exposure, was not significantly affected. • We report effects of cadmium on cholesterol metabolism and steroid synthesis. • Diabetic complications and impaired reproduction are potential adverse outcomes. - Abstract: Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20 μg/kg of cadmium chloride (mean exposure level – 2.6 μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48 h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48 h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly

  6. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides)

    Energy Technology Data Exchange (ETDEWEB)

    Mehinto, Alvine C., E-mail: alvinam@sccwrp.org [Southern California Coastal Water Research Project, Costa Mesa, CA 92626 (United States); Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Prucha, Melinda S. [Department of Human Genetics, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322 (United States); Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Colli-Dula, Reyna C.; Kroll, Kevin J.; Lavelle, Candice M.; Barber, David S. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Vulpe, Christopher D. [Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720 (United States); Denslow, Nancy D. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States)

    2014-07-01

    Highlights: • Low-level acute cadmium exposure elicited tissue-specific gene expression changes. • Molecular initiating events included oxidative stress and disruption of DNA repair. • Metallothionein, a marker of metal exposure, was not significantly affected. • We report effects of cadmium on cholesterol metabolism and steroid synthesis. • Diabetic complications and impaired reproduction are potential adverse outcomes. - Abstract: Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20 μg/kg of cadmium chloride (mean exposure level – 2.6 μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48 h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48 h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly

  7. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7.

    Science.gov (United States)

    Zahoor, Mahwish; Irshad, Muhammad; Rahman, Hazir; Qasim, Muhammad; Afridi, Sahib Gul; Qadir, Muhammad; Hussain, Anwar

    2017-08-01

    Heavy metal (HM) pollution is of great concern in countries like Pakistan where a huge proportion of human population is exposed to it. These toxic metals are making their way from water bodies to soil where it not only interferes with plant growth and development but also initiates serious health issues in human consuming the produce of such soils. Bioremediation is one of the most viable and efficient solution for the problem. Purpose of the current study was to isolate endophytic fungi from plants grown on HM contaminated soil and screen them for their ability to tolerate multiple HM including chromium (Cr 6+ ), manganese (Mn 2+ ), cobalt (Co 2+ ), copper (Cu 2+ ) and zinc (Zn 2+ ). Out of 27 isolated endophytes, only one strain (MHR-7) was selected for multiple heavy metals tolerance. The strain was identified as Mucor sp. by 18S and 28S ribosomal RNA internal transcribed spacer (ITS) 1 and 4 sequence homology. The strain effectively tolerated up to 900µgmL -1 of these heavy metals showing no remarkable effect on its growth. The adverse effect of the heavy metals, measured as reduction of the fungal growth increased with increasing concentration of the metals. The strain was able to remove 60-87% of heavy metals from broth culture when supplied with 300µgmL -1 of these metals. A trend of decline in bioremediation potential of the strain was observed with increasing amount of metals. The strain removed metals by biotransformation and/or accumulation of heavy metal in its hyphae. Application of Mucor sp. MHR-7 locked down HM in tis mycelium thereby making them less available to plant root reducing HM uptake and toxicity in mustard. Besides its bioremediation potential, the strain was also able to produce IAA, ACC deaminase and solubilize phosphate making it excellent phytostimulant fungus. It is concluded that MHR-7 is an excellent candidate for use as biofertilizer in fields affected with heavy metals. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Accumulation and effects of metal mixtures in two seaweed species.

    Science.gov (United States)

    Jarvis, Tayler A; Bielmyer-Fraser, Gretchen K

    2015-05-01

    Metal pollution, due to various anthropogenic sources, may pose a threat to marine ecosystems. Metals can be introduced into food chains via bioaccumulation in primary producers, and may potentially lead to toxic effects. Macroalgae are used as food by a wide variety of organisms, and are therefore extremely important in aquatic systems. This study investigated the accumulation and effects of metals in two macroalgae species. The green seaweed, Ulva lactuca and the red seaweed, Agardhiella subulata were each concurrently exposed to five metals (Cu, Ni, Pb, Cd, and Zn) and U. lactuca was also exposed to each metal individually for 48 h. Metal accumulation in the seaweed was measured, and various photosynthetic parameters were assessed, using imaging pulse amplitude modulated (PAM) fluorometry. Increased metal accumulation occurred in both seaweed species after 48 h exposure to metal mixtures and each metal individually. The distribution of metals in both seaweed species changed with increasing metal exposure concentrations, resulting in higher proportions of Cu and Zn in the metal-exposed groups, as compared to respective controls. Further, U. lactuca accumulated higher concentrations of metals when exposed to each metal individually rather than in metal mixtures, suggesting interactions among metals for uptake and/or bioaccumulation. Significant impairment of photosynthetic parameters in U. lactuca was observed after exposure to 100 and 1000 μg/L metal mixtures, as well as 100 μg/L of either Cd or Cu. These results demonstrate metal bioaccumulation and toxic effects in important primary producers, and may have implications for higher trophic levels. Published by Elsevier Inc.

  9. The water extract of Veratrilla baillonii could attenuate the subacute toxicity induced by Aconitum brachypodum.

    Science.gov (United States)

    Yu, You; Yi, Xue-Jia; Mei, Zhi-Yi; Li, Jun; Huang, Xian-Ju; Yang, Guang-Zhong; Ma, Li-Qun; Gao, Yue

    2016-12-01

    Aconitum brachypodum Diels (Family Ranunculaceae) is a Chinese ethnodrug and is well known for both its therapeutic application and high toxicity. However, no detoxication strategy is available for the complete elimination of the toxicity of Aconitum plants. Veratrilla baillonii Franch is believed to possess antitoxic effects on the toxicity induced by Aconitum plants and has been clinically used for hundreds of time by Naxi and Lisu nationalities in Yunnan Province of China. To further address the mechanism of the detoxication of Veratrilla baillonii, the effect of water decoction of Veratrilla baillonii (WVBF) on subacute toxicology of SD rats induced by Aconitum brachypodum (CFA), a genus Aconitum, was determined and studied in the present work. The clinical behavior and number of survivors for different dosage of WVBF (25, 50, 100mg/kg) on CFA (4mg/kg) induced rats were observed until day 28. Histological changes and haematological parameters were evaluated. Moreover, Na + -K + -ATPase pathway in heart as well as key enzymes in liver were determined to further discuss the mechanism. The results showed that the exposure of CFA led to some subacute toxicity to rats, especially male ones, accompanied with abnormality of serum biochemical index in rats' serum. The toxicological target organs of CFA may be the heart, liver, kidney and brain. It is demonstrated that WVBF could attenuate the toxicity induced by Aconitum brachypodum via promoting the metabolic enzymes CYP3A1 and CYP3A2 in liver, downregulating the expression of Sodium/Calcium exchanger 1 (NCX1) and SCN5A sodium channal mRNA, and inducing Na + /K + -ATPase activity in heart. This study provides insights into detoxifying measures of Aconitum plants. Aconitum brachypodum may lead to subacute toxicity of rats after long term of administration, and the toxicity could be attenuated by Veratrilla baillonii via promoting the metabolic enzymes in liver, downregulating the expression of NCX1 and SCN5A mRNA, and

  10. Toxicity of the sulfhydryl-containing radioprotector dithiothreitol

    International Nuclear Information System (INIS)

    Held, K.D.; Biaglow, J.E.

    1987-01-01

    The toxicity of the sulfhydryl-containing radioprotector dithiothreitol (DTT) has been studied in Chinese hamster V79 cells growing in monolayer. Under the conditions used here DTT causes a biphasic toxic response in which low concentrations of the drug (0.5 to 1.0 mM) are more toxic than are lower (0.2 mM) or higher (10 mM) concentrations. This response is similar to that seen by others with other sulfhydryl compounds. This DTT-induced toxicity is prevented by catalase, glutathione, and lowered temperatures. The toxicity is enhanced by some metal chelators (EDTA) but prevented by others (desferal). Metals (copper and iron) can either enhance or decrease the toxicity depending on their concentration and whether the exposure is in medium or in buffered salt solution. The results suggest a complex chain of chemical reactions and interactions with a role of H/sub 2/O/sub 2/ and perhaps . OH in this DTT toxicity. This is discussed

  11. Ionic imbalance induced self-propulsion of liquid metals

    Science.gov (United States)

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  12. Metabolomics reveals the mechanisms for the cardiotoxicity of Pinelliae Rhizoma and the toxicity-reducing effect of processing

    Science.gov (United States)

    Su, Tao; Tan, Yong; Tsui, Man-Shan; Yi, Hua; Fu, Xiu-Qiong; Li, Ting; Chan, Chi Leung; Guo, Hui; Li, Ya-Xi; Zhu, Pei-Li; Tse, Anfernee Kai Wing; Cao, Hui; Lu, Ai-Ping; Yu, Zhi-Ling

    2016-10-01

    Pinelliae Rhizoma (PR) is a commonly used Chinese medicinal herb, but it has been frequently reported about its toxicity. According to the traditional Chinese medicine theory, processing can reduce the toxicity of the herbs. Here, we aim to determine if processing reduces the toxicity of raw PR, and to explore the underlying mechanisms of raw PR-induced toxicities and the toxicity-reducing effect of processing. Biochemical and histopathological approaches were used to evaluate the toxicities of raw and processed PR. Rat serum metabolites were analyzed by LC-TOF-MS. Ingenuity pathway analysis of the metabolomics data highlighted the biological pathways and network functions involved in raw PR-induced toxicities and the toxicity-reducing effect of processing, which were verified by molecular approaches. Results showed that raw PR caused cardiotoxicity, and processing reduced the toxicity. Inhibition of mTOR signaling and activation of the TGF-β pathway contributed to raw PR-induced cardiotoxicity, and free radical scavenging might be responsible for the toxicity-reducing effect of processing. Our data shed new light on the mechanisms of raw PR-induced cardiotoxicity and the toxicity-reducing effect of processing. This study provides scientific justifications for the traditional processing theory of PR, and should help in optimizing the processing protocol and clinical combinational application of PR.

  13. Effect of natural organic matter on the photo-induced toxicity of titanium dioxide nanoparticles.

    Science.gov (United States)

    Wormington, Alexis M; Coral, Jason; Alloy, Matthew M; Delmarè, Carmen L; Mansfield, Charles M; Klaine, Stephen J; Bisesi, Joseph H; Roberts, Aaron P

    2017-06-01

    Nano-titanium dioxide (TiO 2 ) is the most widely used form of nanoparticles in commercial industry and comes in 2 main configurations: rutile and anatase. Rutile TiO 2 is used in ultraviolet (UV) screening applications, whereas anatase TiO 2 crystals have a surface defect that makes them photoreactive. There are numerous reports in the literature of photo-induced toxicity to aquatic organisms following coexposure to anatase nano-TiO 2 and UV. All natural freshwater contains varying amounts of natural organic matter (NOM), which can drive UV attenuation and quench reactive oxygen species (ROS) in aquatic ecosystems. The present research examined how NOM alters the photo-induced toxicity of anatase nano-TiO 2 . Daphnia magna neonates were coexposed to NOM and photoexcited anatase nano-TiO 2 for 48 h. Natural organic matter concentrations as low as 4 mg/L reduced anatase nano-TiO 2 toxicity by nearly 100%. These concentrations of NOM attenuated UV by <10% in the exposure system. However, ROS production measured using a fluorescence assay was significantly reduced in a NOM concentration--dependent manner. Taken together, these data suggest that NOM reduces anatase nano-TiO 2 toxicity via an ROS quenching mechanism and not by attenuation of UV. Environ Toxicol Chem 2017;36:1661-1666. © 2016 SETAC. © 2016 SETAC.

  14. Spirulina exhibits hepatoprotective effects against lead induced oxidative injury in newborn rats.

    Science.gov (United States)

    Gargouri, M; Ben Saad, H; Ben Amara, I; Magné, C; El Feki, A

    2016-08-31

    Lead is a toxic metal that induces a wide range of biochemical and physiological effects. The present investigation was designed at evaluating the toxic effects of a prenatal exposure to lead of mothers on hepatic tissue of newborn rats, and potent protective effects of spirulina. Female rats were randomly divided into 4 groups which were given a normal diet (control),a diet enriched with spirulina (S), lead acetate administered through drinking water (Pb), or a diet enriched with spirulina and lead contaminated water (S Pb), respectively. The duration of treatments was from the 5th day of gestation to 14 days postpartum. Lead toxicity was assessed by measuring body and liver weights, blood and stomach lead levels, hepatic DNA, RNA and protein amounts, blood enzyme activities (AST and ALT), as well as lipid peroxidation level and activities of antioxidant enzymes in hepatic tissues of neonates. Lead intoxication of mothers caused reduction of liver weight as well as of hepatic DNA, mRNA and protein levels in newborns. Moreover, oxidative stress and changes in antioxidant enzyme activities were recorded. Conversely, supplementation of mothers with spirulina mitigated these effects induced by lead. These results substantiated the potential hepatoprotective and antioxidant activity of spirulina.

  15. assessment of concentrations of trace and toxic heavy metals in soil

    African Journals Online (AJOL)

    Windows User

    pump. The concentrations of heavy metals in soil and edible vegetables samples were analyzed using Energy ... Keywords: Soil, Vegetables, Manyoni Uranium Deposit, Toxic Elements, EDXRF. ... fine radioactive particles prone to wind and.

  16. Loss of 5‐lipoxygenase activity protects mice against paracetamol‐induced liver toxicity

    Science.gov (United States)

    Pu, Shiyun; Ren, Lin; Liu, Qinhui; Kuang, Jiangying; Shen, Jing; Cheng, Shihai; Zhang, Yuwei; Jiang, Wei; Zhang, Zhiyong; Jiang, Changtao

    2015-01-01

    Background and Purpose Paracetamol (acetaminophen) is the most widely used over‐the‐counter analgesic and overdosing with paracetamol is the leading cause of hospital admission for acute liver failure. 5‐Lipoxygenase (5‐LO) catalyses arachidonic acid to form LTs, which lead to inflammation and oxidative stress. In this study, we examined whether deletion or pharmacological inhibition of 5‐LO could protect mice against paracetamol‐induced hepatic toxicity. Experimental Approach Both genetic deletion and pharmacological inhibition of 5‐LO in C57BL/6J mice were used to study the role of this enzyme in paracetamol induced liver toxicity. Serum and tissue biochemistry, H&E staining, and real‐time PCR were used to assess liver toxicity. Key Results Deletion or pharmacological inhibition of 5‐LO in mice markedly ameliorated paracetamol‐induced hepatic injury, as shown by decreased serum alanine transaminase and aspartate aminotransferase levels and hepatic centrilobular necrosis. The hepatoprotective effect of 5‐LO inhibition was associated with induction of the antitoxic phase II conjugating enzyme, sulfotransferase2a1, suppression of the pro‐toxic phase I CYP3A11 and reduction of the hepatic transporter MRP3. In 5‐LO−/− mice, levels of GSH were increased, and oxidative stress decreased. In addition, PPAR α, a nuclear receptor that confers resistance to paracetamol toxicity, was activated in 5‐LO−/− mice. Conclusions and Implications The activity of 5‐LO may play a critical role in paracetamol‐induced hepatic toxicity by regulating paracetamol metabolism and oxidative stress. PMID:26398229

  17. New applications in EPA’s ECOTOX Knowledge System: Assimilating relative potencies of metals across chemical and biological species from literature-based toxicity effects data.

    Science.gov (United States)

    Toxicity of metals in field settings can vary widely among ionic chemical species and across biological receptors. Thus, a challenge often found in developing TRVs for the risk assessment of metals is identifying the most appropriate metal and biological species combinations for...

  18. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    International Nuclear Information System (INIS)

    Sandre, C.; Moulin, C.; Bresson, C.; Gault, N.; Poncy, J. L.; Lefaix, J. L.

    2010-01-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B 12 , but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, 58 Co and 60 Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl 2 ) with or without gamma-ray doses to mimic contamination by 60 Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate gamma-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  19. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Gault, N. [CEA Fontenay aux Roses, DSV/IRCM/SCSR/LRTS, 92265 Fontenay aux Rose (France); Sandre, C.; Moulin, B.; Bresson, C. [CEA, DEN, SECR, Laboratoire de Speciation des Radionucleides et des Molecules, F-91191 Gif-sur-Yvette (France); Poncy, J.L. [CEA Bruyeres Le Chatel, DSV/IRCM/SREIT/LRT, 91680 Bruyeres Le Chatel (France); Lefaix, J.L. [CEA Caen, DSV/IRCM/SRO/LARIA, 14070 Caen (France)

    2010-07-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B12, but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, {sup 58}Co and {sup 60}Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl{sub 2}) with or without {gamma}-ray doses to mimic contamination by {sup 60}Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate {gamma}-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  20. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Sandre, C.; Moulin, C.; Bresson, C. [CEA Saclay, DEN, SECR, Lab Speciat Radionucleides and Mol, F-91191 Gif Sur Yvette (France); Gault, N. [CEA Fontenay Roses, DSV IRCM SCSR LRTS, F-92265 Fontenay Aux Roses (France); Poncy, J. L. [CEA Bruyeres Le Chatel, DSV IRCM SREIT LRT, F-91680 Bruyeres Le Chatel (France); Lefaix, J. L. [CEA Caen, DSV IRCM SRO LARIA, F-14070 Caen (France)

    2010-07-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B{sub 12}, but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, {sup 58}Co and {sup 60}Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl{sub 2}) with or without gamma-ray doses to mimic contamination by {sup 60}Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate gamma-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  1. Deposition of toxic metal particles on rough nanofiltration membranes

    International Nuclear Information System (INIS)

    Agboola, Oluranti; Maree, Jannie; Mbaya, Richard; Zvinowanda, Caliphs Musa; Molelekwa, Gomotsegang Fred; Jullok, Nora; Bruggen, Bart Van der; Volodine, Alexander; Haesendonck, Chris Van

    2014-01-01

    Two nanofiltration (NF90 and Nano-Pro-3012) membranes were investigated for their capacity to remove metal ions. This study presents the effect of membrane roughness on the removal of toxic metal ions during dead end membrane filtration. Atomic force microscopy, scanning electron microscopy, WSXM software and ImageJ were used to characterize the roughness of the membranes. Gradual decrease in filtration permeate flux was observed as foulants accumulated at the interface of the membranes; filtration permeate flux varied from 20 L/m 2 /h to 14 L/m 2 /h and 11 L/ m 2 /h to 6 L/m 2 /h for NF90 and Nano-Pro-3012, respectively. NF90 membrane was more prone to fouling than the Nano-Pro-3012 membrane: the percentage flux reduction was higher for NF90 (3.6%) than Nano-Pro-3012 (0.98%). The bearing ratio of the fouled NF90 exhibited a high peak of 7.09 nm than the fouled Nano-Pro-3012 with the peak of 6.8 nm

  2. Deposition of toxic metal particles on rough nanofiltration membranes

    Energy Technology Data Exchange (ETDEWEB)

    Agboola, Oluranti; Maree, Jannie; Mbaya, Richard; Zvinowanda, Caliphs Musa [Tshwane University of Technology, Pretoria (South Africa); Molelekwa, Gomotsegang Fred; Jullok, Nora; Bruggen, Bart Van der; Volodine, Alexander; Haesendonck, Chris Van [KU Leuven, Heverlee (Belgium)

    2014-08-15

    Two nanofiltration (NF90 and Nano-Pro-3012) membranes were investigated for their capacity to remove metal ions. This study presents the effect of membrane roughness on the removal of toxic metal ions during dead end membrane filtration. Atomic force microscopy, scanning electron microscopy, WSXM software and ImageJ were used to characterize the roughness of the membranes. Gradual decrease in filtration permeate flux was observed as foulants accumulated at the interface of the membranes; filtration permeate flux varied from 20 L/m{sup 2}/h to 14 L/m{sup 2}/h and 11 L/ m{sup 2}/h to 6 L/m{sup 2}/h for NF90 and Nano-Pro-3012, respectively. NF90 membrane was more prone to fouling than the Nano-Pro-3012 membrane: the percentage flux reduction was higher for NF90 (3.6%) than Nano-Pro-3012 (0.98%). The bearing ratio of the fouled NF90 exhibited a high peak of 7.09 nm than the fouled Nano-Pro-3012 with the peak of 6.8 nm.

  3. Assessment of heavy metals bioavailability and toxicity toward Vibrio fischeri in sediment of the Huelva estuary.

    Science.gov (United States)

    Rosado, Daniel; Usero, José; Morillo, José

    2016-06-01

    Relationship between toxicity and bioavailable metals in sediments from the Huelva estuary and its littoral of influence was analyzed. Toxicity was assessed with Microtox® bioassay using a marine luminescent bacterium: Vibrio fischeri. Bioavailable metals were considered as both, acid extractable fraction of BCR procedure and the sum of exchangeable and bound to carbonates fractions of Tessier sequential extraction. A bioavailable metals index was calculated to integrate results in a single figure. Toxicity and bioavailable metals showed a similar pattern. Higher levels were found in the estuary than in the littoral (140 TU/g). In Huelva estuary, highest levels were found in the Tinto estuary (5725 TU/g), followed by the Odiel estuary (5100 TU/g) and the Padre Santo Canal (2500 TU/g). Results in this area were well over than those in nearby estuaries. Furthermore, they are similar to or even higher than those in other polluted sediments around the world. Bioavailable metal index showed a stronger correlation with acid extractable fraction of BCR (R(2) = 0.704) than that for the sum of exchangeable and bound to carbonates fractions of Tessier (R(2) = 0.661). These results suggest that bioavailable metals are an important source of sediment toxicity in the Huelva estuary and its littoral of influence, an area with one of the highest mortality risks of Spain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Extraction of toxic and valuable metals from foundry sands

    International Nuclear Information System (INIS)

    Vite T, J.

    1996-01-01

    There were extracted valuable metals from foundry sands such as: gold, platinum, silver, cobalt, germanium, nickel and zinc among others, as well as highly toxic metals such as chromium, lead, vanadium and arsenic. The extraction efficiency was up to 100% in some cases. For this reason there were obtained two patents at the United States, patent number 5,356,601, in October 1994, given for the developed process and patent number 5,376,000, in December 1994, obtained for the equipment employed. Therefore, the preliminary parameters for the installation of a pilot plant have also been developed. (Author)

  5. Molecular Mechanisms of Ursodeoxycholic Acid Toxicity & Side Effects: Ursodeoxycholic Acid Freezes Regeneration & Induces Hibernation Mode

    Science.gov (United States)

    Kotb, Magd A.

    2012-01-01

    Ursodeoxycholic acid (UDCA) is a steroid bile acid approved for primary biliary cirrhosis (PBC). UDCA is reported to have “hepato-protective properties”. Yet, UDCA has “unanticipated” toxicity, pronounced by more than double number of deaths, and eligibility for liver transplantation compared to the control group in 28 mg/kg/day in primary sclerosing cholangitis, necessitating trial halt in North America. UDCA is associated with increase in hepatocellular carcinoma in PBC especially when it fails to achieve biochemical response (10 and 15 years incidence of 9% and 20% respectively). “Unanticipated” UDCA toxicity includes hepatitis, pruritus, cholangitis, ascites, vanishing bile duct syndrome, liver cell failure, death, severe watery diarrhea, pneumonia, dysuria, immune-suppression, mutagenic effects and withdrawal syndrome upon sudden halt. UDCA inhibits DNA repair, co-enzyme A, cyclic AMP, p53, phagocytosis, and inhibits induction of nitric oxide synthatase. It is genotoxic, exerts aneugenic activity, and arrests apoptosis even after cellular phosphatidylserine externalization. UDCA toxicity is related to its interference with drug detoxification, being hydrophilic and anti-apoptotic, has a long half-life, has transcriptional mutational abilities, down-regulates cellular functions, has a very narrow difference between the recommended (13 mg/kg/day) and toxic dose (28 mg/kg/day), and it typically transforms into lithocholic acid that induces DNA strand breakage, it is uniquely co-mutagenic, and promotes cell transformation. UDCA beyond PBC is unjustified. PMID:22942741

  6. Molecular Mechanisms of Ursodeoxycholic Acid Toxicity & Side Effects: Ursodeoxycholic Acid Freezes Regeneration & Induces Hibernation Mode

    Directory of Open Access Journals (Sweden)

    Magd A. Kotb

    2012-07-01

    Full Text Available Ursodeoxycholic acid (UDCA is a steroid bile acid approved for primary biliary cirrhosis (PBC. UDCA is reported to have “hepato-protective properties”. Yet, UDCA has “unanticipated” toxicity, pronounced by more than double number of deaths, and eligibility for liver transplantation compared to the control group in 28 mg/kg/day in primary sclerosing cholangitis, necessitating trial halt in North America. UDCA is associated with increase in hepatocellular carcinoma in PBC especially when it fails to achieve biochemical response (10 and 15 years incidence of 9% and 20% respectively. “Unanticipated” UDCA toxicity includes hepatitis, pruritus, cholangitis, ascites, vanishing bile duct syndrome, liver cell failure, death, severe watery diarrhea, pneumonia, dysuria, immune-suppression, mutagenic effects and withdrawal syndrome upon sudden halt. UDCA inhibits DNA repair, co-enzyme A, cyclic AMP, p53, phagocytosis, and inhibits induction of nitric oxide synthatase. It is genotoxic, exerts aneugenic activity, and arrests apoptosis even after cellular phosphatidylserine externalization. UDCA toxicity is related to its interference with drug detoxification, being hydrophilic and anti-apoptotic, has a long half-life, has transcriptional mutational abilities, down-regulates cellular functions, has a very narrow difference between the recommended (13 mg/kg/day and toxic dose (28 mg/kg/day, and it typically transforms into lithocholic acid that induces DNA strand breakage, it is uniquely co-mutagenic, and promotes cell transformation. UDCA beyond PBC is unjustified.

  7. Electron-electron scattering-induced channel hot electron injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors with high-k/metal gate stacks

    International Nuclear Information System (INIS)

    Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Ho, Szu-Han; Tseng, Tseung-Yuen; Cheng, Osbert; Huang, Cheng-Tung; Lu, Ching-Sen

    2014-01-01

    This work investigates electron-electron scattering (EES)-induced channel hot electron (CHE) injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors (n-MOSFETs) with high-k/metal gate stacks. Many groups have proposed new models (i.e., single-particle and multiple-particle process) to well explain the hot carrier degradation in nanoscale devices and all mechanisms focused on Si-H bond dissociation at the Si/SiO 2 interface. However, for high-k dielectric devices, experiment results show that the channel hot carrier trapping in the pre-existing high-k bulk defects is the main degradation mechanism. Therefore, we propose a model of EES-induced CHE injection to illustrate the trapping-dominant mechanism in nanoscale n-MOSFETs with high-k/metal gate stacks.

  8. ACUTE TOXICITY OF FIVE SEDIMENT-ASSOCIATED METALS, INDIVIDUALLY AND IN A MIXTURE, TO THE ESTUARINE MEIOBENTHIC HARPACTICOID COPEPOD AMPHIASCUS TENUIREMIS. (R825279)

    Science.gov (United States)

    AbstractThe acute effects of many individual, seawater-solubilized metals on meiobenthic copepods and nematodes are well known. In sediments, however, metals most often occur as mixtures, and it is not known whether such mixtures exhibit simple additive toxicity to me...

  9. Effects of heavy metals (other than mercury) on marine and estuarine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, G W

    1971-01-01

    Heavy metals such as copper, zinc and lead are normal constituents of marine and estuarine environments. When additional quantities are introduced from industrial wastes or sewage they enter the biogeochemical cycle and, as a result of being potentially toxic, may interfere with the ecology of a particular environment. In different marine organisms, the behavior of heavy metals is described in terms of their absorption, storage, excretion and regulation when different concentrations are available in the environment. At higher concentrations, the detrimental effects of heavy metals become apparent and their different toxic effects and factors affecting them are also described. 78 references, 9 figures, 4 tables.

  10. Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity

    International Nuclear Information System (INIS)

    Oliveira, Paulo J.; Bjork, James A.; Santos, Maria S.; Leino, Richard L.; Froberg, M. Kent; Moreno, Antonio J.; Wallace, Kendall B.

    2004-01-01

    The cardiotoxicity associated with doxorubicin (DOX) therapy limits the total cumulative dose and therapeutic success of active anticancer chemotherapy. Cardiac mitochondria are implicated as primary targets for DOX toxicity, which is believed to be mediated by the generation of highly reactive free radical species of oxygen from complex I of the mitochondrial electron transport chain. The objective of this study was to determine if the protection demonstrated by carvedilol (CV), a β-adrenergic receptor antagonist with strong antioxidant properties, against DOX-induced mitochondrial-mediated cardiomyopathy [Toxicol. Appl. Pharmacol. 185 (2002) 218] is attributable to its antioxidant properties or its β-adrenergic receptor antagonism. Our results confirm that DOX induces oxidative stress, mitochondrial dysfunction, and histopathological lesions in the cardiac tissue, all of which are inhibited by carvedilol. In contrast, atenolol (AT), a β-adrenergic receptor antagonist lacking antioxidant properties, preserved phosphate energy charge but failed to protect against any of the indexes of DOX-induced oxidative mitochondrial toxicity. We therefore conclude that the cardioprotective effects of carvedilol against DOX-induced mitochondrial cardiotoxicity are due to its inherent antioxidant activity and not to its β-adrenergic receptor antagonism

  11. Microencapsulated Aliivibrio fischeri in Alginate Microspheres for Monitoring Heavy Metal Toxicity in Environmental Waters

    Directory of Open Access Journals (Sweden)

    Dedi Futra

    2014-12-01

    Full Text Available In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri encapsulated in alginate microspheres is described. Cu(II, Cd(II, Pb(II, Zn(II, Cr(VI, Co(II, Ni(II, Ag(I and Fe(II were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD range of 2.4–5.7% (n = 8. The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD for Cu(II (6.40 μg/L, Cd(II (1.56 μg/L, Pb(II (47 μg/L, Ag(I (18 μg/L than Zn(II (320 μg/L, Cr(VI (1,000 μg/L, Co(II (1700 μg/L, Ni(II (2800 μg/L, and Fe(III (3100 μg/L. Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples.

  12. Metal toxicity on the basis of the mulberry growth and the mineral status in leaves

    Energy Technology Data Exchange (ETDEWEB)

    Takagishi, H.; Goto, A.; Sato, T.

    1976-02-01

    Some pot experiments were carried out to evaluate the toxicity of metal elements to mulberry plant. Alluvial sandy loam with strong acidity of pH (H/sub 2/O) ca. 4.5 was used. Leaf yield was reduced as the supply of tested metal element was increased, but the degree of yield reduction was different for each mulberry variety; Kenmochi (Morus bombysis Koidz) was most resistant to toxicity, and followed by Kairyo-Nezumigaeshi (M. Alba Linn) and Roso (M. latifolia Pollet) in the decreasing order of the resistance. The toxicity of test elements was in the order of Cu > Co greater than or equal to Ni > Zn much greater than Mn. The order was estimated from the value half acting concentration in soil which is obtained from multiplication of the half application amount by active coefficient; here the former shows the concentration of each metal which reduces the leaf yield to a half by toxicity and the latter corresponds to the regression coefficient between the supplied amount of metals and the extracted amount by neutral ammonium acetate solution. The soil-mulberry plant relationship of the elements was studied. Nickel had the highest mobility into leaves from soil, and being followed by Zn, Co and Cu of which contents in leaves were not so much affected by their increasing supply. Owing to this relation, the toxicity on the basis of metal content in leaves was in the order of Co greater than or equal to Cu > Ni much greater than Zn > Mn and the order was somewhat different from the above-mentioned one. Phosphorus content in leaves tended to decrease by Zn and Co supply.

  13. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides).

    Science.gov (United States)

    Mehinto, Alvine C; Prucha, Melinda S; Colli-Dula, Reyna C; Kroll, Kevin J; Lavelle, Candice M; Barber, David S; Vulpe, Christopher D; Denslow, Nancy D

    2014-07-01

    Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20μg/kg of cadmium chloride (mean exposure level - 2.6μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly increased in the liver including genes encoding for the rate limiting steroidogenic acute regulatory protein and the catalytic enzyme 7-dehydrocholesterol reductase. Integration of the transcriptomic data using functional enrichment analyses revealed a number of enriched gene networks associated with previously reported adverse outcomes of cadmium exposure such as liver toxicity and impaired reproduction. Copyright © 2014 Elsevier B.V. All rights

  14. Toxicity of smelter slag-contaminated sediments from Upper Lake Roosevelt and associated metals to early life stage White Sturgeon (Acipenser transmontanus Richardson, 1836)

    Science.gov (United States)

    Little, E.E.; Calfee, R.D.; Linder, G.

    2014-01-01

    The toxicity of five smelter slag-contaminated sediments from the upper Columbia River and metals associated with those slags (cadmium, copper, zinc) was evaluated in 96-h exposures of White Sturgeon (Acipenser transmontanus Richardson, 1836) at 8 and 30 days post-hatch. Leachates prepared from slag-contaminated sediments were evaluated for toxicity. Leachates yielded a maximum aqueous copper concentration of 11.8 μg L−1 observed in sediment collected at Dead Man's Eddy (DME), the sampling site nearest the smelter. All leachates were nonlethal to sturgeon that were 8 day post-hatch (dph), but leachates from three of the five sediments were toxic to fish that were 30 dph, suggesting that the latter life stage is highly vulnerable to metals exposure. Fish maintained consistent and prolonged contact with sediments and did not avoid contaminated sediments when provided a choice between contaminated and uncontaminated sediments. White Sturgeon also failed to avoid aqueous copper (1.5–20 μg L−1). In water-only 96-h exposures of 35 dph sturgeon with the three metals, similar toxicity was observed during exposure to water spiked with copper alone and in combination with cadmium and zinc. Cadmium ranging from 3.2 to 41 μg L−1 or zinc ranging from 21 to 275 μg L−1 was not lethal, but induced adverse behavioral changes including a loss of equilibrium. These results suggest that metals associated with smelter slags may pose an increased exposure risk to early life stage sturgeon if fish occupy areas contaminated by slags.

  15. Abacavir-induced liver toxicity

    Directory of Open Access Journals (Sweden)

    Maria Diletta Pezzani

    2016-09-01

    Full Text Available Abacavir-induced liver toxicity is a rare event almost exclusively occurring in HLA B*5701-positive patients. Herein, we report one case of abnormal liver function tests occurring in a young HLA B*5701-negative woman on a stable nevirapine-based regimen with no history of liver problems or alcohol abuse after switching to abacavir from tenofovir. We also investigated the reasons for abacavir discontinuation in a cohort of patients treated with abacavir-lamivudine-nevirapine.

  16. Metal toxicity- a possible cause of idiopathic pulmonary fibrosis

    International Nuclear Information System (INIS)

    Javed, M.S.; Gilani, R.

    2011-01-01

    Idiopathic pulmonary fibrosis is a fatal disease of unknown etiology. Attempts are being made in the world to understand the disease mechanism by knowing its causes. Present research is a part to that contribution. Concentrations of some toxic metals were estimated in the blood and lung tissues of the persons diagnosed to be the subject of idiopathic pulmonary fibrosis. IPF subjects were selected for this purpose which was admitted in different hospitals in Lahore. Blood samples were taken directly from the patients whereas lung tissue samples were collected from the relevant biopsy labs. Three control blood samples were also collected from healthy persons. The samples were digested with Conc. HNO/sub 3/ to make their solutions for the estimation of metals. The metals selected were Cu, Pb, Cd, Cr, Be, Zn, Al, As and Co. Atomic Absorption Spectrophotometer (AAS) was used to estimate the metal concentrations in the sample solutions. The mean values of the concentrations (ppm) of these metals in the blood samples were Cu (0.65), Pb(0.69), Cd(1.17), Cr(0.21), Be(0.67), Zn(6.31), Al(1.33), As(0.46) and Co(0.46). The mean values of the concentrations (ppm) of these metals in the lung tissue samples were Cu (1.57), Pb(1.01), Cd(1.70), Cr(0.46), Be(2.02), Zn(10.20), Al(1.68), As(0.83) and Co(0.65). The concentrations of these metals were also estimated in the blood samples of control healthy persons and compared with the subjects. The difference of concentrations (ppm) in the blood samples of IPF subjects and Control Maximum (Mean Subjects - Control Max.) were Cu (0.50), Pb(0.62), Cd(1.17), Cr(0.21), Be(0.56), Zn(5.06), Al(1.31), As(0.46) and Co(0.46). Comparison of the mean values of concentrations of metals in blood samples of IPF subjects with the maximum concentration of metals in the blood samples of control healthy persons shows that metals levels are higher in the subjects than the control ones. i.e. Cu(76.92%), Pb(89.6%), Cd(100%), Cr(100%), Be(83.58%), Zn(80

  17. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in the seawater carbonate chemistry

    DEFF Research Database (Denmark)

    Trimborn, S; Lundholm, Nina; Thoms, S

    2008-01-01

    . In terms of carbon source, all species took up both CO2 and HCO3-. K-1/2 values for inorganic carbon uptake decreased with increasing pH in two species, while in N. navis-varingica apparent affinities did not change. While the contribution of HCO3- to net fixation was more than 85% in S. stellaris......The effects of pH-induced changes in seawater carbonate chemistry on inorganic carbon (C-i) acquisition and domoic acid (DA) production were studied in two potentially toxic diatom species, Pseudo-nitzschia multiseries and Nitzschia navis-varingica, and the non-toxic Stellarima stellaris. In vivo...... activities of carbonic anhydrase (CA), photosynthetic O-2 evolution and CO2 and HCO3- uptake rates were measured by membrane inlet MS in cells acclimated to low (7.9) and high pH (8.4 or 8.9). Species-specific differences in the mode of carbon acquisition were found. While extracellular carbonic anhydrase (e...

  18. Metal mobility and toxicity to microalgae associated with acidification of sediments: CO2 and acid comparison.

    Science.gov (United States)

    De Orte, M R; Lombardi, A T; Sarmiento, A M; Basallote, M D; Rodriguez-Romero, A; Riba, I; Del Valls, A

    2014-05-01

    The injection and storage of CO2 into marine geological formations has been suggested as a mitigation measure to prevent global warming. However, storage leaks are possible resulting in several effects in the ecosystem. Laboratory-scale experiments were performed to evaluate the effects of CO2 leakage on the fate of metals and on the growth of the microalgae Phaeodactylum tricornutum. Metal contaminated sediments were collected and submitted to acidification by means of CO2 injection or by adding HCl. Sediments elutriate were prepared to perform toxicity tests. The results showed that sediment acidification enhanced the release of metals to elutriates. Iron and zinc were the metals most influenced by this process and their concentration increased greatly with pH decreases. Diatom growth was inhibited by both processes: acidification and the presence of metals. Data obtained is this study is useful to calculate the potential risk of CCS activities to the marine environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Effect of YH0618 soup on chemotherapy-induced toxicity in patients with cancer who have completed chemotherapy: study protocol for a randomized controlled trial.

    Science.gov (United States)

    You, Jie-Shu; Chen, Jian-Ping; Chan, Jessie S M; Lee, Ho-Fun; Wong, Mei-Kuen; Yeung, Wing-Fai; Lao, Li-Xing

    2016-07-26

    The incidence of cancer has been staying at a high level worldwide in recent years. With advances in cancer diagnosis and therapy strategy, the survival rate of patients with cancer has been increasing, but the side effects of these treatments, especially chemotherapy, are obvious even when the chemotherapy ceases. YH0618, a prescription, has showed efficacy in reducing chemotherapy-induced toxicity through long clinical practice. However, there is no scientific research exploring the effects of YH0618 in patients with cancer. Therefore, using a randomized controlled trial, this study will explore the efficacy of YH0618 on ameliorating chemotherapy-induced toxicity including dermatologic toxicity, myelosuppression, hepatotoxicity and nephrotoxicity and improving fatigue in cancer patients who have completed chemotherapy. This is a prospective assessor-blinded, parallel, randomized controlled trial. Patients with cancer at any stage who have completed chemotherapy within two weeks will be randomly divided into group A (YH0618) and group B (wait-list) using a 1:1 allocation ratio. The chemotherapeutic agents include taxanes or anthracyclines. Subjects assigned to group A will receive YH0618 soup 6 days a week for 6 weeks and uncontrolled follow-up for 6 weeks, while group B are required to wait for 6 weeks before receiving YH0618 intervention. The primary outcome of this study is the incidence of protocol-specified grade ≥2 dermatologic toxicities graded by NCI CTCAE Chinese version 4.0 and changes of fingernail color, face skin color and tongue color evaluated by the L*a*b system within 6 weeks. There are some secondary outcomes associated with dermatologic toxicity including fatigue and clinical objective examination. There are few scientific and safe methods in ameliorating chemotherapy-induced toxicity. The proposed study may provide direct and convincing evidence to support YH0618 as an adjuvant treatment for reducing chemotherapy-induced toxicity, which

  20. Relation between the electrolytic solution pressures of the metals and their toxicity to the stickleback (Gasterosteus acelueatus l. )

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J R.E.

    1939-01-01

    Lethal concentration limits have been determined for the hydrogen ion and the ions of eighteen metals. The three-spined stickleback (Gasterosteus aculeatus l.) has been employed as test animal. According to their lethal concentration limits on a mg./l. basis their order of increasing toxicity is: Sr, Ca, Na, Ba, Mg, K, Mn, Co, Cr, Ni, Au, Zn, Cd, Pb, Al, Cu, H, Hg, and Ag. On a molar concentration basis the order is as follows: Na, Ca, Sr, Mg, Ba, K, Mn, Co, Cr, Ni, H, Zn, Al, Au, Cd, Pb, Cu, Hg, Ag. All these ions, with the exception of the first six (the metals of the alkalis and alkaline earths), bring about the death of fish by precipitating the gill secretions, thus causing asphyxiation. The alkali and alkaline earth metals appear to enter the body and act as true internal poisons. The position of iron is uncertain. The toxicity of solutions of iron salts appears to be due, mainly if not entirely, to their acidity. On a mg./l. or molar concentration basis there is a marked relationship between the toxicity of the metals and their solution pressures. The metals of very low solution pressure (Ag, Cu, etc.), i.e. those whose ions are most ready to part with their charges and enter into combination with other ions or compounds, are the most toxic as they precipitate the gill secretions and bring about asphyxiation with extreme rapidity. Metals of somewhat higher solution pressure (Zn, Pb, Cd) act in the same way but more slowly. Manganese, which of all the heavy metals has the highest solution pressure, takes effect very slowly and the ions of the alkali and alkaline earth metals, which have a high affinity for their charges, do not precipitate the gill secretions at all. In the case of all ions other than those of the alkali and alkaline earth metals the reactions responsible for the death of the fish take place outside the body. Thus their speed of action does not depend on their penetrating power and the permeability factor does not enter.

  1. Effects of irradiation of sewage sludge on heavy metal bioavailability

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Mayoh, K.R.

    1986-10-01

    Sewage sludges are a valuable resource to agriculture, but their use is limited by the hazards of pathogens, toxic chemicals and heavy metals. Irradiation can control the pathogens and deactivate some of the toxic chemicals. The relative cost of industrial-scale irradiation using accelerators has decreased progressively. This, coupled with the increasing necessity to recycle wastes, has led to renewed interest in irradiation of sludges. In response to this renewed interest, this report examines what is known about the effects of irradiation on the bioavailability of heavy metals. Very few studies have addressed this topic, although workers in the U.S. have claimed decreased solubility of metals in irradiated sludges. We have also briefly reviewed the general literature on sludge to gain indirect evidence on the likely effects. The scant data, often based on less than ideal experimental methodologies, show no major consistent effects of irradiation on the availability of heavy metals from sludge. The data are not sufficient to rule out such effects entirely, but the effects appear to be fairly subtle and not likely to persist beyond one growth season. 85 refs

  2. Perilous Effects of Heavy Metals Contamination on Human Health

    Directory of Open Access Journals (Sweden)

    Naseem Zahra

    2017-06-01

    Full Text Available Heavy metals form a versatile group of high density elements that vary considerably in their biological roles and chemical properties. Although many heavy metals are essential trace elements yet they have long been recognized as environmental pollutants due their toxic effects. Increased industrialization, urbanization anthropogenic activities like mining, smelting and other agricultural activities have resulted in accumulation of heavy metals in the environment. Heavy metals such as nickel, cadmium, zinc, copper, mercury, arsenic and chromium are not easily degradable and tend to build up in soil. These heavy metals through various routes such as fish and plants make their way into the human body and are known to have serious detrimental effects on human health at elevated levels. The harmful effects of some important heavy metals on human health have been discussed.

  3. Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome c-independent pathway

    Directory of Open Access Journals (Sweden)

    Castranova Vincent

    2009-04-01

    Full Text Available Abstract Background Carcinogenicity of nickel compounds has been well documented. However, the carcinogenic effect of metallic nickel is still unclear. The present study investigates metallic nickel nano- and fine particle-induced apoptosis and the signal pathways involved in this process in JB6 cells. The data obtained from this study will be of benefit for elucidating the pathological and carcinogenic potential of metallic nickel particles. Results Using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, we found that metallic nickel nanoparticles exhibited higher cytotoxicity than fine particles. Both metallic nickel nano- and fine particles induced JB6 cell apoptosis. Metallic nickel nanoparticles produced higher apoptotic induction than fine particles. Western-blot analysis showed an activation of proapoptotic factors including Fas (CD95, Fas-associated protein with death domain (FADD, caspase-8, death receptor 3 (DR3 and BID in apoptotic cells induced by metallic nickel particles. Immunoprecipitation (IP western blot analysis demonstrated the formation of the Fas-related death-inducing signaling complex (DISC in the apoptotic process. Furthermore, lamin A and beta-actin were cleaved. Moreover, we found that apoptosis-inducing factor (AIF was up-regulated and released from mitochondria to cytoplasm. Interestingly, although an up-regulation of cytochrome c was detected in the mitochondria of metallic nickel particle-treated cells, no cytochrome c release from mitochondria to cytoplasm was found. In addition, activation of antiapoptotic factors including phospho-Akt (protein kinase B and Bcl-2 was detected. Further studies demonstrated that metallic nickel particles caused no significant changes in the mitochondrial membrane permeability after 24 h treatment. Conclusion In this study, metallic nickel nanoparticles caused higher cytotoxicity and apoptotic induction than fine particles in JB6 cells. Apoptotic cell death

  4. Sexual Maturity and Life Stage Influences Toxic Metal Accumulation in Croatian Brown Bears.

    Science.gov (United States)

    Lazarus, Maja; Sekovanić, Ankica; Orct, Tatjana; Reljić, Slaven; Jurasović, Jasna; Huber, Đuro

    2018-02-01

    The influence of reproductive and (early) life stages on toxic metal levels was investigated in the brown bear (Ursus arctos), the largest mammalian predator species in Croatia. The purpose was to examine critical clusters in a population that might be at a higher risk of adverse health effects caused by metals as environmental contaminants. Levels of cadmium, mercury and lead in muscle, liver and kidney cortex of 325 male and 139 female bears, quantified by inductively coupled plasma mass spectrometry, were analysed according to distinct bear life stages (young: cub, yearling, subadult; mature: adult). Metal levels did not differ among sexes in young animals (< 4 years), except for mercury in muscles (higher in females), and adult females had higher cadmium and mercury. A trend of renal cadmium accumulation with age in immature male animals disappeared once they reached maturity, whereas for females this trend has only slowly declined in mature compared to immature bears. In early life stage (< 1 year), bear cubs had lower cadmium, comparable mercury, and higher lead in the kidneys than the bears of the following age category (yearlings). Due to a higher proportion of renal lead transfer from the mother to the cub compared with cadmium, it may be that the high burden of cadmium found in kidneys of older females has lower toxicological concern for their cubs than the lead content. Sex, reproductive, and life stages of bears were confirmed as important in assessing toxic metal burden.

  5. Antitoxic effect of Veratrilla baillonii on the acute toxicity in mice induced by Aconitum brachypodum, one of the genus Aconitum.

    Science.gov (United States)

    Ge, Yue-Bin; Jiang, Yi; Zhou, Huan; Zheng, Mi; Li, Jun; Huang, Xian-Ju; Gao, Yue

    2016-02-17

    Aconitum brachypodum Diels (Family Ranunculaceae) is well known for both its good therapy and high toxicity in Yunnan and Sichuan provinces in China. Noticeably, Veratrilla baillonii Franch (Family Gentianaceae), an ethnodrug used by Naxi and Lisu nationalities in Yunnan Province, has been widely considered to possess antitoxic effects on Aconitum plants in herbal therapy and folklore medicines. The present study was conducted to determine the detoxic activities of the water decoction of Veratrilla baillonii Franch (WVBF) on the the chloroform fraction of Aconitum brachypodum Diels (CFA) induced acute toxicity in mice. The physiological (symptoms, body weight, etc.) as well as pathological and clinical biochemistry parameters were assessed and used as the markers for the toxicity. (1)H nuclear magnetic resonance (NMR) based metabolic approach was adopted to further discuss the mechanism. The acute poisoning effects of CFA on mice were observed at doses of 20-62.5mgkg(-1), resulting in an oral median lethal dose (LD50) of 41.3mgkg(-1). Histologically, distinct degenerative changes of the heart, liver and kidney were observed. The biochemistry parameters in the serum as well as metabolites in heart and brain were also altered. However, WVBF (25-200mg/kg) attenuated all the acute toxicity and pathological changes, properly regulated the biochemistry parameters, and reversed the concentration alterations for some metabolites in the heart and brain of mice induced by 40mg/kg of CFA to a certain extent. WVBF significantly reduced the onset of the CFA toxicity. This study may contribute to further understanding of the toxicological and pharmacological profiles of Aconitum brachypodum and the detoxic property of Veratrilla baillonii. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Milk diets influence doxorubicin-induced intestinal toxicity in piglets

    DEFF Research Database (Denmark)

    Shen, R. L.; Pontoppidan, P. E.; Rathe, M.

    2016-01-01

    IL-8 levels compared with DOX-Form (all P diet. Thus a single dose of DOX induces intestinal toxicity in preweaned pigs...... and may lead to a systemic inflammatory response. The toxicity is affected by type of enteral nutrition with more pronounced GI toxicity when formula is fed compared with bovine colostrum. The results indicate that bovine colostrum may be a beneficial supplementary diet for children subjected...

  7. Effects of water quality parameters on boron toxicity to Ceriodaphnia dubia.

    Science.gov (United States)

    Dethloff, Gail M; Stubblefield, William A; Schlekat, Christian E

    2009-07-01

    The potential modifying effects of certain water quality parameters (e.g., hardness, alkalinity, pH) on the acute toxicity of boron were tested using a freshwater cladoceran, Ceriodaphnia dubia. By comparison, boron acute toxicity was less affected by water quality characteristics than some metals (e.g., copper and silver). Increases in alkalinity over the range tested did not alter toxicity. Increases in water hardness appeared to have an effect with very hard waters (>500 mg/L as CaCO(3)). Decreased pH had a limited influence on boron acute toxicity in laboratory waters. Increasing chloride concentration did not provide a protective effect. Boron acute toxicity was unaffected by sodium concentrations. Median acute lethal concentrations (LC(50)) in natural water samples collected from three field sites were all greater than in reconstituted laboratory waters that matched natural waters in all respects except for dissolved organic carbon. Water effect ratios in these waters ranged from 1.4 to 1.8. In subsequent studies using a commercially available source of natural organic matter, acute toxicity decreased with increased dissolved organic carbon, suggesting, along with the natural water studies, that dissolved organic carbon should be considered further as a modifier of boron toxicity in natural waters where it exceeds 2 mg/L.

  8. Protective effects of essential oil of Citrus limon against aspirin-induced toxicity in IEC-6 cells.

    Science.gov (United States)

    Bouzenna, Hafsia; Hfaiedh, Najla; Giroux-Metges, Marie-Agnès; Elfeki, Abdelfattah; Talarmin, Hélène

    2017-05-01

    Aspirin, one of the widely used nonsteroidal anti-inflammatory drugs, is the most highly consumed pharmaceutical product in the world. However, it has several side effects in cells. This study was designed to investigate the antioxidative activity and cytoprotective effects of essential oil of Citrus limon (EOC) extracted from leaves against aspirin-induced damages in the rat small intestine epithelial cells (IEC-6). Biochemical indicators were used to assess cytotoxicity and oxidative damages caused by aspirin treatment on IEC-6. Our results showed that the chemical characterization of EOC identified 25 compounds representing 98.19% of the total oil. The major compounds from this oil were z-citral (53.21%), neryl acetate (13.06%), geranyl acetate (10.33%), and limonene (4.23%). Aspirin induced a decrease in cell viability as well as an increase in superoxide dismutase (SOD) and catalase (CAT) activities. Contrariwise, the co-exposure of cells to aspirin and EOC alleviated every above syndrome by an increase in cell survival and decrease in SOD and CAT activities. In conclusion, the essential oil of C. limon has a potent cytoprotective effect against aspirin-induced toxicity in IEC-6 cells.

  9. Acclimation-induced changes in toxicity and induction of metallothionein-like proteins in the fathead minnow following sublethal exposure to cobalt, silver, and zinc

    International Nuclear Information System (INIS)

    Hobson, J.F.

    1986-01-01

    Increases in tolerance and resistance to metal toxicity by aquatic organisms have been linked to elevated levels of low-molecular-weight metal-binding proteins (e.g., metallothioneins). Acclimation-induced changes in toxic response and the concentration of metallothionein-like proteins (MTP) were studied in laboratory populations of the fathead minnow, Pimephales promelas, following sublethal exposure to Co, Ag, and Zn. Following 7 and 14 days of sublethal exposure, tolerance and resistance, as measured by acute toxicity values, were altered in a dose dependent fashion. Acute toxicity values returned to control levels after 21 days of continuous exposure. Tolerance and resistance of Co- and Zn-acclimated animals were depressed after a 7-day post-acclimation period in control water. Tolerance and resistance of Ag-acclimated animals were temporarily enhanced after 7 days post-acclimation and returned to control levels after 14 days. Accumulation of Co, Ag, and Zn measured as wholebody residues appeared to be regulated in 4 of 6 exposure regimes with residues reaching stable levels after 7 to 14 days of exposure. MTP was induced by exposure to 1.8 mg Zn/L and 0.01 mg Ag/L, however, no sustained (i.e., post 21 days) tolerance or resistance were observed at these dose levels indicating that these two biological responses may not be directly related

  10. The efficacy of Pistacia Terebinthus soap in the treatment of cetuximab-induced skin toxicity.

    Science.gov (United States)

    Tastekin, Didem; Tambas, Makbule; Kilic, Kemal; Erturk, Kayhan; Arslan, Deniz

    2014-12-01

    This open-labeled phase II, efficacy-finding study evaluated the efficiency and safety of Pistacia terebinthus soap in metastatic colorectal cancer patients who developed cetuximab induced skin toxicity. Patients who received cetuximab plus chemotherapy and developed Grade 2 or 3 skin toxicity were treated twice daily with a soap made of oil extracted from Pistacia terebinthus. During treatment, no topical or oral antibiotics, corticosteroids or other moisturizers were used. Patients were examined 1 week later and their photographs were taken. Fifteen mCRC patients who developed skin toxicity while receiving first-line CTX in combination with chemotherapy were included into the study. Eight patients were male and the median age was 58 (25-70). Sixty percent of the patients (n:9) had Grade 3 skin toxicity. Complete response rates in patients with Grade 2 and Grade 3 skin toxicities were 100 and 33%, respectively. In the remaining patients with Grade 3 toxicity the skin toxicity regressed to Grade 1. The objective response rate was 100%, and no delay, dose reduction or discontinuation of CTX treatment due to skin toxicity was necessary. Skin toxicity reoccurred in all patients when patients stopped administering the soap and therefore they used it throughout the cetuximab treatment. Pistacia terebinthus soap seemed to be used safely and effectively in the treatment of skin toxicity induced by Cetuximab.

  11. Cytoprotective and Antioxidant Effects of an Edible Herb, Enhydra fluctuans Lour. (Asteraceae), against Experimentally Induced Lead Acetate Intoxication.

    Science.gov (United States)

    Dua, Tarun K; Dewanjee, Saikat; Khanra, Ritu; Joardar, Swarnalata; Barma, Sujata; Das, Shilpa; Zia-Ul-Haq, M; De Feo, Vincenzo

    2016-01-01

    Enhydra fluctuans Lour. (Asteraceae), an edible aquatic herb, is traditionally employed against toxic effects of heavy metals in India. The present study was planned to discover the protective effect of edible extract of E. fluctuans (AEEF) against Pb toxicity. The cytoprotective role of AEEF was determined on murine hepatocytes employing MTT assay and Hoechst staining. The effects on lipid peroxidation, protein carbonylation, endogenous redox systems and the transcription levels of apoptotic proteins were studied after incubating the hepatocytes with AEEF (400 μg/ml) + Pb-acetate (6.8 μM). The defensive role of AEEF (100 mg/kg) against Pb-acetate (5 mg/kg) intoxication was measured in mice by in vivo assays. Biochemical, haematological and histological parameters, intracellular Pb burden and redox status were measured. AEEF exhibited a concentration dependent cytoprotective effect against Pb-induced cytotoxicity in vitro. Pb-acetate incubation significantly (p intoxicated animals. However, concurrent administration of AEEF (100 mg/kg) could significantly (p < 0.05-0.01) reinstate the Pb-acetate mediated toxicity. Presence of metal chelators and phyto-antioxidants within AEEF would offer overall protection through promoting Pb clearance coupled with restoring redox balance.

  12. heavy metal fixation in contaminated soil using non-toxic agents

    African Journals Online (AJOL)

    USER

    2013-05-08

    May 8, 2013 ... agricultural ecosystems (Chukwuka and Omotayo,. 2008), as well as remediation of former industrial sites which have been exposed to diffuse pollution by toxic heavy metals (Finžgar et al., 2006; Belviso et al., 2010). Among the remediation technologies available for contaminated sites, in situ (in place) ...

  13. An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans.

    Science.gov (United States)

    Zhao, Yunli; Wu, Qiuli; Wang, Dayong

    2016-02-01

    Although many studies have suggested the adverse effects of engineered nanomaterials (ENMs), the self-protection mechanisms for organisms against ENMs toxicity are still largely unclear. Using Caenorhabditis elegans as an in vivo assay system, our results suggest the toxicity of graphene oxide in reducing reproductive capacity by inducing damage on gonad development. The observed reproductive toxicity of GO on gonad development was due to the combinational effect of germline apoptosis and cell cycle arrest, and DNA damage activation might act as an inducer for this combinational effect. For the underlying molecular mechanism of reproductive toxicity of GO, we raised a signaling cascade of HUS-1/CLK-2-CEP-1-EGL-1-CED-4-CED-3 to explain the roles of core apoptosis signaling pathway and DNA damage checkpoints. Moreover, we identified a miRNA regulation mechanism activated by GO to suppress its induced reproductive toxicity. A mir-360 regulation mechanism was activated by GO to suppress its induced DNA damage-apoptosis signaling cascade through affecting component of CEP-1. Our identified epigenetic signal encoded protection mechanism activated by GO suggests a novel self-protection mechanism for organisms against the ENMs toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Toxic effects of fluoride on organisms.

    Science.gov (United States)

    Zuo, Huan; Chen, Liang; Kong, Ming; Qiu, Lipeng; Lü, Peng; Wu, Peng; Yang, Yanhua; Chen, Keping

    2018-04-01

    Accumulation of excess fluoride in the environment poses serious health risks to plants, animals, and humans. This endangers human health, affects organism growth and development, and negatively impacts the food chain, thereby affecting ecological balance. In recent years, numerous studies focused on the molecular mechanisms associated with fluoride toxicity. These studies have demonstrated that fluoride can induce oxidative stress, regulate intracellular redox homeostasis, and lead to mitochondrial damage, endoplasmic reticulum stress and alter gene expression. This paper reviews the present research on the potential adverse effects of overdose fluoride on various organisms and aims to improve our understanding of fluoride toxicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Application of reverse osmosis membrane for separation of toxic metal in water

    International Nuclear Information System (INIS)

    Syahril Ahmad

    2010-01-01

    Experimental separation of toxic metal in water has been done using reverse osmosis membrane made from composite material. Experiment was done by simulation in which metals that will be observed solved with water in different concentration and then used as feed solution in reverse osmosis process. Metals observed were Cr"6"+, Mn"2"+ and Pb"2"+ and reverse osmosis process was done at pressure of 40 Bar for all metals. Experiment result showed that value of feed solution concentration would affect flux and coefficient rejection of membrane. Composite membrane with polyacrylamide as active layer of membrane can reject metals observed with value of rejection coefficient more than 90%, except for Mn"2"+metal that have concentration 250 ppm and 500 ppm. (author)

  16. Effects of L-cysteine on lead acetate induced neurotoxicity in albino mice.

    Science.gov (United States)

    Mahmoud, Y I; Sayed, S S

    2016-07-01

    Lead is a toxic heavy metal that adversely affects nervous tissues; it often occurs as an environmental pollutant. We investigated histological changes in the cerebral cortex, hippocampus and cerebellum of adult albino mice following exposure to lead acetate. We also studied the possible ameliorative effect of the chelating agent, L-cysteine, on lead-induced neurotoxicity. We divided albino mice into six groups: 1) vehicle-only control, 2) L-cysteine control, 3 and 4) treated for 7 days with 20 and 40 mg/kg lead acetate, respectively, and 5 and 6) treated for 7 days with 20 and 40 mg/kg lead acetate, respectively, followed by 50 mg/kg L-cysteine for 7 days. Lead acetate administration caused disorganization of cell layers, neuronal loss and degeneration, and neuropil vacuolization. Brain sections from lead-intoxicated mice treated with L-cysteine showed fewer pathological changes; the neuropil showed less vacuolization and the neurons appeared less damaged. L-cysteine at the dose we used only marginally alleviated lead-induced toxicity.

  17. Sodium selenosulfate at an innocuous dose markedly prevents cisplatin-induced gastrointestinal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Sun, Kang [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China); Ni, Lijuan; Wang, Xufang [School of Chemistry and Materials of Science, University of Science and Technology of China, Hefei 230052, Anhui (China); Wang, Dongxu [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China); Zhang, Jinsong, E-mail: zjs@ahau.edu.cn [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China)

    2012-02-01

    Our previous studies in mice revealed that two weeks short-term toxicity of sodium selenosulfate was significantly lower than that of sodium selenite, but selenium repletion efficacy of both compounds was equivalent. In addition, we showed that sodium selenosulfate reduced nephrotoxicity of cisplatin (CDDP) without compromising its anticancer activity, thus leading to a dramatic increase of cancer cure rate from 25% to 75%. Hydration has been used in clinical practice to reduce CDDP-induced nephrotoxicity, but it cannot mitigate CDDP-induced gastrointestinal toxicity. The present work investigated whether sodium selenosulfate is a potential preventive agent for the gastrointestinal toxicity. In tumor-bearing mice, sodium selenosulfate was administered at a dose of 9.5 μmol/kg daily for 11 days, CDDP alone resulted in diarrhea by 88% on day 12, whereas the co-administration of CDDP and sodium selenosulfate dramatically reduced diarrhea to 6% (p < 0.0001). Such a prominent protective effect promoted us to evaluate the safety potential of long-term sodium selenosulfate application. Mice were administered with sodium selenosulfate or sodium selenite for 55 days at the doses of 12.7 and 19 μmol/kg. The low-dose sodium selenite caused growth suppression and hepatotoxicity which were aggravated by the high-dose, leading to 40% mortality rate, but no toxic symptoms were observed in the two sodium selenosulfate groups. Altogether these results clearly show that sodium selenosulfate at an innocuous dose can markedly prevent CDDP-induced gastrointestinal toxicity. -- Highlights: ►Cisplatin resulted in diarrhea in mice by 88%. ►i.p. selenosulfate at 9.5 μmol/kg daily for 11 days reduced diarrhea to 6%. ►i.p. selenosulfate at 19 μmol/kg daily for 55 days was not toxic. ►i.p. selenite at 19 μmol/kg daily for 55 days was lethal. ►Innocuous dose of selenosulfate greatly prevents cisplatin-induced diarrhea.

  18. Sodium selenosulfate at an innocuous dose markedly prevents cisplatin-induced gastrointestinal toxicity

    International Nuclear Information System (INIS)

    Li, Jun; Sun, Kang; Ni, Lijuan; Wang, Xufang; Wang, Dongxu; Zhang, Jinsong

    2012-01-01

    Our previous studies in mice revealed that two weeks short-term toxicity of sodium selenosulfate was significantly lower than that of sodium selenite, but selenium repletion efficacy of both compounds was equivalent. In addition, we showed that sodium selenosulfate reduced nephrotoxicity of cisplatin (CDDP) without compromising its anticancer activity, thus leading to a dramatic increase of cancer cure rate from 25% to 75%. Hydration has been used in clinical practice to reduce CDDP-induced nephrotoxicity, but it cannot mitigate CDDP-induced gastrointestinal toxicity. The present work investigated whether sodium selenosulfate is a potential preventive agent for the gastrointestinal toxicity. In tumor-bearing mice, sodium selenosulfate was administered at a dose of 9.5 μmol/kg daily for 11 days, CDDP alone resulted in diarrhea by 88% on day 12, whereas the co-administration of CDDP and sodium selenosulfate dramatically reduced diarrhea to 6% (p < 0.0001). Such a prominent protective effect promoted us to evaluate the safety potential of long-term sodium selenosulfate application. Mice were administered with sodium selenosulfate or sodium selenite for 55 days at the doses of 12.7 and 19 μmol/kg. The low-dose sodium selenite caused growth suppression and hepatotoxicity which were aggravated by the high-dose, leading to 40% mortality rate, but no toxic symptoms were observed in the two sodium selenosulfate groups. Altogether these results clearly show that sodium selenosulfate at an innocuous dose can markedly prevent CDDP-induced gastrointestinal toxicity. -- Highlights: ►Cisplatin resulted in diarrhea in mice by 88%. ►i.p. selenosulfate at 9.5 μmol/kg daily for 11 days reduced diarrhea to 6%. ►i.p. selenosulfate at 19 μmol/kg daily for 55 days was not toxic. ►i.p. selenite at 19 μmol/kg daily for 55 days was lethal. ►Innocuous dose of selenosulfate greatly prevents cisplatin-induced diarrhea.

  19. Toxicity of algal-derived aldehydes to two invertebrate species: Do heavy metal pollutants have a synergistic effect?

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Rebecca L. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom)]. E-mail: r.l.taylor@ncl.ac.uk; Caldwell, Gary S. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom); Bentley, Matthew G. [School of Marine Science and Technology, University of Newcastle upon Tyne, Ridley Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2005-08-15

    The recent discovery of the production of anti-proliferative aldehydes in a variety of microalgal species has lead to considerable investigation into the effects of these toxins on aquatic invertebrates. Studies have, however, rarely considered the impact pollutants may have on grazer responses to algal toxins. In this study, the acute toxicities of five aldehydes to the rotifer Brachionus plicatilis and nauplii of the brine shrimp Artemia salina are examined using immersion assays. In addition, the effect of a representative of these aldehydes in the presence of sub-lethal levels of heavy metals was examined. B. plicatilis generally showed greater sensitivity to the aldehydes than A. salina. The polyunsaturated 2-trans,4-trans-decadienal was the most toxic to both species having 24 h LD{sub 50} values of 7 and 20 {mu}M for B. plicatilis and A. salina, respectively. The remaining aldehydes had different orders of toxicity for the two species with a stronger relationship observed between mortality and aldehyde carbon-chain length for A. salina whereas B. plicatilis mortality showed a stronger dependence on the presence of carbon-carbon double bonds in the aldehydes. The presence of 1 {mu}M of copper sulphate in solutions of decadienal resulted in the reduction of the 24 h LD{sub 50} of decadienal by approximately a third for both species. 1 {mu}M of copper chloride in solutions of decadienal reduced the 24 h LD{sub 50} of decadienal to A. salina nauplii by approximately 11% and 1 {mu}M zinc sulphate caused a reduction of only 3%. Pre-exposure of the organisms to 1 {mu}M copper sulphate had no significant impact on their subsequent mortality in decadienal. The ecological implications and the possible mechanisms for the action of copper sulphate on the response of organisms to decadienal are discussed.

  20. Toxicity of algal-derived aldehydes to two invertebrate species: Do heavy metal pollutants have a synergistic effect?

    International Nuclear Information System (INIS)

    Taylor, Rebecca L.; Caldwell, Gary S.; Bentley, Matthew G.

    2005-01-01

    The recent discovery of the production of anti-proliferative aldehydes in a variety of microalgal species has lead to considerable investigation into the effects of these toxins on aquatic invertebrates. Studies have, however, rarely considered the impact pollutants may have on grazer responses to algal toxins. In this study, the acute toxicities of five aldehydes to the rotifer Brachionus plicatilis and nauplii of the brine shrimp Artemia salina are examined using immersion assays. In addition, the effect of a representative of these aldehydes in the presence of sub-lethal levels of heavy metals was examined. B. plicatilis generally showed greater sensitivity to the aldehydes than A. salina. The polyunsaturated 2-trans,4-trans-decadienal was the most toxic to both species having 24 h LD 50 values of 7 and 20 μM for B. plicatilis and A. salina, respectively. The remaining aldehydes had different orders of toxicity for the two species with a stronger relationship observed between mortality and aldehyde carbon-chain length for A. salina whereas B. plicatilis mortality showed a stronger dependence on the presence of carbon-carbon double bonds in the aldehydes. The presence of 1 μM of copper sulphate in solutions of decadienal resulted in the reduction of the 24 h LD 50 of decadienal by approximately a third for both species. 1 μM of copper chloride in solutions of decadienal reduced the 24 h LD 50 of decadienal to A. salina nauplii by approximately 11% and 1 μM zinc sulphate caused a reduction of only 3%. Pre-exposure of the organisms to 1 μM copper sulphate had no significant impact on their subsequent mortality in decadienal. The ecological implications and the possible mechanisms for the action of copper sulphate on the response of organisms to decadienal are discussed

  1. Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies

    Science.gov (United States)

    Vinod Kumar, V.; Anbarasan, S.; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu

    2014-08-01

    Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg2+, Cd2+ and Pb2+ metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology.

  2. Toxicity of Metals to a Freshwater Snail, Melanoides tuberculata

    Directory of Open Access Journals (Sweden)

    M. Shuhaimi-Othman

    2012-01-01

    Full Text Available Adult freshwater snails Melanoides tuberculata (Gastropod, Thiaridae were exposed for a four-day period in laboratory conditions to a range of copper (Cu, cadmium (Cd, zinc (Zn, lead (Pb, nickel (Ni, iron (Fe, aluminium (Al, and manganese (Mn concentrations. Mortality was assessed and median lethal times (LT50 and concentrations (LC50 were calculated. LT50 and LC50 increased with the decrease in mean exposure concentrations and times, respectively, for all metals. The LC50 values for the 96-hour exposures to Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 0.14, 1.49, 3.90, 6.82, 8.46, 8.49, 68.23, and 45.59 mg L−1, respectively. Cu was the most toxic metal to M. tuberculata, followed by Cd, Zn, Pb, Ni, Fe, Mn, and Al (Cu > Cd > Zn > Pb > Ni > Fe > Mn > Al. Metals bioconcentration in M. tuberculata increases with exposure to increasing concentrations and Cu has the highest accumulation (concentration factor in the soft tissues. A comparison of LC50 values for metals for this species with those for other freshwater gastropods reveals that M. tuberculata is equally sensitive to metals.

  3. Phytoextraction of toxic metals: a central role for glutathione.

    Science.gov (United States)

    Seth, C S; Remans, T; Keunen, E; Jozefczak, M; Gielen, H; Opdenakker, K; Weyens, N; Vangronsveld, J; Cuypers, A

    2012-02-01

    Phytoextraction has a promising potential as an environmentally friendly clean-up method for soils contaminated with toxic metals. To improve the development of efficient phytoextraction strategies, better knowledge regarding metal uptake, translocation and detoxification in planta is a prerequisite. This review highlights our current understanding on these mechanisms, and their impact on plant growth and health. Special attention is paid to the central role of glutathione (GSH) in this process. Because of the high affinity of metals to thiols and as a precursor for phytochelatins (PCs), GSH is an essential metal chelator. Being an important antioxidant, a direct link between metal detoxification and the oxidative challenge in plants growing on contaminated soils is observed, where GSH could be a key player. In addition, as redox couple, oxidized and reduced GSH transmits specific information, in this way tuning cellular signalling pathways under environmental stress conditions. Possible improvements of phytoextraction could be achieved by using transgenic plants or plant-associated microorganisms. Joined efforts should be made to cope with the challenges faced with phytoextraction in order to successfully implement this technique in the field. © 2011 Blackwell Publishing Ltd.

  4. Ion-induced effects on metallic nanoparticles; Ioneninduzierte Effekte an metallischen Nanoteilchen

    Energy Technology Data Exchange (ETDEWEB)

    Klimmer, Andreas

    2010-02-25

    This work deals with the ion-irradiation of metallic nanoparticles in combination with various substrates. Particle diameters were systematically varied within the range of 2.5-14 nm, inter-particle distances range from 30-120 nm. Irradiations were performed with various inert gas ions with energies of 200 keV, resulting in an average ion range larger than the particle dimensions and therefore the effects of irradiation are mainly due to creation of structural defects within the particles and the underlying substrate as well. The main part of this work deals with ion-induced burrowing of metallic nanoparticles into the underlying substrate. The use of micellar nanoparticles with sharp size distribution combined with AFM and TEM analysis allows a much more detailed look at this effect than other works on that topic so far. With respect to the particle properties also a detailed look on the effect of irradiation on the particle structure would be interesting, which might lead to a deliberate influence on magnetic properties, for example. Within the context of this work, first successful experiments were performed on FePt particles, showing a significant reduction of the ordering temperature leading to the magnetically interesting, ordered L1{sub 0} phase. (orig.)

  5. Toxicity of proton-metal mixtures in the field: Linking stream macroinvertebrate species diversity to chemical speciation and bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Stockdale, Anthony [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Tipping, Edward, E-mail: et@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Lofts, Stephen [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Ormerod, Stephen J. [Catchment Research Group, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3US (United Kingdom); Clements, William H. [Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523 (United States); Blust, Ronny [Ecophysiology, Biochemistry and Toxicology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2010-10-01

    Understanding metal and proton toxicity under field conditions requires consideration of the complex nature of chemicals in mixtures. Here, we demonstrate a novel method that relates streamwater concentrations of cationic metallic species and protons to a field ecological index of biodiversity. The model WHAM-F{sub TOX} postulates that cation binding sites of aquatic macroinvertebrates can be represented by the functional groups of natural organic matter (humic acid), as described by the Windermere Humic Aqueous Model (WHAM6), and supporting field evidence is presented. We define a toxicity function (F{sub TOX}) by summing the products: (amount of invertebrate-bound cation) x (cation-specific toxicity coefficient, {alpha}{sub i}). Species richness data for Ephemeroptera, Plecoptera and Trichoptera (EPT), are then described with a lower threshold of F{sub TOX}, below which all organisms are present and toxic effects are absent, and an upper threshold above which organisms are absent. Between the thresholds the number of species declines linearly with F{sub TOX}. We parameterised the model with chemistry and EPT data for low-order streamwaters affected by acid deposition and/or abandoned mines, representing a total of 412 sites across three continents. The fitting made use of quantile regression, to take into account reduced species richness caused by (unknown) factors other than cation toxicity. Parameters were derived for the four most common or abundant cations, with values of {alpha}{sub i} following the sequence (increasing toxicity) H{sup +} < Al < Zn < Cu. For waters affected mainly by H{sup +} and Al, F{sub TOX} shows a steady decline with increasing pH, crossing the lower threshold near to pH 7. Competition effects among cations mean that toxicity due to Cu and Zn is rare at lower pH values, and occurs mostly between pH 6 and 8.

  6. Evaluation of toxic metals and essential elements in children with learning disabilities from a rural area of southern Brazil.

    Science.gov (United States)

    do Nascimento, Sabrina Nunes; Charão, Mariele Feiffer; Moro, Angela Maria; Roehrs, Miguel; Paniz, Clovis; Baierle, Marília; Brucker, Natália; Gioda, Adriana; Barbosa, Fernando; Bohrer, Denise; Ávila, Daiana Silva; Garcia, Solange Cristina

    2014-10-17

    Children's exposure to metals can result in adverse effects such as cognitive function impairments. This study aimed to evaluate some toxic metals and levels of essential trace elements in blood, hair, and drinking water in children from a rural area of Southern Brazil. Cognitive ability and δ-aminolevulinate dehydratase (ALA-D) activity were evaluated. Oxidative stress was evaluated as a main mechanism of metal toxicity, through the quantification of malondialdehyde (MDA) levels. This study included 20 children from a rural area and 20 children from an urban area. Our findings demonstrated increase in blood lead (Pb) levels (BLLs). Also, increased levels of nickel (Ni) in blood and increase of aluminum (Al) levels in hair and drinking water in rural children were found. Deficiency in selenium (Se) levels was observed in rural children as well. Rural children with visual-motor immaturity presented Pb levels in hair significantly increased in relation to rural children without visual-motor immaturity (p < 0.05). Negative correlations between BLLs and ALA-D activity and positive correlations between BLLs and ALA-RE activity were observed. MDA was significantly higher in rural compared to urban children (p < 0.05). Our findings suggest that rural children were co-exposed to toxic metals, especially Al, Pb and Ni. Moreover, a slight deficiency of Se was observed. Low performance on cognitive ability tests and ALA-D inhibition can be related to metal exposure in rural children. Oxidative stress was suggested as a main toxicological mechanism involved in metal exposure.

  7. Evaluation of Toxic Metals and Essential Elements in Children with Learning Disabilities from a Rural Area of Southern Brazil

    Directory of Open Access Journals (Sweden)

    Sabrina Nunes do Nascimento

    2014-10-01

    Full Text Available Children’s exposure to metals can result in adverse effects such as cognitive function impairments. This study aimed to evaluate some toxic metals and levels of essential trace elements in blood, hair, and drinking water in children from a rural area of Southern Brazil. Cognitive ability and δ-aminolevulinate dehydratase (ALA-D activity were evaluated. Oxidative stress was evaluated as a main mechanism of metal toxicity, through the quantification of malondialdehyde (MDA levels. This study included 20 children from a rural area and 20 children from an urban area. Our findings demonstrated increase in blood lead (Pb levels (BLLs. Also, increased levels of nickel (Ni in blood and increase of aluminum (Al levels in hair and drinking water in rural children were found. Deficiency in selenium (Se levels was observed in rural children as well. Rural children with visual-motor immaturity presented Pb levels in hair significantly increased in relation to rural children without visual-motor immaturity (p < 0.05. Negative correlations between BLLs and ALA-D activity and positive correlations between BLLs and ALA-RE activity were observed. MDA was significantly higher in rural compared to urban children (p < 0.05. Our findings suggest that rural children were co-exposed to toxic metals, especially Al, Pb and Ni. Moreover, a slight deficiency of Se was observed. Low performance on cognitive ability tests and ALA-D inhibition can be related to metal exposure in rural children. Oxidative stress was suggested as a main toxicological mechanism involved in metal exposure.

  8. Determination of toxic metals in salt deposits in Bormanda, Nigeria ...

    African Journals Online (AJOL)

    lawal

    3,12,13,14,15,16 . Chromium and Arsenic were not detected in any salt sample. Generally, the results of this study revealed the occurrence of some toxic metals in association with the soil salt deposits. Therefore, it is important to undertake Hazard Analysis and Critical Control. Point (HACCP) studies to identify and integrate.

  9. Soluble transition metals cause the pro-inflammatory effects of welding fumes in vitro

    International Nuclear Information System (INIS)

    McNeilly, Jane D.; Heal, Mathew R.; Beverland, Iain J.; Howe, Alan; Gibson, Mark D.; Hibbs, Leon R.; MacNee, William; Donaldson, Ken

    2004-01-01

    Epidemiological studies have consistently reported a higher incidence of respiratory illnesses such as bronchitis, metal fume fever (MFF), and chronic pneumonitis among welders exposed to high concentrations of metal-enriched welding fumes. Here, we studied the molecular toxicology of three different metal-rich welding fumes: NIMROD 182, NIMROD c276, and COBSTEL 6. Fume toxicity in vitro was determined by exposing human type II alveolar epithelial cell line (A549) to whole welding fume, a soluble extract of fume or the 'washed' particulate. All whole fumes were significantly toxic to A549 cells at doses >63 μg ml -1 (TD 50; 42, 25, and 12 μg ml -1 , respectively). NIMROD c276 and COBSTEL 6 fumes increased levels of IL-8 mRNA and protein at 6 h and protein at 24 h, as did the soluble fraction alone, whereas metal chelation of the soluble fraction using chelex beads attenuated the effect. The soluble fraction of all three fumes caused a rapid depletion in intracellular glutathione following 2-h exposure with a rebound increase by 24 h. In addition, both nickel based fumes, NIMROD 182 and NIMROD c276, induced significant reactive oxygen species (ROS) production in A549 cells after 2 h as determined by DCFH fluorescence. ICP analysis confirmed that transition metal concentrations were similar in the whole and soluble fractions of each fume (dominated by Cr), but significantly less in both the washed particles and chelated fractions. These results support the hypothesis that the enhanced pro-inflammatory responses of welding fume particulates are mediated by soluble transition metal components via an oxidative stress mechanism

  10. Spin-filter effect in normal metal/ferromagnetic insulator/normal metal/superconductor structures

    International Nuclear Information System (INIS)

    Li, Hong; Yang, Wei; Yang, Xinjian; Qin, Minghui; Guo, Jianqin

    2007-01-01

    Taking into account the thickness of the ferromagnetic insulator, the spin-filter effect in normal metal/ferromagnetic insulator/normal metal/superconductor (NM/FI/NM/SC) junctions is studied based on the Blonder-Tinkham-Klapwijk (BTK) theory. It is shown that a spin-dependent energy shift during the tunneling process induces splitting of the subgap resonance peaks. The spin polarization due to the spin-filter effect of the FI causes an imbalance of the peaks heights and can enhance the Zeeman splitting of the gap peaks caused by an applied magnetic field. The spin-filter effect has no contribution to the proximity-effect-induced superconductivity in NM interlayer

  11. Acute toxicity of quantum dots on late pregnancy mice: Effects of nanoscale size and surface coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wanyi [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); The Second Affiliated Hospital of Nanchang University, Nanchang 330000 (China); Yang, Lin; Kuang, Huijuan; Yang, Pengfei [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Aguilar, Zoraida P.; Wang, Andrew [Ocean NanoTech, LLC, Springdale, AR72764 (United States); Fu, Fen, E-mail: fu_fen@163.com [The Second Affiliated Hospital of Nanchang University, Nanchang 330000 (China); Xu, Hengyi, E-mail: kidyxu@163.com [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China)

    2016-11-15

    Graphical abstract: In spite of the immense benefits from quantum dots (QDs), there is scanty information regarding their toxicity mechanisms against late pregnancy. - Highlights: • QDs and CdCl{sub 2} were effectively blocked by the placental barrier. • CdSe QDs more effectively altered the expression levels of susceptive genes. • Nanoscale size of QDs is more important than free Cd in inducing toxicity. • Outer surface shell coating of QDs played a protective role. - Abstract: In this study, the effects of cadmium containing QDs (such as CdSe/ZnS and CdSe QDs) and bulk CdCl{sub 2} in pregnant mice, their fetuses, and the pregnancy outcomes were investigated. It was shown that although the QDs and bulk CdCl{sub 2} were effectively blocked by the placental barrier, the damage on the placenta caused by CdSe QDs still led to fetus malformation, while the mice in CdSe/ZnS QDs treatment group exhibited slightly hampered growth but showed no significant abnormalities. Moreover, the Cd contents in the placenta and the uterus of CdSe QDs and CdSe/ZnS QDs treatment groups showed significantly higher than the CdCl{sub 2} treated group which indicated that the nanoscale size of the QDs allowed relative ease of entry into the gestation tissues. In addition, the CdSe QDs more effectively altered the expression levels of susceptive genes related to cell apoptosis, dysplasia, metal transport, cryptorrhea, and oxidative stress, etc. These findings suggested that the nanoscale size of the QDs were probably more important than the free Cd in inducing toxicity. Furthermore, the results indicated that the outer surface shell coating played a protective role in the adverse effects of QDs on late pregnancy mice.

  12. Intervention of ginger or propolis ameliorates methotrexate-induced ileum toxicity.

    Science.gov (United States)

    Abdul-Hamid, Manal; Salah, Marwa

    2016-02-01

    The long-term clinical use of methotrexate (MTX) is restricted due to its severe intestinal toxicity. The protective effect of ginger or propolis on the toxicity induced by MTX is relatively less understood, so the possible protective effect of ginger or propolis, used separately, was investigated. A total of 60 male albino rats were divided into six groups as follows: (1) control group; (2) ginger group; (3) propolis group; (4) MTX group; (5) ginger + MTX group; and (6) propolis + MTX group. The present results show that MTX caused ileum injury, including shortening and fusion of the villi, inflammatory cell infiltration and goblet cell depletion. Administration of ginger or propolis ameliorated the MTX-induced ileum injury as shown by histological, immunohistochemical and ultrastructural investigations and statistical analysis. This is revealed by intact villi, which shows marked increase in brown colouration of proliferating cell nuclear antigen positive nuclei in the crypts region, improvement in the number of goblet cells and brush border length of ileum. The current results conclude the efficacy and safety of ginger and propolis, which may be due to their antioxidant properties. © The Author(s) 2013.

  13. Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-beta (1-42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators.

    Science.gov (United States)

    Tõugu, Vello; Karafin, Ann; Zovo, Kairit; Chung, Roger S; Howells, Claire; West, Adrian K; Palumaa, Peep

    2009-09-01

    Aggregation of amyloid-beta (Abeta) peptides is a central phenomenon in Alzheimer's disease. Zn(II) and Cu(II) have profound effects on Abeta aggregation; however, their impact on amyloidogenesis is unclear. Here we show that Zn(II) and Cu(II) inhibit Abeta(42) fibrillization and initiate formation of non-fibrillar Abeta(42) aggregates, and that the inhibitory effect of Zn(II) (IC(50) = 1.8 micromol/L) is three times stronger than that of Cu(II). Medium and high-affinity metal chelators including metallothioneins prevented metal-induced Abeta(42) aggregation. Moreover, their addition to preformed aggregates initiated fast Abeta(42) fibrillization. Upon prolonged incubation the metal-induced aggregates also transformed spontaneously into fibrils, that appear to represent the most stable state of Abeta(42). H13A and H14A mutations in Abeta(42) reduced the inhibitory effect of metal ions, whereas an H6A mutation had no significant impact. We suggest that metal binding by H13 and H14 prevents the formation of a cross-beta core structure within region 10-23 of the amyloid fibril. Cu(II)-Abeta(42) aggregates were neurotoxic to neurons in vitro only in the presence of ascorbate, whereas monomers and Zn(II)-Abeta(42) aggregates were non-toxic. Disturbed metal homeostasis in the vicinity of zinc-enriched neurons might pre-dispose formation of metal-induced Abeta aggregates, subsequent fibrillization of which can lead to amyloid formation. The molecular background underlying metal-chelating therapies for Alzheimer's disease is discussed in this light.

  14. Phytoextraction of toxic metals by sunflower and corn plants

    Czech Academy of Sciences Publication Activity Database

    Soudek, Petr; Petrová, Šárka; Benešová, Dagmar; Vaněk, Tomáš

    2010-01-01

    Roč. 8, 3-4 (2010), s. 383-390 ISSN 1459-0255 R&D Projects: GA MŠk 2B08058; GA MŠk 1M06030; GA MŠk OC09082 Institutional research plan: CEZ:AV0Z50380511 Keywords : Toxic metals * lead * zinc Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 0.425, year: 2010 www.isfae.org/scientficjournal/2010/issue3/abstracts/abstract68.php

  15. Toxicity of PEG-Coated CoFe2O4 Nanoparticles with Treatment Effect of Curcumin

    Science.gov (United States)

    Akhtar, Shahnaz; An, Wenzhen; Niu, Xiaoying; Li, Kang; Anwar, Shahzad; Maaz, Khan; Maqbool, Muhammad; Gao, Lan

    2018-02-01

    In this work, CoFe2O4 nanoparticles coated with polyethylene glycol (PEG) were successfully synthesized via a hydrothermal technique. Morphological studies of the samples confirmed the formation of polycrystalline pure-phase PEG-CoFe2O4 nanoparticles with sizes of about 24 nm. Toxicity induced by CoFe2O4 nanoparticles was investigated, and biological assays were performed to check the toxicity effects of CoFe2O4 nanoparticles. Moreover, the healing effect of toxicity induced in living organisms was studied using curcumin and it was found that biochemical indexes detoxified and improved to reach its normal level after curcumin administration. Thus, PEG-coated CoFe2O4 synthesized through a hydrothermal method can be utilized in biomedical applications and curcumin, which is a natural chemical with no side effects, can be used for the treatment of toxicity induced by the nanoparticles in living organisms.

  16. Red mud (RM)-Induced enhancement of iron plaque formation reduces arsenic and metal accumulation in two wetland plant species.

    Science.gov (United States)

    Yang, J X; Guo, Q J; Yang, J; Zhou, X Y; Ren, H Y; Zhang, H Z; Xu, R X; Wang, X D; Peters, M; Zhu, G X; Wei, R F; Tian, L Y; Han, X K

    2016-01-01

    Human activities have resulted in arsenic (As) and heavy metals accumulation in paddy soils in China. Phytoremediation has been suggested as an effective and low-cost method to clean up contaminated soils. A combined soil-sand pot experiment was conducted to investigate the influence of red mud (RM) supply on iron plaque formation and As and heavy metal accumulation in two wetland plant species (Cyperus alternifolius Rottb., Echinodorus amazonicus Rataj), using As and heavy metals polluted paddy soil combined with three rates of RM application (0, 2%, 5%). The results showed that RM supply significantly decreased As and heavy metals accumulation in shoots of the two plants due to the decrease of As and heavy metal availability and the enhancement of the formation of iron plaque on the root surface and in the rhizosphere. Both wetland plants supplied with RM tended to have more Fe plaque, higher As and heavy metals on roots and in their rhizospheres, and were more tolerant of As and heavy metal toxicity. The results suggest that RM-induced enhancement of the formation of iron plaque on the root surface and in the rhizosphere of wetland plants may be significant for remediation of soils contaminated with As and heavy metals.

  17. Effect of excess supply of heavy metals on the absorption and translocation of iron (/sup 59/Fe) in barley

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, C P; Bisht, S S; Agarwala, S C [Lucknow Univ. (India). Dept. of Botany

    1978-03-01

    The effects of an excess supply of manganese, copper, zinc, cobalt, and nickel on the absorption and translocation of iron tagged with /sup 59/Fe were xamined in 15 days old barley seedlings raised in solution culture. Excess heavy metal treatments and /sup 59/Fe were administered in three different ways: (i) both excess heavy metals and iron supplied through roots- Series A; (ii) excess heavy metal supplied as foliar spray and iron through roots- Series B; and (iii) excess heavy metal supplied through roots and iron as foliar spray-Series C. Results obtained revealed that excess concentrations of manganese, zinc, cobalt, and a to a lesser extent copper interfered with the absorption of iron from the rooting medium, but excess nickel enhanced the absorption and translocation of iron. Thus, unlike other metals, a toxic supply of nickel does not induce iron deficiency.

  18. Use of human milk in the assessment of toxic metal exposure and essential element status in breastfeeding women and their infants in coastal Croatia.

    Science.gov (United States)

    Grzunov Letinić, Judita; Matek Sarić, Marijana; Piasek, Martina; Jurasović, Jasna; Varnai, Veda Marija; Sulimanec Grgec, Antonija; Orct, Tatjana

    2016-12-01

    Pregnant and lactating women and infants are vulnerable population groups for adverse effects of toxic metals due to their high nutritional needs and the resultant increased gastrointestinal absorption of both, essential and toxic elements. Although breastfeeding is recommended for infants worldwide, as human milk is the best source of nutrients and other required bioactive factors, it is also a pathway of maternal excretion of toxic substances including toxic metals and thus a source of infant exposure. The aim of this research was to assess health risks in breastfeeding women in the coastal area of the Republic of Croatia and their infants (N=107) due to maternal exposure to Cd and Pb via cigarette smoking, and Hg via seafood and dental amalgam fillings, and their interaction with essential elements. Biological markers of exposure were the concentrations of main toxic metals Pb, Cd and Hg in maternal blood and three types of breast milk throughout lactation stages. Biological markers of effects were the levels of essential elements Ca, Fe, Cu, Zn and Se in maternal serum and breast milk. With regard to cigarette smoking as a source of exposure to Cd and Pb, there were effects of smoking on Cd concentration in blood and correlations between the smoking index and Cd concentrations in maternal blood (ρ=0.593; Pexposure in both breastfeeding women and their infants. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Fractionation and potential toxic risk of metals from superficial sediment in Itaipu Lake--boundary between Brazil and Paraguay.

    Science.gov (United States)

    Kalwa, Miguel; Quináia, Sueli Pércio; Pletsch, Adelmo L; Techy, Laura; Felsner, Maria Lurdes

    2013-01-01

    The objective of this study was to evaluate fractions of metals (labile and pseudo-total) extracted from sediment samples collected in Itaipu Lake (boundary between Brazil and Paraguay) and to assess the dynamics and mobility of these fractions by identifying the same bioavailability and ecological risk to metals in the aquatic environment. The concentrations of metal ions were determined by flame atomic absorption spectrometry. There was a correlation between the metal ions, both in the labile and the pseudo-total, with regard to particle size. To assess metals concentrations in sediment, numerical sediment-quality guidelines were applied. The concentrations of aluminum, cadmium, iron, manganese, lead, and zinc in all sediment samples are lower than the proposed probable effects level (PEL), thus possibly indicating that there are no harmful effects from these metals. In contrast, concentrations of copper, chromium, and nickel exceeded the PEL in some samples, thus indicating that these stations are at potential risk. The level of contamination in sediments of Itaipu Lake for all metals was evaluated using contamination factor, degree of contamination, and sum-of-metals toxic unit.

  20. Laser-Induced Breakdown Spectroscopy for Rapid Discrimination of Heavy-Metal-Contaminated Seafood Tegillarca granosa

    Directory of Open Access Journals (Sweden)

    Guoli Ji

    2017-11-01

    Full Text Available Tegillarca granosa samples contaminated artificially by three kinds of toxic heavy metals including zinc (Zn, cadmium (Cd, and lead (Pb were attempted to be distinguished using laser-induced breakdown spectroscopy (LIBS technology and pattern recognition methods in this study. The measured spectra were firstly processed by a wavelet transform algorithm (WTA, then the generated characteristic information was subsequently expressed by an information gain algorithm (IGA. As a result, 30 variables obtained were used as input variables for three classifiers: partial least square discriminant analysis (PLS-DA, support vector machine (SVM, and random forest (RF, among which the RF model exhibited the best performance, with 93.3% discrimination accuracy among those classifiers. Besides, the extracted characteristic information was used to reconstruct the original spectra by inverse WTA, and the corresponding attribution of the reconstructed spectra was then discussed. This work indicates that the healthy shellfish samples of Tegillarca granosa could be distinguished from the toxic heavy-metal-contaminated ones by pattern recognition analysis combined with LIBS technology, which only requires minimal pretreatments.

  1. Effect of trifluoperazine on toxicity, HIF-1α induction and hepatocyte regeneration in acetaminophen toxicity in mice

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Shubhra, E-mail: SCHAUDHURI@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); McCullough, Sandra S., E-mail: mcculloughsandras@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Hennings, Leah, E-mail: lhennings@uams.edu [Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Brown, Aliza T., E-mail: brownalizat@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Li, Shun-Hwa [Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI (United States); Simpson, Pippa M., E-mail: psimpson@mcw.edu [Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI (United States); Hinson, Jack A., E-mail: hinsonjacka@uams.edu [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); James, Laura P., E-mail: jameslaurap@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States)

    2012-10-15

    Oxidative stress and mitochondrial permeability transition (MPT) are important mechanisms in acetaminophen (APAP) toxicity. The MPT inhibitor trifluoperazine (TFP) reduced MPT, oxidative stress, and toxicity in freshly isolated hepatocytes treated with APAP. Since hypoxia inducible factor-one alpha (HIF-1α) is induced very early in APAP toxicity, a role for oxidative stress in the induction has been postulated. In the present study, the effect of TFP on toxicity and HIF-1α induction in B6C3F1 male mice treated with APAP was examined. Mice received TFP (10 mg/kg, oral gavage) prior to APAP (200 mg/kg IP) and at 7 and 36 h after APAP. Measures of metabolism (hepatic glutathione and APAP protein adducts) were comparable in the two groups of mice. Toxicity was decreased in the APAP/TFP mice at 2, 4, and 8 h, compared to the APAP mice. At 24 and 48 h, there were no significant differences in toxicity between the two groups. TFP lowered HIF-1α induction but also reduced the expression of proliferating cell nuclear antigen, a marker of hepatocyte regeneration. TFP can also inhibit phospholipase A{sub 2}, and cytosolic and secretory PLA{sub 2} activity levels were reduced in the APAP/TFP mice compared to the APAP mice. TFP also lowered prostaglandin E{sub 2} expression, a known mechanism of cytoprotection. In summary, the MPT inhibitor TFP delayed the onset of toxicity and lowered HIF-1α induction in APAP treated mice. TFP also reduced PGE{sub 2} expression and hepatocyte regeneration, likely through a mechanism involving PLA{sub 2}. -- Highlights: ► Trifluoperazine reduced acetaminophen toxicity and lowered HIF-1α induction. ► Trifluoperazine had no effect on the metabolism of acetaminophen. ► Trifluoperazine reduced hepatocyte regeneration. ► Trifluoperazine reduced phospholipase A{sub 2} activity and prostaglandin E{sub 2} levels.

  2. A Pharmacogenetic Discovery: Cystamine Protects Against Haloperidol-Induced Toxicity and Ischemic Brain Injury.

    Science.gov (United States)

    Zhang, Haili; Zheng, Ming; Wu, Manhong; Xu, Dan; Nishimura, Toshihiko; Nishimura, Yuki; Giffard, Rona; Xiong, Xiaoxing; Xu, Li Jun; Clark, J David; Sahbaie, Peyman; Dill, David L; Peltz, Gary

    2016-05-01

    Haloperidol is an effective antipsychotic agent, but it causes Parkinsonian-like extrapyramidal symptoms in the majority of treated subjects. To address this treatment-limiting toxicity, we analyzed a murine genetic model of haloperidol-induced toxicity (HIT). Analysis of a panel of consomic strains indicated that a genetic factor on chromosome 10 had a significant effect on susceptibility to HIT. We analyzed a whole-genome SNP database to identify allelic variants that were uniquely present on chromosome 10 in the strain that was previously shown to exhibit the highest level of susceptibility to HIT. This analysis implicated allelic variation within pantetheinase genes (Vnn1 and Vnn3), which we propose impaired the biosynthesis of cysteamine, could affect susceptibility to HIT. We demonstrate that administration of cystamine, which is rapidly metabolized to cysteamine, could completely prevent HIT in the murine model. Many of the haloperidol-induced gene expression changes in the striatum of the susceptible strain were reversed by cystamine coadministration. Since cystamine administration has previously been shown to have other neuroprotective actions, we investigated whether cystamine administration could have a broader neuroprotective effect. Cystamine administration caused a 23% reduction in infarct volume after experimentally induced cerebral ischemia. Characterization of this novel pharmacogenetic factor for HIT has identified a new approach for preventing the treatment-limiting toxicity of an antipsychotic agent, which could also be used to reduce the extent of brain damage after stroke. Copyright © 2016 by the Genetics Society of America.

  3. The plant decapeptide OSIP108 prevents copper-induced toxicity in various models for Wilson disease

    Energy Technology Data Exchange (ETDEWEB)

    Spincemaille, Pieter [Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee (Belgium); Pham, Duc-Hung [Laboratory for Molecular Biodiscovery, KU Leuven, Campus Gasthuisberg, Herestraat 49, O and N2, 3000 Leuven (Belgium); Chandhok, Gursimran [Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster (Germany); Verbeek, Jef [Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven (Belgium); Zibert, Andree [Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster (Germany); Libbrecht, Louis [Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven (Belgium); Department of Pathology, University Hospital Ghent, De Pintelaan 185, 9000 Ghent (Belgium); Schmidt, Hartmut [Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster (Germany); Esguerra, Camila V.; Witte, Peter A.M. de [Laboratory for Molecular Biodiscovery, KU Leuven, Campus Gasthuisberg, Herestraat 49, O and N2, 3000 Leuven (Belgium); Cammue, Bruno P.A., E-mail: bruno.cammue@biw.kuleuven.be [Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee (Belgium); Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent (Belgium); Cassiman, David [Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven (Belgium); Thevissen, Karin [Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee (Belgium)

    2014-10-15

    Background: Wilson disease (WD) is caused by accumulation of excess copper (Cu) due to a mutation in the gene encoding the liver Cu transporter ATP7B, and is characterized by acute liver failure or cirrhosis and neuronal cell death. We investigated the effect of OSIP108, a plant derived decapeptide that prevents Cu-induced apoptosis in yeast and human cells, on Cu-induced toxicity in various mammalian in vitro models relevant for WD and in a Cu-toxicity zebrafish larvae model applicable to WD. Methods: The effect of OSIP108 was evaluated on viability of various cell lines in the presence of excess Cu, on liver morphology of a Cu-treated zebrafish larvae strain that expresses a fluorescent reporter in hepatocytes, and on oxidative stress levels in wild type AB zebrafish larvae. Results: OSIP108 increased not only viability of Cu-treated CHO cells transgenically expressing ATP7B and the common WD-causing mutant ATP7B{sup H1069Q}, but also viability of Cu-treated human glioblastoma U87 cells. Aberrancies in liver morphology of Cu-treated zebrafish larvae were observed, which were further confirmed as Cu-induced hepatotoxicity by liver histology. Injections of OSIP108 into Cu-treated zebrafish larvae significantly increased the amount of larvae with normal liver morphology and decreased Cu-induced production of reactive oxygen species. Conclusions: OSIP108 prevents Cu-induced toxicity in in vitro models and in a Cu-toxicity zebrafish larvae model applicable to WD. General significance: All the above data indicate the potential of OSIP108 as a drug lead for further development as a novel WD treatment. - Highlights: • Wilson disease (WD) is characterized by accumulation of toxic copper (Cu). • OSIP108 increases viability of Cu-treated cellular models applicable to WD. • OSIP108 injections preserve liver morphology of Cu-treated zebrafish larvae. • OSIP108 injections into zebrafish larvae abrogates Cu-induced oxidative stress.

  4. Critical Duration of Exposure for Developmental Chlorpyrifos-Induced Neurobehavioral Toxicity

    OpenAIRE

    Sledge, Damiyon; Yen, Jerry; Morton, Terrell; Dishaw, Laura; Petro, Ann; Donerly, Susan; Linney, Elwood; Levin, Edward D.

    2011-01-01

    Developmental exposure of rats to the pesticide chlorpyrifos (CPF) causes persistent neurobehavioral impairment. In a parallel series of studies with zebrafish, we have also found persisting behavioral dysfunction after developmental CPF exposure. We have developed a battery of measures of zebrafish behavior, which are reliable and sensitive to toxicant-induced damage. This study determined the critical duration of developmental CPF exposure for causing persisting neurobehavioral effects. Tes...

  5. Natural and active chemical remediation of toxic metals and radionuclides in the aquatic environment

    International Nuclear Information System (INIS)

    McPherson, G.; Pintauro, P.; O'Connor, S.; Zhang, J.; Gonzales, R.; Flowers, G.

    1993-01-01

    The focus of this research is the non-biological, chemical remediation of toxic heavy metals and radionuclides in aquatic environments. This Tulane/Xavier group includes researchers from Chemistry, Chemical Engineering, and Geology. Active methods using novel zeolites and ion exchange membranes are currently being evaluated for use in removing heavy metals from natural waters. In addition, field and laboratory studies of metal ion exchange reactions and competitive, heavy metal adsorption on clay substrates are underway to determine sediment metal sequestering capacity. A summary of progress to date and future work is presented

  6. The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: a review.

    Science.gov (United States)

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-12-01

    The biotic ligand model (BLM) is a theoretical, potentially mechanistic approach to assess metal bioavailability in soil and aquatic systems. In a BLM, toxicity is linked to the fraction of biotic ligand occupied, which in turn, depends on the various components of the solution, including activity of the metal. Bioavailability is a key factor in determining toxicity and uptake of metals in organisms. In this study, the present status of BLM development for soil and aquatic organisms is summarized. For all species and all metals, toxicity was correlated with the conditional biotic ligand binding constants. For almost all organisms, values for Ag, Cu, and Cd were higher than those for Zn and Ni. The constants derived for aquatic systems seem to be equally valid for soil organisms, but in the case of soils, bioavailability from the soil solution is greatly influenced by the presence of the soil solid phase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Protective effects of vitamin E on cyclosporineA-induced toxicity in rat testis

    Directory of Open Access Journals (Sweden)

    Hamidreza Sameni

    2011-07-01

    Full Text Available Introduction: Cyclosporine A (CsA as an immunosuppressive drug which widely used in organ transplantation and autoimmune diseases. This drug is caused many injuries and cell cytotoxic of the body organs such as reproductive organs. The aim of this study was to investigate the possible protective effects of vitamin E (Vit E against CsA-induced damages in rat testis. Material and Methods: 40 adult male wistar rats were divided into 5 groups: control (without any intervention, placebo (received only pure olive oil, test 1 (CsA+olive oil, 30 mg/kg, test 2 (Vit E, 100 mg/kg and test 3 (CsA+Vit E, with the same dose. All animal received drugs for three weeks daily by oral gavages. Following, the testis were fixed and sections stained with Haematoxylin & Eosin and Trichrome Masson. Then with using a microscope equipped with a scaled ocular micrometer and image analysis software were histomorphometry. Results: This study showed that CsA caused severe degenerative changes in testicular tissue include decreased seminiferous tubules diameter, seminiferous epithelium thickness. Also, the number of spermatogonia, primary spermatocyte, spermatozoa, and sertoli and leydig cells significantly decreased throughout the experiment. These changes are lead to turbulence and atrophy seminiferous epithelium and delay in spermatogenesis. Treatment with vitamin E minimized the adverse effects of CsA on testis structure and spermatogenesis. Conclusion: These results suggest that vitamin E has a protective effect against CsA-induced testicular toxicity in male rat.

  8. Specificity in liquid metal induced embrittlement

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1996-12-01

    Full Text Available One of the most intriguing features of liquid metal induced embrittlement (LMIE) is the observation that some liquid metal-solid metal couples are susceptible to embrittlement, while others appear to be immune. This is referred to as the specificity...

  9. Separation and Extraction of Some Heavy and Toxic Metal Ions from Their Wastes by Ionic Membranes

    International Nuclear Information System (INIS)

    El-Sayed Hegazy, A.; Kamal, H.; Mahmoud, Gh. A.; Khalifa, N.A.

    1999-01-01

    Preparation and characterisation of a series of ion-exchange membranes for the purpose of separation and extraction of some heavy and toxic metal ions from their wastes have been studied. Such ion exchange membranes prepared by γ-radiation grafting of acrylonitrile (AN) and vinyl acetate (VAc) in a binary monomers mixture onto low density polyethylene (LDPE) using direct technique of grafting. The reaction conditions at which grafting process proceeds successfully have been determined. Many modification treatments have been attempted for the prepared membranes to improve their ion-exchange properties. The possibility of their practical use in waste water treatment from some heavy and toxic metal ions such as Pb 2+ , Cd 2+ ,Cu 2+ ,Fe 3+ ,Sr 2+ and Li + have been investigated. These grafted membranes showed great promise for its use in the field of extraction and removal of some heavy and toxic metals from their wastes

  10. Laser-induced breakdown spectroscopy used to detect endophyte-mediated accumulation of metals by tall fescue

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z.; Stewart, Arthur J.; Gwinn, Kimberley D.; Waller, John C.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to determine the impact of endophyte (Neotyphodium sp.) infection on elemental composition of tall fescue (Festuca arundinacea). Leaf material from endophyte-infected (E+) and endophyte-free (E-) tall fescue populations in established plots was examined. Leaf-tissue digestates were also tested for metals, by inductively coupled plasma (ICP) mass spectrometry (MS). Seven of eleven metals (Ca, Mg, Fe, Mn, Cu, Ni, and Zn) were measured by both techniques at concentrations great enough for a reliable comparison. Mg, Zn, and Cd, a toxic metal that can be present in forage, were readily detected by LIBS, even though Cd concentrations in the plants were below levels typically achieved using ICP MS detection. Implications of these results for research on forage analysis and phytoremediation are discussed.

  11. Spatial and seasonal heterogeneity of atmospheric particles induced reactive oxygen species in urban areas and the role of water-soluble metals

    International Nuclear Information System (INIS)

    Gali, Nirmal Kumar; Yang, Fenhuan; Jiang, Sabrina Yanan; Chan, Ka Lok; Sun, Li; Ho, Kin-fai; Ning, Zhi

    2015-01-01

    Adverse health effects are associated with exposure to atmospheric particulate matter (PM), which carry various chemical constituents and induce both exogenous and endogenous oxidative stress. This study investigated the spatial and seasonal variability of PM-induced ROS at four sites with different characteristics in Hong Kong. Cytotoxicity, exogenous and endogenous ROS was determined on a dose and time dependent analysis. Large spatial variation of ROS was observed with fine PM at urban site showing highest ROS levels while coarse PM at traffic site ranks the top. No consistent seasonal difference was observed for ROS levels among all sites. The highly heterogeneous distribution of PM-induced ROS demonstrates the differential capability of PM to produce oxidative stress, and the need to use appropriate metrics as surrogates of exposure instead of PM mass in epidemiologic studies. Several transition metals were found associated with ROS by different degree illustrating the complexity of mechanisms involved. - Highlights: • Adverse health effects are associated with size segregated atmospheric PM. • Seasonal and spatial variability of PM induced ROS determined in Hong Kong city. • Coarse PM ranks top in ROS generation on per volume and mass basis. • Traffic site demonstrated as source of potent inducer of cell toxicity. • No consistent seasonal difference observed for fine and coarse PM. - Heterogeneous PM-induced ROS distribution was observed in a city. Several water-soluble metals were associated with the ROS generation but with different degree from different sites

  12. Relationships between soil properties and toxicity of copper and nickel to bok choy and tomato in Chinese soils.

    Science.gov (United States)

    Li, Bo; Zhang, Hongtao; Ma, Yibing; McLaughlin, Mike J

    2013-10-01

    The toxicity of copper (Cu) and nickel (Ni) to bok choy and tomato shoot growth was investigated in a wide range of Chinese soils with and without leaching with artificial rainwater. The results showed that the variations of Ni toxicity induced by soil properties were wider than those of Cu toxicity to both tomato and bok choy plant growth. Leaching generally decreased the toxicity of Cu and Ni added to soils, which also depended on soils, metals, and test plant species. Soil factors controlling metal phytotoxicity were found to be soil pH and soil organic carbon content for Cu, and soil pH for Ni. It was also found that soil pH had stronger effects on Ni toxicity than on Cu toxicity. Predictive toxicity models based on these soil factors were developed. These toxicity models for Cu and Ni toxicity to tomato plant growth were validated using an independent data set for European soils. These models could be applied to predict the Cu and Ni phytotoxicity in not only Chinese soils but also European soils. © 2013 SETAC.

  13. Effect of Heavy Metals in Plants of the Genus Brassica

    Science.gov (United States)

    Mourato, Miguel P.; Moreira, Inês N.; Leitão, Inês; Pinto, Filipa R.; Sales, Joana R.; Louro Martins, Luisa

    2015-01-01

    Several species from the Brassica genus are very important agricultural crops in different parts of the world and are also known to be heavy metal accumulators. There have been a large number of studies regarding the tolerance, uptake and defense mechanism in several of these species, notably Brassica juncea and B. napus, against the stress induced by heavy metals. Numerous studies have also been published about the capacity of these species to be used for phytoremediation purposes but with mixed results. This review will focus on the latest developments in the study of the uptake capacity, oxidative damage and biochemical and physiological tolerance and defense mechanisms to heavy metal toxicity on six economically important species: B. juncea, B. napus, B. oleracea, B. carinata, B. rapa and B. nigra. PMID:26247945

  14. Laboratory toxicity and benthic invertebrate field colonization of Upper Columbia River sediments: finding adverse effects using multiple lines of evidence.

    Science.gov (United States)

    Fairchild, J F; Kemble, N E; Allert, A L; Brumbaugh, W G; Ingersoll, C G; Dowling, B; Gruenenfelder, C; Roland, J L

    2012-07-01

    From 1930 to 1995, the Upper Columbia River (UCR) of northeast Washington State received approximately 12 million metric tons of smelter slag and associated effluents from a large smelter facility located in Trail, British Columbia, approximately 10 km north of the United States-Canadian border. Studies conducted during the past two decades have demonstrated the presence of toxic concentrations of heavy metals in slag-based sandy sediments, including cadmium, copper, zinc, and lead in the UCR area as well as the downstream reservoir portion of Lake Roosevelt. We conducted standardized whole-sediment toxicity tests with the amphipod Hyalella azteca (28-day) and the midge Chironomus dilutus (10-day) on 11 samples, including both UCR and study-specific reference sediments. Metal concentrations in sediments were modeled for potential toxicity using three approaches: (1) probable effects quotients (PEQs) based on total recoverable metals (TRMs) and simultaneously extracted metals (SEMs); (2) SEMs corrected for acid-volatile sulfides (AVS; i.e., ∑SEM - AVS); and (3) ∑SEM - AVS normalized to the fractional organic carbon (f(oc)) (i.e., ∑SEM - AVS/f(oc)). The most highly metal-contaminated sample (∑PEQ(TRM) = 132; ∑PEQ(SEM) = 54; ∑SEM - AVS = 323; and ∑SEM - AVS/(foc) = 64,600 umol/g) from the UCR was dominated by weathered slag sediment particles and resulted in 80% mortality and 94% decrease in biomass of amphipods; in addition, this sample significantly decreased growth of midge by 10%. The traditional ∑AVS - SEM, uncorrected for organic carbon, was the most accurate approach for estimating the effects of metals in the UCR. Treatment of the toxic slag sediment with 20% Resinex SIR-300 metal-chelating resin significantly decreased the toxicity of the sample. Samples ∑SEM - AVS > 244 was not toxic to amphipods or midge in laboratory testing, indicating that this value may be an approximate threshold for effects in the UCR. In situ benthic invertebrate

  15. Assessment of concentrations of trace and toxic heavy metals in soil ...

    African Journals Online (AJOL)

    This study reports on determination of concentrations of trace and toxic heavy metals in soil and vegetables grown near of Manyoni uranium deposit. Soil and vegetable samples were collected from five sites namely Mitoo Mbuga, farming area, Miyomboni, Tambukareli and near water pump. The concentrations of heavy ...

  16. PROTECTIVE EFFECT OF MORINGA PEREGRINA LEAVES EXTRACT ON ACETAMINOPHEN -INDUCED LIVER TOXICITY IN ALBINO RATS.

    Science.gov (United States)

    Azim, Samy Abdelfatah Abdel; Abdelrahem, Mohamed Taha; Said, Mostafa Mohamed; Khattab, Alshaimaa

    2017-01-01

    Acetaminophen is a common antipyretic drug but at overdose can cause severe hepatotoxicity that may further develop into liver failure and hepatic centrilobular necrosis in experimental animals and humans. This study was undertaken to assess the ameliorative role of Moringa peregrina leaves extract against acetaminophen toxicity in rats. Induction of hepatotoxicity was done by chronic oral administration of acetaminophen (750 mg/kg bwt) for 4 weeks. To study the possible hepatoprotective effect, Moringa peregrina leaves extract (200 mg/kg bwt) or Silymarin (50 mg/kg bwt) was administered orally, for 4 weeks, along with acetaminophen. acetaminophen significantly increased serum liver enzymes and caused oxidative stress, evidenced by significantly increased tissue malondialdehyde, glutathione peroxidase, hepatic DNA fragmentation, and significant decrease of glutathione and antioxidant enzymes in liver, blood and brain. On the other hand, administration of Moringa peregrina leaves extract reversed acetaminophen-related toxic effects through: powerful malondialdehyde suppression, glutathione peroxidase normalization and stimulation of the cellular antioxidants synthesis represented by significant increase of glutathione, catalase and superoxide dismutase in liver, blood and brain, besides, DNA fragmentation was significantly decreased in the liver tissue. acetaminophen induced oxidative damage can be improved by Moringa peregrina leaves extract-treatment, due to its antioxidant potential.

  17. Toxicity ratios: Their use and abuse in predicting the risk from induced cancer

    International Nuclear Information System (INIS)

    Mays, C.W.; Taylor, G.N.; Lloyd, R.D.

    1986-01-01

    The toxicity ratio concept assumes the validity of certain relationships. In some examples for bone sarcoma induction, the approximate toxicity of 239 Pu in man can be calculated algebraically from the observed toxicity in the radium-dial painters and the ratio of 239 Pu/ 226 Ra toxicities in suitable laboratory mammals. In a species highly susceptible to bone sarcoma induction, the risk coefficients for both 239 Pu and 226 Ra are elevated, but the toxicity ratio of 239 Pu to 226 Ra tends to be similar to the ratio in resistant species. Among the tested species the toxicity ratio of 239 Pu to 226 Ra ranged from 6 to 22 (a fourfold range), whereas their relative sensitivities to 239 Pu varied by a factor of 150. The toxicity ratio approach can also be used to estimate the actinide risk to man from liver cancer, by comparing to the Thorotrast patients; from lung cancer, by comparing to the uranium miners and the atomic-bomb survivors; and from neutron-induced cancers, by comparing to cancers induced by gamma rays. The toxicity ratio can be used to predict the risk to man from a specific type of cancer that has been reliably induced by a reference radiation in humans and that can be induced by both the reference and the investigated radiation in suitable laboratory animals. 26 refs., 3 figs., 1 tab

  18. Metabolic Profiling Analysis of the Alleviation Effect of Treatment with Baicalin on Cinnabar Induced Toxicity in Rats Urine and Serum

    OpenAIRE

    Guangyue Su; Guangyue Su; Gang Chen; Gang Chen; Xiao An; Haifeng Wang; Haifeng Wang; Yue-Hu Pei; Yue-Hu Pei

    2017-01-01

    Objectives: Baicalin is the main bioactive flavonoid constituent isolated from Scutellaria baicalensis Georgi. The mechanisms of protection of liver remain unclear. In this study, 1H NMR-based metabonomics approach has been used to investigate the alleviation effect of Baicalin.Method:1H NMR metabolomics analyses of urine and serum from rats, was performed to illuminate the alleviation effect of Baicalin on mineral medicine (cinnabar)-induced liver and kidney toxicity.Results: The metabolic p...

  19. Metabolic Profiling Analysis of the Alleviation Effect of Treatment with Baicalin on Cinnabar Induced Toxicity in Rats Urine and Serum

    OpenAIRE

    Su, Guangyue; Chen, Gang; An, Xiao; Wang, Haifeng; Pei, Yue-Hu

    2017-01-01

    Objectives: Baicalin is the main bioactive flavonoid constituent isolated from Scutellaria baicalensis Georgi. The mechanisms of protection of liver remain unclear. In this study, 1H NMR-based metabonomics approach has been used to investigate the alleviation effect of Baicalin. Method: 1H NMR metabolomics analyses of urine and serum from rats, was performed to illuminate the alleviation effect of Baicalin on mineral medicine (cinnabar)-induced liver and kidney toxicity. Results: The me...

  20. Metal bioavailability and toxicity to fish in low-alkalinity lakes: A critical review

    Science.gov (United States)

    Spry, D.J.; Wiener, James G.

    1991-01-01

    Fish in low-alkalinity lakes having pH of 6·0–6·5 or less often have higher body or tissue burdens of mercury, cadmium, and lead than do fish in nearby lakes with higher pH. The greater bioaccumulation of these metals in such waters seems to result partly from the greater aqueous abundances of biologically available forms (CH3 Hg+, Cd2+, and Pb2+) at low pH. In addition, the low concentrations of aqueous calcium in low-alkalinity lakes increase the permeability of biological membranes to these metals, which in fish may cause greater uptake from both water and food. Fish exposed to aqueous inorganic aluminum in the laboratory and field accumulate the metal in and on the epithelial cells of the gills; however, there is little accumulation of aluminum in the blood or internal organs. In low-pH water, both sublethal and lethal toxicity of aluminum has been clearly demonstrated in both laboratory and field studies at environmental concentrations. In contrast, recently measured aqueous concentrations of total mercury, methylmercury, cadmium, and lead in low-alkalinity lakes are much lower than the aqueous concentrations known to cause acute or chronic toxicity in fish, although the vast majority of toxicological research has involved waters with much higher ionic strength than that in low-alkalinity lakes. Additional work with fish is needed to better assess (1) the toxicity of aqueous metals in low-alkalinity waters, and (2) the toxicological significance of dietary methylmercury and cadmium.

  1. Discrimination of uranium chemo-toxic and radio-toxic effects: definition of biological markers for evaluating professional risks in nuclear industry

    International Nuclear Information System (INIS)

    Darolles, Carine

    2010-01-01

    Uranium (U) is a heavy metal that is also considered as an alpha emitter. Thus the origin of U toxicity is both chemical and radiological. The identification of bio-markers to discriminate chemical and radiological toxicity for a given U compound is required to assess accurately the health effects of isotopic mixtures such as depleted U in 235 U with a low specific activity. Data from the literature show that the best candidates are cytogenetic markers. In the present work, the assessment of bio-markers of U contamination was performed on three cellular models (mouse fibroblasts, rat lymphocytes and human lymphocytes) that were exposed to different isotopic mixtures of U. The cytokinesis-block micronucleus (MN) centromere assay was performed to discriminate the chemo-toxic and radio-toxic effects of U. This study showed that the evaluation of micronuclei in bi-nucleated cells could not assess U genotoxicity accurately. Instead, the assessment of centromere-negative micronuclei and nucleo-plasmic bridges correlated with the radio-toxic effects of U. The evaluation of centromere-positive micronuclei and micronuclei in mono-nucleated cells correlated with the chemo-toxic effects of U. These cytogenetic markers should be validated on different biological models and could be proposed to discriminate radiological and chemical toxicity of a given isotopic mixture of U. These four cytogenetic markers could be a useful complement of the classical dosimetric bio-markers for the assessment of internal uranium contamination. (author)

  2. Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies.

    Science.gov (United States)

    Kaweeteerawat, Chitrada; Ivask, Angela; Liu, Rong; Zhang, Haiyuan; Chang, Chong Hyun; Low-Kam, Cecile; Fischer, Heidi; Ji, Zhaoxia; Pokhrel, Suman; Cohen, Yoram; Telesca, Donatello; Zink, Jeffrey; Mädler, Lutz; Holden, Patricia A; Nel, Andre; Godwin, Hilary

    2015-01-20

    Metal oxide nanoparticles (MOx NPs) are used for a host of applications, such as electronics, cosmetics, construction, and medicine, and as a result, the safety of these materials to humans and the environment is of considerable interest. A prior study of 24 MOx NPs in mammalian cells revealed that some of these materials show hazard potential. Here, we report the growth inhibitory effects of the same series of MOx NPs in the bacterium Escherichia coli and show that toxicity trends observed in E. coli parallel those seen previously in mammalian cells. Of the 24 materials studied, only ZnO, CuO, CoO, Mn2O3, Co3O4, Ni2O3, and Cr2O3 were found to exert significant growth inhibitory effects; these effects were found to relate to membrane damage and oxidative stress responses in minimal trophic media. A correlation of the toxicological data with physicochemical parameters of MOx NPs revealed that the probability of a MOx NP being toxic increases as the hydration enthalpy becomes less negative and as the conduction band energy approaches those of biological molecules. These observations are consistent with prior results observed in mammalian cells, revealing that mechanisms of toxicity of MOx NPs are consistent across two very different taxa. These results suggest that studying nanotoxicity in E. coli may help to predict toxicity patterns in higher organisms.

  3. Chelation in Metal Intoxication

    Directory of Open Access Journals (Sweden)

    Swaran J.S. Flora

    2010-06-01

    Full Text Available Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications.

  4. Graves Disease Induced by Radioiodine Therapy for Toxic Nodular Goiter: A Case Report

    Directory of Open Access Journals (Sweden)

    Yakup Yürekli

    2015-10-01

    Full Text Available Graves’ disease (GD may be observed as an infrequent adverse effect after radioiodine therapy (RAIT for toxic thyroid adenoma (TA and toxic multi nodular goiter (MNG. We present a case of a 55-year-old male with a toxic nodule who was treated with RAI. After therapy, the patient’s serum free triiodothyronine (fT3 and free thyroxine (fT4 levels gradually increased. Antithyroid peroxidase (TPOAb, antithyroglobulin (TgAb and TSH-receptor antibodies (TRAb were also positive. Thyroid scintigraphy revealed diffuse intense uptake after four months of RAIT. Radiation-induced GD should be considered in patients with aggravated hyperthyroidism 3-4 months after therapy.

  5. Specific Conditions for Resveratrol Neuroprotection against Ethanol-Induced Toxicity

    Directory of Open Access Journals (Sweden)

    Brigitte Gonthier

    2012-01-01

    Full Text Available Aims. 3,5,4′-Trihydroxy-trans-stilbene, a natural polyphenolic compound present in wine and grapes and better known as resveratrol, has free radical scavenging properties and is a potent protector against oxidative stress induced by alcohol metabolism. Today, the mechanism by which ethanol exerts its toxicity is still not well understood, but it is generally considered that free radical generation plays an important role in the appearance of structural and functional alterations in cells. The aim of this study was to evaluate the protective action of resveratrol against ethanol-induced brain cell injury. Methods. Primary cultures of rat astrocytes were exposed to ethanol, with or without a pretreatment with resveratrol. We examined the dose-dependent effects of this resveratrol pretreatment on cytotoxicity and genotoxicity induced by ethanol. Cytotoxicity was assessed using the MTT reduction test. Genotoxicity was evidenced using single cell gel electrophoresis. In addition, DNA staining with fluorescent dyes allowed visualization of nuclear damage using confocal microscopy. Results. Cell pretreatment with low concentrations of trans-resveratrol (0.1–10 μM slowed down cell death and DNA damage induced by ethanol exposure, while higher concentrations (50–100 μM enhanced these same effects. No protection by cis-resveratrol was observed. Conclusion. Protection offered by trans-resveratrol against ethanol-induced neurotoxicity was only effective for low concentrations of this polyphenol.

  6. Heavy Metal Poisoning and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Eman M. Alissa

    2011-01-01

    Full Text Available Cardiovascular disease (CVD is an increasing world health problem. Traditional risk factors fail to account for all deaths from CVD. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. The potential association between chronic heavy metal exposure, like arsenic, lead, cadmium, mercury, and CVD has been less well defined. The mechanism through which heavy metals act to increase cardiovascular risk factors may act still remains unknown, although impaired antioxidants metabolism and oxidative stress may play a role. However, the exact mechanism of CVD induced by heavy metals deserves further investigation either through animal experiments or through molecular and cellular studies. Furthermore, large-scale prospective studies with follow up on general populations using appropriate biomarkers and cardiovascular endpoints might be recommended to identify the factors that predispose to heavy metals toxicity in CVD. In this review, we will give a brief summary of heavy metals homeostasis, followed by a description of the available evidence for their link with CVD and the proposed mechanisms of action by which their toxic effects might be explained. Finally, suspected interactions between genetic, nutritional and environmental factors are discussed.

  7. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Shvedova, Anna A., E-mail: ats1@cdc.gov [Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, University of Rome “Tor Vergata”, Rome (Italy); Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, University of Rome “Tor Vergata”, Rome (Italy); Pietroiusti, Antonio [Department of Biopathology, University of Rome “Tor Vergata”, Rome (Italy); Fadeel, Bengt [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA (United States); Kagan, Valerian E. [Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA (United States)

    2012-06-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. -- Highlights: ► CNT induced non-random oxidative stress associated with apoptosis. ► Non-oxidative mechanisms for cellular toxicity of carbon nanotubes. ► Biodegradation of CNT by cells of innate immune system. ► “Omics”-based biomarkers of CNT exposures.

  8. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    International Nuclear Information System (INIS)

    Shvedova, Anna A.; Pietroiusti, Antonio; Fadeel, Bengt; Kagan, Valerian E.

    2012-01-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. -- Highlights: ► CNT induced non-random oxidative stress associated with apoptosis. ► Non-oxidative mechanisms for cellular toxicity of carbon nanotubes. ► Biodegradation of CNT by cells of innate immune system. ► “Omics”-based biomarkers of CNT exposures.

  9. Removal and recovery of toxic metal ions from aqueous waste sites using polymer pendant ligands

    International Nuclear Information System (INIS)

    Fish, D.

    1996-01-01

    The purpose of this project is to investigate the use of polymer pendant ligand technology to remove and recover toxic metal ions from DOE aqueous waste sites. Polymer pendant lgiands are organic ligands, anchored to crosslinked, modified divinylbenzene-polystyrene beads, that can selectively complex metal ions. The metal ion removal step usually occurs through a complexation or ion exchange phenomena, thus recovery of the metal ions and reuse of the beads is readily accomplished

  10. Analyzing the effectiveness of using branchial NKA activity as a biomarker for assessing waterborne copper toxicity in tilapia (Oreochromis mossambicus): A damage-based modeling approach.

    Science.gov (United States)

    Wu, Su-Mei; Tsai, Jeng-Wei; Tzeng, Wen-Nan; Chen, Wei-Yu; Shih, Wan-Yu

    2015-06-01

    Branchial Na(+)-K(+)-ATPase (NKA) activity has been suggested as a promising biomarker for assessing metal stress in aquatic organisms. However, studies that systematically show the effectiveness of using NKA activity to detect metal exposure and toxicity at the individual level are limited. In this study, we aimed to determine whether branchial NKA activity mechanistically responds to the accumulation of waterborne copper (Cu) and accounts for observed toxicity over time under environmentally-relevant and aquafarming Cu exposure levels (0.2, 1 and 2 mg L(-1)). Temporal trends in Cu accumulation and the corresponding responses of branchial NKA activity resulting from Cu exposure were investigated in laboratory experiments conducted on juvenile tilapia (Oreochromis mossambicus), a freshwater teleost that shows potential as a bioindicator of real-time and historical metal pollution. We used the process-based damage assessment model (DAM) to inspect the time course of Cu toxicity by integrating the compensation process between Cu-induced inhibition and repair of branchial NKA activity. NKA activity acted as a sensitive biomarker for Cu exposure and accumulation in tilapia, which showed induced impairment of osmoregulation and lethality when they were exposed to environmentally relevant levels (0.2 mg L(-1)), but not to higher exposure levels (1 and 2 mg L(-1)) in aquaculture farms or contaminated aquatic ecosystems. This study highlights the benefits and limitations of using branchial NKA activity as a sensitive biomarker to assess the health status of a fish population and its ecosystem. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The role of PGC-1α and MRP1 in lead-induced mitochondrial toxicity in testicular Sertoli cells

    International Nuclear Information System (INIS)

    Li, Zhen; Liu, Xi; Wang, Lu; Wang, Yan; Du, Chuang; Xu, Siyuan; Zhang, Yucheng; Wang, Chunhong; Yang, Chengfeng

    2016-01-01

    The lead-induced toxic effect on mitochondria in Sertoli cells is not well studied and the underlying mechanism is poorly understood. Here we reported the potential role of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and multidrug resistance protein 1 (MRP1) in lead acetate-induced mitochondrial toxicity in mouse testicular Sertoli cells TM4 line. We found that lead acetate treatment significantly reduced the expression level of PGC-1α, but increased the level of MRP1 in mitochondria of TM4 cells. To determine the role of PGC-1α and MRP1 in lead acetate-induced mitochondrial toxicity, we then generated PGC-1α stable overexpression and MRP1 stable knockdown TM4 cells, respectively. The lead acetate treatment caused TM4 cell mitochondrial ultrastructure damages, a decrease in ATP synthesis, an increase in ROS levels, and apoptotic cell death. In contrast, stably overexpressing PGC-1α significantly ameliorated the lead acetate treatment-caused mitochondrial toxicity and apoptosis. Moreover, it was also found that stably knocking down the level of MRP1 increased the TM4 cell mitochondrial lead-accumulation by 4–6 folds. Together, the findings from this study suggest that PGC-1α and MRP1 plays important roles in protecting TM4 cells against lead-induced mitochondrial toxicity, providing a better understanding of lead-induced mitochondrial toxicity.

  12. Toxicological Responses of Environmental Mixtures: Environmental Metals Mixtures Display Synergistic Induction of Metal-Responsive and Oxidative Stress Genes in Placental Cells

    Science.gov (United States)

    Adebambo, Oluwadamilare A.; Ray, Paul D.; Shea, Damian; Fry, Rebecca C.

    2016-01-01

    Exposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells. These cells serve as a model for evaluating cellular responses to exposures during pregnancy. One of the mixtures was predominated by iAs and one by Cd. Six gene biomarkers were measured in order to evaluate the effects from the metals mixtures using dose and time-course experiments including: heme oxygenase 1 (HO-1) and metallothionein isoforms (MT1A, MT1F and MT1G) previously shown to be preferentially induced by exposure to either iAs or Cd, and metal transporter genes aquaporin-9 (AQP9) and ATPase, Cu2+ transporting, beta polypeptide (ATP7B). There was a significant increase in the mRNA expression levels of ATP7B, HO-1, MT1A, MT1F, and MT1G in mixture-treated cells compared to the iAs or Cd only-treated cells. Notably, the genomic responses were observed at concentrations significantly lower than levels found at the environmental collection sites. These data demonstrate that metal mixtures increase the expression of gene biomarkers in placental JEG-3 cells in a synergistic manner. Taken together, the data suggest that toxic metals that co-occur may induce detrimental health effects that are currently underestimated when analyzed as single metals. PMID:26472158

  13. Effect of Marine Omega 3 Fatty Acids on Methylmercury-Induced Toxicity in Fish and Mammalian Cells In Vitro

    Directory of Open Access Journals (Sweden)

    O. J. Nøstbakken

    2012-01-01

    Full Text Available Methylmercury (MeHg is a ubiquitous environmental contaminant which bioaccumulates in marine biota. Fish constitute an important part of a balanced human diet contributing with health beneficial nutrients but may also contain contaminants such as MeHg. Interactions between the marine n-3 fatty acids eicosapentaenoic acid (20:5n-3, EPA and docosahexaenoic acid (22:6n-3, DHA with MeHg-induced toxicity were investigated. Different toxic and metabolic responses were studied in Atlantic salmon kidney (ASK cell line and the mammalian kidney-derived HEK293 cell line. Both cell lines were preincubated with DHA or EPA prior to MeHg-exposure, and cell toxicity was assessed differently in the cell lines by MeHg-uptake in cells (ASK and HEK293, proliferation (HEK293 and ASK, apoptosis (ASK, oxidation of the red-ox probe roGFP (HEK293, and regulation of selected toxicological and metabolic transcriptional markers (ASK. DHA was observed to decrease the uptake of MeHg in HEK293, but not in ASK cells. DHA also increased, while EPA decreased, MeHg-induced apoptosis in ASK. MeHg exposure induced changes in selected metabolic and known MeHg biomarkers in ASK cells. Both DHA and MeHg, but not EPA, oxidized roGFP in HEK293 cells. In conclusion, marine n-3 fatty acids may ameliorate MeHg toxicity, either by decreasing apoptosis (EPA or by reducing MeHg uptake (DHA. However, DHA can also augment MeHg toxicity by increasing oxidative stress and apoptosis when combined with MeHg.

  14. Toxicological responses of environmental mixtures: Environmental metal mixtures display synergistic induction of metal-responsive and oxidative stress genes in placental cells

    Energy Technology Data Exchange (ETDEWEB)

    Adebambo, Oluwadamilare A. [Department of Biological Sciences, North Carolina State University (United States); Ray, Paul D. [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States); Shea, Damian [Department of Biological Sciences, North Carolina State University (United States); Fry, Rebecca C., E-mail: rfry@unc.edu [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States)

    2015-12-15

    Exposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells. These cells serve as a model for evaluating cellular responses to exposures during pregnancy. One of the mixtures was predominated by iAs and one by Cd. Six gene biomarkers were measured in order to evaluate the effects from the metal mixtures using dose and time-course experiments including: heme oxygenase 1 (HO-1) and metallothionein isoforms (MT1A, MT1F and MT1G) previously shown to be preferentially induced by exposure to either iAs or Cd, and metal transporter genes aquaporin-9 (AQP9) and ATPase, Cu{sup 2+} transporting, beta polypeptide (ATP7B). There was a significant increase in the mRNA expression levels of ATP7B, HO-1, MT1A, MT1F, and MT1G in mixture-treated cells compared to the iAs or Cd only-treated cells. Notably, the genomic responses were observed at concentrations significantly lower than levels found at the environmental collection sites. These data demonstrate that metal mixtures increase the expression of gene biomarkers in placental JEG-3 cells in a synergistic manner. Taken together, the data suggest that toxic metals that co-occur may induce detrimental health effects that are currently underestimated when analyzed as single metals. - Highlights: • Toxicogenomic responses of environmental metal mixtures assessed • Induction of ATP7B, HO-1, MT1A, MT1F and MT1G by metal mixtures observed in placental cells • Higher gene induction in response to metal mixtures versus single metal treatments.

  15. Toxicological responses of environmental mixtures: Environmental metal mixtures display synergistic induction of metal-responsive and oxidative stress genes in placental cells

    International Nuclear Information System (INIS)

    Adebambo, Oluwadamilare A.; Ray, Paul D.; Shea, Damian; Fry, Rebecca C.

    2015-01-01

    Exposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells. These cells serve as a model for evaluating cellular responses to exposures during pregnancy. One of the mixtures was predominated by iAs and one by Cd. Six gene biomarkers were measured in order to evaluate the effects from the metal mixtures using dose and time-course experiments including: heme oxygenase 1 (HO-1) and metallothionein isoforms (MT1A, MT1F and MT1G) previously shown to be preferentially induced by exposure to either iAs or Cd, and metal transporter genes aquaporin-9 (AQP9) and ATPase, Cu 2+ transporting, beta polypeptide (ATP7B). There was a significant increase in the mRNA expression levels of ATP7B, HO-1, MT1A, MT1F, and MT1G in mixture-treated cells compared to the iAs or Cd only-treated cells. Notably, the genomic responses were observed at concentrations significantly lower than levels found at the environmental collection sites. These data demonstrate that metal mixtures increase the expression of gene biomarkers in placental JEG-3 cells in a synergistic manner. Taken together, the data suggest that toxic metals that co-occur may induce detrimental health effects that are currently underestimated when analyzed as single metals. - Highlights: • Toxicogenomic responses of environmental metal mixtures assessed • Induction of ATP7B, HO-1, MT1A, MT1F and MT1G by metal mixtures observed in placental cells • Higher gene induction in response to metal mixtures versus single metal treatments

  16. Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats

    International Nuclear Information System (INIS)

    Huang, Qingyu; Xi, Guochen; Alamdar, Ambreen; Zhang, Jie; Shen, Heqing

    2017-01-01

    Arsenic is a widespread metalloid in the environment, which poses a broad spectrum of adverse effects on human health. However, a global view of arsenic-induced heart toxicity is still lacking, and the underlying molecular mechanisms remain unclear. By performing a comparative quantitative proteomic analysis, the present study aims to investigate the alterations of proteome profile in rat heart after long-term exposure to arsenic. As a result, we found that the abundance of 81 proteins were significantly altered by arsenic treatment (35 up-regulated and 46 down-regulated). Among these, 33 proteins were specifically associated with cardiovascular system development and function, including heart development, heart morphology, cardiac contraction and dilation, and other cardiovascular functions. It is further proposed that the aberrant regulation of 14 proteins induced by arsenic would disturb cardiac contraction and relaxation, impair heart morphogenesis and development, and induce thrombosis in rats, which is mediated by the Akt/p38 MAPK signaling pathway. Overall, these findings will augment our knowledge of the involved mechanisms and develop useful biomarkers for cardiotoxicity induced by environmental arsenic exposure. - Highlights: • Arsenic exposure has been associated with a number of adverse health effects. • The molecular mechanisms involved in arsenic-induced cardiotoxicity remain unclear. • Differential proteins were identified in arsenic-exposed rat heart by proteomics. • Arsenic induces heart toxicity through the Akt/p38 MAPK signaling pathway. - Label-free quantitative proteomic analysis of rat heart reveals putative mechanisms and biomarkers for arsenic-induced cardiotoxicity.

  17. Toxicity of Metals to a Freshwater Ostracod: Stenocypris major

    Directory of Open Access Journals (Sweden)

    Mohammad Shuhaimi-Othman

    2011-01-01

    Full Text Available Adults of freshwater ostracod Stenocypris major (Crustacea, Candonidae were exposed for a four-day period in laboratory conditions to a range of copper (Cu, cadmium (Cd, zinc (Zn, lead (Pb, nickel (Ni, iron (Fe, aluminium (Al, and manganese (Mn concentrations. Mortality was assessed, and median lethal times (LT50 and concentrations (LC50 were calculated. LT50 and LC50 increased with the decrease in mean exposure concentrations and times, respectively, for all metals. LC50s for 96 hours for Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 25.2, 13.1, 1189.8, 526.2, 19743.7, 278.9, 3101.9, and 510.2 μg/L, respectively. Metals bioconcentration in S. major increases with exposure to increasing concentrations, and Cd was the most toxic to S. major, followed by Cu, Fe, Mn, Pb, Zn, Al, and Ni (Cd>Cu>Fe>Mn>Pb>Zn>Al>Ni. Comparison of LC50 values for metals for this species with those for other freshwater crustacean reveals that S. major is equally or more sensitive to metals than most other tested crustacean.

  18. Behavioral effects of ketamine and toxic interactions with psychostimulants

    Directory of Open Access Journals (Sweden)

    Yamamoto Keiichi

    2006-03-01

    Full Text Available Abstract Background The anesthetic drug ketamine (KT has been reported to be an abused drug and fatal cases have been observed in polydrug users. In the present study, considering the possibility of KT-enhanced toxic effects of other drugs, and KT-induced promotion of an overdose without making the subject aware of the danger due to the attenuation of several painful subjective symptoms, the intraperitoneal (i.p. KT-induced alterations in behaviors and toxic interactions with popular co-abused drugs, the psychostimulants cocaine (COC and methamphetamine (MA, were examined in ICR mice. Results A single dose of KT caused hyperlocomotion in a low (30 mg/kg, i.p. dose group, and hypolocomotion followed by hyperlocomotion in a high (100 mg/kg, i.p. dose group. However, no behavioral alterations derived from enhanced stress-related depression or anxiety were observed in the forced swimming or the elevated plus-maze test. A single non-fatal dose of COC (30 mg/kg, i.p. or MA (4 mg/kg, i.p. caused hyperlocomotion, stress-related depression in swimming behaviors in the forced swimming test, and anxiety-related behavioral changes (preference for closed arms in the elevated plus-maze test. For the COC (30 mg/kg or MA (4 mg/kg groups of mice simultaneously co-treated with KT, the psychostimulant-induced hyperlocomotion was suppressed by the high dose KT, and the psychostimulant-induced behavioral alterations in the above tests were reversed by both low and high doses of KT. For the toxic dose COC (70 mg/kg, i.p.- or MA (15 mg/kg, i.p.-only group, mortality and severe seizures were observed in some animals. In the toxic dose psychostimulant-KT groups, KT attenuated the severity of seizures dose-dependently. Nevertheless, the mortality rate was significantly increased by co-treatment with the high dose KT. Conclusion Our results demonstrated that, in spite of the absence of stress-related depressive and anxiety-related behavioral alterations following a single

  19. The cathepsin B inhibitor, z-FA-CMK is toxic and readily induced cell death in human T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Liow, K.Y.; Chow, S.C., E-mail: chow.sek.chuen@monash.edu

    2013-11-01

    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-chloromethylketone (z-FA-CMK) was found to be toxic and readily induced cell death in the human T cell line, Jurkat, whereas two other analogs benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) and benzyloxycarbonyl-phenylalanine-alanine-diazomethylketone (z-FA-DMK) were not toxic. The toxicity of z-FA-CMK requires not only the CMK group, but also the presence of alanine in the P1 position and the benzyloxycarbonyl group at the N-terminal. Dose–response studies showed that lower concentrations of z-FA-CMK induced apoptosis in Jurkat T cells whereas higher concentrations induced necrosis. In z-FA-CMK-induced apoptosis, both initiator caspases (-8 and -9) and effector caspases (-3, -6 and -7) were processed to their respective subunits in Jurkat T cells. However, only the pro-form of the initiator caspases were reduced in z-FA-CMK-induced necrosis and no respective subunits were apparent. The caspase inihibitor benzyloxycarbonyl-valine-alanine-aspartic acid-(O-methyl)-fluoromehylketone (z-VAD-FMK) inhibits apoptosis and caspase processing in Jurkat T cells treated with low concentration of z-FA-CMK but has no effect on z-FA-CMK-induced necrosis and the loss of initiator caspases. This suggests that the loss of initiator caspases in Jurkat T cells during z-FA-CMK-induced necrosis is not a caspase-dependent process. Taken together, we have demonstrated that z-FA-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. - Highlights: • z-FA-CMK is toxic and induce cell death in the human T cells. • z-FA-CMK toxicity requires the CMK group, alanine and the benzyloxycarbonyl group. • z-FA-CMK induced apoptosis at low concentration and necrosis at high concentration.

  20. The cathepsin B inhibitor, z-FA-CMK is toxic and readily induced cell death in human T lymphocytes

    International Nuclear Information System (INIS)

    Liow, K.Y.; Chow, S.C.

    2013-01-01

    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-chloromethylketone (z-FA-CMK) was found to be toxic and readily induced cell death in the human T cell line, Jurkat, whereas two other analogs benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) and benzyloxycarbonyl-phenylalanine-alanine-diazomethylketone (z-FA-DMK) were not toxic. The toxicity of z-FA-CMK requires not only the CMK group, but also the presence of alanine in the P1 position and the benzyloxycarbonyl group at the N-terminal. Dose–response studies showed that lower concentrations of z-FA-CMK induced apoptosis in Jurkat T cells whereas higher concentrations induced necrosis. In z-FA-CMK-induced apoptosis, both initiator caspases (-8 and -9) and effector caspases (-3, -6 and -7) were processed to their respective subunits in Jurkat T cells. However, only the pro-form of the initiator caspases were reduced in z-FA-CMK-induced necrosis and no respective subunits were apparent. The caspase inihibitor benzyloxycarbonyl-valine-alanine-aspartic acid-(O-methyl)-fluoromehylketone (z-VAD-FMK) inhibits apoptosis and caspase processing in Jurkat T cells treated with low concentration of z-FA-CMK but has no effect on z-FA-CMK-induced necrosis and the loss of initiator caspases. This suggests that the loss of initiator caspases in Jurkat T cells during z-FA-CMK-induced necrosis is not a caspase-dependent process. Taken together, we have demonstrated that z-FA-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. - Highlights: • z-FA-CMK is toxic and induce cell death in the human T cells. • z-FA-CMK toxicity requires the CMK group, alanine and the benzyloxycarbonyl group. • z-FA-CMK induced apoptosis at low concentration and necrosis at high concentration

  1. Effects of soil properties on copper toxicity to earthworm Eisenia fetida in 15 Chinese soils.

    Science.gov (United States)

    Duan, Xiongwei; Xu, Meng; Zhou, Youya; Yan, Zengguang; Du, Yanli; Zhang, Lu; Zhang, Chaoyan; Bai, Liping; Nie, Jing; Chen, Guikui; Li, Fasheng

    2016-02-01

    The bioavailability and toxicity of metals in soil are influenced by a variety of soil properties, and this principle should be recognized in establishing soil environmental quality criteria. In the present study, the uptake and toxicity of Cu to the earthworm Eisenia fetida in 15 Chinese soils with various soil properties were investigated, and regression models for predicting Cu toxicity across soils were developed. The results showed that earthworm survival and body weight change were less sensitive to Cu than earthworm cocoon production. The soil Cu-based median effective concentrations (EC50s) for earthworm cocoon production varied from 27.7 to 383.7 mg kg(-1) among 15 Chinese soils, representing approximately 14-fold variation. Soil cation exchange capacity and organic carbon content were identified as key factors controlling Cu toxicity to earthworm cocoon production, and simple and multiple regression models were developed for predicting Cu toxicity across soils. Tissue Cu-based EC50s for earthworm cocoon production were also calculated and varied from 15.5 to 62.5 mg kg(-1) (4-fold variation). Compared to the soil Cu-based EC50s for cocoon production, the tissue Cu-based EC50s had less variation among soils, indicating that metals in tissue were more relevant to toxicity than metals in soil and hence represented better measurements of bioavailability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Soil criteria to protect terrestrial wildlife and open-range livestock from metal toxicity at mining sites.

    Science.gov (United States)

    Ford, Karl L; Beyer, W Nelson

    2014-03-01

    Thousands of hard rock mines exist in the western USA and in other parts of the world as a result of historic and current gold, silver, lead, and mercury mining. Many of these sites in the USA are on public lands. Typical mine waste associated with these sites are tailings and waste rock dumps that may be used by wildlife and open-range livestock. This report provides wildlife screening criteria levels for metals in soil and mine waste to evaluate risk and to determine the need for site-specific risk assessment, remediation, or a change in management practices. The screening levels are calculated from toxicity reference values based on maximum tolerable levels of metals in feed, on soil and plant ingestion rates, and on soil to plant uptake factors for a variety of receptors. The metals chosen for this report are common toxic metals found at mining sites: arsenic, cadmium, copper, lead, mercury, and zinc. The resulting soil screening values are well above those developed by the US Environmental Protection Agency. The difference in values was mainly a result of using toxicity reference values that were more specific to the receptors addressed rather than the most sensitive receptor.

  3. Fabrication and optimizing of metal nano silicate as toxic metal absorbent from sea water

    OpenAIRE

    Solgi, Leila

    2013-01-01

    Pure Water, is a crucial demand of creature life. Following industrial development, extra amount of toxic metals such as chromium enters the environmental cycle through the sewage, which is considered as a serious threat for organisms. One of the modern methods of filtration and removal of contaminants in water, is applying Nano-technology. According to specific property of silicate materials, in this article we try to survey increased power in composites and various absorption in several mor...

  4. A systematic review on the role of environmental toxicants in stem cells aging.

    Science.gov (United States)

    Hodjat, Mahshid; Rezvanfar, Mohammad Amin; Abdollahi, Mohammad

    2015-12-01

    Stem cells are an important target for environmental toxicants. As they are the main source for replenishing of organs in the body, any changes in their normal function could affect the regenerative potential of organs, leading to the appearance of age-related disease and acceleration of the aging process. Environmental toxicants could exert their adverse effect on stem cell function via multiple cellular and molecular mechanisms, resulting in changes in the stem cell differentiation fate and cell transformation, and reduced self-renewal capacity, as well as induction of stress-induced cellular senescence. The present review focuses on the effect of environmental toxicants on stem cell function associated with the aging process. We categorized environmental toxicants according to their preferred molecular mechanism of action on stem cells, including changes in genomic, epigenomic, and proteomic levels and enhancing oxidative stress. Pesticides, tobacco smoke, radiation and heavy metals are well-studied toxicants that cause stem cell dysfunction via induction of oxidative stress. Transgenerational epigenetic changes are the most important effects of a variety of toxicants on germ cells and embryos that are heritable and could affect health in the next several generations. A better understanding of the underlying mechanisms of toxicant-induced stem cell aging will help us to develop therapeutic intervention strategies against environmental aging. Meanwhile, more efforts are required to find the direct in vivo relationship between adverse effect of environmental toxicants and stem cell aging, leading to organismal aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L.

    Science.gov (United States)

    Lyu, Jie; Park, Jihae; Kumar Pandey, Lalit; Choi, Soyeon; Lee, Hojun; De Saeger, Jonas; Depuydt, Stephen; Han, Taejun

    2018-03-01

    Phytotoxicity tests using higher plants are among the most simple, sensitive, and cost-effective of the methods available for ecotoxicity testing. In the present study, a hydroponic-based phytotoxicity test using seeds of Lactuca sativa was used to evaluate the water quality of receiving waters and effluents near two industrial sites (Soyo and Daejon) in Korea with respect to the toxicity of 10 metals (As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Zn) and phenol, and of the receiving waters and effluents themselves. First, the L. sativa hydroponic bioassay was used to determine whether the receiving water or effluents were toxic; then, the responsible toxicant was identified. The results obtained with the L. sativa bioassay ranked the EC 50 toxicities of the investigated metal ions and phenol as: Cd > Ni > Cu > Zn > Hg > phenol > As > Mn > Cr > Pb > Fe. We found that Zn was the toxicant principally responsible for toxicity in Daejeon effluents. The Daejeon field effluent had a higher Zn concentration than permitted by the effluent discharge criteria of the Ministry of Environment of Korea. Our conclusion on the importance of Zn toxicity was supported by the results of the L. sativa hydroponic assay, which showed that the concentration of Zn required to inhibit root elongation in L. sativa by 50% (EC 50 ) was higher in the Daejeon field effluent than that of pure Zn. More importantly, we proved that the L. sativa hydroponic test method can be applied not only as an alternative tool for determining whether a given waste is acceptable for discharge into public water bodies, but also as an alternative method for measuring the safety of aquatic environments using EC 20 values, with respect to the water pollutants investigated (i.e., Cd, Cr, Cu, Pb, Mn, Hg, Ni, Zn, and phenol). Copyright © 2017. Published by Elsevier Inc.

  6. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys.

    Science.gov (United States)

    Matović, Vesna; Buha, Aleksandra; Ðukić-Ćosić, Danijela; Bulat, Zorica

    2015-04-01

    Besides being important occupational hazards, lead and cadmium are nowadays metals of great environmental concern. Both metals, without any physiological functions, can induce serious adverse health effects in various organs and tissues. Although Pb and Cd are non-redox metals, one of the important mechanisms underlying their toxicity is oxidative stress induction as a result of the generation of reactive species and/or depletion of the antioxidant defense system. Considering that the co-exposure to both metals is a much more realistic scenario, the effects of these metals on oxidative status when simultaneously present in the organism have become one of the contemporary issues in toxicology. This paper reviews short and long term studies conducted on Pb or Cd-induced oxidative stress in blood, liver and kidneys as the most prominent target organs of the toxicity of these metals and proposes the possible molecular mechanisms of the observed effects. The review is also focused on the results obtained for the effects of the combined treatment with Pb and Cd on oxidative status in target organs and on the mechanisms of their possible interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Toxic metals in cigarettes and human health risk assessment associated with inhalation exposure.

    Science.gov (United States)

    Benson, Nsikak U; Anake, Winifred U; Adedapo, Adebusayo E; Fred-Ahmadu, Omowunmi H; Ayejuyo, Olusegun O

    2017-11-08

    This study evaluated the concentrations of cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), and zinc (Zn) in 10 branded cigarettes commonly consumed in Nigeria. Chemical sequential extraction method and pseudo-total metal digestion procedure were used for extraction of metals from filler tobacco and filter samples. Samples were analyzed using flame atomic absorption spectrometry (FAAS). The filler tobacco of cigarettes had Cd, Cu, Fe, Mn, Pb, and Zn concentrations in the ranges of 5.90-7.94, 18.26-34.94, 192.61-3494.05, 44.67-297.69, 17.21-74.78, and 47.02-167.31 μg/cigarette, respectively. The minimum and maximum concentrations in the filter samples were 8.67-12.34 μg/g of Cd, 1.77-36.48 μg/g of Cu, 1.83-15.27 μg/g of Fe, 3.82-7.44 μg/g of Mn, 4.09-13.78 μg/g of Pb, and 30.07-46.70 μg/g of Zn. The results of this study showed that the concentrations of heavy metals in the filler tobacco samples were consistently higher than those obtained for the cigarette filters except for Cd. Toxic metals were largely found in the most labile chemical fractions. Moderate to very high risks are found associated with potential exposure to Cd and Pb. The carcinogenic risks posed by Cd and Pb ranged between 1.87E-02 and 2.52E-02, 1.05E-03 and 4.76E-03, respectively, while the non-carcinogenic risk estimates for Cd and Pb were greater than 1.0 (HI > 1). Toxic metals in cigarette may have significant carcinogenic and non-carcinogenic health effects associated with inhalation exposure. Continuous monitoring and regulations of the ingredients of imported and locally produced tobacco products are advocated.

  8. Evaluation of toxic trace metals Cd and Pb in Arabian Sea waters

    Digital Repository Service at National Institute of Oceanography (India)

    Sanzgiri, S.; Mesquita, A.; Kureishy, T.W.; SenGupta, R.

    An attempt has been made to present a picture of the distribution of toxic trace elements Cd and Pb in the Northern Arabian Sea by applying an improved analytical technique for the detection of dissolved forms of the metals at nanogram levels...

  9. Therapeutic Down-Modulators of Staphylococcal Superantigen-Induced Inflammation and Toxic Shock

    Directory of Open Access Journals (Sweden)

    Teresa Krakauer

    2010-07-01

    Full Text Available Staphylococcal enterotoxin B (SEB and related superantigenic toxins are potent stimulators of the immune system and cause a variety of diseases in humans, ranging from food poisoning to toxic shock. These toxins bind directly to major histocompatibility complex (MHC class II molecules on antigen-presenting cells and specific Vb regions of T-cell receptors (TCR, resulting in hyperactivation of both monocytes/macrophages and T lymphocytes. Activated host cells produce massive amounts of proinflammatory cytokines and chemokines, activating inflammation and coagulation, causing clinical symptoms that include fever, hypotension, and shock. This review summarizes the in vitro and in vivo effects of staphylococcal superantigens, the role of pivotal mediators induced by these toxins in the pathogenic mechanisms of tissue injury, and the therapeutic agents to mitigate the toxic effects of superantigens.

  10. Effects of UV-B and heavy metals on nitrogen and phosphorus metabolism in three cyanobacteria.

    Science.gov (United States)

    Yadav, Shivam; Prajapati, Rajesh; Atri, Neelam

    2016-01-01

    Cyanobacteria sp. (diazotrophic and planktonic) hold a major position in ecosystem, former one due to their intrinsic capability of N2-fixation and later because of mineralization of organic matter. Unfortunately, their exposure to variety of abiotic stresses is unavoidable. Comparative analysis of interactive effect of UV-B and heavy metals (Cd/Zn) on nitrogen and phosphorus metabolism of three cyanobacteria (Anabaena, Microcystis, Nostoc) revealed additive inhibition (χ(2) significant p cyanobacteria suggests UV-B-induced structural change(s) in the enzyme/carriers. Metals seem to compete for the binding sites of the enzymes and carriers; as noticed for Anabaena and Microcystis showing change in Km while no change in the Km value of Nostoc suggests non-competitive nutrient uptake. Higher accumulation and more adverse effect on Na(+) and K(+) efflux proposes Cd as more toxic compared to Zn. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ameliorative Effect of Cactus (Opuntia ficus indica Extract on Lithium-Induced Nephrocardiotoxicity: A Biochemical and Histopathological Study

    Directory of Open Access Journals (Sweden)

    Anouar ben Saad

    2017-01-01

    Full Text Available Opuntia ficus indica (family Cactaceae is used in the treatment of a variety of conditions including metal-induced toxicity. The study reports the protective effects of Opuntia ficus indica (CCE against lithium carbonate-induced toxicity in rats. Nephrocardiotoxicity was induced in male Wistar rats by single dose of lithium carbonate (25 mg/kg b.w twice daily for 30 days. Aqueous extract of Opuntia ficus indica was administered at the dose of 100 mg/kg of b.w by gavage for 60 days. Obtained results revealed that administration of lithium carbonate caused a significant increase in serum creatinine, uric acid, and urea levels. Additionally, a significant decrease in the level of renal and cardiac SOD, CAT, and GPx activities was associated with a significant increase of MDA levels in lithium carbonate group more than those of the control. However, the treatment of experimental rats with CCE prevented these alterations and maintained the antioxidant status. The histopathological observations supported the biochemical evidences of nephrocardioprotection. CCE supplementation could protect against lithium carbonate-induced renal and cardiac injuries in rats, plausibly by the upregulation of antioxidant enzymes and inhibition of MDA to confer the protective effect.

  12. Ameliorative Effect of Cactus (Opuntia ficus indica) Extract on Lithium-Induced Nephrocardiotoxicity: A Biochemical and Histopathological Study.

    Science.gov (United States)

    Saad, Anouar Ben; Rjeibi, Ilhem; Ncib, Sana; Zouari, Nacim; Zourgui, Lazhar

    2017-01-01

    Opuntia ficus indica (family Cactaceae) is used in the treatment of a variety of conditions including metal-induced toxicity. The study reports the protective effects of Opuntia ficus indica (CCE) against lithium carbonate-induced toxicity in rats. Nephrocardiotoxicity was induced in male Wistar rats by single dose of lithium carbonate (25 mg/kg b.w twice daily for 30 days). Aqueous extract of Opuntia ficus indica was administered at the dose of 100 mg/kg of b.w by gavage for 60 days. Obtained results revealed that administration of lithium carbonate caused a significant increase in serum creatinine, uric acid, and urea levels. Additionally, a significant decrease in the level of renal and cardiac SOD, CAT, and GPx activities was associated with a significant increase of MDA levels in lithium carbonate group more than those of the control. However, the treatment of experimental rats with CCE prevented these alterations and maintained the antioxidant status. The histopathological observations supported the biochemical evidences of nephrocardioprotection. CCE supplementation could protect against lithium carbonate-induced renal and cardiac injuries in rats, plausibly by the upregulation of antioxidant enzymes and inhibition of MDA to confer the protective effect.

  13. Ameliorative Effect of Cactus (Opuntia ficus indica) Extract on Lithium-Induced Nephrocardiotoxicity: A Biochemical and Histopathological Study

    Science.gov (United States)

    Ncib, Sana

    2017-01-01

    Opuntia ficus indica (family Cactaceae) is used in the treatment of a variety of conditions including metal-induced toxicity. The study reports the protective effects of Opuntia ficus indica (CCE) against lithium carbonate-induced toxicity in rats. Nephrocardiotoxicity was induced in male Wistar rats by single dose of lithium carbonate (25 mg/kg b.w twice daily for 30 days). Aqueous extract of Opuntia ficus indica was administered at the dose of 100 mg/kg of b.w by gavage for 60 days. Obtained results revealed that administration of lithium carbonate caused a significant increase in serum creatinine, uric acid, and urea levels. Additionally, a significant decrease in the level of renal and cardiac SOD, CAT, and GPx activities was associated with a significant increase of MDA levels in lithium carbonate group more than those of the control. However, the treatment of experimental rats with CCE prevented these alterations and maintained the antioxidant status. The histopathological observations supported the biochemical evidences of nephrocardioprotection. CCE supplementation could protect against lithium carbonate-induced renal and cardiac injuries in rats, plausibly by the upregulation of antioxidant enzymes and inhibition of MDA to confer the protective effect. PMID:29376078

  14. The insects as an assessment tool of ecotoxicology associated with metal toxic plants.

    Science.gov (United States)

    Azmat, Rafia; Moin, Sumeira; Saleem, Ailyan

    2018-04-01

    In this article, the assessment of lethal effects of Copper (Cu) on Luffa acutangula and Spinacia oleracea plants investigated in relation to the presence of insect species Oxycarenus hyalinipennis. The analysis of Cu-treated plants displays the information of rapid growth of Oxycarenus hyalinipennis species in triplicate. However, results showed that the impact of metal toxicity appeared as the reduced growth rate of plants, and dense growth of the insect species Oxycarenus halinipennis followed by the chewing/degradation of the toxic plant. The insect's inductees into polluted plants were justified by morphological and primary molecular level using plant stress hypothesis through analysis of the primary chemistry of leaves and roots. That includes various sugar contents which substantiated that these compounds act as the best feeding stimulant from oviposition to adult stage of the insects and accountable for the enactment of insects in the toxic plants. The relationship of these insects to the toxic plants linked with the higher contents of glucose, carbohydrates, and cellulose. The higher carbohydrate and cellulose content in both plants species under Cu accumulation exhibited more signs of insect mutilation over control plants and the lack of chemical resistances allowed the adult insects to spread, survive, reproduce and live long. The presence of insects developed relationships that assimilate all developmental, biological, and the interactive toxicity of Cu in both plant species which indicate the risk associated with these plants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    International Nuclear Information System (INIS)

    Wasserman, R.H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report

  16. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R. H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report.

  17. Combination of Nigella sativa with Glycyrrhiza glabra and Zingiber officinale augments their protective effects on doxorubicin-induced toxicity in h9c2 cells

    Directory of Open Access Journals (Sweden)

    Azar Hosseini

    2015-12-01

    Conclusion: All of the extracts have some protective effects against DOX-induced toxicity in cardiomyocytes with similar efficacies, but with different potencies. However, NGZ produced much higher protective effect via reducing oxidative stress and inhibiting of apoptotic induction processes. Further investigations are needed to determine the effects of NGZ on DOX chemotherapy.  

  18. TGFβ1 SNPs and radio-induced toxicity in prostate cancer patients

    International Nuclear Information System (INIS)

    Fachal, Laura; Gómez-Caamaño, Antonio; Sánchez-García, Manuel; Carballo, Ana; Peleteiro, Paula; Lobato-Busto, Ramón; Carracedo, Ángel; Vega, Ana

    2012-01-01

    Background and purpose: We have performed a case-control study in 413 prostate cancer patients to test for association between TGFβ1 and the development of late normal-tissue toxicity among prostate cancer patients treated with three-dimensional conformational radiotherapy (3D-CRT) Materials and methods: Late gastrointestinal and genitourinary toxicities were assessed for at least two years after radiotherapy in 413 patients according to CTCAEvs3 scores. Codominant genotypic tests and haplotypic analyses were undertaken to evaluate the correlation between TGFβ1 SNPs rs1800469, rs1800470 and rs1800472 and radio-induced toxicity. Results: Neither the SNPs nor the haplotypes were found to be associated with the risk of late toxicity. Conclusions: We were able to exclude up to a 2-fold increase in the risk of developing late gastrointestinal and genitourinary radio-induced toxicity due to the TGFβ1 SNPs rs1800469 and rs1800470, as well as the two most frequent TGFβ1 haplotypes.

  19. Fluconazole affects the alkali-metal-cation homeostasis and susceptibility to cationic toxic compounds of Candida glabrata.

    Science.gov (United States)

    Elicharova, Hana; Sychrova, Hana

    2014-08-01

    Candida glabrata is a salt-tolerant and fluconazole (FLC)-resistant yeast species. Here, we analyse the contribution of plasma-membrane alkali-metal-cation exporters, a cation/proton antiporter and a cation ATPase to cation homeostasis and the maintenance of membrane potential (ΔΨ). Using a series of single and double mutants lacking CNH1 and/or ENA1 genes we show that the inability to export potassium and toxic alkali-metal cations leads to a slight hyperpolarization of the plasma membrane of C. glabrata cells; this hyperpolarization drives more cations into the cells and affects cation homeostasis. Surprisingly, a much higher hyperpolarization of C. glabrata plasma membrane was produced by incubating cells with subinhibitory concentrations of FLC. FLC treatment resulted in a substantially increased sensitivity of cells to various cationic drugs and toxic cations that are driven into the cell by negative-inside plasma-membrane potential. The effect of the combination of FLC plus cationic drug treatment was enhanced by the malfunction of alkali-metal-cation transporters that contribute to the regulation of membrane potential and cation homeostasis. In summary, we show that the combination of subinhibitory concentrations of FLC and cationic drugs strongly affects the growth of C. glabrata cells. © 2014 The Authors.

  20. Short-time effect of heavy metals upon microbial community activity

    International Nuclear Information System (INIS)

    Wang Fei; Yao Jun; Si Yang; Chen Huilun; Russel, Mohammad; Chen Ke; Qian Yiguang; Zaray, Gyula; Bramanti, Emilia

    2010-01-01

    Microcalorimetry was applied to assess and compare the toxic effect of heavy metals, such as As, Cu, Cd, Cr, Co, Pb and Zn, on the soil microbial activities and community. About 1.0 g soil spiked 5.0 mg glucose and 5.0 mg ammonium sulfate, the microbial activities were recorded as power-time curves, and their indices, microbial growth rate constant k, total heat evolution Q T , metabolic enthalpy ΔH met and mass specific heat rate J Q/S , were calculated. Comparing these thermodynamic parameters associated with growth yield, a general order of toxicity to the soil was found to be Cr > Pb > As > Co > Zn > Cd > Cu. When soil was exposed to heavy metals, the amount of bacteria and fungi decreased with the incubation time, and the bacterial number diminished sharply. It illustrates that fungi are more tolerant, and bacteria-fungi ratio would be altered under metal stress. To determine the status of the glucose consumed, a glucose biosensor with eggshell membrane was used to measure the remaining glucose in soil sample. Results showed that the time at which glucose was consumed completely was agreed with the microcalorimetric time to a large extent, and depended on the toxicity of heavy metals as well.

  1. Short-time effect of heavy metals upon microbial community activity.

    Science.gov (United States)

    Wang, Fei; Yao, Jun; Si, Yang; Chen, Huilun; Russel, Mohammad; Chen, Ke; Qian, Yiguang; Zaray, Gyula; Bramanti, Emilia

    2010-01-15

    Microcalorimetry was applied to assess and compare the toxic effect of heavy metals, such as As, Cu, Cd, Cr, Co, Pb and Zn, on the soil microbial activities and community. About 1.0 g soil spiked 5.0mg glucose and 5.0mg ammonium sulfate, the microbial activities were recorded as power-time curves, and their indices, microbial growth rate constant k, total heat evolution Q(T), metabolic enthalpy Delta H(met) and mass specific heat rate J(Q/S), were calculated. Comparing these thermodynamic parameters associated with growth yield, a general order of toxicity to the soil was found to be Cr>Pb>As>Co>Zn>Cd>Cu. When soil was exposed to heavy metals, the amount of bacteria and fungi decreased with the incubation time, and the bacterial number diminished sharply. It illustrates that fungi are more tolerant, and bacteria-fungi ratio would be altered under metal stress. To determine the status of the glucose consumed, a glucose biosensor with eggshell membrane was used to measure the remaining glucose in soil sample. Results showed that the time at which glucose was consumed completely was agreed with the microcalorimetric time to a large extent, and depended on the toxicity of heavy metals as well.

  2. Short-time effect of heavy metals upon microbial community activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fei [Key Laboratory of Biogeology and Environmental Geology of Chinese Ministry of Education and Sino-Hungarian Joint Laboratory of Environmental Science and Health and School of Environmental Sciences, China University of Geosciences, 430074 Wuhan (China); Yao Jun, E-mail: yaojun@cug.edu.cn [Key Laboratory of Biogeology and Environmental Geology of Chinese Ministry of Education and Sino-Hungarian Joint Laboratory of Environmental Science and Health and School of Environmental Sciences, China University of Geosciences, 430074 Wuhan (China); Si Yang; Chen Huilun; Russel, Mohammad; Chen Ke; Qian Yiguang [Key Laboratory of Biogeology and Environmental Geology of Chinese Ministry of Education and Sino-Hungarian Joint Laboratory of Environmental Science and Health and School of Environmental Sciences, China University of Geosciences, 430074 Wuhan (China); Zaray, Gyula [Department of Chemical Technology and Environmental Chemistry, Eoetvoes University, H-1518 Budapest, P.O. Box 32 (Hungary); Bramanti, Emilia [Laboratory of Instrumental Analytical Chemistry, Institute for Chemical and Physical Processes, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2010-01-15

    Microcalorimetry was applied to assess and compare the toxic effect of heavy metals, such as As, Cu, Cd, Cr, Co, Pb and Zn, on the soil microbial activities and community. About 1.0 g soil spiked 5.0 mg glucose and 5.0 mg ammonium sulfate, the microbial activities were recorded as power-time curves, and their indices, microbial growth rate constant k, total heat evolution Q{sub T}, metabolic enthalpy {Delta}H{sub met} and mass specific heat rate J{sub Q/S}, were calculated. Comparing these thermodynamic parameters associated with growth yield, a general order of toxicity to the soil was found to be Cr > Pb > As > Co > Zn > Cd > Cu. When soil was exposed to heavy metals, the amount of bacteria and fungi decreased with the incubation time, and the bacterial number diminished sharply. It illustrates that fungi are more tolerant, and bacteria-fungi ratio would be altered under metal stress. To determine the status of the glucose consumed, a glucose biosensor with eggshell membrane was used to measure the remaining glucose in soil sample. Results showed that the time at which glucose was consumed completely was agreed with the microcalorimetric time to a large extent, and depended on the toxicity of heavy metals as well.

  3. Microbially influenced corrosion: studies on enterobacteria isolated from seawater environment and influence of toxic metals on bacterial biofilm and bio-corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Bermond-Tilly, D.; Pineau, S.; Dupont-Morral, I. [Corrodys, 50 - Equeurdreville (France); Janvier, M.; Grimont, P.A.D. [Institut Pasteur, Unite BBPE, 75 - Paris (France)

    2004-07-01

    Full text of publication follows: The most widely involved bacteria in Microbially Induced Corrosion (MIC usually called bio-corrosion) are sulfate/thiosulfate-reducing bacteria. The sulfate-reducing bacteria (SRB) are major contributors to the anaerobic bio-corrosion of steel. However, corrosion process of pipelines (or off shores platforms) was found to be associated with many other bacteria. These bacteria are able to produce sulfides from the reduction of thiosulfate in anaerobic conditions. By this way, a thiosulfate-reducing non sulfate-reducing bacteria, Dethiosulfovibrio peptidovorans, showed a significant corrosive activity similar to or higher than that recorded for SRB involved in bio-corrosion, (Magot et al., 1997). Furthermore, a bacteria, Citrobacter amalonaticus, which belongs to the family of the Enterobacteriaceae, is involved in severe pitting corrosion process (Angeles Chavez et al., 2002). Recently, some bacteria (Citrobacter freundii, Proteus mirabilis and Klebsiella planticola characterized as belonging to the family of Enterobacteriaceae) were isolated from biofilm developed on carbon steel coupons immersed in natural seawater. The latter bacteria were also associated in severe pitting corrosion process on carbon steel coupons (Bermond-Tilly et al., 2003). Biofilm forms a protective layer, reducing the exposure of the metal surface to the external environment. However, bacteria included in the biofilm could also cause localized corrosion by consuming cathodic hydrogen from the steel or by producing corrosive metabolic end products and by the Extracellular Polymeric Substances (EPS) production. Thus, EPS can also play an important role in the corrosion of the metals (e.g. can complex metal ions). However, sulfate/thiosulfate-reducing bacteria and some Enterobacteria are highly efficient to bioremediation by precipitation of toxic metals from wastewater as metal sulfides. Recently it was shown that toxic metal may be involved in the formation

  4. Evaluation of potential relationships between benthic community structure and toxic metals in Laizhou Bay.

    Science.gov (United States)

    Wu, Bin; Song, Jinming; Li, Xuegang

    2014-10-15

    The objective of the present study was to examine the relationships between benthic community structure and toxic metals using bivariate/multivariate techniques at 17 sediment locations in Laizhou Bay, North China. Sediment chemical data were evaluated against geochemical background values and sediment quality guidelines, which identified Cu and As as contaminants of concern with a moderate potential for adverse effects. Benthic community data were subjected to non-metric multidimensional scaling, which generated four groups of stations. Spearman rank correlation was then employed to explore the relationships between the major axes of heavy metals and benthic community structure. However, weak and insignificant correlations were found between these axes, indicating that contaminants of concern may not be the primary explanatory factors. Polychaeta were abundant in southern Laizhou Bay, serving as a warning regarding the health status of the ecosystem. Integrated sediment quality assessment showed sediments from northern central locations were impaired, displaying less diverse benthos and higher metal contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Copper, but not cadmium, is acutely toxic for trout hepatocytes: short-term effects on energetics and ion homeostasis

    International Nuclear Information System (INIS)

    Manzl, Claudia; Ebner, Hannes; Koeck, Guenter; Dallinger, Reinhard; Krumschnabel, Gerhard

    2003-01-01

    The toxic effects of cadmium (Cd) and copper (Cu) on cellular energy metabolism and ion homeostasis were investigated in hepatocytes from the rainbow trout, Oncorhynchus mykiss. The metal content of cells did not increase during incubation with Cu, whereas a dose-dependent increase was seen with Cd. Cell viability was unaffected in the presence of 100 μM Cd and 10 μM Cu but was significantly reduced after 30 min of exposure to 100 μM Cu, both in the presence and absence of extracellular calcium. Oxygen consumption (VO 2 ) was not affected by 100 μM Cd or 10 μM Cu, whereas 100 μM Cu caused a significant and calcium-dependent increase of VO 2 . Lactate production and basal glucose release were not altered by either of the metals. However, the epinephrine-stimulated rate of glucose release was significantly reduced after 2 h of incubation with 100 μM Cu. Hepatocytes exposed to Cd showed only a marginal increase of intracellular free calcium (Ca i 2+ ), whereas with Cu a pronounced and dose-dependent increase of Ca i 2+ was induced after a delay of 10 to 15 min, the calcium being of extracellular origin. Intracellular pH was not altered by Cd but decreased significantly in the presence of Cu. Overall our data demonstrate that Cu, but not Cd, is acutely toxic for trout hepatocytes. Since Cu does not enter the cells in the short term it appears to exert its acutely toxic effects at the cell membrane. Although Cu toxicity is associated with an uptake of calcium from extracellular space, leading to an elevation of cellular respiration, cytotoxicity does not appear to be dependent on the presence of extracellular calcium

  6. Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate

    Science.gov (United States)

    Root, Robert A.; Hayes, Sarah M.; Hammond, Corin M.; Maier, Raina M.; Chorover, Jon

    2015-01-01

    Toxic metalliferous mine-tailings pose a significant health risk to ecosystems and neighboring communities from wind and water dispersion of particulates containing high concentrations of toxic metal(loid)s (e.g., Pb, As, Zn). Tailings are particularly vulnerable to erosion before vegetative cover can be reestablished, i.e., decades or longer in semi-arid environments without intervention. Metal(loid) speciation, linked directly to bioaccessibility and lability, is controlled by mineral weathering and is a key consideration when assessing human and environmental health risks associated with mine sites. At the semi-arid Iron King Mine and Humboldt Smelter Superfund site in central Arizona, the mineral assemblage of the top 2 m of tailings has been previously characterized. A distinct redox gradient was observed in the top 0.5 m of the tailings and the mineral assemblage indicates progressive transformation of ferrous iron sulfides to ferrihydrite and gypsum, which, in turn weather to form schwertmannite and then jarosite accompanied by a progressive decrease in pH (7.3 to 2.3). Within the geochemical context of this reaction front, we examined enriched toxic metal(loid)s As, Pb, and Zn with surficial concentrations 41.1, 10.7, 39.3 mM kg-1 (3080, 2200, and 2570 mg kg-1), respectively. The highest bulk concentrations of As and Zn occur at the redox boundary representing a 1.7 and 4.2 fold enrichment relative to surficial concentrations, respectively, indicating the translocation of toxic elements from the gossan zone to either the underlying redox boundary or the surface crust. Metal speciation was also examined as a function of depth using X-ray absorption spectroscopy (XAS). The deepest sample (180 cm) contains sulfides (e.g., pyrite, arsenopyrite, galena, and sphalerite). Samples from the redox transition zone (25-54 cm) contain a mixture of sulfides, carbonates (siderite, ankerite, cerrusite, and smithsonite) and metal(loid)s sorbed to neoformed secondary Fe

  7. Nitric oxide protects the mitochondria of anterior pituitary cells and prevents cadmium-induced cell death by reducing oxidative stress.

    Science.gov (United States)

    Poliandri, Ariel H B; Machiavelli, Leticia I; Quinteros, Alnilan F; Cabilla, Jimena P; Duvilanski, Beatriz H

    2006-02-15

    Cadmium (Cd2+) is a highly toxic metal that affects the endocrine system. We have previously shown that Cd2+ induces caspase-3 activation and apoptosis of anterior pituitary cells and that endogenous nitric oxide (NO) protects these cells from Cd2+. Here we investigate the mechanisms by which NO exerts this protective role. Cd2+ (25 microM) reduced the mitochondrial membrane potential (MMP) as measured by flow cytometry. Cd2+-induced apoptosis was mitochondrial dependent since cyclosporin A protected the cells from this metal. Inhibition of NO synthesis with 0.5 mM L-NAME increased the effect of Cd2+ on MMP, whereas the NO donor DETANONOate (0.1 mM) reduced it. Cd2+ increased the production of reactive oxygen species (ROS) as measured by flow cytometry. This effect was electron-transfer-chain-dependent since it was inhibited by rotenone. In fact, rotenone reduced the cytotoxic effect of the metal. The action of Cd2+ on mitochondrial integrity was ROS dependent. Trolox, an antioxidant, inhibited the effect of the metal on the MMP. Cd2+-induced increase in ROS generation was reduced by DETANONOate. There are discrepancies concerning the role of NO in Cd2+ toxicity. Here we show that NO reduces Cd2+ toxicity by protecting the mitochondria from oxidative stress in a system where NO plays a regulatory role.

  8. Metal transformation as a strategy for bacterial detoxification of heavy metals.

    Science.gov (United States)

    Essa, Ashraf M M; Al Abboud, Mohamed A; Khatib, Sayeed I

    2018-01-01

    Microorganisms can modify the chemical and physical characters of metals leading to an alteration in their speciation, mobility, and toxicity. Aqueous heavy metals solutions (Hg, Cd, Pb, Ag, Cu, and Zn) were treated with the volatile metabolic products (VMPs) of Escherichia coli Z3 for 24 h using aerobic bioreactor. The effect of the metals treated with VMPs in comparison to the untreated metals on the growth of E. coli S1 and Staphylococcus aureus S2 (local isolates) was examined. Moreover, the toxic properties of the treated and untreated metals were monitored using minimum inhibitory concentration assay. A marked reduction of the treated metals toxicity was recorded in comparison to the untreated metals. Scanning electron microscopy and energy dispersive X-ray analysis revealed the formation of metal particles in the treated metal solutions. In addition to heavy metals at variable ratios, these particles consisted of carbon, oxygen, sulfur, nitrogen elements. The inhibition of metal toxicity was attributed to the existence of ammonia, hydrogen sulfide, and carbon dioxide in the VMPs of E. coli Z3 culture that might responsible for the transformation of soluble metal ions into metal complexes. This study clarified the capability of E. coli Z3 for indirect detoxification of heavy metals via the immobilization of metal ions into biologically unavailable species. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nanoparticulate-induced toxicity and related mechanism in vitro and in vivo

    International Nuclear Information System (INIS)

    Kim, Hye Won; Ahn, Eun-Kyung; Jee, Bo Keun; Yoon, Hyoung-Kyu; Lee, Kweon Haeng; Lim, Young

    2009-01-01

    In urban areas, the quantity of exhaust particles from vehicle emissions is tremendous and has been regarded as the main contributor to particulate matter (PM) pollution. Recently, the nano-sized PM on public health has begun to raise the attention. The increased toxicity of nanoparticulate can be largely explained by their small size, high airborne concentration, extensive surface area and high content of organic carbon and transition metals. We have attempted to address the toxicity of nano sized-particlulate matter by comparing various particulates including micro-SiO 2 (mSiO 2 ), nano-SiO 2 (nSiO 2 ), micro-TiO 2 (mTiO 2 ), and nano-TiO 2 (nTiO 2 ) in RAW264.7 cells and in vivo. The cell viability of all particulates decreased dose dependently. 24-h incubation with nSiO2 demonstrated apoptosis in RAW264.7 using Annexin-V binding immunofluorescent microscopy, but not in any other particulates. In vivo, cytotoxicity of nanosized was higher than micro-sized particulates. As higher the concentration of particulates, the more pulmonary injury and neutrophilic infiltration were observed in nano-sized than micro-sized particulates, respectively. Particularly, 5.0 mg/kg of mTiO 2 never shows any increase of neutrophile even with high cellularity of total cells and macrophages. From these results, we suggested that particulate-induced respiratory toxicity be influenced by component, size, and dose of particulates including the characteristic nature of the target cells in vitro and in vivo.

  10. Metallothionein provides zinc-mediated protective effects against methamphetamine toxicity in SK-N-SH cells.

    Science.gov (United States)

    Ajjimaporn, Amornpan; Swinscoe, John; Shavali, Shaik; Govitrapong, Piyarat; Ebadi, Manuchair

    2005-11-30

    Methamphetamine (METH) is a drug of abuse and neurotoxin that induces Parkinson's-like pathology after chronic usage by targeting dopaminergic neurons. Elucidation of the intracellular mechanisms that underlie METH-induced dopaminergic neuron toxicity may help in understanding the mechanism by which neurons die in Parkinson's disease. In the present study, we examined the role of reactive oxygen species (ROS) in the METH-induced death of human dopaminergic SK-N-SH cells and further assessed the neuroprotective effects of zinc and metallothionein (MT) against METH-induced toxicity in culture. METH significantly increased the production of reactive oxygen species, decreased intracellular ATP levels and reduced the cell viability. Pre-treatment with zinc markedly prevented the loss of cell viability caused by METH treatment. Zinc pre-treatment mainly increased the expression of metallothionein and prevented the generation of reactive oxygen species and ATP depletion caused by METH. Chelation of zinc by CaEDTA caused a significant decrease in MT expression and loss of protective effects of MT against METH toxicity. These results suggest that zinc-induced MT expression protects dopaminergic neurons via preventing the accumulation of toxic reactive oxygen species and halting the decrease in ATP levels. Furthermore, MT may prevent the loss of mitochondrial functions caused by neurotoxins. In conclusion, our study suggests that MT, a potent scavenger of free radicals is neuroprotective against dopaminergic toxicity in conditions such as drug of abuse and in Parkinson's disease.

  11. Multidrug-Resistance and Toxic Metal Tolerance of Medically Important Bacteria Isolated from an Aquaculture System

    Science.gov (United States)

    Resende, Juliana Alves; Silva, Vânia L.; Fontes, Cláudia Oliveira; Souza-Filho, Job Alves; de Oliveira, Tamara Lopes Rocha; Coelho, Cíntia Marques; César, Dionéia Evangelista; Diniz, Cláudio Galuppo

    2012-01-01

    The use of antimicrobials and toxic metals should be considered carefully in aquaculture and surrounding environments. We aimed to evaluate medically relevant bacteria in an aquaculture system and their susceptibility to antimicrobials and toxic metals. Selective cultures for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC) were obtained from water samples collected in two different year seasons. The isolated bacteria were biochemically identified and antimicrobial and toxic metal susceptibility patterns were determined. Overall, 407 representative strains were recovered. In general, bacteria isolated from fish ponds showed higher multiple antibiotic resistance indices when compared to those isolated from a water-fed canal. Resistance to penicillin and azithromycin was observed more frequently in the GPC group, whereas resistance to ampicillin and ampicillin/sulbactam or gentamicin was observed more frequently in the ENT and NFR groups, respectively. All the isolated bacteria were tolerant to nickel, zinc, chromium and copper at high levels (≥1,024 μg mL−1), whereas tolerance to cadmium and mercury varied among the isolated bacteria (2–1,024 μg mL−1). Multidrug-resistant bacteria were more frequent and diverse in fish ponds than in the water-fed canal. A positive correlation was observed between antimicrobial resistance and metal tolerance. The data point out the need for water treatment associated with the aquaculture system. PMID:22972388

  12. Evaluation of toxic heavy metals in ayurvedic syrups sold in local markets of hazara, pakistan

    International Nuclear Information System (INIS)

    Hajra, B.; Orakzai, S.; Hussain, F.; Farya, U.

    2015-01-01

    Herbal and Ayurvedic preparations, widely used in Pakistan and the developing world, present serious risk of heavy metal toxicity related to their medicinal content and prolonged use by patients. The objective of this study was to find out the concentration of heavy metals in Herbal and Ayurvedic liquid preparations commonly used for treatment of different diseases, from local markets of Hazara. Methods: The cross sectional survey of traditional herbal and Ayurvedic medicine shops included ten liquid preparations selected from local shops of Mansehra and Abbottabad after interviewing the shopkeepers; so as to select the most commonly sold preparations along with their indications. All samples were analysed on standard Atomic Absorption Spectroscopy for qualitative and quantitative study of toxic heavy metals (Mercury, Iron, Zinc, Lead, Manganese and Arsenic). Results: Toxic levels of Mercury were present in seven syrups, i.e., (Kashneeze, Akseer e Pachas, Tankar, Sharbat e folad, Urosinal, Akseer e Jigar and Amrat dhara) while Arsenic was present only in Urosinal. Iron, Zinc, Manganese and Lead were present in permissible limits in all syrups. Conclusion: Mercury and Arsenic are present in local Herbal and Ayurvedic liquid preparations far beyond the permissible limits as proposed by the International Regulatory Authorities for health drugs while the rest of metals, i.e., Zinc, Manganese, and Iron are within the therapeutic limits. (author)

  13. Comparative effects of graphene and graphene oxide on copper toxicity to Daphnia magna: Role of surface oxygenic functional groups.

    Science.gov (United States)

    Liu, Yingying; Fan, Wenhong; Xu, Zhizhen; Peng, Weihua; Luo, Shenglian

    2018-05-01

    Although the risk of graphene materials to aquatic organisms has drawn wide attention, the combined effects of graphene materials with other contaminants such as toxic metals, which may bring about more serious effects than graphene materials alone, have seldom been explored. Herein, the effects of graphene (GN) and graphene oxide (GO, an important oxidized derivative of graphene) on copper (Cu) toxicity to Daphnia magna were systematically investigated. The results indicated that GN remarkably increased the Cu accumulation in D. magna and enhanced the oxidative stress injury caused by Cu, whereas did not significantly alter D. magna acute mortality within the tested Cu concentrations (0-200 μg L -1 ). On the contrary, GO significantly decreased the Cu accumulation in D. magna and alleviated the oxidative stress injury caused by Cu. Meanwhile, the presence of GO significantly reduced the mortality of D. magna when Cu concentration exceeded 50 μg L -1 . The different effects of GN and GO on Cu toxicity were possibly dependent on the action of surface oxygenic functional group. Because of the introduction of surface oxygenic functional groups, the adsorption ability to metal ions, stability in water and interaction mode with organisms of GO are quite different from that of GN, causing different effects on Cu toxicity. This study provides important information on the bioavailability and toxicity of heavy metals as affected by graphene materials in natural water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Assessment of potentially toxic metal contamination in the soils of a legacy mine site in Central Victoria, Australia.

    Science.gov (United States)

    Abraham, Joji; Dowling, Kim; Florentine, Singarayer

    2018-02-01

    The environmental impact of toxic metal contamination from legacy mining activities, many of which had operated and were closed prior to the enforcement of robust environmental legislation, is of growing concern to modern society. We have carried out analysis of As and potentially toxic metals (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) in the surface soil of a legacy gold mining site in Maldon, Victoria, Australia, to reveal the status of the current metal concentration. The results revealed the median concentrations of metals from highest to lowest, in the order: Mn > Zn > As > Cr > Cu > Pb > Ni > Co > Hg > Cd. The status of site was assessed directly by comparing the metal concentrations in the study area with known Australian and Victorian average top soil levels and the health investigation levels set by the National Environmental Protection Measures (NEPM) and the Department of Environment and Conservation (DEC) of the State of Western Australia. Although, median concentrations of As, Hg, Pb, Cu and Zn exceeded the average Australian and Victorian top soil concentrations, only As and Hg exceeded the ecological investigation levels (EIL) set by DEC and thus these metals are considered as risk to the human and aquatic ecosystems health due to their increase in concentration and toxicity. In an environment of climate fluctuation with increased storm events and forest fires may mobilize these toxic metals contaminants, pose a real threat to the environment and the community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Electrical technologies for the removal of toxic metals from the environment

    International Nuclear Information System (INIS)

    Millington, J.P.

    1994-01-01

    Electrical technologies are now available, both for the manufacture of materials and for the control of pollution. Although electrically intensive, they are not of necessity energy intensive and offers in many cases advantages over conventional technologies. This paper presents two examples of clean technology and two of pollution abatement, which all address the problem of toxic metals. (TEC)

  16. Methoxsalen-induced macular toxicity

    Directory of Open Access Journals (Sweden)

    Aditya Maitray

    2017-01-01

    Full Text Available Psoralen compounds such as methoxsalen are photosensitizer agents used in conjunction with ultraviolet A (UVA radiation exposure as photochemotherapy (Psoralens and ultraviolet-A therapy [PUVA therapy] for certain epidermal skin disorders such as psoriasis and vitiligo. Methoxsalen has been shown to be associated with premature cataract formation by forming adducts with lens proteins following oral administration and subsequent UVA exposure. Hence, the use of UV-filtering glasses is recommended during PUVA therapy sessions. Ocular tissues can be exposed to its photosensitizing effect with subsequent UV radiation exposure through sunlight if the patient was to be without protective eye glasses, potentially causing macular toxicity. Till date, there have been no reports in the literature of any posterior segment ocular toxicity arising from methoxsalen use. Here, we describe a case of a bilateral macular toxicity in a middle-aged male treated with methoxsalen for vitiligo.

  17. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics and ionomics

    Directory of Open Access Journals (Sweden)

    Samiksha eSingh

    2016-02-01

    Full Text Available Heavy metal contamination of soil and water causing toxicity/stress has become one important constraint to crop productivity and quality. This situation has further worsened by the increasing population growth and inherent food demand. It have been reported in several studies that counterbalancing toxicity, due to heavy metal requires complex mechanisms at molecular, biochemical, physiological, cellular, tissue and whole plant level, which might manifest in terms of improved crop productivity. Recent advances in various disciplines of biological sciences such as metabolomics, transcriptomics, proteomics etc. have assisted in the characterization of metabolites, transcription factors, stress-inducible proteins involved in heavy metal tolerance, which in turn can be utilized for generating heavy metal tolerant crops. This review summarizes various tolerance strategies of plants under heavy metal toxicity, covering the role of metabolites (metabolomics, trace elements (ionomics, transcription factors (transcriptomics, various stress-inducible proteins (proteomics as well as the role of plant hormones. We also provide a glance at strategies adopted by metal accumulating plants also known as metallophytes.

  18. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics

    Science.gov (United States)

    Singh, Samiksha; Parihar, Parul; Singh, Rachana; Singh, Vijay P.; Prasad, Sheo M.

    2016-01-01

    Heavy metal contamination of soil and water causing toxicity/stress has become one important constraint to crop productivity and quality. This situation has further worsened by the increasing population growth and inherent food demand. It has been reported in several studies that counterbalancing toxicity due to heavy metal requires complex mechanisms at molecular, biochemical, physiological, cellular, tissue, and whole plant level, which might manifest in terms of improved crop productivity. Recent advances in various disciplines of biological sciences such as metabolomics, transcriptomics, proteomics, etc., have assisted in the characterization of metabolites, transcription factors, and stress-inducible proteins involved in heavy metal tolerance, which in turn can be utilized for generating heavy metal-tolerant crops. This review summarizes various tolerance strategies of plants under heavy metal toxicity covering the role of metabolites (metabolomics), trace elements (ionomics), transcription factors (transcriptomics), various stress-inducible proteins (proteomics) as well as the role of plant hormones. We also provide a glance of some strategies adopted by metal-accumulating plants, also known as “metallophytes.” PMID:26904030

  19. Concentration addition and independent action model: Which is better in predicting the toxicity for metal mixtures on zebrafish larvae.

    Science.gov (United States)

    Gao, Yongfei; Feng, Jianfeng; Kang, Lili; Xu, Xin; Zhu, Lin

    2018-01-01

    The joint toxicity of chemical mixtures has emerged as a popular topic, particularly on the additive and potential synergistic actions of environmental mixtures. We investigated the 24h toxicity of Cu-Zn, Cu-Cd, and Cu-Pb and 96h toxicity of Cd-Pb binary mixtures on the survival of zebrafish larvae. Joint toxicity was predicted and compared using the concentration addition (CA) and independent action (IA) models with different assumptions in the toxic action mode in toxicodynamic processes through single and binary metal mixture tests. Results showed that the CA and IA models presented varying predictive abilities for different metal combinations. For the Cu-Cd and Cd-Pb mixtures, the CA model simulated the observed survival rates better than the IA model. By contrast, the IA model simulated the observed survival rates better than the CA model for the Cu-Zn and Cu-Pb mixtures. These findings revealed that the toxic action mode may depend on the combinations and concentrations of tested metal mixtures. Statistical analysis of the antagonistic or synergistic interactions indicated that synergistic interactions were observed for the Cu-Cd and Cu-Pb mixtures, non-interactions were observed for the Cd-Pb mixtures, and slight antagonistic interactions for the Cu-Zn mixtures. These results illustrated that the CA and IA models are consistent in specifying the interaction patterns of binary metal mixtures. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Antioxidant, Antibacterial and Cell Toxicity Effects of Polyphenols

    African Journals Online (AJOL)

    Z. Ghouila, S. Laurent, S. Boutry, L. Vander Elst, F. Nateche, R. N. Muller, A. Baaliouamer

    2017-01-01

    Jan 1, 2017 ... At 100 μg/mL, GSE induced a moderate toxicity of the order of ... the many phytochemical compounds consumed in our diet, polyphenols are the most ... action of grape seed extract in many health related areas due to its antioxidant effect [11]. In ...... antibacterial activities of southern Serbian red wines.