WorldWideScience

Sample records for metal vapor vacuum

  1. Metal vapor vacuum arc ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-06-01

    We have developed a family of metal vapor vacuum are (MEVVA) high current metal ion sources. The sources were initially developed for the production of high current beams of metal ions for heavy ion synchrotron injection for basic nuclear physics research; more recently they have also been used for metal ion implantation. A number of different embodiments of the source have been developed for these specific applications. Presently the sources operate in a pulsed mode, with pulse width of order 1 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, and since the ions produced in the vacuum arc plasma are in general multiply ionized the ion energy is up to several hundred keV. Beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Nearly all of the solid metals of the Periodic Table have been use to produce beam. A number of novel features have been incorporated into the sources, including multiple cathodes and the ability to switch between up to 18 separate cathode materials simply and quickly, and a broad beam source version as well as miniature versions. here we review the source designs and their performance. 45 refs., 7 figs

  2. Low jitter metal vapor vacuum arc ion source for electron beam ion trap injections

    International Nuclear Information System (INIS)

    Holland, Glenn E.; Boyer, Craig N.; Seely, John F.; Tan, J.N.; Pomeroy, J.M.; Gillaspy, J.D.

    2005-01-01

    We describe a metal vapor vacuum arc (MeVVA) ion source containing eight different cathodes that are individually selectable via the control electronics which does not require moving components in vacuum. Inside the vacuum assembly, the arc plasma is produced by means of a 30 μs pulse (26 kV,125 A) delivering 2.4 mC of charge to the cathode sample material. The trigger jitter is minimized ( 9 ions/cm 2 , measured by an unbiased Faraday cup positioned 20 cm from the extractor grid, at discharge rates up to 5 Hz. The electronic triggering of the discharge is via a fiber optic interface. We present the design, fabrication details, and performance of this MeVVA, recently installed on the National Institute of Standards and Technology electron beam ion trap (EBIT)

  3. Ion spectra of the metal vapor vacuum arc ion source with compound and alloy cathodes

    Science.gov (United States)

    Sasaki, Jun; Brown, Ian G.

    1990-01-01

    In metal vapor vacuum arc (MEVVA) ion sources, vacuum arc plasma with cathodes of single, pure elements has been utilized for the production of metal ions. In this study, we have investigated the charge state distributions of ions produced in vacuum arc plasmas in a MEVVA ion source for the case when the cathode is an alloy or a compound material. The ion charge state spectra were analyzed by means of a time-of-flight apparatus. We have compared the ion spectra for a cathode of an alloy or a compound material with its constituent elements: TiC/TiN/TiO2/Ti/C, SiC/Si/C, WC/W/C U/UN/(UN-ZrC)/Zr/C, and brass/Zn/Cu. We find that the MEVVA produces ions of all constituent elements in the compound and the alloy cathodes. The charge state distribution of each element differs, however, from the charge state distribution obtained in the vacuum arc with a cathode made of the pure, single constituent element. Fractional values of the total ion numbers of each constituent element in the extracted beam depart from the stoichiometry of the elements in the cathode material. In an operation with a TiC cathode, we irradiated a 304 stainless-steel plate with the extracted beam. Results from glow-discharge spectroscopy (GDS) of the surface show that both titanium and carbon are implanted in the substrate after the irradiation.

  4. In vitro studies on silver implanted pure iron by metal vapor vacuum arc technique.

    Science.gov (United States)

    Huang, Tao; Cheng, Yan; Zheng, Yufeng

    2016-06-01

    Pure iron has been verified as a promising biodegradable metal for absorbable cardiovascular stent usage. However, the degradation rate of pure iron is too slow. To accelerate the degradation of the surface of pure iron, silver ions were implanted into pure iron by metal vapor vacuum arc (MEVVA) source at an extracted voltage of 40keV. The implanted influence was up to 2×10(17)ions/cm(2). The composition and depth profiles, corrosion behavior and biocompatibility of Ag ion implanted pure iron were investigated. The implantation depths of Ag was around 60nm. The element Ag existed as Ag2O in the outermost layer, then gradually transited to metal atoms in zero valent state with depth increase. The implantation of Ag ions accelerated the corrosion rate of pure iron matrix, and exhibited much more uniform corrosion behavior. For cytotoxicity assessment, the implantation of Ag ions slightly decreased the viability of all kinds of cell lines used in these tests. The hemolysis rate of Ag ion implanted pure iron was lower than 2%, which was acceptable, whereas the platelet adhesion tests indicated the implantation of Ag ions might increase the risk of thrombosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Some novel design features of the LBL metal vapor vacuum arc ion sources

    International Nuclear Information System (INIS)

    MacGill, R.A.; Brown, I.G.; Galvin, J.E.

    1990-01-01

    The family of MEVVA (metal vapor vacuum arc) high current metal ion sources developed at LBL over the past several years has grown to include a number of different source versions with a wide range of some of the design and operational parameters. The MicroMEVVA source is a particularly compact version, about 2 cm diam and 10 cm long, while the MEVVA IV weighs some 30 kG. MEVVAs IV and V incorporate multiple cathode assemblies (16 and 18 separate cathodes, respectively), and the operating cathode can be switched rapidly and without downtime. The new MEVVA V embodiment is quite compact considering its broad beam (10 cm), high voltage (100 kV), and multiple cathode features. The large-area extractor grids used in MEVVA V were fabricated using a particularly simple technique, and they are clamped into position and can thus be changed simply and quickly. The electrical system used to drive the arc is particularly simple and incorporates several attractive features. In this article we review and describe a number of the mechanical and electrical design features that have been developed for these sources

  6. Characterization of surface enhancement of carbon ion-implanted TiN coatings by metal vapor vacuum arc ion implantation

    CERN Document Server

    Chang, C L

    2002-01-01

    The modification of the surfaces of energetic carbon-implanted TiN films using metal vapor vacuum arc (MEVVA) ion implantation was investigated, by varying ion energy and dose. The microhardness, microstructure and chemical states of carbon, implanted on the surface layer of TiN films, were examined, as functions of ion energy and dose, by nanoindenter, transmission electron microscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Results revealed that the microhardness increased from 16.8 up to 25.3 GPa and the friction coefficient decreased to approximately 0.2, depending on the implanted ion energy and dose. The result is attributed to the new microcrystalline phases of TiCN and TiC formed, and carbon concentration saturation of the implanted matrix can enhance the partial mechanical property of TiN films after MEVVA treatment. The concentration distribution, implantation depth and chemical states of carbon-implanted TiN coatings depended strongly on the ion dose and...

  7. Vacuum evaporation of pure metals

    OpenAIRE

    Safarian, Jafar; Engh, Thorvald Abel

    2013-01-01

    Theories on the evaporation of pure substances are reviewed and applied to study vacuum evaporation of pure metals. It is shown that there is good agreement between different theories for weak evaporation, whereas there are differences under intensive evaporation conditions. For weak evaporation, the evaporation coefficient in Hertz-Knudsen equation is 1.66. Vapor velocity as a function of the pressure is calculated applying several theories. If a condensing surface is less than one collision...

  8. Vapor-barrier Vacuum Isolation System

    Science.gov (United States)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)

    2014-01-01

    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  9. Implantation of titanium, chromium, yttrium, molybdenum, silver, hafnium, tantalum, tungsten and platinum ions generated by a metal vapor vacuum ion source into 440C stainless steel

    International Nuclear Information System (INIS)

    Sasaki, Jun; Hayashi, Kazunori; Sugiyama, Kenji; Ichiko, Osami; Hashiguchi, Yoshihiro

    1992-01-01

    Titanium, yttrium, molybdenum, silver, chromium, hafnium, tantalum, tungsten and platinum ions generated by a metal vapor vacuum arc (MEVVA) ion source were implanted into 440C stainless steel in the dose region 10 17 ions cm -2 with extraction voltages of up to 70 kV. Glow discharge spectroscopy (GDS), friction coefficient, and Vickers microhardness of the specimens were studied. Grooves made by friction tests were investigated by electron probe microanalysis (EPMA). GDS showed incorporation of carbon in the yttrium, hafnium, tantalum, tungsten and platinum implanted specimens, as well as titanium implanted samples. A large amount of oxygen was observed in the yttrium implanted specimen. The friction coefficient was measured by reciprocating sliding of an unimplanted 440C ball without lubricant at a load of 0.245 N. The friction decreased and achieved a stable state after implantation of titanium, hafnium and tantalum. The friction coefficient of the platinum implanted specimen showed a gradual decrease after several cycles of sliding at high friction coefficient. The yttrium implanted sample exhibited a decreased but slightly unstable friction coefficient. Results from EPMA showed that the implanted elements, which gave decreased friction, remained even after sliding of 200 cycles. Implantation of chromium, molybdenum, silver and tungsten did not provide a decrease in friction and the implants were gone from the wear grooves after the sliding tests. (orig.)

  10. High-purity, robust alkali vapor sources without vacuum feedthroughs

    Science.gov (United States)

    Kohn, Rudolph; Bigelow, Matthew; Imhof, Eric; Squires, Matthew; Olson, Spencer; Kasch, Brian; Hostutler, David

    2017-04-01

    The authors report the successful implementation of a method for producing rubidium vapor at sufficient purity and with sufficient quantity to load cold atom experiments. This method requires no vacuum feedthroughs and has measurable advantages in several parameters over commercial chromate dispensers, including vapor purity, required heating power, and capacity per unit volume. It is reasonably stable when exposed to air, allowing for easy handling. Currently, this method is being integrated into the authors' systems and its use in loading a basic 3D vapor cell magneto-optical trap (MOT) has been demonstrated, in addition to loading a 2D+ MOT which has been subsequently used to load a 3D MOT.

  11. Upgraded vacuum arc ion source for metal ion implantation

    International Nuclear Information System (INIS)

    Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.; Brown, I. G.

    2012-01-01

    Vacuum arc ion sources have been made and used by a large number of research groups around the world over the past twenty years. The first generation of vacuum arc ion sources (dubbed ''Mevva,'' for metal vapor vacuum arc) was developed at Lawrence Berkeley National Laboratory in the 1980s. This paper considers the design, performance parameters, and some applications of a new modified version of this kind of source which we have called Mevva-V.Ru. The source produces broad beams of metal ions at an extraction voltage of up to 60 kV and a time-averaged ion beam current in the milliampere range. Here, we describe the Mevva-V.Ru vacuum arc ion source that we have developed at Tomsk and summarize its beam characteristics along with some of the applications to which we have put it. We also describe the source performance using compound cathodes.

  12. Latent fingermark development using low-vacuum vaporization of ninhydrin.

    Science.gov (United States)

    Chen, Chun-Chieh; Yang, Chao-Kai; Liao, Jeh-Shane; Wang, Sheng-Meng

    2015-12-01

    The vacuum technique is a method of vaporizing a solid material to its gas phase, helping deposit reagents gently on target surfaces to develop latent fingermarks. However, this application is rarely reported in the literature. In this study, a homemade fume hood with a built-in vacuum control system and programmable heating system designed by the Taiwan Criminal Investigation Bureau is introduced. Factors that affect the instrument's performance in developing fingermarks are discussed, including the quantity of chemicals for vaporization, heating program arrangement, and paper of different materials. The results show that fingermarks are effectively developed by vaporizing solid ninhydrin. This would be an alternative application in selecting a solvent-free method for protecting the environment and reducing health hazards in the lab. In terms of the heating program, the result indicates that under a low-vacuum condition (50 mTorr), 80-90 °C is a suitable temperature range for ninhydrin vaporization, allowing ninhydrin to be vaporized without bumping and waste. In terms of the performance on different material papers, this instrument demonstrates its capacity by developing latent fingermarks on thermal paper without discoloration or damaging the original writing, and the same results are also observed on Taiwan and United States banknotes. However, a coherent result could be hardly obtained using the same vaporization setting because different banknotes have their own surface features and water absorption ability or other unique factors may influence the effect of ninhydrin deposition. This study provides a reliable application for developing latent fingermarks without using solvents, and it is also expected to contribute to environmental protection along with the trend of green chemistry technology. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Vacuum spark breakdown model based on exploding metal wire phenomena

    International Nuclear Information System (INIS)

    Haaland, J.

    1984-06-01

    Spark source mass spectra (SSMS) indicates that ions are extracted from an expanding and decaying plasma. The intensity distribution shows no dependance on vaporization properties of individual elements which indicates explosive vapour formation. This seems further to be a requirement for bridging a vacuum gap. A model including plasma ejection from a superheated anode spot by a process similar to that of an exploding metal wire is proposed. The appearance of hot plasma points in low inductance vacuum sparks can then be explained as exploding micro particles ejected from a final central anode spot. The phenomenological model is compared with available experimental results from literature, but no extensive quantification is attempted

  14. 33 CFR 154.814 - Facility requirements for vessel vapor overpressure and vacuum protection.

    Science.gov (United States)

    2010-07-01

    ... vapor overpressure and vacuum protection. 154.814 Section 154.814 Navigation and Navigable Waters COAST... vacuum protection. (a) A facility's vapor collection system must have the capacity for collecting cargo... vessel's cargo tanks between 80 percent of the highest setting of any of the vessel's vacuum relief...

  15. 46 CFR 39.20-11 - Vapor overpressure and vacuum protection-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Vapor overpressure and vacuum protection-TB/ALL. 39.20-11 Section 39.20-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS Design and Equipment § 39.20-11 Vapor overpressure and vacuum protection—TB/ALL. (a) The cargo...

  16. Method of physical vapor deposition of metal oxides on semiconductors

    Science.gov (United States)

    Norton, David P.

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  17. Metal-oxide-semiconductor devices based on epitaxial germanium-carbon layers grown directly on silicon substrates by ultra-high-vacuum chemical vapor deposition

    Science.gov (United States)

    Kelly, David Quest

    After the integrated circuit was invented in 1959, complementary metal-oxide-semiconductor (CMOS) technology soon became the mainstay of the semiconductor industry. Silicon-based CMOS has dominated logic technologies for decades. During this time, chip performance has grown at an exponential rate at the cost of higher power consumption and increased process complexity. The performance gains have been made possible through scaling down circuit dimensions by improvements in lithography capabilities. Since scaling cannot continue forever, researchers have vigorously pursued new ways of improving the performance of metal-oxide-semiconductor field-effect transistors (MOSFETs) without having to shrink gate lengths and reduce the gate insulator thickness. Strained silicon, with its ability to boost transistor current by improving the channel mobility, is one of the methods that has already found its way into production. Although not yet in production, high-kappa dielectrics have also drawn wide interest in industry since they allow for the reduction of the electrical oxide thickness of the gate stack without having to reduce the physical thickness of the dielectric. Further out on the horizon is the incorporation of high-mobility materials such as germanium (Ge), silicon-germanium (Si1-xGe x), and the III-V semiconductors. Among the high-mobility materials, Ge has drawn the most attention because it has been shown to be compatible with high-kappa dielectrics and to produce high drive currents compared to Si. Among the most difficult challenges for integrating Ge on Si is finding a suitable method for reducing the number of crystal defects. The use of strain-relaxed Si1- xGex buffers has proven successful for reducing the threading dislocation density in Ge epitaxial layers, but questions remain as to the viability of this method in terms of cost and process complexity. This dissertation presents research on thin germanium-carbon (Ge 1-yCy layers on Si for the fabrication

  18. Separating and recycling metals from mixed metallic particles of crushed electronic wastes by vacuum metallurgy.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2009-09-15

    During the treatment of electronic wastes, a crushing process is usually used to strip metals from various base plates. Several methods have been applied to separate metals from nonmetals. However, mixed metallic particles obtained from these processes are still a mixture of various metals, including some toxic heavy metals such as lead and cadmium. With emphasis on recovering copper and other precious metals, there have hitherto been no satisfactory methods to recover these toxic metals. In this paper, the criterion of separating metals from mixed metallic particles by vacuum metallurgy is built. The results show that the metals with high vapor pressure have been almost recovered completely, leading to a considerable reduction of environmental pollution. In addition, the purity of copper in mixed particles has been improved from about 80 wt % to over 98 wt %.

  19. Progress in vacuum metal extraction, refining and consolidation

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Mukherjee, T.K.; Sharma, B.P.

    1973-01-01

    The unique achievements in the process metallurgy of rare metals in the past quarter century should largely be attributed to advances in vacuum technology. New standards for high purity, increasing demand for pure metals and alloys for established applications, and steady improvement in sophistication and capacity of vacuum furnaces have provided the stimulus for developing and expanding vacuum metal extraction processes, and also exploring totally new processes. The paper discusses the thermochemistry of vacuum metallurgy, carbothermic and metallothermic reduction reactions, consolidation and refining by vacuum arc melting, electron beam melting and high temperature high vacuum sintering, and ultrapurification, with special reference to the reactive and refractory metals of Group IV to VI. (author)

  20. Spill-Resistant Alkali-Metal-Vapor Dispenser

    Science.gov (United States)

    Klipstein, William

    2005-01-01

    A spill-resistant vessel has been developed for dispensing an alkali-metal vapor. Vapors of alkali metals (most commonly, cesium or rubidium, both of which melt at temperatures slightly above room temperature) are needed for atomic frequency standards, experiments in spectroscopy, and experiments in laser cooling. Although the present spill-resistant alkali-metal dispenser was originally intended for use in the low-gravity environment of outer space, it can also be used in normal Earth gravitation: indeed, its utility as a vapor source was confirmed by use of cesium in a ground apparatus. The vessel is made of copper. It consists of an assembly of cylinders and flanges, shown in the figure. The uppermost cylinder is a fill tube. Initially, the vessel is evacuated, the alkali metal charge is distilled into the bottom of the vessel, and then the fill tube is pinched closed to form a vacuum seal. The innermost cylinder serves as the outlet for the vapor, yet prevents spilling by protruding above the surface of the alkali metal, no matter which way or how far the vessel is tilted. In the event (unlikely in normal Earth gravitation) that any drops of molten alkali metal have been shaken loose by vibration and are floating freely, a mesh cap on top of the inner cylinder prevents the drops from drifting out with the vapor. Liquid containment of the equivalent of 1.2 grams of cesium was confirmed for all orientations with rubbing alcohol in one of the prototypes later used with cesium.

  1. Vacuum brazing of graphite-metals

    International Nuclear Information System (INIS)

    Jacquot, P.; Coll, B.; Gabriel, M.; Speri, R.

    1989-01-01

    This conference paper discusses the brazing in vacuum of stainless steel (304 L) and graphite. In order to reduce stresses induced in the brazed system, molybdenum and copper foils are inserted between the two base materials. The filler metal used for brazing is the alloy 69AG27Cu4Ti (Ticusil). The structure of the metal-graphite joint is explained in detail, and a microhardness profile is given. This type of joint is primarily applied in devices for thermonuclear fusion (Tokamak devices). (MM) [de

  2. Selective Metal-vapor Deposition on Organic Surfaces.

    Science.gov (United States)

    Tsujioka, Tsuyoshi

    2016-02-01

    Selective metal-vapor deposition signifies that metal-vapor atoms are deposited on a hard organic surface, but not on a soft (low glass transition temperature, low Tg ) surface. In this paper, we introduce the origin, extension, and applications of selective metal-vapor deposition. An amorphous photochromic diarylethene film shows light-controlled selective metal-vapor deposition, which is caused by a large Tg change based on photoisomerization, but various organic surfaces, including organic crystal and polymers, can be utilized for achieving selective metal-vapor deposition. Various applications of selective metal-vapor deposition, including cathode patterning of organic light-emitting devices, micro-thin-film fuses, multifunctional diffraction gratings, in-plane electrical bistability for memory devices, and metal-vapor integration, have been demonstrated. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Directed Vapor Deposition: Low Vacuum Materials Processing Technology

    National Research Council Canada - National Science Library

    Groves, J. F; Mattausch, G; Morgner, H; Hass, D. D; Wadley, H. N

    2000-01-01

    Directed vapor deposition (DVD) is a recently developed electron beam-based evaporation technology designed to enhance the creation of high performance thick and thin film coatings on small area surfaces...

  4. Chemical vapor deposition of group IIIB metals

    Science.gov (United States)

    Erbil, A.

    1989-11-21

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  5. Application of vacuum metallurgy to separate pure metal from mixed metallic particles of crushed waste printed circuit board scraps.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2008-10-15

    The principle of separating pure metal from mixed metallic particles (MMPs) byvacuum metallurgy is that the vapor pressures of various metals at the same temperature are different As a result, the metal with high vapor pressure and low boiling point can be separated from the mixed metals through distillation or sublimation, and then it can be recycled through condensation under a certain condition. The vacuum metallurgy separation (VMS) of MMPs of crushed waste printed circuit boards (WPCBs) has been studied in this paper. Theoretical analyses show that the MMPs (copper, zinc, bismuth, lead, and indium, for example) can be separated by vacuum metallurgy. The copper particles (0.15-0.20 mm) and zinc particles (<0.30 mm) were chosen to simulate the MMPs of crushed WPCBs. Experimental results show that the separated efficiency of zinc in the copper-rich particles achieves 96.19 wt % when the vacuum pressure is 0.01-0.10 Pa, the heating temperature is 1123 K, and the heating time is 105 min. Under this operation condition, the separated efficiency of zinc in the copper-rich particles from crushed WPCBs achieves 97.00 wt % and the copper purity increases from 90.68 to 99.84 wt %.

  6. Vacuum Vaporization Technique for Latent Fingerprints Development on Thermal Papers using Lawsone Natural Products

    Science.gov (United States)

    Phungyimnoi, N.; Eksinitkun, G.; Phutdhawong, W.

    2017-09-01

    The vacuum vaporization technique is widely used to develop of visualized latent fingerprints on substrate surface for forensics investigation. In this study, we reported the first utilization of lawsone in the vacuum vaporization technique. The lawsone was sublimation in vacuum and showed the detected latent fingerprints on thermal papers. The method involves hanging the thermal paper samples 5, 10, 15 cm above a heating source with dispersed lawsone solids in a vacuum chamber. The optimized condition for lawsone sublimation are 50, 100, 150 mg with low-vacuum (0.1 mbar) and vaporizing temperature at 40-60°C. The sample fingerprints were left for 1, 3, 7 and 30 days before examination comparison between lawsone and fingerprint ink pad using an Automated Fingerprint Identification (AFIS). The resulted showed that using 100 mg lawsone sublimation on thermal paper at the range of 10 cm evidenced the clear, detectable minutiae which can be used for visualization and identification of latent prints without the background black staining known. Thus, this study might be interested application for developing latent fingerprints as a solvent free technique and non-hazardous materials.

  7. Distribution of Vapor Pressure in the Vacuum Freeze-Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2012-01-01

    Full Text Available In the big vacuum freeze-drying equipment, the drying rate of materials is uneven at different positions. This phenomenon can be explained by the uneven distribution of vapor pressure in chamber during the freeze-drying process. In this paper, a mathematical model is developed to describe the vapor flow in the passageways either between material plates and in the channel between plate groups. The distribution of vapor pressure along flow passageway is given. Two characteristic factors of passageways are defined to express the effects of structural and process parameters on vapor pressure distribution. The affecting factors and their actions are quantitatively discussed in detail. Two examples are calculated and analyzed. The analysis method and the conclusions are useful to estimate the difference of material drying rate at different parts in equipment and to direct the choice of structural and process parameters.

  8. Comparative study of tantalum deposition by chemical vapor deposition and electron beam vacuum evaporation

    International Nuclear Information System (INIS)

    Spitz, J.; Chevallier, J.

    1975-01-01

    The coating by tantalum of steel parts has been carried out by the two following methods: chemical vapor deposition by hydrogen reduction of TaCl 5 (temperature=1100 deg C, pressure=200 mmHg, H 2 /TaCl 5 =10); electron beam vacuum evaporation. In this case Ta was firstly condensed by ion plating (P(Ar)=5x10 -3 up to 2x10 -2 mmHg; U(c)=3 to -4kV and J(c)=0.2 to 1mAcm -2 ) in order to ensure a good adhesion between deposit and substrate; then by vacuum condensation (substrate temperature: 300 to 650 deg C) to ensure that the coating is impervious to HCl an H 2 SO 4 acids. The advantages and inconveniences of each method are discussed [fr

  9. Vapor Species Over Te Precious Metal Minerals

    Science.gov (United States)

    Helle, Sonia; Wildeman, Thomas; Yarar, Baki

    1987-01-01

    This paper reports on two developments of interest to extractive metallurgists: how the knowledge of the vapors over tellurium minerals can be used to develop better processing methods and how graphite furnace atomic absorption, used at moderate temperatures, can be used to characterize the vapors over ore minerals. Elemental tellurium, Ag2Te, and AuTe2 were studied from 250°C through 1050°C. The vapors over these solids were analyzed in-situ by placing the solids directly into the graphite furnace of an atomic absorption spectrophotometer and adjusting the temperature accordingly. Atomic Ag, Au, and Te and molecular Te were analyzed in the vapor above the solids. Using absorbance versus temperature data, Clausius-Clapeyron plots were made to determine how the solids were changing.

  10. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions.

    Science.gov (United States)

    Elliot, Alan J; Malek, Gary A; Lu, Rongtao; Han, Siyuan; Yu, Haifeng; Zhao, Shiping; Wu, Judy Z

    2014-07-01

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al2O2/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ~1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al2O3 tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  11. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, Alan J., E-mail: alane@ku.edu, E-mail: jwu@ku.edu; Malek, Gary A.; Lu, Rongtao; Han, Siyuan; Wu, Judy Z., E-mail: alane@ku.edu, E-mail: jwu@ku.edu [Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045 (United States); Yu, Haifeng; Zhao, Shiping [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-07-15

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al{sub 2}O{sub 2}/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ∼1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al{sub 2}O{sub 3} tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  12. Evaluating the robustness of the enantioselective stationary phases on the Rosetta mission against space vacuum vaporization

    Science.gov (United States)

    Meierhenrich, Uwe J.; Cason, Julie R. L.; Szopa, Cyril; Sternberg, Robert; Raulin, François; Thiemann, Wolfram H.-P.; Goesmann, Fred

    2013-12-01

    The European Space Agency's Rosetta mission was launched in March 2004 in order to reach comet 67P/Churyumov-Gerasimenko by August 2014. The Cometary Sampling and Composition experiment (COSAC) onboard the Rosetta mission's lander "Philae" has been designed for the cometary in situ detection and quantification of organic molecules using gas chromatography coupled to mass spectrometry (GC-MS). The GC unit of COSAC is equipped with eight capillary columns that will each provide a specific stationary phase for molecular separation. Three of these stationary phases will be used to chromatographically resolve enantiomers, as they are composed of liquid polymers of polydimethylsiloxane (PDMS) to which chiral valine or cyclodextrin units are attached. Throughout the ten years of Rosetta's journey through space to reach comet 67P, these liquid stationary phases have been exposed to space vacuum, as the capillary columns within the COSAC unit were not sealed or filled with carrier gas. Long term exposures to space vacuum can cause damage to such liquid stationary phases as key monomers, volatiles, and chiral selectors can be vaporized and lost in transit. We have therefore exposed identical spare units of COSAC's chiral stationary phases over eight years to vacuum conditions mimicking those experienced in space and we have now investigated their resolution capabilities towards different enantiomers both before and after exposure to space vacuum environments. We have observed that enantiomeric resolution capabilities of these chiral liquid enantioselective stationary phases has not been affected by exposure to space vacuum conditions. Thus we conclude that the three chiral stationary phases of the COSAC experiment onboard the Rosetta mission lander "Philae" can be considered to have maintained their resolution capacities throughout their journey prior to cometary landing in November 2014.

  13. Vacuum filling of complex microchannels with liquid metal.

    Science.gov (United States)

    Lin, Yiliang; Gordon, Olivia; Khan, M Rashed; Vasquez, Neyanel; Genzer, Jan; Dickey, Michael D

    2017-09-12

    This paper describes the utilization of vacuum to fill complex microchannels with liquid metal. Microchannels filled with liquid metal are useful as conductors for soft and stretchable electronics, as well as for microfluidic components such as electrodes, antennas, pumps, or heaters. Liquid metals are often injected manually into the inlet of a microchannel using a syringe. Injection can only occur if displaced air in the channels has a pathway to escape, which is usually accomplished using outlets. The positive pressure (relative to atmosphere) needed to inject fluids can also cause leaks or delamination of the channels during injection. Here we show a simple and hands-free method to fill microchannels with liquid metal that addresses these issues. The process begins by covering a single inlet with liquid metal. Placing the entire structure in a vacuum chamber removes the air from the channels and the surrounding elastomer. Restoring atmospheric pressure in the chamber creates a positive pressure differential that pushes the metal into the channels. Experiments and a simple model of the filling process both suggest that the elastomeric channel walls absorb residual air displaced by the metal as it fills the channels. Thus, the metal can fill dead-ends with features as small as several microns and branched structures within seconds without the need for any outlets. The method can also fill completely serpentine microchannels up to a few meters in length. The ability to fill dense and complex geometries with liquid metal in this manner may enable broader application of liquid metals in electronic and microfluidic applications.

  14. Note: Design principles of a linear array multi-channel effusive metal-vapor atom source.

    Science.gov (United States)

    Jana, B; Majumder, A; Thakur, K B; Das, A K

    2013-10-01

    Atomic beams can easily be produced by allowing atoms to effuse through a channel. In an earlier investigation [A. Majumder et al., Vacuum 83, 989 (2009)], we had designed, fabricated, and characterized an effusive metal-vapor source using collinear-array of multi-channel. In this note, we describe the theoretical basis of designing the source. Atom density in atomic beam has been estimated using a set of analytical expressions for long-channel operated in transparent mode. Parametric studies on aspect ratio of channel, inter-channel separation, beam width, and vertical distance from the source are carried out. They are useful in providing physical picture and optimizing design parameters.

  15. Limitations of patterning thin films by shadow mask high vacuum chemical vapor deposition

    International Nuclear Information System (INIS)

    Reinke, Michael; Kuzminykh, Yury; Hoffmann, Patrik

    2014-01-01

    A key factor in engineering integrated devices such as electro-optic switches or waveguides is the patterning of high quality crystalline thin films into specific geometries. In this contribution high vacuum chemical vapor deposition (HV-CVD) was employed to grow titanium dioxide (TiO 2 ) patterns onto silicon. The directed nature of precursor transport – which originates from the high vacuum environment during the process – allows shading certain regions on the substrate by shadow masks and thus depositing patterned thin films. While the use of such masks is an emerging field in stencil or shadow mask lithography, their use for structuring thin films within HV-CVD has not been reported so far. The advantage of the employed technique is the precise control of lateral spacing and of the distance between shading mask and substrate surface which is achieved by manufacturing them directly on the substrate. As precursor transport takes place in the molecular flow regime, the precursor impinging rates (and therefore the film growth rates) on the surface can be simulated as function of the reactor and shading mask geometry using a comparatively simple mathematical model. In the current contribution such a mathematical model, which predicts impinging rates on plain or shadow mask structured substrates, is presented. Its validity is confirmed by TiO 2 -deposition on plain silicon substrates (450 °C) using titanium tetra isopropoxide as precursor. Limitations of the patterning process are investigated by the deposition of TiO 2 on structured substrates and subsequent shadow mask lift-off. The geometry of the deposits is according to the mathematical model. Shading effects due to the growing film enables to fabricate deposits with predetermined variations in topography and non-flat top deposits which are complicated to obtain by classical clean room processes. As a result of the enhanced residual pressure of decomposition products and titanium precursors and the

  16. Low-temperature operation of copper-vapor lasers by using vapor-complex reaction of metallic copper and metal halide

    OpenAIRE

    SAITO, HIROSHI; TANIGUCHI, HIROSHI

    1985-01-01

    The first successful use of vapor-complex reactions for a laser is reported. Vapor-complex reactions between metallic copper and metal halides are found effective in reducing the operating temperature in copper-vapor lasers. By using a vapor-complex reaction of Cu+AlBr3, a laser oscillation starts at a reservoir temperature of about 25°C. The results obtained by the mass spectroscopic analysis support the presumption that the copper vapor is generated through a vapor-complex reaction process.

  17. The Corrosion Protection of Metals by Ion Vapor Deposited Aluminum

    Science.gov (United States)

    Danford, M. D.

    1993-01-01

    A study of the corrosion protection of substrate metals by ion vapor deposited aluminum (IVD Al) coats has been carried out. Corrosion protection by both anodized and unanodized IVD Al coats has been investigated. Base metals included in the study were 2219-T87 Al, 7075-T6 Al, Titanium-6 Al-4 Vanadium (Ti-6Al-4V), 4130 steel, D6AC steel, and 4340 steel. Results reveal that the anodized IVD Al coats provide excellent corrosion protection, but good protection is also achieved by IVD Al coats that have not been anodized.

  18. Vaporization of tungsten-metal in steam at high temperatures

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.

    2000-01-01

    The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate

  19. Multiply charged metal ions in high current pulsed vacuum arcs

    Science.gov (United States)

    Yushkov, G. Yu.; Nikolaev, A. G.; Frolova, V. P.; Oks, E. M.; Rousskikh, A. G.; Zhigalin, A. S.

    2017-12-01

    We show that vacuum arc plasma discharges with a current of several kiloamperes and duration of a few microseconds can generate multiply charged metal ions with charge states greater than 10+. The physical mechanism behind this is discussed, suggesting an optimum arc current for higher charge states depending on the pulse duration and cathode material. Measurements of ion mass-to-charge ratio and images taken with nanosecond resolution suggest that, higher charge state ions are produced at characteristic distances of ˜10 mm from the cathode as the arc current peaks, and the process responsible for their generation is additional ionization as the discharge is pinched by its self-magnetic field. The maximum and mean ion charge states reveal a considerable increase for the all cathode materials studied: magnesium, aluminum, zirconium, tin, tantalum, gold, lead, and bismuth. For bismuth ions, the maximum charge state reaches a record-breaking value of 17+ and the mean of the charge state distribution is 12.6+. The results obtained are of interest for vacuum arc discharge physics and for ion beam technologies.

  20. An evaluation of absorption spectroscopy to monitor YBa2Cu3O7-x precursors for metal organics chemical vapor deposition processing

    International Nuclear Information System (INIS)

    Matthew Edward Thomas

    1999-01-01

    Absorption spectroscopy was evaluated as a technique to monitor the metal organics chemical vapor deposition (MOCVD) process for forming YBa 2 Cu 3 O 7-x superconducting coated conductors. Specifically, this study analyzed the feasibility of using absorption spectroscopy to monitor the MOCVD supply vapor concentrations of the organic ligand 2,2,6,6-tetramethyl-3,5-heptanedionate (TMHD) metal chelates of barium, copper, and yttrium. Ba(TMHD) 2 , Cu(TMHD) 2 , and Y(TMHD) 3 compounds have successfully been vaporized in the MOCVD processing technique to form high temperature superconducting ''coated conductors,'' a promising technology for wire fabrication. The absorption study of the barium, copper, and yttrium (TMHD) precursors was conducted in the ultraviolet wavelength region from 200nm to 400nm. To simulate the MOCVD precursor flows the Ba(TMHD) 2 , Cu(TMHD) 2 , and Y(TMHD) 3 complexes were vaporized at vacuum pressures of (0.03--10)Torr. Spectral absorption scans of each precursor were conducted to examine potential measurement wavelengths for determining vapor concentrations of each precursor via Beer's law. The experimental results show that under vacuum conditions the barium, copper, and yttrium (TMHD) precursors begin to vaporize between 90 C and 135 C, which are considerably lower vaporization temperatures than atmospheric thermal gravimetric analyses indicate. Additionally, complete vaporization of the copper and yttrium (TMHD) precursors occurred during rapid heating at temperatures between 145 C and 195 C and after heating at constant temperatures between 90 C and 125 C for approximately one hour, whereas the Ba(TMHD) 2 precursor did not completely vaporize. At constant temperatures, near constant vaporization levels for each precursor were observed for extended periods of time. Detailed spectroscopic scans at stable vaporization conditions were conducted

  1. Resonance Raman spectra of metal halide vapor complexes

    International Nuclear Information System (INIS)

    Paptheodorou, G.N.

    1978-01-01

    Resonance Raman spectra of complex vapor phase compounds formed by reacting ''acidic'' gases (A 2 X 6 = Al 2 Cl 6 , Al 2 Br 6 , In 2 Cl 6 ) with metal halides have been measured. Spectra obtained from equilibrium vapor mixtures of A 2 X 6 over solid MX 2 (= PdCl 2 , PdBr 2 , CuCl 2 , CoBr 2 , TiCl 2 , FeCl 2 , NiCl 2 , PtCl 2 ) were a superposition of the A 2 X 6 -AX 3 bands and in few cases of new resonance-enhanced polarized bands due to MA 2 X 8 and/or MAX 5 complexes. At temperatures above 800 0 K, characteristic bands due to MX 2 (g) (M = Fe, Co, Ni, Cu, Zn) and M 2 X 4 (g) (M = Cu) were observed. The predominant features of the PdAl 2 Cl 8 , CuAl 2 Cl 8 , and PdAl 2 Br 6 spectra were three high-intensity, polarized bands which were attributed to the vibrational modes of the complex coupled to the electronic state of the central atom. The spectra of CuAlCl 5 (g), CuInCl 5 (g) and Cu 2 Cl 4 (g) species showed resonance enhancement of selective fundamentals which were attributed to vibrational modes of trigonally coordinated Cu(II). Resonance Raman spectra of U 2 Cl 10 (g) and UCl 5 .AlCl 3 (g) were characterized by the presence of a strong band attributed to the U-Cl/sub t/ stretching frequency. Raman band intensity measurements were carried out for the iron(III) chloride vapors and for the vapor complexes of CuAl 2 Cl 8 , CuInCl 5 and UCl 5 .AlCl 3 using different laser powers and frequencies. The measurements suggested increasing spectroscopic temperatures and decomposition of the vapor complexes. The data are discussed in terms of the distribution of vibrational modes and the structure of the vapor species. 22 figs

  2. Chemical vapor deposition of refractory metals and ceramics III

    International Nuclear Information System (INIS)

    Gallois, B.M.; Lee, W.Y.; Pickering, M.A.

    1995-01-01

    The papers contained in this volume were originally presented at Symposium K on Chemical Vapor Deposition of Refractory Metals and Ceramics III, held at the Fall Meeting of the Materials Research Society in Boston, Massachusetts, on November 28--30, 1994. This symposium was sponsored by Morton International Inc., Advanced Materials, and by The Department of Energy-Oak Ridge National Laboratory. The purpose of this symposium was to exchange scientific information on the chemical vapor deposition (CVD) of metallic and ceramic materials. CVD technology is receiving much interest in the scientific community, in particular, to synthesize new materials with tailored chemical composition and physical properties that offer multiple functionality. Multiphase or multilayered films, functionally graded materials (FGMs), ''smart'' material structures and nanocomposites are some examples of new classes of materials being produced via CVD. As rapid progress is being made in many interdisciplinary research areas, this symposium is intended to provide a forum for reporting new scientific results and addressing technological issues relevant to CVD materials and processes. Thirty four papers have been processed separately for inclusion on the data base

  3. Residual metallic contamination of transferred chemical vapor deposited graphene.

    Science.gov (United States)

    Lupina, Grzegorz; Kitzmann, Julia; Costina, Ioan; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Vaziri, Sam; Östling, Mikael; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Kataria, Satender; Gahoi, Amit; Lemme, Max C; Ruhl, Guenther; Zoth, Guenther; Luxenhofer, Oliver; Mehr, Wolfgang

    2015-05-26

    Integration of graphene with Si microelectronics is very appealing by offering a potentially broad range of new functionalities. New materials to be integrated with the Si platform must conform to stringent purity standards. Here, we investigate graphene layers grown on copper foils by chemical vapor deposition and transferred to silicon wafers by wet etching and electrochemical delamination methods with respect to residual submonolayer metallic contaminations. Regardless of the transfer method and associated cleaning scheme, time-of-flight secondary ion mass spectrometry and total reflection X-ray fluorescence measurements indicate that the graphene sheets are contaminated with residual metals (copper, iron) with a concentration exceeding 10(13) atoms/cm(2). These metal impurities appear to be partially mobile upon thermal treatment, as shown by depth profiling and reduction of the minority charge carrier diffusion length in the silicon substrate. As residual metallic impurities can significantly alter electronic and electrochemical properties of graphene and can severely impede the process of integration with silicon microelectronics, these results reveal that further progress in synthesis, handling, and cleaning of graphene is required to advance electronic and optoelectronic applications.

  4. Distribution of metals in vacuum residuums, asphaltenes and maltenes by PIXE

    International Nuclear Information System (INIS)

    Romero G, E.T.; Camacho M, V.; Sanchez B, A.C.; Lopez M, J.; Ramirez T, J.J.; Villasenor S, P.; Aspiazu F, J.A.

    2001-01-01

    The PIXE technique for determining directly the distribution and abundance of trace metals in vacuum residuum, asphaltenes and maltenes separated with n-alkanes (C 5 -C 8 ) is used. The metal content of petroleum derivatives revealed that the vacuum residuum contains iron, aluminium, vanadium and nickel mainly, while that the asphaltenes and maltenes maintain inside of their composition only preferably the vanadium and nickel as majority elements. (Author)

  5. Impact of Liquid-Vapor to Liquid-Liquid-Vapor Phase Transitions on Asphaltene-Rich Nanoaggregate Behavior in Athabasca Vacuum Residue + Pentane Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Long, Bingwen; Chodakowski, Martin; Shaw, John M. [Alberta; (Beijing U)

    2013-06-05

    The bulk phase behavior of heavy oil + alkane mixtures and the behavior of the asphaltenes that they contain are topics of importance for the design and optimization of processes for petroleum production, transport, and refining and for performing routine saturates, aromatics, resins, and asphaltenes (SARA) analyses. In prior studies, partial phase diagrams and phase behavior models for Athabasca vacuum residue (AVR) comprising 32 wt % pentane asphaltenes + n-alkanes were reported. For mixtures with pentane, observed phase behaviors included single-phase liquid as well as liquid–liquid, liquid–liquid–vapor, and liquid–liquid–liquid–vapor regions. Dispersed solids were detected under some conditions as well but not quantified. In this work, small-angle X-ray scattering (SAXS) is used to study nanostructured materials in liquid phases present in AVR + n-pentane mixtures from 50 to 170 °C at mixture bubble pressure. The investigation focuses on the impact of the transition from a single AVR-rich liquid to co-existing pentane-rich and AVR-rich liquids on the nanostructure and the nanostructures most resistant to aggregation as the pentane composition axis is approached. Background scattering subtraction was performed using global mixture composition. The robustness of this assumption with respect to values obtained for coefficients appearing in a two level Beaucage unified equation fit is demonstrated. The nanostructured material is shown to arise at two length scales from 1 to 100 wt % AVR. Smaller nanostructures possess mean radii less than 50 Å, while the larger nanostructures possess mean radii greater than 250 Å. The addition of pentane to the AVR causes an increasingly large fraction of the large and small nanostructures to grow in size. Only nanostructures resistant to aggregation remain in the pentane-rich phase as the 0 wt % AVR axis is approached. Step changes in aggregation identified from changes in average radius of gyration, scattering

  6. Transition from free molecule to collisional flow during vaporization into vacuum by the test-particle method

    International Nuclear Information System (INIS)

    Tsai, C.; Olander, D.R.

    1987-01-01

    A test-particle method was developed to estimate the conditions that lead to collision-dominated evaporation during pulse heating of a solid surface in vacuum. The method consists of calculating the number density of evaporated molecules above the surface neglecting collisions and then sending a test particle through this cloud. The probability that the test particle escapes from the cloud without making a collision is the measure of the importance of intermolecular collisions during the blow off. The method is applied to heating of a --1 cm diam spot on the surface with a heat pulse of --1 msec duration. These conditions characterize laboratory laser vaporization experiments intended to measure the vapor pressures of refractory solids at very high temperatures. The principal variable which determines the escape probability is the maximum surface temperature during the transient. When applied to laser heating of uranium dioxide, collisional effects in the vapor are predicted to begin at a maximum surface temperature between 2600 and 2800 K

  7. Clinical impact of the disposable ventouse iCup? versus a metallic vacuum cup: a multicenter randomized controlled trial

    OpenAIRE

    Equy, V?ronique; David-Tchouda, Sandra; Dreyfus, Michel; Riethmuller, Didier; Vendittelli, Fran?oise; Cabaud, Victoire; Langer, Bruno; Margier, Jennifer; Bosson, Jean-Luc; Schaal, Jean-Patrick

    2015-01-01

    Background Assisted vaginal delivery by vacuum extraction is frequent. Metallic resterilizible metallic vacuum cups have been routinely used in France. In the last few years a new disposable semi-soft vacuum extraction cup, the iCup, has been introduced. Our objective was to compare maternal and new-born outcomes between this disposable cup and the commonly used Drapier-Faure metallic cup. Methods This was a multicenter prospective randomized controlled open clinical trial performed in the ma...

  8. Interwell coupling effect in Si/SiGe quantum wells grown by ultra high vacuum chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Loh Ter-Hoe

    2007-01-01

    Full Text Available AbstractSi/Si0.66Ge0.34coupled quantum well (CQW structures with different barrier thickness of 40, 4 and 2 nm were grown on Si substrates using an ultra high vacuum chemical vapor deposition (UHV-CVD system. The samples were characterized using high resolution x-ray diffraction (HRXRD, cross-sectional transmission electron microscopy (XTEM and photoluminescence (PL spectroscopy. Blue shift in PL peak energy due to interwell coupling was observed in the CQWs following increase in the Si barrier thickness. The Si/SiGe heterostructure growth process and theoretical band structure model was validated by comparing the energy of the no-phonon peak calculated by the 6 + 2-bandk·pmethod with experimental PL data. Close agreement between theoretical calculations and experimental data was obtained.

  9. Tetrasilane and digermane for the ultra-high vacuum chemical vapor deposition of SiGe alloys

    International Nuclear Information System (INIS)

    Hart, John; Hazbun, Ramsey; Eldridge, David; Hickey, Ryan; Fernando, Nalin; Adam, Thomas; Zollner, Stefan; Kolodzey, James

    2016-01-01

    Tetrasilane and digermane were used to grow epitaxial silicon germanium layers on silicon substrates in a commercial ultra-high vacuum chemical vapor deposition tool. Films with concentrations up to 19% germanium were grown at temperatures from 400 °C to 550 °C. For all alloy compositions, the growth rates were much higher compared to using mono-silane and mono-germane. The quality of the material was assessed using X-ray diffraction, atomic force microscopy, and spectroscopic ellipsometry; all indicating high quality epitaxial films with low surface roughness suitable for commercial applications. Studies of the decomposition kinetics with regard to temperature were performed, revealing an unusual growth rate maximum between the high and low temperature deposition regimes. - Highlights: • Higher order precursors tetrasilane and digermane • Low temperature deposition • Thorough film characterization with temperature • Arrhenius growth rate peak

  10. Application of Vacuum Swing Adsorption for Carbon Dioxide and Water Vapor Removal from Manned Spacecraft Atmospheres

    Science.gov (United States)

    Knox, J.; Howard, D.

    2007-01-01

    In NASA's Vision for Space Exploration (Bush, 2004), (Griffin, 2007), humans will once again travel beyond the confines of earth's gravity, this time to remain there for extended periods. These forays will place unprecedented demands on launch systems. They must not only blast out of earth's gravity well as during the Apollo moon missions, but also liftoff the supplies needed to sustain a larger crew over much longer periods. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. For short-term phases of manned space exploration, such as transit from the earth to the moon, venting of metabolic carbon dioxide and water to space is more efficient than the inclusion of large recycling systems on the spacecraft. The baseline system for the Orion spacecraft is an amine-based vacuum swing system (Smith, Perry et aI., 2006). As part of the development of an alternative approach, a sorbent-based CO2 and H2O removal system (Knox, Adams et aI., 2006), subscale testing was conducted to evaluate potential performance improvements obtainable by recuperating the heat of adsorption to aid in vacuum desorption. This bed design is shown in Figure 1, is depicted here with a lattice structure instead of reticulated foam for heat transfer. The slot widths are approximately 1.2 mm wide and 8.5 mm long. Bed depth is approximately 4.7 mm. Headers (not shown) were produced by the stereo lithography apparatus at MSFC.

  11. The Microstructural Evolution of Vacuum Brazed 1Cr18Ni9Ti Using Various Filler Metals

    Directory of Open Access Journals (Sweden)

    Yunxia Chen

    2017-04-01

    Full Text Available The microstructures and weldability of a brazed joint of 1Cr18Ni9Ti austenitic stainless steel with BNi-2, BNi82CrSiBFe and BMn50NiCuCrCo filler metals in vacuum were investigated. It can be observed that an interdiffusion region existed between the filler metal and the base metal for the brazed joint of Ni-based filler metals. The width of the interdiffusion region was about 10 μm, and the microstructure of the brazed joint of BNi-2 filler metal was dense and free of obvious defects. In the case of the brazed joint of BMn50NiCuCrCo filler metal, there were pits, pores and crack defects in the brazing joint due to insufficient wettability of the filler metal. Crack defects can also be observed in the brazed joint of BNi82CrSiBFe filler metal. Compared with BMn50NiCuCrCo and BNi82CrSiBFe filler metals, BNi-2 filler metal is the best material for 1Cr18Ni9Ti austenitic stainless steel vacuum brazing because of its distinct weldability.

  12. Vacuum tight sodium resistant compound between ThO2 ceramic and metal

    International Nuclear Information System (INIS)

    Reetz, T.

    A method for evaluating the mechanical tensions for metal/ ceramic joinings was applied to the selection of metal components for a highly vacuum tight, sodium-resistant metal/ThO 2 ceramic solder joining. The metal component selected was the iron--nickel alloy Dilasil which is joined to the ceramic using a nickel-based solder. The wetting of the cearamic could be carried out using the titanium hydride technique or after the formation of a W-cerium layer on the surface of this ceramic. (U.S.)

  13. Metal ion implantation using a filtered cathodic vacuum arc

    Science.gov (United States)

    Bilek, M. M. M.; Evans, P.; Mckenzie, D. R.; McCulloch, D. G.; Zreiqat, H.; Howlett, C. R.

    2000-05-01

    When plasma immersion ion implantation is performed in the condensable plasma stream produced by a cathodic vacuum arc, deposition as well as implantation usually occurs. In this article we describe a method of achieving pure implantation by orienting the substrate so that it is shadowed from the plasma beam. Implantation depth profiles measured in glassy carbon and CR39 polymer using Rutherford backscattering are compared to illustrate the effectiveness of the technique for conducting and insulating substrates. Charging of the insulating substrate was found to cause a reduction in implantation depth compared to a conducting substrate. The depth profiles in glassy carbon were comparable to those achieved by conventional extracted ion beam implantation. Implantation of magnesium into hydroxyapatite and alumina was carried out to improve the bone cell adhesion onto these materials for prosthetic applications.

  14. Heavy metal vaporization and abatement during thermal treatment of modified wastes

    International Nuclear Information System (INIS)

    Rio, S.; Verwilghen, C.; Ramaroson, J.; Nzihou, A.; Sharrock, P.

    2007-01-01

    This study examines the vaporization percentage and partitioning of heavy metals Cd, Pb and Zn during thermal treatment of wastes with added PVC, heavy metals or phosphate, and the efficiency of sorbents for removal of these metallic compounds in flue gas of an industrial solid waste incinerator. Firstly, vaporization experiments were carried out to determine the behavior of heavy metals during combustion under various conditions (type of waste, temperature, presence of chloride or phosphate ...). The experimental results show relatively high vaporization percentage of metallic compounds within fly ash and limestone matrix while heavy metals within sediments treated with phosphoric acid are less volatile. Vaporization of metals increases with increasing temperature and with chloride addition. The thermal behavior of the selected heavy metals and their removal by sorbents (sodium bicarbonate, activated carbon) was also studied in an industrial solid waste incinerator. These pilot scale experiments confirm that heavy metals are concentrated in fly ashes and cyclone residues, thus effectively controlling their release to the atmosphere

  15. Mechanical properties of vapor-deposited thin metallic films: a status report

    International Nuclear Information System (INIS)

    Adler, P.H.

    1982-01-01

    The mechanical properties of vapor-deposited thin metallic films are being studied in conjunction with the target fabrication group associated with the laser-fusion energy program. The purpose of the work is to gain an understanding as to which metals are structurally best suited to contain a glass microsphere filled with deuterium-tritium (D-T) gas at large internal pressures

  16. Latent fingerprint visualization using a scanning Kelvin probe in conjunction with vacuum metal deposition.

    Science.gov (United States)

    Dafydd, Hefin; Williams, Geraint; Bleay, Stephen

    2014-01-01

    The application of vacuum metal deposition before scanning Kelvin probe visualization of fingerprints is investigated. The potential contrast between fingerprint ridges and furrows is maximized by the use of silver deposition for non-noble metals and gold-zinc deposition for noble metals. The higher susceptibility of eccrine fingerprints to vacuum metal overdeposition is confirmed. Additionally, fingerprints are best developed individually and by building the metal deposition slowly to protect against overdevelopment and variation in the rate of metal condensation. The progress of the metal deposition can be monitored using the scanning Kelvin probe by reference to the change in potential and continuity of the new potential on the surface. The use of acetic acid solution for the recovery of overVMD-developed samples is shown not to be useful. Applying the metal deposition has the additional prospect of increasing surface conductivity and homogeneity and both can aid fingerprint visualization using the scanning Kelvin probe. © 2013 American Academy of Forensic Sciences.

  17. Metallic Na formation in NaCl crystals with irradiation of electron or vacuum ultraviolet photon

    Energy Technology Data Exchange (ETDEWEB)

    Owaki, Shigehiro [Osaka Prefecture Univ., Sakai, Osaka (Japan). Coll. of Integrated Arts and Sciences; Koyama, Shigeko; Takahashi, Masao; Kamada, Masao; Suzuki, Ryouichi

    1997-03-01

    Metallic Na was formed in NaCl single crystals with irradiation of a variety of radiation sources and analyzed the physical states with several methods. In the case of irradiation of 21 MeV electron pulses to the crystal blocks, the optical absorption and lifetime measurement of positron annihilation indicated appearance of Na clusters inside. Radiation effects of electron beam of 30 keV to the crystals in vacuum showed the appearance of not only metallic Na but atomic one during irradiation with Auger electron spectroscopy. Intense photon fluxes in vacuum ultraviolet region of synchrotron radiation were used as another source and an analyzing method of ultraviolet photoelectron spectroscopy. The results showed the metallic Na layered so thick that bulk plasmon can exist. (author)

  18. Metal vapor laser and medicine: laser systems, methods, and therapy

    Science.gov (United States)

    Evtushenko, V. A.; Soldatov, Anatoly N.; Vusik, M. V.; Cheremisina, O. V.; Kucherova, T. Y.; Voronov, V. I.; Kirilov, Anatoly E.; Polunin, Yu. P.

    2002-03-01

    A copper-vapor laser 'Malakhit' was used to prevent and or treat complications caused by antitumor therapy. Results obtained for 19 adult patients with cancer of the lung, 59 adult patients with cancer of the stomach, and 640 children with malignant and benign tumors are discussed.

  19. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    International Nuclear Information System (INIS)

    Tsujimoto, K; Hirai, Y; Sugano, K; Tsuchiya, T; Tabata, O; Ban, K; Mizutani, N

    2013-01-01

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN 6 ), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460–490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches. (paper)

  20. Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle.

    Science.gov (United States)

    He, Yong; Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di

    2012-07-15

    We propose a theoretical scheme to determine the vacuum Rabi splitting in a single semiconductor quantum dot (SQD) induced by a metal nanoparticle (MNP). Based on cavity quantum electrodynamics, the exciton-plasmon interaction between the SQD and the MNP is considered while a strong pump laser and a weak probe laser are simultaneously presented. By decreasing the distance between them, we can increase the coupling strength. At resonance, thanks to the strong coupling, a vacuum Rabi splitting can be observed clearly in the probe absorption spectrum. The coupling strength can be obtained by measuring the vacuum Rabi splitting. This strong coupling is significant for the investigation of surface-plasmon-based quantum information processing.

  1. Half-sandwich cobalt complexes in the metal-organic chemical vapor deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Georgi, Colin [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Hapke, Marko; Thiel, Indre [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Straße 29a, Rostock 18059 (Germany); Hildebrandt, Alexander [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Waechtler, Thomas; Schulz, Stefan E. [Fraunhofer Institute of Electronic Nano Systems (ENAS), Technologie-Campus 3, Chemnitz 09126 (Germany); Technische Universität Chemnitz, Center for Microtechnologies (ZfM), Chemnitz 09107 (Germany); Lang, Heinrich, E-mail: heinrich.lang@chemie.tu-chemnitz.de [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany)

    2015-03-02

    A series of cobalt half-sandwich complexes of type [Co(η{sup 5}-C{sub 5}H{sub 5})(L)(L′)] (1: L, L′ = 1,5-hexadiene; 2: L = P(OEt){sub 3}, L′ = H{sub 2}C=CHSiMe{sub 3}; 3: L = L′ = P(OEt){sub 3}) has been studied regarding their physical properties such as the vapor pressure, decomposition temperature and applicability within the metal-organic chemical vapor deposition (MOCVD) process, with a focus of the influence of the phosphite ligands. It could be shown that an increasing number of P(OEt){sub 3} ligands increases the vapor pressure and thermal stability of the respective organometallic compound. Complex 3 appeared to be a promising MOCVD precursor with a high vapor pressure and hence was deposited onto Si/SiO{sub 2} (100 nm) substrates. The resulting reflective layer is closed, dense and homogeneous, with a slightly granulated surface morphology. X-ray photoelectron spectroscopy (XPS) studies demonstrated the formation of metallic cobalt, cobalt phosphate, cobalt oxide and cobalt carbide. - Highlights: • Thermal studies and vapor pressure measurements of cobalt half-sandwich complexes was carried out. • Chemical vapor deposition with cobalt half-sandwich complexes is reported. • The use of Co-phosphites results in significant phosphorous-doped metallic layers.

  2. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    Science.gov (United States)

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  3. Study on the metal vapor generator for the production of improved gadolinia burnable poison material

    International Nuclear Information System (INIS)

    Jeong, O. C.; Noh, S. P.; Ko, K. H.; Kim, T. S.; Lim, C. H.; Kim, C. J.

    2002-01-01

    A longer cycle operation of a nuclear fuel is one of the ways to promote the economy of a nuclear power plant. For this purpose, high burn up fuel which has initial higher enrichment is required with higher loading of fuel. As a result, adequate burnable poison material must be used to control peak fuel pin power. Devices to manufacture the improved gadolinia burnable poison are developed. The improved gadolinia contains higher abundance of the preferred thermal neutron absorbers. Devices are composed of metal vapor generator, lasers and ion extractor. In this paper, a metal vapor generator by using electron beam gun is reported

  4. Electrospray droplet exposure to organic vapors: metal ion removal from proteins and protein complexes.

    Science.gov (United States)

    DeMuth, J Corinne; McLuckey, Scott A

    2015-01-20

    The exposure of aqueous nanoelectrospray droplets to various organic vapors can dramatically reduce sodium adduction on protein ions in positive ion mass spectra. Volatile alcohols, such as methanol, ethanol, and isopropanol lead to a significant reduction in sodium ion adduction but are not as effective as acetonitrile, acetone, and ethyl acetate. Organic vapor exposure in the negative ion mode, on the other hand, has essentially no effect on alkali ion adduction. Evidence is presented to suggest that the mechanism by which organic vapor exposure reduces alkali ion adduction in the positive mode involves the depletion of alkali metal ions via ion evaporation of metal ions solvated with organic molecules. The early generation of metal/organic cluster ions during the droplet desolvation process results in fewer metal ions available to condense on the protein ions formed via the charged residue mechanism. These effects are demonstrated with holomyoglobin ions to illustrate that the metal ion reduction takes place without detectable protein denaturation, which might be revealed by heme loss or an increase in charge state distribution. No evidence is observed for denaturation with exposure to any of the organic vapors evaluated in this work.

  5. Treatment of heavy-metal wastewater by vacuum membrane distillation: effect of wastewater properties

    Science.gov (United States)

    Ji, Zhongguang

    2018-01-01

    Heavy metal wastewater is a common byproduct in heavy metal industries. Membrane distillation is considered as promising technology to treat such wastewater. The treatment of heavy metal wastewater by vacuum membrane distillation (VMD) was conducted in this work. The effects of pH, calcium and EDTA on VMD performance were investigated. VMD process showed a good acid resistance as the solution pH above 0. When the solution pH was 0, the permeate conductivity was below 40μS·cm-1. Calcium and EDTA were found to have influence on VMD performance to some extent. VMD process was proved to be suitable for heavy metal wastewater as long as the impurity content was in control of a certain degree.

  6. Formation of microbeads during vapor explosions of Field's metal in water

    KAUST Repository

    Kouraytem, Nadia

    2016-06-17

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field\\'s metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field\\'s metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  7. The theory of temporal compression of intense pulses in a metal vapor

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M.J.; Crane, J.K.

    1990-11-16

    We examine compression of near-resonant pulses in metal vapor in the nonlinear regime. Our calculations examine nonlinear effects on compression of optimally-chirped pulses of various fluences. In addition, we compare model predictions with experimental results for compression of 4 nsec Nd:YAG pumped dye pulses.

  8. Electric conductivity of alkali metal vapors in the region of critical point

    International Nuclear Information System (INIS)

    Likal'ter, A.A.

    1982-01-01

    A behaviour of alkali metal conductivity in the vicinity of a critical point has been analyzed on the base of deVeloped representations on a vapor state. A phenomenological conductivity theory has been developed, which is in a good agreement with experimental data obtained

  9. Influence of Sn on Microstructure and Performance of Electric Vacuum Ag-Cu Filler Metal

    Directory of Open Access Journals (Sweden)

    SHI Lei

    2016-10-01

    Full Text Available Influence of Sn on microstructure, melting characteristic and brazing performance of electric vacuum Ag-Cu filler metal was studied by using scanning electronic microscope (SEM with energy disperse spectroscopy (EDS, differential scanning calorimetry (DSC and contrast tests. The results show that, while the addition of Sn is 4% (mass fraction,the same below, there is no brittle β-Cu phase in Ag60Cu filler metal,the effect on the processing performance is not obvious; with the increase of Sn content, the liquidus temperature of Ag60Cu filler metal decreases gradually, but the solidus temperature drops drastically,resulting in wider melting temperature range, and worse gap filling ability of filler metal. The Ag60Cu filler metal with Sn content of 4% has good spreading and metallurgical bonding abilities on copper plates, which are closer to that of BAg72Cu filler metal, and it can be processed into flake filler metal to replace the BAg72Cu flake filler metal to be used.

  10. Generation of high intensity and high power metal ions by vacuum arc TAMEK sources

    International Nuclear Information System (INIS)

    Tolopa, A.M.

    1996-01-01

    This paper presents a review of vacuum arc facilities to serve as injectors for metal ion accelerators. A vacuum arc in different modes: 1) Arc current I arc = 2-50 A, pulse duration t p = 10 μs to 20 ms; 2) I arc = 20-100 A, t p = 50-1000 μs; 3) I arc = 100-2000 A, t p = 100-2000 μs, 4) I arc = 10-100 kA, t p = 1-10 μs were investigated as metal ion injectors. The metal flows generated by cathode spots are expanded for diameters of 10-50 cm, and then, or deposited on the grounded target, or post accelerated between grids at U(accel) = 10-120 kV. On the basis of such injectors, the series of TAMELY sources were investigated with metal ion current from I i > 0.01 A, pulse duration up to 20 ms, up to I i p = 1-5 μs. (author). 8 figs., 13 refs

  11. Influence of air and vacuum environment on fatigue behavior of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Wang, G.Y.; Liaw, P.K.; Yokoyama, Y.; Peter, W.H.; Yang, B.; Freels, M.; Buchanan, R.A.; Liu, C.T.; Brooks, C.R.

    2007-01-01

    High-cycle fatigue (HCF) experiments in air and vacuum at room temperature were conducted on zirconium (Zr)-based bulk-metallic glasses (BMGs): Zr 50 Cu 40 Al 10 , Zr 50 Cu 30 Al 10 Ni 10 , and Zr 50 Cu 37 Al 10 Pd 3 in atomic percent. The fatigue-endurance limit of Zr 50 Cu 37 Al 10 Pd 3 was found to be significantly greater than those of Zr 50 Cu 40 Al 10 and Zr 50 Cu 30 Al 10 Ni 10 , which indicates that the inclusions of Pd and the resulting nano structures improve the fatigue resistances of the Zr-based BMGs. The fatigue lives in vacuum and air were generally found to be comparable

  12. Scoping studies of vapor behavior during a severe accident in a metal-fueled reactor

    International Nuclear Information System (INIS)

    Spencer, B.W.; Marchaterre, J.F.

    1985-01-01

    Scoping calculations have been performed examining the consequences of fuel melting and pin failures for a reactivity-insertion type accident in a sodium-cooled, pool-type reactor fueled with a metal alloy fuel. The principal gas and vapor species released are shown to be Xe, Cs,and bond sodium contained within the fuel porosity. Fuel vapor pressure is insignificant, and there is no energetic fuel-coolant interaction for the conditions considered. Condensation of sodium vapor as it expands into the upper sodium pool in a jet mixing regime may occur as rapidly as the vapor emerges from the disrupted core (although reactor-material experiments are needed to confirm these high condensation rates). If the predictions of rapid direct-contact condensation can be verified experimentally for the sodium system, the implication is that the ability of vapor expansion to perform appreciable work on the system is largely eliminated. Furthermore, the ability of an expanding vapor bubble to transport fuel and fission product species to the cover gas region where they may be released to the containment is also largely eliminated. The radionuclide species except for fission gas are largely retained within the core and sodium pool

  13. Formation of amorphous metal alloys by chemical vapor deposition

    Science.gov (United States)

    Mullendore, Arthur W.

    1990-01-01

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures or organometallic compounds and metalloid hydrides, e.g., transition metal carbonyl such as nickel carbonyl, and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit.

  14. Metal glass vacuum tube solar collectors are approaching lower-medium temperature heat application.

    Science.gov (United States)

    Jiang, Xinian

    2010-04-26

    Solar thermal collectors are widely used worldwide mainly for hot water preparation at a low temperature (less than 80?C). Applications including many industrial processes and central air conditioning with absorption chillers, instead require lower-medium temperature heat (between 90 degrees C and 150 degrees C) to be driven when using solar thermal energy. The metal absorber glass vacuum tube collectors (MGVT) are developed for this type of applications. Current state-of-art and possible future technology development of MGVT are presented.

  15. Behavior of Rare-Earth Metals in Vacuum Melting and Directional Solidification of Nickel Superalloys

    Science.gov (United States)

    Sidorov, V. V.; Min, P. G.

    2017-12-01

    The interaction of the nickel melt containing REMs (Y, Ce, and La) with the ceramic material of a melting crucible (Al2O3, MgO • Al2O3, Y2O3) during vacuum melting and with a mold (Al2O3) during directional solidification of has been detected experimentally. The REM concentration in a metal decreases as a result of holding of an REM-containing melt in a ceramic crucible or a mold. This should be taken into account to achieve the optimal required REM content in alloys.

  16. VACUUM TRAP

    Science.gov (United States)

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  17. Modeling film uniformity and symmetry in ionized metal physical vapor deposition with cylindrical targets

    International Nuclear Information System (INIS)

    Lu Junqing; Yang Lin; Yoon, Jae Hong; Cho, Tong Yul; Tao Guoqing

    2008-01-01

    Severe asymmetry of the metal deposits on the trench sidewalls occurs near the wafer edge during low pressure ionized metal physical vapor deposition of Cu seed layer for microprocessor interconnects. To investigate this process and mitigate the asymmetry, an analytical view factor model based on the analogy between metal sputtering and diffuse thermal radiation was constructed to investigate deposition uniformity and symmetry for cylindrical target sputtering in low pressure (below 0.1 Pa) ionized Cu physical vapor deposition. The model predictions indicate that as the distance from the cylindrical target to wafer increases, the metal film thickness becomes more uniform across the wafer and the asymmetry of the metal deposits at the wafer edge increases significantly. These trends are similar to those for planar targets. To minimize the asymmetry, the height of the cylindrical target should be kept at a minimum. For cylindrical targets, the outward-facing sidewall of the trench could receive more direct Cu fluxes than the inward-facing one when the target to wafer distance is short. The predictions also indicate that increasing the diameter of the cylindrical target could significantly reduce the asymmetry in metal deposits at the wafer edge and make the film thickness more uniform across the wafer

  18. Controlled thicknesses of vaporized self-assembled multilayers on copper nanopowders under ultra-high vacuum (UHV).

    Science.gov (United States)

    Kwon, Jinhyeong; Park, Shinyoung; Kim, Young-Seok; Lee, Caroline Sunyong

    2012-02-01

    Copper nanoparticles were coated with 1-octanethiol self-assembled monolayers (SAMs) using the dry-coating method for oxidation prevention. In this study, thicknesses of 1-octanethiol SAMs were successfully controlled, and the stability of SAMs as a passivation layer on copper nanoparticles was examined. Thicknesses of 1-octanethiol SAMs varied with vacuum levels and coating cycles. Under low-vacuum conditions, the thickness was 10 nm, regardless of the coating conditions. In contrast, various thicknesses resulted under ultra-high vacuum (UHV) and ranged from 4 nm to 10 nm. SAMs that were nearly a monolayer thick (4 nm) resulted from two coating cycles of 1.5 min, and the oxidation inhibition period was 15 days. Thus, the dry-coating method successfully controlled the thicknesses of SAMs with satisfactory oxidation inhibition properties under ultra-high vacuum.

  19. Catalytic growth of metallic tungsten whiskers based on the vapor-solid-solid mechanism

    International Nuclear Information System (INIS)

    Wang, S L; He, Y H; Huang, B Y; Zou, J; Wang, Y; Huang, H; Liu, C T; Liaw, P K

    2008-01-01

    Metallic W whiskers with tip diameters of 50-250 nm and lengths of 2-4 μm have been successfully synthesized in large quantities using Co-Ni alloyed catalysts. The relatively low growth temperature of 850 deg. C and the large catalyst size (over 100 nm) suggest that the growth of the W whiskers must be governed by the vapor-solid-solid mechanism. Our results show that the vapor-solid-solid model is suitable not only for the growth of nano-scaled whiskers with diameters below 100 nm, but also for submicro-scaled whiskers with diameters well above 100 nm. This technique has great potential to synthesize well controlled metallic whiskers

  20. Structure of metal β-diketonates and their enthalpies of vaporization

    International Nuclear Information System (INIS)

    Domrachev, G.A.; Sevast'yanov, V.G.; Zakharov, L.N.; Krasnodubskaya, S.V.; AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii)

    1987-01-01

    Using the method of additive schemes in combinaion with the structural estimation of the degree of screening of the central atom and other elements of β-diketonate molecule while analyzing the experimental enthalpies of vaporization, the contributions of separate fragments of complexes into the enthalpy of vaporization are found. It is shown that energies of intermolecular interaction in a condensed phase of monomeric metal β-diketonates with identical substituents do not depend on the central atom type. The enthalpies of dimer dissociation in a series of rare earth dipivaloylmethanates calculated. The proposed approach is advisable fo selecting forms of metal β-diketonates, the most suitable for the purposes of deep purificaion, which are characterized by maximum chemical and physico-chemical selectivity with respect to impurities, chemical inertness to equipment material, container, etc

  1. Theoretical study of adsorption of water vapor on surface of metallic uranium

    CERN Document Server

    Xiong Bi Tao; Xue Wei Dong; Zhu Zheng He; Jiang Gang; Wang Hong Yan; Gao Tao

    2002-01-01

    According to the experimental data, there is an intermediate substance that formed in the initial stage of oxidation reaction when water vapor is absorbed onto the metallic uranium. The minimum energy of UOH sub 2 witch C sub 2 subupsilon configuration is obtained in the state of sup 5 A sub 1 by B3LYP method of the density function theory (DFT), which is consistent with that by statics of atoms and molecules reaction (AMRS) and group theory. The results from calculations indicate that the adsorption of water vapor on the metallic uranium is an exothermic reaction and that the adsorbed amount decreases with the elevated temperatures. The adsorptive heat at 1 atm is -205.4747 kJ centre dot mol sup - sup 1 , which indicates a typical chemical adsorption

  2. A miniature single element effusion cell for the vacuum deposition of transition-metal and rare-earth elements

    Science.gov (United States)

    Harris, V. G.; Koon, N. C.

    1997-08-01

    A miniature single element effusion cell has been fabricated and tested that allows for the high-vacuum deposition of a variety of transition-metal and rare-earth elements. The cell is designed to operate under high-vacuum conditions, ≈10-9 Torr, with low power demands, <200 W. The virtues of this evaporator are the simplicity of design and ease of fabrication, assembly, maintenance, and operation.

  3. Development of a large lithium coolant system for operation under vacuum

    International Nuclear Information System (INIS)

    Kolowith, R.; Schwartz, K.E.; Meadows, G.E.; Berg, J.D.

    1983-11-01

    Argon and vacuum systems for the Experimental Lithium System (ELS) were tested to demonstrate vacuum-break capability, vacuum pumping performance, and vacuum sensor compatibility with a hostile liquid metal vapor/aerosol environment. Mechanical, diffusion and cryogenic vacuum pumps were evaluated. High-vacuum levels in the 10 -3 Pa range were achieved over a 270 0 C flowing lithium system. Ionization, thermal conductivity, capacitance manometer, and compound-type pressure sensors were evaluated to determine the effects of this potentially deleterious environment. Screening elbows were evaluated as pressure sensor protective devices. A dual-purpose vacuum-level/nitrogen partial-pressure sensor was evaluated as a means of detecting air in-leakage. Several types of static mechanical vacuum seals were also evaluated. Measurements of the vapor/aerosol generation were made at several system locations and operating conditions

  4. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.

    Science.gov (United States)

    Kim, Hyungki; Song, Intek; Park, Chibeom; Son, Minhyeok; Hong, Misun; Kim, Youngwook; Kim, Jun Sung; Shin, Hyun-Joon; Baik, Jaeyoon; Choi, Hee Cheul

    2013-08-27

    We report that high-quality single-layer graphene (SLG) has been successfully synthesized directly on various dielectric substrates including amorphous SiO2/Si by a Cu-vapor-assisted chemical vapor deposition (CVD) process. The Cu vapors produced by the sublimation of Cu foil that is suspended above target substrates without physical contact catalyze the pyrolysis of methane gas and assist nucleation of graphene on the substrates. Raman spectra and mapping images reveal that the graphene formed on a SiO2/Si substrate is almost defect-free and homogeneous single layer. The overall quality of graphene grown by Cu-vapor-assisted CVD is comparable to that of the graphene grown by regular metal-catalyzed CVD on a Cu foil. While Cu vapor induces the nucleation and growth of SLG on an amorphous substrate, the resulting SLG is confirmed to be Cu-free by synchrotron X-ray photoelectron spectroscopy. The SLG grown by Cu-vapor-assisted CVD is fabricated into field effect transistor devices without transfer steps that are generally required when SLG is grown by regular CVD process on metal catalyst substrates. This method has overcome two important hurdles previously present when the catalyst-free CVD process is used for the growth of SLG on fused quartz and hexagonal boron nitride substrates, that is, high degree of structural defects and limited size of resulting graphene, respectively.

  5. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  6. Saturated vapor pressure over molten mixtures of GaCl3 and alkali metal chlorides

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Smolenskij, V.V.; Moskalenko, N.I.

    2004-01-01

    Volatilities of GaCl 3 and alkali metal chlorides over diluted (up to 3 mol %) solutions of GaCl 3 in LiCl, NaCl, KCl, RbCl, and CsCl were measured at 1100 K by dynamic and indirect static methods. Chemical composition of saturated vapor over the mixed melts was determined. Partial pressures of the components were calculated. Their values depend essentially on specific alkali metal cation and on concentration of GaCl 3 ; their variation permits altering parameters of GaCl 3 distillation from the salt melt in a wide range [ru

  7. Visualisation of fingermarks and grab impressions on dark fabrics using silver vacuum metal deposition.

    Science.gov (United States)

    Knighting, Susan; Fraser, Joanna; Sturrock, Keith; Deacon, Paul; Bleay, Stephen; Bremner, David H

    2013-09-01

    Vacuum metal deposition (VMD) involves the thermal evaporation of metal (silver) in a vacuum, resulting in a uniform layer being deposited on the specimen being treated. This paper examines the use of silver on dark fabrics, thus offering a simpler operation and more obvious colouration to that of the traditional use of gold and zinc metals which must be evaporated separately. The aim of this study was to investigate the effect of fabric type, donor, mark age and method of fingermark deposition on the quality of marks visualised using silver VMD. This was achieved by collecting fingermark deposits from fifteen donors, of both sexes and various ages, by a grab or a press method. Four different fabrics: satin, polyester, polycotton and cotton were studied over a 10day timeline of 1, 2, 3, 4, 5, 6, 7, 14, 21 and 28+ days. It was found that satin and polyester gave the most positive results, with polyester often producing excellent ridge detail. Cotton and polycotton were less successful with no ridge detail being observed. The donors also had an observable effect on the results obtained probably due to variations in secretions produced or pressures applied during specimen collection. The age of the mark or the method of mark deposition had little influence on the results obtained. Silver VMD is a viable process for visualising marks on certain dark fabrics and has the advantage over gold/zinc VMD in that the marks visualised are light in colour which contrasts well against the dark background. Copyright © 2013 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Directed vapor deposition

    Science.gov (United States)

    Groves, James Frederick

    This dissertation describes the invention, design, construction, experimental evaluation and modeling of a new physical vapor deposition technique (U.S. Patent #5,534,314) for high rate, efficient deposition of refractory elements, alloys, and compounds onto flat or curved surfaces. The new Directed Vapor Deposition (DVD) technique examined in this dissertation was distinct from previous physical vapor deposition techniques because it used low vacuum electron beam (e-beam) evaporation in combination with a carrier gas stream to transport and vapor spray deposit metals, ceramics, and semiconducting materials. Because of the system's unique approach to vapor phase materials processing, detailed analyses of critical concepts (e.g. the e-beam accelerating voltage and power required for evaporation, the vacuum pumping capacity necessary to generate specific gas flow velocities exiting a nozzle) were used to reduce to practice a functioning materials synthesis tool. After construction, the ability to create low contamination films of pure metals, semi-conducting materials, and compounds via this new method was demonstrated, and oxide deposition using an oxygen-doped gas stream in combination with a pure metal evaporant source was shown to be feasible. DVD vapor transport characteristics were experimentally investigated with deposition chamber pressure, carrier gas type, and e-beam power being identified as major processing parameters which affected vapor atom trajectories. The low vacuum carrier gas streams employed in DVD showed a dramatic ability to focus the vapor stream during transport to the substrate and thereby enhance material deposition rates and efficiencies significantly under certain process conditions. Conditions for maximum deposition efficiency onto flat substrates and continuous fibers were experimentally identified by varying chamber pressure, carrier gas velocity (Mach number), and e-beam power. Deposition efficiencies peaked at about 0.5 Torr when

  9. Using ballistic electron emission microscopy to investigate the metal-vacuum interface

    International Nuclear Information System (INIS)

    Baykul, M.C.

    1993-01-01

    This dissertation investigates the possibility of using the ballistic electron microscope (BEEM) to study the metal-vacuum interface. In order to do that, we have designed and built a novel experimental setup which consists of an STM tip from which electrons tunnel into a thin (<60 nm), free-standing metal film in vacuum ambient. When the tunnel bias exceeds the work function of the metal, some small fraction of the tunneling electrons traverses through the film without any energy loss, and emits into the vacuum through the back side of the film. The rate of emission of such ballistic electrons, which is called the collector current, is measured by a channel electron multiplier. One of the major challenges for this investigation was preparing free-standing thin films by the following steps: (a) evaporating Au onto a (100) face of NaCl at room temperature, (b) dissolving the NaCl in a 50-50 mixture of ethyl alcohol and distilled water, and (c) catching the Au film that floats on the surface of the solvent onto a Cu grid. Subsequent annealing increased the grain size, and improved the bonding of the film onto the grid. We have succeeded in observing ballistic electron emission through these free-standing thin films, even though the collector current tended to decay in a time interval of a few tenths of a second. The exact cause of this decay is not known, however we have suggested some possibilities. By ramping the bias voltage from about 0.2 V to about 10.5 V, we find the threshold bias voltage at which the collector current begins. This threshold voltage is an upper limit for the work function of AU. From our data we obtained a value of 5.2 V for this upper limit. We also have plotted the collector current, that was averaged over a scan area of 375 nm x 375 nm, against the tunnel bias. This plot shows that, for this region, the lowest threshold bias voltage for ballistic electron emission is between 3.5 V and 4.5 V

  10. Toward high value sensing: monolayer-protected metal nanoparticles in multivariable gas and vapor sensors.

    Science.gov (United States)

    Potyrailo, Radislav A

    2017-08-29

    For detection of gases and vapors in complex backgrounds, "classic" analytical instruments are an unavoidable alternative to existing sensors. Recently a new generation of sensors, known as multivariable sensors, emerged with a fundamentally different perspective for sensing to eliminate limitations of existing sensors. In multivariable sensors, a sensing material is designed to have diverse responses to different gases and vapors and is coupled to a multivariable transducer that provides independent outputs to recognize these diverse responses. Data analytics tools provide rejection of interferences and multi-analyte quantitation. This review critically analyses advances of multivariable sensors based on ligand-functionalized metal nanoparticles also known as monolayer-protected nanoparticles (MPNs). These MPN sensing materials distinctively stand out from other sensing materials for multivariable sensors due to their diversity of gas- and vapor-response mechanisms as provided by organic and biological ligands, applicability of these sensing materials for broad classes of gas-phase compounds such as condensable vapors and non-condensable gases, and for several principles of signal transduction in multivariable sensors that result in non-resonant and resonant electrical sensors as well as material- and structure-based photonic sensors. Such features should allow MPN multivariable sensors to be an attractive high value addition to existing analytical instrumentation.

  11. Examinations on Laser Remote Welding of Ultra-thin Metal Foils Under Vacuum Conditions

    Science.gov (United States)

    Petrich, Martin; Stambke, Martin; Bergmann, Jean Pierre

    Metal foils are commonly used for catalytic converters, vacuum insulations, in medical and electrical industry as well as for sensor applications and packaging. The investigations in this paper determine the influence of reduced atmospheric pressure during the welding process with a highly brilliant 400 W single-mode fiber laser combined with a 2D-scanning system. The laser beam is transmitted through a highly transparent glass into a vacuum chamber, where AISI 304 stainless steel foils with a thickness of 25 μm, 50 μm and 100 μm are positioned. The effects of reduced atmospheric pressure on the plasma formation are investigated by means of high-speed videography. Furthermore, the geometry of the weld seam is compared to atmospheric conditions as well as means of the process stability and the process efficiency. The welds were also evaluated by means of metallography. The research is a contribution for extending the range of micro welding applications and shows new aspects for future developments.

  12. Formation of centimeter Fe-based bulk metallic glasses in low vacuum environment

    Energy Technology Data Exchange (ETDEWEB)

    Pan Jie; Chen Qi; Li Ning [State Key Lab of Materials Processing and Mould Technology, Department of Materials Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Liu Lin [State Key Lab of Materials Processing and Mould Technology, Department of Materials Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China)], E-mail: lliu2000@public.wh.hb.cn

    2008-09-08

    The formation of a Fe{sub 43.7}Co{sub 7.3}Cr{sub 14.7}Mo{sub 12.6}C{sub 15.5}B{sub 4.3}Y{sub 1.9} bulk metallic glass (BMG) was attempted in low vacuum environment and in air using commercial raw materials. The glass forming ability of the Fe-based alloys was studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and differential thermal analyzer (DTA). It was found that cylindric rods with diameters ranging from 10 mm to 5 mm could be successfully fabricated by copper-mold casting in the pressures from 1.5 Pa to 10{sup 5} Pa (10{sup 5} Pa = 1 atm). All BMGs exhibit a distinct glass transition and wide supercooled liquid region. The preparation condition seems not significantly affected by the thermodynamic parameters of BMG, such as supercooled liquid region, glass transition temperature and melting process. The oxygen content of the alloys prepared in different vacuum conditions was measured by a LECO oxygen analyzer, which revealed that the oxygen content was less than 100 ppm for all BMGs prepared, even in air. The good glass forming ability and excellent oxidation resistance for the present Fe-based alloy are discussed.

  13. Ultra high vacuum fabrication of metallic contacts for molecular devices on an insulating surface

    Science.gov (United States)

    Fostner, Shawn

    The preparation and characterization of metallic wires on insulating substrates by a variety of mechanisms has been explored. A multi-scale approach utilizing microfabricated silicon stencil masks, feedback controlled electromigration, and field induced metal cluster deposition in a novel geometry has been explored on potassium bromide (KBr), indium phosphide (InP), and silicon oxide substrates in an ultra-high vacuum environment (UHV). The initial deposition of gold, and tantalum wires between one hundred nanometers and micrometers in size was performed using reinforced silicon nanostencils. The stencil fabrication was discussed, and an examination of the deformation of the integrated structures under the deposition of highly stressed tantalum films was shown to be significantly smaller than typical structures. Metallic wires deposited using these stencils as well as electron beam lithography were electrically stressed and the breaking characteristics analyzed. Typical nanometer scale gaps were observed, as well as larger features more commonly found in the breaking of bamboo-like structures in gold wires 100 nm in size or less, particularly with a significant series resistance. These larger gaps are expected to be more applicable for the deposition of subsequent metallic clusters and preparation of molecular devices. As a step towards connecting the initially deposited wires as well as localized molecules in an a fashion allowing atomic scale imaging by AFM, modelling and experiments of field induced deposition of gold clusters on KBr and InP substrates was carried out. Deposition on InP substrates with a backside 2D electron gas as a counter-electrode demonstrated the feability of this deposition technique in UHV. Subsequent depositions on or adjacent to metallic pads on the bulk insulating KBr provided a proof of principle of the technique, though some experimental limitations such as large current pulses with the tip in close proximity to the surface are

  14. Ga-In liquid metal nanoparticles prepared by physical vapor deposition

    Directory of Open Access Journals (Sweden)

    Fan Yu

    2018-02-01

    Full Text Available Controlled synthesis and appropriate characterization of nanoscale particles of gallium-based liquid metals are critical to fulfilling their broad range of applications in the field of flexible, stretchable, and printable micro-/nanoelectronics. Herein, we report a new way to synthesize surfactant-free gallium-indium nanoparticles with controlled particle size on a variety of substrates through a facile physical vapor deposition method. It was found that with prolonged deposition time the liquid metal nanoparticles gradually grew from near-monodispersed small particles with a diameter of ~25 nm to bimodal distributed particles. A nucleation, growth, ripening and merging process was proposed to explain the observed evolution of particle size. Atomic force microscopy measurement indicates that the fabricated liquid metal nanoparticles demonstrate elastic deformation with a certain range of loads and the scanned particle size is dependent on the applied loads. We further investigated the gradual breaking process of the core-shell structured liquid metal nanoparticles, which was evidenced by multiple kinks on the force-separation curve. This work presents a new bottom-up approach to prepare nanoscale liquid metal particles and demonstrates that atomic force microscopy is a suitable technique to characterize the synthesized liquid metal nanoparticles. Keywords: Gallium-Indium alloy, Atomic force microscopy, Liquid metal, Nanoparticle

  15. Net Shaped Component Fabrication of Refractory Metal Alloys using Vacuum Plasma Spraying

    Science.gov (United States)

    Sen, S.; ODell, S.; Gorti, S.; Litchford, R.

    2006-01-01

    The vacuum plasma spraying (VPS) technique was employed to produce dense and net shaped components of a new tungsten-rhenium (W-Re) refractory metal alloy. The fine grain size obtained using this technique enhanced the mechanical properties of the alloy at elevated temperatures. The alloy development also included incorporation of thermodynamically stable dispersion phases to pin down grain boundaries at elevated temperatures and thereby circumventing the inherent problem of recrystallization of refractory alloys at elevated temperatures. Requirements for such alloys as related to high temperature space propulsion components will be discussed. Grain size distribution as a function of cooling rate and dispersion phase loading will be presented. Mechanical testing and grain growth results as a function of temperature will also be discussed.

  16. Development of a wet vapor homogeneous liquid metal MHD power system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Branover, H.; Unger, Y.; El-Boher, A.; Schweitzer, H.

    1991-09-01

    A feasibility study for the approval of liquid metal seeds recovery from a liquid metal vapor-inert gas mixture was conducted and presented in this report. The research activity included background studies on processes relating to mixing stream condenser performance, parametric studies and its experimental validation. The condensation process under study includes mass transfer phenomena combined with heat transfer and phase change. Numerical methods were used in order to solve the dynamic equations and to carry out the parametric study as well as the experimental data reduction. The MSC performance is highly effected by droplet diameter, thus the possibility of atomizing liquid metals were experimentally investigated. The results are generalized and finally used for a set of recommendations by which the recovery of seeds is expected to be feasible.

  17. A contribution to the study of metal-ceramic bonding by direct vacuum brazing with reactive metals

    International Nuclear Information System (INIS)

    Guimaraes, A.S.

    1988-01-01

    Wettability and bonding tests were utilized to evaluate the behaviour of various specials alloys, for work at high temperature under vacuum, for the inter-bonding of silicon carbide, alumina ceramic, graphite (for electrical applications) and petroleum coke and their joining with themselves as the metals titanium, molybdenum, nickel and copper. The joints exhibiting effective bonding were investigated by means of optical microscopy, scanning electron microscopy and X-rays diffraction. Elemental mapping of the constituents and quantitative chemical microanalysis were also undertaken, via the energy dispersive analysis of X-rays (SEM/EDS). On the basis of the results the possible mechanisms of bond-formation have been discussed. It was verified that: a) of the filler metals studied, those which exhibited effective wettability on all the above materials were: 49Cu-49Ti-2Be, Zircaloy4-5Be and a commercial alloy Ticusil, which consisted of a Cu-Ag eutectic with a small addition of pure Ti, of nominal composition 26.7Cu-68.8Ag-4.5Ti; b) the alloys with high levels of reactive metals such as Ti and Zr tended to form low ductility bonds due to the formation of hard, brittle phases; c) the copper suffered pronounced erosion when in direct contact with alloys of high Ti and Zr contents, due to the formation of phases whose melting points were below the brazing temperature of those materials; e) the compounds detected as reaction products were identified as, TiC in the samples rich in carbon, such as the SiC ceramic and graphite joints, or the oxides Cu2Ti2O5 and Cu3TiO4 in the bonding of alumina to alloys including Ti in their composition or in that of the filler metal, proving that the effectiveness of the bond is dependent upon an initial and indispensable chemical bonding. (author)

  18. Magnetron target designs to improve wafer edge trench filling in ionized metal physical vapor deposition

    International Nuclear Information System (INIS)

    Lu Junqing; Yoon, Jae-Hong; Shin, Keesam; Park, Bong-Gyu; Yang Lin

    2006-01-01

    Severe asymmetry of the metal deposits on the trench sidewalls occurs near the wafer edge during low pressure ionized metal physical vapor deposition of Cu seed layer for microprocessor interconnects. To investigate this process and mitigate the asymmetry, an analytical view factor model based on the analogy between metal sputtering and diffuse thermal radiation was constructed. The model was validated based on the agreement between the model predictions and the reported experimental values for the asymmetric metal deposition at trench sidewalls near the wafer edge for a 200 mm wafer. This model could predict the thickness of the metal deposits across the wafer, the symmetry of the deposits on the trench sidewalls at any wafer location, and the angular distributions of the metal fluxes arriving at any wafer location. The model predictions for the 300 mm wafer indicate that as the target-to-wafer distance is shortened, the deposit thickness increases and the asymmetry decreases, however the overall uniformity decreases. Up to reasonable limits, increasing the target size and the sputtering intensity for the outer target portion significantly improves the uniformity across the wafer and the symmetry on the trench sidewalls near the wafer edge

  19. Clinical impact of the disposable ventouse iCup® versus a metallic vacuum cup: a multicenter randomized controlled trial.

    Science.gov (United States)

    Equy, Véronique; David-Tchouda, Sandra; Dreyfus, Michel; Riethmuller, Didier; Vendittelli, Françoise; Cabaud, Victoire; Langer, Bruno; Margier, Jennifer; Bosson, Jean-Luc; Schaal, Jean-Patrick

    2015-12-15

    Assisted vaginal delivery by vacuum extraction is frequent. Metallic resterilizible metallic vacuum cups have been routinely used in France. In the last few years a new disposable semi-soft vacuum extraction cup, the iCup, has been introduced. Our objective was to compare maternal and new-born outcomes between this disposable cup and the commonly used Drapier-Faure metallic cup. This was a multicenter prospective randomized controlled open clinical trial performed in the maternity units of five university hospitals and one community hospital in France from October 2009 to February 2013. We included consecutive eligible women with a singleton gestation of at least 37 weeks who required vacuum assisted delivery. Women were randomized to vacuum extraction using the iCup or usual Drapier-Faure metallic cup. The primary outcome was a composite criterion including both the risk of cup dysfunction and the most frequent maternal and neonatal harms: the use of other instruments after attempted vacuum extraction, caesarean section after attempted vacuum extraction, three detachments of the cup, caput succedaneum, cephalohaematoma, episiotomy and perineal tears. 335 women were randomized to the disposable cup and 333 to extraction using the metallic cup. There was no significant difference between the two groups for the primary outcome. However, failed instrumental delivery was more frequent in the disposable cup group, mainly due to detachment: 35.6 % vs 7.1 %, p < 0.0001. Conversely, perineal tears were more frequent in the metallic cup group, especially third or fourth grade perineal tears: 1.7 % versus 5.0 %, p = 0.003. There were no significant differences between the two groups concerning post-partum haemorrhage, transfer to a neonatal intensive care unit (NICU) or serious adverse events. While the disposable cup had more detachments and extraction failures than the standard metallic cup, this innovative disposable device had the advantage of fewer perineal

  20. Modeling technique of capacitive discharge pumping of metal vapor lasers for electrode capacitance optimization.

    Science.gov (United States)

    Gubarev, F A; Evtushenko, G S; Vuchkov, N K; Sukhanov, V B; Shiyanov, D V

    2012-05-01

    To estimate optimum gas discharge tube (GDT) electrode capacitance of metal vapor lasers (MVLs) pumped by a longitudinal capacitive discharge, we offer to use series connection of capacitors to the electrodes of a conventionally pumped GDT with inner electrodes. It has been demonstrated that the maximum output power in CuBr lasers is obtained when the capacitances of high-voltage and ground electrodes are equal. When using a model circuit an average output power reaches 12 W that suggests the possibility of generating high average output power (>10 W) in MVLs pumped using a capacitive discharge.

  1. (Vapor + Liquid) Equilibrium (VLE) for Binary Lead-Antimony System in Vacuum Distillation: New Data and Modeling Using Nonrandom Two-Liquid (NRTL) Model

    Science.gov (United States)

    Xu, Junjie; Kong, Lingxin; Xu, Baoqiang; Yang, Bin; You, Yanjun; Xu, Shuai; Zhou, Yuezhen; Li, Yifu; Liu, Dachun

    2016-09-01

    In this work, new experimental vapor-liquid equilibrium (VLE) data of lead-antimony alloy (Pb-Sb alloy) in vacuum distillation are reported. The activity coefficients of components of Pb-Sb alloy were calculated by using the NRTL model. The calculated average relative deviations were ±0.1425 and ±0.2433 pct, and the average standard deviations were ±0.0009 and ±0.0007, respectively, for Pb and Sb. The VLE phase diagrams, such as the temperature composition ( T- x) and pressure composition ( P-x) diagrams of Pb-Sb alloy in vacuum distillation were predicted based on the NRTL model and VLE theory. The predicted results are consistent with the new experimental data indicating that VLE phase diagrams obtained by this method are reliable. The VLE phase diagrams of alloys will provide an effective and intuitive way for the technical design and realization of recycling and separation processes. The VLE data may be used in separation processes design, and the thermodynamic properties as the key parameters in specific applications.

  2. Metal oxide absorbents for regenerative carbon dioxide and water vapor removal for advanced portable life support systems

    Science.gov (United States)

    Hart, Joan M.; Borghese, Joseph B.; Chang, Craig H.; Stonesifer, Greg T.

    1991-01-01

    Recent studies of Allied Signal metal oxide based absorbents demonstrated that these absorbents offer a unique capability to regeneratively remove both metabolic carbon dioxide and water vapor from breathing air; previously, metal oxides were considered only for the removal of CO2. The concurrent removal of CO2 and H2O vapor can simplify the astronaut Portable Life Support System (PLSS) by combining the CO2 and humidity control functions into one regenerative component. The use of metal oxide absorbents for removal of both CO2 ad H2O vapor in the PLSS is the focus of an ongoing program. The full scale Metal Oxide Carbon dioxide and Humidity Remover (MOCHR) and regeneration unit is described.

  3. Optimizing the vacuum plasma spray deposition of metal, ceramic, and cermet coatings using designed experiments

    Science.gov (United States)

    Kingswell, R.; Scott, K. T.; Wassell, L. L.

    1993-06-01

    The vacuum plasma spray (VPS) deposition of metal, ceramic, and cermet coatings has been investigated using designed statistical experiments. Processing conditions that were considered likely to have a significant influence on the melting characteristics of the precursor powders and hence deposition efficiency were incorporated into full and fractional factorial experimental designs. The processing of an alumina powder was very sensitive to variations in the deposition conditions, particularly the injection velocity of the powder into the plasma flame, the plasma gas composition, and the power supplied to the gun. Using a combination of full and fractional factorial experimental designs, it was possible to rapidly identify the important spraying variables and adjust these to produce a deposition efficiency approaching 80 percent. The deposition of a nickel-base alloy metal powder was less sensitive to processing conditions. Generally, however, a high degree of particle melting was achieved for a wide range of spray conditions. Preliminary experiments performed using a tungsten carbide/cobalt cermet powder indicated that spray efficiency was not sensitive to deposition conditions. However, microstructural analysis revealed considerable variations in the degree of tungsten carbide dissolution. The structure and properties of the optimized coatings produced in the factorial experiments are also discussed.

  4. Consolidation of simulated nuclear metallic waste by vacuum coreless induction melting

    International Nuclear Information System (INIS)

    Montgomery, D.R.

    1984-10-01

    Vacuum coreless induction melting with bottom pouring has exceeded expectations for simplicity, reliability, and versatility when melting the zirconium and iron eutectic alloy. The melting tests have established that: the eutectic mixture of oxidized Zircaloy 4 hulls mixed with Type 316 stainless steel hulls can be melted at 41 kg/h at 40 kW with a power consumption of 1.03 kWh/kg and a melting temperature of 1260 0 C; the life of a graphite crucible can be expected to be longer by a factor of 4 than was previously projected; the bottom-pour water-cooled copper freeze plug was 100% reliable; a 24-in.-tall stainless steel canister with 1/4-in.-thick walls (6-in. inside diameter) was satisfactory in every respect; an ingot formed from 4 consecutive heats poured into a stainless steel canister appeared to be approx. 99% dense after sectioning; preplaced scrap in the canister can be encapsulated with molten metal to about 99% density; large pieces of Zircaloy 4 and stainless steel scrap can be melted, but have differing melting parameters; the pouring nozzle requires further development to prevent solidified drops from forming at the hole exit after a pour. It is recommended that a large-scale cold mock-up facility be established to refine and test a full-scale vacuum coreless induction melting system. Other options might include further scaled-down experiments to test other alloys and crucible materials under different atmospheric conditions (i.e., air melting). 1 reference, 18 figures, 1 table

  5. High temperature vapor pressures of stainless steel type 1.4970 and of some other pure metals from laser evaporation

    International Nuclear Information System (INIS)

    Bober, M.; Singer, J.

    1984-10-01

    For the safety analysis of nuclear reactors vapor pressure data of stainless steel are required up to temperatures exceeding 4000 K. In analogy to the classic boiling point method a new technique was developed to measure the high-temperature vapor pressures of stainless steel and other metals from laser vaporization. A fast pyrometer, an ion current probe and an image converter camera are used to detect incipient boiling from the time-temperature curve. The saturated-vapor pressure curves of stainless steel (Type 1.4970), being a cladding material of the SNR 300 breeder reactor, and of molybdenum are experimentally determined in the temperature ranges of 2800-3900 K and 4500-5200 K, respectively. The normal boiling points of iron, nickel, titanium, vanadium and zirconium are verified. Besides, spectral emissivity values of the liquid metals are measured at the pyrometer wavelengths of 752 nm and/or 940 nm. (orig.) [de

  6. Structured nanocarbon on various metal foils by microwave plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Rius, G; Yoshimura, M

    2013-01-01

    We present a versatile process for the engineering of nanostructures made of crystalline carbon on metal foils. The single step process by microwave plasma-enhance chemical vapor deposition is demonstrated for various substrate materials, such as Ni or Cu. Either carbon nanotubes (CNT) or carbon nanowalls (CNW) are obtained under same growth conditions and without the need of additional catalyst. The use of spacer and insulator implies a certain control over the kind of allotropes that are obtained. High density and large surface area are morphological characteristics of the thus obtained C products. The possibility of application on many metals, and in the alloy composition, on as-delivered commercially available foils indicates that this strategy can be adapted to a bunch of specific applications, while the production of C nanostructures is of remarkable simplicity.

  7. The emission spectroscopy for evaluation of concentration of the metal vapor concentration in tokamak plasma

    International Nuclear Information System (INIS)

    Sarakovskis, A.; Gromuls, I.; Tale, I.

    2004-01-01

    Full text: Evaluation of the absolute concentration of the impurity metal vapors in plasma using emission spectroscopy requires development of the principles and procedure of in situ calibration of equipment. Several approaches can be used for calibration of the equipment. In the case the emission rate of single metal atom under ionizing conditions is known, the calibration of the spectroscopic equipment reduces to the calibration in radiometric units (irradiance). For unknown emission rate the routine calibration procedure involves use of the set of etalons of material under investigation with known concentration of impurity metal. For evaluation of impurity concentration in plasma it is necessary to develop a corresponding plasma source having certain plasma parameters - temperature and concentration of electrons and metal vapors in concentration, which can be measured independent procedure. Present report deals with problems of estimation of Ga impurity concentration in ISSTOK ( Portugal) tokamak plasma using decay data of atom emission lines. Emission spectra of Ga atoms show that collisions with hydrogen electrons and ions results in ionization of Ga followed by multi step radiative recombination. The main emission lines corresponds to the capture of electron to the 4s 2 5p (639 nm), transition 4s 2 5p - 4s 2 5s (1,211 μm ); and transition to the ground state 4s 2 5s - 4s 2 4p (403 nm). Some of the excited state lifetimes obtained from decay kinetics are reported. Analysis of emission line intensity ratios together with lifetime data will allow elaborate the procedure for evaluation of Ga impurity concentration in the tokamak plasma

  8. Collision Welding of Dissimilar Materials by Vaporizing Foil Actuator: A Breakthrough Technology for Dissimilar Metal Joining

    Energy Technology Data Exchange (ETDEWEB)

    Daehn, Glenn S. [The Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering; Vivek, Anupam [The Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering; Liu, Bert C. [The Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    2016-09-30

    This work demonstrated and further developed Vaporizing Foil Actuator Welding (VFAW) as a viable technique for dissimilar-metal joining for automotive lightweighting applications. VFAW is a novel impact welding technology, which uses the pressure developed from electrically-assisted rapid vaporization of a thin aluminum foil (the consumable) to launch and ultimately collide two of more pieces of metal to create a solid-state bond between them. 18 dissimilar combinations of automotive alloys from the steel, aluminum and magnesium alloy classes were screened for weldability and characterized by metallography of weld cross sections, corrosion testing, and mechanical testing. Most combinations, especially a good number of Al/Fe pairs, were welded successfully. VFAW was even able to weld combinations of very high strength materials such as 5000 and 6000 series aluminum alloys to boron and dual phase steels, which is difficult to impossible by other joining techniques such as resistance spot welding, friction stir welding, or riveting. When mechanically tested, the samples routinely failed in a base metal rather than along the weld interface, showing that the weld was stronger than either of the base metals. As for corrosion performance, a polymer-based protective coating was used to successfully combat galvanic corrosion of 5 Al/Fe pairs through a month-long exposure to warm salt fog. In addition to the technical capabilities, VFAW also consumes little energy compared to conventional welding techniques and requires relatively light, flexible tooling. Given the technical and economic advantages, VFAW can be a very competitive joining technology for automotive lightweighting. The success of this project and related activities has resulted in substantial interest not only within the research community but also various levels of automotive supply chain, which are collaborating to bring this technology to commercial use.

  9. The Validation of Vapor Phase Hydrogen Peroxide Microbial Reduction for Planetary Protection and a Proposed Vacuum Process Specification

    Science.gov (United States)

    Chung, Shirley; Barengoltz, Jack; Kern, Roger; Koukol, Robert; Cash, Howard

    2006-01-01

    The Jet Propulsion Laboratory, in conjunction with the NASA Planetary Protection Officer, has selected the vapor phase hydrogen peroxide sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal is to include this technique, with an appropriate specification, in NPR 8020.12C as a low temperature complementary technique to the dry heat sterilization process.To meet microbial reduction requirements for all Mars in-situ life detection and sample return missions, various planetary spacecraft subsystems will have to be exposed to a qualified sterilization process. This process could be the elevated temperature dry heat sterilization process (115 C for 40 hours) which was used to sterilize the Viking lander spacecraft. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements.The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material properties. Our goal for this study was to determine the minimum VHP process conditions to achieve microbial reduction levels acceptable for planetary protection.

  10. Combined high-pressure cell-ultrahigh vacuum system for fast testing of model metal alloy catalysts using scanning mass spectrometry

    DEFF Research Database (Denmark)

    Johansson, Martin; Jørgensen, Jan Hoffmann; Chorkendorff, Ib

    2004-01-01

    An apparatus for fabrication, surface analysis in ultrahigh vacuum, and testing of the catalytic activity of model metal alloy catalysts is described. Arrays of model catalysts are produced by electron-beam deposition of up to four metals simultaneously onto a substrate. The surface analysis...... be studied on a substrate 10 mm in diameter. A high pressure cell with an all-metal sealed ultrahigh vacuum lock is also described as part of the work. ©2004 American Institute of Physics....

  11. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    International Nuclear Information System (INIS)

    Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.

    2016-01-01

    Graphical abstract: - Highlights: • Graphene layers were grown on Pt and Cu foil via ambient pressure chemical vapor deposition method and for the delicate removal of graphene from metal catalysts, electrolysis method was used by using different alkaline (sodium hydroxide, potassium hydroxide, lithium hydroxide and barium hydroxide). • The delamination speed of PMMA/graphene stack was higher during the KOH and LiOH electrolysis as compare to NaOH and Ba(OH) 2 . Ba(OH) 2 is not advisable because of the residues left on the graphene surface which would further trapped in between graphene and SiO 2 /Si surface after transfer. The average peeling time in case of Pt electrode is ∼6 min for KOH and LiOH and ∼15 min for NaOH and Ba(OH) 2 . • Electrolysis method also works for the Cu catalyst. The peeling of graphene was faster in the case of Cu foil due to small size of bubbles which moves faster between the stack and the electrode surface. The average peeling time was ∼3–5 min. • XPS analysis clearly showed that the Pt substrates can be re-used again. Graphene layer was transferred to SiO 2 /Si substrates and to the flexible substrate by using the same peeling method. - Abstract: In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH) 2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for Na

  12. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    Science.gov (United States)

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  13. Assessment of heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system for recycling heavy metals from crushed e-wastes.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2014-12-01

    Vacuum metallurgy separation (VMS) is a technically feasible method to recover Pb, Cd and other heavy metals from crushed e-wastes. To further determine the environmental impacts and safety of this method, heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system are evaluated in this article. The mass concentrations of total suspended particulate (TSP) and PM10 are 0.1503 and 0.0973 mg m(-3) near the facilities. The concentrations of Pb, Cd and Sn in TSP samples are 0.0104, 0.1283 and 0.0961 μg m(-3), respectively. Health risk assessments show that the hazard index of Pb is 3.25 × 10(-1) and that of Cd is 1.09 × 10(-1). Carcinogenic risk of Cd through inhalation is 1.08 × 10(-5). The values of the hazard index and risk indicate that Pb and Cd will not cause non-cancerous effects or carcinogenic risk on workers. The noise sources are mainly the mechanical vacuum pump and the water cooling pump. Both of them have the noise levels below 80 dB (A). The thermal safety assessment shows that the temperatures of the vacuum metallurgy separation system surface are all below 303 K after adopting the circulated water cooling and heat insulation measures. This study provides the environmental information of the vacuum metallurgy separation system, which is of assistance to promote the industrialisation of vacuum metallurgy separation for recovering heavy metals from e-wastes. © The Author(s) 2014.

  14. Mechanism on heavy metals vaporization from municipal solid waste fly ash by MgCl₂⋅6H₂O.

    Science.gov (United States)

    Yu, Jie; Sun, Lushi; Ma, Chuan; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong

    2016-03-01

    This work aims to study the mechanism of heavy metals vaporization by MgCl2⋅6H2O. Firstly, the decomposition mechanism of MgCl2⋅6H2O was investigated by thermodynamic equilibrium calculations, XRD and TG. Upon heating, MgCl2⋅6H2O went through the processes of dehydration and hydrolysis simultaneously accompanied by the release of HCl between 150 and 500°C. At temperature higher than 500°C, Mg(OH)Cl gradually release part of HCl. MgCl2⋅6H2O followed the similar processes of decomposition at both oxidative and reductive atmospheres. In oxidative atmosphere, vaporization of Zn and Cu was significantly accelerated by MgCl2⋅6H2O. However, in inert atmosphere, vaporization of Cu was not promoted since copper chloride was only stable in oxidative atmosphere. Under slow heating condition, vaporization of heavy metals were close to that under fast heating condition. This may be partially attributed to that most heavy metals already reacted with HCl forming metal chlorides below 500°C, which can be vaporized at higher temperature. Moreover, the Mg(OH)Cl contributed to release HCl up to 800°C. At such high temperature, the metal chlorides continue to be formed and then vaporized. After treatment, the leaching concentration of heavy metals from treated fly ashes were much lower than that from raw fly ash and met the regulatory limit of leachate. Since a large amount of MgSiO3 were formed during thermal treatment, the fly ash treated with MgCl2⋅6H2O can be used as raw materials for glass-ceramics production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition.

    Science.gov (United States)

    English, Chris D; Shine, Gautam; Dorgan, Vincent E; Saraswat, Krishna C; Pop, Eric

    2016-06-08

    The scaling of transistors to sub-10 nm dimensions is strongly limited by their contact resistance (RC). Here we present a systematic study of scaling MoS2 devices and contacts with varying electrode metals and controlled deposition conditions, over a wide range of temperatures (80 to 500 K), carrier densities (10(12) to 10(13) cm(-2)), and contact dimensions (20 to 500 nm). We uncover that Au deposited in ultra-high vacuum (∼10(-9) Torr) yields three times lower RC than under normal conditions, reaching 740 Ω·μm and specific contact resistivity 3 × 10(-7) Ω·cm(2), stable for over four months. Modeling reveals separate RC contributions from the Schottky barrier and the series access resistance, providing key insights on how to further improve scaling of MoS2 contacts and transistor dimensions. The contact transfer length is ∼35 nm at 300 K, which is verified experimentally using devices with 20 nm contacts and 70 nm contact pitch (CP), equivalent to the "14 nm" technology node.

  16. Visualisation of latent fingermarks on polymer banknotes using copper vacuum metal deposition: A preliminary study.

    Science.gov (United States)

    Davis, Lloyd W L; Kelly, Paul F; King, Roberto S P; Bleay, Stephen M

    2016-09-01

    The UK's recent move to polymer banknotes has seen some of the currently used fingermark enhancement techniques for currency potentially become redundant, due to the surface characteristics of the polymer substrates. Possessing a non-porous surface with some semi-porous properties, alternate processes are required for polymer banknotes. This preliminary investigation explored the recovery of fingermarks from polymer notes via vacuum metal deposition using elemental copper. The study successfully demonstrated that fresh latent fingermarks, from an individual donor, could be clearly developed and imaged in the near infrared. By varying the deposition thickness of the copper, the contrast between the fingermark minutiae and the substrate could be readily optimised. Where the deposition thickness was thin enough to be visually indistinguishable, forensic gelatin lifters could be used to lift the fingermarks. These lifts could then be treated with rubeanic acid to produce a visually distinguishable mark. The technique has shown enough promise that it could be effectively utilised on other semi- and non-porous substrates. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. The assessment of non-metallic inclusions in steels and nickel alloys for ultra high vacuum applications

    International Nuclear Information System (INIS)

    Meriguet, P.J.-L.

    1992-01-01

    The presence of non-metallic inclusions in steels and nickel alloys may create leak-paths under Ultra High Vacuum conditions. This paper shows the application of the ASTM E45 standard to the assessment of these inclusions and gives some design recommendations. Three case-histories encountered at the Joint European Torus Joint Undertaking and a possible explanation of the phenomenon are also presented. (Author)

  18. Thermal stability of multilayer graphene films synthesized by chemical vapor deposition and stained by metallic impurities.

    Science.gov (United States)

    Kahng, Yung Ho; Lee, Sangchul; Park, Woojin; Jo, Gunho; Choe, Minhyeok; Lee, Jong-Hoon; Yu, Hyunung; Lee, Takhee; Lee, Kwanghee

    2012-02-24

    Thermal stability is an important property of graphene that requires thorough investigation. This study reports the thermal stability of graphene films synthesized by chemical vapor deposition (CVD) on catalytic nickel substrates in a reducing atmosphere. Electron microscopies, atomic force microscopy, and Raman spectroscopy, as well as electronic measurements, were used to determine that CVD-grown graphene films are stable up to 700 °C. At 800 °C, however, graphene films were etched by catalytic metal nanoparticles, and at 1000 °C many tortuous tubular structures were formed in the film and carbon nanotubes were formed at the film edges and at catalytic metal-contaminated sites. Furthermore, we applied our pristine and thermally treated graphene films as active channels in field-effect transistors and characterized their electrical properties. Our research shows that remnant catalytic metal impurities play a critical role in damaging graphene films at high temperatures in a reducing atmosphere: this damage should be considered in the quality control of large-area graphene films for high temperature applications.

  19. An efficient laser vaporization source for chemically modified metal clusters characterized by thermodynamics and kinetics

    Science.gov (United States)

    Masubuchi, Tsugunosuke; Eckhard, Jan F.; Lange, Kathrin; Visser, Bradley; Tschurl, Martin; Heiz, Ulrich

    2018-02-01

    A laser vaporization cluster source that has a room for cluster aggregation and a reactor volume, each equipped with a pulsed valve, is presented for the efficient gas-phase production of chemically modified metal clusters. The performance of the cluster source is evaluated through the production of Ta and Ta oxide cluster cations, TaxOy+ (y ≥ 0). It is demonstrated that the cluster source produces TaxOy+ over a wide mass range, the metal-to-oxygen ratio of which can easily be controlled by changing the pulse duration that influences the amount of reactant O2 introduced into the cluster source. Reaction kinetic modeling shows that the generation of the oxides takes place under thermalized conditions at less than 300 K, whereas metal cluster cores are presumably created with excess heat. These characteristics are also advantageous to yield "reaction intermediates" of interest via reactions between clusters and reactive molecules in the cluster source, which may subsequently be mass selected for their reactivity measurements.

  20. Composition and Morphology Control of Metal Dichalcogenides via Chemical Vapor Deposition for Photovoltaic and Nanoelectronic Applications

    Science.gov (United States)

    Samad, Leith L. J.

    The body of work reviewed here encompasses a variety of metal dichalcogenides all synthesized using chemical vapor deposition (CVD) for solar and electronics applications. The first reported phase-pure CVD synthesis of iron pyrite thin films is presented with detailed structural and electrochemical analysis. The phase-pure thin film and improved crystal growth on a metallic backing material represents one of the best options for potential solar applications using iron pyrite. Large tin-sulfur-selenide solid solution plates with tunable bandgaps were also synthesized via CVD as single-crystals with a thin film geometry. Solid solution tin-sulfur-selenide plates were demonstrated to be a new material for solar cells with the first observed solar conversion efficiencies up to 3.1%. Finally, a low temperature molybdenum disulfide vertical heterostructure CVD synthesis with layered controlled growth was achieved with preferential growth enabled by Van der Waals epitaxy. Through recognition of additional reaction parameters, a fully regulated CVD synthesis enabled the controlled growth of 1-6 molybdenum disulfide monolayers for nanoelectronic applications. The improvements in synthesis and materials presented here were all enabled by the control afforded by CVD such that advances in phase purity, growth, and composition control of several metal dichalcogenides were achieved. Further work will be able to take full advantage of these advances for future solar and electronics technologies.

  1. Role of the vacuum pressure and temperature in the shape of metal ...

    Indian Academy of Sciences (India)

    Aggregation and surface irregularities at the edges of the hexagonal nanodisks were observed with further increases in the vacuum pressure. The nanoscale characteristics of the nanodisks were lost at a vacuum pressure of 10−6 Torr and heating the substrate at 100°C. The nanodisks were transformed into Zn wires at a ...

  2. Laterally Stitched Heterostructures of Transition Metal Dichalcogenide: Chemical Vapor Deposition Growth on Lithographically Patterned Area

    KAUST Repository

    Li, Henan

    2016-10-31

    Two-dimensional transition metal dichalcogenides (TMDCs) have shown great promise in electronics and optoelectronics due to their unique electrical and optical properties. Heterostructured TMDC layers such as the laterally stitched TMDCs offer the advantages of better electronic contact and easier band offset tuning. Here, we demonstrate a photoresist-free focused ion beam (FIB) method to pattern as-grown TMDC monolayers by chemical vapor deposition, where the exposed edges from FIB etching serve as the seeds for growing a second TMDC material to form desired lateral heterostructures with arbitrary layouts. The proposed lithographic and growth processes offer better controllability for fabrication of the TMDC heterostrucuture, which enables the construction of devices based on heterostructural monolayers. © 2016 American Chemical Society.

  3. InAs film grown on Si(111) by metal organic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Caroff, P; Jeppsson, M; Mandl, B; Wernersson, L-E; Wheeler, D; Seabaugh, A; Keplinger, M; Stangl, J; Bauer, G

    2008-01-01

    We report the successful growth of high quality InAs films directly on Si(111) by Metal Organic Vapor Phase Epitaxy. A nearly mirror-like and uniform InAs film is obtained at 580 0 C for a thickness of 2 μm. We measured a high value of the electron mobility of 5100 cm 2 /Vs at room temperature. The growth is performed using a standard two-step procedure. The influence of the nucleation layer, group V flow rate, and layer thickness on the electrical and morphological properties of the InAs film have been investigated. We present results of our studies by Atomic Force Microscopy, Scanning Electron Microscopy, electrical Hall/van der Pauw and structural X-Ray Diffraction characterization

  4. Statistical analysis of dimer formation in supersaturated metal vapor based on molecular dynamics simulation

    Science.gov (United States)

    Korenchenko, Anna E.; Vorontsov, Alexander G.; Gelchinski, Boris R.; Sannikov, Grigorii P.

    2018-04-01

    We discuss the problem of dimer formation during the homogeneous nucleation of atomic metal vapor in an inert gas environment. We simulated nucleation with molecular dynamics and carried out the statistical analysis of double- and triple-atomic collisions as the two ways of long-lived diatomic complex formation. Close pair of atoms with lifetime greater than the mean time interval between atom-atom collisions is called a long-lived diatomic complex. We found that double- and triple-atomic collisions gave approximately the same probabilities of long-lived diatomic complex formation, but internal energy of the resulted state was essentially lower in the second case. Some diatomic complexes formed in three-particle collisions are stable enough to be a critical nucleus.

  5. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    International Nuclear Information System (INIS)

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-01-01

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  6. Thermodynamic analysis of trimethylgallium decomposition during GaN metal organic vapor phase epitaxy

    Science.gov (United States)

    Sekiguchi, Kazuki; Shirakawa, Hiroki; Chokawa, Kenta; Araidai, Masaaki; Kangawa, Yoshihiro; Kakimoto, Koichi; Shiraishi, Kenji

    2018-04-01

    We analyzed the decomposition of Ga(CH3)3 (TMG) during the metal organic vapor phase epitaxy (MOVPE) of GaN on the basis of first-principles calculations and thermodynamic analysis. We performed activation energy calculations of TMG decomposition and determined the main reaction processes of TMG during GaN MOVPE. We found that TMG reacts with the H2 carrier gas and that (CH3)2GaH is generated after the desorption of the methyl group. Next, (CH3)2GaH decomposes into (CH3)GaH2 and this decomposes into GaH3. Finally, GaH3 becomes GaH. In the MOVPE growth of GaN, TMG decomposes into GaH by the successive desorption of its methyl groups. The results presented here concur with recent high-resolution mass spectroscopy results.

  7. Condensates from vapor made by impacts between metal-, silicate-rich bodies: Comparison with metal and chondrules in CB chondrites

    Science.gov (United States)

    Fedkin, Alexei V.; Grossman, Lawrence; Humayun, Munir; Simon, Steven B.; Campbell, Andrew J.

    2015-09-01

    The impact hypothesis for the origin of CB chondrites was tested by performing equilibrium condensation calculations in systems composed of vaporized mixtures of projectile and target materials. When one of the impacting bodies is composed of the metal from CR chondrites and the other is an H chondrite, good agreement can be found between calculated and observed compositions of unzoned metal grains in CB chondrites but the path of composition variation of the silicate condensate computed for the same conditions that reproduce the metal grain compositions does not pass through the measured compositions of barred olivine (BO) or cryptocrystalline (CC) chondrules in the CBs. The discrepancy between measured chondrule compositions and those of calculated silicates is not reduced when diogenite, eucrite or howardite compositions are substituted for H chondrite as the silicate-rich impacting body. If, however, a CR chondrite body is differentiated into core, a relatively CaO-, Al2O3-poor mantle and a CaO-, Al2O3-rich crust, and later accretes significant amounts of water, a collision between it and an identical body can produce the necessary chemical conditions for condensation of CB chondrules. If the resulting impact plume is spatially heterogeneous in its proportions of crust and mantle components, the composition paths calculated for silicate condensates at the same Ptot, Ni/H and Si/H ratios and water abundance that produce good matches to the unzoned metal grain compositions pass through the fields of BO and CC chondrules, especially if high-temperature condensates are fractionated in the case of the CCs. While equilibrium evaporation of an alloy containing solar proportions of siderophiles into a dense impact plume is an equally plausible hypothesis for explaining the compositions of the unzoned metal grains, equilibrium evaporation can explain CB chondrule compositions only if an implausibly large number of starting compositions is postulated. Kinetic models

  8. Two level undercut-profile substrate-based filamentary coated conductors produced using metal organic chemical vapor deposition

    DEFF Research Database (Denmark)

    Insinga, Andrea R.; Sundaram, Aarthi; Hazelton, Drew W.

    2018-01-01

    of a filamentary CC produced in an industrial setup by SuperPower Inc. using ion beam assisted deposition and metal organic chemical vapor deposition (IBAD-MOCVD) on a 2LUPS substrate realized at the Technical University of Denmark (DTU), whereas previous studies discussed the fabrication using alternating beam...

  9. Metal Nanoparticles Protected with Monolayers: Applications for Chemical Vapor Sensing and Gas Chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Nelson, David A.; Skaggs, Rhonda L.; Synovec, Robert E.; Gross, Gwen M.

    2004-03-31

    Nanoparticles and nanoparticle-based materials are of considerable interest for their unique properties and their potential for use in a variety of applications. Metal nanoparticles, in which each particle’s surface is coated with a protective organic monolayer, are of particular interest because the surface monolayer stabilizes them relative to aggregation and they can be taken up into solutions.(1-4) As a result they can be processed into thin films for device applications. We will refer to these materials as monolayer-protected nanoparticles, or MPNs. Typically the metal is gold, the organic layer is a self-assembled thiol layer, and this composition will be assumed throughout the remainder of this chapter. A diversity of materials and properties is readily accessible by straightforward synthetic procedures, either by the structures of the monolayer-forming thiols used in the synthesis or by post-synthetic modifications of the monolayers. A particularly promising application for these materials is as selective layers on chemical vapor sensors. In this role, the thin film of MPNs on the device surface serves to collect and concentrate gas molecules at the sensor’s surface. Their sorptive properties also lend them to use as new nanostructured gas chromatographic stationary phases. This chapter will focus on the sorptive properties of MPNs as they relate to chemical sensors and gas chromatography.

  10. Development of metal oxide gas sensors for very low concentration (ppb) of BTEX vapors

    Science.gov (United States)

    Favard, A.; Aguir, K.; Contaret, T.; Caris, L.; Bendahan, M.

    2017-12-01

    The control and analysis of air quality have become a major preoccupation of the last twenty years. In 2008, the European Union has introduced a Directive (2008/50/EC) to impose measurement obligations and thresholds to not exceed for some pollutants, including BTEX gases, in view of their adverse effects on the health. In this paper, we show the ability to detect very low concentrations of BTEX using a gas microsensor based on metal oxide thin-film. A test bench able to generate very low vapors concentrations has been achieved and fully automated. Thin metal oxides layers have been realized by reactive magnetron sputtering. The sensitive layers are functionalized with gold nanoparticles by thermal evaporation technique. Our sensors have been tested on a wide range of concentrations of BTEX (5 - 500 ppb) and have been able to detect concentrations of a few ppb for operating temperatures below 593 K. These results are very promising for detection of very low BTEX concentration for indoor as well as outdoor application. We showed that the addition of gold nanoparticles on the sensitive layers decreases the sensors operating temperature and increases the response to BTEX gas. The best results are obtained with a sensitive layer based on ZnO.

  11. Comparison of the columnar-thin-film and vacuum-metal-deposition techniques to develop sebaceous fingermarks on nonporous substrates.

    Science.gov (United States)

    Williams, Stephanie F; Pulsifer, Drew P; Shaler, Robert C; Ramotowski, Robert S; Brazelle, Shelly; Lakhtakia, Akhlesh

    2015-03-01

    Both the columnar-thin-film (CTF) and the vacuum-metal-deposition (VMD) techniques for visualizing sebaceous fingermarks require the deposition of a material thereon in a vacuum chamber. Despite that similarity, there are many differences between the two techniques. The film deposited with the CTF technique has a columnar morphology, but the film deposited with the VMD technique comprises discrete islands. A split-print methodology on a variety of fingermarked substrates was used to determine that the CTF technique is superior for developing fingermarks on clear sandwich bags and partial bloody fingermarks on stainless steel. Both techniques are similar in their ability to develop fingermarks on glass but the CTF technique yields higher contrast. The VMD technique is superior for developing fingermarks on white grocery bags and the smooth side of Gloss Finish Scotch Multitask(™) tape. Neither technique worked well for fingermarks on black garbage bags. © 2014 American Academy of Forensic Sciences.

  12. Epitaxial Oxide Thin Films Grown by Solid Source Metal-Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Lu, Zihong

    1995-01-01

    The conventional liquid source metal-organic chemical vapor deposition (MOCVD) technique is capable of producing large area, high quality, single crystal semiconductor films. However, the growth of complex oxide films by this method has been hampered by a lack of suitable source materials. While chemists have been actively searching for new source materials, the research work reported here has demonstrated the successful application of solid metal-organic sources (based on tetramethylheptanedionate) to the growth of high quality thin films of binary compound cerium dioxide (CeO_2), and two more complex materials, the ternary compound lithium niobate (LiNbO_3), with two cations, and the quaternary compound strontium barium niobate (SBN), with three cations. The growth of CeO_2 thin films on (1012)Al_2O_3 substrates has been used as a model to study the general growth behavior of oxides. Factors affecting deposition rate, surface morphology, out-of-plane mosaic structure, and film orientation have been carefully investigated. A kinetic model based on gas phase prereaction is proposed to account for the substrate temperature dependence of film orientation found in this system. Atomically smooth, single crystal quality cerium dioxide thin films have been obtained. Superconducting YBCO films sputtered on top of solid source MOCVD grown thin cerium dioxide buffer layers on sapphire have been shown to have physical properties as good as those of YBCO films grown on single crystal MgO substrates. The thin film growth of LiNbO_3 and Sr_{1-x}Ba _{x}Nb_2 O_6 (SBN) was more complex and challenging. Phase purity, transparency, in-plane orientation, and the ferroelectric polarity of LiNbO _3 films grown on sapphire substrates was investigated. The first optical quality, MOCVD grown LiNbO _3 films, having waveguiding losses of less than 2 dB/cm, were prepared. An important aspect of the SBN film growth studies involved finding a suitable single crystal substrate material. Mg

  13. Chemical vapor deposition of metal nitrides, phosphides and arsenides. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.M. [Univ. of Houston, TX (United States). Dept. of Chemistry

    1994-03-01

    The author recently reported that dialkylamido complexes are promising precursors to nitride thin films. On this basis it was reasoned that transition metal and main group disilazide complexes in which the silicon has dialkylamido substituents are potential precursors to ternary silicon nitride films. Bulky disilazide ligands are known to stabilize main group and transition metal complexes with low coordination numbers. Reaction of dimethylamine with Cl{sub 3}SiN(H)SiMe{sub 3} in hexane solution at 25{degrees}C gave the bulky disilazane [(Me{sub 2}N){sub 3}Si]N(h)SiMe{sub 3} (1) in 73% yield. Reaction of (1) with n-butyl lithium in benzene at 0{degrees}C produced [(Me{sub 2}N){sub 3}Si]N(Li)SiMe{sub 3} in 82% yield. LiN[Si(NMe{sub 2}){sub 3}]{sub 2} was chemically prepared in 92% yield and was converted to the amine with 83% yield. The author examined the use of amido precursors for main group oxide thin films. Sn(NMe{sub 2}){sub 4} and Si(NMe{sub 2}){sub 4} react with oxygen in an atmospheric pressure chemical vapor deposition reactor to give SnO{sub 2} and SiO{sub 2} films, respectively. The films were deposited on quartz, silicon, and glass at substrate temperatures of 250--400 {degrees}C. The results of the characterizations of the films and compounds are presented in this report.

  14. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    Energy Technology Data Exchange (ETDEWEB)

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  15. Metal-clad switchgear with large capacity vacuum circuit breaker in two-tier arrangement for nuclear power plants

    International Nuclear Information System (INIS)

    Yoshikawa, Isao; Watanabe, Hideo; Sugitani, Shinji

    1982-01-01

    Accompanying the increase of main machinery capacity in nuclear power stations, the short-circuit capacity for 6.9 kV in-house auxiliary machinery circuit has increased, and a 63 kA circuit breaker has become necessary. Although magnetic breakers have been used as large capacity breakers so far, vacuum breakers which are more suitable for the recent environmental conditions of power stations have become employed. Hitachi Ltd. has developed the metal-clad switchboard with vacuum breakers of 7.2 kV, 1,200 to 3,000 A, and breaking current of 63 kA in two-tier arrangement. The main features of this breaker are small size, light weight, long life, labour-saving in maintenance and inspection, simple construction, easy handling, high reliability and safety. In addition, in this paper, the construction of the breaker and switchboard, aseismic property, and test results are described. The tests include the withstand voltage test, elevated temperature test, short period current test, short-circuit test, low current breaking test, continuous on-off test, on-off surge combination test and short-circuit breaking test under the condition of vacuum failure in one phase. The aseismic property is guaranteed by analyzing the vibration characteristics and the strength using computer-aided finite element method so that the performance required is satisfied. (Wakatsuki, Y.)

  16. Friction and metal transfer for single-crystal silicon carbide in contact with various metals in vacuum

    International Nuclear Information System (INIS)

    Miyoshi, K.; Buckley, D.H.

    1978-04-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with transition metals (tungsten, iron, rhodium, nickel, titanium, and cobalt), copper, and aluminum. Results indicate the coefficient of friction for a silicon carbide-metal system is related to the d bond character and relative chemical activity of the metal. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of silicon carbide in sliding. The chemical activity of metal to silicon and carbon and shear modulus of the metal may play important roles in metal transfer and the form of the wear debris. The less active metal is, and the greater resistance to shear it has, with the exception of rhodium and tungsten, the less transfer to silicon carbide

  17. Fractionation of families of major, minor, and trace metals across the melt-vapor interface in volcanic exhalations

    Science.gov (United States)

    Hinkley, T.K.; Le Cloarec, M.-F.; Lambert, G.

    1994-01-01

    Chemical families of metals fractionate systematically as they pass from a silicate melt across the interface with the vapor phase and on into a cooled volcanic plume. We measured three groups of metals in a small suite of samples collected on filters from the plumes of Kilauea (Hawaii, USA), Etna (Sicily), and Merapi (Java) volcanoes. These were the major, minor, and trace metals of the alkali and alkaline earth families (K, Rb, Cs, Ca, Sr, Ba), a group of ordinarily rare metals (Cd, Cu, In, Pb, Tl) that are related by their chalcophile affinities, and the radon daughter nuclides 210Po, 210Bi, and 210Pb. The measurements show the range and some details of systematic melt-vapor fractionation within and between these groups of metals. In the plumes of all three volcanoes, the alkali metals are much more abundant than the alkaline earth metals. In the Kilauea plume, the alkali metals are at least six times more abundant than the alkaline earth metals, relative to abundances in the melt; at Etna, the factor is at least 300. Fractionations within each family are, commonly, also distinctive; in the Kilauea plume, in addition to the whole alkaline earth family being depleted, the heaviest metals of the family (Sr, Ba) are progressively more depleted than the light metal Ca. In plumes of fumaroles at Merapi, K/Cs ratios were approximately three orders of magnitude smaller than found in other earth materials. This may represent the largest observed enrichment of the "light ion lithophile" (LIL) metals. Changes in metal ratios were seen through the time of eruption in the plumes of Kilauea and Etna. This may reflect degree of degassing of volatiles, with which metals complex, from the magma bodies. At Kilauea, the changes in fractionation were seen over about three years; fractionation within the alkaline earth family increased, and that between the two families decreased, over that time. All of the ordinarily rare chalcophile metals measured are extremely abundant in

  18. Role of the vacuum pressure and temperature in the shape of metal ...

    Indian Academy of Sciences (India)

    that the initial stages of the growth of the Zn wires are governed by the agglomeration of the Zn nanodisks since the structure of the wires was observed to be composed by stacked nanodisks. Keywords. Zn; nanodisk; nanowire; vacuum pressure; evapouration. 1. Introduction. Historically, zinc (Zn) has been successfully ...

  19. Tuning of electrical and structural properties of indium oxide films grown by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Wang, Ch.Y.; Cimalla, V.; Romanus, H.; Kups, Th.; Niebelschuetz, M.; Ambacher, O.

    2007-01-01

    Tuning of structural and electrical properties of indium oxide (In 2 O 3 ) films by means of metal organic chemical vapor deposition is demonstrated. Phase selective growth of rhombohedral In 2 O 3 (0001) and body-centered cubic In 2 O 3 (001) polytypes on (0001) sapphire substrates was obtained by adjusting the substrate temperature and trimethylindium flow rate. The specific resistance of the as-grown films can be tuned by about two orders of magnitude by varying the growth conditions

  20. Metal-organic chemical vapor deposition enabling all-solid-state Li-ion microbatteries:a short review

    OpenAIRE

    Chen, C; Eichel, R-A; Notten, PHL Peter

    2017-01-01

    For powering small-sized electronic devices, all-solid-state Li-ion batteries are the most promising candidates due to its safety and allowing miniaturization. Thin film deposition methods can be used for building new all-solid-state architectures. Well-known deposition methods are sputter deposition, pulsed laser deposition, sol-gel deposition, atomic layer deposition, etc. This review summarizes thin film storage materials deposited by metal-organic chemical vapor deposition (MOCVD) for all...

  1. Passivation of metal surface states: microscopic origin for uniform monolayer graphene by low temperature chemical vapor deposition.

    Science.gov (United States)

    Jeon, Insu; Yang, Heejun; Lee, Sung-Hoon; Heo, Jinseong; Seo, David H; Shin, Jaikwang; Chung, U-In; Kim, Zheong Gou; Chung, Hyun-Jong; Seo, Sunae

    2011-03-22

    Scanning tunneling microscopy (STM) and density functional theory (DFT) calculations were used to investigate the surface morphology and electronic structure of graphene synthesized on Cu by low temperature chemical vapor deposition (CVD). Periodic line patterns originating from the arrangements of carbon atoms on the Cu surface passivate the interaction between metal substrate and graphene, resulting in flawless inherent graphene band structure in pristine graphene/Cu. The effective elimination of metal surface states by the passivation is expected to contribute to the growth of monolayer graphene on Cu, which yields highly enhanced uniformity on the wafer scale, making progress toward the commercial application of graphene.

  2. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    Energy Technology Data Exchange (ETDEWEB)

    Soria, José, E-mail: jose.soria@probien.gob.ar [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina); Gauthier, Daniel; Flamant, Gilles [Processes, Materials and Solar Energy Laboratory (PROMES-CNRS, UPR 8521), 7 Four Solaire Street, Odeillo, 66120 Font-Romeu (France); Rodriguez, Rosa [Chemical Engineering Institute, National University of San Juan, 1109 Libertador (O) Avenue, 5400 San Juan (Argentina); Mazza, Germán [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina)

    2015-09-15

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.

  3. INERA Conference: Vapor Phase Technologies for Metal Oxide and Carbon Nanostructures

    International Nuclear Information System (INIS)

    2016-01-01

    We are pleased to introduce the Proceedings of the Conference “Vapor Phase Technologies for Metal Oxide and Carbon Nanostructures” (6 th to 8 th of July 2016, Velingrad, Bulgaria) organized by the Institute of Solid State Physics, Bulgarian Academy of Sciences in the frames of the Project INERA: “Research and Innovation Capacity Strengthening of ISSP-BAS in Multifunctional Nanostructures” REGPOT-2012-2013-1 NMP (http://www.inera.org). Participants from 7 different countries delivered 10 invited lectures, 16 oral and 26 poster presentations, contributing in 7 different topics. Papers submitted for publication in the Proceedings were refereed according to the standards of the Journal of Physics: Conference Series and the accepted ones illustrate the diversity and the high quality of the contributions. The Conference offered good opportunities for many interesting discussions and ample exchange of ideas between the participants. It became also a meeting point where INERA partners could plan their future collaboration and joint projects. A significant factor for the success of the Conference was the conference venue - the beautiful spa resort Velingrad located 130 km from Sofia in the western part of the Rhodope Mountains. It is one of the leading “balneological” resorts in the Balkans with its ninety mineral water springs suitable for treatment of a wide range of diseases. The participants enjoyed also the rich social program, in particular the guided trip to the excavation site Dorkovo, one of the milestones marking the beginning of the Pliocene epoch in Eastern Europe. The proceedings of conferences and workshops organized in the frames of INERA Project are regularly published by the Journal of Physics: Conference Series. We are grateful to the Journal's staff for the continuous support. Managing Editor: Diana Nesheva Co-editors: Hassan Chamati, Julia Genova, Kostadinka Gesheva, Tatyana Ivanova, Albena Paskaleva and Anna Szekeres (paper)

  4. Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

    2008-01-01

    Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

  5. Direct observation of metal nanoparticles as heterogeneous nuclei for the condensation of supersaturated organic vapors: Nucleation of size-selected aluminum nanoparticles in acetonitrile and n-hexane vapors

    Science.gov (United States)

    Abdelsayed, Victor; Samy El-Shall, M.

    2014-08-01

    This work reports the direct observation and separation of size-selected aluminum nanoparticles acting as heterogeneous nuclei for the condensation of supersaturated vapors of both polar and nonpolar molecules. In the experiment, we study the condensation of supersaturated acetonitrile and n-hexane vapors on charged and neutral Al nanoparticles by activation of the metal nanoparticles to act as heterogeneous nuclei for the condensation of the organic vapor. Aluminum seed nanoparticles with diameters of 1 and 2 nm are capable of acting as heterogeneous nuclei for the condensation of supersaturated acetonitrile and hexane vapors. The comparison between the Kelvin and Fletcher diameters indicates that for the heterogeneous nucleation of both acetonitrile and hexane vapors, particles are activated at significantly smaller sizes than predicted by the Kelvin equation. The activation of the Al nanoparticles occurs at nearly 40% and 65% of the onset of homogeneous nucleation of acetonitrile and hexane supersaturated vapors, respectively. The lower activation of the charged Al nanoparticles in acetonitrile vapor is due to the charge-dipole interaction which results in rapid condensation of the highly polar acetonitrile molecules on the charged Al nanoparticles. The charge-dipole interaction decreases with increasing the size of the Al nanoparticles and therefore at low supersaturations, most of the heterogeneous nucleation events are occurring on neutral nanoparticles. No sign effect has been observed for the condensation of the organic vapors on the positively and negatively charged Al nanoparticles. The present approach of generating metal nanoparticles by pulsed laser vaporization within a supersaturated organic vapor allows for efficient separation between nucleation and growth of the metal nanoparticles and, consequently controls the average particle size, particle density, and particle size distribution within the liquid droplets of the condensing vapor. Strong

  6. Direct observation of metal nanoparticles as heterogeneous nuclei for the condensation of supersaturated organic vapors: Nucleation of size-selected aluminum nanoparticles in acetonitrile and n-hexane vapors

    Energy Technology Data Exchange (ETDEWEB)

    Abdelsayed, Victor; Samy El-Shall, M., E-mail: mselshal@vcu.edu [Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006 (United States)

    2014-08-07

    This work reports the direct observation and separation of size-selected aluminum nanoparticles acting as heterogeneous nuclei for the condensation of supersaturated vapors of both polar and nonpolar molecules. In the experiment, we study the condensation of supersaturated acetonitrile and n-hexane vapors on charged and neutral Al nanoparticles by activation of the metal nanoparticles to act as heterogeneous nuclei for the condensation of the organic vapor. Aluminum seed nanoparticles with diameters of 1 and 2 nm are capable of acting as heterogeneous nuclei for the condensation of supersaturated acetonitrile and hexane vapors. The comparison between the Kelvin and Fletcher diameters indicates that for the heterogeneous nucleation of both acetonitrile and hexane vapors, particles are activated at significantly smaller sizes than predicted by the Kelvin equation. The activation of the Al nanoparticles occurs at nearly 40% and 65% of the onset of homogeneous nucleation of acetonitrile and hexane supersaturated vapors, respectively. The lower activation of the charged Al nanoparticles in acetonitrile vapor is due to the charge-dipole interaction which results in rapid condensation of the highly polar acetonitrile molecules on the charged Al nanoparticles. The charge-dipole interaction decreases with increasing the size of the Al nanoparticles and therefore at low supersaturations, most of the heterogeneous nucleation events are occurring on neutral nanoparticles. No sign effect has been observed for the condensation of the organic vapors on the positively and negatively charged Al nanoparticles. The present approach of generating metal nanoparticles by pulsed laser vaporization within a supersaturated organic vapor allows for efficient separation between nucleation and growth of the metal nanoparticles and, consequently controls the average particle size, particle density, and particle size distribution within the liquid droplets of the condensing vapor. Strong

  7. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Dutta, P.; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V.; Zheng, N.; Ahrenkiel, P.; Martinez, J.

    2014-01-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ∼10 7  cm −2 . Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300 cm 2 /V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  8. Cross sections and equilibrium fractions of deuterium ions and atoms in metal vapors. Progress report, June 1, 1978-May 31, 1979

    International Nuclear Information System (INIS)

    Morgan, T.J.

    1979-01-01

    The purpose of this program is to measure cross sections and equilibrium fractions of deuterium ions and atoms in metal vapors. In particular, in connection with double charge exchange D - ion sources, there is concern with D - formation in alkaline-earth vapor targets. Also, in connection with possible metal vapor contamination in the system, there is concern with cross sections for high energy D + , D 0 and D - collisions with these metal vapors. Results from this research will fill in a gap in knowledge of single and double charge transfer and multiple collision processes in alkaline-earth targets and provide a better understanding of D - formation mechanisms. A list of publications is included. 6 references

  9. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2

    Directory of Open Access Journals (Sweden)

    Rajesh Kappera

    2014-09-01

    Full Text Available Two dimensional transition metal dichalcogenides (2D TMDs offer promise as opto-electronic materials due to their direct band gap and reasonably good mobility values. However, most metals form high resistance contacts on semiconducting TMDs such as MoS2. The large contact resistance limits the performance of devices. Unlike bulk materials, low contact resistance cannot be stably achieved in 2D materials by doping. Here we build on our previous work in which we demonstrated that it is possible to achieve low contact resistance electrodes by phase transformation. We show that similar to the previously demonstrated mechanically exfoliated samples, it is possible to decrease the contact resistance and enhance the FET performance by locally inducing and patterning the metallic 1T phase of MoS2 on chemically vapor deposited material. The device properties are substantially improved with 1T phase source/drain electrodes.

  10. Reduced water vapor transmission rates of low-temperature solution-processed metal oxide barrier films via ultraviolet annealing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seonuk; Jeong, Yong Jin; Baek, Yonghwa; Kim, Lae Ho; Jang, Jin Hyuk; Kim, Yebyeol [POSTECH Organic Electronics Laboratory, Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); An, Tae Kyu [Department of Polymer Science & Engineering, Korea National University of Transportation, 50 Daehak-Ro, Chungju (Korea, Republic of); Nam, Sooji, E-mail: sjnam15@etri.re.kr [Information Control Device Section, Electronics and Telecommunications Research Institute, Daejeon, 305-700 (Korea, Republic of); Kim, Se Hyun, E-mail: shkim97@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan, North Gyeongsang 712-749 (Korea, Republic of); Jang, Jaeyoung, E-mail: jyjang15@hanyang.ac.kr [Department of Energy Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Park, Chan Eon, E-mail: cep@postech.ac.kr [POSTECH Organic Electronics Laboratory, Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2017-08-31

    Highlights: • Sol-gel-derived aluminum oxide thin films were prepared using ultraviolet (UV) annealing. • UV irradiation dramatically promoted the densification of AlO{sub x} during the annealing stage, thereby forming a close-packed AlO{sub x} film. • The resulting AlO{sub x} films deposited on polymer substrates exhibited good water vapor blocking properties with low water vapor transmission rates (WVTRs). - Abstract: Here, we report the fabrication of low-temperature sol-gel-derived aluminum oxide (AlO{sub x}) films via ultraviolet (UV) annealing and the investigation of their water vapor blocking properties by measuring the water vapor transmission rates (WVTRs). The UV annealing process induced the formation of a dense metal-oxygen-metal bond (Al-O-Al structure) at low temperatures (<200 °C) that are compatible with commercial plastic substrates. The density of the UV-annealed AlO{sub x} thin film at 180 °C was comparable to that of AlO{sub x} thin films that have been thermally annealed at 350 °C. Furthermore, the UV-annealed AlO{sub x} thin films exhibited a high optical transparency in the visible region (>99%) and good electrical insulating properties (∼10{sup −7} A/cm{sup 2} at 2 MV/cm). Finally, we confirmed that a dense AlO{sub x} thin film was successfully deposited onto the plastic substrate via UV annealing at low temperatures, leading to a substantial reduction in the WVTRs. The Ca corrosion test was used to measure the WVTRs of AlO{sub x} thin films deposited onto polyethylene naphthalate or polyimide substrates, determined to be 0.0095 g m{sup −2} day{sup −1} (25 °C, 50% relative humidity) and 0.26 g m{sup −2} day{sup −1}, respectively.

  11. Characteristics of the electrical explosion of fine metallic wires in vacuum

    Science.gov (United States)

    Wang, Kun; Shi, Zongqian; Shi, Yuanjie; Zhao, Zhigang

    2017-09-01

    The experimental investigations on the electrical explosion of aluminum, silver, tungsten and platinum wires are carried out. The dependence of the parameters related to the specific energy deposition on the primary material properties is investigated. The polyimide coatings are applied to enhance the energy deposition for the exploding wires with percent of vaporized energy less than unit. The characteristics of the exploding wires of different materials with and without insulating coatings are studied. The effect of wire length on the percent of vaporization energy for exploding coated wires is presented. A laser probe is employed to construct the shadowgraphy, schlieren and interferometry diagnostics. The optical diagnostics demonstrate the morphology of the exploding products and structure of the energy deposition. The influence of insulating coatings on different wire materials is analyzed. The expansion trajectories of the exploding wires without and with insulating coatings are estimated from the shadowgram. More specific energy is deposited into the coated wires of shorter wire length, leading to faster expanding velocity of the high-density products.

  12. Characteristics of the electrical explosion of fine metallic wires in vacuum

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2017-09-01

    Full Text Available The experimental investigations on the electrical explosion of aluminum, silver, tungsten and platinum wires are carried out. The dependence of the parameters related to the specific energy deposition on the primary material properties is investigated. The polyimide coatings are applied to enhance the energy deposition for the exploding wires with percent of vaporized energy less than unit. The characteristics of the exploding wires of different materials with and without insulating coatings are studied. The effect of wire length on the percent of vaporization energy for exploding coated wires is presented. A laser probe is employed to construct the shadowgraphy, schlieren and interferometry diagnostics. The optical diagnostics demonstrate the morphology of the exploding products and structure of the energy deposition. The influence of insulating coatings on different wire materials is analyzed. The expansion trajectories of the exploding wires without and with insulating coatings are estimated from the shadowgram. More specific energy is deposited into the coated wires of shorter wire length, leading to faster expanding velocity of the high-density products.

  13. Handbook of vacuum physics

    CERN Document Server

    1964-01-01

    Handbook of Vacuum Physics, Volume 3: Technology is a handbook of vacuum physics, with emphasis on the properties of miscellaneous materials such as mica, oils, greases, waxes, and rubber. Accurate modern tables of physical constants, properties of materials, laboratory techniques, and properties of commercial pumps, gauges, and leak detectors are presented. This volume is comprised of 12 chapters and begins with a discussion on pump oils, divided into rotary pump oils and vapor pump oils. The next chapter deals with the properties and applications of greases, including outgassing and vapor pr

  14. Numerical analysis of fragmentation processes of liquid metal in vapor explosions using Moving Particle Semi-implicit method

    International Nuclear Information System (INIS)

    Ikeda, Hirokazu; Matsuura, Fumio; Koshizuka, Seiichi; Oka, Yoshiaki

    1998-01-01

    Fragmentation of liquid metal takes place as basic processes of vapor explosions. This leads to rapid evaporation on the stretched interface. To date, a number of models explaining the fragmentation mechanisms have been proposed. However, few evidence has been obtained from the experiment because the phenomena are rapid. In Moving Particle Semi-implicit (MPS) method, grids are not necessary so that fluid fragmentation as well as multi-fluid thermal hydraulics can be analyzed. A numerical model of evaporation is developed for the present study. Impingement of water jets on a liquid metal pool is analyzed using the MPS method to investigate two typical models explaining the fragmentation mechanisms: Kim-Corradini and Ciccarelli-Frost models. Penetration of the water jet, which is assumed in Kim-Corradini model, is not observed in the calculation results. A filament of the liquid metal is observed between two water jets as assumed in Ciccarelli-Frost model. The filament appears when the jet density is smaller than the pool density, while the penetration appears when the jet density is hypothetically larger. The usual combinations of densities in vapor explosions are in the region of Ciccarelli-Frost model. (author)

  15. On ultrahigh-vacuum preparation of monocrystalline transition metal surfaces by heat treatment

    CERN Document Server

    Krakhmalev, V A; Nimatov, S J; Garafutdinova, I A; Boltaev, N N

    2002-01-01

    The composition and substructure changes in monocrystalline singular W, Mo, Nb surfaces under heat treatment have been studied in the range 30-1900 sup d egC and vacuum approx 5 centre dot 10 sup - sup 8 Pa by electronic Auger spectroscopy, optical microscopy, and X-ray methods. Under multiple thermal-cycled treatment the large carbide inclusions have been found to become the places of local surface polygonization with block disordering >=3 sup d eg. In the case of Nb annealing the carbide in the O sub 2 atmosphere has led to solving O sub 2 in sample volume. In what follows, the solute O sub 2 is found to diffuse to on the surface under heating up to maximal temperatures of the above range. Under 30 min annealing of Nb(110) at approx 550 sup d egC, sulphur (S sub 1 sub 5 sub 2) segregation on surface appears that increases with temperature. (author)

  16. Mass-spectrometric study of ion clustering in alkali-metal hydroxide vapor: cluster-ion energy and structural characteristics

    International Nuclear Information System (INIS)

    Kudin, L.S.; Butman, M.F.; Krasnov, K.S.

    1986-01-01

    Various positive and negative ions have been recorded in the equilibrium vapors from alkali-metal hydroxides: M/sup +/-/, OH - , O - , MO - , MOH - , and X/sup +/-/ (MOH)/sub n/, where X = M/sup +/-/, OH - , n = 1-6. The equilibrium constants have been measured for X/sup +/-/(MOH)/sub n/ = x/sup +/-/ + nMOH(k), n = 1-3, and the enthalpies of reaction have been determined, from which the enthalpies of formation and dissociation energies of X/sup +/-/ (MOH)/sub n/ have been calculated. The relative stabilities of the ions in the series from Na to Cs are examined

  17. Rectification properties of geometrically asymmetric metal-vacuum-metal junctions: a comparison of tungsten and silver tips to determine the effects of polarization resonances.

    Science.gov (United States)

    Mayer, A; Cutler, P H

    2009-09-30

    We simulate with a transfer-matrix methodology the rectification properties of geometrically asymmetric metal-vacuum-metal junctions in which one of the metals is flat while the other is extended by a tip. We consider both tungsten and silver as the material for the tip and we study the influence of the dielectric function of these materials on the rectification properties of the junction. We determine in particular the power that these junctions could provide to an external load when subject to a bias whose typical frequency is in the infrared or optical domain. We also study the rectification ratio of these junctions, which characterizes their ability to rectify the external bias by providing currents with a strong dc component. The results show that these quantities exhibit a significant enhancement for frequencies Ω that correspond to a resonant polarization of the tip. With silver and the geometry considered in this paper, this arises for [Formula: see text] values of the order of 3.1 eV in the visible range. Our results hence indicate that the frequency at which the device is the most efficient for the rectification of external signals could be controlled by the geometry or the material used for the tip.

  18. Volatile organometallic complexes suitable for use in chemical vapor depositions on metal oxide films

    Science.gov (United States)

    Giolando, Dean M.

    2003-09-30

    Novel ligated compounds of tin, titanium, and zinc are useful as metal oxide CVD precursor compounds without the detriments of extreme reactivity yet maintaining the ability to produce high quality metal oxide coating by contact with heated substrates.

  19. Colorimetric Detection of Water Vapor Using Metal-Organic Framework Composites.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    Purpose: Water vapor trapped in encapsulation materials or enclosed volumes leads to corrosion issues for critical NW components. Sandia National Laboratories has created a new diagnostic to indicate the presence of water in weapon systems. Impact: Component exposure to water now can be determined instantly, without need for costly, time-consuming analytical methods.

  20. Aerosol - assisted Chemical Vapor Deposition of Metal Oxide Structures: Zinc Oxide Rods

    Czech Academy of Sciences Publication Activity Database

    Vallejos, S.; Pizúrová, Naděžda; Čechal, J.; Grácia, I.; Cané, C.

    2017-01-01

    Roč. 2017, Č. 127 (2017), č. článku e56127. ISSN 1940-087X Institutional support: RVO:68081723 Keywords : Zinc oxide * columnar structures * rods * AACVD * non-catalyzed growth * vapor-solid mechanism Subject RIV: CA - Inorganic Chemistry OBOR OECD: Polymer science Impact factor: 1.232, year: 2016 https://www.jove.com/video/56127

  1. Detecting leaks in vacuum bags

    Science.gov (United States)

    Carlstrom, E. E.

    1980-01-01

    Small leaks in vacuum bag can be readily detected by eye, using simple chemical reaction: combination of ammonia and acetic acid vapors to produce cloudy white smoke. Technique has been successfully used to test seam integrity and to identify minute pinholes in vacuum bag used in assembly of ceramic-tile heat shield for Space Shuttle Orbiter.

  2. Metal organic chemical vapor deposition of 111-v compounds on silicon

    Science.gov (United States)

    Vernon, Stanley M.

    1986-01-01

    Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.

  3. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jamin M.; Catledge, Shane A., E-mail: catledge@uab.edu

    2016-02-28

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W{sub 2}CoB{sub 2}. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W{sub 2}CoB{sub 2} with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  4. IR Laser-Irradiation of Metals in Vacuum and Hydrocarbons: Gas Phase Deposition of Metal-Carbon Nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Markéta; Pokorná, Dana; Šubrt, Jan; Kupčík, Jaroslav; Bastl, Zdeněk; Pola, Josef

    2012-01-01

    Roč. 7, č. 1 (2012), s. 14-20 ISSN 2156-7573 R&D Projects: GA MŠk LC523 Institutional support: RVO:67985858 ; RVO:61388980 ; RVO:61388955 Keywords : ir laser ablation * nanocomposite * amorphous metal Subject RIV: CA - Inorganic Chemistry http://www.scopus.com/record/display.url?eid=2-s2.0-84865328473&origin=resultslist&sort=plf-f& src =s&st1=journal+of+advanced+microscopy+research&sid=s_jqQK1duuevUtbSYIapAz5%3a60&sot=b&sdt=b&sl=49&s= SRC TITLE%28journal+of+advanced+microscopy+research%29&relpos=9&relpos=9&searchTerm= SRC TITLE(journal of advanced microscopy research)

  5. Vacuum arc ion charge state distributions

    International Nuclear Information System (INIS)

    Brown, I.G.; Godechot, X.

    1990-06-01

    We have measured vacuum arc ion charge state spectra for a wide range of metallic cathode materials. The charge state distributions were measured using a time-of-flight diagnostic to monitor the energetic ion beam produced by a metal vapor vacuum arc ion source. We have obtained data for 48 metallic cathode elements: Li, C, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Pd, Ag, Cd, In, Sn, Ba, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Yb, Hf, Ta, W, Ir, Pt, Au, Pb, Bi, Th and U. The arc was operated in a pulsed mode with pulse length 0.25 msec; arc current was 100 A throughout. This array of elements extends and completes previous work by us. In this paper the measured distributions are cataloged and compared with our earlier results and with those of other workers. We also make some observations about the performance of the various elements as suitable vacuum arc cathode materials

  6. Metal organic chemical vapor deposition of environmental barrier coatings for the inhibition of solid deposit formation from heated jet fuel

    Science.gov (United States)

    Mohan, Arun Ram

    Solid deposit formation from jet fuel compromises the fuel handling system of an aviation turbine engine and increases the maintenance downtime of an aircraft. The deposit formation process depends upon the composition of the fuel, the nature of metal surfaces that come in contact with the heated fuel and the operating conditions of the engine. The objective of the study is to investigate the effect of substrate surfaces on the amount and nature of solid deposits in the intermediate regime where both autoxidation and pyrolysis play an important role in deposit formation. A particular focus has been directed to examining the effectiveness of barrier coatings produced by metal organic chemical vapor deposition (MOCVD) on metal surfaces for inhibiting the solid deposit formation from jet fuel degradation. In the first part of the experimental study, a commercial Jet-A sample was stressed in a flow reactor on seven different metal surfaces: AISI316, AISI 321, AISI 304, AISI 347, Inconel 600, Inconel 718, Inconel 750X and FecrAlloy. Examination of deposits by thermal and microscopic analysis shows that the solid deposit formation is influenced by the interaction of organosulfur compounds and autoxidation products with the metal surfaces. The nature of metal sulfides was predicted by Fe-Ni-S ternary phase diagram. Thermal stressing on uncoated surfaces produced coke deposits with varying degree of structural order. They are hydrogen-rich and structurally disordered deposits, spherulitic deposits, small carbon particles with relatively ordered structures and large platelets of ordered carbon structures formed by metal catalysis. In the second part of the study, environmental barrier coatings were deposited on tube surfaces to inhibit solid deposit formation from the heated fuel. A new CVD system was configured by the proper choice of components for mass flow, pressure and temperature control in the reactor. A bubbler was designed to deliver the precursor into the reactor

  7. Effects of vacuum heat treatment on the photoelectric work function and surface morphology of multilayered silver–metal electrical contacts

    Energy Technology Data Exchange (ETDEWEB)

    Akbi, Mohamed, E-mail: akbi_mohamed@umbb.dz [Laboratoire “Arc Electrique et Plasmas Thermiques”, CNRS, UPRES-A 6069, 24, Avenue des Landais, F-63177 Aubière Cedex (France); Department of Physics, Faculty of Sciences, University of Boumerdes (UMBB), Independence Avenue, 35000 Boumerdes (Algeria); Bouchou, Aïssa [Faculty of Physics, University of Algiers (USTHB), B.P. 32, El-Alia, Bab-Ezzouar, 16111 Algiers (Algeria); Zouache, Noureddine [Laboratoire “Arc Electrique et Plasmas Thermiques”, CNRS, UPRES-A 6069, 24, Avenue des Landais, F-63177 Aubière Cedex (France)

    2014-06-01

    Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermodynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver–metal (Ag–Me) electrical contacts (Ag–Ni (60/40) and Ag–W (50/50)), before and after surface heat treatments at 513 K–873 K, under UHV conditions (residual gas pressure of 1.4 × 10{sup −7} mbar). The electron work function (EWF) of silver alloyed contacts was measured photoelectrically, using both Fowler's method of isothermal curves and linearized Fowler plots. An interesting fact brought to light by this investigation is that after vacuum heat treatments, the diffusion and/or evaporation phenomena, affecting the atomic composition of the alloy surface, somehow confine the EWF of the silver–nickel alloy, Φ(Ag–Ni), determined at room temperature in interval]Φ(Ag), Φ(Ni) [=] 4.26 eV, 4.51 eV[. Surface analysis of two specimens before and after heating showed a significant increase of tungsten atomic proportion on the contact surface for Ag–W contacts after VH treatments. A multilayer model, taking into account the strong intergranular and volume segregation gives a good interpretation of the obtained results.

  8. Fabrication and Investigation of Two-Component Film of 2,5-Diphenyloxazole and Octafluoronaphthalene Exhibiting Tunable Blue/Bluish Violet Fluorescence Based on Low Vacuum Physical Vapor Deposition Method

    Directory of Open Access Journals (Sweden)

    Xiaoyu Zhai

    2016-01-01

    Full Text Available Organic luminescent materials play an important role in the fields of light-emitting diodes and fluorescent imaging. Moreover, new synthetic approaches towards π-conjugated molecular systems with high fluorescence quantum efficiency are highly desired. Herein, different 2,5-diphenyloxazole-octafluoronaphthalene (DPO-OFN films with tunable fluorescence have been prepared by Low Vacuum Physical Vapor Deposition (LVPVD method. DPO-OFN films showed some changed properties, such as molecular vibration and fluorescence. All films exhibited blue/bluish violet fluorescence and showed blue shift, in comparison with pristine DPO. This work introduced a new method to fabricate two-component molecular materials with tunable blue/bluish violet luminescence properties and provided a new perspective to prepare organic luminescent film materials, layer film materials, cocrystal materials, and cocrystal film materials. Importantly, these materials have potential applications in the fields of next generation of photofunctional materials.

  9. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, P., E-mail: pdutta2@central.uh.edu; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Zheng, N.; Ahrenkiel, P. [Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701 (United States); Martinez, J. [Materials Evaluation Laboratory, NASA Johnson Space Center, Houston, Texas 77085 (United States)

    2014-09-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ∼10{sup 7 }cm{sup −2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300 cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  10. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD.

    Science.gov (United States)

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán

    2015-09-01

    Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Synthesis of carbon nanomaterials by catalytic chemical vapor deposition: growth mechanisms on metal powders and foils

    OpenAIRE

    Romero Rodríguez, Pablo

    2017-01-01

    Actualmente, las excelentes propiedades proporcionadas a escala nanométrica por los nanomateriales de carbono, como nanotubos y grafeno, motivan la propuesta teórica de un gran número de aplicaciones. Estos nanomateriales se pueden producir por deposición química en fase vapor (CVD), que consiste en la descomposición térmica de hidrocarburos sobre catalizadores metálicos. La técnica de CVD permite, a través del control de las condiciones de síntesis y la composición y morfología del catalizad...

  12. Vapor Phase Sensing Using Metal Nanorod Thin Films Grown by Cryogenic Oblique Angle Deposition

    Directory of Open Access Journals (Sweden)

    Piyush Shah

    2013-01-01

    Full Text Available We demonstrate the chemical sensing capability of silver nanostructured films grown by cryogenic oblique angle deposition (OAD. For comparison, the films are grown side by side at cryogenic (~100 K and at room temperature (~300 K by e-beam evaporation. Based on the observed structural differences, it was hypothesized that the cryogenic OAD silver films should show an increased surface enhanced Raman scattering (SERS sensitivity. COMSOL simulation results are presented to validate this hypothesis. Experimental SERS results of 4-aminobenzenethiol (4-ABT Raman test probe molecules in vapor phase show good agreement with the simulation and indicate promising SERS applications for these nanostructured thin films.

  13. InAs/GaSb core-shell nanowires grown on Si substrates by metal-organic chemical vapor deposition

    Science.gov (United States)

    Ji, Xianghai; Yang, Xiaoguang; Du, Wenna; Pan, Huayong; Luo, Shuai; Ji, Haiming; Xu, Hongqi; Yang, Tao

    2017-06-01

    We report the growth of InAs/GaSb core-shell heterostructure nanowires with smooth sidewalls on Si substrates using metal-organic chemical vapor deposition (MOCVD) with no assistance from foreign catalysts. Sb adatoms were observed to strongly influence the morphology of the GaSb shell. In particular, Ga droplets form on the nanowire tips when a relatively low TMSb flow rate is used, whereas the droplets are missing and the radial growth of the GaSb is enhanced due to a reduction in the diffusion length of the Ga adatoms when the TMSb flow rate is increased. Moreover, transmission electron microscopy measurements revealed that the GaSb shell coherently grew on the InAs core without any misfit dislocations.

  14. Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors.

    Science.gov (United States)

    Maier, Konrad; Helwig, Andreas; Müller, Gerhard; Hille, Pascal; Eickhoff, Martin

    2015-09-23

    In this work the low temperature response of metal oxide semiconductor gas sensors is analyzed. Important characteristics of this low-temperature response are a pronounced selectivity to acid- and base-forming gases and a large disparity of response and recovery time constants which often leads to an integrator-type of gas response. We show that this kind of sensor performance is related to the trend of semiconductor gas sensors to adsorb water vapor in multi-layer form and that this ability is sensitively influenced by the surface morphology. In particular we show that surface roughness in the nanometer range enhances desorption of water from multi-layer adsorbates, enabling them to respond more swiftly to changes in the ambient humidity. Further experiments reveal that reactive gases, such as NO₂ and NH₃, which are easily absorbed in the water adsorbate layers, are more easily exchanged across the liquid/air interface when the humidity in the ambient air is high.

  15. Nanoscale leakage current measurements in metal organic chemical vapor deposition crystalline SrTiO3 films

    International Nuclear Information System (INIS)

    Rozier, Y.; Gautier, B.; Hyvert, G.; Descamps, A.; Plossu, C.; Dubourdieu, C.; Ducroquet, F.

    2009-01-01

    The properties of SrTiO 3 thin films, grown by liquid injection metal organic chemical vapor deposition on Si/SiO 2 , using a mixture of precursors, have been investigated at the nanoscale using an Atomic Force Microscope in the so-called Conductive Atomic Force Microscopy mode. Maps of the leakage currents with a nanometric resolution have been obtained on films elaborated at different temperatures and stoichiometries in order to discriminate the role of each parameter on the onset of leakage currents in the resulting layers. It appears that the higher the deposition temperature, the higher the leakage currents of the films. The mapping with a nanometric precision allows to show a heterogeneous behaviour of the surface with leaky grains and insulating boundaries. The study of films elaborated at the same temperature with different compositions supports the assumption that the leakage currents on Ti-rich layers are far higher than on Sr-rich layers

  16. Nanoscale leakage current measurements in metal organic chemical vapor deposition crystalline SrTiO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Rozier, Y. [Lyon Institute of Nanotechnology (INL), CNRS-UMR5270, INSA Lyon, 7 avenue Capelle, 69621 VILLEURBANNE Cedex (France); Gautier, B. [Lyon Institute of Nanotechnology (INL), CNRS-UMR5270, INSA Lyon, 7 avenue Capelle, 69621 VILLEURBANNE Cedex (France)], E-mail: bgautier@insa-lyon.fr; Hyvert, G.; Descamps, A.; Plossu, C. [Lyon Institute of Nanotechnology (INL), CNRS-UMR5270, INSA Lyon, 7 avenue Capelle, 69621 VILLEURBANNE Cedex (France); Dubourdieu, C. [Laboratoire des Materiaux et du Genie Physique (LMGP), CNRS, INPG, 3 parvis L. Neel, BP 257, 38016 Grenoble Cedex 1 (France); Ducroquet, F. [Institut de Microelectronique, Electromagnetisme et Photonique (IMEP), 3, rue Parvis Louis Neel BP 257, 38016 GRENOBLE Cedex 1 (France)

    2009-01-30

    The properties of SrTiO{sub 3} thin films, grown by liquid injection metal organic chemical vapor deposition on Si/SiO{sub 2}, using a mixture of precursors, have been investigated at the nanoscale using an Atomic Force Microscope in the so-called Conductive Atomic Force Microscopy mode. Maps of the leakage currents with a nanometric resolution have been obtained on films elaborated at different temperatures and stoichiometries in order to discriminate the role of each parameter on the onset of leakage currents in the resulting layers. It appears that the higher the deposition temperature, the higher the leakage currents of the films. The mapping with a nanometric precision allows to show a heterogeneous behaviour of the surface with leaky grains and insulating boundaries. The study of films elaborated at the same temperature with different compositions supports the assumption that the leakage currents on Ti-rich layers are far higher than on Sr-rich layers.

  17. D- production by multiple charge-transfer collisions in metal-vapor targets. [1 to 50 keV D/sup +/

    Energy Technology Data Exchange (ETDEWEB)

    Schlachter, A.S.

    1977-09-01

    A beam of D/sup -/ions can be produced by multiple charge-transfer collisions of a D/sup +/ beam in a thick metal-vapor target. Cross sections and equilibrium charge-state fractions are presented and discussed.

  18. An interchangeable-cathode vacuum arc plasma source

    Science.gov (United States)

    Olson, David K.; Peterson, Bryan G.; Hart, Grant W.

    2010-01-01

    A simplified vacuum arc design [based on metal vapor vacuum arc (MeVVA) concepts] is employed as a plasma source for a study of a B7e non-neutral plasma. The design includes a mechanism for interchanging the cathode source. Testing of the plasma source showed that it is capable of producing on the order of 1012 charges at confinable energies using a boron-carbide disk as the cathode target. The design is simplified from typical designs for lower energy and lower density applications by using only the trigger spark rather than the full vacuum arc in high current ion beam designs. The interchangeability of the cathode design gives the source the ability to replace only the source sample, simplifying use of radioactive materials in the plasma source. The sample can also be replaced with a completely different conductive material. The design can be easily modified for use in other plasma confinement or full MeVVA applications.

  19. A Carbon Nanotube Electron Source Based Ionization Vacuum Gauge

    Energy Technology Data Exchange (ETDEWEB)

    Changkun Dong; Ganapati Myneni

    2003-10-01

    The results of fabrication and performance of an ionization vacuum gauge using a carbon nanotube (CNT) electron source are presented. The electron source was constructed with multi-wall nanotubes (MWNT), which were grown using thermal chemical vapor deposition (CVD) process. The electron emission of the source was stable in vacuum pressure up to 10-7 Torr, which is better than the metal field emitters. The measurement linearity of the gauge was better than {+-}10% from 10-6 to 10-10 Torr. The gauge sensitivity of 4 Torr-1 was achieved under 50 {micro}A electron emission in nitrogen. The gauge is expected to find applications in vacuum measurements from 10-7 Torr to below 10-11 Torr.

  20. Vacuum leak detector and method

    Science.gov (United States)

    Edwards, Jr., David

    1983-01-01

    Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.

  1. Vapor Phase Ketonization of Acetic Acid on Ceria Based Metal Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Changjun; Karim, Ayman M.; Lebarbier, Vanessa M.; Mei, Donghai; Wang, Yong

    2013-06-27

    The activities of CeO2, Mn2O3-CeO2 and ZrO2-CeO2 were measured for acetic acid ketonization under reaction conditions relevant to pyrolysis vapor upgrading. We show that the catalyst ranking changed depending on the reaction conditions. Mn2O3-CeO2 was the most active catalyst at 350 oC, while ZrO2 - CeO2 was the most active catalyst at 450 oC. Under high CO2 and steam concentration in the reactants, Mn2O3-CeO2 was the most active catalyst at 350 and 450 °C. The binding energies of steam and CO2 with the active phase were calculated to provide the insight into the tolerance of Mn2O3-CeO2 to steam and CO2.

  2. Vacuum electronics

    CERN Document Server

    Eichmeier, Joseph A

    2008-01-01

    Nineteen experts from the electronics industry, research institutes and universities have joined forces to prepare this book. ""Vacuum Electronics"" covers the electrophysical fundamentals, the present state of the art and applications, as well as the future prospects of microwave tubes and systems, optoelectronics vacuum devices, electron and ion beam devices, light and X-ray emitters, particle accelerators and vacuum interrupters. These topics are supplemented by useful information about the materials and technologies of vacuum electronics and vacuum technology.

  3. Chemisorption of a hydrogen adatom on metal doped α-Zr (0 0 0 1 surfaces in a vacuum and an implicit solvation environment

    Directory of Open Access Journals (Sweden)

    Cheng Zeng

    2017-12-01

    Full Text Available First-principles calculations have been carried out to investigate the adsorption of a hydrogen adatom on 24 metal doped α-Zr (0 0 0 1 surfaces in both a vacuum and an implicit solvation environment. The dopant are the elements in the 4th and 5th periods in the periodic table. Doping elements at the tail of the 4th and 5th periods can significantly reduce the hydrogen pickup in a vacuum environment. A weighted d-band center theory is used to analyze the doping effect. On the other hand, the hydrogen adsorption energies in water are relatively lower for all doped slabs and the surface adsorption of hydrogen adatom is stronger than that in a vacuum environment, especially, for the slabs with doping elements at the tail of the 4th and 5th periods. In the solvation environment, electronegativity difference affects the adsorption. Doping elements Ag, Ga, Ge, Sn, and Sb can reduce the hydrogen pickup in vacuum, while Ag and Cu can reduce the hydrogen pickup of the zirconium alloys in solvent environment.

  4. An apparatus for combined vapor deposition and ion implantation to modify the surface properties of metals

    Science.gov (United States)

    Margesin, B.; Giacomozzi, F.; Guzman, L.; Lazzari, G.; Zanini, V.

    A low energy ion implanter has been adequately modified in order to perform reactive ion beam enhanced deposition (RIBED) and dynamic recoil ion mixing experiments under controlled conditions in a high vacuum environment. The machine consists of a Duoplasmatron ion source, a mass analyzer, a target chamber adaptable for use with various samples, and an electron gun evaporator equipped with a film thickness monitor. For a high degree of process automation the implantation chamber and the evaporator are controlled by a system based on two microprocessors in a master/slave configuration. The microprocessors are programmed in FORTH and communicate with each other in the same language. In this apparatus, independently controlled atom and ion beams of different species able to form the required compounds, impinge sequentially (or simultaneously) on a 4 × 8 cm 2 area with a good uniformity (10%). Ion mixing prevails in the first steps of the treatment, resulting in a good relative adhesion between substrate and film; then the RIBED film is grown up to typically 0.5 μm, this thickness being equivalent to a total implanted dose of 5.0 × 10 18 ions/cm 2 with an excellent depth homogeneity and without sputtering limitations.

  5. Synthesis of high performance ceramic fibers by chemical vapor deposition for advanced metallics reinforcing

    Science.gov (United States)

    Revankar, Vithal; Hlavacek, Vladimir

    1991-01-01

    The chemical vapor deposition (CVD) synthesis of fibers capable of effectively reinforcing intermetallic matrices at elevated temperatures which can be used for potential applications in high temperature composite materials is described. This process was used due to its advantage over other fiber synthesis processes. It is extremely important to produce these fibers with good reproducible and controlled growth rates. However, the complex interplay of mass and energy transfer, blended with the fluid dynamics makes this a formidable task. The design and development of CVD reactor assembly and system to synthesize TiB2, CrB, B4C, and TiC fibers was performed. Residual thermal analysis for estimating stresses arising form thermal expansion mismatch were determined. Various techniques to improve the mechanical properties were also performed. Various techniques for improving the fiber properties were elaborated. The crystal structure and its orientation for TiB2 fiber is discussed. An overall view of the CVD process to develop CrB2, TiB2, and other high performance ceramic fibers is presented.

  6. Metal-Vacuum-Metal Tunneling

    Science.gov (United States)

    1990-11-01

    CloH22 and 2-2-4 trimethylpentane ( isooctane ). The patterns were imaged with a Pt/Ir tip in the STM. The images, with fine detail in the molecular chains...simultaneously bombarded with electrons. The rate of methane production was increased by a factor of twenty. Haasz71 was able to confirm their results when he...that e-beam irradiation increases the methane production by releasing the adsorbed molecules. 39 A Afu .’W FIG. 18 (a) Transmission electron

  7. Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics

    Science.gov (United States)

    Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P.; Ko, Seung Hwan

    2012-01-01

    Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition– and photolithography-based conventional metal patterning processes. The “digital” nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays. PMID:22900011

  8. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics.

    Science.gov (United States)

    Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P; Ko, Seung Hwan

    2012-01-01

    Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays.

  9. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics.

    Directory of Open Access Journals (Sweden)

    Junyeob Yeo

    Full Text Available Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm and high-performance flexible organic field effect transistor arrays.

  10. Fabrication of single-phase ε-GaSe films on Si(100) substrate by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Chang, Chia-Chen; Zeng, Jia-Xian; Lan, Shan-Ming; Uen, Wu-Yih; Liao, Sen-Mao; Yang, Tsun-Neng; Ma, Wei-Yang; Chang, Kuo-Jen

    2013-01-01

    Single-phase ε-gallium selenide (GaSe) films were fabricated on Si(100) substrate by metal organic chemical vapor deposition using dual-source precursors: triethylgallium (TEG) and hydrogen selenide (H 2 Se) with the flow ratio of [H 2 Se]/[TEG] being maintained at 1.2. In particular, an arsine (AsH 3 ) flow was introduced to the Si substrate before the film deposition to induce an arsenic (As)-passivation effect on the substrate. The crystalline structure of GaSe films prepared was analyzed using X-ray diffraction and the surface morphology of them was characterized by scanning electron microscopy. It was found that the film quality could be improved by the As-passivation effect. The optical properties of the films were studied by temperature dependent photoluminescence (PL) measurements. PL spectra obtained with different distributions and intensities favored for resolving the superior material quality of the films produced on the substrate with As-passivation compared to those produced on the substrate without As-passivation. The former was dominated by the excitonic emissions for the whole temperature range of 20–300 K examined, while the latter was initially dominated by the defect-related emission at 1.907 eV for a low-temperature range ≦ 80 K and then became dominated by the weak excitonic emission band instead. The ε modification of GaSe films prepared was further recognized by the Raman scattering measurements conducted at room temperature. - Highlights: • Gallium selenide (GaSe) layered structures are fabricated on Si(100) substrate. • Metal–organic chemical vapor deposition is used for film fabrication. • Arsenic-passivation effects of Si substrate on the GaSe film quality are analyzed. • Photoluminescence measurements of GaSe polycrystals are reported

  11. Vapor Phase Growth of High-Quality Bi-Te Compounds Using Elemental Bi and Te Sources: A Comparison Between High Vacuum and Atmospheric Pressure

    Science.gov (United States)

    Concepción, O.; Escobosa, A.; de Melo, O.

    2018-03-01

    Bismuth telluride (Bi2Te3), traditionally used in the industry as thermoelectric material, has deserved much attention recently due to its properties as a topological insulator, a kind of material that might have relevant applications in spintronics or quantum computing, among other innovative uses. The preparation of high-quality material has become a very important technological task. Here, we compare the preparation of Bi2Te3 by physical vapor transport from the evaporation of elemental Bi and Te sources, under either low pressure or atmospheric pressure. The layers were characterized by different techniques to evaluate its structural properties. As a result, it is concluded that, as a consequence of the different transport regimes, films grown at atmospheric pressure present better crystal quality.

  12. Microfabricated triggered vacuum switch

    Science.gov (United States)

    Roesler, Alexander W [Tijeras, NM; Schare, Joshua M [Albuquerque, NM; Bunch, Kyle [Albuquerque, NM

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  13. Vacuum extraction

    DEFF Research Database (Denmark)

    Nielsen, Mathilde Maagaard; Oestergaard, Jeanett; Johansen, Marianne

    2012-01-01

    Objectives. To develop and validate an Objective Structured Assessment of Technical Skills (OSATS) scale for vacuum extraction. Design. Two part study design: Primarily, development of a procedure-specific checklist for vacuum extraction. Hereafter, validationof the developed OSATS scale for vacuum...... with daily work in the obstetric field were tested. Methods. The Delphi method was used for development of the scale. In a simulated vacuum extraction scenario first-year residents and obstetric chief physicians were rated using the developed OSATS scale for vacuum extraction to test construct validity...... scale for vacuum extraction is a reliable test for differentiating between competence levels in a simulated setting....

  14. The effect of the operation modes of a gas discharge low-pressure amalgam lamp on the intensity of generation of 185 nm UV vacuum radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru [Russian Academy of Sciences, Joint Institute of High Temperatures (Russian Federation); Drozdov, L. A., E-mail: lit@npo.lit.ru; Kostyuchenko, S. V.; Sokolov, D. V. [ZAO LIT (Russian Federation); Kudryavtsev, N. N.; Sobur, D. A., E-mail: soburda@gmail.com [Moscow Institute for Physics and Technology (Russian Federation)

    2011-12-15

    The effect of the discharge current, mercury vapor pressure, and the inert gas pressure on the intensity and efficiency of the 185 nm line generation are considered. The spectra of the UV radiation (vacuum ultraviolet) transmission by protective coatings from the oxides of rare earth metals and aluminum are investigated.

  15. Theoretical Investigation of the Structural Stabilities of Ceria Surfaces and Supported Metal Nanocluster in Vapor and Aqueous Phases

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhibo [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Liu, Ning [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Chen, Biaohua [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Li, Jianwei [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Mei, Donghai [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States

    2018-01-25

    Understanding the structural stability and dynamics at the interface between the solid metal oxide and aqueous phase is significant in a variety of industrial applications including heterogeneous catalysis and environmental remediation. In the present work, the stabilities of three low-index ceria (CeO2) surfaces, i.e., (111), (110) and (100) in vapor and aqueous phases were studied using ab initio molecular dynamics simulations and density functional theory (DFT) calculations. Gibbs surface free energies as a function of temperature, water partial pressure, and water coverages were calculated using DFT based atomistic thermodynamic approach. On the basis of surface free energies, the morphology and exposed surface structures of the CeO2 nanoparticle were predicted using Wulff construction principle. It is found that the partially hydroxylated (111) and (100) are two major surface structures of CeO2 nanoparticles in vapor phase at ambient temperature (300 K). As the temperature increases, the fully dehydrated (111) surface gradually becomes the most dominant surface structure. While in aqueous phase, the exposed surface of the CeO2 nanoparticle is dominated by the hydroxylated (110) structure at 393 K. Finally, the morphology and stability of a cuboctahedron Pt13 nanocluster supported on CeO2 surfaces in both gas and aqueous phases were investigated. In gas phase, the supported Pt13 nanocluster has the tendency to wetting the CeO2 surface due to the strong metal-support interaction. The calculated interaction energies suggest the CeO2(110) surface provides the best stability for the Pt13 nanocluster. The CeO2 supported Pt13 nanoclusters are oxidized. Compared to the gas phase, the morphology of the CeO2 supported Pt13 nanocluster is less distorted due to the solvation effect provided by surrounding water molecules in aqueous phase. More electrons are transferred from the Pt13 nanocluster to the CeO2 support, implying the supported Pt13 nanocluster is further

  16. Comparison of Endometrial Pathology between Tissues Obtained from Manual Vacuum Aspiration and Sharp Metal Curettage in Women with Abnormal Uterine Bleeding.

    Science.gov (United States)

    Sirimai, Korakot; Lertbunnaphong, Tripop; Malakorn, Kitti; Warnnissorn, Malee

    2016-02-01

    To study the correlation of endometrial pathology, which were derived from manual vacuum aspiration (MVA) and sharp metal curettage (SMC). Women aged over 35 years old who presented with abnormal uterine bleeding were enrolled. Endometrial biopsy using MVA and sharp metal curettage under paracervical nerve block were performed, respectively. Correlation of endometrial pathology from both methods and correlation between endometrial pathology from MVA and the most severe pathology were analyzed using Kappa statistics. One hundred and thirty two women were enrolled Nine cases were drop out because of inability to pass the MVA's cannula through the cervical os. Mean age was 49.3 ± 8.5 years old. Mean BMI was 25.1 ± 4 kg/m². Pathological correspondence between tissue obtained from MVA and sharp metal curette was 64.2% and the Kappa agreement was 0.56 (K0 = 0.56, p-value abnormal uterine bleeding.

  17. Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization

    Science.gov (United States)

    Kokai, F.; Takahashi, K.; Yudasaka, M.; Iijima, S.

    To study the growth of carbon-Co/Ni particles and single-wall carbon nanotubes (SWNTs) by 20 ms CO2 laser-pulse irradiation of a graphite-Co/Ni (1.2 at.%) target in an Ar gas atmosphere (600 Torr), we used emission imaging spectroscopy and shadowgraphy with a temporal resolution of 1.67 ms. Wavelength-selected emission images showed that C2 emission was strong in the region close to the target (within 2 cm), while for the same region the blackbody radiation from the large clusters or particles increased with increasing distance from the target. Shadowgraph images showed that the viscous flow of carbon and metal species formed a mushroom or a turbulent cloud spreading slowly into the Ar atmosphere, indicating that particles and SWNTs continued to grow as the ejected material cooled. In addition, emission imaging spectroscopy at 1200 °C showed that C2 and hot clusters and particles with higher emission intensities were distributed over much wider areas. We discuss the growth dynamics of the particles and SWNTs through the interaction of the ambient Ar with the carbon and metal species released from the target by the laser pulse.

  18. Preparation of silver thin films using liquid-phase precursors by metal organic chemical vapor deposition and their conversion to silver selenide films by selenium vapor deposition

    International Nuclear Information System (INIS)

    Kim, Hong-Ki; Jeong, Han-Cheol; Kim, Kyung Soo; Yoon, Seok Hwan; Lee, Seung Soo; Seo, Kook Won; Shim, Il-Wun

    2005-01-01

    A series of new Ag precursors containing β-diketonate and neutral phosphite ligands were synthesized and characterized by various spectroscopic methods. These volatile precursors in liquid phase were thermally stable and quite useful in the preparation of silver thin films through bubbler-type chemical vapor deposition (CVD). In a typical case of silver (I) 1,1,1-trifluoro-2,4-pentanedionate triethyl phosphite adduct ((tfac)AgP(OEt) 3 ) precursor, very pure silver thin films were obtained under relatively mild conditions without any appreciable amount of F, O, and P impurities. These thin films were easily converted to β-orthorhombic silver selenide by simple selenium vapor deposition method. In scanning electron microscopic analyses, the average particle size of the latter was found to increase to about 1.26 μm after gas-phase selenization reaction

  19. Vacuum system

    OpenAIRE

    Gröbner, Oswald

    2006-01-01

    The vacuum system of a particle accelerator must provide the necessary conditions for the high energy beam to avoid loss of particles and deterioration of the beam quality. In this talk we will review basic design concepts, vacuum components and procedures required for an accelerator vacuum system.

  20. Ultra-high vacuum compatible image furnace.

    Science.gov (United States)

    Neubauer, A; Boeuf, J; Bauer, A; Russ, B; Löhneysen, H v; Pfleiderer, C

    2011-01-01

    We report the design of an optical floating-zone furnace for single-crystal growth under ultra-high vacuum (UHV) compatible conditions. The system is based on a commercial image furnace, which has been refurbished to be all-metal sealed. Major changes concern the use of UHV rotary feedthroughs and bespoke quartz-metal seals with metal-O-rings at the lamp stage. As a consequence, the procedure of assembling the furnace for crystal growth is changed completely. Bespoke heating jackets permit to bake the system. For compounds with elevated vapor pressures, the ultra-high vacuum serves as a precondition for the use of a high-purity argon atmosphere up to 10 bar. In the ferromagnetic Heusler compound Cu(2)MnAl, the improvements of purity result in an improved stability of the molten zone, grain selection, and, hence, single-crystal growth. Similar improvements are observed in traveling-solvent floating-zone growth of the antiferromagnetic Heusler compound Mn(3)Si. These improvements underscore the great potential of optical float-zoning for the growth of high-purity single crystals of intermetallic compounds.

  1. Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors

    Directory of Open Access Journals (Sweden)

    Konrad Maier

    2015-09-01

    Full Text Available In this work the low temperature response of metal oxide semiconductor gas sensors is analyzed. Important characteristics of this low-temperature response are a pronounced selectivity to acid- and base-forming gases and a large disparity of response and recovery time constants which often leads to an integrator-type of gas response. We show that this kind of sensor performance is related to the trend of semiconductor gas sensors to adsorb water vapor in multi-layer form and that this ability is sensitively influenced by the surface morphology. In particular we show that surface roughness in the nanometer range enhances desorption of water from multi-layer adsorbates, enabling them to respond more swiftly to changes in the ambient humidity. Further experiments reveal that reactive gases, such as NO2 and NH3, which are easily absorbed in the water adsorbate layers, are more easily exchanged across the liquid/air interface when the humidity in the ambient air is high.

  2. Influences of ultrathin amorphous buffer layers on GaAs/Si grown by metal-organic chemical vapor deposition

    Science.gov (United States)

    Hu, Haiyang; Wang, Jun; Cheng, Zhuo; Yang, Zeyuan; Yin, Haiying; Fan, Yibing; Ma, Xing; Huang, Yongqing; Ren, Xiaomin

    2018-04-01

    In this work, a technique for the growth of GaAs epilayers on Si, combining an ultrathin amorphous Si buffer layer and a three-step growth method, has been developed to achieve high crystalline quality for monolithic integration. The influences of the combined technique for the crystalline quality of GaAs on Si are researched in this article. The crystalline quality of GaAs epilayer on Si with the combined technique is investigated by scanning electron microscopy, double crystal X-ray diffraction (DCXRD), photoluminescence, and transmission electron microscopy measurements. By means of this technique, a 1.8-µm-thick high-quality GaAs/Si epilayer was grown by metal-organic chemical vapor deposition. The full-width at half-maximum of the DCXRD rocking curve in the (400) reflection obtained from the GaAs/Si epilayers is about 163 arcsec. Compared with only using three-step growth method, the current technique reduces etch pit density from 3 × 106 cm-2 to 1.5 × 105 cm-2. The results demonstrate that the combined technique is an effective approach for reducing dislocation density in GaAs epilayers on Si.

  3. Effects of deposition temperature and ammonia flow on metal-organic chemical vapor deposition of hexagonal boron nitride

    Science.gov (United States)

    Rice, Anthony; Allerman, Andrew; Crawford, Mary; Beechem, Thomas; Ohta, Taisuke; Spataru, Catalin; Figiel, Jeffrey; Smith, Michael

    2018-03-01

    The use of metal-organic chemical vapor deposition at high temperature is investigated as a means to produce epitaxial hexagonal boron nitride (hBN) at the wafer scale. Several categories of hBN films were found to exist based upon precursor flows and deposition temperature. Low, intermediate, and high NH3 flow regimes were found to lead to fundamentally different deposition behaviors. The low NH3 flow regimes yielded discolored films of boron sub-nitride. The intermediate NH3 flow regime yielded stoichiometric films that could be deposited as thick films. The high NH3 flow regime yielded self-limited deposition with thicknesses limited to a few mono-layers. A Langmuir-Hinshelwood mechanism is proposed to explain the onset of self-limited behavior for the high NH3 flow regime. Photoluminescence characterization determined that the intermediate and high NH3 flow regimes could be further divided into low and high temperature behaviors with a boundary at 1500 °C. Films deposited with both high NH3 flow and high temperature exhibited room temperature free exciton emission at 210 nm and 215.9 nm.

  4. Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors

    Science.gov (United States)

    Maier, Konrad; Helwig, Andreas; Müller, Gerhard; Hille, Pascal; Eickhoff, Martin

    2015-01-01

    In this work the low temperature response of metal oxide semiconductor gas sensors is analyzed. Important characteristics of this low-temperature response are a pronounced selectivity to acid- and base-forming gases and a large disparity of response and recovery time constants which often leads to an integrator-type of gas response. We show that this kind of sensor performance is related to the trend of semiconductor gas sensors to adsorb water vapor in multi-layer form and that this ability is sensitively influenced by the surface morphology. In particular we show that surface roughness in the nanometer range enhances desorption of water from multi-layer adsorbates, enabling them to respond more swiftly to changes in the ambient humidity. Further experiments reveal that reactive gases, such as NO2 and NH3, which are easily absorbed in the water adsorbate layers, are more easily exchanged across the liquid/air interface when the humidity in the ambient air is high. PMID:28793583

  5. Effect of gas flow on the selective area growth of gallium nitride via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Kasarla, K. R.; Korakakis, D.

    2007-08-01

    The effect of gas flow on the selective area growth (SAG) of gallium nitride (GaN) grown via metal organic vapor phase epitaxy (MOVPE) has been investigated. In this study, the SAG of GaN was carried out on a silicon dioxide striped pattern along the GaN direction. SAG was initiated with the striped pattern oriented parallel and normal to the incoming gas flow in a horizontal reactor. The orientation of the pattern did not impact cross section of the structure after re-growth as both orientations resulted in similar trapezoidal structures bounded by the (0 0 0 1) and {1 1 2¯ n} facets ( n≈1.7-2.2). However, the growth rates were shown to depend on the orientation of the pattern as the normally oriented samples exhibited enhanced vertical and cross-sectional growth rates compared to the parallel oriented samples. All growths occurred under identical conditions and therefore the difference in growth rates must be attributed to a difference in mass transport of species.

  6. Growth of InAs Quantum Dots on Germanium Substrate Using Metal Organic Chemical Vapor Deposition Technique

    Directory of Open Access Journals (Sweden)

    Tyagi Renu

    2009-01-01

    Full Text Available Abstract Self-assembled InAs quantum dots (QDs were grown on germanium substrates by metal organic chemical vapor deposition technique. Effects of growth temperature and InAs coverage on the size, density, and height of quantum dots were investigated. Growth temperature was varied from 400 to 450 °C and InAs coverage was varied between 1.40 and 2.35 monolayers (MLs. The surface morphology and structural characteristics of the quantum dots analyzed by atomic force microscope revealed that the density of the InAs quantum dots first increased and then decreased with the amount of InAs coverage; whereas density decreased with increase in growth temperature. It was observed that the size and height of InAs quantum dots increased with increase in both temperature and InAs coverage. The density of QDs was effectively controlled by growth temperature and InAs coverage on GaAs buffer layer.

  7. (abstract) Experimental and Modeling Studies of the Exchange Current at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kikkert, S.

    1993-01-01

    The microscopic mechanism of the alkali ion-electron recombination reaction at the three phase boundary zone formed by a porous metal electrode in the alkali vapor on the surface of an alkali beta'-alumina solid electrolyte (BASE) ceramic has been studied by comparison of the expected rates for the three simplest reaction mechanisms with known temperature dependent rate data; and the physical parameters of typical porous metal electrode/BASE/alkali metal vapor reaction zones. The three simplest reactions are tunneling of electrons from the alkali coated electrode to a surface bound alkali metal ion; emission of an electron from the electrode with subsequent capture by a surface bound alkali metal ion; and thermal emission of an alkali cation from the BASE and its capture on the porous metal electrode surface where it may recombine with an electron. Only the first reaction adequately accounts for both the high observed rate and its temperature dependence. New results include crude modeling of simple, one step, three phase, solid/solid/gas electrochemical reaction.

  8. Increasing of charge of uranium ion beam in vacuum-arc-type source (MEVVA)

    CERN Document Server

    Kulevoj, T V; Petrenko, S V; Seleznev, D N; Pershin, V I; Batalin, V A; Kolomiets, A A

    2002-01-01

    Research efforts with MEVVA type source (Metal Vapor Vacuum Arc) and with its modifications are in progress now in the ITEP. In the course of research one revealed possibility to increase charge state of generated beam of uranium ions. Increase of charge results from propagation of high-current vacuum-arc charge from the source cathode to the extra anode located in increasing axial magnetic field. One obtained uranium ion beam with 150 mA output current 10% of which were contributed by U sup 7 sup + uranium ions

  9. Metal organic chemical vapor deposition of superconducting YBa2Cu3O7-x thin films

    Science.gov (United States)

    Zawadzki, P. A.; Tompa, G. S.; Norris, P. E.; Chern, C. S.; Caracciolo, R.; Kear, B. H.; Noh, D. W.; Gallois, B.

    1990-04-01

    The discovery of YBCO superconductors has stimulated a great deal of scientific and technological research into thin films of these materials. Because the MOCVD technique is known to produce high quality films in the III/V and II/VI material groups, our approach has been to apply the method to superconducting thin films. Thin films were grown in a vertical high speed (0 2000 rpm) rotating disk reactor. The source materials were metal β-diketonates kept at temperatures in excess of 100° in order to obtain growth rates of 0.3 to 0.5 μm/hr. The precursors were transported to the chamber with a nitrogen carrier and injected separately in order to avoid any gas phase reactions. The chamber pressure was maintained at 76 Torr with an oxygen partial pressure of 38 Torr. A resistance heater was used to keep the substrate temperature at 500° YBa2Cu3O7- x films were deposited simultaneously on a variety of substrates such as (100) MgO, (1-102) sapphire, (100) SrTiO3 and (100) YSZ. Full XPS spectra were collected for the binary oxides. The scans demonstrate the existence of Y2O3, BaO, and CuO with the correct valence state for the metallic species. Energy dispersive analysis of x-ray (EDAX) was used to determine film compositions by comparing EDAX spectral intensity to a known superconducting standard. Appropriate changes were made in the precursor flows to correct the stoichiometry. The as-grown films were dark brown and semi-transparent. Cross-sectional SEM photomicrographs revealed an ordered columnar structure. After annealing at 950 980° however, the films on (100) SrTiO3 appeared dull black and opaque. The surface morphology exhibited smooth large plate-like grains. X-ray data clearly display an orthorhombic phase, with c-axis perpendicular to the substrate surface. Four point resistance measurements for films on (100) SrTiO3 show the onset of superconductivity at 90 K with a complete loss of resistance at 88 K. This sharp (≤2K) transition shows the high quality

  10. Vacuum Arc Ion Sources

    CERN Document Server

    Brown, I.

    2013-12-16

    The vacuum arc ion source has evolved into a more or less standard laboratory tool for the production of high-current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. Applications include primarily ion implantation for material surface modification research, and good performance has been obtained for the injection of high-current beams of heavy-metal ions, in particular uranium, into particle accelerators. As the use of the source has grown, so also have the operational characteristics been improved in a variety of different ways. Here we review the principles, design, and performance of vacuum arc ion sources.

  11. Complementary Metal Oxide Semiconductor-Compatible, High-Mobility, ⟨111⟩-Oriented GaSb Nanowires Enabled by Vapor-Solid-Solid Chemical Vapor Deposition.

    Science.gov (United States)

    Yang, Zai-Xing; Liu, Lizhe; Yip, SenPo; Li, Dapan; Shen, Lifan; Zhou, Ziyao; Han, Ning; Hung, Tak Fu; Pun, Edwin Yue-Bun; Wu, Xinglong; Song, Aimin; Ho, Johnny C

    2017-04-25

    Using CMOS-compatible Pd catalysts, we demonstrated the formation of high-mobility ⟨111⟩-oriented GaSb nanowires (NWs) via vapor-solid-solid (VSS) growth by surfactant-assisted chemical vapor deposition through a complementary experimental and theoretical approach. In contrast to NWs formed by the conventional vapor-liquid-solid (VLS) mechanism, cylindrical-shaped Pd 5 Ga 4 catalytic seeds were present in our Pd-catalyzed VSS-NWs. As solid catalysts, stoichiometric Pd 5 Ga 4 was found to have the lowest crystal surface energy and thus giving rise to a minimal surface diffusion as well as an optimal in-plane interface orientation at the seed/NW interface for efficient epitaxial NW nucleation. These VSS characteristics led to the growth of slender NWs with diameters down to 26.9 ± 3.5 nm. Over 95% high crystalline quality NWs were grown in ⟨111⟩ orientation for a wide diameter range of between 10 and 70 nm. Back-gated field-effect transistors (FETs) fabricated using the Pd-catalyzed GaSb NWs exhibit a superior peak hole mobility of ∼330 cm 2 V -1 s -1 , close to the mobility limit for a NW channel diameter of ∼30 nm with a free carrier concentration of ∼10 18 cm -3 . This suggests that the NWs have excellent homogeneity in phase purity, growth orientation, surface morphology and electrical characteristics. Contact printing process was also used to fabricate large-scale assembly of Pd-catalyzed GaSb NW parallel arrays, confirming the potential constructions and applications of these high-performance electronic devices.

  12. Behavior and impact of sulfur incorporation in Zinc Oxysulfide alloy grown by metal organic chemical vapor deposition

    Science.gov (United States)

    Ma, Jingrui; Tang, Kun; Mao, Haoyuan; Ye, Jiandong; Zhu, Shunming; Xu, Zhonghua; Yao, Zhengrong; Gu, Shulin; Zheng, Youdou

    2018-03-01

    Highly mismatched ZnO1-xSx:N alloy films with various x were deposited on c-plane sapphire substrates by a near-equilibrium method, metal-organic chemical vapor deposition. The sulfur concentration in the films could be tuned by changing the flow rate of H2S during the growth process. The films that could maintain single phase have an upper limit for x ∼ 0.15, which is smaller than the x values obtained from other non-equilibrium-grown samples (x ∼ 0.23). When x > 0.15, phases other than the wurtzite ZnO (W-ZnO) one appeared. Those phases were ascribed to the sulfur-diluted W-ZnO like phase, low x W-ZnO like phase, and high x W-ZnS like phase. The S contents in different phase has been determined by using Vegard's law and the X-ray photoelectron spectroscopy. Meanwhile, the compositional dependence of the bandgap energy in the ZnO1-xSx alloyed material has been investigated and studied comparing with other reported results. The dispersed bowing parameter b and the mechanism of the phase separation in samples grown by both the near-equilibrium method and the non-equilibrium one have also been discussed based on the difference of the atomic radius and electronegativity of the oxygen and sulfur atoms. Furthermore, the Raman and photoluminescence spectra have shown that the sulfur incorporation may suppress zinc interstitials related defects, while the oxygen vacancies related defects may be easily formed at the same time. These results indicate that ZnO1-xSx films could be beneficial to the realization of p-type doping in ZnO, although no obvious p-type characteristic has been attained in the work yet.

  13. Separation of magnesium from magnesium chloride and zirconium and/or hafnium subchlorides in the production of zirconium and/or hafnium sponge metal

    International Nuclear Information System (INIS)

    Abodishish, H.A.M.; Adams, R.J.; Kearl, S.R.

    1992-01-01

    This patent describes the producing of a refractory metal wherein a sponge refractory metal is produced as an intermediate product by the use of magnesium with the incidental production of magnesium chloride, and wherein residual magnesium is separated from the magnesium chloride and from refractory metal to a vacuum distillation step which fractionally distills the magnesium, the magnesium chloride, and the metal sub-chlorides; the steps of: recovering fractionally distilled vapors of magnesium chloride and metal sub-chlorides from a sponge refractory metal; separately condensing the vapors as separately recovered; and recycling the separately recovered magnesium at a purity of at least about 96%

  14. Microwelding (or cold-welding) of various metallic materials under the ultra-vacuum LDEF experiment AO 138-10

    Science.gov (United States)

    Assie, Jean-Pierre; Conde, Eric

    1992-01-01

    The FRECOPA experimentation, as part of the Long Duration Exposure Facility (LDEF) mission, of mechanical and electrical parts of spacecraft in space ultra-vacuum has demonstrated freedom from any cold welding including microweld effects. This, as theorized, is due to integrity in space of the earthly grown oxygen layer. A further experimentation, a dynamic one this time, could provide a wealth of scientific data, yielding reliable material selecting criteria.

  15. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries.

    Science.gov (United States)

    Sun, Liang; Qiu, Keqiang

    2011-10-30

    Spent lithium-ion batteries contain lots of strategic resources such as cobalt and lithium together with other hazardous materials, which are considered as an attractive secondary resource and environmental contaminant. In this work, a novel process involving vacuum pyrolysis and hydrometallurgical technique was developed for the combined recovery of cobalt and lithium from spent lithium-ion batteries. The results of vacuum pyrolysis of cathode material showed that the cathode powder composing of LiCoO(2) and CoO peeled completely from aluminum foils under the following experimental conditions: temperature of 600°C, vacuum evaporation time of 30 min, and residual gas pressure of 1.0 kPa. Over 99% of cobalt and lithium could be recovered from peeled cobalt lithium oxides with 2M sulfuric acid leaching solution at 80°C and solid/liquid ratio of 50 g L(-1) for 60 min. This technology offers an efficient way to recycle valuable materials from spent lithium-ion batteries, and it is feasible to scale up and help to reduce the environmental pollution of spent lithium-ion batteries. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Vacuum mechatronics

    Science.gov (United States)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  17. Axial heterostructure of Au-catalyzed InGaAs/GaAs nanowires grown by metal-organic chemical vapor deposition

    Science.gov (United States)

    Yuan, Huibo; Li, Lin; Li, Zaijin; Wang, Yong; Qu, Yi; Ma, Xiaohui; Liu, Guojun

    2018-01-01

    Nanowires (NWs) of GaAs and InGaAs/GaAs axial heterostructure are fabricated by metal-organic chemical vapor deposition (MOCVD) following the vapor-liquid-solid (VLS) mechanism. Thin film of Au is coated to generate catalytic droplets and the impact of film thickness on distribution of catalytic droplets is studied. With growth temperature varying, different geometries of GaAs NWs are observed and an assumption has been proposed to explain the phenomenon. InGaAs/GaAs NWs with axial heterostructures are synthesized. Most of InGaAs/GaAs NWs are perpendicular to substrates with cylindrical morphology and distinct heterostructure interface. Energy Dispersive X-ray Spectroscopy (EDX) line-scan's been applied to investigate the concentration changes of nanowires, indicating pure axial heterostructures without radial growth.

  18. Liquid metal cooling of synchrotron optics

    International Nuclear Information System (INIS)

    Smither, R.K.

    1993-01-01

    The installation of insertion devices at existing synchrotron facilities around the world has stimulated the development of new ways to cool the optical elements in the associated x-ray beamlines. Argonne has been a leader in the development of liquid metal cooling for high heat load x-ray optics for the next generation of synchrotron facilities. The high thermal conductivity, high volume specific heat, low kinematic viscosity, and large working temperature range make liquid metals a very efficient heat transfer fluid. A wide range of liquid metals were considered in the initial phase of this work. The most promising liquid metal cooling fluid identified to date is liquid gallium, which appears to have all the desired properties and the fewest number of undesired features of the liquid metals examined. Besides the special features of liquid metals that make them good heat transfer fluids, the very low vapor pressure over a large working temperature range make liquid gallium an ideal cooling fluid for use in a high vacuum environment. A leak of the liquid gallium into the high vacuum and even into very high vacuum areas will not result in any detectable vapor pressure and may even improve the vacuum environment as the liquid gallium combines with any water vapor or oxygen present in the system. The practical use of a liquid metal for cooling silicon crystals and other high heat load applications depends on having a convenient and efficient delivery system. The requirements for a typical cooling system for a silicon crystal used in a monochromator are pumping speeds of 2 to 5 gpm (120 cc per sec to 600 cc per sec) at pressures up to 100 psi. No liquid metal pump with these capabilities was available commercially when this project was started, so it was necessary to develop a suitable pump in house

  19. A HIGH VACUUM GAUGE CALIBRATION SYSTEM

    Science.gov (United States)

    An ultra- high vacuum type metal and glass system was constructed for the purpose of calibrating vacuum gauges in the pressure region from 760 to 10...to the -7th power torr. The high vacuum portion of the system is bakeable at temperatures up to 450 C. A mercury manometer serves as a pressure

  20. Adsorption geometry, conformation, and electronic structure of 2H-octaethylporphyrin on Ag(111) and Fe metalation in ultra high vacuum.

    Science.gov (United States)

    Borghetti, Patrizia; Di Santo, Giovanni; Castellarin-Cudia, Carla; Fanetti, Mattia; Sangaletti, Luigi; Magnano, Elena; Bondino, Federica; Goldoni, Andrea

    2013-04-14

    Due to the growing interest in the ferromagnetic properties of Fe-octaethylporphyrins (Fe-OEP) for applications in spintronics, methods to produce stable Fe-porphyrins with no Cl atoms are highly demanded. Here, we demonstrate the formation of Fe-OEP layers on Ag(111) single crystal by the ultra high vacuum in situ metalation of the free-base 2H-2,3,7,8,12,13,17,18-octaethylporphyrin (2H-OEP) molecules. The metalation proceeds exactly as in the case of 2H-5,10,15,20-tetraphenylporphyrin (2H-TPP) on the same substrate. An extensive surface characterization by means of X-ray photoemission spectroscopy, valence band photoemission, and NEXAFS with synchrotron radiation light provides information on molecular conformation and electronic structure in the monolayer and multilayer cases. We demonstrate that the presence of the ethyl groups affects the tilt of the adsorbed molecules, the conformation of the macrocycle, and the polarization screening in multilayers, but has only a minor effect in the metalation process with respect to 2H-TPP.

  1. Mercury uptake in vivo by normal and acatalasemic mice exposed to metallic mercury vapor (203Hg degrees) and injected with metallic mercury or mercuric chloride (203HgCl2)

    International Nuclear Information System (INIS)

    Ogata, M.; Kenmotsu, K.; Hirota, N.; Meguro, T.; Aikoh, H.

    1985-01-01

    Levels of mercury in the brain and liver of acatalasemic mice immediately following exposure to metallic mercury vapor or injection of metallic mercury were higher than those found in normal mice. Acatalasemic mice had decreased levels of mercury in the blood and kidneys when the levels were compared with those of normal mice, which indicated that catalase plays a role in oxidizing and taking up mercury. Thus, the brain/blood or liver/blood ratio of mercury concentration in acatalasemic mice was significantly higher than that of normal mice. These results suggest that metallic mercury in the blood easily passed through the blood-brain or blood-liver barrier. The levels of mercury distribution to the kidneys of normal and acatalasemic mice, 1 hr after injection of mercuric chloride solution, were higher than that of normal and acatalasemic mice, respectively, 1 hr after injection of metallic mercury

  2. Organometallic vapor-phase epitaxy theory and practice

    CERN Document Server

    Stringfellow, Gerald B

    1989-01-01

    Here is one of the first single-author treatments of organometallic vapor-phase epitaxy (OMVPE)--a leading technique for the fabrication of semiconductor materials and devices. Also included are metal-organic molecular-beam epitaxy (MOMBE) and chemical-beam epitaxy (CBE) ultra-high-vacuum deposition techniques using organometallic source molecules. Of interest to researchers, students, and people in the semiconductor industry, this book provides a basic foundation for understanding the technique and the application of OMVPE for the growth of both III-V and II-VI semiconductor materials and the

  3. Influence of vicinal sapphire substrate on the properties of N-polar GaN films grown by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhiyu; Zhang, Jincheng, E-mail: jchzhang@xidian.edu.cn; Xu, Shengrui; Chen, Zhibin; Yang, Shuangyong; Tian, Kun; Hao, Yue [Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi' an, Shaanxi 710071 (China); Su, Xujun [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123 (China); Shi, Xuefang [School of Advanced Materials and Nanotechnology, Xidian University, Xi' an, Shaanxi 710071 (China)

    2014-08-25

    The influence of vicinal sapphire substrates on the growth of N-polar GaN films by metal-organic chemical vapor deposition is investigated. Smooth GaN films without hexagonal surface feature are obtained on vicinal substrate. Transmission electron microscope results reveal that basal-plane stacking faults are formed in GaN on vicinal substrate, leading to a reduction in threading dislocation density. Furthermore, it has been found that there is a weaker yellow luminescence in GaN on vicinal substrate than that on (0001) substrate, which might be explained by the different trends of the carbon impurity incorporation.

  4. High-voltage vertical GaN Schottky diode enabled by low-carbon metal-organic chemical vapor deposition growth

    Science.gov (United States)

    Cao, Y.; Chu, R.; Li, R.; Chen, M.; Chang, R.; Hughes, B.

    2016-02-01

    Vertical GaN Schottky barrier diode (SBD) structures were grown by metal-organic chemical vapor deposition on free-standing GaN substrates. The carbon doping effect on SBD performance was studied by adjusting the growth conditions and spanning the carbon doping concentration between ≤3 × 1015 cm-3 and 3 × 1019 cm-3. Using the optimized growth conditions that resulted in the lowest carbon incorporation, a vertical GaN SBD with a 6-μm drift layer was fabricated. A low turn-on voltage of 0.77 V with a breakdown voltage over 800 V was obtained from the device.

  5. A copper vapor laser by using a copper-vapor-complex reaction at a low temperature

    OpenAIRE

    Kano, Toshiyuki; Taniguchi, Hiroshi; Saito, Hiroshi

    1987-01-01

    A copper vapor laser performance by using ametal-vapor-complex reaction (Cu+AlBr3) is reported. The laser operation is obtained at a low temperature without externalheating because of the AlBr3 vapors evaporating at a room temperature. The copper vapor laser using this metal-vapor-complex reaction has an advantage of deposition-free of a metallic copper to the laser tube wall, which is different from the copper halide and the organometallic copper lasers.

  6. Vacuum II

    CERN Document Server

    Franchetti, G

    2013-01-01

    This paper continues the presentation of pumps begun in ‘Vacuum I’. The main topic here is gauges and partial-pressure measurements. Starting from the kinetics of gases, the various strategies for measuring vacuum pressures are presented at an introductory level, with some reference to hardware devices. Partial-pressure measurement techniques are introduced, showing that the principles of ion selection have a direct similarity to particle dynamics in accelerators.

  7. Ion angular distribution in plasma of vacuum arc ion source with composite cathode and elevated gas pressure.

    Science.gov (United States)

    Nikolaev, A G; Savkin, K P; Yushkov, G Yu; Oks, E M

    2014-02-01

    The Metal Vapor Vacuum Arc (MEVVA) ion sources are capable of generating ion beams of almost all metals of the periodic table. For this kind of ion source, a combination of gas feeding with magnetic field allows the simultaneous generation of both metal and gaseous ions. That makes the MEVVA ion source an excellent instrument for science and application. This work presents results of investigation for ion angular distributions in vacuum arc plasma of Mevva-V.Ru ion source for composite cathodes and for elevated gas pressure. It was shown that for all the cathode materials, singly charged ions have wider angular distribution than multiply charged ions. Increasing the working gas pressure leads to a significant change in the angular distribution of gaseous ions, while with the distribution of metal ions gas remains practically unchanged. The reasons for such different influences are discussed.

  8. p and n-type germanium layers grown using iso-butyl germane in a III-V metal-organic vapor phase epitaxy reactor

    International Nuclear Information System (INIS)

    Jakomin, Roberto; Beaudoin, Gregoire; Gogneau, Noelle; Lamare, Bruno; Largeau, Ludovic; Mauguin, Olivia; Sagnes, Isabelle

    2011-01-01

    We report on the growth of n- and p-doped Germanium (Ge) on Ge substrates by Metal-Organic Vapor Phase Epitaxy (MOVPE). Iso-butyl germane, a liquid metal-organic source less toxic than Germane, is used as Ge precursor. We demonstrate the p-doping of Germanium by MOVPE using Trimethylgallium. The influence of the growth parameters for n and p-type doping is studied in order to optimize the morphology, the structural and the electrical properties of the Ge layers. The controlled growth of p and n doped Ge layers opens the possibility to realize totally epitaxially grown Ge diodes with improved performances, for example, for solar cell applications.

  9. Recycling of metal-organic chemical vapor deposition waste of GaN based power device and LED industry by acidic leaching: Process optimization and kinetics study

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo; Lee, Chan Gi; Hong, Hyun Seon; Park, Jeung-Jin

    2015-05-01

    Recovery of metal values from GaN, a metal-organic chemical vapor deposition (MOCVD) waste of GaN based power device and LED industry is investigated by acidic leaching. Leaching kinetics of gallium rich MOCVD waste is studied and the process is optimized. The gallium rich waste MOCVD dust is characterized by XRD and ICP-AES analysis followed by aqua regia digestion. Different mineral acids are used to find out the best lixiviant for selective leaching of the gallium and indium. Concentrated HCl is relatively better lixiviant having reasonably faster kinetic and better leaching efficiency. Various leaching process parameters like effect of acidity, pulp density, temperature and concentration of catalyst on the leaching efficiency of gallium and indium are investigated. Reasonably, 4 M HCl, a pulp density of 50 g/L, 100 °C and stirring rate of 400 rpm are the effective optimum condition for quantitative leaching of gallium and indium.

  10. Vapor Intrusion

    Science.gov (United States)

    Vapor intrusion occurs when there is a migration of volatile chemicals from contaminated groundwater or soil into an overlying building. Volatile chemicals can emit vapors that may migrate through subsurface soils and into indoor air spaces.

  11. Compact vacuum insulation embodiments

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  12. Compact vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  13. Characterization of metal oxide absorbents for regenerative carbon dioxide and water vapor removal for advanced portable life support systems

    Science.gov (United States)

    Kast, Timothy P.; Nacheff-Benedict, Maurena S.; Chang, Craig H.; Cusick, Robert J.

    1990-01-01

    Characterization of the performance of a silver-oxide-based absorbent in terms of its ability to remove both gaseous CO2 and water vapor in an astronaut portable life support systems (PLSS) is discussed. Attention is focused on regeneration of the absorbent from the carbonite state of the oxide state, preconditioning of the absorbent using a humidified gas stream, and absorption breakthrough testing. Based on the results of bench-scale experiments, a test plan is carried out to further characterize the silver-oxide-based absorbent on a larger scale; it calls for examination of the absorbent in both an adiabatic packed bed and a near-isothermal cooled bed configuration. It is demonstrated that the tested absorbent can be utilized in a way that removes substantial amounts of CO2 and water vapor during an 8-hour extravehicular activity mission, and that applying the absorbent to PLSS applications can simplify the ventilation loop.

  14. Examination of Organic Vapor Adsorption onto Alkali Metal and Halide Atomic Ions by using Ion Mobility Mass Spectrometry.

    Science.gov (United States)

    Maiβer, Anne; Hogan, Christopher J

    2017-11-03

    We utilize ion mobility mass spectrometry with an atmospheric pressure differential mobility analyzer coupled to a time-of-flight mass spectrometer (DMA-MS) to examine the formation of ion-vapor molecule complexes with seed ions of K + , Rb + , Cs + , Br - , and I - exposed to n-butanol and n-nonane vapor under subsaturated conditions. Ion-vapor molecule complex formation is indicated by a shift in the apparent mobility of each ion. Measurement results are compared to predicted mobility shifts based upon the Kelvin-Thomson equation, which is commonly used in predicting rates of ion-induced nucleation. We find that n-butanol at saturation ratios as low as 0.03 readily binds to all seed ions, leading to mobility shifts in excess of 35 %. Conversely, the binding of n-nonane is not detectable for any ion for saturation ratios in the 0-0.27 range. An inverse correlation between the ionic radius of the initial seed and the extent of n-butanol uptake is observed, such that at elevated n-butanol concentrations, the smallest ion (K + ) has the smallest apparent mobility and the largest (I - ) has the largest apparent mobility. Though the differences in behavior of the two vapor molecules types examined and the observed effect of ionic seed radius are not accounted for by the Kelvin-Thomson equation, its predictions are in good agreement with measured mobility shifts for Rb + , Cs + , and Br - in the presence of n-butanol (typically within 10 % of measurements). © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Method for producing metallic nanoparticles

    Science.gov (United States)

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-02-10

    Method for producing metallic nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone to metal vapor. The metal vapor is directed away from the hot zone and to the plasma afterglow where it cools and condenses to form solid metallic nanoparticles.

  16. Vacuum Valve

    CERN Multimedia

    1974-01-01

    This valve was used in the Intersecting Storage Rings (ISR) to protect against the shock waves that would be caused if air were to enter the vacuum tube. Some of the ISR chambers were very fragile, with very thin walls - a design required by physicists on the lookout for new particles.

  17. Effect of thin contaminating coating on reflectance of metallic mirror placed inside the vacuum chamber of fusion device

    International Nuclear Information System (INIS)

    Bondarenko, V.N.; Konovalov, V.G.; Bardamid, A.F.; Poperenko, L.V.; Orlinskij, D.V.

    2000-01-01

    The practice of use diagnostic mirrors inside the fusion devices revealed the appearance of a deposit on the mirror surface. Such deposit is a result of condensation of the erosion materials of those inner components that are subjected to the strongest plasma impact. Another reason for deposit growth is the wall conditioning procedures like carbonization and boronization. Appeared on the diagnostic mirrors and windows the contaminating films deteriorate the optical properties of these diagnostic elements,i.e., the mirror reflectance and window transmissivity. The object of this paper is to investigate an influence on reflectance of metal mirrors of thin films of the materials that are most probable in fusion devices under operation (boron and carbon) or can be promising in a fusion reactor (beryllium)

  18. Cu-Al alloy formation by thermal annealing of Cu/Al multilayer films deposited by cyclic metal organic chemical vapor deposition

    Science.gov (United States)

    Moon, Hock Key; Yoon, Jaehong; Kim, Hyungjun; Lee, Nae-Eung

    2013-05-01

    One of the most important issues in future Cu-based interconnects is to suppress the resistivity increase in the Cu interconnect line while decreasing the line width below 30 nm. For the purpose of mitigating the resistivity increase in the nanoscale Cu line, alloying Cu with traces of other elements is investigated. The formation of a Cu alloy layer using chemical vapor deposition or electroplating has been rarely studied because of the difficulty in forming Cu alloys with elements such as Al. In this work, Cu-Al alloy films were successfully formed after thermal annealing of Cu/Al multilayers deposited by cyclic metal-organic chemical vapor deposition (C-MOCVD). After the C-MOCVD of Cu/Al multilayers without gas phase reaction between the Cu and Al precursors in the reactor, thermal annealing was used to form Cu-Al alloy films with a small Al content fraction. The resistivity of the alloy films was dependent on the Al precursor delivery time and was lower than that of the aluminum-free Cu film. No presence of intermetallic compounds were detected in the alloy films by X-ray diffraction measurements and transmission electron spectroscopy.

  19. Ultra high vacuum high precision low background setup with temperature control for thermal desorption mass spectroscopy (TDA-MS) of hydrogen in metals.

    Science.gov (United States)

    Merzlikin, Sergiy V; Borodin, S; Vogel, D; Rohwerder, M

    2015-05-01

    In this work, a newly developed UHV-based high precision low background setup for hydrogen thermal desorption analysis (TDA) of metallic samples is presented. Using an infrared heating with a low thermal capacity enables a precise control of the temperature and rapid cool down of the measurement chamber. This novel TDA-set up is superior in sensitivity to almost every standard hydrogen analyzer available commercially due to the special design of the measurement chamber, resulting in a very low hydrogen background. No effects of background drift characteristic as for carrier gas based TDA instruments were observed, ensuring linearity and reproducibility of the analysis. This setup will prove to be valuable for detailed investigations of hydrogen trapping sites in steels and other alloys. With a determined limit of detection of 5.9×10(-3)µg g(-1) hydrogen the developed instrument is able to determine extremely low hydrogen amounts even at very low hydrogen desorption rates. This work clearly demonstrates the great potential of ultra-high vacuum thermal desorption mass spectroscopy instrumentation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Characterization of Pb(Zr, Ti)O sub 3 thin films prepared by metal-organic chemical-vapor deposition using a solid delivery system

    CERN Document Server

    Shin, J C; Hwang, C S; Kim, H J; Lee, J M

    1999-01-01

    Pb(Zr, Ti)O sub 3 (PZT) thin films were deposited on Pt/SiO sub 2 /Si substrates by metal-organic chemical-vapor deposition technique using a solid delivery system to improve the reproducibility of the deposition. The self-regulation mechanism, controlling the Pb-content of the film, was observed to work above a substrate temperature of 620 .deg. C. Even with the self-regulation mechanism, PZT films having low leakage current were obtained only when the molar mixing ratio of the input precursors was 1

  1. Fabrication of 100 A class, 1 m long coated conductor tapes by metal organic chemical vapor deposition and pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V.; Lee, H.G.; Li, Y.; Xiong, X.; Qiao, Y.; Reeves, J.; Xie, Y.; Knoll, A.; Lenseth, K

    2003-10-15

    SuperPower has been scaling up YBa{sub 2}Cu{sub 3}O{sub x}-based second-generation superconducting tapes by techniques such as pulsed laser deposition (PLD) using industrial laser and metal organic chemical vapor deposition (MOCVD). Both techniques offer advantage of high deposition rates, which is important for high throughput. Using highly-polished substrates produced in a reel-to-reel polishing facility and buffer layers deposited in a pilot ion beam assisted deposition facility, meter-long second-generation high temperature superconductor tapes have been produced. 100 A class, meter-long coated conductor tapes have been reproducibly demonstrated in this work by both MOCVD and PLD. The best results to date are 148 A over 1.06 m by MOCVD and 135 A over 1.1 m by PLD using industrial laser.

  2. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  3. Influence of the interface on growth rates in AlN/GaN short period superlattices via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Korakakis, D.

    2011-11-01

    AlN/GaN short period superlattices are well suited for a number of applications including, but not limited to, digital alloys, intersubband devices, and emitters. In this work, AlN/GaN superlattices with periodicities ranging from 10 to 20 Å have been grown via metal organic vapor phase epitaxy in order to investigate the influence of the interface on the binary alloy growth rates. The GaN growth rate at the interface was observed to decrease with increasing GaN thickness while the AlN growth rate remained constant. This has been attributed to a decrease in the decomposition rate of GaN at the hetero-interface as seen in other III-V hetero-structures.

  4. Surfactant effects of indium on cracking in AlN/GaN distributed Bragg reflectors grown via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Miller, C. M.; Korakakis, D.

    2011-01-01

    Aluminum Nitride (AlN) and Gallium Nitride (GaN) superlattice structures are often characterized by a network of cracks resulting from the large lattice mismatch and difference in thermal expansion coefficients, especially as the thickness of the layers increases. This work investigates the influence of indium as a surfactant on strain and cracking in AlN/GaN DBRs grown via Metal Organic Vapor Phase Epitaxy (MOVPE). DBRs with peak reflectivities ranging from 465 nm to 540 nm were grown and indium was introduced during the growth of the AlN layer. Image processing techniques were used to quantify the crack length per square millimeter and it was observed that indium has a significant effect on the crack formation and reduced the total crack length in these structures by a factor of two.

  5. A Strategy to Design High-Density Nanoscale Devices utilizing Vapor Deposition of Metal Halide Perovskite Materials.

    Science.gov (United States)

    Hwang, Bohee; Lee, Jang-Sik

    2017-08-01

    The demand for high memory density has increased due to increasing needs of information storage, such as big data processing and the Internet of Things. Organic-inorganic perovskite materials that show nonvolatile resistive switching memory properties have potential applications as the resistive switching layer for next-generation memory devices, but, for practical applications, these materials should be utilized in high-density data-storage devices. Here, nanoscale memory devices are fabricated by sequential vapor deposition of organolead halide perovskite (OHP) CH 3 NH 3 PbI 3 layers on wafers perforated with 250 nm via-holes. These devices have bipolar resistive switching properties, and show low-voltage operation, fast switching speed (200 ns), good endurance, and data-retention time >10 5 s. Moreover, the use of sequential vapor deposition is extended to deposit CH 3 NH 3 PbI 3 as the memory element in a cross-point array structure. This method to fabricate high-density memory devices could be used for memory cells that occupy large areas, and to overcome the scaling limit of existing methods; it also presents a way to use OHPs to increase memory storage capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Low temperature synthesis of Zn nanowires by physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Philipp; Kast, Michael; Brueckl, Hubert [Austrian Research Centers GmbH ARC, Nano- Systemtechnologies, Donau-City-Strasse 1, A-1220 Wien (Austria)

    2007-07-01

    We demonstrate catalytic growth of zinc nanowires by physical vapor deposition at modest temperatures of 125-175 C on various substrates. In contrast to conventional approaches using tube furnaces our home-built growth system allows to control the vapor sources and the substrate temperature separately. The silicon substrates were sputter coated with a thin gold layer as metal catalyst. The samples were heated to the growth temperature and subsequently exposed to the zinc vapor at high vacuum conditions. The work pressure was adjusted by the partial pressure of oxygen or argon flow gas. Scanning electron microscopy and atomic force microscopy characterizations revealed that the nanowires exhibit straight, uniform morphology and have diameters in the range of 50-350 nm and lengths up to 70 {mu}m. The Zn nanowires grow independently of the substrates crystal orientation via a catalytic vapor-solid growth mechanism. Since no nanowire formation was observed without gold coating, we expect that the onedimensional growth is initiated by a surface reactive Au seed. ZnO nanowires can be produced in the same preparation chamber by oxidation at 500 C in 1atm (80% Ar, 20% O{sub 2}) for 1 hour. ZnO is highly attractive for sensor applications.

  7. LIGO vacuum system study

    Science.gov (United States)

    Livas, Jeffrey C.; Moore, Boude C.

    1988-01-01

    A laser interferometer gravitational wave observatory (LIGO) is being developed with sensitivities which will have a high probability of detecting gravitational waves from astrophysical sources. A major component of LIGO is a total of 16 km of 1.2 m (48 inch) diameter tube at a pressure of less than 10 to the minus 8th power torr. It will be of 304L stainless steel procured directly from the steel mills with the initial hydrogen content specially reduced. Projections of the outgassing rates of hydrogen and of water vapor as a function of time are given and the uncertainties discussed. Based on these, a preliminary analysis of the vacuum system is presented.

  8. Vapor Responsive One-Dimensional Photonic Crystals from Zeolite Nanoparticles and Metal Oxide Films for Optical Sensing

    Directory of Open Access Journals (Sweden)

    Katerina Lazarova

    2014-07-01

    Full Text Available The preparation of responsive multilayered structures with quarter-wave design based on layer-by-layer deposition of sol-gel derived Nb2O5 films and spin-coated MEL type zeolite is demonstrated. The refractive indices (n and thicknesses (d of the layers are determined using non-linear curve fitting of the measured reflectance spectra. Besides, the surface and cross-sectional features of the multilayered structures are characterized by scanning electron microscopy (SEM. The quasi-omnidirectional photonic band for the multilayered structures is predicted theoretically, and confirmed experimentally by reflectance measurements at oblique incidence with polarized light. The sensing properties of the multilayered structures toward acetone are studied by measuring transmittance spectra prior and after vapor exposure. Furthermore, the potential of the one-dimensional photonic crystals based on the multilayered structure consisting of Nb2O5 and MEL type zeolite as a chemical sensor with optical read-out is discussed.

  9. Vapor Responsive One-Dimensional Photonic Crystals from Zeolite Nanoparticles and Metal Oxide Films for Optical Sensing

    Science.gov (United States)

    Lazarova, Katerina; Awala, Hussein; Thomas, Sebastien; Vasileva, Marina; Mintova, Svetlana; Babeva, Tsvetanka

    2014-01-01

    The preparation of responsive multilayered structures with quarter-wave design based on layer-by-layer deposition of sol-gel derived Nb2O5 films and spin-coated MEL type zeolite is demonstrated. The refractive indices (n) and thicknesses (d) of the layers are determined using non-linear curve fitting of the measured reflectance spectra. Besides, the surface and cross-sectional features of the multilayered structures are characterized by scanning electron microscopy (SEM). The quasi-omnidirectional photonic band for the multilayered structures is predicted theoretically, and confirmed experimentally by reflectance measurements at oblique incidence with polarized light. The sensing properties of the multilayered structures toward acetone are studied by measuring transmittance spectra prior and after vapor exposure. Furthermore, the potential of the one-dimensional photonic crystals based on the multilayered structure consisting of Nb2O5 and MEL type zeolite as a chemical sensor with optical read-out is discussed. PMID:25010695

  10. Epitaxial growth of CdTe thin film on cube-textured Ni by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Gaire, C.; Rao, S.; Riley, M.; Chen, L.; Goyal, A.; Lee, S.; Bhat, I.; Lu, T.-M.; Wang, G.-C.

    2012-01-01

    Single crystal-like CdTe thin film has been grown by metalorganic chemical vapor deposition on cube-textured Ni(100) substrate. Using X-ray pole figure measurements we observed the epitaxial relationship of {111} CdTe //{001} Ni with [11 ¯ 0] CdTe //[010] Ni and [112 ¯ ] CdTe //[100] Ni . The 12 diffraction peaks in the (111) pole figure of CdTe film and their relative positions with respect to the four peak positions in the (111) pole figure of Ni substrate are consistent with four equivalent orientational domains of CdTe with three to four superlattice match of about 1.6% in the [11 ¯ 0] direction of CdTe and the [010] direction of Ni. The electron backscattered diffraction images show that the CdTe domains are 30° oriented from each other. These high structural quality films may find applications in low cost optoelectronic devices.

  11. Measuring probe and method for determining the oxygen content in gases, vapors, and liquids, especially in liquid metals

    International Nuclear Information System (INIS)

    Sundermann, H.; Andrae, U.

    1978-01-01

    The invention is concerned with the improvement of the measuring probe described in the main patent no. 1798002 with which the oxygen content in liquid metals, e.g. Na, is to be determined. In order to avoid the glass stopper shutting off the reference space having to be ground out it is proposed to connect the solid electrolyte firmly and hermetically with a metallic mounting support (e.g. Fe-Co-Ni alloy), having got the same thermal coefficient of expansion as the solid electrolyte (e.g. zirconium dioxide stabilized with ythium oxide or thorium dioxide). Further details of the design are very explicitly described. (HP) [de

  12. Portable life support system regenerative carbon dioxide and water vapor removal by metal oxide absorbents preprototype hardware development and testing

    Science.gov (United States)

    Hart, Joan M.; Borghese, Joseph B.; Chang, Craig H.; Cusick, Robert J.

    1992-01-01

    NASA-Johnson has acquired a preprototype/full-scale metal oxide CO2 and humidity remover (MOCHR), together with its regeneration module. Tests conducted prior to delivery by the MOCHR's manufacturer have demonstrated the concurrent removal of H2O and CO2 at rates, and under conditions, that are applicable to EVA Portable Life Support Systems.

  13. Growth of InGaAs nanowires on Ge(111) by selective-area metal-organic vapor-phase epitaxy

    Science.gov (United States)

    Yoshida, Akinobu; Tomioka, Katsuhiro; Ishizaka, Fumiya; Motohisa, Junichi

    2017-04-01

    We report the growth of InGaAs nanowires (NWs) on Ge(111) substrates using selective-area metal-organic vapor-phase epitaxy (SA-MOVPE) for novel InGaAs/Ge hybrid complementary metal-oxide-semiconductor (CMOS) applications. Ge(111) substrates with periodic arrays of mask opening were prepared, and InGaAs was selectively grown on the opening region of Ge(111). A uniform array of InGaAs NWs with a diameter around 100 nm was successfully grown using appropriate preparation of the initial surfaces with an AsH3 thermal treatment and flow-rate modulation epitaxy (FME). We found that optimizing partial pressure of AsH3 and the number of FME cycles improved the yield of vertical InGaAs NWs. Line-scan profile analysis of energy dispersive X-ray (EDX) spectrometry showed that the In composition in the InGaAs NW was almost constant from the bottom to the top. Transmission electron microscope (TEM) analysis revealed that the interface between InGaAs NW and Ge had misfit dislocations, but their distance was longer than that expected from the difference in their lattice constants.

  14. Compact vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  15. Ultra high vacuum seal arrangement

    Science.gov (United States)

    Flaherty, Robert

    1981-01-01

    Arrangement for demountably sealing two concentric metallic tubes in an ultra high vacuum system which facilitates remote actuation. A tubular seal includes integral spaced lips which circumferentially engage the metallic tubes. The lips plastically deform the metallic tubes by mechanical forces resulting from a martensite to austenite transformation of the tubular seal upon application of a predetermined temperature. The sealing force is released upon application of another temperature which causes a transformation from the stronger austenite to the weaker martensite. Use of a dual acting sealing ring and driving ring circumferentially contacting the sealing ring is particularly applicable to sealing larger diameter concentric metallic members.

  16. Catalytic Upgrading of Biomass Fast Pyrolysis Vapors with Nano Metal Oxides: An Analytical Py-GC/MS Study

    Directory of Open Access Journals (Sweden)

    Qiang Lu

    2010-11-01

    Full Text Available Fast pyrolysis of poplar wood followed with catalytic cracking of the pyrolysis vapors was performed using analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS. The catalysts applied in this study were nano MgO, CaO, TiO2, Fe2O3, NiO and ZnO. These catalysts displayed different catalytic capabilities towards the pyrolytic products. The catalysis by CaO significantly reduced the levels of phenols and anhydrosugars, and eliminated the acids, while it increased the formation of cyclopentanones, hydrocarbons and several light compounds. ZnO was a mild catalyst, as it only slightly altered the pyrolytic products. The other four catalysts all decreased the linear aldehydes dramatically, while the increased the ketones and cyclopentanones. They also reduced the anhydrosugars, except for NiO. Moreover, the catalysis by Fe2O3 resulted in the formation of various hydrocarbons. However, none of these catalysts except CaO were able to greatly reduce the acids.

  17. Epitaxial growth of CdTe thin film on cube-textured Ni by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gaire, C. [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590 (United States); Rao, S. [Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590 (United States); Riley, M. [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590 (United States); Chen, L. [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590 (United States); Goyal, A. [Oak Ridge National Lab, Oak ridge, TN, 37831-6116 (United States); Lee, S. [US Army ARDEC Benet Labs, Watervliet, NY, 12189-4050 (United States); Bhat, I. [Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590 (United States); Lu, T.-M. [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590 (United States); Wang, G.-C., E-mail: wangg@rpi.edu [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590 (United States)

    2012-01-01

    Single crystal-like CdTe thin film has been grown by metalorganic chemical vapor deposition on cube-textured Ni(100) substrate. Using X-ray pole figure measurements we observed the epitaxial relationship of {l_brace}111{r_brace}{sub CdTe}//{l_brace}001{r_brace}{sub Ni} with [11{sup Macron }0]{sub CdTe}//[010]{sub Ni} and [112{sup Macron }] {sub CdTe}//[100]{sub Ni}. The 12 diffraction peaks in the (111) pole figure of CdTe film and their relative positions with respect to the four peak positions in the (111) pole figure of Ni substrate are consistent with four equivalent orientational domains of CdTe with three to four superlattice match of about 1.6% in the [11{sup Macron }0] direction of CdTe and the [010] direction of Ni. The electron backscattered diffraction images show that the CdTe domains are 30 Degree-Sign oriented from each other. These high structural quality films may find applications in low cost optoelectronic devices.

  18. Chemical vapor deposition and Van der Waals epitaxy for wafer-scale emerging 2D transition metal di-chalcogenides

    OpenAIRE

    Huang, Chung-Che; Aspiotis, Nikolaos; Cui, Qingsong; Alzaidy, Ghadah; Weatherby, Ed; Craig, Chris; Morgan, Katrina; Zeimpekis, Ioannis; Hewak, Daniel

    2017-01-01

    Transition metal di-chalcogenides (TMDCs) such as MoS2, MoSe2, WS2 and WSe2 have become promising complimentary materials to graphene sharing many of its attributes. They may however offer properties that are unattainable in graphene, in particular TMDCs offer a bandgap tunable through both composition and number of layers. This has led to use of TMDCs in applications such as transistors, photodetectors, electroluminescent and bio-sensing devices. The current challenge in this emerging resear...

  19. Seedless Growth of Bismuth Nanowire Array via Vacuum Thermal Evaporation

    Science.gov (United States)

    Liu, Mingzhao; Nam, Chang-Yong; Zhang, Lihua

    2015-01-01

    Here a seedless and template-free technique is demonstrated to scalably grow bismuth nanowires, through thermal evaporation in high vacuum at RT. Conventionally reserved for the fabrication of metal thin films, thermal evaporation deposits bismuth into an array of vertical single crystalline nanowires over a flat thin film of vanadium held at RT, which is freshly deposited by magnetron sputtering or thermal evaporation. By controlling the temperature of the growth substrate the length and width of the nanowires can be tuned over a wide range. Responsible for this novel technique is a previously unknown nanowire growth mechanism that roots in the mild porosity of the vanadium thin film. Infiltrated into the vanadium pores, the bismuth domains (~ 1 nm) carry excessive surface energy that suppresses their melting point and continuously expels them out of the vanadium matrix to form nanowires. This discovery demonstrates the feasibility of scalable vapor phase synthesis of high purity nanomaterials without using any catalysts. PMID:26709727

  20. Comparison of metal oxide absorbents for regenerative carbon dioxide and water vapor removal for advanced portable life support systems

    Science.gov (United States)

    Stonesifer, Greg T.; Chang, Craig H.; Cusick, Robert J.; Hart, Joan M.

    1991-01-01

    Metal-oxide absorbents (MOAs) have a demonstrated capability for removal of both metabolic CO2 and H2O from breathing atmospheres, simplifying portable life support system (PLSS) design and affording reversible operation for regeneration. Attention is presently given to the comparative performance levels obtained by silver-oxide-based and silver/zinc-oxide-based systems, which also proved to be longer-lasting than the silver oxide-absorber system. The silver/zinc system is found to substantially simplify the ventilation loop of a prospective Space Station Freedom PLSS.

  1. Vacuum microelectronics

    International Nuclear Information System (INIS)

    Grayer, G.H.

    1990-10-01

    The last few years have seen references in scientific and economic literature to research and development taking place on ''vacuum microelectronics'', but few in the particle physics community seem to know more than these brief, second hand reports, mostly written for a non-scientific readership. The interest of these devices for the particle physics community is obvious when it is realised that one of the driving forces for this research and development is the military need for electronic components which can withstand very high doses of radiation. The author therefore arranged to visit one of the centres of research on these components, and the information obtained there formed the principle source material for this summary. (author)

  2. Porphyrins as Templates for Site-Selective Atomic Layer Deposition: Vapor Metalation and in Situ Monitoring of Island Growth

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Jason R.; Emery, Jonathan D.; Pellin, Michael J.; Martinson, Alex B. F.; Farha, Omar K.; Hupp, Joseph T.

    2016-08-10

    Examinations of enzymatic catalysts suggest one key to efficient catalytic activity is discrete size metallo clusters. Mimicking enzymatic cluster systems is synthetically challenging because conventional solution methods are prone to aggregation or require capping of the cluster, thereby limiting its catalytic activity. We introduce site-selective atomic layer deposition (ALD) on porphyrins as an alternative approach to grow isolated metal oxide islands that are spatially separated. Surface-bound tetra-acid free base porphyrins (H2TCPP) may be metalated with Mn using conventional ALD precursor exposure to induce homogeneous hydroxide synthetic handles which acts as a nucleation point for subsequent ALD MnO island growth. Analytical fitting of in situ QCM mass uptake reveals island growth to be hemispherical with a convergence radius of 1.74 nm. This growth mode is confirmed with synchrotron grazing-incidence small-angle X-ray scattering (GISAXS) measurements. Finally, we extend this approach to other ALD chemistries to demonstrate the generality of this route to discrete metallo island materials.

  3. Technical specification for vacuum systems

    International Nuclear Information System (INIS)

    Khaw, J.

    1987-01-01

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10 -5 to 10 -11 Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing and designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components

  4. Technical specification for vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Khaw, J. (ed.)

    1987-01-01

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10/sup -5/ to 10/sup -11/ Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing and designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components. (LEW)

  5. Self-Catalyzed Growth of Vertical GaSb Nanowires on InAs Stems by Metal-Organic Chemical Vapor Deposition

    Science.gov (United States)

    Ji, Xianghai; Yang, Xiaoguang; Yang, Tao

    2017-06-01

    We report the first self-catalyzed growth of high-quality GaSb nanowires on InAs stems using metal-organic chemical vapor deposition (MOCVD) on Si (111) substrates. To achieve the growth of vertical InAs/GaSb heterostructure nanowires, the two-step flow rates of the trimethylgallium (TMGa) and trimethylantimony (TMSb) are used. We first use relatively low TMGa and TMSb flow rates to preserve the Ga droplets on the thin InAs stems. Then, the flow rates of TMGa and TMSb are increased to enhance the axial growth rate. Because of the slower radial growth rate of GaSb at higher growth temperature, GaSb nanowires grown at 500 °C exhibit larger diameters than those grown at 520 °C. However, with respect to the axial growth, due to the Gibbs-Thomson effect and the reduction in the droplet supersaturation with increasing growth temperature, GaSb nanowires grown at 500 °C are longer than those grown at 520 °C. Detailed transmission electron microscopy (TEM) analyses reveal that the GaSb nanowires have a perfect zinc-blende (ZB) crystal structure. The growth method presented here may be suitable for other antimonide nanowire growth, and the axial InAs/GaSb heterostructure nanowires may have strong potential for use in the fabrication of novel nanowire-based devices and in the study of fundamental quantum physics.

  6. Structural, electrical and optical properties of indium tin oxide thin film grown by metal organic chemical vapor deposition with tetramethyltin-precursor

    Science.gov (United States)

    Zhuo, Yi; Chen, Zimin; Tu, Wenbin; Ma, Xuejin; Wang, Gang

    2018-01-01

    Tin-doped indium oxide (ITO) is grown by metal organic chemical vapor deposition (MOCVD) using tetramethyltin (TDMASn) as tin precursor. The as-grown ITO films are polycrystalline with (111) and (100) textures. A gradual transition of crystallographic orientation from (111) preferred to (100) preferred is observed as the composition of tin changes. By precisely controlling the Sn doping, the ITO thin films present promising optical and electrical performances at either near-infrared-visible or visible-near-ultraviolet ranges. At low Sn doping level, the as-grown ITO possesses high electron mobility of 48.8 cm2 V‑1 s‑1, which results in high near-infrared transmittance and low resistivity. At higher Sn doping level, high carrier concentration (8.9 × 1020 cm‑3) and low resistivity (3 × 10‑4 Ω cm) are achieved. The transmittance is 97.8, 99.1, and 82.3% at the wavelength of 550, 365, and 320 nm, respectively. The results strongly suggest that MOCVD with TDMASn as tin precursor is an effective method to fabricate high quality ITO thin film for near-infrared, visible light, and near-ultraviolet application.

  7. High growth rate GaN on 200 mm silicon by metal-organic vapor phase epitaxy for high electron mobility transistors

    Science.gov (United States)

    Charles, M.; Baines, Y.; Bavard, A.; Bouveyron, R.

    2018-02-01

    It is increasingly important to reduce the cycle time of epitaxial growth, in order to reduce the costs of device fabrication, especially for GaN based structures which typically have growth cycles of several hours. We have performed a comprehensive study using metal-organic vapor phase epitaxy (MOVPE) investigating the effects of changing GaN growth rates from 0.9 to 14.5 μm/h. Although there is no significant effect on the strain incorporated in the layers, we have seen changes in the surface morphology which can be related to the change in dislocation behaviour and surface diffusion effects. At the small scale, as seen by AFM, increased dislocation density for higher growth rates leads to increased pinning of growth terraces, resulting in more closely spaced terraces. At a larger scale of hundreds of μm observed by optical profiling, we have related the formation of grains to the rate of surface diffusion of adatoms using a random walk model, implying diffusion distances from 30 μm for the highest growth rates up to 100 μm for the lowest. The increased growth rate also increases the intrinsic carbon incorporation which can increase the breakdown voltage of GaN films. Despite an increased threading dislocation density, these very high growth rates of 14.5 μm/hr by MOVPE have been shown to be appealing for reducing epitaxial growth cycle times and therefore costs in High Electron Mobility Transistor (HEMT) structures.

  8. Moisture-Stable Zn(II) Metal-Organic Framework as a Multifunctional Platform for Highly Efficient CO2 Capture and Nitro Pollutant Vapor Detection.

    Science.gov (United States)

    Chen, Di-Ming; Tian, Jia-Yue; Chen, Min; Liu, Chun-Sen; Du, Miao

    2016-07-20

    A moisture-stable three-dimensional (3D) metal-organic framework (MOF), {(Me2NH2)[Zn2(bpydb)2(ATZ)](DMA)(NMF)2}n (1, where bpydb = 4,4'-(4,4'-bipyridine-2,6-diyl)dibenzoate, ATZ = deprotonated 5-aminotetrazole, DMA = N,N-dimethylacetamide, and NMF = N-methylformamide), with uncoordinated N-donor sites and charged framework skeleton was fabricated. This MOF exhibits interesting structural dynamic upon CO2 sorption at 195 K and high CO2/N2 (127) and CO2/CH4 (131) sorption selectivity at 298 K and 1 bar. Particularly, its CO2/CH4 selectivity is among the highest MOFs for selective CO2 separation. The results of Grand Canonical Monte Carlo (GCMC) simulation indicate that the polar framework contributes to the strong framework-CO2 binding at zero loading, and the tetrazole pillar contributes to the high CO2 uptake capacity at high loading. Furthermore, the solvent-responsive luminescent properties of 1 indicate that it could be utilized as a fluorescent sensor to detect trace amounts of nitrobenzene in both solvent and vapor systems.

  9. High-resistivity unintentionally carbon-doped GaN layers with nitrogen as nucleation layer carrier gas grown by metal-organic chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Fu Chen

    2017-12-01

    Full Text Available In this letter, high-resistivity unintentionally carbon-doped GaN layers with sheet resistivity greater than 106 Ω/□ have been grown on c-plane sapphire substrates by metal-organic chemical vapor deposition (MOCVD. We have observed that the growth of GaN nucleation layers (NLs under N2 ambient leads to a large full width at half maximum (FWHM of (102 X-ray diffraction (XRD line in the rocking curve about 1576 arc sec. Unintentional carbon incorporation can be observed in the secondary ion mass spectroscopy (SIMS measurements. The results demonstrate the self-compensation mechanism is attributed to the increased density of edge-type threading dislocations and carbon impurities. The AlGaN/GaN HEMT grown on the high-resistivity GaN template has also been fabricated, exhibiting a maximum drain current of 478 mA/mm, a peak transconductance of 60.0 mS/mm, an ON/OFF ratio of 0.96×108 and a breakdown voltage of 621 V.

  10. Formation and characterization of the MgO protecting layer deposited by plasma-enhanced metal-organic chemical-vapor deposition

    CERN Document Server

    Kang, M S; Byun, J C; Kim, D S; Choi, C K; Lee, J Y; Kim, K H

    1999-01-01

    MgO films were prepared on Si(100) and soda-lime glass substrates by using plasma-enhanced metal-organic chemical-vapor deposition. Various ratios of the O sub 2 /CH sub 3 MgO sup t Bu gas mixture and various gas flow rates were tested for the film fabrications. Highly (100)-oriented MgO films with good crystallinity were obtained with a 10 sccm CH sub 3 MgO sup t Bu flow without an O sub 2 gas flow. About 5 % carbon was contained in all the MgO films. The refractive index and the secondary electron emission coefficient for the best quality film were 1.43 and 0.45, respectively. The sputtering rate was about 0.2 nm/min for 10 sup 1 sup 1 cm sup - sup 3 Ar sup + ion density. Annealing at 500 .deg. C in an Ar ambient promoted the grain size without inducing a phase transition.

  11. Fabrication of high-quality Y-Ba-Cu-O thin films by plasma-enhanced metal-organic chemical vapor deposition

    Science.gov (United States)

    Zhao, J.; Norris, P.

    The great versatility of plasma-enhanced metal-organic chemical vapor deposition (PE-MOCVD) in its application to the growth of high-quality YBa2Cu3O(7-x) (YBCO) has been demonstrated. Single-crystal epitaxial YBCO thin films with sharp superconducting transition temperatures above 89 K and critical current densities greater than 1 x 10(exp 6) A/sq cm at 77 K were formed in-situ by PE-MOCVD at a low substrate temperature of 670 C and a high oxygen partial pressure of 1 Torr. Our results reveal that high-quality YBCO thin films can be formed over an anomalously wide range of film compositions. The high degree of epitaxial crystallinity of the films was confirmed by Rutherford backscattering spectroscopy which gave a minimum channeling yield of 9%. High-resolution transmission electron microscopy revealed that the films grew epitaxially with the c axis normal to the substrate surface and atomically abrupt interface.

  12. Enhanced and uniform in-field performance in long (Gd, Y)-Ba-Cu-O tapes with zirconium doping fabricated by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Selvamanickam, V; Guevara, A; Zhang, Y; Kesgin, I; Xie, Y; Carota, G; Chen, Y; Dackow, J; Zhang, Y; Zuev, Y; Cantoni, C; Goyal, A; Coulter, J; Civale, L

    2010-01-01

    The influence of Zr doping in (Gd, Y)-Ba-Cu-O ((Gd, Y)BCO) tapes made by metal-organic chemical vapor deposition has been studied with a specific objective of uniform and reproducible enhancement in in-field critical current (I c ) over long lengths. 50 m long tapes with 7.5 and 10 at.% Zr doping in 1 μm thick (Gd, Y)BCO films have been found to exhibit a sharply enhanced peak in I c in the orientation of field parallel to the c-axis and retain 28% of their self-field I c value at 77 K and 1 T. BaZrO 3 (BZO) nanocolumn density in the cross-sectional microstructure was found to increase with increasing Zr addition. The end segments of the 50 m long tapes were found to display nearly identical angular dependence of critical current at 77 K and 1 T, indicative of the uniformity in in-field performance over this length. A 610 m long tape was fabricated with 10% Zr doping and a 130 m segment showed a 3.2% uniformity in critical current measured every meter in the orientation of B || c-axis. A retention factor of 36% of the zero-field I c value measured at 0.52 T over the 130 m is consistent with that obtained in short samples.

  13. Enhanced and uniform in-field performance in long (Gd, Y)-Ba-Cu-O tapes with zirconium doping fabricated by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V; Guevara, A; Zhang, Y; Kesgin, I [Texas Center for Superconductivity and Department of Mechanical Engineering, University of Houston, Houston, TX 77059 (United States); Xie, Y; Carota, G; Chen, Y; Dackow, J [SuperPower Incorporated, 450 Duane Avenue Schenectady, NY 12304 (United States); Zhang, Y; Zuev, Y; Cantoni, C; Goyal, A [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Coulter, J; Civale, L [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-01-15

    The influence of Zr doping in (Gd, Y)-Ba-Cu-O ((Gd, Y)BCO) tapes made by metal-organic chemical vapor deposition has been studied with a specific objective of uniform and reproducible enhancement in in-field critical current (I{sub c}) over long lengths. 50 m long tapes with 7.5 and 10 at.% Zr doping in 1 {mu}m thick (Gd, Y)BCO films have been found to exhibit a sharply enhanced peak in I{sub c} in the orientation of field parallel to the c-axis and retain 28% of their self-field I{sub c} value at 77 K and 1 T. BaZrO{sub 3} (BZO) nanocolumn density in the cross-sectional microstructure was found to increase with increasing Zr addition. The end segments of the 50 m long tapes were found to display nearly identical angular dependence of critical current at 77 K and 1 T, indicative of the uniformity in in-field performance over this length. A 610 m long tape was fabricated with 10% Zr doping and a 130 m segment showed a 3.2% uniformity in critical current measured every meter in the orientation of B || c-axis. A retention factor of 36% of the zero-field I{sub c} value measured at 0.52 T over the 130 m is consistent with that obtained in short samples.

  14. Influence of Zr and Ce doping on electromagnetic properties of (Gd,Y)-Ba-Cu-O superconducting tapes fabricated by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Chen, Y.; Xie, J.; Zhang, Y.; Guevara, A.; Kesgin, I.; Majkic, G.; Martchevsky, M.

    2009-01-01

    (Gd,Y)Ba 2 Cu 3 O x tapes have been fabricated by metal organic chemical vapor deposition (MOCVD) with Zr-doping levels of 0-15 mol.% and Ce doping levels of 0-10 mol.% in 0.4 μm thick films. The critical current density (J c ) of Zr-doped samples at 77 K, 1 T applied in the orientation of H -parallel c is found to increase with Zr content and shows a maximum at 7.5% Zr doping. The 7.5% Zr-doped sample exhibits a critical current density (J c ) of 0.95 MA/cm 2 at H -parallel c which is more than 70% higher than the J c of the undoped sample. The peak in J c at H -parallel c is 83% of that at H -parallel a-b in the 7.5% Zr-doped sample which is more than twice as that in the undoped sample. Superconducting transition temperature (T c ) values as high as about 89 K have been achieved in samples even with 15% Zr and 10% Ce. Ce-doped samples with and without Ba compensation are found to exhibit substantially different J c values as well as angular dependence characteristics.

  15. Enhanced and Uniform in-Field Performance in Long (Gd,Y)-Ba-Cu-O Tapes with Zirconium Doping Fabricated by Metal Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Guevara, A. [University of Houston, Houston; Zhang, Y. [University of Houston, Houston; Kesign, I. [University of Houston, Houston; Xie, Y. Y. [SuperPower Incorporated, Schenectady, New York; Carota, G. [SuperPower Incorporated, Schenectady, New York; Chen, Y. [SuperPower Incorporated, Schenectady, New York; Dackow, J. [SuperPower Incorporated, Schenectady, New York; Zhang, Yifei [ORNL; Zuev, Yuri L [ORNL; Cantoni, Claudia [ORNL; Goyal, Amit [ORNL; Coulter, J. [Los Alamos National Laboratory (LANL); Civale, L. [Los Alamos National Laboratory (LANL)

    2010-01-01

    The influence of Zr doping in (Gd, Y)-Ba-Cu-O ((Gd, Y)BCO) tapes made by metal-organic chemical vapor deposition has been studied with a specific objective of uniform and reproducible enhancement in in-field critical current (I{sub c}) over long lengths. 50 m long tapes with 7.5 and 10 at.% Zr doping in 1 {mu}m thick (Gd, Y)BCO films have been found to exhibit a sharply enhanced peak in I{sub c} in the orientation of field parallel to the c-axis and retain 28% of their self-field I{sub c} value at 77 K and 1 T. BaZrO{sub 3} (BZO) nanocolumn density in the cross-sectional microstructure was found to increase with increasing Zr addition. The end segments of the 50 m long tapes were found to display nearly identical angular dependence of critical current at 77 K and 1 T, indicative of the uniformity in in-field performance over this length. A 610 m long tape was fabricated with 10% Zr doping and a 130 m segment showed a 3.2% uniformity in critical current measured every meter in the orientation of {beta} {parallel} c-axis. A retention factor of 36% of the zero-field I{sub c} value measured at 0.52 T over the 130 m is consistent with that obtained in short samples.

  16. Influence of Zr and Ce doping on electromagnetic properties of (Gd,Y)-Ba-Cu-O superconducting tapes fabricated by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V., E-mail: selva@uh.ed [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Rd., Houston, TX 77204-4006 (United States); Chen, Y.; Xie, J. [SuperPower Inc., 450 Duane Ave., Schenectady, NY 12304 (United States); Zhang, Y.; Guevara, A.; Kesgin, I.; Majkic, G. [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Rd., Houston, TX 77204-4006 (United States); Martchevsky, M. [SuperPower Inc., 450 Duane Ave., Schenectady, NY 12304 (United States)

    2009-12-01

    (Gd,Y)Ba{sub 2}Cu{sub 3}O{sub x} tapes have been fabricated by metal organic chemical vapor deposition (MOCVD) with Zr-doping levels of 0-15 mol.% and Ce doping levels of 0-10 mol.% in 0.4 mum thick films. The critical current density (J{sub c}) of Zr-doped samples at 77 K, 1 T applied in the orientation of H -parallel c is found to increase with Zr content and shows a maximum at 7.5% Zr doping. The 7.5% Zr-doped sample exhibits a critical current density (J{sub c}) of 0.95 MA/cm{sup 2} at H -parallel c which is more than 70% higher than the J{sub c} of the undoped sample. The peak in J{sub c} at H -parallel c is 83% of that at H -parallel a-b in the 7.5% Zr-doped sample which is more than twice as that in the undoped sample. Superconducting transition temperature (T{sub c}) values as high as about 89 K have been achieved in samples even with 15% Zr and 10% Ce. Ce-doped samples with and without Ba compensation are found to exhibit substantially different J{sub c} values as well as angular dependence characteristics.

  17. The Structural Evolution of (Gd, Y)Ba2Cu3Ox Tapes With Zr Addition Made by Metal Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lei, CH; Galstyan, E; Chen, YM; Shi, T; Liu, YH; Khatri, N; Liu, JF; Xiong, XM; Majkic, G; Selvamanickam, V

    2013-06-01

    Structural analysis of (Gd, Y) Ba2Cu3Ox tapes with Zr addition made by metal organic chemical vapor deposition has been conducted with transmission electron microscopy and X-ray diffraction. Zr content in the films was varied from 0 to 25% in the precursor. In all Zr-doped films, self-assembled nanocolumnar structures of BaZrO3 (BZO) were observed along the c-axis. The amount of BaZrO3 was found to increase steadily with Zr content. Additionally, planar BZO plates were found on the (001) plane of (Gd, Y) Ba2Cu3Ox film. The size and thickness of BZO plates were seen to increase with Zr doping level. Rare-earth copper oxide phases were observed to begin to emerge in the 20% Zr-doped film. Cross-sectional study of the interface between (Gd, Y)Ba2Cu3Ox and LaMnO3 cap layer revealed a thin discrete BZO layer on the LaMnO3 in the 20% Zr doped film.

  18. Catalyst-free selective-area epitaxy of GaAs nanowires by metal-organic chemical vapor deposition using triethylgallium

    Science.gov (United States)

    Kim, Hyunseok; Ren, Dingkun; Farrell, Alan C.; Huffaker, Diana L.

    2018-02-01

    We demonstrate catalyst-free growth of GaAs nanowires by selective-area metal-organic chemical vapor deposition (MOCVD) on GaAs and silicon substrates using a triethylgallium (TEGa) precursor. Two-temperature growth of GaAs nanowires—nucleation at low temperature followed by nanowire elongation at high temperature—almost completely suppresses the radial overgrowth of nanowires on GaAs substrates while exhibiting a vertical growth yield of almost 100%. A 100% growth yield is also achieved on silicon substrates by terminating Si(111) surfaces by arsenic prior to the nanowire growth and optimizing the growth temperature. Compared with trimethylgallium (TMGa) which has been exclusively employed in the vapor–solid phase growth of GaAs nanowires by MOCVD, the proposed growth technique using TEGa is advantageous because of lower growth temperature and fully suppressed radial overgrowth. It is also known that GaAs grown by TEGa induce less impurity incorporation compared with TMGa, and therefore the proposed method could be a building block for GaAs nanowire-based high-performance optoelectronic and nanoelectronic devices on both III–V and silicon platforms.

  19. High-resistivity unintentionally carbon-doped GaN layers with nitrogen as nucleation layer carrier gas grown by metal-organic chemical vapor deposition

    Science.gov (United States)

    Chen, Fu; Sun, Shichuang; Deng, Xuguang; Fu, Kai; Yu, Guohao; Song, Liang; Hao, Ronghui; Fan, Yaming; Cai, Yong; Zhang, Baoshun

    2017-12-01

    In this letter, high-resistivity unintentionally carbon-doped GaN layers with sheet resistivity greater than 106 Ω/□ have been grown on c-plane sapphire substrates by metal-organic chemical vapor deposition (MOCVD). We have observed that the growth of GaN nucleation layers (NLs) under N2 ambient leads to a large full width at half maximum (FWHM) of (102) X-ray diffraction (XRD) line in the rocking curve about 1576 arc sec. Unintentional carbon incorporation can be observed in the secondary ion mass spectroscopy (SIMS) measurements. The results demonstrate the self-compensation mechanism is attributed to the increased density of edge-type threading dislocations and carbon impurities. The AlGaN/GaN HEMT grown on the high-resistivity GaN template has also been fabricated, exhibiting a maximum drain current of 478 mA/mm, a peak transconductance of 60.0 mS/mm, an ON/OFF ratio of 0.96×108 and a breakdown voltage of 621 V.

  20. Influence of incoherent twin boundaries on the electrical properties of β-Ga2O3 layers homoepitaxially grown by metal-organic vapor phase epitaxy

    Science.gov (United States)

    Fiedler, A.; Schewski, R.; Baldini, M.; Galazka, Z.; Wagner, G.; Albrecht, M.; Irmscher, K.

    2017-10-01

    We present a quantitative model that addresses the influence of incoherent twin boundaries on the electrical properties in β-Ga2O3. This model can explain the mobility collapse below a threshold electron concentration of 1 × 1018 cm-3 as well as partly the low doping efficiency in β-Ga2O3 layers grown homoepitaxially by metal-organic vapor phase epitaxy on (100) substrates of only slight off-orientation. A structural analysis by transmission electron microscopy (TEM) reveals a high density of twin lamellae in these layers. In contrast to the coherent twin boundaries parallel to the (100) plane, the lateral incoherent twin boundaries exhibit one dangling bond per unit cell that acts as an acceptor-like electron trap. Since the twin lamellae are thin, we consider the incoherent twin boundaries to be line defects with a density of 1011-1012 cm-2 as determined by TEM. We estimate the influence of the incoherent twin boundaries on the electrical transport properties by adapting Read's model of charged dislocations. Our calculations quantitatively confirm that the mobility reduction and collapse as well as partly the compensation are due to the presence of twin lamellae.

  1. In-situ wafer bowing measurements of GaN grown on Si (111) substrate by reflectivity mapping in metal organic chemical vapor deposition system

    International Nuclear Information System (INIS)

    Yang Yi-Bin; Liu Ming-Gang; Chen Wei-Jie; Han Xiao-Biao; Chen Jie; Lin Xiu-Qi; Lin Jia-Li; Luo Hui; Liao Qiang; Zang Wen-Jie; Chen Yin-Song; Qiu Yun-Ling; Wu Zhi-Sheng; Liu Yang; Zhang Bai-Jun

    2015-01-01

    In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2″ Thomas Swan close coupled showerhead metal organic chemical vapor deposition (MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses (tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, GaN grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded AlGaN buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method. (paper)

  2. A review of theoretical study of graphene chemical vapor deposition synthesis on metals: nucleation, growth, and the role of hydrogen and oxygen

    Science.gov (United States)

    Rezwan Habib, Mohammad; Liang, Tao; Yu, Xuegong; Pi, Xiaodong; Liu, Yingchun; Xu, Mingsheng

    2018-03-01

    Graphene has attracted intense research interest due to its extraordinary properties and great application potential. Various methods have been proposed for the synthesis of graphene, among which chemical vapor deposition has drawn a great deal of attention for synthesizing large-area and high-quality graphene. Theoretical understanding of the synthesis mechanism is crucial for optimizing the experimental design for desired graphene production. In this review, we discuss the three fundamental steps of graphene synthesis in details, i.e. (1) decomposition of carbon feedstocks and formation of various active carbon species, (2) nucleation, and (3) attachment and extension. We provide a complete scenario of graphene synthesis on metal surfaces at atomistic level by means of density functional theory, molecular dynamics (MD), Monte Carlo (MC) and their combination and interface with other simulation methods such as quantum mechanical molecular dynamics, density functional tight binding molecular dynamics, and combination of MD and MC. We also address the latest investigation of the influences of the hydrogen and oxygen on the synthesis and the quality of the synthesized graphene.

  3. Doping characteristics of Si-doped n-GaN Epilayers grown by low-pressure metal-organic chemical-vapor deposition

    CERN Document Server

    Noh, S K; Park, S E; Lee, I H; Choi, I H; Son, S J; Lim, K Y; Lee, H J

    1998-01-01

    We studied doping behaviors through analysis of the electronic properties of a series of undoped and Si-doped GaN epilayers grown on (0001) sapphire substrates by the low-pressure metal-organic chemical-vapor deposition (LP-MOCVD) technique. The doping efficiency was in the range of 0.4 - 0.8, and an empirical relation expressed as eta = 0.45 log[Si] - 8.1 was obtained. The temperature dependence of carrier concentration showed that the donor activation energy monotonically decreased from 17.6 meV to almost zero as the doping level increased. We suggest that the reduction in the activation energy is related not to autodoped defect centers but to doped Si donors and that the behavior originates from the formation of an impurity band. On the basis of an abrupt change in the compensation ratio from 0.9 to 0.5 by Si-doping, an exceptional difference in the Hall mobility between the undoped and the Si-doped films is explained by a mixed conduction mechanism of electrons and holes.

  4. As-grown deep-level defects in n-GaN grown by metal-organic chemical vapor deposition on freestanding GaN

    International Nuclear Information System (INIS)

    Chen Shang; Ishikawa, Kenji; Hori, Masaru; Honda, Unhi; Shibata, Tatsunari; Matsumura, Toshiya; Tokuda, Yutaka; Ueda, Hiroyuki; Uesugi, Tsutomu; Kachi, Tetsu

    2012-01-01

    Traps of energy levels E c -0.26 and E c -0.61 eV have been identified as as-grown traps in n-GaN grown by metal-organic chemical vapor deposition by using deep level transient spectroscopy of the Schottky contacts fabricated by resistive evaporation. The additional traps of E c -0.13 and E c -0.65 eV have been observed in samples whose contacts are deposited by electron-beam evaporation. An increase in concentration of the E c -0.13 and E c -0.65 eV traps when approaching the interface between the contact and the GaN film supports our argument that these traps are induced by electron-beam irradiation. Conversely, the depth profiles of as-grown traps show different profiles between several samples with increased or uniform distribution in the near surface below 50 nm. Similar profiles are observed in GaN grown on a sapphire substrate. We conclude that the growth process causes these large concentrations of as-grown traps in the near-surface region. It is speculated that the finishing step in the growth process should be an essential issue in the investigation of the surface state of GaN.

  5. Vacuum/gas handling systems for ZTH

    International Nuclear Information System (INIS)

    Downing, J.N.

    1987-01-01

    The proposed ZTH vacuum system consists of three (potentially four or more) high-vacuum-pumping-stations (HVPSs), a gas handling system, a roughing system, and a vacuum control system. Each high vacuum line consists of a turbomolecular pump (TMP) pumping stack connected to the torus through a right-angle valve, a duct, and a 2 kV insulating break/bellows combination. The HVPSs are designed to be bakeable to at least 150 C. The gate seals on the high-vacuum valves are vision O-rings. Throughout the vacuum liner and high-vacuum pumping system, metal sealed joints are used where possible. Any O-ring seals, other than the gate seals, are a double-pumped configuration where a roughing vacuum is maintained between the O-rings. The insulating break eliminates ground loop currents, and the bellows mechanically decouples the pumping from the vacuum liner. This bellows section will accommodate the dimensional changes caused by heating the liner and/or the high-vacuum system

  6. Effect of AlN growth temperature on trap densities of in-situ metal-organic chemical vapor deposition grown AlN/AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors

    Directory of Open Access Journals (Sweden)

    Joseph J. Freedsman

    2012-06-01

    Full Text Available The trapping properties of in-situ metal-organic chemical vapor deposition (MOCVD grown AlN/AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors (MIS-HFETs with AlN layers grown at 600 and 700 °C has been quantitatively analyzed by frequency dependent parallel conductance technique. Both the devices exhibited two kinds of traps densities, due to AlN (DT-AlN and AlGaN layers (DT-AlGaN respectively. The MIS-HFET grown at 600 °C showed a minimum DT-AlN and DT-AlGaN of 1.1 x 1011 and 1.2 x 1010 cm-2eV-1 at energy levels (ET -0.47 and -0.36 eV. Further, the gate-lag measurements on these devices revealed less degradation ∼ ≤ 5% in drain current density (Ids-max. Meanwhile, MIS-HFET grown at 700 °C had more degradation in Ids-max ∼26 %, due to high DT-AlN and DT-AlGaN of 3.4 x 1012 and 5 x 1011 cm-2eV-1 positioned around similar ET. The results shows MIS-HFET grown at 600 °C had better device characteristics with trap densities one order of magnitude lower than MIS-HFET grown at 700 °C.

  7. The effect of thermal annealing on the adherence of Al2O3-films deposited by low-pressure, metal-organic, chemical-vapor deposition on AISI 304

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; van de Vendel, D.; van Corbach, H.D.; Fransen, T.; Gellings, P.J.

    1995-01-01

    Thin alumina films, deposited at 280°C by low-pressure, metal-organic, chemical-vapor deposition on stainless steel, type AISI 304, were annealed at 0.17 kPa in a nitrogen atmosphere for 2,4, and 17 hr at 600, 700, and 800°C. The effect of the annealing process on the adhesion of the thin alumina

  8. Vapor deposition of tantalum and tantalum compounds

    International Nuclear Information System (INIS)

    Trkula, M.

    1996-01-01

    Tantalum, and many of its compounds, can be deposited as coatings with techniques ranging from pure, thermal chemical vapor deposition to pure physical vapor deposition. This review concentrates on chemical vapor deposition techniques. The paper takes a historical approach. The authors review classical, metal halide-based techniques and current techniques for tantalum chemical vapor deposition. The advantages and limitations of the techniques will be compared. The need for new lower temperature processes and hence new precursor chemicals will be examined and explained. In the last section, they add some speculation as to possible new, low-temperature precursors for tantalum chemical vapor deposition

  9. Vacuum system for ISABELLE

    International Nuclear Information System (INIS)

    Hobson, J.P.

    1975-01-01

    An analysis is presented of the proposed vacuum system for the planned ISABELLE storage rings with respect to acceptability and practicality from the vacuum viewport. A comparison is made between the proposed vacuum system and the vacuum system at the CERN ISR, and some comments on various design and operational parameters are made

  10. Vapor Detector

    Science.gov (United States)

    Waddell, H. M.; Garrard, G. C.; Houston, D. W.

    1982-01-01

    Detector eliminates need for removing covers to take samples. Detector is canister consisting of screw-in base and clear plastic tube that contains two colors of silica gel. Monoethylhydrazine and nitrogen tetroxide vapors are visually monitored with canister containing color-changing gels.

  11. Photoreflectance study of strained GaAsN/GaAs T-junction quantum wires grown by metal-organic vapor phase epitaxy.

    Science.gov (United States)

    Klangtakai, Pawinee; Sanorpim, Sakuntam; Onabe, Kentaro

    2011-12-01

    Strained GaAsN T-junction quantum wires (T-QWRs) with different N contents grown on GaAs by two steps metal-organic vapor phase epitaxy in [001] and [110] directions, namely QW1 and QW2 respectively, have been investigated by photoreflectance (PR) spectroscopy. Two GaAsN T-QWRs with different N contents were formed by T-intersection of (i) a 6.4-nm-thick GaAs0.89N0.011 QW1 and a 5.2-nm-thick GaAs0.968N0.032 QW2 and (ii) a 5.0-nm-thick GaAs0.985N0.015 QW1 and a 5.2-nm-thick GaAs0.968N0.032 QW2. An evidence of a one-dimensional structure at T-intersection of the two QWs on the (001) and (110) surfaces was established by PR resonances associated with extended states in all the QW and T-QWR samples. It is found that larger lateral confinement energy than 100 meV in both of [001] and [110] directions were achieved for GaAsN T-QWRs. With increasing temperature, the transition energy of GaAsN T-QWRs decreases with a faster shrinking rate compared to that of bulk GaAs. Optical quality of GaAsN T-QWRs is found to be affected by the N-induced band edge fluctuation, which is the unique characteristic of dilute III-V-nitrides.

  12. In-situ wafer bowing measurements of GaN grown on Si (111) substrate by reflectivity mapping in metal organic chemical vapor deposition system

    Science.gov (United States)

    Yang, Yi-Bin; Liu, Ming-Gang; Chen, Wei-Jie; Han, Xiao-Biao; Chen, Jie; Lin, Xiu-Qi; Lin, Jia-Li; Luo, Hui; Liao, Qiang; Zang, Wen-Jie; Chen, Yin-Song; Qiu, Yun-Ling; Wu, Zhi-Sheng; Liu, Yang; Zhang, Bai-Jun

    2015-09-01

    In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2″ Thomas Swan close coupled showerhead metal organic chemical vapor deposition (MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses (tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, GaN grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded AlGaN buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274039 and 51177175), the National Basic Research Program of China (Grant No. 2011CB301903), the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110171110021), the International Science and Technology Collaboration Program of China (Grant No. 2012DFG52260), the International Science and Technology Collaboration Program of Guangdong Province, China (Grant No. 2013B051000041), the Science and Technology Plan of Guangdong Province, China (Grant No. 2013B010401013), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2014KF17).

  13. Modern vacuum practice

    CERN Document Server

    Harris, Nigel

    2007-01-01

    Modern Vacuum Practice is an easy-to-understand introduction to high vacuum technology suitable for anyone using high vacuum as a tool. The author provides a fundamentally non-mathematical treatment of the subject, assuming little or no prior vacuum knowledge throughout. With its emphasis always on providing practical information, the book gives the reader the knowledge to set up, use, maintain and troubleshoot a vacuum system.

  14. ULTRA HIGH VACUUM VALVE

    Science.gov (United States)

    Fry, W.A.

    1962-05-29

    A valve for high vacuum applications such as the CStellarator where chamber pressures as low as 2 x 10/sup -10/ mm Hg are necessary is designed with a line-of-sight path through the valve for visual inspection of the contents of reactants in such chambers. The valve comprises a turnable resilient metal ball having an aperture therethrough, means for selectively turning the ball to rotate the axis of its line-of-sight path, and soft, deformable opposing orifices that are movable relatively toward said ball to seal with opposite ball surfaces upon said movement of said axis of said line-of-sight path. The valve also includes a bellows seal connected between said orifices and internal actuating means that eliminates the requirement for gasketed turnable valve closing stems. (AEC)

  15. Electrical properties of GaAs metal-oxide-semiconductor structure comprising Al2O3 gate oxide and AlN passivation layer fabricated in situ using a metal-organic vapor deposition/atomic layer deposition hybrid system

    Science.gov (United States)

    Aoki, Takeshi; Fukuhara, Noboru; Osada, Takenori; Sazawa, Hiroyuki; Hata, Masahiko; Inoue, Takayuki

    2015-08-01

    This paper presents a compressive study on the fabrication and optimization of GaAs metal-oxide-semiconductor (MOS) structures comprising a Al2O3 gate oxide, deposited via atomic layer deposition (ALD), with an AlN interfacial passivation layer prepared in situ via metal-organic chemical vapor deposition (MOCVD). The established protocol afforded self-limiting growth of Al2O3 in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al2O3 layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA) conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resulting MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance-voltage (C-V) characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (Dit) near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce Dit to below 2 × 1012 cm-2 eV-1. Using a (111)A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.

  16. Outgassing of solid material into vacuum thermal insulation spaces

    Science.gov (United States)

    Wang, Pao-Lien

    1994-01-01

    Many cryogenic storage tanks use vacuum between inner and outer tank for thermal insulation. These cryogenic tanks also use a radiation shield barrier in the vacuum space to prevent radiation heat transfer. This shield is usually constructed by using multiple wraps of aluminized mylar and glass paper as inserts. For obtaining maximum thermal performance, a good vacuum level must be maintained with the insulation system. It has been found that over a period of time solid insulation materials will vaporize into the vacuum space and the vacuum will degrade. In order to determine the degradation of vacuum, the rate of outgassing of the insulation materials must be determined. Outgassing rate of several insulation materials obtained from literature search were listed in tabular form.

  17. Some aspects of vacuum ultraviolet radiation physics

    CERN Document Server

    Damany, Nicole; Vodar, Boris

    2013-01-01

    Some Aspects of Vacuum Ultraviolet Radiation Physics presents some data on the state of research in vacuum ultraviolet radiation in association with areas of physics. Organized into four parts, this book begins by elucidating the optical properties of solids in the vacuum ultraviolet region (v.u.v.), particularly the specific methods of determination of optical constants in v.u.v., the properties of metals, and those of ionic insulators. Part II deals with molecular spectroscopy, with emphasis on the spectra of diatomic and simple polyatomic molecules, paraffins, and condensed phases. Part III

  18. Infrared and photoelectron spectroscopy study of vapor phase deposited poly (3-hexylthiophene)

    International Nuclear Information System (INIS)

    Wei Haoyan; Scudiero, L.; Eilers, Hergen

    2009-01-01

    Poly (3-hexylthiophene) (P3HT) was thermally evaporated and deposited in vacuum. Infrared spectroscopy was used to confirm that the thin films were indeed P3HT, and showed that in-situ thermal evaporation provides a viable route for contaminant-free surface/interface analysis of P3HT in an ultrahigh-vacuum (UHV) environment. Ultraviolet photoelectron spectroscopy (UPS) as well as X-ray photoelectron spectroscopy (XPS) experiments were carried out to examine the frontier orbitals and core energy levels of P3HT thin films vapor deposited in UHV on clean polycrystalline silver (Ag) surfaces. UPS spectra enable the determination of the vacuum shift at the polymer/metal interface, the valence band maximum (VBM), and the energy of the π-band of the overlayer film. The P3HT vacuum level decreased in contrast to that of the underlying Ag as the film thickness increased. XPS and UPS data confirmed the chemical integrity (stoichiometry) of the polymer at high coverage, as well as the shift of the C 1s and S 2p binding energy peaks and the secondary-electron edge with increasing film thickness, indicating that band bending is present at the P3HT/Ag interface and that the measured onset of the valence band is about 0.8 ± 0.05 eV relative to the Fermi level.

  19. Microstructural and superconducting properties of high current metal-organic chemical vapor deposition YBa2Cu3O7-δ coated conductor wires

    International Nuclear Information System (INIS)

    Holesinger, T G; Maiorov, B; Ugurlu, O; Civale, L; Chen, Y; Xiong, X; Xie, Y; Selvamanickam, V

    2009-01-01

    Metal-organic chemical vapor deposition (MOCVD) on flexible, ion beam assisted deposition MgO templates has been used to produce high critical current density (J c ) (Y,Sm) 1 Ba 2 Cu 3 O y (REBCO) films suitable for use in producing practical high temperature superconducting (HTS) coated conductor wires. Thick films on tape were produced with sequential additions of 0.7 μm of REBCO via a reel-to-reel progression through a custom-designed MOCVD reactor. Multi-pass processing for thick film deposition is critically dependent upon minimizing surface secondary phase formation. Critical currents (I c s) of up to 600 A/cm width (t = 2.8 μm, J c = 2.6 MA cm -2 , 77 K, self-field) were obtained in short lengths of HTS wires. These high performance MOCVD films are characterized by closely spaced (Y,Sm) 2 O 3 nanoparticle layers that may be tilted relative to the film normal and REBCO orientation. Small shifts in the angular dependence of J c in low and intermediate applied magnetic fields can be associated with the tilted nanoparticle layers. Also present in these films were YCuO 2 nanoplates aligned with the YBCO matrix (short dimension perpendicular to the film normal), threading dislocations, and oriented composite defects (OCDs). The latter structures consist of single or multiple a-axis oriented grains coated on each side with insulating (Y,Sm) 2 O 3 or CuO. The OCDs formed a connected network of insulating phases by the end of the fourth pass. Subsequent attempts at adding additional layers did not increase I c . There is an inconsistency between the measured J c and the observed microstructural degradation that occurs with each additional layer, suggesting that previously deposited layers are improving with each repeated reactor pass. These dynamic changes suggest a role for post-processing to optimize superconducting properties of as-deposited films, addressing issues associated with reproducibility and manufacturing yield.

  20. Vacuum-assisted delivery

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000514.htm Vacuum-assisted delivery To use the sharing features on this page, ... through the birth canal. When is Vacuum-assisted Delivery Needed? Even after your cervix is fully dilated ( ...

  1. Nanoscale Vacuum Channel Transistor.

    Science.gov (United States)

    Han, Jin-Woo; Moon, Dong-Il; Meyyappan, M

    2017-04-12

    Vacuum tubes that sparked the electronics era had given way to semiconductor transistors. Despite their faster operation and better immunity to noise and radiation compared to the transistors, the vacuum device technology became extinct due to the high power consumption, integration difficulties, and short lifetime of the vacuum tubes. We combine the best of vacuum tubes and modern silicon nanofabrication technology here. The surround gate nanoscale vacuum channel transistor consists of sharp source and drain electrodes separated by sub-50 nm vacuum channel with a source to gate distance of 10 nm. This transistor performs at a low voltage (3 microamperes). The nanoscale vacuum channel transistor can be a possible alternative to semiconductor transistors beyond Moore's law.

  2. Indian Vacuum Society: The Indian Vacuum Society

    Science.gov (United States)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  3. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  4. Use of vacuum in processing of uranium

    International Nuclear Information System (INIS)

    Saify, M.T.; Rai, C.B.; Singh, S.P.; Singh, R.P.

    2003-01-01

    Full text: Natural uranium in the form of metal and alloys with suitable heat treatment are being used as fuel in research and some of the power reactors. The fuel is required to satisfy the purity specification from the criteria of neutron economy, corrosion resistance and fabricability. Uranium and its alloys fall under the category of reactive materials. They readily react with atmospheric air to form oxides. If molten uranium is exposed to atmosphere, it reacts violently with atmospheric gases and moisture, leading to explosion in extreme cases. Hence, protective inert atmosphere or high vacuum is required in processing of the materials especially during the melting and casting operation. Vacuum is preferred for melting and remelting of metals and alloys to remove the gaseous and high volatile impurities, to improve the mechanical properties of the material. Also, under vacuum sound castings are produced for further processing by mechanical working or use in casting forms. The addition of reactive alloying elements in uranium is efficiently carried out under vacuum. The paper highlights vacuum systems deployed and applications of vacuum in various operations involved in the processing of uranium and its alloys

  5. Convective vaporization of particles in an electromagnetic radiation field

    Science.gov (United States)

    Kuznetsov, P. V.; Kurochkin, V. I.

    1987-03-01

    The heating and vaporization of spherical particles in the case of the arbitrary relative concentration of vapor and gas are studied on the basis of the exact equations of multicomponent gas dynamics with allowance for the temperature dependence of the transport coefficients. The proposed method makes possible an easy computation of the vaporization rate and temperature in a wide range of particle sizes and radiation flux densities. The results obtained can be used to calculate laser-induced breakdown in metal vapors.

  6. Proceedings of the workshop on vacuum arc ion sources

    International Nuclear Information System (INIS)

    Brown, I.

    1996-08-01

    Topics included in the papers presented at this conference are: vacuum arc ion source development at GSI (Gesellschaft fuer Schwerionenforschung, Germany), ITEP (Institute for Theoretical and Experimental Physics, Russia), Lawrence Berkeley Laboratory, and ANSTO (Australian Nuclear Science and Technology Organization); triggers for vacuum arc sources; plasma distribution of cathodic arc deposition system; high ion charge states in vacuum arc ion sources; and gas and metal ion sources. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  7. Thin films of mixed metal compounds

    Science.gov (United States)

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  8. Radiation-controlled dynamic vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1995-07-18

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  9. Material-controlled dynamic vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1996-10-08

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  10. Laser-triggered vacuum switch

    Science.gov (United States)

    Brannon, Paul J.; Cowgill, Donald F.

    1990-01-01

    A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable.

  11. Gravitation and vacuum field

    International Nuclear Information System (INIS)

    Tevikyan, R.V.

    1986-01-01

    This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory

  12. UV-visible and Raman investigations of matrix isolated adducts between metal vapors of chromium and benzene: selective photo-irradiations effects

    Science.gov (United States)

    Dalibart, M.; Derouault, J.

    1989-03-01

    The UV-visible absorption and the Raman spectra of chromium vapors trapped either in Ar-benzene mixtures or in neat benzene have been investigated. The data give evidence for the formation of the well-known dibenzene chromium sandwich complex but show also the formation of benzene complexes with the dimer Cr2 and with the cluster Cr3 photo-irradiations effects have been studied.

  13. Ultra-high vacuum compatible induction-heated rod casting furnace.

    Science.gov (United States)

    Bauer, A; Neubauer, A; Münzer, W; Regnat, A; Benka, G; Meven, M; Pedersen, B; Pfleiderer, C

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  14. Nano-materials for adhesive-free adsorbers for bakable extreme high vacuum cryopump surfaces

    Science.gov (United States)

    Stutzman, Marcy; Jordan, Kevin; Whitney, Roy R.

    2016-10-11

    A cryosorber panel having nanomaterials used for the cryosorption material, with nanomaterial either grown directly on the cryopanel or freestanding nanomaterials attached to the cryopanel mechanically without the use of adhesives. Such nanomaterial cryosorber materials can be used in place of conventional charcoals that are attached to cryosorber panels with special low outgassing, low temperature capable adhesives. Carbon nanotubes and other nanomaterials could serve the same purpose as conventional charcoal cryosorbers, providing a large surface area for cryosorption without the need for adhesive since the nanomaterials can be grown directly on a metallic substrate or mechanically attached. The nanomaterials would be capable of being fully baked by heating above 100.degree. C., thereby eliminating water vapor from the system, eliminating adhesives from the system, and allowing a full bake of the system to reduce hydrogen outgassing, with the goal of obtaining extreme high vacuum where the pump can produce pressures below 1.times.10.sup.-12 Torr.

  15. Method of forming a thin unbacked metal foil

    Science.gov (United States)

    Duchane, David V.; Barthell, Barry L.

    1984-01-01

    In a method of forming a thin (foil having a desired curviplanar shape, a soluble polymeric film, preferably comprising polyvinyl alcohol, is formed on a supporting structure having a shape that defines the desired shape of the foil product. A layer of metal foil is deposited onto one side of the soluble film, preferably by vacuum vapor deposition. The metallized film is then immersed in a suitable solvent to dissolve the film and thereby leave the metal foil as an unbacked metal foil element mounted on the supporting structure. Aluminum foils less than 0.2 .mu.m (2,000 .ANG.) thick and having an areal density of less than 54 .mu.g/cm.sup.2 have been obtained.

  16. Understanding and optimization of InN and high indium containing InGaN alloys by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Tuna, Oecal

    2013-01-01

    Among the III-nitride semiconductors (Ga,Al,In)N, InN is the most attractive one due to having the narrowest bandgap of 0.64 eV. The revision in the bandgap of InN makes the InGaN more important since one can cover the whole solar spectrum by only changing In composition in an InGaN layer. The comparison of quality of InN and InGaN layers grown using a metal organic chemical vapor deposition (MOCVD) and a molecular beam epitaxy (MBE) methods indicate that growth with MOCVD is the more challenging, again due to the high dissociation temperature of NH 3 relative to the low decomposition temperature of InN (560-570 C). However, there is significant interest in developing an MOCVD process for InN and InGaN growth since MOCVD technology is the technology currently in use for commercial fabrication of group III nitride thin films. This thesis is therefore focused on a study of MOCVD growth of n- and p-type InN and In-rich InGaN films with the goal of providing new information on the influence of growth conditions on the film properties. Initially, a detailed investigation of MOCVD of InN is given. It is shown that MOCVD growth parameters (growth temperature and V/III ratio) have impacts on the layer properties such as In droplet formation on the surface as well as on its electrical and optical properties. PAS is employed for point defect analyzation. It is shown that In vacancies isolated by nitrogen vacancies are the dominant vacancy-type positron traps in InN. A decrease in the N vacancy concentration in InN is observed as a result of the growth temperature increase from 500 to 550 C. This is an indication of a reduction of N vacancy concentration by enhancing NH 3 dissociation at high growth temperature. Results obtained from optical techniques (Raman and PL) are used to estimate the free carrier concentrations in InN. Electrical characterizations are also carried out using Hall measurements. Carrier concentration values obtained by these three techniques revealed a

  17. Evaluation of vapor mass transfer in various membrane distillation configurations: an experimental study

    Science.gov (United States)

    Mannella, G. A.; La Carrubba, V.; Brucato, V.

    2012-06-01

    Vapor mass transfer phenomena in four different membrane distillation (MD) configurations were examined through a self-built laboratory scale experimental apparatus: Air Gap MD, Sweeping Gas MD, Vacuum Sweeping Gas MD and Vacuum MD. Vapor fluxes were measured and compared with those predicted by various models, showing that MD performance under usual processing conditions is severely controlled by the permeate side resistance to mass transfer.

  18. Unexpected bismuth concentration profiles in metal-organic vapor phase epitaxy-grown Ga(As1−xBix/GaAs superlattices revealed by Z-contrast scanning transmission electron microscopy imaging

    Directory of Open Access Journals (Sweden)

    A. W. Wood

    2015-03-01

    Full Text Available A set of GaAs1−xBix/GaAs multilayer quantum-well structures was deposited by metal-organic vapor phase epitaxy at 390 °C and 420 °C. The precursor fluxes were introduced with the intent of growing discrete and compositionally uniform GaAs1−xBix well and GaAs barrier layers in the epitaxial films. High-resolution high-angle annular-dark-field (or “Z-contrast” scanning transmission electron microscopy imaging revealed concentration profiles that were periodic in the growth direction, but far more complicated in shape than the intended square wave. The observed composition profiles could explain various reports of physical properties measurements that suggest compositional inhomogeneity in GaAs1−xBix alloys as they currently are grown.

  19. Method for producing metal oxide nanoparticles

    Science.gov (United States)

    Phillips, Jonathan [Santa Fe, NM; Mendoza, Daniel [Santa Fe, NM; Chen, Chun-Ku [Albuquerque, NM

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  20. Ultra-high vacuum compatible preparation chain for intermetallic compounds.

    Science.gov (United States)

    Bauer, A; Benka, G; Regnat, A; Franz, C; Pfleiderer, C

    2016-11-01

    We report the development of a versatile material preparation chain for intermetallic compounds, which focuses on the realization of a high-purity growth environment. The preparation chain comprises an argon glovebox, an inductively heated horizontal cold boat furnace, an arc melting furnace, an inductively heated rod casting furnace, an optically heated floating-zone furnace, a resistively heated annealing furnace, and an inductively heated annealing furnace. The cold boat furnace and the arc melting furnace may be loaded from the glovebox by means of a load-lock permitting to synthesize compounds starting with air-sensitive elements while handling the constituents exclusively in an inert gas atmosphere. All furnaces are all-metal sealed, bakeable, and may be pumped to ultra-high vacuum. We find that the latter represents an important prerequisite for handling compounds with high vapor pressure under high-purity argon atmosphere. We illustrate the operational aspects of the preparation chain in terms of the single-crystal growth of the heavy-fermion compound CeNi 2 Ge 2 .

  1. Understanding and optimization of InN and high indium containing InGaN alloys by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tuna, Oecal

    2013-07-18

    Among the III-nitride semiconductors (Ga,Al,In)N, InN is the most attractive one due to having the narrowest bandgap of 0.64 eV. The revision in the bandgap of InN makes the InGaN more important since one can cover the whole solar spectrum by only changing In composition in an InGaN layer. The comparison of quality of InN and InGaN layers grown using a metal organic chemical vapor deposition (MOCVD) and a molecular beam epitaxy (MBE) methods indicate that growth with MOCVD is the more challenging, again due to the high dissociation temperature of NH{sub 3} relative to the low decomposition temperature of InN (560-570 C). However, there is significant interest in developing an MOCVD process for InN and InGaN growth since MOCVD technology is the technology currently in use for commercial fabrication of group III nitride thin films. This thesis is therefore focused on a study of MOCVD growth of n- and p-type InN and In-rich InGaN films with the goal of providing new information on the influence of growth conditions on the film properties. Initially, a detailed investigation of MOCVD of InN is given. It is shown that MOCVD growth parameters (growth temperature and V/III ratio) have impacts on the layer properties such as In droplet formation on the surface as well as on its electrical and optical properties. PAS is employed for point defect analyzation. It is shown that In vacancies isolated by nitrogen vacancies are the dominant vacancy-type positron traps in InN. A decrease in the N vacancy concentration in InN is observed as a result of the growth temperature increase from 500 to 550 C. This is an indication of a reduction of N vacancy concentration by enhancing NH{sub 3} dissociation at high growth temperature. Results obtained from optical techniques (Raman and PL) are used to estimate the free carrier concentrations in InN. Electrical characterizations are also carried out using Hall measurements. Carrier concentration values obtained by these three techniques

  2. Molecular dynamics study of the vaporization of an ionic drop

    Science.gov (United States)

    Galamba, N.

    2010-09-01

    The melting of a microcrystal in vacuum and subsequent vaporization of a drop of NaCl were studied through molecular dynamics simulations with the Born-Mayer-Huggins-Tosi-Fumi rigid-ion effective potential. The vaporization was studied for a single isochor at increasing temperatures until the drop completely vaporized, and gaseous NaCl formed. Examination of the vapor composition shows that the vapor of the ionic drop and gaseous NaCl are composed of neutral species, the most abundant of which, ranging from simple NaCl monomers (ion pairs) to nonlinear polymers, (NanCln)n=2-4. The enthalpies of sublimation, vaporization, and dissociation of the different vapor species are found to be in reasonable agreement with available experimental data. The decrease of the enthalpy of vaporization of the vapor species, with the radius of the drop decrease, accounts for a larger fraction of trimers and tetramers than that inferred from experiments. Further, the rhombic dimer is significantly more abundant than its linear isomer although the latter increases with the temperature. The present results suggest that both trimers and linear dimers may be important to explain the vapor pressure of molten NaCl at temperatures above 1500 K.

  3. Evaporation under vacuum condition

    International Nuclear Information System (INIS)

    Mizuta, Satoshi; Shibata, Yuki; Yuki, Kazuhisa; Hashizume, Hidetoshi; Toda, Saburo; Takase, Kazuyuki; Akimoto, Hajime

    2000-01-01

    In nuclear fusion reactor design, an event of water coolant ingress into its vacuum vessel is now being considered as one of the most probable accidents. In this report, the evaporation under vacuum condition is evaluated by using the evaporation model we have developed. The results show that shock-wave by the evaporation occurs whose behavior strongly depends on the initial conditions of vacuum. And in the case of lower initial pressure and temperature, the surface temp finally becomes higher than other conditions. (author)

  4. Vacuum system design

    International Nuclear Information System (INIS)

    Mathewson, A.G.

    1994-01-01

    In this paper the basic terms used by the vacuum engineer are presented and some useful formulae are also given. The concept of bakeout is introduced and the physics behind it explained. We concentrate on the effects in electron and proton storage rings which are due to energetic particle bombardment of the vacuum system walls and the ensuing gas desorption which may detrimentally affect the running of the machine. In addition, the problems associated with proton storage rings where the vacuum chamber is at cryogenic temperature are described

  5. Vacuum mechatronics first international workshop

    Energy Technology Data Exchange (ETDEWEB)

    Belinski, S.E.; Shirazi, M.; Hackwood, S.; Beni, G. (eds.) (California Univ., Santa Barbara, CA (USA))

    1989-01-01

    This report contains papers on the following topics: proposed epitaxial thin film growth in the ultra-vacuum of space; particle monitoring and control in vacuum processing equipment; electrostatic dust collector for use in vacuum systems; materials evaluation of an electrically noisy vacuum slip ring assembly; an overview of lubrication and associated materials for vacuum service; the usage of lubricants in a vacuum environment; guidelines and practical applications for lubrication in vacuum; recent development in leak detector and calibrator designs; the durability of ballscrews for ultrahigh vacuum; vacuum-compatible robot for self-contained manufacturing systems; the design, fabrication, and assembly of an advanced vacuum robotics system for space payload calibration; design criteria for mechanisms used in space; and concepts and requirements for semiconductor multiprocess integration in vacuum. These papers are indexed separately elsewhere.

  6. Handbook of vacuum technology

    CERN Document Server

    2016-01-01

    This comprehensive, standard work has been updated to remain an important resource for all those needing detailed knowledge of the theory and applications of vacuum technology. With many numerical examples and illustrations to visualize the theoretical issues.

  7. Helical type vacuum container

    International Nuclear Information System (INIS)

    Owada, Kimio.

    1989-01-01

    Helical type vacuum containers in the prior art lack in considerations for thermal expansion stresses to helical coils, and there is a possibility of coil ruptures. The object of the present invention is to avoid the rupture of helical coils wound around the outer surface of a vacuum container against heat expansion if any. That is, bellows or heat expansion absorbing means are disposed to a cross section of a helical type vacuum container. With such a constitution, thermal expansion of helical coils per se due to temperature elevation of the coils during electric supply can be absorbed by expansion of the bellows or absorption of the heat expansion absorbing means. Further, this can be attained by arranging shear pins in the direction perpendicular to the bellows axis so that the bellows are not distorted when the helical coils are wound around the helical type vacuum container. (I.S.)

  8. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  9. Photoelectrochemical energy conversion obtained with ultrathin organo-metallic-chemical-vapor-deposition layer of FeS2 (pyrite) on TiO2

    International Nuclear Information System (INIS)

    Ennaoui, A.; Fiechter, S.; Tributsch, H.; Giersig, M.; Vogel, R.; Weller, H.

    1992-01-01

    Ultrathin (10 to 20 nm thick), polycrystalline films of FeS 2 (pyrite) were grown on TiO 2 (anatase) by chemical vapor deposition. The FeS 2 films were characterized using optical absorption and high-resolution electron microscopy. Photoelectrochemical solar cells, using TiO 2 (anatase) coated with FeS 2 ultrathin films, generated high open-circuit photo-voltages, of up to 600 mV, compared with a single crystal of pyrite electrode (200 mV). The photoelectrochemical behavior shows a strong dependence of photovoltage and photocurrent on the pH of the solution. This paper reports that it is explained by electron injection from the conduction band of FeS 2 to the conduction band of TiO 2 . Regeneration of holes is taking place by electron transfer from the redox system in the electrolyte

  10. Photoelectrochemical energy conversion obtained with ultrathin organo-metallic-chemical-vapor-deposition layer of FeS[sub 2] (pyrite) on TiO[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A.; Fiechter, S.; Tributsch, H. (Abt. Solare Energetik, Hahn-Meitner-Inst., D-1000 Berlin 39 (Germany)); Giersig, M.; Vogel, R.; Weller, H. (Abt. Photochemie, Hahn-Meitner-Inst., D-1000 Berlin 39 (Germany))

    1992-09-01

    Ultrathin (10 to 20 nm thick), polycrystalline films of FeS[sub 2] (pyrite) were grown on TiO[sub 2] (anatase) by chemical vapor deposition. The FeS[sub 2] films were characterized using optical absorption and high-resolution electron microscopy. Photoelectrochemical solar cells, using TiO[sub 2] (anatase) coated with FeS[sub 2] ultrathin films, generated high open-circuit photo-voltages, of up to 600 mV, compared with a single crystal of pyrite electrode (200 mV). The photoelectrochemical behavior shows a strong dependence of photovoltage and photocurrent on the pH of the solution. This paper reports that it is explained by electron injection from the conduction band of FeS[sub 2] to the conduction band of TiO[sub 2]. Regeneration of holes is taking place by electron transfer from the redox system in the electrolyte.

  11. Ultra high vacuum technology

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    A short introduction for some basic facts and equations. Subsquently, discussion about: Building blocks of an ultrahigh vacuum system - Various types of pumps required to reach uhv and methods to reduce these effects - Outgassing phenomena induced by the presence of a particle beam and the most common methods to reduce these effects It will be given some practical examples from existing CERN accelerators and discuss the novel features of the future LHC vacuum system.

  12. Power vacuum tubes handbook

    CERN Document Server

    Whitaker, Jerry

    2012-01-01

    Providing examples of applications, Power Vacuum Tubes Handbook, Third Edition examines the underlying technology of each type of power vacuum tube device in common use today. The author presents basic principles, reports on new development efforts, and discusses implementation and maintenance considerations. Supporting mathematical equations and extensive technical illustrations and schematic diagrams help readers understand the material. Translate Principles into Specific Applications This one-stop reference is a hands-on guide for engineering personnel involved in the design, specification,

  13. A Planck Vacuum Cosmology

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-04-01

    Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.

  14. Multifunctional Ultra-High Vacuum Apparatus for Studies of the Interactions of Chemical Warfare Agents on Complex Surfaces

    Science.gov (United States)

    2014-01-02

    45 Briefly, a vacuum manifold with known volume is backfilled to a de- sired pressure with the gas, as measured by a capacitance manometer (MKS...accompany the research of these toxic, often very low vapor pressure , compounds. While results of vacuum-based surface science techniques may not...developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure , compounds

  15. Assessment of Heavy Metals (Cadmium and Lead in Vacuum Packaged Smoked Fish Species (Mackerel, Salmo salar and Oncorhynhus mykiss Marketed in Ankara (Turkey.

    Directory of Open Access Journals (Sweden)

    U. Tansel Şireli

    2015-12-01

    Full Text Available Ankara’daki marketlerde vakum paketli dumanlanmış balık türlerinde (Mackerel, Salmo salar ve Oncorhynhus mykiss ağır metallerin (kadmiyum ve kurşun belirlenmesi. Ankara’daki marketlerde, ticari olarak satılan dumanlanmış ve vakum paketlenmiş balık türlerindeki kadmiyum (Cd ve kurşun (Pb konsantrasyonları değerlendirilmiştir. 2004-2005 yılları arasında Ankara’daki hipermarketlerden toplam 73 adet dumanlanıp paketlenmiş balık fileto örneği temin edilmiştir. İz element konsantrasyonu GFAAS yöntemi ile ölçülmüştür. Cd için sınır değer kuru maddede 0.003-0.034 mg kg -1 olarak bulunurken, Pb için bu değer 0.001-0.791 mg kg-1 olarak bulunmuştur. Analiz edilen tüm balık örneklerinde kadmiyum konsantrasyonu, Türkiye ve Avrupa Birliği Mevzuatı tarafından 0.05 mg kg-1 olarak belirlenen limitlerin altındayken, 27 balık örneğindeki Pb seviyesi Türkiye’deki kabul edilebilir limitleri aşmıştır (0.2 mg kg-1. Buna rağmen, yüksek seviyelerde ölçülen ağır metal konsantrasyonlarında bile, haftada 400 g balık tüketen 60 kg ağırlığında bir yetişkinin tahmini haftalık Pb ve Cd alım miktarı, Joint FAO/WHO Expert Committee tarafından tavsiye edilen geçici tolere edilebilir haftalık alım miktarının (Cd için 7 µg-kg-1 ve Pb için 25 µg kg-1 altında olduğu saptanmıştır

  16. Development of Microwave-Excited Plasma-Enhanced Metal-Organic Chemical Vapor Deposition System for Forming Ferroelectric Sr2(Ta1-x,Nbx)2O7 Thin Film on Amorphous SiO2

    Science.gov (United States)

    Takahashi, Ichirou; Funaiwa, Kiyoshi; Azumi, Keita; Yamashita, Satoru; Shirai, Yasuyuki; Hirayama, Masaki; Teramoto, Akinobu; Sugawa, Shigetoshi; Ohmi, Tadahiro

    2007-04-01

    Sr2(Ta1-x,Nbx)2O7 (STN; x = 0.3) is suitable for use as ferroelectric gate field-effect transistors (FETs) for one-transistor-type ferroelectric memory devices, because it has a low dielectric constant. For applications using metal-ferroelectric-insulator-semiconductor (MFIS) FETs, crystallization of ferroelectric film on insulator is necessary. Perovskite STN can be successfully obtained on amorphous SiO2 by ferroelectric-multilayer-stack (FMLS) deposition, which uses alternating steps of STN sputtering deposition and oxygen radical treatment. In this study, we report on a newly developed microwave-excited plasma-enhanced metal-organic chemical vapor deposition (MOCVD) system, in which STN can be deposited in radical oxygen atmosphere. We succeeded in the fabrication of STN on amorphous SiO2 in a single process. The IrO2/STN (200 nm)/SiO2 (10 nm)/p-type Si device shows capacitance-voltage (C-V) hysteresis curves and a memory window of 1.2 V with a 5 V writing operation.

  17. Dynamic headspace generation and quantitation of triacetone triperoxide vapor.

    Science.gov (United States)

    Giordano, Braden C; Lubrano, Adam L; Field, Christopher R; Collins, Greg E

    2014-02-28

    Two methods for quantitation of triacetone triperoxide (TATP) vapor using a programmable temperature vaporization (PTV) inlet coupled to a gas chromatography/mass spectrometer (GC/MS) have been demonstrated. The dynamic headspace of bulk TATP was mixed with clean humid air to produce a TATP vapor stream. Sampling via a heated transfer line to a PTV inlet with a Tenax-TA™ filled liner allowed for direct injection of the vapor stream to a GC/MS for vapor quantitation. TATP was extracted from the vapor stream and subsequently desorbed from the PTV liner for splitless injection on the GC column. Calibration curves were prepared using solution standards with a standard split/splitless GC inlet for quantitation of the TATP vapor. Alternatively, vapor was sampled onto a Tenax-TA™ sample tube and placed into a thermal desorption system. In this instance, vapor was desorbed from the tube and subsequently trapped on a liquid nitrogen cooled PTV inlet. Calibration curves for this method were prepared from direct liquid injection of standards onto samples tube with the caveat that a vacuum is applied to the tube during deposition to ensure that the volatile TATP penetrates into the tube. Vapor concentration measurements, as determined by either GC/MS analysis or mass gravimetry of the bulk TATP, were statistically indistinguishable. Different approaches to broaden the TATP vapor dynamic range, including diluent air flow, sample chamber temperature, sample vial orifice size, and sample size are discussed. Vapor concentrations between 50 and 5400ngL(-1) are reported, with stable vapor generation observed for as long as 60 consecutive hours. Published by Elsevier B.V.

  18. Thermal annealing effects on the interface state density of metal-oxide-semiconductor capacitors with electron cyclotron resonance plasma enhanced chemical vapor deposition Silicon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Maiolo, L. [Istituto di Fotonica e Nanotecnologie (IFN), CNR, Via Cineto Romano 42, 00156 Rome (Italy)], E-mail: lmaiolo@ifn.cnr.it; Pecora, A.; Cuscuna, M.; Fortunato, G. [Istituto di Fotonica e Nanotecnologie (IFN), CNR, Via Cineto Romano 42, 00156 Rome (Italy)

    2007-07-16

    Silicon dioxide films (SiO{sub 2}), deposited at room temperature by electron cyclotron resonance (ECR) plasma reactor from a gas phase combination of O{sub 2}, SiH{sub 4} and He, present excellent structural and electrical properties. However, when fabricating field effect devices it is also crucial to minimize the defect density at the semiconductor/insulator interface. We show that the interface state density, investigated in Al/SiO{sub 2}/Si MOS capacitors, can be substantially reduced performing post-deposition annealing. In particular we studied the effects of annealing temperature and time in different gas ambient: vacuum, nitrogen and forming gas (5% H{sub 2} + N{sub 2}). We found that interface state passivation mainly occurs when thermal annealing is performed after Al-contact deposition and that it is quite insensitive to the annealing atmosphere. The present results clearly suggest that the hydrogen passivation mechanism is driven by the H-containing species present in the film and a possible mechanism to explain the results is proposed.

  19. Thermal annealing effects on the interface state density of metal-oxide-semiconductor capacitors with electron cyclotron resonance plasma enhanced chemical vapor deposition Silicon dioxide

    International Nuclear Information System (INIS)

    Maiolo, L.; Pecora, A.; Cuscuna, M.; Fortunato, G.

    2007-01-01

    Silicon dioxide films (SiO 2 ), deposited at room temperature by electron cyclotron resonance (ECR) plasma reactor from a gas phase combination of O 2 , SiH 4 and He, present excellent structural and electrical properties. However, when fabricating field effect devices it is also crucial to minimize the defect density at the semiconductor/insulator interface. We show that the interface state density, investigated in Al/SiO 2 /Si MOS capacitors, can be substantially reduced performing post-deposition annealing. In particular we studied the effects of annealing temperature and time in different gas ambient: vacuum, nitrogen and forming gas (5% H 2 + N 2 ). We found that interface state passivation mainly occurs when thermal annealing is performed after Al-contact deposition and that it is quite insensitive to the annealing atmosphere. The present results clearly suggest that the hydrogen passivation mechanism is driven by the H-containing species present in the film and a possible mechanism to explain the results is proposed

  20. Metal-organic chemical vapor deposition of high quality, high indium composition N-polar InGaN layers for tunnel devices

    Science.gov (United States)

    Lund, Cory; Romanczyk, Brian; Catalano, Massimo; Wang, Qingxiao; Li, Wenjun; DiGiovanni, Domenic; Kim, Moon J.; Fay, Patrick; Nakamura, Shuji; DenBaars, Steven P.; Mishra, Umesh K.; Keller, Stacia

    2017-05-01

    In this study, the growth of high quality N-polar InGaN films by metalorganic chemical vapor deposition is presented with a focus on growth process optimization for high indium compositions and the structural and tunneling properties of such films. Uniform InGaN/GaN multiple quantum well stacks with indium compositions up to 0.46 were grown with local compositional analysis performed by energy-dispersive X-ray spectroscopy within a scanning transmission electron microscope. Bright room-temperature photoluminescence up to 600 nm was observed for films with indium compositions up to 0.35. To study the tunneling behavior of the InGaN layers, N-polar GaN/In0.35Ga0.65N/GaN tunnel diodes were fabricated which reached a maximum current density of 1.7 kA/cm2 at 5 V reverse bias. Temperature-dependent measurements are presented and confirm tunneling behavior under reverse bias.

  1. Mitigation of harmful indoor organic vapors using plug-flow unit coated with 2D g-C3N4and metallic Cu dual-incorporated 1D titania heterostructure.

    Science.gov (United States)

    Kim, Dong Jin; Jo, Wan-Kuen

    2018-03-16

    Herein, a plug-flow reactor coated with one-dimensional (1D) TiO 2 nanotube (TNT) heterostructures incorporated with g-C 3 N 4 (CN) and metallic Cu (CN/Cu/TNT) nanocomposite and irradiated by a daylight lamp was newly applied for the mitigation of harmful indoor organic vapors. The CN/Cu/TNT catalyst showed high mitigation efficiency for all target pollutants, followed by Cu-incorporated TNT (Cu/TNT), CN-incorporated TNT (CN/TNT), TNT, and TiO 2 , in that order. The order of their photocatalytic activities agrees with that of the electron‒hole separation rates determined from their photoluminescence emission spectra. The mitigation efficiency of the CN/Cu/TNT catalyst increased as the CN-to-Cu/TNT percentage was increased from 1% to 10%, but subsequently decreased as the CN-to-Cu/TNT percentage increased to 20%. The mitigation efficiencies of the CN/Cu/TNT catalyst decreased with increasing relative humidity, feed pollutant concentrations, and airstream flow rates. However, in most cases, the reaction rates of the target compounds increased when the feed concentration was increased from 1 to 5 ppm. The mineralization rates of all target pollutants were lower than the corresponding photocatalytic mitigation rates, which could be ascribed to the production of CO and organic intermediates observed during the photocatalysis of the target pollutants. Nevertheless, the intermediates formed during the photocatalytic mitigation process would not cause significant adverse health effects to building occupants, because their concentrations were far below their exposure or threshold limit values. A probable mechanism for the photocatalytic mitigation of the organic vapors by the CN/Cu/TNT catalyst under daylight illumination was also proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Vapor Pressure Plus: An Experiment for Studying Phase Equilibria in Water, with Observation of Supercooling, Spontaneous Freezing, and the Triple Point

    Science.gov (United States)

    Tellinghuisen, Joel

    2010-01-01

    Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…

  3. Surface-driven, one-step chemical vapor deposition of γ-Al{sub 4}Cu{sub 9} complex metallic alloy film

    Energy Technology Data Exchange (ETDEWEB)

    Prud’homme, Nathalie [CIRIMAT, Université de Toulouse - CNRS, 4 allée Emile Monso, BP-44362, 31432 Toulouse Cedex 4 (France); Université Paris-Sud 11, LEMHE/ICMMO, Bat 410, 91405 Orsay Cedex (France); Duguet, Thomas, E-mail: thomas.duguet@ensiacet.fr [CIRIMAT, Université de Toulouse - CNRS, 4 allée Emile Monso, BP-44362, 31432 Toulouse Cedex 4 (France); Samélor, Diane; Senocq, François; Vahlas, Constantin [CIRIMAT, Université de Toulouse - CNRS, 4 allée Emile Monso, BP-44362, 31432 Toulouse Cedex 4 (France)

    2013-10-15

    The present paper is a paradigm for the one-step formation of complex intermetallic coatings by chemical vapor deposition. It genuinely addresses the challenge of depositing an intermetallic coating with comparable contents of Cu and Al. Depending on processing conditions, a pure γ-Al{sub 4}Cu{sub 9} and multi-phase Al-Cu films are grown with wetting properties of the former being similar to its bulk counterpart. The deposition process and its parametric investigation are detailed. Two metalorganic precursors are used taking into account their transport and chemical properties, and deposition temperature ranges. On line and ex situ characterizations enlighten the competition which occurs at the growing surface between molecular fragments, and which limits growth rates. Notably, introducing a partial pressure of hydrogen gas during deposition reduces Al growth rate from dimethylethylamine alane (DMEAA), by displacing the hydrogen desorption equilibrium. This Al partial growth rate decrease is not sufficient to achieve a Cu/Al atomic ratio that is high enough for the formation of intermetallics with close Al and Cu compositions. A fivefold increase of the flux of the gaseous copper(I) cyclopentadienyl triethylphosphine CpCuPEt{sub 3}, whereas the DMEAA flux remains constant, results in the targeted Al/Cu atomic ratio equal to 44/56. Nevertheless, the global growth rate is rendered extremely low by the deposition inhibition caused by a massive phosphine adsorption (-PEt{sub 3}). Despite these limitations, the results pave the way towards the conformal coating of complex surface geometries by such intermetallic compounds.

  4. Baryogenesis in false vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta [KEK Theory Center, IPNS, KEK, Tsukuba, Ibaraki (Japan); Yamada, Masatoshi [Kanazawa University, Institute for Theoretical Physics, Kanazawa (Japan)

    2017-09-15

    The null result in the LHC may indicate that the standard model is not drastically modified up to very high scales, such as the GUT/string scale. Having this in the mind, we suggest a novel leptogenesis scenario realized in the false vacuum of the Higgs field. If the Higgs field develops a large vacuum expectation value in the early universe, a lepton number violating process is enhanced, which we use for baryogenesis. To demonstrate the scenario, several models are discussed. For example, we show that the observed baryon asymmetry is successfully generated in the standard model with higher-dimensional operators. (orig.)

  5. Vacuum fusion of uranium

    International Nuclear Information System (INIS)

    Stohr, J.A.

    1957-01-01

    After having outlined that vacuum fusion and moulding of uranium and of its alloys have some technical and economic benefits (vacuum operations avoid uranium oxidation and result in some purification; precision moulding avoids machining, chip production and chemical reprocessing of these chips; direct production of the desired shape is possible by precision moulding), this report presents the uranium fusion unit (its low pressure enclosure and pumping device, the crucible-mould assembly, and the MF supply device). The author describes the different steps of cast production, and briefly comments the obtained results

  6. Killing the Copenhagen vacuum

    International Nuclear Information System (INIS)

    Flyvbjerg, H.

    1981-04-01

    One-loop corrections to the equation expressing the instability of the Nielsen-Olesen unstable mode are considered. These corrections radically change the equation, and introduce a critical field strength Bsub(c) upon which instability, and consequently the life or death of the Copenhagen Vacuum, depends. These results are obtained by consideration of renormalizability and dimensions alone. The evaluation of Bsub(c) requires a long and technical calculation to be published in a subsequent paper. A preliminary result indicates that the Copenhagen Vacuum survives. (Auth.)

  7. Evading death by vacuum

    OpenAIRE

    Barroso, A.; Ferreira, P. M.; Ivanov, I. P.; Santos, Rui; Silva, João P.

    2012-01-01

    In the Standard Model, the Higgs potential allows only one minimum at tree-level. But the open possibility that there might be two scalar doublets enriches the vacuum structure, allowing for the risk that we might now be in a metastable state, which we dub the panic vacuum. Current experiments at the LHC are probing the Higgs particle predicted as a result of the spontaneous symmetry breaking. Remarkably, in the two Higgs model with a softly broken U(1) symmetry, the LHC experiments already p...

  8. A rotating quantum vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Lorenci, V.A. de; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-11-01

    It was investigated which mapping has to be used to compare measurements made in a rotating frame to those made in an inertial frame. Using a non-Galilean coordinate transformation, the creation-annihilation operators of a massive scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state(a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. Polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view were analysed. 65 refs.

  9. FMIT accelerator vacuum system

    International Nuclear Information System (INIS)

    Machalek, M.D.; Meyer, E.A.; Price, L.S.

    1979-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility accelerator is being designed to continuously accelerate 100-mA deuterons to 25 MeV. High vacuum pumping of the accelerator structure and beam lines will be done by ion pumps and titanium sublimation pumps. The design of the roughing system includes a Roots blower/mechanical pump package. For economy the size of the system has been designed to operate at 10 -6 torr, where beam particle scattering on residual gases is negligible. For minimum maintenance in this neutron factory, the FMIT vacuum system is designed from the point of view of simplicity and reliability

  10. New Materials for Vacuum Chambers in High Energy Physics

    CERN Document Server

    Garion, Cédric

    2014-01-01

    Vacuum chambers must fulfil ultra-high vacuum requirements while withstanding thermo-mechanical loads. This is particularly true in high energy particle accelerator where interactions of particles with matter may induce thermal load, material activation, background… The choice of the material of the vacuum chamber is crucial for the final application. Metals such as stainless steel, copper and aluminium are usually used. Even with outstanding mechanical and physical properties, beryllium is used for very specific applications because of its cost and toxicity.Ceramics such as alumina are usually used for fast magnet vacuum chambers. With the next generation of high energy physics accelerator generation such as CLIC and TLEP, the problematic of high cyclic thermal load induced by synchrotron radiation is raised. This paper aims at defining some figures of merit of different materials with respect to several load scenarios and presents briefly their vacuum compatibility.

  11. Technology handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 3: Technology is part of a series of publications that presents articles featuring the whole spectrum of vacuum physics. This particular volume presents materials that deal with technology concerns in vacuum mechanics. The first material talks about the utilization of ceramic materials in the construction of vacuum devices. The next paper details the application of vacuum physics in soldering and brazing process. The last article deals with the utilization of vacuum technology in high frequency heating. The book will be of great use to professionals involved

  12. LEP vacuum chamber, prototype

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  13. LEP Vacuum Chamber

    CERN Multimedia

    1983-01-01

    This is a cut-out of a LEP vacuum chamber for dipole magnets showing the beam channel and the pumping channel with the getter (NEG) strip and its insulating supports. A water pipe connected to the cooling channel can also be seen at the back.The lead radiation shield lining is also shown. See also 8305563X.

  14. Inexpensive high vacuum feedthroughs.

    Science.gov (United States)

    Gerber, S.; Post, D.

    1973-01-01

    Description of the use of rigid coaxial cable in the construction of high vacuum coaxial and coaxial push-pull rotary motion feedthroughs. This type of feedthroughs is shown to be extremely cheap and simple to make and modify. It can be used for moderately high voltages and provides a continuous, well shielded, low-noise feedthrough cable in any desired configuration.

  15. ISR vacuum system

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    A pressure of 5 x 10-11 Torr has been obtained repreatedly in this pilot section of the ISR vacuum system. The pilot section is 45 m long is pumped by 9 sputter-ion pumps pf 350 l/s pumping speed, and is baked out at 200 degrees C before each pump down.

  16. ISR vacuum system

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    Some of the most important components of the vacuum system are shown. At the left, the rectangular box is a sputter-ion pump inside its bake-out oven. The assembly in the centre includes a sector valve, three roughing valves, a turbomolecular pump, a rotary backing pump and auxiliary equipment. At the right, the small elbow houses a Bayard-

  17. Vacuum System at IUAC

    Science.gov (United States)

    Mandal, A.

    2012-11-01

    Vacuum technology is an integral part of any accelerator system. At IUAC we have a 15UD PELLETRON, superconduting LINAC, Low Energy Ion beam Facility and a 1.7MV pelletron. Vacuum requirement in these accelerators is ~10-8 torr. Various types of Vacuum pump are used in different zones of the accelerators depending on load. Since the whole accelerator is quite long, distributed pumps are placed in different sections as per load. In ion sources displacement type pump viz turbo-pumps are usually used as the gas load is quite high. In other parts of the accelerator combination of getter and ion pumps are used. It is very much necessary to isolate different sections for maintenance purpose. Proper valves are used to isolate the sections and to avoid vacuum accidents proper interlock system is introduced. If air goes in some sections accidentally, valves will close automatically to protect other sections. The talk will cover different types of pumps and interlock used in accelerators at IUAC.

  18. Metallic joints for very high vacuum

    International Nuclear Information System (INIS)

    Paigne, J.

    1961-01-01

    After defining three main types of joint; three types of distribution of the tightening force in the clamps are demonstrated; the distribution of stresses, distortion and displacements in these clamps is then calculated by means of the theory of elasticity. This is followed by experimental results on a particular means of tightening (i.e. screw-clamps). From a brief discussion on the behaviour of the clamps it is possible finally to define other types of joint deriving from the main types originally foreseen. (author) [fr

  19. Effect of growth conditions on the Al composition and optical properties of Al x Ga 1−x N layers grown by atmospheric-pressure metal organic vapor phase epitaxy

    KAUST Repository

    Soltani, S.

    2017-02-17

    The effect of growth conditions on the Al composition and optical properties of AlxGa1-xN layers grown by atmospheric-pressure metal organic vapor phase epitaxy is investigated. The Al content of the samples is varied between 3.0% and 9.3% by changing the gas flow rate of either trimethylaluminum (TMA) or trimethylgallium (TMG) while other growth parameters are kept constant. The optical properties of the AlxGa1-xN layers are studied by photoreflectance and time-resolved photoluminescence (TR-PL) spectroscopies. A degeneration in the material quality of the samples is revealed when the Al content is increased by increasing the TMA flow rate. When the TMG flow rate is decreased with a fixed TMA flow rate, the Al content of the AlxGa1-xN layers is increased and, furthermore, an improvement in the optical properties corresponding with an increase in the PL decay time is observed. (C) 2017 Elsevier B.V. All rights reserved.

  20. Control of residual carbon concentration in GaN high electron mobility transistor and realization of high-resistance GaN grown by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    He, X.G. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Zhao, D.G., E-mail: dgzhao@red.semi.ac.cn [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Jiang, D.S.; Liu, Z.S.; Chen, P.; Le, L.C.; Yang, J.; Li, X.J. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Zhang, S.M.; Zhu, J.J.; Wang, H.; Yang, H. [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2014-08-01

    GaN films were grown by metal-organic chemical vapor deposition (MOCVD) under various growth conditions. The influences of MOCVD growth parameters, i.e., growth pressure, ammonia (NH{sub 3}) flux, growth temperature, trimethyl-gallium flux and H{sub 2} flux, on residual carbon concentration ([C]) were systematically investigated. Secondary ion mass spectroscopy measurements show that [C] can be effectively modulated by growth conditions. Especially, it can increase by reducing growth pressure up to two orders of magnitude. High-resistance (HR) GaN epilayer with a resistivity over 1.0 × 10{sup 9} Ω·cm is achieved by reducing growth pressure. The mechanism of the formation of HR GaN epilayer is discussed. An Al{sub x}Ga{sub 1−x}N/GaN high electron mobility transistor structure with a HR GaN buffer layer and an additional low-carbon GaN channel layer is presented, exhibiting a high two dimensional electron gas mobility of 1815 cm{sup 2}/Vs. - Highlights: • Influence of MOCVD parameters on residual carbon concentration in GaN is studied. • GaN layer with a resistivity over 1 × 10{sup 9} Ω·cm is achieved by reducing growth pressure. • High electron mobility transistor (HEMT) structures were prepared. • Control of residual carbon content results in HEMT with high 2-D electron gas mobility.

  1. Pilot-scale electron cyclotron resonance-metal organic chemical vapor deposition system for the preparation of large-area fluorine-doped SnO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Bup Ju [Department of Energy and Environmental Engineering, Shinhan University, 233-1, Sangpae-dong, Dongducheon, Gyeonggi-do 483-777 (Korea, Republic of); Hudaya, Chairul [Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, Depok 16424 (Indonesia); Center for Energy Convergence, Green City Research Institute, Korea Institute of Science and Technology, Hwarangno 14 gil 5, Seoul 136-791 (Korea, Republic of); Department of Energy and Environmental Engineering, Korea University of Science and Technology, 176 Gajungro Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Lee, Joong Kee, E-mail: leejk@kist.re.kr [Center for Energy Convergence, Green City Research Institute, Korea Institute of Science and Technology, Hwarangno 14 gil 5, Seoul 136-791 (Korea, Republic of); Department of Energy and Environmental Engineering, Korea University of Science and Technology, 176 Gajungro Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2016-05-15

    The authors report the surface morphology, optical, electrical, thermal and humidity impacts, and electromagnetic interference properties of fluorine-doped tin oxide (SnO{sub 2}:F or “FTO”) thin films on a flexible polyethylene terephthalate (PET) substrate fabricated by a pilot-scale electron cyclotron resonance–metal organic chemical vapor deposition (PS ECR-MOCVD). The characteristics of large area FTO thin films were compared with a commercially available transparent conductive electrode made of tin-doped indium oxide (ITO), prepared with an identical film and PET thickness of 125 nm and 188 μm, respectively. The results revealed that the as-prepared FTO thin films exhibited comparable performances with the incumbent ITO films, including a high optical transmittance of 97% (substrate-subtracted), low electrical resistivity of about 5 × 10{sup −3} Ω cm, improved electrical and optical performances due to the external thermal and humidity impact, and an excellent shielding effectiveness of electromagnetic interference of nearly 2.3 dB. These excellent performances of the FTO thin films were strongly attributed to the design of the PS ECR-MOCVD, which enabled a uniform plasma environment resulting from a proper mixture of electromagnetic profiles and microwave power.

  2. Vacuum in thermo field dynamics

    International Nuclear Information System (INIS)

    Matsumoto, H.

    1987-01-01

    The framework for thermo field dynamics is presented in the axiomatic form. It consists of the conditions for the quantum algebra and the conditions for the vacuum. Choices of nonequilibrium vacuums correspond to nonequilibrium phenomena. (orig.)

  3. Tritium handling in vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Gill, J.T. [Monsanto Research Corp., Miamisburg, OH (United States). Mound Facility; Coffin, D.O. [Los Alamos National Lab., NM (United States)

    1986-10-01

    This report provides a course in Tritium handling in vacuum systems. Topics presented are: Properties of Tritium; Tritium compatibility of materials; Tritium-compatible vacuum equipment; and Tritium waste treatment.

  4. Development of a Modified Vacuum Cleaner for Lunar Surface Systems

    Science.gov (United States)

    Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf' vacuum cleaner will be used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques in order to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating particulate removal, relative to the retained simulant on the tested surface. In addition, optical microscopy was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has

  5. Performance Characterization and Simulation of Amine-Based Vacuum Swing Sorption Units for Spacesuit Carbon Dioxide and Humidity Control

    Science.gov (United States)

    Swickrath, Michael J.; Watts, Carly; Anderson, Molly; McMillin, Summer; Broerman, Craig; Colunga, Aaron; Vogel, Matthew

    2012-01-01

    Controlling carbon dioxide (CO2) and water (H2O) vapor concentrations in a space suit is critical to ensuring an astronauts safety, comfort, and capability to perform extra-vehicular activity (EVA) tasks. Historically, this has been accomplished using lithium hydroxide (LiOH) and metal oxide (MetOx) canisters. Lithium hydroxide is a consumable material that requires priming with water before it becomes effective at removing carbon dioxide. MetOx is regenerable through a power-intensive thermal cycle but is significantly heavier on a volume basis than LiOH. As an alternative, amine-based vacuum swing beds are under aggressive development for EVA applications. The vacuum swing units control atmospheric concentrations of both CO2 and H2O through fully-regenerative process. The current concept, referred to as the rapid cycle amine (RCA), has resulted in numerous laboratory prototypes. Performance of these prototypes have been assessed experimentally and documented in previous reports. To support developmental e orts, a first principles model has also been established for the vacuum swing sorption technology. For the first time in several decades, a major re-design of Portable Life Support System (PLSS) for the extra-vehicular mobility unit (EMU) is underway. NASA at Johnson Space Center built and tested an integrated PLSS test bed of all subsystems under a variety of simulated EVA conditions of which the RCA prototype played a significant role. The efforts documented herein summarize RCA test performance and simulation results for single and variable metabolic rate experiments in an integrated context. In addition, a variety of off-nominal tests were performed to assess the capability of the RCA to function under challenging circumstances. Tests included high water production experiments, degraded vacuum regeneration, and deliberate valve/power failure and recovery.

  6. A radiation hard vacuum switch

    Science.gov (United States)

    Boettcher, G.E.

    1988-07-19

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction. 3 figs.

  7. Chemical reaction between water vapor and stressed glass

    Science.gov (United States)

    Soga, N.; Okamoto, T.; Hanada, T.; Kunugi, M.

    1979-01-01

    The crack velocity in soda-lime silicate glass was determined at room temperature at water-vapor pressures of 10 to 0.04 torr using the double torsion technique. A precracked glass specimen (70 x 16 x 1.6 mm) was placed in a vacuum chamber containing a four-point bending test apparatus. The plotted experimental results show that the crack propagation curve in water agrees fairly well with that of Wiederhorn (1967). Attention is given to the effect of water vapor pressure on crack velocity at K(I) = 550,000 N/m to the 3/2 power, with (Wiederhorn's data) or without N2 present. The plotted results reveal that the present crack velocity is about two orders of magnitude higher than that of Wiederhorn at high water-vapor conditions, but the difference decreases as the water-vapor concentration diminishes or the crack velocity slows down.

  8. The symmetries of the vacuum

    International Nuclear Information System (INIS)

    Fleming, H.

    1985-01-01

    The vacuum equation of state required by cosmological inflation is taken seriously as a general property of the cosmological vacuum. This correctly restricts the class of theories which admit inflation. A model of such a vacuum is presented that leads naturally to the cosmological principle. (Author) [pt

  9. Vapor-Phase Hydrodeoxygenation of Guaiacol to Aromatics over Pt/HBeta: Identification of the Role of Acid Sites and Metal Sites on the Reaction Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Lei [Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 P.R. China; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Peng, Bo [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Zhu, Xinli [Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 P.R. China

    2018-02-05

    Hydrodeoxygenation of guaiacol, a phenolic compound derived from lignin fraction of biomass, over a Pt/HBeta catalyst at 350 °C and atmospheric pressure produces benzene, toluene, xylenes, and C9+ aromatics with yield of 42%, 29%, 12%, and 5%, respectively. Reaction pathways for conversion of two functional groups (hydroxyl and methoxyl) over the bifunctional catalyst were studied. Both guaiacol and intermediate products (catechol and cyclopentanone) were fed onto zeolite HBeta and Pt/SiO2 to identify the individual role of acid site and metal site. Acid sites (mainly Brønsted acid site, BAS) catalyze transalkylation and dehydroxylation reactions in sequence, producing phenol, cresols and xylenols as the major products at high conversion. Pt sites catalyze demethylation reaction resulting in catechol as the primary product, which can either be deoxygenated to phenol followed by phenol to benzene, or decarbonylated to cyclopentanone and further to butane. The close proximity of Pt and BAS in bifunctional Pt/HBeta enables both transalkylation and deoxygenation reactions with inhibited demethylation and decarbonylation reactions, producing aromatics as major final products with a total yield > 85%. Both activity and stability of bifunctional Pt/HBeta during hydrodeoxygenation of guaiacol is improved compared to HBeta and Pt/SiO2. The addition of water to the feed further improves the activity and stability via hydrolysis of O-CH3 bond of guaiacol on BAS and removing coke around Pt.

  10. Low temperature vapor phase digestion of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  11. Temperature control in vacuum

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1986-01-01

    The patent concerns a method for controlling the temperature of silicon wafers (or samples), during ion beam treatment of the wafers, in a vacuum. The apparatus and method are described for irradiation and temperature control of the samples. The wafers are mounted on a drum which is rotated through the ion beam, and are additionally heated by infra-red lamps to achieve the desired temperature. (U.K.)

  12. Vacuum inhomogeneous cosmological models

    International Nuclear Information System (INIS)

    Hanquin, J.-L.

    1984-01-01

    The author presents some results concerning the vacuum cosmological models which admit a 2-dimensional Abelian group of isometries: classifications of these space-times based on the topological nature of their space-like hypersurfaces and on their time evolution, analysis of the asymptotical behaviours at spatial infinity for hyperbolical models as well as in the neighbourhood of the singularity for the models possessing a time singularity during their evolution. (Auth.)

  13. Vacuum pumping concepts for ETF

    International Nuclear Information System (INIS)

    Homeyer, W.G.

    1980-09-01

    The Engineering Test Facility (ETF) poses unique vacuum pumping requirements due to its large size and long burn characteristics. These requirements include torus vacuum pumping initially and between burns and pumping of neutralized gas from divertor collector chambers. It was found that the requirements could be met by compound cryopumps in which molecular sieve 5A is used as the cryosorbent. The pumps, ducts, and vacuum valves required are large but fit with other ETF components and do not require major advances in vacuum pumping technology. Several additional design, analytical, and experimental studies were identified as needed to optimize designs and provide better design definition for the ETF vacuum pumping systems

  14. Use of GC/MS Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs - Standardized Protocol for On-Site Evaluation of Vapor Intrusion

    Science.gov (United States)

    2014-07-01

    is used in a wide variety of consumer products including hobby craft glues, oven cleaner, silver polish, water-proofing spray, lubricant spray, and...outdoors and the fan should be set at a speed that maintains at least 1 Pa negative pressure (i.e., vacuum ) relative to the outdoors. Larger (e.g., 4-5...increased vacuum (i.e., negative pressure) in the building may increase vapor flow from the subsurface into the building. However, it also may increase

  15. Vacuum outgassing from diffuse-absorptive baffle materials

    International Nuclear Information System (INIS)

    Egert, C.M.; Basford, J.A.

    1990-01-01

    Quantitative measurements of outgassing for Martin black and a variety of metallic, diffuse absorptive baffle materials under development for stray light management are reported in this paper. Outgassing measurements were made during pumpdown from atmosphere at room temperature. Mass scans indicate water was the major outgassing species for all materials tested. Calibrated measurements of water vapor outgassing as a function of time were also made for each baffle material. Most baffle materials exhibited total water vapor outgassed during pumpdown of between 1 x 10 -5 and 4 x 10 -5 moles/cm 2 . Plasma sprayed beryllium, currently under development exhibited approximately an order of magnitude lower total water vapor outgassed during pumpdown

  16. Method of triggering the vacuum arc in source with a resistor

    International Nuclear Information System (INIS)

    Zheng Le; Lan Zhaohui; Long Jidong; Peng Yufei; Li Jie; Yang Zhen; Dong Pan; Shi Jinshui

    2014-01-01

    Background: The metal vapor vacuum arc (MEVVA) ion source is a common source which provides strong metal ion flow. To trigger this ion source, a high-voltage trigger pulse generator and a high-voltage isolation pulse transformer are needed, which makes the power supply system complex. Purpose: To simplify the power supply system, a trigger method with a resistor was introduced, and some characteristics of this method were studied. Methods: The ion flow provided by different main arc current was measured, as well as the trigger current. The main arc current and the ion current were recorded with different trigger resistances. Results: Experimental results showed that, within a certain range of resistances, the larger the resistance value, the more difficult it was to success fully trigger the source. Meanwhile, the main arc rising edge became slower on the increasing in the trigger time. However, the resistance value increment had hardly impact on the intensity of ion flow extracted in the end, The ion flow became stronger with the increasing main arc current. Conclusion: The power supply system of ion source is simplified by using the trigger method with a resistor. Only a suitable resistor was needed to complete the conversion process from trigger to arc initiating. (authors)

  17. Effect of Salt Additives to Water on the Severity of Vapor Explosions and on the Collapse of Vapor Film

    Science.gov (United States)

    Arai, Takahiro; Furuya, Masahiro

    We proposed ultra rapid solidification and atomization technique, CANOPUS (Cooling and Atomizing based on NOble Process Utilizing Steam explosion), using small-scale vapor explosions to make an amorphous metal. The CANOPUS method is suitable for rapid cooling and atomization process, which utilizing sustainable small-scale vapor explosions. In order to apply the CANOPUS method to a high melting point metal, it is necessary to make a small-scale vapor explosion occur at a high temperature of the molten metal. Small-scale experiment is conducted to develop the vapor explosion promotor in which spontaneous vapor explosion can occur at a high temperature of a molten metal. Spontaneous vapor explosion do not occur when water at 80°C is used as a coolant. However, spontaneous vapor explosion occurs when water at 80°C with salt additives is used as a coolant. Specifically, lithium chloride solution generates spontaneous vapor explosions at the highest temperature of the molten tin in the experiment. In order to clarify the triggering mechanism of the spontaneous vapor explosion when the promotor is used as a coolant, a high-temperature solid stainless steel sphere is immersed into a coolant. The interfacial temperature of the stainless steel sphere is measured, and the behavior of a vapor film around the stainless steel sphere is observed with a digital video camera. As a result, salt additives resulted in an increase of quench temperature in all salt solutions. The quenching curves of each coolant indicate that the salt additives improve the film boiling heat transfer. The improvement of the film boiling heat transfer causes an unstable formation of the vapor film and a rise of the quench temperature. It is clarified that the salt additives to water promotes a vapor film collapse. Comparing two experiments, the quench temperature of each solution is in close agreement with the upper limit of the molten tin temperature that causes spontaneous vapor explosion. This

  18. Innovative Vacuum Distillation for Magnesium Recycling

    Science.gov (United States)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  19. Integrated vacuum absorption steam cycle gas separation

    Science.gov (United States)

    Chen, Shiaguo [Champaign, IL; Lu, Yonggi [Urbana, IL; Rostam-Abadi, Massoud [Champaign, IL

    2011-11-22

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  20. Method for Determining Vaporization Parameters

    Data.gov (United States)

    National Aeronautics and Space Administration — An accurate method of measuring vaporization coefficients will be very useful to each of these disciplines: Cosmochemistry,Evaporative Vapor Deposition, Durability...

  1. High-quality uniaxial In(x)Ga(1-x)N/GaN multiple quantum well (MQW) nanowires (NWs) on Si(111) grown by metal-organic chemical vapor deposition (MOCVD) and light-emitting diode (LED) fabrication.

    Science.gov (United States)

    Ra, Yong-Ho; Navamathavan, R; Park, Ji-Hyeon; Lee, Cheul-Ro

    2013-03-01

    This article describes the growth and device characteristics of vertically aligned high-quality uniaxial p-GaN/InxGa1-xN/GaN multiple quantum wells (MQW)/n-GaN nanowires (NWs) on Si(111) substrates grown by metal-organic chemical vapor deposition (MOCVD) technique. The resultant nanowires (NWs), with a diameter of 200-250 nm, have an average length of 2 μm. The feasibility of growing high-quality NWs with well-controlled indium composition MQW structure is demonstrated. These resultant NWs grown on Si(111) substrates were utilized for fabricating vertical-type light-emitting diodes (LEDs). The steep and intense photoluminescence (PL) and cathodoluminescence (CL) spectra are observed, based on the strain-free NWs on Si(111) substrates. High-resolution transmission electron microscopy (HR-TEM) analysis revealed that the MQW NWs are grown along the c-plane with uniform thickness. The current-voltage (I-V) characteristics of these NWs exhibited typical p-n junction LEDs and showed a sharp onset voltage at 2.75 V in the forward bias. The output power is linearly increased with increasing current. The result indicates that the pulsed MOCVD technique is an effective method to grow uniaxial p-GaN/InxGa1-xN/GaN MQW/n-GaN NWs on Si(111), which is more advantageous than other growth techniques, such as molecular beam epitaxy. These results suggest the uniaxial NWs are promising to allow flat-band quantum structures, which can enhance the efficiency of LEDs.

  2. Wafer-scale controlled exfoliation of metal organic vapor phase epitaxy grown InGaN/GaN multi quantum well structures using low-tack two-dimensional layered h-BN

    Energy Technology Data Exchange (ETDEWEB)

    Ayari, Taha; Li, Xin; Voss, Paul L.; Ougazzaden, Abdallah, E-mail: aougazza@georgiatech-metz.fr [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Sundaram, Suresh; El Gmili, Youssef [Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Salvestrini, Jean Paul [Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France)

    2016-04-25

    Recent advances in epitaxial growth have led to the growth of III-nitride devices on 2D layered h-BN. This advance has the potential for wafer-scale transfer to arbitrary substrates, which could improve the thermal management and would allow III-N devices to be used more flexibly in a broader range of applications. We report wafer scale exfoliation of a metal organic vapor phase epitaxy grown InGaN/GaN Multi Quantum Well (MQW) structure from a 5 nm thick h-BN layer that was grown on a 2-inch sapphire substrate. The weak van der Waals bonds between h-BN atomic layers break easily, allowing the MQW structure to be mechanically lifted off from the sapphire substrate using a commercial adhesive tape. This results in the surface roughness of only 1.14 nm on the separated surface. Structural characterizations performed before and after the lift-off confirm the conservation of structural properties after lift-off. Cathodoluminescence at 454 nm was present before lift-off and 458 nm was present after. Electroluminescence near 450 nm from the lifted-off structure has also been observed. These results show that the high crystalline quality ultrathin h-BN serves as an effective sacrificial layer—it maintains performance, while also reducing the GaN buffer thickness and temperature ramps as compared to a conventional two-step growth method. These results support the use of h-BN as a low-tack sacrificial underlying layer for GaN-based device structures and demonstrate the feasibility of large area lift-off and transfer to any template, which is important for industrial scale production.

  3. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001 Patterned Si Substrates by Metal Organic Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Ludovico Megalini

    2018-02-01

    Full Text Available We report on the use of InGaAsP strain-compensated superlattices (SC-SLs as a technique to reduce the defect density of Indium Phosphide (InP grown on silicon (InP-on-Si by Metal Organic Chemical Vapor Deposition (MOCVD. Initially, a 2 μm thick gallium arsenide (GaAs layer was grown with very high uniformity on exact oriented (001 300 mm Si wafers; which had been patterned in 90 nm V-grooved trenches separated by silicon dioxide (SiO2 stripes and oriented along the [110] direction. Undercut at the Si/SiO2 interface was used to reduce the propagation of defects into the III–V layers. Following wafer dicing; 2.6 μm of indium phosphide (InP was grown on such GaAs-on-Si templates. InGaAsP SC-SLs and thermal annealing were used to achieve a high-quality and smooth InP pseudo-substrate with a reduced defect density. Both the GaAs-on-Si and the subsequently grown InP layers were characterized using a variety of techniques including X-ray diffraction (XRD; atomic force microscopy (AFM; transmission electron microscopy (TEM; and electron channeling contrast imaging (ECCI; which indicate high-quality of the epitaxial films. The threading dislocation density and RMS surface roughness of the final InP layer were 5 × 108/cm2 and 1.2 nm; respectively and 7.8 × 107/cm2 and 10.8 nm for the GaAs-on-Si layer.

  4. Apparatus and method for removing mercury vapor from a gas stream

    Science.gov (United States)

    Ganesan, Kumar [Butte, MT

    2008-01-01

    A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.

  5. The vacuum platform

    Science.gov (United States)

    McNab, A.

    2017-10-01

    This paper describes GridPP’s Vacuum Platform for managing virtual machines (VMs), which has been used to run production workloads for WLCG and other HEP experiments. The platform provides a uniform interface between VMs and the sites they run at, whether the site is organised as an Infrastructure-as-a-Service cloud system such as OpenStack, or an Infrastructure-as-a-Client system such as Vac. The paper describes our experience in using this platform, in developing and operating VM lifecycle managers Vac and Vcycle, and in interacting with VMs provided by LHCb, ATLAS, ALICE, CMS, and the GridPP DIRAC service to run production workloads.

  6. R&D ERL: Vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  7. Denitrogenation model for vacuum tank degasser

    Science.gov (United States)

    Gobinath, R.; Vetrivel Murugan, R.

    2018-02-01

    Nitrogen in steel is both beneficial and detrimental depending on grade of steel and its application. To get desired low nitrogen during vacuum degassing process, VD parameters namely vacuum level, argon flow rate and holding time has to optimized depending upon initial nitrogen level. In this work a mathematical model to simulate nitrogen removal in tank degasser is developed and how various VD parameters affects nitrogen removal is studied. Ladle water model studies with bottom purging have shown two distinct flow regions, namely the plume region and the outside plume region. The two regions are treated as two separate reactors exchanging mass between them and complete mixing is assumed in both the reactors. In the plume region, transfer of nitrogen to single bubble is simulated. At the gas-liquid metal interface (bubble interface) thermodynamic equilibrium is assumed and the transfer of nitrogen from bulk liquid metal in the plume region to the gas-metal interface is obtained using mass transport principles. The model predicts variation of Nitrogen content in both the reactors with time. The model is validated with industrial process and the predicted results were found to have fair agreement with the measured results.

  8. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  9. Particle contamination in vacuum systems

    International Nuclear Information System (INIS)

    Martignac, J.; Bonin, B.; Henriot, C.; Poupeau, J.P.; Koltchakian, I.; Kocic, D.; Herbeaux, Ch.; Marx, J.P.

    1996-01-01

    Many vacuum devices, like RF cavities, are sensitive to particle contamination. This fact has motivated a considerable effort of cleanliness from the SRF community. The first results of a general study trying to identify the most contaminating steps during assembly and vacuum operation of the cavity is reported. The steps investigated here are gasket assembly, evacuation and venting of the vacuum system, and operation of sputter ion pumps. (author)

  10. Ultra High Vacuum Sputtering System

    Science.gov (United States)

    1991-07-25

    NO. NO. Washington, D.C. 20332-6448 E.. 1,1. T IT LE (Incirot Securi ty Ciassificalion) (U L t ra High Vacuum Spattering System _1__ 12. PERSONAL...ABSTRACT (Continue on reuerse it necessary and identify by bioc, number) This grant provided for the purchase of an ultra high vacuum sputtering system, for...FOR GRANT FROM DEFENSE UNIVERSITY RESEARCH INSTRUMENTATION PROGRAM Grant no. AFOSR-89-0138 Date Submitted: 27 July, 1991 Title: Ultra High Vacuum Sputtering

  11. Big Bang or vacuum fluctuation

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1980-01-01

    Some general properties of vacuum fluctuations in quantum field theory are described. The connection between the ''energy dominance'' of the energy density of vacuum fluctuations in curved space-time and the presence of singularity is discussed. It is pointed out that a de-Sitter space-time (with the energy density of the vacuum fluctuations in the Einstein equations) that matches the expanding Friedman solution may describe the history of the Universe before the Big Bang. (P.L.)

  12. Of vacuum and gas

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    A new LHCb programme is delving into uncharted waters for the LHC: exploring how protons interact with noble gases inside the machine pipe. While, at first glance, it may sound risky for the overall quality of the vacuum in the machine, the procedure is safe and potentially very rich in rewards. The results could uncover the high-energy helium-proton cross-section (with all the implications thereof), explore new boundaries of the quark-gluon plasma and much more.   As the beam passes through LHCb, interactions with neon gas allow the experiment to measure the full beam profile. In this diagram, beam 1 (blue) and beam 2 (red) are measured by the surrounding VELO detector. It all begins with luminosity. In 2011, LHCb set out to further improve its notoriously precise measurements of the beam profile, using the so-called Beam-Gas Imaging (BGI) method. BGI does exactly what it says on the tin: a small amount of gas is inserted into the vacuum, increasing the rate of collisions around the interaction ...

  13. Construction of a sub-Kelvin ultrahigh vacuum scanning tunneling microscope in high magnetic field

    Science.gov (United States)

    Ham, Ungdon

    A sub-Kelvin ultrahigh vacuum (UHV) scanning tunneling microscope (STM) high magnetic field has been designed and constructed, and has been tested at ˜ 1K and in high magnetic field up to 9 teslas. A four-chamber ultrahigh vacuum system creates reliable environment for tip and sample preparation, surface characterization, and exchanging samples, tips, and evaporating materials. The pressure of chambers is in the low 10 -11 torr range. Various metal atoms and organic molecules can be deposited at room or low temperatures by home-made evaporators. The whole system is mounted on a custom vibration isolation table. A bottom loading ultrahigh vacuum compatible helium-3 cryostat with 9 tesla superconducting magnet is mounted above the vacuum chambers. The Besocke type scanner is modified to meet the requirements of sub-Kelvin temperature and high magnetic field. The scanner is mounted at the bottom of the cryostat insert, which is driven by a bellows type linear translator. The scanner is at the center of the superconducting magnet for measurements at sub-Kelvin temperatures in high magnetic field. With the scanner at the bottom 25 K position, tips and samples can be exchanged. The cryostat has two separate helium-4 reservoirs for the non-bakeable NbTi superconducting magnet and UHV space. The inner liquid helium reservoir provides a low radiation heat leak to the scanner at sub-Kelvin temperatures. Two layers of aluminum shields make use of the enthalpy of the cold He-4 vapor for radiation shielding. Detachable 25 K thermal anchoring to the STM scanner cools down the STM scanner very effectively. With 15 ml liquid helium-3, a holding time of more than 50 hours at 0.4 K base temperature was obtained, and it will be increased some more with new modifications. Combined manipulating single atoms and molecules to make artificial nanometer size structures, with high resolution spectroscopy techniques of high resolution inelastic tunneling spectroscopy and spin

  14. Vacuum science, technology, and applications

    CERN Document Server

    Naik, Pramod K

    2018-01-01

    Vacuum plays an important role in science and technology. The study of interaction of charged particles, neutrals and radiation with each other and with solid surfaces requires a vacuum environment for reliable investigations. Vacuum has contributed immensely to advancements made in nuclear science, space, metallurgy, electrical/electronic technology, chemical engineering, transportation, robotics and many other fields. This book is intended to assist students, scientists, technicians and engineers to understand the basics of vacuum science and technology for application in their projects. The fundamental theories, concepts, devices, applications, and key inventions are discussed.

  15. PDX vacuum vessel stress analysis

    International Nuclear Information System (INIS)

    Nikodem, Z.D.

    1975-01-01

    A stress analysis of PDX vacuum vessel is described and the summary of results is presented. The vacuum vessel is treated as a toroidal shell of revolution subjected to an internal vacuum. The critical buckling pressure is calculated. The effects of the geometrical discontinuity at the juncture of toroidal shell head and cylindrical outside wall, and the concavity of the cylindrical wall are examined. An effect of the poloidal field coil supports and the vessel outside supports on the stress distribution in the vacuum vessel is determined. A method evaluating the influence of circular ports in the vessel wall on the stress level in the vessel is outlined

  16. Vacuum metastability with black holes

    International Nuclear Information System (INIS)

    Burda, Philipp; Gregory, Ruth; Moss, Ian G. annd

    2015-01-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  17. Ultrahigh-vacuum CVD Epitaxy of silicon and GexSi1-x

    Science.gov (United States)

    Racanelli, Marco; Greve, David W.

    1991-10-01

    The growth of epitaxial layers of germanium-silicon alloys is important for advanced semiconductor devices such as heterojunction bipolar transistors. This article explains the principles behind ultrahigh-vacuum chemical vapor deposition (UHV/CVD). This growth technique is capable of growing device-quality layers at low temperatures and, in addition, has a potential for high productivity in manufacturing.

  18. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    International Nuclear Information System (INIS)

    Freud, Roy; Harari, Ronen; Sher, Eran

    2009-01-01

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux during the cooling

  19. Instantaneous preparation of CuInSe2 films from elemental In, Cu, Se particles precursor films in a non-vacuum process

    International Nuclear Information System (INIS)

    Kaigawa, R.; Uesugi, T.; Yoshida, T.; Merdes, S.; Klenk, R.

    2009-01-01

    CuInSe 2 (CIS) films are successfully prepared by means of non-vacuum, instantaneous, direct synthesis from elemental In, Cu, Se particles precursor films without prior synthesis of CIS nanoparticle precursors and without selenization with H 2 Se or Se vapor. Our precursor films were prepared on metal substrates by spraying the solvent with added elemental In, Cu, and Se particles. Precursor films were instantaneously sintered using a spot welding machine. When the electric power was fixed to 0.6 kVA, elemental In, Cu, or Se peaks were not observed and only peaks of CIS are observed by X-ray diffraction (XRD) on the film sintered for 7/8 s. We can observe XRD peaks indicative of the chalcopyrite-type structure, such as (101), (103) and (211) diffraction peaks. We conclude that the synthesized CIS crystals have chalcopyrite-type structure with high crystallinity

  20. The tracking of interfaces in an electron-beam vaporizer

    International Nuclear Information System (INIS)

    Westerberg, K.W.; McClelland, M.A.; Finlayson, B.A.

    1993-03-01

    A numerical analysis is made of the material and energy flow in an electron beam vaporizer. In this system the energy from an electron beam heats metal confined in a water-cooled crucible. Metal is vaporized from a liquid pool circulating in a shell of its own solid. A modified Galerkin finite element method is used to calculate the flow and temperature fields along with the interface locations. The mesh is parameterized with spines which stretch and pivot as the phase boundaries move. The discretized equations are arranged in an ''arrow'' matrix and solved using the Newton-Raphson method. Results are given for an experimental aluminum vaporizer. The effects of buoyancy and capillary driven flow are included along with the surface contributions of vapor thrust, latent heat, thermal radiation, and crucible contact resistance

  1. Heterotic vacuum structure

    International Nuclear Information System (INIS)

    Schimmrigk, R.

    1989-01-01

    The vacuum structure of the Heterotic String is investigated. Methods from fleld theory and critical systems are being used to map out part of the moduli space of the (2,2)-configuration space of the Heterotic String. This configuration space breaks up into different Multidimensional spaces, each leading to a different physical particle spectrum. After explicitly constructing parts of the subspace of all (2,2)-vacua corresponding to complete intersection Calabi-Yau manifolds and tensor models of the N = 2 superconformal discrete minimal series, the spectrum of these models is computed and a search for phenomenological viable models is conducted. It turns out that there are only very few such models. In the second part of the thesis the construction of a new threegeneration model is explained and a detailed phenomenological analysis is presented

  2. Accelerator vacuum system elements

    International Nuclear Information System (INIS)

    Sivokon', V.V.; Kobets, A.F.; Shvetsov, V.A.; Sivokon', L.V.

    1980-01-01

    Some elements of vacuum systems are investigated. Considerable attention has been given to the investigation into peculiarities in pumping out of a ionoguide for transportation of an accelerated charged particles beam the spread of which often attains a considerable length. The number of pumps over the ionoguide length is experimentally determined. It is shown that as a result of ionoguide warm-up the pumping out time is considerably reduced maximum permissible pressure is decreased by two orders and lesser rate of pump pumping out is required. The investigations have shown that when operating the ionoguide there is no necessity in setting up seals between the ionoguide and magnetodischarged pump. The causes of the phenomenon in which the pressure near the pump is greater than in the end of the ionoguide, are impurities carried in by the pump into the ionoguide volume and the pumping out capacity of the pressure converter

  3. Vacuum Technology for Superconducting Devices

    CERN Document Server

    Chiggiato, P

    2014-01-01

    The basic notions of vacuum technology for superconducting applications are presented, with an emphasis on mass and heat transport in free molecular regimes. The working principles and practical details of turbomolecular pumps and cryopumps are introduced. The specific case of the Large Hadron Collider’s cryogenic vacuum system is briefly reviewed.

  4. Vacuum Alignment with more Flavors

    DEFF Research Database (Denmark)

    Ryttov, Thomas

    2014-01-01

    We study the alignment of the vacuum in gauge theories with $N_f$ Dirac fermions transforming according to a complex representation of the gauge group. The alignment of the vacuum is produced by adding a small mass perturbation to the theory. We study in detail the $N_f=2,3$ and $4$ case. For $N_...

  5. Vacuum Gas Tungsten Arc Welding

    Science.gov (United States)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  6. Computer simulated rate processes in copper vapor lasers

    Science.gov (United States)

    Harstad, K. C.

    1980-01-01

    A computer model for metal vapor lasers has been developed which places emphasis on the change of excited state populations of the lasant through inelastic collisions and radiative interaction. Also included are an energy equation for the pumping electrons and rate equations for laser photon densities. Presented are results of calculations for copper vapor with a neon buffer over a range of conditions. General agreement with experiments was obtained.

  7. Metalclad switchgear with vacuum circuit breaker

    Energy Technology Data Exchange (ETDEWEB)

    Pihler, J.; Vorsic, J. [Maribor Univ. (Slovenia); Kos, D. [TSN - Eling d.o.o., Maribor, (Slovenia)

    1997-12-31

    The development and testing of a medium voltage metalclad switchgear with a vacuum circuit breaker limited to European use was described. Laboratory tests were conducted, with special attention given to the calculation of pressure and temperature conditions in the switchgear of an open electric arc. The construction of individual compartments and the driving mechanisms of removable parts of the switchgear were also examined. Because of the metal partition walls between individual compartments of the switchgear, it was more difficult to achieve prescribed dielectric strengths between current conducting and grounded parts. Maxwells`s equations were used to determine the electromagnetic fields. The metal partition walls prevented the propagation of electric arcs in the switchgear. This, along with the removable circuit breaker, increased the reliability of the device. 9 refs., 3 figs.

  8. Cosmology with decaying vacuum energy

    International Nuclear Information System (INIS)

    Freese, K.; Adams, F.; Frieman, J.; Mottola, E.

    1987-09-01

    Motivated by recent attempts to solve the cosmological constant problem, we examine the observational consequences of a vacuum energy density which decays in time. For all times later than t ∼ 1 sec, the ratio of the vacuum to the total energy density of the universe must be small. Although the vacuum cannot provide the ''missing mass'' required to close the universe today, its presence earlier in the history of the universe could have important consequences. We discuss restrictions on the vacuum energy arising from primordial nucleosynthesis, the microwave and gamma ray background spectra, and galaxy formation. A small vacuum component at the era of nucleosynthesis, 0.01 5, but in some cases would severely distort the microwave spectrum. 9 refs., 3 figs

  9. Hadron Contribution to Vacuum Polarisation

    CERN Document Server

    Davier, M; Malaescu, B; Zhang, Z

    2016-01-01

    Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle–antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e− annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingre...

  10. Vacuum transitions in dual models

    International Nuclear Information System (INIS)

    Pashnev, A.I.; Volkov, D.V.; Zheltukhin, A.A.

    1976-01-01

    The investigation is continued of the spontaneous vacuum transition problem in the Neview-Schwartz dual model (NSDM). It is shown that vacuum transitions allow disclosing of supplementary degeneration in the resonance state spectrum. The dual amplitudes possess an internal structure corresponding to the presence of an infinite number of quarks with increasing masses and retained charges. The Adler principle holds. Analytic continuation on the constant of induced vacuum transitions makes it possible to establish the existence of spontaneous vacuum transitions in the NSDM. The consequence of this fact is the exact SU(2) symmetry of π, rho meson trajectories and the Higgs mechanism in the model. In this case the ratios of masses of particles leading trajectories are analogous to those obtained in the current algebra. It is shown that in the NSDM there arises chiral SU(2) x SU(2) x U(1) x U(1) x ... symmetry resulting from spontaneous vacuum transitions

  11. Synchrotron Vacuum Ultraviolet Light and Soft X-Ray Radiation Effects on Aluminized Teflon FEP Investigated

    Science.gov (United States)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1999-01-01

    Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.

  12. The compositional, structural, and magnetic properties of a Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN spin injecting hetero-structure grown by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhonghua; Huang, Shimin [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Tang, Kun, E-mail: ktang@nju.edu.cn [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Gu, Shulin, E-mail: slgu@nju.edu.cn [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Zhu, Shunming [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Ye, Jiandong [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Nanjing University Institute of Optoelectronics at Yangzhou, Yangzhou 225009 (China); Xu, Mingxiang [Department of Physics, Southeast University, Nanjing 210096 (China); Wang, Wei; Zheng, Youdou [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China)

    2016-12-01

    Highlights: • The Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN hetero-structure has been fabricated by MOCVD successfully. • The formation mechanism of different layers in sample was revealed in details. • The properties of the hetero-structure have been presented and discussed extensively. • The effect of Ga diffusion on the magnetic properties of Fe{sub 3}O{sub 4} film has been shown. - Abstract: In this article, the authors have designed and fabricated a Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN spin injecting hetero-structure by metal-organic chemical vapor deposition. The compositional, structural, and magnetic properties of the hetero-structure have been characterized and discussed. From the characterizations, the hetero-structure has been successfully grown generally. However, due to the unintentional diffusion of Ga ions from Ga{sub 2}O{sub 3}/GaN layers, the most part of the nominal Fe{sub 3}O{sub 4} layer is actually in the form of Ga{sub x}Fe{sub 3−x}O{sub 4} with gradually decreased x values from the Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3} interface to the Fe{sub 3}O{sub 4} surface. Post-annealing process can further aggravate the diffusion. Due to the similar ionic radius of Ga and Fe, the structural configuration of the Ga{sub x}Fe{sub 3−x}O{sub 4} does not differ from that of pure Fe{sub 3}O{sub 4}. However, the ferromagnetism has been reduced with the incorporation of Ga into Fe{sub 3}O{sub 4}, which has been explained by the increased Yafet-Kittel angles in presence of considerable amount of Ga incorporation. A different behavior of the magnetoresistance has been found on the as-grown and annealed samples, which could be modelled and explained by the competition between the spin-dependent and spin-independent conduction channels. This work has provided detailed information on the interfacial properties of the Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN spin injecting hetero-structure, which is the solid basis for further improvement and application of

  13. Microstructural and superconducting properties of high current metal-organic chemical vapor deposition YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} coated conductor wires

    Energy Technology Data Exchange (ETDEWEB)

    Holesinger, T G; Maiorov, B; Ugurlu, O; Civale, L [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chen, Y; Xiong, X; Xie, Y; Selvamanickam, V [SuperPower, Inc., Schenectady, NY 12304 (United States)

    2009-04-15

    Metal-organic chemical vapor deposition (MOCVD) on flexible, ion beam assisted deposition MgO templates has been used to produce high critical current density (J{sub c}) (Y,Sm){sub 1}Ba{sub 2}Cu{sub 3}O{sub y} (REBCO) films suitable for use in producing practical high temperature superconducting (HTS) coated conductor wires. Thick films on tape were produced with sequential additions of 0.7 {mu}m of REBCO via a reel-to-reel progression through a custom-designed MOCVD reactor. Multi-pass processing for thick film deposition is critically dependent upon minimizing surface secondary phase formation. Critical currents (I{sub c}s) of up to 600 A/cm width (t = 2.8 {mu}m, J{sub c} = 2.6 MA cm{sup -2}, 77 K, self-field) were obtained in short lengths of HTS wires. These high performance MOCVD films are characterized by closely spaced (Y,Sm){sub 2}O{sub 3} nanoparticle layers that may be tilted relative to the film normal and REBCO orientation. Small shifts in the angular dependence of J{sub c} in low and intermediate applied magnetic fields can be associated with the tilted nanoparticle layers. Also present in these films were YCuO{sub 2} nanoplates aligned with the YBCO matrix (short dimension perpendicular to the film normal), threading dislocations, and oriented composite defects (OCDs). The latter structures consist of single or multiple a-axis oriented grains coated on each side with insulating (Y,Sm){sub 2}O{sub 3} or CuO. The OCDs formed a connected network of insulating phases by the end of the fourth pass. Subsequent attempts at adding additional layers did not increase I{sub c}. There is an inconsistency between the measured J{sub c} and the observed microstructural degradation that occurs with each additional layer, suggesting that previously deposited layers are improving with each repeated reactor pass. These dynamic changes suggest a role for post-processing to optimize superconducting properties of as-deposited films, addressing issues associated with

  14. Overview of High Power Vacuum Dry RF Load Designs

    Energy Technology Data Exchange (ETDEWEB)

    Krasnykh, Anatoly [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  15. Vacuum ultraviolet spectroscopy and photochemistry of zinc dihydride and related molecules in low-temperature matrices.

    Science.gov (United States)

    Henchy, Chris; Kilmartin, Una; McCaffrey, John G

    2013-09-26

    Optical absorption spectra of thin film samples, formed by the codeposition of zinc vapor with D2 and CH4, have been recorded with synchrotron radiation. With sufficiently low metal vapor flux, samples deposited at 4 K were found to consist exclusively of isolated zinc atoms for both solids. The atomic absorption bands in the quantum solids D2 and CH4 were found to exhibit large bandwidths, behavior related to the high lattice frequencies of these low mass solids. The reactivity of atomic zinc was promoted with (1)P state photolysis leading to the first recording of electronic absorption spectra for the molecules ZnD2 and CH3ZnH in the vacuum ultraviolet (VUV) region. (3)P state luminescence of atomic zinc observed in the Zn/CH4 system points to the involvement of the spin triplet state in the relaxation of CH3ZnH system as it evolves into the C3v ground state. This state is not involved in the relaxation of the higher symmetry molecule ZnD2. Time dependent density functional theory (TD-DFT) calculations were conducted to predict the electronic transitions of the inserted molecular species. Comparisons with experimental data indicate the predicted transition energies are approximately 0.5 eV less than the recorded values. Possible reasons for the discrepancy are discussed. The molecular photochemistry of ZnD2 and CH3ZnH observed in the VUV was modeled successfully with a simple four-valence electron AH2 Walsh-type diagram.

  16. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake systems...

  17. Vapor concentration monitor

    Science.gov (United States)

    Bayly, John G.; Booth, Ronald J.

    1977-01-01

    An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

  18. Automatic electromagnetic valve for previous vacuum

    International Nuclear Information System (INIS)

    Granados, C. E.; Martin, F.

    1959-01-01

    A valve which permits the maintenance of an installation vacuum when electric current fails is described. It also lets the air in the previous vacuum bomb to prevent the oil ascending in the vacuum tubes. (Author)

  19. Discharge modes at the anode of a vacuum arc

    International Nuclear Information System (INIS)

    Miller, H.C.

    1982-01-01

    The two most common anode modes in a vacuum arc are the low current mode, where the anode is basically inert; and the high current mode with a fully developed anode spot. This anode spot is very bright, has a temperature near the boiling point of the anode material, and is a copious source of vapor and energetic ions. However, other anode modes can exist. A low current vacuum arc with electrodes of readily sputterable material will emit a flux of sputtered atoms from the anode. An intermediate currents an anode footpoint can form. This footpoint is luminous, but much cooler than a true anode spot. Finally, a high current mode can exist where several small anode spots are present instead of a single large anode spot

  20. Melt-Vapor Phase Diagram of the Te-S System

    Science.gov (United States)

    Volodin, V. N.; Trebukhov, S. A.; Kenzhaliyev, B. K.; Nitsenko, A. V.; Burabaeva, N. M.

    2018-03-01

    The values of partial pressure of saturated vapor of the constituents of the Te-S system are determined from boiling points. The boundaries of the melt-vapor phase transition at atmospheric pressure and in vacuum of 2000 and 100 Pa are calculated on the basis of partial pressures. A phase diagram that includes vapor-liquid equilibrium fields whose boundaries allow us to assess the behavior of elements upon distillation fractioning is plotted. It is established that the separation of elements is possible at the first evaporation-condensation cycle. Complications can be caused by crystallization of a sulfur solid solution in tellurium.

  1. Wafer-Level Vacuum Packaging of Smart Sensors.

    Science.gov (United States)

    Hilton, Allan; Temple, Dorota S

    2016-10-31

    The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors-"low cost" for ubiquitous presence, and "smart" for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology.

  2. Wafer-Level Vacuum Packaging of Smart Sensors

    Directory of Open Access Journals (Sweden)

    Allan Hilton

    2016-10-01

    Full Text Available The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors—“low cost” for ubiquitous presence, and “smart” for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology.

  3. Vacuum type D initial data

    Science.gov (United States)

    García-Parrado Gómez-Lobo, Alfonso

    2016-09-01

    A vacuum type D initial data set is a vacuum initial data set of the Einstein field equations whose data development contains a region where the space–time is of Petrov type D. In this paper we give a systematic characterisation of a vacuum type D initial data set. By systematic we mean that the only quantities involved are those appearing in the vacuum constraints, namely the first fundamental form (Riemannian metric) and the second fundamental form. Our characterisation is a set of conditions consisting of the vacuum constraints and some additional differential equations for the first and second fundamental forms These conditions can be regarded as a system of partial differential equations on a Riemannian manifold and the solutions of the system contain all possible regular vacuum type D initial data sets. As an application we particularise our conditions for the case of vacuum data whose data development is a subset of the Kerr solution. This has applications in the formulation of the nonlinear stability problem of the Kerr black hole.

  4. Analysis of hydrogen in zirconium metallic

    International Nuclear Information System (INIS)

    Rodrigues, A.N.; Vega Bustillos, J.O.W.

    1991-02-01

    Determination of hydrogen in zirconium metallic have been performed using the hot vacuum extraction system and the gas chromatographic technique. The zirconium metallic samples were hydrieded by electrolitic technique at difference temperatures and times, then the samples were annealing at vacuum and eatching by fluoridric acid solution. The details of the hydrieded process, analytical technique and the data obtained are discussed. (author)

  5. HIGH TEMPERATURE VACUUM MIXER

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2015-01-01

    Full Text Available The work is devoted to the creation of a new type of mixer to produce homogeneous mixtures of dissimilar materials applied to recycling of housing and communal services waste. The article describes the design of a dual-chamber device of the original high-temperature vacuum mixer, there investigated the processes occurring in the chambers of such devices. The results of theoretical and experimental research of the process of mixing recycled polyethylene with a mixture of "grinded food waste – Eco wool” are presented. The problem of the optimum choice of bending the curvilinear blades in the working volume of the seal, which is achieved by setting their profile in the form of involute arc of several circles of different radii, is examined . The dependences, allowing to define the limits of the changes of the main mode parameters the angular velocity of rotation of the working body of the mixer using two ways of setting the profile of the curvilinear blade mixer are obtained. Represented design of the mixer is proposed to use for a wide range of tasks associated with the mixing of the components with a strongly pronounced difference of physic al chemical properties and, in particular, in the production of composites out of housing and communal services waste.

  6. Changing MFTF vacuum environment

    International Nuclear Information System (INIS)

    Margolies, D.; Valby, L.

    1982-01-01

    The Mirror Fusion Test Facility (MFTF) vaccum vessel will be about 60m long and 10m in diameter at the widest point. The allowable operating densities range from 2 x 10 9 to 5 x 10 10 particles per cc. The maximum leak rate of 10 -6 tl/sec is dominated during operation by the deliberately injected cold gas of 250 tl/sec. This gas is pumped by over 1000 square meters of cryopanels, external sorbtion pumps and getters. The design and requirements have changed radically over the past several years, and they are still not in final form. The vacuum system design has also changed, but more slowly and less radically. This paper discusses the engineering effort necessary to meet these stringent and changing requirements. Much of the analysis of the internal systems has been carried out using a 3-D Monte Carlo computer code, which can estimate time dependent operational pressures. This code and its use will also be described

  7. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  8. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  9. Vapor liquid fraction determination

    International Nuclear Information System (INIS)

    1980-01-01

    This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)

  10. Heat of vaporization spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D. Jr.

    1979-03-01

    Multilayer desorption measurements of various substances adsorbed on a stainless-steel substrate are found to exhibit desorption profiles consistent with a zeroth-order desorption model. The singleness of the desorption transients together with their narrow peak widths makes the technique ideally suited for a heat of vaporization spectrometer for either substance analysis or identification.

  11. Heat of vaporization spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D. Jr.

    1978-01-01

    Multilayer desorption measurements of various substances adsorbed on a stainless steel substrate are found to exhibit desorption profiles consistent with a zeroth order desorption model. The singleness of the desorption transients together with their narrow peak widths makes the technique ideally suited for a heat of vaporization spectrometer for either substance analysis or identification.

  12. Vacuum system for HIMAC synchrotrons

    International Nuclear Information System (INIS)

    Kanazawa, M.; Sudou, M.; Sato, K.

    1994-01-01

    HIMAC synchrotrons are now under construction, which require vacuum chambers of large aperture and high vacuum of about 10 -9 torr. Wide thin wall vacuum chamber of 0.3 mm thickness reinforced with ribs has been developed as the chamber at dipole magnet. We have just now started to evacuate the lower ring. The obtained average value was about 5x10 -8 torr with turbo-molecular and sputter ion pumps, and 1.1x10 -9 torr after baking. (author)

  13. Resistor cooling in a vacuum

    International Nuclear Information System (INIS)

    Crittenden, R.; Krider, J.

    1987-01-01

    This note describes thermal measurements which were done on a resistor operating both in air at one atmosphere pressure and in a vacuum of a few milliTorr. The motivation for this measurement was our interest in operating a BGO crystal-photomultiplier tube-base assembly in a vacuum, as a synchrotron radiation detector to tag electrons in the MT beam. We wished to determine what fraction of the total resistor power was dissipated by convection in air, in order to know whether there would be excessive heating of the detector assembly in a vacuum. 3 figs

  14. Experimental tests of vacuum energy

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    While the current vacuum energy of the Universe is very small, in our standard cosmological picture it has been much larger at earlier epochs. We try to address the question of what are possible ways to try to experimentally verify this. One direction is to look for systems where vacuum energy constitutes a non-negligible fraction of the total energy, and study the properties of those. Another possibility is to focus on the epochs around cosmic phase transitions, when the vacuum energy is of the same order as the total energy. Along these lines we investigate properties of neutron stars and the imprint of phase transitions on primordial gravitational waves.

  15. Vacuum vessel for thermonuclear device

    International Nuclear Information System (INIS)

    Hagiwara, Koji; Imura, Yasuya.

    1979-01-01

    Purpose: To provide constituted method for easily performing baking of vacuum vessel, using short-circuiting segments. Constitution: At the time of baking, one turn circuit is formed by the vacuum vessel and short-circuiting segments, and current transformer converting the one turn circuit into a secondary circuit by the primary coil and iron core is formed, and the vacuum vessel is Joule heated by an induction current from the primary coil. After completion of baking, the short-circuiting segments are removed. (Kamimura, M.)

  16. Technological ion sources based on the vacuum arc discharge

    CERN Document Server

    Bugaev, S P; Oks, E M; Yushkov, G Y; Shchanin, P M; Braun, Y

    2001-01-01

    The Titan service ion sources are designed to generate wide-aperture high-current ion beams of gases or metals, as well as, mixed two-component gas and metal ion beams with the controllable ratio of components in a beam. This possibility is achieved via integration of two discharge systems in a source discharge system. To generate metal ions one uses a vacuum, arc discharge, while gas ions are generated by a low pressure contracted arc discharge with cold cathodes. The paper describes operation of these sources, their design, technical characteristics, peculiarities of their operation and application fields

  17. Vacuum in intensive gauge fields

    International Nuclear Information System (INIS)

    Matinian, S.G.

    1977-12-01

    The behaviour of vacuum in a covariantly constant Yang-Mills field is considered. The expressions for the effective Lagrangian in an intensive field representing the asymptotic freedom of the theory are found

  18. Vacuum production; Produccion de vacio

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, J. L. de

    2010-07-01

    Since the advent of ultra high vacuum in 1958 has been a great demand for new as means of production and to meet the process needs to be done: industry heavy, high technology and space research areas, large accelerator systems particles or nuclear fusion. In this paper we explore the modern media production: dry vacuum pumps, turbo pumps, pump status diffusion ion pumps and cryopumps. (Author)

  19. ITER diagnostic system: Vacuum interface

    International Nuclear Information System (INIS)

    Patel, K.M.; Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L.; Drevon, J.M.; Encheva, A.; Kashchuk, Y.; Maquet, Ph.; Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J.

    2013-01-01

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10 −7 Pa, irrespective of plasma operation, and a leak rate of less than 10 −10 Pa m 3 s −1 . In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions will be described

  20. Thermogravimetric study of vapor pressure of TATP synthesized without recrystallization.

    Science.gov (United States)

    Mbah, Jonathan; Knott, Debra; Steward, Scott

    2014-11-01

    This study aims at characterizing the vapor pressure signatures generated by triacetone triperoxide (TATP) that was synthesized without recrystallization by thermogravimmetric analysis (TGA) for exploitation by standoff detection technologies of explosive devices. The thermal behavior of the nonrecrystallized sample was compared with reported values. Any phase change, melting point and decomposition identification were studied by differential scanning calorimeter. Vapor pressures were estimated by the Langmuir method of evaporation from an open surface in a vacuum. Vapor pressures of TATP at different temperatures were calculated using the linear logarithmic relationship obtained from benzoic acid reference standard. Sublimation of TATP was found to follow apparent zero-order kinetics and sublimes at steady rates at 298 K and above. While the enthalpy of sublimation found, 71.7 kJ mol(-1), is in agreement with reported values the vapor pressures deviated significantly. The differences in the vapor pressures behavior are attributable to the synthesis pathway chosen in this study. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Vacuum-assisted cesarean section

    Directory of Open Access Journals (Sweden)

    McQuivey RW

    2017-03-01

    Full Text Available Ross W McQuivey,1 Jon E Block2 1Clinical Innovations, Salt Lake City, UT, 2Independent consultant, San Francisco, CA, USA Abstract: There has been a dramatic rise in the frequency of cesarean sections, surpassing 30% of all deliveries in the US. This upsurge, coupled with a decreasing willingness to allow vaginal birth after cesarean section, has resulted in an expansion of the use of vacuum assistance to safely extract the fetal head. By avoiding the use of a delivering hand or forceps blade, the volume being delivered through the uterine incision can be decreased when the vacuum is used properly. Reducing uterine extensions with their associated complications (eg, excessive blood loss in difficult cases is also a theoretical advantage of vacuum delivery. Maternal discomfort related to excessive fundal pressure may also be lessened. To minimize the risk of neonatal morbidity, proper cup placement over the “flexion point” remains essential to maintain vacuum integrity and reduce the chance of inadvertent detachment and uterine extensions. Based on the published literature and pragmatic clinical experience, utilization of the vacuum device is a safe and effective technique to assist delivery during cesarean section. Keywords: cesarean section, vacuum, forceps, birth, delivery

  2. Growth and Characterization of (211)B Cadmium Telluride Buffer Layer Grown by Metal-organic Vapor Phase Epitaxy on Nanopatterned Silicon for Mercury Cadmium Telluride Based Infrared Detector Applications

    Science.gov (United States)

    Shintri, Shashidhar S.

    Mercury cadmium telluride (MCT or Hg1-xCdxTe) grown by molecular beam epitaxy (MBE) is presently the material of choice for fabricating infrared (IR) detectors used in night vision based military applications. The focus of MCT epitaxy has gradually shifted since the last decade to using Si as the starting substrate since it offers several advantages. But the ˜19 % lattice mismatch between MCT and Si generates lots of crystal defects some of which degrade the performance of MCT devices. Hence thick CdTe films are used as buffer layers on Si to accommodate the defects. However, growth of high quality single crystal CdTe on Si is challenging and to date, the best MBE CdTe/Si reportedly has defects in the mid-105 cm -2 range. There is a critical need to reduce the defect levels by at least another order of magnitude, which is the main motivation behind the present work. The use of alternate growth technique called metal-organic vapor phase epitaxy (MOVPE) offers some advantages over MBE and in this work MOVPE has been employed to grow the various epitaxial films. In the first part of this work, conditions for obtaining high quality (211)B CdTe epitaxy on (211)Si were achieved, which also involved studying the effect of having additional intermediate buffer layers such as Ge and ZnTe and incorporation of in-situ thermal cyclic annealing (TCA) to reduce the dislocation density. A critical problem of Si cross-contamination due to 'memory effect' of different reactant species was minimized by introducing tertiarybutylArsine (TBAs) which resulted in As-passivation of (211)Si. The best 8-10 µm thick CdTe films on blanket (non-patterned) Si had dislocations around 3×105 cm-2, which are the best reported by MOVPE till date and comparable to the highest quality films available by MBE. In the second part of the work, nanopatterned (211)Si was used to study the effect of patterning on the crystal quality of epitaxial CdTe. In one such study, patterning of ˜20 nm holes in SiO2

  3. Centrifugal vacuum casting for fuel cladding tube blanks

    International Nuclear Information System (INIS)

    Zelenskii, V.F.; Neklyudov, I.M.; Chernyi, B.P.; Zeidlits, M.P.; Vanzha, A.F.; Rubashko, V.G.; Ryabchikov, L.N.; Smirnov, Y.K.; Bespalova, V.R.; Mashkarova, V.T.; Rybal'chenko, N.D.

    1990-01-01

    An advanced technique for making tube blanks with an acceptable level of nonmetallic inclusions is vacuum induction melting combined with centrifugal casting, as the latter gives a cylindrical casting having an axial hole, while the cast metal has elevated density and contains fewer nonmetallic inclusions than does the metal cast in a stationary mold. The reduction in the nonmetallic inclusions occurs because of increased rates of floating up in the rotating mold on account of the centrifugal force and the rejection to the inner surface. One can choose the parameters such as the pouring speed, rotational speed, mold cooling, and liquid-metal temperature and can introduce a deoxidizer to remove the nonmetallic inclusions or reduce the grain size of them and produce an appropriate cast structure and obtain a metal whose quality is the same as that on vacuum induction melting with secondary arc remelting. For these purposes, the authors have developed centrifugal-casting machines for use under vacuum or in inert gases with horizontal and vertical mold rotation axes

  4. Chromium depletion from stainless steels during vacuum annealing

    International Nuclear Information System (INIS)

    Smith, A.F.; Hales, R.

    1977-01-01

    During selective chromium oxidation of stainless steels the changes in chromium concentration at the metal surface and in the metal have an important bearing on the overall oxidation performance. It has been proposed that an analogue of chromium behaviour during selective oxidation is obtained from volatilisation of chromium during high temperature vacuum annealing. In the present report the evaporation of chromium from 316 type of steel, vacuum annealed at 1,000 0 C, has been investigated by means of energy dispersive X-ray analysis and by neutron activation analysis. It was established that chromium loss from austenitic stainless steels is rate controlled by interdiffusion in the alloy. As predicted the chromium concentration at the metal surface decreased with increasing vacuum annealing time. The chromium depletion profile in the metal was in good agreement with the previously derived model apart from an anomalous region near the surface. Here the higher resolution of the neutron activation technique indicated a zone within approximately 2μm of the surface where the chromium concentration decreased more steeply than expected. (orig.) [de

  5. Potassium permanganate for mercury vapor environmental control

    Science.gov (United States)

    Kuivinen, D. E.

    1972-01-01

    Potassium permanganate (KMnO4) was evaluated for application in removing mercury vapor from exhaust air systems. The KMnO4 may be used in water solution with a liquid spray scrubber system or as a solid adsorber bed material when impregnated onto a zeolite. Air samples contaminated with as much as 112 mg/cu m of mercury were scrubbed to 0.06mg/cum with the KMnO4-impregnated zeolite (molecular sieve material). The water spray solution of permanganate was also found to be as effective as the impregnated zeolite. The KMnO4-impregnated zeolite was applied as a solid adsorber material to (1) a hardware decontamination system, (2) a model incinerator, and (3) a high vacuum chamber for ion engine testing with mercury as the propellant. A liquid scrubber system was also applied in an incinerator system. Based on the results of these experiments, it is concluded that the use of KMnO4 can be an effective method for controlling noxious mercury vapor.

  6. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  7. Stratified vapor generator

    Science.gov (United States)

    Bharathan, Desikan [Lakewood, CO; Hassani, Vahab [Golden, CO

    2008-05-20

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  8. The thermodynamic approach of the pilot-scale purification of refractory metals

    International Nuclear Information System (INIS)

    Accary, A.

    1967-06-01

    The author shows how the thermodynamic can be applied to the prediction of the evolution of impurities from a metal or an alloy being melted and cast at the pilot-scale using electron bombardment and continuous casting in a water cooled copper. He studies this possibility on two examples: - the melting vanadium, - the melting of the uranium monocarbide. He shows using only the constants available in the literature and a few special runs in the pilot-equipment itself it is possible to determine: - the possibility of elimination of anyone impurity by keeping the material in the melting state under vacuum as well as the limit of purification which is achievable under given technological conditions, - the proportion of an impure metal which should be vaporized in order to bring the level of a given impurity down to a predetermined level and the necessary duration of heating. (author) [fr

  9. Atomic beam formed by the vaporization of a high velocity pellet

    International Nuclear Information System (INIS)

    Foster, C.A.; Hendricks, C.D.

    1974-01-01

    A description of an atomic beam formed by vaporizing an electrostatically accelerated high velocity pellet is given. Uniformly sized droplets of neon will be formed by the mechanical disintegration of liquid jet and frozen by adiabatic vaporization in vacuum. The pellets produced will be charged and accelerated by contacting a needle held at high potential. The accelerated pellets will be vaporized forming a pulse of mono-energetic atoms. The advantages are that a wide range of energies will be possible. The beam will be mono-energetic. The beam is inheretly pulsed, allowing a detailed time of flight velocity distribution measurement. The beam will have a high instantaneous intensity. The beam will be able to operate into an ultra high vacuum chamber

  10. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  11. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  12. Accelerator Technology: Ultra-High Vacuum

    CERN Document Server

    Baglin, V

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.5 Ultra-High Vacuum' of the Chapter '8 Accelerator Technology' with the content: 8.5 Ultra-High Vacuum 8.5.1 Introduction 8.5.2 Vacuum Fundamentals 8.5.3 Vacuum Dynamics 8.5.4 Vacuum Engineering

  13. Gas-controlled dynamic vacuum insulation with gas gate

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

  14. Vacuum deposition onto webs, films and foils

    CERN Document Server

    Bishop, Charles A

    2011-01-01

    Roll-to-roll vacuum deposition is the technology that applies an even coating to a flexible material that can be held on a roll and provides a much faster and cheaper method of bulk coating than deposition onto single pieces or non-flexible surfaces, such as glass. This technology has been used in industrial-scale applications for some time, including a wide range of metalized packaging (e.g. snack packets). Its potential as a high-speed, scalable process has seen an increasing range of new products emerging that employ this cost-effective technology: solar energy products are moving from rigid panels onto flexible substrates, which are cheaper and more versatile; in a similar way, electronic circuit 'boards' can be produced on a flexible polymer, creating a new range of 'flexible electronics' products; and, flexible displays are another area of new technology in vacuum coating, with flexible display panels and light sources emerging. Charles Bishop has written this book to meet the need he identified, as a t...

  15. Copper-Silver Alloy Depositions Using Thermionic Vacuum ARC (TVA)

    International Nuclear Information System (INIS)

    Akan, T.

    2004-01-01

    TVA is a plasma source generating pure metal vapor plasma and consists of a heated cathode emitting thermo electrons and an anode containing material to be evaporated. We used Cu and Ag pieces as anode materials and produced their alloys by electron bombarding. Cu-Ag alloys in various mass ratios were prepared by using the TVA and the TVA discharges were generated in the vapors of these alloys. The volt-ampere characteristics of the TVA discharges generated in the vapors of these alloys were investigated with respect to the ratio of Ag in the Cu-Ag alloy. Cu-Ag alloy thin films with various mass ratios were deposited onto the glass substrates by using their TVA discharges. The ratios of Cu and Ag in the thin Cu-Ag alloy films were found using scanning electron microscope-energy dispersive xray (SEM-EDX) microanalyses

  16. Vacuum-jacketed hydrofluoric acid solution calorimeter

    Science.gov (United States)

    Robie, R.A.

    1965-01-01

    A vacuum-jacketed metal calorimeter for determining heats of solution in aqueous HF was constructed. The reaction vessel was made of copper and was heavily gold plated. The calorimeter has a cooling constant of 0.6 cal-deg -1-min-1, approximately 1/4 that of the air-jacketed calorimeters most commonly used with HF. It reaches equilibrium within 10 min after turning off the heater current. Measurements of the heat of solution of reagent grade KCl(-100 mesh dried 2 h at 200??C) at a mole ratio of 1 KCl to 200 H2O gave ??H = 4198??11 cal at 25??C. ?? 1965 The American Institute of Physics.

  17. Vacuum vessel for thermonuclear device

    International Nuclear Information System (INIS)

    Kikuchi, Mitsuru; Nagashima, Keisuke; Suzuki, Masaru; Onozuka, Masaki.

    1997-01-01

    A vacuum vessel main body and structural members at the inside and the outside of the vacuum vessel main body are constituted by structural materials activated by irradiation of neutrons from plasmas such as stainless steels. Shielding members comprising tungsten or molybdenum are disposed on the surface of the vacuum vessel main body and the structural members of the inside and the outside of the main body. The shielding members have a function also as first walls or a seat member for the first walls. Armor tiles may be disposed to the shielding members. The shielding members and the armor tiles are secured to a securing seat member disposed, for example, to an inner plate of the vacuum vessel main body by bolts. Since the shielding members are disposed, it is not necessary to constitute the vacuum vessel main body and the structural members at the inside and the outside thereof by using a low activation material which is less activated, such as a titanium alloy. (I.N.)

  18. Metal impurity injection into DIVA plasmas with a Q-switched laser beam

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Nagami, Masayuki; Sengoku, Seio; Kumagai, Katsuaki

    1978-08-01

    Metal impurity injection into DIVA plasmas with a Q-switched ruby laser beam is described. Metal materials used are aluminium and gold. The Q-switched laser beam is incident onto a thin metal film thickness about 0.2 μm coated on pyrex glass plate surface. The metal film is vaporized by the laser beam and injected into DIVA plasma. The laser-beam injection method has advantages of sharp profile of vaporized metal, easy control of vaporized metal quantity and injection rate control of metal vapor. (author)

  19. A Mini-Prototype YBCO SMES Using Combustion Chemical Vapor Deposition Technique

    National Research Council Canada - National Science Library

    Shoup, Shara

    2000-01-01

    .... Textured nickel metal substrates were joined by 1 mm joints by several methods and in several physical configurations and then tested for feasibility by using the Combustion Chemical Vapor Deposition (CCVD...

  20. Carbon nanotubes based vacuum gauge

    Science.gov (United States)

    Rudyk, N. N.; Il’in, O. I.; Il’ina, M. V.; Fedotov, A. A.; Klimin, V. S.; Ageev, O. A.

    2017-11-01

    We have created an ionization type Vacuum gauge with sensor element based on an array of vertically aligned carbon nanotubes. Obtained asymmetrical current-voltage characteristics at different voltage polarity on the electrode with the CNTs. It was found that when applying a negative potential on an electrode with the CNTs, the current in the gap is higher than at a positive potential. In the pressure range of 1 ÷ 103 Torr vacuum gauge sensitivity was 6 mV/Torr (at a current of 4.5·10-5 A) and in the range of 10-5 ÷ 1 Torr was 10 mV/Torr (at a current of 1.3·10-5 A). It is shown that the energy efficiency of vacuum gauge can be increased in the case where electrode with CNT operates as an emitter of electrons.

  1. Support effects in the adsorption of water on CVD graphene: an ultra-high vacuum adsorption study.

    Science.gov (United States)

    Chakradhar, A; Sivapragasam, N; Nayakasinghe, M T; Burghaus, U

    2015-07-21

    Experimental data for water adsorption on CVD (chemical vapor deposition) graphene/SiO2 and graphene/Cu studied under ultra-high vacuum (UHV) conditions are discussed, focusing on support effects and hydrophobicity. Under UHV, it seems that graphene wettability is inversely related to wetting properties of the support. Graphene is not transparent to water wetting on the supports studied here.

  2. Electrical properties of polymer modified by metal ion implantation

    International Nuclear Information System (INIS)

    Wu Yuguang; Zhang Tonghe; Zhang Huixing; Zhang Xiaoji; Deng Zhiwei; Zhou Gu

    2000-01-01

    Polyethylene terephthalate (PET) has been modified by Ag, Cr, Cu and Si ion implantation with a dose range from 1x10 16 to 2x10 17 ions cm -2 using a metal vapor vacuum arc (MEVVA) source. The electrical properties of PET have been changed after metal ion implantation. The resistivity of implanted PET decreased obviously with an increase of ion dose. When metal ion dose of 2x10 17 cm -2 was selected, the resistivity of PET could be less than 10 Ω cm, but when Si ions are implanted, the resistivity of PET would be up to several hundred Ω cm. The results show that the conductive behavior of a metal ion implanted sample is obviously different from Si implantation one. The changes of the structure and composition have been observed with transmission electron microscope (TEM) and X-ray diffraction (XRD). The surface structure is varying after ion implantation and it is believed that the change would cause the improvement of the conductive properties. The mechanism of electrical conduction will be discussed

  3. Uptake of mercury vapor by wheat. An assimilation model

    International Nuclear Information System (INIS)

    Browne, C.L.; Fang, S.C.

    1978-01-01

    Using a whole-plant chamber and 203 Hg-labeled mercury, a quantitative study was made of the effect of environmental parameters on the uptake, by wheat (Triticum aestivum), of metallic mercury vapor, an atmospheric pollutant. Factors were examined in relation to their influence on components of the gas-assimilation model, U(Hg) = (C/sub A' -- C/sub L')/(r/sub L.Hg/ + r/sub M.Hg/) where U(Hg) is the rate of mercury uptake per unit leaf surface, C/sub A'/ is the ambient mercury vapor concentration, C/sub L'/ is the mercury concentration at immobilization sites within the plant (assumed to be zero), r/sub L.Hg/ is the total leaf resistance to mercury vapor exchange, and r/sub M.Hg/ is a residual term to account for unexplained physical and biochemical resistances to mercury vapor uptake. Essentially all mercury vapor uptake was confined to the leaves. r/sub L.Hg/ was particularly influenced by illumination (0 to 12.8 klux), but unaffected by ambient temperature (17 to 33 0 C) and mercury vapor concentration (0 to 40 μg m -3 ). The principal limitation to mercury vapor uptake was r/sub M.Hg/, which was linearly related to leaf temperature, but unaffected by mercury vapor concentration and illumination, except for apparent high values in darkness. Knowing C/sub A'/ and estimating r/sub L.Hg/ and r/sub M.Hg/ from experimental data, mercury vapor uptake by wheat in light was accurately predicted for several durations of exposure using the above model

  4. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.; Rosenthal, Joel; Booksh, Karl S., E-mail: kbooksh@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 (United States)

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films deposited by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.

  5. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  6. Warm Vapor Atom Interferometer

    Science.gov (United States)

    Biedermann, Grant; Wheeler, David; Jau, Yuan-Yu; McGuinness, Hayden

    2014-05-01

    We present a light pulse atom interferometer using room temperature rubidium vapor. Doppler sensitive stimulated Raman transitions forming the atom optical elements inherently select a cold velocity group for the interferometer. The interferometer is configured to be sensitive to accelerations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Vacuum Frying: A nutritional approach

    Directory of Open Access Journals (Sweden)

    Manuel Coronel

    2014-09-01

    Full Text Available (Received: 2014/08/07 - Accepted: 2014/09/22One of the largest areas of the food industry is the production of snacks, but these have generally an inadequate nutritional profile in healthy eating. The vacuum frying technology is presented as a clear option processing for the development of new products and existing ones. This review article presents the advantages of using technology in Vacuum frying different types of food, especially in relation to the contents of some micronutrients and fat. They also mention the work done in Ecuador, especially in local products.

  8. Research regarding the vacuuming of liquid steel on steel degassing

    Science.gov (United States)

    Magaon, M.; Radu, M.; Şerban, S.; Zgripcea, L.

    2018-01-01

    When the liquid steel comes in contact with the atmosphere of the elaboration aggregates, a process of gas diffusion into the metal bath takes place on the one hand, and on the other hand a process that allows them to pass from the metal bath into the atmosphere. The meaning of these processes is determined by a number of factors as follows: the quality of raw and auxiliary materials (moisture content, oils, etc.), the boiling intensity, the evacuation duration, the properties of used slags, the values of the casting ladle processing parameters (bubbling, vacuuming, etc.). The research was carried out at an electrical steelwork, equipped with an electric arc furnace type EBT (Electric Bottom Tapping) capacity 100t, LF (Ladle-Furnace) and VD (Vacuum Degassing) facilities, establishing some correlations between the vacuuming parameters from the V.D.facility and the amounts of hydrogen and nitrogen removed from the metal bath, as well as their removal efficiency, were taken into consideration. The obtained data was processed in MATLAB calculation program, the established correlations form was presented both in analytical and graphical form. The validity of these correlations was verified in practice, being particularly useful in research.

  9. Liquid--liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This well-known phenomenon is called a ''vapor explosion.'' One method of producing intimate, liquid--liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. In this experiment cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture). The main conclusion from the experimental study is that hydrodynamic effects may be very significant in any shock tube analyses, especially when multiple interactions are observed. A theoretical study was performed to check the possibility of vapor film squeezing (between a drop in film boiling and a surface) as a controlling mechanism for making liquid--liquid contact. Using experimental data, the film thickness was calculated and it was found to be too thick for any conceivable film rupture mechanism. It was suggested that the coalescence is a two-stage process, in which the controlling stage depends mainly on temperature and surface properties and can be described as the ability of cold liquid to spread on a hot surface

  10. Gases and vacua handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 1: Gases and Vacua provides information on the many aspects of vacuum technology, from material on the quantum theoretical aspects of the complex semi-conductors used for thermionic and photo-electric emission to data on the performance of commercially available pumps, gauges, and high-vacuum materials. The handbook satisfies the need of workers using vacuum apparatuses or works on the diverse applications of high-vacuum technology in research and industry. The book is a compilation of long articles prepared by experts in vacuum technology. Sufficient theoret

  11. State-of-the-art of recycling e-wastes by vacuum metallurgy separation.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2014-12-16

    In recent era, more and more electric and electronic equipment wastes (e-wastes) are generated that contain both toxic and valuable materials in them. Most studies focus on the extraction of valuable metals like Au, Ag from e-wastes. However, the recycling of metals such as Pb, Cd, Zn, and organics has not attracted enough attentions. Vacuum metallurgy separation (VMS) processes can reduce pollution significantly using vacuum technique. It can effectively recycle heavy metals and organics from e-wastes in an environmentally friendly way, which is beneficial for both preventing the heavy metal contaminations and the sustainable development of resources. VMS can be classified into several methods, such as vacuum evaporation, vacuum carbon reduction and vacuum pyrolysis. This paper respectively reviews the state-of-art of these methods applied to recycling heavy metals and organics from several kinds of e-wastes. The method principle, equipment used, separating process, optimized operating parameters and recycling mechanism of each case are illustrated in details. The perspectives on the further development of e-wastes recycling by VMS are also presented.

  12. An Efficient, Versatile, and Safe Access to Supported Metallic Nanoparticles on Porous Silicon with Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Walid Darwich

    2016-06-01

    Full Text Available The metallization of porous silicon (PSi is generally realized through physical vapor deposition (PVD or electrochemical processes using aqueous solutions. The former uses a strong vacuum and does not allow for a conformal deposition into the pores. In the latter, the water used as solvent causes oxidation of the silicon during the reduction of the salt precursors. Moreover, as PSi is hydrophobic, the metal penetration into the pores is restricted to the near-surface region. Using a solution of organometallic (OM precursors in ionic liquid (IL, we have developed an easy and efficient way to fully metallize the pores throughout the several-µm-thick porous Si. This process affords supported metallic nanoparticles characterized by a narrow size distribution. This process is demonstrated for different metals (Pt, Pd, Cu, and Ru and can probably be extended to other metals. Moreover, as no reducing agent is necessary (the decomposition in an argon atmosphere at 50 °C is fostered by surface silicon hydride groups borne by PSi, the safety and the cost of the process are improved.

  13. An Efficient, Versatile, and Safe Access to Supported Metallic Nanoparticles on Porous Silicon with Ionic Liquids.

    Science.gov (United States)

    Darwich, Walid; Haumesser, Paul-Henri; Santini, Catherine C; Gaillard, Frédéric

    2016-06-03

    The metallization of porous silicon (PSi) is generally realized through physical vapor deposition (PVD) or electrochemical processes using aqueous solutions. The former uses a strong vacuum and does not allow for a conformal deposition into the pores. In the latter, the water used as solvent causes oxidation of the silicon during the reduction of the salt precursors. Moreover, as PSi is hydrophobic, the metal penetration into the pores is restricted to the near-surface region. Using a solution of organometallic (OM) precursors in ionic liquid (IL), we have developed an easy and efficient way to fully metallize the pores throughout the several-µm-thick porous Si. This process affords supported metallic nanoparticles characterized by a narrow size distribution. This process is demonstrated for different metals (Pt, Pd, Cu, and Ru) and can probably be extended to other metals. Moreover, as no reducing agent is necessary (the decomposition in an argon atmosphere at 50 °C is fostered by surface silicon hydride groups borne by PSi), the safety and the cost of the process are improved.

  14. PREFACE: International Symposium on `Vacuum Science and Technology' (IVS 2007)

    Science.gov (United States)

    Mittal, K. C.; Gupta, S. K.

    2008-03-01

    The Indian Vacuum Society (established in 1970) has organized a symposium every alternate year on various aspects of vacuum science and technology. There has been considerable participation from R & D establishments, universities and Indian industry in this event. In view of the current global scenario and emerging trends in vacuum technology, this year, the executive committee of IVS felt it appropriate to organize an international symposium at Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 from 29-30 November 2007. This symposium provided a forum for exchange of information among vacuum scientists, technologists and industrialists on recent advances made in the areas of large vacuum systems, vacuum production, its measurement and applications in industry, and material processing in vacuum. Vacuum science and technology has made vital contributions in high tech areas like space, high energy particle accelerators, large plasma systems, electronics, thin films, melting and refining of metals, extraction and processing of advanced materials etc. The main areas covered in the symposium were the production and measurement of vacuums, leak detection, large vacuum systems, vacuum metallurgy, vacuum materials and processing inclusive of applications of vacuum in industry. Large vacuum systems for high energy particle accelerators, plasma devices and light sources are of special significance for this symposium. Vacuum evaporation, hard coatings, thin films, joining techniques, sintering, melting and heat treatment, furnaces and thermo dynamics are also covered in this symposium. There were eighteen invited talks from the best experts in the respective fields and more than one hundred contributed papers. This fact itself indicates the interest that has been generated amongst the scientists, technologists and industrialists in this field. In view of the industrial significance of the vacuum technology, an exhibition of vacuum and vacuum processing related

  15. Electromagnetic seal for the impulse feeding of gases into vacuum apparatuses

    International Nuclear Information System (INIS)

    Derevyankin, G.E.; Dudnikov, V.G.; Zhuravlyov, P.A.

    The construction of an electromagnetic seal for the impulse feeding of gases into vacuum systems is described. The seal feeds small bursts of gas into an evacuated chamber at frequencies up to 10 3 Hz. The long lifetime of the seal (more than 10 9 cycles) results from the elimination of stressed metallic components and the use of ''Viton'' for the vacuum gasket under the valve

  16. Recovering about 5 km of LHC Beam Vacuum System after Sector 3-4 Incident

    CERN Document Server

    Baglin, Vincent; Jenninger, Berthold; Jimenez, Jose; Mahner, Edgar; Schneider, Gerhard; Sinturel, Alexandre; Vidal, Alexis

    2010-01-01

    During the sec­tor 3-4 incident, the two apertures of the 3 km long cryogenic vacuum sectors of the CERN Large Hadron Collider (LHC) were brutally vented to helium. A systematic visual inspection of the beam pipe revealed the presence of soot, metallic debris and super insulation debris. After four month of cleaning, the beam vacuum system was recovered. This paper describes the tools and methodologies developed during this period, the achieved performances and discusses possible upgrades

  17. Study of the suitability of 3D printing for Ultra-High Vacuum applications

    Science.gov (United States)

    Jenzer, Stéphane; Alves, Manuel; Delerue, Nicolas; Gonnin, Alexandre; Grasset, Denis; Letellier-Cohen, Frederic; Mercier, Bruno; Mistretta, Eric; Prevost, Christophe; Vion, Alexis; Wilmes, Jean-Pierre

    2017-07-01

    In the recent year additive manufacturing (3D printing) has revolutionized mechanical engineering by allowing the quick production of mechanical components with complex shapes. So far most of these components are made in plastic and therefore can not be used in accelerator beam pipes. We have investigated samples printed using a metal 3D printer to study their behavior under vacuum. We report on our first tests showing that such samples are vacuum compatible and comparing pumping time.

  18. Vacuum assisted closure in coloproctology

    NARCIS (Netherlands)

    Bemelman, W. A.

    2009-01-01

    Vacuum-assisted closure has earned its indications in coloproctology. It has been described with variable results in the treatment of large perineal defects after abdominoperineal excision, in the treatment of stoma dehiscence and perirectal abscesses. The most promising indication for

  19. Brine Distribution after Vacuum Saturation

    DEFF Research Database (Denmark)

    Hedegaard, Kathrine; Andersen, Bertel Lohmann

    1999-01-01

    Experiments with the vacuum saturation method for brine in plugs of chalk showed that a homogeneous distribution of brine cannot be ensured at saturations below 20% volume. Instead of a homogeneous volume distribution the brine becomes concentrated close to the surfaces of the plugs...

  20. High productivity vacuum blasting system

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    2000-01-01

    The purpose of the project is to increase the productivity and economics of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCB's and lead-base paint and provides worker and environmental protection by continuously recycling the blast media and the full containment of the dust generated in the process

  1. Vacuum Stability of Standard Model^{++}

    CERN Document Server

    Anchordoqui, Luis A.; Goldberg, Haim; Huang, Xing; Lust, Dieter; Taylor, Tomasz R.; Vlcek, Brian

    2013-01-01

    The latest results of the ATLAS and CMS experiments point to a preferred narrow Higgs mass range (m_h \\simeq 124 - 126 GeV) in which the effective potential of the Standard Model (SM) develops a vacuum instability at a scale 10^{9} -10^{11} GeV, with the precise scale depending on the precise value of the top quark mass and the strong coupling constant. Motivated by this experimental situation, we present here a detailed investigation about the stability of the SM^{++} vacuum, which is characterized by a simple extension of the SM obtained by adding to the scalar sector a complex SU(2) singlet that has the quantum numbers of the right-handed neutrino, H", and to the gauge sector an U(1) that is broken by the vacuum expectation value of H". We derive the complete set of renormalization group equations at one loop. We then pursue a numerical study of the system to determine the triviality and vacuum stability bounds, using a scan of 10^4 random set of points to fix the initial conditions. We show that, if there...

  2. PC driven integrated vacuum system

    International Nuclear Information System (INIS)

    Curuia, M.; Culcer, M.; Brandea, I.; Anghel, M.

    2001-01-01

    The paper presents a integrated vacuum system which was designed and manufactured in our institute. The main parts of this system are the power supply unit for turbo-melecular pumps and the vacuummeter. Both parts of the system are driven by means of a personal computer using a serial communication, according to the RS 232 hardware standard.(author)

  3. Filling the vacuum at LHCb

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Last month, the Vacuum, Surfaces and Coatings (VSC) group was tasked with an unusually delicate operation in the LHCb experiment cavern: removing the LHC beam pipe while keeping the sensitive Vertex Locator vacuum vessel (VELO) completely isolated from the action.   The VSC group seal off the VELO beam pipe with a flange. Image: Gloria Corti. LHCb’s VELO detector is one of the crown jewels of the experiment. With detector elements surrounded by a vacuum, it gets as close as 5 cm from the beam. Fantastic for physics, but difficult for all-important access. “Because of the sensitivity of the VELO detector and its proximity to the beam, the collaboration decided not to bake (see box) its portion of the beam pipe,” says Giulia Lanza (TE-VSC-LBV), the expert in charge of the beam vacuum operation. “Our group was therefore asked to remove the rest of the LHC beam pipe while keeping the VELO portion of the pipe completely isolated. This work...

  4. The Training Employment Vacuum Cycle

    Science.gov (United States)

    Hansen, Carl E.

    1970-01-01

    This program suggests: (1) take the underemployed, nonskilled worker, who has a feel for upward job mobility, and offer him opportunities of current job training programs; (2) fill the vacuum he creates by filling his job with hard core unemployed individual; (3) after he has worked for a period of time the cycle will probably start over. (Author)

  5. Preparation and optical and electrical evaluation of bulk SiO{sub 2} sonogel hybrid composites and vacuum thermal evaporated thin films prepared from molecular materials derived from (Fe, Co) metallic phthalocyanines and 1,8 dihydroxiantraquinone compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Vergara, Maria Elena [Coordinacion de Ingenieria Mecatronica, Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786 Huixquilucan, Estado de Mexico (Mexico); Morales-Saavedra, Omar G. [Universidad Nacional Autonoma de Mexico, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, CCADET-UNAM, A.P. 70-186, Coyoacan, 04510 Mexico, D.F. (Mexico)], E-mail: omar.morales@ccadet.unam.mx; Ontiveros-Barrera, Fernando G.; Torres-Zuniga, Vicente; Ortega-Martinez, Roberto [Universidad Nacional Autonoma de Mexico, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, CCADET-UNAM, A.P. 70-186, Coyoacan, 04510 Mexico, D.F. (Mexico); Ortiz Rebollo, Armando [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, IIM-UNAM, A.P. 70-360, Coyoacan, 04510 Mexico, D.F. (Mexico)

    2009-02-25

    Semiconducting molecular material of PcFe(CN)L1 and PcCo(CN)L1 (L1 = 1,8 dihydroxianthraquinone), PcFe(CN)L2 and PcCo(CN)L2 (L2 = double potassium salt of 1,8 dihydroxianthraquinone) have been successfully used to prepare thin film and bulk sol-gel hybrid optical materials. These samples were developed according to the vacuum thermal evaporation technique and the catalyst-free sonogel route, respectively. Thin films samples were deposited on Corning glass substrates and crystalline silicon wafers and were characterized by infrared (FTIR), Raman and ultraviolet-visible (UV-vis) spectroscopies. IR-spectroscopy and Raman studies unambiguously confirmed that the molecular material thin films exhibit the same intra-molecular bonds, which suggests that the thermal evaporation process does not alter these bonds significantly. These results show that it is possible to deposit molecular materials of PcFe(CN)L2 and PcCo(CN)L2 on Corning glass substrates and silicon wafers. From the UV-vis studies the optical band gap (E{sub g}) was evaluated. The effect of temperature on conductivity was also evaluated in these samples. Finally, the studied molecular systems dissolved at different concentrations in tetrahydrofuran (THF) were successfully embedded into a highly pure SiO{sub 2} sonogel network generated via sonochemical reactions to form several solid state, optically active sol-gel hybrid glasses. By this method, homogeneous and stable hybrid monoliths suitable for optical characterization can be produced. The linear optical properties of these amorphous bulk structures were determined by the Brewster angle method and by absorption-, Raman- and photoluminescent (PL)-spectroscopies, respectively.

  6. Preparation and optical and electrical evaluation of bulk SiO2 sonogel hybrid composites and vacuum thermal evaporated thin films prepared from molecular materials derived from (Fe, Co) metallic phthalocyanines and 1,8 dihydroxiantraquinone compounds

    International Nuclear Information System (INIS)

    Sanchez Vergara, Maria Elena; Morales-Saavedra, Omar G.; Ontiveros-Barrera, Fernando G.; Torres-Zuniga, Vicente; Ortega-Martinez, Roberto; Ortiz Rebollo, Armando

    2009-01-01

    Semiconducting molecular material of PcFe(CN)L1 and PcCo(CN)L1 (L1 = 1,8 dihydroxianthraquinone), PcFe(CN)L2 and PcCo(CN)L2 (L2 = double potassium salt of 1,8 dihydroxianthraquinone) have been successfully used to prepare thin film and bulk sol-gel hybrid optical materials. These samples were developed according to the vacuum thermal evaporation technique and the catalyst-free sonogel route, respectively. Thin films samples were deposited on Corning glass substrates and crystalline silicon wafers and were characterized by infrared (FTIR), Raman and ultraviolet-visible (UV-vis) spectroscopies. IR-spectroscopy and Raman studies unambiguously confirmed that the molecular material thin films exhibit the same intra-molecular bonds, which suggests that the thermal evaporation process does not alter these bonds significantly. These results show that it is possible to deposit molecular materials of PcFe(CN)L2 and PcCo(CN)L2 on Corning glass substrates and silicon wafers. From the UV-vis studies the optical band gap (E g ) was evaluated. The effect of temperature on conductivity was also evaluated in these samples. Finally, the studied molecular systems dissolved at different concentrations in tetrahydrofuran (THF) were successfully embedded into a highly pure SiO 2 sonogel network generated via sonochemical reactions to form several solid state, optically active sol-gel hybrid glasses. By this method, homogeneous and stable hybrid monoliths suitable for optical characterization can be produced. The linear optical properties of these amorphous bulk structures were determined by the Brewster angle method and by absorption-, Raman- and photoluminescent (PL)-spectroscopies, respectively

  7. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Freud, Roy [Nuclear Research Center - Negev, Beer-Sheva (Israel)], E-mail: freud@bgu.ac.il; Harari, Ronen [Nuclear Research Center - Negev, Beer-Sheva (Israel); Sher, Eran [Pearlstone Center for Aeronautical Studies, Department of Mechanical Engineering, Ben-Gurion University, Beer-Sheva (Israel)

    2009-04-15

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux

  8. Performance Characterization and Simulation of Amine-Based Vacuum Swing Adsorption Units for Spacesuit Carbon Dioxide and Humidity Control

    Science.gov (United States)

    Swickrath, Michael J.; Watts,Carly; Anderson, Molly; McMillin, Summer; Boerman, Craig; Colunga, Aaron; Vogel, Matthew

    2011-01-01

    Controlling carbon dioxide (CO2) and water (H2O) concentrations in the vapor phase of a space suit is critical to ensuring an astronauts safety, comfortability, and capability to perform extra-vehicular activity (EVA) tasks. Historically, this has been accomplished using lithium hydroxide (LiOH) and metal oxides (MetOx). Lithium hydroxide is a consumable material and requires priming with water before it becomes effective at removing carbon dioxide. MetOx is regenerable through a power-intensive thermal cycle but is significantly heavier on a volume basis than LiOH. As an alternative, amine-based vacuum swing beds are under aggressive development for EVA applications which control atmospheric concentrations of both CO2 and H2O through a fully-regenerative process. The current concept, referred to as the rapid cycle amine (RCA), has resulted in numerous laboratory prototypes. Performance of these prototypes have been assessed and documented from experimental and theoretical perspectives. To support developmental efforts, a first principles model has also been established for the vacuum swing adsorption technology. The efforts documented herein summarize performance characterization and simulation results for several variable metabolic profiles subjected to the RCA. Furthermore, a variety of control methods are explored including timed swing cycles, instantaneous CO2 feedback control, and time-averaged CO2 feedback control. A variety of off-nominal tests are also explored including high/low suit temperatures, increasingly high humidity cases, and dynamic pressure cases simulating the suit pre-breathe protocol. Consequently, this work builds on efforts previous efforts to fully bound the performance of the rapid cycle amine under a variety of nominal and off-nominal conditions.

  9. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    International Nuclear Information System (INIS)

    McPhee, William S.

    1999-01-01

    The objective of this project is to improve the productivity and lower the expense of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCBs, and lead-based paint and provides worker protection by continuously recycling the material and dust for the decontamination tasks. The proposed work would increase the cleaning rate and provide safe and cost-effective decontamination of the DOE sites. This work focuses on redesigning and improving existing vacuum blasting technology including blast head nozzles, ergonomic handling of the blast head by reducing its weight; brush-ring design, vacuum level regulator, efficiency of the dust separator, and operational control sensors. The redesign is expected to enhance the productivity and economy of the vacuum blasting system by at least 50% over current vacuum blasting systems. There are three phases in the project. Phase I consists of developing and testing mathematical models. Phase II consists of pre-prototype design and fabrication and pre-prototype unit testing. Phase III consists of prototype design and field verification testing. In phase I, mathematical models are developed and analyzed for the nozzle, blast head, wind curtain, and dust separator, first as individual devices and then combined as an integrated model. This allows study of respective airflow and design parameters. The Contractor shall, based on the results of the mathematical modeling studies, design experimental models of the components and test these models. In addition, the Contractor shall develop sensors to detect the relationship of the blast head to the blast surfaces and controls to minimize the dependency on an operator's skill and judgment to obtain optimum positioning, as well as real-time characterization sensors to determine as the blast head is moving the depth to which coatings must be removed, thereby improving production and minimizing waste. In phase II, the Contractor shall design and

  10. Test of the O-ring deformation for a large sized vacuum optical window

    International Nuclear Information System (INIS)

    Tsukahara, Yoshimitu; Neyatani, Yuzuru; Sunaoshi, Hidenori; Shitomi, Morimasa; Nagashima, Akira

    1998-01-01

    Test of the viton O-ring deformation has been performed for a new type of large sized vacuum window having a diameter of more than 80 mm. To prevent a vacuum leak mainly caused by the crack of optical window, a new standard for the viton O-ring has been proposed. The size of the O-ring was determined by the requirement to keep the finite gap between the optical window and the supported metal flange at any time. The validity of this new standard was confirmed by the deformation test for the O-ring under the condition of vacuum pumping and the baking. (author)

  11. Caps Seal Boltholes On Vacuum-System Flanges

    Science.gov (United States)

    Roman, Robert F.

    1993-01-01

    Sealing caps devised for boltholes on vacuum-system flanges. Used in place of leak-prone gaskets, and provide solid metal-to-metal interfaces. Each sealing cap contains square-cut circular groove in which O-ring placed. Mounted on studs protruding into access ports, providing positive seal around each bolthole. Each cap mates directly with surface of flange, in solid metal-to-metal fit, with O-ring completely captured in groove. Assembly immune to misalignment, leakage caused by vibration, and creeping distortion caused by weight of port. O-ring material chosen for resistance to high temperature; with appropriate choice of material, temperature raised to as much as 315 degrees C.

  12. Vacuum polarization and Hawking radiation

    Science.gov (United States)

    Rahmati, Shohreh

    Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.

  13. Ultrathin gate valve for high vacuum operation

    Science.gov (United States)

    Ugiansky, R. J.

    1971-01-01

    Thin, compact, high-vacuum gate valve used to join two vacuum systems together demonstrates multiple operation reliability. Valve measurements and non-protruding handle make valve usable in confined areas.

  14. Gauge field vacuum structure in geometrical aspect

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    2003-01-01

    Vacuum conception is one of the main conceptions of quantum field theory. Its meaning in classical field theory is also very profound. In this case the vacuum conception is closely connected with ideas of the space-time geometry. The global and local geometrical space-time conceptions lead to different vacuum definitions and therefore to different ways of physical theory construction. Some aspects of the gauge field vacuum structure are analyzed. It is shown that in the gauge field theory the vacuum Einstein equation solutions describe the relativistic vacuum as common vacuum of all gauge fields and its sources. Instantons (both usual and hyperbolical) are regarded as nongravitating matter, because they have zero energy-momentum tensors and correspond to vacuum Einstein equations

  15. Nanoscale Vacuum Electronics: Back to the Future?

    Data.gov (United States)

    National Aeronautics and Space Administration — This CIF project developed nanoscale vacuum devices for potential radiation-immune electronics ideal for space applications. Vacuum is superior to any semiconductor...

  16. Research on vacuum insulation for cryocables

    International Nuclear Information System (INIS)

    Graneau, P.

    1974-01-01

    Vacuum insulation, as compared with solid insulation, simplifies the construction of both resistive or superconducting cryogenic cables. The common vacuum space in the cable can furnish thermal insulation between the environment and the cryogenic coolant, provide electrical insulation between conductors, and establish thermal isolation between go- and return-coolant streams. The differences between solid and vacuum high voltage insulation are discussed, and research on the design, materials selection, and testing of vacuum insulated cryogenic cables is described

  17. Robot Vacuum Cleaner Personality and Behavior

    OpenAIRE

    Hendriks, A.F.M.; Meerbeek, B.W.; Boess, S.; Pauws, S.C; Sonneveld, M.

    2011-01-01

    In this paper we report our study on the user experience of robot vacuum cleaner behavior. How do people want to experience this new type of cleaning appliance? Interviews were conducted to elicit a desired robot vacuum cleaner personality. With this knowledge in mind, behavior was designed for a future robot vacuum cleaner. A video prototype was used to evaluate how people experienced the behavior of this robot vacuum cleaner. The results indicate that people recognizedthe intended personali...

  18. Method of purifying zirconium tetrachloride and hafnium tetrachloride in a vapor stream

    International Nuclear Information System (INIS)

    Snyder, T.S.; Stolz, R.A.

    1992-01-01

    This patent describes a method of purifying zirconium tetrachloride and hafnium tetrachloride in a vapor stream from a sand chlorinator in which the silicon and metals present in sand fed to the chlorinator are converted to chlorides at temperatures over about 800 degrees C. It comprises cooling a vapor stream from a sand chlorinator, the vapor stream containing principally silicon tetrachloride, zirconium tetrachloride, and hafnium tetrachloride contaminated with ferric chloride, to a temperature of from about 335 degrees C to about 600 degrees C; flowing the vapor stream through a gaseous diffusion separative barrier to produce a silicon tetrachloride-containing vapor stream concentrated in zirconium tetrachloride and hafnium tetrachloride and a silicon tetrachloride-containing vapor stream depleted in zirconium tetrachloride and hafnium tetrachloride; adsorbing the ferric chloride in the separative barrier; and recovering the silicon tetrachloride stream concentrated in zirconium tetrachloride and hafnium tetrachloride separately from the silicon tetrachloride stream depleted in zirconium tetrachloride and hafnium tetrachloride

  19. 33 CFR 154.828 - Vapor recovery and vapor destruction units.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor recovery and vapor... SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154.828 Vapor recovery and vapor destruction units. (a) The inlet to a vapor recovery unit which...

  20. 14 CFR 25.1433 - Vacuum systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe. ...