WorldWideScience

Sample records for metal plate fasteners

  1. Advanced Modelling of Trusses with Punched Metal Plate Fasteners

    DEFF Research Database (Denmark)

    Ellegaard, Peter; Nielsen, Jacob

    Most of the finite element programs for design of timber trusses with punched metal fasteners are based on models using beam and fictitious elements. Different models have been used for different types of joints. Common problems for all the models are how to calculate the forces in the nail groups...... and the plates and furthermore, how big 'the deformations in the joints are. By developing an advanced model that includes all parts of the joint, i.e. plate, nail groups and contact it is possible to give a better description of the joint. An advanced model with these properties is presented. The advanced model...

  2. Finite-Element Modeling of Timber Joints with Punched Metal Plate Fasteners

    DEFF Research Database (Denmark)

    Ellegaard, Peter

    2006-01-01

    The focus of this paper is to describe the idea and the theory behind a finite-element model developed for analysis of timber trusses with punched metal plate fasteners (nail plates). The finite-element model includes the semirigid and nonlinear behavior of the joints (nonlinear nail and plate...... elements) and contact between timber beams, if any (bilinear contact elements). The timber beams have linear-elastic properties. The section forces needed for design of the joints are given directly by the finite-element model, since special elements are used to model the nail groups and the nail plate...... the behavior of the joints very well at lower load levels. At higher load levels the stiffness is overestimated due to development of cracks in the timber and the linear-elastic timber properties in the finite-element model....

  3. Effect of Chord Splice Joints on Force Distribution and Deformations in Trusses with Punched Metal Plate Fasteners

    DEFF Research Database (Denmark)

    Ellegaard, Peter

    2007-01-01

    The span of roof trusses with punched metal plate fasteners (nail plates) makes it often necessary to use splice joints in the top and bottom chords. In the finite element models used for design of the trusses these splice joints are normally assumed to be either rotationally stiff or pinned....... Timber-to-timber contact and non-linear elastic behaviour are included in the model. Results from tests with joints under fourpoint bending are compared with predictions given by TrussLab, and a good agreement is found. Splice joints in trusses with nail plates may be assumed to be rotationally stiff...... if their deformation has no significant effect upon the distribution of member forces according to Eurocode 5. Two simple guidelines for the design and location of splice joints are given in Eurocode 5 for treating the splice joints as rotationally stiff. The reasonability of these guidelines and the influence...

  4. Moment Capacity of Timber Reinforced with Punched Metal Plate Fasteners

    DEFF Research Database (Denmark)

    Nielsen, Jacob; Ellegaard, Peter

    When designing timber trusses it is often found that the cross section controlling the dimensions of the top chord is located at a joint with a moment peak. However, the timber volume affected by the moment peak is rather limited and by embedding a punched metal plate in this area a reinforcement...... of the section is obtained, resulting in a more economic truss design. In order to develop design methods for sections with plate reinforcement, bending tests have been made. The timber is Swedish spruce of strength class K-18(S8) and K-24(S10) with a thickness of 45 mm. The punched metal plate is from Gang...

  5. Removal of bound metal fasteners

    Science.gov (United States)

    Kramer, R. F.

    1981-04-01

    This project explored the removal of bound metal fasteners through the use of ultrasonically assisted wrenches. Two wrenches were designed, fabricated and tested. Previous studies had indicated an increase in thread tension for a given torque application under the influence of ultrasonics. Based on this, the loosening of seized and corroded fasteners with the aid of ultrasonics was explored. Experimental data confirmed our prior analysis of the torque-tension relationship under the influence of ultrasonics; however, our progress did not satisfy the requirements necessary to loosen seized studs in a shipyard environment.

  6. Numerical Analysis of Thermal Stresses around Fasteners in Composite Metal Foils

    Science.gov (United States)

    Nammi, S. K.; Butt, J.; –L Mauricette, J.; Shirvani, H.

    2017-12-01

    The process of composite metal foil manufacturing (CMFM) has reduced a number of limitations associated with commercial additive manufacturing (AM) methods. The existing metal AM machines are restricted by their build envelope and there is a growing market for the manufacture of large parts using AM. These parts are subsequently manufactured in fragments and are fastened together. This paper analyses the thermal stresses around cylindrical fasteners for three layered metal composite parts consisting of aluminium foil, brazing paste and copper foil layers. The investigation aims to examine the mechanical integrity of the metallurgically bonded aluminium/copper foils of 100 micron thickness manufactured in a disc shape. A cylindrical fastener set at an elevated temperature of 100 °C is fitted in the middle of the disc which results in a steady-state thermal distribution. Radial and shear stresses are computed using finite element method which shows that non-zero shear stresses developed by the copper layer inhibit the axial slippage of the fastener and thereby establishing the suitability of rivet joints for CMFM parts.

  7. Three-Dimensional Heat Transfer Analysis of Metal Fasteners in Roofing Assemblies

    Directory of Open Access Journals (Sweden)

    Manan Singh

    2016-11-01

    Full Text Available Heat transfer analysis was performed on typical roofing assemblies using HEAT3, a three-dimensional heat transfer analysis software. The difference in heat transferred through the roofing assemblies considered is compared between two cases—without any steel fasteners and with steel fasteners. In the latter case, the metal roofing fasteners were arranged as per Factor Mutual Global (FMG approvals, in the field, perimeter, and corner zones of the roof. The temperature conditions used for the analysis represented summer and winter conditions for three separate Climate Zones (CZ namely Climate Zone 2 or CZ2 represented by Orlando, FL; CZ3 represented by Atlanta, GA; and CZ6 zone represented by St. Paul, MN. In all the climatic conditions, higher energy transfer was observed with increase in the number of metal fasteners attributed to high thermal conductivity of metals as compared to the insulation and other materials used in the roofing assembly. This difference in heat loss was also quantified in the form of percentage change in the overall or effective insulation of the roofing assembly for better understanding of the practical aspects. Besides, a comparison of 2D heat transfer analysis (using THERM software and 3D analysis using HEAT3 is also discussed proving the relevance of 3D over 2D heat transfer analysis.

  8. A structural health monitoring fastener for tracking fatigue crack growth in bolted metallic joints

    Science.gov (United States)

    Rakow, Alexi Schroder

    Fatigue cracks initiating at fastener hole locations in metallic components are among the most common form of airframe damage. The fastener hole site has been surveyed as the second leading initiation site for fatigue related accidents of fixed wing aircraft. Current methods for inspecting airframes for these cracks are manual, whereby inspectors rely on non-destructive inspection equipment or hand-held probes to scan over areas of a structure. Use of this equipment often demands disassembly of the vehicle to search appropriate hole locations for cracks, which elevates the complexity and cost of these maintenance inspections. Improved reliability, safety, and reduced cost of such maintenance can be realized by the permanent integration of sensors with a structure to detect this damage. Such an integrated system of sensors would form a structural health monitoring (SHM) system. In this study, an Additive, Interleaved, Multi-layer Electromagnetic (AIME) sensor was developed and integrated with the shank of a fastener to form a SHM Fastener, a new SHM technology targeted at detection of fastener hole cracks. The major advantages of the SHM Fastener are its installation, which does not require joint layer disassembly, its capability to detect inner layer cracks, and its capability to operate in a continuous autonomous mode. Two methods for fabricating the proposed SHM Fastener were studied. The first option consisted of a thin flexible printed circuit film that was bonded around a thin metallic sleeve placed around the fastener shank. The second option consisted of coating sensor materials directly to the shank of a part in an effort to increase the durability of the sensor under severe loading conditions. Both analytical and numerical models were developed to characterize the capability of the sensors and provide a design tool for the sensor layout. A diagnostic technique for crack growth monitoring was developed to complete the SHM system, which consists of the

  9. Welding, Bonding and Fastening, 1984

    Science.gov (United States)

    Buckley, J. D. (Editor); Stein, B. A. (Editor)

    1985-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  10. Electroless metal plating of plastics

    International Nuclear Information System (INIS)

    Krause, L.J.

    1986-01-01

    The product of an electroless plating process is described for plating at least one main group metal directly on a surface of a polymeric substrate comprising the steps of forming a nonaqueous solution containing a metallic salt of an alkali metal in a positive valence state and at least one main group metal in a negative valence state, the main group metal being selected from the group consisting of Ge, Sn, Pb, As, Sb, Bi, Si and Te, selecting an aromatic polymeric substrate reducible by the solublized salt and resistant to degration during the reaction, and carrying out a redox reaction between the salt in solution and the substrate by contacting the solution with the substrate for a sufficient time to oxidize and deposit the main group metal in elemental form to produce a plated substrate. The product is characterized by the plated metal being directly on the surface of the polymeric substrate and the alkali metal being retained in the plated substrate with the substrate being negatively charged with electrons transferred from the main group metal during the redox reaction

  11. Quick connect fastener

    Science.gov (United States)

    Weddendorf, Bruce

    1994-01-01

    A quick connect fastener and method of use is presented wherein the quick connect fastener is suitable for replacing available bolts and screws, the quick connect fastener being capable of installation by simply pushing a threaded portion of the connector into a member receptacle hole, the inventive apparatus being comprised of an externally threaded fastener having a threaded portion slidably mounted upon a stud or bolt shaft, wherein the externally threaded fastener portion is expandable by a preloaded spring member. The fastener, upon contact with the member receptacle hole, has the capacity of presenting cylindrical threads of a reduced diameter for insertion purposes and once inserted into the receiving threads of the receptacle member hole, are expandable for engagement of the receptacle hole threads forming a quick connect of the fastener and the member to be fastened, the quick connect fastener can be further secured by rotation after insertion, even to the point of locking engagement, the quick connect fastener being disengagable only by reverse rotation of the mated thread engagement.

  12. Embedded adhesive connection for laminated glass plates

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Poulsen, S.H.; Bagger, A.

    2012-01-01

    The structural behavior of a new connection design, the embedded adhesive connection, used for laminated glass plates is investigated. The connection consists of an aluminum plate encapsulated in-between two adjacent triple layered laminated glass plates. Fastening between glass and aluminum...... usage in a design situation. The embedded connection shows promising potential as a future fastening system for load-carrying laminated glass plates....

  13. Reviewing metallic PEMFC bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Turner, J.A. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-08-15

    A bipolar plate is one of the most important components in a polymer exchange membrane fuel cell (PEMFC) stack and has multiple functions. Metallic bipolar plate candidates have advantages over composite rivals in excellent electrical and thermal conductivity, good mechanical strength, high chemical stability, very wide alloy choices, low cost and, most importantly, existing pathways for high-volume, high-speed mass production. The challenges with metallic bipolar plates are the higher contact resistance and possible corrosion products, which may contaminate the membrane electrode assembly. This review evaluates the candidate metallic and coating materials for bipolar plates and gives the perspective of the research trends. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  14. Fastener Corrosion: A Result of Moisture Problems in the Building Envelope

    Science.gov (United States)

    Samuel L. Zelinka

    2013-01-01

    This paper reviews recent literature on the corrosion of metals embedded in wood and highlights the link be-tween moisture accumulation in wood and fastener cor-rosion. Mechanisms of fastener corrosion are described including dependence upon wood moisture content. These fundamental concepts are applied to practical examples by explaining how hygrothermal models can be...

  15. The Automated Threaded Fastening Based on On-line Identification

    Directory of Open Access Journals (Sweden)

    Nicolas Ivan Giannoccaro

    2008-11-01

    Full Text Available The principle of the thread fastenings have been known and used for decades with the purpose of joining one component to another. Threaded fastenings are popular because they permit easy disassembly for maintenance, repair, relocation and recycling. Screw insertions are typically carried out manually. It is a difficult problem to automat. As a result there is very little published research on automating threaded fastenings, and most research on automated assembly focus on the peg-in-hole assembly problem. This paper investigates the problem of automated monitoring of the screw insertion process. The monitoring problem deals with predicting integrity of a threaded insertion, based on the torque vs. insertion depth curve generated during the insertions. The authors have developed an analytical model to predict the torque signature signals during self-tapping screw insertions. However, the model requires parameters on the screw dimensions and plate material properties are difficult to measure. This paper presents a study on on-line identification during screw fastenings. An identification methodology for two unknown parameter estimation during a self-tapping screw insertion process is presented. It is shown that friction and screw properties required by the model can be reliably estimated on-line. Experimental results are presented to validate the identification procedure.

  16. Plating on difficult-to-plate metals: what's new

    International Nuclear Information System (INIS)

    Wiesner, H.J.

    1980-01-01

    Some of the changes since 1970 in procedures for plating on such materials as titanium, molybdenum, silicon, aluminum, and gallium arsenide are summarized. While basic procedures for plating some of these materials were developed as many as 30 to 40 years ago, changes in the end uses of the plated products have necessitated new plating processes. In some cases, vacuum techniques - such as ion bombardment, ion implantation, and vacuum metallization - have been introduced to improve the adhesion of electrodeposits. In other cases, these techniques have been used to deposit materials upon which electrodeposits are required

  17. Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners

    Science.gov (United States)

    Brahimi, S. V.; Yue, S.; Sriraman, K. R.

    2017-06-01

    High-strength steel fasteners characterized by tensile strengths above 1100 MPa are often used in critical applications where a failure can have catastrophic consequences. Preventing hydrogen embrittlement (HE) failure is a fundamental concern implicating the entire fastener supply chain. Research is typically conducted under idealized conditions that cannot be translated into know-how prescribed in fastener industry standards and practices. Additionally, inconsistencies and even contradictions in fastener industry standards have led to much confusion and many preventable or misdiagnosed fastener failures. HE susceptibility is a function of the material condition, which is comprehensively described by the metallurgical and mechanical properties. Material strength has a first-order effect on HE susceptibility, which increases significantly above 1200 MPa and is characterized by a ductile-brittle transition. For a given concentration of hydrogen and at equal strength, the critical strength above which the ductile-brittle transition begins can vary due to second-order effects of chemistry, tempering temperature and sub-microstructure. Additionally, non-homogeneity of the metallurgical structure resulting from poorly controlled heat treatment, impurities and non-metallic inclusions can increase HE susceptibility of steel in ways that are measurable but unpredictable. Below 1200 MPa, non-conforming quality is often the root cause of real-life failures. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  18. Metallic glass coating on metals plate by adjusted explosive welding technique

    International Nuclear Information System (INIS)

    Liu, W.D.; Liu, K.X.; Chen, Q.Y.; Wang, J.T.; Yan, H.H.; Li, X.J.

    2009-01-01

    Using an adjusted explosive welding technique, an aluminum plate has been coated by a Fe-based metallic glass foil in this work. Scanning electronic micrographs reveal a defect-free metallurgical bonding between the Fe-based metallic glass foil and the aluminum plate. Experimental evidence indicates that the Fe-based metallic glass foil almost retains its amorphous state and mechanical properties after the explosive welding process. Additionally, the detailed explosive welding process has been simulated by a self-developed hydro-code and the bonding mechanism has been investigated by numerical analysis. The successful welding between the Fe-based metallic glass foil and the aluminum plate provides a new way to obtain amorphous coating on general metal substrates.

  19. Plating on some difficult-to-plate metals and alloys

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.

    1980-02-01

    Electrodeposition of coatings on metals such as beryllium, beryllium-copper, Kovar, lead, magnesium, thorium, titanium, tungsten, uranium, zirconium, and their alloys can be problematic. This is due in most cases to a natural oxide surface film that readily reforms after being removed. The procedures we recommend for plating on these metals rely on replacing the oxide film with a displacement coating, or etching to allow mechanical keying between the substrate and plated deposit. The effectiveness of the procedures is demonstrated by interface bond strengths found in ring-shear and conical-head tensile tests

  20. Titanium fasteners. [for aircraft industry

    Science.gov (United States)

    Phillips, J. L.

    1972-01-01

    Titanium fasteners are used in large quantities throughout the aircraft industry. Most of this usage is in aluminum structure; where titanium structure exists, titanium fasteners are logically used as well. Titanium fasteners offer potential weight savings to the designer at a cost of approximately $30 per pound of weight saved. Proper and least cost usage must take into consideration type of fastener per application, galvanic couples and installation characteristics of protective coatings, cosmetic appearance, paint adhesion, installation forces and methods available and fatigue performance required.

  1. A real-time visual inspection method of fastening bolts in freight car operation

    Science.gov (United States)

    Nan, Guo; Yao, JunEn

    2015-10-01

    A real-time inspection of the key components is necessary for ensuring safe operation of freight car. While traditional inspection depends on the trained human inspectors, which is time-consuming and lower efficient. With the development of machine vision, vision-based inspection methods get more railway on-spot applications. The cross rod end fastening bolts are important components on both sides of the train body that fixing locking plates together with the freight car main structure. In our experiment, we get the images containing fastening bolt components, and accurately locate the locking plate position using a linear Support Vector Machine (SVM) locating model trained with Histograms of Oriented Gradients (HOG) features. Then we extract the straight line segment using the Line Segment Detector (LSD) and encoding them in a range, which constitute a straight line segment dataset. Lastly we determine the locking plate's working state by the linear pattern. The experiment result shows that the localization accurate rate is over 99%, the fault detection rate is over 95%, and the module implementation time is 2f/s. The overall performance can completely meet the practical railway safety assurance application.

  2. Shocked plate metal atom oxidation laser

    International Nuclear Information System (INIS)

    De Koker, J.G.; Rice, W.W. Jr.; Jensen, R.J.

    1975-01-01

    A method and apparatus for producing metal atom oxidation lasing wherein an explosively shocked grooved metal plate produces metal vapor jets directed through an appropriate gaseous oxidizer are described. Reaction of the metal vapor with the oxidizer produces molecular species having a population inversion therein. (U.S.)

  3. Dilemma in pediatric mandible fractures: resorbable or metallic plates?

    Science.gov (United States)

    Taylan Filinte, Gaye; Akan, İsmail Mithat; Ayçiçek Çardak, Gülçin Nujen; Özkaya Mutlu, Özay; Aköz, Tayfun

    2015-12-01

    The aim of this study was to compare the efficiency of resorbable and metallic plates in open reduction and internal fixation of mandible fractures in children. Thirty-one patients (mean age, 8.05 years; range 20 months-14 years) were operated on various fractures of the mandible (26 [60.4%] symphysis- parasymphysis, 12 [27.9%] condylar-subcondylar fractures, 5 [11.6%] angulus and ramus fractures). Twelve patients were treated with resorbable plates and 19 patients with metallic plates. Mean follow-up time was 41 months (11-74 months) in the metallic hardware group and was 22 months (8-35 months) in the resorbable plate group. Both groups were investigated for primary bone healing, complications, number of operations, and mandibular growth. The results were discussed below. Both groups demonstrated primary bone healing. Minor complications were similar in both groups. The metallic group involved secondary operations for plate removal. Mandibular growth was satisfactory in both groups. Resorbable plates cost more than the metallic ones; however, when the secondary operations are included in the total cost, resorbable plates were favourable. As mandibular growth and complication parameters are similar in both groups, resorbable plates are favored due to avoidance of potential odontogenic injury, elimination of long-term foreign body retention and provision of adequate stability for rapid bone healing. However, learning curve and concerns for decreased stability against heavy forces of mastication accompanied with the resorbable plates when compared to the metallic ones should be kept in mind.

  4. Detection of fastener loosening in simple lap joint based on ultrasonic wavefield imaging

    Science.gov (United States)

    Gooda Sahib, M. I.; Leong, S. J.; Chia, C. C.; Mustapha, F.

    2017-12-01

    Joints in aero-mechanical structures are critical elements that ensure the structural integrity but they are prone to damages. Inspection of such joints that have no prior baseline data is really challenging but it can be possibly done using the Ultrasonic Propagation Imager (UPI). The feasibility of applying UPI for detection of loosened fastener is investigated in this study. A simple lap joint specimen made by connecting two pieces of 2.5mm thick SAE304 stainless steel plates using five M6 screws and nuts has been used in this study. All fasteners are tightened to 10Nm but one of them is completely loosened to simulate the damage. The wavefield data is processed into ultrasonic wavefield propagation video and a series of spectral amplitude images. The spectral images showed noticeable amplitude difference at the loosened fastener, hence confirmed the feasibility of using UPI for structural joints inspection. A simple contrast maximization method is also introduced to improve the result.

  5. Fundamental study on metal plating removal using pulsed power technology

    International Nuclear Information System (INIS)

    Imasaka, Kiminobu; Gnapowski, Sebastian; Akiyama, Hidenori

    2013-01-01

    A novel method for the metal removal from metal-plated substrate using pulsed power technology is proposed. A metal-plated substrate with three metal-layers structure (Cu, Ni and Au) is used as the sample substrate. Repetitive pulsed arc discharge plasma is generated between a rod electrode and the surface of substrate. Effect of the type of electrode system on metal plating removal was investigated. The removal region is produced by the moving phenomena of the pulsed arc discharge. A part of Au layer, which is the tompost metal surface of the substrate is vaporized and removed by the repetitive pulsed arc discharges. The proposed method can be used for recycle of metal-plated substrate. (author)

  6. Applications of ion plating in metals fabrication

    International Nuclear Information System (INIS)

    Bell, R.T.; Thompson, J.C.

    1974-01-01

    Use of ion plating at the Oak Ridge Y-12 Plant to solve problems encountered in metals fabrication and processing are discussed. Three typical areas are covered. The first is the use of strike coats on various substrates for subsequent electrodeposition. The second area in which ion plating is shown to contribute to a process is in cold welding or room temperature bonding of metals. The third application involves plating U to promote safe handling, fission-product retention, and corrosion protection in nuclear reactors

  7. Electroless metal plating of plastics

    Science.gov (United States)

    Krause, L.J.

    1982-09-20

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  8. RFID Torque Sensing Tag System for Fasteners

    Science.gov (United States)

    Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Kennedy, Timothy F. (Inventor)

    2016-01-01

    The present invention provides an RFID-based torque sensor that can be used to quickly monitor off the shelf fasteners including fasteners that are used in expensive satellites or other uses where fastener failure can be very costly. In one embodiment, an antenna, RFID ring and spring comprise a sensor tag that can be interrogated with an interrogation signal produced by an interrogator device. When sufficient torque is applied to the fastener, an RFID circuit is connected, and produces a radio frequency (RF) signal that can be read by the interrogator. In one embodiment, the RFID circuit does not transmit when the spring member is not compressed, thereby indicating insufficient tensioning of the fastener. The present invention offers the ability to remotely, quickly, and inexpensively verify that any number of fasteners are torqued properly upon initial installation. Where applicable, the present invention allows low cost monitoring over the life of the fastener.

  9. Metallized xerographic plates and their preparation

    International Nuclear Information System (INIS)

    1976-01-01

    Xerographic plates, particularly xeroradiographic plates, suitable for soft or hard x-ray exposure require margins or edges suitable for handling and mounting. In order to fabricate such plates, it is convenient to apply a peripheral mask over the substrate during application of at least the photoconductive layer. Use of masks, however, tend to promote peripheral plate irregularities usually because of scratches or other uneveness at or under the margin of the applied mask. Such imperfections spawn corresponding electrical field irregularities which can now be minimized or avoided altogether by grounding the margins with metal overcoats

  10. Carbon nanotube plane fastener

    Directory of Open Access Journals (Sweden)

    Kaori Hirahara

    2011-12-01

    Full Text Available We report a feature of carbon nanotubes (CNTs that arises when the surfaces of two vertically-aligned CNT brushes are pressed together. Adhesion between the CNTs creates a plane fastener-like device. Observations from scanning electron microscopy and measurements of adhesion properties indicate a device-dependence on CNT density and shape near the tip region. Among other applications, such fasteners have the potential to attach small components onto micron-sized electronic devices.

  11. PRETREATING URANIUM FOR METAL PLATING

    Science.gov (United States)

    Wehrmann, R.F.

    1961-05-01

    A process is given for anodically treating the surface of uranium articles, prior to metal plating. The metal is electrolyzed in an aqueous solution of about 10% polycarboxylic acid, preferably oxalic acid, from 1 to 5% by weight of glycerine and from 1 to 5% by weight of hydrochloric acid at from 20 to 75 deg C for from 30 seconds to 15 minutes. A current density of from 60 to 100 amperes per square foot is used.

  12. Metal deposition by electroless plating on polydopamine functionalized micro- and nanoparticles.

    Science.gov (United States)

    Mondin, Giovanni; Wisser, Florian M; Leifert, Annika; Mohamed-Noriega, Nasser; Grothe, Julia; Dörfler, Susanne; Kaskel, Stefan

    2013-12-01

    A novel approach for the fabrication of metal coated micro- and nanoparticles by functionalization with a thin polydopamine layer followed by electroless plating is reported. The particles are initially coated with polydopamine via self-polymerization. The resulting polydopamine coated particles have a surface rich in catechols and amino groups, resulting in a high affinity toward metal ions. Thus, they provide an effective platform for selective electroless metal deposition without further activation and sensitization steps. The combination of a polydopamine-based functionalization with electroless plating ensures a simple, scalable, and cost-effective metal coating strategy. Silver-plated tungsten carbide microparticles, copper-plated tungsten carbide microparticles, and copper-plated alumina nanoparticles were successfully fabricated, showing also the high versatility of the method, since the polymerization of dopamine leads to the formation of an adherent polydopamine layer on the surface of particles of any material and size. The metal coated particles produced with this process are particularly well suited for the production of metal matrix composites, since the metal coating increases the wettability of the particles by the metal, promoting their integration within the matrix. Such composite materials are used in a variety of applications including electrical contacts, components for the automotive industries, magnets, and electromagnetic interference shielding. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Exposure testing of fasteners in preservative treated wood: Gravimetric corrosion rates and corrosion product analyses

    Energy Technology Data Exchange (ETDEWEB)

    Zelinka, Samuel L., E-mail: szelinka@fs.fed.u [USDA Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726 (United States); Sichel, Rebecca J. [College of Engineering, University of Wisconsin, Madison, WI 53706 (United States); Stone, Donald S. [Department of Materials Science and Engineering, College of Engineering, University of Wisconsin, Madison, WI 53706 (United States)

    2010-12-15

    Research highlights: {yields} The composition of the corrosion products was similar for the nail head and shank. {yields} Reduced copper was not detected on any of the fasteners. {yields} Measured corrosion rates were between 1 and 35 {mu}m year{sup -1}. - Abstract: Research was conducted to determine the corrosion rates of metals in preservative treated wood and also understand the mechanism of metal corrosion in treated wood. Steel and hot-dip galvanized steel fasteners were embedded in wood treated with one of six preservative treatments and exposed to 27 {sup o}C at 100% relative humidity for 1 year. The corrosion rate was determined gravimetrically and the corrosion products were analyzed with scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Although the accepted mechanism of corrosion in treated wood involves the reduction of cupric ions from the wood preservative, no reduced copper was found on the corrosion surfaces. The galvanized corrosion products contained sulfates, whereas the steel corrosion products consisted of iron oxides and hydroxides. The possible implications and limitations of this research on fasteners used in building applications are discussed.

  14. Exposure testing of fasteners in preservative treated wood : gravimetric corrosion rates and corrosion product analyses

    Science.gov (United States)

    Samuel L. Zelinka; Rebecca J. Sichel; Donald S. Stone

    2010-01-01

    Research was conducted to determine the corrosion rates of metals in preservative treated wood and also understand the mechanism of metal corrosion in treated wood. Steel and hot-dip galvanized steel fasteners were embedded in wood treated with one of six preservative treatments and exposed to 27oC at 100% relative humidity for 1 year. The...

  15. Design of metallic bipolar plates for PEM fuel cells.

    Science.gov (United States)

    2012-01-01

    This project focused on the design and production of metallic bipolar plates for use in PEM fuel cells. Different metals were explored : and stainless steel was found out to be best suited to our purpose. Following the selection of metal, it was calc...

  16. Improvements in remote equipment torquing and fastening

    International Nuclear Information System (INIS)

    Garin, J.

    1978-01-01

    Remote torquing and fastening is a requirement of generic interest for application in an environment not readily accessible to man. The developments over the last 30 years in torque-controlled equipment above 200 nm (150 ft/lb) have not been emphasized. The development of specialized subassemblies to torque and fasten equipment in a remotely controlled environment is an integral part of the Advanced Fuel Recycle Program at Oak Ridge National Laboratory. Commercially available subassemblies have been adapted into a system that would provide remote torquing and fastening in the range of 200 to 750 nm (150 to 550 ft/lb). 9 figures

  17. Removal of T-fasteners 2 days after gastrostomy is feasible.

    LENUS (Irish Health Repository)

    Foster, A

    2009-03-01

    T-fastener gastropexy is widely performed as part of gastrostomy insertion. The current literature recommends removal of T-fasteners at 2 weeks. We present a series of patients in whom T-fasteners were removed at 2 days with no major complications. We removed T-fasteners in 109 patients (male-to-female ratio 59:50, age range 18 to 88 years, mean age 62 years) at 2 days after gastrostomy insertion. Indications for gastrostomy included amytrophic lateral sclerosis, cerebrovascular accidents, head and neck carcinoma, multiple sclerosis, and others, including brain tumours and chronic inflammatory demyelinating polyneuropathy. No peritubal leaks or other major complications were seen in the study population. In the study group, 15 minor complications were recorded (14%), including localised infection and pain, both of which resolved on removal of T-fasteners. We conclude that it is feasible and safe to remove T-fasteners at 2 days.

  18. Cadmium plating replacements

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, M.J.; Groshart, E.C.

    1995-03-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  19. Impact of implanted metal plates on radiation dose distribution in vivo

    International Nuclear Information System (INIS)

    Liu Ming; Li Xingde; Niu Qingguo; Zhai Fushan

    2010-01-01

    Objective: To investigate the impact of metal plate on radiation dose distribution in surrounding tissues in cadaver specimens. Methods: Stainless steel plate, titanium plate, and muscle strip were implanted into the left thigh of a corpse, respectively. All the specimens were irradiated with 6 MV X-ray , SSD = 100 cm. The absorbed dose of surface was measured by thermoluminescent elements. Results: Surface dose distributions differed significantly among the three different materials (F = 57.35, P < 0.01), with the amounts of 1.18 Gy ± 0.04 Gy (stainless steel plate), 1.12 Gy ± 0.04 Gy (titanium plate) and 0.97 Gy ± 0.03 Gy (muscle strip), respectively. The surface absorbed doses on incident plane of stainless steel plate and titanium plate were significantly increased by 21.65% and 15.46% respectively as compared with that of muscle strip. The absorbed doses on the exit surface of stainless steel plate, titanium plate and muscle strip were 0.87 Gy ± 0.03 Gy, 0.90 Gy ± 0.02 Gy and 0.95 Gy ± 0.04 Gy, respectively (F =13.37, P <0.01). The doses on the exit surface of stainless steel plate and titanium plate were significantly lowered by 8.42% and 5.26% when compared with that of muscle strip. Using treatment planning system,the differences between dose distribution with and without metal plate were compared. Within 1 cm away from the incident plate, there was an obvious increase in the absorbed dose, while the influence was less than 5% 1 cm outside the surface. The effect of dose distribution on exit surface was less than 2%. Conclusions: The influence of metal plate on the radiotherapy dose distribution is significant. The deviations ranges from 5% to 29%. Under the same condition, the impact of stainless steel plate is much more than that of titanium alloy plate. (authors)

  20. Degradation of fastener in reactor internal of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Ryu, W. S.; Jang, J. S.; Kim, S. H.; Kim, W. G.; Chung, M. K.; Han, C. H

    2000-03-01

    Main component degraded in reactor internal structure of PWR is fastener such as bolts, stud, cap screw, and pins. The failure of these components may damage nuclear fuel and limits the operation of nuclear reactor. In foreign reactors operated more than 10 years, an increasing number of incidents of degraded thread fasteners have been reported. The degradation of these components impair the integrity of reactor internal structure and limit the life extension of nuclear power plant. To solve the problem of fastener failure, the incidents of failure and main mechanisms should be investigated. the purpose of this state-of-the -art report is to investigate the failure incidents and mechanisms of fastener in foreign and domestic PWR and make a guide to select a proper materials. There is no intent to describe each event in detail in this report. This report covers the failures of fastener and damage mechanisms reported by the licensees of operating nuclear power plants and the applications of plants constructed after 1964. This information is derived from pertinent licensee event report, reportable occurrence reports, operating reactor event memoranda, failure analysis reports, and other relevant documents. (author)

  1. Metallic plates lens focalizing a high power microwave beam

    International Nuclear Information System (INIS)

    Rebuffi, L.

    1987-08-01

    A metallic grating composed of thin parallel plates opportunely spaced, permits to correct the phase of an incident high power microwave beam. In this work we show how it is possible to obtain a beam focalisation (lens), a beam deflection (prisma), or a variation in the polarization (polarizer) using parallel metallic plates. The main design parameters are here presented, in order to obtain the wanted phase modification keeping low the diffraction, the reflected power, the ohmic losses and avoiding breakdowns. Following the given criteria, a metallic plate lens has been realized to focalize the 200 KW, 100 msec 60 GHz beam used in the ECRH experiment on the TFR tokamak. The experimental beam concentration followed satisfactory the design requirements. In fact, the maximum intensity increased about twice the value without lens. In correspondence of this distance a reduction of the beam size of about 50% have been measured for the -3 dB radius. The lens supported high power tests without breakdowns or increase of the reflected power

  2. Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-05-20

    An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the first exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.

  3. Development of high temperature fasteners using directionally solidified eutectic alloys

    Science.gov (United States)

    George, F. D.

    1972-01-01

    The suitability of the eutectics for high temperature fasteners was investigated. Material properties were determined as a function of temperature, and included shear parallel and perpendicular to the growth direction and torsion parallel to it. Techniques for fabricating typical fastener shapes included grinding, creep forming, and direct casting. Both lamellar Ni3Al-Ni3Nb and fibrous (Co,Cr,Al)-(Cr,Co)7C3 alloys showed promise as candidate materials for high temperature fastener applications. A brief evaluation of the performance of the best fabricated fastener design was made.

  4. From laboratory corrosion tests to a corrosion lifetime for wood fasteners : progress and challenges

    Science.gov (United States)

    Samuel L. Zelinka; Dominique Derome; Samuel V. Glass

    2010-01-01

    Determining a “corrosion-lifetime” for fasteners embedded in wood treated with recently adopted preservative systems depends upon successfully relating results of laboratory tests to in-service conditions. In contrast to laboratory tests where metal is embedded in wood at constant temperature and moisture content, the in-service temperature and moisture content of wood...

  5. Evaluation on Bending Properties of Biomaterial GUM Metal Meshed Plates for Bone Graft Applications

    Science.gov (United States)

    Suzuki, Hiromichi; He, Jianmei

    2017-11-01

    There are three bone graft methods for bone defects caused by diseases such as cancer and accident injuries: Autogenous bone grafts, Allografts and Artificial bone grafts. In this study, meshed GUM Metal plates with lower elasticity, high strength and high biocompatibility are introduced to solve the over stiffness & weight problems of ready-used metal implants. Basic mesh shapes are designed and applied to GUM Metal plates using 3D CAD modeling tools. Bending properties of prototype meshed GUM Metal plates are evaluated experimentally and analytically. Meshed plate specimens with 180°, 120° and 60° axis-symmetrical types were fabricated for 3-point bending tests. The pseudo bending elastic moduli of meshed plate specimens obtained from 3-point bending test are ranged from 4.22 GPa to 16.07 GPa, within the elasticity range of natural cortical bones from 2.0 GPa to 30.0 GPa. Analytical approach method is validated by comparison with experimental and analytical results for evaluation on bending property of meshed plates.

  6. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration

    Science.gov (United States)

    Higashi, Shougo; Lee, Seok Woo; Lee, Jang Soo; Takechi, Kensuke; Cui, Yi

    2016-01-01

    Portable power sources and grid-scale storage both require batteries combining high energy density and low cost. Zinc metal battery systems are attractive due to the low cost of zinc and its high charge-storage capacity. However, under repeated plating and stripping, zinc metal anodes undergo a well-known problem, zinc dendrite formation, causing internal shorting. Here we show a backside-plating configuration that enables long-term cycling of zinc metal batteries without shorting. We demonstrate 800 stable cycles of nickel–zinc batteries with good power rate (20 mA cm−2, 20 C rate for our anodes). Such a backside-plating method can be applied to not only zinc metal systems but also other metal-based electrodes suffering from internal short circuits. PMID:27263471

  7. Cylinder head fastening structure for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Futakuchi, Y.; Oshiro, N.

    1988-01-26

    In a construction for an overhead cam internal combustion engine comprising a cylinder head adapted to be affixed to another component of the engine by at least one fastener having a tool receiving portion for tightening thereof and having a bearing cap affixed to the cylinder head and rotatably journaling the overhead camshaft, the improvement is described comprising the bearing cap having a portion overlying the fastener tool receiving portion, and means defining an access opening passing through the bearing cap and adapted to pass a tool for tightening of the fastener without removal of the bearing cap.

  8. Hydraulic screw fastening devices - design, maintenance, operational experience

    International Nuclear Information System (INIS)

    Lachner.

    1976-01-01

    With hydraulic screw fastening devices, pretension values with a maximum deviation of +-2.5% from the rated value can be achieved. This high degree of pretension accuracy is of considerable importance with regard to the safety factor required for the screw connection between reactor vessel head and reactor vessel. The operating rhythm of a nuclear power station with its refuelling art regular intervals makes further demands on the screw fastening device, in particular in connection with the transport of screws and for nuts. The necessary installations extend the screw fastening device into a combination of a high-pressure hydraulic cylinder system with an electrical or pneumoelectrical driving unit and an electrical control unit. Maintenance work is complicated by the large number of identical, highly stressed structural elements in connection with an unfavourable relation operating time/outage time. The problems have been perpetually reduced by close cooperation between the manufacturers and users of screw fastening devices. (orig./AK) [de

  9. Threaded-fastener experience in nuclear power plants

    International Nuclear Information System (INIS)

    Koo, W.H.

    1983-01-01

    This report identifies 44 incidents of threaded-fastener degradation and failure in nuclear power plants from October 1964 to March 1982. It provides an overview of some of the threaded-fastener problems that have occurred since 1964. Safety implications of these incidents are discussed, and short-term regulatory actions and ongoing long-term regulatory actions are described. Information included in this report represents the current NRC staff understanding of each issue

  10. Development of an anti-loosening fastener and comparing its ...

    Indian Academy of Sciences (India)

    Bikash Panja

    2017-09-08

    Sep 8, 2017 ... MS received 13 November 2013; revised 20 June 2016; accepted 30 April ... However, threaded fasteners may have the problem of loosening under vibrating ..... [7] Junker G H 1969 New criteria for self-loosening of fasteners.

  11. Hot-rolled Process of Multilayered Composite Metal Plate

    Directory of Open Access Journals (Sweden)

    YU Wei

    2017-02-01

    Full Text Available For multi-layer plate, it is a difficult problem to increase product yield rate and improve bonding interface quality. A high yield hot-rolled method of multilayered plate was proposed. The raw strips and plate were fixed by argon arc welding. The combined billet was put into a metal box and vacuum pumped, and then heated and rolled by multi passes at the temperature of 1000-1200℃. The 67 layered plate with the thickness of 2.5mm was successfully produced. The interfacial microstructures and diffusion behavior were investigated and analyzed by optical microscopy and scan electronic microscopy. The tensile and shear strength were tested,and the shear fractures were analyzed. The results show that the multilayered plate yield rate is more than 90% by two steps billet combination method and rolling process optimization. The good bonding interface quality is obtained, the shear strength of multilayered plate reaches 241 MPa. Nickel interlayer between 9Cr18 and 1Cr17 can not only prevent the diffusion of carbon, but also improve the microstructure characteristics.

  12. Electroplating condition for Ni nanocrystalline on metal (Ni and Cu) plates

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Yung; Uhm, Young Rang; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Ni 63, a beta radiation source, is prepared by the electrical deposition of radioactive Ni 63 ions on a thin non radioactive nickel foil or Cu plate. Given a half life of 100 years, a nuclear battery will still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To established the coating condition of Ni 63, non radioactive metal Ni particles are dissolved an acid solution and electroplated on a Ni sheet. The nickel plating process is used extensively for decorative, engineering and electro forming purposes because the appearance and other properties of electrodeposited nickel can be varied over a wide range by controlling the composition and operating parameters of the plating solution. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of a Ni plating solution prepared by dissolving metal particles, but also an optimization of the deposition conditions, such as the current density, saccharin concentration in the bath, and different metal substrates were investigated

  13. Electroplating condition for Ni nanocrystalline on metal (Ni and Cu) plates

    International Nuclear Information System (INIS)

    Park, Keun Yung; Uhm, Young Rang; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju

    2012-01-01

    Ni 63, a beta radiation source, is prepared by the electrical deposition of radioactive Ni 63 ions on a thin non radioactive nickel foil or Cu plate. Given a half life of 100 years, a nuclear battery will still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To established the coating condition of Ni 63, non radioactive metal Ni particles are dissolved an acid solution and electroplated on a Ni sheet. The nickel plating process is used extensively for decorative, engineering and electro forming purposes because the appearance and other properties of electrodeposited nickel can be varied over a wide range by controlling the composition and operating parameters of the plating solution. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of a Ni plating solution prepared by dissolving metal particles, but also an optimization of the deposition conditions, such as the current density, saccharin concentration in the bath, and different metal substrates were investigated

  14. Fastener tightening in a radioactive (hot) cell

    International Nuclear Information System (INIS)

    Kalk, J.J.

    1986-01-01

    Accurate remote tightening of fasteners in a radioactive (Hot) cell can be a very exasperating experience. Viewing can be difficult (in many places) and work sometimes must be done using mirrors and/or cameras. If electro mechanical manipulators are used, the operator has no ''feel,'' which often can result in cross threading, or improper torquing of fasteners. At the Interim Examination and Maintenance (IEM) Cell, where reactor components from the Fast Flux Test Facility (FFTF) are disassembled, these problems are prevalent because three of the IEM Cell walls have no windows. Electric impact wrenches were first proposed and tested for the IEM Cell, but the combined effects of radiation, dry argon atmosphere and poor visibility radically altered the cell tool development philosophy. This change in philosophy is reflected in the development of several simple fastener tightening devices

  15. Fastener tightening in a radioactive (hot) cell

    International Nuclear Information System (INIS)

    Kalk, J.J.

    1987-01-01

    Accurate remote tightening of fasteners in a radioactive (hot) cell can be a very exasperating experience. Viewing can be difficult (in many places) and work sometimes must be done using mirrors and/or cameras. If electro mechanical manipulators are used, the operator has no feel, which often can result in cross threading, or improper torquing of fasteners. At the Interim Examination and Maintenance (IEM) Cell, where reactor components from the Fast Flux Testing Facility (FFTF) are disassembled, these problems are prevalent because three of the IEM Cell walls have no windows. Electric impact wrenches were first proposed and tested for the IEM Cell, but the combined effects of radiation, dry argon atmosphere and poor visibility radically altered the cell tool development philosophy. This change in philosophy is reflected in the development of several simple fastener tightening devices

  16. Corrosion of metal bipolar plates for PEM fuel cells: A review

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Renato A. [Engenharia de Materiais, Universidade Federal do ABC (UFABC), 09210-170 Santo Andre, SP (Brazil); Oliveira, Mara Cristina L.; Ett, Gerhard; Ett, Volkmar [Electrocell Ind. Com. Equip. Elet. LTDA, Centro de Inovacao, Empreendedorismo e Tecnologia (CIETEC), 05508-000 Sao Paulo, SP (Brazil)

    2010-04-15

    PEM fuel cells are of prime interest in transportation applications due to their relatively high efficiency and low pollutant emissions. Bipolar plates are the key components of these devices as they account for significant fractions of their weight and cost. Metallic materials have advantages over graphite-based ones because of their higher mechanical strength and better electrical conductivity. However, corrosion resistance is a major concern that remains to be solved as metals may develop oxide layers that increase electrical resistivity, thus lowering the fuel cell efficiency. This paper aims to present the main results found in recent literature about the corrosion performance of metallic bipolar plates. (author)

  17. Theory of timber connections with slender dowel type fasteners

    DEFF Research Database (Denmark)

    Svensson, Staffan; Munch-Andersen, Jørgen

    2018-01-01

    A theory on the lateral load-carrying capacity of timber connections with slender fasteners is presented. The base of the theory is the coupled mechanical phenomena acting in the connection, while the wood and the slender fastener deform and yield prior to failure. The objective is to derive...... a sufficient description of actions and responses which have determining influence on the load-carrying capacity of timber connections with slender fasteners. Model assumptions are discussed and made, but simplifications are left out. Even so, simple mathematical equations describing the lateral capacity......-carrying capacity of the tested connections....

  18. Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Dundar, F. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); Department of Materials Science and Engineering, Gebze Institute of Technology (Turkey); Dur, Ender; Koc, M. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); Mahabunphachai, S. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); National Metal and Materials Technology Center (MTEC), Pathumthani (Thailand)

    2010-06-01

    Metallic bipolar plates have several advantages over bipolar plates made from graphite and composites due to their high conductivity, low material and production costs. Moreover, thin bipolar plates are possible with metallic alloys, and hence low fuel cell stack volume and mass are. Among existing fabrication methods for metallic bipolar plates, stamping and hydroforming are seen as prominent approaches for mass production scales. In this study, the effects of important process parameters of these manufacturing processes on the corrosion resistance of metallic bipolar plates made of SS304 were investigated. Specifically, the effects of punch speed, pressure rate, stamping force and hydroforming pressure were studied as they were considered to inevitably affect the bipolar plate micro-channel dimensions, surface topography, and hence the corrosion resistance. Corrosion resistance under real fuel cell conditions was examined using both potentiodynamic and potentiostatic experiments. The majority of the results exhibited a reduction in the corrosion resistance for both stamped and hydroformed plates when compared with non-deformed blank plates of SS304. In addition, it was observed that there exist an optimal process window for punch speed in stamping and the pressure rate in hydroforming to achieve improved corrosion resistance at a faster production rate. (author)

  19. Critical impact energy for the perforation of metallic plates

    International Nuclear Information System (INIS)

    Aly, S.Y.; Li, Q.M.

    2008-01-01

    This paper investigates the empirical formulae used in engineering practice to predict the critical perforation energy of metallic plates struck by rigid projectiles in the sub-ordnance regime. Main factors affecting the critical perforation energy are identified and valid conditions for each empirical formula are compared. Dimensional analysis is conducted to show the dependence of the non-dimensional critical impact energy on other influential non-dimensional numbers. Available empirical formulae are re-expressed in non-dimensional forms. A modified Jowett/AEA equation is proposed to predict the critical perforation energy of a flat-ended short projectile. The present work increases the confidence of using these empirical formulae and can be regarded as a quick guide for ballistic protection design of metallic shields and steel armour plates

  20. The effect of moisture content on the corrosion of fasteners embedded in wood subjected to alkaline copper quaternary treatment

    International Nuclear Information System (INIS)

    Zelinka, Samuel L.; Glass, Samuel V.; Derome, Dominique

    2014-01-01

    Highlights: • We examine the dependence of metal corrosion on wood moisture content. • Corrosion of steel and galvanized steel in treated wood were measured. • Corrosion products were analyzed across moisture contents using X-ray diffraction. • The corrosion rate has a sigmoidal dependence on moisture content. • The data herein can be used to improve combined hygrothermal–corrosion models. - Abstract: This paper characterizes the corrosion rate of embedded fasteners as a function of wood moisture content using gravimetric and electrochemical measurements. The results indicated that the corrosion rate increased with moisture content before reaching a plateau. The phases present in the corrosion products, as analyzed using X-ray diffraction, are generally consistent with previous work. Uniform corrosion was observed for all fasteners and all conditions except steel fasteners embedded in water-saturated wood. Data of dependence of corrosion rate on moisture content, presented herein, are necessary to ensure the accuracy of combined hygrothermal/corrosion models used to predict durability of wood structures

  1. Double fastener-type contamination protective cloth

    International Nuclear Information System (INIS)

    Nomura, Norio.

    1996-01-01

    In the cloth of the present invention, a hood portion covering the entire of a head and a suit portion having an upper half body portion and a lower half body portion connected to the upper half portion for covering from a neck to ankles are made integrated. The suit portion has long sleeves at the upper half body portion, and has strait leg portions at the lower half body portion. Two linear sliding fasteners are disposed from the neck portion on the front surface of the suit portion to the lower edges of both ankle portions. The sliding fasteners have a double structure having a folded portion at the inner side. Slits are formed on the outer side surfaces of each of the ankle portions and openable/closable face fasteners are attached. A rubber is incorporated in the wrist portions at the top ends of the long sleeves to be in close contact with the wrists. An operator can easily put on and off the cloth without withdrawing legs. Accordingly, radioactive contamination can be prevented upon putting on and off the cloth. (I.N.)

  2. Analysis of Terminal Metallic Armor Plate Free-Surface Bulging

    National Research Council Canada - National Science Library

    Rapacki, Jr, E. J

    2008-01-01

    An analysis of the bulge formed on the free-surface of the terminal metallic plate of an armor array is shown to lead to reasonable estimates of the armor array's remaining penetration/perforation resistance...

  3. Pathway to low-cost metallization of silicon solar cell through understanding of the silicon metal interface and plating chemistry

    International Nuclear Information System (INIS)

    Ebong, Abasifreke

    2014-01-01

    Metallization is crucial to silicon solar cell performance. It is the second most expensive process step in the fabrication of a solar cell. In order to reduce the cost of solar cell, the metallization cost has to be cut down by using less metal without compromising the efficiency. Screen-printing has been used in metallizing the commercial solar cell because of the high throughput and low cost at the expense of performance. However, because of the variability in the screen-printed gridlines, the amount of Ag metal used cannot be controlled. More so, the dependence of the contact resistance on doping necessitates the use of low sheet resistance emitters, which exacerbates losses in the blue response and hence the efficiency. To balance the contact resistance and improve blue response, several approaches have been undertaken including, use of Ag pastes incorporating nanoparticle glass frits that will not diffuse excessively into a lightly doped emitter, Ni plating on lightly doped emitter through SiNx dielectric plus NiSi formation followed by Cu and/or Ag plating, light induced plating (LIP) of Ag or Cu on fired through dielectric metal seed layers formed by aerosol or inkjet or screen-printing. All these approaches require excellent adhesion and gridline conductivity to minimize the total series resistance, which impedes the collection of electrons. This paper presents the issues and the pathway to achieving high efficiency using low cost metallization technology involving inkjet-printed Ag fine gridline having 38 μm width and 3 μm height fired through the SiNx followed by Ni and Cu plating. A comprehensive analysis of silicon/metal interface, using high precision microscopy, has shown that the investigated metallization technology is appropriate for the longevity of the device

  4. Corrosion rates of fasteners in treated wood exposed to 100% relative humidity

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer

    2009-01-01

    In the past, gravimetric corrosion data for fasteners exposed to treated wood has been reported as a percent weight loss. Although percent weight loss is a valid measure of corrosion for comparing identical fasteners, it can distort the corrosion performance of fasteners with different geometries and densities. This report reevaluates a key report on the corrosiveness...

  5. A novel method for detecting second harmonic ultrasonic components generated from fastened bolts

    Science.gov (United States)

    Fukuda, Makoto; Imano, Kazuhiko

    2012-09-01

    This study examines the use of ultrasonic second harmonic components in the quality control of bolt-fastened structures. An improved method for detecting the second harmonic components, from a bolt fastened with a nut, using the transmission method is constructed. A hexagon head iron bolt (12-mm diameter and 25-mm long) was used in the experiments. The bolt was fastened using a digital torque wrench. The second harmonic component increased by approximately 20 dB before and after the bolt was fastened. The sources of second harmonic components were contact acoustic nonlinearity in the screw thread interfaces of the bolt-nut and were the plastic deformation in the bolt with fastening bolt. This result was improved by approximately 10 dB compared with previous our method. Consequently, usefulness of the novel method for detecting second harmonic ultrasonic components generated from fastened bolt was confirmed.

  6. Investigation of Fastening Performance of Subminiature Serrated Bolt

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Myung Guen; Jeong, Jin Hwan; Jang, Yeon Hui; Kim, Hee Cheol; Kim, Jong-Bong [Seoul Nat’l Univ. of Science & Tech, Seoul (Korea, Republic of)

    2017-04-15

    As the size of electric products such as mobile phones and smart watches decrease, the bolts used to assemble these products should also be miniaturized. A miniature-sized bolt has to provide sufficient joining torque and anti-releasing torque to keep the components together. We studied a serrated bolt as a candidate for a miniature-sized fastener to increase the anti-releasing torque. In a serrated bolt, a serrated shape is formed on the bottom surface of the bolt head to create an obstacle to releasing. In this study, finite element analyses for the joining and releasing of bolts were carried out, and the anti-releasing performance was predicted. Based on the results of analyses using various numbers of serrations and fastening depths, the effects of the number of serrations and fastening depth on the anti-releasing performance were investigated.

  7. Investigation of Fastening Performance of Subminiature Serrated Bolt

    International Nuclear Information System (INIS)

    Jang, Myung Guen; Jeong, Jin Hwan; Jang, Yeon Hui; Kim, Hee Cheol; Kim, Jong-Bong

    2017-01-01

    As the size of electric products such as mobile phones and smart watches decrease, the bolts used to assemble these products should also be miniaturized. A miniature-sized bolt has to provide sufficient joining torque and anti-releasing torque to keep the components together. We studied a serrated bolt as a candidate for a miniature-sized fastener to increase the anti-releasing torque. In a serrated bolt, a serrated shape is formed on the bottom surface of the bolt head to create an obstacle to releasing. In this study, finite element analyses for the joining and releasing of bolts were carried out, and the anti-releasing performance was predicted. Based on the results of analyses using various numbers of serrations and fastening depths, the effects of the number of serrations and fastening depth on the anti-releasing performance were investigated.

  8. Electrochemical impedance spectroscopy (EIS) as a tool for measuring corrosion of polymer-coated fasteners used in treated wood

    Science.gov (United States)

    Samuel L. Zelinka; Lorraine Ortiz-Candelaria; Donald S. Stone; Douglas R. Rammer

    2009-01-01

    Currently, many of the polymer-coated fasteners on the market are designed for improved corrosion performance in treated wood; yet, there is no way to evaluate their corrosion performance. In this study, a common technique for measuring the corrosion performance of polymer-coated metals, electrochemical impedance spectroscopy (EIS), was used to evaluate commercial...

  9. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes.

    Science.gov (United States)

    Kabdaşli, Işik; Arslan, Tülin; Olmez-Hanci, Tuğba; Arslan-Alaton, Idil; Tünay, Olcay

    2009-06-15

    In the present study, the treatability of a metal plating wastewater containing complexed metals originating from the nickel and zinc plating process by electrocoagulation using stainless steel electrodes was experimentally investigated. The study focused on the effect of important operation parameters on electrocoagulation process performance in terms of organic complex former, nickel and zinc removals as well as sludge production and specific energy consumption. The results indicated that increasing the applied current density from 2.25 to 9.0 mA/cm(2) appreciably enhanced TOC removal efficiency from 20% to 66%, but a further increase in the applied current density to 56.25 mA/cm(2) did not accelerate TOC removal rates. Electrolyte concentration did not affect the process performance significantly and the highest TOC reduction (66%) accompanied with complete heavy metal removals were achieved at the original chloride content ( approximately 1500 mg Cl/L) of the wastewater sample. Nickel removal performance was adversely affected by the decrease of initial pH from its original value of 6. Optimum working conditions for electrocoagulation of metal plating effluent were established as follows: an applied current density of 9 mA/cm(2), the effluent's original electrolyte concentration and pH of the composite sample. TOC removal rates obtained for all electrocoagulation runs fitted pseudo-first-order kinetics very well (R(2)>92-99).

  10. Development of Metal Plate with Internal Structure Utilizing the Metal Injection Molding (MIM Process

    Directory of Open Access Journals (Sweden)

    Kwangho Shin

    2013-12-01

    Full Text Available In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE simulation. PE (high density polyethylene (HDPE and low density polyethylene (LDPE and polypropylene (PP resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made.

  11. Flow channel shape optimum design for hydroformed metal bipolar plate in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Linfa; Lai, Xinmin; Liu, Dong' an; Hu, Peng [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); Ni, Jun [Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109 (United States)

    2008-03-15

    Bipolar plate is one of the most important and costliest components of polymer electrolyte membrane (PEM) fuel cells. Micro-hydroforming is a promising process to reduce the manufacturing cost of PEM fuel cell bipolar plates made of metal sheets. As for hydroformed bipolar plates, the main defect is the rupture because of the thinning of metal sheet during the forming process. The flow channel section decides whether high quality hydroformed bipolar plates can be successively achieved or not. Meanwhile, it is also the key factor that is related with the reaction efficiency of the fuel cell stacks. In order to obtain the optimum flow channel section design prior the experimental campaign, some key geometric dimensions (channel depth, channel width, rib width and transition radius) of flow channel section, which are related with both reaction efficiency and formability, are extracted and parameterized as the design variables. By design of experiments (DOE) methods and an adoptive simulated annealing (ASA) optimization method, an optimization model of flow channel section design for hydroformed metal bipolar plate is proposed. Optimization results show that the optimum dimension values for channel depth, channel width, rib width and transition radius are 0.5, 1.0, 1. 6 and 0.5 mm, respectively with the highest reaction efficiency (79%) and the acceptable formability (1.0). Consequently, their use would lead to improved fuel cell efficiency for low cost hydroformed metal bipolar plates. (author)

  12. Factors influencing power hand tool fastening accuracy and reaction forces.

    Science.gov (United States)

    Radwin, Robert G; Chourasia, Amrish O; Howery, Robert S; Fronczak, Frank J; Yen, Thomas Y; Subedi, Yashpal; Sesto, Mary E

    2014-06-01

    A laboratory study investigated the relationship between power hand tool and task-related factors affecting threaded fastener torque accuracy and associated handle reaction force. We previously developed a biodynamic model to predict handle reaction forces. We hypothesized that torque accuracy was related to the same factors that affect operator capacity to react against impulsive tool forces, as predicted by the model. The independent variables included tool (pistol grip on a vertical surface, right angle on a horizontal surface), fastener torque rate (hard, soft), horizontal distance (30 cm and 60 cm), and vertical distance (80 cm, 110 cm, and 140 cm). Ten participants (five male and five female) fastened 12 similar bolts for each experimental condition. Average torque error (audited - target torque) was affected by fastener torque rate and operator position. Torque error decreased 33% for soft torque rates, whereas handle forces greatly increased (170%). Torque error also decreased for the far horizontal distance 7% to 14%, when vertical distance was in the middle or high, but handle force decreased slightly 3% to 5%. The evidence suggests that although both tool and task factors affect fastening accuracy, they each influence handle reaction forces differently. We conclude that these differences are attributed to different parameters each factor influences affecting the dynamics of threaded faster tool operation. Fastener torque rate affects the tool dynamics, whereas posture affects the spring-mass-damping biodynamic properties of the human operator. The prediction of handle reaction force using an operator biodynamic model may be useful for codifying complex and unobvious relationships between tool and task factors for minimizing torque error while controlling handle force.

  13. Velcro-like fasteners based on NiTi micro-hook arrays

    International Nuclear Information System (INIS)

    Vokoun, D; Pilch, J; Majtás, D; Šittner, P; Sedlák, P; Frost, M

    2011-01-01

    A recently developed Velcro-like fastener utilizes superelastic deformation of two interlocked NiTi hooks when pulled apart. This work focuses on experimental analysis (evaluation of normal detachment force at different temperatures) and modeling (simulation by a finite element implemented SMA model) of the unhooking process. It is claimed that nonlinear superelastic deformation of NiTi leads to unique properties of the NiTi hook fasteners such as high strength (∼15 000 kg m −2 ), a significant increase of strength with increasing temperature, absorption of impact loads, damping of mechanical vibrations, forceless contact or silent release and better functioning in dirty environments compared to conventional Velcro fasteners

  14. Scattering Properties of Electromagnetic Waves from Randomly Oriented Rough Metal Plate in the Lower Terahertz Region

    Directory of Open Access Journals (Sweden)

    Chen Gang

    2018-02-01

    Full Text Available An efficient hybrid algorithm is proposed to analyze the electromagnetic scattering properties of an infinitely thin metal plate in the lower terahertz (THz frequency region. In this region, the metal plate can be viewed as a perfect electrically conductive object with a marginally rough surface. Hence, the THz scattered field from the metal plate can be divided into coherent and incoherent parts. The physical optics and truncated-wedge incremental-length diffraction coefficients methods are used to compute the coherent part, whereas the small perturbation method is used to compute the incoherent part. Then, the radar cross section of the rough metal plate surface is computed by the multilevel fast multipole and proposed hybrid algorithms. The numerical results show that the proposed algorithm has a good accuracy when rapidly simulating the scattering properties in the lower THz region.

  15. Fracture Surface Morphology Under Ductile Tearing of Metal Plates

    DEFF Research Database (Denmark)

    Kacar, Muhammet F.; Tekoglu, Cihan; Nielsen, Kim Lau

    2017-01-01

    The present work takes as offset the hypothesis that microstructural parameters, related to particle size and distribution, govern the transition between crack surface morphologies observed in experiments. The key question is; why does tearing of a given metal plate leave a specific morphology...

  16. Research on metal-plated cellulose nitrate flakes and their infrared / millimeter wave characteristics

    Science.gov (United States)

    Ye, Shu-qin; Zhu, Chen-guang; Wang, Li-hong; Ou'yang, De-hua; Pan, Gong-pei

    2016-10-01

    Copper-plated and silver-plated cellulose nitrate flakes, which were prepared by using chemical plating technology, were used to jam infrared detector and millimeter-wave radar. It was tested for the conductivity and infrared jamming performance of plating and also the RCS (Radar Cross Section) performance of millimeter-wave radar. Test results showed that the prepared metal-plated cellulose nitrate flakes have obvious conductivity, and infrared total radiation energy of silver plating and copper plating had approximately increased 32% and 21% respectively. Through determination, the millimeter-wave reflecting property and RCS of silver-plated cellulose nitrate flakes were higher than that of copper-plated cellulose nitrate flakes. Therefore, silver-plated cellulose nitrate flakes can be used as an effective infrared / millimeter wave composite jamming material.

  17. Fastening, coupling and joining technique between diaspora and irredenta

    Science.gov (United States)

    Bauer, C.-O.

    1980-06-01

    The problem of eliminating the present divergence and shattering (diaspora) in the treatment of problems of the fastening, coupling, and joining technique on different technical branches is examined. It is shown that by an appropriate independence the fastening, coupling and joining techniques can recognize and consequently utilize the numerous performance reserves which are concealed by the present organization and action due to the lack of systematically tended works.

  18. Proceedings of the Flat-Plate Solar Array Project Research Forum on Photovoltaic Metallization Systems

    Science.gov (United States)

    1983-01-01

    A photovoltaic Metallization Research forum, under the sponsorship of the Flat-Plate Solar Array Project consisted of five sessions, covering: (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques, and (5) future metallization challenges.

  19. Performance evaluation of pilot scale sulfur-oxidizing denitrification for treatment of metal plating wastewater.

    Science.gov (United States)

    Flores, Angel S P; Gwon, Eun-Mi; Sim, Dong-Min; Nisola, Grace; Galera, Melvin M; Chon, Seung-Se; Chung, Wook-Jin; Pak, Dae-Won; Ahn, Zou Sam

    2006-01-01

    A full-scale and two pilot-scale upflow sulfur-oxidizing denitrification (SOD) columns were evaluated using metal plating wastewater as feed. The sludge was autotrophically enriched, and inoculated in the SOD columns attached to the effluent line of three metal plating wastewater treatment facilities. The effects of activated carbon and aeration were also studied, and found effective for the removal of suspended solids and ammonia, respectively. The results showed that the constituents, such as the total nitrogen, nitrates, nitrites, ammonia, chemical oxygen demand (COD), and heavy metals, were effectively removed. The pH was observed to be maintained at 7-8 due to the alkalinity supplied by the sulfur-calcium carbonate (SC) pellet. The denitrification efficiency and start-up period were observed to be affected by the influent quality. Chromium, iron, nickel, copper, and zinc--the major heavy metal components of the influent--were effectively reduced at certain concentrations. Other metal ions were also detected and reduced to undetectable concentrations, but no trends in the comparison with denitrification were observed. From the results it can be concluded that SOD is effective for the removal of nitrogen, particularly nitrates, without a drastic pH change, and can effectively remove minute concentrations of heavy metals and COD in metal plating wastewaters.

  20. Compilation of fastener testing data received in response to NRC Compliance Bulletin 87-02

    International Nuclear Information System (INIS)

    Cwalina, G.C.; Conway, J.T.; Parker, L.B.

    1989-06-01

    On November 6, 1987, the Nuclear Regulatory Commission (NRC) issued Bulletin 87-02, ''Fastener Testing to Determine Conformance With Applicable Material Specifications,'' to all holders of operating licenses or construction permits for nuclear power reactors (licensees). The bulletin was issued so that the NRC staff could gather data to determine whether counterfeit fasteners are a problem in the nuclear power industry. The bulletin requested nuclear power plant owners to determine whether fasteners obtained from suppliers and/or manufacturers for use in their facilities meet the mechanical and chemical specifications stipulated in the procurement documents. The licensees were requested to sample a minimum of 10 safety-related and 10 non-safety-related fasteners (studs, bolts, and/or cap screws) and a sample of typical nuts that would be used with each fastener and to report the testing results to the NRC. The results of this study did not indicate a safety concern relating to the use of mismarked or counterfeit fasteners in the nuclear industry, but they did indicate a nonconformance rate of 8 to 12 percent for fasteners. The NRC staff is considering taking action to improve the effectiveness of receipt inspection and testing programs for all materials at nuclear power plants

  1. An Integrated Approach to Assess Exposure and Health-Risk from Polycyclic Aromatic Hydrocarbons (PAHs in a Fastener Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Hsin-I Hsu

    2014-09-01

    Full Text Available An integrated approach was developed to assess exposure and health-risk from polycyclic aromatic hydrocarbons (PAHs contained in oil mists in a fastener manufacturing industry. One previously developed model and one new model were adopted for predicting oil mist exposure concentrations emitted from metal work fluid (MWF and PAHs contained in MWF by using the fastener production rate (Pr and cumulative fastener production rate (CPr as predictors, respectively. By applying the annual Pr and CPr records to the above two models, long-term workplace PAH exposure concentrations were predicted. In addition, true exposure data was also collected from the field. The predicted and measured concentrations respectively served as the prior and likelihood distributions in the Bayesian decision analysis (BDA, and the resultant posterior distributions were used to determine the long-term exposure and health-risks posed on workers. Results show that long term exposures to PAHs would result in a 3.1%, 96.7%, and 73.4% chance of exceeding the PEL-TWA (0.2 mg/m3, action level (0.1 mg/m3, and acceptable health risk (10−3, respectively. In conclusion, preventive measures should be taken immediately to reduce workers’ PAH exposures.

  2. Prevailing Torque Locking Feature in Threaded Fasteners Using Anaerobic Adhesive

    Science.gov (United States)

    Hernandez, Alan; Hess, Daniel P.

    2016-01-01

    This paper presents results from tests to assess the use of anaerobic adhesive for providing a prevailing torque locking feature in threaded fasteners. Test procedures are developed and tests are performed on three fastener materials, four anaerobic adhesives, and both unseated assembly conditions. Five to ten samples are tested for each combination. Tests for initial use, reuse without additional adhesive, and reuse with additional adhesive are performed for all samples. A 48-hour cure time was used for all initial use and reuse tests. Test data are presented as removal torque versus removal angle with the specification required prevailing torque range added for performance assessment. Percent specification pass rates for the all combinations of fastener material, adhesive, and assembly condition are tabulated and reveal use of anaerobic adhesive as a prevailing torque locking feature is viable. Although not every possible fastener material and anaerobic adhesive combination provides prevailing torque values within specification, any combination can be assessed using the test procedures presented. Reuse without additional anaerobic adhesive generally provides some prevailing torque, and in some cases within specification. Reuse with additional adhesive often provides comparable removal torque data as in initial use.

  3. Voltage-current characteristics of a pin-plate system with different plate configurations

    International Nuclear Information System (INIS)

    Feng, Zhuangbo; Long, Zhengwei

    2013-01-01

    In this paper, the voltage-current (V-I) characteristics of a pin-plate system with four types of collection plate configurations are studied experimentally. The collection plates consider a single metal plate, a metal plate with a fly ash cake layer, a metal plate with a clean filter media and a metal plate with a dirty filter media. The results show that the clean filter media has no obvious effect on the V-I characteristics. But the dirty filter media reduces the current density because of its high resistance. The thick fly ash cake layer increase current density because of the anti-corona effect but the increment is not very obvious.

  4. Component assembly with shape memory polymer fastener for microrobots

    Science.gov (United States)

    Kim, Ji-Suk; Lee, Dae-Young; Koh, Je-Sung; Jung, Gwang-Pil; Cho, Kyu-Jin

    2014-01-01

    Adhesives are generally used for the assembly of microrobots, whereas bolts, screws, or rivets are used for larger robots. Although adhesives are easy to apply, lightweight, and small, they cannot be used for repeated assembly and disassembly of parts. In this paper, we present a novel microfastener composed of a polyurethane-based shape memory polymer (SMP) that is lightweight and small but that is easily detached for disassembly. This was achieved by using the shape recovery and modulus change of the SMP. A sheet of macromolded SMP was laser machined into an I-beam-shaped rivet, and notches were added to the structure to prevent stress concentration. Pull-off tests showed that, as the notch radius increased, the disengagement strength of the rivet fastener decreased and the reusability increased. Through the elastoplastic model, a single SMP rivet was calculated to have maximum disengagement strength of 150 N cm-2 in the elastic range, depending on the notch radius. The fasteners were applied to a jumping microrobot. The legs and body were assembled with ten fasteners, which showed no permanent deformation after impact during jumping movements. The legs were easily replaced with ones of different stiffness by heating the engaged sites to make the fasteners compliant and detachable. The proposed detachable SMP microfasteners are particularly useful for testing the isolated performance of microrobot components to determine the optimal designs for these components.

  5. Relation between the amount of dissolved water and metals dissolved from stainless steel or aluminum plate in safflower oil

    Energy Technology Data Exchange (ETDEWEB)

    Takasago, Masahisa; Takaoka, Kyo

    1986-12-01

    The amount of water dissolved in safflower oil at the frying temperature (180 deg C) was 518 -- 1012 ppM, allowing water to drop continuously (0.035 g/2 min) into the oil for 1 -- 3 h. When the oil was heated with metal plates under the same conditions, the amount of dissolved water in the oil increased more than in the absence of the metal plates. In case of stainless steel, the amount was 1.26 to 1.33 times, and with aluminum plates, 1.06 to 1.13 times the amount without plates. When these metal plates were heated with the oil under the above conditions, the water dissolved the metal of the plates into the oil. In case of stainless steel, iron dissolved from 0.17 to 0.77 ppM, nickel, 0.04 ppM and chromium, from 0.02 to 0.03 ppM. Similarly, the amount of aluminum dissolved from the aluminum plate was from 0.10 to 0.45 ppM.

  6. Wear plates control rod guide tubes top internal reactor vessel C. N. VANDELLOS II

    International Nuclear Information System (INIS)

    2010-01-01

    The guide tubes for control rods forming part of the upper internals of the reactor vessel, its function is to guide the control rod to permit its insertion in the reactor core. These guide tubes are suspended from the upper support plate which are fixed by bolts and extending to the upper core plate which is fastened by clamping bolts (split pin) to prevent lateral displacement of the guide tubes, while allowing axial expansion.

  7. Fastener investigation in JET

    Energy Technology Data Exchange (ETDEWEB)

    Bunting, P., E-mail: patrick.bunting@ccfe.ac.uk; Thompson, V.; Riccardo, V.

    2016-11-15

    Highlights: • Experimental work to identify the cause of a bolt seizure inside the JET vessel. • Taguchi method used to reduce tests to 16 while covering 5 parameters. • Experimental work was unable to reproduce bolt seizure. • Thread contamination had little effect on the bolt performance. - Abstract: JET is an experimental fusion reactor consisting of magnetically confined, high temperature plasma inside a large ultra-high vacuum chamber. The inside of the chamber is protected from the hot plasma with tiles made from beryllium, tungsten, carbon composites and other materials bolted to the vessel wall. The study was carried out in response to a JET fastener seizing inside the vacuum vessel. The following study looks at characterising the magnitude of the individual factors affecting the fastener break away torque. This was carried out using a statistical approach, the Taguchi method: isolating the net effect of individual factors present in a series of tests [1](Grove and Davis, 1992). Given the severe environment within the JET vessel due to the combination of heat, ultra-high vacuum and the high contact pressure in bolt threads, the contributions of localised diffusion bonding is assessed in conjunction with various combinations of bolt and insert material.

  8. Investigation Analysis of Crack Growth Arresting with Fasteners in Hybrid Laminated Skin-Stiffener Joint

    Science.gov (United States)

    Jeevan Kumar, N.; Ramesh Babu, P.

    2018-02-01

    In recent years carbon fibre-reinforced polymers (CFRP) emerged its increasing demand in aerospace engineering. Due to their high specific strength to weight ratio, these composites offer more characteristics and considerable advantages compared to metals. Metals, unlike composites, offer plasticity effects to evade high stress concentrations during postbuckling. Under compressive load, composite structures show a wide range of damage mechanisms where a set of damage modes combined together might lead to the eventual structural collapse. Crack is one of the most critical damages in fiber composites, which are being employed in primary aircraft structures. A parametric study is conducted to investigate the arrest mechanism of the delamination or crack growth with installation of multiple fasteners when the delamination is embedded in between the skin and stiffener interface.

  9. The relation between the amount of dissolved water and metals dissolved from stainless steel or aluminum plate in safflower oil

    International Nuclear Information System (INIS)

    Takasago, Masahisa; Takaoka, Kyo

    1986-01-01

    The amount of water dissolved in safflower oil at the frying temperature (180 deg C) was 518 ∼ 1012 ppm, allowing water to drop continuously (0.035 g/2 min) into the oil for 1 ∼ 3 h. When the oil was heated with metal plates under the same conditions, the amount of dissolved water in the oil increased more than in the absence of the metal plates. In case of stainless steel, the amount was 1.26 to 1.33 times, and with aluminum plates, 1.06 to 1.13 times the amount without plates. When these metal plates were heated with the oil under the above conditions, the water dissolved the metal of the plates into the oil. In case of stainless steel, iron dissolved from 0.17 to 0.77 ppm, nickel, 0.04 ppm and chromium, from 0.02 to 0.03 ppm. Similarly, the amount of aluminum dissolved from the aluminum plate was from 0.10 to 0.45 ppm. (author)

  10. Application of amorphous filler metals in production of fusion reactor high heat flux components

    Energy Technology Data Exchange (ETDEWEB)

    Kalin, B A [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Fedotov, V T [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Grigoriev, A E [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Sevriukov, O N [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Pliushev, A N [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Skuratov, L A [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Polsky, V I [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Yakushin, V L [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Virgiliev, Yu S [State Research Institute of Graphite, Electrodnaya St. 2, 115524 Moscow (Russian Federation); Vasiliev, V L [TRINITI, Troitsk, 142092 Moscow District (Russian Federation); Tserevitinov, S S [TRINITI, Troitsk, 142092 Moscow District (Russian Federation)

    1995-03-01

    Amorphous ribbon-type filler metals represent a promising facility for fastening heterogeneous materials together. The advantage results from the homogeneity of element and phase compositions and the strictly specified geometrical dimensions of such fillers. Amorphous fillers Zr-Ti-Fe-Be, Zr-Ti-Ni-Cu and Ti-Zr-Ni-Cu and microcrystalline fillers Al-Si and Cu-Sn-Mn-In-Ni were produced by quenching at a rate of about 10{sup 6}Ks{sup -1}. Brazing of graphite with metals (Cu+MPG-6, Cu+RGT, Mo+MIG-1, V+MIG-1, V+RGT) was accomplished using ribbon-type fillers. Two types of metal-based samples were produced in the form of plates and rakes. The rakes were made by brazing three small graphite bars to the metal, the 2mm space between the bars being 0.25 of the bar height. The results of metallographic studies of the brazing zone and of tests on brazed structures treated by pulsed energy fluxes are discussed. (orig.).

  11. Component assembly with shape memory polymer fastener for microrobots

    International Nuclear Information System (INIS)

    Kim, Ji-Suk; Lee, Dae-Young; Koh, Je-Sung; Jung, Gwang-Pil; Cho, Kyu-Jin

    2014-01-01

    Adhesives are generally used for the assembly of microrobots, whereas bolts, screws, or rivets are used for larger robots. Although adhesives are easy to apply, lightweight, and small, they cannot be used for repeated assembly and disassembly of parts. In this paper, we present a novel microfastener composed of a polyurethane-based shape memory polymer (SMP) that is lightweight and small but that is easily detached for disassembly. This was achieved by using the shape recovery and modulus change of the SMP. A sheet of macromolded SMP was laser machined into an I-beam-shaped rivet, and notches were added to the structure to prevent stress concentration. Pull-off tests showed that, as the notch radius increased, the disengagement strength of the rivet fastener decreased and the reusability increased. Through the elastoplastic model, a single SMP rivet was calculated to have maximum disengagement strength of 150 N cm −2 in the elastic range, depending on the notch radius. The fasteners were applied to a jumping microrobot. The legs and body were assembled with ten fasteners, which showed no permanent deformation after impact during jumping movements. The legs were easily replaced with ones of different stiffness by heating the engaged sites to make the fasteners compliant and detachable. The proposed detachable SMP microfasteners are particularly useful for testing the isolated performance of microrobot components to determine the optimal designs for these components. (paper)

  12. Electroplating Ni-63 metal ions in chloride bath on the Cu-plate

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Kwon Mo; Uhm, Young Rang; Son, Kwang Jae; Park, Keun Yung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ni-63 plating is similar to other electroplating processes that employ soluble metal anodes. The nickel plating solution described by Watts in 1916 eventually replaced all other strategies in use up to that time. Charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, charged Ni-63 ions are formed by dissolving metal Ni-63. Specifically, it requires the passage of direct current (DC) between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The flow of a DC causes one of the electrodes (the anode) to dissolve and the other electrode (the cathode) to become covered with nickel. The nickel in the solution is present in the form of divalent positively charged ions (Ni{sup 2+}). When the current flows, the positive ions react with two electrons (2e{sup -}) and are converted into metallic nickel (Ni{sup 0}) at the cathode surface. In the present study, we optimize and established process for the electroplating Ni-63 on Cu-plate. Nanocrystalline nickel (Ni) coatings were synthesized by DC electro deposition at a current density of 15 mA/cm{sup 2}. The bath was primarily composed of 0.2 M Ni ions, prepared by dissolving Ni-63 metal particles in HCl. The prototype for electroplating radioactive Ni-63 has been established. The electroplating was carried out by two-step processes such as preparation of ionic solution including Ni-63, and coating processes on the substrate.

  13. Electroplating Ni-63 metal ions in chloride bath on the Cu-plate

    International Nuclear Information System (INIS)

    Yoo, Kwon Mo; Uhm, Young Rang; Son, Kwang Jae; Park, Keun Yung

    2014-01-01

    Ni-63 plating is similar to other electroplating processes that employ soluble metal anodes. The nickel plating solution described by Watts in 1916 eventually replaced all other strategies in use up to that time. Charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, charged Ni-63 ions are formed by dissolving metal Ni-63. Specifically, it requires the passage of direct current (DC) between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The flow of a DC causes one of the electrodes (the anode) to dissolve and the other electrode (the cathode) to become covered with nickel. The nickel in the solution is present in the form of divalent positively charged ions (Ni 2+ ). When the current flows, the positive ions react with two electrons (2e - ) and are converted into metallic nickel (Ni 0 ) at the cathode surface. In the present study, we optimize and established process for the electroplating Ni-63 on Cu-plate. Nanocrystalline nickel (Ni) coatings were synthesized by DC electro deposition at a current density of 15 mA/cm 2 . The bath was primarily composed of 0.2 M Ni ions, prepared by dissolving Ni-63 metal particles in HCl. The prototype for electroplating radioactive Ni-63 has been established. The electroplating was carried out by two-step processes such as preparation of ionic solution including Ni-63, and coating processes on the substrate

  14. Corrosion fatigue of high strength fastener materials in seawater

    Science.gov (United States)

    Tipton, D. G.

    1983-12-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  15. Comparison of conventional reconstruction plate versus direct metal laser sintering plate: an in vitro mechanical characteristics study.

    Science.gov (United States)

    Xie, Pusheng; Ouyang, Hanbin; Deng, Yuping; Yang, Yang; Xu, Jing; Huang, Wenhua

    2017-09-02

    Additive manufacturing (AM) technology has helped to achieve several advances in the medical field, particularly as far as fabrication of implants is concerned. But the application of direct metal laser sintering (DMLS) bone plate is quite limited due to the indeterminate mechanical property. The purposes of this study were to characterize the biomechanical properties of the polished DMLS reconstruction plate and to compare these with the properties of commonly applied implants and to find whether the mechanical performance of DMLS plate meets the requirements for clinical application. In this study, we fabricated two groups of plates by DMLS and computer numerical control (CNC) techniques. After that, we polished all samples and investigated their roughness, components, hardness, static bending, and torsional performance. Moreover, cyclic bending tests and fractographic analysis were conducted. Statistical comparisons of the group by means of monotonic test data were made, and a qualitative comparison was performed to assess failures in fatigue. We found no differences in surface roughness or components after polishing, but the DMLS plate hardness is 7.42% (p direct application of these AM instruments in the operating room requires further validation including animal and clinical experiment.

  16. Reversible fastener clamp load monitor with continuous visual or remote readout

    Science.gov (United States)

    Hodge, Malcolm H.; Kausel, Theodore C., Jr.; Begley, Matthew R.

    1998-03-01

    SIMS has developed a simple means for detecting and monitoring both absolute and relative clamp load, or bolt tension, in fastener systems. More than twenty-five percent of automotive failures are known to be due to undetected loss of fastener clamp load. While the equivalent aerospace maintenance statistics are not known, the average automobile has 3,500 fasteners while a Boeing 747 has closer to one million. It is therefore anticipated that the new SensaBolt clamp load tracking system could find wide applications in the aerospace arena. We describe a visually-evident and retrofitted clamp load monitoring design which is based on the differential joint substrate compression at, and immediately adjacent to, the fastener location. This intrinsically-accurate indicator does not necessarily require alteration in either the bolt or nut geometries, thereby facilitating product introduction and retrofit in aging aircraft applications. In addition, SensaBolt's sole reliance on substrate compression renders it more accurate then torque wrench or turn-of-nut techniques. Readout may be accomplished by any of three principal methods: for those applications with ease of access to the sensor, loss of tension can be determined by direct visual inspection. Application of a standard wrench can then be made to restore the fastener's proper tightness, per the SensaBolt indicators. In those instances where line-of-sight is unimpeded and more formal inspection is desired, the SensaBolt may be interrogated by a laser scanner bar code reader. Finally, SensaBolt may be addressed by the SIMS fiber optic harness for those instances where full-time remote interrogation is desired.

  17. Cohesive traction–separation laws for tearing of ductile metal plates

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Hutchinson, John W.

    2012-01-01

    The failure process ahead of a mode I crack advancing in a ductile thin metal plate or sheet produces plastic dissipation through a sequence of deformation steps that include necking well ahead of the crack tip and shear localization followed by a slant fracture in the necked region somewhat clos...

  18. Advantages of DVW reinforced moment transmitting timber joints with steel flitch plates for colum-beam application

    NARCIS (Netherlands)

    Leijten, A.J.M.; Brandon, D.; Haddad, Y.M.

    2013-01-01

    This paper presents a study into the moment-rotation aspects of dvw (densified veneer wood) reinforced timber connections with an inter-connecting flitch plate used as middle member. Previous studies showed that reinforcing dowel-type timber connections with dvw and using expanded tube fasteners

  19. Preparation and characterization of Zr-based bulk metallic glasses in form of plate

    International Nuclear Information System (INIS)

    Pilarczyk, Wirginia

    2014-01-01

    Highlights: • Zr-based BMGs in form of plate was successful produced by die pressure casting method. • Many techniques have been used to characterize the structure of Zr 55 Cu 30 Ni 5 Al 10 alloy. • The calculated GFA parameters show that the alloy exhibits satisfactory GFA. • The studies reveal that tested as-cast Zr-based alloy is in amorphous state. - Abstract: Zr-based bulk metallic glasses present an interesting combination of physical, chemical and mechanical properties. During the last decade, intensive progress has been made and a number of applications have been suggested for these materials. In order to successfully apply these materials, it is necessary to accurately characterize their structure, thermal stability and other properties accurately. The aim of the presented work is the manufacturing, examination of the structure of selected Zr-based bulk metallic alloys and confirmation of an amorphous structure using X-ray analysis, microscopic observation and thermal analysis. In this work, the Zr-based bulk metallic glasses in form of plate was successful produced by die pressure casting method. Designed scientific station for casting zirconium based amorphous alloys in the form of plates and rods with selected dimensions is in our university a comprehensive method for achieving amorphous materials which enables us to maintain repeatability of as-cast samples with the amorphous structure and the assumed dimensions range. The diffraction pattern and exothermic reaction as well as the fracture surface morphology reveal that studied as-cast Zr-based alloy is in amorphous state. The calculated GFA parameters show that the alloy exhibits satisfactory glass-forming ability in form of studied plate. These obtained values can suggest that studied alloys are suitable materials for further planned practical application at welding process. The success of Zr-based bulk metallic glasses production in form of plate with obtained sizes is important for future

  20. Preparation and characterization of Zr-based bulk metallic glasses in form of plate

    Energy Technology Data Exchange (ETDEWEB)

    Pilarczyk, Wirginia, E-mail: wirginia.pilarczyk@polsl.pl

    2014-12-05

    Highlights: • Zr-based BMGs in form of plate was successful produced by die pressure casting method. • Many techniques have been used to characterize the structure of Zr{sub 55}Cu{sub 30}Ni{sub 5}Al{sub 10} alloy. • The calculated GFA parameters show that the alloy exhibits satisfactory GFA. • The studies reveal that tested as-cast Zr-based alloy is in amorphous state. - Abstract: Zr-based bulk metallic glasses present an interesting combination of physical, chemical and mechanical properties. During the last decade, intensive progress has been made and a number of applications have been suggested for these materials. In order to successfully apply these materials, it is necessary to accurately characterize their structure, thermal stability and other properties accurately. The aim of the presented work is the manufacturing, examination of the structure of selected Zr-based bulk metallic alloys and confirmation of an amorphous structure using X-ray analysis, microscopic observation and thermal analysis. In this work, the Zr-based bulk metallic glasses in form of plate was successful produced by die pressure casting method. Designed scientific station for casting zirconium based amorphous alloys in the form of plates and rods with selected dimensions is in our university a comprehensive method for achieving amorphous materials which enables us to maintain repeatability of as-cast samples with the amorphous structure and the assumed dimensions range. The diffraction pattern and exothermic reaction as well as the fracture surface morphology reveal that studied as-cast Zr-based alloy is in amorphous state. The calculated GFA parameters show that the alloy exhibits satisfactory glass-forming ability in form of studied plate. These obtained values can suggest that studied alloys are suitable materials for further planned practical application at welding process. The success of Zr-based bulk metallic glasses production in form of plate with obtained sizes is

  1. Experimental studies on the deformation and rupture of thin metal plates subject to underwater shock wave loading

    Directory of Open Access Journals (Sweden)

    Chen Pengwan

    2015-01-01

    Full Text Available In this paper, the dynamic deformation and rupture of thin metal plates subject to underwater shock wave loading are studied by using high-speed 3D digital image correlation (3D-DIC. An equivalent device consist of a gas gun and a water anvil tube was used to supplying an exponentially decaying pressure in lieu of explosive detonation which acted on the panel specimen. The thin metal plate is clamped on the end of the shock tube by a flange. The deformation and rupture process of the metal plates subject to underwater shock waves are recorded by two high-speed cameras. The shape, displacement fields and strain fields of the metal plates under dynamic loading are obtained by using VIC-3D digital image correlation software. The strain gauges also were used to monitor the structural response on the selected position for comparison. The DIC data and the strain gauges results show a high level of correlation, and 3D-DIC is proven to be an effective method to measure 3D full-field dynamic response of structures under underwater impact loading. The effects of pre-notches on the failure modes of thin circular plate were also discussed.

  2. Evidence of metallic plating on archaeological artefacts by voltammetry of microparticles

    Czech Academy of Sciences Publication Activity Database

    Ottenwelter, Estelle; Costa, V.

    2015-01-01

    Roč. 57, č. 3 (2015), s. 497-504 ISSN 0003-813X Institutional support: RVO:67985912 Keywords : metallic plating * voltammetry of microparticles * non-invasive analysis * medieval period * archaeological artefacts Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 1.364, year: 2015

  3. Investigation of the Section Thickness Measurement in Tomosynthesis by Thin Metal Plate Edge Method.

    Science.gov (United States)

    Ikeno, Kaoru; Akita, Tsunemichi; Hanai, Kozo; Muramatsu, Yoshihisa

    When performing tomosynthesis, the section thickness needs to be set depending on a radiographic part and its diagnostic purpose. However, the section thickness in tomosynthesis has not been clearly defined and its measurement method has not been established yet. In this study, we devised the alternative measurement method to diagnose the section thickness using an edge of thin metal plate, and compared with the simulation results, the wire and bead method reported in the previous papers. The tomographic image of the thin metal plate positioned on the table top inclining 30 degrees, which showed the edge spread function (ESF) of each tomographic height, was taken, and then the line spread function (LSF) was obtained by differentiating the ESF image. For the next, a profile curve was plotted by maximum values of LSF of each tomographic height, and a section thickness was calculated using the full width at half maximum (FWHM) of the profile curve. The edge method derived the section thickness close to the simulation results than the other methods. Further, the section thickness depends on the thickness of the metal plate and not the material. The thickness of the metal plate suitable for the evaluation of section thickness is 0.3 mm that is equivalent to pixel size of the flat panel detector (FPD). We conducted quantitative verification to establish the measurement method of the section thickness. The edge method is a useful technique as well as the wire and bead method for grasping basic characteristics of an imaging system.

  4. PEMFC Performance with Metal Bipolar Plates Depending on the Channel Dimension

    Directory of Open Access Journals (Sweden)

    Kwon Kuikam

    2016-01-01

    Full Text Available Bipolar plates of a proton exchange membrane fuel cell (PEMFC play an important role in removing liquid phase water as a by-product in order to facilitate the reaction between fuel and oxygen. A great amount of effort has been made to improve the performance of a fuel cell such as maximum current density or maximum power, by improving water removability of a bipolar plate. Most of the studies, however, are conducted numerically because of the complexity of analysing gas and liquid and the poor manufacturability of graphite bipolar plates. In this proceeding, we demonstrate that the performance of a PEMFC with metal bipolar plates can be enhanced by reducing the dimension of the channel. Bipolar plates were machined with stainless steel (type 316L to have three different channel size (1000 μm, 500 μm and 300 μm and the performance of each assembled cells were tested. As a result, the maximum power density and the maximum current density increased by 25%.

  5. Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-11-15

    A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

  6. Review of Bolt Preload and Torque for Assembling Threaded Fasteners in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lee, Yong-Sung; Lee, Jae-Gon; Kang, Yong-Chul; Shin, Ki-Jong

    2007-01-01

    There are numerous threaded fasteners such as bolts, studs, nuts, cap screws and anchor bolts used in nuclear power plants(NPPs). The major applications of threaded fasteners are reactor coolant pressure boundary components, their internals and supports. With the increase of commercial operation period of NPPs, the incidents caused by degradation of threaded fasteners have been occurred. A large number of reported incidents are involved in the pressure boundary and major component supports. The degradation and failure of threaded fasteners is affected by material, preload and torque value at assembly, bolting practice, etc. It is very important to select appropriate bolt preload and decide assembly torque value because torque control using a torque wrench is the most common method in a power plant to assemble a bolted flange connection. Many researches have been studied to define the proper bolt preload and desired torque value with regard to the integrity of bolted connections including pressure boundary joints by EPRI and other plant industry. But in domestic NPPs, considerably few works are done on the bolted joint assembly in spite of increasing events related with threaded faster. Therefore we investigated degradation or failure of the threaded fasteners used in NPPs, also examined the codes, standards and technical trends concerning bolt preload and assembly torque in NPPs. It is the purpose of this study to provide proper technical information for assuring integrity of the threaded fasteners

  7. Ultrafast Laser Engraving Method to Fabricate Gravure Plate for Printed Metal-Mesh Touch Panel

    Directory of Open Access Journals (Sweden)

    Weiyuan Chen

    2015-10-01

    Full Text Available In order to engrave gravure plate with fine lines structures, conventional art used lithography with dry/wet etching. Lithography with dry/wet etching method allows to engrave lines with smooth concave shape, but its disadvantages include difficulty in controlling aspect ratio, high and uniform in large size process, substrate material limitation due to etching solution availability, and process complexity. We developed ultra-fast laser technology to directly engrave a stainless plate, a gravure plate, to be used for fabricating 23 in. metal-mesh touch panel by gravure offset printing process. The technology employs high energy pulse to ablate materials from a substrate. Because the ultra-fast laser pulse duration is shorter than the energy dissipation time between material lattices, there is no heating issue during the ablation process. Therefore, no volcano-type protrusion on the engraved line edges occurs, leading to good printing quality. After laser engraving, we then reduce surface roughness of the gravure plate using electro-polishing process. Diamond like carbon (DLC coating layer is then added onto the surface to increase scratch resistance. We show that this procedure can fabricate gravure plate for gravure offset printing process with minimum printing linewidth 10.7 μm. A 23 in. metal-mesh pattern was printed using such gravure plate and fully functional touch panel was demonstrated in this work.

  8. Partition wall structure in spent fuel storage pool and construction method for the partition wall

    International Nuclear Information System (INIS)

    Izawa, Masaaki

    1998-01-01

    A partitioning wall for forming cask pits as radiation shielding regions by partitioning inside of a spent fuel storage pool is prepared by covering both surface of a concrete body by shielding metal plates. The metal plate comprises opposed plate units integrated by welding while sandwiching a metal frame as a reinforcing material for the concrete body, the lower end of the units is connected to a floor of a pool by fastening members, and concrete is set while using the metal plate of the units as a frame to form the concrete body. The shielding metal plate has a double walled structure formed by welding a lining plate disposed on the outer surface of the partition wall and a shield plate disposed to the inner side. Then the term for construction can be shortened, and the capacity for storing spent fuels can be increased. (N.H.)

  9. The effect of filler metal thickness on residual stress and creep for stainless-steel plate-fin structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Wenchun [School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China)], E-mail: jiangwenchun@126.com; Gong Jianming; Chen Hu; Tu, S.T. [School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2008-08-15

    Stainless-steel plate-fin heat exchanger (PFHE) has been used as a high-temperature recuperator in microturbine for its excellent qualities in compact structure, high-temperature and pressure resistance. Plate-fin structure, as the core of PFHE, is fabricated by vacuum brazing. The main component fins and the parting sheets are joined by fusion of a brazing alloy cladded to the surface of parting sheets. Owing to the material mismatching between the filler metal and the base metal, residual stresses can arise and decrease the structure strength greatly. The recuperator serves at high temperature and the creep would happen. The thickness of the filler metal plays an important role in the joint strength. Hence this paper presented a finite element (FE) analysis of the brazed residual stresses and creep for a counterflow stainless-steel plate-fin structure. The effect of the filler metal thickness on residual stress and creep was investigated, which provides a reference for strength design.

  10. Automation of calculation of fastening of non-standard freights on sea vessels

    Directory of Open Access Journals (Sweden)

    Андрій Валерійович Пархотько

    2015-11-01

    Full Text Available Correct positioning and fastening of freights are important safety conditions of navigation. Unreliable positioning and fastening of freights results in shipwreck and is the reason for injuries and losses of human lives both in the sea and during loading and unloading. To solve the above-mentioned problems, the International Maritime Organization publishes manuals in the form of either the Assembly resolutions, or the circulars approved by Maritime Safety Committee. The correct definition of necessary quantity of lashings and their positioning has the greatest impact on safe fastening of freights. The sea being rough, the vessel is accelerated both in longitudinal, and vertical and prevailing cross directions. The forces created by these accelerations generate the majority of the problems in fastening. The order of calculations of the force moments and forces acting upon the freights being shipped by sea vessels has been shown in the article. To know the proper number of lashings the calculations of the forces acting upon the freights being shipped as compared with the forces holding the freights and taking into account the strength, the number and the fastening angle of the lashings must be made. Оption of realization of algorithm of calculation with use of the а computer program to make these calculations has been offered. Some recommendations so that the program could be used by the management of the vessel, the surveyor companies and technologists of the port have been given as well as an example of such a calculation

  11. Free Vibration Analysis of Fiber Metal Laminate Annular Plate by State-Space Based Differential Quadrature Method

    Directory of Open Access Journals (Sweden)

    G. H. Rahimi

    2014-01-01

    Full Text Available A three-dimensional elasticity theory by means of a state-space based differential quadrature method is presented for free vibration analysis of fiber metal laminate annular plate. The kinds of composite material and metal layers are considered to be S2-glass and aluminum, respectively. A semianalytical approach which uses state-space in the thickness and differential quadrature in the radial direction is implemented for evaluating the nondimensional natural frequencies of the annular plates. The influences of changes in boundary condition, plate thickness, and lay-up direction on the natural frequencies are studied. A comparison is also made with the numerical results reported by ABAQUS software which shows an excellent agreement.

  12. THE OPTIMIZATION OF WOOD TRUSSES CONNECTED WITH METAL PLATES USING ANSYS

    Directory of Open Access Journals (Sweden)

    İbrahim Halil BAŞBOĞA

    2016-12-01

    Full Text Available The rapid growth of the world population causes an increasing demand for wood materials. As one of the most common problems seen in today's forest destructions may be able to avoided by means of the rational use of forests and processing of trees cut with optimal level and also it helps to fulfill demand of wood materials. In this study, ANSYS software has been used in order to optimize wood usage in metal plate connected wood trusses which save 25% or higher rates of wood raw material comparing to massive beams. Three different types of flat- wood truss systems have been considered in the study. The first cross sectional dimension of the truss elements was accepted as 5 x 10 nominal dimensions as can be found in the market. The elements of the truss systems have been modeled using Link1 ANSYS element. The parameters used in modeling of the link1 element were; modulus elasticity and Poisson’s ratio. First order optimization method was chosen for the optimization process. The constraints of the truss systems in optimization process were deformation and stress. The optimized trusses were manufactured in laboratory in order to check the methods appropriateness. Turkish red pine (Pinus brutia Ten. lumber and metal plate connectors were used in the construction of the optimized truss systems. The obtained values of deformation in the laboratory were similar to the calculated values of deformation in the ANSYS software. Results show that metal plate connected wood truss systems optimization can be achieved by the ANSYS software. Optimization process proves that more than 25% or higher in wood usage can be gained.

  13. Effects of long-term exposure on LDEF fastener assemblies

    Science.gov (United States)

    Spear, Steve; Dursch, Harry

    1992-09-01

    This presentation summarizes the Systems Special Investigations Group (SIG) findings from testing and analysis of fastener assemblies used on the Long Duration Exposure Facility (LDEF) structure, the tray mounting clamps, and by the various experimenters. The LDEF deintegration team and several experimenters noted severe fastener damage and hardware removal difficulties during post-flight activities. The System SIG has investigated all reported instances, and in all cases examined to date, the difficulties were attributed to galling during installation or post-flight removal. To date, no evidence of coldwelding was found. Correct selection of materials and lubricants as well as proper mechanical procedures is essential to ensure successful on-orbit or post-flight installation and removal of hardware.

  14. Tempering of martensitic steel for fasteners: Effects of micro-alloying on microstructure and mechanical property evolution

    OpenAIRE

    Öhlund, C.E.I.C.

    2015-01-01

    The research presented in this thesis aims to deepen our understanding of the effect of micro-alloying on the microstructure and mechanical property evolution during tempering of martensitic steel for fasteners. The ongoing trend of engine down-sizing has led to the need for stronger and more temperature resistant fasteners than currently available according to international standards. A new martensitic fastener steel called KNDS4 has been developed, that combines higher strength with improve...

  15. Decarburisation Effect on Hardened Strip Steel Fastening Components

    Directory of Open Access Journals (Sweden)

    Karli JAASON

    2016-05-01

    Full Text Available Heat treatment is widely used for high reliability fastening components such as buckles and brackets. The current study focuses on mass production of safety components which are fineblanked from sheet metal, austempered and chromium electroplated. Electroplating together with stamping defects may lead to unexpected brittle failure of the component. It is widely known that during austenitisation, decarburisation could avoid brittle failure and, therefore, slight decarburisation is recommended. There is little information how much mass production is influenced by decarburisation and where the limits are. The current study has two goals. The first one focuses on the extent of decarburisation effect on the part properties, and the second aims to find the optimum furnace setting for the product type used in the study. Also, it is necessary to choose a reliable decarburisation control method for austempered components. The effect on material grades was analyzed by using three steel alloys with carbon content of 0.37 wt.%, 0.47 wt.% and 0.62 wt.%. The specimens were austempered to hardness 45 – 51 HRC under endothermic protective atmosphere. To gain different decarburisation levels, two gas set-ups were used. Infrared gas analyzer was used to measure CO and CO2 content in the furnace gas. Three characteristics of the specimens were evaluated: hardness, rupture strength and brittleness. The depth of the decarburisation was determined by three different approaches according to standard EN ISO 3887. Based on the results, the spectrographic method is the most reliable for determining the depth of decarburisation. This study reveals that higher surface decarburisation has a positive effect on the ductility and no effect on the rupture strength of the component. The material with carbon content of 0.62 wt.% is the most sensitive to decarburisation. During mass production, the inaccuracy of hardness measuring raises which results in the inaccuracy of

  16. Torque Tension Testing of Fasteners used for NASA Flight Hardware Applications

    Science.gov (United States)

    Hemminger, Edgar G.; Posey, Alan J.; Dube, Michael J.

    2014-01-01

    The effect of various lubricants and other compounds on fastener torque-tension relationships is evaluated. Testing was performed using a unique test apparatus developed by Posey at the NASA Goddard Space Flight Center. A description of the test methodology, including associated data collection and analysis will be presented. Test results for 300 series CRES and A286 heat resistant fasteners, torqued into various types of inserts will be presented. The primary objective of this testing was to obtain torque-tension data for use on NASA flight projects.

  17. EMI Shielding Performance For Varies Frequency by Metal Plating on Mold Compound

    Directory of Open Access Journals (Sweden)

    Min Fee Tai

    2017-07-01

    Full Text Available Conformal metalization on mold compound offers new possibility for IC package design to improve features such as rigidization of the flexible core, heat sink capability, 3D-circuit patterning and the electromagnetic interference (EMI shielding. With the unique processes, the fabrication technology had enabled to achieve the high reliable performance and had passed the electrical test. Following research after the reliability concern, this paper further study the shielding effectiveness of varying coating thickness with respect to laboratory simulated EMI condition, using radio frequency from 10MHz to 5.8 GHz. Different metal namely pure nickel, nickel-phosphorous and pure plated copper are studied for their effectiveness of EMI sheilding. Our first result showed over 35-40dB of shielding effectiveness is achievable on high frequency 868-5800MHz. Nevertheless on low frequency of 10MHz, the shielding effectiveness achievement is below than 25dB. To overcome the shielding need for lower frequency, we further expanded our test by choosing ferromagentic material Nicke/Ironl-alloy in combination with thick copper plating. With this new metal combination, EMI shielding effectiveness for lower frequency is improved to 40dB.

  18. Radiation shielding plate

    International Nuclear Information System (INIS)

    Kobayashi, Torakichi; Sugawara, Takeo.

    1983-01-01

    Purpose: To reduce the weight and stabilize the configuration of a radiation shielding plate which is used in close contact with an object to be irradiated with radiation rays. Constitution: The radiation shielding plate comprises a substrate made of lead glass and a metallic lead coating on the surface of the substrate by means of plating, vapor deposition or the like. Apertures for permeating radiation rays are formed to the radiation shielding plate. Since the shielding plate is based on a lead glass plate, a sufficient mechanical strength can be obtained with a thinner structure as compared with the conventional plate made of metallic lead. Accordingly, if the shielding plate is disposed on a soft object to be irradiated with radiation rays, the object and the plate itself less deform to obtain a radiation irradiation pattern with distinct edges. (Moriyama, K.)

  19. Mounting Systems for Structural Members, Fastening Assemblies Thereof, and Vibration Isolation Systems Including the Same

    Science.gov (United States)

    Young, Ken (Inventor); Hindle, Timothy (Inventor); Barber, Tim Daniel (Inventor)

    2016-01-01

    Mounting systems for structural members, fastening assemblies thereof, and vibration isolation systems including the same are provided. Mounting systems comprise a pair of mounting brackets, each clamped against a fastening assembly forming a mounting assembly. Fastening assemblies comprise a spherical rod end comprising a spherical member having a through opening and an integrally threaded shaft, first and second seating members on opposite sides of the spherical member and each having a through opening that is substantially coaxial with the spherical member through opening, and a partially threaded fastener that threadably engages each mounting bracket forming the mounting assembly. Structural members have axial end portions, each releasably coupled to a mounting bracket by the integrally threaded shaft. Axial end portions are threaded in opposite directions for permitting structural member rotation to adjust a length thereof to a substantially zero strain position. Structural members may be vibration isolator struts in vibration isolation systems.

  20. Finite element analysis of adanced composite structures containing mechanically fastened joints

    International Nuclear Information System (INIS)

    Baumann, E.

    1982-01-01

    Although the usual engineering practice is to ignore joint effects in finite element models of overall structures, there are times when the inclusion of fastener effects in a model is necessary for accurate analysis. This paper describes some simple but accurate methods for accommodating this modeling requirement. The approach involves correlation of test results from a few composite mechanically fastened joints with finite element analyses of joints. It is assumed that if the fastener actions in the test articles can be properly predicted by simple finite element techniques, then these same techniques can be applied to large overall structure models. During the course of this test-analysis effort it was determined that it is possible to obtain correct results for overall structure-joint analyses by using simple modeling concepts provided special care is employed. Also, some emphasis is given in this paper to the importance of properly reducing test data in order to obtain meaningful correlations with finite element analysis. Finally, for those interested, the appendix contains brief descriptions of the test results and failure modes explored in the test program. (orig.)

  1. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    Science.gov (United States)

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  2. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge

    International Nuclear Information System (INIS)

    Bayat, Belgin; Sari, Bulent

    2010-01-01

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3 l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching > ferric chloride leaching > sulfuric acid

  3. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, Belgin, E-mail: bbayat@cu.edu.tr [Department of Environmental Engineering, Faculty of Engineering and Architecture, Cukurova University, Balcali, Adana 01330 (Turkey); Sari, Bulent [Department of Environmental Engineering, Faculty of Engineering and Architecture, Cukurova University, Balcali, Adana 01330 (Turkey)

    2010-02-15

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3 l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 {+-} 2 deg. C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 {+-} 2 deg. C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching > ferric chloride leaching > sulfuric

  4. New Challenges to the automotive fasteners and cold formed parts in the chinese markets

    Directory of Open Access Journals (Sweden)

    Chen Jin Guang

    2015-01-01

    Full Text Available Despite of substantial cold forming related R&D, innovations and new inventions have been achieved and reported by research institutes and famous industrial organisations, many small and medium size enterprises in the third world or developing countries considering this R&D activities is too luxury. Most of the third world cold forming factories still dependent on previously successful experiences by using trial an error methods. The author does not make attempt to write a scientific research paper on metal forming processes but, instead, to report the effect, application and impact of the previous and on-going metal forming related research work to the cold forming industry in China. This paper highlights the effect of 1 efficient manufacturing practices, 2 upgrading in process technology and 3improved machines capabilities in upgrading the cold forming operation. Three real-life cold forming examples from Ritai are illustrated showing the transformation from an automotive fasteners maker into a cold formed parts manufacturer.

  5. NRC Bulletin No. 87-02, Supplement 1: Fastener testing to determine conformance with applicable material specifications

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    Item 5 of NRC Compliance Bulletin 87-02 requested that all holders of operating licenses or construction permits for nuclear power reactors information regarding the identity of the suppliers and manufacturers of the safety-related and non-safety-related fasteners selected for testing. After further consideration, the NRC has determined that it needs information regarding the identity of all vendors from which safety-related and non-safety-related fasteners have been obtained within the past 10 years, a reasonable period which will not put undue burden on addressees. This information will assist the NRC in determining whether nuclear facility fasteners in use have been supplied in accordance with their intended use. In addition, this information is needed so that the NRC can properly coordinate information with other government agencies concerned with problems identified in the quality of fasteners

  6. Smart fastener for KC-135 structural integrity monitoring

    Science.gov (United States)

    Schoess, Jeffrey N.; Seifert, Greg

    1997-06-01

    Hidden and inaccessible corrosion in aircraft structures is the number-one logistics problem for the U.S. Air Force, with an estimated maintenance cost in excess of $DOL1.0 billion per year in 1990-equivalent dollars. The Smart Aircraft Fastener Evaluation (SAFE) system is being developed to provide early warning detection of corrosion- related symptoms in hidden locations of aircraft structures. The SAFE incorporates an in situ measurement approach that measures and autonomously records several environmental conditions (i.e., pH, temperature, chloride, free potential, time-of-wetness) within a Hi-Lok aircraft fastener that could cause corrosion to occur. The SAFE system integrates a miniature electrochemical microsensor array and a time-of- wetness sensor with an ultra-low-power 8-bit microcontroller and 5-Mbyte solid-state FLASH archival memory to measure the evidence of active corrosion. A summary of the technical approach, system design definition, software architecture, and future field test plans will be presented.

  7. Site-selective electroless nickel plating on patterned thin films of macromolecular metal complexes.

    Science.gov (United States)

    Kimura, Mutsumi; Yamagiwa, Hiroki; Asakawa, Daisuke; Noguchi, Makoto; Kurashina, Tadashi; Fukawa, Tadashi; Shirai, Hirofusa

    2010-12-01

    We demonstrate a simple route to depositing nickel layer patterns using photocross-linked polymer thin films containing palladium catalysts, which can be used as adhesive interlayers for fabrication of nickel patterns on glass and plastic substrates. Electroless nickel patterns can be obtained in three steps: (i) the pattern formation of partially quaterized poly(vinyl pyridine) by UV irradiation, (ii) the formation of macromolecular metal complex with palladium, and (iii) the nickel metallization using electroless plating bath. Metallization is site-selective and allows for a high resolution. And the resulting nickel layered structure shows good adhesion with glass and plastic substrates. The direct patterning of metallic layers onto insulating substrates indicates a great potential for fabricating micro/nano devices.

  8. Heating produced by therapeutic ultrasound in the presence of a metal plate in the femur of canine cadavers

    Directory of Open Access Journals (Sweden)

    A.O. Andrades

    2014-10-01

    Full Text Available The present study aimed to assess the heat generated by a therapeutic ultrasound (TUS in a metal bone plate and adjacent structures after fixation to the femur of canine cadavers. Ten pairs of hind limbs were used, and they were equally distributed between groups that were subjected to 1- and 3-MHz frequencies, with each frequency testing 1- and 2-W/cm² intensities. The right hind limb was defined as the control group (absence of the metal plate, and the left hind limb was the test group (presence of the metal plate. Therefore, the control groups (CG were denominated CGI, using TUS with 1-MHz frequency and 1-W/cm² intensity; CGII, using 1-MHz frequency and 2-W/cm² intensity; CGIII, using 3-MHz frequency and 1-W/cm² intensity; and CGIV, using 3-MHz frequency and 2-W/cm² intensity. For each control group, its respective test group (TG was denominated TGI, TGII, TGIII and TGIV. The TUS was applied to the lateral aspect of the thigh using the continuous mode and a 3.5-cm² transducer in a 6.25-cm² area for 2 minutes. Sensors were coupled to digital thermometers that measured the temperature in different sites before (t0 and after (t1 of the TUS application. The temperatures in t1 were higher in all tested groups. The intramuscular temperature was significantly higher (P<0.05 in the groups used to test the 3-MHz frequency in the presence of the metal plate. The therapeutic ultrasound in the continuous mode using frequencies of 1 and 3 MHz and intensities of 1 and 2 W/cm2 for 2 minutes caused heating of the metal plate and adjacent structures after fixation to the femur of canine cadavers.

  9. Initial experience with percutaneous endoscopic gastrostomy with T-fastener fixation in pediatric patients

    Science.gov (United States)

    Kvello, Morten; Knatten, Charlotte Kristensen; Perminow, Gøri; Skari, Hans; Engebretsen, Anders; Schistad, Ole; Emblem, Ragnhild; Bjørnland, Kristin

    2018-01-01

    Background and study aims  Insertion of a percutaneous endoscopic gastrostomy (PEG) with push-through technique and T-fastener fixation (PEG-T) has recently been introduced in pediatric patients. The T-fasteners allow a primary insertion of a balloon gastrostomy. Due to limited data on the results of this technique in children, we have investigated peri- and postoperative outcomes after implementation of PEG-T in our department. Patients and methods  This retrospective chart review included all patients below 18 years who underwent PEG-T placement from 2010 to 2014. Main outcomes were 30-day postoperative complications and late gastrostomy-related complications. Results  In total, 87 patients were included, and median follow-up time was 2.4 years (1 month – 4.9 years). Median age and weight at PEG-T insertion were 1.9 years (9.4 months – 16.4 years) and 10.4 kg (5.4 – 33.0 kg), respectively. Median operation time was 28 minutes (10 – 65 minutes), and 6 surgeons and 3 endoscopists performed the procedures. During the first 30 days, 54 complications occurred in 41 patients (47 %). Most common were peristomal infections treated with either local antibiotics in 11 patients (13 %) or systemic antibiotics in 11 other patients (13 %). 9 patients (10 %) experienced tube dislodgment. Late gastrostomy-related complications occurred in 33 patients (38 %). The T-fasteners caused early and late complications in 9 (10 %) and 11 patients (13 %), respectively. Of these, 4 patients (5 %) had subcutaneously migrated T-fasteners which were removed under general anesthesia. Conclusion  We found a high rate of complications after PEG-T. In particular, problems with the T-fasteners and tube dislodgment occurred frequently after PEG-T insertion. PMID:29399615

  10. Splitting behaviour of timber loaded perpendicular to the grain by punched metal plates

    NARCIS (Netherlands)

    Schoenmakers, J.C.M.; Jorissen, A.J.M.; Leijten, A.J.M.; Aratake, S. xx

    2008-01-01

    Nowadays, prefabricated timber trusses are widely used as load-bearing roof structures. The majority of these trusses are produced with punched metal plates (PMP) to connect two or more timber elements of the same thickness, see Figure 2. In these structures sufficient overlap is required to prevent

  11. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    International Nuclear Information System (INIS)

    Travelli, A.

    1988-01-01

    A nuclear fuel-containing plate structure for a nuclear reactor is described; such structure comprising a pair of malleable metallic non-fissionable matrix plates having confronting surfaces which are pressure bonded together and fully united to form a bonded surface, and elongated malleable wire-like fissionable fuel members separately confined and fully enclosed between the matrix plates along the interface to afford a high fuel density as well as structural integrity and effective retention of fission products. The plates have separate recesses formed in the confronting surfaces for closely receiving the wire-like fissionable fuel members. The wire-like fissionable fuel members are made of a maleable uranium alloy capable of being formed into elongated wire-like members and capable of withstanding pressure bonding. The wire-like fissionable fuel members are completely separated and isolated by fully united portions of the interface

  12. Mathematical modeling of impact of two metal plates using two-fluid approach

    Science.gov (United States)

    Utkin, P. S.; Fortova, S. V.

    2018-01-01

    The paper is devoted to the development of the two-fluid mathematical model and the computational algorithm for the modeling of two metal plates impact. In one-dimensional case the governing system of equations comprises seven equations: three conservation laws for each fluid and transfer equation for the volume fraction of one of the fluids. Both fluids are considered to be compressible and equilibrium on velocities. Pressures equilibrium is used as fluids interface condition. The system has hyperbolic type but could not be written in the conservative form because of nozzling terms in the right-hand side of the equations. The algorithm is based on the Harten-Lax-van Leer numerical flux function. The robust computation in the presence of the interface boundary is carried out due to the special pressure relaxation procedure. The problem is solved using stiffened gas equations of state for each fluid. The parameters in the equations of state are calibrated using the results of computations using wide-range equations of state for the metals. In simulations of metal plates impact we get two shocks after the initial impact that propagate to the free surfaces of the samples. The characteristics of shock waves are close (maximum relative error in characteristics of shocks is not greater than 7%) to the data from the wide-range equations of states computations.

  13. Instantaneous mechanical fastening of quasi-isotropic CFRP laminates by a self-piercing rivet

    OpenAIRE

    上田, 政人; 三宅, 崇太郎; 長谷川, 寛幸; 平野, 義鎭; Ueda, Masahito; Miyake, Sotaro; Hasegawa, Hiroyuki; Hirano, Yoshiyasu

    2012-01-01

    A modified self-piercing rivet (SPR) has been proposed to mechanically fasten CFRP laminates. The modified SPR consists of a rivet body and two flat washers. The two flat washers were used to suppress delamination in the CFRP laminates at the point of piercing. The advantages of the modified SPR for fastening CFRP laminates are instantaneous process time and low cost. Any pretreatments such as surface treatments or hole drilling are not required. In this study, the viability of the modified S...

  14. Edge effects in four-point direct current potential drop measurements on metal plates

    International Nuclear Information System (INIS)

    Lu, Y; Bowler, N; Bowler, J R; Huang, Y

    2009-01-01

    Four-point direct current potential drop (DCPD) measurements are commonly used to measure the conductivity (or resistivity) of semiconductors and ferrous or non-ferrous metals. The measured electrical potential difference is often interpreted in terms of analytic expressions developed for large plates that are either 'thin' or 'thick' relative to the probe length. It is well known that the presence of the back surface of a plate leads to a solution expressed in terms of an infinite series representing the current source and its images. This approach can be generalized to account for multiple surfaces in order to obtain a solution for a finite plate, but convergence of the series is poor when the plate dimensions are similar to or smaller than the separation of the current injection and extraction points. Here, Fourier series representations of the infinite sums are obtained. It is shown that the Fourier series converge with many fewer terms than the series obtained from image theory, for plates with dimensions similar to or smaller than the separation of the current injection and extraction points. Comparing calculated results for the potential drop obtained by a four-point probe centred on finite plates of varying dimension, with those for a probe in contact with a large (laterally infinite) plate, estimates are given of the uncertainty due to edge effects in measurements on small plates interpreted using analytic formulae developed for large plates. It is also shown that these uncertainties due to edge effects are reduced, for a given plate size, if the probe pick-up points are moved closer to the current injection points, rather than adopting the common arrangement in which the four probe points are equally spaced. Calculated values of DCPD are compared with experimental data taken on aluminium and spring-steel plates of various sizes and excellent agreement is obtained.

  15. Edge effects in four-point direct current potential drop measurements on metal plates

    Science.gov (United States)

    Lu, Y.; Bowler, N.; Bowler, J. R.; Huang, Y.

    2009-07-01

    Four-point direct current potential drop (DCPD) measurements are commonly used to measure the conductivity (or resistivity) of semiconductors and ferrous or non-ferrous metals. The measured electrical potential difference is often interpreted in terms of analytic expressions developed for large plates that are either 'thin' or 'thick' relative to the probe length. It is well known that the presence of the back surface of a plate leads to a solution expressed in terms of an infinite series representing the current source and its images. This approach can be generalized to account for multiple surfaces in order to obtain a solution for a finite plate, but convergence of the series is poor when the plate dimensions are similar to or smaller than the separation of the current injection and extraction points. Here, Fourier series representations of the infinite sums are obtained. It is shown that the Fourier series converge with many fewer terms than the series obtained from image theory, for plates with dimensions similar to or smaller than the separation of the current injection and extraction points. Comparing calculated results for the potential drop obtained by a four-point probe centred on finite plates of varying dimension, with those for a probe in contact with a large (laterally infinite) plate, estimates are given of the uncertainty due to edge effects in measurements on small plates interpreted using analytic formulae developed for large plates. It is also shown that these uncertainties due to edge effects are reduced, for a given plate size, if the probe pick-up points are moved closer to the current injection points, rather than adopting the common arrangement in which the four probe points are equally spaced. Calculated values of DCPD are compared with experimental data taken on aluminium and spring-steel plates of various sizes and excellent agreement is obtained.

  16. Influence of the Metal Volume Fraction on the maximum deflection and impact load of GLARE plates subjected to low velocity impact

    Science.gov (United States)

    Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.

    2016-11-01

    Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.

  17. Nonlinear Coupled Dynamics of a Rod Fastening Rotor under Rub-Impact and Initial Permanent Deflection

    Directory of Open Access Journals (Sweden)

    Liang Hu

    2016-10-01

    Full Text Available A nonlinear coupled dynamic model of a rod fastening rotor under rub-impact and initial permanent deflection was developed in this paper. The governing motion equation was derived by the D’Alembert principle considering the contact characteristic between disks, nonlinear oil-film force, rub-impact force, unbalance mass, etc. The contact effects between disks was modeled as a flexural spring with cubical nonlinear stiffness. The coupled nonlinear dynamic phenomena of the rub-impact rod fastening rotor bearing system with initial permanent deflection were investigated by the fourth-order Runge-Kutta method. Bifurcation diagram, vibration waveform, frequency spectrum, shaft orbit and Poincaré map are used to illustrate the rich diversity of the system response with complicated dynamics. The studies indicate that the coupled dynamic responses of the rod fastening rotor bearing system under rub-impact and initial permanent deflection exhibit a rich nonlinear dynamic diversity, synchronous periodic-1 motion, multiple periodic motion, quasi-periodic motion and chaotic motion can be observed under certain conditions. Larger radial stiffness of the stator will simplify the system motion and make the oil whirl weaker or even disappear at a certain rotating speed. With the increase of initial permanent deflection length, the instability speed of the system gradually rises, and the chaotic motion region gets smaller and smaller. The corresponding results can provide guidance for the fault diagnosis of a rub-impact rod fastening rotor with initial permanent deflection and contribute to the further understanding of the nonlinear dynamic characteristics of the rod fastening rotor bearing system.

  18. Performance of Rail Fastening Systems on an Open-Deck Bridge

    Science.gov (United States)

    2018-02-01

    Transportation Technology Center, Inc. (TTCI) monitored the performance of rail fasteners on an open-deck bridge and its approaches, located at Norfolk Southern Corporations (NS's) eastern mega site. The project was co-sponsored by the Federal Rai...

  19. Deep Defect Detection within Thick Multilayer Aircraft Structures Containing Steel Fasteners Using a Giant-Magneto Resistive (GMR) Sensor (Preprint)

    National Research Council Canada - National Science Library

    Ko, Ray T; Steffes, Gary J

    2007-01-01

    Defect detection within thick multilayer structures containing steel fasteners is a challenging task in eddy current testing due to the magnetic permeability of the fasteners and overall thickness of the structure...

  20. Release of metal in vivo from stressed and nonstressed maxillofacial fracture plates and screws.

    Science.gov (United States)

    Matthew, I R; Frame, J W

    2000-07-01

    To analyze the release of metal into the adjacent tissues from stressed and nonstressed titanium and stainless steel miniplates and screws. Two miniplates were inserted into the cranial vaults of 12 beagle dogs while they were under general endotracheal anesthesia. One miniplate was shaped to fit the curvature of the skull (control). Another miniplate, made of the same material, was bent in a curve until the midpoint was raised 3 mm above the ends. Screws were inserted and tightened until the plate conformed to the skull curvature, creating stresses in the system. Four animals (2 each, having titanium or stainless steel plates and screws) were killed after 4, 12, and 24 weeks. Metallosis of adjacent soft tissues was assessed qualitatively. Miniplates and screws were removed, and adjacent soft tissue and bone was excised. Titanium, iron, chromium, nickel, and aluminum levels were assayed by ultraviolet/visible light and atomic absorption spectrophotometry. Nonparametric statistical methods were used for data analysis. There was no clear relationship between pigmentation of soft tissue adjacent to the miniplates and screws and the concentrations of metal present. The data did not demonstrate any consistent differences in the concentrations of metallic elements next to stressed and nonstressed (control) miniplates and screws of either material. Stresses arising through poor contouring of miniplates do not appear to influence the extent of release of metal into the adjacent tissues.

  1. Fracture toughness and crack growth resistance of pressure vessel plate and weld metal steels

    International Nuclear Information System (INIS)

    Moskovic, R.

    1988-01-01

    Compact tension specimens were used to measure the initiation fracture toughness and crack growth resistance of pressure vessel steel plates and submerged arc weld metal. Plate test specimens were manufactured from four different casts of steel comprising: aluminium killed C-Mn-Mo-Cu and C-Mn steel and two silicon killed C-Mn steels. Unionmelt No. 2 weld metal test specimens were extracted from welds of double V butt geometry having either the C-Mn-Mo-Cu steel (three weld joints) or one particular silicon killed C-Mn steel (two weld joints) as parent plate. A multiple specimen test technique was used to obtain crack growth data which were analysed by simple linear regression to determine the crack growth resistance lines and to derive the initiation fracture toughness values for each test temperature. These regression lines were highly scattered with respect to temperature and it was very difficult to determine precisely the temperature dependence of the initiation fracture toughness and crack growth resistance. The data were re-analysed, using a multiple linear regression method, to obtain a relationship between the materials' crack growth resistance and toughness, and the principal independent variables (temperature, crack growth, weld joint code and strain ageing). (author)

  2. Evaluation of the seat fastening in the frame of a road bus submitted to frontal impact

    Directory of Open Access Journals (Sweden)

    Márcio Walber

    Full Text Available The collective intercity transportation by bus is currently a mean of locomotion much sought after by people. Security in accidents is a very important factor that must be taken into account in design of bus body structure, being the evaluation of passenger safety of this type of vehicle is an important subject that should be checked, because in many accidents occur disconnection between seats and fastening members causing serious passengers injury, often fatal. This work aims at evaluation the behavior of frame fixing of seats of intercity bus bodies, submitted to the frontal impact situation in a rigid wall of 100% offset, through evaluation by finite element method (FEM. This study uses a numerical model corresponding to the body structure and chassis, developed through flexible beam elements, combining with shell elements for the structure of the seats and its fastening members, with the objective of not missing the essential aspects of the problem, allowing the solution with a reduced computational time. The numerical model of bus body and seat was impacted against a rigid wall at a speed of 8.89 m/s, being its validation according to the deceleration curve established by Regulation 80. Then it was gotten the Von Mises stress in fastening members of the seat structure in bus body. It is also presented a proposal to improve the fastening of the seat structure, comparing the results of the stress gotten in the two types fastening submitted to the frontal impact.

  3. Wireless power transfer in the presence of metallic plates: Experimental results

    Directory of Open Access Journals (Sweden)

    Xiaofang Yu

    2013-06-01

    Full Text Available We demonstrate efficient wireless power transfer between two high Q resonators, especially in a complex electromagnetic environment. In the close proximity of metallic plates, the transfer efficiency stays roughly the same as the free space efficiency with proper designs. The experimental data fits well with a coupled theory model. Resonance frequency matching, alignment of the magnetic field, and impedance matching are shown to be the most important factors for efficient wireless power transfer.

  4. Influence of the Metal Volume Fraction on the permanent dent depth and energy absorption of GLARE plates subjected to low velocity impact

    Science.gov (United States)

    Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.

    2016-11-01

    Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.

  5. Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE Trade-Mark-Sign bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Lok R.; Silva, Thilini [Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37614 (United States); Dubey, Brajesh, E-mail: bdubey@uoguelph.ca [Environmental Engineering, School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario (Canada); El Badawy, Amro M. [Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Tolaymat, Thabet M. [USEPA, Office of Research and Development, National Risk Management Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45224 (United States); Scheuerman, Phillip R. [Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37614 (United States)

    2012-06-01

    Current understanding of potential toxicity of engineered nanomaterials to aquatic microorganisms is limited for risk assessment and management. Here we evaluate if the MetPLATE Trade-Mark-Sign test can be used as an effective and rapid screening tool to test for potential aquatic toxicity of various metal-based nanoparticles (NPs). The MetPLATE bioassay is a heavy metal sensitive test based on {beta}-galactosidase activity in Escherichia coli. Five different types of metal-based NPs were screened for toxicity: (1) citrate coated nAg (Citrate-nanosilver), (2) polyvinylpyrrolidone coated nAg (PVP-nAg), (3) uncoated nZnO, (4) uncoated nTiO{sub 2} and (5) 1-Octadecylamine coated CdSe Quantum Dots (CdSe QDs); and compared with their corresponding ionic salt toxicity. Citrate-nAg was further fractionated into clean Citrate-nAg, unclean Citrate-nAg and permeate using a tangential flow filtration (TFF) system to eliminate residual ions and impurities from the stock Citrate-nAg suspension and also to differentiate between ionic- versus nano-specific toxicity. Our results showed that nAg, nZnO and CdSe QDs were less toxic than their corresponding ionic salts tested, while nano- or ionic form of TiO{sub 2} was not toxic as high as 2.5 g L{sup -1} to the MetPLATE Trade-Mark-Sign bacteria. Although coating-dependent toxicity was noticeable between two types of Ag NPs evaluated, particle size and surface charge were not adequate to explain the observed toxicity; hence, the toxicity appeared to be material-specific. Overall, the toxicity followed the trend: CdCl{sub 2} > AgNO{sub 3} > PVP-nAg > unclean Citrate-nAg > clean Citrate-nAg > ZnSO{sub 4} > nZnO > CdSe QDs > nTiO{sub 2}/TiO{sub 2}. These results indicate that an evaluation of {beta}-galactosidase inhibition in MetPLATE Trade-Mark-Sign E. coli can be an important consideration for rapid screening of metal-based NP toxicity, and should facilitate ecological risk assessment of these emerging contaminants. - Highlights

  6. Discrimination between Fatigue Cracking and Mechanical Damage in Aircraft Fastener Holes by Eddy-Current Phase Rotation

    Science.gov (United States)

    2016-08-01

    Science and Technology Organisation) EDM Electrodischarge machining FSH Full Screen Height on an eddy - current instrument IVD Ion Vapour...electromagnetic skin depth δ is 0.15 mm in the fastener holes3. 4.1 Bolt Hole Eddy Current Inspection Procedure 4.1.1 Calibration on Machined ...UNCLASSIFIED UNCLASSIFIED Discrimination between Fatigue Cracking and Mechanical Damage in Aircraft Fastener Holes by Eddy - Current Phase

  7. Analysis of the Elastic Large Deflection Behavior for Metal Plates under Nonuniformly Distributed Lateral Pressure with In-Plane Loads

    Directory of Open Access Journals (Sweden)

    Jeom Kee Paik

    2012-01-01

    Full Text Available The Galerkin method is applied to analyze the elastic large deflection behavior of metal plates subject to a combination of in-plane loads such as biaxial loads, edge shear and biaxial inplane bending moments, and uniformly or nonuniformly distributed lateral pressure loads. The motive of the present study was initiated by the fact that metal plates of ships and ship-shaped offshore structures at sea are often subjected to non-uniformly distributed lateral pressure loads arising from cargo or water pressure, together with inplane axial loads or inplane bending moments, but the current practice of the maritime industry usually applies some simplified design methods assuming that the non-uniform pressure distribution in the plates can be replaced by an equivalence of uniform pressure distribution. Applied examples are presented, demonstrating that the current plate design methods of the maritime industry may be inappropriate when the non-uniformity of lateral pressure loads becomes more significant.

  8. Fatigue of anchors for the fastening of wind turbines to reinforced concrete foundations. Vermoeiing van ankers voor de bevestiging van windmolens aan fundaties van gewapend beton

    Energy Technology Data Exchange (ETDEWEB)

    Liemberg, B J; Bouwman, L P

    1983-01-01

    Nowadays slender and slack masts are preferred for wind turbines, fastened to a concrete foundation with anchor bolts. This concept leads to strongly fluctuating forces. Tests are described to investigate this aspect of wind turbine design. Test specimens were designed and loaded in such a way that the real situation was simulated as close as possible. They were subjected to fatigue tests and duration tests. Some important conclusions are: foot plates with two contact surfaces are significantly better than those with only one contact surface; a good filling of the seam, especially in a direct line with the mast is essential.

  9. Role of an anatomically contoured plate and metal block for balanced stability between the implant and lateral hinge in open-wedge high-tibial osteotomy.

    Science.gov (United States)

    Jang, Young Woong; Lim, DoHyung; Seo, Hansol; Lee, Myung Chul; Lee, O-Sung; Lee, Yong Seuk

    2018-07-01

    Open-wedge high tibial osteotomy (OWHTO) is a well-established surgical option for medial compartment osteoarthritis of the varus knee. The initial strength of the fixation plate is critical for successful correction maintenance and healing of the osteotomy site. This study was conducted to verify if a newly designed anatomical plate (LCfit) improves the stability of both the medial implant and lateral hinge area, as well as to evaluate how the metal block contributes to both medial and lateral stability. A finite element (FE) tibial model was combined with TomoFix plate, a LCfit plate with and without a metal block. Data analysis was conducted to evaluate the balanced stability, which refers to the enforced lateral stability resulting from redistribution of overall stress. We assessed the balanced stability of the medial implant and lateral hinge area in three cases using the same Sawbones and loads using the tibia FE model. The LCfit plate reduced stress by 23.1% at the lateral hinge compared to the TomoFix plate (TomoFix vs. LCfit: 34.2 ± 23.3 MPa vs. 26.3 ± 17.5 MPa). The LCfit plate with a metal block reduced stress by 40.1% at the medial plate (210.1 ± 64.2 MPa vs. 125.8 ± 65.7 MPa) and by 31.2% (26.3 ± 17.5 MPa vs. 18.1 ± 12.1 MPa) at the lateral hinge area compared to the reduction using the LCfit plate without a metal block. The newly designed fixation system for OWHTO balanced the overall stress distribution and reduced stress at the lateral hinge area compared to that using a conventional fixation system. The addition of the metal block showed additional benefits for balanced stability between the medial implant and lateral hinge area. However, this conclusion could only be drawn using the FE model in this study. Therefore, further clinical studies are necessary to reveal the clinical effect of reduced lateral stress on the occurrence of the lateral hinge fracture and the biologic effect of the metal block on the

  10. Perforated plates for cryogenic regenerators and method of fabrication

    International Nuclear Information System (INIS)

    Hendricks, J.B.

    1994-01-01

    Perforated plates having very small holes with a uniform diameter throughout the plate thickness are prepared by a open-quotes wire drawingclose quotes process in which a billet of sacrificial metal is disposed in an extrusion can of the plate metal, and the can is extruded and restacked repeatedly, converting the billet to a wire of the desired hole diameter. At final size, the rod is then sliced into wafers, and the wires are removed by selective etching. This process is useful for plate metals of interest for high performance regenerator applications, in particular, copper, niobium, molybdenum, erbium, and other rare earth metals. Er 3 Ni, which has uniquely favorable thermophysical properties for such applications, may be incorporated in regions of the plates by providing extrusion cans containing erbium and nickel metals in a stacked array with extrusion cans of the plate metal, which may be copper. The array is heated to convert the erbium and nickel metals to Er 3 Ni. Perforated plates having two sizes of perforations, one of which is small enough for storage of helium, are also disclosed. 10 figures

  11. Preparation and pattern recognition of metallic Ni ultrafine powders by electroless plating

    International Nuclear Information System (INIS)

    Zhang, H.J.; Zhang, H.T.; Wu, X.W.; Wang, Z.L.; Jia, Q.L.; Jia, X.L.

    2006-01-01

    Using hydrazine hydrate as reductant, metallic Ni ultrafine powders were prepared from NiSO 4 aqueous solution by electroless plating method. The factors including concentration of NiSO 4 , bathing temperature, ratio of hydrazine hydrate to NiSO 4 , the pH of the solution, etc., on influence of the yield and average particle size of metallic Ni ultrafine powders were studied in detail. X-ray powders diffraction patterns show that the nickel powders are cubic crystallite. The average crystalline size of the ultrafine nickel powders is about 30 nm. The dielectric and magnetic loss of ultrafine Ni powders-paraffin wax composites were measured by the rectangle waveguide method in the range 8.2-12.4 GHz. The factors for Ni ultrafine powders preparation are optimized by computer pattern recognition program based on principal component analysis, the optimum factors regions with higher yield of metallic Ni ultrafine powders are indicated by this way

  12. Surface roughness effect on the metallic bipolar plates of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Lin, Chien-Hung

    2013-01-01

    Highlights: ► Various degrees of roughness are caused by the sandblasting method. ► An improper surface modification depletes the PEMFC performance severely. ► The AC impedance are used to assess the fuel gas transfer effect. ► The Warburg resistance form in the coarse flow channel surface. - Abstract: Proton exchange membrane fuel cells (PEMFCs) is a promising candidate as energy systems. However, the stability and lifetime of cells are still important issues. The effect of surface roughness on metallic bipolar plate is discussed in this paper. Various roughness on the bulk surface are obtained by the sandblasting method. The grain sizes of sand are selected as 50, 100 and 200 μm. The Ac impedance experiment results show that the bipolar plate roughness and carbon paper porosity are well matched when the surface roughness is within 1–2 μm. Superior condition decreases the contact resistance loss in the fuel cell. The high frequency resistance of the coarse surface was larger than that of the substrate by around 5 mΩ. Furthermore, a new arc was formed at the low frequency region. Hence, the unmatch roughness condition of the bipolar plate significantly increases the contact resistance and mass transfer resistance. This paper develops a sequential approach to study an optimum surface roughness by combining the whole performance (I–V) curve and AC impedance result. It benefits us to quantify the contact and mass transfer resistance exists in the PEMFC. The proposed surface treatment improves the surface effect and promotes the implement of potential metallic bipolar plate in near future

  13. Fabrication of Three Dimensional Cu Metallic Photonic Crystal by Electroless Plating

    International Nuclear Information System (INIS)

    Wu, S-C; Hou, F-J; Jian, P-C Jang-; Tsai, M-S; Chen, M-C; Li, L-S; Huang, J-Y; Lin, S-Y

    2007-01-01

    A 3D copper (Cu) metallic photonic crystal (MPC) with 180nm line width was fabricated by electroless plating. The mold of 3D MPC for Cu replacement is poly-Si. It has been verified as an enhancing thermal photovoltaic effect while the mold was transferred into tungsten MPC by chemical vapor deposition method. The 5 layers structure of Cu MPC was clear observed with scanning electron microscopy. The photonic band-gap ranged from 1.5 to 13 μm was measured by Fourier transform infrared spectroscopy (FTIR) instrument

  14. Enhancement of seeding for electroless Cu plating of metallic barrier layers by using alkyl self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sung-Te [Department of Electronic Engineering, Hsiuping University of Science and Technology, Dali 412, Taichung, Taiwan (China); Chung, Yu-Cheng [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Fang, Jau-Shiung [Department of Materials Science and Engineering, National Formosa University, Huwei 632, Taiwan (China); Cheng, Yi-Lung [Department of Electrical Engineering, National Chi-Nan University, Puli, Nantou 545, Taiwan (China); Chen, Giin-Shan, E-mail: gschen@fcu.edu.tw [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China)

    2017-05-31

    Highlights: • Ta barrier layers are used as model substrates for seeding of electroless plating. • Ta layers seeded with Ta-OH yield seeds with limited density and large size (>10 nm). • Substantial improvement of seeding is obtained with functionalized SAMs. • The mechanism of seeding improvement by functionalized SAMs is clearly clarified. - Abstract: Tethering a self-assembled monolayer (SAM) on ultralow-k (porous) dielectric materials as a seed-trapping layer for electroless Cu plating has been extensively studied. By contrast, literature on direct electroless Cu plating of metallic barrier layers assisted by SAMs is scarce. Therefore, Ta, a crucial component of barrier materials for Cu interconnect metallization, was investigated as a model substrate for a new seeding (Ni catalyst formation) process of electroless Cu plating. Transmission and scanning electron microscopies indicated that catalytic particles formed on Ta films through Ta−OH groups tend to become aggregates with an average size of 14 nm and density of 2 × 10{sup 15} m{sup −2}. By contrast, Ta films with a plasma-functionalized SAM tightly bound catalytic particles without agglomeration, thus yielding a markedly smaller size (3 nm) and higher density (3 × 10{sup 16} m{sup −2}; one order greater than those formed by other novel methods). X-ray photoelectron spectroscopy clearly identified the types of material species and functional groups induced at each step of the seeding process. Moreover, the phase of the catalytic particles, either nickel alkoxide, Ni(OH){sub 2}, or metallic Ni, along with the seed-bonding mechanism, was also unambiguously distinguished. The enhancement of film-formation quality of Cu by the new seeding process was thus demonstrated.

  15. Development of a brazing process for the production of water- cooled bipolar plates made of chromium-coated metal foils for PEM fuel cells

    International Nuclear Information System (INIS)

    Mueller, M; Hoehlich, D; Scharf, I; Lampke, T; Hollaender, U; Maier, H J

    2016-01-01

    Beside lithium batteries, PEM fuel cells are the most promising strategy as a power source to achieve the targets for introducing and increasing the usage of electric vehicles. Due to limited space and weight problems, water cooled, metallic bipolar plates in a fuel cell metal stack are preferred in motor vehicles. These plates are stamped metal sheets with a complex structure, interconnected media-tight. To meet the multiple tasks and requirements in use, complex and expensive combinations of materials are currently in use (carbon fiber composites, graphite, gold-plated nickel, stainless and acid resistant steel). The production of such plates is expensive as it is connected with considerable effort or the usage of precious metals. As an alternative, metalloid nitrides (CrN, VN, W 2 N, etc.) show a high chemical resistance, hardness and a good conductivity. So this material category meets the basic requirements of a top layer. However, the standard methods for their production (PVD, CVD) are expensive and have a slow deposition rate and a lower layer thicknesses. Because of these limitations, a full functionality over the life cycle of a bipolar plate is not guaranteed. The contribution shows the development and quantification of an alternative production process for bipolar plates. The expectation is to get significant advantages from the combination of chromium electrodeposition and thermochemical treatment to form chromium nitrides. Both processes are well researched and suitable for series production. The thermochemical treatment of the chromium layer also enables a process-integrated brazing. (paper)

  16. Wear plates control rod guide tubes top internal reactor vessel C. N. VANDELLOS II; Desgaste placas tubos guia barras de control interno superior vasija del reactor C.N. Vandellos II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The guide tubes for control rods forming part of the upper internals of the reactor vessel, its function is to guide the control rod to permit its insertion in the reactor core. These guide tubes are suspended from the upper support plate which are fixed by bolts and extending to the upper core plate which is fastened by clamping bolts (split pin) to prevent lateral displacement of the guide tubes, while allowing axial expansion.

  17. [Experimental study on carbon fiber reinforced plastic plate--analysis of stabilizing force required for plate].

    Science.gov (United States)

    Iizuka, H

    1990-11-01

    Plates currently in use for the management of bone fracture made of metal present with various problems. We manufactured carbon fiber reinforced plastic (CFRP) plates from Pyrofil T/530 puriplegs overlaid at cross angles of +/- 10 degrees, +/- 20 degrees, and +/- 30 degrees for trial and carried out an experimental study on rabbit tibiofibular bones using 316L stainless steel plates of comparable shape and size as controls. The results indicate the influence of CFRP plate upon cortical bone was milder than that of stainless steel plate, with an adequate stabilizing force for the repair of fractured rabbit tibiofibular bones. CFRP has the advantages over metals of being virtually free from corrosion and fatigue, reasonably radiolucent and able to meet a wide range of mechanical requirements. This would make CFRP plate quite promising as a new devices of treating fracture of bones.

  18. Test results of smart aircraft fastener for KC-135 structural integrity

    Science.gov (United States)

    Schoess, Jeffrey N.; Seifert, Greg

    1998-07-01

    Hidden and inaccessible corrosion in aircraft structures is the number one logistics problem for the US Air Force, with an estimated maintenance cost in excess of $LR 1.0B per year in 1990-equivalent dollars. The Smart Aircraft Fastener Evaluation (SAFE) system was developed to provide early warning detection of corrosion-related symptoms in hidden locations of aircraft structures. The SAFE system incorporates an in situ measurement approach that measures and autonomously records several environmental conditions within a Hi-Lok aircraft fastener that could cause corrosion. The SAFE system integrates a miniature electrochemical microsensor array and a time-of-wetness sensor with an ultra low power 8-bit microcontroller and 4- Mbyte solid-state FLASH archival memory to measure evidence of active corrosion. A summary of the technical approach and a detailed analysis of the KC-135 lap joint test coupon results are presented.

  19. Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems

    Science.gov (United States)

    Mittelsteadt, Cortney K.; Braff, William

    2009-01-01

    In a substantial improvement over present alkaline systems, an advanced hybrid bipolar plate for a unitized fuel cell/electrolyzer has been developed. This design, which operates on pure feed streams (H2/O2 and water, respectively) consists of a porous metallic foil filled with a polymer that has very high water transport properties. Combined with a second metallic plate, the pore-filled metallic plates form a bipolar plate with an empty cavity in the center.

  20. Alternative bipolar plates design and manufacturing for PEM fuel cell

    International Nuclear Information System (INIS)

    Lee Chang Chuan; Norhamidi Muhamad; Jaafar Sahari

    2006-01-01

    Bipolar plates is one of the important components in fuel cell stack, it comprise up to 80% of the stack volume. Traditionally, these plates have been fabricated from graphite, owing to its chemical nobility, and high electrical and thermal conductivity; but these plates are brittle and relatively thick. Therefore increasing the stack volume and size. Alternatives to graphite are carbon-carbon composite, carbon-polymer composite and metal (aluminum, stainless steel, titanium and nickel based alloy). The use of coated and uncoated metal bipolar plates has received attention recently due to the simplicity of plate manufacturing. The thin nature of the metal substrate allows for smaller stack design with reduced weight. Lightweight coated metals as alternative to graphite plate is being developed. Beside the traditional method of machining and slurry molding, metal foam for bipolar plates fabrication seems to be a good alternative. The plates will be produced with titanium powder by Powder Metallurgy method using space holders technique to produce the meal foam flow-field. This work intends to facilitate the materials and manufacturing process requirements to produce cost effective foamed bipolar plates for fuel cell

  1. Design of a thin-plate based tunable high-quality narrow passband filter for elastic transverse waves propagate in metals

    Science.gov (United States)

    Zhang, J.; Zeng, L. H.; Hu, C. L.; Yan, W. S.; Pennec, Yan; Hu, N.

    2018-03-01

    For the elastic SV (transverse) waves in metals, a high-quality narrow passband filter that consists of aligned parallel thin plates with small gaps is designed. In order to obtain a good performance, the thin plates should be constituted by materials with a smaller mass density and Young's modulus, such as polymethylmethacrylate (PMMA), compared to the embedded materials in which the elastic SV waves propagate. Both the theoretical model and the full numerical simulation show that the transmission spectrum of the designed filter demonstrates several peaks with flawless transmission within 0 KHz ˜20 KHz frequency range. The peaks can be readily tuned by manipulating the geometrical parameters of the plates. Therefore, the current design works well for both low and high frequencies with a controllable size. Even for low frequencies on the order of kilohertz, the size of this filter can be still limited to the order of centimeters, which significantly benefits the real applications. The investigation also finds that the same filter is valid when using different metals and the reason behind this is explained theoretically. Additionally, the effect of bonding conditions of interfaces between thin plates and the base material is investigated using a spring model.

  2. Creep deformation behavior of weld metal and heat affected zone on 316FR steel thick plate welded joint

    International Nuclear Information System (INIS)

    Hongo, Hiromichi; Yamazaki, Masayoshi; Watanabe, Takashi; Kinugawa, Junichi; Tanabe, Tatsuhiko; Monma, Yoshio; Nakazawa, Takanori

    1999-01-01

    Using hot-rolled 316FR stainless plate (50 mm thick) and 16Cr-8Ni-2Mo filler wire, a narrow-gap welded joint was prepared by GTAW (gas tungsten arc welding) process. In addition to conventional round bar specimens of base metals and weld metal, full-thickness joint specimens were prepared for creep test. Creep tests were conducted at 550degC in order to examine creep deformation and rupture behavior in the weld metal of the welded joint. Creep strain distribution on the surface of the joint specimen was measured by moire interferometry. In the welded joint, creep strength of the weld metal zone apart from the surface was larger than that in the vicinity of the surface due to repeating heat cycles during welding. Creep strain and creep rate within the HAZ adjacent to the weld metal zone were smaller than those within the base metal zone. Creep rate of the weld metal zone in the welded joint was smaller than that of the weld metal specimen due to the restraint of the hardened HAZ adjacent to the zone. The full-thickness welded joint specimens showed longer lives than weld metal specimens, though the lives of the latter was shorter than those of the base metal (undermatching). In the full-thickness welded joint specimen, crack started from the last pass layer of the weld metal zone and fracture occurred at the zone. From the results mentioned above, in order to evaluate the creep properties of the welded joint correctly, it is necessary to conduct the creep test using the full-thickness welded joint specimen which includes the weakest zones of the weld metal, the front and back sides of the plate. (author)

  3. Improving visibility of rear surface cracks during inductive thermography of metal plates using Autoencoder

    Science.gov (United States)

    Xie, Jing; Xu, Changhang; Chen, Guoming; Huang, Weiping

    2018-06-01

    Inductive thermography is one kind of infrared thermography (IRT) technique, which is effective in detection of front surface cracks in metal plates. However, rear surface cracks are usually missed due to their weak indications during inductive thermography. Here we propose a novel approach (AET: AE Thermography) to improve the visibility of rear surface cracks during inductive thermography by employing the Autoencoder (AE) algorithm, which is an important block to construct deep learning architectures. We construct an integrated framework for processing the raw inspection data of inductive thermography using the AE algorithm. Through this framework, underlying features of rear surface cracks are efficiently extracted and new clearer images are constructed. Experiments of inductive thermography were conducted on steel specimens to verify the efficacy of the proposed approach. We visually compare the raw thermograms, the empirical orthogonal functions (EOFs) of the prominent component thermography (PCT) technique and the results of AET. We further quantitatively evaluated AET by calculating crack contrast and signal-to-noise ratio (SNR). The results demonstrate that the proposed AET approach can remarkably improve the visibility of rear surface cracks and then improve the capability of inductive thermography in detecting rear surface cracks in metal plates.

  4. Mechanical fasteners used in historical Siberian shipbuilding: perspectives for metallurgical analysis

    Science.gov (United States)

    Goncharov, A. E.; Mednikov, D. M.; Karelin, N. M.; Nasyrov, I. R.

    2017-10-01

    Recent discoveries of shipwrecked vessels in the northern reaches of the river Yenisei led to a number of questions concerning the history of shipbuilding in Siberia and the technical features of the first vessels of the industrial era to navigate the Northern Sea Route and the Yenisei. One of these questions addresses the features of mechanical fasteners used in the construction of the Siberian vessels. The answer to this question may provide information on how the first vessels, constructed in Siberia during the 1870’s, were able to sail the high seas of the Arctic Ocean and reach European ports. In this paper, we provide a description of iron mechanical fasteners obtained from one shipwrecked vessel and discuss on the perspectives of a metallurgical analysis This research has been funded by a grant of the Russian Fund of Humanities Research (Russian Fund of Fundamental Research) and the Krasnoyarsk Regional Science Fund under Grant number 16-11-24010.

  5. Nuclear reactor pressure vessel with an inner metal coating covered with a high temperature resistant thermal insulator

    International Nuclear Information System (INIS)

    1974-01-01

    The thermal insulator covering the metal coating of a reactor vessel is designed for resisting high temperatures. It comprises one or several porous layers of ceramic fibers or of stacked metal foils, covered with a layer of bricks or ceramic tiles. The latter are fixed in position by fasteners comprising pins fixed to the coating and passing through said porous layers and fasteners (nut or bolts) for individually fixing the bricks to said pins, whereas ceramic plugs mounted on said bricks or tiles provide for the thermal insulation of the pins and of the nuts or bolts; such a thermal insulation can be applied to high-temperature reactors or to fast reactors [fr

  6. Nanoscale investigation of the interface situation of plated nickel and thermally formed nickel silicide for silicon solar cell metallization

    Energy Technology Data Exchange (ETDEWEB)

    Mondon, A., E-mail: andrew.mondon@ise.fraunhofer.de [Fraunhofer ISE, Heidenhofst. 2, D-79110 Freiburg (Germany); Wang, D. [Karlsruhe Nano Micro Facility (KNMF), H.-von-Helmholz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Zuschlag, A. [Universität Konstanz FB Physik, Jacob-Burckhardt-Str. 27, D-78464 Konstanz (Germany); Bartsch, J.; Glatthaar, M.; Glunz, S.W. [Fraunhofer ISE, Heidenhofst. 2, D-79110 Freiburg (Germany)

    2014-12-30

    Highlights: • Adhesion of metallization of fully plated nickel–copper contacts on silicon solar cells can be achieved by formation of nickel silicide at the cost of degraded cell performance. • Understanding of silicide growth mechanisms and controlled growth may lead to high performance together with excellent adhesion. • Silicide formation is well known from CMOS production from PVD-Ni on flat surfaces. Yet the deposition methods and therefore layer characteristics and the surface topography are different for plated metallization. • TEM analysis is performed for differently processed samples. • A nickel silicide growth model is created for plated Ni on textured silicon solar cells. - Abstract: In the context of nickel silicide formation from plated nickel layers for solar cell metallization, there are several open questions regarding contact adhesion and electrical properties. Nanoscale characterization by transmission electron microscopy has been employed to support these investigations. Interfacial oxides and silicide phases were investigated on differently prepared samples by different analytical methods associated with transmission electron microscopy analysis. Processing variations included the pre-treatment of samples before nickel plating, the used plating solution and the thermal budget for the nickel–silicon solid-state reaction. It was shown that interface oxides of only few nm thickness on both silicon and nickel silicide are present on the samples, depending on the chosen process sequence, which have been shown to play an important role in adhesion of nickel on silicide in an earlier publication. From sample pretreatment variations, conclusions about the role of an interfacial oxide in silicide formation and its influence on phase formation were drawn. Such an oxide layer hinders silicide formation except for pinhole sites. This reduces the availability of Ni and causes a silicide with low Ni content to form. Without an interfacial oxide

  7. Bolt and nut evaluator

    Science.gov (United States)

    Kerley, James J.; Burkhardt, Raymond; White, Steven

    1994-02-01

    A device for testing fasteners such as nuts and bolts is described which consists of a fixed base plate having a number of threaded and unthreaded holes of varying size for receiving the fasteners to be tested, a torque marking paper taped on top the fixed base plate for marking torque-angle indicia, a torque wrench for applying torque to the fasteners being tested, and an indicator for showing the torque applied to the fastener. These elements provide a low cost, nondestructive device for verifying the strength of bolts and nuts.

  8. Plated copper front side metallization on printed seed-layers for silicon solar cells

    OpenAIRE

    Kraft, Achim

    2015-01-01

    A novel copper front side metallization architecture for silicon solar cells based on a fine printed silver seed-layer, plated with nickel, copper and silver, is investigated. The work focuses on the printing of fine seed-layers with low silver consumption, the corrosion of the printed seed-layers by the interaction with electrolyte solutions and the encapsulation material on module level and on the long term stability of the cells due to copper migration. The investigation of the correlation...

  9. Dowel-type fastener connections in timber structures subjected to short-term loading

    DEFF Research Database (Denmark)

    Lauritzen Jensen, J.

    Design of dowel-type fastener connections in framed timber structures usually involves a two-step analysis: determination of the distribution of the sectional forces, and design of the eccentrically loaded connections. This report presents an integrated model for design of framed timber structures...

  10. Testing of Compact Bolted Fasteners with Insulation and Friction-Enhanced Shims for NCSX

    International Nuclear Information System (INIS)

    Dudek, L.E.; Chrzanowski, J.H.; Gettelfinger, G.; Heitzenroeder, P.; Jurczynski, S.; Viola, M.; Freudenberg, K.

    2009-01-01

    The fastening of the National Compact Stellarator Experiment's (NCSX) modular coils presented a number of engineering and manufacturing challenges due to the high magnetic forces, need to control induced currents, tight tolerances and restrictive space envelope. A fastening method using high strength studs, jack nuts, insulating spacers, bushings and alumina coated shims was developed which met the requirements. A test program was conducted to verify the design. The tests included measurements of flatness of the spacers, determination of contact area, torque vs. tension of the studs and jack nuts, friction coefficient tests on the alumina and G-10 insulators, electrical tests, and tension relaxation tests due to temperature excursions from room temperature to liquid nitrogen temperatures. This paper will describe the design and the results of the test program.

  11. Design of a thin-plate based tunable high-quality narrow passband filter for elastic transverse waves propagate in metals

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2018-03-01

    Full Text Available For the elastic SV (transverse waves in metals, a high-quality narrow passband filter that consists of aligned parallel thin plates with small gaps is designed. In order to obtain a good performance, the thin plates should be constituted by materials with a smaller mass density and Young’s modulus, such as polymethylmethacrylate (PMMA, compared to the embedded materials in which the elastic SV waves propagate. Both the theoretical model and the full numerical simulation show that the transmission spectrum of the designed filter demonstrates several peaks with flawless transmission within 0 KHz ∼20 KHz frequency range. The peaks can be readily tuned by manipulating the geometrical parameters of the plates. Therefore, the current design works well for both low and high frequencies with a controllable size. Even for low frequencies on the order of kilohertz, the size of this filter can be still limited to the order of centimeters, which significantly benefits the real applications. The investigation also finds that the same filter is valid when using different metals and the reason behind this is explained theoretically. Additionally, the effect of bonding conditions of interfaces between thin plates and the base material is investigated using a spring model.

  12. Velcro-like fasteners based on NiTi micro-hook arrays

    Czech Academy of Sciences Publication Activity Database

    Vokoun, David; Sedlák, Petr; Frost, Miroslav; Pilch, Jan; Majtás, Dušan; Šittner, Petr

    2011-01-01

    Roč. 20, č. 8 (2011), 085027/1-085027/13 ISSN 0964-1726 R&D Projects: GA ČR GAP108/10/1296; GA ČR GA106/09/1573 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z20760514 Keywords : Nitinol * martensitic transformation * Finite Element Method * Velcro-like fastener Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.089, year: 2011

  13. Dissimilar metal study on C44300 tube to AA7075 -T651 tube plate with and without thread by FWTPET process

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, E.; Kumaraswamidhas, L. A. [Indian Institute of Technology (ISM), Jharkhand (India); Muruganandam, D. [Sri Sairam Engineering College, Tamil Nadu (India); Kumaran, S. Senthil [RVS School of Engineering and Technology, Tamilnadu, (India)

    2017-05-15

    Friction welding has vital industrial role in fabricating automobiles, aerospace, ship building, heat exchangers using similar, dissimilar and bi-metal of ferrous and non-ferrous metals at mass production level. In this study, admiralty brass C44300 tube and aluminium alloy AA7075 -T651, 6 mm thick tube plate were identified as base metals. Different joint surface area profile of with and without thread of different pitch values was chosen to study the mechanical properties and micro structures of these two base metals. 0.1 mm clearance was maintained between the AA7075-T651 tube plate and C44300 tube outer diameter to make friction welding. Taguchi’s L16 orthogonal array techniques were adopted for identifying the most significant ranking process parameters. Analysis of variance (ANOVA) has been used to analyze the input parameter contribution in terms of percentage. Genetic algorithm (GA) was used to access the suitable input parameter value to obtain effective joint strength in terms of hardness, compressive strength and microstructure formation in the interface of the joint. A Compression test (CT) was conducted to evaluate the level of compressive strength of the joint. Threaded profile pair with higher pitch value proved high compressive strength over unthreaded pair. Micro structure for base metal C44300 tube and AA7075-T651 tube plate, Heat affected zone (HAZ) and Weld zone (WZ) of the joint has been studied. Hardness of base metals, HAZ and WZ was measured by micro Vickers hardness tester and the observation shows that hardness at joint interface has been found to be higher in all pairs.

  14. Chapter 23: Corrosion of Metals in Wood Products

    Science.gov (United States)

    Samuel L. Zelinka

    2014-01-01

    The corrosion of metals in contact with wood has been studied for over 80 years, and in most situations wood is not corrosive [1]. Recently, however, the durability of fasteners in preservative--treated wood has become a concern. Changes in legislation and certification in the United States, the European Union, and Australasia have restricted the use of chromated...

  15. Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates

    Science.gov (United States)

    Dur, Ender; Cora, Ömer Necati; Koç, Muammer

    2014-01-01

    Metallic bipolar plate (BPP) with high corrosion and low contact resistance, durability, strength, low cost, volume, and weight requirements is one of the critical parts of the PEMFC. This study is dedicated to understand the effect of the process sequence (manufacturing then coating vs. coating then manufacturing) on the corrosion resistance of coated metallic bipolar plates. To this goal, three different PVD coatings (titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN)), with three thicknesses, (0.1, 0.5, 1 μm) were applied on BPPs made of 316L stainless steel alloy before and after two types of manufacturing (i.e., stamping or hydroforming). Corrosion test results indicated that ZrN coating exhibited the best corrosion protection while the performance of TiN coating was the lowest among the tested coatings and thicknesses. For most of the cases tested, in which coating was applied before manufacturing, occurrence of corrosion was found to be more profound than the case where coating was applied after manufacturing. Increasing the coating thickness was found to improve the corrosion resistance. It was also revealed that hydroformed BPPs performed slightly better than stamped BPPs in terms of the corrosion behavior.

  16. Recovery process for electroless plating baths

    Science.gov (United States)

    Anderson, Roger W.; Neff, Wayne A.

    1992-01-01

    A process for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO.sub.3. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths.

  17. Athermal metal optics made of nickel plated AlSi40

    Science.gov (United States)

    Gebhardt, Andreas; Kinast, Jan; Rohloff, Ralf-Rainer; Seifert, Walter; Beier, Matthias; Scheiding, Sebastian; Peschel, Thomas

    2017-11-01

    Metal optics is an inherent part of space instrumentation for years. Diamond turned aluminum (Al6061) mirrors are widely used for application in the mid- and near-infrared (mid-IR and NIR, respectively) spectral range. Aluminum mirrors plated with electroless nickel (NiP) expand the field of application towards multispectral operating instruments down to the ultraviolet wavelengths. Due to the significant mismatch in the coefficient of thermal expansion (CTE) between aluminum and NiP, however, this advantage occurs at the cost of bimetallic bending. Challenging requirements can be met by using bare beryllium or aluminum beryllium composites (AlBeMet) as a CTE tailored substrate material and amorphous NiP as polishable layer. For health reasons, the use of beryllium causes complications in the process chain. Thus, the beryllium approach is subjected to specific applications only. Metal optics has proven to be advantageous in respect of using conventional CNC and ultra-precision fabrication methods to realize complex and light-weighted instrument structures. Moreover, the mirror designs can be effectively optimized for a deterministic system assembly and optimization. Limitations in terms of dimensional stability over temperature and time are mainly given by the inherent material properties (figures of merit) of the substrate material in interaction with the polishing layer. To find an optimal compromise, a thermal matched aluminum-silicon alloy (silicon contents ≍ 40 wt%) plated with NiP (AlSi40/NiP ) was investigated in a joined project of the Max Planck Institute for Astronomy MPIA and the Fraunhofer Institute for Applied Optics and Precision Engineering IOF. The main tasks of the project were the minimization of the bimetallic bending, the development of reliable stabilizing and aging procedures, and the establishment of a proven fabrication method. This paper describes fundamental results regarding the optimization of the athermal material combination

  18. Plate Tearing by a Cone

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1997-01-01

    The present paper is concerned with steady-state plate tearing by a cone. This is a scenario where a cone is forced through a ductile metal plate with a constant lateral tip penetration in a motion in the plane of the plate. The considered process could be an idealisaton of the damage, which...... as for the out-of-plane reaction force....

  19. Metal allergy--a review on exposures, penetration, genetics, prevalence, and clinical implications

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Menné, Torkil

    2010-01-01

    an environmental disorder although null mutations in the filaggrin gene complex were recently found to be associated with nickel allergy and dermatitis. Environmental metal exposures include jewelry, buttons, clothing fasteners, dental restorations, mobile phones, and leather. Although consumer exposure......) dermatitis. Furthermore, metal allergy has been associated with device failure following insertion of intracoronary stents, hip and knee prostheses, as well as other implants. This area is in need of more research....

  20. Polar plate theory for orthogonal anisotropy

    Science.gov (United States)

    Bailey, Michelle D.

    1998-11-01

    The following paper discusses the derivation and evaluation of the plate equations for a circular composite disk with orthogonal anisotropy. The work will be on a macromechanical level and include buckling, static and dynamic load applications. Necessary to a complete examination of the circular disk is the conversion of the stiffness matrix to cylindrical coordinates. In the transformed state, these coefficients are no longer constant, adding to the complexity of the proposed differential equations. Laminated fiber-reinforced (or filamentary) composites are used today for their high strength-to weight and stiffness-to-weight ratios. However, because of the typical anisotropic behavior of composites, determining the material properties on a microscopic level and the mechanics on a macroscopic level is much more difficult. This difficulty manifests itself particularly well in the evaluation of material properties and governing differential equations of a circular disk with the fibers of the lamina oriented orthogonally. One could encounter such a situation in space structures that require a circular geometry. For example, determining fastener pull through in a circular composite plate would best be performed in a polar coordinate system. In order to calculate the strain (which is a function of the angle, θ) from the displacements, the stiffness matrix and boundary conditions would need to be expressed in cylindrical coordinates. Naturally the composite would be constructed with fibers in orthogonal directions, then the necessary geometry would be cut out, thus the required lengthy transformation of coordinate systems. To bypass this derivation, numerical methods have been used and finite element models have been attempted. FEM over predicts plate stiffness by 20% and underpredicts failure by 70%. Obviously there is a need to transform classical plate theory to a cylindrical coordinate system.

  1. Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates.

    Science.gov (United States)

    Krischak, G D; Gebhard, F; Mohr, W; Krivan, V; Ignatius, A; Beck, A; Wachter, N J; Reuter, P; Arand, M; Kinzl, L; Claes, L E

    2004-03-01

    Stainless steel and commercially pure titanium are widely used materials in orthopedic implants. However, it is still being controversially discussed whether there are significant differences in tissue reaction and metallic release, which should result in a recommendation for preferred use in clinical practice. A comparative study was performed using 14 stainless steel and 8 commercially pure titanium plates retrieved after a 12-month implantation period. To avoid contamination of the tissue with the elements under investigation, surgical instruments made of zirconium dioxide were used. The tissue samples were analyzed histologically and by inductively coupled plasma atomic emission spectrometry (ICP-AES) for accumulation of the metals Fe, Cr, Mo, Ni, and Ti in the local tissues. Implant corrosion was determined by the use of scanning electron microscopy (SEM). With grades 2 or higher in 9 implants, steel plates revealed a higher extent of corrosion in the SEM compared with titanium, where only one implant showed corrosion grade 2. Metal uptake of all measured ions (Fe, Cr, Mo, Ni) was significantly increased after stainless steel implantation, whereas titanium revealed only high concentrations for Ti. For the two implant materials, a different distribution of the accumulated metals was found by histological examination. Whereas specimens after steel implantation revealed a diffuse siderosis of connective tissue cells, those after titanium exhibited occasionally a focal siderosis due to implantation-associated bleeding. Neither titanium- nor stainless steel-loaded tissues revealed any signs of foreign-body reaction. We conclude from the increased release of toxic, allergic, and potentially carcinogenic ions adjacent to stainless steel that commercially pure Ti should be treated as the preferred material for osteosyntheses if a removal of the implant is not intended. However, neither material provoked a foreign-body reaction in the local tissues, thus cpTi cannot be

  2. Wetting Behavior of Molten AZ61 Magnesium Alloy on Two Different Steel Plates Under the Cold Metal Transfer Condition

    Directory of Open Access Journals (Sweden)

    ZENG Cheng-zong

    2017-04-01

    Full Text Available The wetting behavior and interfacial microstructures of molten magnesium AZ61 alloy on the surface of two different Q235 and galvanized steel plates under the condition of cold metal transfer were investigated by using dynamic sessile drop method. The results show that the wetting behavior is closely related to the wire feed speed. Al-Fe intermetallic layer was observed whether the substrate is Q235 steel or galvanized steel, and the formation of Al-Fe intermetallic layer should satisfy the thermodynamic condition of such Mg-Al/Fe system. The wettability of molten AZ61 magnesium alloy is improved with the increase of wire feed speed whether on Q235 steel surface or on galvanized steel surface, good wettability on Q235 steel surface is due to severe interface reaction when wire feed speed increases, good wettability on galvanized steel surface is attributed to the aggravating zinc volatilization. When the wire feed speed is ≤10.5m·min-1, the wettability of Mg alloy on Q235 steel plate is better than on galvanized steel plate. However, Zn vapor will result in instability for metal transfer process.

  3. Evaluation of MR issues for the latest standard brands of orthopedic metal implants: plates and screws.

    Science.gov (United States)

    Zou, Yue-Fen; Chu, Bin; Wang, Chuan-Bing; Hu, Zhi-Yi

    2015-03-01

    The study was performed to evaluate magnetic resonance (MR) issues for the latest standard brands of plates and screws used in orthopedic surgery at a 1.5-T MR system, including the safety and metallic artifacts. The plates and screws (made of titanium alloy and stainless steel materials, according to the latest standard brands) were assessed for displacement in degrees, MRI-related heating and artifacts at a 1.5-T MR system. The displacement in degrees of the plates and screws was evaluated on an angel-measurement instrument at the entrance of the MR scanner. The MRI-related heating was assessed on a swine leg fixed with a plate by using a "worst-case" pulse sequence. A rectangular water phantom was designed to evaluate metallic artifacts of a screw on different sequences (T1/T2-weighted FSE, STIR, T2-FSE fat saturation, GRE, DWI) and then artifacts were evaluated on T2-weighted FSE sequence by modifying the scanning parameters including field of view (FOV), echo train length (ETL) and bandwidth to identify the influence of parameters on metallic artifacts. 15 volunteers with internal vertebral fixation (titanium alloy materials) were scanned with MR using axial and sagittal T2-FSE, sagittal T2-FSE fat suppression and STIR with conventional and optimized parameters, respectively. Then all images were graded by two experienced radiologists having the experience of more than 7 years under double-blind studies that is neither of them knew which was conventional parameter group and optimized parameter group. The average deflection angle of titanium alloy and stainless steel implants were 4.3° and 7.7°, respectively, (less than 45°) which indicated that the magnetically induced force was less than the weight of the object. The deflection angle of the titanium alloy implants was less than the stainless steel one (t=9.69, Ptitanium alloy before and after the scan was 0.48°C and stainless steel implants was 0.74°C, respectively, with the background temperature

  4. Comparison of the corrosion of fasteners embedded in wood measured in outdoor exposure with the predictions from a combined hygrothermal-corrosion model

    Science.gov (United States)

    Samuel L. Zelinka; Samuel V. Glass; Charles R. Boardman; Dominique Derome

    2016-01-01

    This paper examines the accuracy of a recently developed hygrothermal-corrosion model which predictsthe corrosion of fasteners embedded in wood by comparing the results of the model to a one year fieldtest. Steel and galvanized steel fasteners were embedded into untreated and preservative treated woodand exposed outdoors while weather data were collected. Qualitatively...

  5. Evaluation of MR issues for the latest standard brands of orthopedic metal implants: Plates and screws

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yue-fen, E-mail: zou_yf@163.com [Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing (China); Chu, Bin, E-mail: 18262636700@163.com [Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing (China); Wang, Chuan-bing, E-mail: wangchuanb_csr@163.com [Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing (China); Hu, Zhi-yi, E-mail: huzhiyi@medmail.com.cn [Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing (China)

    2015-03-15

    Highlights: •Although previous studies have indicated that most of the orthopedic implants are compatible in MR imaging system especially for titanium alloy, there are still concerns about the safety of patients with stainless steel implants, who were refused to a MR scan in most cases in our country. •In this study, it was verified that both titanium alloy and stainless steel materials (plates and screws) cause a weak force and low MRI-related heating at a 1.5-T or less, which do not pose an additional hazard or risk to patients. In addition, we also had explored the influence of different sequences and parameters on size of metallic artifacts to obtain optimized pulse sequences with appropriate parameters for reducing artifacts, which would be convenient and useful in clinical work. -- Abstract: Purpose: The study was performed to evaluate magnetic resonance (MR) issues for the latest standard brands of plates and screws used in orthopedic surgery at a 1.5-T MR system, including the safety and metallic artifacts. Methods: The plates and screws (made of titanium alloy and stainless steel materials, according to the latest standard brands) were assessed for displacement in degrees, MRI-related heating and artifacts at a 1.5-T MR system. The displacement in degrees of the plates and screws was evaluated on an angel-measurement instrument at the entrance of the MR scanner. The MRI-related heating was assessed on a swine leg fixed with a plate by using a “worst-case” pulse sequence. A rectangular water phantom was designed to evaluate metallic artifacts of a screw on different sequences (T1/T2-weighted FSE, STIR, T2-FSE fat saturation, GRE, DWI) and then artifacts were evaluated on T2-weighted FSE sequence by modifying the scanning parameters including field of view (FOV), echo train length (ETL) and bandwidth to identify the influence of parameters on metallic artifacts. 15 volunteers with internal vertebral fixation (titanium alloy materials) were scanned

  6. Evaluation of MR issues for the latest standard brands of orthopedic metal implants: Plates and screws

    International Nuclear Information System (INIS)

    Zou, Yue-fen; Chu, Bin; Wang, Chuan-bing; Hu, Zhi-yi

    2015-01-01

    Highlights: •Although previous studies have indicated that most of the orthopedic implants are compatible in MR imaging system especially for titanium alloy, there are still concerns about the safety of patients with stainless steel implants, who were refused to a MR scan in most cases in our country. •In this study, it was verified that both titanium alloy and stainless steel materials (plates and screws) cause a weak force and low MRI-related heating at a 1.5-T or less, which do not pose an additional hazard or risk to patients. In addition, we also had explored the influence of different sequences and parameters on size of metallic artifacts to obtain optimized pulse sequences with appropriate parameters for reducing artifacts, which would be convenient and useful in clinical work. -- Abstract: Purpose: The study was performed to evaluate magnetic resonance (MR) issues for the latest standard brands of plates and screws used in orthopedic surgery at a 1.5-T MR system, including the safety and metallic artifacts. Methods: The plates and screws (made of titanium alloy and stainless steel materials, according to the latest standard brands) were assessed for displacement in degrees, MRI-related heating and artifacts at a 1.5-T MR system. The displacement in degrees of the plates and screws was evaluated on an angel-measurement instrument at the entrance of the MR scanner. The MRI-related heating was assessed on a swine leg fixed with a plate by using a “worst-case” pulse sequence. A rectangular water phantom was designed to evaluate metallic artifacts of a screw on different sequences (T1/T2-weighted FSE, STIR, T2-FSE fat saturation, GRE, DWI) and then artifacts were evaluated on T2-weighted FSE sequence by modifying the scanning parameters including field of view (FOV), echo train length (ETL) and bandwidth to identify the influence of parameters on metallic artifacts. 15 volunteers with internal vertebral fixation (titanium alloy materials) were scanned

  7. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application. Phase 1 summary report: Shear web design development

    Science.gov (United States)

    Laakso, J. H.; Zimmerman, D. K.

    1972-01-01

    An advanced composite shear web design concept was developed for the Space Shuttle orbiter main engine thrust beam structure. Various web concepts were synthesized by a computer-aided adaptive random search procedure. A practical concept is identified having a titanium-clad + or - 45 deg boron/epoxy web plate with vertical boron/epoxy reinforced aluminum stiffeners. The boron-epoxy laminate contributes to the strength and stiffness efficiency of the basic web section. The titanium-cladding functions to protect the polymeric laminate parts from damaging environments and is chem-milled to provide reinforcement in selected areas. Detailed design drawings are presented for both boron/epoxy reinforced and all-metal shear webs. The weight saving offered is 24% relative to all-metal construction at an attractive cost per pound of weight saved, based on the detailed designs. Small scale element tests substantiate the boron/epoxy reinforced design details in critical areas. The results show that the titanium-cladding reliably reinforces the web laminate in critical edge load transfer and stiffener fastener hole areas.

  8. Cross-linkable liposomes stabilize a magnetic resonance contrast-enhancing polymeric fastener.

    Science.gov (United States)

    Smith, Cartney E; Kong, Hyunjoon

    2014-04-08

    Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads.

  9. Plate Tearing by a Cone

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1998-01-01

    The present paper is concerned with steady-state plate tearing by a cone. This is a scenario where a cone is forced through a ductile metal plate with a constant lateral tip penetration in a motion in the plane of the plate. The considered process could be an idealisation of the damage, which...... as for the out-of-plane reaction force. (C) 1998 Elsevier Science Ltd. All rights reserved....

  10. Installation Torque Tables for Noncritical Applications

    Science.gov (United States)

    Rivera-Rosario, Hazel T.; Powell, Joseph S.

    2017-01-01

    The objective of this project is to define torque values for bolts and screws when loading is not a concern. Fasteners require a certain torque to fulfill its function and prevent failure. NASA Glenn Research Center did not have a set of fastener torque tables for non-critical applications without loads, usually referring to hand-tight or wrench-tight torqueing. The project is based on two formulas, torque and pullout load. Torque values are calculated giving way to preliminary data tables. Testing is done to various bolts and metal plates, torqueing them until the point of failure. Around 640 torque tables were developed for UNC, UNF, and M fasteners. Different lengths of thread engagement were analyzed for the 5 most common materials used at GRC. The tables were put together in an Excel spreadsheet and then formatted into a Word document. The plan is to later convert this to an official technical publication or memorandum.

  11. Higher-resolution selective metallization on alumina substrate by laser direct writing and electroless plating

    International Nuclear Information System (INIS)

    Lv, Ming; Liu, Jianguo; Wang, Suhuan; Ai, Jun; Zeng, Xiaoyan

    2016-01-01

    Graphical abstract: - Highlights: • Mechanisms of laser direct writing and electroless plating were studied. • Active seeds in laser-irradiated zone and laser-affected zone were found to be different. • A special chemical cleaning method with aqua regia was taken. • Higher-resolution copper patterns on alumina ceramic were obtained conveniently. - Abstract: How to fabricate conductive patterns on ceramic boards with higher resolution is a challenge in the past years. The fabrication of copper patterns on alumina substrate by laser direct writing and electroless copper plating is a low cost and high efficiency method. Nevertheless, the lower resolution limits its further industrial applications in many fields. In this report, the mechanisms of laser direct writing and electroless copper plating were studied. The results indicated that as the decomposed products of precursor PdCl_2 have different chemical states respectively in laser-irradiated zone (LIZ) and laser-affected zone (LAZ). This phenomenon was utilized and a special chemical cleaning method with aqua regia solution was taken to selectively remove the metallic Pd in LAZ, while kept the PdO in LIZ as the only active seeds. As a result, the resolution of subsequent copper patterns was improved significantly. This technique has a great significance to develop the microelectronics devices.

  12. The influence of production routes on the metal dusting behavior of UNS N06025 plate, strip and tube

    NARCIS (Netherlands)

    Hattendorf, H.; Hermse, C.G.M.; Hannig, W.

    2012-01-01

    It is generally known that the production route influences the sensitivity of a material to metal dusting. In this study the different production states of UNS N06025 are compared as there are: plate deeply ground and 600 grit laboratory ground, strip as-delivered and 600 grit laboratory ground, and

  13. Guided wave radiation in a finite-sized metallic or composite plate-like structure for its nondestructive testing

    International Nuclear Information System (INIS)

    Stevenin, Mathilde

    2016-01-01

    Different models are developed to provide generic tools for simulating nondestructive methods relying on elastic guided waves applied to metallic or composite plates. Various inspection methods of these structures exist or are under study. Most of them make use of ultrasonic sources of finite size; all are sensitive to reflection phenomena resulting from the finite size of the monitored objects. The developed models deal with transducer diffraction effects and edge reflection. As the interpretation of signals measured in guided wave inspection often uses the concept of modes, the models themselves are explicitly modal. The case of isotropic plates (metal) and anisotropic (multilayer composites) are considered; a general approach under the stationary phase approximation allows us to consider all the cases of interest. For the first, the validity of a Fraunhofer-like approximation leads to a very efficient computation of the direct and reflected fields radiated by a source. For the second, special attention is paid to the treatment of caustics. The stationary phase approximation being difficult to generalize, a model (so-called 'pencil model') of more geometrical nature is proposed with a high degree of genericity. It chains terms of isotropic or anisotropic propagation and terms of interaction with a boundary. The equivalence of the stationary phase approximation and the pencil model is demonstrated in the case of the radiation and reflection in an isotropic plate, for which an experimental validation is proceeded. (author) [fr

  14. Higher-resolution selective metallization on alumina substrate by laser direct writing and electroless plating

    Science.gov (United States)

    Lv, Ming; Liu, Jianguo; Wang, Suhuan; Ai, Jun; Zeng, Xiaoyan

    2016-03-01

    How to fabricate conductive patterns on ceramic boards with higher resolution is a challenge in the past years. The fabrication of copper patterns on alumina substrate by laser direct writing and electroless copper plating is a low cost and high efficiency method. Nevertheless, the lower resolution limits its further industrial applications in many fields. In this report, the mechanisms of laser direct writing and electroless copper plating were studied. The results indicated that as the decomposed products of precursor PdCl2 have different chemical states respectively in laser-irradiated zone (LIZ) and laser-affected zone (LAZ). This phenomenon was utilized and a special chemical cleaning method with aqua regia solution was taken to selectively remove the metallic Pd in LAZ, while kept the PdO in LIZ as the only active seeds. As a result, the resolution of subsequent copper patterns was improved significantly. This technique has a great significance to develop the microelectronics devices.

  15. Dispersion and thermal interactions of molten metal fuel settling on a horizontal steel plate through a sodium pool

    International Nuclear Information System (INIS)

    Gabor, J.D.; Purviance, R.T.; Aeschlimann, R.W.; Spencer, B.W.

    1989-01-01

    Although the Integral Fast Reactor (IFR) possesses inherent safety features, an assessment of the consequences of melting of the metal fuel is necessary for risk analysis. As part of this effort an experimental study was conducted to determine the depths of sodium at 600 C required for pour streams of various molten uranium alloys (U, U-5 wt % Zr, U-10 wt % Zr, and U-10 wt % Fe) to break up and solidify. The quenched particulate material, which was in the shape of filaments and sheets, formed coolable beds because of the high voidage (∼0.9) and large particle size (∼10 mm). In a test with a 0.15-m sodium depth, the fragments from a pure uranium pour stream did not completely solidify but formed an agglomerated mass which did not fuse to the base plate. However, the agglomerated fragments of U-10 wt % Fe eutectic fused to the stainless steel base plate. An analysis of the temperature response of a 25-mm thick base plate was made by volume averaging the properties of the sodium and metal particle phases and assuming two semi-infinite solids coming into contact. Good agreement was obtained with the data during the initial 5 to 10 s of the contact period. 16 refs., 5 figs., 1 tab

  16. "Service Recovery: The Effects of Complaint Handling on Post-complaint Relationship Intention and Customer Switching Behaviour in the Taiwan Fastener Industry"

    OpenAIRE

    Hwang, Jui-Chin

    2005-01-01

    Abstract In recent decades, many industries have started to realize the importance of relationship marketing and effective complaint handling as part of their customer retention strategies. This includes the traditional Taiwan fastener industry, which used to be considered as more technically focused rather than service-oriented. One of the main reasons for this industry to move toward a service orientation is that Taiwanese fastener trading companies have become highly customer-focused, ...

  17. Experimental Research on the Elastic Deformation Mode of S235JR Rolled Steel Fastened between the Centers of a Universal Lathe

    Science.gov (United States)

    Tabacaru, LL; Axinte, E.; Musca, G.

    2016-11-01

    Elastic deformations of the technological system occur during the mechanical treatment of a blank, regardless of the manner in which it is fastened. The elastic deformation of the blank is significant especially when machining shaft-like parts. The purpose of our research is to compare the mathematical model of blank deformation to the experimental model when the blank, which is a part belonging to the shaft class, is fastened between centers.

  18. Comparison study of multistep forging and injection forging of automobile fasteners

    OpenAIRE

    Chen Senyong; Qin Yi

    2015-01-01

    In order to improve production efficiency, injection forging as a feasible approach was introduced to automobile fasteners production. In the study reported in this paper, two forging approaches, traditional multistep forging and injection forging, were analysed by using a finite element method. Using ABAQUS and DEFORM, some significant factors, namely, forging force, energy consumption, component accuracy and stress distribution in the die, were compared to explore the potential and challeng...

  19. IMPLEMENTATION OF THE LEAN-KAIZEN APPROACH IN FASTENER INDUSTRIES USING THE DATA ENVELOPMENT ANALYSIS

    Directory of Open Access Journals (Sweden)

    Sunil Kumar

    2017-04-01

    Full Text Available This research paper is an attempt to improve the quality system of ten small scale fastener manufacturing industries through the implementation of the Lean-Kaizen approach using the Data Envelopment Analysis (DEA Charnes Cooper & Rhodes (CCR model with constant returns to scale (CRS. Output maximization is taken as the objective function to identify the percentage scope of improvements. The data is collected by paying personal visits to the selected industries for three inputs (manpower, maintenance, and training of employees and two outputs (quality, on-time delivery of their quality system. The DEA CCR model is applied to identify efficiency scores of the quality system by taking the most efficient industry as a benchmark for the rest of the organizations. The Lean-Kaizen approach is applied to identify waste / non-value added activities in outputs of the selected industries. Four Kaizen events are proposed to eliminate waste / non-value added activities in their quality system. The data collected after the Kaizen events are further analyzed by the DEA CCR model. The improvements in efficiency scores of the selected industries are presented as findings in this research paper. Two fastener industries became 100% efficient while the rest of the organizations reported 8% to 49% improvements in their efficiency scores of the quality system. The conclusions are made as the Lean-Kaizen using DEA is found to be an effective approach to improve the quality system of fastener industries. This study will be beneficial for researchers, practitioners and academicians for tackling the inefficiencies in the organization.

  20. A carbon-metal brazing for divertor plates in fusion devices

    International Nuclear Information System (INIS)

    Matsuda, T.; Matsumoto, T.; Miki, S.; Sogabe, T.; Okada, M.; Kubota, Y.; Sagara, A.; Noda, N.; Motojima, O.; Hino, T.; Yamashina, T.

    1993-01-01

    A divertor unit, which consists of carbon armors brazed to a copper cooling channel, is under development for fusion devices. Isotropic graphite (IG-430U) and CFC (CX-2002U) are used for the armor, and a copper for the cooling tube. A technique named as dissolution and deposit of base metal was employed for brazing. The reliability of the brazed components was evaluated both by 4-point bending test and thermal shock test. According to the results of a 4-point bending test under the temperature ranged from RT to 800 C in a vacuum, it was found that the strength of the brazed surface at RT was maintained up to the higher temperature, 600 C. High heat load test has been also performed on the brazed sample in order to find whether the samples meet the requirement of the divertor plates of LHD (Large Helical Device). Active Cooling Teststand (ACT:NIFS) with electron beam power of 100kW was used. In LHD, it is presumed that the maximum heat flux is 10MW/m 2 . In addition, the surface temperature of divertor has to be kept below 1,200 C to avoid RES, by active cooling. The heat load test showed that the brazing components of CX-2002U (flat plate type CFC-Cu brazed) was stable at 1,300 C under a heat flux of 10MW/m 2 , when the flow velocity of cooling water was 6m/s. No damage nor deterioration was found at the brazed zone after the heat load test

  1. Finite element modelling for thermal analysis of stud-to-plate laser brazing for a dissimilar metal joint

    International Nuclear Information System (INIS)

    Park, Jun Soo; Kim, Jong Min

    1996-06-01

    A finite element model was developed for the thermal analysis of a stud-to-plate laser brazing joint, and the transient temperature fields were analysed by using a three-dimensional model. The finite element program ABAQUS, together with a few user subroutines, was employed to perform the numerical approximation. Temperature-dependent thermal properties, effect of latent heat, and the convection and radiative heat losses were considered. The brazing parts used were AISI 304 stainless steel stud and aluminium A1 5052 plate, and the brazing alloy 88 A1-12 Si was used as filler metal. A pseudo-TM 01 mode of the cw CO 2 laser beam was used as heat source, for which TM 00 mode generated by beam oscillator was optically modulated using axicon lens. Re-location of the filler metal during the brazing process including its wetting and spreading was examined by using a high speed motion analyser, and the results were incorporated inn the FEM modelling for defining the solution domain and boundary conditions. The numerical results were obtained for typical process parameters, and were compared with experimental ones determined by using the infrared and thermocouple measurements. 11 figs., 30 refs. (Author)

  2. Effect of dimensional error of metallic bipolar plate on the GDL pressure distribution in the PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong' an; Peng, Linfa; Lai, Xinmin [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240 (China)

    2009-01-15

    Recently, the metallic bipolar plate (BPP) has received considerable attention because of its advantageous electrical and mechanical properties. In this study, a methodology based on FEA model and Monte Carlo simulation is developed to investigate the effect of dimensional error of the metallic BPP on the pressure distribution of gas diffusion layer (GDL). At first, a parameterized FEA model of metallic BPP/GDL assembly is established, and heights of the channel and rib are considered to be randomly varying parameters of normal distribution due to the dimensional error. Then, GDL pressure distributions with different dimensional errors are obtained respectively based on the Monte Carlo simulation, and the desirability function method is employed to evaluate them. At last, a regression equation between the GDL pressure distribution and the dimensional error is modeled. With the regression equation, the allowed maximum dimensional error for the metallic BPP is calculated. The methodology in this study can be applied to guide the design and manufacturing of the metallic BPP. (author)

  3. Ion-plated metal/ceramic interfaces

    International Nuclear Information System (INIS)

    Rigsbee, J.M.; Scott, P.A.; Knipe, R.K.; Ju, C.P.; Hock, V.F.

    1986-01-01

    Elemental Cu and Ti films have been deposited onto magnesia-alumina-silica ceramic substrates with a plasma-aided physical vapour deposition (ion-plating) process. Modifications in the structure and chemistry of the film, interface and substrate regions were investigated as a function of deposition process parameters (eg applied bias, voltage and current). The strength of the Cu/ceramic interface was found to be strongly influenced by both applied substrate bias voltage and substrate roughness. Films deposited with an applied substrate bias showed increasing adhesive strength with increasing bias. Microchemical analysis indicated that this enhanced adhesion is directly correlated with the development of a chemically graded interface region. The adhesive strength of the ion plated Cu films was also found to be improved with increasing substrate smoothness. The behaviour of Ti was found to be quite different from that of Cu. Ti generally has superior adhesion. This adhesion decreased for films deposited with a high bias voltage/current. From interfacial TEM it is shown that this is due to the formation of a compound at the Ti/ceramic interface. The thickness of this compound is important in adhesion. (UK)

  4. Lead plating of the low beta resonator

    International Nuclear Information System (INIS)

    Brennan, J.M.; Corcoran, D.; Coughlin, R.; Goliak, T.; Hodgkins, D.; James, P.; Seamster, A.G.; Secora, J.H.

    1984-01-01

    Plating operations were performed at the lead plating facility at SUNY, Stony Brook. Initial procedures were based on the previous experience of prototype development by Ben-Zvi and Brennan. Several attempts were made to produce satisfactory results, however the lead surfaces were consistently stained and lacked the bright metallic finish routinely achieved with the split loop resonator at SUNY. The development of a new set of procedures was initiated, aided by reports of plating success from Ben-Zvi. Controlled tests were conducted which suggested several changes in the plating parameters. Based on these results and suggestions from the staff at SUNY a new process was defined which was successful in producing the smooth reflective metallic surface known to be necessary forla optimum resonator performance. Following a successful repair of the the crack, the prototype was plated and chemically polished with the new techniques. The resultant surface was highly reflective and free of stains and particulates. The subsequent prototype cold test was successful

  5. Activity Tests of Macro-Meso Porous Catalysts over Metal Foam Plate for Steam Reforming of Bio-Ethanol.

    Science.gov (United States)

    Park, No-Kuk; Jeong, Yong Han; Kang, Misook; Lee, Tae Jin

    2018-09-01

    The catalytic activity of a macro-mesoporous catalyst coated on a metal foam plate in the reforming of bio-ethanol to synthesis gas was investigated. The catalysts were prepared by coating a support with a noble metal and transition metal. The catalytic activity for the production of synthetic gas by the reforming of bio-ethanol was compared according to the support material, reaction temperature, and steam/carbon ratio. The catalysts coated on the metal foams were prepared using a template method, in which macro-pores and meso-pores were formed by mixing polymer beads. In particular, the thermodynamic equilibrium composition of bio-ethanol reforming with the reaction temperature and steam/carbon ratio to produce synthetic gas was examined using the HSC (Enthalpy-Entropy-Heat capacity) chemistry program in this study. The composition of hydrogen and carbon monoxide in the reformate gas produced by steam reforming over the Rh/Ni-Ce-Zr/Al2O3-based pellet type catalysts and metal foam catalysts that had been coated with the Rh/Al-Ce-Zr-based catalysts was investigated by experimental activity tests. The activity of the metal foam catalyst was higher than that of the pellet type catalyst.

  6. High loading uranium plate

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process

  7. Evaluation of participants' perception and taste thresholds with a zirconia palatal plate.

    Science.gov (United States)

    Wada, Takeshi; Takano, Tomofumi; Tasaka, Akinori; Ueda, Takayuki; Sakurai, Kaoru

    2016-10-01

    Zirconia and cobalt-chromium can withstand a similar degree of loading. Therefore, using a zirconia base for removable dentures could allow the thickness of the palatal area to be reduced similarly to metal base dentures. We hypothesized that zirconia palatal plate for removable dentures provides a high level of participants' perception without influencing taste thresholds. The purpose of this study was to evaluate the participants' perception and taste thresholds of zirconia palatal plate. Palatal plates fabricated using acrylic resin, zirconia, and cobalt-chromium alloy were inserted into healthy individuals. Taste thresholds were investigated using the whole-mouth gustatory test, and participants' perception was evaluated using the 100-mm visual analog scale to assess the ease of pronunciation, ease of swallowing, sensation of temperature, metallic taste, sensation of foreign body, subjective sensory about weight, adhesiveness of chewing gum, and general satisfaction. For the taste thresholds, no significant differences were noted in sweet, salty, sour, bitter, or umami tastes among participants wearing no plate, or the resin, zirconia, and metal plates. Speech was easier and foreign body sensation was lower with the zirconia plate than with the resin plate. Evaluation of the adhesiveness of chewing gum showed that chewing gum does not readily adhere to the zirconia plate in comparison with the metal plate. The comprehensive participants' perception of the zirconia plate was evaluated as being superior to the resin plate. A zirconia palatal plate provides a high level of participants' perception without influencing taste thresholds. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  8. Investigation of Interface Bonding Mechanism of an Explosively Welded Tri-Metal Titanium/Aluminum/Magnesium Plate by Nanoindentation

    Science.gov (United States)

    Zhang, T. T.; Wang, W. X.; Zhou, J.; Cao, X. Q.; Yan, Z. F.; Wei, Y.; Zhang, W.

    2018-04-01

    A tri-metal titanium/aluminum/magnesium (Ti/Al/Mg) cladding plate, with an aluminum alloy interlayer plate, was fabricated for the first time by explosive welding. Nanoindentation tests and associated microstructure analysis were conducted to investigate the interface bonding mechanisms of the Ti/Al/Mg cladding plate. A periodic wavy bonding interface (with an amplitude of approximately 30 μm and a wavelength of approximately 160 μm) without a molten zone was formed between the Ti and Al plates. The bonding interface between the Al and the Mg demonstrated a similar wavy shape, but the wave at this location was much larger with an amplitude of approximately 390 μm and a wavelength of approximately 1580 μm, and some localized melted zones also existed at this location. The formation of the wavy interface was found to result from a severe deformation at the interface, which was caused by the strong impact or collision. The nanoindentation tests showed that the material hardness decreased with increasing distance from the bonding interface. Material hardness at a location was found to be correlated with the degree of plastic deformation at that site. A larger plastic deformation was correlated with an increase in hardness.

  9. Fabrication of a micro-hole array on metal foil by nanosecond pulsed laser beam machining using a cover plate

    International Nuclear Information System (INIS)

    Ha, Kyoung Ho; Lee, Se Won; Jee, Won Young; Chu, Chong Nam; Kim, Janggil

    2015-01-01

    A novel laser beam machining (LBM) method is proposed to achieve higher precision and better quality beyond the limits of a commercialized nanosecond pulsed laser system. The use of a cover plate is found to be effective for the precision machining of a thin metal foil at micro scale. For verifying the capability of cover plate laser beam machining (c-LBM) technology, a 30 by 30 array of micro-holes was fabricated on 8 µm-thick stainless steel 304 (STS) foil. As a result, thermal deformation and cracks were significantly reduced in comparison with the results using LBM without a cover plate. The standard deviation of the inscribed and circumscribed circle of the holes with a diameter of 12 µm was reduced to 33% and 81%, respectively and the average roundness improved by 77%. Moreover, the smallest diameter obtainable by c-LBM in the given equipment was found to be 6.9 µm, which was 60% less than the minimum size hole by LBM without a cover plate. (technical note)

  10. Automatic Defect Detection of Fasteners on the Catenary Support Device Using Deep Convolutional Neural Network

    NARCIS (Netherlands)

    Chen, Junwen; Liu, Zhigang; Wang, H.; Nunez Vicencio, Alfredo; Han, Zhiwei

    2018-01-01

    The excitation and vibration triggered by the long-term operation of railway vehicles inevitably result in defective states of catenary support devices. With the massive construction of high-speed electrified railways, automatic defect detection of diverse and plentiful fasteners on the catenary

  11. Exploring metal artifact reduction using dual-energy CT with pre-metal and post-metal implant cadaver comparison: are implant specific protocols needed?

    Science.gov (United States)

    Wellenberg, Ruud H H; Donders, Johanna C E; Kloen, Peter; Beenen, Ludo F M; Kleipool, Roeland P; Maas, Mario; Streekstra, Geert J

    2017-08-25

    To quantify and optimize metal artifact reduction using virtual monochromatic dual-energy CT for different metal implants compared to non-metal reference scans. Dual-energy CT scans of a pair of human cadaver limbs were acquired before and after implanting a titanium tibia plate, a stainless-steel tibia plate and a titanium intramedullary nail respectively. Virtual monochromatic images were analyzed from 70 to 190 keV. Region-of-interest (ROI), used to determine fluctuations and inaccuracies in CT numbers of soft tissues and bone, were placed in muscle, fat, cortical bone and intramedullary tibia canal. The stainless-steel implant resulted in more pronounced metal artifacts compared to both titanium implants. CT number inaccuracies in 70 keV reference images were minimized at 130, 180 and 190 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively. Noise, measured as the standard deviation of pixels within a ROI, was minimized at 130, 150 and 140 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively. Tailoring dual-energy CT protocols using implant specific virtual monochromatic images minimizes fluctuations and inaccuracies in CT numbers in bone and soft tissues compared to non-metal reference scans.

  12. Advances in corrosion testing of metals in contact with treated wood

    Science.gov (United States)

    Samuel Zelinka; D.S. Stone

    2010-01-01

    A January 2004 change in the regulation of wood preservatives used in the U.S.has increased the use of newer wood preservatives, such as alkaline copper quaternary (ACQ) and copper azole (CuAz). These preservatives contain high amounts of cupric ions, which may be reduced to copper metal at the expense of less noble steel and galvanized fasteners in the wood....

  13. Experimental study of bolted connections using light gauge channel sections and packing plates at the joints

    Science.gov (United States)

    Kulkarni, Ravindra B.; Vaghe, Vishal M.

    2014-12-01

    Cold-formed structural members are being used more widely in routine structural design as the world steel industry moves from the production of hot-rolled section and plate to coil and strip, often with galvanized and/or painted coatings. Steel in this form is more easily delivered from the steel mill to the manufacturing plant where it is usually cold-rolled into open and closed section members. In the present experimental study, the use of packing plate at the joints in cold-formed channel sections may increase the load carrying capacity and also reduce the buckling of unconnected cold form channel steel plate at joints. The present study focuses on examining the experimental investigation to use mild steel as a packing plate with cold-formed channel sections by bolted connection at the joints and the connection subjected to axial tension. Series of tests are carried out with increase in the thickness of packing plate and results are observed and analyzed. Total Twelve experimental tests have been carried out on cold-formed channel tension members fastened with single as well as three numbers of bolts at the connection and from the observations the strength of the joint is increased by increasing the various thicknesses of packing plates and also the buckling of unconnected leg of channel specimen is reduced. It is analyzed by plotting the entire load versus elongation path, so that the behavior of the connection is examined.

  14. Development of integrated cask body and base plate

    International Nuclear Information System (INIS)

    Sasaki, T.; Koyama, Y.; Yoshida, T.; Wada, T.

    2015-01-01

    The average of occupancy of stored spent-fuel in the nuclear power plants have reached 70 percent and it is anticipated that the demand of metal casks for the storage and transportation of spent-fuel rise after resuming the operations. The main part of metal cask consists of main body, neutron shield and external cylinder. We have developed the manufacturing technology of Integrated Cask Body and Base Plate by integrating Cask Body and Base Plate as monolithic forging with the goal of cost reduction, manufacturing period shortening and further reliability improvement. Here, we report the manufacturing technology, code compliance and obtained properties of Integrated Cask body and Base Plate. (author)

  15. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    Science.gov (United States)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  16. Estimation for bolt fastening conditions of thin aluminum structure using PZT sensors

    International Nuclear Information System (INIS)

    Hong, Yong; Han, Byeong Hee; Kim, Byung Jin; Hong, Dong Pyo; Kim, Young Moon

    2007-01-01

    This work presents a study on PZT impedance-based method, it is one of the NDT(Non-Destructive Technique). We study about assessment of the square-structure health condition by impedance-based technique using PZT patches, associated with longitudinal wave propagation. Health conditions of the square-structure controlled by bolt fastening condition is adjusted by torque wrench. In order to estimate the damage condition numerically, we suggest the evaluation method of impedance peak frequency shift

  17. Magnetic core mounting system

    Science.gov (United States)

    Ronning, Jeffrey J.

    2002-01-01

    A mounting apparatus for an electromagnetic device such as a transformer of inductor includes a generally planar metallic plate as a first heat sink, and a metallic mounting cup as a second heat sink. The mounting cup includes a cavity configured to receive the electromagnetic device, the cavity being defined by a base, and an axially-extending annular sidewall extending from the base to a flange portion of the mounting cup. The mounting cup includes first and second passages for allowing the leads of first and second windings of the electromagnetic device to be routed out of the cavity. The cavity is filled with a polyurethane potting resin, and the mounting cup, including the potted electromagnetic device, is mounted to the plate heat sink using fasteners. The mounting cup, which surrounds the electromagnetic device, in combination with the potting resin provides improved thermal transfer to the plate heat sink, as well as providing resistance to vibration and shocks.

  18. Evaluation of Electrochemical Characteristics on Graphene Coated Austenitic and Martensitic Stainless Steels for Metallic Bipolar Plates in PEMFC Fabricated with Hydrazine Reduction Methods

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Seong-Yun; Lee, Jae-Bong [School of Advanced Materials Engineering, Kookmin University, Seoul (Korea, Republic of)

    2016-04-15

    Graphene was coated on austenitic and martensitic stainless steels to simulate the metallic bipolar plate of proton exchange membrane fuel cell (PEMFC). Graphene oxide (GO) was synthesized and was reduced to reduced graphene oxide (rGO) via a hydrazine process. rGO was confirmed by FE-SEM, Raman spectroscopy and XPS. Interfacial contact resistance (ICR) between the bipolar plate and the gas diffusion layer (GDL) was measured to confirm the electrical conductivity. Both ICR and corrosion current density decreased on graphene coated stainless steels. Corrosion resistance was also improved with immersion time in cathodic environments and satisfied the criteria of the Department of Energy (DOE), USA. The total concentrations of metal ions dissolved from graphene coated stainless steels were reduced. Furthermore hydrophobicity was improved by increasing the contact angle.

  19. PEM fuel cell bipolar plate material requirements for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States)] [and others

    1996-04-01

    Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.

  20. Influence of panel fastening on the acoustic performance of light-weight building elements: Study by sound transmission and laser scanning vibrometry

    Science.gov (United States)

    Roozen, N. B.; Muellner, H.; Labelle, L.; Rychtáriková, M.; Glorieux, C.

    2015-06-01

    Structural details and workmanship can cause considerable differences in sound insulation properties of timber frame partitions. In this study, the influence of panel fastening is investigated experimentally by means of standardized sound reduction index measurements, supported by detailed scanning laser Doppler vibrometry. In particular the effect of the number of screws used to fasten the panels to the studs, and the tightness of the screws, is studied using seven different configurations of lightweight timber frame building elements. In the frequency range from 300 to 4000 Hz, differences in the weighted sound reduction index RW as large as 10 dB were measured, suggesting that the method of fastening can have a large impact on the acoustic performance of building elements. Using the measured vibrational responses of the element, its acoustic radiation efficiency was computed numerically by means of a Rayleigh integral. The increased radiation efficiency partly explains the reduced sound reduction index. Loosening the screws, or reducing the number of screws, lowers the radiation efficiency, and significantly increases the sound reduction index of the partition.

  1. Aeroelastic Tailoring of a Plate Wing with Functionally Graded Materials

    Science.gov (United States)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia; Jutte, Christine V.

    2014-01-01

    This work explores the use of functionally graded materials for the aeroelastic tailoring of a metallic cantilevered plate-like wing. Pareto trade-off curves between dynamic stability (flutter) and static aeroelastic stresses are obtained for a variety of grading strategies. A key comparison is between the effectiveness of material grading, geometric grading (i.e., plate thickness variations), and using both simultaneously. The introduction of material grading does, in some cases, improve the aeroelastic performance. This improvement, and the physical mechanism upon which it is based, depends on numerous factors: the two sets of metallic material parameters used for grading, the sweep of the plate, the aspect ratio of the plate, and whether the material is graded continuously or discretely.

  2. Comprehensive and Highly Accurate Measurements of Crane Runways, Profiles and Fastenings.

    Science.gov (United States)

    Dennig, Dirk; Bureick, Johannes; Link, Johannes; Diener, Dmitri; Hesse, Christian; Neumann, Ingo

    2017-05-13

    The process of surveying crane runways has been continually refined due to the competitive situation, modern surveying instruments, additional sensors, accessories and evaluation procedures. Guidelines, such as the International Organization for Standardization (ISO) 12488-1, define target values that must be determined by survey. For a crane runway these are for example the span, the position and height of the rails. The process has to be objective and reproducible. However, common processes of surveying crane runways do not meet these requirements sufficiently. The evaluation of the protocols, ideally by an expert, requires many years of experience. Additionally, the recording of crucial parameters, e.g., the wear of the rail, or the condition of the rail fastening and rail joints, is not regulated and for that reason are often not considered during the measurement. To solve this deficit the Advanced Rail Track Inspection System (ARTIS) was developed. ARTIS is used to measure the 3D position of crane rails, the cross-section of the crane rails, joints and, for the first time, the (crane-rail) fastenings. The system consists of a monitoring vehicle and an external tracking sensor. It makes kinematic observations with the tracking sensor from outside the rail run, e.g., the floor of an overhead crane runway, possible. In this paper we present stages of the development process of ARTIS, new target values, calibration of sensors and results of a test measurement.

  3. Passive assay of plutonium metal plates using a fast-neutron multiplicity counter

    Energy Technology Data Exchange (ETDEWEB)

    Di Fulvio, A., E-mail: difulvio@umich.edu [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Shin, T.H.; Jordan, T.; Sosa, C.; Ruch, M.L.; Clarke, S.D. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Chichester, D.L. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Pozzi, S.A. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2017-05-21

    We developed a fast-neutron multiplicity counter based on organic scintillators (EJ-309 liquid and stilbene). The system detects correlated photon and neutron multiplets emitted by fission reactions, within a gate time of tens of nanoseconds. The system was used at Idaho National Laboratory to assay a variety of plutonium metal plates. A coincidence counting strategy was used to quantify the {sup 240}Pu effective mass of the samples. Coincident neutrons, detected within a 40-ns coincidence window, show a monotonic trend, increasing with the {sup 240}Pu-effective mass (in this work, we tested the 0.005–0.5 kg range). After calibration, the system estimated the {sup 240}Pu effective mass of an unknown sample ({sup 240}Pu{sub eff} >50 g) with an uncertainty lower than 1% in a 4-min assay time.

  4. Fuel assembly

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1970-01-01

    Herein disclosed is a fuel assembly in which a fuel rod bundle is easily detachable by rotating a fuel rod fastener rotatably mounted to the upper surface of an upper tie-plate supporting a fuel bundle therebelow. A locking portion at the leading end of each fuel rod protrudes through the upper tie-plate and is engaged with or separated from the tie-plate by the rotation of the fastener. The removal of a desired fuel rod can therefore be remotely accomplished without the necessity of handling pawls, locking washers and nuts. (Owens, K.J.)

  5. 78 FR 20888 - Foreign-Trade Zone (FTZ) 161-Sedgwick County, Kansas; Notification of Proposed Production...

    Science.gov (United States)

    2013-04-08

    ...- corrosion coatings; plastic tubes/washers/hoses/seals/sheets/tape/bags/ containers; bushings; funnels...; covers; gaskets; labels; fasteners; bolt extenders; springs; rings; bushings; flanges; hatches; supports...; filters; copper pipes/adapters/fasteners/reducers; aluminum plates/ flanges/covers; locks and locksets...

  6. An investigation of coated aluminium bipolar plates for PEMFC

    International Nuclear Information System (INIS)

    Lin, Chien-Hung; Tsai, Sung-Ying

    2012-01-01

    Highlights: ► Coated aluminium bipolar plates demonstrate the hydrophobic property than the raw material. ► The corrosion behaviour of bipolar plate decreases the PEMFC performance severely. ► These PEMFCs are measured by current–voltage (I–V) curve test. ► The oxide film increases the interfacial contact resistance. -- Abstract: The performance of Al-alloy bipolar plates for the PEMFC (proton exchange membrane fuel cell) system is investigated in this paper. The metallic bipolar plates are modified with a Ni–P coating. The performance of the Al-alloy bipolar plates is evaluated by the coating structure, corrosion resistance, contact angle and single cell performance. The results indicate that the coated aluminium bipolar plates demonstrate hydrophobic and anti-corrosive properties. The hydrophobic property increases the contact angle on the surface from 46.08° to 80.51°. Meanwhile, the corrosion rate of the Ni–P coating can be over 1 order of magnitude lower than that of the substrate. Hence, the substrate with the coating maintains superior performance under the long term test. The present study proves that both the hydrophobicity and corrosion resistance significantly affect the metallic bipolar plate.

  7. Nickel-plating for active metal dissolution resistance in molten fluoride salts

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Luke [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States); Sridharan, Kumar, E-mail: kumar@engr.wisc.edu [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States); Anderson, Mark; Allen, Todd [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States)

    2011-04-15

    Ni electroplating of Incoloy-800H was investigated with the goal of mitigating Cr dissolution from this alloy into molten 46.5%LiF-11.5%NaF-42%KF eutectic salt, commonly referred to as FLiNaK. Tests were conducted in graphite crucibles at a molten salt temperature of 850 deg. C. The crucible material graphite accelerates the corrosion process due to the large activity difference between the graphite and the alloy. For the purposes of providing a baseline for this study, un-plated Incoloy-800H and a nearly pure Ni-alloy, Ni-201 were also tested. Results indicate that Ni-plating has the potential to significantly improve the corrosion resistance of Incoloy-800H in molten fluoride salts. Diffusion of Cr from the alloy through the Ni-plating does occur and if the Ni-plating is thin enough this Cr eventually dissolves into the molten salt. The post-corrosion test microstructure of the Ni-plating, particularly void formation was also observed to depend on the plating thickness. Diffusion anneals in a helium environment of Ni-plated Incoloy-800H and an Fe-Ni-Cr model alloy were also investigated to understand Cr diffusion through the Ni-plating. Further enhancements in the efficacy of the Ni-plating as a protective barrier against Cr dissolution from the alloy into molten fluoride salts can be achieved by thermally forming a Cr{sub 2}O{sub 3} barrier film on the surface of the alloy prior to Ni electroplating.

  8. Catalysts characteristics of Ni/YSZ core-shell according to plating conditions using electroless plating

    Science.gov (United States)

    Park, Hyun-Wook; Jang, Jae-Won; Lee, Young-Jin; Kim, Jin-Ho; Jeon, Dae-Woo; Lee, Jong-Heun; Hwang, Hae-jin; Lee, Mi-Jai

    2017-11-01

    This study aims to develop an anode catalyst for a solid oxide fuel cell (SOFC) using electroless nickel plating. We have proposed a new method for electroless plating of Ni metal on yttria-stabilized zirconia (YSZ) particles. We examine the uniformity of the Ni layer on the plated core-shell powder, in addition to the content of Ni and the reproducibility of the plating. We have also evaluated the carbon deposition rate and characteristics of the SOFC anode catalyst. To synthesize Ni-plated YSZ particles, the plated powder is heat-treated at 1200 °C. The resultant particles, which have an average size of 50 μm, were subsequently used in the experiment. The size of the Ni particles and the Ni content both increase with increasing plating temperature and plating time. The X-ray diffraction pattern reveals the growth of Ni particles. After heat-treatment, Ni is oxidized to NiO, leading to the co-existence of Ni and NiO; Ni3P is also observed due to the presence of phosphorous in the plating solution. Following heat treatment for 1 h at 1200 °C, Ni is mostly oxidized to NiO. The carbon deposition rate of the reference YSZ powder is 135%, while that of the Ni-plated YSZ is 1%-6%.

  9. Nondestructive diagnosis of multilayer electronic plates

    International Nuclear Information System (INIS)

    Matvienko, A.N.; Savin, D.O.; Yas'ko, A.V.

    1992-01-01

    Methods of non-destructive tomographic investigation into multilayer printed plates using x radiation are described. Mathematic problem setting is given, experimental facility and methods for source data ecquisition are described. A special attention is paid to the consideration of the main factors differing the actual problem setting from the idealized one. Methods for accounting and correction of these factors are described. The efficiency of the approach proposed is demonstrated using the actual problems of reducing separate layers of multilayer printed plate metallization. The method developed is useful when exersizing control over multilayer printed plate production

  10. Separation of Cadmium in Printing Industrial Liquid Waste by Electromagnetic Plating System

    International Nuclear Information System (INIS)

    Prayitno

    2007-01-01

    To prevent incidence of environmental contamination and its effect to society health and other mortal, poisonous and dangerous substance waste have to be managed peculiarly by minimizing or eliminating the nature of its danger. Various processing have been developed to degrade the waste rate for example sorption, flotation, flocculation, etc., but the yield of the degradation of metal rate can not fulfill permanent standard quality of liquid waste. Because of the reason explained before, its important to make a new breakthrough as one of final phase processing alternative named reductant electromagnetic plating. Waste to be degraded in this research is cadmium. In fact cadmium represent the foregain metal for human and is not require at all in human body for metabolism process. Though plenty of cadmium exploited, but during for centuries it caused the food poisoned because this metal insoluble in organic acid. Separation of cadmium rate with electromagnetic plating influenced by time process, concentration, current strength, and type of electrode plate. Result of research indicate that the optimum time processing if using plate of copper electrode is during 30 minute and using plate of aluminium electrode is during 20 minute. Optimum of strong current that used in process of electromagnetic plating is only 0.8 Ampere and concentration effective is 5 mg / L. The most effective type of electrode plate for reducing cadmium from waste by using electromagnetic plating is aluminium. Appliance of electromagnetic plating system is very compatible used for the reduction of cadmium and others metal for feed concentration (1 - 5) mg/L .at the price efficiency of reduction is (95 - 98) %, standard quality of liquid waste is (0.05 - 1) mg/L. (author)

  11. Advances in the analysis and design of concrete structures, metal containments and liner plate for extreme loads

    International Nuclear Information System (INIS)

    Stevenson, J.D.; Eibl, J.; Curbach, M.; Johnson, T.E.; Daye, M.A.; Riera, J.D.; Nemet, J.; Iyengar, K.T.S.

    1992-01-01

    The material presented in this paper summarizes the progress that has been made in the analysis, design, and testing of concrete structures. The material is summarized in the following documents: Part I: Containment Design Criteria and Loading Combinations; Part II: Reinforced and Prestressed Concrete Behavior; Part III: Concrete Containment Analysis, Design and Related Testing; Part IV: Impact and Impulse Loading and Response Prediction; Part V: Metal Containments and Liner Plate Systems; Part VI: Prestressed Reactor Vessel Design, Testing and Analysis. (orig.)

  12. Tempering of martensitic steel for fasteners : Effects of micro-alloying on microstructure and mechanical property evolution

    NARCIS (Netherlands)

    Öhlund, C.E.I.C.

    2015-01-01

    The research presented in this thesis aims to deepen our understanding of the effect of micro-alloying on the microstructure and mechanical property evolution during tempering of martensitic steel for fasteners. The ongoing trend of engine down-sizing has led to the need for stronger and more

  13. The electrolytic plating of compositionally modulated alloys and laminated metal nano-structures based on an automated computer-controlled dual-bath system

    DEFF Research Database (Denmark)

    NabiRahni, D.M.A.; Tang, Peter Torben; Leisner, Peter

    1996-01-01

    -controlled plating system for producing large-scale CMA coatings and laminated nano-structures of metals. Electroplating bath constituent concentrations, pH, temperature, mode of agitation, etc, as well as galvanostatic modes, e.g. direct current (d.c.) versus pulsed and/or pulse reversal currents, were optimized......). Effort was also expended in the generation of CMA structures from single electroplating baths where the two metals of interest were present. The characterization results, as elucidated with scanning electron microscopy (SEM), atomic absorption spectroscopy and x-ray fluorescence and diffraction methods...

  14. Rapid Strengthening of Full-Sized Concrete Beams with Powder-Actuated fastening Systems and Fiber-Reinforced Polymer (FRP) Composite Materials

    National Research Council Canada - National Science Library

    Bank, Lawrence

    2002-01-01

    A research study was conducted to determine if the method of retrofitting reinforced concrete beams with powder-actuated fasteners and composite materials was applicable to full-scale flexural members...

  15. Low-cost zinc-plated photoanode for fabric-type dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingfeng; Bao, Yunna; Guo, Wanwan; Cheng, Li; Du, Jun; Liu, Renlong [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Wang, Yundong [Department of Chemical Engineering, Tsinghua University, State Key Lab of Chemical Engineering, Beijing 100084 (China); Fan, Xing, E-mail: foxcqdx@cqu.edu.cn [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Tao, Changyuan [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China)

    2016-02-15

    Graphical abstract: - Highlights: • Fabric-type flexible solar cells have been assembled on Zn-plated wires and meshes. • Metal Zn can improve the carriers transfer over the metal/ZnO nanoarrays interface. • A current increase by ∼6 mA/cm{sup 2} was realized by plating Zn on various metal substrates. • All-solid fabric-type DSSC was also assembled on Zn-plated metal wires. - Abstract: Fabric-type flexible solar cells have been recently proposed as a very promising power source for wearable electronics. To increase the photocurrent of fabric-type flexible solar cells, low-cost zinc-plated wire and mesh photoanodes are assembled for the first time through a mild wet process. Given the protection of the compact protection layer, the DSSC device could benefit from the low work function of Zn and self-repairing behavior on the Zn/ZnO interface. An evident current increase by ∼6 mA/cm{sup 2} could be observed after coating a layer of metal Zn on various metal substrates, such as traditional stainless steel wire. Given the self-repairing behavior on Zn/ZnO interface, the Zn layer can help to improve the interfacial carrier transfer, leading to better photovoltaic performance, for both liquid-type and solid-type cells.

  16. Low-cost zinc-plated photoanode for fabric-type dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kong, Lingfeng; Bao, Yunna; Guo, Wanwan; Cheng, Li; Du, Jun; Liu, Renlong; Wang, Yundong; Fan, Xing; Tao, Changyuan

    2016-01-01

    Graphical abstract: - Highlights: • Fabric-type flexible solar cells have been assembled on Zn-plated wires and meshes. • Metal Zn can improve the carriers transfer over the metal/ZnO nanoarrays interface. • A current increase by ∼6 mA/cm"2 was realized by plating Zn on various metal substrates. • All-solid fabric-type DSSC was also assembled on Zn-plated metal wires. - Abstract: Fabric-type flexible solar cells have been recently proposed as a very promising power source for wearable electronics. To increase the photocurrent of fabric-type flexible solar cells, low-cost zinc-plated wire and mesh photoanodes are assembled for the first time through a mild wet process. Given the protection of the compact protection layer, the DSSC device could benefit from the low work function of Zn and self-repairing behavior on the Zn/ZnO interface. An evident current increase by ∼6 mA/cm"2 could be observed after coating a layer of metal Zn on various metal substrates, such as traditional stainless steel wire. Given the self-repairing behavior on Zn/ZnO interface, the Zn layer can help to improve the interfacial carrier transfer, leading to better photovoltaic performance, for both liquid-type and solid-type cells.

  17. A polymeric fastener can easily functionalize liposome surfaces with gadolinium for enhanced magnetic resonance imaging.

    Science.gov (United States)

    Smith, Cartney E; Shkumatov, Artem; Withers, Sarah G; Yang, Binxia; Glockner, James F; Misra, Sanjay; Roy, Edward J; Wong, Chun-Ho; Zimmerman, Steven C; Kong, Hyunjoon

    2013-11-26

    Common methods of loading magnetic resonance imaging (MRI) contrast agents into nanoparticles often suffer from challenges related to particle formation, complex chemical modification/purification steps, and reduced contrast efficiency. This study presents a simple, yet advanced process to address these issues by loading gadolinium, an MRI contrast agent, exclusively on a liposome surface using a polymeric fastener. The fastener, so named for its ability to physically link the two functional components together, consisted of chitosan substituted with diethylenetriaminepentaacetic acid (DTPA) to chelate gadolinium, as well as octadecyl chains to stabilize the modified chitosan on the liposome surface. The assembly strategy, mimicking the mechanisms by which viruses and proteins naturally anchor to a cell, provided greater T1 relaxivity than liposomes loaded with gadolinium in both the interior and outer leaflet. Gadolinium-coated liposomes were ultimately evaluated in vivo using murine ischemia models to highlight the diagnostic capability of the system. Taken together, this process decouples particle assembly and functionalization and, therefore, has considerable potential to enhance imaging quality while alleviating many of the difficulties associated with multifunctional particle fabrication.

  18. Evolution mechanisms of MgO·Al2O3 inclusions by cerium in spring steel used in fasteners of high-speed railway

    International Nuclear Information System (INIS)

    Wang Lijun; Wang Qi; Chou Kuochih; Liu Yanqiang

    2015-01-01

    The effect of rare earth metal addition on the non-metallic inclusions in spring steel used in fastener of high speed railway was investigated by metallographic examination; SEM-EDS and component analysis, aiming at deform those harmful inclusions to improve service life of spring steel. MgO·Al 2 O 3 inclusions were found in present experimental steel, which is also confirmed by the stability diagram of MgO/MgO·Al 2 O 3 /Al 2 O 3 from thermodynamic consideration. After Ce addition, the evolution process of Al 2 O 3 ·MgO inclusions was determined through the surface and line scanning. The effects of time and Ce content on the evolution of Al 2 O 3 ·MgO inclusions were examined. It was indicated that Al 2 O 3 ·MgO inclusions were wrapped by rare earth inclusions to form a ring like shape Ce-riched band around the inclusion, which would be useful to improve fatigue and corrosion resistance of spring steel. It was found that diffusion of Ce 3+ , Al 3+ and Mg 2+ in inclusions core and intermediate layer would be the limited step during evolutions of inclusions. (author)

  19. Reactor cavity seal ring

    International Nuclear Information System (INIS)

    Hankinson, M.F.

    1986-01-01

    A hydrostatic seal is described for sealing an annular gap between two flat substantially horizontal coplanar surfaces comprising, in combination: a generally flat annular plate of a width sufficient to span a gap between two surfaces: compressible annular sealing means disposed on the bottom surface of the flat annular plate for sealingly engaging the two flat surfaces in response to a downward force exerted on the plate; and fastening means, distributed along the center line of the plate, for releasably fastening the plate in a position to span the gap to be sealed and exert a downward force on the plate, each fastening means including a pair of elongated members of a size to fit into the gap to be sealed, means for mounting the members on the bottom surface of the plate so that at least a portion of each member is radially moveable in a direction toward a respective one of the vertical side surfaces defining the gap to be sealed to engage same and so that the plate is moveable relative to the members in a downward direction in response to hydrostatic pressure applied to the upper surface of the plate when the members are engaging the vertical side surfaces of an annular gap, and an actuating means, mounted on the plate for movement therewith in response to hydrostatic pressure, for radially moving the members, the actuating means extending through a bore in the plate to the upper surface of the plate

  20. Temporary percutaneous T-fastener gastropexy and continuous decompressive gastrostomy in dogs with experimentally induced gastric dilatation.

    Science.gov (United States)

    Fox-Alvarez, W Alexander; Case, J Brad; Cooke, Kirsten L; Garcia-Pereira, Fernando L; Buckley, Gareth J; Monnet, Eric; Toskich, Beau B

    2016-07-01

    OBJECTIVE To evaluate a percutaneous, continuous gastric decompression technique for dogs involving a temporary T-fastener gastropexy and self-retaining decompression catheter. ANIMALS 6 healthy male large-breed dogs. PROCEDURES Dogs were anesthetized and positioned in dorsal recumbency with slight left-lateral obliquity. The gastric lumen was insufflated endoscopically until tympany was evident. Three T-fasteners were placed percutaneously into the gastric lumen via the right lateral aspect of the abdomen, caudal to the 13th rib and lateral to the rectus abdominis muscle. Through the center of the T-fasteners, a 5F locking pigtail catheter was inserted into the gastric lumen and attached to a device measuring gas outflow and intragastric pressure. The stomach was insufflated to 23 mm Hg, air was allowed to passively drain from the catheter until intraluminal pressure reached 5 mm Hg for 3 cycles, and the catheter was removed. Dogs were hospitalized and monitored for 72 hours. RESULTS Mean ± SD catheter placement time was 3.3 ± 0.5 minutes. Mean intervals from catheter placement to a ≥ 50% decrease in intragastric pressure and to ≤ 6 mm Hg were 2.1 ± 1.3 minutes and 8.4 ± 5.1 minutes, respectively. After catheter removal, no gas or fluid leakage at the catheter site was visible laparoscopically or endoscopically. All dogs were clinically normal 72 hours after surgery. CONCLUSIONS AND CLINICAL RELEVANCE The described technique was performed rapidly and provided continuous gastric decompression with no evidence of postoperative leakage in healthy dogs. Investigation is warranted to evaluate its effectiveness in dogs with gastric dilatation-volvulus.

  1. Introduction to Analysis and Design of Plate Panels

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Lützen, Marie

    , composite materials as glass-fibre-reinforced plates, sandwich plates and reinforced concrete plates are not included as they are topics for other courses. The present notes are mainly based on Pedersen and Jensen (1983), written in Danish. The first version of the notes was prepared by Marie L......The present notes cover plate theory dealing with bending, vibrations, elastic buckling and ultimate strength. The plate structures considered are isotropic, orthotropic and stiffened plates made of metallic materials. The main objective of the notes is to give an introduction to plates and plate...... panels and to present some fairly easy methods and results to be used in the design phase to judge, whether a plate panel can be considered safe from a structural point of view or requires a more detailed numerical analysis, typically using the Finite Element Method. Furthermore, a short introduction...

  2. Corrosion and pyrophoricity of ZPPR fuel plates: Implications for basin storage

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Hayes, S.L.; Pahl, R.G.; Crawford, D.C.

    1997-01-01

    This paper presents the results of recent experimentation and analysis of the pyrophoric behavior of corroded Zero Power Physics Reactor (ZPPR) HEU fuel plates and the implications of these results for the handling, drying, and passivation of uranium metal fuels stored in water basins. The ZPPR plates were originally clad in 1980; crevice corrosion of the uranium metal in a dry storage environment has occurred due to the use of porous cladding end plugs. The extensive corrosion has resulted in bulging and, in some cases, breaching of the cladding over a 15 year storage period. Processing of the plates has been initiated to recover the highly enriched uranium metal and remove the storage vulnerability identified with the corroded plates, which have been shown to contain significant quantities of the pyrophoric compound uranium hydride (UH 3 ). Experiments were undertaken to determine effective passivation techniques for the corrosion product; analysis and modeling was performed to determine whether heat generated by rapid hydride re-oxidation could ignite the underlying metal plates. The results of the initial passivation experiment showed that simple exposure of the hydride-containing corrosion product to an Ar-3 vol.% O 2 environment was insufficient to fully passivate the hydride--flare-up of the product occurred during subsequent vigorous handling in air. A second experiment demonstrated that corrosion product was fully stable following grinding of the product to a fine powder in the Ar-3 vol.% O 2 atmosphere. Numerical modeling of a corroded plate indicated that ignition of the plate due to the heat from hydride re-oxidation was likely if hydride fractions in the corrosion product exceeded 30%

  3. Modeling of laser welding of steel and titanium plates with a composite insert

    Science.gov (United States)

    Isaev, V. I.; Cherepanov, A. N.; Shapeev, V. P.

    2017-10-01

    A 3D model of laser welding proposed before by the authors was extended to the case of welding of metallic plates made of dissimilar materials with a composite multilayer intermediate insert. The model simulates heat transfer in the welded plates and takes into account phase transitions. It was proposed to select the composition of several metals and dimensions of the insert to avoid the formation of brittle intermetallic phases in the weld joint negatively affecting its strength properties. The model accounts for key physical phenomena occurring during the complex process of laser welding. It is capable to calculate temperature regimes at each point of the plates. The model can be used to select the welding parameters reducing the risk of formation of intermetallic plates. It can forecast the dimensions and crystalline structure of the solidified melt. Based on the proposed model a numerical algorithm was constructed. Simulations were carried out for the welding of titanium and steel plates with a composite insert comprising four different metals: copper and niobium (intermediate plates) with steel and titanium (outer plates). The insert is produced by explosion welding. Temperature fields and the processes of melting, evaporation, and solidification were studied.

  4. Method for casting thin metal objects

    Science.gov (United States)

    Pehrson, Brandon P; Moore, Alan F

    2015-04-14

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  5. Electromagnetic response of extraordinary transmission plates inspired on Babinet’s principle

    OpenAIRE

    Navarro Cía, Miguel; Beruete Díaz, Miguel; Sorolla Ayza, Mario

    2011-01-01

    This chapter is devoted to polarization effects arisen from perforated metallic plates exhibiting extraordinary transmission (ET). Setting aside the state-of-the-art of perforated metallic plates, we show that by applying Babinet’s principle, subwavelength hole arrays (SHAs) arranged in rectangular lattice can further enhance its potential polarization response. Different perspectives are brought about to describe and understand the particular behaviour of self-complementarines...

  6. Nanoscale investigation of the interface situation of plated nickel and thermally formed nickel silicide for silicon solar cell metallization

    Science.gov (United States)

    Mondon, A.; Wang, D.; Zuschlag, A.; Bartsch, J.; Glatthaar, M.; Glunz, S. W.

    2014-12-01

    In the context of nickel silicide formation from plated nickel layers for solar cell metallization, there are several open questions regarding contact adhesion and electrical properties. Nanoscale characterization by transmission electron microscopy has been employed to support these investigations. Interfacial oxides and silicide phases were investigated on differently prepared samples by different analytical methods associated with transmission electron microscopy analysis. Processing variations included the pre-treatment of samples before nickel plating, the used plating solution and the thermal budget for the nickel-silicon solid-state reaction. It was shown that interface oxides of only few nm thickness on both silicon and nickel silicide are present on the samples, depending on the chosen process sequence, which have been shown to play an important role in adhesion of nickel on silicide in an earlier publication. From sample pretreatment variations, conclusions about the role of an interfacial oxide in silicide formation and its influence on phase formation were drawn. Such an oxide layer hinders silicide formation except for pinhole sites. This reduces the availability of Ni and causes a silicide with low Ni content to form. Without an interfacial oxide a continuous nickel silicide of greater depth, polycrystalline modification and expected phase according to thermal budget is formed. Information about the nature of silicide growth on typical solar cell surfaces could be obtained from silicide phase and geometric observations, which were supported by FIB tomography. The theory of isotropic NiSi growth and orientation dependent NiSi2 growth was derived. By this, a very well performing low-cost metallization for silicon solar cells has been brought an important step closer to industrial introduction.

  7. A New Omni-Directional EMAT for Ultrasonic Lamb Wave Tomography Imaging of Metallic Plate Defects

    Directory of Open Access Journals (Sweden)

    Songling Huang

    2014-02-01

    Full Text Available This paper proposes a new omni-directional electromagnetic acoustic transducer (EMAT for the ultrasonic Lamb wave (ULW tomography imaging (TI of defects in metallic plates. The proposed EMAT is composed of a permanent magnet and a coil with a contra-flexure structure. This new EMAT coil structure is used for omni-directional ULW transmission and reception and ULW TI for the first time. The theoretical background and the working principles of this EMAT are presented and analyzed. The experimental results of its use on a 3 mm thick aluminum plate indicate that the EMAT with a contra-flexure coil (CFC can transmit and receive a pure single A0 mode ULW with a high signal-to-noise ratio (SNR. Thus, the extraction of the projection data used for ULW TI may be performed accurately. The circumferential consistency of the projection data is only slightly influenced by the distortion of the eddy current field that is induced by the new CFC with an irregular shape. When the new EMAT array is used for ULW TI using the cross-hole method and SIRT arithmetic, a desirable imaging quality can be achieved, and the estimated size of an artificial corrosion defect agreed well with its actual value. The relation between the reconstruction resolution and the number of the new EMATs used is analyzed. More TI experiments are carried out when the aluminum plate defect is in two different locations relative to the EMAT array, for the further investigation of the performances of the new EMATs.

  8. A process for treatment of mixed waste containing chemical plating wastes

    International Nuclear Information System (INIS)

    Anast, K.R.; Dziewinski, J.; Lussiez, G.

    1995-01-01

    The Waste Treatment and Minimization Group at Los Alamos National Laboratory has designed and will be constructing a transportable treatment system to treat low-level radioactive mixed waste generated during plating operations. The chemical and plating waste treatment system is composed of two modules with six submodules, which can be trucked to user sites to treat a wide variety of aqueous waste solutions. The process is designed to remove the hazardous components from the waste stream, generating chemically benign, disposable liquids and solids with low level radioactivity. The chemical and plating waste treatment system is designed as a multifunctional process capable of treating several different types of wastes. At this time, the unit has been the designated treatment process for these wastes: Destruction of free cyanide and metal-cyanide complexes from spent plating solutions; destruction of ammonia in solution from spent plating solutions; reduction of Cr VI to Cr III from spent plating solutions, precipitation, solids separation, and immobilization; heavy metal precipitation from spent plating solutions, solids separation, and immobilization, and acid or base neutralization from unspecified solutions

  9. Process for protecting bonded components from plating shorts

    Science.gov (United States)

    Tarte, Lisa A.; Bonde, Wayne L.; Carey, Paul G.; Contolini, Robert J.; McCarthy, Anthony M.

    2000-01-01

    A method which protects the region between a component and the substrate onto which the components is bonded using an electrically insulating fillet of photoresist. The fillet protects the regions from subsequent plating with metal and therefore shorting the plated conductors which run down the sides of the component and onto the substrate.

  10. Metal deposition on porous silicon by immersion plating to improve photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Haddadi, Ikbel, E-mail: haded.ikbel@yahoo.fr; Amor, Sana Ben; Bousbih, Rabaa; Whibi, Seif El; Bardaoui, Afrah; Dimassi, Wissem; Ezzaouia, Hatem

    2016-05-15

    Metal deposition into porous silicon (PS) by immersion plating in aqueous solution during different times was investigated. The influence of immersion time on optical properties of porous silicon treated with Lithium (Li) was studied by photoluminescence (PL). From experimental results, we suggest that the treatment, for critical immersion time provides an easy way to achieve an improvement in the PL intensity. To identify surface modification, Fourier transmission infrared spectroscopy and atomic force microscopy were performed. The reflectivity spectra showed that the variation of light absorption can be probably due to the newly formed layer during the chemical deposition of Li. - Highlights: • We have varied the immersion time of PS in LiBr solution. • PL intensity shows significant variation as function of immersion time. • We observe reduction of Si–O–Li bands with increasing treatment time. • Concurrent with the loss of Li we observe a decrease of the PL.

  11. Metal deposition on porous silicon by immersion plating to improve photoluminescence properties

    International Nuclear Information System (INIS)

    Haddadi, Ikbel; Amor, Sana Ben; Bousbih, Rabaa; Whibi, Seif El; Bardaoui, Afrah; Dimassi, Wissem; Ezzaouia, Hatem

    2016-01-01

    Metal deposition into porous silicon (PS) by immersion plating in aqueous solution during different times was investigated. The influence of immersion time on optical properties of porous silicon treated with Lithium (Li) was studied by photoluminescence (PL). From experimental results, we suggest that the treatment, for critical immersion time provides an easy way to achieve an improvement in the PL intensity. To identify surface modification, Fourier transmission infrared spectroscopy and atomic force microscopy were performed. The reflectivity spectra showed that the variation of light absorption can be probably due to the newly formed layer during the chemical deposition of Li. - Highlights: • We have varied the immersion time of PS in LiBr solution. • PL intensity shows significant variation as function of immersion time. • We observe reduction of Si–O–Li bands with increasing treatment time. • Concurrent with the loss of Li we observe a decrease of the PL.

  12. A New Type of Inscribed Copper Plate from Indus Valley (Harappan Civilisation

    Directory of Open Access Journals (Sweden)

    Vasant Shinde

    2014-10-01

    Full Text Available A group of nine Indus Valley copper plates (c. 2600–2000 BC, discovered from private collections in Pakistan, appear to be of an important type not previously described. The plates are significantly larger and more robust than those comprising the corpus of known copper plates or tablets, and most significantly differ in being inscribed with mirrored characters. One of the plates bears 34 characters, which is the longest known single Indus script inscription. Examination of the plates with x-ray fluorescence (XRF spectrophotometry indicates metal compositions, including arsenical copper, consistent with Indus Valley technology. Microscopy of the metal surface and internal structure reveals detail such as pitting, microcrystalline structure, and corrosion, consistent with ancient cast copper artifacts. Given the relative fineness of the engraving, it is hypothesised that the copper plates were not used as seals, but have characteristics consistent with use in copper plate printing. As such, it is possible that these copper plates are by far the earliest known printing devices, being at least 4000 years old.

  13. Scattered radiation from dental metallic crowns in head and neck radiotherapy.

    Science.gov (United States)

    Shimozato, T; Igarashi, Y; Itoh, Y; Yamamoto, N; Okudaira, K; Tabushi, K; Obata, Y; Komori, M; Naganawa, S; Ueda, M

    2011-09-07

    We aimed to estimate the scattered radiation from dental metallic crowns during head and neck radiotherapy by irradiating a jaw phantom with external photon beams. The phantom was composed of a dental metallic plate and hydroxyapatite embedded in polymethyl methacrylate. We used radiochromic film measurement and Monte Carlo simulation to calculate the radiation dose and dose distribution inside the phantom. To estimate dose variations in scattered radiation under different clinical situations, we altered the incident energy, field size, plate thickness, plate depth and plate material. The simulation results indicated that the dose at the incident side of the metallic dental plate was approximately 140% of that without the plate. The differences between dose distributions calculated with the radiation treatment-planning system (TPS) algorithms and the data simulation, except around the dental metallic plate, were 3% for a 4 MV photon beam. Therefore, we should carefully consider the dose distribution around dental metallic crowns determined by a TPS.

  14. Stiffness Analysis of Nail-Plate Joints Subjected to Short-Term Loads

    DEFF Research Database (Denmark)

    Nielsen, Jacob

    nail-plates are designed for trusses. For many years, joints were made of boards with nails, but the increasing industrialism and the need for quick and usable assembly had the result that today nearly all trusses are pre-fabricated with nail-plates. The word "nail-plate" has been used for different...... types of plates. There are two main types of nail-plates: steel plates perforated with holes in which separate nails are used and steel plates perforated by a stamping machine, so the nails are made from the plate, see figur 1.2 on page 7. This type is sometimes called "punching metal plate...

  15. Metal Whiskers: A Discussion of Risks and Mitigation

    Science.gov (United States)

    2010-11-30

    efforts to investigate – Chromate conversion finishes DO NOT appear to stop whisker formation [4] S. Arnold, "Repressing the Growth of Tin Whiskers...November 30, 2010 Metal Whiskers 10 Examples of Metal Whiskers Zinc-Plated Steel Bus Rail with Yellow Chromate Conversion Finish Zinc whiskers grew...Metal Whiskers 11 Examples of Metal Whiskers Tin-Plated D-Sub Connector Shell Connector Advertised as “RoHS Compliant” November 30, 2010 Metal

  16. An experimental study of an explosively driven flat plate launcher

    Science.gov (United States)

    Rae, Philip; Haroz, Erik; Armstrong, Chris; Perry, Lee; M Division Team

    2017-06-01

    For some upcoming experiments it is desired to impact a large explosive assembly with one or more moderate diameter flat metal plates traveling at high velocity (2-3 km s-1). The time of arrival of these plates will need to carefully controlled and delayed (i.e. the time(s) of arrival known to approximately a microsecond). For this reason, producing a flyer plate from more traditional gun assemblies is not possible. Previous researchers have demonstrated the ability to throw reasonably flat metal flyers from the so-called Forest flyer geometry. The defining characteristics of this design are a carefully controlled reduction in explosive area from a larger explosive plane-wave-lens and booster pad to a smaller flyer plate to improve the planarity of the drive available and an air gap between the explosive booster and the plate to reduce the peak tensile stresses generated in the plate to suppress spalling. This experimental series comprised a number of different design variants and plate and explosive drive materials. The aim was to calibrate a predictive computational modeling capability on this kind of system in preparation for later more radical design ideas best tested in a computer before undertaking the expensive business of construction.

  17. Co-consolidation of titanium-C/PAEK joints: an investigation into the interfacial performance governing mechanisms

    NARCIS (Netherlands)

    Su, Y.

    2017-01-01

    Fastener free metal-carbon fibre reinforced thermoplastic composite hybrid joints show a potential for application in aerospace structures. In comparison with fastened hybrid joints, fastener free hybrid joints exhibit advantages in terms of joint weight reduction and a more uniformly distributed

  18. [Functional load distribution in cases of different types of removable dentures fastening].

    Science.gov (United States)

    Zhulev, E N; Klokov, A A

    2007-01-01

    Questions of studying of a biomechanics of system prosthesis - prosthetic region using of mathematical modelling are surveyed. The original way of definition of physical parameters of a mucosa of an edentulous alveolar process is offered. Modelling of a leaky adhering of prosthesis basis to a mucosa as free saddle situation shows, that a abutment teeth and an edentulous alveolar part of a jaw are in an optimum situation at sliding resilient fastening of a removable partial denture. Rigid bond in the given situation on the contrary promotes development of an overload of abutment teeth and their inclination distally.

  19. Glass-Metal Joining in Nuclear Environment: the State of the Art

    International Nuclear Information System (INIS)

    Jacobs, M.

    2007-01-01

    Full text of publication follows: In the ITER fusion machine and in material testing fission reactors, it is not possible to avoid the use of non-metallic materials like glass for example. There is therefore a need to apply metal to glass joints. This problem arose already at the beginning of the 19. century when the electric light bulb was invented. Nowadays this type of glass-metal joint is very successful and widely used in the electronic industry. In the case of ITER and material testing reactors, glass-metal joints are necessary for the fixation of the optical windows and optical fibres to a metal structure to perform diagnostics. These types of joints are still difficult to make and their behaviour is not fully understood. A joint between glass and metal for a nuclear or fusion application has indeed to resist high temperatures and high neutron fluences, while keeping a good mechanical strength and remaining leak tight. These characteristics are difficult to obtain under these severe conditions. This paper presents an overview of the different joining technologies that can be used to join glass to metal in a severe nuclear environment. The working mechanism of the technologies are explained, together with their respective advantages and drawbacks. Three different types of joining are discussed: fastening, liquid phase joining and solid phase joining. Fastening is a mechanical attachment technique, not achieving easily hermetic seals. Liquid and solid phase joining on the other hand form a real bond, what makes the joint much stronger. The most important technologies using liquid phase joining are adhesive bonding, fusion welding and brazing. In the case of the solid phase joining the choices are ultrasonic torsion welding, diffusion bonding and electrostatic bonding. If it is usually not possible to join the glass directly to the metal, an interlayer must be used. One speaks then of indirect joining. The paper will conclude with a discussion on the best

  20. Compact Low Frequency Radio Antenna

    Science.gov (United States)

    Punnoose, Ratish J.

    2008-11-11

    An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.

  1. Charging damage in floating metal-insulator-metal capacitors

    NARCIS (Netherlands)

    Ackaert, Jan; Wang, Zhichun; De Backer, E.; Coppens, P.

    2002-01-01

    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMC) is reported. The damage is caused by the build up of a voltage potential difference between the two plates of the capacitor. A simple logarithmic relation is discovered between the damage by this voltage

  2. Manipulation robot system based on visual guidance for sealing blocking plate of steam generator

    International Nuclear Information System (INIS)

    Duan Xingguang; Wang Yonggui; Li Meng; Kong Xiangzhan; Liu Qingsong

    2016-01-01

    To reduce labor intensity and irradiation exposure time inside the steam generator during the maintenance period of the nuclear power plant, a blocking plate manipulation robot system, including manipulation robot and pneumatic control console, is developed as an automatic remote-control tool to help staff to complete sealing steam generator primary pipes. The manipulation robot for fastening/loosening bolts utilizes visual guidance for target position, and the recognition algorithm is exerted to extract the bolt center coordinate values from image captured by camera in the procedure. The control strategy based on the position and current feedback is proposed for single bolt operation and whole bolts automatic operation. Meanwhile, the virtual interactive interface and remote monitoring are designed to improve the operability and safety. Finally, the relative experiments have verified the work effectiveness and the future work would be discussed. (author)

  3. Stacks with TiN/titanium as the bipolar plate for PEMFCs

    International Nuclear Information System (INIS)

    Ren, Zhijun; Zhang, Dongming; Wang, Zaiyi

    2012-01-01

    Proton exchange membrane fuel cell (PEMFC) is a potential alternative for the internal combustion engine. But many problems, such as metallic bipolar plate instead of graphite bipolar plate to decrease the cost, should be solved before its application. Based on the previous results that single cell with TiN/Ti as bipolar plates shows high performance and enough long-time durability, the progress on the stacks with TiN/Ti as bipolar plates is reported in this manuscript. Till now seldom report is focused on stacks because of the complicated processing technique, especially for that with TiN/Ti as bipolar plate. The flow field in the plate is punched from titanium deformation, and two plates are welded by laser welding to form one piece of bipolar plate. The adopted processing techniques for stacks with TiN/Ti as bipolar plate exhibit advantage and feasibility in industry. The power density by weight for the stack is as high as 1353 W kg −1 , although it still has space to be improved. Next work should be focused on the design of flow channel parameters and flow field type based on plastic deformation of metal materials. -- Highlights: ► The progress on the stacks with TiN/Ti as bipolar plates is reported. ► The adopted processing techniques exhibit feasibility in industry. ► The power density by weight for the stack is as high as 1353 W kg −1 .

  4. Improving electron beam weldability of heavy steel plates for PWR-steam generator

    International Nuclear Information System (INIS)

    Tomita, Yukio; Mabuchi, Hidesato; Koyama, Kunio

    1996-01-01

    Installation and replacement of many PWR-steam generators are planned inside and outside Japan. The steel plates for steam generators are heavy in thickness, and increase the number of welding passes and prolong the welding time. Electron beam welding (EBW) can greatly reduce the welding period compared with conventional welding methods (narrow-gap gas metal arc welding (GMAW) and submerged arc welding (SAW)). The problems in applying EBW are to prevent weld defects and to improve the toughness of the weld metal. Defect-free welding procedures were successfully established even in thick steel plates. The factors that deteriorate weld-metal (WM) toughness of EBW were investigated. The manufacturing process, which utilizes a new secondary refining process at steelmaking and a high-torque mill at plate mill in actual mass-production, were established. EBW base metal and WM have better properties including fracture toughness than those of conventional welding processes. As a result, an application of EBW to the fabrication of PWR-steam generators has become possible. Large amounts of ASTM A533 Gr B Cl 2 (JIS SQV2B) steel plates in actual PWR-steam generators have come to be produced (more than 1,500 ton) by applying EBW. (author)

  5. CMC vane assembly apparatus and method

    Science.gov (United States)

    Schiavo, Anthony L; Gonzalez, Malberto F; Huang, Kuangwei; Radonovich, David C

    2012-10-23

    A metal vane core or strut (64) is formed integrally with an outer backing plate (40). An inner backing plate (38) is formed separately. A spring (74) with holes (75) is installed in a peripheral spring chamber (76) on the strut. Inner and outer CMC shroud covers (46, 48) are formed, cured, then attached to facing surfaces of the inner and outer backing plates (38, 40). A CMC vane airfoil (22) is formed, cured, and slid over the strut (64). The spring (74) urges continuous contact between the strut (64) and airfoil (66), eliminating vibrations while allowing differential expansion. The inner end (88) of the strut is fastened to the inner backing plate (38). A cooling channel (68) in the strut is connected by holes (69) along the leading edge of the strut to peripheral cooling paths (70, 71) around the strut. Coolant flows through and around the strut, including through the spring holes.

  6. Metal allergy--a review on exposures, penetration, genetics, prevalence, and clinical implications

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Menné, Torkil

    2010-01-01

    The prevalence of metal allergy is high in the general population, and it is estimated that up to 17% of women and 3% of men are allergic to nickel and that 1-3% are allergic to cobalt and chromium. Among dermatitis patients, the prevalence of metal allergy is even higher. Metal allergy is mainly......) dermatitis. Furthermore, metal allergy has been associated with device failure following insertion of intracoronary stents, hip and knee prostheses, as well as other implants. This area is in need of more research.......The prevalence of metal allergy is high in the general population, and it is estimated that up to 17% of women and 3% of men are allergic to nickel and that 1-3% are allergic to cobalt and chromium. Among dermatitis patients, the prevalence of metal allergy is even higher. Metal allergy is mainly...... an environmental disorder although null mutations in the filaggrin gene complex were recently found to be associated with nickel allergy and dermatitis. Environmental metal exposures include jewelry, buttons, clothing fasteners, dental restorations, mobile phones, and leather. Although consumer exposure...

  7. Method and mold for casting thin metal objects

    Science.gov (United States)

    Pehrson, Brandon P; Moore, Alan F

    2014-04-29

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  8. Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Atteq ur Rehman

    2014-02-01

    Full Text Available Developing a better method for the metallization of silicon solar cells is integral part of realizing superior efficiency. Currently, contact realization using screen printing is the leading technology in the silicon based photovoltaic industry, as it is simple and fast. However, the problem with metallization of this kind is that it has a lower aspect ratio and higher contact resistance, which limits solar cell efficiency. The mounting cost of silver pastes and decreasing silicon wafer thicknesses encourages silicon solar cell manufacturers to develop fresh metallization techniques involving a lower quantity of silver usage and not relying pressing process of screen printing. In recent times nickel/copper (Ni/Cu based metal plating has emerged as a metallization method that may solve these issues. This paper offers a detailed review and understanding of a Ni/Cu based plating technique for silicon solar cells. The formation of a Ni seed layer by adopting various deposition techniques and a Cu conducting layer using a light induced plating (LIP process are appraised. Unlike screen-printed metallization, a step involving patterning is crucial for opening the masking layer. Consequently, experimental procedures involving patterning methods are also explicated. Lastly, the issues of adhesion, back ground plating, process complexity and reliability for industrial applications are also addressed.

  9. Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs

    Science.gov (United States)

    Pettit, R. G.; Wang, J. J.; Toh, C.

    2000-01-01

    The continual need to reduce airframe cost and the emergence of high speed machining and other manufacturing technologies has brought about a renewed interest in large-scale integral structures for aircraft applications. Applications have been inhibited, however, because of the need to demonstrate damage tolerance, and by cost and manufacturing risks associated with the size and complexity of the parts. The Integral Airframe Structures (IAS) Program identified a feasible integrally stiffened fuselage concept and evaluated performance and manufacturing cost compared to conventional designs. An integral skin/stiffener concept was produced both by plate hog-out and near-net extrusion. Alloys evaluated included 7050-T7451 plate, 7050-T74511 extrusion, 6013-T6511 extrusion, and 7475-T7351 plate. Mechanical properties, structural details, and joint performance were evaluated as well as repair, static compression, and two-bay crack residual strength panels. Crack turning behavior was characterized through panel tests and improved methods for predicting crack turning were developed. Manufacturing cost was evaluated using COSTRAN. A hybrid design, made from high-speed machined extruded frames that are mechanically fastened to high-speed machined plate skin/stringer panels, was identified as the most cost-effective manufacturing solution. Recurring labor and material costs of the hybrid design are up to 61 percent less than the current technology baseline.

  10. [Research Progress and Development Prospect of Biomedical Plate].

    Science.gov (United States)

    Li, Xiao; Liu, Jing; Wu, Qiang; Wang, Yanjie; Xiao, Tao; Liu, Lihong; Yu, Shu

    2016-12-01

    Different generations of biomedical materials are analyzed in this paper.The current clinical uses of plates made of metals,polymers or composite materials are evaluated,and nano hydroxyapatite/polylactic acid composites and carbon/carbon composite plates are introduced as emphasis.It is pointed out that the carbon/carbon composites are of great feasibility and advantage as a new generation of biomedical materials,especially in the field of bone plate.Compared to other biomaterials,carbon/carbon composites have a good biocompatibility and mechanical compatibility because they have similar elastic modulus,porosity and density to that of human bones.With the development of the technology in knitting and material preparation,carbon/carbon composite plates have a good application prospect.

  11. Metallization of Kevlar fibers with gold.

    Science.gov (United States)

    Little, Brian K; Li, Yunfeng; Cammarata, V; Broughton, R; Mills, G

    2011-06-01

    Electrochemical gold plating processes were examined for the metallization of Kevlar yarn. Conventional Sn(2+)/Pd(2+) surface activation coupled with electroless Ni deposition rendered the fibers conductive enough to serve as cathodes for electrochemical plating. The resulting coatings were quantified gravimetrically and characterized via adhesion tests together with XRD, SEM, TEM; the coatings effect on fiber strength was also probed. XRD data showed that metallic Pd formed during surface activation whereas amorphous phases and trace amounts of pure Ni metal were plated via the electroless process. Electrodeposition in a thiosulfate bath was the most efficient Au coating process as compared with the analogous electroless procedure, and with electroplating using a commercial cyanide method. Strongly adhering coatings resulted upon metallization with three consecutive electrodepositions, which produced conductive fibers able to sustain power outputs in the range of 1 W. On the other hand, metallization affected the tensile strength of the fiber and defects present in the metal deposits make questionable the effectiveness of the coatings as protective barriers. © 2011 American Chemical Society

  12. Korn inequalities for elastic junctions of massive bodies, thin plates, and rods

    International Nuclear Information System (INIS)

    Nazarov, S A

    2008-01-01

    Korn inequalities have been obtained for junctions of massive elastic bodies, thin plates, and rods in many different combinations. These inequalities are asymptotically sharp thanks to the introduction of various weight factors in the L 2 -norms of the displacements and their derivatives. Since thin bodies display different reactions to stretching and bending, such Korn inequalities are necessarily anisotropic. Junctions of elastic bodies with contrasting stiffness are allowed, but the constants in the inequalities obtained are independent of both the relative thickness h element of (0,1] and the relative rigidity μ element of (0,+∞). The norms corresponding to rigidly clamped elements of a structure are essentially different from the norms corresponding to hard-movable or movable elements that are not fastened directly, but only by means of neighbouring elements; therefore, an adequate structure of the weighted anisotropic norms is determined by the geometry of the whole junction. Each variant of Korn inequality is supplied with an example confirming the optimal choice of the weight factors

  13. Simultaneous laser cutting and welding of metal foil to edge of a plate

    Science.gov (United States)

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-19

    A method is described for welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads. 7 figs.

  14. The effective removal method of copper and cyanide in waste water of metal plating factories

    International Nuclear Information System (INIS)

    Jae, Won Mok; Hong, Zong Doo; Kim, Myun Sup

    1988-01-01

    To investigate the effective removal method of cooper and cyanide compounds in metal plating waste water, removal ratio of cooper and cyanide compounds in solution are measured with varying pH, concentration and contact time. As results of the present experiment, cyanide compounds in the solution are removed to 0.03mg/l or less with 5% NaOCl solution. The present result is satisfied to environmental disposal standards. The removal ratio against pH values show 99% over pH8. As results of neutral precipitation method, copper including solution are removed to 99% at pH8 in short time. The removal ratios of cyanide mixed copper solution against pH values show high efficiency(over 95%) at pH8 and 11 and removal ratios are decreased at pH10.(Author)

  15. Use of an Automated Suture Fastening Device in Minimally Invasive Aortic Valve Replacement.

    Science.gov (United States)

    Beute, Tyler J; Orem, Matthew D; Schiller, Timothy M; Goehler, Matthew; Parker, Jessica; Willekes, Charles L; Timek, Tomasz

    2018-03-01

    Minimally invasive aortic valve replacement (mAVR) is gaining clinical acceptance, however, it is associated with increased operative times due to limited surgical field and access. The Cor-Knot is an automated fastening device designed to facilitate suture fastening, but clinical data in mAVR are lacking. From May 2014 to February 2017, 92 patients underwent mAVR at our center with 39 valves secured with manually-tied (MT) sutures and 53 valves entirely secured with the Cor-Knot (CK). Pre-operative characteristics and 30-day outcomes data were extracted from our local Society of Thoracic Surgeons database and the electronic medical record. Survival data were obtained from the Michigan State Social Security Death Index. No significant difference in pre-operative characteristics were noted between the two groups. Aortic cross-clamp time (72±12 min vs 82±15 min, p=0.001) was significantly shorter with CK. There was no difference in post-operative mortality (0% vs 0%), stroke (0% vs 1.9%), atrial fibrillation (28% vs 33%), renal failure (0% vs 3.8%), or pacemaker implantation (5.1% vs 5.7%) between MT and CK. Valve function on post-operative echocardiography and 1-year patient survival were similar. In minimally invasive aortic valve replacement, the Cor-Knot device was associated with reduced aortic cross-clamp time while providing equivalent clinical outcomes. Larger studies are needed to confirm efficacy, safety, and cost-effectiveness of the Cor-Knot device in minimally invasive aortic valve surgery. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Study on the stress and strain during welding of plate-to-pipe joint

    Energy Technology Data Exchange (ETDEWEB)

    Na, S.J.; Kim, H.W.

    1986-09-01

    In manufacturing of pipe walls for boiler units, distortion can result in pipe-to-pipe joints from the nonuniform expansion and contraction of the weld metal and the adjacent base metal during heating and cooling cycle of the welding process. In this study, the stresses and strains during longitudinal welding of the plate-to-pipe joint were investigated. Using the method of sucessive elastic solution, longitudinal stresses and strains during and after welding were calculated from the information of temperature distributions obtained by Rosenthal's equations. In order to confirm the validity of the numerical results, the temperature and residual stress distributions were measured and compared with the calculated results. In spite of some assumptions, the one-dimensional analytical results of residual stresses were in fairly good agreement with the experimental ones. The residual stresses due to welding of plate-to-pipe joints are tensile near the weld line and compressive in the base metal as in the welding of plates. The amount and distribution of residual stresses were deeply dependent on the heat input ratio of the plate and pipe.

  17. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    Science.gov (United States)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  18. Liquid metal steam generator

    International Nuclear Information System (INIS)

    Wolowodiuk, W.

    1975-01-01

    A liquid metal heated steam generator is described which in the event of a tube failure quickly exhausts out of the steam generator the products of the reaction between the water and the liquid metal. The steam is generated in a plurality of bayonet tubes which are heated by liquid metal flowing over them between an inner cylinder and an outer cylinder. The inner cylinder extends above the level of liquid metal but below the main tube sheet. A central pipe extends down into the inner cylinder with a centrifugal separator between it and the inner cylinder at its lower end and an involute deflector plate above the separator so that the products of a reaction between the liquid metal and the water will be deflected downwardly by the deflector plate and through the separator so that the liquid metal will flow outwardly and away from the central pipe through which the steam and gaseous reaction products are exhausted. (U.S.)

  19. ELECTROLESS NICKEL PLATING ON ABS PLASTIC BY USING ENVIRONMENTALLY FRIENDLY CHEMICALS

    OpenAIRE

    Uraz, Canan

    2017-01-01

    In this study, electroless nickel (EN) plating onacrylonitrile butadiene styrene (ABS) engineering plastic by usingenvironmentally friendly chemicals were studied. Electroless plating is afundamental step in the metal plating on the plastic. This step makes theplastic conductive and makes it possible to a homogeneous and hard platingwithout using any hazardous and unfriendly chemical such as palladium, tin,etc. In the industry there are many distinct chemical materials both catalystsand activ...

  20. Environmentally benign electroless nickel plating using supercritical carbon-dioxide on hydrophilically modified acrylonitrile-butadiene-styrene

    Science.gov (United States)

    Tengsuwan, Siwach; Ohshima, Masahiro

    2014-08-01

    Electroless Ni-P plating using supercritical carbon dioxide (scCO2) in conjunction with copolymer-based hydrophilic modification was applied to an acrylonitrile-butadiene-styrene (ABS) substrate. The surface of ABS substrate was hydrophilically modified by blending with a multi-block copolymer, poly(ether-ester-amide)s (PEEA), in injection molding process. The substrate was then impregnated with Pd(II)-hexafluoroacetylacetonate, Pd(hfa)2, using scCO2, followed by the electroless plating reaction. ABS/PEEA substrates with different PEEA to ABS blend ratios and different volume ratios of butadiene to the styrene-acrylonitrile copolymer (SAN) matrix were prepared to investigate how the dispersed PEEA and butadiene domains affected the blend morphology and the adhesive strength of the plating metal-to-polymer contact. Increasing the PEEA copolymer to ABS blend ratio increased the mass transfer rate of the plating solution in the ABS substrate. Consequently, the metal-polymer composite layer became thicker, which increased the adhesive strength of the metal-to-polymer contact because of the anchoring effect. The butadiene domains appeared to attract the Pd catalyst precursor, and thus, the proportion of butadiene in the ABS matrix also affected the adhesive strength of the contact between the metal layer and the substrate. The ABS substrate was successfully plated with a Ni-P metal layer with an average adhesive strength of 9.1 ± 0.5 N cm-1 by choosing appropriate ABS/PEEA blend ratios and a Pd(hfa)2 concentration.

  1. Exploring metal artifact reduction using dual-energy CT with pre-metal and post-metal implant cadaver comparison: are implant specific protocols needed?

    NARCIS (Netherlands)

    Wellenberg, Ruud H. H.; Donders, Johanna C. E.; Kloen, Peter; Beenen, Ludo F. M.; Kleipool, Roeland P.; Maas, Mario; Streekstra, Geert J.

    2017-01-01

    To quantify and optimize metal artifact reduction using virtual monochromatic dual-energy CT for different metal implants compared to non-metal reference scans. Dual-energy CT scans of a pair of human cadaver limbs were acquired before and after implanting a titanium tibia plate, a stainless-steel

  2. Nanowire surface fastener fabrication on flexible substrate

    Science.gov (United States)

    Toku, Yuhki; Uchida, Keita; Morita, Yasuyuki; Ju, Yang

    2018-07-01

    The market for wearable devices has increased considerably in recent years. In response to this demand, flexible electronic circuit technology has become more important. The conventional bonding technology in electronic assembly depends on high-temperature processes such as reflow soldering, which result in undesired thermal damages and residual stress at a bonding interface. In addition, it exhibits poor compatibility with bendable or stretchable device applications. Therefore, there is an urgent requirement to attach electronic parts on printed circuit boards with good mechanical and electrical properties at room temperature. Nanowire surface fasteners (NSFs) are candidates for resolving these problems. This paper describes the fabrication of an NSF on a flexible substrate, which can be used for room temperature conductive bonding. The template method is used for preparing high-density nanowire arrays. A Cu thin film is layered on the template as the flexible substrate. After etching the template, a Cu NSF is obtained on the Cu film substrate. In addition, the electrical and mechanical properties of the Cu NSF are studied under various fabrication conditions. The Cu NSF exhibits high shear adhesion strength (∼234 N cm‑2) and low contact resistivity (2.2 × 10‑4 Ω cm2).

  3. Development and implementation of computational geometric model for simulation of plate type fuel fabrication process with microspheres dispersed in metallic matrix

    International Nuclear Information System (INIS)

    Lage, Aldo M.F.; Reis, Sergio C.; Braga, Daniel M.; Santos, Armindo; Ferraz, Wilmar B.

    2005-01-01

    In this report it is presented the development of a geometric model to simulate the plate type fuel fabrication process with fuels microspheres dispersed in metallic matrix, as well as its software implementation. The developed geometric model encloses the steps of pellets pressing and sintering, as well as the plate rolling passes. The model permits the simulation of structures, where the values of the various variables of the fabrication processes can be studied and modified. The following variables were analyzed: microspheres diameters, density of the powder/microspheres mixing, microspheres density, fuel volume fraction, sintering densification, and rolling passes number. In the model implementation, which was codified in DELPHI programming language, systems of structured analysis techniques were utilized. The structures simulated were visualized utilizing the AutoCAD applicative, what permitted to obtain planes sections in diverse directions. The objective of this model is to enable the analysis of the simulated structures and supply information that can help in the improvement of the dispersion microspheres fuel plates fabrication process, now in development at CDTN (Centro de Desenvolvimento da Tecnologia Nuclear) in cooperation with the CTMSP (Centro Tecnologico da Marinha em Sao Paulo). (author)

  4. Development of a 3-D model for eddy current testing: application for fastened structures in aeronautics

    International Nuclear Information System (INIS)

    Paillard, S.

    2007-12-01

    One of the Eddy Current Testing issues in aeronautics is the inspection of fastened structures to detect flaws nearby rivets which can grow because of mechanical stress. EADS and the CEA LIST have started a collaborative work with the support of the Ile-de-France Region to develop a simulation tool of EC fastened structures testing, integrated to the CIVA platform, aimed at conceiving testing methods, optimizing and qualifying it. The volume integral method using the Green dyadics formalism has been chosen in order to get a fast resolution of Maxwell equations. A first milestone was to build a simulation model of multilayer structures testing, thanks to the use of the multilayer Green dyads. Because of the rivet volume, 60 times bigger than the one of a typical flaw, a large number of discretization cells are needed. Therefore an iterative method has been developed in order to numerically solve large calculation zones. Finally, the flaw response simulation mostly has to cope with a scale issue between the size of the rivet and the one of the flaw, the latter being much smaller in a direction than the former. The whole model has been experimentally validated and compared to other simulation models at the important development steps: multilayer configuration, iteration resolution, and flaw signature. (author)

  5. A heat exchanger provided with plates

    International Nuclear Information System (INIS)

    Chaix, J.E.; Fajeau, Maurice; Chlique, Bernard.

    1976-01-01

    The invention relates to a heat exchanger of the plate type, in which two fluids exchange calories through parallel metal plates, delimiting spaces separated from each other in which two fluids respectively flow without direct contact between them. The invention particularly applies in the case where one of the two fluids is water under pressure or else a circulating liquid metal, specially sodium, used in the system of a pressurised water or fast neutron reactor, the second fluid being water to be vaporised in the exchanger by the calories supplied by the first fluid. The arrangement is designed to give minimum bulk, particularly enabling the exchanger to be housed in the area between the core of a nuclear reactor and a casing or outer vessel, or else in an external sealed containment, with a view to recovering with the best efficiency the heat acquired by a coolant flowing through the core [fr

  6. Natural convection heat transfer experiments of horizontal plates with fin arrays

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Je Young; Chung, Bum Jin [Jeju National University 102 Jejudaehakno, Jeju (Korea, Republic of)

    2012-10-15

    Core melt in a severe accident condition, forms a molten pool in the reactor vessel lower head. The molten pool is divided by a metallic pool (top) and an oxide pool (bottom) by the density difference. The crust between the metallic layer and the oxide pool may be formed by solidification of the molten metallic materials. So the surface of the crust is formed irregularly. Experiments were performed to investigate the irregular crust as a preparatory study before an in-depth severe accident study. The natural convection heat transfer were investigated experimentally varying the height and spacing of fins, top plate of different kinds and the plate separation distance with/without the side walls. In order to simulate irregular crust surface condition, the finned plates was used. Using the analogy concept, heat transfer experiments were replaced by mass transfer experiments. A cupric acid.copper sulfate (H{sup 2S}O{sup 4-}CuSO{sup 4)} electroplating system was adopted as the mass transfer system and the electric currents were measured rather than the heat transfer rates.

  7. A device for thermally insulating a concrete wall covered with a thermal plate

    International Nuclear Information System (INIS)

    Cornille, Yvon; Felten, Paul.

    1973-01-01

    The device is characterized in that it comprises a stack of bricks of parallelepipedic shape of cellular silica, bound to one another and to a metal plate by means of a silica-mortar layer and of anchoring keys welded to the metal plate, at one end thereof, and embedded in at least two juxtaposed bricks, at the other end thereof. This can be used for unsulating the cavity located under the core of a high temperature reactor [fr

  8. The fabrication and characterization of an ex situ plated lead film electrode prepared with the use of a reversibly deposited mediator metal

    International Nuclear Information System (INIS)

    Tyszczuk, Katarzyna

    2011-01-01

    Research highlights: → The lead film electrode prepared with use of the mediator metal was elaborated. → The lead-based sensors were characterized by optical and voltammetric methods. → The adsorptive system of folic acid was employed to investigate a new electrode. → The application of the mediator metal improved properties of a lead film electrode. - Abstract: In this paper an ex situ plated lead film electrode prepared with use of the mediator metal (Zn) was elaborated. The electrochemical method for lead film formation is based on a co-deposition of a metal of interest (Pb) with a reversibly deposited mediator metal (Zn) and then on an oxidation of zinc and further deposition of lead by the appropriate potential. This serves to increase the density of islands of lead atoms, promoting lead film growth. The lead-based sensors were characterized by optical method (atomic force microscopy (AFM)) and as well as cyclic, linear sweep and square wave voltammetry. The adsorptive system of folic acid was employed to investigate the electrochemical characteristics a novel type of lead film electrode. Well-formed stripping peaks and a linear dependence of the stripping current on the folic acid concentration were observed on the lead film electrode prepared with use of the mediator metal while comparative measurements attempted with the lead film electrode prepared without use of the mediator metal were unsuccessful.

  9. ADSORPTION PROPERTIES OF NICKEL-BASED MAGNETIC ACTIVATED CARBON PREPARED BY PD-FREE ELECTROLESS PLATING

    Directory of Open Access Journals (Sweden)

    Boyang Jia

    2011-02-01

    Full Text Available Nickel-based magnetic activated carbon was synthesized from coconut shell activated carbon by electroless plating with palladium-free activation. The effect of plating solution volume on metallic ratio and adsorption capacity were evaluated. The effect of metallic ratio on specific area, pore volume, and magnetic properties were investigated. The morphologies of activated carbon before and after plating were observed by SEM, and the composition of the layer was analyzed by EDS analysis. The results showed that the metallic ratio was increased with the increase of the plating solution volume. The magnetic activated carbon showed high adsorption capacity for methylene blue and a high iodine number. Those values reached 142.5 mg/g and 1035 mg/g, respectively. The specific area and pore volume decreased from 943 m2/g to 859 m2/g and 0.462 ml/g to 0.417 ml/g, respectively. And the layer was more compact and continuous when the metallic ratio reached 16.37 wt.%. In the layer, there was about 97 wt.% nickel and 3 wt.% phosphorus, which indicates that the layer was a low-phosphorus one. At the same time, magnetism was enhanced, making the product suitable for some special applications.

  10. Modeling of high-density U-MO dispersion fuel plate performance

    International Nuclear Information System (INIS)

    Hayes, S.L.; Meyer, M.K.; Hofman, G.L.; Rest, J.; Snelgrove, J.L.

    2002-01-01

    Results from postirradiation examinations (PIE) of highly loaded U-Mo/Al dispersion fuel plates over the past several years have shown that the interaction between the metallic fuel particles and the matrix aluminum can be extensive, reducing the volume of the high-conductivity matrix phase and producing a significant volume of low-conductivity reaction-product phase. This phenomenon results in a significant decrease in fuel meat thermal conductivity during irradiation. PIE has further shown that the fuel-matrix interaction rate is a sensitive function of irradiation temperature. The interplay between fuel temperature and fuel-matrix interaction makes the development of a simple empirical correlation between the two difficult. For this reason a comprehensive thermal model has been developed to calculate temperatures throughout the fuel plate over its lifetime, taking into account the changing volume fractions of fuel, matrix and reaction-product phases within the fuel meat owing to fuel-matrix interaction; this thermal model has been incorporated into the dispersion fuel performance code designated PLATE. Other phenomena important to fuel thermal performance that are also treated in PLATE include: gas generation and swelling in the fuel and reaction-product phases, incorporation of matrix aluminum into solid solution with the unreacted metallic fuel particles, matrix extrusion resulting from fuel swelling, and cladding corrosion. The phenomena modeled also make possible a prediction of fuel plate swelling. This paper presents a description of the models and empirical correlations employed within PLATE as well as validation of code predictions against fuel performance data for U-Mo experimental fuel plates from the RERTR-3 irradiation test. (author)

  11. Application of Hydroforming Process in Sheet Metal Formation

    OpenAIRE

    GRIZELJ, Branko; CUMIN, Josip; ERGIĆ, Todor

    2009-01-01

    This article deals with the theory and application of a hydroforming process. Nowadays automobile manufacturers use high strength sheet metal plates. This high strength steel sheet metal plates are strain hardened in the process of metal forming. With the use of high strength steel, cars are made lightweight, which is intended for low fuel consumption because of high energy prices. Some examples of application of a hydroforming process are simulated with FEM.

  12. Computer Simulation of Cure Process of an Axisymmetric Rubber Article Reinforced by Metal Plates Using Extended ABAQUS Code

    Directory of Open Access Journals (Sweden)

    M.H.R. Ghoreishy

    2013-01-01

    Full Text Available Afinite element model is developed for simulation of the curing process of a thick axisymmetric rubber article reinforced by metal plates during the molding and cooling stages. The model consists of the heat transfer equation and a newly developed kinetics model for the determination of the state of cure in the rubber. The latter is based on the modification of the well-known Kamal-Sourour model. The thermal contact of the rubber with metallic surfaces (inserts and molds and the variation of the thermal properties (conductivity and specific heat with temperature and state-of-cure are taken into consideration. The ABAQUS code is used in conjunction with an in-house developed user subroutine to solve the governing equations. Having compared temperature profile and variation of the state-of-cure with experimentally measured data, the accuracy and applicability of the model is confirmed. It is also shown that this model can be successfully used for the optimization of curing process which gives rise to reduction of the molding time.

  13. Development of cask body integrated with bottom plate

    International Nuclear Information System (INIS)

    Yoshida, Takuji; Sasaki, Tomoharu; Koyama, Yoichi; Kumagai, Yasuyuki; Watanabe, Yuichi; Takasa, Seiju

    2017-01-01

    The main parts of a metal cask for storage and transport of spent nuclear fuel consists of main body, neutron shield material and external cylinder. The forged main body has been manufactured as a cup shape by welding of 'forged body' and 'forged bottom plate' which are independently forged. JSW has developed the manufacturing technology of 'cask body integrated with bottom plate' which has no weld line with the goal of cost reduction, manufacturing period shortening and further reliability improvement. Manufacturing for the prototype of 'cask body integrated with bottom plate' has completed to verify mechanical properties and uniformity of the product which satisfy the specified values stipulated in JSME Code S FA1 2007 edition. Here, we report the manufacturing technology and obtained properties of 'cask body integrated with bottom plate'. (author)

  14. Using microalgae scenedesmus obliquus in the removal of chromium present in plating wastewaters

    International Nuclear Information System (INIS)

    Pellon, A.; Benitez, F.; Frades, J.; Garcia, L.; Cerpa, A.; Alguacil, F.

    2003-01-01

    Dumping wastewaters from plating industry with a high content in chromium is a potential hazard for people and environment. It is known that some metals, including the heavy metals, at low concentrations participate in different metabolic routes, but at high concentration are toxic for many living organisms. Some microorganism taking the heavy metals from the environment are capable of concentrating and accumulating large quantities of them in different citiplasmatic structures with no-toxic effects. Microalgaehave affinity by the polyvalent metals making possible their use as depollutant agent in waters that contains dissolved metallic ions as alternative methods when others methods of recycle are unusable. In this report a chromium removal study from a plating wastewater, using scenedesmus obliquus culture was made. The removal efficiency of Cr (VI) was 12% and Cr (III) was 27% and for condition of algae's immobilization removal of Cr (III) was 95%. (Author) 19 refs

  15. Performance Characterization of Loctite (Registered Trademark) 242 and 271 Liquid Locking Compounds (LLCs) as a Secondary Locking Feature for International Space Station (ISS) Fasteners

    Science.gov (United States)

    Dube, Michael J.; Gamwell, Wayne R.

    2011-01-01

    Several International Space Station (ISS) hardware components use Loctite (and other polymer based liquid locking compounds (LLCs)) as a means of meeting the secondary (redundant) locking feature requirement for fasteners. The primary locking method is the fastener preload, with the application of the Loctite compound which when cured is intended to resist preload reduction. The reliability of these compounds has been questioned due to a number of failures during ground testing. The ISS Program Manager requested the NASA Engineering and Safety Center (NESC) to characterize and quantify sensitivities of Loctite being used as a secondary locking feature. The findings and recommendations provided in this investigation apply to the anaerobic LLCs Loctite 242 and 271. No other anaerobic LLCs were evaluated for this investigation. This document contains the findings and recommendations of the NESC investigation

  16. Process Development And Simulation For Cold Fabrication Of Doubly Curved Metal Plate By Using Line Array Roll Set

    International Nuclear Information System (INIS)

    Shim, D. S.; Jung, C. G.; Seong, D. Y.; Yang, D. Y.; Han, J. M.; Han, M. S.

    2007-01-01

    For effective manufacturing of a doubly curved sheet metal, a novel sheet metal forming process is proposed. The suggested process uses a Line Array Roll Set (LARS) composed of a pair of upper and lower roll assemblies in a symmetric manner. The process offers flexibility as compared with the conventional manufacturing processes, because it does not require any complex-shaped die and loss of material by blank-holding is minimized. LARS allows flexibility of the incremental forming process and adopts the principle of bending deformation, resulting in a slight deformation in thickness. Rolls composed of line array roll sets are divided into a driving roll row and two idle roll rows. The arrayed rolls in the central lines of the upper and lower roll assemblies are motor-driven so that they deform and transfer the sheet metal using friction between the rolls and the sheet metal. The remaining rolls are idle rolls, generating bending deformation with driving rolls. Furthermore, all the rolls are movable in any direction so that they are adaptable to any size or shape of the desired three-dimensional configuration. In the process, the sheet is deformed incrementally as deformation proceeds simultaneously in rolling and transverse directions step by step. Consequently, it can be applied to the fabrication of doubly curved ship hull plates by undergoing several passes. In this work, FEM simulations are carried out for verification of the proposed incremental forming system using the chosen design parameters. Based on the results of the simulation, the relationship between the roll set configuration and the curvature of a sheet metal is determined. The process information such as the forming loads and torques acting on every roll is analyzed as important data for the design and development of the manufacturing system

  17. Displacement tracking in single human trabecula with metal-plated micro-spheres using X-ray radiography imaging

    International Nuclear Information System (INIS)

    Jiroušek, O; Kytýř, D; Doktor, T; Dammer, J; Krejčí, F

    2013-01-01

    This study presents an improved radiographic method for strain measurement in very small samples of a single trabeculae. X-ray micro-radiography was used to track the deformation behaviour of individual trabecula during mechanical loading. As the X-ray micro-radiography images of a single trabecula show no significant features applicable for digital image correlation (DIC) a random pattern of markers was created on the surfaces of the samples to improve the accuracy of tracking. Metal plated borosilicate glassmicro-spheres (mean diameter 10 μm) were used as the markers for trabecular displacement tracking. Two different X-ray imaging setups were used for this purpose. The specimens of isolated trabeculae were loaded by a micro-mechanical testing device developed with respect to radiographical observation. This compact device enables a high precision three-point bending measurement. The specimen was continuously irradiated during the loading procedure by a micro-focus X-ray source. The radiographs were acquired by a single-photon counting silicon pixel detector and s flat panel sensor with CsI flipped scintillator plate. Circular Hough transform was used to locate positions of the spherical markers in the sequence of acquired radiographs and to calculate the strain in the loaded sample. The gold-coated micro-spheres provide clearly visible features in the sequence of radiographs after beam hardening correction, which in conjunction with pattern recognition algorithm enables to substantially improve the accuracy of strain measurements.

  18. Energy Neutral Wireless Bolt for Safety Critical Fastening.

    Science.gov (United States)

    Seyoum, Biruk B; Rossi, Maurizio; Brunelli, Davide

    2017-09-26

    Thermoelectric generators (TEGs) are now capable of powering the abundant low power electronics from very small (just a few degrees Celsius) temperature gradients. This factor along with the continuously lowering cost and size of TEGs, has contributed to the growing number of miniaturized battery-free sensor modules powered by TEGs. In this article, we present the design of an ambient-powered wireless bolt for high-end electro-mechanical systems. The bolt is equipped with a temperature sensor and a low power RF chip powered from a TEG. A DC-DC converter interfacing the TEG with the RF chip is used to step-up the low TEG voltage. The work includes the characterizations of different TEGs and DC-DC converters to determine the optimal design based on the amount of power that can be generated from a TEG under different loads and at temperature gradients typical of industrial environments. A prototype system was implemented and the power consumption of this system under different conditions was also measured. Results demonstrate that the power generated by the TEG at very low temperature gradients is sufficient to guarantee continuous wireless monitoring of the critical fasteners in critical systems such as avionics, motorsport and aerospace.

  19. Energy Neutral Wireless Bolt for Safety Critical Fastening

    Directory of Open Access Journals (Sweden)

    Biruk B. Seyoum

    2017-09-01

    Full Text Available Thermoelectric generators (TEGs are now capable of powering the abundant low power electronics from very small (just a few degrees Celsius temperature gradients. This factor along with the continuously lowering cost and size of TEGs, has contributed to the growing number of miniaturized battery-free sensor modules powered by TEGs. In this article, we present the design of an ambient-powered wireless bolt for high-end electro-mechanical systems. The bolt is equipped with a temperature sensor and a low power RF chip powered from a TEG. A DC-DC converter interfacing the TEG with the RF chip is used to step-up the low TEG voltage. The work includes the characterizations of different TEGs and DC-DC converters to determine the optimal design based on the amount of power that can be generated from a TEG under different loads and at temperature gradients typical of industrial environments. A prototype system was implemented and the power consumption of this system under different conditions was also measured. Results demonstrate that the power generated by the TEG at very low temperature gradients is sufficient to guarantee continuous wireless monitoring of the critical fasteners in critical systems such as avionics, motorsport and aerospace.

  20. System Reliability of Timber Trusses Based on Non-Linear Structural Modelling

    DEFF Research Database (Denmark)

    Hansson, Martin; Ellegaard, Peter

    2006-01-01

    . In this paper, Monte Carlo simulations of a timber W-truss with punched metal plate fasteners (nail plates) are performed. Structural timber displays a significant variability in strength and stiffness both within and between members and is described by a statistic model calibrated against data from Norway......Structural design is today concerned with single component performance where each limit state is related to a single mode of failure of a single component. Further, in limit state codes the strength variables are related to a deterministic value (usually the 5-percentile). However, in a structure...... with a number of elements, two different effects (called system effects) can be found: - The probabilistic system effect that is based on the reduced probability that weak sections coincide with the most stressed sections. - Structural load-sharing that is the ability to redistribute load between members...

  1. Electroless plating technology of integral hohlraum Cu target

    International Nuclear Information System (INIS)

    Liu Jiguang; Fu Qu; Wan Xiaobo; Zhou Lan; Xiao Jiang

    2005-01-01

    The electroless plating method of making integral hohlraum Cu target and corrosion-resistant technology of target's surface were researched. The actual process was as follows, choosing plexiglass (PMMA) as arbor, taking cationic activation and electroless plating Cu on the arbor surface, taking arbor surface passivation and chemical etching by C 6 H 5 N 3 solution. The technology is easy to realize and its cost is lower, so it is of great reference value for fabricating other integral hohlraum metal or alloy targets used for inertial confinement fusion study. (author)

  2. Corrosion behaviour of metallic and non-metallic materials in various media in the Anhydrite and Gypsum Mine Felsenau/AG

    International Nuclear Information System (INIS)

    Laske, D.; Wiedemann, K.H.

    1983-10-01

    The final underground disposal of radioactive wastes necessitates container materials with a good long-term resistance against corrosion from both external agents and the solidification matrix inside. For low- and medium-level active waste, repositories in anhydrite sites, among others, are under consideration. Sheet and plate samples from 14 metallic and 8 non-metallic materials have been tested for 5 years in a tunnel in the Anhydrite and Gypsum Mine Felsenau/AG for their corrosion resistance in the tunnel atmosphere, anhydrite powder, gypsum powder, gypsum, and cement. From the metallic materials tested, only chromium-nickel steel is corrosion resistant to all the media present. Zinc plated and tin plated iron sheet as well as aluminium and aluminium alloys are corrosion resistant only in the atmosphere of the tunnel, and lead plated iron sheet is resistant also in cement. Aluminium is dissolved in cement. Uncovered iron sheet undergoes severe corrosion. The non-metallic coatings tested (lacquer, stove lacquer, or synthetic resins) partially flake off already after one year's testing and are therefore not appropriate for iron sheet corrosion protection. No influence of the different media has been observed after 5 years on the 8 plastic materials tested (6 without, and 2 with glass fiber reinforcement). (author)

  3. Investigations on the corrosion resistance of metallic bipolar plates (BPP) in proton exchange membrane fuel cells (PEMFC) - understanding the effects of material, coating and manufacturing

    Science.gov (United States)

    Dur, Ender

    Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems are promising technology for contributing to meet the deficiency of world`s clean and sustainable energy requirements in the near future. Metallic bipolar plate (BPP) as one of the most significant components of PEMFC device accounts for the largest part of the fuel cell`s stack. Corrosion for metallic bipolar plates is a critical issue, which influences the performance and durability of PEMFC. Corrosion causes adverse impacts on the PEMFC`s performance jeopardizing commercialization. This research is aimed at determining the corrosion resistance of metallic BPPs, particularly stainless steels, used in PEMFC from different aspects. Material selection, coating selection, manufacturing process development and cost considerations need to be addressed in terms of the corrosion behavior to justify the use of stainless steels as a BPP material in PEMFC and to make them commercially feasible in industrial applications. In this study, Ti, Ni, SS304, SS316L, and SS 430 blanks, and BPPs comprised of SS304 and SS316L were examined in terms of the corrosion behavior. SS316L plates were coated to investigate the effect of coatings on the corrosion resistance performance. Stamping and hydroforming as manufacturing processes, and three different coatings (TiN, CrN, ZrN) applied via the Physical Vapor Deposition (PVD) method in three different thicknesses were selected to observe the effects of manufacturing processes, coating types and coating thicknesses on the corrosion resistance of BPP, respectively. Uncoated-coated blank and formed BPP were subjected to two different corrosion tests: potentiostatic and potentiodynamic. Some of the substantial results: 1- Manufacturing processes have an adverse impact on the corrosion resistance. 2- Hydroformed plates have slightly higher corrosion resistance than stamped samples. 3- BPPs with higher channel size showed better corrosion resistance. 4- Since none of the uncoated samples

  4. International Thermonuclear Experimental Reactor (ITER) divertor plate performance and lifetime considerations

    International Nuclear Information System (INIS)

    Mattas, R.F.

    1990-03-01

    The ITER divertor plate performance during the technology phase of operation has been analyzed. High-Z materials, such as tungsten and tantalum, have been considered as plasma side materials, and refractory metal alloys, Ta-10W, TZM, Nb-1Zr, and V-15Cr-5Ti, plus copper alloys have been considered as the structural materials. The fatigue lifetime have been predicted for structural plates and for duplex plates with the plasma side material bonded to the structure. The results indicate that refractory alloys have a comparable or improved performance to copper alloys. Peak allowable heat fluxes for these analyses are in the range of 15--20 MW/m 2 for 2 mm thick structural plates and 7--11 MW/m 2 for 4 mm thick duplex plates. 4 refs., 55 figs., 6 tabs

  5. Evaluation of PEGIT duct connection system

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.; Brenner, Douglas E.; Sherman, Max H.; Dickerhoff, Darryl J.

    2003-08-01

    Most air duct system components are assembled in the field and are mechanically fastened by sheet metal screws (for sheet metal-to-sheet metal) or by drawbands (for flex duct-to-sheet metal). Air sealing is separate from this mechanical fastening and is usually achieved using tape or mastic products after mechanical fastening. Field observations have shown that mechanical fastening rarely meets code or manufacturers requirements and that sealing procedures are similarly inconsistent. To address these problems, Proctor Engineering Group (PEG) is developing a system of joining ducts (called PEGIT) that combines the mechanical fastening and sealing into a single self-contained procedure. The PEGIT system uses a shaped flexible seal between specially designed sheet metal duct fittings to both seal and fasten duct sections together. Figure 1 shows the inner duct fitting complete with rubber seal. This seal provides the air seal for the completed fitting and is shaped to allow the inner and outer fittings to slide together, and then to lock the fittings in place. The illustration in Figure 2 shows the approximate cross section of the rubber seal that shows how the seal has a lip that is angled backwards. This angled lip allows the joint to be pushed together by folding flat but then its long axis makes it stiff in the pulling apart direction. This study was undertaken to assist PEG in some of the design aspects of this system and to test the performance of the PEGIT system. This study was carried out in three phases. The initial phase evaluated the performance of a preliminary seal design for the PEGIT system. After the first phase, the seal was redesigned and this new seal was evaluated in the second phase of testing. The third phase performed more detailed testing of the second seal design to optimize the production tolerances of the sheet metal fittings. This report summarizes our findings from the first two phases and provides details about the third phase of testing.

  6. Immobilization of mesoporous silica particles on stainless steel plates

    International Nuclear Information System (INIS)

    Pasqua, Luigi; Morra, Marco

    2017-01-01

    A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.

  7. Immobilization of mesoporous silica particles on stainless steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Pasqua, Luigi, E-mail: luigi.pasqua@unical.it [University of Calabria, Department of Environmental and Chemical Engineering (Italy); Morra, Marco, E-mail: mmorra@nobilbio.com [Via Valcastellana 26 (Italy)

    2017-03-15

    A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.

  8. Laser Induced Selective Activation For Subsequent Autocatalytic Electroless Plating

    DEFF Research Database (Denmark)

    Zhang, Yang

    . The third hypothesis is that the activation and rinsing process can be described by diffusion. This hypothesis is proved using Fick’s diffusion laws combined with the short-time-plating experiment. The influence of laser parameters on the surface structure is investigated for Nd:YAG, UV, and fiber lasers......The subject of this PhD thesis is “Laser induced selective activation for subsequent autocatalytic electroless plating.” The objective of the project is to investigate the process chains for micro structuring of polymer surfaces for selective micro metallization. Laser induced selective activation...... (LISA) is introduced and studied as a new technique for producing 3D moulded interconnect devices (3D-MIDs). This technique enables the metallization of polymer surface modified by laser and subsequently activated by a PdCl2/SnCl2 system. Various technologies exist on an industrial level...

  9. 4. Seminar on efficient metal forming and machining: papers

    International Nuclear Information System (INIS)

    1982-01-01

    The 4th seminar on efficient metal forming and machining was held at the CSIR conference centre in Pretoria on 16 November 1982. This conference basically discussed the forming, fabrication and machining of metals which included the different methods used as well as new developments on tools manufacturing and their applications. The topics that were discussed cover subjects such as the creep feed grinding, thermal properties of coating materials and their effect on the efficiency of coated cutting tools, economic rough and finish milling, the design and application of high speed steel cutting tools, aluminium extrusion, the manufacturing and finishing of extrusion dies, broaching techniques, cold forming in the fastener industry, finishing methods for spiral, bevel and hypoid gears, laser cutting, press tool design, and productivity in the forging industry. Another topic that were discussed, is the current status of diamond and cubic boron nitride composites, their synthesis and roll in the production of a new range of ultra hard ceramic-type materials

  10. Fastener locking device for attaching guide thimble to fuel assembly bottom nozzle

    International Nuclear Information System (INIS)

    Widener, W.H.

    1987-01-01

    This patent describes a nuclear reactor fuel assembly including an end nozzle and at least one longitudinally-extending guide thimble projecting away from the end nozzle. The end nozzle has at least one passageway defined therethrough and a ledge defined within the passageway so as to face away from the guide thimble and divide the passageway into a first portion extending from the ledge toward the guide thimble. A second portion extends from the ledge away from the guide thimble. The second passageway portion has a larger cross-sectional size than the first passageway portion, the end nozzle also having recess means defined thereon in the second portion of the passageway. The guide thimble has an end disposed adjacent to the first portion of the passageway with threaded means defined thereon and a fastener locking device

  11. Explosive magnetic flux compression plate generators as fast high-energy power sources

    International Nuclear Information System (INIS)

    Caird, R.S.; Erickson, D.J.; Garn, W.B.; Fowler, C.M.

    1976-01-01

    A type of explosive driven generator, called a plate generator, is described. It is capable of delivering electrical energies in the MJ range at TW power levels. Plane wave detonated explosive systems accelerate two large-area metal plates to high opposing velocities. An initial magnetic field is compressed and the flux transferred to an external load. The characteristics of the plate generator are described and compared with those of other types of generators. Methods of load matching are discussed. The results of several high-power experiments are also given

  12. Fragmentation of Millimeter-Size Hypervelocity Projectiles on Combined Mesh-Plate Bumpers

    Directory of Open Access Journals (Sweden)

    Aleksandr Cherniaev

    2017-01-01

    Full Text Available This numerical study evaluates the concept of a combined mesh-plate bumper as a shielding system protecting unmanned spacecraft from small (1 mm orbital debris impacts. Two-component bumpers consisting of an external layer of woven mesh (aluminum or steel directly applied to a surface of the aluminum plate are considered. Results of numerical modeling with a projectile velocity of 7 km/s indicate that, in comparison to the steel mesh-combined bumper, the combination of aluminum mesh and aluminum plate provides better fragmentation of small hypervelocity projectiles. At the same time, none of the combined mesh/plate bumpers provide a significant increase of ballistic properties as compared to an aluminum plate bumper. This indicates that the positive results reported in the literature for bumpers with metallic meshes and large projectiles are not scalable down to millimeter-sized particles. Based on this investigation’s results, a possible modification of the combined mesh/plate bumper is proposed for the future study.

  13. Anchorage in concrete construction

    CERN Document Server

    Eligehausen, Rolf; Silva, John F

    2013-01-01

    A comprehensive treatment of current fastening technology using inserts (anchor channels, headed stud), anchors (metal expansion anchor, undercut anchor, bonded anchor, concrete screw and plastic anchor) as well as power actuated fasteners in concrete. It describes in detail the fastening elements as well as their effects and load-bearing capacities in cracked and non-cracked concrete. It further focuses on corrosion behaviour, fire resistance and characteristics with earthquakes and shocks. It finishes off with the design of fastenings according to the European Technical Approval Guideline (ETAG 001), the Final Draft of the CEN Technical Specification 'Design of fastenings for use in concrete' and the American Standards ACI 318-05, Appendix D and ACI 349-01, Appendix B.

  14. CHARACTERIZATION OF 6061 T651 ALUMINUM PLATES SUBJECTED TO HIGH-VELOCITY IMPACT LOADS

    Directory of Open Access Journals (Sweden)

    Evren ÖZŞAHİN

    2011-06-01

    Full Text Available Ballistic response of single or multi-layered metal armor systems subjected to kinetic energy pro-jectiles was investigated in many experimental, theoretical and numerical studies.In this study, 6061 T651 aluminum plates impacted by 9 mm bullets were investigated. Microstructural investigations have been carried out using optical microscopy. Microhardness values were used to determine the strength behavior of the plates. Influence of the plate thickness and impact velocity on the microstructure has been evaluated. It was concluded from the study that thinner plates are more prone to deformation hardening with high penetration depth values even at low impact velocities while thick plates are more susceptible to thermal softening with less penetration depths. Maximum hardness values were obtained just below the impact zone in both plate thicknesses.

  15. Divertor plate for thermonuclear reactor

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Sato, Keisuke; Nishio, Satoshi.

    1993-01-01

    In a divertor plate for a thermonuclear reactor, adjacent cooling pipes are electrically insulated from each other and pipes made of a gradient functional material prepared by compositing ceramics having an insulation property and metals are metallurgically joined to at least one portion of each of the cooling pipes. Electric current caused upon occurrence of plasma disruption is interrupted by the insulation portion, so that a large circuit is not formed and electromagnetic force is decreased to such a extent that the divertor plate is not ruptured. Since a header of the cooling pipes can be installed at any optional position, the installation space can be reduced. Further, since inlet and exit collection headers can be disposed on both ends of the cooling pipes, it is possible to shorten the length of the cooling pipe of the divertor plate corresponded to high heat fluxes and reduce the pressure loss on the side of coolants to about 1/2. Further, turn back portions of small radius of curvature of the cooling pipes are eliminated to reduce the cost and extend the lifetime and, in addition, protection tiles can be attached easily. (N.H.)

  16. Applying electric field to charged and polar particles between metallic plates: extension of the Ewald method.

    Science.gov (United States)

    Takae, Kyohei; Onuki, Akira

    2013-09-28

    We develop an efficient Ewald method of molecular dynamics simulation for calculating the electrostatic interactions among charged and polar particles between parallel metallic plates, where we may apply an electric field with an arbitrary size. We use the fact that the potential from the surface charges is equivalent to the sum of those from image charges and dipoles located outside the cell. We present simulation results on boundary effects of charged and polar fluids, formation of ionic crystals, and formation of dipole chains, where the applied field and the image interaction are crucial. For polar fluids, we find a large deviation of the classical Lorentz-field relation between the local field and the applied field due to pair correlations along the applied field. As general aspects, we clarify the difference between the potential-fixed and the charge-fixed boundary conditions and examine the relationship between the discrete particle description and the continuum electrostatics.

  17. Modeling particulate removal in plate-plate and wire-plate electrostatic precipitators

    Directory of Open Access Journals (Sweden)

    S Ramechecandane

    2016-09-01

    Full Text Available The present study is concerned with the modeling of electrically charged particles in a model plate-plate and a single wire-plate electrostatic precipitator (ESP. The particle concentration distributions for both a plate-plate and a wire-plate ESP are calculated using a modified drift flux model. Numerical investigations are performed using the modified drift flux model for particle number concentration, in addition to the RNG k - ε model for the mean turbulent flow field and the Poisson equation for the electric field. The proposed model and the outlined methodology for coupling the flow field, electric field, charging kinetics and particle concentration is applied to two model precipitators that are truly representative of a wide class of commercialized ESPs. The present investigation is quite different from the earlier studies as it does not make assumptions like a homogeneous electric field or an infinite turbulent diffusivity. The electric field calculated is a strong function of position and controls the migration velocity of particles. Hence, the proposed model can be implemented in a flow solver to obtain a full-fledged solution for any kind of ESP with no limitations on the particle number concentration, as encountered in a Lagrangian approach. The effect of turbulent diffusivity on particle number concentration in a plate-plate ESP is investigated in detail and the results obtained are compared with available experimental data. Similarly, the effect of particle size/diameter and applied electric potential on the accumulative collection performance in the case of a wire-plate ESP is studied and the results obtained are compared with available numerical data. The numerical results obtained using the modified drift flux model for both the plate-plate and wire-plate ESP are in close agreement with available experimental and numerical data.

  18. Elastoplastic Stability and Failure Analysis of FGM Plate with Temperature Dependent Material Properties under Thermomechanical Loading

    Directory of Open Access Journals (Sweden)

    Kanishk Sharma

    Full Text Available Abstract The present paper explores the stability and failure response of elastoplastic Ni/Al2O3 functionally graded plate under thermomechanical load using non-linear finite element formulation based on first-order shear deformation theory and von-Karman’s nonlinear kinematics. The temperature dependent thermoelastic material properties of FGM plate are varied in the thickness direction by controlling the volume fraction of the constituent materials (i.e., ceramic and metal with a power law, and Mori-Tanaka homogenization scheme is applied to evaluate the properties at a particular thickness coordinate of FGM plate. The elastoplastic behavior of FGM plate is assumed to follow J2-plasticity with isotropic hardening, wherein the ceramic phase is considered to be elastic whereas the metal is assumed to be elastic-plastic in accordance with the Tamura-Tomota-Ozawa model. Numerical studies are conducted to examine the effects of material and geometrical parameters, viz. material in-homogeneity, slenderness and aspect ratios on the elastoplastic bucking and postbuckling behavior and the failure response of FGM plate. It is revealed that material gradation affects the stability and failure behavior of FGM plate considerably. Furthermore, it is also concluded that FGM plate with elastic material properties exhibits only stable equilibrium path, whereas the elastoplastic FGM plate shows destabilizing response after the ultimate failure point.

  19. Metal/graphite - composites in fusion engineering

    International Nuclear Information System (INIS)

    Staffler, R.; Kneringer, G.; Kny, E.; Reheis, N.

    1995-01-01

    Metal/graphite composites have been well known in medical industry for many years. X-ray tubes used in modern radiography, particulary in computerized tomography are equipped with rotating targets able to absorb a maximum of heat in a given time. Modern rotating targets consist of a refractory metal/graphite composite. Today the use of graphite as a plasma facing material is one predominant concept in fusion engineering. Depending on the thermal load, the graphite components have to be directly cooled (i.e. divertor plates) or inertially cooled (i.e. firstwall tiles). In case of direct cooling a metallurgical joining such as high temperature brazing between graphite and a metalic cooling structure shows the most promising results /1/. Inertially cooled graphite tiles have to be joined to a metallic backing plate in order to get a stable attachment to the supporting structure. The main requirements on the metallic partner of a metal/graphite composite and in the first wall area are: high melting point, high thermal strength, high thermal conductivity, low vapour pressure and a thermal expansion matching that of graphite. These properties are typical for the refractory metals such as molybdenum, tungsten and their alloys. (author)

  20. Mikrospiegelanordnung

    OpenAIRE

    Hofmann, Ulrich; Senger, Frank

    2015-01-01

    The invention relates to a micro-mirror assembly, comprising a mirror plate (2) fastened to a substrate by means of spring elements, wherein a drive unit (9, 10) is associated with the mirror plate, which drive unit is designed to drive the mirror plate about at least one axis such that the mirror plate oscillates about said axis. The spring elements are designed as a plurality of spring ring frames (3) that surround the mirror plate (2) substantially in the mirror plate plane of the mirror p...

  1. Metal coatings for laser fusion targets by electroplating

    International Nuclear Information System (INIS)

    Illige, J.D.; Yu, C.M.; Letts, S.A.

    1980-01-01

    Metal coated laser fusion targets must be dense, uniform spherically symmetric to within a few percent of their diameters and smooth to better than a few tenths of a micron. Electroplating offers some unique advantages including low temperature deposition, a wide choice of elements and substantial industrial plating technology. We have evaluatd electroless and electroplating systems for gold and copper, identified the factors responsible for small grain size, and plated glass microspheres with both metals to achieve smooth surfaces and highly symmetric coatings. We have developed plating cells which sustain the microspheres in continuous random motion during plating. We have established techniques for deposition of the initial conductive adherent layer on the glass microsphere surface. Coatings as thick as 15 μm have been made. The equipment is simple, relatively inexpensive and may be adopted for high volume production of laser fusion targets

  2. Metal Deposition from Organic Solutions for Microelectronic Applications

    National Research Council Canada - National Science Library

    Dahlgren, E

    2001-01-01

    ... plating in aqueous solutions. This process was also shown to be capable of producing selectively deposited seed layers only on exposed reactive metal surfaces for subsequent electroless and electrolytic metal depositions...

  3. A metal support for mining drifts

    Energy Technology Data Exchange (ETDEWEB)

    Lopukhov, N M; Dolotkin, Yu N; Parfenov, Yu A; Verner, Yu V

    1982-01-01

    The invention relates to underground coal production; namely, the area of reinforcing development workings in gently sloping coal seams, notably workings with pillarless working of the columns. The proposed metal support for mining drifts includes props made of special sections and a roof timber with curved and straight sections; yieldability units; and a shoe. To raise the support's reliability and work safety as it is erected and removed, the shoe is made of firmly interconnected special cross sections; one of them has holes in the side walls, while the prop has a lug firmly fastened to it, situated in the special section and fixed in it by a pin installed in the holes of the lug and special profile with a clearance. The end of the roof timber has a guide trough at an angle to the prop's axis.

  4. Comparison of circummandibular wiring with resorbable bone plates in pediatric mandibular fractures

    OpenAIRE

    Saikrishna, D.; Gupta, Nimish

    2010-01-01

    Pediatric patients present a unique challenge to maxillofacial surgeons in terms of their treatment planning as well as in their functional and nutritional needs which are different from that of adult patients. Early literature has advocated conservative closed management of pediatric fractures to prevent complications. However recent advances in maxillofacial surgery has enabled us to use biodegradable plates and screws, which overcomes the limitations of metallic plates. We present a compar...

  5. Electroless Plating on Plastic Induced by Selective Laser Activation

    DEFF Research Database (Denmark)

    Zhang, Yang; Tang, Peter Torben; Hansen, Hans Nørgaard

    2009-01-01

    This paper presents a new method for selective micro metallization of polymers. A Nd:YAG laser is employed to draw patterns on polymer surfaces that are submerged in a liquid (usually water). After subsequent activation with palladium chloride and followed by auto-catalytic electroless plating, c...

  6. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software

    International Nuclear Information System (INIS)

    Lee, Young Han; Song, Ho-Taek; Kim, Sungjun; Suh, Jin-Suck; Park, Kwan Kyu

    2012-01-01

    To assess the usefulness of gemstone spectral imaging (GSI) dual-energy CT (DECT) with/without metal artefact reduction software (MARs). The DECTs were performed using fast kV-switching GSI between 80 and 140 kV. The CT data were retro-reconstructed with/without MARs, by different displayed fields-of-view (DFOV), and with synthesised monochromatic energy in the range 40-140 keV. A phantom study of size and CT numbers was performed in a titanium plate and a stainless steel plate. A clinical study was performed in 26 patients with metallic hardware. All images were retrospectively reviewed in terms of the visualisation of periprosthetic regions and the severity of beam-hardening artefacts by using a five-point scale. The GSI-MARs reconstruction can markedly reduce the metal-related artefacts, and the image quality was affected by the prosthesis composition and DFOV. The spectral CT numbers of the prosthesis and periprosthetic regions showed different patterns on stainless steel and titanium plates. Dual-energy CT with GSI-MARs can reduce metal-related artefacts and improve the delineation of the prosthesis and periprosthetic region. We should be cautious when using GSI-MARs because the image quality was affected by the prosthesis composition, energy (in keV) and DFOV. The metallic composition and size should be considered in metallic imaging with GSI-MARs reconstruction. circle Metal-related artefacts can be troublesome on musculoskeletal computed tomography (CT). circle Gemstone spectral imaging (GSI) with dual-energy CT (DECT) offers a novel solution circle GSI and metallic artefact reduction software (GSI-MAR) can markedly reduce these artefacts. circle However image quality is influenced by the prosthesis composition and other parameters. circle We should be aware about potential overcorrection when using GSI-MARs. (orig.)

  7. Comparison of circummandibular wiring with resorbable bone plates in pediatric mandibular fractures.

    Science.gov (United States)

    Saikrishna, D; Gupta, Nimish

    2010-06-01

    Pediatric patients present a unique challenge to maxillofacial surgeons in terms of their treatment planning as well as in their functional and nutritional needs which are different from that of adult patients. Early literature has advocated conservative closed management of pediatric fractures to prevent complications. However recent advances in maxillofacial surgery has enabled us to use biodegradable plates and screws, which overcomes the limitations of metallic plates. We present a comparison of two cases of parasymphysis fracture treated with circum-mandibular wiring and biodegradable plate fixation their outcome in terms of fracture healing and functional stability.

  8. The Introduction and Development of Plate Armour in Medieval Western Europe c. 1250-1350

    OpenAIRE

    Dowen, Keith

    2017-01-01

    European underwent a period of rapid development and experimentation in the century after c. 1250. Whilst very little physical material has survived from this time, artistic depictions, wills, inventories and contemporary accounts attest to the use of metal plate defences much earlier than has commonly been assumed. By the turn of the 14th century, all the major elements of plate armour had been developed; with the subsequent half century seeing an increase in the quantity of plate worn on th...

  9. Metallic witness packs for behind-armour debris characterization

    NARCIS (Netherlands)

    Verolme, J.L.; Szymczak, M.; Broos, J.P.F.

    1999-01-01

    For the experimental characterization of behind-armour debris so-called metallic witness packs can be used. A metallic witness pack consists of an array of metallic plates interspaced by polystyrene foam sheets. To quantify the fragment mass and velocity from the corresponding hole area and position

  10. Complication with Removal of a Lumbar Spinal Locking Plate

    Directory of Open Access Journals (Sweden)

    Brooke Crawford

    2015-01-01

    Full Text Available Introduction. The use of locking plate technology for anterior lumbar spinal fusion has increased stability of the vertebral fusion mass over traditional nonconstrained screw and plate systems. This case report outlines a complication due to the use of this construct. Case. A patient with a history of L2 corpectomy and anterior spinal fusion presented with discitis at the L4/5 level and underwent an anterior lumbar interbody fusion (ALIF supplemented with a locking plate placed anterolaterally for stability. Fifteen months after the ALIF procedure, he returned with a hardware infection. He underwent debridement of the infection site and removal of hardware. Results. Once hardware was exposed, removal of the locking plate screws was only successful in one out of four screws using a reverse thread screw removal device. Three of the reverse thread screw removal devices broke in attempt to remove the subsequent screws. A metal cutting drill was then used to break hoop stresses associated with the locking device and the plate was removed. Conclusion. Anterior locking plates add significant stability to an anterior spinal fusion mass. However, removal of this hardware can be complicated by the inherent properties of the design with significant risk of major vascular injury.

  11. Heterogeneous precipitation of silver nanoparticles on kaolinite plates

    International Nuclear Information System (INIS)

    Cabal, B; Moya, J S; Torrecillas, R; Malpartida, F

    2010-01-01

    Two different methods to obtain silver nanoparticles supported on kaolin crystals have been performed: the first one followed a thermal reduction and the second one a chemical reduction. In both cases, the silver nanoparticles with two different average particles size (ca.12 and 30 nm) were perfectly isolated and attached to the surface of the kaolin plates. The silver nanoparticles were localized mainly at the edge of the single crystal plates, the hydroxyl groups being the main centres of adsorption. The samples were fully characterized by XRD, UV-vis spectroscopy and TEM. The antimicrobial benefits of the composites were evaluated as antibacterial against common Gram-positive and Gram-negative bacteria, and antifungal activity against yeast. The results indicated a high antimicrobial activity for Escherichia coli JM 110 and Micrococcus luteus, while being inactive against yeast under our experimental conditions. The chemical analysis of Ag in the fermentation broths show that only a small portion of metal (<9 ppm) is released from the kaolin/metakaolin particles. Therefore, the risk of toxicity due to a high concentration of metal in the medium is minimized.

  12. Heterogeneous precipitation of silver nanoparticles on kaolinite plates.

    Science.gov (United States)

    Cabal, B; Torrecillas, R; Malpartida, F; Moya, J S

    2010-11-26

    Two different methods to obtain silver nanoparticles supported on kaolin crystals have been performed: the first one followed a thermal reduction and the second one a chemical reduction. In both cases, the silver nanoparticles with two different average particles size (ca.12 and 30 nm) were perfectly isolated and attached to the surface of the kaolin plates. The silver nanoparticles were localized mainly at the edge of the single crystal plates, the hydroxyl groups being the main centres of adsorption. The samples were fully characterized by XRD, UV-vis spectroscopy and TEM. The antimicrobial benefits of the composites were evaluated as antibacterial against common Gram-positive and Gram-negative bacteria, and antifungal activity against yeast. The results indicated a high antimicrobial activity for Escherichia coli JM 110 and Micrococcus luteus, while being inactive against yeast under our experimental conditions. The chemical analysis of Ag in the fermentation broths show that only a small portion of metal (<9 ppm) is released from the kaolin/metakaolin particles. Therefore, the risk of toxicity due to a high concentration of metal in the medium is minimized.

  13. Heterogeneous precipitation of silver nanoparticles on kaolinite plates

    Energy Technology Data Exchange (ETDEWEB)

    Cabal, B; Moya, J S [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 28049, Cantoblanco, Madrid (Spain); Torrecillas, R [Centro de Investigacion en Nanomateriales y NanotecnologIa (CINN), Consejo Superior de Investigaciones CientIficas (CSIC)-Universidad de Oviedo-UO-Principado de Asturias, Parque Tecnologico de Asturias, 33428, Llanera (Spain); Malpartida, F, E-mail: bcabal@icmm.csic.es [Centro Nacional de BiotecnologIa (CNB-CSIC), 28049, Cantoblanco, Madrid (Spain)

    2010-11-26

    Two different methods to obtain silver nanoparticles supported on kaolin crystals have been performed: the first one followed a thermal reduction and the second one a chemical reduction. In both cases, the silver nanoparticles with two different average particles size (ca.12 and 30 nm) were perfectly isolated and attached to the surface of the kaolin plates. The silver nanoparticles were localized mainly at the edge of the single crystal plates, the hydroxyl groups being the main centres of adsorption. The samples were fully characterized by XRD, UV-vis spectroscopy and TEM. The antimicrobial benefits of the composites were evaluated as antibacterial against common Gram-positive and Gram-negative bacteria, and antifungal activity against yeast. The results indicated a high antimicrobial activity for Escherichia coli JM 110 and Micrococcus luteus, while being inactive against yeast under our experimental conditions. The chemical analysis of Ag in the fermentation broths show that only a small portion of metal (<9 ppm) is released from the kaolin/metakaolin particles. Therefore, the risk of toxicity due to a high concentration of metal in the medium is minimized.

  14. Sources of heavy metal contamination in Swedish wood waste used for combustion

    International Nuclear Information System (INIS)

    Krook, J.; Martensson, A.; Eklund, M.

    2006-01-01

    In this paper, wood waste (RWW) recovered for heat production in Sweden was studied. Previous research has concluded that RWW contains elevated amounts of heavy metals, causing environmental problems during waste management. This study extends previous work on RWW by analysing which pollution sources cause this contamination. Using existing data on the metal contents in various materials, and the amounts of these materials in RWW, the share of the elevated amounts of metals in RWW that these materials explain was quantified. Six different materials occurring in RWW were studied and the results show that they explain from 70% to 100% of the amounts of arsenic, chromium, lead, copper and zinc in RWW. The most important materials contributing to contamination of RWW are surface-treated wood, industrial preservative-treated wood, plastic and galvanised fastening systems. These findings enable the development and evaluation of strategies aiming to decrease pollution and resource loss from handling RWW. It is argued that source separation and measures taken further downstream from the generation site, such as treatment, need to be combined to substantially decrease the amount of heavy metals in RWW

  15. Transition radiation on semi-infinite plate and Smith-Purcell effect

    International Nuclear Information System (INIS)

    Shul'ga, N F; Syshchenko, V V

    2010-01-01

    The Smith-Purcell radiation is usually measured when an electron passes over the grating of metallic stripes. However, for high frequencies (exceeding the plasma frequency of the grating material) none material could be treated as a conductor, but ought to be considered as a dielectric with plasma-like permittivity. So for describing Smith-Purcell radiation in the range of high frequencies new theoretical approaches are needed. In the present paper we apply the simple variant of eikonal approximation developed earlier to the case of radiation on the set of parallel semi-infinite dielectric plates. The formulae obtained describe the radiation generated by the particles both passing through the plates (traditionally referred as 'transition radiation') and moving in vacuum over the grating formed by the edges of the plates (traditionally referred as 'diffraction radiation', and, taking into account the periodicity of the plates arrangement, as Smith-Purcell radiation).

  16. Metallic stereostructured layer: An approach for broadband polarization state manipulation

    International Nuclear Information System (INIS)

    Xiong, Xiang; Hu, Yuan-Sheng; Jiang, Shang-Chi; Hu, Yu-Hui; Fan, Ren-Hao; Ma, Guo-Bin; Shu, Da-Jun; Peng, Ru-Wen; Wang, Mu

    2014-01-01

    In this letter, we report a full-metallic broadband wave plate assembled by standing metallic L-shaped stereostructures (LSSs). We show that with an array of LSSs, high polarization conversion ratio is achieved within a broad frequency band. Moreover, by rotating the orientation of the array of LSSs, the electric components of the reflection beam in two orthogonal directions and their phase difference can be independently tuned. In this way, all the polarization states on the Poincaré sphere can be realized. As examples, the functionalities of a quarter wave plate and a half wave plate are experimentally demonstrated with both reflection spectra and focal-plane-array imaging. Our designing provides a unique approach in realizing the broadband wave plate to manipulate the polarization state of light

  17. Wet-process Fabrication of Low-cost All-solid Wire-shaped Solar Cells on Manganese-plated Electrodes

    International Nuclear Information System (INIS)

    Fan, Xing; Zhang, Xiaoying; Zhang, Nannan; Cheng, Li; Du, Jun; Tao, Changyuan

    2015-01-01

    Highlights: • All-solid wire-shaped flexible solar cells are firstly assembled on low-cost Mn-plated fibers. • Energy efficiency improved by >27% after coating a layer of Mn on various substrates. • The cell is fabricated via wet process under low temperature and mild pH conditions. • Stable flexible solar cells are realized on lightweight and low-cost polymer fiber. - Abstract: All-solid wire-shaped flexible solar cells are assembled for the first time on low-cost Mn-plated wires through wet-process fabrication under low temperature and mild pH conditions. With a price cheap as the steel, metal Mn can be easily plated on almost any substrates, and evidently promote the photovoltaic efficiency of wire-shaped solar cells on various traditional metal wire substrates, such as Fe and Ti, by 27% and 65%, respectively. Flexible solar cell with much lower cost and weight is assembled on Mn-plated polymer substrate, and is still capable of giving better performance than that on Fe or Ti substrate. Both its mechanical and chemical stability are good for future weaving applications. Owing to the wire-type structure, such low-cost metals as Mn, which are traditionally regarded as unsuitable for solar cells, may provide new opportunities for highly efficient solar cells

  18. An experimental attenuation plate to improve the dose distribution in intraoperative electron beam radiotherapy for breast cancer.

    Science.gov (United States)

    Oshima, T; Aoyama, Y; Shimozato, T; Sawaki, M; Imai, T; Ito, Y; Obata, Y; Tabushi, K

    2009-06-07

    Intraoperative electron beam radiotherapy (IOERT) is a technique in which a single-fraction high dose is intraoperatively delivered to subclinical tumour cells using an electron beam after breast-conserving surgery. In IOERT, an attenuation plate consisting of a pair of metal disks is commonly used to protect the normal tissues posterior to the breast. However, the dose in front of the plate is affected by backscatter, resulting in an unpredictable delivered dose to the tumour cells. In this study, an experimental attenuation plate, termed a shielding plate, was designed using Monte Carlo simulation, which significantly diminished the electron beam without introducing any backscatter radiation. The plate's performance was verified by measurements. It was made of two layers, a first layer (source side) of polymethyl methacrylate (PMMA) and a second layer of copper, which was selected from among other metals (aluminium, copper and lead) after testing for shielding capability and the range and magnitude of backscatter. The optimal thicknesses of the PMMA (0.71 cm) and copper (0.3 cm) layers were determined by changing their thicknesses during simulations. On the basis of these results, a shielding plate was prototyped and depth doses with and without the plate were measured by radiophotoluminescence glass dosimeters using a conventional stationary linear accelerator and a mobile linear accelerator dedicated for IOERT. The trial shielding plate functioned as intended, indicating its applicability in clinical practice.

  19. Development of Live-working Robot for Power Transmission Lines

    Science.gov (United States)

    Yan, Yu; Liu, Xiaqing; Ren, Chengxian; Li, Jinliang; Li, Hui

    2017-07-01

    Dream-I, the first reconfigurable live-working robot for power transmission lines successfully developed in China, has the functions of autonomous walking on lines and accurately positioning. This paper firstly described operation task and object of the robot; then designed a general platform, an insulator replacement end and a drainage plate bolt fastening end of the robot, presented a control system of the robot, and performed simulation analysis on operation plan of the robot; and finally completed electrical field withstand voltage tests in a high voltage hall as well as online test and trial on actual lines. Experimental results show that by replacing ends of manipulators, the robot can fulfill operation tasks of live replacement of suspension insulators and live drainage plate bolt fastening.

  20. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    Directory of Open Access Journals (Sweden)

    Koray Yurtisik

    2013-09-01

    Full Text Available Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex microstructure without compromising the welding efficiency. 11.1 mm-thick standard duplex stainless steel plates were joined in a single-pass using this novel technique. Same plates were also subjected to conventional gas metal arc and plasma arc welding processes, providing benchmarks for the investigation of the weldability of the material. In the first place, the hybrid welding process enabled us to achieve less heat input compared to gas metal arc welding. Consequently, the precipitation of secondary phases, which are known to be detrimental to the toughness and corrosion resistance of duplex stainless steels, was significantly suppressed in both fusion and heat affected zones. Secondly, contrary to other keyhole techniques, proper cooling time and weld metal chemistry were achieved during the process, facilitating sufficient reconstructive transformation of austenite in the ferrite phase.

  1. The Use of Explosive Forming for Fastening and Joining Structural and Pressure Components

    Science.gov (United States)

    Schroeder, J. W.

    1985-01-01

    Explosive expansion of tubes into tubesheets has been used for over 20 years in the fabrication and repair of shell and tube heat exchangers. The use of explosives to perform these expansions has offered several distinct advantages over other methods. First, the process is fast and economical and can be performed with minimal training of personnel. Secondly, explosive forming does not cause the deleterious metallurgical effects which often result from other forming operations. In addition, the process can be performed remotely without the need for sophisticated handling equipment. The expansion of tubes into tubesheets is only one of many possible fastening and joining applications for which explosive forming can be used to achieve highly successful results. The explosive forming process and where it has been used are described. In addition, some possible adaptations to other joining applications are identified and discussed.

  2. Experimental investigation of the unsteady two-phase flow through perforated plates

    International Nuclear Information System (INIS)

    Tartaglia, G.P.

    1985-07-01

    The coolant flow across the perforated dip-plate during a hypothetical core disruptive accident (HCDA) in a liquid metal fast breeder reactor was simulated in a one-dimensional model. Experiments with a water-air mixture as fluid were run by varying the following parameters: geometry of the dip-plate (perforation ratio, number of the holes), height of the fluid head over the dip-plate, air volumetric fraction, size of the air bubbles, acceleration of the fluid. The pressure drop across the dip-plate, the forces acting on the dip-plate and on the upper plate, acceleration and displacement of the piston, the air volumetric fraction and the size of the air bubbles were measured in a wide range of Strouhal and acceleration numbers. The flow pattern downstream the dip-plate was filmed with a high-speed camera. The following correlations were investigated: resistance coefficients as a function of the acceleration and Strouhal number, time delay of the force on the upper plate as a function of the cavitation number, and forces and impulses acting on the upper plate compared with those acting on the dip-plate. Finally, using high-speed film pictures, the formation of fluid jets downstream the dip-plate was investigated. The following relations were obtained: displacement of the mixture surface and of the jets as a function of the perforation ratio and of the air volumetric fraction, and cavitation volume as a function of the cavitation number. (orig.) [de

  3. Review on Electroless Plating Ni-P Coatings for Improving Surface Performance of Steel

    Science.gov (United States)

    Zhang, Hongyan; Zou, Jiaojuan; Lin, Naiming; Tang, Bin

    2014-04-01

    Electroless plating has been considered as an effective approach to provide protection and enhancement for metallic materials with many excellent properties in engineering field. This paper begins with a brief introduction of the fundamental aspects underlying the technological principles and conventional process of electroless nickel-phosphorus (Ni-P) coatings. Then this paper discusses different electroless nickel plating, including binary plating, ternary composite plating and nickel plating with nanoparticles and rare earth, with the intention of improving the surface performance on steel substrate in recent years in detail. Based on different coating process, the varied features depending on the processing parameters are highlighted. Separately, diverse preparation techniques aiming at improvement of plating efficiency are summarized. Moreover, in view of the outstanding performance, such as corrosion resistance, abrasive resistance and fatigue resistance, this paper critically reviews the behaviors and features of various electroless coatings under different conditions.

  4. Metal/graphite - composites in fusion engineering

    International Nuclear Information System (INIS)

    Staffler, R.; Kneringer, G.; Kny, E.; Reheis, N.

    1989-01-01

    Metal/graphite composites have been well known in medical industry for many years. X-ray tubes used in modern radiography, particularly in computerized tomography are equipped with rotating targets able to absorb a maximum of heat in a given time. Modern rotating targets consist of a refractory metal/graphite composite. Today the use of graphite as a plasma facing material is one predominant concept in fusion engineering. Depending on the thermal load, the graphite components have to be directly cooled (i.e. divertor plates) or inertially cooled (i.e. firstwall tiles). In case of direct cooling a metallurgical joining such as high temperature brazing between graphite and a metallic cooling structure shows the most promising results /1/. Inertially cooled graphite tiles have to be joined to a metallic backing plate in order to get a stable attachment to the supporting structure. The main requirements on the metallic partner of a metal/graphite composite used in the first wall area are: high melting point, high thermal strength, high thermal conductivity, low vapor pressure and a thermal expansion matching that of graphite. These properties are typical for the refractory metals such as molybdenum, tungsten and their alloys. 4 refs., 13 figs., 1 tab

  5. Highly conductive thermoplastic composite blends suitable for injection molding of bipolar plates

    International Nuclear Information System (INIS)

    Mighri, F.; Huneault, M.A.; Champagne, M.F.

    2003-01-01

    This study aimed at developing highly conductive, lightweight, and low-cost bipolar plates for use in proton exchange membranes (PEM) fuel cells. Injection and compression molding of highly filled polypropylene, PP, and polyphenylene sulfide, PPS, based blends were used as a mean for mass production of bipolar plates. Loadings up to 60-wt% in the form of graphite, conductive carbon black and carbon fibers were investigated. The developed formulations have a combination of properties and processability suitable for bipolar plate manufacturing, such as good chemical resistance, sufficient fluidity, and good electrical and thermal conductivity. Electrical resistivities around 0.15 and 0.09 Ohm-cm were respectively achieved for the PP and PPS-based blends, respectively. Two bipolar plate designs were successfully fabricated by molding the gas flow channels over aluminum plates to form a metallic/polymer composite plate, or simply by direct injection molding of the conductive polymer composite. For the first design, overall plate resistivities of 0.2 and 0.1 Ohm-cm were respectively attained using PP and PPS based blends as conductive skin. A lower volume resistivity of around 0.06 Ohm-cm was attained for the second injected plate design with PPS based blend. (author)

  6. Hydrodynamics of a flexible plate between pitching rigid plates

    Science.gov (United States)

    Kim, Junyoung; Kim, Daegyoum

    2017-11-01

    The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.

  7. Galvanic corrosion study of aluminium alloy plates mounted to stainless and mild steel bolts by accelerated exposure test

    OpenAIRE

    MREMA, Emmanuel; ITOH, Yoshito; KANEKO, Akira; HIROHATA, Mikihito

    2016-01-01

    Despite the fact that aluminium alloy members have a proven durability over stainless steel members, their joint fasteners like bolts, nuts and washers are drawn from steel material due to aluminium alloy inferior mechanical properties. Bare contact between aluminium alloy members and stainless steel fasteners results to galvanic corrosion of aluminium alloy members. A corrosion behaviour study was carried out on different aluminium alloy types with different surface treatments mounted to sta...

  8. Mathematical Modeling of Metal Active Gas (MAG) Arc Welding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the present paper, a numerical model for MAG (metal active gas) arc welding of thin plate has been developed. In MAG arc welding, the electrode wire is melted and supplied into the molten pool intermittently. Accordingly, it is assumed on the modeling that the thermal energy enters the base-plates through two following mechanisms, i.e., direct heating from arc plasma and “indirect” heating from the deposited metal. In the second part of the paper, MAG arc welding process is numerically analyzed by using the model, and the calculated weld bead dimension and surface profile have been compared with the experimental MAG welds on steel plate. As the result, it is made clear that the model is capable of predicting the bead profile of thin-plate MAG arc welding , including weld bead with undercutting.

  9. Assessment of heavy metals introduced into food through milling process: health implications

    International Nuclear Information System (INIS)

    Adeti, P.J.

    2015-07-01

    The present study was conducted to characterised and assesss heavy metal contamination in food through milling process and their health implications. Grinding plate made from Ghana, India and Nigeria purchased from the Ghanaian open market were used for this work. Maize from the same farm was milled into flour using the three grinding plate inserted into three different corn milling machines operating on commercial bases. Th first grinding was done immediately after the insertion of the newly sharpened plates into the machines. The plates were left for continuous daily usage. Subsequent milling of the maize was done after intervals of one month. The grinding plates and maize flour was analysed using Atomic absorption spectrophometer (AAS). The resultes recorded indicated that the heavy metals content o the Ghanaian, Indian and Nigerian made plates had the e similar metal contents but varied in terms of the individual metal concentrations. Flour from the Ghanaian made plates had the highest level of contaminants with the least from that of the Indian made plates. Generally, the highest levels of contamination were observed in the fist milling for the three plates as compared to the three subsequent milling at monthly interval. The contamination levels showed a decreasing trend from the first month (first milling ) to the fourth month (fourth milling). Cu, Cr and Ni showed concentrations above the permissible limit set by FAO/WHO in milled maize using Ghanaian made plate. Copper (Cu) recorded a concentration value between 15.04 mg/kg to 10.21mg.kg, 11.25 mg/kg to 9.13mg/kg and 10.36mg/kg and 9.68mg/kg using the Ghanaian-, Indian and Nigerian made plate respectively. Chromium (Cr) recorded a concentration between 1.51 mg/kg to 0.96 mg/kg, 1.03mg/kg to 0.91 mg/kg and 0.98mg/kg to 0.80 mg/kg using Ghanaian-, Indian and Nigerian made plates respectively. Nickel (Ni) recorded a concentration value between 23.23 mg/kg to 10.43 mg/kg, 11.46mg/kg to 10.43 mg/kg and 12.55 mg

  10. The Investigation of Field Plate Design in 500 V High Voltage NLDMOS

    Directory of Open Access Journals (Sweden)

    Donghua Liu

    2015-01-01

    Full Text Available This paper presents a 500 V high voltage NLDMOS with breakdown voltage (VBD improved by field plate technology. Effect of metal field plate (MFP and polysilicon field plate (PFP on breakdown voltage improvement of high voltage NLDMOS is studied. The coeffect of MFP and PFP on drain side has also been investigated. A 500 V NLDMOS is demonstrated with a 37 μm drift length and optimized MFP and PFP design. Finally the breakdown voltage 590 V and excellent on-resistance performance (Rsp = 7.88 ohm * mm2 are achieved.

  11. Comparative thermal buckling analysis of functionally graded plate

    Directory of Open Access Journals (Sweden)

    Čukanović Dragan V.

    2017-01-01

    Full Text Available A thermal buckling analysis of functionally graded thick rectangular plates accord¬ing to von Karman non-linear theory is presented. The material properties of the functionally graded plate, except for the Poisson’s ratio, were assumed to be graded in the thickness direction, according to a power-law distribution, in terms of the volume fractions of the metal and ceramic constituents. Formulations of equilibrium and stability equations are derived using the high order shear deformation theory based on different types of shape functions. Analytical method for determination of the critical buckling temperature for uniform increase of temperature, linear and non-linear change of temperature across thickness of a plate is developed. Numeri¬cal results were obtained in МATLAB software using combinations of symbolic and numeric values. The paper presents comparative results of critical buckling tempera¬ture for different types of shape functions. The accuracy of the formulation presented is verified by comparing to results available from the literature.

  12. A high-quality narrow passband filter for elastic SV waves via aligned parallel separated thin polymethylmethacrylate plates

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2017-08-01

    Full Text Available We designed a high-quality filter that consists of aligned parallel polymethylmethacrylate (PMMA thin plates with small gaps for elastic SV waves propagate in metals. Both the theoretical model and the full numerical simulation show the transmission spectrum of the elastic SV waves through such a filter has several sharp peaks with flawless transmission within the investigated frequencies. These peaks can be readily tuned by manipulating the geometry parameters of the PMMA plates. Our investigation finds that the same filter performs well for different metals where the elastic SV waves propagated.

  13. 29 CFR 1926.307 - Mechanical power-transmission apparatus.

    Science.gov (United States)

    2010-07-01

    ... fastened with metal in any case, nor with any other fastening which by construction or wear will constitute..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926... belt and pulley guard. (3) For the Textile Industry, because of the presence of excessive deposits of...

  14. COMPARATIVE FIELD EXPERIMENTAL INVESTIGATIONS OF DIFFERENT FLAT PLATE SOLAR COLLECTORS

    Directory of Open Access Journals (Sweden)

    Guangming Chen

    2015-12-01

    Full Text Available Full-scale traditional metal solar collectors and solar collector specimens fabricated from polymeric materials were investigated in the present study. A polymeric collector is 67.8% lighter than a traditional metal solar collector, and a metal solar collector with transparent plastic covering is 40.3% lighter than a traditional metal solar collector. Honeycomb multichannel plates made from polycarbonate were chosen to create a polymeric solar collector. A test rig for the natural circulation of the working fluid in a solar collector was built for a comparative experimental investigation of various solar collectors operating at ambient conditions. It was shown experimentally that the efficiency of a polymeric collector is 8–15% lower than the efficiency of a traditional collector.

  15. Transparent metals for ultrabroadband electromagnetic waves.

    Science.gov (United States)

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Li, Jia; Liu, Yongmin; Hu, Qing; Wang, Mu; Zhang, Xiang

    2012-04-17

    Making metals transparent, which could lead to fascinating applications, has long been pursued. Here we demonstrate that with narrow slit arrays metallic plates become transparent for extremely broad bandwidths; the high transmission efficiency is insensitive to the metal thickness. This work provides a guideline to develop novel devices, including transparent conducting panels, broadband metamaterials, and antireflective solar cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Dynamic temperature field in the ferromagnetic plate induced by moving high frequency inductor

    Directory of Open Access Journals (Sweden)

    Milošević-Mitić Vesna

    2014-01-01

    Full Text Available The subject of the paper is the temperature distribution in the thin metallic ferromagnetic plate influenced by moving linear high frequency induction heater. As a result of high frequency electromagnetic field, conducting currents appear in the part of the plate. Distribution of the eddy-current power across the plate thickness is obtained by use of complex analysis. The influences of the heater frequency, magnetic field intensity and plate thickness on the heat power density were discussed. By treating this power as a moving heat source, differential equations governing distribution of the temperature field are formulated. Temperature across the plate thickness is assumed to be in linear form. Differential equations are analytically solved by using integral-transform technique, Fourier finite-sine and finite-cosine transform and Laplace transform. The influence of the heater velocity to the plate temperature is presented on numerical examples based on theoretically obtained results. [Projekat Ministarstva nauke Republike Srbije, br. TR 35040 i br. TR 35011

  17. Distal radius plate of CFR-PEEK has minimal effect compared to titanium plates on bone parameters in high-resolution peripheral quantitative computed tomography: a pilot study.

    Science.gov (United States)

    de Jong, Joost J A; Lataster, Arno; van Rietbergen, Bert; Arts, Jacobus J; Geusens, Piet P; van den Bergh, Joop P W; Willems, Paul C

    2017-02-27

    Carbon-fiber-reinforced poly-ether-ether-ketone (CFR-PEEK) has superior radiolucency compared to other orthopedic implant materials, e.g. titanium or stainless steel, thus allowing metal-artifact-free postoperative monitoring by computed tomography (CT). Recently, high-resolution peripheral quantitative CT (HRpQCT) proved to be a promising technique to monitor the recovery of volumetric bone mineral density (vBMD), micro-architecture and biomechanical parameters in stable conservatively treated distal radius fractures. When using HRpQCT to monitor unstable distal radius fractures that require volar distal radius plating for fixation, radiolucent CFR-PEEK plates may be a better alternative to currently used titanium plates to allow for reliable assessment. In this pilot study, we assessed the effect of a volar distal radius plate made from CFR-PEEK on bone parameters obtained from HRpQCT in comparison to two titanium plates. Plates were instrumented in separate cadaveric human fore-arms (n = 3). After instrumentation and after removal of the plates duplicate HRpQCT scans were made of the region covered by the plate. HRpQCT images were visually checked for artifacts. vBMD, micro-architectural and biomechanical parameters were calculated, and compared between the uninstrumented and instrumented radii. No visible image artifacts were observed in the CFR-PEEK plate instrumented radius, and errors in bone parameters ranged from -3.2 to 2.6%. In the radii instrumented with the titanium plates, severe image artifacts were observed and errors in bone parameters ranged between -30.2 and 67.0%. We recommend using CFR-PEEK plates in longitudinal in vivo studies that monitor the healing process of unstable distal radius fractures treated operatively by plating or bone graft ingrowth.

  18. Separating and recycling metals from mixed metallic particles of crushed electronic wastes by vacuum metallurgy.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2009-09-15

    During the treatment of electronic wastes, a crushing process is usually used to strip metals from various base plates. Several methods have been applied to separate metals from nonmetals. However, mixed metallic particles obtained from these processes are still a mixture of various metals, including some toxic heavy metals such as lead and cadmium. With emphasis on recovering copper and other precious metals, there have hitherto been no satisfactory methods to recover these toxic metals. In this paper, the criterion of separating metals from mixed metallic particles by vacuum metallurgy is built. The results show that the metals with high vapor pressure have been almost recovered completely, leading to a considerable reduction of environmental pollution. In addition, the purity of copper in mixed particles has been improved from about 80 wt % to over 98 wt %.

  19. Electron beam welding of the dissimilar Zr-based bulk metallic glass and Ti metal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonghyun [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)], E-mail: joindoc@kumamoto-u.ac.jp; Kawamura, Y. [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)

    2007-04-15

    We successfully welded 3 mm thick Zr{sub 41}Be{sub 23}Ti{sub 14}Cu{sub 12}Ni{sub 10} bulk metallic glass plate to Ti metal by electron beam welding with a beam irradiated 0.4 mm on the BMG side of the interface. There was no crystallization or defects in the weld because changes in the chemical composition of the weld metal were prevented. Bending showed that the welded sample had a higher strength than the Ti base metal. The interface had a 10 {mu}m thick interdiffusion layer of Zr and Ti.

  20. Removal of dissolved heavy metals and radionuclides by microbial spores

    International Nuclear Information System (INIS)

    Revis, N.W.; Hadden, C.T.; Edenborn, H.

    1997-01-01

    Microbial systems have been shown to remove specific heavy metals from contaminated aqueous waste to levels acceptable to EPA for environmental release. However, systems capable of removing a variety of heavy metals from aqueous waste to environmentally acceptable levels remain to be reported. The present studies were performed to determine the specificity of spores of the bacterium Bacillus megaterium for the adsorption of dissolved metals and radionuclides from aqueous waste. The spores effectively adsorbed eight heavy metals from a prepared metal mix and from a plating rinse waste to EPA acceptable levels for waste water. These results suggest that spores have multiple binding sites for the adsorption of heavy metals. Spores were also effective in adsorbing the radionuclides 85 strontium and 197 cesium. The presence of multiple sites in spores for the adsorption of heavy metals and radionuclides makes this biosorbent a good candidate for the treatment of aqueous wastes associated with the plating and nuclear industries. 17 refs., 4 tabs

  1. A Development of Force Plate for Biomechanics Analysis of Standing and Walking

    Science.gov (United States)

    Wardoyo, S.; Hutajulu, P. T.; Togibasa, O.

    2016-08-01

    Force plates are known as an excellent teaching aid to demonstrate the kinematics and dynamics of motion and commonly used in biomechanics laboratories to measure ground forces involved in the motion of human. It is consist of a metal plate with sensors attached to give an electrical output proportional to the force on the plate. Moreover, force plates are useful for examining the kinetic characteristics of an athlete's movement. They provide information about the external forces involved in movement that can aid a coach or sports scientist to quantitatively evaluate the athlete's skill development. In this study, we develop our prototype of force plate with less than 100,- simply by using flexible force transducer attached inside rubber matt, in the form of square blocks (dimension: 250 mm × 150 mm × 10 mm), with maximum load up to 60 kg. The handmade force plate was tested by applying biomechanics analysis for standing and walking. The testing was done on Experimental Soccer Courses’ students at the Department of Physical Education, Health and Recreation, University of Cenderawasih. The design of the force plate system together with biomechanics analysis will be discussed.

  2. Experimental and numerical study on penetration of micro/nano diamond particle into metal by underwater shock wave

    Directory of Open Access Journals (Sweden)

    S Tanaka

    2016-09-01

    Full Text Available In order to develop composite materials, new attempting was conducted. When an explosive is exploded in water, underwater shock wave is generated. Metal plate is accelerated by the underwater shock wave and collided with diamond particles at high velocity. In this paper, pure aluminum and magnesium alloy plates are used as matrix. Micro and nano sized diamond particles were used as reinforcement. Micro diamond particles were closely coated on metal surface. Some of micro diamond particles were penetrated into aluminum. Improvement of base metal property (wearing resistance was verified by wear test for recovering metal plate. In order to confirm the deformation of the aluminum plate during the collision with diamond particles, simplified numerical simulation was conducted by using LS-DYNA software. From the result of numerical simulation, large deformation of aluminum and process of particle penetration were verified.

  3. 77 FR 36428 - Amendment to the International Traffic in Arms Regulations: Definition for “Specially Designed”

    Science.gov (United States)

    2012-06-19

    ... Commerce Control List, such as threaded fasteners (e.g., screws, bolts, nuts, nut plates, studs, inserts... excluding from control simple or multi-use parts such as springs, bolts, and rivets, and other types of...

  4. Production and repair of metal supports as an indispensable activity of the Georgi Dimitrov mining and power combine

    Energy Technology Data Exchange (ETDEWEB)

    Mladenov, O

    1979-07-01

    Georgi Dimitrov underground mines have favoured metal supports over concrete slabs and timber since 1972 because of their well known advantages and because metal supports lend themselves to easy handling by 4-PU combines and 1PNB-2 loading machines. To eliminate bottlenecks and high costs of procurement from a central base individual mines were charged with production of their own metal supports. This resulted in some new developments, for example, in the production of supports with a 3.16 times greater capacity in the Marshall Tolbukhin and Al. Milenov mines in 1978. Hydraulic presses are generally used to produce conventional arch and ring type supports, and the Polish make PHPG-100 press is used for repairs. Decentralization also caused problems: different length timber and metal supports often necessitate additional cutting operations, a multitude of machines cause increased manual handling, and equipment is too often adapted to special requirements of individual shifts. However, costs of metal supports have dropped about 15%. Further improvement would require that the production of metal supports be centralized for the entire combine, supports be used according to their strength, and screw joinings be replaced with cotter type fastenings.

  5. Assessment of pollution prevention and control technology for plating operations

    Science.gov (United States)

    Chalmer, Paul D.; Sonntag, William A.; Cushnie, George C., Jr.

    1995-01-01

    The National Center for Manufacturing Sciences (NCMS) is sponsoring an on-going project to assess pollution prevention and control technology available to the plating industry and to make this information available to those who can benefit from it. Completed project activities include extensive surveys of the plating industry and vendors of technologies and an indepth literature review. The plating industry survey was performed in cooperation with the National Association of Metal Finishers. The contractor that conducted the surveys and prepared the project products was CAI Engineering. The initial products of the project were made available in April, 1994. These products include an extensive report that presents the results of the surveys and literature review and an electronic database. The project results are useful for all those associated with pollution prevention and control in the plating industry. The results show which treatment, recovery and bath maintenance technologies have been most successful for different plating processes and the costs for purchasing and operating these technologies. The project results also cover trends in chemical substitution, the identification of compliance-problem pollutants, sludge generation rates, off-site sludge recovery and disposal options, and many other pertinent topics.

  6. Removal of heavy metals from waste water of tanning leather ...

    African Journals Online (AJOL)

    The most dominant A. candidus on the isolation plates exhibited the highest activity for biosorption of heavy metals. The results indicate that fungi of contaminated soils have high level of metal biosorption capacities. Keywords: Fungi, industrial wastewater, biosorption, heavy metals. African Journal of Biotechnology Vol.

  7. Laser-induced selective copper plating of polypropylene surface

    Science.gov (United States)

    Ratautas, K.; Gedvilas, M.; Stankevičiene, I.; JagminienÄ--, A.; Norkus, E.; Li Pira, N.; Sinopoli, S.; Emanuele, U.; Račiukaitis, G.

    2016-03-01

    Laser writing for selective plating of electro-conductive lines for electronics has several significant advantages, compared to conventional printed circuit board technology. Firstly, this method is faster and cheaper at the prototyping stage. Secondly, material consumption is reduced, because it works selectively. However, the biggest merit of this method is potentiality to produce moulded interconnect device, enabling to create electronics on complex 3D surfaces, thus saving space, materials and cost of production. There are two basic techniques of laser writing for selective plating on plastics: the laser-induced selective activation (LISA) and laser direct structuring (LDS). In the LISA method, pure plastics without any dopant (filler) can be used. In the LDS method, special fillers are mixed in the polymer matrix. These fillers are activated during laser writing process, and, in the next processing step, the laser modified area can be selectively plated with metals. In this work, both methods of the laser writing for the selective plating of polymers were investigated and compared. For LDS approach, new material: polypropylene with carbon-based additives was tested using picosecond and nanosecond laser pulses. Different laser processing parameters (laser pulse energy, scanning speed, the number of scans, pulse durations, wavelength and overlapping of scanned lines) were applied in order to find out the optimal regime of activation. Areal selectivity tests showed a high plating resolution. The narrowest width of a copper-plated line was less than 23 μm. Finally, our material was applied to the prototype of the electronic circuit board on a 2D surface.

  8. Casimir Repulsion between Metallic Objects in Vacuum

    International Nuclear Information System (INIS)

    Levin, Michael; McCauley, Alexander P.; Rodriguez, Alejandro W.; Reid, M. T. Homer; Johnson, Steven G.

    2010-01-01

    We give an example of a geometry in which two metallic objects in vacuum experience a repulsive Casimir force. The geometry consists of an elongated metal particle centered above a metal plate with a hole. We prove that this geometry has a repulsive regime using a symmetry argument and confirm it with numerical calculations for both perfect and realistic metals. The system does not support stable levitation, as the particle is unstable to displacements away from the symmetry axis.

  9. Motion of a plate driven by an explosive

    International Nuclear Information System (INIS)

    Fickett, W.

    1987-01-01

    In many applications it is useful to have an estimate of the velocity of a metal plate driven by an explosive as a function of time. With reasonable approximations, this problem has been solved exactly, but the result takes the form of a parametric solution, not the most convenient for everyday use. We give a simpler explicit solution and graphs plotted in variables suitable for accurate reading

  10. The attenuation of temperature oscillations in passing through liquid metal boundary layers

    International Nuclear Information System (INIS)

    Lawn, C.J.

    1975-08-01

    One aspect of predicting the endurance of components subject to thermal fatigue in liquid metal cooled reactors is the extent to which oscillations in fluid temperature are transmitted to metal surfaces, such as the above-core structure. The first geometry considered is that of a solid plate in contact with a layer of stagnant fluid, in which temperature oscillations are imposed at a given distance from the plate. Transmission through a laminar boundary layer developing over the plate surface is then considered. An approximate calculation based on the slug-flow analysis of Sucec (1975) is developed. (U.K.)

  11. MATERIAL DEPENDENCE OF TEMPERATURE DISTRIBUTION IN MULTI-LAYER MULTI-METAL COOKWARE

    Directory of Open Access Journals (Sweden)

    MOHAMMADREZA SEDIGH

    2017-09-01

    Full Text Available Laminated structure is becoming more popular in cookware markets; however, there seems to be a lack of enough scientific studies to evaluate its pros and cons, and to show that how it functions. A numerical model using a finite element method with temperature-dependent material properties has been performed to investigate material and layer dependence of temperature distribution in multi-layer multi-metal plate exposed to irregular heating. Behavior of two parameters including mean temperature value and uniformity on the inner surface of plate under variations of thermal properties and geometrical conditions have been studied. The results indicate that conductive metals used as first layer in bi-layer plates have better thermal performance than those used in the second layer. In addition, since cookware manufacturers increasingly prefer to use all-clad aluminium plate, recently, this structure is analysed in the present study as well. The results show all-clad copper and aluminum plate possesses lower temperature gradient compared with single layer aluminum and all-clad aluminum core plates.

  12. Ion beam alignment in the MSX-4 mass spectrometer

    International Nuclear Information System (INIS)

    Busygin, A.I.; Nevzorov, A.A.; Ul'masbaev, B.Sh.

    1977-01-01

    A method for electrically adjusting an ion beam in an MSKh-4 mass-spectrometer has been developed. The adjusting system consists of two deflecting plates fastened to the frame of the ion source. By adjusting the potential difference at the plates in the range 0-150 v, one can increase the intensity of the mass-spectrum by a factor of 3 to 5

  13. Load Carrying Capacity of Metal Dowel Type Connections of Timber Structures

    Science.gov (United States)

    Gocál, Jozef

    2014-12-01

    This paper deals with the load-carrying capacity calculation of laterally loaded metal dowel type connections according to Eurocode 5. It is based on analytically derived, relatively complicated mathematical relationships, and thus it can be quite laborious for practical use. The aim is to propose a possible simplification of the calculation. Due to quite a great variability of fasteners' types and the connection arrangements, the attention is paid to the most commonly used nailed connections. There was performed quite an extensive parametric study focused on the calculation of load-carrying capacity of the simple shear and double shear plane nail connections, joining two or three timber parts of softwood or hardwood. Based on the study results, in conclusion there are presented simplifying recommendations for practical design.

  14. A unified nonlocal strain gradient plate model for nonlinear axial instability of functionally graded porous micro/nano-plates reinforced with graphene platelets

    Science.gov (United States)

    Sahmani, Saeid; Aghdam, Mohammad Mohammadi; Rabczuk, Timon

    2018-04-01

    By gradually changing of the porosity across a specific direction, functionally graded porous materials (FGPMs) are produced which can impart desirable mechanical properties. To enhance these properties, it is common to reinforce FGPMs with nanofillers. The main aim of the current study is to investigate the size-dependent nonlinear axial postbuckling characteristics of FGPM micro/nano-plates reinforced with graphene platelets. For this purpose, the theory of nonlocal strain gradient elasticity incorporating the both stiffness reduction and stiffness enhancement mechanisms of size effects is applied to the refined exponential shear deformation plate theory. Three different patterns of porosity dispersion across the plate thickness in conjunction with the uniform one are assumed for FGPM as an open-cell metal foam is utilized associated with the coefficients of the relative density and porosity. With the aid of the virtual work’s principle, the non-classical governing differential equations are constructed. Thereafter, an improved perturbation technique is employed to capture the size dependencies in the nonlinear load-deflection and load-shortening responses of the reinforced FGPM micro/nano-plates with and without initial geometric imperfection. It is indicated that by increasing the value of porosity coefficient, the size-dependent critical buckling loads of reinforced FGPM micro/nano-plates with all types of porosity dispersion pattern reduce, but the associated shortening may increase or decrease which depends on the type of dispersion pattern.

  15. Multipactor saturation in parallel-plate waveguides

    International Nuclear Information System (INIS)

    Sorolla, E.; Mattes, M.

    2012-01-01

    The saturation stage of a multipactor discharge is considered of interest, since it can guide towards a criterion to assess the multipactor onset. The electron cloud under multipactor regime within a parallel-plate waveguide is modeled by a thin continuous distribution of charge and the equations of motion are calculated taking into account the space charge effects. The saturation is identified by the interaction of the electron cloud with its image charge. The stability of the electron population growth is analyzed and two mechanisms of saturation to explain the steady-state multipactor for voltages near above the threshold onset are identified. The impact energy in the collision against the metal plates decreases during the electron population growth due to the attraction of the electron sheet on the image through the initial plate. When this growth remains stable till the impact energy reaches the first cross-over point, the electron surface density tends to a constant value. When the stability is broken before reaching the first cross-over point the surface charge density oscillates chaotically bounded within a certain range. In this case, an expression to calculate the maximum electron surface charge density is found whose predictions agree with the simulations when the voltage is not too high.

  16. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  17. Analysis and Experiments on Sea Load and Fastened Mechanics on Pipe Clamps

    Directory of Open Access Journals (Sweden)

    Wang Zhuo

    2017-08-01

    Full Text Available When an offshore oil field completed and put into production, new subsea pipelines and the new cable need to be established. Cable protection pipe clamp is used to fix cable protection pipe on the jacket. In order to avoid the problem of traditional steel structure clamp splice, counterpoint, fastening difficulty when installed cable protection pipe under water, reduce the risk and workload of under water, This paper develop a new type of portable connecting riser clamp -“backpack clamp” which solve the riser cable protection pipe difficult underwater installation problem. The main structure of backpack clamp used three valves type structure. The load characteristic of a clamping device was determined by the Morison equation which was a classical theory. Clamp device underwater mechanics analysis model was established. The minimum tension pre-tightening force was determined. The results show that the strength of the base meets the requirements after strength analysis with finite element analysis method, stability and strength experiments, which means the clamp based on resin matrix composite is feasible.

  18. Experimental and numerical investigation on laser-assisted bending of pre-loaded metal plate

    Science.gov (United States)

    Nowak, Zdzisław; Nowak, Marcin; Widłaszewski, Jacek; Kurp, Piotr

    2018-01-01

    The laser forming technique has an important disadvantage, which is the limitation of plastic deformation generated by a single laser beam pass. To increase the plastic deformation it is possible to apply external forces in the laser forming process. In this paper, we investigate the influence of external pre-loads on the laser bending of steel plate. The pre-loads investigated generate bending towards the laser beam. The thermal, elastic-plastic analysis is performed using the commercial nonlinear finite element analysis package ABAQUS. The focus of the paper is to identify how this pattern of the pre-load influence the final bend angle of the plate.

  19. A STUDY ON THE APPLICATION OF THE ECAP TO SURFACE PLATING

    Directory of Open Access Journals (Sweden)

    Osman KONUK

    2014-01-01

    Full Text Available Metal forming processes with shear stresses that very high plastic strains are obtained in one pass are defined as severe plastic deformation (SPD processes. Strain values can additionally be increased with additional passes throughout the process. Equal channel angular processing (ECAP is the most applied method among the SPD processes. In the presented study, an approach of application of ECAP method was used in surface plating. Previously manufactured ECAP dies using separated die design approach were used in the study. 5083 Aluminum and Ms 58 Brass alloy strips having 2 and 4 mm thickness were placed in the ECAP die side by side and processed with single and double passes in order to model the metallic plating under cold pressure welding conditions. There were no successful and full joints between the strips although some partial joints were observed. The results were discussed and some suggestions are made in order to obtain successful joints.

  20. A New Hyperbolic Shear Deformation Theory for Bending Analysis of Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    Tahar Hassaine Daouadji

    2012-01-01

    Full Text Available Theoretical formulation, Navier’s solutions of rectangular plates based on a new higher order shear deformation model are presented for the static response of functionally graded plates. This theory enforces traction-free boundary conditions at plate surfaces. Shear correction factors are not required because a correct representation of transverse shearing strain is given. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Numerical illustrations concern flexural behavior of FG plates with metal-ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fractions profiles, aspect ratios, and length to thickness ratios. Results are verified with available results in the literature. It can be concluded that the proposed theory is accurate and simple in solving the static bending behavior of functionally graded plates.

  1. Resorbable versus titanium plates for orthognathic surgery.

    Science.gov (United States)

    Agnihotry, Anirudha; Fedorowicz, Zbys; Nasser, Mona; Gill, Karanjot S

    2017-10-04

    Recognition of some of the limitations of titanium plates and screws used for the fixation of bones has led to the development of plates manufactured from bioresorbable materials. Whilst resorbable plates appear to offer clinical advantages over metal plates in orthognathic surgery, concerns remain about the stability of fixation and the length of time required for their degradation and the possibility of foreign body reactions. This review compares the use of titanium versus bioresorbable plates in orthognathic surgery and is an update of the Cochrane Review first published in 2007. To compare the effects of bioresorbable fixation systems with titanium systems used during orthognathic surgery. Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 20 January 2017); the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 11) in the Cochrane Library (searched 20 January 2017); MEDLINE Ovid (1946 to 20 January 2017); and Embase Ovid (1980 to 20 January 2017). We searched the US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov (clinicaltrials.gov; searched 20 January 2017), and the World Health Organization International Clinical Trials Registry Platform (searched 20 January 2017) for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. Randomised controlled trials comparing bioresorbable versus titanium fixation systems used for orthognathic surgery in adults. Two review authors independently screened the results of the electronic searches, extracted data and assessed the risk of bias of the included studies. We resolved disagreement by discussion. Clinical heterogeneity between the included trials precluded pooling of data, and only a descriptive summary is presented. This review included two trials, involving 103 participants, one comparing titanium with resorbable plates and screws and

  2. Localized surface plate modes via flexural Mie resonances

    KAUST Repository

    Farhat, M.

    2017-05-11

    Surface-plasmon polaritons are naturally generated upon excitation of metals with high-frequency electromagnetic waves. However, the concept of spoof plasmons has made it possible to generate plasmoniclike effects in microwave electrodynamics, magnetics, and even acoustics. Similarly, in this paper, the concept of localized surface plate modes (SPMs) is introduced. It is demonstrated that SPMs can be generated on a two-dimensional (clamped or stress-free) cylindrical surface with subwavelength corrugations, which resides on a thin elastic plate, under excitation by an incident flexural plane wave. Numerical characterization of this corrugated rigid structure shows that it is elastically equivalent to a cylindrical scatterer with dispersive but uniformly negative flexural rigidity. This, indeed, suggests that plasmoniclike elastic materials can be engineered with potential applications in various areas including earthquake sensing and elastic imaging and cloaking.

  3. Localized surface plate modes via flexural Mie resonances

    KAUST Repository

    Farhat, M.; Chen, P. -Y.; Guenneau, S.; Salama, Khaled N.; Bagci, Hakan

    2017-01-01

    Surface-plasmon polaritons are naturally generated upon excitation of metals with high-frequency electromagnetic waves. However, the concept of spoof plasmons has made it possible to generate plasmoniclike effects in microwave electrodynamics, magnetics, and even acoustics. Similarly, in this paper, the concept of localized surface plate modes (SPMs) is introduced. It is demonstrated that SPMs can be generated on a two-dimensional (clamped or stress-free) cylindrical surface with subwavelength corrugations, which resides on a thin elastic plate, under excitation by an incident flexural plane wave. Numerical characterization of this corrugated rigid structure shows that it is elastically equivalent to a cylindrical scatterer with dispersive but uniformly negative flexural rigidity. This, indeed, suggests that plasmoniclike elastic materials can be engineered with potential applications in various areas including earthquake sensing and elastic imaging and cloaking.

  4. Comparative assessment of heavy metal removal by immobilized ...

    African Journals Online (AJOL)

    Microorganisms play a vital role in heavy metal contaminated soil and wastewater by the mechanisms of biosorption. In this study, heavy metal resistant bacteria were isolated from an electroplating industrial effluent samples that uses copper, cadmium and lead for plating. These isolates were characterized to evaluate their ...

  5. Biocompatibility and Biocorrosion of Hydroxyapatite-Coated Magnesium Plate: Animal Experiment

    Directory of Open Access Journals (Sweden)

    Ho-Kyung Lim

    2017-09-01

    Full Text Available Magnesium (Mg has the advantage of being resorbed in vivo, but its resorption rate is difficult to control. With uncontrolled resorption, Magnesium as a bone fixation material has minimal clinical value. During resorption not only is the strength rapidly weakened, but rapid formation of metabolite also occurs. In order to overcome these disadvantages, hydroxyapatite (HA surface coating of pure magnesium plate was attempted in this study. Magnesium plates were inserted above the frontal bone of Sprague-Dawley rats in both the control group (Bare-Mg group and the experimental group (HA-Mg group. The presence of inflammation, infection, hydrogen gas formation, wound dehiscence, and/or plate exposure was observed, blood tests were performed, and the resorption rate and tensile strength of the retrieved metal plates were measured. The HA-Mg group showed no gas formation or plate exposure until week 12. However, the Bare-Mg group showed consistent gas formation and plate exposure beginning in week 2. WBC (White Blood Cell, BUN (Blood Urea Nitrogen, Creatinine, and serum magnesium concentration levels were within normal range in both groups. AST (Aspartate Aminotransferase and ALT (Alanine Aminotransferase values, however, were above normal range in some animals of both groups. The HA-Mg group showed statistically significant advantage in resistance to degradation compared to the Bare-Mg group in weeks 2, 4, 6, 8, and 12. Degradation of HA-Mg plates proceeded after week 12. Coating magnesium plates with hydroxyapatite may be a viable method to maintain their strength long enough to allow bony healing and to control the resorption rate during the initial period.

  6. Method of beam welding metallic parts together and apparatus for doing same

    Science.gov (United States)

    Lewandowski, E.F.; Cassidy, D.A.; Sommer, R.G.

    1985-11-29

    This method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. The exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extrucing beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.

  7. Efficacy of reducing agent and surfactant contacting pattern on the performance characteristics of nickel electroless plating baths coupled with and without ultrasound.

    Science.gov (United States)

    Agarwal, Amrita; Pujari, Murali; Uppaluri, Ramgopal; Verma, Anil

    2014-07-01

    This article addresses furthering the role of sonication for the optimal fabrication of nickel ceramic composite membranes using electroless plating. Deliberating upon process modifications for surfactant induced electroless plating (SIEP) and combined surfactant and sonication induced electroless plating (SSOEP), this article highlights a novel method of contacting of the reducing agent and surfactant to the conventional electroless nickel plating baths. Rigorous experimental investigations indicated that the combination of ultrasound (in degas mode), surfactant and reducing agent pattern had a profound influence in altering the combinatorial plating characteristics. For comparison purpose, purely surfactant induced nickel ELP baths have also been investigated. These novel insights consolidate newer research horizons for the role of ultrasound to achieve dense metal ceramic composite membranes in a shorter span of total plating time. Surface and physical characterizations were carried out using BET, FTIR, XRD, FESEM and nitrogen permeation experiments. It has been analyzed that the SSOEP baths provided maximum ratio of percent pore densification per unit metal film thickness (PPDδ) and hold the key for further fine tuning of the associated degrees of freedom. On the other hand SIEP baths provided lower (PPDδ) ratio but higher PPD. For SSOEP baths with dropwise reducing agent and bulk surfactant, the PPD and metal film thickness values were 73.4% and 8.4 μm which varied to 66.9% and 13.3 μm for dropwise reducing agent and drop surfactant case. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. 21 CFR 888.3060 - Spinal intervertebral body fixation orthosis.

    Science.gov (United States)

    2010-04-01

    ... the plates. A braided cable is threaded through each eye-type screw. The cable is tightened with a tension device and it is fastened or crimped at each eye-type screw. The device is used to apply force to...

  9. DEVELOPMENT OF HIGH-DENSITY U/AL DISPERSION PLATES FOR MO-99 PRODUCTION USING ATOMIZED URANIUM POWDER

    Directory of Open Access Journals (Sweden)

    HO JIN RYU

    2013-12-01

    Full Text Available Uranium metal particle dispersion plates have been proposed as targets for Molybdenum-99 (Mo-99 production to improve the radioisotope production efficiency of conventional low enriched uranium targets. In this study, uranium powder was produced by centrifugal atomization, and miniature target plates containing uranium particles in an aluminum matrix with uranium densities up to 9 g-U/cm3 were fabricated. Additional heat treatment was applied to convert the uranium particles into UAlx compounds by a chemical reaction of the uranium particles and aluminum matrix. Thus, these target plates can be treated with the same alkaline dissolution process that is used for conventional UAlx dispersion targets, while increasing the uranium density in the target plates

  10. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Science.gov (United States)

    Buckley, John D. (Editor); Stein, Bland A. (Editor)

    1986-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  11. A study of the behavior of a cathode film formed in chromium plating with radioactive tracers

    International Nuclear Information System (INIS)

    Yoshida, Katsuyoshi; Suzuki, Akihira; Doi, Kazuyuki; Arai, Katsutoshi

    1979-01-01

    The behavior and composition of a cathode film formed on a steel cathode during chromium plating were studied with radioactive tracers. A special cell with a rapid washing compartment was used for preventing the cathode film from dissolving in electrolyte after plating. The cathode film was composed of two layers. The outer layer facing to the electrolyte had a loose structure and contained more sulfuric anions than the inner layer, for sulfuric acid probably concentrated in the outer layer. This outer layer is called L-film in this paper. The L-film was easily dissolved in the electrolyte solution. The inner layer (called C-film, compact film) was stable against electrolytes and contained less anions than that of L-film. The C-film had a thickness equivalent to 5 mg/m 2 and the concentration of anions unaffected by the composition of electrolytes. The C-film was not reduced to metallic chromium, but it remained in the cathode film during and after plating. This suggests that chromic acid in the cathode film is not reduced to metallic chromium, that metallic chromium is deposited from chromium complexes reaching the cathode surface through the cathode film, and that the complexes do not play a role on the construction of the cathode film. (author)

  12. Evaluation of plate type fuel elements by eddy current test method

    International Nuclear Information System (INIS)

    Frade, Rangel Teixeira

    2015-01-01

    Plate type fuel elements are used in MTR research nuclear reactors. The fuel plates are manufactured by assembling a briquette containing the fissile material inserted in a frame, with metal plates in both sides of the set, to act as a cladding. This set is rolled under controlled conditions in order to obtain the fuel plate. In Brazil, this type of fuel is manufactured by IPEN and used in the IEA-R1 reactor. After fabrication of three batches of fuel plates, 24 plates, one of them is taken, in order to verify the thickness of the cladding. For this purpose, the plate is sectioned and the thickness measurements are carried out by using optical microscopy. This procedure implies in damage of the plate, with the consequent cost. Besides, the process of sample preparation for optical microscopy analysis is time consuming, it is necessary an infrastructure for handling radioactive materials and there is a generation of radioactive residues during the process. The objective of this study was verify the applicability of eddy current test method for nondestructive measurement of cladding thickness in plate type nuclear fuels, enabling the inspection of all manufactured fuel plates. For this purpose, reference standards, representative of the cladding of the fuel plates, were manufactured using thermomechanical processing conditions similar to those used for plates manufacturing. Due to no availability of fuel plates for performing the experiments, the presence of the plate’s core was simulated using materials with different electrical conductivities, fixed to the thickness reference standards. Probes of eddy current testing were designed and manufactured. They showed high sensitivity to thickness variations, being able to separate small thickness changes. The sensitivity was higher in tests performed on the reference standards and samples without the presence of the materials simulating the core. For examination of the cladding with influence of materials simulating the

  13. The Corrosion Control of Fastening Systems for Aircraft Carrier Steam Catapults

    Science.gov (United States)

    1976-03-31

    2, External Threaded Dolt or Stud. LML 2. 68 1NAEC-ENG 7868 PAGE 28 rf I MI 6 LL 4140 - PIAt -0, M1V 7 A) AEC-ENG 7868 PAGE 29 -- ---T-T- - -- 1 . ’a...corroded. comontarhare mat 0.6 Oil tmmncerbore black. senste be rest stained. stained. No. 6 Sm plating on hed, lead rusty with sae plating Som

  14. Bioinspired plate-based fog collectors.

    Science.gov (United States)

    Heng, Xin; Luo, Cheng

    2014-09-24

    In a recent work, we explored the feeding mechanism of a shorebird to transport liquid drops by repeatedly opening and closing its beak. In this work, we apply the corresponding results to develop a new artificial fog collector. The collector includes two nonparallel plates. It has three advantages in comparison with existing artificial collectors: (i) easy fabrication, (ii) simple design to scale up, and (iii) active transport of condensed water drops. Two collectors have been built. A small one with dimensions of 4.2 × 2.1 × 0.05 cm(3) (length × width × thickness) was first built and tested to examine (i) the time evolution of condensed drop sizes and (ii) the collection processes and efficiencies on the glass, SiO2, and SU-8 plates. Under similar experimental conditions, the amount of water collected per unit area on the small collector is about 9.0, 4.7, and 3.7 times, respectively, as much as the ones reported for beetles, grasses, and metal wires, and the total amount of water collected is around 33, 18, and 15 times. On the basis of the understanding gained from the tests on the small collector, a large collector with dimensions of 26 × 10 × 0.2 cm(3) was further built and tested, which was capable of collecting 15.8 mL of water during a period of 36 min. The amount of water collected, when it is scaled from 36 to 120 min, is about 878, 479, or 405 times more than what was collected by individual beetles, grasses, or metal wires.

  15. The solution of the reliability problem in the repair process of the plates of the silica bricks press boxes

    Directory of Open Access Journals (Sweden)

    Nochvai V.М.

    2017-05-01

    Full Text Available The research analyzes recommendations existing in different sources of information for the choice of methods of strengthening and reconditioning of worn machine parts. These methods include: the method of electric arc deposition, chemical-thermal treatment, gas-powder deposition, gas-powder and plasma spraying, electric arc metallization. As a result of studies of wear of the working surfaces of the plates of silicate brick press boxes, we define that the plates wear out unevenly and the thickness of the worn layer varies between 0.3 ... 2 mm. Technological method is chosen as the method of the plate reliability enhancement and maintaining. One of the main technological stages of reliability formation is machine parts strengthening using the methods of strengthening technologies, namely electric arc metallization. Wire models Нп-65Г, ФМИ-2, Нп-40Х13 are used to develop wear-resistant coatings with desired properties. Technological process of the plates repair consists of the following basic operations: plate preparation, wire preparation, plate coating, plate grinding, final checking. Single and complex reliability indicators are determined by testing a set of the plates and registering all the indicators (operating time, failures, faults. The value of the economic reliability index of the plate Kе equals to 0,10. Higher plate reliability is achieved at the expense of extra cost for plate strengthening using wire Нп-40Х13, and the price of Bн plate reliability is 104,83 UAH. Complex indicators of reliability of the reconditioned plate of the silica bricks press boxes are used for more complete reliability assessment. Availability coefficient Kг. equals to 0,995 and characterizes two different properties simultaneously: reliability and maintainability. Coefficient of technical use Kт.в. equals to 0,974 and most fully characterizes the reliability of the plates because it considers time in the process of maintenance, repair and

  16. A plasmonic modulator based on metal-insulator-metal waveguide with barium titanate core

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2013-01-01

    We design a plasmonic modulator which can be utilized as a compact active device in photonic integrated circuits. The active material, barium titanate (BaTiO3), is sandwiched between metal plates and changes its refractive index under applied voltage. Some degree of switching of ferroelectric...

  17. Evaluation and reduction of magnetic resonance imaging artifacts induced by distinct plates for osseous fixation: an in vitro study @ 3T.

    Science.gov (United States)

    Rendenbach, Carsten; Schoellchen, Maximilian; Bueschel, Julie; Gauer, Tobias; Sedlacik, Jan; Kutzner, Daniel; Vallittu, Pekka K; Heiland, Max; Smeets, Ralf; Fiehler, Jens; Siemonsen, Susanne

    2018-05-02

    To analyze Magnetic Resonance Imaging (MRI) artifact induced at 3 Tesla by bioresorbable, titanium and glass fiber reinforced composite (GFRC) plates for osseous reconstruction. Fixation plates including bioresorbable polymers (Inion CPS, Inion Oy, Tampere, Finland; Rapidsorb, DePuy Synthes, Umkirch, Germany; Resorb X, Gebrueder KLS Martin GmbH, Tuttlingen, Germany), Glass fiber reinforced composite (Skulle Implants Oy, Turku, Finland) and titanium plates of varying thickness and design (DePuy Synthes, Umkirch, Germany) were embedded in agarose gel and a 3T MRI was performed using a standard protocol for head and neck imaging including T1w and T2w sequences. Additionally, different artifact reducing sequence techniques (slice encoding for metal artifact reduction (SEMAC) & ultrashort echotime (UTE)) were used and their impact on the extent of artifacts evaluated for each material. All titanium plates induced significantly more artefacts than resorbable plates in T1w and T2w sequences. Glass fiber-reinforced composites induced the least artefacts in both sequences. The total extent of artefacts increased with plate thickness and height. Plate thickness had no influence on the percentage of overestimation in all three dimensions. Titanium induced artefacts were significantly reduced by both artifact reducing sequence techniques. Polylactide, glass fiber-reinforced composite and magnesium plates produce less susceptibility artefacts in MRI compared to titanium, while the dimensions of titanium plates directly influence artifact extension. SEMAC and UTE significantly reduce metal artefacts at the expense of image resolution.

  18. Effects of different production technologies on mechanical and metallurgical properties of precious metal denture alloys

    Science.gov (United States)

    Ferro, Paolo; Battaglia, Eleonora; Capuzzi, Stefano; Berto, Filippo

    2017-12-01

    Precious metal alloys can be supplied in traditional plate form or innovative drop form with high degree of purity. The aim of the present work is to evaluate the influence of precious metal alloy form on metallurgical and mechanical properties of the final dental products with particular reference to metal-ceramic bond strength and casting defects. A widely used alloy for denture was selected; its nominal composition was close to 55 wt% Pd - 34 wt% Ag - 6 wt% In - 3 wt% Sn. Specimens were produced starting from the alloy in both plate and drop forms. A specific test method was developed to obtain results that could be representative of the real conditions of use. In order to achieve further information about the adhesion behaviour and resistance, the fracture surfaces of the samples were observed using `Scanning Electron Microscopy (SEM)'. Moreover, material defects caused by the moulding process were studied. The form of the alloy before casting does not significantly influence the shear bond strength between the metal and the ceramic material (p-value=0,976); however, according to SEM images, products from drop form alloy show less solidification defects compared to products obtained with plate form alloy. This was attributed to the absence of polluting additives used in the production of drop form alloy. This study shows that the use of precious metal denture alloys supplied in drop form does not affect the metal-ceramic bond strength compared to alloys supplied in the traditional plate form. However, compared to the plate form, the drop form is found free of solidification defects, less expensive to produce and characterized by minor environmental impacts.

  19. Refined Modeling of Flexural Deformation of Layered Plates with a Regular Structure Made from Nonlinear Hereditary Materials

    Science.gov (United States)

    Yankovskii, A. P.

    2018-01-01

    On the basis of constitutive equations of the Rabotnov nonlinear hereditary theory of creep, the problem on the rheonomic flexural behavior of layered plates with a regular structure is formu-lated. Equations allowing one to describe, with different degrees of accuracy, the stress-strain state of such plates with account of their weakened resistance to transverse shear were ob-tained. From them, the relations of the nonclassical Reissner- and Reddytype theories can be found. For axially loaded annular plates clamped at one edge and loaded quasistatically on the other edge, a simplified version of the refined theory, whose complexity is comparable to that of the Reissner and Reddy theories, is developed. The flexural strains of such metal-composite annular plates in shortterm and long-term loadings at different levels of heat action are calcu-lated. It is shown that, for plates with a relative thickness of order of 1/10, neither the classical theory, nor the traditional nonclassical Reissner and Reddy theories guarantee reliable results for deflections even with the rough 10% accuracy. The accuracy of these theories decreases at elevated temperatures and with time under long-term loadings of structures. On the basic of relations of the refined theory, it is revealed that, in bending of layered metal-composite heat-sensitive plates under elevated temperatures, marked edge effects arise in the neighborhood of the supported edge, which characterize the shear of these structures in the transverse direction

  20. Fluorescence x-ray analyzer for plating-bath solution

    International Nuclear Information System (INIS)

    Komatsu, Shigemi; Hato, Yoshio; Tono, Miki; Ishijima, Hiroshi

    1984-01-01

    This analyzer was developed for the analysis of plating solution composition and the measurement of plating thickness at the same time in the noble and base metal plating applied to electronic components. The analyzer operates on the principle of fluorescence X-ray measurement which features the capability of high accuracy, non-destructive and multi-element simultaneous analysis. In this paper, the principle of measurement, the configuration of a model SFA 875 analyzer and also the main specifications and measurement examples are described. As the measurement examples, it is described in detail that the model SFA 875 achieved the expansion of the range of application and the improvement of accuracy and the accuracy of simply repeated measurement by combining a digital filter with the linear method of least squares. The digital filter method is that for eliminating noise in data, smoothing spectra and subtracting background. The linear method of least squares is the method for separating the spectra with overlapping peaks into individual peaks. The combination of them allows the analyzer to perform various analyses even by using the spectra obtained with proportional counters. The analysis of the elements whose atomic numbers are close to each other is also possible. The accuracy of measurement of plating thickness is about 0.2 to 2.0 μm, and that of solution composition is about 0.4 to 0.7 g/l. (Wakatsuki, Y.)

  1. Design optimization of electric vehicle battery cooling plates for thermal performance

    Science.gov (United States)

    Jarrett, Anthony; Kim, Il Yong

    The performance of high-energy battery cells utilized in electric vehicles (EVs) is greatly improved by adequate temperature control. An efficient thermal management system is also desirable to avoid diverting excessive power from the primary vehicle functions. In a battery cell stack, cooling can be provided by including cooling plates: thin metal fabrications which include one or more internal channels through which a coolant is pumped. Heat is conducted from the battery cells into the cooling plate, and transported away by the coolant. The operating characteristics of the cooling plate are determined in part by the geometry of the channel; its route, width, length, etc. In this study, a serpentine-channel cooling plate is modeled parametrically and its characteristics assessed using computational fluid dynamics (CFD). Objective functions of pressure drop, average temperature, and temperature uniformity are defined and numerical optimization is carried out by allowing the channel width and position to vary. The optimization results indicate that a single design can satisfy both pressure and average temperature objectives, but at the expense of temperature uniformity.

  2. Investigation on a-C:H:Me coated substrates as an alternative bipolar plate material in all-vanadium redox-flow batteries

    International Nuclear Information System (INIS)

    Richards, Justin Frederick

    2015-01-01

    A crucial aspect of advancing in renewable energies is the development of affordable decentralized storage systems for the local or regional distribution grid. A technology with great potential is the all-vanadium redox-flow battery (VRFB) with the distinct feature of individual scalable power and capacity. The present work focusses on one of the essential parts in the redox-flow cell; the bipolar plates. By the application of metallic substrates instead of state-of-the-arte graphite composite plates, the design of the cell isn't limited anymore to the mechanical properties or fabrication process of the material. Although metals possess high ductility, which eases the production of such plates, they are prone to corrosion in the high acidic environment of the battery electrolyte. Therefore in this study amorphous carbon coatings (a-C:H) are investigated for corrosion protection. To attain the need of high electrical conductivity the carbon matrices is doped with a metallic element. Preferably refractory metals such as titanium, vanadium, chromium and tungsten were investigated as possible dopants. The electrochemical tests of the samples revealed less degradation the higher the coating thickness was. This can be found on all metallic substrates (material number: 1.4301, 3.7165 and 3.3535). Regarding the hydrogen overpotential, which is an essential value for the suppression of side reactions on the anode, the dominating factor was found to be the sort of doping material as well as the composition of the metallic adhesive layer between coating and substrate. Pores in the coating originate from defects in the substrates as well as from contaminations during the coating process. To understand the degradation mechanism an in-situ-corrosion cell was developed. By the means of these results, delamination could be found to be the predominant factor concerning degradation mechanisms at cathodic potentials. The degradation is initialized at the defects or at the edges

  3. A PROBLEM OF CUTTING OFF THE LAMINATED SEMIS TYPE PLATE

    Directory of Open Access Journals (Sweden)

    Florin Ciofu

    2012-11-01

    Full Text Available A problem often coped on many domains such as wood manufacturing, glass, plastics and metallic platework industry, is the shaping or cutting off a big plate in many pieces. With this purpose there are algorithms of optimizing for positioning the parts following to be cut off from a row plate. From mathematical point of view, in positioning the parts on a raw plate the number of solutions increase four times evrey time a new part is added, and in case of finding the best solution for about few hundreds of pieces or parts would require years of processing on the most performant computers nowadays – for an analogy remember the famous story with the rice beads which the King had to pay to the master teaching him the chess: twice more for each square of the chessboard; for the total quantity assessment, King ascertained that the crops in his whole life wouldn’t have been enough.

  4. Tentative investigation on neutron mirror fabrication with electroless nickel plating

    International Nuclear Information System (INIS)

    Guo, Jiang; Morita, Shin-ya; Yamagata, Yutaka; Takeda, Shin; Kato, Jun-ichi; Hino, Masahiro; Furusaka, Michihiro

    2013-01-01

    Neutron optics becomes highly required due to the rapid development of neutron technology. In this paper, we attempt to fabricate the neutron mirror by using a metal substrate made of electroless nickel plating to take place of glass concerning about mirror's optical performance and manufacturing method. A new manufacture process chain of neutron mirror is proposed by following the steps of fast milling and precision cutting of aluminium/stainless, electroless nickel plating, ultra-precision cutting by diamond tools, super-smooth polishing and super mirror coating to obtain high form accuracy and good surface roughness time-efficiently. Some tentative investigations are carried out. A workpiece (□ 50 x 50 mm 2 ) with flat surface made of electroless nickel plating is machined by ultra-precision cutting and polishing. The surface roughness with 0.728 nm rms (0.588 nm Ra) is acquired. According to results of reflectometry, the neutron beam can be reflected effectively with high intensity and little scattering. (author)

  5. Selective Electroless Nickel Plating on PMMA using Chloroform Pre-Treatment

    Science.gov (United States)

    Sipes, Nicholas

    In the past 5 years, we have discovered that chloroform promotes the adhesion of thin gold films to Poly(methyl methacrylate) surfaces. Based on this new understanding of the interaction of chloroform with PMMA and metal atoms, we were curious to see if chloroform would promote the adhesion of Nickel to PMMA deposited by electroless plating. My goal was to selectively electroless plate Nickel onto PMMA. Chloroform was spun-cast onto 1 inch square PMMA substrates. I used electrical tape to shield one half of the PMMA from the chloroform during spin-casting; this allowed for a direct comparison of treated vs. untreated. The samples were then put through hydrochloric acid and a series of baths provided by Transene Company Inc. to electrolessly deposit nickel on the sample. After many trials, there was a clear distinction in the adhesion strength of the Nickel to the plain PMMA surface vs. the chloroform pre-treated surface. Showing that it is possible to create chloroform sites via spin-casting for electroless nickel plating on PMMA opens up the challenge to better understand the chemistry taking place and to perfect the electroless plating process.

  6. The effect of different rutile electrodes on mechanical properties of underwater wet welded AH-36 steel plates

    Science.gov (United States)

    Winarto, Winarto; Purnama, Dewin; Churniawan, Iwan

    2018-04-01

    Underwater welding is an important role in the rescue of ships and underwater structures, in case of emergency. In this study, the marine steel plates used are AH-36 steel as parent material. This type of steel is included in the High Strength Low Alloy (HSLA). Electrodes used for welding AH-36 steel plates are commonly the E6013 and E 7024 which are the type of based rutile electrodes. Those electrodes are widely available on the market and they would be compared with the original electrode for underwater which is the type of E7014 with the trade name of Broco UW-CS-1. Welding method used is Shielding Metal Arc Welding (SMAW) with the variation of 5 m and 10 m underwater depth and also varied with the electric current of 120A, 140A and 250A. It was found that hardness value of increased in the area of weld metal and HAZ. HAZ also tends to have the highest hardness compared to both of weld metal and base metal. Non destructive test by radiographed test (RT) on welds showed that there are found welding defects in the form of incomplete penetration on all variations of welding parameters, but there is no porosity defect detected. The results of the hardness tests of underwater wet welded steel plates show that the hardness value of both rutile electrodes (E6013 and E 7024) is apparently similar hardness value compared with the existing commercial electrode (E7014 of Broco UW-CS- 1). The tensile test results of underwater wet welded steel plates show that the use of rutile electrode of E6013 gives a better tensile properties than other rutile electrodes.

  7. X-Ray diffraction technique applied to study of residual stresses after welding of duplex stainless steel plates

    International Nuclear Information System (INIS)

    Monin, Vladimir Ivanovitch; Assis, Joaquim Teixeira de; Lopes, Ricardo Tadeu; Turibus, Sergio Noleto; Payao Filho, Joao C.

    2014-01-01

    Duplex stainless steel is an example of composite material with approximately equal amounts of austenite and ferrite phases. Difference of physical and mechanical properties of component is additional factor that contributes appearance of residual stresses after welding of duplex steel plates. Measurements of stress distributions in weld region were made by X-ray diffraction method both in ferrite and austenite phases. Duplex Steel plates were joined by GTAW (Gas Tungsten Arc Welding) technology. There were studied longitudinal and transverse stress components in welded butt joint, in heat affected zone (HAZ) and in points of base metal 10 mm from the weld. Residual stresses measured in duplex steel plates jointed by welding are caused by temperature gradients between weld zone and base metal and by difference of thermal expansion coefficients of ferrite and austenite phases. Proposed analytical model allows evaluating of residual stress distribution over the cross section in the weld region. (author)

  8. Casting of Hearth Plates from High-chromium Steel

    Directory of Open Access Journals (Sweden)

    Drotlew A.

    2014-12-01

    Full Text Available The paper presents the results of studies on the development of manufacturing technologies to cast hearth plates operating in chamber furnaces for heat treatment. Castings made from the heat-resistant G-X40CrNiSi27-4 steel were poured in hand-made green sand molds. The following operations were performed: computer simulation to predict the distribution of internal defects in castings produced by the above mentioned technology with risers bare and coated with exothermic and insulating sleeves, analysis of each variant of the technology, and manufacture of experimental castings. As a result of the conducted studies and analysis it was found that the use of risers with exothermic sleeves does not affect to a significant degree the quality of the produced castings of hearth plates, but it significantly improves the metal yield.

  9. Effect of plate shapes in orifice plate type flowmeters

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1984-01-01

    The study of unusual plate shapes in orifice plate type flowmeters is presented, with a view to providing data for the substitution of the plate with one centered circular orifice in those applications where its use is not possible. For this purpose, six pairs of plates with different forms, with and without chamfered edges, were made and tested in a closed water loop. Results show that, generally, the use of chamfers improves the results and, in the case of perforated and slotlike orificed plates, the narrow-ness of the fluid passage tends to make unnecessary its use. (Author) [pt

  10. Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing

    2009-08-01

    Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.

  11. [Exposure to metal compounds in occupational galvanic processes].

    Science.gov (United States)

    Surgiewicz, Jolanta; Domański, Wojciech

    2006-01-01

    Occupational galvanic processes are provided in more than 600 small and medium enterprises in Poland. Workers who deal with galvanic coating are exposed to heavy metal compounds: tin, silver, copper and zinc. Some of them are carcinogenic, for example, hexavalent chromium compounds, nickel and cadmium compounds. Research covered several tens of workstations involved in chrome, nickel, zinc, tin, silver, copper and cadmium plating. Compounds of metals present in the air were determined: Cr, Ni, Cd, Sn, Ag--by atomic absorption spectrometry with electrothermal atomization (ET-AAS) and Zn--by atomic absorption spectrometry with flame atomization (F-AAS). The biggest metal concentrations--of silver and copper--were found at workstations of copper, brass, cadmium, nickel and chrome plating, conducted at the same time. Significant concentrations of copper were found at workstations of maintenance bathing and neutralizing of sewage. The concentrations of metals did not exceed Polish MAC values. MAC values were not exceeded for carcinogenic chromium(VI), nickel or cadmium, either. In galvanic processes there was no hazard related to single metals or their compounds, even carcinogenic ones. Combined exposure indicators for metals at each workstation did not exceed 1, either. However, if there are even small quantities of carcinogenic agents, health results should always be taken into consideration.

  12. Plating laboratory

    International Nuclear Information System (INIS)

    Seamster, A.G.; Weitkamp, W.G.

    1984-01-01

    The lead plating of the prototype resonator has been conducted entirely in the plating laboratory at SUNY Stony Brook. Because of the considerable cost and inconvenience in transporting personnel and materials to and from Stony Brook, it is clearly impractical to plate all the resonators there. Furthermore, the high-beta resonator cannot be accommodated at Stony Brook without modifying the set up there. Consequently the authors are constructing a plating lab in-house

  13. Investigation of the effects of process sequence on the contact resistance characteristics of coated metallic bipolar plates for polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Turan, Cabir; Cora, Ömer Necati; Koç, Muammer

    2013-12-01

    In this study, results of an investigation on the effects of manufacturing and coating process sequence on the contact resistance (ICR) of metallic bipolar plates (BPP) for polymer electrolyte membrane fuel cells (PEMFCs) are presented. Firstly, uncoated stainless steel 316L blanks were formed into BPP through hydroforming and stamping processes. Then, these formed BPP samples were coated with three different PVD coatings (CrN, TiN and ZrN) at three different thicknesses (0.1, 0.5 and 1 μm). Secondly, blanks of the same alloy were coated first with the same coatings, thickness and technique; then, they were formed into BPPs of the same shape and dimensions using the manufacturing methods as in the first group. Finally, these two groups of BPP samples were tested for their ICR to reveal the effect of process sequence. ICR tests were also conducted on the BPP plates both before and after exposure to corrosion to disclose the effect of corrosion on ICR. Coated-then-formed BPP samples exhibited similar or even better ICR performance than formed-then-coated BPP samples. Thus, manufacturing of coated blanks can be concluded to be more favorable and worth further investigation in quest of making cost effective BPPs for mass production of PEMFC.

  14. Three-Dimensional Elasticity Solutions for Sound Radiation of Functionally Graded Materials Plates considering State Space Method

    Directory of Open Access Journals (Sweden)

    Tieliang Yang

    2016-01-01

    Full Text Available This paper presents an analytical study for sound radiation of functionally graded materials (FGM plate based on the three-dimensional theory of elasticity. The FGM plate is a mixture of metal and ceramic, and its material properties are assumed to have smooth and continuous variation in the thickness direction according to a power-law distribution in terms of volume fractions of the constituents. Based on the three-dimensional theory of elasticity and state space method, the governing equations with variable coefficients of the FGM plate are derived. The sound radiation of the vibration plate is calculated with Rayleigh integral. Comparisons of the present results with those of solutions in the available literature are made and good agreements are achieved. Finally, some parametric studies are carried out to investigate the sound radiation properties of FGM plates.

  15. Laser-induced selective metallization of polypropylene doped with multiwall carbon nanotubes

    Science.gov (United States)

    Ratautas, Karolis; Gedvilas, Mindaugas; Stankevičiene, Ina; Jagminienė, Aldona; Norkus, Eugenijus; Pira, Nello Li; Sinopoli, Stefano; Račiukaitis, Gediminas

    2017-08-01

    Moulded interconnect devices (MID) offer the material, weight and cost saving by integration electronic circuits directly into polymeric components used in automotive and other consumer products. Lasers are used to write circuits directly by modifying the surface of polymers followed by an electroless metal plating. A new composite material - the polypropylene doped with multiwall carbon nanotubes was developed for the laser-induced selective metallization. Mechanism of surface activation by laser irradiation was investigated in details utilising pico- and nanoseconds lasers. Deposition of copper was performed in the autocatalytic electroless plating bath. The laser-activated polymer surfaces have been studied using the Raman spectroscopy and scanning electron microscope (SEM). Microscopic images revealed that surface becomes active only after its melting by a laser. Alterations in the Raman spectra of the D and G bands indicated the clustering of carbon additives in the composite material. Optimal laser parameters for the surface activation were found by measuring a sheet resistance of the finally metal-plated samples. A spatially selective copper plating was achieved with the smallest conductor line width of 22 μm at the laser scanning speed of 3 m/s and the pulse repetition rate of 100 kHz. Finally, the technique was validated by making functional electronic circuits by this MID approach.

  16. C6 plate puncture testing report.

    Energy Technology Data Exchange (ETDEWEB)

    Vangoethem, Douglas J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cordova, Theresa Elena [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reu, Phillip L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-04-01

    There are numerous scenarios where critical systems could be subject to penetration by projectiles or fixed objects (e.g., collision, natural disaster, act of terrorism, etc.). It is desired to use computational models to examine these scenarios and make risk-informed decisions; however, modeling of material failure is an active area of research, and new models must be validated with experimental data. The purpose of this report is to document the experimental work performed from FY07 through FY08 on the Campaign Six Plate Puncture project. The goal of this project was to acquire experimental data on the puncture and penetration of metal plates for use in model validation. Of particular interest is the PLH failure model also known as the multilinear line segment model. A significant amount of data that will be useful for the verification and validation of computational models of ductile failure were collected during this project were collected and documented herein; however, much more work remains to be performed, collecting additional experimental data that will further the task of model verification.

  17. Available: lead plate from COMPASS experiment

    CERN Multimedia

    The COMPASS collaboration

    2014-01-01

    The COMPASS collaboration would like to offer the possibility to take over a large and thick lead plate, since it is not required anymore in the spectrometer.   It has the following dimensions: thickness 100 mm, width 4.4 m and height 2.0 m, with a square hole in the middle with dimensions of 40 cm x 40 cm. The measured weight including the metal frame it is housed in is 10,180 kg. The CERN stores reference is 44.13.30.100.9. Please contact Erwin Bielert (erwin.bielert@cern.ch or 160539) for further information and details.

  18. Processing and Electromagnetic Shielding Properties of Multifunctional Metal Composite Knitted Fabric used as Socks

    Directory of Open Access Journals (Sweden)

    Yu Zhicai

    2016-01-01

    Full Text Available In this research, a type of bamboo charcoal polyester (BC-PET/antibacterial nylon(AN/stainless steel wire (SSW metal composite yarn was prepared with a hollow spindle spinning machine, which using the SSW as the core material, the BC-PET and AN as the outer and inner wrapped yarns, respectively. The wrapping numbers was set at 8.0turns/cm for the produced metal composite yarns. Furthermore, a type of plated knitted fabric was designed and produced by using the automatic jacquard knitting machine. The plated knitted fabric presents the BC-PET/AN/SSW metal composite yarn on the knitted fabric face and the crisscross-section polyester (CSP on the knit back. The effect of lamination numbers and angles on the electromagnetic shielding effectiveness (EMSE were discussed in this study. EMSE measurement showed that the lamination angles will influence the EMSE, but not affect the air permeability. Finally, a novel EM shielding socks was designed with the produced plated knitted fabric. Finally, the performance of thermal resistance and evaporation resistance was also test usingThe sweating guarded hot plate apparatus.

  19. Fatigue crack growth in fiber-metal laminates

    Science.gov (United States)

    Ma, YuE; Xia, ZhongChun; Xiong, XiaoFeng

    2014-01-01

    Fiber-metal laminates (FMLs) consist of three layers of aluminum alloy 2024-T3 and two layers of glass/epoxy prepreg, and it (it means FMLs) is laminated by Al alloy and fiber alternatively. Fatigue crack growth rates in notched fiber-metal laminates under constant amplitude fatigue loading were studied experimentally and numerically and were compared with them in monolithic 2024-T3 Al alloy plates. It is shown that the fatigue life of FMLs is about 17 times longer than monolithic 2024-T3 Al alloy plate; and crack growth rates in FMLs panels remain constant mostly even when the crack is long, unlike in the monolithic 2024-T3 Al alloy plates. The formula to calculate bridge stress profiles of FMLs was derived based on the fracture theory. A program by Matlab was developed to calculate the distribution of bridge stress in FMLs, and then fatigue growth lives were obtained. Finite element models of FMLs were built and meshed finely to analyze the stress distributions. Both results were compared with the experimental results. They agree well with each other.

  20. Analysis of metal samples

    International Nuclear Information System (INIS)

    Ramirez T, J.J.; Lopez M, J.; Sandoval J, A.R.; Villasenor S, P.; Aspiazu F, J.A.

    2001-01-01

    An elemental analysis, metallographic and of phases was realized in order to determine the oxidation states of Fe contained in three metallic pieces: block, plate and cylinder of unknown material. Results are presented from the elemental analysis which was carried out in the Tandem Accelerator of ININ by Proton induced X-ray emission (PIXE). The phase analysis was carried out by X-ray diffraction which allowed to know the type of alloy or alloys formed. The combined application of nuclear techniques with metallographic techniques allows the integral characterization of industrial metals. (Author)

  1. Create Your Plate

    Medline Plus

    Full Text Available ... Plate Share Create Your Plate ! Share: Seven Simple Steps to Create Your Plate It's simple and effective ... foods within each food category. Try these seven steps to get started: Using your dinner plate, put ...

  2. Safety catching device for pipe lines in missile shielding cylinders of nuclear power plants

    International Nuclear Information System (INIS)

    Hering, S.; Doll, B.

    1975-01-01

    The safety catching device for pipes in the missile shielding cylinders consists of a flexible steel cable surrounding the pipe in a distance in U-shape. The arrester cable - which works as a spring and is freely movable in all directions - is attached to the cylinder wall. For this, the ends of the cable are primarily fastened to anchor boxes which are then inserted in a stay tube with the same axis as the cable ends. The anchor boxes are fastened to the outer wall of the missile shielding cylinder by anchor bolts and holding plates. (DG/AK) [de

  3. DEVELOPMENT OF HIGH-DENSITY U/AL DISPERSION PLATES FOR MO-99 PRODUCTION USING ATOMIZED URANIUM POWDER

    OpenAIRE

    RYU, HO JIN; KIM, CHANG KYU; SIM, MOONSOO; PARK, JONG MAN; LEE, JONG HYUN

    2013-01-01

    Uranium metal particle dispersion plates have been proposed as targets for Molybdenum-99 (Mo-99) production to improve the radioisotope production efficiency of conventional low enriched uranium targets. In this study, uranium powder was produced by centrifugal atomization, and miniature target plates containing uranium particles in an aluminum matrix with uranium densities up to 9 g-U/cm3 were fabricated. Additional heat treatment was applied to convert the uranium particles into UAlx compou...

  4. Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications.

    Science.gov (United States)

    Bagheri, Zahra S; El Sawi, Ihab; Schemitsch, Emil H; Zdero, Rad; Bougherara, Habiba

    2013-04-01

    This work is part of an ongoing program to develop a new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite material for use as an orthopaedic long bone fracture plate, instead of a metal plate. The purpose of this study was to evaluate the mechanical properties of this new novel composite material. The composite material had a "sandwich structure", in which two thin sheets of CF/epoxy were attached to each outer surface of the flax/epoxy core, which resulted in a unique structure compared to other composite plates for bone plate applications. Mechanical properties were determined using tension, three-point bending, and Rockwell hardness tests. Also, scanning electron microscopy (SEM) was used to characterize the failure mechanism of specimens in tension and three-point bending tests. The results of mechanical tests revealed a considerably high ultimate strength in both tension (399.8MPa) and flexural loading (510.6MPa), with a higher elastic modulus in bending tests (57.4GPa) compared to tension tests (41.7GPa). The composite material experienced brittle catastrophic failure in both tension and bending tests. The SEM images, consistent with brittle failure, showed mostly fiber breakage and fiber pull-out at the fractured surfaces with perfect bonding at carbon fibers and flax plies. Compared to clinically-used orthopaedic metal plates, current CF/flax/epoxy results were closer to human cortical bone, making the material a potential candidate for use in long bone fracture fixation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Oxidation kinetics of reaction products formed in uranium metal corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T. C.

    1998-04-22

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O{sub 2} and Ar-20%O{sub 2} were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates.

  6. Oxidation kinetics of reaction products formed in uranium metal corrosion

    International Nuclear Information System (INIS)

    Totemeier, T. C.

    1998-01-01

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O 2 and Ar-20%O 2 were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates

  7. Microstructure and Properties of Ti-5553 Alloy for Aerospace Fasteners

    Directory of Open Access Journals (Sweden)

    ZHAO Qing-yun

    2017-10-01

    Full Text Available The effect of heat treatment on microstructure and mechanical properties of Ti-5553 alloy was investigated by scanning electron microscopy (SEM and transmission electron microscopy (TEM. The results show that when the alloy is treated in α+β phase zone, tensile strength decreases with raising solution temperature due to decreasing the content of primary α-phase and increasing the size and volume fraction of β phase. A lot of secondary α-phase precipitates from grain boundary and intragranular with β phase transformation during aging treatment. The size of secondary α-phase has significant influence on tensile strength, secondary α-phase coarsens gradually with the increase of aging temperature, resulting in the decrease of tensile strength. It is suggested that for 1240MPa aerospace fasteners the solution temperature of Ti-5553 should be under Tβ, thus adequate β phase, where a lot of secondary α phase precipitates from, is good for the required high strength. Meanwhile, a certain percentage of primary α-phase is kept for acquiring good ductility and toughness. After solution treatment at 810-820℃ for 1.5h, water quenching plus aging at 510℃ for 10h, Ti-5553 shows a better mechanical property with tensile strength 1500MPa, elongation 14.8% and reduction of cross-section area 38.6%. Lots of dimples can be found in tensile fracture after solution treatment and solution+aging treatment, which demonstrate Ti-5553 with good ductility and toughness.

  8. Loading Mode and Environment Effects on Surface Profile Characteristics of Martensite Plates in Cu-Based SMAs

    Science.gov (United States)

    Suru, Marius-Gabriel; Paraschiv, Adrian-Liviu; Lohan, Nicoleta Monica; Pricop, Bogdan; Ozkal, Burak; Bujoreanu, Leandru-Gheorghe

    2014-07-01

    The present work reports the influence of the loading mode provided during training under constant stress, in bending, applied to lamellar specimens of Cu-Zn-Al shape memory alloys (SMAs). During training, the specimens were bent by a load fastened at their free end, while being martensitic at room temperature and they lifted the load by one-way effect (1WE), during heating up to austenitic field. On cooling to martensite field, the lower concave surface of bent specimens was compressed, and during heating it was elongated, being subjected to a series of tension-compression cycles, during heating-cooling, respectively. Conversely, the upper convex surface of bent specimens was elongated during cooling and compressed during heating, being subjected to compression-tension cycles. Furthermore, 2WE-trained actuators were tested by means of a hydraulic installation where, this time heating-cooling cycles were performed in oil conditions. Considering that the lower concave surface of the specimens was kept in compressed state, while the upper convex surface was kept in elongated state, the study reveals the influence of the two loading modes and environments on the width of martensite plates of the specimens trained under various numbers of cycles. In this purpose, Cu-Zn-Al specimens, trained under 100-300-500 cycles, were prepared and analyzed by atomic force microscopy (AFM) as well as optical and scanning electron microscopy (OM and SEM, respectively). The analysis also included AFM micrographs corroborated with statistical evaluations in order to reveal the effects of loading mode (tension or compression) in different environmental conditions of the specimens, on the surface profile characteristics of martensite plates, revealed by electropolishing.

  9. Investigation of Plasma Spray Coatings as an Alternative to Hard Chrome Plating on Internal Surfaces

    Science.gov (United States)

    2006-06-20

    involved in plating and grinding of plated parts. The study estimated that at a typical Naval base the one-time cost of a PEL of 0.5 μgm-3 would be...using automatic control. A wide variety of metals and some cermets can be used as the coating material. As well as evaluating different ESD overlay...to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT

  10. Compatibility of copper-electroplated cells with Metal Wrap Through module materials

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, I.J.; Geerligs, L.J.; Olson, C.L.; Goris, M.J.A.A. [ECN Solar Energy, Petten (Netherlands)

    2013-10-16

    As part of the European FP7 RandD project 'Cu-PV', the compatibility of copper-electroplated metal wrapthrough (MWT) cells with conductive adhesives has been investigated. The objectives of this project include to reduce, by the use of copper plating, the amount of silver utilized in cell manufacturing, and to demonstrate the compatibility of high-power n-type back-contact module technology with copper-plated cells. The overall goal is to reduce the impact on the environment of cell and module manufacture. MWT module technology as developed by ECN uses conductive adhesive to make the interconnection between cells and a conductive backsheet foil. These adhesives have been proved to result in very reliable modules in the case of cells with fired silver metallization. To determine the compatibility of conductive adhesive with copper-plated cells, component tests were performed, followed by the manufacture of modules with copperplated cells and conductive adhesive interconnections. Climate chamber testing of these modules showed that the adhesive is compatible with the copper-plated cells. The next steps include further optimization of the plating process and additional testing at the module level.

  11. Laser direct joining of metal and plastic

    International Nuclear Information System (INIS)

    Katayama, Seiji; Kawahito, Yousuke

    2008-01-01

    We have developed an innovative rapid laser direct joining process of metal and plastic lap plates without adhesives or glues. The joints made between a Type 304 stainless steel plate and a polyethylene terephthalate (PET) plastic sheet of 30 mm width possessed tensile shear loads of about 3000 N. Transmission electron microscope photographs of the joint demonstrated that Type 304 and the PET were bonded on the atomic, molecular or nanostructural level through a Cr oxide film

  12. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... metal in your body. Guidelines about eating and drinking before your exam vary between facilities. Unless you ... has no metal fasteners. Guidelines about eating and drinking before an MRI exam vary with the specific ...

  13. MRI of the Chest

    Medline Plus

    Full Text Available ... metal in your body. Guidelines about eating and drinking before your exam vary between facilities. Unless you ... has no metal fasteners. Guidelines about eating and drinking before an MRI exam vary with the specific ...

  14. MRI of the Chest

    Medline Plus

    Full Text Available ... devices or metal in your body. Guidelines about eating and drinking before your exam vary between facilities. ... fitting and has no metal fasteners. Guidelines about eating and drinking before an MRI exam vary with ...

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... devices or metal in your body. Guidelines about eating and drinking before your exam vary between facilities. ... fitting and has no metal fasteners. Guidelines about eating and drinking before an MRI exam vary with ...

  16. MRI of the Chest

    Medline Plus

    Full Text Available ... have any devices or metal in your body. Guidelines about eating and drinking before your exam vary ... is loose-fitting and has no metal fasteners. Guidelines about eating and drinking before an MRI exam ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... have any devices or metal in your body. Guidelines about eating and drinking before your exam vary ... is loose-fitting and has no metal fasteners. Guidelines about eating and drinking before an MRI exam ...

  18. Paper microzone plates.

    Science.gov (United States)

    Carrilho, Emanuel; Phillips, Scott T; Vella, Sarah J; Martinez, Andres W; Whitesides, George M

    2009-08-01

    This paper describes 96- and 384-microzone plates fabricated in paper as alternatives to conventional multiwell plates fabricated in molded polymers. Paper-based plates are functionally related to plastic well plates, but they offer new capabilities. For example, paper-microzone plates are thin (approximately 180 microm), require small volumes of sample (5 microL per zone), and can be manufactured from inexpensive materials ($0.05 per plate). The paper-based plates are fabricated by patterning sheets of paper, using photolithography, into hydrophilic zones surrounded by hydrophobic polymeric barriers. This photolithography used an inexpensive formulation photoresist that allows rapid (approximately 15 min) prototyping of paper-based plates. These plates are compatible with conventional microplate readers for quantitative absorbance and fluorescence measurements. The limit of detection per zone loaded for fluorescence was 125 fmol for fluorescein isothiocyanate-labeled bovine serum albumin, and this level corresponds to 0.02 the quantity of analyte per well used to achieve comparable signal-to-noise in a 96-well plastic plate (using a solution of 25 nM labeled protein). The limits of detection for absorbance on paper was approximately 50 pmol per zone for both Coomassie Brilliant Blue and Amaranth dyes; these values were 0.4 that required for the plastic plate. Demonstration of quantitative colorimetric correlations using a scanner or camera to image the zones and to measure the intensity of color, makes it possible to conduct assays without a microplate reader.

  19. Fracture assessment for a dissimilar metal weld of low alloy steel and Ni-base alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Takuya, E-mail: takuya4.ogawa@toshiba.co.jp [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Itatani, Masao; Saito, Toshiyuki; Hayashi, Takahiro; Narazaki, Chihiro; Tsuchihashi, Kentaro [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2012-02-15

    Recently, instances of SCC in Ni-base alloy weld metal of light water reactor components have been reported. Despite the possibility of propagation of SCC crack to the fusion line between low alloy steel (LAS) of pressure vessel and Ni-base alloy of internal structure, a fracture assessment method of dissimilar metal welded joint has not been established. The objective of this study is to investigate a fracture mode of dissimilar metal weld of LAS and Ni-base alloy for development of a fracture assessment method for dissimilar metal weld. Fracture tests were conducted using two types of dissimilar metal weld test plates with semi-elliptical surface crack. In one of the test plates, the fusion line lies around the surface points of the surface crack and the crack tips at the surface points have intruded into LAS. Material ahead of the crack tip at the deepest point is Ni-base alloy. In the other, the fusion line lies around the deepest point of the surface crack and the crack tip at the deepest point has intruded into LAS. Material ahead of the crack tip at the deepest point is LAS. The results of fracture tests using the former type of test plate reveal that the collapse load considering the proportion of ligament area of each material gives a good estimation for fracture load. That is, fracture assessment based on plastic collapse mode is applicable to the former type of test plate. It is also understood that a fracture assessment method based on the elastic-plastic fracture mode is suitable for the latter type of test plate.

  20. End plates made of a composite material for the revolving drum of a centrifuge

    International Nuclear Information System (INIS)

    Yamanaka, T.; Onishi, H.; Fujiwara, M.

    1980-01-01

    The present invention relates to improvement of the end plates of centrifuges, especially those for centrifugal gas separators. End plates made of a composite material for the revolving drum of a centrifuge consists of a carbon-fiber-reinforced plastic layer. This layer consists of carbon fibers either wound helically at an angle greater than 75 0 and less than 90 0 to the center line of revolution, or wound in a hoop, and a matrix of a thermosetting resin in which the carbon fibers are buried, which [matrix] is laminated with metal layers

  1. An evaluation of ACI 349 code for design of the fastening system at nuclear power plant

    International Nuclear Information System (INIS)

    Jang, J.-B.; Suh, Y.-P.; Lee, J.-R.

    2005-01-01

    ACI 349 Code, revised on 2001, is only available for the anchor with diameter not exceeding 2 in. and tensile embedment not exceeding 25 in. in depth. So, ACI 349 Code can't be applied to the design of the large sized anchor with diameter exceeding 2 in. and tensile embedment exceeding 25 in. in depth which fastens the SG, RV, RCP, PZR, etc. at containment building. Therefore, an application of ACI 349 Code was investigated for the design of the small and large sized anchors under tensile load using the numerical analysis model which was developed on a basis of the various test data of cast-in-place anchor in this study. In conclusion, it is proved that ACI 349 Code is available for the design of the small and large sized cast-in-place anchor. (authors)

  2. Fixation of zygomatic and mandibular fractures with biodegradable plates.

    Science.gov (United States)

    Degala, Saikrishna; Shetty, Sujeeth; Ramya, S

    2013-01-01

    In this prospective study, 13 randomly selected patients underwent treatment for zygomatic-complex fractures (2 site fractures) and mandibular fractures using 1.5 / 2 / 2.5-mm INION CPS biodegradable plates and screws. To assess the fixation of zygomatic-complex and mandibular fractures with biodegradable copolymer osteosynthesis system. In randomly selected 13 patients, zygomatic-complex and mandibular fractures were plated using resorbable plates and screws using Champy's principle. All the cases were evaluated clinically and radiologically for the type of fracture, need for the intermaxillary fixation (IMF) and its duration, duration of surgery, fixation at operation, state of reduction at operation, state of bone union after operation, anatomic reduction, paresthesia, occlusal discrepancies, soft tissue infection, immediate and late inflammatory reactions related to biodegradation process, and any need for the removal of the plates. Descriptives, Frequencies, and Chi-square test were used. In our study, the age group range was 5 to 55 years. Road traffic accidents accounted for the majority of patients six, (46.2%). Postoperative occlusal discrepancies were found in seven patients as mild to moderate, which resolved with IMF for 1-8 weeks. There were minimal complications seen and only as soft tissue infection. Use of biodegradable osteosynthesis system is a reliable alternative method for the fixation of zygomatic-complex and mandibular fractures. The biodegradable system still needs to be refined in material quality and handling to match the stability achieved with metal system. Biodegradable plates and screws is an ideal system for pediatric fractures with favorable outcome.

  3. Advances in moment transfering dvw reinforced timber connections : analysis and experimental verification, Part 1

    NARCIS (Netherlands)

    Leijten, A.J.M.; Brandon, D.

    2013-01-01

    Considerable advances in the moment transferring capacity of timber connections are achieved by using densified veneer wood reinforcement and expanded tube fasteners. This study focuses on the rotational stiffness of two dvw reinforced connections joined in series by a steel plate in a splice and

  4. Fluid and structural dynamic design considerations of the HYLIFE nozzle plate

    International Nuclear Information System (INIS)

    Pitts, J.H.; Ojalvo, I.U.

    1981-02-01

    The basic concept of the High Yield Lithium Injection Fusion Energy (HYLIFE) reaction chamber involves a falling liquid-metal (lithium) jet array that absorbs 90% of the energy released from inertial confinement fusion reactions. The key element of the chamber that produces the jet array is the nozzle plate. This paper describes the design and analysis of a nozzle plate which can withstand the structural loads and permit the fluid jet array to be reestablished for a 1-Hz fusion reaction frequency. The shape of the nozzle plate and jet array is dictated by considerations of fluid dynamics and neutron-shielding. A vertical jet array, rather than a single annulus, is used because this design enhances fluid momentum interchange and dissipation of the kinetic energy that occurs when the jets disassemble. Less net outward-directed momentum results than with a single liquid annular flow configuration, thus producing lower stresses in the structural components

  5. Comprehensive study of gate-terminated and source-terminated field-plate 0.13 µm NMOS transistors

    International Nuclear Information System (INIS)

    Chiu, Hsien-Chin; Lin, Shao-Wei; Cheng, Chia-Shih; Wei, Chien-Cheng

    2008-01-01

    This study systematically investigated microwave noise, power and linearity characteristics of field-plate (FP) 0.13 µm CMOS transistors in which the field-plate metal is connected to the gate terminal and the source terminal. The gate-terminated FP NMOS (FP-G NMOS) provided the best noise figure (NF) at 6 GHz compared with standard devices and the source-terminated FP device (FP-S NMOS) as the lowest gate resistance (R g ) was obtained by this structure. By adopting the field-plate metal in NMOS, both FP-S and FP-G devices achieved higher current density at high gate bias voltages. Moreover, these two devices also had higher efficiency under high drain-to-source voltages at the high input power swing. The third-order inter-modulation product (IM3) is −39.4 dBm for FP-S NMOS at P in of −20 dBm; the corresponding values for FP-G and standard devices are −34.9 dBm and −37.3 dBm, respectively. Experimental results indicate that the FP-G architecture is suitable for low noise applications and FP-S is suitable for high power and high linearity operation

  6. Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, Yusuf [Anadolu Universitesi, Cevre Sor. Uyg. ve Aras. Merkezi, Eskisehir (Turkey); Koparal, A. Savas [Anadolu Universitesi, Cevre Sor. Uyg. ve Aras. Merkezi, Eskisehir (Turkey)]. E-mail: askopara@anadolu.edu.tr

    2006-08-21

    In this study, electrochemical oxidation of phenol was carried out in a parallel plate reactor using ruthenium mixed metal oxide electrode. The effects of initial pH, temperature, supporting electrolyte concentration, current density, flow rate and initial phenol concentration on the removal efficiency were investigated. Model wastewater prepared with distilled water and phenol, was recirculated to the electrochemical reactor by a peristaltic pump. Sodium sulfate was used as supporting electrolyte. The Microtox'' (registered) bioassay was also used to measure the toxicity of the model wastewater during the study. As a result of the study, removal efficiency of 99.7% and 88.9% were achieved for the initial phenol concentration of 200 mg/L and chemical oxygen demand (COD) of 480 mg/L, respectively. In the same study, specific energy consumption of 1.88 kWh/g phenol removed and, mass transfer coefficient of 8.62 x 10{sup -6} m/s were reached at the current density of 15 mA/cm{sup 2}. Electrochemical oxygen demand (EOD), which can be defined as the amount of electrochemically formed oxygen used for the oxidation of organic pollutants, was 2.13 g O{sub 2}/g phenol. Electrochemical oxidation of petroleum refinery wastewater was also studied at the optimum experimental conditions obtained. Phenol removal of 94.5% and COD removal of 70.1% were reached at the current density of 20 mA/cm{sup 2} for the petroleum refinery wastewater.

  7. Silver-free Metallization Technology for Producing High Efficiency, Industrial Silicon Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Michaelson, Lynne M [Technic Inc; Munoz, Krystal [Technic Inc.; Karas, Joseph [Arizona State Univ., Tempe, AZ (United States); Bowden, Stuart [Arizona State Univ., Tempe, AZ (United States); Rand, James A; Gallegos, Anthony [Technic Inc.; Tyson, Tom [Technic Inc.; Buonassisi, Tonio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2018-03-30

    The goal of this project is to provide a commercially viable Ag-free metallization technology that will both reduce cost and increase efficiency of standard silicon solar cells. By removing silver from the front grid metallization and replacing it with lower cost nickel, copper, and tin metal, the front grid direct materials costs will decrease. This reduction in material costs should provide a path to meeting the Sunshot 2020 goal of $1 / WDC. As of today, plated contacts are not widely implemented in large scale manufacturing. For organizations that wish to implement pilot scale manufacturing, only two equipment choices exist. These equipment manufacturers do not supply plating chemistry. The main goal of this project is to provide a chemistry and equipment solution to the industry that enables reliable manufacturing of plated contacts marked by passing reliability results and higher efficiencies than silver paste front grid contacts. To date, there have been several key findings that point to plated contacts performing equal to or better than the current state of the art silver paste contacts. Poor adhesion and reliability concerns are a few of the hurdles for plated contacts, specifically plated nickel directly on silicon. A key finding of the Phase 1 budget period is that the plated contacts have the same adhesion as the silver paste controls. This is a huge win for plated contacts. With very little optimization work, state of the art electrical results for plated contacts on laser ablated lines have been demonstrated with efficiencies up to 19.1% and fill factors ~80% on grid lines 40-50 um wide. The silver paste controls with similar line widths demonstrate similar electrical results. By optimizing the emitter and grid design for the plated contacts, it is expected that the electrical performance will exceed the silver paste controls. In addition, cells plated using Technic chemistry and equipment pass reliability testing; i.e. 1000 hours damp heat and 200

  8. Laser-induced selective metallization of polypropylene doped with multiwall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ratautas, Karolis, E-mail: karolis.ratautas@ftmc.lt [Center for Physical Sciences and Technology, Savanoriu Ave. 231, Vilnius LT-02300 (Lithuania); Gedvilas, Mindaugas; Stankevičiene, Ina; Jagminienė, Aldona; Norkus, Eugenijus [Center for Physical Sciences and Technology, Savanoriu Ave. 231, Vilnius LT-02300 (Lithuania); Pira, Nello Li [Centro Ricerche Fiat, Strada Torino 50, Orbassano 10043 (Italy); Sinopoli, Stefano [BioAge Srl, Via Dei Glicini 25, Lamezia Terme 88046 (Italy); Račiukaitis, Gediminas [Center for Physical Sciences and Technology, Savanoriu Ave. 231, Vilnius LT-02300 (Lithuania)

    2017-08-01

    Highlights: • PP doped with multiwall CNT can be activated with ns laser for electroless plating. • Developed material is cheap decision for MID applications. • Activation mechanism was preliminary proposed. • Demo for automotive application has been manufactured. - Abstract: Moulded interconnect devices (MID) offer the material, weight and cost saving by integration electronic circuits directly into polymeric components used in automotive and other consumer products. Lasers are used to write circuits directly by modifying the surface of polymers followed by an electroless metal plating. A new composite material – the polypropylene doped with multiwall carbon nanotubes was developed for the laser-induced selective metallization. Mechanism of surface activation by laser irradiation was investigated in details utilising pico- and nanoseconds lasers. Deposition of copper was performed in the autocatalytic electroless plating bath. The laser-activated polymer surfaces have been studied using the Raman spectroscopy and scanning electron microscope (SEM). Microscopic images revealed that surface becomes active only after its melting by a laser. Alterations in the Raman spectra of the D and G bands indicated the clustering of carbon additives in the composite material. Optimal laser parameters for the surface activation were found by measuring a sheet resistance of the finally metal-plated samples. A spatially selective copper plating was achieved with the smallest conductor line width of 22 μm at the laser scanning speed of 3 m/s and the pulse repetition rate of 100 kHz. Finally, the technique was validated by making functional electronic circuits by this MID approach.

  9. Laser-induced selective metallization of polypropylene doped with multiwall carbon nanotubes

    International Nuclear Information System (INIS)

    Ratautas, Karolis; Gedvilas, Mindaugas; Stankevičiene, Ina; Jagminienė, Aldona; Norkus, Eugenijus; Pira, Nello Li; Sinopoli, Stefano; Račiukaitis, Gediminas

    2017-01-01

    Highlights: • PP doped with multiwall CNT can be activated with ns laser for electroless plating. • Developed material is cheap decision for MID applications. • Activation mechanism was preliminary proposed. • Demo for automotive application has been manufactured. - Abstract: Moulded interconnect devices (MID) offer the material, weight and cost saving by integration electronic circuits directly into polymeric components used in automotive and other consumer products. Lasers are used to write circuits directly by modifying the surface of polymers followed by an electroless metal plating. A new composite material – the polypropylene doped with multiwall carbon nanotubes was developed for the laser-induced selective metallization. Mechanism of surface activation by laser irradiation was investigated in details utilising pico- and nanoseconds lasers. Deposition of copper was performed in the autocatalytic electroless plating bath. The laser-activated polymer surfaces have been studied using the Raman spectroscopy and scanning electron microscope (SEM). Microscopic images revealed that surface becomes active only after its melting by a laser. Alterations in the Raman spectra of the D and G bands indicated the clustering of carbon additives in the composite material. Optimal laser parameters for the surface activation were found by measuring a sheet resistance of the finally metal-plated samples. A spatially selective copper plating was achieved with the smallest conductor line width of 22 μm at the laser scanning speed of 3 m/s and the pulse repetition rate of 100 kHz. Finally, the technique was validated by making functional electronic circuits by this MID approach.

  10. Flexible Multi-Body Spacecraft Simulator: Design, Construction, and Experiments

    Science.gov (United States)

    2017-12-01

    required analysis. The first step in applying Pontryagin’s Principle is writing the control Hamiltonian: ( , , , ) ( , , ) ( , , )TH x u t F x u t f...of holes allows the adapter plate to be fastened to the MBSS top plate. 26 The base and link are designed to be modular and expandable. The link...https://www.quanser.com/products/2-dof-serial-flexible-joint/ 79 INITIAL DISTRIBUTION LIST 1. Defense Technical Information Center Ft. Belvoir

  11. Method of decontaminating radioactive metal wastes

    International Nuclear Information System (INIS)

    Miyaji, Nobuyoshi.

    1985-01-01

    Purpose: To completely prevent the surface contamination of an equipment and decrease the amount of radioactive wastes to be resulted. Method: The surfaces of vessels, pipeways or the likes of nuclear reactor facilities to be contaminated with radioactive materials are appended with thin plates of metals identical or different from the constituents of the surfaces so as to be releasable after use. The material and the thickness of the plates and the method of appending then are determined depending on the state of use of the appended portions. Since only the stripped plates have to be processed as radioactive wastes, the amount of wastes can be decreased and, since the scrap materials can be reused, it is advantageous in view of the resource-saving. (Sekiya, K.)

  12. Active gas discharge cleaning for superconducting lead-plated resonators

    International Nuclear Information System (INIS)

    Malev, M.D.; Weisser, D.C.

    1985-06-01

    Lead-plating for superconducting RF resonators historically has been directed toward reducing grain size and eliminating spikes on the surface. Investigations were made of degassing lead-plated surfaces under RF resonant electron discharge or multipacting. The mass-spectra of the residual atmosphere showed that decomposition of hydrocarbons on the surface took place. Discolouration of the lead surface, due to the formation of a carbon layer, was easily observed. A method of cleaning surfaces by ion bombardment employing chemically active gases, was proposed and tested. An RF discharge, initiated by multipacting at pressure 10 -2 - 10 -1 torr was used. The first step, discharge treatment in a CO 2 atmosphere, assures oxidation of carbon and hydrocarbons into gaseous compounds which are removed by pumping. During the second step, discharge treatment in a hydrogen atmosphere, lead oxides are reduced to metal

  13. A high-quality narrow passband filter for elastic SV waves via aligned parallel separated thin polymethylmethacrylate plates

    OpenAIRE

    Jun Zhang; Yaolu Liu; Wensheng Yan; Ning Hu

    2017-01-01

    We designed a high-quality filter that consists of aligned parallel polymethylmethacrylate (PMMA) thin plates with small gaps for elastic SV waves propagate in metals. Both the theoretical model and the full numerical simulation show the transmission spectrum of the elastic SV waves through such a filter has several sharp peaks with flawless transmission within the investigated frequencies. These peaks can be readily tuned by manipulating the geometry parameters of the PMMA plates. Our invest...

  14. Cutaneous and systemic hypersensitivity reactions to metallic implants

    DEFF Research Database (Denmark)

    Basko-Plluska, Juliana L; Thyssen, Jacob P; Schalock, Peter C

    2011-01-01

    Cutaneous reactions to metal implants, orthopedic or otherwise, are well documented in the literature. The first case of a dermatitis reaction over a stainless steel fracture plate was described in 1966. Most skin reactions are eczematous and allergic in nature, although urticarial, bullous....... However, other metal ions as well as bone cement components can cause such hypersensitivity reactions. To complicate things, patients may also develop delayed-type hypersensitivity reactions to metals (ie, in-stent restenosis, prosthesis loosening, inflammation, pain, or allergic contact dermatitis...

  15. A Seismic Analysis for Reflective Metal Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyuhyung; Kim, Taesoon [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    U.S. NRC (Nuclear Regulatory Commission) GSI- 191 (Generic Safety Issue-191) is concerned about the head-loss of emergency core cooling pumps caused by calcium silicate insulation debris accumulated on a sump screen when a loss of coolant accident (LOCA). In order to cope with the concern, many nuclear plants in U. S. have been replacing calcium silicate insulation in containment building with reflective metal insulation (RMI). In Korea, RMI has been used for only reactor vessels recently constructed, but the RMI was imported. Therefore, we have been developing the domestic design of RMI to supply to nuclear power plants under operation and construction in relation to the GSI-191. This paper covers that the structural integrity of the RMI assembly was evaluated under SSE (safety shutdown earthquake) load. An analysis model was built for the seismic test system of a reflective metal insulation assembly and pre-stress, modal, and spectrum analysis for the model were performed using a commercial structural analysis code, ANSYS. According to the results of the analyses, the buckles fastening the RMIs showed the structural integrity under the required response spectrum containing the safety shutdown earthquake loads applied to main components in containment building. Consequently, since the RMI isn't disassembled under the SSE load, the RMI is judged not to affect safety related components.

  16. A Seismic Analysis for Reflective Metal Insulation

    International Nuclear Information System (INIS)

    Kim, Kyuhyung; Kim, Taesoon

    2016-01-01

    U.S. NRC (Nuclear Regulatory Commission) GSI- 191 (Generic Safety Issue-191) is concerned about the head-loss of emergency core cooling pumps caused by calcium silicate insulation debris accumulated on a sump screen when a loss of coolant accident (LOCA). In order to cope with the concern, many nuclear plants in U. S. have been replacing calcium silicate insulation in containment building with reflective metal insulation (RMI). In Korea, RMI has been used for only reactor vessels recently constructed, but the RMI was imported. Therefore, we have been developing the domestic design of RMI to supply to nuclear power plants under operation and construction in relation to the GSI-191. This paper covers that the structural integrity of the RMI assembly was evaluated under SSE (safety shutdown earthquake) load. An analysis model was built for the seismic test system of a reflective metal insulation assembly and pre-stress, modal, and spectrum analysis for the model were performed using a commercial structural analysis code, ANSYS. According to the results of the analyses, the buckles fastening the RMIs showed the structural integrity under the required response spectrum containing the safety shutdown earthquake loads applied to main components in containment building. Consequently, since the RMI isn't disassembled under the SSE load, the RMI is judged not to affect safety related components

  17. Dendrite-Free Sodium-Metal Anodes for High-Energy Sodium-Metal Batteries.

    Science.gov (United States)

    Sun, Bing; Li, Peng; Zhang, Jinqiang; Wang, Dan; Munroe, Paul; Wang, Chengyin; Notten, Peter H L; Wang, Guoxiu

    2018-05-31

    Sodium (Na) metal is one of the most promising electrode materials for next-generation low-cost rechargeable batteries. However, the challenges caused by dendrite growth on Na metal anodes restrict practical applications of rechargeable Na metal batteries. Herein, a nitrogen and sulfur co-doped carbon nanotube (NSCNT) paper is used as the interlayer to control Na nucleation behavior and suppress the Na dendrite growth. The N- and S-containing functional groups on the carbon nanotubes induce the NSCNTs to be highly "sodiophilic," which can guide the initial Na nucleation and direct Na to distribute uniformly on the NSCNT paper. As a result, the Na-metal-based anode (Na/NSCNT anode) exhibits a dendrite-free morphology during repeated Na plating and striping and excellent cycling stability. As a proof of concept, it is also demonstrated that the electrochemical performance of sodium-oxygen (Na-O 2 ) batteries using the Na/NSCNT anodes show significantly improved cycling performances compared with Na-O 2 batteries with bare Na metal anodes. This work opens a new avenue for the development of next-generation high-energy-density sodium-metal batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Characterization of laser doped silicon and overcoming adhesion challenges of solar cells with nickel-copper plated contacts

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Christian

    2015-07-01

    The combination of localized laser patterning and metal plating allows to replace conventional silver screen printing with nickel-copper plating to form inexpensive front contacts for crystalline silicon solar cells. In this work, a focus is put on effects that could cause inhomogeneous metal deposition and low metal contact adhesion. A descriptive model of the silicon nitride ablation mechanism is derived from SEM imaging and a precise recombination analysis using QSSPC measurements. Surface sensitive XPS measurements are conducted to prove the existence of a parasitic surface layer, identified as SiO{sub x}N{sub y}. The dense SiO{sub x}N{sub y} layer is an effective diffusion barrier, hindering the formation of a nickel silicide interlayer. After removal of the SiO{sub x}N{sub y} layer, cells show severe degradation caused by metal-induced shunting. These shunts are imaged using reverse biased electroluminescence imaging. A shunting mechanism is proposed and experimentally verified. New laser process sequences are devised and proven to produce cells with adhering Ni-Cu contacts. Conclusively the developed processes are assessed based on their industrial feasibility as well as on their efficiency potential.

  19. Locking screw-plate interface stability in carbon-fibre reinforced polyetheretherketone proximal humerus plates.

    Science.gov (United States)

    Hak, David J; Fader, Ryan; Baldini, Todd; Chadayammuri, Vivek B S

    2017-09-01

    Carbon-fibre reinforced polyetheretherketone (CFR-PEEK) plates have recently been introduced for proximal humerus fracture treatment. The purpose of this study was to compare the locking screw-plate interface stability in CFR-PEEK versus stainless steel (SS) proximal humerus plates. Locking screw mechanical stability was evaluated independently in proximal and shaft plate holes. Stiffness and load to failure were tested for three conditions: (1) on-axis locking screw insertion in CFR-PEEK versus SS plates, (2) on-axis locking screw insertion, removal, and reinsertion in CFR-PEEK plates, and (3) 10-degree off-axis locking screw insertion in CFR-PEEK plates. Cantilever bending at a rate of 1 mm/minute was produced by an Instron machine and load-displacement data recorded. Shaft locking screw load to failure was significantly greater in CFR-PEEK plates compared to SS plates (746.4 ± 89.7 N versus 596.5 ± 32.6 N, p PEEK plates (p PEEK plates. The mechanical stability of locking screws in CFR-PEEK plates is comparable or superior to locking screws in SS plates.

  20. Environmental friendly crush-magnetic separation technology for recycling metal-plated plastics from end-of-life vehicles.

    Science.gov (United States)

    Xue, Mianqiang; Li, Jia; Xu, Zhenming

    2012-03-06

    Metal-plated plastics (MPP), which are important from the standpoint of aesthetics or even performance, are increasingly employed in a wide variety of situations in the automotive industry. Serious environmental problems will be caused if they are not treated appropriately. Therefore, recycling of MPP is an important subject not only for resource recycling but also for environmental protection. This work represents a novel attempt to deal with the MPP. A self-designed hammer crusher was used to liberate coatings from the plastic substrate. The size distribution of particles was analyzed and described by the Rosin-Rammler function model. The optimum retaining time of materials in the crusher is 3 min. By this time, the liberation rate of the materials can reach 87.3%. When the density of the suspension is 31,250 g/m(3), the performance of liberation is the best. Two-step magnetic separation was adopted to avoid excessive crushing and to guarantee the quality of products. Concerning both the separation efficiency and grade of products, the optimum rotational speed of the magnetic separator is 50-70 rpm. On the basis of the above studies about the liberating and separating behavior of the materials, a continuous recycling system (the technology of crush-magnetic separation) is developed. This recycling system provides a feasible method for recycling MPP efficiently, economically, and environmentally.

  1. Metal impurity injection into DIVA plasmas with a Q-switched laser beam

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Nagami, Masayuki; Sengoku, Seio; Kumagai, Katsuaki

    1978-08-01

    Metal impurity injection into DIVA plasmas with a Q-switched ruby laser beam is described. Metal materials used are aluminium and gold. The Q-switched laser beam is incident onto a thin metal film thickness about 0.2 μm coated on pyrex glass plate surface. The metal film is vaporized by the laser beam and injected into DIVA plasma. The laser-beam injection method has advantages of sharp profile of vaporized metal, easy control of vaporized metal quantity and injection rate control of metal vapor. (author)

  2. Microgravity effects on electrodeposition of metals and metal-cermet mixtures

    Science.gov (United States)

    Maybee, George W.; Riley, Clyde; Coble, H. Dwain

    1987-01-01

    An experimental system, designed to investigate the potential advantages of electrodeposition in microgravity, is being developed by the McDonnell Douglas Astronautics Company-Huntsville Division and the University of Alabama in Huntsville. It is intended to fly as an Orbiter payload when NASA resumes STS operations. The system will provide power, thermal conditioning, command and control for the production of electrodeposits; system performance data will be recorded for post-flight analysis. Plated metal surfaces will be created using simple electrolytic cells with pure metal electrodes immersed in aqueous electrolytic solutions. Crystalline structure and other properties will be analyzed to identify differences between samples produced in flight and those obtained from ground-based operations.

  3. Metallic coating of microspheres

    International Nuclear Information System (INIS)

    Meyer, S.F.

    1980-01-01

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates

  4. RC Beams Strengthened with Mechanically Fastened Composites: Experimental Results and Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Enzo Martinelli

    2014-03-01

    Full Text Available The use of mechanically-fastened fiber-reinforced polymer (MF-FRP systems has recently emerged as a competitive solution for the flexural strengthening of reinforced concrete (RC beams and slabs. An overview of the experimental research has proven the effectiveness and the potentiality of the MF-FRP technique which is particularly suitable for emergency repairs or when the speed of installation and immediacy of use are imperative. A finite-element (FE model has been recently developed by the authors with the aim to simulate the behavior of RC beams strengthened in bending by MF-FRP laminates; such a model has also been validated by using a wide experimental database collected from the literature. By following the previous study, the FE model and the assembled database are considered herein with the aim of better exploring the influence of some specific aspects on the structural response of MF-FRP strengthened members, such as the bearing stress-slip relationship assumed for the FRP-concrete interface, the stress-strain law considered for reinforcing steel rebars and the cracking process in RC members resulting in the well-known tension stiffening effect. The considerations drawn from this study will be useful to researchers for the calibration of criteria and design rules for strengthening RC beams through MF-FRP laminates.

  5. The stress characteristics of plate-fin structures at the different operation parameters of LNG heat exchanger

    Directory of Open Access Journals (Sweden)

    Ma Hongqiang

    2018-01-01

    Full Text Available In this paper, the stresses of plate-fin structures at the different operation parameters were analyzed in actual operation process of LNG plate-fin heat exchanger based on finite element method and thermal elastic theory. Stress characteristics of plate-fin structures were investigated at the different operation parameters of that. The results show that the structural failure of plate-fin structures is mainly induced by the maximum shear stress at the brazing filler metal layer between plate and fin while by the maximum normal stress in the region of brazed joint near the fin side. And a crack would initiate in brazed joint near the fin side. The maximum normal stress is also main factor to result in the structural failure of plate-fin structures at the different temperature difference (between Natural Gas (NG and Mixture Refrigerant (MR, MR temperature and NG pressure of LNG heat exchanger. At the same time, the peak stresses obviously increase as the temperature difference, MR temperature and NG pressure increase. These results will provide some constructive instructions in the safe operation of LNG plate-fin heat exchanger in a large-scale LNG cold-box.

  6. Evaluation of air jet erosion profiles in metal mesh supported SCR plate catalyst based on glass fiber concentrations

    Science.gov (United States)

    Rajath, S.; Nandakishora, Y.; Siddaraju, C.; Roy, Sukumar

    2018-04-01

    This paper explains the evaluation of erosion profiles in metal mesh supported SCR plate catalyst structures in which the glass fibers concentration in the catalyst material is considered as prime factor for erosion resistance and mechanical strength. The samples are prepared and tested at the specified and constant conditions like velocity as 30m/s, sand flow rate as 2g/min, average particle diameter 300 µm and all these samples were tested at different angles at impact preferably 15°,30°,45°,60°,75°,and 90° as per ASTM G76 standards. Say, if 5% glass fibers are present in catalyst material, then erosion resistance increases, but the density of glass fibers is very less because each glass fiber is approximately 20 microns in diameter and weight of individual is negligible. The composition in which 2% fiber is present has slightly higher erosion comparatively, but 3% glass fibers or more foreign inclusion like excessive binders can be eliminated that contributes much for the conversion of NOx. So 2% -3% glass fibers are preferred and optimized based on NOx conversion and erosion resistance property.

  7. Tolerance of Chemoorganotrophic Bioleaching Microorganisms to Heavy Metal and Alkaline Stresses

    Science.gov (United States)

    Monballiu, Annick; Cardon, Nele; Tri Nguyen, Minh; Cornelly, Christel; Meesschaert, Boudewijn; Chiang, Yi Wai

    2015-01-01

    The bioleaching potential of the bacterium Bacillus mucilaginosus and the fungus Aspergillus niger towards industrial residues was investigated by assessing their response towards various heavy metals (including arsenic, cadmium, cobalt, chromium, nickel, lead, and zinc) and elevated pH. The plate diffusion method was performed for each metal to determine the toxicity effect. Liquid batch cultures were set up for more quantitative evaluation as well as for studying the influence of basicity. Growth curves were prepared using bacterial/fungal growth counting techniques such as plate counting, optical density measurement, and dry biomass determination. Cadmium, nickel, and arsenite had a negative influence on the growth of B. mucilaginosus, whereas A. niger was sensitive to cadmium and arsenate. However, it was shown that growth recovered when microorganisms cultured in the presence of these metals were inoculated onto metal-free medium. Based on the findings of the bacteriostatic/fungistatic effect of the metals and the adaptability of the microorganisms to fairly elevated pH values, it is concluded that both strains have potential applicability for further research concerning bioleaching of alkaline waste materials. PMID:26236176

  8. Mechanical coupling for a rotor shaft assembly of dissimilar materials

    Science.gov (United States)

    Shi, Jun [Glastonbury, CT; Bombara, David [New Hartford, CT; Green, Kevin E [Broad Brook, CT; Bird, Connic [Rocky Hill, CT; Holowczak, John [South Windsor, CT

    2009-05-05

    A mechanical coupling for coupling a ceramic disc member to a metallic shaft includes a first wedge clamp and a second wedge clamp. A fastener engages a threaded end of a tie-bolt to sandwich the ceramic disc between the wedge clamps. An axial spring is positioned between the fastener and the second wedge clamp to apply an axial preload along the longitudinal axis. Another coupling utilizes a rotor shaft end of a metallic rotor shaft as one wedge clamp. Still another coupling includes a solid ceramic rotor disc with a multiple of tie-bolts radially displaced from the longitudinal axis to exert the preload on the solid ceramic rotor disc.

  9. Rotating anode x-ray tube

    International Nuclear Information System (INIS)

    Hueschen, R.E.; Jens, R.A.

    1980-01-01

    A solid low thermal conductivity columbium metal stem supports heavy refractory metal x-ray target and adjoins high thermal conductivity rotor hub fastened to rotor with low thermally conductive bearing hub fastened to a shaft journaled for rotation in bearings. The rotor is coated to enhance heat dissipation and the arrangement promotes thermal isolation of the bearings from the hot rotor hub and hot target. The hub is of Mo or Mo based alloy, and hub of Ni based alloy. Specific compositions with additives are detailed. Hub additionally restricts heat flow due to its maximised length and minimised cross-section, the reduced area bosses further restricting surface contact. (author)

  10. Finite Element Simulation of Mechanical and Moisture-Related Stresses in Laterally Loaded Multi-Dowel Timber Connections

    DEFF Research Database (Denmark)

    Ormarsson, Sigurdur; Dahlblom, O.; Nygaard, M. J.

    2010-01-01

    Numerical simulations of stress distribution within a moment stiff timber frame corner have been performed. The frame corner is a multi-dowel connection with two slotted-in steel plates. The interaction between the fasteners and the wood material is modelled as a full contact interaction based...

  11. Requirements and testing methods for surfaces of metallic bipolar plates for low-temperature PEM fuel cells

    Science.gov (United States)

    Jendras, P.; Lötsch, K.; von Unwerth, T.

    2017-03-01

    To reduce emissions and to substitute combustion engines automotive manufacturers, legislature and first users aspire hydrogen fuel cell vehicles. Up to now the focus of research was set on ensuring functionality and increasing durability of fuel cell components. Therefore, expensive materials were used. Contemporary research and development try to substitute these substances by more cost-effective material combinations. The bipolar plate is a key component with the greatest influence on volume and mass of a fuel cell stack and they have to meet complex requirements. They support bending sensitive components of stack, spread reactants over active cell area and form the electrical contact to another cell. Furthermore, bipolar plates dissipate heat of reaction and separate one cell gastight from the other. Consequently, they need a low interfacial contact resistance (ICR) to the gas diffusion layer, high flexural strength, good thermal conductivity and a high durability. To reduce costs stainless steel is a favoured material for bipolar plates in automotive applications. Steel is characterized by good electrical and thermal conductivity but the acid environment requires a high chemical durability against corrosion as well. On the one hand formation of a passivating oxide layer increasing ICR should be inhibited. On the other hand pitting corrosion leading to increased permeation rate may not occur. Therefore, a suitable substrate lamination combination is wanted. In this study material testing methods for bipolar plates are considered.

  12. Development of time-of-flight RBS system using multi microchannel plates

    International Nuclear Information System (INIS)

    Nguyen, N.V.; Abo, S.; Lohner, T.; Sawaragi, H.; Wakaya, F.; Takai, M.

    2007-01-01

    A new time-of-flight Rutherford backscattering spectroscopy (TOF-RBS) system with two circular microchannel plates (MCPs) installed at a distance of 140 mm from a sample holder and a scattering angle of 125 o and a 100 kV focused ion beam column having a liquid metal ion source (LMIS) of AuSiBe alloy has been assembled to obtain high counting rate and enhanced mass resolution. The possible influence of the two MCPs by logical summation of the output signals on the time resolution was investigated by measuring dedicated thin deposited metallic samples. And, the time resolution was found in the range of 1.5-2 ns

  13. Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate

    Science.gov (United States)

    Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki

    2014-08-01

    Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.

  14. A modular scanning tunneling microscope with an interchangeable elastic closed cell and external actuators

    International Nuclear Information System (INIS)

    Bjarnason, Elias H.; Arnalds, Unnar B.; Olafsson, Sveinn

    2006-01-01

    We introduce a novel modular cell based scanning tunneling microscope with external piezoelectric actuators. A tip and a sample are contained in a closed interchangeable cell, consisting of a stiff top plate and a bottom part, fastened together by an elastic material. The bottom part, containing a scanning tip, is fastened to a base unit while the top plate, containing a sample, is capable of scanning motion by external piezoelectric actuators mounted in the same base unit. The actuators are pre-loaded by the deformation of the elastic material of the cell, giving an increased stability. This design is expected to simplify the scanning tunneling microscope (STM) operation in difficult environments greatly by enclosing only the tip and sample in a small cell-module, which is pluggable to a scanning mechanism and other supportive functionalities. A frequency characterization and an image scan showing atomic resolution of highly oriented graphite in air, at room temperature, is presented

  15. TH-C-19A-09: Quantification of Transmission and Backscatter Factors as a function of Distance to Inhomogeneity Interface for Three Types of Surgical Implant Plates

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D; Mills, M; Wang, B [University of Louisville, Louisville, KY (United States)

    2014-06-15

    Purpose: Carbon fiber materials have been increasingly used clinically, mainly in orthopedics, as an alternative to metallic implants because of their minimal artifacts on CT and MRI images. This study characterizes the transmission and backscatter property of carbon fiber plates (CarboFix Orthopedics, Herzeliya, Israel) with measurements for radiation therapy applications, and compares them to traditional Stainless Steel (SS) and Titanium (Ti) metal materials. Methods: For the transmission measurements, 1-mm-thick test plate was placed upstream from a plane parallel Markus chamber, separated by various thicknesses of polystyrene plates in 0.5 cm increments between 0 and 5 cm. With this setup, we quantified the radiation transmission as a function of distance to the inhomogeneity interface. The LINAC source to detector distance was maintained at 100 cm and 200 MU was delivered for each measurement. Two 3-cm solid water phantoms were placed at the top and bottom to provide build up. All the measurements were performed for 6 MV and 18 MV photons. The backscatter measurements had the identical setup, except that the test plate was downstream of the chamber from radiation. Results: The carbon fiber plates did not introduce any measureable inhomogeneity effect on the transmission and backscatter factor because of its low atomic number. In contrast, traditional metal implant materials caused up to 15% dose difference at upstream and 25% backscatter at downstream from radiation. Such differences decrease as the distance to the inhomogeneity interface increases and become unmeasurable at distance of 3 cm and 1 cm for upstream and downstream, respectively. Conclusion: A new type of carbon fiber implant plate was evaluated and found to have minimal inhomogeneity effect in MV radiation beams. Patients would benefit from a carbon based implant over metal for radiation therapy due to their minimal backscatter and imaging artifacts.

  16. Applications of image plates in neutron radiography and neutron diffraction at BARC, Trombay

    International Nuclear Information System (INIS)

    Shaikh, A.M.

    2013-01-01

    Neutron radiography techniques based on Gd, Dy and In metallic foils and X-ray film have been used at this centre since early seventies for various NDT and R and D work in nuclear, defence and aerospace industries. In recent years use of photostimulated luminescence based phosphor imaging plate has been introduced in our work. This has enabled to achieve higher sensitivities and dynamic ranges of recording radiographs with acceptable spatial resolution. It also provides digital image information which is more convenient for quantitative evaluations. Neutron image plates have been used in variety of radiography techniques such as conventional neutron radiography (NR), neutron induced beta radiography (NIBR), hydrogen sensitive epithermal neutron radiography (HYSEN) and for neutron powder diffractometry using Apsara, CIRUS and Dhruva reactors as neutron sources. Recently the image plates have also been used for characterization of thermalized neutron beam from a plasma focus neutron source and recording neutron radiographs. Prior to the utilization image plates have been characterised for their performance. Details of the measurements and applications will be presented. (author)

  17. 48 CFR 252.225-7009 - Restriction on Acquisition of Certain Articles Containing Specialty Metals.

    Science.gov (United States)

    2010-10-01

    ... metal (by mass). (ii) If two metals are specified in the name (e.g., nickel-iron alloy), those metals..., billet, wire, slab, plate, or sheet, and in the grade appropriate for the production of— (i) A finished... of the following elements: Aluminum, chromium, cobalt, molybdenum, nickel, niobium (columbium...

  18. Analytic study of plastic instabilities during tension or compression tests on a metallic plate bi-axially loaded in its plane: symmetric and antisymmetric modes with respect to the median plane

    International Nuclear Information System (INIS)

    Jouve, Dominique

    2012-01-01

    This report is a continuation of the thesis [23], devoted to the onset of necking plastic instabilities during tension tests on metallic plates bi-axially loaded in their plane. We are also interested here in compression tests, and in the development of antisymmetric defects with respect to the median plane of the plate. As in the thesis, we search for the dominant mode, i.e. the most unstable pair of wavelengths (λ1, λ2) in the loading plane. An approximate analytical formulation for the growth rate is proposed, especially for plane-strain tests in the absence of viscous effects, and for static tests in tension in the x1 and x2 loading directions. In that latter case, we retrieve published results [14][15]. For plane-strain tests, we show that infinitely dense networks of shear bands inclined at 45 deg. with respect to the loading direction instantaneously occur when heat softening prevails over work-hardening. (author)

  19. Modeling, Fabrication and Characterization of Scalable Electroless Gold Plated Nanostructures for Enhanced Surface Plasmon Resonance

    Science.gov (United States)

    Jang, Gyoung Gug

    controlled hydraulic conditions. A method to achieve the time-resolved optical profile of EL Au plating was devised and provided a new transitional EL Au film growth model which validated mass transfer model prediction of the deposited thickness of ≤100 nm thin films. As a part of the project, validation of mass transfer model, a spectrophotometric method for quantitative analysis of metal ion is developed that improves the limit of detection comparable to conventional instrumental analysis. The present work suggests that modeling, fabrication and characterization of this novel CF-EL plating method is performed to achieve an ultimate purpose: developing a reliable, inexpensive wet chemical process for controlled metal thin film and nanostructure fabrication.

  20. Investigation of porosity and fractal properties of the sintered metal and semiconductor layers in the MDS capacitor structure

    Directory of Open Access Journals (Sweden)

    Skatkov Leonid

    2012-01-01

    Full Text Available MDS capacitor (metal - dielectric - semiconductor is a structure in which metal plate is represented by compact bulk-porous pellets of niobium sintered powder, and semiconductor plate - by pyrolytic layer of MnO2. In the present paper we report the results of investigation of microporosity of sintered Nb and pyrolytic MnO2 and also the fractal properties of semiconductor layer.

  1. Influence of repair length on residual stress in the repair weld of a clad plate

    International Nuclear Information System (INIS)

    Jiang Wenchun; Xu, X.P.; Gong, J.M.; Tu, S.T.

    2012-01-01

    Highlights: ► Residual stress in the repair weld of a stainless steel clad plate is investigated. ► The effect of repair length on residual stress has been studied. ► Large tensile residual stress is generated in the repair weld and heat affected zone. ► With the increase of repair length, transverse stress is decreased. ► Repair length has little effect on longitudinal stress. - Abstract: A 3-D sequential coupling finite element simulation is performed to investigate the temperature field and residual stress in the repair weld of a stainless steel clad plate. The effect of repair length on residual stress has been studied, aiming to provide a reference for repairing the cracked clad plate. The results show that large tensile residual stresses are generated in the repair weld and heat affected zone (HAZ), and then decrease gradually away from the weld and HAZ. The residual stresses through thickness in the clad layer are relative uniform, while they are non-uniform in the base metal. A discontinuous stress distribution is generated across the interface between weld metal and base metal. The repair length has a great effect on transverse stress. With the increase of repair length, the transverse stress is decreased. When the repair length is increased to 14 cm, the peak of transverse stress has been decreased below yield strength, and the transverse stress in the weld and HAZ has also been greatly decreased. But the repair length has little effect on longitudinal stress.

  2. Quantitative Microstructural Characterization of Thick Aluminum Plates Heavily Deformed Using Equal Channel Angular Extrusion

    DEFF Research Database (Denmark)

    Mishin, Oleg; Segal, V.M.; Ferrasse, S.

    2012-01-01

    A detailed quantitative analysis of the microstructure has been performed in three orthogonal planes of 15-mm-thick aluminum plates heavily deformed via two equal channel angular extrusion (ECAE) routes. One route was a conventional route A with no rotation between passes. Another route involved...... sequential 90 deg rotations about the normal direction (ND) between passes. The microstructure in the center of these plates, and especially the extent of microstructural heterogeneity, has been characterized quantitatively and compared with that in bar samples extruded via either route A or route Bc with 90...... Bc. © The Minerals, Metals & Materials Society and ASM International 2012...

  3. Determination of mechanical properties of carbon/epoxy plates by tensile stress test

    Science.gov (United States)

    Bere, Paul; Krolczyk, Jolanta B.

    2017-10-01

    The polymeric composite materials used in aerospace, military, medical or racing cars manufacturing end up being used in our daily life Whether we refer to the performing vehicles, subassemblies or parts for aircrafts, wind, telegraph poles, or medical prostheses they all are present in our lives and they are made of composite materials (CM). This paper presents research regarding three different composite materials, plates by carbon fiber, in epoxy matrix. Starting with materials presentation, manufacturing methodology and determination of mechanical properties at carbon fiber/epoxy were done. Vacuum bag technology to obtain the composite structure offer opportunity to get a very compact and homogeny composite structure. For the moment this technology are adequate for high performances pieces. The mechanical characteristics of plates made of composite materials reinforced presented indicates closed value like metal materials. Based on the results, a comparative study between the reinforced materials typically used to manufacture the plates of CM is carried out.

  4. Study of electrodeposition technique to prepare alpha-counting plates of uranium 233

    International Nuclear Information System (INIS)

    Mertzig, W.

    1979-01-01

    The electrodeposition technique to prepare alpha-counting plates of 233 U for its determination is presented. To determine the optimum conditions for plating 233 U the effects of such parameters as current density, pH of eletrotype, salt concentration, time of electrolysis and distance electrodes were studied. A carrier method was developed to attain a quantitative electrodeposition of 233 U from aqueous solutions into alpha counting paltes. A single and incremental addition of natural uranium and thorium as carrier were studied. All samples were prepared using a electrodeposition cell manufactured at the IPEN, especially for use in electroplating tracer actinides. This cell is made of a metal-lucite to contain the electrolyte, which bottom is a polished brass disk coated with a Ni film serving as the cathode. A Pt wire anode is fixed on the top of the cell. The electroplated samples were alpha-counted using a surface barrier detector. A recovery of more than 99% was obtained in specific conditions. The plating procedure produced deposits which were firmly distributed over the plate area. The method was applied to determine tracer amounts of 233 U from oxalate and nitrate solutions coming from chemical processing irradiated thorium. (Author) [pt

  5. Numerical Analysis of Stress Concentration in Isotropic and Laminated Plates with Inclined Elliptical Holes

    Science.gov (United States)

    Khechai, Abdelhak; Tati, Abdelouahab; Belarbi, Mohamed Ouejdi; Guettala, Abdelhamid

    2018-03-01

    The design of high-performance composite structures frequently includes discontinuities to reduce the weight and fastener holes for joining. Understanding the behavior of perforated laminates is necessary for structural design. In the current work, stress concentrations taking place in laminated and isotropic plates subjected to tensile load are investigated. The stress concentrations are obtained using a recent quadrilateral finite element of four nodes with 32 DOFs. The present finite element (PE) is a combination of two finite elements. The first finite element is a linear isoparametric membrane element and the second is a high precision Hermitian element. One of the essential objectives of the current investigation is to confirm the capability and efficiency of the PE for stress determination in perforated laminates. Different geometric parameters, such as the cutout form, sizes and cutout orientations, which have a considerable effect on the stress values, are studied. Using the present finite element formulation, the obtained results are found to be in good agreement with the analytical findings, which validates the capability and the efficiency of the proposed formulation. Finally, to understand the material parameters effect such as the orientation of fibers and degree of orthotropy ratio on the stress values, many figures are presented using different ellipse major to minor axis ratio. The stress concentration values are considerably affected by increasing the orientation angle of the fibers and degree of orthotropy.

  6. Levels of arsenic, cadmium, lead and mercury in the branchial plate and muscle tissue of mobulid rays

    International Nuclear Information System (INIS)

    Ooi, Michelle S.M.; Townsend, Kathy A.; Bennett, Michael B.; Richardson, Anthony J.; Fernando, Daniel; Villa, Cesar A.; Gaus, Caroline

    2015-01-01

    Highlights: • Branchial plate and muscle tissue from mobulid rays were analysed for certain metals. • Mean concentrations of cadmium in Mobula japanica were above the EC ML. • Mean inorganic arsenic concentration in Mobula japanica muscle equalled the FSANZ ML. • Mean concentration of lead in Manta alfredi muscle tissue exceeded EC and Codex MLs. • There were significant correlations between the types of tissues for some metals. - Abstract: Mobulid rays are targeted in fisheries for their branchial plates, for use in Chinese medicine. Branchial plate and muscle tissue from Mobula japanica were collected from fish markets in Sri Lanka, and muscle tissue biopsies from Manta alfredi in Australia. These were analysed for arsenic, cadmium, lead and mercury and compared to maximum levels (MLs) set by Food Standards Australia and New Zealand (FSANZ), European Commission (EC) and Codex Alimentarius Commission. The estimated intake for a vulnerable human age group was compared to minimal risk levels set by the Agency for Toxic Substances and Disease Registry. The mean inorganic arsenic concentration in M. japanica muscle was equivalent to the FSANZ ML while cadmium exceeded the EC ML. The mean concentration of lead in M. alfredi muscle tissue exceeded EC and Codex MLs. There were significant positive linear correlations between branchial plate and muscle tissue concentrations for arsenic, cadmium and lead

  7. A Possible Differentially Shortened Strike-slip Plate Boundary: the Okhotsk Plate Example.

    Science.gov (United States)

    Hindle, D.; Egorov, V.; Mackey, K. G.; Fujita, K.

    2004-12-01

    The Okhotsk plate has been postulated based on a combination of GPS geodetic inversions (REVEL1), seimsicity, geologic and lineament data. Lying between the North American and Eurasian plates, its northwestern corner would appear to be undergoing compression in a scissors motion between the two bounding plates. Extrusion tectonics along multiple, large strike-slip faults within the Okhotsk plate itself have been suggested to allow the escape of material away from the apex of Eurasia-North America. The plate boundary between Okhotsk and North America has been suggested to be diffuse, based on widely scattered minor seismicity. However, the large, left lateral, Ulakhan fault has also been suggested as a candidate plate boundary. We present field geological and geomorphological evidence of the partitioning of deformation between the Ulakhan fault, and several parallel and oblique, linked faults. The Ulakhan fault strand appears to have a maximum displacement of 24 km based on river valley offsets and closing large pull apart basins. Some of the displacement from the Ulakhan fault appears relayed into the plate margin along oblique trending, thrust/oblique slip faults. Estimated shortening over these faults is equivalent to the amount of shortening relayed into the plate margin from the plate boundary. There may be several thrust/oblique slip faults along the Ulakhan fault, which leads to the interesting situation of a segmented, strike-slip plate boundary being actively shortened in a margin parallel direction. This may be the result of postulated extrusion of the Okhotsk plate due to North America/Eurasia convergence. Such a situation would have important consequences for the interpretation of GPS data in a plate tectonic context.

  8. Development of plate-fin heat exchanger for intermediate heat exchanger of high-temperature gas cooled reactor. Fabrication process, high-temperature strength and creep-fatigue life prediction of plate-fin structure made of Hastelloy X

    International Nuclear Information System (INIS)

    Mizokami, Yorikata; Igari, Toshihide; Nakashima, Keiichi; Kawashima, Fumiko; Sakakibara, Noriyuki; Kishikawa, Ryouji; Tanihira, Masanori

    2010-01-01

    The helium/helium heat exchanger (i.e., intermediate heat exchanger: IHX) of a high-temperature gas-cooled reactor (HTGR) system with nuclear heat applications is installed between a primary system and a secondary system. IHX is operated at the highest temperature of 950degC and has a high capacity of up to 600 MWt. A plate-fin-type heat exchanger is the most suitable for IHX to improve construction cost. The purpose of this study is to develop an ultrafine plate-fin-type heat exchanger with a finer pitch fin than a conventional technology. In the first step, fabrication conditions of the ultrafine plate fin were optimized by press tests. In the second step, a brazing material was selected from several candidates through brazing tests of rods, and brazing conditions were optimized for plate-fin structures. In the third step, tensile strength, creep rupture, fatigue, and creep-fatigue tests were performed as typical strength tests for plate-fin structures. The obtained data were compared with those of the base metal and plate-fin element fabricated from SUS316. Finally, the accuracy of the creep-fatigue life prediction using both the linear cumulative damage rule and the equivalent homogeneous solid method was confirmed through the evaluation of creep-fatigue test results of plate-fin structures. (author)

  9. Imaging flaws in thin metal plates using a magneto-optic device

    Science.gov (United States)

    Wincheski, B.; Prabhu, D. R.; Namkung, M.; Birt, E. A.

    1992-01-01

    An account is given of the capabilities of the magnetooptic/eddy-current imager (MEI) apparatus in the case of aging aircraft structure-type flaws in 2024-T3 Al alloy plates. Attention is given to images of cyclically grown fatigue cracks from rivetted joints in fabricated lap-joint structures, electrical discharge machining notches, and corrosion spots. Although conventional eddy-current methods could have been used, the speed and ease of MEI's use in these tests is unmatched by such means. Results are displayed in real time as a test piece is scanned, furnishing easily interpreted flaw images.

  10. Container for liquid metal

    International Nuclear Information System (INIS)

    Abe, Yoshihito; Imazu, Takayuki; Ueda, Sabuo; Ueya, Katsumi.

    1980-01-01

    Purpose: To arrange a vapor trapping member of a specific structure at the inlet part of a cylindrical gap formed by the inner peripheral surface of the circular opening of a container and the outer peripheral surface of a rotary plug thereby to prevent ingress of vapor in the upper part of the cylindrical gap for a long period of time. Constitution: A sealing material receiving tray is fitted to the container side of the inlet part of a cylindrical gap, and a partition plate is fitted to the rotary plug side. The tray is filled with a sealing material consisting of a large number of steel balls, mesh wire gages and the like, and the partition plate is placed in the tray thereby to carry out sealing of the container. Liquid metal vapor evaporating from the liquid level of the liquid metal adheres to the sealing material to fill the gap, and therefore ingress of vapor to the upper part of the cylindrical gap is prevented, and there is no possibility of causing seal cutting due to the use for a long period. (Sekiya, K.)

  11. Microstructure and Mechanical Properties of Stainless Steel/Brass Joints Brazed by Sn-Electroplated Ag Brazing Filler Metals

    Science.gov (United States)

    Wang, Xingxing; Peng, Jin; Cui, Datian

    2018-05-01

    To develop a high-Sn-content AgCuZnSn brazing filler metal, the BAg50CuZn was used as the base filler metal and a Sn layer was electroplated upon it. Then, the 304 stainless steel and the H62 brass were induction-brazed with the Sn-plated brazing filler metals. The microstructures of the joints were examined with an optical microscope, a scanning electron microscope and an x-ray diffractometer. The corresponding mechanical properties were obtained with a universal tensile testing machine. The results indicated that the induction brazed joints consisted of the Ag phase, the Cu phase and the CuZn phase. When the content of Sn in the Sn-plated Ag brazing filler metal was 6.0 or 7.2 wt.%, the Cu5Zn8, the Cu41Sn11 and the Ag3Sn phases appeared in the brazed joint. The tensile strength of the joints brazed with the Sn-plated filler metal was higher compared to the joints with the base filler metal. When the content of Sn was 6.0 wt.%, the highest tensile strength of the joint reached to 395 MPa. The joint fractures presented a brittle mode, mixed with a low amount of ductile fracture, when the content of Sn exceeded 6.0 wt.%.

  12. Prediction of residual stresses in electron beam welded Ti-6Al-4V plates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lianyong; Ge, Keke; Jing, Hongyang; Zhao, Lei; Lv, Xiaoqing [Tianjin Univ. (China); Han, Yongdian [Tianjin Univ. (China). Key Lab. of Advanced Joining Technology

    2017-05-01

    A thermo-metallurgical procedure based on the SYSWELD code was developed to predict welding temperature field, microstructure and residual stress in butt-welded Ti-6Al-4V plate taking into account phase transformation. The formation of martensite was confirmed by the CCT diagram and microstructure in the weld joint, which significantly affects the magnitude of residual stress. The hole drilling procedure was utilized to measure the values of residual stress at the top surface of the specimen, which are in well agreement with the numerical results. Both simulated and test results show that the magnitude and distribution of residual stress on the surface of the plate present a large gradient feature from the weld joint to the base metal. Moreover, the distribution law of residual stresses in the plate thickness was further analyzed for better understanding of its generation and evolution.

  13. Effect of Plate Curvature on Blast Response of Structural Steel Plates

    Science.gov (United States)

    Veeredhi, Lakshmi Shireen Banu; Ramana Rao, N. V.; Veeredhi, Vasudeva Rao

    2018-04-01

    In the present work an attempt is made, through simulation studies, to determine the effect of plate curvature on the blast response of a door structure made of ASTM A515 grade 50 steel plates. A door structure with dimensions of 5.142 m × 2.56 m × 10 mm having six different radii of curvatures is analyzed which is subjected to blast load. The radii of curvature investigated are infinity (flat plate), 16.63, 10.81, 8.26, 6.61 and 5.56 m. In the present study, a stand-off distance of 11 m is considered for all the cases. Results showed that the door structure with smallest radius of curvature experienced least plastic deformation and yielding when compared to a door with larger radius of curvature with same projected area. From the present Investigation, it is observed that, as the radius of curvature of the plate increases, the deformation mode gradually shifts from indentation mode to flexural mode. The plates with infinity and 16.63 m radius of curvature have undergone flexural mode of deformation and plates with 6.61 and 5.56 m radius of curvature undergo indentation mode of deformation. Whereas, mixed mode of deformation that consists of both flexural and indentation mode of deformations are seen in the plates with radius of curvature 10.81 and 8.26 m. As the radius of curvature of the plate decreases the ability of the plate to mitigate the effect the blast loads increased. It is observed that the plate with smaller radius of curvature deflects most of the blast energy and results in least indentation mode of deformation. The most significant observation made in the present investigation is that the strain energy absorbed by the steel plate gets reduced to 1/3 rd when the radius of curvature is approximately equal to the stand-off distance which could be the critical radius of curvature.

  14. Stress-intensity factors for cracks emanating from the loaded fastener hole

    Science.gov (United States)

    Shivakumar, V.; Hsu, Y. C.

    1977-01-01

    Using a series approach and the Muskhelishvili formulation in the two-dimensional theory of elasticity, stress-intensity factors K are derived for problems in which cracks emanate radially from the boundary of an arbitrarily loaded internal circular hole in an infinite plate. Numerical values are obtained for K(I) and K(II) for radial cracks from a hole containing a loose-fitted pin or rivet that is pulled perpendicular to the crack direction in the plane of the plate. The method is a general one for determining K for a set of symmetrically emanating radial cracks for a variety of concentrated or distributed tractions on the circular hole.

  15. The Okhotsk Plate and the Eurasia-North America plate boundary zone.

    Science.gov (United States)

    Hindle, David; Mackey, Kevin

    2014-05-01

    The Eurasia-North America plate boundary zone transitions from spreading at rates of ~ 25mm/yr in the North Atlantic, to compression at rates of ~ 5mm/yr in the region of the Okhotsk plate. Because the pole of rotation between Eurasia and North America lies more or less on their mutual boundary, there is a linear change in rate along the boundary, and regions near the euler pole are subject to extremely low deformation rates. The Okhotsk - Eurasia - North America triple junction lies slightly south of the rotation pole, placing the Okhotsk plate entirely in a weakly contractional setting. Regions near the triple junction absorb 1mm/yr contraction. Further south, towards the shoreline of the Okhotsk sea, up to 5 mm/yr contraction may be absorbed within the plate. How shortening is accommodated across the boundary remains an open question. One possibility is wholesale extrusion of the entire Okhotsk plate (or possibly its northwestern corner) along two plate boundary strike slip faults (Eurasia-Okhostk and North America Okhotsk). The problem with this model is that the seismic record does not presently clearly support it, with the largest events distributed both within the plate interior and on its boundaries. This may suggest that instead, the Okhotsk plate, and particularly its north-western end, consists of a series of smaller blocks which shuffle against each other, partially accommodating extrusion, but also permitting some internal deformation and change of shape of the Okhotsk plate itself. We present analyses of the very sparse seismic record from the region, as well as geometric-kinematic, tectonic models of the possible deformation of northwest Okhotsk to try to better understand the different probabilities of how this slowly deforming plate boundary zone is behaving.

  16. Effect of Rotation Rate on Microstructure and Properties of Friction Stir Welded Joints of Al/Cu Clad Plates

    Directory of Open Access Journals (Sweden)

    QIAO Ke

    2017-10-01

    Full Text Available Al/Cu clad plates were joined by friction stir welding (FSW, and the effect of rotation rate on microstructure and mechanical properties of joints was investigated. The results show that the laminar structure of aluminum and copper is generated in the weld. With increase the of rotation rate, the grain sizes of aluminum and copper are increased respectively. The average microhardness of the Al/Cu plates exceeds that of the as-received metal of 33.0 HV, and ultimate tensile strength is 127.21 MPa in the nugget zone when rotation rate is 1180 r/min. The microhardness of copper in the nugget zone is 99.7 HV, reached 82.05% of the microhardness of received metal, and void defect is main reason responsible for the decrease of mechanical properties of joints.

  17. Numerical analysis of AC tungsten inert gas welding of aluminum plate in consideration of oxide layer cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Tashiro, Shinichi, E-mail: tashiro@jwri.osaka-u.ac.jp; Miyata, Minoru; Tanaka, Manabu

    2011-08-01

    A unified numerical simulation model of AC TIG welding of the aluminum plate considering energy balance among the electrode, the arc and the base metal and employing an analytical model for calculating cleaning rate of the oxide layer has been developed for investigating heat transport properties and weld pool formation process in AC TIG welding of aluminum plate. As a result of this simulation, it was shown that although the heat flux from the arc onto the base metal increases in EN (Electrode Negative) phase due to the electron condensation, that in EP (Electrode Positive) phase conversely decreases because mainly of cooling caused by the electron emission. Furthermore, the validity of the simulation model was confirmed by comparing to experimental results such as the arc voltage, the area of cleaning zone and the shape of weld pool.

  18. Asphalt Mixture for the First Asphalt Concrete Directly Fastened Track in Korea

    Directory of Open Access Journals (Sweden)

    Seong-Hyeok Lee

    2015-01-01

    Full Text Available The research has been initiated to develop the asphalt mixtures which are suitable for the surface of asphalt concrete directly fastened track (ADFT system and evaluate the performance of the asphalt mixture. Three aggregate gradations which are upper (finer, medium, and below (coarser. The nominal maximum aggregate size of asphalt mixture was 10 mm. Asphalt mixture design was conducted at 3 percent air voids using Marshall mix design method. To make impermeable asphalt mixture surface, the laboratory permeability test was conducted for asphalt mixtures of three different aggregate gradations using asphalt mixture permeability tester. Moisture susceptibility test was conducted based on AASHTO T 283. The stripping percentage of asphalt mixtures was measured using a digital camera and analyzed based on image analysis techniques. Based on the limited research results, the finer aggregate gradation is the most suitable for asphalt mixture for ADFT system with the high TSR value and the low stripping percentage and permeable coefficient. Flow number and beam fatigue tests for finer aggregate asphalt mixture were conducted to characterize the performance of asphalt mixtures containing two modified asphalt binders: STE-10 which is styrene-butadiene-styrene (SBS polymer and ARMA which is Crum rubber modified asphalt. The performance tests indicate that the STE-10 shows the higher rutting life and fatigue life.

  19. Finite element analysis of a solar collector plate using two plate geometries

    Directory of Open Access Journals (Sweden)

    Diego Manuel Medina Carril

    2016-09-01

    Full Text Available The thermal behavior of an absorber plate in a solar collector is investigated using finite element analysis. The thermal behavior and efficiency of two absorber plate geometries are studied, using a typical solar collector with a rectangular profile as reference, and a proposed absorber plate with curved geometry. An analysis of the most important parameters involved in the design of the absorber plate was carried out, indicating that the curved geometry of the absorber plate yields an average efficiency ~25% higher than the conventional rectangular geometry. The results suggest that a curved profile made of materials such as aluminum with thermal conductivity higher than 200W/m°C, plate thickness of the order of 2-3mm and with a large density of tubes per unit area of the collector´s plate greatly benefits the thermal efficiency of the solar collector.

  20. Infrared Spectroscopy as Molecular Probe of the Macroscopic Metal-Liquid Interface

    Directory of Open Access Journals (Sweden)

    Johannes Kiefer

    2017-11-01

    Full Text Available Metal-liquid interfaces are of the utmost importance in a number of scientific areas, including electrochemistry and catalysis. However, complicated analytical methods and sample preparation are usually required to study the interfacial phenomena. We propose an infrared spectroscopic approach that enables investigating the molecular interactions at the interface, but needing only minimal or no sample preparation. For this purpose, the internal reflection element (IRE is wetted with a solution as first step. Second, a small plate of the metal of interest is put on top and pressed onto the IRE. The tiny amount of liquid that is remaining between the IRE and the metal is sufficient to produce an IR spectrum with good signal to noise ratio, from which information about molecular interactions, such as hydrogen bonding, can be deduced. Proof-of-concept experiments were carried out with aqueous salt and acid solutions and an aluminum plate.