WorldWideScience

Sample records for metal nanocluster-silica composites

  1. Antibacterial silver nanocluster/silica composite coatings on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, M.; Perero, S. [Politecnico di Torino, Department of Applied Science and Technology, Torino, C.so Duca degli Abruzzi 24, I-10129 (Italy); Ferraris, S., E-mail: sara.ferraris@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Torino, C.so Duca degli Abruzzi 24, I-10129 (Italy); Miola, M.; Vernè, E. [Politecnico di Torino, Department of Applied Science and Technology, Torino, C.so Duca degli Abruzzi 24, I-10129 (Italy); Skoglund, S. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Dr. Kristinas v. 51, SE-100 44 (Sweden); Blomberg, E. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Dr. Kristinas v. 51, SE-100 44 (Sweden); SP Technical Research Institute of Sweden, Chemistry, Materials and Surfaces, P.O. Box 5607, SE-114 86 Stockholm (Sweden); Odnevall Wallinder, I. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Dr. Kristinas v. 51, SE-100 44 (Sweden)

    2017-02-28

    Highlights: • A silver nanocluster-silica composite coating sputter-deposited onto stainless steel. • Good adhesion and resistance upon cleaning with NaOH, H{sub 2}SO{sub 4} and detergents. • Low release of silver ions and no release as silver nanoparticles. • Good antibacterial activity against S. aureus even after heating to 450 °C. • Good antibacterial activity shown during cheese production. - Abstract: A coating made of silver nanocluster/silica composites has been deposited, via a radio frequency (RF) co-sputtering technique, for the first time onto stainless steel (AISI 304L) with the aim to improve its antibacterial properties. Different thermal treatments after coating deposition have been applied in order to optimize the coating adhesion, cohesion and its antibacterial properties. Its applicability has been investigated at realistic conditions in a cheese production plant. The physico-chemical characteristics of the coatings have been analyzed by means of different bulk and surface analytical techniques. Field emission scanning electron microscopy (FESEM), X-ray Photoelectron Spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM) were employed to assess coating morphology, composition, surface roughness, wetting properties, size and local distribution of the nanoparticles within the coating. Tape tests were used to determine the adhesion/cohesion properties of the coating. The amount and time-dependence of released silver in solutions of acetic acid, artificial water, artificial tap water and artificial milk were determined by means of Atomic Absorption Spectroscopy (AAS). The antibacterial effect of the coating was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus in compliance with National Committee for Clinical Laboratory Standards (NCCLS) and AATCC 147 standards. The Ahearn test was performed to measure the adhesion of bacteria to the coated stainless steel

  2. Antibacterial silver nanocluster/silica composite coatings on stainless steel

    International Nuclear Information System (INIS)

    Ferraris, M.; Perero, S.; Ferraris, S.; Miola, M.; Vernè, E.; Skoglund, S.; Blomberg, E.; Odnevall Wallinder, I.

    2017-01-01

    Highlights: • A silver nanocluster-silica composite coating sputter-deposited onto stainless steel. • Good adhesion and resistance upon cleaning with NaOH, H_2SO_4 and detergents. • Low release of silver ions and no release as silver nanoparticles. • Good antibacterial activity against S. aureus even after heating to 450 °C. • Good antibacterial activity shown during cheese production. - Abstract: A coating made of silver nanocluster/silica composites has been deposited, via a radio frequency (RF) co-sputtering technique, for the first time onto stainless steel (AISI 304L) with the aim to improve its antibacterial properties. Different thermal treatments after coating deposition have been applied in order to optimize the coating adhesion, cohesion and its antibacterial properties. Its applicability has been investigated at realistic conditions in a cheese production plant. The physico-chemical characteristics of the coatings have been analyzed by means of different bulk and surface analytical techniques. Field emission scanning electron microscopy (FESEM), X-ray Photoelectron Spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM) were employed to assess coating morphology, composition, surface roughness, wetting properties, size and local distribution of the nanoparticles within the coating. Tape tests were used to determine the adhesion/cohesion properties of the coating. The amount and time-dependence of released silver in solutions of acetic acid, artificial water, artificial tap water and artificial milk were determined by means of Atomic Absorption Spectroscopy (AAS). The antibacterial effect of the coating was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus in compliance with National Committee for Clinical Laboratory Standards (NCCLS) and AATCC 147 standards. The Ahearn test was performed to measure the adhesion of bacteria to the coated stainless steel surface

  3. Effect of thermal treatments on sputtered silver nanocluster/silica composite coatings on soda-lime glasses: ionic exchange and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, M.; Ferraris, S., E-mail: sara.ferraris@polito.it; Miola, M.; Perero, S.; Balagna, C.; Verne, E. [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering (Italy); Gautier, G. [IMAMOTER Institute for Agricultural and Earthmoving Machines (Italy); Manfredotti, Ch.; Battiato, A.; Vittone, E. [University of Torino, Physics Department, NIS Excellence Centre and CNISM (Italy); Speranza, G. [Fondazione Bruno Kessler FBK (Italy); Bogdanovic, I. [Ruder Boskovic Institute, Experimental Physics Department (Croatia)

    2012-12-15

    Silver nanocluster/silica composite coatings were deposited on both soda-lime and silica glasses by radio frequency (RF) co-sputtering. The effect of thermal treatments on the microstructure in the range of 150-450 Degree-Sign C were examined by UV-visible spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Time of Flight-Elastic Recoil Detection Analysis. Sodium/silver ionic exchange was evidenced for coatings sputtered on soda-lime substrates after heating at 450 Degree-Sign C; presence of silver ions and/or silver nanoclusters, nanocluster size and their position inside the sputtered layers will be discussed for as-deposited and heated coatings on both substrates. The antibacterial activity of all coatings was determined against Staphylococcus aureus and Candida albicans by disk diffusion method and colonies forming units count; in agreement with microstructural results, the antibacterial activity present on all coatings was slightly reduced after heating at 450 Degree-Sign C. All coatings have been submitted to humidity plus UV ageing and sterilization by autoclave, gamma ray and ethylene oxide gas. Tape resistance (ASTM D3359-97) tests have been done on each coating before and after ageing and sterilizations, revealing a good adhesion on soda-lime substrates, except for those aged in humidity plus UV and sterilized by autoclave. Scratch tests and nanoindentation tests have been done on each coating, as-deposited and after heating at 450 Degree-Sign C. The coating hardness was improved by heating only when coatings were deposited on silica. The heating of coatings deposited on soda-lime substrates gave opposite effect on their hardness.

  4. Amorphous metal composites

    International Nuclear Information System (INIS)

    Byrne, M.A.; Lupinski, J.H.

    1984-01-01

    This patent discloses an improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite

  5. Metallic composite materials

    International Nuclear Information System (INIS)

    Frommeyer, G.

    1987-01-01

    The structure and properties of metallic composite materials and composite materials with metallic matrix are considered. In agreement with the morphology of constituent phases the following types of composite materials are described: dispersion-strengthened composite materials; particle-reinforced composite materials; fibrous composite materials; laminar composite materials. Data on strength and electric properties of the above-mentioned materials, as well as effect of the amount, location and geometric shape of the second phase on them, are presented

  6. Nanoporous metal-carbon composite

    Science.gov (United States)

    Worsley, Marcus A.; Satcher, Joe; Kucheyev, Sergei; Charnvanichborikarn, Supakit; Colvin, Jeffrey; Felter, Thomas; Kim, Sangil; Merrill, Matthew; Orme, Christine

    2017-12-19

    Described here is a metal-carbon composite, comprising (a) a porous three-dimensional scaffold comprising one or more of carbon nanotubes, graphene and graphene oxide, and (b) metal nanoparticles disposed on said porous scaffold, wherein the metal-carbon composite has a density of 1 g/cm.sup.3 or less, and wherein the metal nanoparticles account for 1 wt. % or more of the metal-carbon composite. Also described are methods for making the metal-carbon composite.

  7. Nanostructured metal-polyaniline composites

    Science.gov (United States)

    Wang, Hsing-Lin; Li, Wenguang; Bailey, James A.; Gao, Yuan

    2010-08-31

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  8. Bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Choi-Yim, H.; Johnson, W.L.

    1997-01-01

    Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods. copyright 1997 American Institute of Physics

  9. Machining of Metal Matrix Composites

    CERN Document Server

    2012-01-01

    Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manu...

  10. LIQUID METAL COMPOSITIONS CONTAINING URANIUM

    Science.gov (United States)

    Teitel, R.J.

    1959-04-21

    Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

  11. Metal Matrix Composite Solar Cell Metallization

    Directory of Open Access Journals (Sweden)

    Wilt David M.

    2017-01-01

    Full Text Available Advanced solar cells are moving to ever thinner formats in order to save mass and in some cases improve performance. As cells are thinned, the possibility that they may fracture or cleave due to mechanical stresses is increased. Fractures of the cell can degrade the overall device performance if the fracture propagates through the contact metallization, which frequently occurs. To address this problem, a novel semiconductor metallization system based on multi-walled carbon nanotube (CNT reinforcement, termed metal matrix composite (MMC metallization is under investigation. Electro-mechanical characterization of MMC films demonstrate their ability to provide electrical conductivity over >40 micron wide cracks in the underlying semiconductor, with the carbon nanotubes bridging the gap. In addition, these materials show a “self-healing” behaviour, electrically reconnecting at ~30 microns when strained past failure. Triple junction (TJ space cells with MMC metallization demonstrated no loss in Jsc after intentional fracture, whereas TJ cells with conventional metallization suffer up to 50% Jsc loss.

  12. Metal hydride compositions and lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Young, Kwo; Nei, Jean

    2018-04-24

    Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH.sub.2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.

  13. Composite pipe to metal joint

    Energy Technology Data Exchange (ETDEWEB)

    Leslie, James C.; Leslie, II, James C.; Heard, James; Truong, Liem V.; Josephson, Marvin

    2017-06-27

    A method for making a metal to composite tube joint including selecting an elongated interior fitting constructed with an exterior barrel, reduced in exterior diameter to form a distally facing annular shoulder and then projecting still further distally to form an interior sleeve having a radially outwardly facing bonding surface. Selecting an elongated metal outer sleeve formed proximally with a collar constructed for receipt over the barrel and increased in interior diameter and projecting distally to form an exterior sleeve having a radially inwardly facing bonding surface cooperating with the first bonding surface to form an annulus receiving an extremity of a composite tube and a bond bonding the extremity of the tube to the bonding surfaces.

  14. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Barczy, P.; Szigeti, F.

    1998-01-01

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  15. Carbide-reinforced metal matrix composite by direct metal deposition

    Science.gov (United States)

    Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.

  16. Metal/graphite - composites in fusion engineering

    International Nuclear Information System (INIS)

    Staffler, R.; Kneringer, G.; Kny, E.; Reheis, N.

    1989-01-01

    Metal/graphite composites have been well known in medical industry for many years. X-ray tubes used in modern radiography, particularly in computerized tomography are equipped with rotating targets able to absorb a maximum of heat in a given time. Modern rotating targets consist of a refractory metal/graphite composite. Today the use of graphite as a plasma facing material is one predominant concept in fusion engineering. Depending on the thermal load, the graphite components have to be directly cooled (i.e. divertor plates) or inertially cooled (i.e. firstwall tiles). In case of direct cooling a metallurgical joining such as high temperature brazing between graphite and a metallic cooling structure shows the most promising results /1/. Inertially cooled graphite tiles have to be joined to a metallic backing plate in order to get a stable attachment to the supporting structure. The main requirements on the metallic partner of a metal/graphite composite used in the first wall area are: high melting point, high thermal strength, high thermal conductivity, low vapor pressure and a thermal expansion matching that of graphite. These properties are typical for the refractory metals such as molybdenum, tungsten and their alloys. 4 refs., 13 figs., 1 tab

  17. Metal/graphite - composites in fusion engineering

    International Nuclear Information System (INIS)

    Staffler, R.; Kneringer, G.; Kny, E.; Reheis, N.

    1995-01-01

    Metal/graphite composites have been well known in medical industry for many years. X-ray tubes used in modern radiography, particulary in computerized tomography are equipped with rotating targets able to absorb a maximum of heat in a given time. Modern rotating targets consist of a refractory metal/graphite composite. Today the use of graphite as a plasma facing material is one predominant concept in fusion engineering. Depending on the thermal load, the graphite components have to be directly cooled (i.e. divertor plates) or inertially cooled (i.e. firstwall tiles). In case of direct cooling a metallurgical joining such as high temperature brazing between graphite and a metalic cooling structure shows the most promising results /1/. Inertially cooled graphite tiles have to be joined to a metallic backing plate in order to get a stable attachment to the supporting structure. The main requirements on the metallic partner of a metal/graphite composite and in the first wall area are: high melting point, high thermal strength, high thermal conductivity, low vapour pressure and a thermal expansion matching that of graphite. These properties are typical for the refractory metals such as molybdenum, tungsten and their alloys. (author)

  18. CARBON-CONTAINING COMPOSITES BASED ON METALS

    Directory of Open Access Journals (Sweden)

    VAGANOV V. E.

    2015-10-01

    Full Text Available Problem statement Among the developed technologies metal-composites production,a special place takes powder metallurgy, having fundamental differences from conventionally used foundry technologies. The main advantages of this technology are: the possibility of sensitive control, the structure and phase composition of the starting components, and ultimately the possibility of obtaining of bulk material in nanostructured state with a minimum of processing steps. The potential reinforcers metals include micro and nano-sized oxides, carbides, nitrides, whiskers. The special position is occupied with carbon nanostructures (CNS: С60 fullerenes, single-layer and multi-layer nanotubes, onions (spherical "bulbs", nano-diamonds and graphite,their properties are being intensively studied in recent years. These objects have a high thermal and electrical conductivity values, superelasticity, and have a strength approximate to the theoretical value, which can provide an obtaining composite nanomaterial with a unique set of physical and mechanical properties. In creation of a metal matrix composite nanomaterials (CM, reinforced by various CNS, a special attention should be given to mechanical activation processes (MA already at the stage of preparation of the starting components affecting the structure, phase composition and properties of aluminum-matrix composites. Purpose. To investigate the influence of mechanical activation on the structure and phase composition of aluminum-matrix composites. Conclusion. The results of the study of the structure and phase composition of the initial and mechanically activated powders and bulk-modified metal-composites are shown, depending on the type and concentration of modifying varieties CNS, regimes of MA and parameters of compaction. The study is conducted of tribological properties of Al-CNS OF nanostructured materials.

  19. Metal Matrix Composite Material by Direct Metal Deposition

    Science.gov (United States)

    Novichenko, D.; Marants, A.; Thivillon, L.; Bertrand, P. H.; Smurov, I.

    Direct Metal Deposition (DMD) is a laser cladding process for producing a protective coating on the surface of a metallic part or manufacturing layer-by-layer parts in a single-step process. The objective of this work is to demonstrate the possibility to create carbide-reinforced metal matrix composite objects. Powders of steel 16NCD13 with different volume contents of titanium carbide are tested. On the base of statistical analysis, a laser cladding processing map is constructed. Relationships between the different content of titanium carbide in a powder mixture and the material microstructure are found. Mechanism of formation of various precipitated titanium carbides is investigated.

  20. Piezoelectric ceramic-reinforced metal matrix composites

    OpenAIRE

    2004-01-01

    Composite materials comprising piezoelectric ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the piezoelectric ceramic particulates are subjected to strain, such as the strain experienced during vibration of the material, they generate an electrical voltage that is converted into Joule heat in the surrounding metal matrix, thereby dissipating the vibrational energy. The piezoelectric ceramic particulates may also act as reinforcements to improve the mec...

  1. Deformation of extreme viscoelastic metals and composites

    International Nuclear Information System (INIS)

    Wang, Y.C.; Ludwigson, M.; Lakes, R.S.

    2004-01-01

    The figure of merit for structural damping and damping layer applications is the product of stiffness E and damping tan δ. For most materials, even practical polymer damping layers, E tan δ is less than 0.6 GPa. We consider several methods to achieve high values of this figure of merit: high damping metals, metal matrix composites and composites containing constituents of negative stiffness. As for high damping metals, damping of polycrystalline zinc was determined and compared with InSn studied earlier. Damping of Zn is less dependent on frequency than that of InSn, so Zn is superior at high frequency. High damping and large stiffness anomalies are possible in viscoelastic composites with inclusions of negative stiffness. Negative stiffness entails a reversal of the usual directional relationship between force and displacement in deformed objects. An isolated object with negative stiffness is unstable, but an inclusion embedded in a composite matrix can be stabilized under some circumstances. Ferroelastic domains in the vicinity of a phase transition can exhibit a region of negative stiffness. Metal matrix composites containing vanadium dioxide were prepared and studied. The concentration of embedded particles was sensitive to the processing method

  2. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    Science.gov (United States)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  3. Corrosion of Graphite Aluminum Metal Matrix Composites

    Science.gov (United States)

    1991-02-01

    cathodic protection of G/AI MMCs resulted in overprotection 13. Overprotection resulted from a local increase in pH near cathodic sites during...34Cathodic Overprotection of SiC/6061-T6 and G/6061- T6 Aluminum Alloy Metal Matrix Composites," Scripta Metallurgica, 22 (1988) 413-418. 14. R

  4. Metallic and intermetallic-bonded ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B. [Oak Ridge National Laboratory, TN (United States)] [and others

    1995-05-01

    The purpose of this task is to establish a framework for the development and fabrication of metallic-phase-reinforced ceramic matrix composites with improved fracture toughness and damage resistance. The incorporation of metallic phases that plastically deform in the crack tip region, and thus dissipate strain energy, will result in an increase in the fracture toughness of the composite as compared to the monolithic ceramic. It is intended that these reinforced ceramic matrix composites will be used over a temperature range from 20{degrees}C to 800-1200{degrees}C for advanced applications in the industrial sector. In order to systematically develop these materials, a combination of experimental and theoretical studies must be undertaken.

  5. Metal-semiconductor, composite radiation detectors

    International Nuclear Information System (INIS)

    Orvis, W.J.; Yee, J.H.; Fuess, D.

    1992-12-01

    In 1989, Naruse and Hatayama of Toshiba published a design for an increased efficiency x-ray detector. The design increased the efficiency of a semiconductor detector by interspersing layers of high-z metal within it. Semiconductors such as silicon make good, high-resolution radiation detectors, but they have low efficiency because they are low-z materials (z = 14). High-z metals, on the other hand, are good absorbers of high-energy photons. By interspersing high-z metal layers with semiconductor layers, Naruse and Hatayama combined the high absorption efficiency of the high-z metals with the good detection capabilities of a semiconductor. This project is an attempt to use the same design to produce a high-efficiency, room temperature gamma ray detector. By their nature, gamma rays require thicker metal layers to efficiently absorb them. These thicker layers change the behavior of the detector by reducing the resolution, compared to a solid state detector, and shifting the photopeak by a predictable amount. During the last year, the authors have procured and tested a commercial device with operating characteristics similar to those of a single layer of the composite device. They have modeled the radiation transport in a multi-layered device, to verify the initial calculations of layer thickness and composition. They have modeled the electrostatic field in different device designs to locate and remove high-field regions that can cause device breakdown. They have fabricated 14 single layer prototypes

  6. Metal-polymer composites comprising nanostructures and applications thereof

    Science.gov (United States)

    Wang, Hsing-Lin [Los Alamos, NM; Jeon, Sea Ho [Dracut, MA; Mack, Nathan H [Los Alamos, NM

    2011-08-02

    Metal-polymer composites, and methods of making and use thereof, said composites comprising a thermally-cured dense polyaniline substrate; an acid dopant; and, metal nanostructure deposits wherein the deposits have a morphology dependent upon the acid dopant.

  7. High Performance High Temperature Thermoelectric Composites with Metallic Inclusions

    Science.gov (United States)

    Ma, James M. (Inventor); Bux, Sabah K. (Inventor); Fleurial, Jean-Pierre (Inventor); Ravi, Vilupanur A. (Inventor); Firdosy, Samad A. (Inventor); Star, Kurt (Inventor); Kaner, Richard B. (Inventor)

    2017-01-01

    The present invention provides a composite thermoelectric material. The composite thermoelectric material can include a semiconductor material comprising a rare earth metal. The atomic percent of the rare earth metal in the semiconductor material can be at least about 20%. The composite thermoelectric material can further include a metal forming metallic inclusions distributed throughout the semiconductor material. The present invention also provides a method of forming this composite thermoelectric material.

  8. Biomimetic Composite-Metal Hip Resurfacing Implant

    Directory of Open Access Journals (Sweden)

    Habiba Bougherara

    2008-01-01

    Full Text Available Hip resurfacing technique is a conservative arthroplasty used in the young patient in which the femoral head is reshaped to accept metal cap with small guide stem. In the present investigation, a hybrid composite-metal resurfacing implant is proposed. The cup is made of carbon fiber/polyamide 12 (CF/PA12 covered with a thin layer of cobalt chrome (Co-Cr. Finite element (FE method was applied to analyze and compare the biomechanical performances of the hybrid hip resurfacing (HHR and the conventional Birmingham (BHR. Results of the finite element analysis showed that the composite implant leads to an increase in stresses in the cancellous bone by more than 15% than BHR, indicating a lower potential for stress shielding and bone fracture and higher potential for bone apposition with the HHR.

  9. Ferroelastic ceramic-reinforced metal matrix composites

    OpenAIRE

    2006-01-01

    Composite materials comprising ferroelastic ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the ferroelastic ceramic particulates are subjected to stress, such as the cyclic stress experienced during vibration of the material, internal stresses in the ceramic cause the material to deform via twinning, domain rotation or domain motion thereby dissipating the vibrational energy. The ferroelastic ceramic particulates may also act as reinforcements to impro...

  10. Alkali metal protective garment and composite material

    Science.gov (United States)

    Ballif, III, John L.; Yuan, Wei W.

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  11. Reaction sintering of ceramic-metal composites

    International Nuclear Information System (INIS)

    Botta Filho, W.J.; Rodrigues, J.A.; Tomasi, R.; Pandolfelli, V.C.; Passos, J.F.S.S.; Folgueras, M.V.

    1990-01-01

    Reaction sintering experiments have been carried out in the system Al 2 O 3 -ZrAl 2 -Nb 2 O 5 with the objective of producing ceramic-metal composites of improved toughness. The sintering treatments have been done in the temperature range of 700 0 C to 1400 0 C under different conditions of vacuum and in air and argon atmospheres. The treated samples have been analysed by X-ray diffraction and analytical electron microscopy. The results are discussed in function of the degree of reaction, the development of microstructure and the densification. These results have shown that although an exchange reaction can occur to produce a composite, the control of the reaction to obtain a dense microstructure has not been possible yet. (author) [pt

  12. Combined use of polymer composites and metals in engineering structures

    International Nuclear Information System (INIS)

    Hoa, S.V.

    2002-01-01

    Polymer matrix composites have found many applications in the construction of light weight structures such as those in aircrafts, automobiles, sports equipment etc. This is because these materials possess high stiffness, high strength and low densities. In applications of polymer matrix composites in the light weight structures, the polymer composites are however, not used by themselves alone in most cases. Usually the polymer composites are used in conjunction with some metal components. The metal components are used either to provide means for joining the composite components or the composites are used to repair the cracked metal structures. The synergistic effect of both metals and composites can provide excellent performance with good economy. This paper presents a few applications where polymer composites are used in conjunction with metals in engineering structures. (author)

  13. Performance ratio hardness characteristics polystyrene-metal composite materials

    International Nuclear Information System (INIS)

    Klepikov, V.F.; Prokhorenko, E.M.; Lytvynenko, V.V.; Zakharchenko, A.A.; Hazhmuradov, M.A.

    2015-01-01

    The methods of measuring the hardness of layered polystyrene-metallic composite materials. It is proposed to use powder-like tungsten and powder-like steel as radiation-protective layer. A measurement of the hardness of composites of different composition, and given its dependence on the particle size and their form. The possibility of increasing the hardness of the composites reinforced with metallic additives. Radiation-protective characteristics were calculated for the studied species of composite materials. Influence of the quantitative composition of the metal components is studied on the change of the absorbed dose of gamma radiation

  14. Preparation of magnesium metal matrix composites by powder metallurgy process

    Science.gov (United States)

    Satish, J.; Satish, K. G., Dr.

    2018-02-01

    Magnesium is the lightest metal used as the source for constructional alloys. Today Magnesium based metal matrix composites are widely used in aerospace, structural, oceanic and automobile applications for its light weight, low density(two thirds that of aluminium), good high temperature mechanical properties and good to excellent corrosion resistance. The reason of designing metal matrix composite is to put in the attractive attributes of metals and ceramics to the base metal. In this study magnesium metal matrix hybrid composite are developed by reinforcing pure magnesium with silicon carbide (SiC) and aluminium oxide by method of powder metallurgy. This method is less expensive and very efficient. The Hardness test was performed on the specimens prepared by powder metallurgy method. The results revealed that the micro hardness of composites was increased with the addition of silicon carbide and alumina particles in magnesium metal matrix composites.

  15. Heavy Metal Analyses and Nutritional Composition of Raw and ...

    African Journals Online (AJOL)

    PROF HORSFALL

    KEYWORDS: Nutritional composition, heavy metals, fresh water fishes, marine water fishes, lagoons. Introduction. Fish is an .... the flame and 90% passed out as waste. The flame ..... metals in surface water, sediments, fish and periwinkles of ...

  16. Synthesis and processing of composites by reactive metal penetration

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E.; Ewsuk, K.G. [Sandia National Laboratories, Albuquerque, NM (United States); Tomsia, A.P. [Pask Research and Engineering, Berkeley, CA (United States)] [and others

    1995-05-01

    Ceramic-metal composites are being developed because their high stiffness-to weight ratios, good fracture toughness, and variable electrical and thermal properties give them advantages over more conventional materials. However, because ceramic-metal composite components presently are more expensive than monolithic materials, improvements in processing are required to reduce manufacturing costs. Reactive metal penetration is a promising new method for making ceramic- and metal-matrix composites that has the advantage of being inherently a net-shape process. This technique, once fully developed, will provide another capability for manufacturing the advanced ceramic composites that are needed for many light-weight structural and wear applications. The lower densities of these composites lead directly to energy savings in use. Near-net-shape fabrication of composite parts should lead to additional savings because costly and energy intensive grinding and machining operations are significantly reduced, and the waste generated from such finishing operations is minimized. The goals of this research program are: (1) to identify feasible compositional systems for making composites by reactive metal penetration; (2) to understand the mechanism(s) of composite formation by reactive metal penetration; and (3) to learn how to control and optimize reactive metal penetration for economical production of composites and composite coatings.

  17. Fracture toughness in metal matrix composites

    Directory of Open Access Journals (Sweden)

    Perez Ipiña J.E.

    2000-01-01

    Full Text Available Evaluations of the fracture toughness in metal matrix composites (Duralcan reinforced with 15% of Al(20(3 and SiC are presented in this work. The application of Elastic Plastic Fracture Mechanics is discussed and the obtained values are compared with the ones obtained by means of Linear Elastic Fracture Mechanics. Results show that J IC derived K JC values are higher than the corresponding values obtained by direct application of the linear elastic methodology. The effect of a heat treatment on the material fracture toughness was also evaluated in which the analyzed approaches showed, not only different toughness values, but also opposite tendencies. A second comparison of the J IC and K JC values obtained in this work with toughness values reported in the literature is presented and discussed.

  18. Preparation and characteristics of CNT-metal composites

    CSIR Research Space (South Africa)

    Pityana, SL

    2006-01-01

    Full Text Available The success in keeping carbon nanotubes (CNT) bonded to stainless steel provides a possible method for the preparation of CNT-metal composites. Alternative methods for the preparation of CNT-metal composites include hot pressing, sintering, etc...

  19. Noble Metal/Ceramic Composites in Flame Processes

    DEFF Research Database (Denmark)

    Schultz, Heiko; Madler, Lutz; Strobel, Reto

    conditions influence the resulting noble metal particles size in those systems [1]. For every specific application the particle size and the metal/metal oxide interaction affect the performance of these nano-composite materials [2]. Recently, aerosol processes have been successfully used to produce platinum...

  20. Amorphous Metals and Composites as Mirrors and Mirror Assemblies

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Davis, Gregory L. (Inventor); Agnes, Gregory S. (Inventor); Shapiro, Andrew A. (Inventor)

    2016-01-01

    A mirror or mirror assembly fabricated by molding, pressing, assembling, or depositing one or more bulk metal glass (BMG), bulk metal glass composite (BMGMC), or amorphous metal (AM) parts and where the optical surface and backing of the mirror can be fabricated without machining or polishing by utilizing the unique molding capabilities of this class of materials.

  1. Nuclear prehistory influence on irradiated metallic iron phase composition

    International Nuclear Information System (INIS)

    Alekseev, I.E.

    2007-01-01

    With application of different Moessbauer spectroscopy applications the phase composition of metallic iron after irradiation by both neutrons and charged particles were studied. Irradiation conditions, method of targets examination and phase composition of samples after irradiation were presented in tabular form. It is shown, that phase composition of irradiated metal is defined by nuclear prehistory. So, in a number of cases abnormals (stabilization of high- and low-temperature structural phases of iron at room temperature after irradiation end) were revealed

  2. Synthesis and processing of composites by reactive metal penetration

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E.; Ewsuk, K.G. [Sandia National Labs., Albuquerque, NM (United States); Tomsia, A.P. [Pask Research and Engineering, Berkeley, CA (United States)] [and others

    1997-04-01

    Achieving better performance in commercial products and processes often is dependent on availability of new and improved materials. Ceramic-metal composites have advantages over more conventional materials because of their high stiffness-to-weight ratios, good fracture toughness, and because their electrical and thermal properties can be varied through control of their compositions and microstructures. However, ceramic composites will be more widely used only when their costs are competitive with other materials and when designers have more confidence in their reliability. Over the past four years reactive metal penetration has been shown to be a promising technique for making ceramic and metal-matrix composites to near-net-shape with control of both composition and microstructure. It appears that, with sufficient development, reactive metal penetration could be an economical process for manufacturing many of the advanced ceramic composites that are needed for light-weight structural and wear applications for transportation and energy conversion devices. Near-net-shape fabrication of parts is a significant advantage because costly and energy intensive grinding and machining operations are substantially reduced, and the waste generated from such finishing operations is minimized. The most promising compositions to date consist of Al and Al{sub 2}O{sub 3}; thus, these composites should be of particular interest to the aluminum industry. The goals of this ceramic-metal composite research and development program are: (1) to identify compositions favorable for making composites by reactive metal penetration; (2) to understand the mechanism(s) by which these composites are formed; (3) to control and optimize the process so that composites and composite coatings can be made economically; and (4) to apply R&D results to problems of interest to the aluminum industry.

  3. Synthesis of Disintegrable Metal Composite for Oilfield Applications

    Science.gov (United States)

    Zhang, Zhihui; Salinas, Bobby; Newman, Caleb; Xu, Zhiyue

    Lightweight metal composites were traditionally developed for weight-critical applications. Recently, significant efforts have been made to improve the corrosion performance. In this study we report the synthesis of a novel type of high-strength metal composites with enhanced corrosion rate for use in self-disintegratable tools in oil and gas wells. The composites were fabricated through a powder metallurgy procedure by consolidating reactive metal powders that were coated with nanoscale metallic and/or ceramic coatings. The interaction between the metal matrix and coating was studied using X-ray diffraction, differential scanning calorimetry, and electron microscopy. The composites exhibit simultaneous high strength (up to 460 MPa) and two orders of magnitude increase in the corrosion rate (i.e., 250 mg/cm2/hr) under saline water. The corrosion behavior and associated field applications are described.

  4. Graphene-Reinforced Metal and Polymer Matrix Composites

    Science.gov (United States)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  5. Charge dynamics in conducting polyaniline–metal oxalate composites

    Indian Academy of Sciences (India)

    Unknown

    Polyaniline; metal oxalate composites; charge transport; mobile and fixed spins; VRH conduc- tion mechanism ... Al, Mn and Co on doping into Pani improve the poly- merization ... dopants on charge dynamics with EPR and other tech- niques.

  6. Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries

    KAUST Repository

    Tu, Zhengyuan; Kambe, Yu; Lu, Yingying; Archer, Lynden A.

    2013-01-01

    A nanoporous composite material that offers the unique combination of high room-temperature ionic conductivity and high mechanical modulus is reported. When used as the separator/electrolyte in lithium batteries employing metallic lithium as anode

  7. Drilling of metal matrix composites: cutting forces and chip formation

    International Nuclear Information System (INIS)

    Songmene, V.; Balout, B.; Masounave, J.

    2002-01-01

    Particulate metal matrix composites (MMCs) are known for their low weight and their high wear resistance, but also for the difficulties encountered during their machining. New aluminium MMCs containing with both soft lubricating graphite particles and hard particles (silicon carbide or alumina) with improved machinability were developed. This study investigates the drilling of these composites as compared to non-reinforced aluminium. The microstructure of chip, the cutting forces, the shear angles and the friction at tool-chip interface are used to compare the machinability of these composites. It was found that, during drilling of this new family of composites, the feed rate, and the nature of reinforcing particles govern the cutting forces. The mathematical models established by previous researchers for predicting the cutting forces when drilling metals were validated for these composites. The reinforcing particles within the composite help for chip segmentation, making the composite more brittle and easy to shear during the cutting process. (author)

  8. Review on preparation techniques of particle reinforced metal matrix composites

    Directory of Open Access Journals (Sweden)

    HAO Bin

    2006-02-01

    Full Text Available This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparation techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  9. Compositions and methods of making and using metal-organic framework compositions

    KAUST Repository

    Mohideen, Mohamed Infas Haja; Adil, Karim; Belmabkhout, Youssef; Eddaoudi, Mohamed; Bhatt, Prashant M.

    2017-01-01

    Embodiments of the present disclosure include a metal-organic framework (MOF) composition comprising one or more metal ions, a plurality of organic ligands, and a solvent, wherein the one or more metal ions associate with the plurality of organic ligands sufficient to form a MOF with kag topology. Embodiments of the present disclosure further include a method of making a MOF composition comprising contacting one or more metal ions with a plurality of organic ligands in the presence of a solvent, sufficient to form a MOF with kag topology, wherein the solvent comprises water only. Embodiments of the present disclosure also describe a method of capturing chemical species from a fluid composition comprising contacting a MOF composition with kag topology and pore size of about 3.4Å to 4.8Å with a fluid composition comprising two or more chemical species and capturing one or more captured chemical species from the fluid composition.

  10. Compositions and methods of making and using metal-organic framework compositions

    KAUST Repository

    Mohideen, Mohamed Infas Haja

    2017-05-04

    Embodiments of the present disclosure include a metal-organic framework (MOF) composition comprising one or more metal ions, a plurality of organic ligands, and a solvent, wherein the one or more metal ions associate with the plurality of organic ligands sufficient to form a MOF with kag topology. Embodiments of the present disclosure further include a method of making a MOF composition comprising contacting one or more metal ions with a plurality of organic ligands in the presence of a solvent, sufficient to form a MOF with kag topology, wherein the solvent comprises water only. Embodiments of the present disclosure also describe a method of capturing chemical species from a fluid composition comprising contacting a MOF composition with kag topology and pore size of about 3.4Å to 4.8Å with a fluid composition comprising two or more chemical species and capturing one or more captured chemical species from the fluid composition.

  11. Metal-composite adhesion based on diazonium chemistry.

    Science.gov (United States)

    Oweis, Yara; Alageel, Omar; Kozak, Paige; Abdallah, Mohamed-Nur; Retrouvey, Jean-Marc; Cerruti, Marta; Tamimi, Faleh

    2017-11-01

    Composite resins do not adhere well to dental alloys. This weak bond can result in failure at the composite-metal interface in fixed dental prostheses and orthodontic brackets. The aim of this study was to develop a new adhesive, based on diazonium chemistry, to facilitate chemical bonding between dental alloys and composite resin. Samples of two types of dental alloys, stainless steel and cobalt chromium were primed with a diazonium layer in order to create a surface coating favorable for composite adhesion. Untreated metal samples served as controls. The surface chemical composition of the treated and untreated samples was analyzed by X-ray photoelectron spectroscopy (XPS) and the tensile strength of the bond with composite resin was measured. The diazonium adhesive was also tested for shear bond strength between stainless steel orthodontic brackets and teeth. XPS confirmed the presence of a diazonium coating on the treated metals. The coating significantly increased the tensile and shear bond strengths by three and four folds respectively between the treated alloys and composite resin. diazonium chemistry can be used to develop composite adhesives for dental alloys. Diazonium adhesion can effectively achieve a strong chemical bond between dental alloys and composite resin. This technology can be used for composite repair of fractured crowns, for crown cementation with resin based cements, and for bracket bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Metal Compression Forming of aluminum alloys and metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, S.; Ren, W.; Porter, W.D.; Brinkman, C.R.; Sabau, A.S.; Purgert, R.M.

    2000-02-01

    Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. However, the MCF process applies pressure on the entire mold face, thereby directing pressure on all regions of the casting and producing a uniformly sound part. The process is capable of producing parts with properties close to those of forgings, while retaining the near net shape, complexity in geometry, and relatively low cost of the casting process.

  13. Composite metal foil and ceramic fabric materials

    Science.gov (United States)

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  14. Graphene composites containing chemically bonded metal oxides

    Indian Academy of Sciences (India)

    the oxide layers are chemically bonded to graphene (Zhang ... sists of three glass chambers, one to contain the metal halide. (TiCl4, SiCl4 ... In this step, the metal halide reacts with the oxygen function- ... 1·0 g of FeCl3 were vigorously stirred in 30 ml of ethylene ... Reaction with water vapour results in hydrolysis of the un-.

  15. Hybrid Composite Structures : Multifunctionality through Metal Fibres

    NARCIS (Netherlands)

    Ahmed, T.

    2009-01-01

    The introduction of fibre reinforced polymer composites into the wings and fuselages of the newest aircraft are changing the design and manufacturing approach. Composites provide greater freedom to designers who want to improve aircraft performance in an affordable way. In this quest, researchers

  16. Metal Matrix Composites Reinforced by Nano-Particles—A Review

    Directory of Open Access Journals (Sweden)

    Riccardo Casati

    2014-03-01

    Full Text Available Metal matrix composites reinforced by nano-particles are very promising materials, suitable for a large number of applications. These composites consist of a metal matrix filled with nano-particles featuring physical and mechanical properties very different from those of the matrix. The nano-particles can improve the base material in terms of wear resistance, damping properties and mechanical strength. Different kinds of metals, predominantly Al, Mg and Cu, have been employed for the production of composites reinforced by nano-ceramic particles such as carbides, nitrides, oxides as well as carbon nanotubes. The main issue of concern for the synthesis of these materials consists in the low wettability of the reinforcement phase by the molten metal, which does not allow the synthesis by conventional casting methods. Several alternative routes have been presented in literature for the production of nano-composites. This work is aimed at reviewing the most important manufacturing techniques used for the synthesis of bulk metal matrix nanocomposites. Moreover, the strengthening mechanisms responsible for the improvement of mechanical properties of nano-reinforced metal matrix composites have been reviewed and the main potential applications of this new class of materials are envisaged.

  17. New transparent conductive metal based on polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Keshavarz Hedayati, Mehdi; Jamali, Mohammad [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Strunkus, Thomas; Zaporochentko, Vladimir; Faupel, Franz [Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Elbahri, Mady [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Helmholtz-Zentrum Geesthacht GmbH, Institute of Polymer Research, Nanochemistry and Nanoengineering (Germany)

    2011-07-01

    Currently great efforts are made to develop new kind of transparent conductors (TCs) to replace ITO. In this regard different materials and composites have been proposed and studied including conductive polymers, carbon nanotubes (CNTs), metal grids, and random networks of metallic nanowires. But so far none of them could be used as a replacing material, since either they are either fragile and brittle or their electrical conductivity is below the typical ITO. Thin metallic films due to their high electrical conductivity could be one of the best replacing materials for ITO, however their poor transparency makes their application as TCs limited. Here we design and fabricate a new polymeric composite coating which enhances the transparency of the thin metal film up to 100% relative to the initial value while having a high electrical conductivity of typical metals. Therefore our proposed device has a great potential to be used as new transparent conductor.

  18. Metal-semiconductor, composite radiation detectors

    International Nuclear Information System (INIS)

    Orvis, W.J.; Yee, J.H.; Fuess, D.A.

    1991-12-01

    In 1989, Naruse and Hatayama of Toshiba published a design for an increased efficiency x-ray detector. The design increased the efficiency of a semiconductor detector by interspersing layers of high-z metal within it. Semiconductors such as silicon make good, high-resolution radiation detectors, but they have low efficiency because they are low-z materials (z = 14). High-z metals, on the other hand, are good absorbers of high-energy photons. By interspersing high-z metal layers with semiconductor layers, Naruse and Hatayama combined the high absorption efficiency of the high-z metals with good detection capabilities of a semiconductor. This project is an attempt to use the same design to produce a high- efficiency gamma ray detector. By their nature, gamma rays require thicker metal layers to efficiently absorb them. These thicker layers change the behavior of the detector by reducing the resolution, compared to a solid state detector, and shifting the photopeak by a predictable amount. During the last year, we have modeled parts of the detector and have nearly completed a prototype device. 2 refs

  19. Composite hub/metal blade compressor rotor

    Science.gov (United States)

    Yao, S.

    1978-01-01

    A low cost compressor rotor was designed and fabricated for a small jet engine. The rotor hub and blade keepers were compression molded with graphite epoxy. Each pair of metallic blades was held in the hub by a keeper. All keepers were locked in the hub with circumferential windings. Feasibility of fabrication was demonstrated in this program.

  20. Thermally Conductive Metal-Tube/Carbon-Composite Joints

    Science.gov (United States)

    Copeland, Robert J.

    2004-01-01

    An improved method of fabricating joints between metal and carbon-fiber-based composite materials in lightweight radiators and heat sinks has been devised. Carbon-fiber-based composite materials have been used in such heat-transfer devices because they offer a combination of high thermal conductivity and low mass density. Metal tubes are typically used to carry heat-transfer fluids to and from such heat-transfer devices. The present fabrication method helps to ensure that the joints between the metal tubes and the composite-material parts in such heat-transfer devices have both (1) the relatively high thermal conductances needed for efficient transfer of heat and (2) the flexibility needed to accommodate differences among thermal expansions of dissimilar materials in operation over wide temperature ranges. Techniques used previously to join metal tubes with carbon-fiber-based composite parts have included press fitting and bonding with epoxy. Both of these prior techniques have been found to yield joints characterized by relatively high thermal resistances. The present method involves the use of a solder (63 percent Sn, 37 percent Pb) to form a highly thermally conductive joint between a metal tube and a carbon-fiber-based composite structure. Ordinarily, the large differences among the coefficients of thermal expansion of the metal tube, solder, and carbon-fiber-based composite would cause the solder to pull away from the composite upon post-fabrication cooldown from the molten state. In the present method, the structure of the solder is modified (see figure) to enable it to deform readily to accommodate the differential thermal expansion.

  1. Studies on the optimization of deformation processed metal metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Tim W. [Iowa State Univ., Ames, IA (United States)

    1994-01-04

    A methodology for the production of deformation processed metal metal matrix composites from hyper-eutectic copper-chromium alloys was developed. This methodology was derived from a basic study of the precipitation phenomena in these alloys encompassing evaluation of microstructural, electrical, and mechanical properties. The methodology developed produces material with a superior combination of electrical and mechanical properties compared to those presently available in commercial alloys. New and novel alloying procedures were investigated to extend the range of production methods available for these material. These studies focused on the use of High Pressure Gas Atomization and the development of new containment technologies for the liquid alloy. This allowed the production of alloys with a much more refined starting microstructure and lower contamination than available by other methods. The knowledge gained in the previous studies was used to develop two completely new families of deformation processed metal metal matrix composites. These composites are based on immissible alloys with yttrium and magnesium matrices and refractory metal reinforcement. This work extends the physical property range available in deformation processed metal metal matrix composites. Additionally, it also represents new ways to apply these metals in engineering applications.

  2. Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials.

    Science.gov (United States)

    Jeong, Gyoung Hwa; Baek, Seungmin; Lee, Seungyeol; Kim, Sang-Wook

    2016-04-05

    Graphene composites with metal or metal oxide nanoparticles have been extensively investigated owing to their potential applications in the fields of fuel cells, batteries, sensing, solar cells, and catalysis. Among them, much research has focused on supercapacitor applications and have come close to realization. Composites include monometal oxides of cobalt, nickel, manganese, and iron, as well as their binary and ternary oxides. In addition, their morphological control and hybrid systems of carbon nanotubes have also been investigated. This review presents the current trends in research on metal oxide/graphene composites for supercapacitors. Furthermore, methods are suggested to improve the properties of electrochemical capacitor electrodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cavitation instabilities between fibres in a metal matrix composite

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    induced by bonding to the ceramics that only show elastic deformation. In an MMC the stress state in the metal matrix is highly non-uniform, varying between regions where shear stresses are dominant and regions where hydrostatic tension is strong. An Al–SiC whisker composite with a periodic pattern......Short fibre reinforced metal matrix composites (MMC) are studied here to investigate the possibility that a cavitation instability can develop in the metal matrix. The high stress levels needed for a cavitation instability may occur in metal–ceramic systems due to the constraint on plastic flow...... of transversely staggered fibres is here modelled by using an axisymmetric cell model analysis. First the critical stress level is determined for a cavitation instability in an infinite solid made of the Al matrix material. By studying composites with different distributions and aspect ratios of the fibres...

  4. Composite risers for deep-water offshore technology: Problems and prospects. 1. Metal-composite riser

    Science.gov (United States)

    Beyle, A. I.; Gustafson, C. G.; Kulakov, V. L.; Tarnopol'skii, Yu. M.

    1997-09-01

    Prospects for the application of advanced composites in the offshore technology of oil production are considered. The use of composites in vertical pipelines-risers seems to be the most efficient. The operating loads are studied and the attendant problems are formulated. A comparative analysis of the characteristics of metal, composite, and metal-composite deep-water risers is presented. A technique is developed for designing multilayered risers, taking into account the action of internal and external pressures, gravity, and the axial tensile force created by tensioners, as well as the residual technological stresses due to the difference in coefficients of thermal expansion, physical-chemical shrinkage, and force winding. Numerical estimations are given for a two-layered riser with an inner metal layer of steel, titanium, or aluminum alloys and a composite layer of glass- or carbon-fiber plastics formed by circumferential winding. It is shown that the technological stresses substantially affect the characteristics of the riser.

  5. Conductive polymer/metal composites for interconnect of flexible devices

    Science.gov (United States)

    Kawakita, Jin; Hashimoto Shinoda, Yasuo; Shuto, Takanori; Chikyow, Toyohiro

    2015-06-01

    An interconnect of flexible and foldable devices based on advanced electronics requires high electrical conductivity, flexibility, adhesiveness on a plastic substrate, and efficient productivity. In this study, we investigated the applicability of a conductive polymer/metal composite to the interconnect of flexible devices. By combining an inkjet process and a photochemical reaction, micropatterns of a polypyrrole/silver composite were formed on flexible plastic substrates with an average linewidth of approximately 70 µm within 10 min. The conductivity of the composite was improved to 6.0 × 102 Ω-1·cm-1. From these results, it is expected that the conducting polymer/metal composite can be applied to the microwiring of flexible electronic devices.

  6. Cathode Composition in a Saltwater Metal-Air Battery

    Directory of Open Access Journals (Sweden)

    William Shen

    2017-01-01

    Full Text Available Metal-air batteries consist of a solid metal anode and an oxygen cathode of ambient air, typically separated by an aqueous electrolyte. Here, simple saltwater-based models of aluminum-air and zinc-air cells are used to determine the differences between theoretical cell electric potentials and experimental electric potentials. A substantial difference is observed. It is also found that the metal cathode material is crucial to cell electric potential, despite the cathode not participating in the net reaction. Finally, the material composition of the cathode appears to have a more significant impact on cell potential than the submerged surface area of the cathode.

  7. Heavy Metal Removal by Chitosan and Chitosan Composite

    International Nuclear Information System (INIS)

    Abdel-Mohdy, F.A.; El-Sawy, S.; Ibrahim, M.S.

    2005-01-01

    Radiation grafting of diethyl aminoethyl methacrylate (DEAEMA) on chitosan to impart ion exchange properties and to be used for the separation of metal ions from waste water, was carried out. The effect of experimental conditions such as monomer concentration and the radiation dose on grafting were studied. On using chitosan, grafted chitosan and some chitosan composites in metal ion removal they show high up-take capacity for Cu 2+ and lower uptake capacities for the other divalent metal ions used (Zn and Co). Competitive study, performed with solutions containing mixture of metal salts, showed high selectivity for Cu 2+ than the other metal ion. Limited grafting of DEAEMA polymer -containing specific functional groups-onto the chitosan backbone improves the sorption performance

  8. Metallic-fibre-reinforced ceramic-matrix composite

    International Nuclear Information System (INIS)

    Prevost, F.; Schnedecker, G.; Boncoeur, M.

    1994-01-01

    A refractory metal wire cloth is embedded in an oxide ceramic matrix, using a plasma spraying technology, in order to elaborate composite plates. When mechanically tested, the composite fails with a pseudo-ductile fracture mode whereas the ceramic alone is originally brittle. It exhibits a higher fracture strength, and remains in the form of a single piece even when straining is important. No further heat treatment is needed after the original processing to reach these characteristics. (authors). 2 figs., 2 refs

  9. Bulk metallic glass matrix composite for good biocompatibility

    International Nuclear Information System (INIS)

    Hadjoub, F; Metiri, W; Doghmane, A; Hadjoub, Z

    2012-01-01

    Reinforcement volume fraction effects on acoustical parameters of Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 matrix composites reinforced by Mg, Ag and Cd metals have been studied via a simulation program based on acoustic microscopy technique. Moreover, acoustical parameters of human bone were compared to those of BMGs in both monolithic and reinforced case. It was found that elastic behavior of BMGs matrix composites in high reinforcement volume fraction is similar of that of human bone. This behavior leads to high biocompatibility and good transfer of stress between composite material and human system.

  10. Metal matrix composites: History, status, factors and future

    Science.gov (United States)

    Cyriac, Ajith James

    The history, status, and future of metal matrix composites are presented by evaluating the progression of available literature through time. The trends that existed and issues that still prevail are discussed and a prediction of the future for MMCs is presented. The factors that govern the performance of metal matrix composites are also discussed. In many developed countries and in several developing countries there exists continued interest in MMCs. Researchers tried numerous combinations of matrices and reinforcements since work strictly on MMCs began in the 1950s. This led to developments for aerospace and defense applications, but resultant commercial applications were limited. The introduction of ceramic whiskers as reinforcement and the development of 'in-situ' eutectics in the 1960s aided high temperature applications in aircraft engines. In the late 1970s the automobile industries started to take MMCs seriously. In the last 20 years, MMCs evolved from laboratories to a class of materials with numerous applications and commercial markets. After the collapse of the Berlin Wall, prevailing order in the world changed drastically. This effect was evident in the progression of metal matrix composites. The internet connected the world like never before and tremendous information was available for researchers around the world. Globalization and the internet resulted in the transformation of the world to a more level playing field, and this effect is evident in the nature and source of research on metal matrix composites happening around the world.

  11. Trace Metals and Mineral Composition of Harmattan Dust Haze in ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2018-01-29

    Jan 29, 2018 ... ABSTRACT: Trace metals and mineralogical composition of harmattan dust haze was carried out on samples collected at Ilorin (80 32'N, ... Sahara desert which transports the dust by wind. Junge (1979) reported that on the .... Schwela et al 2002, it was observed that road transport emission sources ...

  12. Metal matrix composites. Part 1. Types, properties, applications

    International Nuclear Information System (INIS)

    Edil da Costa, C.; Velasco Lopez, F.; Torralba Castello, M.

    2000-01-01

    An overview on the state of the art of metal matrix composites used in the automotive and aerospace industries is made. These materials usually are based on light alloys (Al, Ti and Mg) and reinforced with fibres or particles. In this review, it is presented a general scope on the different MMCs families, about their properties and their main applications. (Author) 61 refs

  13. Heavy metal and proximate composition associated with the ...

    African Journals Online (AJOL)

    Changes in the heavy metal content and proximate composition during the 28 day composting of cassava peels used in the cultivation of the oyster mushrooms Pleurotus ostreatus strain EM-1 was studied. Significant dry weight variations of cellulose, hemicellulose and fat contents were observed from day 0 to 12.

  14. Variations in the mineral composition and heavy metals content of ...

    African Journals Online (AJOL)

    Babayemi

    The parts of Moringa oleifera were assessed for mineral composition and some heavy metal ... cadmium from aqueous system (Sharma et al., 2006). ... Crude extracts and essential oil from M. oleifera possess ... into some probable chemical interactions between the .... processing methods that may lead to detoxification and.

  15. Studies of heavy metal contents and microbial composition of ...

    African Journals Online (AJOL)

    This study investigated the heavy metal content and microbial composition of rhizosphere of Panicum maximum obtained from some auto mechanic workshops in Benin City, Nigeria. The grass was uprooted and soil sample was taken from its rhizosphere. The sample were labeled appropriately and immediately transported ...

  16. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M

    2003-07-15

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix.

  17. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    International Nuclear Information System (INIS)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M.

    2003-01-01

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix

  18. Reinforced magnesium composites by metallic particles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Vahid, Alireza; Hodgson, Peter [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); Li, Yuncang, E-mail: yuncang.li@rmit.edu.au [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); School of Engineering, RMIT University, Melbourne, Victoria 3001 (Australia)

    2017-02-08

    Pure magnesium (Mg) implants have unsatisfactory mechanical properties, particularly in loadbearing applications. Particulate-reinforced Mg composites are known as promising materials to provide higher strength implants compared to unreinforced metals. In the current work biocompatible niobium (Nb) and tantalum (Ta) particles are selected as reinforcement, and Mg-Nb and Mg-Ta composites fabricated via a powder metallurgy process associated with the ball milling technique. The effect of Nb and Ta contents on the microstructure and mechanical properties of Mg matrix was investigated. There was a uniform distribution of reinforcements in the Mg matrix with reasonable integrity and no intermetallic formation. The compressive mechanical properties of composites vary with reinforcement contents. The optimal parameters to fabricate biocompatible Mg composites and the optimal composition with appropriate strength, hardness and ductility are recommended.

  19. Rapid, Selective Heavy Metal Removal from Water by a Metal-Organic Framework/Polydopamine Composite.

    Science.gov (United States)

    Sun, Daniel T; Peng, Li; Reeder, Washington S; Moosavi, Seyed Mohamad; Tiana, Davide; Britt, David K; Oveisi, Emad; Queen, Wendy L

    2018-03-28

    Drinking water contamination with heavy metals, particularly lead, is a persistent problem worldwide with grave public health consequences. Existing purification methods often cannot address this problem quickly and economically. Here we report a cheap, water stable metal-organic framework/polymer composite, Fe-BTC/PDA, that exhibits rapid, selective removal of large quantities of heavy metals, such as Pb 2+ and Hg 2+ , from real world water samples. In this work, Fe-BTC is treated with dopamine, which undergoes a spontaneous polymerization to polydopamine (PDA) within its pores via the Fe 3+ open metal sites. The PDA, pinned on the internal MOF surface, gains extrinsic porosity, resulting in a composite that binds up to 1634 mg of Hg 2+ and 394 mg of Pb 2+ per gram of composite and removes more than 99.8% of these ions from a 1 ppm solution, yielding drinkable levels in seconds. Further, the composite properties are well-maintained in river and seawater samples spiked with only trace amounts of lead, illustrating unprecedented selectivity. Remarkably, no significant uptake of competing metal ions is observed even when interferents, such as Na + , are present at concentrations up to 14 000 times that of Pb 2+ . The material is further shown to be resistant to fouling when tested in high concentrations of common organic interferents, like humic acid, and is fully regenerable over many cycles.

  20. Metal/graphite-composite materials for fusion device

    International Nuclear Information System (INIS)

    Kneringer, G.; Kny, E.; Fischer, W.; Reheis, N.; Staffler, R.; Samm, U.; Winter, J.

    1995-01-01

    The utilization of graphite as a structural material depends to an important extent on the availability of a joining technique suitable for the production of reliable large scale metal/graphite-composites. This study has been conducted to evaluate vacuum brazes and procedures for graphite and metals which can be used in fusion applications up to about 1500 degree C. The braze materials included: AgCuTi, CuTi, NiTi, Ti, ZrTi, Zr. Brazing temperatures ranged from 850 degree C to 1900 degree C. The influence of graphite quality on wettability and pore-penetration of the braze has been investigated. Screening tests of metal/graphite-assemblies with joint areas exceeding some square-centimeters have shown that they can only successfully be produced when graphite is brazed to a metal, such as tungsten or molybdenum with a coefficient of thermal expansion closely matching that of graphite. Therefore all experimental work on evaluation of joints has been concentrated on molybdenum/graphite brazings. The tensile strength of molybdenum/graphite-composites compares favorably with the tensile strength of bulk graphite from room temperature close to the melting temperature of the braze. In electron beam testing the threshold damage line for molybdenum/graphite-composites has been evaluated. Results show that even composites with the low melting AgCuTi-braze are expected to withstand 10 MW/m 2 power density for at least 10 3 cycles. Limiter testing in TEXTOR shows that molybdenum/graphite-segments with 3 mm graphite brazed on molybdenum-substrate withstand severe repeated TEXTOR plasma discharge conditions without serious damage. Results prove that actively cooled components on the basis of a molybdenum/graphite-composite can sustain a higher heat flux than bulk graphite alone. (author)

  1. Modeling the Mechanical Behavior of Aluminum Laminated Metal Composites During High Temperature Deformation

    National Research Council Canada - National Science Library

    Grishber, R

    1997-01-01

    A constitutive model for deformation of a novel laminated metal composite (LMC) which is comprised of 21 alternating layers of Al 5182 alloy and Al 6090/SiC/25p metal matrix composite (MMC) has been proposed...

  2. Enzyme-MOF (metal-organic framework) composites.

    Science.gov (United States)

    Lian, Xizhen; Fang, Yu; Joseph, Elizabeth; Wang, Qi; Li, Jialuo; Banerjee, Sayan; Lollar, Christina; Wang, Xuan; Zhou, Hong-Cai

    2017-06-06

    The ex vivo application of enzymes in various processes, especially via enzyme immobilization techniques, has been extensively studied in recent years in order to enhance the recyclability of enzymes, to minimize enzyme contamination in the product, and to explore novel horizons for enzymes in biomedical applications. Possessing remarkable amenability in structural design of the frameworks as well as almost unparalelled surface tunability, Metal-Organic Frameworks (MOFs) have been gaining popularity as candidates for enzyme immobilization platforms. Many MOF-enzyme composites have achieved unprecedented results, far outperforming free enzymes in many aspects. This review summarizes recent developments of MOF-enzyme composites with special emphasis on preparative techniques and the synergistic effects of enzymes and MOFs. The applications of MOF-enzyme composites, primarily in transferation, catalysis and sensing, are presented as well. The enhancement of enzymatic activity of the composites over free enzymes in biologically incompatible conditions is emphasized in many cases.

  3. Nonhazardous solvent composition and method for cleaning metal surfaces

    International Nuclear Information System (INIS)

    Googin, J.M.; Simandl, R.F.; Thompson, L.M.

    1993-01-01

    A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140 F and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140 F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material

  4. Compressive behavior of wire reinforced bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Yub [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Clausen, Bjorn [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Uestuendag, Ersan [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Choi-Yim, Haein [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Aydiner, C. Can [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    Bulk metallic glasses (BMGs) possess a unique set of mechanical properties that make them attractive structural materials. However, when loaded without constraint, BMGs fracture catastrophically due to formation of macroscopic shear bands and this behavior reduces their reliability. To address this issue, BMG matrix composites have been developed. In this investigation, neutron diffraction was used during uniaxial compressive loading to measure the internal strains in the second phases of various BMG composites reinforced with Ta, Mo, or stainless steel wires. The diffraction data were then employed to develop a finite element model that deduced the in situ constitutive behavior of each phase. It was found that the reinforcements yielded first and started transferring load to the matrix, which remained elastic during the whole experiment. While the present composites exhibited enhanced ductility, largely due to their ductile reinforcements, they yielded at applied stresses lower than those found in W reinforced composites.

  5. Fabrication of metal matrix composites by powder metallurgy: A review

    Science.gov (United States)

    Manohar, Guttikonda; Dey, Abhijit; Pandey, K. M.; Maity, S. R.

    2018-04-01

    Now a day's metal matrix components are used in may industries and it finds the applications in many fields so, to make it as better performable materials. So, the need to increase the mechanical properties of the composites is there. As seen from previous studies major problem faced by the MMC's are wetting, interface bonding between reinforcement and matrix material while they are prepared by conventional methods like stir casting, squeeze casting and other techniques which uses liquid molten metals. So many researchers adopt PM to eliminate these defects and to increase the mechanical properties of the composites. Powder metallurgy is one of the better ways to prepare composites and Nano composites. And the major problem faced by the conventional methods are uniform distribution of the reinforcement particles in the matrix alloy, many researchers tried to homogeneously dispersion of reinforcements in matrix but they find it difficult through conventional methods, among all they find ultrasonic dispersion is efficient. This review article is mainly concentrated on importance of powder metallurgy in homogeneous distribution of reinforcement in matrix by ball milling or mechanical milling and how powder metallurgy improves the mechanical properties of the composites.

  6. Method of making a composite tube to metal joint

    Energy Technology Data Exchange (ETDEWEB)

    Leslie, James C.; Leslie, II, James C.; Heard, James; Truong, Liem V.; Josephson, Marvin

    2017-11-07

    A method for making a metal to composite tube joint including selecting an elongated interior fitting constructed with an exterior barrel, reduced in exterior diameter to form a distally facing annular shoulder and then projecting still further distally to form an interior sleeve having a radially outwardly facing bonding surface. Selecting an elongated metal outer sleeve formed proximally with a collar constructed for receipt over the barrel and increased in interior diameter and projecting distally to form an exterior sleeve having a radially inwardly facing bonding surface cooperating with the first bonding surface to form an annulus receiving an extremity of a composite tube and a bond bonding the extremity of the tube to the bonding surfaces.

  7. Potential assisted fabrication of metal-ceramic composite coatings

    International Nuclear Information System (INIS)

    Knote, A.; Schindler, U.; Krueger, H.G.; Kern, H.

    2003-01-01

    A possibility to produce uniform metal-ceramic composite coatings with a high content of ceramic particles up to 60 vol.% will be presented in this study. This method includes a combination of electrophoretic deposition and electrolytic deposition by several steps. A yttria-stabilized zirconia coating (Tosoh TZ-8Y) was first electrophoretically deposited on a ferritic steel plate and then sintered by 1100 C to an open porous layer. In the next step nickel was electrodeposited into the pores of the layer. By a final annealing step it was possible to improve the bonding of the composit coating on the substrate by diffusion of the metal components. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [de

  8. Investigation of the Mechanical Behaviour of Metal Diamond Composites

    CERN Document Server

    Peroni, L; Bertarelli, A; Dallocchio, A; Mariani, N; Bizzaro, S

    2012-01-01

    Metal-Diamond Composites (Me-CD) are a novel class of materials which has typical applications in the field of thermal management. Usually, due to the high volume fraction of diamonds inside the matrix, the mechanical behavior of such materials is quite brittle with low level of fracture stress and strain. However, with advanced innovations in the sintering processes, it is possible to obtain composite materials with a good level of strength and toughness. The great advantage of these materials is the possibility to combine the high thermal and electrical conductivity of diamonds with the strength of metals. Aim of this work is the investigation of the mechanical behavior of Me-CD from quasi-static to high strain-rate loading conditions. The temperature influence on mechanical properties is also evaluated.

  9. 21 CFR 888.3500 - Knee joint femorotibial metal/composite semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/composite semi... § 888.3500 Knee joint femorotibial metal/composite semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite semi-constrained cemented prosthesis is a two-part...

  10. 21 CFR 888.3490 - Knee joint femorotibial metal/composite non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/composite non... § 888.3490 Knee joint femorotibial metal/composite non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite non-constrained cemented prosthesis is a device...

  11. Metal matrix coated fiber composites and the methods of manufacturing such composites

    Science.gov (United States)

    Weeks, J.K. Jr.; Gensse, C.

    1993-09-14

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

  12. Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries

    KAUST Repository

    Tu, Zhengyuan

    2013-09-16

    A nanoporous composite material that offers the unique combination of high room-temperature ionic conductivity and high mechanical modulus is reported. When used as the separator/electrolyte in lithium batteries employing metallic lithium as anode, the material displays unprecedented cycling stability and excellent ability to prevent premature cell failure by dendrite-induced short circuits © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Method of making sulfur-resistant composite metal membranes

    Science.gov (United States)

    Way, J Douglas [Boulder, CO; Lusk, Mark [Golden, CO; Thoen, Paul [Littleton, CO

    2012-01-24

    The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.

  14. Infiltration processing of metal matrix composites using coated ceramic particulates

    Science.gov (United States)

    Leon-Patino, Carlos Alberto

    2001-07-01

    A new process was developed to fabricate particulate metal matrix composites (MMCs). The process involves three steps: (1) modifying the particulate surface by metal coating, (2) forming a particulate porous compact; and (3) introducing metal into the channel network by vacuum infiltration. MMCs with different reinforcements, volume fractions, and sizes can be produced by this technique. Powders of alumina and silicon carbide were successfully coated with nickel and copper in preparation for infiltration with molten aluminum. Electroless Ni and Cu deposition was used since it enhances the wettability of the reinforcements for composite fabrication. While Cu deposits were polycrystalline, traces of phosphorous co-deposited from the electroless bath gave an amorphous Ni-P coating. The effect of metal coating on wetting behavior was evaluated at 800°C on plain and metal-coated ceramic plates using a sessile drop technique. The metallic films eliminated the non-wetting behavior of the uncoated ceramics, leading to equilibrium contact angles in the order of 12° and below 58° for Ni and Cu coated ceramics, respectively. The spreading data indicated that local diffusion at the triple junction was the governing mechanism of the wetting process. Precipitation of intermetallic phases in the drop/ceramic interface delayed the formation of Al4C3. Infiltration with molten Al showed that the coated-particulates are suitable as reinforcing materials for fabricating MMCs, giving porosity-free components with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterparts. Liquid state diffusion kinetics due to temperature dependent viscosity forces controlled the infiltration process. Microstructural analysis indicated the formation of intermetallic phases such as CuAl 2, in the case of Cu coating, and Ni2Al3 and NiAl 3 when Ni-coated powders were infiltrated. The

  15. A Study of Metal-Cement Composites with Additives

    Directory of Open Access Journals (Sweden)

    Mironov Victor

    2014-12-01

    Full Text Available The application of small-sized metal fillers (SMF provides a combination of high bulk density, increased durability and ferromagnetic properties of composite materials on the cement basis. However, the total strength of the composite can be compromised by poor adhesion of metal particles with the cement matrix. The use of versatile additives like microsilica and metakaolin is able to improve the structural integrity and mechanical properties of heavy concretes. The paper considers the results of a study using specimens of heavy concretes with SMF aiming to estimate its strength, structural features and ultrasonic parameters. It was found that the contact of SMF particles with the cement was not perfect, since the voids appeared between them and the cement matrix during the cement hydration process (exothermal reaction. Due to the border porosity, the specimens with the metal fillers have lower compressive strength, lower ultrasound velocity and increased frequency slope of attenuation. Microsilica and metakaolin additives facilitate better contact zone between the cement matrix and metal fillers.

  16. Steel-SiC Metal Matrix Composite Development. Final report

    International Nuclear Information System (INIS)

    Smith, Don D.

    2005-01-01

    One of the key materials challenges for Generation IV reactor technology is to improve the strength and resistance to corrosion and radiation damage in the metal cladding of the fuel pins during high-temperature operation. Various candidate Gen IV designs call for increasing core temperature to improve efficiency and facilitate hydrogen production, operation with molten lead moderator to use fast neutrons. Fuel pin lifetime against swelling and fracture is a significant limit in both respects. The goal of this project is to develop a method for fabricating SiC-reinforced high-strength steel. We are developing a metal-matrix composite (MMC) in which SiC fibers are be embedded within a metal matrix of steel, with adequate interfacial bonding to deliver the full benefit of the tensile strength of the SiC fibers in the composite. In the context of the mission of the SBIR program, this Phase I grant has been successful. The development of a means to attain interfacial bonding between metal and ceramic has been a pacing challenge in materials science and technology for a century. It entails matching or grading of thermal expansion across the interface and attaining a graded chemical composition so that impurities do not concentrate at the boundary to create a slip layer. To date these challenges have been solved in only a modest number of pairings of compatible materials, e.g. Kovar and glass, titanium and ceramic, and aluminum and ceramic. The latter two cases have given rise to the only presently available MMC materials, developed for aerospace applications. Those materials have been possible because the matrix metal is highly reactive at elevated temperature so that graded composition and intimate bonding happens naturally at the fiber-matrix interface. For metals that are not highly reactive at processing temperature, however, successful bonding is much more difficult. Recent success has been made with copper MMCs for cooling channels in first-wall designs for fusion

  17. Nature and morphology of the joints of metal matrix composites to metals

    International Nuclear Information System (INIS)

    Pietrzak, K.

    1997-01-01

    Metal matrix composites (MMCs) reinforced with short ceramic fibres (e.g. carbon or Al 2 O 3 fibres) or with other metals (such as e.g., tungsten) show numerous advantages since their properties can be programmed by modifying appropriately their composition and technology. A point of considerable importance is the possibility of joining the composites with metals or their alloys. The major problem here is to choose the appropriate joining technique, such that ensures the formation of a high quality joint resistant to the service conditions, avoids the degradation of the composite microstructure, in particular of the interface layer between the matrix and the reinforcement, and still, is not expensive (1). The paper presents the results of experiments on joining the following composites: 6061Al-based materials containing 15 vol.% of δ-alumina fibres, CuCrl-based materials containing 20 vol.% of carbon fibres (C f ), CuZrl-based materials containing 20 vol.% of C f and Cu-based materials with 10 vol.% of dispersed tungsten powder. The CuCrI-C f and CuZrl-C f composites were joined with austenitic steel, the 6061Al-Al 2 O 3 composite - with the 6061Al alloy and the CuW composite - with copper of 99.99 % purity. The material pairs were chosen so as to take into account their possible application. Several different joining techniques were examined. This paper discusses the results obtained when using diffusion bonding, vacuum brazing and gluing. The morphology and the nature of the interface layer after bonding process between the matrix and the reinforcement and between the MMCs and metal were examined by analysing the distributions of the elements, by SEM and by X-ray techniques. The degree of the degradation of the MMCs structure was taken to be described by the coefficient of the relative content of the reinforcing material RCRM = X/B, where X is the percent content of the reinforcing phase in the composite after the joining process, and B is the percent content of

  18. Soft Multifunctional Composites and Emulsions with Liquid Metals.

    Science.gov (United States)

    Kazem, Navid; Hellebrekers, Tess; Majidi, Carmel

    2017-07-01

    Binary mixtures of liquid metal (LM) or low-melting-point alloy (LMPA) in an elastomeric or fluidic carrier medium can exhibit unique combinations of electrical, thermal, and mechanical properties. This emerging class of soft multifunctional composites have potential applications in wearable computing, bio-inspired robotics, and shape-programmable architectures. The dispersion phase can range from dilute droplets to connected networks that support electrical conductivity. In contrast to deterministically patterned LM microfluidics, LMPA- and LM-embedded elastomer (LMEE) composites are statistically homogenous and exhibit effective bulk properties. Eutectic Ga-In (EGaIn) and Ga-In-Sn (Galinstan) alloys are typically used due to their high conductivity, low viscosity, negligible nontoxicity, and ability to wet to nonmetallic materials. Because they are liquid-phase, these alloys can alter the electrical and thermal properties of the composite while preserving the mechanics of the surrounding medium. For composites with LMPA inclusions (e.g., Field's metal, Pb-based solder), mechanical rigidity can be actively tuned with external heating or electrical activation. This progress report, reviews recent experimental and theoretical studies of this emerging class of soft material architectures and identifies current technical challenges and opportunities for further advancement. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Compressive deformation of in situ formed bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B. [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lee, S.Y. [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Ustuendag, E. [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Kim, C.P. [Liquidmetal Technologies, Lake Forest, CA 92630 (United States); Brown, D.W. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, M.A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2006-02-15

    A bulk metallic glass matrix composite with dendc second phase precipitates was investigated using neutron diffraction and self-consistent modeling (SCM) to ascertain its deformation mechanisms. The compressive behavior of both the composite and the second phase (in its monolithic form) were investigated. The diffraction data were compared to the predictions of a new SCM resulting in good agreement. For the first time, this model considered both amorphous and crystalline phases and allowed the calculation of single crystal elastic constants from polycrystalline diffraction data. It was shown that the ductile second phase yielded first upon loading, and this was followed by multiple shear band formation in the matrix, a process which enhanced the ductility of the composite.

  20. Compressive deformation of in situ formed bulk metallic glass composites

    International Nuclear Information System (INIS)

    Clausen, B.; Lee, S.Y.; Ustuendag, E.; Kim, C.P.; Brown, D.W.; Bourke, M.A.M.

    2006-01-01

    A bulk metallic glass matrix composite with dendritic second phase precipitates was investigated using neutron diffraction and self-consistent modeling (SCM) to ascertain its deformation mechanisms. The compressive behavior of both the composite and the second phase (in its monolithic form) were investigated. The diffraction data were compared to the predictions of a new SCM resulting in good agreement. For the first time, this model considered both amorphous and crystalline phases and allowed the calculation of single crystal elastic constants from polycrystalline diffraction data. It was shown that the ductile second phase yielded first upon loading, and this was followed by multiple shear band formation in the matrix, a process which enhanced the ductility of the composite

  1. Fabrication of metal-matrix composites and adaptive composites using ultrasonic consolidation process

    International Nuclear Information System (INIS)

    Kong, C.Y.; Soar, R.C.

    2005-01-01

    Ultrasonic consolidation (UC) has been used to embed thermally sensitive and damage intolerant fibres within aluminium matrix structures using high frequency, low amplitude, mechanical vibrations. The UC process can induce plastic flow in the metal foils being bonded, to allow the embedding of fibres at typically 25% of the melting temperature of the base metal and at a fraction of the clamping force when compared to fusion processes. To date, the UC process has successfully embedded Sigma silicon carbide (SiC) fibres, shape memory alloy wires and optical fibres, which are presented in this paper. The eventual aim of this research is targeted at the fabrication of adaptive composite structures having the ability to measure external stimuli and respond by adapting their structure accordingly, through the action of embedded active and passive functional fibres within a freeform fabricated metal-matrix structure. This paper presents the fundamental studies of this research to identify embedding methods and working range for the fabrication of adaptive composite structures. The methods considered have produced embedded fibre specimens in which large amounts of plastic flow have been observed, within the matrix, as it is deformed around the fibres, resulting in fully consolidated specimens without damage to the fibres. The microscopic observation techniques and macroscopic functionality tests confirms that the UC process could be applied to the fabrication of metal-matrix composites and adaptive composites, where fusion techniques are not feasible and where a 'cold' process is necessary

  2. Metal matrix composites synthesis, wear characteristics, machinability study of MMC brake drum

    CERN Document Server

    Natarajan, Nanjappan; Davim, J Paulo

    2015-01-01

    This book is dedicated to composite materials, presenting different synthesis processes, composite properties and their machining behaviour. The book describes also the problems on manufacturing of metal matrix composite components. Among others, it provides procedures for manufacturing of metal matrix composites and case studies.

  3. Nondestructive characterization of metal-matrix-composites by ultrasonic technique

    International Nuclear Information System (INIS)

    Lee, Joon Hyun

    1992-01-01

    Nondestructive characterizations using ultrasonic technique were conducted systematically on Al 2 O 3 short fiber reinforced pure Al and AC8A aluminium metal-matrix composites. In order to determine the elastic moduli of metal-matrix composites(MMCs), Al 2 O 3 /AC8A composites with volume fraction of Al 2 O 3 short fiber varying up to 30% were fabricated by squeeze casting technique. Pure Al and AC8A reinforced with Al 2 O 3 short fiber were also fabricated by changing the fabrication parameters such as the applied pressure, the volume fraction of fiber. The Influences of texture change associated with change of fabrication parameters were investigated using the sophisticated LFB acoustic microscope with the frequency of 225 MHz. Ultrasonic velocities of longitudinal, shear and Rayleigh waves of the composites were measured by pulse-echo method and line-focus-beam(LBF) acoustic microscope. Ultrasonic velocities of the longitudinal, the shear and Rayleigh waves were found to correlate primarily with the volume fraction of Al 2 O 3 . The elastic constants of composites including Young's Modulus, Shear Modulus, Bulk Modulus and Poisson's ratio were determined on the basis of the longitudinal and the shear wave velocities measured by an ultrasonic pulse-echo method. The Young's Modulus of the composites obtained by ultrasonic technique were slightly lower than those measured by 4-point-bend test and also showed relatively good agreements with the calculated results derived from the equal stress condition. The applicability of LFB acoustic microscope on material characterization of the MMCs was discussed on the basis of the relationships between Rayleigh wave velocity as a function of rotated angle of specimen and fabrication parameters of the MMCs.

  4. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    Science.gov (United States)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  5. Preparation and characterization of aluminium-silica metal matrix composite

    Science.gov (United States)

    Mallikarjuna, G. B.; Basavaraj, E.

    2018-04-01

    Aluminum alloys are widely used in aerospace and automobile industries due to their low density and good mechanical properties, better corrosion resistance and wear, low thermal coefficient of expansion as compared to conventional metals and alloys. The excellent properties of these materials and relatively low production cost make them a very attractive for a variety of applications. In this present work, Al alloy LM13-SiO2 composites were produced by stir casting method. The reinforcement SiO2 particle size used for preparation of composites are 106 µm, 150 µm, 250 µm and 355 µm with varying amount of 3 to 12 wt% in steps of 3. The prepared composite specimens were machined as per test standards. Effects of weight percentage of SiO2 particles on wear, tensile strength of Al alloy LM13-SiO2 composites have been investigated. The microstructures of the composites were studied to know the dispersion of the SiO2 particles in matrix. Experimental results shows that there is enhanced mechanical properties, when silica weighing 9% was added to the base aluminium alloy and also similar trend exists in all four different micron size of silica and also it has been observed that addition of SiO2 particles significantly improves wear resistance properties as compared with that of unreinforced matrix.

  6. Generation of metal composition gradients by means of bipolar electrodeposition

    International Nuclear Information System (INIS)

    Tisserant, Gwendoline; Fattah, Zahra; Ayela, Cédric; Roche, Jérome; Plano, Bernard; Zigah, Dodzi; Goudeau, Bertrand; Kuhn, Alexander; Bouffier, Laurent

    2015-01-01

    Highlights: • A bipolar electrochemistry approach for the preparation of surface gradients is reported. • Several metals are simultaneously deposited on a bipolar electrode. • The elemental composition and thickness of the deposit varies alongside the bipolar electrode. • The deposit affects the surface properties and exhibits a barcode feature. - Abstract: Bipolar electrochemistry is an unconventional technique that currently encounters a renewal of interest due to modern applications in the fields of analytical chemistry or materials science. The approach is particularly relevant for the preparation of asymmetric objects or surfaces such as Janus particles for example. Bipolar electrochemistry allows spatially controlled deposition of various layers from electroactive precursors, selectively at one side of a bipolar electrode. We report here the concomitant cathodic deposition of up to three different metals at the same time in a single experiment. The deposits were characterized by optical and electron microscopy imaging as well as profilometry and energy dispersive X-ray spectroscopy. As a result, the deposited layer is composed of several areas exhibiting both a composition and a thickness gradient. Such a variation directly modifies the optical and electronic properties alongside the surface and gives access to the design of composite surfaces exhibiting a visual gradient feature.

  7. Carbon composites with metal nanoparticles for Alcohol fuel cells

    Science.gov (United States)

    Ventrapragada, Lakshman; Siddhardha, R. S.; Podilla, Ramakrishna; Muthukumar, V. S.; Creager, Stephen; Rao, A. M.; Ramamurthy, Sai Sathish

    2015-03-01

    Graphene due to its high surface area and superior conductivity has attracted wide attention from both industrial and scientific communities. We chose graphene as a substrate for metal nanoparticle deposition for fuel cell applications. There are many chemical routes for fabrication of metal-graphene composites, but they have an inherent disadvantage of low performance due to the usage of surfactants, that adsorb on their surface. Here we present a design for one pot synthesis of gold nanoparticles and simultaneous deposition on graphene with laser ablation of gold strip and functionalized graphene. In this process there are two natural advantages, the nanoparticles are synthesized without any surfactants, therefore they are pristine and subsequent impregnation on graphene is linker free. These materials are well characterized with electron microscopy to find their morphology and spectroscopic techniques like Raman, UV-Vis. for functionality. This gold nanoparticle decorated graphene composite has been tested for its electrocatalytic oxidation of alcohols for alkaline fuel cell applications. An electrode made of this composite showed good stability for more than 200 cycles of operation and reported a low onset potential of 100 mV more negative, an important factor for direct ethanol fuel cells.

  8. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    Science.gov (United States)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A.; Brown, Gilbert M.

    2017-04-11

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions include microspheres with an average diameter between about 200 nanometers and about 10 micrometers and mesopores on the surface and interior of the microspheres. The methods of making include forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least annealing in a reducing atmosphere, doping with an aliovalent element, and coating with a coating composition.

  9. Carbon Nanotube Composite Ampacity and Metallic CNT Buckypaper Conductivity

    Science.gov (United States)

    De Groh, Henry C., III

    2016-01-01

    NASA is currently working on developing motors for hybrid electric propulsion applications in aviation. To make electric power more feasible in airplanes higher power to weight ratios are sought for electric motors. One facet to these efforts is to improve (increase) the conductivity and (lower) density of the magnet wire used in motors. Carbon nanotubes (CNT) and composites containing CNT are being explored as a possible way to increase wire conductivity and lower density. Presented here are measurements of the current carrying capacity (ampacity) of a composite made from CNT and copper. The ability of CNT to improve the conductivity of such composites is hindered by the presence of semiconductive CNT (s-CNT) that exist in CNT supplies naturally, and currently, unavoidably. To solve this problem, and avoid s-CNT, various preferential growth and sorting methods are being explored. A supply of sorted 95 metallic CNT (m-CNT) was acquired in the form of thick film Buckypaper (BP) as part of this work and characterized using Raman spectroscopy, resistivity, and density measurements. The ampacity (Acm2) of the Cu-5volCNT composite was 3.8 lower than the same gauge pure Cu wire similarly tested. The lower ampacity in the composite wire is believed to be due to the presence of s-CNT in the composite and the relatively low (proper) level of longitudinal cooling employed in the test method. Although Raman spectroscopy can be used to characterize CNT, a strong relation between the ratios of the primary peaks GGand the relative amounts of m-CNT and s-CNT was not observed. The average effective conductivity of the CNT in the sorted, 95 m-CNT BP was 2.5 times higher than the CNT in the similar but un-sorted BP. This is an indication that improvements in the conductivity of CNT composites can be made by the use of sorted, highly conductive m-CNT.

  10. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    Science.gov (United States)

    Kim, Choong Paul; Hays, Charles C.; Johnson, William L.

    2004-03-23

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  11. Metal-nanotube composites as radiation resistant materials

    Energy Technology Data Exchange (ETDEWEB)

    González, Rafael I.; Valencia, Felipe; Mella, José; Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, CEDENNA, Universidad de Chile, Casilla 653, Santiago 7800024 (Chile); Duin, Adri C. T. van [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); So, Kang Pyo; Li, Ju [Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bringa, Eduardo M. [CONICET and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500 (Argentina)

    2016-07-18

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  12. Metal-nanotube composites as radiation resistant materials

    International Nuclear Information System (INIS)

    González, Rafael I.; Valencia, Felipe; Mella, José; Kiwi, Miguel; Duin, Adri C. T. van; So, Kang Pyo; Li, Ju; Bringa, Eduardo M.

    2016-01-01

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  13. Tunable Optical Properties of Metal Nanoparticle Sol-Gel Composites

    Science.gov (United States)

    Smith, David D.; Snow, Lanee A.; Sibille, Laurent; Ignont, Erica

    2001-01-01

    We demonstrate that the linear and non-linear optical properties of sol-gels containing metal nanoparticles are highly tunable with porosity. Moreover, we extend the technique of immersion spectroscopy to inhomogeneous hosts, such as aerogels, and determine rigorous bounds for the average fractional composition of each component, i.e., the porosity of the aerogel, or equivalently, for these materials, the catalytic dispersion. Sol-gels containing noble metal nanoparticles were fabricated and a significant blue-shift in the surface plasmon resonance (SPR) was observed upon formation of an aerogel, as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping and aggregation this blue-shift does not strictly obey standard effective medium theories. Mitigation of these complications is achieved by avoiding the use of alcohol and by annealing the samples in a reducing atmosphere.

  14. Internal friction in a new kind of metal matrix composites

    International Nuclear Information System (INIS)

    San Juan, J.; No, M.L.

    2006-01-01

    We have developed a new kind of metal matrix composites, based on powders of Cu-Al-Ni shape memory alloys (SMAs) surrounded by an indium matrix, specifically designed to exhibit high mechanical damping. The damping properties have been characterized by mechanical spectroscopy as a function of temperature between 150 and 400 K, frequency between 3 x 10 -3 and 3 Hz, and strain amplitude between 5 x 10 -6 and 10 -4 . The material exhibits, in some range of temperature, internal friction as high as 0.54. The extremely high damping is discussed in the light of the microstructure of the material, which has been characterized in parallel

  15. Tridimensional ionic polymer metal composites: optimization of the manufacturing techniques

    International Nuclear Information System (INIS)

    Bonomo, C; Brunetto, P; Fortuna, L; Graziani, S; Bottino, M; Di Pasquale, G; Pollicino, A

    2010-01-01

    Ionic polymer metal composites (IPMCs) belong to electroactive polymers (EAPs) and have been suggested for various applications due to their light weight and to the fact that they react mechanically when stimulated by an electrical signal and vice versa. Thick IPMCs (3D-IPMCs) have been fabricated by hot pressing several Nafion ® 117 films. Additional post-processes (more cycles of Pt electroless plating and dispersing agents) have been applied to improve the 3D-IPMC performance. The electromechanical response of 3D-IPMCs has been examined by applying electrical signals and measuring the displacement and blocking force produced

  16. Baseplates in metallic matrix composites for power and microwave applications

    International Nuclear Information System (INIS)

    Massiot, P.

    1997-01-01

    Baseplates for microelectronic devices in fields where transform environments are encountered, such as automotive or airborne must have some fundamental characteristics such as: high thermal conductivity, low density, good mechanical properties and a coefficient of thermal expansion (CTE) nearly equal to the microelectronic substrates and the components installed on the baseplates. Metallic matrix composites are very good candidates because they perfectly answer to those requirements. In this presentation, with some examples of electronic devices in power and microwave applications we will show the big interest to use this kind of material. (author)

  17. Laser cladding of wear resistant metal matrix composite coatings

    International Nuclear Information System (INIS)

    Yakovlev, A.; Bertrand, Ph.; Smurov, I.

    2004-01-01

    A number of coatings with wear-resistant properties as well as with a low friction coefficient are produced by laser cladding. The structure of these coatings is determined by required performance and realized as metal matrix composite (MMC), where solid lubricant serves as a ductile matrix (e.g. CuSn), reinforced by appropriate ceramic phase (e.g. WC/Co). One of the engineered coating with functionally graded material (FGM) structure has a dry friction coefficient 0.12. Coatings were produced by coaxial injection of powder blend into the zone of laser beam action. Metallographic and tribological examinations were carried out confirming the advanced performance of engineered coatings

  18. Metal matrix composite fabrication processes for high performance aerospace structures

    Science.gov (United States)

    Ponzi, C.

    A survey is conducted of extant methods of metal matrix composite (MMC) production in order to serve as a basis for prospective MMC users' selection of a matrix/reinforcement combination, cost-effective primary fabrication methods, and secondary fabrication techniques for the achievement of desired performance levels. Attention is given to the illustrative cases of structural fittings, control-surface connecting rods, hypersonic aircraft air inlet ramps, helicopter swash plates, and turbine rotor disks. Methods for technical and cost analysis modeling useful in process optimization are noted.

  19. Ionic polymer metal composites with polypyrrole-silver electrodes

    Science.gov (United States)

    Cellini, F.; Grillo, A.; Porfiri, M.

    2015-03-01

    Ionic polymer metal composites (IPMCs) are a class of soft active materials that are finding increasing application in robotics, environmental sensing, and energy harvesting. In this letter, we demonstrate the fabrication of IPMCs via in-situ photoinduced polymerization of polypyrrole-silver electrodes on an ionomeric membrane. The composition, morphology, and sheet resistance of the electrodes are extensively characterized through a range of experimental techniques. We experimentally investigate IPMC electrochemistry through electrochemical impedance spectroscopy, and we propose a modified Randle's model to interpret the impedance spectrum. Finally, we demonstrate in-air dynamic actuation and sensing and assess IPMC performance against more established fabrication methods. Given the simplicity of the process and the short time required for the formation of the electrodes, we envision the application of our technique in the development of a rapid prototyping technology for IPMCs.

  20. Refractory metal alloys and composites for space power systems

    International Nuclear Information System (INIS)

    Stephens, J.R.; Petrasek, D.W.; Titran, R.H.

    1994-01-01

    Space power requirements for future NASA and other United States missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the space shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conversion system, and related components at relatively high temperatures. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide base line information for space power systems in the 1900's and the 21st century. Basic research on the tensile and creep properties of fibers, matrices, and composites will be discussed

  1. Development of a metal-based composite actuator

    Science.gov (United States)

    Asanuma, Hiroshi; Haga, Osamu; Ishii, Toshio; Kurihara, Haruki; Ohira, Junichiro; Hakoda, Genji

    2000-06-01

    This paper describes a basic concept and elemental developments to realize a metal based composite actuator to be used for smart structures. In this study, CFRP prepreg was laminated on aluminum plate to develop an actuator and this laminate could perform unidirectional actuation. SiC continuous fiber/Al composite thin plate could also be used for form a modified type of actuator instead of using CFRP. As sensors to be embedded in this actuator, the following ones wee developed. (1) A pre-notched optical fiber filament could be embedded in aluminum matrix without fracture by the interphase forming/bonding method with copper insert and could be fractured in it at the notch, which enabled forming of an optical interference type strain sensor. (2) Nickel wire could be uniformly oxidized and embedded in aluminum matrix without fracture, which could successfully work as a temperature sensor and a strain sensor.

  2. Load transfer in short fibre reinforced metal matrix composites

    International Nuclear Information System (INIS)

    Garces, Gerardo; Bruno, Giovanni; Wanner, Alexander

    2007-01-01

    The internal load transfer and the deformation behaviour of aluminium-matrix composites reinforced with 2D-random alumina (Saffil) short fibres was studied for different loading modes. The evolution of stress in the metallic matrix was measured by neutron diffraction during in situ uniaxial deformation tests. Tensile and compressive tests were performed with loading axis parallel or perpendicular to the 2D-reinforcement plane. The fibre stresses were computed based on force equilibrium considerations. The results are discussed in light of a model recently established by the co-authors for composites with visco-plastic matrix behaviour and extended to the case of plastic deformation in the present study. Based on that model, the evolution of internal stresses and the macroscopic stress-strain were simulated. Comparison between the experimental and computational results shows a qualitative agreement in all relevant aspects

  3. Residual stresses and mechanical properties of metal matrix composites

    International Nuclear Information System (INIS)

    Persson, Christer.

    1993-01-01

    The large difference in coefficient of thermal expansion of the matrix and particles in a metal matrix composite will introduce residual stresses during cooling from process temperature. These stresses are locally very high, and are known to influence the mechanical behaviour of the material. Changes in the stress state will occur during heat treatments and when the material is loaded due to different elastic, plastic, and creep properties of the constituents. The change of residual stresses in an Al-SiC particulate composite after different degree of plastic straining has been studied. The effect of plastic straining was modelled by an Eshelby model. The model and the measurements both show that the stress in the loading direction decreases for a tensile plastic strain and increases for a compressive plastic strain. By x-ray diffraction the stress response in the matrix and particles can be measured independently. This has been used to determine the stress state under and after heat treatments and under mechanical loading in two Al 15% SiC metal matrix composites. By analysing the line width from x-ray experiment the changes in the microstrains in the material were studied. A finite element model was used to model the generation of thermal residual stresses, stress relaxation during heat treatments, and load sharing during the first load cycle. Calculated stresses and microstrains were found to be in good agreement with the measured values. The elastic behaviour of the composite can be understood largely in terms of elastic load transfer between matrix and particles. However, at higher loads when the matrix becomes plastic residual stresses also become important. 21 refs

  4. 21 CFR 888.3340 - Hip joint metal/composite semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/composite semi-constrained... Hip joint metal/composite semi-constrained cemented prosthesis. (a) Identification. A hip joint metal... hip joint. The device limits translation and rotation in one or more planes via the geometry of its...

  5. Synthesis and characterization of interpenetrating phase ceramic metal composites

    International Nuclear Information System (INIS)

    Kanwal, T.

    2011-01-01

    Alumina powder was sintered in MW furnace under vacuum, without vacuum and conventional sintering furnace at different temperatures followed by characterization to observe the effect of sintering mode. Zirconia-Nickel and Alumina-Nickel systems were selected to study the effect of metallic phase interconnectivity on the electrical and thermal behavior in interpenetrating phase composites (IPCs). In order to obtain the homogenous mixture of Alumina and Nick powders, a detailed investigation was performed on the de-agglomeration and prop mixing of powders. Sintering parameters were optimized for the homogenization o Alumina with Nickel in planetary ball mill without sticking of powders with jar.- Homogenization of Zirconia-Nickel and Alumina-Nickel powders was perform using planetary ball mill as well as pestle mortar. Compaction of composites was performed uniaxially and sintering was carried in microwave furnace, tubular furnace with Argon environment and in vacuum sintering furnace. Electrical and thermal behavior of microwave as well as conventionally sintered ZrO/sub 2/-Ni and Al/sub 2/O/sub 3/-Ni IPCs was also observed. Electrical behavior of Composites was characterized b determining the impedance of the composites. To find the percolation limit for both Alumina-Nickel and Zirconia-Nickel composite systems the real part of impedance was used. On the basis of electrical characterization, samples were selected for SEM, BET surface area and CTE analysis. SEM of selected samples was performed t observe the connectivity of Nickel in composites. Finally, the effect of percolation limit on thermal behavior of IPCs was investigated with the help of CTE. (author)

  6. Codeformation processing of mechanically-dissimilar metal/intermetallic composites

    Science.gov (United States)

    Marte, Judson Sloan

    A systematic and scientific approach has been applied to the study of codeformation processing. A series of composites having mechanically-dissimilar phases were developed in which the high temperature flow behavior of the reinforcement material could be varied independent of the matrix. This was accomplished through the use of a series of intermetallic matrix composites (IMCs) as discontinuous reinforcements in an otherwise conventional metal matrix composite. The IMCs are produced using an in-situ reaction synthesis technique, called the XD(TM) process. The temperature of the exothermic synthesis reaction, called the adiabatic temperature, has been calculated and shown to increase with increasing volume percentage of TiB2 reinforcement. Further, this temperature has been shown to effect the size and spacing of the TiB2, microstructural features which are often used in discontinuous composite strength models. Study of the high temperature flow behavior of the components of the metal/IMC composite is critical to the development of an understanding of codeformation. A series of compression tests performed at 1000° to 1200°C and strain-rates of 10-3 and 10-4 sec-1. Peak flow stresses were used to evaluate the influence of material properties and process conditions. These data were incorporated into phenomenologically-based constitutive equations that have been used to predict the flow behavior. It has been determined that plastic deformation of the IMCs occurs readily, and is largely TiB2 independent, at temperatures approaching the melting point of the intermetallic matrices. Ti-6Al-4V/IMC powder blends were extruded at high temperatures to achieve commensurately deformed microstructures. The results of codeformation processing were analyzed in terms of the plastic strain of the IMC particulates. IMC particle deformation was shown to increase with increasing IMC particle size, volume percentage of IMC, extrusion temperature, homologous temperature, extrusion

  7. Investigating Deformation and Failure Mechanisms in Nanoscale Multilayer Metallic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Zbib, Hussein M. [Washington State Univ., Pullman, WA (United States); Bahr, David F. [Purdue Univ., West Lafayette, IN (United States)

    2014-10-22

    Over the history of materials science there are many examples of materials discoveries that have made superlative materials; the strongest, lightest, or toughest material is almost always a goal when we invent new materials. However, often these have been a result of enormous trial and error approaches. A new methodology, one in which researchers design, from the atoms up, new ultra-strong materials for use in energy applications, is taking hold within the science and engineering community. This project focused on one particular new classification of materials; nanolaminate metallic composites. These materials, where two metallic materials are intimately bonded and layered over and over to form sheets or coatings, have been shown over the past decade to reach strengths over 10 times that of their constituents. However, they are not yet widely used in part because while extremely strong (they don’t permanently bend), they are also not particularly tough (they break relatively easily when notched). Our program took a coupled approach to investigating new materials systems within the laminate field. We used computational materials science to explore ways to institute new deformation mechanisms that occurred when a tri-layer, rather than the more common bi-layer system was created. Our predictions suggested that copper-nickel or copper-niobium composites (two very common bi-layer systems) with layer thicknesses on the order of 20 nm and then layered 100’s of times, would be less tough than a copper-nickel-niobium metallic composite of similar thicknesses. In particular, a particular mode of permanent deformation, cross-slip, could be activated only in the tri-layer system; the crystal structure of the other bi-layers would prohibit this particular mode of deformation. We then experimentally validated this predication using a wide range of tools. We utilized a DOE user facility, the Center for Integrated Nanotechnology (CINT), to fabricate, for the first time, these

  8. Investigation of Mechanical Properties and Metallurical Characteristics of a Metallic Chromium and Magnesium Oxide Composite

    National Research Council Canada - National Science Library

    Manning, Charles

    1963-01-01

    An experimental investigation has been made to evaluate an uncoated thin composite sheet material containing metallic chromium and magnesium oxide for aerospace applications in the temperature range...

  9. Multifunctional Metal/Polymer Composite Fiber for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Small Business Innovation Research Phase I Program, Syscom Technology, Inc. (STI) will fabricate a metallized multifunctional composite fiber from a...

  10. Influence of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite

    Science.gov (United States)

    DijuSamuel, G.; Raja Dhas, J. Edwin

    2017-10-01

    This paper focus on impact of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite. For fabrication of metal matrix composite AA6061 is used as matrix and activated carbon is used as reinforcement and it is casted using modified stir casting technique. After casting metal matrix composite has undergone various microstructure tests like SEM,EDAX and XRD. FSW is carried out in this metal matrix composite by choosing various tool pin profile like square,round,Threaded round, hexagon and taper. The quality of welded plates is measured in terms of ultimate tensile strength and hardness.

  11. A resonant force sensor based on ionic polymer metal composites

    International Nuclear Information System (INIS)

    Bonomo, Claudia; Fortuna, Luigi; Giannone, Pietro; Graziani, Salvatore; Strazzeri, Salvatore

    2008-01-01

    In this paper a novel force sensor, based on ionic polymer metal composites (IPMCs), is presented. The system has DC sensing capabilities and is able to work in the range of a few millinewtons. IPMCs are emerging materials used to realize motion actuators and sensors. An IPMC strip is activated in a beam fixed/simply-supported configuration. The beam is tightened at the simply-supported end by a force. This influences the natural resonant frequency of the beam; the value of the resonant frequency is used in the proposed system to estimate the force applied in the axial direction. The performance of the system based on the IPMC material has proved to be comparable with that of sensors based on other sensing mechanisms. This suggests the possibility of using this class of polymeric devices to realize PMEMS (plastic micro electrical mechanical systems) sensors

  12. A model for ionic polymer metal composites as sensors

    Science.gov (United States)

    Bonomo, C.; Fortuna, L.; Giannone, P.; Graziani, S.; Strazzeri, S.

    2006-06-01

    This paper introduces a comprehensive model of sensors based on ionic polymer metal composites (IPMCs) working in air. Significant quantities ruling the sensing properties of IPMC-based sensors are taken into account and the dynamics of the sensors are modelled. A large amount of experimental evidence is given for the excellent agreement between estimations obtained using the proposed model and the observed signals. Furthermore, the effect of sensor scaling is investigated, giving interesting support to the activities involved in the design of sensing devices based on these novel materials. We observed that the need for a wet environment is not a key issue for IPMC-based sensors to work well. This fact allows us to put IPMC-based sensors in a totally different light to the corresponding actuators, showing that sensors do not suffer from the same drawbacks.

  13. A resonant force sensor based on ionic polymer metal composites

    Science.gov (United States)

    Bonomo, Claudia; Fortuna, Luigi; Giannone, Pietro; Graziani, Salvatore; Strazzeri, Salvatore

    2008-02-01

    In this paper a novel force sensor, based on ionic polymer metal composites (IPMCs), is presented. The system has DC sensing capabilities and is able to work in the range of a few millinewtons. IPMCs are emerging materials used to realize motion actuators and sensors. An IPMC strip is activated in a beam fixed/simply-supported configuration. The beam is tightened at the simply-supported end by a force. This influences the natural resonant frequency of the beam; the value of the resonant frequency is used in the proposed system to estimate the force applied in the axial direction. The performance of the system based on the IPMC material has proved to be comparable with that of sensors based on other sensing mechanisms. This suggests the possibility of using this class of polymeric devices to realize PMEMS (plastic micro electrical mechanical systems) sensors.

  14. Manufacturing and Machining Challenges of Hybrid Aluminium Metal Matix Composites

    Science.gov (United States)

    Baburaja, Kammuluri; Sainadh Teja, S.; Karthik Sri, D.; Kuldeep, J.; Gowtham, V.

    2017-08-01

    Manufacturing which involves material removal processes or material addition processes or material transformation processes. One or all the processes to obtain the final desired properties for a material with desired shape which meets the required precision and accuracy values for the expected service life of a material in working conditions. Researchers found the utility of aluminium to be the second largest after steel. Aluminium and its metal matrix composite possess wide applications in various applications in aerospace industry, automobile industry, Constructions and even in kitchen utensils. Hybrid Al-MMCconsist of two different materials, and one will be from organic origin along with the base material. In this paper an attempt is made to bring out the importance of utilization of aluminium and the challenges concerned in manufacturing and machining of hybrid aluminium MMC.

  15. Electromechanical modelling of tapered ionic polymer metal composites transducers

    Directory of Open Access Journals (Sweden)

    Rakesha Chandra Dash

    2016-09-01

    Full Text Available Ionic polymer metal composites (IPMCs are relatively new smart materials that exhibit a bidirectional electromechanical coupling. IPMCs have large number of important engineering applications such as micro robotics, biomedical devices, biomimetic robotics etc. This paper presents a comparison between tapered and uniform cantilevered Nafion based IPMCs transducer. Electromechanical modelling is done for the tapered beam. Thickness can be varied according to the requirement of force and deflection. Numerical results pertaining to the force and deflection characteristics of both type IPMCs transducer are obtained. It is shown that the desired amount of force and deflections for tapered IPMCs can be achieved for a given voltage. Different fixed end (t0 and free end (t1 thickness values have been taken to justify the results using MATLAB.

  16. New Joining Technology for Optimized Metal/Composite Assemblies

    Directory of Open Access Journals (Sweden)

    Holger Seidlitz

    2014-01-01

    Full Text Available The development of a new joining technology, which is used to manufacture high strength hybrid constructions with thermoplastic composites (FRP and metals, is introduced. Similar to natural regulation effects at trees, fibers around the FRP joint become aligned along the lines of force and will not be destroyed by the joining process. This is achieved by the local utilization of the specific plastic flow properties of the FRT and metal component. Compared with usual joining methods—such as flow drill screws, blind and self-piercing rivets—noticeably higher tensile properties can be realized through the novel process management. The load-bearing capability increasing effect could be proved on hybrid joints with hot-dip galvanized steel HX420LAD and orthotropic glass—as well as carbon—fiber reinforced plastics. The results, which were determined in tensile-shear and cross-shear tests according to DIN EN ISO 14273 and DIN EN ISO 14272, are compared with holding loads of established joining techniques with similar joining point diameter and material combinations.

  17. The composition and character of oxycarbide phase in uranium metal

    International Nuclear Information System (INIS)

    Liu Kezhao; Lai Xinchun; Yu Yong; Ni Ranfu

    1999-08-01

    The oxide layer of uranium metal formed by vacuum heating were examined with X-ray photoelectron spectroscopy (XPS) and Auger Electron Spectroscopy (AES). XPS results indicated that the air-exposed surface of the oxide layer were mainly consisted of UO 2 and free carbon. After the air-exposed surface were removed by low energy argon ion sputtering, C1s spectra shifted from 284.8 eV to 281.8 eV, indicating the existence of carbide phase. AES results of C(KVV) Auger transitions confirmed this result. Resolved and fitted using a combination of Gaussian and Lorentzian peak shape, U4f 7/2 spectra showed that three uranium chemical states existed in the layer, there were uranium dioxide, uranium carbide (or oxycarbide, UC x O 1-x ) and uranium metal phase. Calculated the AES data by relatively sensitive factor, the composition of oxycarbide was given as UC 0.41+-0.04 O 0.62+-0.01

  18. Method for hydrogen production and metal winning, and a catalyst/cocatalyst composition useful therefor

    Science.gov (United States)

    Dhooge, Patrick M.

    1987-10-13

    A catalyst/cocatalyst/organics composition of matter is useful in electrolytically producing hydrogen or electrowinning metals. Use of the catalyst/cocatalyst/organics composition causes the anode potential and the energy required for the reaction to decrease. An electrolyte, including the catalyst/cocatalyst composition, and a reaction medium composition further including organic material are also described.

  19. Machinability study of Al-TiC metal matrix composite

    Directory of Open Access Journals (Sweden)

    Siddappa P. N.

    2018-01-01

    Full Text Available Aluminum Metal Matrix Composites have emerged as an advanced class of structural materials have a combination of different, superior properties compared to an unreinforced matrix, which can result in a number of service benefits such as increased strength, higher elastic moduli, higher service temperature, low CTE, improved wear resistance, high toughness, etc. The excellent mechanical properties of these materials together with weight saving makes them very attractive for a variety of engineering applications in aerospace, automotive, electronic industries, etc. Hence, these materials provide as alternative substitutes for conventional engineering materials when specific mechanical properties necessary for required applications. In this work an attempt is made to study the machining parameters of Al6061/TiC MMC. The composite is developed by reinforcing TiC particles in varying proportions of 3, 6, 9 and 12 % weight fractions to the Al6061 matric alloy through stir casting technique. Cutting forces were measured by varying cutting speed and feed rate with constant depth of cut for different % weight fractions. The results showed that the cutting force increases with the increase of feed rate and decreases with the increase of cutting speed for all the weight fractions. Cutting parameters were optimized using Taguchi technique.

  20. Weibull modeling of particle cracking in metal matrix composites

    International Nuclear Information System (INIS)

    Lewis, C.A.; Withers, P.J.

    1995-01-01

    An investigation into the occurrence of reinforcement cracking within a particulate ZrO 2 /2618 Al alloy metal matrix composite under tensile plastic straining has been carried out, special attention being paid to the dependence of fracture on particle size and shape. The probability of particle cracking has been modeled using a Weibull approach, giving good agreement with the experimental data. Values for the Weibull modulus and the stress required to crack the particles were found to be within the range expected for the cracking of ceramic particles. Additional information regarding the fracture behavior of the particles was provided by in-situ neutron diffraction monitoring of the internal strains, measurement of the variation in the composite Young's modulus with straining and by direct observation of the cracked particles. The values of the particle stress required for the initiation of particle cracking deduced from these supplementary experiments were found to be in good agreement with each other and with the results from the Weibull analysis. Further, it is shown that while both the current experiments, as well as the previous work of others, can be well described by the Weibull approach, the exact values of the Weibull parameters do deduced are very sensitive to the approximations and the assumptions made in constructing the model

  1. Wear Characterization of Aluminium/Basalt Fiber Reinforced Metal Matrix Composites - A Novel Material

    Directory of Open Access Journals (Sweden)

    P. Amuthakkannan

    2017-06-01

    Full Text Available Aluminum alloy based metal matrix composite participate have a wider applications in wear resistance applications. Attempt made in current study is that, basalt fiber reinforced aluminum metal matrix composite have been prepared using stir casting method. Different weight percentage of basalt fiber reinforced with Al (6061 metal matrix composites are used to study the wear resistance of the composites. For wear study, percentage of reinforcement, normal load and sliding velocity are the considered as important parameters. To study the effect of basalt fiber reinforcement on the dry sliding wear of Al6061 alloy composites the Pin On wear tester is used. Initially hardness of the composites was tested, it was found that increasing reinforcement in the composite hardness value of the composites also increased. Based on the Grey relation analysis (GRA the effects of wear resistance of the composites were studied.

  2. On Poisson's ratio for metal matrix composite laminates. [aluminum boron composites

    Science.gov (United States)

    Herakovich, C. T.; Shuart, M. J.

    1978-01-01

    The definition of Poisson's ratio for nonlinear behavior of metal matrix composite laminates is discussed and experimental results for tensile and compressive loading of five different boron-aluminum laminates are presented. It is shown that there may be considerable difference in the value of Poisson's ratio as defined by a total strain or an incremental strain definition. It is argued that the incremental definition is more appropriate for nonlinear material behavior. Results from a (0) laminate indicate that the incremental definition provides a precursor to failure which is not evident if the total strain definition is used.

  3. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint... ankle joint. The device limits translation and rotation: in one or more planes via the geometry of its...

  4. Some metal-graphite and metal-ceramic composites for use as high energy brake lining materials

    Science.gov (United States)

    Bill, R. C.

    1974-01-01

    Materials were studied as candidates for development as potential new aircraft brake lining materials. These families were (1) copper-graphite composites; (2) nickel-graphite composites; (3) copper - rare-earth-oxide (gadolinium oxide (Gd2O3) or lanthanum oxide (La2O3)) composites and copper - rare-earth-oxide (La2O3) - rare-earth-fluoride (lanthanum fluoride (LaF3)) composites; (4) nickel - rare-earth-oxide composites and nickel - rare-earth-oxide - rare-earth-fluoride composites. For comparison purposes, a currently used metal-ceramic composite was also studied. Results showed that the nickel-Gd2O3 and nickel-La2O3-LaF3 composites were comparable or superior in friction and wear performance to the currently used composite and therefore deserve to be considered for further development.

  5. Contribution of trace metals in structuring in situ macroinvertebrate community composition along a salinity gradient

    NARCIS (Netherlands)

    Peeters, E.T.H.M.; Gardeniers, J.J.P.; Koelmans, A.A.

    2000-01-01

    Macroinvertebrates were studied along a salinity gradient in the North Sea Canal, The Netherlands, to quantify the effect of trace metals (cadmium, copper, lead, zinc) on community composition. In addition, two methods for assessing metal bioavailability (normalizing metal concentrations on organic

  6. Method of quantitative analysis of superconducting metal-conducting composite materials

    International Nuclear Information System (INIS)

    Bogomolov, V.N.; Zhuravlev, V.V.; Petranovskij, V.P.; Pimenov, V.A.

    1990-01-01

    Technique for quantitative analysis of superconducting metal-containing composite materials, SnO 2 -InSn, WO 3 -InW, Zn)-InZn in particular, has been developed. The method of determining metal content in a composite is based on the dependence of superconducting transition temperature on alloy composition. Sensitivity of temperature determination - 0.02K, error of analysis for InSn system - 0.5%

  7. High power X-ray welding of metal-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

    1997-12-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10{sup 4} watts/cm{sup 2} and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  8. Nanothorn electrodes for ionic polymer-metal composite artificial muscles.

    Science.gov (United States)

    Palmre, Viljar; Pugal, David; Kim, Kwang J; Leang, Kam K; Asaka, Kinji; Aabloo, Alvo

    2014-08-22

    Ionic polymer-metal composites (IPMCs) have recently received tremendous interest as soft biomimetic actuators and sensors in various bioengineering and human affinity applications, such as artificial muscles and actuators, aquatic propulsors, robotic end-effectors, and active catheters. Main challenges in developing biomimetic actuators are the attainment of high strain and actuation force at low operating voltage. Here we first report a nanostructured electrode surface design for IPMC comprising platinum nanothorn assemblies with multiple sharp tips. The newly developed actuator with the nanostructured electrodes shows a new way to achieve highly enhanced electromechanical performance over existing flat-surfaced electrodes. We demonstrate that the formation and growth of the nanothorn assemblies at the electrode interface lead to a dramatic improvement (3- to 5-fold increase) in both actuation range and blocking force at low driving voltage (1-3 V). These advances are related to the highly capacitive properties of nanothorn assemblies, increasing significantly the charge transport during the actuation process.

  9. Ionic polymer-metal composite enabled robotic manta ray

    Science.gov (United States)

    Chen, Zheng; Um, Tae I.; Bart-Smith, Hilary

    2011-04-01

    The manta ray, Manta birostris, demonstrates excellent swimming capabilities; generating highly efficient thrust via flapping of dorsally flattened pectoral fins. In this paper, we present an underwater robot that mimics the swimming behavior of the manta ray. An assembly-based fabrication method is developed to create the artificial pectoral fins, which are capable of generating oscillatory with a large twisting angle between leading and trailing edges. Ionic polymer-metal composite (IPMC) actuators are used as artificial muscles in the fin. Each fin consists of four IPMC beams bonded with a compliant poly(dimethylsiloxane) (PDMS) membrane. By controlling each individual IPMC strips, we are able to generate complex flapping motions. The fin is characterized in terms of tip deflection, tip blocking force, twist angle, and power consumption. Based on the characteristics of the artificial pectoral fin, a small size and free-swimming robotic manta ray is developed. The robot consists of two artificial pectoral fins, a rigid body, and an on-board control unit with a lithium ion rechargeable battery. Experimental results show that the robot swam at a speed of up to 0.055 body length per second (BL/sec).

  10. Bio-applications of ionic polymer metal composite transducers

    International Nuclear Information System (INIS)

    Aw, K C; McDaid, A J

    2014-01-01

    Traditional robotic actuators have advanced performance which in some aspects can surpass that of humans, however they are lacking when it comes to developing devices which are capable of operating together with humans. Bio-inspired transducers, for example ionic polymer metal composites (IPMC), which have similar properties to human tissue and muscle, demonstrate much future promise as candidates for replacing traditional robotic actuators in medical robotics applications. This paper outlines four biomedical robotics applications, an IPMC stepper motor, an assistive glove exoskeleton/prosthetic hand, a surgical robotic tool and a micromanipulation system. These applications have been developed using mechanical design/modelling techniques with IPMC ‘artificial muscle’ as the actuation system. The systems are designed by first simulating the performance using an IPMC model and dynamic models of the mechanical system; the appropriate advanced adaptive control schemes are then implemented to ensure that the IPMCs operate in the correct manner, robustly over time. This paper serves as an overview of the applications and concludes with some discussion on the future challenges of developing real-world IPMC applications

  11. A nonlinear model for ionic polymer metal composites as actuators

    Science.gov (United States)

    Bonomo, C.; Fortuna, L.; Giannone, P.; Graziani, S.; Strazzeri, S.

    2007-02-01

    This paper introduces a comprehensive nonlinear dynamic model of motion actuators based on ionic polymer metal composites (IPMCs) working in air. Significant quantities ruling the acting properties of IPMC-based actuators are taken into account. The model is organized as follows. As a first step, the dependence of the IPMC absorbed current on the voltage applied across its thickness is taken into account; a nonlinear circuit model is proposed to describe this relationship. In a second step the transduction of the absorbed current into the IPMC mechanical reaction is modelled. The model resulting from the cascade of both the electrical and the electromechanical stages represents a novel contribution in the field of IPMCs, capable of describing the electromechanical behaviour of these materials and predicting relevant quantities in a large range of applied signals. The effect of actuator scaling is also investigated, giving interesting support to the activities involved in the design of actuating devices based on these novel materials. Evidence of the excellent agreement between the estimations obtained by using the proposed model and experimental signals is given.

  12. Bio-applications of ionic polymer metal composite transducers

    Science.gov (United States)

    Aw, K. C.; McDaid, A. J.

    2014-07-01

    Traditional robotic actuators have advanced performance which in some aspects can surpass that of humans, however they are lacking when it comes to developing devices which are capable of operating together with humans. Bio-inspired transducers, for example ionic polymer metal composites (IPMC), which have similar properties to human tissue and muscle, demonstrate much future promise as candidates for replacing traditional robotic actuators in medical robotics applications. This paper outlines four biomedical robotics applications, an IPMC stepper motor, an assistive glove exoskeleton/prosthetic hand, a surgical robotic tool and a micromanipulation system. These applications have been developed using mechanical design/modelling techniques with IPMC ‘artificial muscle’ as the actuation system. The systems are designed by first simulating the performance using an IPMC model and dynamic models of the mechanical system; the appropriate advanced adaptive control schemes are then implemented to ensure that the IPMCs operate in the correct manner, robustly over time. This paper serves as an overview of the applications and concludes with some discussion on the future challenges of developing real-world IPMC applications.

  13. Milling of Nanoparticles Reinforced Al-Based Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    Alokesh Pramanik

    2018-03-01

    Full Text Available This study investigated the face milling of nanoparticles reinforced Al-based metal matrix composites (nano-MMCs using a single insert milling tool. The effects of feed and speed on machined surfaces in terms of surface roughness, surface profile, surface appearance, chip surface, chip ratio, machining forces, and force signals were analyzed. It was found that surface roughness of machined surfaces increased with the increase of feed up to the speed of 60 mm/min. However, at the higher speed (100–140 mm/min, the variation of surface roughness was minor with the increase of feed. The machined surfaces contained the marks of cutting tools, lobes of material flow in layers, pits and craters. The chip ratio increased with the increase of feed at all speeds. The top chip surfaces were full of wrinkles in all cases, though the bottom surfaces carried the evidence of friction, adhesion, and deformed material layers. The effect of feed on machining forces was evident at all speeds. The machining speed was found not to affect machining forces noticeably at a lower feed, but those decreased with the increase of speed for the high feed scenario.

  14. Dynamic curvature sensing employing ionic-polymer–metal composite sensors

    International Nuclear Information System (INIS)

    Bahramzadeh, Yousef; Shahinpoor, Mohsen

    2011-01-01

    A dynamic curvature sensor is presented based on ionic-polymer–metal composite (IPMC) for curvature monitoring of deployable/inflatable dynamic space structures. Monitoring the curvature variation is of high importance in various engineering structures including shape monitoring of deployable/inflatable space structures in which the structural boundaries undergo a dynamic deployment process. The high sensitivity of IPMCs to the applied deformations as well as its flexibility make IPMCs a promising candidate for sensing of dynamic curvature changes. Herein, we explore the dynamic response of an IPMC sensor strip with respect to controlled curvature deformations subjected to different forms of input functions. Using a specially designed experimental setup, the voltage recovery effect, phase delay, and rate dependency of the output voltage signal of an IPMC curvature sensor are analyzed. Experimental results show that the IPMC sensor maintains the linearity, sensitivity, and repeatability required for curvature sensing. Besides, in order to describe the dynamic phenomena such as the rate dependency of the IPMC sensor, a chemo-electro-mechanical model based on the Poisson–Nernst–Planck (PNP) equation for the kinetics of ion diffusion is presented. By solving the governing partial differential equations the frequency response of the IPMC sensor is derived. The physical model is able to describe the dynamic properties of the IPMC sensor and the dependency of the signal on rate of excitations

  15. The effect of chemical composition and granulation of Fe - based fillers on properties of metal resinous composite

    International Nuclear Information System (INIS)

    Janecki, J.; Dasiewicz, J.; Pawelec, Z.

    2000-01-01

    In this paper the authors present metal-resinous composites with Fe based fillers of various element constitution and granulation. The analysis of influence of filler type on coefficient of linear thermal expansion of composite materials was performed. Friction and wear tests (composite-bronze and composite-steel pairs) were carried out. It was stated that the thinner granulation of main filler has a positive effect on coefficient of linear thermal expansion and friction/wear characteristics. The presence of copper, nickel and molybdenum in the filler is beneficial for some properties of the composite. (author)

  16. Thin-film composite materials as a dielectric layer for flexible metal-insulator-metal capacitors.

    Science.gov (United States)

    Tiwari, Jitendra N; Meena, Jagan Singh; Wu, Chung-Shu; Tiwari, Rajanish N; Chu, Min-Ching; Chang, Feng-Chih; Ko, Fu-Hsiang

    2010-09-24

    A new organic-organic nanoscale composite thin-film (NCTF) dielectric has been synthesized by solution deposition of 1-bromoadamantane and triblock copolymer (Pluronic P123, BASF, EO20-PO70-EO20), in which the precursor solution has been achieved with organic additives. We have used a sol-gel process to make a metal-insulator-metal capacitor (MIM) comprising a nanoscale (10 nm-thick) thin-film on a flexible polyimide (PI) substrate at room temperature. Scanning electron microscope and atomic force microscope revealed that the deposited NCTFs were crack-free, uniform, highly resistant to moisture absorption, and well adhered on the Au-Cr/PI. The electrical properties of 1-bromoadamantane-P123 NCTF were characterized by dielectric constant, capacitance, and leakage current measurements. The 1-bromoadamantane-P123 NCTF on the PI substrate showed a low leakage current density of 5.5 x 10(-11) A cm(-2) and good capacitance of 2.4 fF at 1 MHz. In addition, the calculated dielectric constant of 1-bromoadamantane-P123 NCTF was 1.9, making them suitable candidates for use in future flexible electronic devices as a stable intermetal dielectric. The electrical insulating properties of 1-bromoadamantane-P123 NCTF have been improved due to the optimized dipole moments of the van der Waals interactions.

  17. Composite nanoparticles containing rare earth metal and methods of preparation thereof

    Science.gov (United States)

    Kandapallil, Binil Itty Ipe; Krishnan, Lakshmi; Johnson, Francis

    2018-04-10

    The present invention is directed to composite nanoparticles comprising a metal, a rare earth element, and, optionally, a complexing ligand. The invention is also directed to composite nanoparticles having a core-shell structure and to processes for preparation of composite nanoparticles of the invention.

  18. Theoretical and experimental investigation of wear characteristics of aluminum based metal matrix composites using RSM

    International Nuclear Information System (INIS)

    Selvi, S.; Rajasekar, E.

    2015-01-01

    The tribological properties such as wear rate, hardness of the aluminum-fly ash composite synthesized by stir casting were investigated by varying the weight % of fly ash from 5 to 20 with constant weight % of zinc and magnesium metal powder. A mathematical model was developed to predict the wear rate of aluminum metal matrix composites and the adequacy of the model was verified using analysis of variance. Scanning electron microscopy was used for the microstructure analysis which showed a uniform distribution of fly ash in the metal matrix. Energy - dispersive X-ray spectroscopy was used for the elemental analysis or chemical characterization of a sample. The results showed that addition of fly ash to aluminum based metal matrix improved both the mechanical and tribological properties of the composites. The fly ash particles improved the wear resistance of the metal matrix composites because the hardness of the samples taken increased as the fly ash content was increased.

  19. Heavy metal and proximate composition associated with the ...

    African Journals Online (AJOL)

    User

    2014-05-08

    May 8, 2014 ... Levels of Cu, Mn, Pd and Zn in mushroom samples analysed were ... metal concentration in soil and fungal factors such as species ..... Levels of trace elements in the fruiting bodies ... Toxicity of non-radioactive heavy metals.

  20. Studies of heavy metal contents and microbial composition of ...

    African Journals Online (AJOL)

    FLEXI-DONEST

    the use of private electricity generating sets, in recent times, have ... soil and evaluate the impact of heavy metal on soil degradable ..... a reasonable length of time by herbivores may .... Heavy Metals in Root, Stem and Leaves of Acalypha.

  1. Compositions of graphene materials with metal nanostructures and microstructures and methods of making and using including pressure sensors

    KAUST Repository

    Chen, Ye; Khashab, Niveen M.; Tao, Jing

    2017-01-01

    Composition comprising at least one graphene material and at least one metal. The metal can be in the form of nanoparticles as well as microflakes, including single crystal microflakes. The metal can be intercalated in the graphene sheets

  2. The development and mechanical characterization of aluminium copper-carbon fiber metal matrix hybrid composite

    Science.gov (United States)

    Manzoor, M. U.; Feroze, M.; Ahmad, T.; Kamran, M.; Butt, M. T. Z.

    2018-04-01

    Metal matrix composites (MMCs) come under advanced materials that can be used for a wide range of industrial applications. MMCs contain a non-metallic reinforcement incorporated into a metallic matrix which can enhance properties over base metal alloys. Copper-Carbon fiber reinforced aluminium based hybrid composites were prepared by compo casting method. 4 weight % copper was used as alloying element with Al because of its precipitation hardened properties. Different weight compositions of composites were developed and characterized by mechanical testing. A significant improvement in tensile strength and micro hardness were found, before and after heat treatment of the composite. The SEM analysis of the fractured surfaces showed dispersed and embedded Carbon fibers within the network leading to the enhanced strength.

  3. Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-05-20

    An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the first exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.

  4. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my; Shirazi, Irfan, E-mail: irfanshirazi@hotmail.com [Mechanical Engineering Universiti Teknologi PETRONAS Malaysia (Malaysia)

    2015-07-22

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Random orientation of fibers was noted in the composites test bars produced from divergent melt flow.

  5. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review

    Science.gov (United States)

    Zhi, Mingjia; Xiang, Chengcheng; Li, Jiangtian; Li, Ming; Wu, Nianqiang

    2012-12-01

    This paper presents a review of the research progress in the carbon-metal oxide composites for supercapacitor electrodes. In the past decade, various carbon-metal oxide composite electrodes have been developed by integrating metal oxides into different carbon nanostructures including zero-dimensional carbon nanoparticles, one-dimensional nanostructures (carbon nanotubes and carbon nanofibers), two-dimensional nanosheets (graphene and reduced graphene oxides) as well as three-dimensional porous carbon nano-architectures. This paper has described the constituent, the structure and the properties of the carbon-metal oxide composites. An emphasis is placed on the synergistic effects of the composite on the performance of supercapacitors in terms of specific capacitance, energy density, power density, rate capability and cyclic stability. This paper has also discussed the physico-chemical processes such as charge transport, ion diffusion and redox reactions involved in supercapacitors.

  6. Automated Design and Analysis Tool for CLV/CEV Composite and Metallic Structural Components, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation of the proposed effort is a unique automated process for the analysis, design, and sizing of CLV/CEV composite and metallic structures. This developed...

  7. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review.

    Science.gov (United States)

    Zhi, Mingjia; Xiang, Chengcheng; Li, Jiangtian; Li, Ming; Wu, Nianqiang

    2013-01-07

    This paper presents a review of the research progress in the carbon-metal oxide composites for supercapacitor electrodes. In the past decade, various carbon-metal oxide composite electrodes have been developed by integrating metal oxides into different carbon nanostructures including zero-dimensional carbon nanoparticles, one-dimensional nanostructures (carbon nanotubes and carbon nanofibers), two-dimensional nanosheets (graphene and reduced graphene oxides) as well as three-dimensional porous carbon nano-architectures. This paper has described the constituent, the structure and the properties of the carbon-metal oxide composites. An emphasis is placed on the synergistic effects of the composite on the performance of supercapacitors in terms of specific capacitance, energy density, power density, rate capability and cyclic stability. This paper has also discussed the physico-chemical processes such as charge transport, ion diffusion and redox reactions involved in supercapacitors.

  8. The Micromechanics of Deformation and Failure in Metal-Matrix Composites

    National Research Council Canada - National Science Library

    Needleman, Alan

    1997-01-01

    .... However, metal-matrix composites often have low ductility and low fracture toughness. An improved understanding of the basic deformation and failure mechanisms is needed to overcome these problems...

  9. Mechanical and magnetic properties of semi-Heusler/light-metal composites consolidated by spark plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Koller, M.; Chráska, Tomáš; Cinert, Jakub; Heczko, Oleg; Kopeček, Jaromír; Landa, Michal; Mušálek, Radek; Rameš, Michal; Seiner, Hanuš; Stráský, J.; Janeček, M.

    2017-01-01

    Roč. 126, July (2017), s. 351-357 ISSN 0264-1275 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 ; RVO:68378271 ; RVO:61388998 Keywords : Metal–metal composites * Spark plasma sintering * Light metals * Ferromagnetic alloys * Mechanical properties Subject RIV: JI - Composite Materials; JI - Composite Materials (FZU-D); JI - Composite Materials (UT-L) OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics (FZU-D); Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics (UT-L) Impact factor: 4.364, year: 2016 https://www.sciencedirect.com/science/ article /pii/S0264127517303842?via%3Dih

  10. Fluid Structure Interaction Analysis in Manufacturing Metal/Polymer Macro-Composites

    International Nuclear Information System (INIS)

    Baesso, R.; Lucchetta, G.

    2007-01-01

    Polymer Injection Forming (PIF) is a new manufacturing technology for sheet metal-polymer macro-composites, which results from the combination of injection moulding and sheet metal forming. This process consists on forming the sheet metal according to the boundary of the mould cavity by means of the injected polymer. After cooling, the polymer bonds permanently to the metal resulting in a sheet metal-polymer macro-composite product. Comparing this process to traditional ones (where the polymeric and metal parts are joined together after separate forming) the main advantages are both reduction of production costs and increase of part quality. This paper presents a multi-physics numerical simulation of the process performed in the Ansys/CFX environment

  11. Machinability of titanium metal matrix composites (Ti-MMCs)

    Science.gov (United States)

    Aramesh, Maryam

    Titanium metal matrix composites (Ti-MMCs), as a new generation of materials, have various potential applications in aerospace and automotive industries. The presence of ceramic particles enhances the physical and mechanical properties of the alloy matrix. However, the hard and abrasive nature of these particles causes various issues in the field of their machinability. Severe tool wear and short tool life are the most important drawbacks of machining this class of materials. There is very limited work in the literature regarding the machinability of this class of materials especially in the area of tool life estimation and tool wear. By far, polycrystalline diamond (PCD) tools appear to be the best choice for machining MMCs from researchers' point of view. However, due to their high cost, economical alternatives are sought. Cubic boron nitride (CBN) inserts, as the second hardest available tools, show superior characteristics such as great wear resistance, high hardness at elevated temperatures, a low coefficient of friction and a high melting point. Yet, so far CBN tools have not been studied during machining of Ti-MMCs. In this study, a comprehensive study has been performed to explore the tool wear mechanisms of CBN inserts during turning of Ti-MMCs. The unique morphology of the worn faces of the tools was investigated for the first time, which led to new insights in the identification of chemical wear mechanisms during machining of Ti-MMCs. Utilizing the full tool life capacity of cutting tools is also very crucial, due to the considerable costs associated with suboptimal replacement of tools. This strongly motivates development of a reliable model for tool life estimation under any cutting conditions. In this study, a novel model based on the survival analysis methodology is developed to estimate the progressive states of tool wear under any cutting conditions during machining of Ti-MMCs. This statistical model takes into account the machining time in

  12. Weld microstructure in cast AlSi9/SiC(p metal matrix composites

    Directory of Open Access Journals (Sweden)

    J. Wysocki

    2009-04-01

    Full Text Available Welded joint in cast AlSi9/SiC/20(p metal matrix composite by manual TIG arc welding using AlMg5 filler metal has been described inhis paper. Cooling curves have been stated, and the influence in distribution of reinforced particles on crystallization and weldmicrostructure. Welded joint mechanical properties have been determined: hardness and tensile.

  13. Microstructure characterization of laser-deposited titanium carbide and zirconium-based titanium metal matrix composites

    CSIR Research Space (South Africa)

    Ochonogor, OF

    2012-09-01

    Full Text Available . In this work, the technique is used to fabricate metal matrix composites (MMCs) by using an elementally blended feedstock combining metal and ceramic powders in the melt pool, which melt and solidify to create the required morphology. Ti6Al4V + TiC MMCs were...

  14. Toward superlensing with metal-dielectric composites and multilayers

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Bundgaard; Thoreson, M.D.; Chen, W.

    2010-01-01

    We report on the fabrication of two types of adjustable, near-field superlens designs: metal–dielectric composites and metal–dielectric multilayer films. We fabricated a variety of films with different materials, thicknesses and compositions. These samples were characterized physically...... and optically to determine their film composition, quality, and optical responses. Our results on metal–dielectric composites indicate that although the real part of the effective permittivity generally follows effective medium theory predictions, the imaginary part does not and substantially higher losses...

  15. Composite metal-ceramic material for high temperature energy conversion applications

    NARCIS (Netherlands)

    Wolff, L.R.

    1988-01-01

    At Eindhoven Universitu of technology a composite metal-ceramic material is being developed. It will serve as a protective confinement for a combustion heated Thermionic Energy Converter (TEC). This protective confinement of 'hot shell' consists of a composite W-TiN-SiC layer structure. The outer

  16. Dual energy CT inspection of a carbon fibre reinforced plastic composite combined with metal components

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Jakůbek, J.; Kumpová, Ivana; Pichotka, M.

    6, Part B, November (2016), s. 47-55 ISSN 2214-6571 R&D Projects: GA MŠk(CZ) LO1219; GA ČR(CZ) GA15-07210S Keywords : dual energy computed tomography * carbon fibre reinforced plastic composite * metal artefact suppression Subject RIV: JI - Composite Material s http://www.sciencedirect.com/science/article/pii/S2214657116300107

  17. Using thin metal layers on composite structures for shielding the electromagnetic pulse caused by nearby lightning

    NARCIS (Netherlands)

    Blaj, M.A.; Buesink, Frederik Johannes Karel; Damstra, G.C.; Leferink, Frank Bernardus Johannes

    2011-01-01

    Electronic systems in composite structures could be vulnerable to the (dominant magnetic) field caused by a lightning strike, because only thin layers of metal can be used on composite structures. Thin layers result in a very low shielding effectiveness against magnetic fields. Many experiments

  18. Production of oxide-metal P/M composites using pulsed plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Blinkov, I.V.; Manukhin, A.V.; Ostapovich, A.O.; Pavlov, IU.A.

    1987-08-01

    The possibility of producing oxide-metal P/M composites using plasma generated by a pulsed discharge is investigated experimentally for the system Al/sup 2/O/sub 3/-Ni. It is found that Al/sup 2/O/sub 3/ metallization in plasma is accompanied by spheroidization; changes in the physicomechanical properties of the Al/sup 2/O/sub 3/-Ni composite during plasma treatment are examined. The characteristic features of the process associated with the effect of pulsed energy on the disperse flow of the oxide-metal mixture are discussed. 7 references.

  19. Flow and Fracture of Bulk Metallic Glass Alloys and their Composites

    International Nuclear Information System (INIS)

    Flores, K M; Suh, D; Howell, R; Asoka-Kumar, P; Dauskardt, R H

    2001-01-01

    The fracture and plastic deformation mechanisms of a Zr-Ti-Ni-Cu-Be bulk metallic glass and a composite utilizing a crystalline reinforcement phase are reviewed. The relationship between stress state, free volume and shear band formation are discussed. Positron annihilation techniques were used to confirm the predicted increase in free volume after plastic straining. Strain localization and failure were examined for a wide range of stress states. Finally, methods for toughening metallic glasses are considered. Significant increases in toughness are demonstrated for a composite bulk metallic glass containing a ductile second phase which stabilizes shear band formation and distributes plastic deformation

  20. Development of Composite Grinding Wheels for Hard and Soft Metals

    OpenAIRE

    Pruti, Faruk

    2012-01-01

    This research investigates the performance of grinding wheel in terms of its internal granular particles and their effect on the surface finish for both soft and hard metals subjected to both dry and wet conditions of use. The study considers the properties of materials of construction including hardness of the granular particles and their size and distributions that affects the grinding wheel efficiency in abrading of soft and hard metal surfaces. Furthermore, in order to improve grinding pe...

  1. Alkylamine functionalized metal-organic frameworks for composite gas separations

    Science.gov (United States)

    Long, Jeffrey R.; McDonald, Thomas M.; D'Alessandro, Deanna M.

    2018-01-09

    Functionalized metal-organic framework adsorbents with ligands containing basic nitrogen groups such as alkylamines and alkyldiamines appended to the metal centers and method of isolating carbon dioxide from a stream of combined gases and carbon dioxide partial pressures below approximately 1 and 1000 mbar. The adsorption material has an isosteric heat of carbon dioxide adsorption of greater than -60 kJ/mol at zero coverage using a dual-site Langmuir model.

  2. Composite nanomaterials of semiconductors and noble metals as plasmonic photocatalysts

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Law, Matt; Zhang, Jingdong

    behavior, and can be more stable under operating conditions. Composite photocatalysts of semiconductor nanoparticles (SNPs) and PNPs exploit broadly the solar spectrum, provide new catalytic routes and expand the scope of solar photocatalysis. The newly initiated project aims at developing composite...

  3. Mixing implants of differing metallic composition in the treatment of upper-extremity fractures.

    Science.gov (United States)

    Acevedo, Daniel; Loy, Bo Nasmyth; Loy, Bo Nasymuth; Lee, Brian; Omid, Reza; Itamura, John

    2013-09-01

    Mixing implants with differing metallic compositions has been avoided for fear of galvanic corrosion and subsequent failure of the implants and of bone healing. The purpose of this study was to evaluate upper-extremity fractures treated with open reduction and internal fixation with metallic implants that differed in metallic composition placed on the same bone. The authors studied the effects of using both stainless steel and titanium implants on fracture healing, implant failure, and other complications associated with this method of fixation. Their hypothesis was that combining these metals on the same bone would not cause clinically significant nonunions or undo clinical effects from galvanic corrosion. A retrospective review was performed of 17 patients with upper-extremity fractures fixed with metal implants of differing metallic compositions. The primary endpoint was fracture union. Eight clavicles, 2 proximal humeri, 3 distal humeri, 3 olecranons, and 1 glenoid fracture with an average follow-up 10 months were reviewed. All fractures healed. One patient experienced screw backout, which did not affect healing. This study implies that mixing implants with differing metallic compositions on the same bone for the treatment of fractures does not adversely affect bone healing. No evidence existed of corrosion or an increase in complications with this method of treatment. Contrary to prior belief, small modular hand stainless steel plates can be used to assist in reduction of smaller fracture fragments in combination with anatomic titanium plates to obtain anatomic reduction of the fracture without adversely affecting healing. Copyright 2013, SLACK Incorporated.

  4. Study of the temperature dependence of giant magnetoresistance in metallic granular composite

    International Nuclear Information System (INIS)

    Ju Sheng; Li, Z.-Y.

    2002-01-01

    The temperature dependence of the giant magnetoresistance of metallic granular composite is studied. It is considered that the composite contains both large magnetic grains with surface spin S' and small magnetic impurities. It is found that the decrease of surface spin S' of grain is the main cause of an almost linear decrease of giant magnetoresistance with the increase of temperature in high temperature range. The magnetic impurities, composed of several atoms, lead to an almost linear increase of the giant magnetoresistance with the decrease of temperature in low temperature range. Our calculations are in good agreement with recent experimental data for metallic nanogranular composites

  5. Compositions of graphene materials with metal nanostructures and microstructures and methods of making and using including pressure sensors

    KAUST Repository

    Chen, Ye

    2017-01-26

    Composition comprising at least one graphene material and at least one metal. The metal can be in the form of nanoparticles as well as microflakes, including single crystal microflakes. The metal can be intercalated in the graphene sheets. The composition has high conductivity and flexibility. The composition can be made by a one-pot synthesis in which a graphene material precursor is converted to the graphene material, and the metal precursor is converted to the metal. A reducing solvent or dispersant such as NMP can be used. Devices made from the composition include a pressure sensor which has high sensitivity. Two two- dimension materials can be combined to form a hybrid material.

  6. Gradient composite metal-ceramic foam as supportive component for planar SOFCs and MIEC membranes

    International Nuclear Information System (INIS)

    Smorygo, Oleg; Mikutski, Vitali; Marukovich, Alexander; Sadykov, Vladislav; Usoltsev, Vladimir; Mezentseva, Natalia; Borodinecs, Anatolijs; Bobrenok, Oleg

    2011-01-01

    A novel approach to the design of planar gradient porous supports for the thin-film SOFCs and MIEC membranes is described. The support's thermal expansion is controlled by the creation of a two-component composite metal-ceramic foam structure. Thin MIEC membranes and SOFCs were prepared on the composite supports by the layerwise deposition of composite functional layers including complex fluorites and perovskites. Lab-scale studies demonstrated promising performance of both MIEC membrane and SOFC.

  7. Gradient composite metal-ceramic foam as supportive component for planar SOFCs and MIEC membranes

    Science.gov (United States)

    Smorygo, Oleg; Mikutski, Vitali; Marukovich, Alexander; Sadykov, Vladislav; Usoltsev, Vladimir; Mezentseva, Natalia; Borodinecs, Anatolijs; Bobrenok, Oleg

    2011-06-01

    A novel approach to the design of planar gradient porous supports for the thin-film SOFCs and MIEC membranes is described. The support's thermal expansion is controlled by the creation of a two-component composite metal-ceramic foam structure. Thin MIEC membranes and SOFCs were prepared on the composite supports by the layerwise deposition of composite functional layers including complex fluorites and perovskites. Lab-scale studies demonstrated promising performance of both MIEC membrane and SOFC.

  8. One-step synthesis of gold bimetallic nanoparticles with various metal-compositions

    International Nuclear Information System (INIS)

    Bratescu, Maria Antoaneta; Takai, Osamu; Saito, Nagahiro

    2013-01-01

    Highlights: ► Synthesis of bimetallic nanoparticles in an aqueous solution discharge. ► Alloying gold with divalent sp metals, trivalent sp metals, 3d or 4d metals. ► Formation mechanism of bimetallic nanoparticles by metal reduction and gold erosion. ► Blue and red shift of surface plasmon resonance. -- Abstract: A rapid, one-step process for the synthesis of bimetallic nanoparticles by simultaneous metal reduction and gold erosion in an aqueous solution discharge was investigated. Gold bimetallic nanoparticles were obtained by alloying gold with various types of metals belonging to one of the following categories: divalent sp metals, trivalent sp metals, 3d or 4d metals. The composition of the various gold bimetallic nanoparticles obtained depends on electrochemical factors, charge transfer between gold and other metal, and initial concentration of metal in solution. Transmission electron microscopy and energy dispersive spectroscopy show that the gold bimetallic nanoparticles were of mixed pattern, with sizes of between 5 and 20 nm. A red-shift of the surface plasmon resonance band in the case of the bimetallic nanoparticles Au–Fe, Au–Ga, and Au–In, and a blue-shift of the plasmon band of the Au–Ag nanoparticles was observed. In addition, the interaction of gold bimetallic nanoparticles with unpaired electrons, provided by a stable free radical molecule, was highest for those NPs obtained by alloying gold with a 3d metal

  9. Physicochemical and Electrophysical Properties of Metal/Semiconductor Containing Nanostructured Composites

    Science.gov (United States)

    Gerasimov, G. N.; Gromov, V. F.; Trakhtenberg, L. I.

    2018-06-01

    The properties of nanostructured composites based on metal oxides and metal-polymer materials are analyzed, along with ways of preparing them. The effect the interaction between metal and semiconductor nanoparticles has on the conductivity, photoconductivity, catalytic activity, and magnetic, dielectric, and sensor properties of nanocomposites is discussed. It is shown that as a result of this interaction, a material can acquire properties that do not exist in systems of isolated particles. The transfer of electrons between metal particles of different sizes in polymeric matrices leads to specific dielectric losses, and to an increase in the rate and a change in the direction of chemical reactions catalyzed by these particles. The interaction between metal-oxide semiconductor particles results in the electronic and chemical sensitization of sensor effects in nanostructured composite materials. Studies on creating molecular machines (Brownian motors), devices for magnetic recording of information, and high-temperature superconductors based on nanostructured systems are reviewed.

  10. Method and composition for testing for the presence of an alkali metal

    International Nuclear Information System (INIS)

    Guon, J.

    1981-01-01

    A method and composition for detecting the presence of an alkali metal on the surface of a body such as a metal plate, tank, pipe or the like is provided. The method comprises contacting the surface with a thin film of a liquid composition comprising a light-colored pigment, an acid-base indicator, and a nonionic wetting agent dispersed in a liquid carrier comprising a minor amount of water and a major amount of an organic solvent selected from the group consisting of the lower aliphatic alcohols, ketones and ethers. Any alkali metal present on the surface in elemental form or as an alkali metal hydroxide or alkali metal carbonate will react with the acid-base indicator to produce a contrasting color change in the thin film, which is readily discernible by visual observation or automatic techniques

  11. Characteristics of diffusion zone in changing glass-metal composite processing conditions

    Science.gov (United States)

    Lyubimova, O. N.; Morkovin, A. V.; Andreev, V. V.

    2018-03-01

    The influence of manufacturing technology on the characteristics of the glass and steel contact zone in manufacturing new structural material - glass-metal composite is studied theoretically and experimentally. Different types of structures in the contact zone and its dimensions affect the strength characteristics of the composite. Knowledge about changing the width of the glass and steel contact zone after changing such parameters of the technological regime as temperature, holding time and use of solders will allow one to control the structure and characteristics of the glass-metal composite. Experimental measurements of the width of the diffusion zone in the glass-metal composite for different regimes and their statistical processing according to the full factor experiment are presented in this article. The results of analysis of some mechanical characteristics of the diffusion zone are presented: microhardness and modulus of elasticity for samples, prepared according to different processing regimes.

  12. Al/Ni metal intermetallic composite produced by accumulative roll bonding and reaction annealing

    International Nuclear Information System (INIS)

    Mozaffari, A.; Hosseini, M.; Manesh, H. Danesh

    2011-01-01

    Highlights: → Al/Ni metallic composites produced by accumulative roll bonding were heat treated at different temperatures and periods, to investigate the effect of reaction annealing on the structure and mechanical properties. → Based on the annealing conditions, various intermetallic phases were formed. The structure and composition of the composites were detected by SEM and XRD techniques. → The strength of the initial metallic composite can be improved due to the formation of the hard intermetallic phases, by the heat treatment process. - Abstract: In this research, Al/Ni multilayers composites were produced by accumulative roll bonding and then annealed at different temperatures and durations. The structure and mechanical properties of the fabricated metal intermetallic composites (MICs) were investigated. Scanning electron microscopy and X-ray diffraction analyses were used to evaluate the structure and composition of the composite. The Al 3 Ni intermetallic phase is formed in the Al/Ni interface of the samples annealed at 300 and 400 deg. C. When the temperature increased to 500 deg. C, the Al 3 Ni 2 phase was formed in the composite structure and grew, while the Al 3 Ni and Al phases were simultaneously dissociated. At these conditions, the strength of MIC reached the highest content and was enhanced by increasing time. At 600 deg. C, the AlNi phase was formed and the mechanical properties of MIC were intensively degraded due to the formation of structural porosities.

  13. Fabrication techniques of metal liner used for pressure vessels made by composite material

    International Nuclear Information System (INIS)

    Takahashi, W.K.; Al-Qureshi, H.A.

    1982-01-01

    Different viable techniques for the manufacturing of metal liner used for pressure vessels are presented. The aim of these metal liner is to avoid the fluid leakage from the pressurized vessel and to serve as a mandreal to be wound by composite material. The studied techniques are described and the practical results are illustrated. Finally a comparative study of the manufacturing techniques is made in order to define the process that furnishes the metal liner with the best characteristics. The advantages offered by these type of pressure vessels when compared with the conventional metallic vessels, are also presented. (Author) [pt

  14. Disulfide polymer grafted porous carbon composites for heavy metal removal from stormwater runoff

    DEFF Research Database (Denmark)

    Ko, Dongah; Mines, Paul D.; Jakobsen, Mogens Havsteen

    2018-01-01

    The emerging concern of heavy metal pollution derived from stormwater runoff has triggered a demand for effective heavy metal sorbents. To be an effective sorbent, high affinity along with rapid sorption kinetics for environmental relevant concentrations of heavy metals is important. Herein, we...... have introduced a new composite suitable for trace metal concentration removal, which consists of cheap and common granular activated carbon covered with polymers containing soft bases, thiols, through acyl chlorination (DiS-AC). Material characterization demonstrated that the polymer was successfully...

  15. Composites

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1983-01-01

    This chapter discusses the roles of composite laminates and aggregates in cryogenic technology. Filamentary-reinforced composites are emphasized because they are the most widely used composite materials. Topics considered include composite systems and terminology, design and fabrication, composite failure, high-pressure reinforced plastic laminates, low-pressure reinforced plastics, reinforced metals, selectively reinforced structures, the effect of cryogenic temperatures, woven-fabric and random-mat composites, uniaxial fiber-reinforced composites, composite joints in cryogenic structures, joining techniques at room temperature, radiation effects, testing laminates at cryogenic temperatures, static and cyclic tensile testing, static and cyclic compression testing, interlaminar shear testing, secondary property tests, and concrete aggregates. It is suggested that cryogenic composite technology would benefit from the development of a fracture mechanics model for predicting the fitness-for-purpose of polymer-matrix composite structures

  16. Effective longitudinal strength of high temperature metal-matrix composites

    International Nuclear Information System (INIS)

    Craddock, J.N.; Savvides, I.

    1991-01-01

    Several models for predicting the longitudinal strength of fiber composites are presented, ranging from a simple netting analysis to a model incorporating curvilinear strain hardening for all the components. Results from these models are presented for tungsten fiber reinforced superalloys, FeCrAlY and MARM200. It is shown that a simple elastic limit micromechanical model does not always adequately describe the useful strength of the composites. The methods proposed here are shown to be more appropriate for predicting the effective composite strength. 2 refs

  17. Additive Manufacturing and Characterization of Polylactic Acid (PLA) Composites Containing Metal Reinforcements

    Science.gov (United States)

    Kuentz, Lily; Salem, Anton; Singh, M.; Halbig, M. C.; Salem, J. A.

    2016-01-01

    Additive manufacturing of polymeric systems using 3D printing has become quite popular recently due to rapid growth and availability of low cost and open source 3D printers. Two widely used 3D printing filaments are based on polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) systems. PLA is much more environmentally friendly in comparison to ABS since it is made from renewable resources such as corn, sugarcane, and other starches as precursors. Recently, polylactic acid-based metal powder containing composite filaments have emerged which could be utilized for multifunctional applications. The composite filaments have higher density than pure PLA, and the majority of the materials volume is made up of polylactic acid. In order to utilize functionalities of composite filaments, printing behavior and properties of 3-D printed composites need to be characterized and compared with the pure PLA materials. In this study, pure PLA and composite specimens with different metallic reinforcements (Copper, Bronze, Tungsten, Iron, etc) were 3D printed at various layer heights and resulting microstructures and properties were characterized. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) behavior of filaments with different reinforcements were studied. The microscopy results show an increase in porosity between 3-D printed regular PLA and the metal composite PLA samples, which could produce weaker mechanical properties in the metal composite materials. Tensile strength and fracture toughness behavior of specimens as a function of print layer height will be presented.

  18. Friction material composites copper-metal-free material design perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2015-01-01

    This book examines material composites used in connection with brake friction, their design and safety. To aid in understanding, the essentials of friction are explained. This second edition was extended to include friction material composites without copper, as they offer an environmentally friendlier option. The second edition is intended to support beginners by offering insights into the essentials of friction material composites, helping them to develop a broader understanding of brake friction materials. Friction materials find wide-ranging applications in household and industrial appliances, brake pads for automotive applications, rail brake friction pads and composition brake blocks. This second edition is an introductory volume to a set of related books, and is based on the author’s experience and expertise with various material manufacturers, brake manufacturers, vehicle manufacturers, researchers and testing labs around the world with which the author has been associated for the past 28 years.

  19. Humidity Sensing Properties of Surface Modified Polyaniline Metal Oxide Composites

    Directory of Open Access Journals (Sweden)

    S. C. Nagaraju

    2014-01-01

    Full Text Available Polyaniline- (PANI praseodymium Oxide (Pr2O3 composites have been synthesized by in situ polymerization method with different weight percentages. The synthesized composites have been characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The temperature dependent conductivity shows that the conductivity is due to the hopping of polarons and bipolarons. These composites show negative thermal coefficient (α behavior as a function of temperature, which is characteristic behavior of semiconducting materials. Sensor studies have been carried out by two-probe method and found that the sensitivity increases with increase in % RH. It is noticed that stability increase is due to the presence of Pr2O3 in polyaniline up to 30 wt%. A fast recovery and response time along with high sensitivity make these composites suitable for humidity sensors.

  20. Process of forming a sol-gel/metal hydride composite

    Science.gov (United States)

    Congdon, James W [Aiken, SC

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  1. Graphene–Noble Metal Nano-Composites and Applications for Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Sukumar Basu

    2017-10-01

    Full Text Available Graphene based nano-composites are relatively new materials with excellent mechanical, electrical, electronic and chemical properties for applications in the fields of electrical and electronic devices, mechanical appliances and chemical gadgets. For all these applications, the structural features associated with chemical bonding that involve other components at the interface need in-depth investigation. Metals, polymers, inorganic fibers and other components improve the properties of graphene when they form a kind of composite structure in the nano-dimensions. Intensive investigations have been carried out globally in this area of research and development. In this article, some salient features of graphene–noble metal interactions and composite formation which improve hydrogen gas sensing properties—like higher and fast response, quick recovery, cross sensitivity, repeatability and long term stability of the sensor devices—are presented. Mostly noble metals are effective for enhancing the sensing performance of the graphene–metal hybrid sensors, due to their superior catalytic activities. The experimental evidence for atomic bonding between metal nano-structures and graphene has been reported in the literature and it is theoretically verified by density functional theory (DFT. Multilayer graphene influences gas sensing performance via intercalation of metal and non-metal atoms through atomic bonding.

  2. A new method for soldering particle-reinforced aluminum metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinbin; Mu, Yunchao [Zhongyuan University of Technology, Zhengzhou 450007 (China); Luo, Xiangwei [Zhengzhou University, Zhengzhou 450002 (China); Niu, Jitai, E-mail: niujitai@163.com [Zhongyuan University of Technology, Zhengzhou 450007 (China)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Soldering of 55% SiCp/Al composite and Kovar is first achieved in the world. Black-Right-Pointing-Pointer The nickel plating is required on the surface of the composites before soldering. Black-Right-Pointing-Pointer Low welding temperature is set to avoid overheating of the matrix. Black-Right-Pointing-Pointer Chemical and metallurgical bonding of composites and Kovar is carried out. Black-Right-Pointing-Pointer High tension strength of 225 MPa in soldering seam has been obtained. - Abstract: Soldering of aluminum metal matrix composites (Al-SiC) to other structural materials, or even to themselves, has proved unsuccessful mainly due to the poor wetting of these composites by conventional soldering alloys. This paper reports a new approach, which improves the wetting properties of these composites by molting solder alloys to promote stronger bonds. The new approach relies on nickel-plating of the composite's faying surface prior to application of a solder alloy. Based on this approach, an aluminum metal matrix composite containing 55 vol.% SiC particles is successfully soldered to a Fe-Ni-Co alloy (commercially known as Kovar 4J29). The solder material is a zinc-based alloy (Zn-Cd-Ag-Cu) with a melting point of about 400 Degree-Sign C. Microscopic examinations of the aluminum metal matrix composites (Al-MMCs)-Kovar interfaces show that the nickel-plating, prior to soldering, could noticeably enhance the reaction between the molten solder and composites. The fractography of the shear-tested samples revealed that fracture occurs within the composite (i.e. cohesive failure), indicating a good adhesion between the solder alloy and the Al-SiC composite.

  3. A new method for soldering particle-reinforced aluminum metal matrix composites

    International Nuclear Information System (INIS)

    Lu, Jinbin; Mu, Yunchao; Luo, Xiangwei; Niu, Jitai

    2012-01-01

    Highlights: ► Soldering of 55% SiCp/Al composite and Kovar is first achieved in the world. ► The nickel plating is required on the surface of the composites before soldering. ► Low welding temperature is set to avoid overheating of the matrix. ► Chemical and metallurgical bonding of composites and Kovar is carried out. ► High tension strength of 225 MPa in soldering seam has been obtained. - Abstract: Soldering of aluminum metal matrix composites (Al–SiC) to other structural materials, or even to themselves, has proved unsuccessful mainly due to the poor wetting of these composites by conventional soldering alloys. This paper reports a new approach, which improves the wetting properties of these composites by molting solder alloys to promote stronger bonds. The new approach relies on nickel-plating of the composite's faying surface prior to application of a solder alloy. Based on this approach, an aluminum metal matrix composite containing 55 vol.% SiC particles is successfully soldered to a Fe–Ni–Co alloy (commercially known as Kovar 4J29). The solder material is a zinc-based alloy (Zn–Cd–Ag–Cu) with a melting point of about 400 °C. Microscopic examinations of the aluminum metal matrix composites (Al-MMCs)–Kovar interfaces show that the nickel-plating, prior to soldering, could noticeably enhance the reaction between the molten solder and composites. The fractography of the shear-tested samples revealed that fracture occurs within the composite (i.e. cohesive failure), indicating a good adhesion between the solder alloy and the Al–SiC composite.

  4. Mechanical and corrosion behaviors of developed copper-based metal matrix composites

    Science.gov (United States)

    Singh, Manvandra Kumar; Gautam, Rakesh Kumar; Prakash, Rajiv; Ji, Gopal

    2018-03-01

    This work investigates mechanical properties and corrosion resistances of cast copper-tungsten carbide (WC) metal matrix composites (MMCs). Copper matrix composites have been developed by stir casting technique. Different sizes of micro and nano particles of WC particles are utilized as reinforcement to prepare two copper-based composites, however, nano size of WC particles are prepared by high-energy ball milling. XRD (X-rays diffraction) characterize the materials for involvement of different phases. The mechanical behavior of composites has been studied by Vickers hardness test and compression test; while the corrosion behavior of developed composites is investigated by electrochemical impedance spectroscopy in 0.5 M H2SO4 solutions. The results show that hardness, compressive strength and corrosion resistance of copper matrix composites are very high in comparison to that of copper matrix, which attributed to the microstructural changes occurred during composite formation. SEM (Scanning electron microscopy) reveals the morphology of the corroded surfaces.

  5. Radiation cured polyester compositions containing metal-properties

    Science.gov (United States)

    Szalińska, H.; Pietrzak, M.; Gonerski, A.

    The subject of the studies was unsaturated polyester resin, Polimal-109 and its compositions containing acrylates of: sodium, potassium, calcium, magnesium, barium, manganese, iron, cobalt, copper and acrylic acid. Polyester resin modified with acrylic acid salts was cured with 60Co gamma radiation. Measurements of Vicat softening temperature, water absorption, creep current resistance, volume and surface resistivity, the tangent of dielectric loss angle and permittivity of radiation cured compositions were carried out. The results of the studies presented testify to the fact that the properties of cross-linked polymers alter after ionogenic compounds have been introduced into them.

  6. Radiation cured polyester compositions containing metal-properties

    International Nuclear Information System (INIS)

    Szalinska, H.; Pietrzak, M.; Gonerski, A.

    1987-01-01

    The subject of the studies was unsaturated polyester resin, Polimal-109 and its compositions containing acrylates of: sodium, potassium, calcium, magnesium, barium, manganese, iron, cobalt, copper and acrylic acid. Polyester resin modified with acrylic acid salts was cured with 60 Co gamma radiation. Measurements of Vicat softening temperature, water absorption, creep current resistance, volume and surface resistivity, the tangent of dielectric loss angle and permittivity of radiation cured compositions were carried out. The results of the studies presented testify to the fact that the properties of cross-linked polymers alter after ionogenic compounds have been introduced into them. (author)

  7. Optimal fabrication processes for unidirectional metal-matrix composites: A computational simulation

    Science.gov (United States)

    Saravanos, D. A.; Murthy, P. L. N.; Morel, M.

    1990-01-01

    A method is proposed for optimizing the fabrication process of unidirectional metal matrix composites. The temperature and pressure histories are optimized such that the residual microstresses of the composite at the end of the fabrication process are minimized and the material integrity throughout the process is ensured. The response of the composite during the fabrication is simulated based on a nonlinear micromechanics theory. The optimal fabrication problem is formulated and solved with non-linear programming. Application cases regarding the optimization of the fabrication cool-down phases of unidirectional ultra-high modulus graphite/copper and silicon carbide/titanium composites are presented.

  8. Optimal fabrication processes for unidirectional metal-matrix composites - A computational simulation

    Science.gov (United States)

    Saravanos, D. A.; Murthy, P. L. N.; Morel, M.

    1990-01-01

    A method is proposed for optimizing the fabrication process of unidirectional metal matrix composites. The temperature and pressure histories are optimized such that the residual microstresses of the composite at the end of the fabrication process are minimized and the material integrity throughout the process is ensured. The response of the composite during the fabrication is simulated based on a nonlinear micromechanics theory. The optimal fabrication problem is formulated and solved with nonlinear programming. Application cases regarding the optimization of the fabrication cool-down phases of unidirectional ultra-high modulus graphite/copper and silicon carbide/titanium composites are presented.

  9. Effect of Metallic Additives to Polymer Matrix on Properties of Composite Adhesives Dedicated for Light Metal Joining

    Directory of Open Access Journals (Sweden)

    Mamala A.

    2017-12-01

    Full Text Available The most recent and promising trends in development of renewable sources of energy are Combined Heat and Power (CHP systems. The newest solutions from this field are hybrid compact solar panels. The correct operation of both systems, i.e. the photovoltaic panel and the heat exchanger requires an effective connection between the two. The adhesives utilized to interconnect above elements should provide a stable and hermetic joint able to withstand mechanical and thermal impacts of the surrounding environment factors. The paper presents the research results over the impact of the type and the amount of reinforcing phase on the physical and mechanical properties of epoxy resin matrix composites reinforced with particles of non-ferrous metals (Ag, Cu, W, Al, dedicated as adhesives for connections between photovoltaic panels and heat exchangers. Based on the experimental findings the usefulness of classical analytic models for valuation of polymer-metal composites properties was validated.

  10. Piezoelectric micromotor using a metal-ceramic composite structure.

    Science.gov (United States)

    Koc, B; Bouchilloux, P; Uchino, K

    2000-01-01

    This paper presents a new piezoelectric micromotor design, in which a uniformly electroded piezoelectric ring bonded to a metal ring is used as the stator. Four inward arms at the inner circumference of the metal ring transfer radial displacements into tangential displacements. The rotor ends in a truncated cone shape and touches the tips of the arms. A rotation takes place by exciting coupled modes of the stator element, such as a radial mode and a second bending mode of the arms. The behavior of the free stator was analyzed using the ATILA finite element software. Torque vs. speed relationship was measured from the transient speed change with a motor load. A starting torque of 17 microNm was obtained at 20 Vrms. The main features of this motor are low cost and easy assembly because of a simple structure and small number of components.

  11. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients.

    Science.gov (United States)

    Azarbad, Hamed; Niklińska, Maria; Laskowski, Ryszard; van Straalen, Nico M; van Gestel, Cornelis A M; Zhou, Jizhong; He, Zhili; Wen, Chongqing; Röling, Wilfred F M

    2015-01-01

    Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long-term metal pollution. Studying 12 sites located along two distinct gradients of metal pollution in Southern Poland revealed that functional potential and diversity (assessed using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level did, however, significantly impact bacterial community structure (as shown by MiSeq Illumina sequencing of 16S rRNA genes), but not bacterial taxon richness and community composition. Metal pollution caused changes in the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal-resistance genes showed significant correlations with metal concentrations in soil. Our study showed that microbial communities are resilient to metal pollution; despite differences in community structure, no clear impact of metal pollution levels on overall functional diversity was observed. While screens of phylogenetic marker genes, such as 16S rRNA genes, provide only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appears to be a more promising strategy. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Ceramic superconductor/metal composite materials employing the superconducting proximity effect

    Science.gov (United States)

    Holcomb, Matthew J.

    2002-01-01

    Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.

  13. Fabrication and modification of metal nanocluster composites using ion and laser beams

    International Nuclear Information System (INIS)

    Haglund, R.F. Jr.; Osborne, D.H. Jr.; Magruder, R.H. III; White, C.W.; Zuhr, R.A.; Townsend, P.D.; Hole, D.E.; Leuchtner, R.E.

    1994-12-01

    Metal nanocluster composites have attractive properties for applications in nonlinear optics. However, traditional fabrication techniques -- using melt-glass substrates -- are severely constrained by equilibrium thermodynamics and kinetics. This paper describes the fabrication of metal nanoclusters in both crystalline and glassy hosts by ion implantation and pulsed laser deposition. The size and size distribution of the metal nanoclusters can be modified by controlling substrate temperature during implantation, by subsequent thermal annealing, or by laser irradiation. The authors have characterized the optical response of the composites by absorption and third-order nonlinear-optical spectroscopies; electron and scanning-probe microscopies have been used to benchmark the physical characteristics of the composites. The outlook for controlling the structure and nonlinear optical response properties of these nanophase materials appears increasingly promising

  14. A study on the manufacturing conditions of metal matrix composites by low pressure infiltration process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Jo; Hessian, Md Anowar; Park, Sung Ho [Gyeongsang National University, Tongyoung (Korea, Republic of); Huh, Sun Chul [Gyeongsang National University, JinJu (Korea, Republic of)

    2007-10-15

    Metal fiber preform reinforced aluminum alloy composite as made by the infiltration of molten metal under low pressure casting process. The infiltration behavior of filling pattern and the velocity profile with low-pressure casting process was investigated. The thermocouple was inserted into the preform in order to observe the infiltration behavior. The infiltration of applied pressure time, 1, 2 and 5 s under constant pressure of 0.4 MPa was completely filled during 0.4 s. In these conditions, molten aluminum alloy has successfully infiltrated to FeCrSi metal fiber preform by low-pressure casting process. It was observed the porosity of composites for reliability of composites. The automobile piston was developed with FeCrSi reinforced aluminum alloy that is 0% porosity by the optimal applied pressure and applied pressure time.

  15. Flutter analysis of hybrid metal-composite low aspect ratio trapezoidal wings in supersonic flow

    Directory of Open Access Journals (Sweden)

    Shokrollahi Saeed

    2017-02-01

    Full Text Available An effective 3D supersonic Mach box approach in combination with non-classical hybrid metal-composite plate theory has been used to investigate flutter boundaries of trapezoidal low aspect ratio wings. The wing structure is composed of two main components including aluminum material (in-board section and laminated composite material (out-board section. A global Ritz method is used with simple polynomials being employed as the trial functions. The most important objective of the present research is to study the effect of composite to metal proportion of hybrid wing structure on flutter boundaries in low supersonic regime. In addition, the effect of some important geometrical parameters such as sweep angle, taper ratio and aspect ratio on flutter boundaries were studied. The results obtained by present approach for special cases like pure metallic wings and results for high supersonic regime based on piston theory show a good agreement with those obtained by other investigators.

  16. Two optical bistability domains in composites of metal nanoparticles with nonlinear dielectric core

    Energy Technology Data Exchange (ETDEWEB)

    Shewamare, Sisay, E-mail: sisayshewa20@yahoo.com [Department of Physics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia); Mal' nev, V.N., E-mail: vadimnmalnev@yahoo.com [Department of Physics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)

    2012-12-15

    It is shown that the local field in metal spherical particles with a dielectric core in an external varying electric field has two maxima at two different frequencies. The second maximum becomes more important with an increment in the metal fraction. Due to the nonlinear dielectric function of the core, the composite of these inclusions may have two optically induced bistability domains at different frequencies. At rather high metal fraction, two bistability domains merge and form one entire bistability domain. The parameters of these domains are studied numerically. The paper focuses on the second bistability domain, which has not been discussed in the literature so far. This domain exists in a comparatively narrow frequency range and its onset fields are lower than those of the first bistability domain. The lowest bistability onset fields are obtained in the entire domain. This peculiarity of the optical induced bistability in the metal composite with small dielectric cores can be attractive for possible applications.

  17. SEISMIC Analysis of high-rise buildings with composite metal damper

    Directory of Open Access Journals (Sweden)

    Chen Ruixue

    2015-01-01

    Full Text Available This paper mainly studies on the mechanical characteristics and application effect of composite metal damper in the high-rise buildings via the numerical simulation analysis. The research adopts the elastic and elastic-plastic dynamic approach and the displacement time history response and damper energy dissipation capacity and so on of the high-rise building are compared and analyzed before and after installation. The analysis found that the energy dissipation characteristic of metallic dampers is good. High-rise building story drift significantly is reduced and the extent of damage of the walls and coupling beams is decreased, achieved a good energy dissipation effect. Composite metal damper can effectively and economically improve the seismic performance of high-rise buildings, meet the requirement of the 3-level design for seismic resistance. The result has certain reference significance for the application of metallic damper in the high-rise buildings.

  18. Two optical bistability domains in composites of metal nanoparticles with nonlinear dielectric core

    International Nuclear Information System (INIS)

    Shewamare, Sisay; Mal'nev, V.N.

    2012-01-01

    It is shown that the local field in metal spherical particles with a dielectric core in an external varying electric field has two maxima at two different frequencies. The second maximum becomes more important with an increment in the metal fraction. Due to the nonlinear dielectric function of the core, the composite of these inclusions may have two optically induced bistability domains at different frequencies. At rather high metal fraction, two bistability domains merge and form one entire bistability domain. The parameters of these domains are studied numerically. The paper focuses on the second bistability domain, which has not been discussed in the literature so far. This domain exists in a comparatively narrow frequency range and its onset fields are lower than those of the first bistability domain. The lowest bistability onset fields are obtained in the entire domain. This peculiarity of the optical induced bistability in the metal composite with small dielectric cores can be attractive for possible applications.

  19. Engineering Interfaces in Metal Matrix Composites (Volume 3)

    Science.gov (United States)

    1988-06-10

    or aluminum decreases as the modulus of the fibers increases (Amateau and Dull 1977; Baker and Bonfield 1978; Kohara and Muto 1986; Maruyama and...J.Wiley & Sons, N.Y., Chapter 15. Knox, C. E. (1982) Handbook of Composites, Edited by G.Lubin (Van Nostrand Reinhold) 136-195. Kohara , S. and Muto

  20. Heavy Metal Content and Microbial Composition of the Rhizosphere ...

    African Journals Online (AJOL)

    Plant-assisted bioremediation holds promise for in-situ treatment of polluted soil. However, en-hancement of this process for successful phytoremediation processes requires a sound understand-ing of the complex interactions of the rhizosphere. The present study thus investigated the chemi-cal and microbial composition ...

  1. Synthesis of Metal Polymer Nano composites Using Ionizing Radiation

    International Nuclear Information System (INIS)

    Mostafa, R.S.S.

    2012-01-01

    we prepared a series of CdS/PVA and Ag/PVA nano composites via facile and novel synthetic steps. Our synthetic route is simpler; it does not need expensive oxidizing agents, surfactants, templates and complicated apparatus. The present work contains five chapters in addition to the list of figures, tables, abbreviations and references. The first two chapters are concerned with the introduction and reviews of previous studies. Chapter 3 describes the preparation methodology, experimental setup and techniques used in the CdS/PVA and Ag/PVA nano composites processing and analysis. CdS and Ag nanoparticles with different particle sizes were prepared via chemical method and gamma irradiation method. Several techniques were used to detect the structural changes of the nano composites due to interaction between CdS or Ag ions and PVA. These are: UV-Visible spectrophotometer, Transmission Electron microscope (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectrophotometer, and thermogravimetric analysis. Chapter 4 includes the obtained results and their discussions: Ultraviolet/Visible spectroscopy (UV/VIS) investigated that the as-prepared nano composites have improved optical properties. Such incremented optical properties were attributed to the nano scale dispersion (nm). The improvement in the optical properties is considered to be dependent on, Cd 2+ :S 2- molar ratio, Ag concentration, Pva content and irradiation dose. The calculated band gap energies for CdS/PVA nano composites are higher than that of bulk of CdS indicating the strong quantum confinement. The increases in band gap energy have been attributed to the crystalline size dependent properties. Transmission electron microscope images illustrated that the nano structured CdS/PVA films were found to be dispersed spherical nanoparticles with good structural homogeneity and polydispersity at either lower concentration of CdCl 2 and/or irradiation dose. Nano rod structure of CdS accompanied

  2. High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission

    International Nuclear Information System (INIS)

    Hojati-Talemi, Pejman; Gibson, Mark A.; East, Daniel; Simon, George P.

    2011-01-01

    We report the preparation of new nanocomposites based on a combination of bulk metallic glass and carbon nanotubes for electron field emission applications. The use of bulk metallic glass as the matrix ensures high electrical and thermal conductivity, high thermal stability, and ease of processing, whilst the well dispersed carbon nanotubes act as highly efficient electron emitters. These advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

  3. High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission

    Energy Technology Data Exchange (ETDEWEB)

    Hojati-Talemi, Pejman [Department of Materials Engineering, Monash University, Clayton, Vic 3800 (Australia); Mawson Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Gibson, Mark A. [Process Science and Engineering, Commonwealth Scientific and Industrial Research Organisation, Clayton, Vic 3168 (Australia); East, Daniel; Simon, George P. [Department of Materials Engineering, Monash University, Clayton, Vic 3800 (Australia)

    2011-11-07

    We report the preparation of new nanocomposites based on a combination of bulk metallic glass and carbon nanotubes for electron field emission applications. The use of bulk metallic glass as the matrix ensures high electrical and thermal conductivity, high thermal stability, and ease of processing, whilst the well dispersed carbon nanotubes act as highly efficient electron emitters. These advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

  4. Core-shell composite metal catalysts incased into natural ceramic nanotubes

    International Nuclear Information System (INIS)

    Vinokurov, V; Berberov, A; Afonin, D; Borzaev, H; Ivanov, E; Gushchin, P; Lvov, Y

    2014-01-01

    The bimetallic halloysite nanotubes were prepared by the injection of halloysite- containing aerosols into the microwave plasma reactor. Nanotubes contain metal nanoparticles formed from the metal salt solution in the lumen of nanotubes and the iron oxide nanoparticles at the outer surface of nanotubes. Such halloysite composites may be sputtered onto the surface of the porous carrier forming the nanostructured catalyst, as was shown by the pure halloysite sputtering onto the model porous ceramic surface

  5. Influence of metal loading on hydrocracking of rapeseed oil using bifunctional micro-/mesoporous composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Gille, T.; Busse, O.; Reschetilowski, W. [Technische Univ. Dresden (Germany). Inst. of Industrial Chemistry

    2013-11-01

    Hydrocracking of rapeseed oil has been investigated in a fixed bed reactor under integral conditions. A synthesized micro-/mesoporous composite material Al-MCM-41/ZSM-5 modified by different metal loadings (NiMo, PtNiMo, Pt) was used as catalyst system. It could be demonstrated that the support material and their metal loading influence the product selectivity as well as the deactivation tendencies of the catalyst sample. (orig.)

  6. Antifungal activity of fabrics knitted by metalized Silver/Polyester composite yarn

    Science.gov (United States)

    Özkan, İ.; Duru Baykal, P.

    2017-10-01

    In this study, antifungal properties of fabric knitted from metalized silver/polyester composite yarn were investigated. Intermingling is an alternative technique for yarn blending process. Yarns having different features can be combined by feeding the same intermingling jet. This process is defined as commingling. In the study, intermingling process was used to produce metalized silver/polyester composite yarn. Commingled yarns were knitted to single jersey fabrics by IPM brand sample type circular knitting machine. Antifungal activity test was applied to samples against Aspergillus Niger according to AATCC 30 test procedure. It has been identified that the application provides antifungal activity to fabric.

  7. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    Science.gov (United States)

    Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

    2013-09-03

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  8. Combined-load buckling behavior of metal-matrix composite sandwich panels under different thermal environments

    Science.gov (United States)

    Ko, William L.; Jackson, Raymond H.

    1991-01-01

    Combined compressive and shear buckling analysis was conducted on flat rectangular sandwich panels with the consideration of transverse shear effects of the core. The sandwich panel is fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that the square panel has the highest combined load buckling strength, and that the buckling strength decreases sharply with the increases of both temperature and panel aspect ratio. The effect of layup (fiber orientation) on the buckling strength of the panels was studied in detail. The metal matrix composite sandwich panel was much more efficient than the sandwich panel with nonreinforced face sheets and had the same specific weight.

  9. Sintering by infiltration of loose mixture of powders, a method for metal matrix composite elaboration

    International Nuclear Information System (INIS)

    Constantinescu, V.; Orban, R.; Colan, H.

    1993-01-01

    Starting from the observation that Sintering by Infiltration of Loose Mixture of Powders confers large possibilities for both complex shaped and of large dimensions Particulate Reinforced Metal Matrix Composite components elaboration, its mechanism comparative with those of the classical melt infiltration was investigated. Appropriate measures in order to prevent an excessive hydrostatic flow of the melt and, consequently, reinforcement particle dispersion, as well as to promote wetting in both infiltration and liquid phase sintering stages of the process were established as necessary. Some experimental results in the method application to the fusion tungsten carbide and diamond reinforced metal matrix composite elaboration are, also, presented. (orig.)

  10. Thermal fatigue of refractory metal / graphite composites for fusion applications

    International Nuclear Information System (INIS)

    Smid, I.; Nickel, H.

    1989-01-01

    Reactor grade graphite and molybdenum (TZM) were brazed with different high temperature brazes. The resulting composite tiles had a size of 50 mm x 50 mm with a graphite thickness of 10 mm and a TZM thickness of 5mm. The brazed composites have been tested in electron beam simulation for their thermal fatigue properties. The parameters of these tests were chosen to match NET design specifications for normal operation and 'slow' peak energy deposition. The resulting damages and microstructural changes on the graphites and the brazes are discussed. Additional information is supplied on X-ray diffraction data proving the presence of different phases in the brazes. Finally the influence of a hydrogen plasma on the adaptability of the investigated brazes in fusion devices is discussed. 12 refs., 4 tabs., 4 figs. (Author)

  11. Chemical composition and effective temperatures of metallic line white dwarfs

    International Nuclear Information System (INIS)

    Hammond, G.L.

    1974-01-01

    Model atmosphere techniques have been employed to determine the composition, effective temperatures, radii, masses and surface gravities of white dwarfs Ross 640 and van Maanen 2. The non-gray, LTE, convective, constant flux models employed collisional damping constants for the Ca II H and K lines that were measured in a laboratory device that simulated white dwarf atmospheric conditions. Ross 640 was found to have an extremely helium-rich composition and T/sub eff/ = 8500K, while the observed properties of van Maanen 2 were fitted best by a model with 91 percent helium, 9 percent hydrogen and T/sub eff/ = 6100K. The laboratory measurements of pressure shifts for the Ca II lines casts some doubt on the interpretation of recent radial velocity determinations for van Maanen 2. (U.S.)

  12. Wear study of Al-SiC metal matrix composites processed through microwave energy

    Science.gov (United States)

    Honnaiah, C.; Srinath, M. S.; Prasad, S. L. Ajit

    2018-04-01

    Particulate reinforced metal matrix composites are finding wider acceptance in many industrial applications due to their isotropic properties and ease of manufacture. Uniform distribution of reinforcement particulates and good bonding between matrix and reinforcement phases are essential features in order to obtain metal matrix composites with improved properties. Conventional powder metallurgy technique can successfully overcome the limitation of stir casting techniques, but it is time consuming and not cost effective. Use of microwave technology for processing particulate reinforced metal matrix composites through powder metallurgy technique is being increasingly explored in recent times because of its cost effectiveness and speed of processing. The present work is an attempt to process Al-SiC metal matrix composites using microwaves irradiated at 2.45 GHz frequency and 900 W power for 10 minutes. Further, dry sliding wear studies were conducted at different loads at constant velocity of 2 m/s for various sliding distances using pin-on-disc equipment. Analysis of the obtained results show that the microwave processed Al-SiC composite material shows around 34 % of resistance to wear than the aluminium alloy.

  13. Feature Size Effect on Formability of Multilayer Metal Composite Sheets under Microscale Laser Flexible Forming

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2017-07-01

    Full Text Available Multilayer metal composite sheets possess superior properties to monolithic metal sheets, and formability is different from monolithic metal sheets. In this research, the feature size effect on formability of multilayer metal composite sheets under microscale laser flexible forming was studied by experiment. Two-layer copper/nickel composite sheets were selected as experimental materials. Five types of micro molds with different diameters were utilized. The formability of materials was evaluated by forming depth, thickness thinning, surface quality, and micro-hardness distribution. The research results showed that the formability of two-layer copper/nickel composite sheets was strongly influenced by feature size. With feature size increasing, the effect of layer stacking sequence on forming depth, thickness thinning ratio, and surface roughness became increasingly larger. However, the normalized forming depth, thickness thinning ratio, surface roughness, and micro-hardness of the formed components under the same layer stacking sequence first increased and then decreased with increasing feature size. The deformation behavior of copper/nickel composite sheets was determined by the external layer. The deformation extent was larger when the copper layer was set as the external layer.

  14. Left-handed materials in metallic magnetic granular composites

    International Nuclear Information System (INIS)

    Chui, S.T.; Lin, Z.F.; Hu, L.-B.

    2003-01-01

    There is recently interests in the 'left-handed' materials. In these materials the direction of the wave vector of electromagnetic radiation is opposite to the direction of the energy flow. We present simple arguments that suggests that magnetic composites can also be left-handed materials. However, the physics involved seems to be different from the original argument. In our argument, the imaginary part of the dielectric constant is much larger than the real part, opposite to the original argument

  15. Explosive composition with group VIII metal nitroso halide getter

    Science.gov (United States)

    Walker, F.E.; Wasley, R.J.

    1982-06-22

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1,500 and 10,000 meters per second and a minor amount of a getter additive comprising a non-explosive compound or mixture of non-explosive compounds capable of chemically reacting with free radicals or ions under shock initiation conditions of 2,000 calories/cm[sup 2] or less of energy fluence.

  16. Corrosion behaviour of 2124 aluminium alloy-silicon carbide metal matrix composites in sodium chloride environment

    International Nuclear Information System (INIS)

    Singh, Nirbhay; Vadera, K.K.; Ramesh Kumar, A.V.; Singh, R.S.; Monga, S.S.; Mathur, G.N.

    1999-01-01

    Aluminium alloy based particle reinforced metal matrix composites (MMCs) are being considered for a range of applications. Their mechanical properties have been investigated in detail, but more information about their corrosion resistance is needed. In this investigation, the corrosion behaviour of silicon carbide particulates (SiC p )-2124 aluminium metal matrix composites was studied in 3 wt% sodium chloride solution by means of electrochemical technique and optical microscope. The effects of weight percentages and particle size of silicon carbide particulates on corrosion behaviour of the composite were studied in NaCl and it was observed that corrosion rate increases linearly with the increasing weight percentage of SiC p . The corrosion rate of the MMC increases by increasing the size of SiC particles. Anodization improved corrosion resistance of the composites. (author)

  17. Friction stir processed Al - Metal oxide surface composites: Anodization and optical appearance

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Canulescu, Stela

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate metal oxide (TiO2, Y2O3 and CeO2) particles into the surface of an Aluminium alloy. The surface composites were then anodized in a sulphuric acid electrolyte. The effect of anodizing parameters on the resulting optical...... dark to greyish white. This is attributed to the localized microstructural and morphological differences around the metal oxide particles incorporated into the anodic alumina matrix. The metal oxide particles in the FSP zone electrochemically shadowed the underlying Al matrix and modified the local...

  18. Novel manufacturing process of nanoparticle/Al composite filler metals of tungsten inert gas welding by accumulative roll bonding

    Energy Technology Data Exchange (ETDEWEB)

    Fattahi, M., E-mail: fattahi.put@gmail.com [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Noei Aghaei, V. [Aerospace Engineering Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Dabiri, A.R. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Amirkhanlou, S. [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Akhavan, S.; Fattahi, Y. [Materials Engineering Department, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2015-11-11

    In the present work, accumulative roll bonding (ARB) was used as an effective method for manufacturing nanoparticle/Al composite filler metals of tungsten inert gas (TIG) welding. After welding, the distribution of ceramic nanoparticles and mechanical properties of welds were investigated. By applying ARB, ceramic nanoparticles were uniformly dispersed in the composite filler metals. Consequently, the welds produced by these filler metals had a uniform dispersion of ceramic nanoparticles in their compositions. The test results showed that the yield strength of welds was greatly increased when using the nanoparticle/Al composite filler metals. The improvement in the yield strength was attributed to the coefficient of thermal expansion mismatch and Orowan strengthening mechanisms. Therefore, according to the results presented in this paper, it can be concluded that the nanoparticle/Al composite filler metals can serve as a novel filler metal for TIG welding of aluminum and its alloys.

  19. Simultaneous recovery of benzene-rich oil and metals by steam pyrolysis of metal-poly(ethylene terephthalate) composite waste.

    Science.gov (United States)

    Kumagai, Shogo; Grause, Guido; Kameda, Tomohito; Yoshioka, Toshiaki

    2014-03-18

    The possibility of simultaneous recovery of benzene and metals from the hydrolysis of poly(ethylene terephthalate) (PET)-based materials such as X-ray films, magnetic tape, and prepaid cards under a steam atmosphere at a temperature of 450 °C was evaluated. The hydrolysis resulted in metal-containing carbonaceous residue and volatile terephthalic acid (TPA). The effects of metals and additives on the recovery process were also investigated. All metals were quantitatively recovered, and silver, maghemite (γ-Fe2O3), and anatase (TiO2) were recovered without any changes in their crystal structures or compositions. In a second step, TPA was decarboxylized in the presence of calcium oxide (CaO) at 700 °C, producing benzene with an average yield of 34% and purity of 76%. Maghemite (γ-Fe2O3) incorporated in magnetic tape and prepaid cards could decarboxylate TPA. Aluminum present in the prepaid cards produced hydrogen by the reaction with steam. However, the presence of metals had no adverse influence on the recovery of benzene-rich oil in the presence of CaO. Therefore, this method can be applied to PET-based materials containing inorganic substances, which cannot be recycled effectively otherwise.

  20. Development of composite metallic membranes for hydrogen purification

    International Nuclear Information System (INIS)

    Gaillard, F.

    2003-12-01

    Fuel cells are able to convert chemical energy into electric power. There are different types of cells; the best for automotive applications are Proton Exchange Membrane Fuel Cells. But, these systems need hydrogen of high purity. However, fuel reforming generates a mixture of gases, from which hydrogen has to be extracted before supplying the electrochemical cell. The best way for the purification of hydrogen is the membrane separation technology. Palladium is selectively permeable to hydrogen and this is the reason why this metal is largely used for the membrane development. This work deals with the development of hydrogen-selective membranes by deposition of a thin film of palladium onto a porous mechanical support. For this, we have used the electroless plating technique: a palladium salt and a reducing agent are mixed and the deposition takes place onto the catalytic surface of the substrate. After bibliographic investigations, experimental studies have been performed first with a dense metallic substrate in order to better understand the different parameters controlling the deposition. First of all, potentiometric measurements have been carried out to follow the electrochemical reactions in the bath. Then, kinetic measurements of the coating thickness have been recorded to understand the effect of the bath conditions on the yield and the adhesion of the film. Finally, the electroless plating method has been applied to deposit palladium membranes onto porous stainless steel substrates. After optimisation, the resulting membranes were tested for their hydrogen permeation properties. (author)

  1. Optical response of nanostructured metal/dielectric composites and multilayers

    Science.gov (United States)

    Smith, Geoffrey B.; Maaroof, Abbas I.; Allan, Rodney S.; Schelm, Stefan; Anstis, Geoffrey R.; Cortie, Michael B.

    2004-08-01

    The homogeneous optical response in conducting nanostructured layers, and in insulating layers containing dense arrays of self assembled conducting nanoparticles separated by organic linkers, is examined experimentally through their effective complex indices (n*, k*). Classical effective medium models, modified to account for the 3-phase nanostructure, are shown to explain (n*, k*) in dense particulate systems but not inhomogeneous layers with macroscopic conductance for which a different approach to homogenisation is discussed. (n*, k*) data on thin granular metal films, thin mesoporous gold, and on thin metal layers containing ordered arrays of voids, is linked to properties of the surface plasmon states which span the nanostructured film. Coupling between evanescent waves at either surface counterbalanced by electron scattering losses must be considered. Virtual bound states for resonant photons result, with the associated transit delay leading to a large rise in n* in many nanostructures. Overcoating n-Ag with alumina is shown to alter (n*, k*) through its impact on the SP coupling. In contrast to classical optical homogenisation, effective indices depend on film thickness. Supporting high resolution SEM images are presented.

  2. Numerical Modeling of Fiber-Reinforced Metal Matrix Composite Processing by the Liquid Route: Literature Contribution

    Science.gov (United States)

    Lacoste, Eric; Arvieu, Corinne; Mantaux, Olivier

    2018-04-01

    One of the technologies used to produce metal matrix composites (MMCs) is liquid route processing. One solution is to inject a liquid metal under pressure or at constant rate through a fibrous preform. This foundry technique overcomes the problem of the wettability of ceramic fibers by liquid metal. The liquid route can also be used to produce semiproducts by coating a filament with a molten metal. These processes involve physical phenomena combined with mass and heat transfer and phase change. The phase change phenomena related to solidification and also to the melting of the metal during the process notably result in modifications to the permeability of porous media, in gaps in impregnation, in the appearance of defects (porosities), and in segregation in the final product. In this article, we provide a state-of-the-art review of numerical models and simulation developed to study these physical phenomena involved in MMC processing by the liquid route.

  3. Porous polymer networks and ion-exchange media and metal-polymer composites made therefrom

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G.; Katsoulidis, Alexandros

    2016-10-18

    Porous polymeric networks and composite materials comprising metal nanoparticles distributed in the polymeric networks are provided. Also provided are methods for using the polymeric networks and the composite materials in liquid- and vapor-phase waste remediation applications. The porous polymeric networks, are highly porous, three-dimensional structures characterized by high surface areas. The polymeric networks comprise polymers polymerized from aldehydes and phenolic molecules.

  4. Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites

    Energy Technology Data Exchange (ETDEWEB)

    Maaroufi, A., E-mail: maaroufi@fsr.ac.ma [University of Mohammed V, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences, P.B. 1014, Rabat-Agdal (Morocco); Oabi, O. [University of Mohammed V, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences, P.B. 1014, Rabat-Agdal (Morocco); Lucas, B. [XLIM UMR 7252 – Université de Limoges/CNRS, 123 avenue Albert Thomas, 87060 Limoges Cedex (France)

    2016-07-01

    The ac-conductivity and dielectric response of new composites based on zinc-phosphate glass with composition 45 mol%ZnO–55 mol%P{sub 2}O{sub 5}, filled with metallic powder of nickel (ZP/Ni) were investigated by impedance spectroscopy in the frequency range from 100 Hz to 1 MHz at room temperature. A high percolating jump of seven times has been observed in the conductivity behavior from low volume fraction of filler to the higher fractions, indicating an insulator – semiconductor phase transition. The measured conductivity at higher filler volume fraction is about 10{sup −1} S/cm and is frequency independent, while, the obtained conductivity for low filler volume fraction is around 10{sup −8} S/cm and is frequency dependent. Moreover, the elaborated composites are characterized by high dielectric constants in the range of 10{sup 5} for conductive composites at low frequencies (100 Hz). In addition, the distribution of the relaxation processes was also evaluated. The Debye, Cole-Cole, Davidson–Cole and Havriliak–Negami models in electric modulus formalism were used to model the observed relaxation phenomena in ZP/Ni composites. The observed relaxation phenomena are fairly simulated by Davidson–Cole model, and an account of the interpretation of results is given. - Highlights: • Composites of ZnO-P{sub 2}O{sub 5}/metal were investigated by impedance spectroscopy. • Original ac-conductivity behavior was discovered in ZnO-P{sub 2}O{sub 5}/metal composites. • High dielectric constant is measured in ZnO-P{sub 2}O{sub 5}/metal composites. • Dielectric constant as filler function is well interpreted with percolation theory. • Observed relaxation processes are well described using electric modulus formalism.

  5. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    International Nuclear Information System (INIS)

    You, J.-H.

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated

  6. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    Energy Technology Data Exchange (ETDEWEB)

    You, J.-H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany)]. E-mail: j.h.you@ipp.mpg.de

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated.

  7. Surface properties of ceramic/metal composite materials for thermionic converter applications

    International Nuclear Information System (INIS)

    Davis, P.R.; Bozack, M.J.; Swanson, L.W.

    1983-01-01

    Ceramic/metal composite electrode materials are of interest for thermionic energy conversion (TEC) applications for several reasons. These materials consist of submicron metal fibers or islands in an oxide matrix and therefore provide a basis for fabricating finely structured electrodes, with projecting or recessed metallic regions for more efficient electron emission or collection. Furthermore, evaporation and surface diffusion of matrix oxides may provide oxygen enhancement of cesium adsorption and work function lowering at both the collecting and emitting electrode surfaces of the TEC. Finally, the high work function oxide matrix or oxide-metal interfaces may provide efficient surface ionization of cesium for space-charge reduction in the device. The authors are investigating two types of ceramic/metal composite materials. One type is a directionally solidified eutectic consisting of a bulk oxide matrix such as UO 2 or stabilized ZrO 2 with parallel metal fibers (W) running through the oxide being exposed at the surface by cutting perpendicular to the fiber direction. The second type of material, called a surface eutectic, consists of a refractory substrate (Mo) with a thin layer of deposited and segregated material (Mo-Cr 2 O 3 -A1 2 O 3 ) on the surface. The final configuration of this layer is an oxide matrix with metallic islands scattered throughout

  8. Microstructural characterisation of electrodeposited coatings of metal matrix composite with alumina nanoparticles

    International Nuclear Information System (INIS)

    Indyka, P; Beltowska-Lehman, E; Bigos, A

    2012-01-01

    In the present work a nanocrystalline Ni-W metallic matrix was used to fabricate Ni-W/Al 2 O 3 composite coatings. The MMC (metal matrix composite) coatings with inert α-Al 2 O 3 particles (30 - 90 nm) were electrodeposited from aqueous electrolytes under direct current (DC) and controlled hydrodynamic conditions in a system with a rotating disk electrode (RDE). The chemical composition and microstructure of electrodeposited composites mainly control their functional properties; however, the particles must be uniformly dispersed to exhibit the dispersion-hardening effect. In order to increase the alumina particles incorporation as well as to promote the uniform distribution of the ceramic phase in a matrix, outer ultrasonic field was applied during electrodeposition. The influence of embedded alumina nanoparticles on structural characteristics (morphology, phase composition, residual stresses) of the resulting Ni-W/Al 2 O 3 coatings was investigated in order to obtain a nanocomposite with high hardness and relatively low residual stresses. Surface and cross-section morphology and the chemical composition of deposits was examined in the scanning electron microscope, the EDS technique was used. Microstructure and phase composition were determined by transmission electron microscopy and X-ray diffraction. Based on microstructural and micromechanical properties of the coatings, the optimum conditions for obtaining crack-free homogeneous Ni-W/Al 2 O 3 composite coatings have been determined.

  9. Effects of slag composition and process variables on decontamination of metallic wastes by melt refining

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.

    1981-01-01

    Melt refining has been suggested as an alternative for decontamination and volume reduction of low-level-contaminated metallic wastes. Knowledge of metallurgical and thermochemical aspects of the process is essential for effective treatment of various metals. Variables such as slag type and composition, melting technique, and refractory materials need to be identified for each metal or alloy. Samples of contaminated metals were melted with fluxes by resistance furnace or induction heating. The resulting ingots as well as the slags were analyzed for their nuclide contents, and the corresponding partition ratios were calculated. Compatibility of slags and refractories was also investigated, and proper refractory materials were identified. Resistance furnace melting appeared to be a better melting technique for nonferrous scrap, while induction melting was more suitable for ferrous metals. In general uranium contents of the metals, except for aluminum, could be reduced to as low as 0.01 to 0.1 ppM by melt refining. Aluminum could be decontaminated to about 1 to 2 ppM U when certain fluoride slags were used. The extent of decontamination was not very sensitive to slag type and composition. However, borosilicate and basic oxidizing slags were more effective on ferrous metals and Cu; NaNO 3 -NaCl-NaOH type fluxes were desirable for Zn, Pb, and Sn; and fluoride type slags were effective for decontamination of Al. Recrystallized alumina proved to be the most compatible refractory for melt refining both ferrous and nonferrous metals, while graphite was suitable for nonferrous metal processing. In conclusion, melt refining is an effective technique for volume reduction ad decontamination of contaminated metal scrap when proper slags, melting technique, and refractories are used

  10. Dimensional, microstructural and compositional stability of metal fuels

    International Nuclear Information System (INIS)

    Solomon, A.A.; Dayananda, M.A.

    1993-01-01

    The projects undertaken were to address two areas of concern for metal-fueled fast reactors: metallurgical compatibility of fuel and its fission products with the stainless steel cladding, and effects of porosity development in the fuel on fuel/cladding interactions and on sodium penetration in fuel. The following studies are reported on extensively in appendices: hot isostatic pressing of U-10Zr by coupled boundary diffusion/power law creep cavitation, liquid Na intrusion into porous U-10Zr fuel alloy by differential capillarity, interdiffusion between U-Zr fuel and selected Fe-Ni-Cr alloys, interdiffusion between U-Zr fuel vs selected cladding steels, and interdiffusion of Ce in Fe-base alloys with Ni or Cr

  11. Recent Advancements in Self-Healing Metallic Materials and Self-Healing Metal Matrix Composites

    Science.gov (United States)

    Kilicli, Volkan; Yan, Xiaojun; Salowitz, Nathan; Rohatgi, Pradeep K.

    2018-04-01

    Engineered self-healing materials inspired by natural biological organisms that can repair damage are receiving increasing interest in recent years. Most studies have been focused on self-healing polymers, concretes, and ceramics. Self-healing metallic materials pose challenges due to the high temperatures used in manufacturing and the chemistries involved. This article summarizes and evaluates the self-healing mechanisms used in metallic materials and reviews recent studies into self-healing in aluminum, zinc, and Sn-Bi alloys. Generalizations about the various classifications are drawn from the review highlighting major hurdles in the widespread practical application of metallic self-healing materials, as well as the potential directions for future studies.

  12. Effect of the metallic glass volume fraction on the mechanical properties of Zr-based metallic glass reinforced with porous W composite

    International Nuclear Information System (INIS)

    Zhang, X.Q.; Wang, L.; Xue, Y.F.; Cheng, X.W.; Wang, Y.D.; Nie, Z.H.; Zhang, H.F.; Fu, H.M.; Ma, L.L.; Ren, Y.

    2013-01-01

    The mechanical properties of both as-cast and as-extruded Zr-based metallic glass reinforced with tungsten composites with 33, 28, and 21 vol. % of metallic glass were investigated under quasi-static compression at strain rates from 10 −4 s −1 to 10 −1 s −1 . These two types of composites exhibited a strain rate sensitivity exponent that increased with the increase of the tungsten volume fraction. Compared to the composites with 33 and 21 vol. % of the metallic glass, the two types of composites with 28 vol. % of the metallic glass phase exhibited superior fracture energies. The in-situ compression test on the as-cast composites using high-energy synchrotron X-ray diffraction (HEXRD) revealed that the yield stress of the tungsten phase increased with a decrease in the metallic glass volume fraction. The as-cast composite with 28 vol. % of the metallic glass exhibited relatively great mechanical properties compared to the composites that contained 33 and 21 vol. % of the metallic glass. This result was attributed to the great coupling of the load distribution between the two phases and the high lattice strain in the tungsten phase.

  13. Application of Some Synthesized Polymeric Composite Resins for Removal of Some Metal Ions

    International Nuclear Information System (INIS)

    El-Zahhhar, A.A.; Abdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    The ion-exchange and sorption characteristic of new polymeric composite resins, prepared by gamma radiation were experimentally studied. The composite resins shows high uptake for Co(II) and Eu(III) ions in aqueous solutions in wide range of ph. The selectivity of the resins to Co (II) or Eu (III) species in the presence of some competing ions and complexing agents (as Na + , Fe 3+ , EDTA Na 2 , etc.) was compared. Various factors that could affect the sorption behaviors of metal ions (Co (II) and Eu (III)) on the prepared polymeric composite resins were studied such as ionic strength, Contact time, volume mass ratio

  14. Study of fatigue crack propagation in laminated metal composites alluminium 1100/alluminium 2024

    International Nuclear Information System (INIS)

    Tavares, R.I.

    1984-01-01

    A study has been made of fatigue crack propagation in laminated metal composites with different volume fraction of constituents. The composites were produced by hot rolling, combining 1100 and 2024 aluminum alloys in crack divider orientation. Mechanical and metallurgical properties of the composites and original alloys sheets have been evaluated. Paris type relationship, corresponding to stage II of fatigue crack propagation curves, has been determined by two different methods, wich have shown to be equivalent. A computer software in FORTRAN language was developed for all the mathematical manipulation of fatigue data including statistical analysis and graphics. (Author) [pt

  15. Residual strain evolution during the deformation of single fiber metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Hanan, J.C.; Uestuendag, E.; Clausen, B. [Dept. of Materials Science, California Inst. of Tech., Pasadena, CA (United States); Sivasambu, M.; Beyerlein, I.J. [Theoretical Div., Los Alamos National Lab., Los Alamos, NM (United States); Brown, D.W.; Bourke, M.A.M. [Materials Science and Technology Div., Los Alamos National Lab., Los Alamos, NM (United States)

    2002-07-01

    Successful application of metal matrix composites often requires strength and lifetime predictions that account for the deformation of each phase. Yet, the deformation of individual phases in composites usually differs significantly from their respective monolithic behaviors. An approach is presented that quantifies the deformation parameters of each phase using neutron diffraction measurements before, during, and after failure under tensile loading in model composites consisting of a single alumina fiber embedded in an aluminum matrix. The evolution of residual strains after loading was examined including the effects of fiber failure. (orig.)

  16. Enhanced Nanotribology and Optimal Self-lubrication in Novel Polymer-Metal Composites

    Science.gov (United States)

    Seam, Alisha; Brostow, Witold; Olea-Mejia, Oscar

    2006-10-01

    Cheaper to produce, light-weight polymeric materials with improved micro and nano-scale tribological characteristics ar gradually replacing the heavier metals in gears, cams, ball-bearings, chains, and other critical machine components which operate under high stress, experience substantial sliding friction and wear, and require external lubrication regimes. Application of such high-performance synthetic materials in a whole range of machinery, manufacturing, aerospace and transportation industries would produce far reaching economic, energy conservation and environmental benefits. This paper devises and investigates a novel and previously untested method of developing self-lubricating and wear-resistant polymer based materials (PBMs) by blending a polymer with small proportions of a metallic additive. Tribological experiments establish that as increasing proportions of the metallic additive Iron (Fe) are added to the polymeric base polyethylene (PE), the friction and wear of the resulting composite (PE-Fe) experiences significant decline until an optimal value of 3 to 5 % Iron and then stabilize. Theoretical analysis reveals this phenomenon to likely be a result of the nano-structural formation of a lubricating oxide layer on surface of the polymer-metal composite. Furthermore, the oxide layer prevented significant degradation of the viscoelastic scratch-recovery of the base polymer, even with 10 percent metal additive (Fe) in the composite samples.

  17. Feasibility study on development of metal matrix composite by microwave stir casting

    Science.gov (United States)

    Lingappa, S. M.; Srinath, M. S.; Amarendra, H. J.

    2018-04-01

    Need for better service oriented materials has boosted the demand for metal matrix composite materials, which can be developed to have necessary properties. One of the most widely utilized metal matrix composite is Al-SiC, which is having a matrix made of aluminium metal and SiC as reinforcement. Lightweight and conductivity of aluminium, when combined with hardness and wear resistance of SiC provides an excellent platform for various applications in the field of electronics, automotives, and aerospace and so on. However, uniform distribution of reinforcement particles is an issue and has to be addressed. The present study is an attempt made to develop Al-SiC metal matrix composite by melting base metal using microwave hybrid heating technique, followed by addition of reinforcement and stirring the mixture for obtaining homogenous mixture. X-Ray Diffraction analysis shows the presence of aluminium and SiC in the cast material. Further, microstructural study shows the distribution of SiC particles in the grain boundaries.

  18. Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces

    International Nuclear Information System (INIS)

    Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2014-01-01

    Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon have gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150 μm compared to particles <150 μm. As particle size reduces below 150 μm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption. -- Highlights: • Physico-chemical parameters investigated in build-up samples from 32 road surfaces. • Mineralogical composition primarily governs the physico-chemical characteristics. • High clay forming mineral content in fine solids increases SSA and ECEC. • Characteristics influenced by quartz and amorphous content with particle size. • High quartz content in coarse particles contributes reduced metal adsorption. -- The mineralogical composition of solids is the governing factor influencing metal adsorption to solids in pollutant build-up on urban surfaces

  19. Sliding wear resistance of metal matrix composite layers prepared by high power laser

    NARCIS (Netherlands)

    Ocelik, Vaclav; Matthews, D; de Hosson, Jeff

    2005-01-01

    Two laser surface engineering techniques, Laser Cladding and Laser Melt Injection (LMI), were used to prepare three different metal matrix composite layers with a thickness of about 1 mm and approximately 25-30% volume fraction of ceramic particles. SiC/Al-8Si, WC/Ti-6Al-4V and TiB2/Ti-6Al-4V layers

  20. STAGNATION TIME, COMPOSITION, PH, AND ORTHOPHOSPHATE EFFECTS ON METAL LEACHING FROM BRASS

    Science.gov (United States)

    Plumbing products made of brass and similar alloys are the only lead containing materials still installed in drinking water systems and, by law, may contain up to 8% lead. Brass ranges in metal composition depending on its application. Brass is composed of approximately 60 to 80%...

  1. Thermomechanically induced residual strains in Al/SiCp metal-matrix composites

    DEFF Research Database (Denmark)

    Lorentzen, T.; Clarke, A.P.

    1998-01-01

    Residual lattice strains in the aluminium and SiC phases of F3S.20S extruded A359 20% SiC metal-matrix composite were measured by using neutron diffi action at room and elevated temperatures to monitor the effects of in situ uniaxial plastic deformations. The results are interpreted with referenc...

  2. Gas Phase Sensing of Alcohols by Metal Organic Framework-Polymer Composite Materials

    NARCIS (Netherlands)

    Sachdeva, S.; Koper, S.J.H.; Sabetghadam Esfahani, A.; Soccol, Dimitri; Gravesteijn, Dirk J.; Kapteijn, F.; Sudholter, E.J.R.; Gascon Sabate, J.; de Smet, L.C.P.M.

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al)

  3. Gas Phase Sensing of Alcohols by Metal Organic Framework-Polymer Composite Materials

    NARCIS (Netherlands)

    Sachdeva, Sumit; Koper, Sander J.H.; Sabetghadam, Anahid; Soccol, Dimitri; Gravesteijn, Dirk J.; Kapteijn, Freek; Sudhölter, Ernst J.R.; Gascon, Jorge; Smet, De Louis C.P.M.

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al) were dispersed in

  4. Gas phase sensing of alcohols by Metal Organic Framework – polymer composite materials

    NARCIS (Netherlands)

    Sachdeva, S.; Koper, Sander J.H.; Sabetghadam, Anahid; Soccol, D.; Gravesteijn, Dirk J; Kapteijn, Freek; Sudholter, Ernst J.R.; Gascon, Jorge; de Smet, Louis C.P.M.

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al) were dispersed in

  5. Oxygen permeation through oxygen ion oxide-noble metal dual phase composites

    NARCIS (Netherlands)

    Chen, C.S.; Chen, C.S.; Kruidhof, H.; Bouwmeester, Henricus J.M.; Verweij, H.; Burggraaf, Anthonie; Burggraaf, A.J.

    1996-01-01

    Oxygen permeation behaviour of three composites, yttria-stabilized zirconia-palladium, erbia-stabilized bismuth oxidenoble metal (silver, gold) was studied. Oxygen permeation measurements were performed under controlled oxygen pressure gradients at elevated temperatures. Air was supplied at one side

  6. Hardfacing of aluminium alloys by means of metal matrix composites produced by laser surface alloying

    CSIR Research Space (South Africa)

    Pityana, SL

    2009-06-01

    Full Text Available . In these experiments the laser power was varied from 3 to 4.0 kW, the laser scan speed was varied from 0.8 to 2.0 m/min. The powder feed rate was varied from 2 to 5 g/min. The structural characterisation of the metal matrix composite included X-ray diffraction (XRD...

  7. Microstructure and wear behaviour of Al/TiB2 metal matrix composite

    CSIR Research Space (South Africa)

    Popoola, AP

    2010-10-01

    Full Text Available Al/TiB2 metal matrix composite (MMCs) was fabricated on aluminium AA1200 with the aim of improving the wear resistance property of the substrate. The characterization of the MMCs was carried out by Optical Microscopy (OM), Scanning Electron...

  8. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hui, E-mail: penghui@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Liu, Chang [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Guo, Hongbo, E-mail: guo.hongbo@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Yuan, Yuan [Zhuzhou Seed Cemented Carbide Technology Co. Ltd, No. 1099 Xiangda Road, Zhuzhou, Hunan 412000 (China); Gong, Shengkai; Xu, Huibin [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China)

    2016-06-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  9. On the homogenization of metal matrix composites using strain gradient plasticity

    DEFF Research Database (Denmark)

    Azizi, Reza; Niordson, Christian Frithiof; Legarth, Brian Nyvang

    2014-01-01

    The homogenized response of metal matrix composites (MMC) is studied using strain gradient plasticity. The material model employed is a rate independent formulation of energetic strain gradient plasticity at the micro scale and conventional rate independent plasticity at the macro scale. Free...

  10. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    International Nuclear Information System (INIS)

    Peng, Hui; Liu, Chang; Guo, Hongbo; Yuan, Yuan; Gong, Shengkai; Xu, Huibin

    2016-01-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  11. Determination of elemental composition of metals using ambient organic mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shiea, Christopher [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, Kaohsiung 807, Taiwan (China); Huang, Yeou-Lih [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, Kaohsiung 807, Taiwan (China); Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan (China); Cheng, Sy-Chyi; Chen, Yi-Lun [Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan (China); Shiea, Jentaie, E-mail: jetea@mail.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan (China); Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, Kaohsiung 807, Taiwan (China)

    2017-05-22

    Conventional inorganic mass spectrometric (MS) analysis of metals can require time-consuming and tedious sample preparation. We thus report the novel and direct characterization of metals in solid samples using an organic MS technique known as electrospray laser desorption ionization mass spectrometry (ELDI/MS). No sample pretreatment was needed, and results were rapidly obtained due to the ambient and laser-based nature of ELDI/MS. Metals from samples were desorbed and ionized by laser irradiation, after which they reacted with EDTA and then post-ionized and detected as metal-EDTA complexes. Aluminum, copper, iron, lead, nickel, and zinc from plates, foils, and coins were characterized in seconds. This study demonstrates that an ESI/MS system can be easily modified to analyze metal elements in solids by involving a chelating agent, indicating a potentially promising development in MS towards the analysis of metals using organic MS. - Highlights: • “Organic MS” was utilized as “inorganic MS” to detect metal ions in solid samples. • Element ions desorbed by laser irradiation rapidly reacted with a chelating reagent before they were detected by MS. • Elemental composition of metals was determined by this “Organic MS” method.

  12. Determination of elemental composition of metals using ambient organic mass spectrometry

    International Nuclear Information System (INIS)

    Shiea, Christopher; Huang, Yeou-Lih; Cheng, Sy-Chyi; Chen, Yi-Lun; Shiea, Jentaie

    2017-01-01

    Conventional inorganic mass spectrometric (MS) analysis of metals can require time-consuming and tedious sample preparation. We thus report the novel and direct characterization of metals in solid samples using an organic MS technique known as electrospray laser desorption ionization mass spectrometry (ELDI/MS). No sample pretreatment was needed, and results were rapidly obtained due to the ambient and laser-based nature of ELDI/MS. Metals from samples were desorbed and ionized by laser irradiation, after which they reacted with EDTA and then post-ionized and detected as metal-EDTA complexes. Aluminum, copper, iron, lead, nickel, and zinc from plates, foils, and coins were characterized in seconds. This study demonstrates that an ESI/MS system can be easily modified to analyze metal elements in solids by involving a chelating agent, indicating a potentially promising development in MS towards the analysis of metals using organic MS. - Highlights: • “Organic MS” was utilized as “inorganic MS” to detect metal ions in solid samples. • Element ions desorbed by laser irradiation rapidly reacted with a chelating reagent before they were detected by MS. • Elemental composition of metals was determined by this “Organic MS” method.

  13. Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, G., E-mail: gsureshphy_1983@yahoo.co.in [Department of Physics Thiruvalluvar College of Engg and Tech, Ponnur hills, Vandavasi, Tamilnadu 604 505 (India); Ramasamy, V. [Department of Physics, Annamalai University, Tamilnadu (India); Meenakshisundaram, V. [Health and Safety Division, IGCAR, Kalpakkam, Tamilnadu (India); Venkatachalapathy, R. [CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Tamilnadu (India); Ponnusamy, V. [Department of Physics, MIT Campus, Anna University Chennai, Tamilnadu (India)

    2011-10-15

    The natural radiation level has been determined for the sediment samples of the Ponnaiyar River with an aim of evaluating the radiation hazard. The mineralogical characterizations of the sediments have been carried out using the Fourier Transform Infrared (FTIR) spectroscopic technique. The relative distribution of major minerals is determined by calculating extinction coefficient. The concentration and spatial distribution of heavy metals (Pb, Cr, Cu, Zn and Ni) have been studied to understand the heavy metal contamination and its level of toxicity. To evaluate the potential toxicity, heavy metal concentrations are compared with different toxicological and geological reference values. The comparison results suggest that the present metals create an adverse effect on the aquatic ecosystems associated with this river. To assess the sediment contamination due to the studied heavy metals, the Pollution Load Index (PLI) is calculated. Multivariate Statistical analyses (Pearson Correlation, Cluster and Factor analysis) were carried out between the parameters obtained from radioactivity, mineralogical and geochemical analysis to know the existing relations. Obtained results showed that the effect of mineralogy on level of radioactivity should be significant. However, mineralogy effect on heavy metal composition in the sediments should be limited, indicating that other factors such as vicinity of the pollution sources are more important. Also, the influence of mineralogical characterization on level of radioactivity is significant, whereas the influence of the heavy metal composition on level of radioactivity should be limited. - Highlights: >Sediments radioactivity, mineralogical and heavy metal characterization have been analyzed. > Absorbed dose rate, PLI and kaolinite increase towards the river mouth. > Influence of minerals and heavy metals on level of radioactivity is assessed.

  14. Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments

    International Nuclear Information System (INIS)

    Suresh, G.; Ramasamy, V.; Meenakshisundaram, V.; Venkatachalapathy, R.; Ponnusamy, V.

    2011-01-01

    The natural radiation level has been determined for the sediment samples of the Ponnaiyar River with an aim of evaluating the radiation hazard. The mineralogical characterizations of the sediments have been carried out using the Fourier Transform Infrared (FTIR) spectroscopic technique. The relative distribution of major minerals is determined by calculating extinction coefficient. The concentration and spatial distribution of heavy metals (Pb, Cr, Cu, Zn and Ni) have been studied to understand the heavy metal contamination and its level of toxicity. To evaluate the potential toxicity, heavy metal concentrations are compared with different toxicological and geological reference values. The comparison results suggest that the present metals create an adverse effect on the aquatic ecosystems associated with this river. To assess the sediment contamination due to the studied heavy metals, the Pollution Load Index (PLI) is calculated. Multivariate Statistical analyses (Pearson Correlation, Cluster and Factor analysis) were carried out between the parameters obtained from radioactivity, mineralogical and geochemical analysis to know the existing relations. Obtained results showed that the effect of mineralogy on level of radioactivity should be significant. However, mineralogy effect on heavy metal composition in the sediments should be limited, indicating that other factors such as vicinity of the pollution sources are more important. Also, the influence of mineralogical characterization on level of radioactivity is significant, whereas the influence of the heavy metal composition on level of radioactivity should be limited. - Highlights: →Sediments radioactivity, mineralogical and heavy metal characterization have been analyzed. → Absorbed dose rate, PLI and kaolinite increase towards the river mouth. → Influence of minerals and heavy metals on level of radioactivity is assessed.

  15. A novel biomimetic approach to the design of high-performance ceramic/metal composites

    Energy Technology Data Exchange (ETDEWEB)

    Launey, Maximilien E.; Munch, Etienne; Alsem, Daan Hein; Saiz, Eduardo; Tomsia, Antoni P.; Ritchie, Robert O.

    2009-08-01

    The prospect of extending natural biological design to develop new synthetic ceramic-metal composite materials is examined. Using ice-templating of ceramic suspensions and subsequent metal infiltration, we demonstrate that the concept of ordered hierarchical design can be applied to create fine-scale laminated ceramic-metal (bulk) composites that are inexpensive, lightweight and display exceptional damage-tolerance properties. Specifically, Al{sub 2}O{sub 3}/Al-Si laminates with ceramic contents up to approximately 40 vol% and with lamellae thicknesses down to 10 {micro}m were processed and characterized. These structures achieve an excellent fracture toughness of 40 MPa{radical}m at a tensile strength of approximately 300 MPa. Salient toughening mechanisms are described together with further toughening strategies.

  16. POLYMER COMPOSITE FILMS WITH SIZE-SELECTED METAL NANOPARTICLES FABRICATED BY CLUSTER BEAM TECHNIQUE

    DEFF Research Database (Denmark)

    Ceynowa, F. A.; Chirumamilla, Manohar; Popok, Vladimir

    2017-01-01

    Formation of polymer films with size-selected silver and copper nanoparticles (NPs) is studied. Polymers are prepared by spin coating while NPs are fabricated and deposited utilizing a magnetron sputtering cluster apparatus. The particle embedding into the films is provided by thermal annealing...... after the deposition. The degree of immersion can be controlled by the annealing temperature and time. Together with control of cluster coverage the described approach represents an efficient method for the synthesis of thin polymer composite layers with either partially or fully embedded metal NPs....... Combining electron beam lithography, cluster beam deposition and thermal annealing allows to form ordered arrays of metal NPs on polymer films. Plasticity and flexibility of polymer host and specific properties added by coinage metal NPs open a way for different applications of such composite materials...

  17. Composite metal-hydrogen electrodes for metal-hydrogen batteries. Final report, October 1, 1993 - April 15, 1997

    International Nuclear Information System (INIS)

    Ruckman, M.W.; Strongin, M.; Weismann, H.

    1997-04-01

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped Nb films, these studies suggested that materials with metal-hydrogen ratios exceeding those of commercially available metal hydride materials and fast hydrogen charging and discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films and multilayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 μm thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices

  18. Effects of Metal Composition and Ratio on Peptide-Templated Multimetallic PdPt Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Nicholas A.; Nitka, Tadeusz T.; McKee, Erik M.; Merino, Kyle C.; Drummy, Lawrence F.; Lee, Sungsik; Reinhart, Benjamin; Ren, Yang; Munro, Catherine J.; Pylypenko, Svitlana; Frenkel, Anatoly I.; Bedford, Nicholas M.; Knecht, Marc R.

    2017-02-22

    It can be difficult to simultaneously control the size, composition, and morphology of metal nanomaterials under benign aqueous conditions. For this, bio-inspired approaches have become increasing popular due to their ability to stabilize a wide array of metal catalysts under ambient conditions. In this regard, we used the R5 peptide as a 3D template for the formation of PdPt bimetallic nanomaterials. Monometallic Pd and Pt nanomaterials have been shown to be highly reactive towards a variety of catalytic processes, but by forming bimetallic species, increased catalytic activity may be realized. The optimal metal-to-metal ratio was determined by varying the Pd:Pt ratio to obtain the largest increase in catalytic activity. To better understand the morphology and the local atomic structure of the materials, the bimetallic PdPt nanomaterials were extensively studied using transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and pair distribution function analysis. The resulting PdPt materials were determined to form multicomponent nanostructures where the Pt component demonstrated varying degrees of oxidation based upon the Pd:Pt ratio. To test the catalytic reactivity of the materials, olefin hydrogenation was conducted which indicated a slight catalytic enhancement for the multicomponent materials. These results suggest a strong correlation between the metal ratio and the stabilizing biotemplate in controlling the final materials morphology, composition, and the interactions between the two metal species.

  19. Effects of metal composition and ratio on peptide-templated multimetallic PdPt nanomaterials

    International Nuclear Information System (INIS)

    Merrill, Nicholas A.; Nitka, Tadeusz T.; McKee, Erik M.; Merino, Kyle C.; Drummy, Lawrence F.

    2017-01-01

    It can be difficult to simultaneously control the size, composition, and morphology of metal nanomaterials under benign aqueous conditions. For this, bioinspired approaches have become increasingly popular due to their ability to stabilize a wide array of metal catalysts under ambient conditions. In this regard, we used the R5 peptide as a three-dimensional template for formation of PdPt bimetallic nanomaterials. Monometallic Pd and Pt nanomaterials have been shown to be highly reactive toward a variety of catalytic processes, but by forming bimetallic species, increased catalytic activity may be realized. The optimal metal-to-metal ratio was determined by varying the Pd:Pt ratio to obtain the largest increase in catalytic activity. To better understand the morphology and the local atomic structure of the materials, the bimetallic PdPt nanomaterials were extensively studied by transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and pair distribution function analysis. The resulting PdPt materials were determined to form multicomponent nanostructures where the Pt component demonstrated varying degrees of oxidation based upon the Pd:Pt ratio. To test the catalytic reactivity of the materials, olefin hydrogenation was conducted, which indicated a slight catalytic enhancement for the multicomponent materials. Finally, these results suggest a strong correlation between the metal ratio and the stabilizing biotemplate in controlling the final materials morphology, composition, and the interactions between the two metal species.

  20. Hot-rolled Process of Multilayered Composite Metal Plate

    Directory of Open Access Journals (Sweden)

    YU Wei

    2017-02-01

    Full Text Available For multi-layer plate, it is a difficult problem to increase product yield rate and improve bonding interface quality. A high yield hot-rolled method of multilayered plate was proposed. The raw strips and plate were fixed by argon arc welding. The combined billet was put into a metal box and vacuum pumped, and then heated and rolled by multi passes at the temperature of 1000-1200℃. The 67 layered plate with the thickness of 2.5mm was successfully produced. The interfacial microstructures and diffusion behavior were investigated and analyzed by optical microscopy and scan electronic microscopy. The tensile and shear strength were tested,and the shear fractures were analyzed. The results show that the multilayered plate yield rate is more than 90% by two steps billet combination method and rolling process optimization. The good bonding interface quality is obtained, the shear strength of multilayered plate reaches 241 MPa. Nickel interlayer between 9Cr18 and 1Cr17 can not only prevent the diffusion of carbon, but also improve the microstructure characteristics.

  1. Electrical conductivity of metal (hydr)oxide–activated carbon composites under compression. A comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Barroso-Bogeat, A., E-mail: adrianbogeat@unex.es [Department of Organic and Inorganic Chemistry, Faculty of Sciences, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain); Alexandre-Franco, M.; Fernández-González, C. [Department of Organic and Inorganic Chemistry, Faculty of Sciences, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain); Sánchez-González, J. [Department of Mechanical, Energetic and Materials Engineering, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain); Gómez-Serrano, V. [Department of Organic and Inorganic Chemistry, Faculty of Sciences, University of Extremadura, Avda. de Elvas s/n, E-06006 Badajoz (Spain)

    2015-02-15

    From a granular commercial activated carbon (AC) and six metal (hydr)oxide precursors, including Al(NO{sub 3}){sub 3}, Fe(NO{sub 3}){sub 3}, SnCl{sub 2}, TiO{sub 2}, Na{sub 2}WO{sub 4} and Zn(NO{sub 3}){sub 2}, a broadly varied series of metal (hydr)oxide–AC composites were prepared by wet impregnation and subsequent oven-drying at 120 °C. Here, the electrical conductivity of the resulting products was studied under moderate compression. The influence of the applied pressure, sample volume, mechanical work, and density of the hybrid materials was thoroughly investigated. The dc electrical conductivity of the compressed samples was measured at room temperature by the four-probe method. Compaction assays show that the mechanical properties of the composites are largely determined by the carbon matrix. Both the decrease in volume and the increase in density under compression were very small and only significant at pressures lower than 100 kPa for AC and most composites. By contrast, the bulk electrical conductivity of the hybrid materials was strongly influenced by the nature, content and intrinsic conductivity of the supported metal phases, which act as insulating thin layers thereby hindering the effective electron transport between AC cores of neighbouring sample particles in contact under compression. Conductivity values for the composites were lower than for the raw AC, all of them falling in the range of typical semiconductor materials. The patterns of variation of the electrical conductivity with pressure and mechanical work were slightly similar, thus suggesting the predominance of the pressure effects rather than the volume ones. - Highlights: • Pressure-dependent conductivity is studied for metal (hydr)oxide–AC composites. • Mechanical properties of the composites are essentially determined by AC. • Supported metal (hydr)oxides determine the bulk conductivity of the composites. • Metal (hydr)oxides act as insulating thin layers hindering the

  2. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    Science.gov (United States)

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  3. Leachability of Cr(VI) and other metals from asphalt composites with addition of filter dust.

    Science.gov (United States)

    Vahcic, Mitja; Milacic, Radmila; Mladenovic, Ana; Murko, Simona; Zuliani, Tea; Zupancic, Marija; Scancar, Janez

    2008-12-01

    The potential use of filter dust in asphalt composites for road construction was investigated. Filter dust contains high concentrations of metals, of which Cr(VI) and Pb are leached with water. Compact and ground asphalt composites with addition of 2% of filter dust by mass were studied. In order to evaluate their environmental impact, leachability tests were performed using water and salt water as leaching agents. The concentrations of Cr(VI) and Pb were determined in leachates over a time period of 182 days. The results indicated that Pb was not leached with leaching agents from asphalt composites. Cr(VI) was also not leached with leaching agents from compact asphalt composites. However, in ground asphalt composites, Cr(VI) was leached with water in concentrations up to 220 microg L(-1) and in salt water up to 150 microg L(-1). From the physico-mechanical and environmental aspects, filter dust can be used as a component in asphalt mixtures.

  4. An investigation of flow properties of metal matrix composites suspensions for injection molding

    International Nuclear Information System (INIS)

    Ahmad, F.; Bevis, M.J.

    1997-01-01

    Flow properties of metal matrix composites suspensions have significant effects on the fibre orientation during mould filling. The results presented in this paper relate to the flow properties of aluminium powder and glass fibres compounded into a sacrificial thermoplastics binder. For this purpose, a range of aluminium compounds and aluminium composite suspensions were investigated over a wide shear rate range expected to occur during injection mould process. Aluminium composites wee prepared by substituting glass fibres for aluminium in aluminium compound. Aluminium composite containing a maximum critical volume fraction of fibres which did not exhibit an increase n viscosity was determined. The effect of temperature on the flow behaviour of aluminium composite was also investigated. (author)

  5. MOFwich: Sandwiched Metal-Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal.

    Science.gov (United States)

    Peterson, Gregory W; Lu, Annie X; Hall, Morgan G; Browe, Matthew A; Tovar, Trenton; Epps, Thomas H

    2018-02-28

    This work describes a new strategy for fabricating mixed matrix composites containing layered metal-organic framework (MOF)/polymer films as functional barriers for chemical warfare agent protection. Through the use of mechanically robust polymers as the top and bottom encasing layers, a high-MOF-loading, high-performance-core layer can be sandwiched within. We term this multifunctional composite "MOFwich". We found that the use of elastomeric encasing layers enabled core layer reformation after breakage, an important feature for composites and membranes alike. The incorporation of MOFs into the core layer led to enhanced removal of chemical warfare agents while simultaneously promoting moisture vapor transport through the composite, showcasing the promise of these composites for protection applications.

  6. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion.

    Science.gov (United States)

    Liang, Zibin; Qu, Chong; Guo, Wenhan; Zou, Ruqiang; Xu, Qiang

    2017-11-22

    Metal-organic frameworks (MOFs), a new class of crystalline porous organic-inorganic hybrid materials, have recently attracted increasing interest in the field of energy storage and conversion. Herein, recent progress of MOFs and MOF composites for energy storage and conversion applications, including photochemical and electrochemical fuel production (hydrogen production and CO 2 reduction), water oxidation, supercapacitors, and Li-based batteries (Li-ion, Li-S, and Li-O 2 batteries), is summarized. Typical development strategies (e.g., incorporation of active components, design of smart morphologies, and judicious selection of organic linkers and metal nodes) of MOFs and MOF composites for particular energy storage and conversion applications are highlighted. A broad overview of recent progress is provided, which will hopefully promote the future development of MOFs and MOF composites for advanced energy storage and conversion applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dry Sliding Friction and Wear Studies of Fly Ash Reinforced AA-6351 Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    M. Uthayakumar

    2013-01-01

    Full Text Available Fly ash particles are potentially used in metal matrix composites due to their low cost, low density, and availability in large quantities as waste by-products in thermal power plants. This study describes multifactor-based experiments that were applied to research and investigation on dry sliding wear system of stir-cast aluminum alloy 6351 with 5, 10, and 15 wt.% fly ash reinforced metal matrix composites (MMCs. The effects of parameters such as load, sliding speed, and percentage of fly ash on the sliding wear, specific wear rate, and friction coefficient were analyzed using Grey relational analysis on a pin-on-disc machine. Analysis of variance (ANOVA was also employed to investigate which design parameters significantly affect the wear behavior of the composite. The results showed that the applied load exerted the greatest effect on the dry sliding wear followed by the sliding velocity.

  8. Synthesis of novel cellulose- based antibacterial composites of Ag nanoparticles@ metal-organic frameworks@ carboxymethylated fibers.

    Science.gov (United States)

    Duan, Chao; Meng, Jingru; Wang, Xinqi; Meng, Xin; Sun, Xiaole; Xu, Yongjian; Zhao, Wei; Ni, Yonghao

    2018-08-01

    A novel cellulose-based antibacterial material, namely silver nanoparticles@ metal-organic frameworks@ carboxymethylated fibers composites (Ag NPs@ HKUST-1@ CFs), was synthesized. The results showed that the metal-organic frameworks (HKUST-1) were uniformly anchored on the fiber's surfaces by virtue of complexation between copper ions in HKUST-1 and carboxyl groups on the carboxymethylated fibers (CFs). The silver nanoparticles (Ag NPs) were immobilized and well-dispersed into the pores and/or onto the surfaces of HKUST-1 via in situ microwave reduction, resulting in the formation of novel Ag NPs@ HKUST-1@ CFs composites. The antibacterial assays showed that the as-prepared composites exhibited a much higher antibacterial activity than Ag NPs@ CFs or HKUST-1@ CFs samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites

    International Nuclear Information System (INIS)

    Vijaya Ramnath, B.; Elanchezhian, C.; Jaivignesh, M.; Rajesh, S.; Parswajinan, C.; Siddique Ahmed Ghias, A.

    2014-01-01

    Highlights: • Fabrication of MMC with aluminium alloy–alumina–boron carbide is done. • Different proportions of reinforcements are added. • The effects of varying proportions are studied. • Investigation on mechanical properties above composites is performed. • Failure morphology analysis is done using SEM. - Abstract: This paper deals with the fabrication and mechanical investigation of aluminium alloy, alumina (Al 2 O 3 ) and boron carbide metal matrix composites. Aluminium is the matrix metal having properties like light weight, high strength and ease of machinability. Alumina which has better wear resistance, high strength, hardness and boron carbide which has excellent hardness and fracture toughness are added as reinforcements. Here, the fabrication is done by stir casting which involves mixing the required quantities of additives into stirred molten aluminium. After solidification, the samples are prepared and tested to find the various mechanical properties like tensile, flexural, impact and hardness. The internal structure of the composite is observed using Scanning Electron Microscope (SEM)

  10. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    Science.gov (United States)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan; Velikokhatnyi, Oleg

    2017-02-07

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VII of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.

  11. Gas desorption properties of ammonia borane and metal hydride composites

    International Nuclear Information System (INIS)

    Matin, M.R.

    2009-01-01

    'Full text': Ammonia borane (NH 3 BH 3 ) has been of great interest owing to its ideal combination of low molecular weight and high H 2 storage capacity of 19.6 mass %, which exceeds the current capacity of gasoline. DOE's year 2015 targets involve gravimetric as well as volumetric energy densities. In this work, we have investigated thermal decomposition of ammonia borane and calcium hydride composites at different molar ratio. The samples were prepared by planetary ball milling under hydrogen gas atmosphere pressure of 1Mpa at room temperature for 2, and 10 hours. The gas desorption properties were examined by thermal desorption mass spectroscopy (TDMS). The identification of phases was carried out by X-ray diffraction. The results obtain were shown in fig (a),(b),and (c). Hydrogen desorption properties were observed at all molar ratios, but the desorption temperature is significantly lower at around 70 o C at molar ratio 1:1 as shown in fig (c), and unwanted gas (ammonia) emissions were remarkably suppressed by mixing with the calcium hydride. (author)

  12. Analysis of physical composition and heavy metals pollution of municipal solid waste (MSW) in Beijing

    Science.gov (United States)

    Zhang, H. B.; Zhang, H. Y.; Wang, G. Q.; Bai, X. J.

    2018-03-01

    By using on-site sampling and physical-chemical analysis, the physical composition and the contents of heavy metals in Beijing MSW were researched. The result showed that the main components of MSW in Beijing are mainly kitchen waste, the average content of kitchen waste are more than 60% and 50% in summer and in winter, respectively. The pollution of Cu, Hg and Cr are all more serious for MSW in Haidian and Dongcheng district. The heavy metal pollution of MSW in summer is higher than that in winter in Beijing. Seasonal impacts should be taken into consideration when dealing with MSW. The content of heavy metals in MSW exceeded the background value of soil in Haidian and Dongcheng districts. In order to reduce heavy metal pollution, the MSW should be separated collection and treated.

  13. Equilibrium Adsorption of heavy Metals from Aqueous Solutions onto Poly aniline Stannic(IV) Phosphate Composite

    International Nuclear Information System (INIS)

    El-Zahhar, A.A.; EI-Shourbagy, M.M.; Shady, S.A.

    2012-01-01

    An adsorbent material has been prepared by immobilization of stannic(IV) phosphate within poly aniline composite. The produced adsorbent exhibit a high adsorption potential for Pb(II), Cd(Il) and Zn(lI) from aqueous solutions. The influence of initial metal ion concentration, adsorbent dose, ph and temperature on metal ion removal has been studied. The process was found to follow a first order rate kinetics. Thc intra-particle diffusion of metal ions through pores in the adsorbent was to be the main rate limiting step. The equilibrium data fit well with Langmuir adsorption isotherm model. The selectivity order of the adsorbent towards the metal ions was Pb(Il) > Cd(Il) >Zn(II). The adsorption rate constant and thermodynamic parameters were also given to predict the nature of adsorption

  14. Study of Coating Geometries and Photoluminescence Properties of Metal Nanoparticles/Graphite Composites

    Directory of Open Access Journals (Sweden)

    Pasquale Barone

    2014-01-01

    Full Text Available In this work we present the results of a study of growth and characterization of metal nanoparticles (Ag, Au, and Co/carbon surfaces. The nanoparticles grew by laser ablation technique and their dimensions were controlled by light scattering study and AFM microscopy before their insertion on graphite surface. Nanoparticles appear randomly disposed on carbon surfaces aggregating to form big particles only in the case of silver. The different behavior of metal nanoparticles on carbon surface was explained in terms of different metal wetting of surface, in agreement with previous theoretical results of He et al. Chemical information, obtained by X-ray photoelectron spectroscopy, indicated that the doping process is a simple physisorption while the interfacial interaction between particles and carbon layers causes local defects in graphite structure and the appearance of a strong photoluminescence signal for all composites. Moreover, the visible optical absorption decreases about 10% indicating the progressive metallization of carbon surface.

  15. The Composites of Graphene Oxide with Metal or Semimetal Nanoparticles and Their Effect on Pathogenic Microorganisms

    Directory of Open Access Journals (Sweden)

    Lukas Richtera

    2015-05-01

    Full Text Available The present experiment describes a synthesis process of composites based on graphene oxide, which was tested as a carrier for composites of metal- or metalloid-based nanoparticles (Cu, Zn, Mn, Ag, AgP, Se and subsequently examined as an antimicrobial agent for some bacterial strains (Staphylococcus aureus (S. aureus, methicillin-resistant Staphylococcus aureus (MRSA and Escherichia coli (E. coli. The composites were first applied at a concentration of 300 µM on all types of model organisms and their effect was observed by spectrophotometric analysis, which showed a decrease in absorbance values in comparison with the control, untreated strain. The most pronounced inhibition (87.4% of S. aureus growth was observed after the application of graphene oxide composite with selenium nanoparticles compared to control. Moreover, the application of the composite with silver and silver phosphate nanoparticles showed the decrease of 68.8% and 56.8%, respectively. For all the tested composites, the observed antimicrobial effect was found in the range of 26% to 87.4%. Interestingly, the effects of the composites with selenium nanoparticles significantly differed in Gram-positive (G+ and Gram-negative (G− bacteria. The effects of composites on bacterial cultures of S. aureus and MRSA, the representatives of G+ bacteria, increased with increasing concentrations. On the other hand, the effects of the same composites on G− bacteria E. coli was observed only in the highest applied concentration.

  16. Effects of insulating vanadium oxide composite in concomitant mixed phases via interface barrier modulations on the performance improvements in metal-insulator-metal diodes

    Directory of Open Access Journals (Sweden)

    Kaleem Abbas

    2018-03-01

    Full Text Available The performance of metal-insulator-metal diodes is investigated for insulating vanadium oxide (VOx composite composed of concomitant mixed phases using the Pt metal as the top and the bottom electrodes. Insulating VOx composite in the Pt/VOx/Pt diode exhibits a high asymmetry of 10 and a very high sensitivity of 2,135V−1 at 0.6 V. The VOx composite provides Schottky-like barriers at the interface, which controls the current flow and the trap-assisted conduction mechanism. Such dramatic enhancement in asymmetry and rectification performance at low applied bias may be ascribed to the dynamic control of the insulating and metallic phases in VOx composites. We find that the nanostructure details of the insulating VOx layer can be critical in enhancing the performance of MIM diodes.

  17. Microstructure characteristics of nickel reinforced metal matrix composites (Ni/AC8A) by low-pressure metal infiltration process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Jun; Rong, Hua Wei; Jun, Ji Ang; Park, Sung Ho; Huh, Sun Chul; Park, Won Jo [Gyeongsang National University, Jinju (Korea, Republic of)

    2009-07-01

    MMCs(Metal Matrix Composites) can obtain mechanical characteristics of application purposes that a single material is difficult to obtain. Al alloy composite material that nickel is added by reinforcement is used for piston of diesel engine, because high temperature properties, strength, corrosion resistant are improved excellently than existent Al alloy. And, in case of processing, interface between Ni and Al improves wear resistant by intermetallic compound of high hardness. Also, in the world, industrial circles are proceeding research to apply excellent composite material. Existent process methods of MMC using preform were manufactured by high-pressure. But, it cause deformation of preform or fault of completed MMC. Using low-pressure as infiltration pressure can prevent this problem, and there is an advantage that is able to reduce the cost of production by small scale of production equipment. Accordingly, process methods of MMC have to consider low-pressure infiltration for the strength of preform, and nowadays, there are many studies about reducing infiltration pressure. In this study produced Al composite material that Ni is added by reinforcement by low-pressure infiltration, and observed microstructure of completed MMCs.

  18. Metal-silicate Partitioning and Its Role in Core Formation and Composition on Super-Earths

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Laura; Petaev, M. I.; Sasselov, Dimitar D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Jacobsen, Stein B.; Remo, John L., E-mail: lschaefer@asu.edu [Harvard University, Department of Earth and Planetary Sciences, 20 Oxford St., Cambridge, MA 02138 (United States)

    2017-02-01

    We use a thermodynamic framework for silicate-metal partitioning to determine the possible compositions of metallic cores on super-Earths. We compare results using literature values of the partition coefficients of Si and Ni, as well as new partition coefficients calculated using results from laser shock-induced melting of powdered metal-dunite targets at pressures up to 276 GPa, which approaches those found within the deep mantles of super-Earths. We find that larger planets may have little to no light elements in their cores because the Si partition coefficient decreases at high pressures. The planet mass at which this occurs will depend on the metal-silicate equilibration depth. We also extrapolate the equations of state (EOS) of FeO and FeSi alloys to high pressures, and present mass–radius diagrams using self-consistent planet compositions assuming equilibrated mantles and cores. We confirm the results of previous studies that the distribution of elements between mantle and core will not be detectable from mass and radius measurements alone. While observations may be insensitive to interior structure, further modeling is sensitive to compositionally dependent properties, such as mantle viscosity and core freeze-out properties. We therefore emphasize the need for additional high pressure measurements of partitioning as well as EOSs, and highlight the utility of the Sandia Z-facilities for this type of work.

  19. Composition of Trace Metals in Dust Samples Collected from Selected High Schools in Pretoria, South Africa

    Directory of Open Access Journals (Sweden)

    J. O. Olowoyo

    2016-01-01

    Full Text Available Potential health risks associated with trace metal pollution have necessitated the importance of monitoring their levels in the environment. The present study investigated the concentrations and compositions of trace metals in dust samples collected from classrooms and playing ground from the selected high schools In Pretoria. Schools were selected from Pretoria based on factors such as proximity to high traffic ways, industrial areas, and residential areas. Thirty-two dust samples were collected from inside and outside the classrooms, where learners often stay during recess period. The dust samples were analysed for trace metal concentrations using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS. The composition of the elements showed that the concentrations of Zn were more than all other elements except from one of the schools. There were significant differences in the concentrations of trace metals from the schools (p<0.05. Regular cleaning, proximity to busy road, and well maintained gardens seem to have positive effects on the concentrations of trace metals recorded from the classrooms dust. The result further revealed a positive correlation for elements such as Pb, Cu, Zn, Mn, and Sb, indicating that the dust might have a common source.

  20. Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings

    International Nuclear Information System (INIS)

    Lan, Xiaodong; Wu, Hong; Liu, Yong; Zhang, Weidong; Li, Ruidi; Chen, Shiqi; Zai, Xiongfei; Hu, Te

    2016-01-01

    Metallic glass composite coatings Ti 45 Cu 41 Ni 9 Zr 5 and Ti 45 Cu 41 Ni 6 Zr 5 Sn 3 (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni 2 SnTi phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.

  1. METAL MATRIX COMPOSITE BRAKE ROTORS: HISTORICAL DEVELOPMENT AND PRODUCT LIFE CYCLE ANALYSIS

    Directory of Open Access Journals (Sweden)

    M.M. Rahman

    2011-12-01

    Full Text Available Metal matrix composites (MMCs have become attractive for engineering structural applications due to their excellent specific strength and are increasingly seen as an alternative to conventional materials, particularly in the automotive industry. In this study, a historical background on the development and application of metal matrix composites for automotive brake rotors is presented. The discussion also includes an analysis of the product life cycle with stir casting as a case study. The historical review analysis revealed that gradual development of material and processing techniques have led to lighter weight, lower cost and higher performance brake rotors as a result of a better understanding of the mechanics of metal matrix composites. It emerged from the study that the stir casting technique provides ease of operation, sustainability and, most significantly, very competitive costs without sacrificing quality relative to other techniques; as such, it is the most attractive manufacturing process in the industry. These findings can be used for future design and manufacture of an efficient and effective aluminium matrix composite brake rotor for automotive and other applications.

  2. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, Z.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)]. E-mail: zhfzhang@imr.ac.cn; Wang, Z.G. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiu, K.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, H.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zang, Q.S. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Hu, Z.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2006-02-25

    The fatigue life, damage and fracture behavior of tungsten fiber reinforced metallic glass Zr{sub 41.25}Ti{sub 13.75}Ni{sub 10}Cu{sub 12.5}Be{sub 22.5} composites are investigated under cyclic push-pull loading. It is found that the fatigue life of the composite increases with increasing the volume fraction of tungsten fibers. Similar to crystalline metals, the regions of crack initiation, propagation and overload fracture can be discerned on the fracture surface of the specimen. Fatigue crack normally initiates in the metallic glass matrix at the outer surface of the composite specimen and propagates predominantly in the matrix. Different crack front profile around the tungsten fibers and fiber pullout demonstrate that fatigue crack may propagate around the fiber, leading to bridging of the crack faces by the unbroken fiber and hence improved fatigue crack-growth resistance. Locally decreased effective stiffness in the region where fiber distribution is sparse may provide preferential crack path in the composite. A proposed model was exercised to elucidate different tungsten fiber fracture morphologies in the fatigue crack propagation and overload fracture regions in the light of Poisson's ratio effect during fatigue loading.

  3. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite

    International Nuclear Information System (INIS)

    Zhang, H.; Zhang, Z.F.; Wang, Z.G.; Qiu, K.Q.; Zhang, H.F.; Zang, Q.S.; Hu, Z.Q.

    2006-01-01

    The fatigue life, damage and fracture behavior of tungsten fiber reinforced metallic glass Zr 41.25 Ti 13.75 Ni 10 Cu 12.5 Be 22.5 composites are investigated under cyclic push-pull loading. It is found that the fatigue life of the composite increases with increasing the volume fraction of tungsten fibers. Similar to crystalline metals, the regions of crack initiation, propagation and overload fracture can be discerned on the fracture surface of the specimen. Fatigue crack normally initiates in the metallic glass matrix at the outer surface of the composite specimen and propagates predominantly in the matrix. Different crack front profile around the tungsten fibers and fiber pullout demonstrate that fatigue crack may propagate around the fiber, leading to bridging of the crack faces by the unbroken fiber and hence improved fatigue crack-growth resistance. Locally decreased effective stiffness in the region where fiber distribution is sparse may provide preferential crack path in the composite. A proposed model was exercised to elucidate different tungsten fiber fracture morphologies in the fatigue crack propagation and overload fracture regions in the light of Poisson's ratio effect during fatigue loading

  4. Buckling behavior of fiber reinforced plastic–metal hybrid-composite beam

    International Nuclear Information System (INIS)

    Eksi, Secil; Kapti, Akin O.; Genel, Kenan

    2013-01-01

    Highlights: ► We developed a new plastic–metal hybrid-composite tubular beam structure. ► This structure offers innovative design solutions with weight reduction. ► It prevents premature buckling without adding significant weight to the structure. ► The composite interaction gives better mechanical properties to the products. ► Buckling and bending loads of the beam increased 3.2 and 7.6 times, respectively. - Abstract: It is known that the buckling is characterized by a sudden failure of a structural member subjected to high compressive load. In this study, the buckling behavior of the aluminum tubular beam (ATB) was analyzed using finite element (FE) method, and the reinforcing arrangements as well as its combinations were decided for the composite beams based on the FE results. Buckling and bending behaviors of thin-walled ATBs with internal cast polyamide (PA6) and external glass and carbon fiber reinforcement polymers (GFRPs and CFRPs) were investigated systematically. Experimental studies showed that the 219% increase in buckling load and 661% in bending load were obtained with reinforcements. The use of plastics and metal together as a reinforced structure yields better mechanical performance properties such as high resistance to buckling and bending loads, dimensional stability and high energy absorption capacity, including weight reduction. While the thin-walled metallic component provides required strength and stiffness, the plastic component provides the support necessary to prevent premature buckling without adding significant weight to the structure. It is thought that the combination of these materials will offer a promising new focus of attention for designers seeking more appropriate composite beams with high buckling loads beside light weight. The developed plastic–metal hybrid-composite structure is promising especially for critical parts serving as a support member of vehicles for which light weight is a critical design

  5. Correlation of mechanical properties with nondestructive evaluation of babbitt metal/bronze composite interface

    Science.gov (United States)

    Ijiri, Y.; Liaw, P. K.; Taszarek, B. J.; Frohlich, S.; Gungor, M. N.

    1988-09-01

    Interfaces of the babbitt metal-bronze composite were examined ultrasonically and were fractured using the Chalmers test method. It was found that the ultrasonic results correlated with the bond strength, the ductility, and the degree of bonding at the tested interface. Specifically, high ultrasonic reflection percentages were associated with low bond strength, low ductility, and low percentages of bonded regions. The fracture mechanism in the bonded area of the babbitt-bronze interface is related to the presence of the intermetallic compound, Cu6Sn5, at the interface. It is suggested that the non-destructive ultrasonic technique can detect the bond integrity of babbitted metals.

  6. A planar model study of creep in metal matrix composites with misaligned short fibres

    DEFF Research Database (Denmark)

    Sørensen, N.J.

    1993-01-01

    The effect of fibre misalignment on the creep behaviour of metal matrix composites is modelled, including hardening behaviour (stage 1), dynamic recovery and steady state creep (stage 2) of the matrix material, using an internal variable constitutive model for the creep behaviour of the metal...... matrix. Numerical plane strain results in terms of average properties and detailed local deformation behaviour up to large strains are needed to show effects of fibre misalignment on the development of inelastic strains and the resulting over-all creep resistance of the material. The creep resistance...

  7. Seasonal variation of the metal composition in particulate matter (PM) in Graz determined with ICPMS

    International Nuclear Information System (INIS)

    Hartl, M.; Raber, G.; Goessler, W.; Licbinsky, R.; Pongratz, T.

    2009-01-01

    Full text: Graz, the 2 nd biggest city of Austria, is not only famous for its cultural heritage but is also well known as one of the most heavily air-polluted cities of Austria. Samples of particulate matter (PM 1.0 , PM 2.5 , and PM 10 ), collected in Graz over a one year period, were analyzed for 36 metals by ICPMS following microwave-assisted acid digestion. Accumulation of PM in the city (Graz is located in a basin) and additional emissions (e.g. domestic combustion) during winter caused not only higher PM concentrations but also marked changes in the PM metal composition. (author)

  8. Electrodeposition of metals and metal/cermet composites in low gravity

    Science.gov (United States)

    Riley, Clyde; Coble, Dwain; Maybee, George

    1987-01-01

    Electrodeposition experiments were carried out on the bench and a KC-135 aircraft at 0.01 g in anticipation of microgravity flights on NASA's Space Transportation System Shuttle. Experimental results obtained by interferometry compare concentration gradients as a function of time in the vicinity of a reducing electrode (cathode) for Cu(+2) and Co(+2) electrodeposition cells. No difference was found between bench and 0.01 g produced gradients for a .1M CuSO4 cell, but a significant difference was noted between the gradients in a 1M CoSO4 cell even though the bench cells were operated in a nonconvecting shielded (cathode over anode) mode. The gradient for Co(+2) depletion produced at 0.01 g was greater and the entire layer was thicker than found on the bench. Neutral buoyancy/matched density codeposition experiments were performed on the bench in an attempt to physically duplicate the results of metal/cermet codepositions in microgravity. Polystyrene spheres with average diameter 11.8 microns and density approximately matching that of 1M CoSO4 were utilized to emulate nonsedimenting cermets in microgravity. The cells were operated in a shielded convectionless mode. Comparison with literature data on codeposition with stirred cells indicate significant improvement in volume percent neutral occluded in the depositing metal matrix. A multicell electrodeposition flight apparatus that has been designed, constructed and is undergoing testing is discussed.

  9. Characterization of mechanically alloyed Ti-based bulk metallic glass composites containing carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.F. [Institute of Materials Engineering, National Taiwan Ocean University, No. 2, Beining Road, Keelung (China); Lin, H.M. [Department of Materials Engineering, Tatung University, No.40, Sec. 3, Jhongshan N. Rd. Jhongshan District, Taipei 104 Taiwan (China); Lee, P.Y.

    2008-11-15

    This study explored the feasibility of preparing CNT/Ti{sub 50}Cu{sub 28}Ni{sub 15}Sn{sub 7} bulk metallic glass (BMG) composites though powder metallurgy route. The CNT/Ti{sub 50}Cu{sub 28}Ni{sub 15}Sn{sub 7} BMG composites were obtained by consolidating the 8h mechanically alloyed composite powders by vacuum hot pressing process. A significant increase in hardness (9.34 GPa) and fracture strength (1937 MPa) was achieved for the Ti{sub 50}Cu{sub 28}Ni{sub 15}Sn{sub 7} BMG composites containing 12 vol. % CNT. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  10. Using laser absorption spectroscopy to monitor composition and physical properties of metal vapors

    International Nuclear Information System (INIS)

    Berzins, L.V.

    1993-01-01

    The Atomic Vapor Laser Isotope Separation (AVLIS) program has been using laser absorption spectroscopy to monitor vapor densities for over 15 years. Laser absorption spectroscopy has proven itself to be an accurate and reliable method to monitor both density and composition. During this time the diagnostic has moved from a research tool toward a robust component of a process control system. The hardware used for this diagnostic is discussed elsewhere at this symposium. This paper describes how the laser absorption spectroscopy diagnostic is used as a component of a process control system as well as supplying detailed measurements on vapor densities, composition, flow velocity, internal and kinetic temperatures, and constituent distributions. Examples will be drawn from the uranium AVLIS program. In addition potential applications such as composition control in the production of metal matrix composites or aircraft alloys will be discussed

  11. Thermo-structural analysis and electrical conductivity behavior of epoxy/metals composites

    Science.gov (United States)

    Boumedienne, N.; Faska, Y.; Maaroufi, A.; Pinto, G.; Vicente, L.; Benavente, R.

    2017-05-01

    This paper reports on the elaboration and characterization of epoxy resin filled with metallic particles powder (aluminum, tin and zinc) composites. The scanning electron microscopy (SEM) pictures, density measurements and x-ray diffraction analysis (DRX) showed a homogeneous phase of obtained composites. The differential scanning calorimetry revealed a good adherence at matrix-filler interfaces, confirming the SEM observations. The measured glass transition temperatures depend on composites fillers' nature. Afterwards, the electrical conductivity of composites versus their fillers' contents has been investigated. The obtained results depict a nonlinear behavior, indicating an insulator to conductor phase transition at a conduction threshold; with high contrast of ten decades. Hence, the elaborated materials give a possibility to obtain dielectric or electrically conducting phases, which can to be interesting in the choice of desired applications. Finally, the obtained results have been successfully simulated on the basis of different percolation models approach combined with structural characterization inferences.

  12. Strain evolution after fiber failure in a single-fiber metal matrix composite under cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Hanan, Jay C. [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States)]. E-mail: jay.hanan@okstate.edu; Mahesh, Sivasambu [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Uestuendag, Ersan [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States)]. E-mail: ersan@caltech.edu; Beyerlein, Irene J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Swift, Geoffrey A. [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States); Clausen, Bjorn [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States); Brown, Donald W. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    The evolution of in situ elastic strain with cyclic tensile loading in each phase of a single Al{sub 2}O{sub 3}-fiber/aluminum-matrix composite was studied using neutron diffraction (ND). An analytical model appropriate for metal matrix composites (MMCs) was developed to connect the measured axial strain evolution in each phase with the possible micromechanical events that could occur during loading at room temperature: fiber fracture, interfacial slipping, and matrix plastic deformation. Model interpretation showed that the elastic strain evolution in the fiber and matrix was governed by fiber fracture and interface slipping and not by plastic deformation of the matrix, whereas the macroscopic stress-strain response of the composite was influenced by all three. The combined single-fiber composite model and ND experiment introduces a new and quick engineering approach for qualifying the micromechanical response in MMCs due to cyclic loading and fiber fracture.

  13. Strain evolution after fiber failure in a single-fiber metal matrix composite under cyclic loading

    International Nuclear Information System (INIS)

    Hanan, Jay C.; Mahesh, Sivasambu; Uestuendag, Ersan; Beyerlein, Irene J.; Swift, Geoffrey A.; Clausen, Bjorn; Brown, Donald W.; Bourke, Mark A.M.

    2005-01-01

    The evolution of in situ elastic strain with cyclic tensile loading in each phase of a single Al 2 O 3 -fiber/aluminum-matrix composite was studied using neutron diffraction (ND). An analytical model appropriate for metal matrix composites (MMCs) was developed to connect the measured axial strain evolution in each phase with the possible micromechanical events that could occur during loading at room temperature: fiber fracture, interfacial slipping, and matrix plastic deformation. Model interpretation showed that the elastic strain evolution in the fiber and matrix was governed by fiber fracture and interface slipping and not by plastic deformation of the matrix, whereas the macroscopic stress-strain response of the composite was influenced by all three. The combined single-fiber composite model and ND experiment introduces a new and quick engineering approach for qualifying the micromechanical response in MMCs due to cyclic loading and fiber fracture

  14. Digital laser printing of metal/metal-oxide nano-composites with tunable electrical properties

    International Nuclear Information System (INIS)

    Zenou, M; Kotler, Z; Sa’ar, A

    2016-01-01

    We study the electrical properties of aluminum structures printed by the laser forward transfer of molten, femtoliter droplets in air. The resulting printed material is an aluminum/aluminum-oxide nano-composite. By controlling the printing conditions, and thereby the droplet volume, its jetting velocity and duration, it is possible to tune the electrical resistivity to a large extent. The material resistivity depends on the degree of oxidation which takes place during jetting and on the formation of electrical contact points as molten droplets impact the substrate. Evidence for these processes is provided by FIB cross sections of printed structures. (paper)

  15. MAX Phase Modified SiC Composites for Ceramic-Metal Hybrid Cladding Tubes

    International Nuclear Information System (INIS)

    Jung, Yang-Il; Kim, Sun-Han; Park, Dong-Jun; Park, Jeong-Hwan; Park, Jeong-Yong; Kim, Hyun-Gil; Koo, Yang-Hyun

    2015-01-01

    A metal-ceramic hybrid cladding consists of an inner zirconium tube, and an outer SiC fiber-matrix SiC ceramic composite with surface coating as shown in Fig. 1 (left-hand side). The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. In addition, the outermost layer prevents the dissolution of SiC during normal operation. On the other hand, a ceramic-metal hybrid cladding consists of an outer zirconium tube, and an inner SiC ceramic composite as shown in Fig. 1 (right-hand side). The outer zirconium protects the fuel rod from a corrosion during reactor operation, as in the present fuel claddings. The inner SiC composite, additionally, is designed to resist the severe oxidation under a postulated accident condition of a high-temperature steam environment. Reaction-bonded SiC was fabricated by modifying the matrix as the MAX phase. The formation of Ti 3 SiC 2 was investigated depending on the compositions of the preform and melt. In most cases, TiSi 2 was the preferential phase because of its lowest melting point in the Ti-Si-C system. The evidence of Ti 3 SiC 2 was the connection with the pressurizing

  16. Understanding the Enhanced Catalytic Performance of Ultrafine Transition Metal Nanoparticles–Graphene Composites

    KAUST Repository

    Liu, Xin

    2015-08-11

    Catalysis, as the key to minimize the energy requirement and environmental impact of today\\'s chemical industry, plays a vital role in many fields directly related to our daily life and economy, including energy generation, environment control, manufacture of chemicals, medicine synthesis, etc. Rational design and fabrication of highly efficient catalysts have become the ultimate goal of today\\'s catalysis research. For the purpose of handling and product separation, heterogeneous catalysts are highly preferred for industrial applications and a large part of which are the composites of transition metal nanoparticles (TMNPs). With the fast development of nanoscience and nanotechnology and assisted with theoretical investigations, basic understanding on tailoring the electronic structure of these nanocomposites has been gained, mainly by precise control of the composition, morphology, interfacial structure and electronic states. With the rise of graphene, chemical routes to prepare graphene were developed and various graphene-based composites were fabricated. Transition metal nanoparticles-reduced graphene oxide (TMNPs–rGO) composites have attracted considerable attention, because of their intriguing catalytic performance which have been extensively explored for energy- and environment-related applications to date. This review summarizes our recent experimental and theoretical efforts on understanding the superior catalytic performance of subnanosized TMNPs–rGO composites.

  17. Features of film growth during plasma anodizing of Al 2024/SiC metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Xue Wenbin [Key Laboratory for Radiation Beam Technology and Materials Modification, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China)]. E-mail: xuewb@bnu.edu.cn

    2006-07-15

    Plasma anodizing is a novel promising process to fabricate corrosion-resistant protective films on metal matrix composites. The corrosion-resistant films were prepared by plasma anodizing on SiC reinforced aluminum matrix composite. The morphology and microstructure of films were analyzed by scanning electron microscopy. Specifically, the morphology of residual SiC reinforcement particles in the film was observed. It is found that the most SiC reinforcement particles have been molten to become silicon oxide, but a few tiny SiC particles still remain in the film close to the composite/film interface. This interface is irregular due to the hindering effect of SiC particles on the film growth. Morphology and distribution of residual SiC particles in film provide direct evidence to identify the local melt occurs in the interior of plasma anodizing film even near the composite/film interface. A model of film growth by plasma anodizing on metal matrix composites was proposed.

  18. The study on the ion exchange behavior of metal ions using composite ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kukki; Lee, Kunjai [Nuclear Engineering Department Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Youngkyun [Korea Institute of Nuclear Safety, Daejon (Korea, Republic of); Lee, Sangjin; Yang, Hoyeon; Ha, Jonghyun [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2002-04-15

    In this study, a series of stepwise procedures to prepare a new organic-inorganic composite magnetic resin with phenol sulphonic-formaldehyde and freshly formed iron ferrite was established, based upon wet-and-neutralization method for synthesizing iron ferrite and pearl-polymerization method for synthesizing rigid bead-type composite resin. And a separation of metal ions in the liquid radioactive waste have been performed using organic-inorganic composite magnetic resin with phenol sulphonic-formaldehyde and freshly formed iron ferrite. The PSF-F (phenol sulphonic formaldehyde-iron ferrite) composite resin prepared by the above method shows stably high removal efficiency to Co(II), Fe, Cs species from wastewater in a wide range of solution pH. The wide range of applicable solution pH (i. e. pH 4.0 to 10.3) implies that the PSF-F composite resin overcomes the limitations of the conventional ferrite process which is practically applicable only to alkaline conditions. The experiment proceeded using batch reactor in a constant temperature with water bath. The experiments divided into three parts. The first one is TG/DTA (Thermogravimetry / Differential Thermal Analysis) which can analyze the trend of pyrolysis of PSF-F ion exchanger. The Second one is equilibrium experiment in which the separation factor of metal ions and Langmuir, Freundlich isotherm was achieved. The last one is kinetics experiment in which the equilibrium reaction time and removal efficiency is estimated.

  19. The study on the ion exchange behavior of metal ions using composite ion exchange resin

    International Nuclear Information System (INIS)

    Kim, Kukki; Lee, Kunjai; Kim, Youngkyun; Lee, Sangjin; Yang, Hoyeon; Ha, Jonghyun

    2002-01-01

    In this study, a series of stepwise procedures to prepare a new organic-inorganic composite magnetic resin with phenol sulphonic-formaldehyde and freshly formed iron ferrite was established, based upon wet-and-neutralization method for synthesizing iron ferrite and pearl-polymerization method for synthesizing rigid bead-type composite resin. And a separation of metal ions in the liquid radioactive waste have been performed using organic-inorganic composite magnetic resin with phenol sulphonic-formaldehyde and freshly formed iron ferrite. The PSF-F (phenol sulphonic formaldehyde-iron ferrite) composite resin prepared by the above method shows stably high removal efficiency to Co(II), Fe, Cs species from wastewater in a wide range of solution pH. The wide range of applicable solution pH (i. e. pH 4.0 to 10.3) implies that the PSF-F composite resin overcomes the limitations of the conventional ferrite process which is practically applicable only to alkaline conditions. The experiment proceeded using batch reactor in a constant temperature with water bath. The experiments divided into three parts. The first one is TG/DTA (Thermogravimetry / Differential Thermal Analysis) which can analyze the trend of pyrolysis of PSF-F ion exchanger. The Second one is equilibrium experiment in which the separation factor of metal ions and Langmuir, Freundlich isotherm was achieved. The last one is kinetics experiment in which the equilibrium reaction time and removal efficiency is estimated

  20. Features of film growth during plasma anodizing of Al 2024/SiC metal matrix composite

    International Nuclear Information System (INIS)

    Xue Wenbin

    2006-01-01

    Plasma anodizing is a novel promising process to fabricate corrosion-resistant protective films on metal matrix composites. The corrosion-resistant films were prepared by plasma anodizing on SiC reinforced aluminum matrix composite. The morphology and microstructure of films were analyzed by scanning electron microscopy. Specifically, the morphology of residual SiC reinforcement particles in the film was observed. It is found that the most SiC reinforcement particles have been molten to become silicon oxide, but a few tiny SiC particles still remain in the film close to the composite/film interface. This interface is irregular due to the hindering effect of SiC particles on the film growth. Morphology and distribution of residual SiC particles in film provide direct evidence to identify the local melt occurs in the interior of plasma anodizing film even near the composite/film interface. A model of film growth by plasma anodizing on metal matrix composites was proposed

  1. Mechanical characterization of SiC particulate & E-glass fiber reinforced Al 3003 hybrid metal matrix composites

    Science.gov (United States)

    Narayana, K. S. Lakshmi; Shivanand, H. K.

    2018-04-01

    Metal matrix composites constitute a class of low cost high quality materials which offer high performance for various industrial applications. The orientation of this research is towards the study of mechanical properties of as cast silicon carbide (SiC) particulates and Short E-Glass fibers reinforced Aluminum matrix composites (AMCs). The Hybrid metal matrix composite is developed by reinforcing SiC particulates of 100 microns and short E-Glass fibers of 2-3 mm length with Al 3003 in different compositions. The vortex method of stir casting was employed, in which the reinforcements were introduced into the vortex created by the molten metal by means of mechanical stirrer. The mechanical properties of the prepared metal matrix composites were analyzed. From the studies it was noticed that an improvement in mechanical properties of the reinforced alloys compared to unreinforced alloys.

  2. Analysis of metal-matrix composite structures. I - Micromechanics constitutive theory. II - Laminate analyses

    Science.gov (United States)

    Arenburg, R. T.; Reddy, J. N.

    1991-01-01

    The micromechanical constitutive theory is used to examine the nonlinear behavior of continuous-fiber-reinforced metal-matrix composite structures. Effective lamina constitutive relations based on the Abouli micromechanics theory are presented. The inelastic matrix behavior is modeled by the unified viscoplasticity theory of Bodner and Partom. The laminate constitutive relations are incorporated into a first-order deformation plate theory. The resulting boundary value problem is solved by utilizing the finite element method. Attention is also given to computational aspects of the numerical solution, including the temporal integration of the inelastic strains and the spatial integration of bending moments. Numerical results the nonlinear response of metal matrix composites subjected to extensional and bending loads are presented.

  3. Magnetohydrodynamic (MHD) considerations for liquid metal blanket and a SiC/SiC composite structure

    International Nuclear Information System (INIS)

    Scholz, R.; Greeff, J. de; Vinche, C.

    1998-01-01

    The electrical conductivity was measured on SiC/SiC composite specimens, in the as-received conditions and after neutron irradiation, for temperatures between 20 deg. C and 1000 deg. C. The tests were aimed at estimating the magnitude of MHD effects in liquid metal blankets and a SiC/SiC composites structure. The electrical conductivity of the unirradiated samples increased continuously with temperature and ranged from 330 (Ω m) -1 at 20 deg. C to 550 (Ω m) -1 at 1000 deg.C. The irradiation reduced only slightly the magnitude of σ indicating the materials tested cannot be treated as an electrical insulator in a MHD analysis for liquid metal blankets. (authors)

  4. Magnetohydrodynamic (MHD) considerations for liquid metal blanket and a SiC/SiC composite structure

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, R.; Greeff, J. de; Vinche, C. [Commission Europeenne Community, JRC, Vatican City State, Holy See (Italy)

    1998-07-01

    The electrical conductivity was measured on SiC/SiC composite specimens, in the as-received conditions and after neutron irradiation, for temperatures between 20 deg. C and 1000 deg. C. The tests were aimed at estimating the magnitude of MHD effects in liquid metal blankets and a SiC/SiC composites structure. The electrical conductivity of the unirradiated samples increased continuously with temperature and ranged from 330 ({omega} m){sup -1} at 20 deg. C to 550 ({omega} m){sup -1} at 1000 deg.C. The irradiation reduced only slightly the magnitude of {sigma} indicating the materials tested cannot be treated as an electrical insulator in a MHD analysis for liquid metal blankets. (authors)

  5. About the composition and processing of precious metals from the Serbian medieval mines

    Directory of Open Access Journals (Sweden)

    Kovačević-Kojić Desanka

    2013-01-01

    Full Text Available Account Books of the Caboga (Kabužić Brothers 1426-1433 (Squarço - Reminder, Diary and Ledger from the Historical Archive of Dubrovnik provide new evidence about the high degree of treatment and composition of precious metals from the Serbian medieval mines. First of all, that the residue, after the purification of unprocessed into fine silver, was copper. Even the price of this process is listed. In the Squarço, in two items in a receipt from 1430, there is previously unknown data about auriferous silver (argento di glama, the composition of which, besides gold, also included copper, and the precisely determined shares of these metals per litre. Apart from the Account Books of the Caboga (Kabužić Brothers, other written sources and hitherto geological explorations have provided no clues regarding the presence of copper in the auriferous silver mines.

  6. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    International Nuclear Information System (INIS)

    Ramm, D.A.J.; Hutchings, I.M.; Clyne, T.W.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharply reducing the erosive wear at high erodent impact angles, whilst retaining the good erosion resistance of ceramics at low angles. It is shown that the proportion of metal and ceramic at the free surface can be specified so as to optimise the erosion resistance. Experiments have also been carried out on the resistance of the coatings to debonding during four-point bending of the coated substrate. Progress is being made towards the tailoring of composition profiles in graded coatings so as to optimise the combination of erosion resistance and adhesion. (orig.)

  7. Composite materials obtained by the ion-plasma sputtering of metal compound coatings on polymer films

    Science.gov (United States)

    Khlebnikov, Nikolai; Polyakov, Evgenii; Borisov, Sergei; Barashev, Nikolai; Biramov, Emir; Maltceva, Anastasia; Vereshchagin, Artem; Khartov, Stas; Voronin, Anton

    2016-01-01

    In this article, the principle and examples composite materials obtained by deposition of metal compound coatings on polymer film substrates by the ion-plasma sputtering method are presented. A synergistic effect is to obtain the materials with structural properties of the polymer substrate and the surface properties of the metal deposited coatings. The technology of sputtering of TiN coatings of various thicknesses on polyethylene terephthalate films is discussed. The obtained composites are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and scanning tunneling microscopy (STM) is shown. The examples of application of this method, such as receiving nanocomposite track membranes and flexible transparent electrodes, are considered.

  8. Characterization of impact damage in metallic/nonmetallic composites using x-ray computed tomography imaging

    International Nuclear Information System (INIS)

    Green, William H.; Wells, Joseph M.

    1999-01-01

    Characterizing internal impact damage in composites can be difficult, especially in structurally complex composites or those consisting of many materials. Many methods for nondestructive inspection/nondestructive testing (NDI/NDT) of materials have been known and in use for many years, including x-ray film, real-time, and digital radiographic techniques, and ultrasonic techniques. However, these techniques are generally not capable of three-dimensional (3D) mapping of complex damage patterns, which is necessary to visualize and understand damage cracking modes. Conventional x-ray radiography suffers from the loss of 3D information. Structural complexity and signal dispersion in materials with many interfaces significantly effect ultrasonic inspection techniques. This makes inspection scan interpretation difficult, especially in composites containing a number of different materials (i.e., polymer, ceramic, and metallic). X-ray computed tomography (CT) is broadly applicable to any material or test object through which a beam of penetrating radiation may be passed and detected, including metals, plastics, ceramics, metallic/nonmetallic composites, and assemblies. The principal advantage of CT is that it provides densitometric (that is, radiological density and geometry) images of thin cross sections through an object. Because of the absence of structural superposition, images are much easier to interpret than conventional radiological images. The user can quickly learn to read CT data because images correspond more closely to the way the human mind visualizes 3D structures than projection radiology (that is, film radiography, real-time radiography (RTR), and digital radiography (DR)). Any number of CT images, or slices, from scanning an object can be volumetrically reconstructed to produce a 3D attenuation map of the object. The 3D attenuation data can be rendered using multiplanar or 3D solid visualization. In multiplanar visualization there are four planes of view

  9. Microstructure Evolution and Composition Control during the Processing of Thin-gage Metallic Foil (Preprint)

    Science.gov (United States)

    2012-02-01

    applications requiring characteristics such as light weight, high structural stiffness, or low thermal conductivity. Ductile, low temperature metals such as...was EDM’ed from the billet/ingot, stress relieved, finish ground, brazed onto an oxygen-free high -conductivity copper backing plate, and attached to...of each alloying element and hence the composition of the deposit. The substrates were a high - temperature alloy steel. They were heated to a

  10. Spectroscopic micro-tomography of metallic-organic composites by means of photon-counting detectors

    Czech Academy of Sciences Publication Activity Database

    Pichotka, Martin; Jakůbek, Jan; Vavřík, Daniel

    2015-01-01

    Roč. 10, č. 12 (2015), C12033 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LO1219 Keywords : micro-tomography * photon-counting detectors * metallic-organic composites Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.310, year: 2015 http://iopscience.iop.org/article/10.1088/1748-0221/10/12/C12033/pdf

  11. Effect of metal surface composition on deposition behavior of stainless steel component dissolved in liquid sodium

    International Nuclear Information System (INIS)

    Yokota, Norikatsu; Shimoyashiki, Shigehiro

    1988-01-01

    Deposition behavior of corrosion products has been investigated to clarify the effect of metal surface composition on the deposition process in liquid sodium. For the study a sodium loop made of Type 304 stainless steel was employed. Deposition test pieces, which were Type 304 stainless steel, iron, nickel or Inconel 718, were immersed in the sodium pool of the test pot. Corrosion test pieces, which were Type 304 stainless steel, 50 at% Fe-50 at%Mn and Inconel 718, were set in a heater pin assembly along the axial direction of the heater pin surface. Sodium temperatures at the outlet and inlet of the heater pin assembly were controlled at 943 and 833 K, respectively. Sodium was purified at a cold trap temperature of 393 K and the deposition test was carried out for 4.3 x 10 2 - 2.9 x 10 4 ks. Several crystallized particles were observed on the surface of the deposition test pieces. The particles had compositions and crystal structures which depended on both the composition of deposition test pieces and the concentration of iron and manganese in sodium. Only iron-rich particles having a polyhedral shape deposited on the iron surface. Two types of particles, iron-rich α-phase and γ-phase with nearly the same composition as stainless steel, were deposited on Type 304 stainless steel. A Ni-Mn alloy was deposited on the nickel surface in the case of a higher concentration of manganese in sodium. On the other hand, for a lower manganese concentration, a Fe-Ni alloy was precipitated on the nickel surface. Particles deposited on nickel had a γ-phase crystal structure similar to the deposition test piece of nickel. Hence, the deposition process can be explained as follows: Corrosion products in liquid sodium were deposited on the metal surface by forming a metal alloy selectively with elements of the metal surface. (author)

  12. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    OpenAIRE

    Ramm , D.; Hutchings , I.; Clyne , T.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharp...

  13. Electrodeposition of Metal Matrix Composites and Materials Characterization for Thin-Film Solar Cells

    Science.gov (United States)

    2017-12-04

    Air Mass CNT Carbon Nanotubes DIV Dark Current -Voltage DMA Dynamic Mechanical Analysis EL Electroluminescence FEM Finite Element Method IMM...AFRL-RV-PS- AFRL-RV-PS- TR-2017-0174 TR-2017-0174 ELECTRODEPOSITION OF METAL MATRIX COMPOSITES AND MATERIALS CHARACTERIZATION FOR THIN-FILM SOLAR...research which is exempt from public affairs security and policy review in accordance with AFI 61-201, paragraph 2.3.5.1. This report is available to

  14. Method and apparatus for fabricating a composite structure consisting of a filamentary material in a metal matrix

    Science.gov (United States)

    Banker, J.G.; Anderson, R.C.

    1975-10-21

    A method and apparatus are provided for preparing a composite structure consisting of filamentary material within a metal matrix. The method is practiced by the steps of confining the metal for forming the matrix in a first chamber, heating the confined metal to a temperature adequate to effect melting thereof, introducing a stream of inert gas into the chamber for pressurizing the atmosphere in the chamber to a pressure greater than atmospheric pressure, confining the filamentary material in a second chamber, heating the confined filamentary material to a temperature less than the melting temperature of the metal, evacuating the second chamber to provide an atmosphere therein at a pressure, placing the second chamber in registry with the first chamber to provide for the forced flow of the molten metal into the second chamber to effect infiltration of the filamentary material with the molten metal, and thereafter cooling the metal infiltrated-filamentary material to form said composite structure.

  15. Method and apparatus for fabricating a composite structure consisting of a filamentary material in a metal matrix

    International Nuclear Information System (INIS)

    Banker, J.G.; Anderson, R.C.

    1975-01-01

    A method and apparatus are provided for preparing a composite structure consisting of filamentary material within a metal matrix. The method is practiced by the steps of confining the metal for forming the matrix in a first chamber, heating the confined metal to a temperature adequate to effect melting thereof, introducing a stream of inert gas into the chamber for pressurizing the atmosphere in the chamber to a pressure greater than atmospheric pressure, confining the filamentary material in a second chamber, heating the confined filamentary material to a temperature less than the melting temperature of the metal, evacuating the second chamber to provide an atmosphere therein at a pressure, placing the second chamber in registry with the first chamber to provide for the forced flow of the molten metal into the second chamber to effect infiltration of the filamentary material with the molten metal, and thereafter cooling the metal infiltrated-filamentary material to form said composite structure

  16. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    Science.gov (United States)

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Nonlocality and particle-clustering effects on the optical response of composite materials with metallic nanoparticles

    Science.gov (United States)

    Chen, C. W.; Chung, H. Y.; Chiang, H.-P.; Lu, J. Y.; Chang, R.; Tsai, D. P.; Leung, P. T.

    2010-10-01

    The optical properties of composites with metallic nanoparticles are studied, taking into account the effects due to the nonlocal dielectric response of the metal and the coalescing of the particles to form clusters. An approach based on various effective medium theories is followed, and the modeling results are compared with those from the cases with local response and particles randomly distributed through the host medium. Possible observations of our modeling results are illustrated via a calculation of the transmission of light through a thin film made of these materials. It is found that the nonlocal effects are particularly significant when the particles coalesce, leading to blue-shifted resonances and slightly lower values in the dielectric functions. The dependence of these effects on the volume fraction and fractal dimension of the metal clusters is studied in detail.

  18. Modeling back-relaxation in ionic polymer metal composites: The role of steric effects and composite layers

    Science.gov (United States)

    Porfiri, Maurizio; Sharghi, Hesam; Zhang, Peng

    2018-01-01

    Ionic polymer metal composites (IPMCs) are a new class of active materials that are gaining traction as soft actuators in medical and industrial applications. IPMCs can undergo large deformations under modest voltage inputs, in dry and wet environments. Past studies have demonstrated that physical and geometric properties of all the IPMC constituents (ionomer, electrodes, and counterions) may all influence the time scales of the transient response and severity of the back-relaxation. In this study, we present a detailed mathematical model to investigate how the finite size of the counterions and the presence of metal particles in the vicinity of the electrodes modulate IPMC actuation. We build on previous work by our group on thermodynamically consistent modeling of IPMC mechanics and electrochemistry, which attributes IPMC actuation to the interplay between Maxwell stress and osmotic forces. To gain insight into the role of physical and geometric parameters, the resulting nonlinear partial differential equations are solved semianalytically using the method of matched asymptotic expansions, for the initial transient and the steady-state. A numerical solution in COMSOL Multiphysics® is developed to verify semianalytical findings and further explore IPMC actuation. Our model can successfully predict the entire response of IPMCs, from the initial bending toward the anode to the steady-state toward the cathode. We find that the steric effect can abolish the back-relaxation of IPMCs by restraining the counterions' concentration near the electrodes. We also find that increasing the thickness of the ionomer-metal composite layers may enhance IPMC actuation through increased osmotic forces and Maxwell stress.

  19. An Assessment of Mechanical and Tribological Property of Hybrid Aluminium Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    R. Santosh Kumar

    2017-04-01

    Full Text Available Composite materials has huge requirement in the area of automobile, aerospace, and wear resistant applications. This study presents the synthesis of composite reinforced with SiC and Al2O3 using gravity stir casting. Stir casting is the manufacturing process that is incorporated to produce the composite material because of its extreme bonding capacity with base material. The composition of reinforcement with 6061 aluminium matrix is SiC-7.5% and Al2O3 -2.5% respectively. The average size of reinforcement particle is 30-40 microns. The synthesised composite casting is machined using EDM to prepare specimens for various tests. Microstructure study was carried and the microstructure images prove the existence and dispersion of reinforcement particles in the metal matrix. There is no visible porosity is observed. The hardness of the specimen is tested using Vickers hardness tester and found considerable increase when compare with parent alloy Al 6061. Also mechanical and tribological properties of hybrid Aluminium metal matrix composite were employed. The fortifying material, Silicon Carbide is composed of tetrahedral of carbon and silicon atoms with strong bonds in crystal lattice along with its excellent wear resistance property and alumina have high strength and wear resistance. To avoid enormous material wastage and to achieve absolute accuracy, wire-cut EDM process is capitalised to engrave the specimen as per required dimensions. Three Tensile test specimens were prepared, in order to achieve reliability in results as per ASTM- E8 standard, and the values were tabulated. Impact test was carried out and the readings were tabulated. Wear test was carried out using pin on disc wear test apparatus and the results show considerable increase in wear resistant property when compare with parent alloy Al6061.The above work proves the successful fabrication of composite and evaluation of properties.

  20. Processing and Electromagnetic Shielding Properties of Multifunctional Metal Composite Knitted Fabric used as Socks

    Directory of Open Access Journals (Sweden)

    Yu Zhicai

    2016-01-01

    Full Text Available In this research, a type of bamboo charcoal polyester (BC-PET/antibacterial nylon(AN/stainless steel wire (SSW metal composite yarn was prepared with a hollow spindle spinning machine, which using the SSW as the core material, the BC-PET and AN as the outer and inner wrapped yarns, respectively. The wrapping numbers was set at 8.0turns/cm for the produced metal composite yarns. Furthermore, a type of plated knitted fabric was designed and produced by using the automatic jacquard knitting machine. The plated knitted fabric presents the BC-PET/AN/SSW metal composite yarn on the knitted fabric face and the crisscross-section polyester (CSP on the knit back. The effect of lamination numbers and angles on the electromagnetic shielding effectiveness (EMSE were discussed in this study. EMSE measurement showed that the lamination angles will influence the EMSE, but not affect the air permeability. Finally, a novel EM shielding socks was designed with the produced plated knitted fabric. Finally, the performance of thermal resistance and evaporation resistance was also test usingThe sweating guarded hot plate apparatus.

  1. Adaptive neuro-fuzzy control of ionic polymer metal composite actuators

    International Nuclear Information System (INIS)

    Thinh, Nguyen Truong; Yang, Young-Soo; Oh, Il-Kwon

    2009-01-01

    An adaptive neuro-fuzzy controller was newly designed to overcome the degradation of the actuation performance of ionic polymer metal composite actuators that show highly nonlinear responses such as a straightening-back problem under a step excitation. An adaptive control algorithm with the merits of fuzzy logic and neural networks was applied for controlling the tip displacement of the ionic polymer metal composite actuators. The reference and actual displacements and the change of the error with the electrical inputs were recorded to generate the training data. These data were used for training the adaptive neuro-fuzzy controller to find the membership functions in the fuzzy control algorithm. Software simulation and real-time experiments were conducted by using the Simulink and dSPACE environments. Present results show that the current adaptive neuro-fuzzy controller can be successfully applied to the reliable control of the ionic polymer metal composite actuator for which the performance degrades under long-time actuation

  2. Electrochemical and Antimicrobial Properties of Diamondlike Carbon-Metal Composite Films

    Energy Technology Data Exchange (ETDEWEB)

    MORRISON, M. L.; BUCHANAN, R. A.; LIAW, P. K.; BERRY, C. J.; BRIGMON, R.; RIESTER, L.; JIN, C.; NARAYAN, R. J.

    2005-05-11

    Implants containing antimicrobial metals may reduce morbidity, mortality, and healthcare costs associated with medical device-related infections. We have deposited diamondlike carbon-silver (DLC-Ag), diamondlike carbon-platinum (DLC-Pt), and diamondlike carbon-silver-platinum (DLC-AgPt) thin films using a multicomponent target pulsed laser deposition process. Transmission electron microscopy of the DLC-silver and DLC-platinum composite films revealed that the silver and platinum self-assemble into nanoparticle arrays within the diamondlike carbon matrix. The diamondlike carbon-silver film possesses hardness and Young's modulus values of 37 GPa and 331 GPa, respectively. The diamondlike carbon-metal composite films exhibited passive behavior at open-circuit potentials. Low corrosion rates were observed during testing in a phosphate-buffered saline (PBS) electrolyte. In addition, the diamondlike carbon-metal composite films were found to be immune to localized corrosion below 1000 mV (SCE). DLC-silver-platinum films demonstrated exceptional antimicrobial properties against Staphylococcus bacteria. It is believed that a galvanic couple forms between platinum and silver, which accelerates silver ion release and provides more robust antimicrobial activity. Diamondlike carbon-silver-platinum films may provide unique biological functionalities and improved lifetimes for cardiovascular, orthopaedic, biosensor, and implantable microelectromechanical systems.

  3. Effect of composition on corrosion resistance of high-alloy austenitic stainless steel weld metals

    International Nuclear Information System (INIS)

    Marshall, P.I.; Gooch, T.G.

    1993-01-01

    The corrosion resistance of stainless steel weld metal in the ranges of 17 to 28% chromium (Cr), 6 to 60% nickel (Ni), 0 to 9% molybdenum (Mo), and 0.0 to 0.37% nitrogen (N) was examined. Critical pitting temperatures were determined in ferric chloride (FeCl 3 ). Passive film breakdown potentials were assessed from potentiodynamic scans in 3% sodium chloride (NaCl) at 50 C. Potentiodynamic and potentiostatic tests were carried out in 30% sulfuric acid (H 2 SO 4 ) ar 25 C, which was representative of chloride-free acid media of low redox potential. Metallographic examination and microanalysis were conducted on the test welds. Because of segregation of alloying elements, weld metal pitting resistance always was lower than that of matching composition base steel. The difference increased with higher Cr, Mo, and N contents. Segregation also reduced resistance to general corrosion in H 2 SO 4 , but the effect relative to the base steel was less marked than with chloride pitting. Segregation of Cr, Mo, and N in fully austenitic deposits decreased as the Ni' eq- Cr' eq ratio increased. Over the compositional range studied, weld metal pitting resistance was dependent mainly on Mo content and segregation. N had less effect than in wrought alloys. Both Mo and N enhanced weld metal corrosion resistance in H 2 SO 4

  4. Reductive mineralization of cellulose with vanadium, iron and tungsten chlorides and access to MxOy metal oxides and MxOy/C metal oxide/carbon composites.

    Science.gov (United States)

    Henry, Aurélien; Hesemann, Peter; Alauzun, Johan G; Boury, Bruno

    2017-10-15

    M x O y and M x O y /C composites (M=V, Fe and W) were obtained by mineralization of cellulose with several metal chlorides. Cellulose was used both as a templating agent and as an oxygen and a carbon source. Soluble chloride molecules (VOCl 3 and WCl 6 ) and a poorly soluble ionic chloride compound (FeCl 3 ) were chosen as metal oxide precursors. In a first time, primary metal oxide/cellulose composites were obtained via a thermal treatment by reacting urea impregnated filter paper with the corresponding metal chlorides in an autoclave at 150°C after 3days. After either pyrolysis or calcination steps of these intermediate materials, interesting metal oxides with various morphologies were obtained (V 2 O 5, V 2 O 3 , Fe 3 O 4 , WO 3, H 0.23 WO 3 ), composites (V 2 O 3 /C) as well as carbides (hexagonal W 2 C and WC, Fe 3 C) This result highlight the reductive role that can play cellulose during the pyrolysis step that allows to tune the composition of M x O y /C composites. The materials were characterized by FTIR, Raman, TGA, XRD and SEM. This study highlights that cellulose can be used for a convenient preparation of a variety of highly demanded M x O y and M x O y /C composites with original shapes and morphologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Synthesis of new metal-matrix Al-Al2O3-graphene composite materials

    Science.gov (United States)

    Elshina, L. A.; Muradymov, R. V.; Kvashnichev, A. G.; Vichuzhanin, D. I.; Molchanova, N. G.; Pankratov, A. A.

    2017-08-01

    The mechanism of formation of ceramic microparticles (alumina) and graphene in a molten aluminum matrix is studied as a function of the morphology and type of precursor particles, the temperature, and the gas atmosphere. The influence of the composition of an aluminum composite material (as a function of the concentration and size of reinforcing particles) on its mechanical and corrosion properties, melting temperature, and thermal conductivity is investigated. Hybrid metallic Al-Al2O3-graphene composite materials with up to 10 wt % alumina microparticles and 0.2 wt % graphene films, which are uniformly distributed over the metal volume and are fully wetted with aluminum, are synthesized during the chemical interaction of a salt solution containing yttria and boron carbide with molten aluminum in air. Simultaneous introduction of alumina and graphene into an aluminum matrix makes it possible to produce hybrid metallic composite materials having a unique combination of the following properties: their thermal conductivity is higher than that of aluminum, their hardness and strength are increased by two times, their relative elongation during tension is increased threefold, and their corrosion resistance is higher than that of initial aluminum by a factor of 2.5-4. We are the first to synthesize an in situ hybrid Al-Al2O3-graphene composite material having a unique combination of some characteristics. This material can be recommended as a promising material for a wide circle of electrical applications, including ultrathin wires, and as a structural material for the aerospace industry, the car industry, and the shipbuilding industry.

  6. Effect of metallic coating on the properties of copper-silicon carbide composites

    Science.gov (United States)

    Chmielewski, M.; Pietrzak, K.; Teodorczyk, M.; Nosewicz, S.; Jarząbek, D.; Zybała, R.; Bazarnik, P.; Lewandowska, M.; Strojny-Nędza, A.

    2017-11-01

    In the presented paper a coating of SiC particles with a metallic layer was used to prepare copper matrix composite materials. The role of the layer was to protect the silicon carbide from decomposition and dissolution of silicon in the copper matrix during the sintering process. The SiC particles were covered by chromium, tungsten and titanium using Plasma Vapour Deposition method. After powder mixing of components, the final densification process via Spark Plasma Sintering (SPS) method at temperature 950 °C was provided. The almost fully dense materials were obtained (>97.5%). The microstructure of obtained composites was studied using scanning electron microscopy as well as transmission electron microscopy. The microstructural analysis of composites confirmed that regardless of the type of deposited material, there is no evidence for decomposition process of silicon carbide in copper. In order to measure the strength of the interface between ceramic particles and the metal matrix, the micro tensile tests have been performed. Furthermore, thermal diffusivity was measured with the use of the laser pulse technique. In the context of performed studies, the tungsten coating seems to be the most promising solution for heat sink application. Compared to pure composites without metallic layer, Cu-SiC with W coating indicate the higher tensile strength and thermal diffusitivy, irrespective of an amount of SiC reinforcement. The improvement of the composite properties is related to advantageous condition of Cu-SiC interface characterized by well homogenity and low porosity, as well as individual properties of the tungsten coating material.

  7. Constitutive modeling of two-phase metallic composites with application to tungsten-based composite 93W–4.9Ni–2.1Fe

    International Nuclear Information System (INIS)

    Lu, W.R.; Gao, C.Y.; Ke, Y.L.

    2014-01-01

    The two-phase metallic composites, composed by the metallic particulate reinforcing phase and the metallic matrix phase, have attracted a lot of attention in recent years for their excellent material properties. However, the constitutive modeling of two-phase metallic composites is still lacking currently. Most used models for them are basically oriented for single-phase homogeneous metallic materials, and have not considered the microstructural evolution of the components in the composite. This paper develops a new constitutive model for two-phase metallic composites based on the thermally activated dislocation motion mechanism and the volume fraction evolution. By establishing the relation between microscopic volume fraction and macroscopic state variables (strain, strain rate and temperature), the evolution law of volume fraction during the plastic deformation in two-phase composites is proposed for the first time and introduced into the new model. Then the new model is applied to a typical two-phase tungsten-based composite – 93W–4.9Ni–2.1Fe tungsten heavy alloy. It has been found that our model can effectively describe the plastic deformation behaviors of the tungsten-based composite, because of the introduction of volume fraction evolution and the connecting of macroscopic state variables and micromechanical characteristics in the constitutive model. The model's validation by experimental data indicates that our new model can provide a satisfactory prediction of flow stress for two-phase metallic composites, which is better than conventional single-phase homogeneous constitutive models including the Johnson–Cook (JC), Khan–Huang–Liang (KHL), Nemat-Nasser–Li (NNL), Zerilli–Armstrong (ZA) and Voyiadjis–Abed (VA) models

  8. Preparation of polymers suitable for radiation shielding and studying its properties (polyester composites with heavy metals salts)

    International Nuclear Information System (INIS)

    Kharita, M. H.; Al-Ajji, Z.; Yousef, S.

    2010-12-01

    Four composites were prepared in this work, based on polyester and heavy metals oxides and salts. The attenuation properties, as well as mechanical properties were studied, and the chemical stability was evaluated. It has been shown, that these composites can be used in radiation shielding for X-rays successfully, and the exact composition of these composites can be optimized according to the radiation energy to prepare the lightest possible shield. (author)

  9. Measurement of residual stress in plasma-sprayed metallic, ceramic and composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Suresh, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Matejicek, J.; Sampath, S. [State Univ. of New York, Stony Brook, NY (United States). Inst. for Mathematical Sciences; Gnaeupel-Herold, T.; Brand, P.C.; Prask, H.J. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1998-12-15

    Residual stresses in plasma-sprayed coatings were studied by three experimental techniques: curvature measurements, neutron diffraction and X-ray diffraction. Two distinct material classes were investigated: (1) single-material coatings (molybdenum) and (2) bi-material composites (nickel+alumina and NiCrAlY+yttria-stabilized zirconia), with and without graded layers. This paper deals with the effects of coating thickness and material properties on the evolution of residual stresses as a function of composition and thickness in both homogeneous and graded coatings. Mathematical analysis of the results allowed in some cases the separation of the quenching stress and thermal stress contributions to the final residual stress, as well as the determination of the through-thickness stress profile from measurements of different thickness specimens. In the ceramic-metal composites, it was found that the quenching stress plays a dominant role in the metallic phase, whereas the stress in the ceramic phase is mostly dominated by thermal mismatch. The respective thermal expansion coefficients and mechanical properties are the most important factors determining the stress sign and magnitude. The three residual stress measurement methods employed here were found to be complementary, in that each can provide unique information about the stress state. The most noteworthy outcomes are the determination of the through-thickness stress profile in graded coatings with high spatial resolution (curvature method) and determination of stress in each phase of a composite separately (neutron diffraction). (orig.) 25 refs.

  10. Methods of the Detection and Identification of Structural Defects in Saturated Metallic Composite Castings

    Directory of Open Access Journals (Sweden)

    Gawdzińska K.

    2017-09-01

    Full Text Available Diagnostics of composite castings, due to their complex structure, requires that their characteristics are tested by an appropriate description method. Any deviation from the specific characteristic will be regarded as a material defect. The detection of defects in composite castings sometimes is not sufficient and the defects have to be identified. This study classifies defects found in the structures of saturated metallic composite castings and indicates those stages of the process where such defects are likely to be formed. Not only does the author determine the causes of structural defects, describe methods of their detection and identification, but also proposes a schematic procedure to be followed during detection and identification of structural defects of castings made from saturated reinforcement metallic composites. Alloys examination was conducted after technological process, while using destructive (macroscopic tests, light and scanning electron microscopy and non-destructive (ultrasonic and X-ray defectoscopy, tomography, gravimetric method methods. Research presented in this article are part of author’s work on castings quality.

  11. Phase composition and magnetic properties in nanocrystalline permanent magnets based on misch-metal

    Science.gov (United States)

    Ma, Q.; Wang, J.; Zhang, Z. Y.; Zhang, X. F.; Liu, F.; Liu, Y. L.; Jv, X. M.; Li, Y. F.; Wang, G. F.

    2017-09-01

    The magnetic properties and phase composition of magnets based on misch-metal (MM) with nominal composition of MM13+xFe84-xB6.5 with x = 0.5, 1, 1.5, 2 and 2.5 using melt-spinning method were investigated. For x = 1.5, it could exhibit best magnetic properties (Hcj = 753.02 kA m-1, (BH)max = 70.77 kJ m-3). X-ray diffraction and energy dispersive spectroscopy show that the multi hard magnetic phase of RE2Fe14B (RE = La, Ce, Pr, Nd) existed in the magnets. The domain wall pinning effect and the exchange coupling interaction between grains are dependent on the abnormal RE-rich phase composition. Optimizing the phase constitution is necessary to improve magnetic properties in MM-Fe-B magnets for utilizing the rare earth resource in a balanced manner.

  12. Development of new metal matrix composite electrodes for electrical discharge machining through powder metallurgy process

    Directory of Open Access Journals (Sweden)

    C. Mathalai Sundaram

    2014-12-01

    Full Text Available Electrical discharge machining (EDM is one of the widely used nontraditional machining methods to produce die cavities by the erosive effect of electrical discharges. This method is popular due to the fact that a relatively soft electrically conductive tool electrode can machine hard work piece. Copper electrode is normally used for machining process. Electrode wear rate is the major drawback for EDM researchers. This research focus on fabrication of metal matrix composite (MMC electrode by mixing copper powder with titanium carbide (TiC and Tungsten carbide (WC powder through powder metallurgy process, Copper powder is the major amount of mixing proportion with TiC and WC. However, this paper focus on the early stage of the project where powder metallurgy route was used to determine suitable mixing time, compaction pressure and sintering and compacting process in producing EDM electrode. The newly prepared composite electrodes in different composition are tested in EDM for OHNS steel.

  13. Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites

    Science.gov (United States)

    Grande, D. H.; Mandell, J. F.; Hong, K. C. C.

    1988-01-01

    An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.

  14. Fabrication of BN/Al(-Mg) metal matrix composite (MMC) by pressureless infiltration technique

    Energy Technology Data Exchange (ETDEWEB)

    Jung, W.G.; Kwon, H. [School of Advanced Materials Eng., Kookmin Univ., Seoul (Korea)

    2004-07-01

    BN/Al(-Mg) metal matrix composite (MMC) was fabricated by the pressureless infiltration technique. The phase characterizations of the composites were analyzed using the SEM, TEM, EDS and EPMA on reaction products after the electrochemical dissolution of the matrix. It is confirmed that aluminum nitride (AlN) was formed by the reaction of Mg{sub 3}N{sub 2} and Al alloy melt. Plate type AlN and polyhedral type Mg(-Al) boride were formed by the reaction between Mg{sub 3}N{sub 2}, BN and molten Al in the composite. The reaction mechanism in the fabrication of BN/Al(-Mg) MMC was derived from the phase analysis results and the thermodynamic investigation. (orig.)

  15. Wear Behavior of Aluminium Metal Matrix Composite Prepared from Industrial Waste

    Directory of Open Access Journals (Sweden)

    L. Francis Xavier

    2016-01-01

    Full Text Available With an increase in the population and industrialization, a lot of valuable natural resources are depleted to prepare and manufacture products. However industrialization on the other hand has waste disposal issues, causing dust and environmental pollution. In this work, Aluminium Metal Matrix Composite is prepared by reinforcing 10 wt% and 20 wt% of wet grinder stone dust particles an industrial waste obtained during processing of quarry rocks which are available in nature. In the composite materials design wear is a very important criterion requiring consideration which ensures the materials reliability in applications where they come in contact with the environment and other surfaces. Dry sliding wear test was carried out using pin-on-disc apparatus on the prepared composites. The results reveal that increasing the reinforcement content from 10 wt% to 20 wt% increases the resistance to wear rate.

  16. Overall mechanical properties of fiber-reinforced metal matrix composites for fusion applications

    International Nuclear Information System (INIS)

    You, J.H.; Bolt, H.

    2002-01-01

    The high-temperature strength and creep properties are among the crucial criteria for the structural materials of plasma facing components (PFC) of fusion reactors, as they will be subjected to severe thermal stresses. The fiber-reinforced metal matrix composites are a potential heat sink material for the PFC application, since the combination of different material properties can lead to versatile performances. In this article, the overall mechanical properties of two model composites based on theoretical predictions are presented. The matrix materials considered were a precipitation hardened CuCrZr alloy and reduced activation martensitic steel 'Eurofer'. Continuous SiC fibers were used for the reinforcement. The results demonstrate that yield stress, ultimate tensile strength, work hardening rate and creep resistance could be extensively improved by the fiber reinforcement up to fiber content of 40 vol.%. The influence of the residual stresses on the plastic behavior of the composites is also discussed

  17. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    Science.gov (United States)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  18. Micromechanical modeling of tungsten-based bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Li Hao [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Li Ke [Department of Mechanical Engineering, Texas A and M University, TAMU 3123, College Station, TX 77843 (United States)]. E-mail: keli@tamu.edu; Subhash, Ghatu [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Kecskes, Laszlo J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Dowding, Robert J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2006-08-15

    Micromechanics models are developed for tungsten (W)-based bulk metallic glass (BMG) matrix composites employing the Voronoi tessellation technique and the finite element (FE) method. The simulation results indicate that the computed elastic moduli are close to those measured in the experiments. The predicted stress-strain curves agree well with their experimentally obtained counterparts in the early stage of the plastic deformation. An increase in the W volume fraction leads to a decrease in the yield stress and an increase in the Young's modulus of the composite. In addition, contours of equivalent plastic strain for increasing applied strains provide an explanation why shear bands were observed in the glassy phase, along the W/BMG interface, and in the W phase of failed W/BMG composite specimens.

  19. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    Science.gov (United States)

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils. PMID:26739424

  20. Micro-nano filler metal foil on vacuum brazing of SiCp/Al composites

    Science.gov (United States)

    Wang, Peng; Gao, Zeng; Niu, Jitai

    2016-06-01

    Using micro-nano (Al-5.25Si-26.7Cu)- xTi (wt%, x = 1.0, 1.5, 2.0, 2.5 and 3.0) foils as filler metal, the research obtained high-performance joints of aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process and Ti content on joint properties was investigated, respectively. The experimental results indicate that void free dense interface between SiC particle and metallic brazed seam with C-Al-Si-Ti product was readily obtained, and the joint shear strength enhanced with increasing brazing temperature from 560 to 580 °C or prolonging soaking time from 10 to 90 min. Sound joints with maximum shear strength of 112.5 MPa was achieved at 580 °C for soaking time of 90 min with (Al-5.25Si-26.7Cu)-2Ti filler, where Ti(AlSi)3 intermetallic is in situ strengthening phase dispersed in the joint and fracture occured in the filler metal layer. In this research, the beneficial effect of Ti addition into filler metal on improving wettability between SiC particle and metallic brazed seam was demonstrated, and capable welding parameters were broadened for SiCp/Al-MMCs with high SiC particle content.

  1. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites.

    Science.gov (United States)

    Dusoe, Keith J; Vijayan, Sriram; Bissell, Thomas R; Chen, Jie; Morley, Jack E; Valencia, Leopolodo; Dongare, Avinash M; Aindow, Mark; Lee, Seok-Woo

    2017-01-09

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu 5 Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.

  2. Real-time detection of metal ions using conjugated polymer composite papers.

    Science.gov (United States)

    Lee, Ji Eun; Shim, Hyeon Woo; Kwon, Oh Seok; Huh, Yang-Il; Yoon, Hyeonseok

    2014-09-21

    Cellulose, a natural polymeric material, has widespread technical applications because of its inherent structural rigidity and high surface area. As a conjugated polymer, polypyrrole shows practical potential for a diverse and promising range of future technologies. Here, we demonstrate a strategy for the real-time detection and removal of metal ions with polypyrrole/cellulose (PPCL) composite papers in solution. Simply, the conjugated polymer papers had different chemical/physical properties by applying different potentials to them, which resulted in differentiable response patterns and adsorption efficiencies for individual metal ions. First, large-area PPCL papers with a diameter of 5 cm were readily obtained via vapor deposition polymerization. The papers exhibited both mechanical flexibility and robustness, in which polypyrrole retained its redox property perfectly. The ability of the PPCL papers to recognize metal ions was examined in static and flow cells, in which real-time current change was monitored at five different applied potentials (+1, +0.5, 0, -0.5, and -1 V vs. Ag/AgCl). Distinguishable signals in the PPCL paper responses were observed for individual metal ions through principal component analysis. Particularly, the PPCL papers yielded unique signatures for three metal ions, Hg(ii), Ag(i), and Cr(iii), even in a real sample, groundwater. The sorption of metal ions by PPCL papers was examined in the flow system. The PPCL papers had a greatly superior adsorption efficiency for Hg(ii) compared to that of the other metal ions. With the strong demand for the development of inexpensive, flexible, light-weight, and environmentally friendly devices, the fascinating characteristics of these PPCL papers are likely to provide good opportunities for low-cost paper-based flexible or wearable devices.

  3. REGULARITIES AND MECHANISM OF FORMATION OF STRUCTURE OF THE MECHANICALLY ALLOYED COMPOSITIONS GROUND ON THE BASIS OF METAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    F. G. Lovshenko

    2014-01-01

    Full Text Available Experimentally determined regularities and mechanism of formation of structure of the mechanically alloyed compositions foundations on the basis of the widely applied in mechanical engineering metals – iron, nickel, aluminum, copper are given. 

  4. Fano-like resonance and scattering in dielectric(core)–metal(shell) composites embedded in active host matrices

    CSIR Research Space (South Africa)

    Jule, L

    2015-07-01

    Full Text Available We investigate light scattering by core–shell consisting of metal/dielectric composites considering spherical and cylindrical nanoinclusions, within the framework of the conventional Rayleigh approximation. By writing the electric potential...

  5. Effect of Liquid Ga on Metal Surfaces: Characterization of Morphology and Chemical Composition of Metals Heated in Liquid Ga

    Directory of Open Access Journals (Sweden)

    Eun Je Lee

    2013-01-01

    Full Text Available This study investigates the effect of liquid gallium (Ga on metal foils made of titanium (Ti, niobium (Nb, and molybdenum (Mo. The Ti, Nb, and Mo foils were heated in liquid Ga at 120°C for a maximum of two weeks. After heating, the changes in the morphology and the chemical composition of the metal foils were analyzed by using a field emission scanning electron microscope, energy-dispersive X-ray spectrometer, X-ray diffractometer, and X-ray photoelectron spectrometer. The results of the analysis indicated that the Nb foil showed the minimum adhesion of liquid Ga to the surface while the maximum amount of liquid Ga was observed to adhere to the Ti foil. In addition, the Nb foil was oxidized and the Mo foil was reduced during the heating process. Considering these effects, we conclude that Mo may be used as an alternative encapsulation material for Ga in addition to Nb, which is used as the conventional encapsulation material, due to its chemical resistance against oxidation in hot liquid Ga.

  6. Electrochemical and Friction Characteristics of Metallic Glass Composites at the Microstructural Length-scales.

    Science.gov (United States)

    Ayyagari, Aditya; Hasannaeimi, Vahid; Arora, Harpreet; Mukherjee, Sundeep

    2018-01-17

    Metallic glass composites represent a unique alloy design strategy comprising of in situ crystalline dendrites in an amorphous matrix to achieve damage tolerance unseen in conventional structural materials. They are promising for a range of advanced applications including spacecraft gears, high-performance sporting goods and bio-implants, all of which demand high surface degradation resistance. Here, we evaluated the phase-specific electrochemical and friction characteristics of a Zr-based metallic glass composite, Zr 56.2 Ti 13.8 Nb 5.0 Cu 6.9 Ni 5.6 Be 12.5 , which comprised roughly of 40% by volume crystalline dendrites in an amorphous matrix. The amorphous matrix showed higher hardness and friction coefficient compared to the crystalline dendrites. But sliding reciprocating tests for the composite revealed inter-phase delamination rather than preferred wearing of one phase. Pitting during potentiodynamic polarization in NaCl solution was prevalent at the inter-phase boundary, confirming that galvanic coupling was the predominant corrosion mechanism. Scanning vibration electrode technique demonstrated that the amorphous matrix corroded much faster than the crystalline dendrites due to its unfavorable chemistry. Relative work function values measured using scanning kelvin probe showed the amorphous matrix to be more electropositive, which explain its preferred corrosion over the crystalline dendrites as well as its characteristic friction behavior. This study paves the way for careful partitioning of elements between the two phases in a metallic glass composite to tune its surface degradation behavior for a range of advanced applications.

  7. Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Xiaodong; Wu, Hong, E-mail: wuhong927@126.com; Liu, Yong, E-mail: yonliu@csu.edu.cn; Zhang, Weidong; Li, Ruidi; Chen, Shiqi; Zai, Xiongfei; Hu, Te

    2016-10-15

    Metallic glass composite coatings Ti{sub 45}Cu{sub 41}Ni{sub 9}Zr{sub 5} and Ti{sub 45}Cu{sub 41}Ni{sub 6}Zr{sub 5}Sn{sub 3} (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni{sub 2}SnTi phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.

  8. Production of fiberglass/metal composite material suitable for building habitat and manufacturing facilities

    Science.gov (United States)

    1987-01-01

    The production of a fiberglass/metal composite material suitable for building habitats and manufacturing facilities was the project for Clemson. The concept and development of the knowledge necessary to produce glass fibers originated in the spring semester. During the summer, while at Johnson Space Center, fiberglass from a rock composition similar to ones found at the Apollo 16 site on the moon was successfully produced. The project this year was a continuation of last year's studies. We addressed the following problems which emerged as the work progressed: (1) Methods for coating the fibers with a metal were explored. We manufactured composites in two stages: Glass fibers without any coating on them; and fibers coated with metals as they were made. This proved to be a difficult process. Future activities include using a chemical vapor deposition process on fibers which have been made. (2) A glass furnace was developed which relies primarily on solar energy for melting the glass. The temperature of the melted glass is maintained by electrical means. The design is for 250 kg of glass per day. An electrical engineering student developed a scheme for controlling the melting and manufacturing process from the earth. This was done to minimize the human risk. Graphite refractories are relied on to contain the melt. (3) The glass composition chosen for the project is a relatively pure anorthite which is available in the highland regions of the lunar surface. A major problems with this material is that it melts at a comparatively high temperature. This problem will be solved by using graphite refractory materials for the furnace. The advantage of this glass composition is that it is very stable and does not tend to crystallize. (4) We have also refined the experimental furnace and fiber making machinery which we will be using at Johnson Space Center this summer. We believe that we will be able to draw and coat glass fibers in a vacuum for use in composites. We intend to

  9. Measuring the noble metal and iodine composition of extracted noble metal phase from spent nuclear fuel using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Palomares, R.I.; Dayman, K.J.; Landsberger, S.; Biegalski, S.R.; Soderquist, C.Z.; Casella, A.J.; Brady Raap, M.C.; Schwantes, J.M.

    2015-01-01

    Masses of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis. Nuclide presence is predicted using fission yield analysis, and radionuclides are identified and the masses quantified using neutron activation analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO 2 fuel dissolved in nitric acid and UO 2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. - Highlights: • The noble metal phase was chemically extracted from spent nuclear fuel and analyzed non-destructively. • Noble metal phase nuclides and long-lived iodine were identified and quantified using neutron activation analysis. • Activation to shorter-lived radionuclides allowed rapid analysis of long-lived fission products in spent fuel using gamma spectrometry

  10. Fracture toughness of Ceramic-Fiber-Reinforced Metallic-Intermetallic-Laminate (CFR-MIL) composites

    International Nuclear Information System (INIS)

    Vecchio, Kenneth S.; Jiang, Fengchun

    2016-01-01

    Novel Ceramic-Fiber-Reinforced-Metal-Intermetallic-Laminate (CFR-MIL) composites, Ti–Al 3 Ti–Al 2 O 3 –Al, were synthesized by reactive foil sintering in air. Microstructure controlled material architectures were achieved with continuous Al 2 O 3 fibers oriented in 0° and 90° layers to form fully dense composites in which the volume fractions of all four component phases can be tailored. Bend fracture specimens were cut from the laminate plates in divider orientation, and bend tests were performed to study the fracture behavior of CFR-MIL composites under three-point and four-point bending loading conditions. The microstructures and fractured surfaces of the CFR-MIL composites were examined using optical microscopy and scanning electron microscopy to establish a correlation between the fracture toughness, fracture surface morphology and microstructures of CFR-MIL composites. The fracture and toughening mechanisms of the CFR-MIL composites are also addressed. The present experimental results indicate that the fracture toughness of CFR-MIL composites determined by three- and four-point bend loading configurations are quite similar, and increased significantly compared to MIL composites without ceramic fiber reinforcement. The interface cracking behavior is related to the volume fraction of the brittle Al 3 Ti phase and residual ductile Al, but the fracture toughness values appear to be insensitive to the ratio of these two phases. The toughness appears to be dominated by the ductility/strength of the Ti layers and the strength and crack bridging effect of the ceramic fibers.

  11. The Process of Nanostructuring of Metal (Iron Matrix in Composite Materials for Directional Control of the Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Elena Zemtsova

    2014-01-01

    Full Text Available We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1 preparation of porous metal matrix; (2 surface structuring of the porous metal matrix by TiC nanowires; (3 pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1–50 nm. This material can be represented as the material type “frame in the frame” that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based materials with improved mechanical properties for the different areas of technology.

  12. Investigating Planetesimal Evolution by Experiments with Fe-Ni Metallic Melts: Light Element Composition Effects on Trace Element Partitioning Behavior

    Science.gov (United States)

    Chabot, N. L.

    2017-12-01

    As planetesimals were heated up in the early Solar System, the formation of Fe-Ni metallic melts was a common occurrence. During planetesimal differentiation, the denser Fe-Ni metallic melts separated from the less dense silicate components, though some meteorites suggest that their parent bodies only experienced partial differentiation. If the Fe-Ni metallic melts did form a central metallic core, the core eventually crystallized to a solid, some of which we sample as iron meteorites. In all of these planetesimal evolution processes, the composition of the Fe-Ni metallic melt influenced the process and the resulting trace element chemical signatures. In particular, the metallic melt's "light element" composition, those elements present in the metallic melt in a significant concentration but with lower atomic masses than Fe, can strongly affect trace element partitioning. Experimental studies have provided critical data to determine the effects of light elements in Fe-Ni metallic melts on trace element partitioning behavior. Here I focus on combining numerous experimental results to identify trace elements that provide unique insight into constraining the light element composition of early Solar System Fe-Ni metallic melts. Experimental studies have been conducted at 1 atm in a variety of Fe-Ni systems to investigate the effects of light elements on trace element partitioning behavior. A frequent experimental examination of the effects of light elements in metallic systems involves producing run products with coexisting solid metal and liquid metal phases. Such solid-metal-liquid-metal experiments have been conducted in the Fe-Ni binary system as well as Fe-Ni systems with S, P, and C. Experiments with O-bearing or Si-bearing Fe-Ni metallic melts do not lend themselves to experiments with coexisting solid metal and liquid metal phases, due to the phase diagrams of these elements, but experiments with two immiscible Fe-Ni metallic melts have provided insight into

  13. Interatomic potential to predict the favored and optimized compositions for ternary Cu-Zr-Hf metallic glasses

    International Nuclear Information System (INIS)

    Luo, S. Y.; Cui, Y. Y.; Dai, Y.; Li, J. H.; Liu, B. X.

    2012-01-01

    Under the framework of smoothed and long range second-moment approximation of tight-binding, a realistic interatomic potential was first constructed for the Cu-Zr-Hf ternary metal system. Applying the constructed potential, Monte Carlo simulations were carried out to compare the relative stability of crystalline solid solution versus its disordered counterpart over the entire composition triangle of the system (as a function of alloy composition). Simulations not only reveal that the origin of metallic glass formation but also determine, in the composition triangle, a quadrilateral region, within which metallic glass formation is energetically favored. It is proposed to define the energy differences between the crystalline solid solutions and disordered states as the driving force for amorphization and the corresponding calculations pinpoint an optimized composition locating at an composition of Cu 55 Zr 10 Hf 35 , around which the driving force for metallic glass formation reaches its maximum, suggesting that the ternary Cu-Zr-Hf metallic glasses designed to have the compositions around Cu 55 Zr 10 Hf 35 could be more stable than other alloys in the system. Moreover, for the Cu 55 Zr 10 Hf 35 metallic glass, the Voronoi tessellation calculations reveal some interesting features of its atomic configurations and coordination polyhedra distribution.

  14. Correlation of Flux Composition and Inclusion Characteristics With Submerged Arc Weld Metal Properties in HY-100 Steel

    Science.gov (United States)

    1993-09-01

    chemistries are complex, the welding engineer needs to obtain the correct CCT diagram for the alloy system in question. Once the CCT diagram is estimated...the CCT diagram must be pertinent to the particular chemistry of the weld metal, especially when the weld metal composition varies with flux

  15. Stress corrosion crack initiation of alloy 182 weld metal in primary coolant - Influence of chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Calonne, O.; Foucault, M.; Steltzlen, F. [AREVA (France); Amzallag, C. [EDF SEPTEN (France)

    2011-07-01

    Nickel-base alloys 182 and 82 have been used extensively for dissimilar metal welds. Typical applications are the J-groove welds of alloy 600 vessel head penetrations, pressurizer penetrations, heater sleeves and bottom mounted instrumented nozzles as well as some safe end butt welds. While the overall performance of these weld metals has been good, during the last decade, an increasing number of cases of stress corrosion cracking of Alloy 182 weld metal have been reported in PWRs. In this context, the role of weld defects has to be examined. Their contribution in the crack initiation mechanism requires laboratory investigations with small scale characterizations. In this study, the influence of both alloy composition and weld defects on PWSCC (Stress Corrosion Cracking in Primary Water) initiation was investigated using U-bend specimens in simulated primary water at 320 C. The main results are the following: -) the chemical compositions of the weld deposits leading to a large propensity to hot cracking are not the most susceptible to PWSCC initiation, -) macroscopically, superficial defects did not evolve during successive exposures. They can be included in large corrosion cracks but their role as 'precursors' is not yet established. (authors)

  16. Composition design and mechanical properties of ternary Cu–Zr–Ti bulk metallic glasses

    International Nuclear Information System (INIS)

    Pan, Ye; Zeng, Yuqiao; Jing, Lijun; Zhang, Lu; Pi, Jinhong

    2014-01-01

    Highlights: • Newly designed monolithic bulk metallic glasses are of good glass-forming ability. • Cu 50 Zr 44 Ti 6 exhibits excellent plastic deformation up to ∼7.4%. • Copious and intersected shear bans are observed in the fractography of Cu 50 Zr 44 Ti 6 . • Cu 50 Zr 44 Ti 6 has the best plasticity in the ternary Cu–Zr–Ti bulk metallic glasses. - Abstract: The new compositions of ternary Cu–Zr–Ti bulk metallic glasses are predicted by integrating calculation of vacancy formation energy, mixing enthalpy and configuration entropy of the alloys based on thermodynamics of glass formers. The monolithic amorphous rods of 3 mm diameter have been successfully fabricated, and characterized by X-ray diffractometry, differential scanning calorimetry, scanning electronic microscopy, transmission electronic microscopy and compression tests. The results show that the designed alloys possess good glass forming ability and excellent mechanical properties. The mechanical properties of the samples can be effectively improved by regulating their composition. The monolithic amorphous rod of Cu 50 Zr 44 Ti 6 exhibits a high fracture strength of 1855 MPa and excellent plastic deformation up to ∼7.4%. The formation and propagation of shear bands in samples are also investigated. The enhancement of plastic deformation is mainly contributed to multiplication and intersection of shear bands

  17. Effect of carrier gas composition on transferred arc metal nanoparticle synthesis

    International Nuclear Information System (INIS)

    Stein, Matthias; Kiesler, Dennis; Kruis, Frank Einar

    2013-01-01

    Metal nanoparticles are used in a great number of applications; an effective and economical production scaling-up is hence desirable. A simple and cost-effective transferred arc process is developed, which produces pure metal (Zn, Cu, and Ag) nanoparticles with high production rates, while allowing fast optimization based on energy efficiency. Different carrier gas compositions, as well as the electrode arrangements and the power input are investigated to improve the production and its efficiency and to understand the arc production behavior. The production rates are determined by a novel process monitoring method, which combines an online microbalance method with a scanning mobility particle sizer for fast production rate and size distribution measurement. Particle characterization is performed via scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction measurements. It is found that the carrier gas composition has the largest impact on the particle production rate and can increase it with orders of magnitude. This appears to be not only a result of the increased heat flux and melt temperature but also of the formation of tiny nitrogen (hydrogen) bubbles in the molten feedstock, which impacts feedstock evaporation significantly in bi-atomic gases. A production rate of sub 200 nm particles from 20 up to 2,500 mg/h has been realized for the different metals. In this production range, specific power consumptions as low as 0.08 kWh/g have been reached.

  18. Process for the manufacture of seamless metal-clad fiber-reinforced organic matrix composite structures

    Science.gov (United States)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1991-01-01

    A process for producing seamless metal-clad composite structures includes providing a hollow, metallic inner member and an outer sleeve to surround the inner member and define an inner space therebetween. A plurality of continuous reinforcing fibers is attached to the distal end of the outside diameter of the inner member, and the inner member is then introduced, distal end first, into one end of the outer sleeve. The inner member is then moved, distal end first, into the outer sleeve until the inner member is completely enveloped by the outer sleeve. A liquid matrix material is then injected into the space containing the reinforcing fibers between the inner member and the outer sleeve. Next a pressurized heat transfer medium is passed through the inner member to cure the liquid matrix material. Finally, the wall thickness of both the inner member and the outer sleeve are reduced to desired dimensions by chemical etching, which adjusts the thermal expansion coefficient of the metal-clad composite structure to a desired value.

  19. Numerical Analysis of Thermal Stresses around Fasteners in Composite Metal Foils

    Science.gov (United States)

    Nammi, S. K.; Butt, J.; –L Mauricette, J.; Shirvani, H.

    2017-12-01

    The process of composite metal foil manufacturing (CMFM) has reduced a number of limitations associated with commercial additive manufacturing (AM) methods. The existing metal AM machines are restricted by their build envelope and there is a growing market for the manufacture of large parts using AM. These parts are subsequently manufactured in fragments and are fastened together. This paper analyses the thermal stresses around cylindrical fasteners for three layered metal composite parts consisting of aluminium foil, brazing paste and copper foil layers. The investigation aims to examine the mechanical integrity of the metallurgically bonded aluminium/copper foils of 100 micron thickness manufactured in a disc shape. A cylindrical fastener set at an elevated temperature of 100 °C is fitted in the middle of the disc which results in a steady-state thermal distribution. Radial and shear stresses are computed using finite element method which shows that non-zero shear stresses developed by the copper layer inhibit the axial slippage of the fastener and thereby establishing the suitability of rivet joints for CMFM parts.

  20. Evaluation of fracture toughness for metal/ceramics composite materials by means of miniaturized specimen technique

    International Nuclear Information System (INIS)

    Saito, Masahiro; Takahashi, Hideaki; Jeong, Hee-Don; Kawasaki, Akira; Watanabe, Ryuzo

    1991-01-01

    In order to evaluate fracture strength for Y 2 O 3 -ZrO 2 , 3 mol% Y 2 O 3 -ZrO 2 (PSZ)/SUS 304 composite materials, Macor as a machinable ceramics and comercially available ceramics (SiC, Si 3 N 4 , PSZ, Al 2 O 3 ), fracture toughness tests were carried out by use of RCT or bending specimens. On the other hand, the fracture strength of these materials was evaluated and inspected the correlation between fracture toughness and fracture stress of small punch (SP) or modified small punch (MSP) test data to predict the fracture toughness value by using miniaturized specimens. Characteristic of the MSP testing method is the ability to evaluate elastic modulus (Young's modulus), fracture strength, yield strength, fracture strain, and fracture energy, etc., with high accuracy and good reproducibility for brittle materials. For a series of metal/ ceramics composites which from ductile to brittle, this paper clarified clear the applicable range for SP and MSP testing methods, which suggested that the simultaneous use of SP and MSP test methods can evaluate the fracture strength of metal/ ceramics composites. (author)

  1. Bubble Departure from Metal-Graphite Composite Surfaces and Its Effects on Pool Boiling Heat Transfer

    Science.gov (United States)

    Chao, David F.; Sankovic, John M.; Motil, Brian J.; Yang, W-J.; Zhang, Nengli

    2010-01-01

    The formation and growth processes of a bubble in the vicinity of graphite micro-fiber tips on metal-graphite composite boiling surfaces and their effects on boiling behavior are investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the metal matrix in pool boiling. By virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the end of the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each spanning several tips. The necking process of a detaching macro bubble is analyzed. It is revealed that a liquid jet is produced by sudden break-off of the bubble throat. The composite surfaces not only have higher temperatures in micro- and macrolayers but also make higher frequency of the bubble departure, which increase the average heat fluxes in both the bubble growth stage and in the bubble departure period. Based on these analyses, the enhancement mechanism of pool boiling heat transfer on composite surfaces is clearly revealed.

  2. X-ray tomography investigation of intensive sheared Al–SiC metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    De Giovanni, Mario; Warnett, Jason M.; Williams, Mark A. [WMG, University of Warwick, Coventry CV4 7AL (United Kingdom); Haribabu, Nadendla [BCAST, Brunel University London, Uxbridge UB8 3PH (United Kingdom); Srirangam, Prakash, E-mail: p.srirangam@warwick.ac.uk [WMG, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-12-15

    X-ray computed tomography (XCT) was used to characterise three dimensional internal structure of Al–SiC metal matrix composites. The alloy composite was prepared by casting method with the application of intensive shearing to uniformly disperse SiC particles in the matrix. Visualisation of SiC clusters as well as porosity distribution were evaluated and compared with non-shearing samples. Results showed that the average particle size as well as agglomerate size is smaller in sheared sample compared to conventional cast samples. Further, it was observed that the volume fraction of porosity was reduced by 50% compared to conventional casting, confirming that the intensive shearing helps in deagglomeration of particle clusters and decrease in porosity of Al–SiC metal matrix composites. - Highlights: • XCT was used to visualise 3D internal structure of Al-SiC MMC. • Al-SiC MMC was prepared by casting with the application of intensive shearing. • SiC particles and porosity distribution were evaluated. • Results show shearing deagglomerates particle clusters and reduces porosity in MMC.

  3. Collapse mechanisms of metal foam matrix composites under static and dynamic loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Linul, Emanoil, E-mail: emanoil.linul@upt.ro [Department of Mechanics and Strength of Materials, Politehnica University of Timisoara, 1 Mihai Viteazu Avenue, 300 222 Timisoara (Romania); Marsavina, Liviu [Department of Mechanics and Strength of Materials, Politehnica University of Timisoara, 1 Mihai Viteazu Avenue, 300 222 Timisoara (Romania); Kováčik, Jaroslav [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 13 Bratislava (Slovakia)

    2017-04-06

    The collapse mechanisms of metal foam matrix composites under static and dynamic loading conditions were experimentally and analytically investigated. Closed-cell aluminium foam AlSi10 with 325±10 kg/m{sup 3} density was used as core material, while stainless-steel-mesh is the faces materials. Prior to characterizing the composite sandwich structure, the stainless steel mesh face material and closed-cell aluminium foam were characterized by tensile testing and compression testing, respectively. Experimental tests were performed on sandwich beams using both High Speed Camera and Digital Image Correlation system for strain distribution. All experimental tests were performed at room temperature with constant crosshead speed of 1.67×10{sup −4} m/s for static tests and 2 m/s impact loading speed for dynamic tests. Two main deformation behaviours of investigated metal foam matrix composites were observed following post-failure collapse: face failure and core shear. It was showed that the initiation, propagation and interaction of failure modes depend on the type of loading, constituent material properties and geometrical parameters.

  4. Homogeneous metal matrix composites produced by a modified stir-casting technique

    International Nuclear Information System (INIS)

    Kennedy, A.R.; McCartney, D.G.; Wood, J.V.

    1995-01-01

    Al-based metal matrix composites have been made by a novel liquid processing route which is not only cheap and versatile but produces composites with extremely uniform distributions of the reinforcing phase. Particles of TiB 2 , TiC and B 4 C have been spontaneously incorporated, that is without the use of external mechanical agitation, into Al and Al-alloy melts in volume fractions as high as 0.3. This has been achieved through the use of wetting agents which produce K-Al-F based slags on the melt surface. Spontaneous particle entry and the chemistry of the slag facilitate the generation of good distributions of the reinforcing phase in the solidified composite castings. Non-clustered, near homogeneous distributions have been achieved irrespective of the casting conditions and the volume fraction, type or size of the reinforcement. The majority of the reinforcement becomes engulfed into the solid metal grains during solidification rather than, what is more commonly the case, being pushed to the inter-granular regions. This intra-granular distribution of the reinforcement is likely to improve the mechanical properties of the material

  5. Mathematical Modeling of Dielectric Characteristics of the Metallic Band Inclusion Composite

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available Among the desirable properties of functional materials used in various electrical and radio physical equipment and devices, dielectric characteristics, including relative permittivity (hereinafter, permittivity are of importance. The permittivity requirements can be met when a composite with a particular combination of its matrix characteristics and inclusions [1, 2, 3] is used as a functional material. The use of metallic inclusions extends a variation range of dielectric characteristics of the composite, and thereby enhances its application. The composite structure, form of inclusions, and their volume concentration has a significant impact on the permittivity.One of the composite structure embodiments is a dispersion system when in the dispersion medium (in this case | in the composite matrix a dispersed phase (inclusions with highly extended interface between them [4] is distributed. There can be various forms of dispersed inclusions. Band is one of the possible forms of inclusion when its dimensions in three orthogonal directions are significantly different among themselves. For such inclusion, a tri-axial ellipsoid can be taken as an acceptable geometric model to describe its form. This model can be used, in particular, to describe the form of nanostructured elements, which recently are considered as inclusions for advanced composites for various purposes [5].With raising volume concentration of metal inclusions in the dielectric matrix composite there is an increasing probability of direct contact between the inclusions resulting in continuous conductive cluster [3, 6]. In this paper, it is assumed that metal band inclusions are covered with a sufficiently thin layer of the electrically insulating material, eliminating the possibility of direct contact and precluding consideration of the so-called percolation effect [2, 7] in the entire interval of the expectedly changing volume concentration of electrically ellipsoidal inclusions. The

  6. Composite materials with metal oxide attached to lead chalcogenide nanocrystal quantum dots with linkers

    Science.gov (United States)

    Fuke, Nobuhiro; Koposov, Alexey Y; Sykora, Milan; Hoch, Laura

    2014-12-16

    Composite materials useful for devices such as photoelectrochemical solar cells include a substrate, a metal oxide film on the substrate, nanocrystalline quantum dots (NQDs) of lead sulfide, lead selenide, and lead telluride, and linkers that attach the NQDs to the metal oxide film. Suitable linkers preserve the 1s absorption peak of the NQDs. A suitable linker has a general structure A-B-C where A is a chemical group adapted for binding to a MO.sub.x and C is a chemical group adapted for binding to a NQD and B is a divalent, rigid, or semi-rigid organic spacer moiety. Other linkers that preserve the 1s absorption peak may also be used.

  7. Machinability of Al-SiC metal matrix composites using WC, PCD and MCD inserts

    Energy Technology Data Exchange (ETDEWEB)

    Beristain, J.; Gonzalo, O.; Sanda, A.

    2014-04-01

    The aim of this work is the study of the machinability of aluminium-silicon carbide Metal Matrix Composites (MMC) in turning operations. The cutting tools used were hard metal (WC) with and without coating, different grades and geometries of Poly-Crystalline Diamond (PCD) and Mono-Crystalline Diamond (MCD). The work piece material was AMC225xe, composed of aluminium-copper alloy AA 2124 and 25% wt of SiC, being the size of the SiC particles around 3 {mu}m. Experiments were conducted at various cutting speeds and cutting parameters in facing finishing operations, measuring the surface roughness, cutting forces and tool wear. The worn surface of the cutting tool was examined by Scanning Electron Microscope (SEM). It was observed that the Built Up Edge (BUE) and stuck material is higher in the MCD tools than in the PCD tools. The BUE acts as a protective layer against abrasive wear of the tool. (Author)

  8. Application of the Pareto chart and Ishikawa diagram for the identification of major defects in metal composite castings

    Directory of Open Access Journals (Sweden)

    K. Gawdzińska

    2011-04-01

    Full Text Available This author discusses the use of selected quality management tools, i.e. the Pareto chart and Ishikawa fishbone diagram, for the descriptionof composite casting defects. The Pareto chart allows to determine defect priority related with metallic composite castings, while theIshikawa diagram indicates the causes of defect formation and enables calculating defect weights.

  9. Application of the Pareto chart and Ishikawa diagram for the identification of major defects in metal composite castings

    OpenAIRE

    K. Gawdzińska

    2011-01-01

    This author discusses the use of selected quality management tools, i.e. the Pareto chart and Ishikawa fishbone diagram, for the descriptionof composite casting defects. The Pareto chart allows to determine defect priority related with metallic composite castings, while theIshikawa diagram indicates the causes of defect formation and enables calculating defect weights.

  10. Perovskite-Ni composite: a potential route for management of radioactive metallic waste.

    Science.gov (United States)

    Mahadik, Pooja Sawant; Sengupta, Pranesh; Halder, Rumu; Abraham, G; Dey, G K

    2015-04-28

    Management of nickel - based radioactive metallic wastes is a difficult issue. To arrest the release of hazardous material to the environment it is proposed to develop perovskite coating for the metallic wastes. Polycrystalline BaCe0.8Y0.2O3-δ perovskite with orthorhombic structure has been synthesized by sol-gel route. Crystallographic analyses show, the perovskite belong to orthorhombic Pmcn space group at room temperature, and gets converted to orthorhombic Incn space group at 623K, cubic Pm3m space group (with a=4.434Å) at 1173K and again orthorhombic Pmcn space group at room temperature after cooling. Similar observations have been made from micro-Raman study as well. Microstructural studies of BaCe0.8Y0.2O3-δ-NiO/Ni composites showed absence of any reaction product at the interface. This suggests that both the components (i.e. perovskite and NiO/Ni) of the composite are compatible to each other. Interaction of BaCe0.8Y0.2O3-δ-NiO/Ni composites with simulated barium borosilicate waste glass melt also did not reveal any reaction product at the interfaces. Importantly, uranium from the waste glass melt was found to be partitioned within BaCe0.8Y0.2O3-δ perovskite structure. It is therefore concluded that BaCe0.8Y0.2O3-δ can be considered as a good coating material for management of radioactive Ni based metallic wastes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Energy harvesting from the tail beating of a carangiform swimmer using ionic polymer–metal composites

    International Nuclear Information System (INIS)

    Cha, Youngsu; Verotti, Matteo; Walcott, Horace; Peterson, Sean D; Porfiri, Maurizio

    2013-01-01

    In this paper, we study energy harvesting from the beating of a biomimetic fish tail using ionic polymer–metal composites. The design of the biomimetic tail is based on carangiform swimmers and is specifically inspired by the morphology of the heterocercal tail of thresher sharks. The tail is constituted of a soft silicone matrix molded in the form of the heterocercal tail and reinforced by a steel beam of rectangular cross section. We propose a modeling framework for the underwater vibration of the biomimetic tail, wherein the tail is assimilated to a cantilever beam with rectangular cross section and heterogeneous physical properties. We focus on base excitation in the form of a superimposed rotation about a fixed axis and we consider the regime of moderately large-amplitude vibrations. In this context, the effect of the encompassing fluid is described through a hydrodynamic function, which accounts for inertial, viscous and convective phenomena. The model is validated through experiments in which the base excitation is systematically varied and the motion of selected points on the biomimetic tail tracked in time. The feasibility of harvesting energy from an ionic polymer–metal composite attached to the vibrating structure is experimentally and theoretically assessed. The response of the transducer is described using a black-box model, where the voltage output is controlled by the rate of change of the mean curvature. Experiments are performed to elucidate the impact of the shunting resistance, the frequency of the base excitation and the placement of the ionic polymer–metal composite on energy harvesting from the considered biomimetic tail. (paper)

  12. Manufacturing process and electrode properties of palladium-electroded ionic polymer–metal composite

    International Nuclear Information System (INIS)

    Chang, Longfei; Chen, Hualing; Zhu, Zicai; Li, Bo

    2012-01-01

    This paper primarily focuses on the manufacturing process of palladium-electroded ionic polymer–metal composite (IPMC). First, according to the special properties of Pd, many experiments were done to determine several specific procedures, including the addition of a reducing agent and the time consumed. Subsequently, the effects of the core manufacturing steps on the electrode morphology were revealed by scanning electron microscopy studies of 22 IPMC samples treated with different combinations of manufacturing steps. Finally, the effects of electrode characteristics on the electromechanical properties, including the sheet resistivity, the elastic modulus and the electro-active performance, of IPMCs were evaluated experimentally and analyzed according to the electrode morphology. (paper)

  13. Modeling of robotic fish propelled by an ionic polymer-metal composite caudal fin

    Science.gov (United States)

    Chen, Zheng; Shatara, Stephan; Tan, Xiaobo

    2009-03-01

    In this paper, a model is proposed for a biomimetic robotic fish propelled by an ionic polymer metal composite (IPMC) actuator with a rigid passive fin at the end. The model incorporates both IPMC actuation dynamics and the hydrodynamics, and predicts the steady-state speed of the robot under a periodic actuation voltage. Experimental results have shown that the proposed model can predict the fish motion for different tail dimensions. Since its parameters are expressed in terms of physical properties and geometric dimensions, the model is expected to be instrumental in optimal design of the robotic fish.

  14. Type B plutonium transport package development that uses metallic filaments and composite materials

    International Nuclear Information System (INIS)

    Pierce, J.D.; Moya, J.L.; McClure, J.D.; Hohnstreiter, G.F.; Golliher, K.G.

    1991-01-01

    A new package was developed for transporting Pu and U quantities that are currently carried in DOT-6M packages. It uses double containment with threaded closures and elastomeric seals. A composite overpack of metallic wire mesh and ceramic or quartz cloth insulation is provided for protection in accidents. Two prototypes were subjected to dynamic crush tests. A thermal computer model was developed and benchmarked by test results to predict package behavior in fires. The material performed isotropically in a global fashion. A Type B Pu transport package can be developed for DOE Pu shipments for less than $5000 if manufactured in quantity. 5 figs, 6 refs

  15. Investigation of metal-matrix composite containing liquid-phase dispersion

    Czech Academy of Sciences Publication Activity Database

    Strunz, Pavel; Mukherji, D.; Gilles, R.; Geue, T.; Rösler, J.

    2012-01-01

    Roč. 340, 012098 (2012), s. 1-15 ISSN 1742-6588. [5th European Conference on Neutron Scattering. Praha, 17.07.2011-21.07.2011] R&D Projects: GA MPO FR-TI1/378 Grant - others:European Commission(XE) RII3-CT-2003-505925 Program:FP6 Institutional support: RVO:61389005 Keywords : metal-matrix composite * liquid-phase dispersion * strengthening * neutron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism http://iopscience.iop.org/1742-6596/340/1/012098

  16. Microstructure and optical appearance of anodized friction stir processed Al - Metal oxide surface composites

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate Ti, Y and Ce oxide powders into the surface of an Aluminium alloy. The FSP processed surface composite was subsequently anodized with an aim to develop optical effects in the anodized layer owing to the presence of incorporated...... oxide particles which will influence the scattering of light. This paper presents the investigations on relation between microstructure of the FSP zone and optical appearance of the anodized layer due to incorporation of metal oxide particles and modification of the oxide particles due to the anodizing...

  17. Thermodynamic evaluation of highly exothermic reactions for the fabrication of ceramic metal composites

    International Nuclear Information System (INIS)

    Rodrigues, J.A.; Pandolfelli, V.C.; Botta Filho, W.J.; Tomasi, R.; Stevens, R.; Brook, R.J.

    1990-01-01

    Highly exothermic reactions allow the synthesis or production of materials. Which present advantages regarding to energy saving, simplicity of process and higher purity of the products. Considering adiabatic conditions these reactions give off a large amount of heat which will raise the temperature of the system, allowing the production of highly refractory materials. This paper presents a thermodynamic forecast of reactants are Nb2O5, Al e Zr. The objective is to produce high toughness alumina matrix composites containing ZrO2 particles and Nb metal. (author)

  18. A mechanical model of a non-uniform ionomeric polymer metal composite actuator

    International Nuclear Information System (INIS)

    Anton, Mart; Aabloo, Alvo; Punning, Andres; Kruusmaa, Maarja

    2008-01-01

    This paper describes a mechanical model of an IPMC (ionomeric polymer metal composite) actuator in a cantilever beam configuration. The main contribution of our model is that it gives the most detailed description reported so far of the quasistatic mechanical behaviour of the actuator with non-uniform bending at large deflections. We also investigate a case where part of an IPMC actuator is replaced with a rigid elongation and demonstrate that this configuration would make the actuator behave more linearly. The model is experimentally validated with MuscleSheet(TM) IPMCs, purchased from BioMimetics Inc

  19. Study of impurity composition of some compounds of refractory metals by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Kaganov, L.K.; Dzhumakulov, D.T.; Mukhamedshina, N.M.

    1994-01-01

    The compounds of refractory transition metals find wide application in all fields of engineering, in particular in microelectronics to manufacture contact-barrier layers of thin-film current-conducting systems of silicon instruments, large and very large scale integrated circuits. Production of such materials is realted with the need to apply the analytical control methods that allow to determine a large number of elements with high reliability. The instrumental neutron-activation techniques have been developed to determine impurity composition of the following compounds: MoSi 2 , WSi 2 , TiB 2 , NbB 2 , TiC, NbC

  20. Chemical composition of late-type supergiants. IV. Homogeneous abundances and galactic metallicity trends

    International Nuclear Information System (INIS)

    Luck, R.E.

    1982-01-01

    In a recent series of papers by Luck and by Luck and Bond on the chemical composition of G and K lb supergiants, [Fe/H] ratios were determined from high-dispersion spectroscopic data for 54 stars. The main results were: (1) that supergiants in the solar neighborhood have about twice the iron content of the Sun ( = +0.3); and (2) that supergiants between 7.7 and 10.2 kpc from the galactic center show a steep radial metallicity gradient, d[Fe/H]/dR = -0.24 kpc -1

  1. A Study On The Metal Carbide Composite Diffusion Bonding For Mechanical Seal

    Directory of Open Access Journals (Sweden)

    Kim D.-K.

    2015-06-01

    Full Text Available Mechanical Seal use highly efficient alternative water having a great quantity of an aqueous solution and has an advantage no corrosion brine. Metal Carbide composites have been investigated as potential materials for high temperature structural applications and for application in the processing industry. The existing Mechanical seal material is a highly expensive carbide alloy, and it is difficult to take a price advantage. Therefore the study of replacing body area with inexpensive steel material excluding O-ring and contact area which demands high characteristics is needed.

  2. Mechanical Behavior of A Metal Composite Vessels Under Pressure At Cryogenic Temperatures

    Science.gov (United States)

    Tsaplin, A. I.; Bochkarev, S. V.

    2016-01-01

    Results of an experimental investigation into the deformation and destruction of a metal composite vessel with a cryogenic gas are presented. Its structure is based on basalt, carbon, and organic fibers. The vessel proved to be serviceable at cryogenic temperatures up to a burst pressure of 45 MPa, and its destruction was without fragmentation. A mathematical model adequately describing the rise of pressure in the cryogenic vessel due to the formation of a gaseous phase upon boiling of the liquefied natural gas during its storage without drainage at the initial stage is proposed.

  3. Investigation of the Alkaline Electrochemical Interface and Development of Composite Metal/Metal-Oxides for Hydrogen and Oxygen Electrodes

    Science.gov (United States)

    Bates, Michael

    electrolyte. The HER kinetics of numerous binary & ternary Ni-alloys and composite Ni/metal-oxide/C samples were evaluated in aqueous 0.1 M KOH electrolyte. Furthermore a model of the double layer interface is proposed, which helps explain the observed ensemble effect in the presence of AEI. In Chapter 3, Ni-Fe and Ni-Fe-Co mixed-metal-oxide (MMO) films were investigated for oxygen evolution reaction (OER) activity in 0.1M KOH on high surface area Raney-Nickel supports. During investigations of MMO activity, aniline was identified as a useful "capping agent" for synthesis of high-surface area MMO-polyaniline (PANI) composite materials. A Ni-Fe-Co/PANI-Raney-Ni catalyst was developed which exhibits enhanced mass-activity compared to state-of-the-art Ni-Fe OER electrocatalysts reported to date. The morphology of the MMO catalyst film on PANI/Raney-Ni support provides excellent dispersion of active-sites and should maintain high active-site utilization for catalyst loading on gas-diffusion electrodes. In Chapter 4, the de-activation of reversible-hydrogen electrode catalysts was investigated and the development of a Pt-Ir-Nx/C catalyst is reported, which exhibits significantly increased stability in the HBr/Br 2 electrolyte. In contrast a Pt-Ir/C catalyst exhibited increased tolerance to high-voltage cycling and in particular showed recovery of electrocatalytic activity after reversible de-activation (presumably from bromide adsorption and subsequent oxidative bromide stripping). Under the harshest testing conditions of high-voltage cycling or exposure to Br2 the Pt-based catalyst showed a trend in stability: Pt < Pt-Ir < Pt-Ir-Nx. (Abstract shortened by UMI.).

  4. Investigation of the microcrack evolution in a Ti-based bulk metallic glass matrix composite

    Directory of Open Access Journals (Sweden)

    Yongsheng Wang

    2014-04-01

    Full Text Available The initiation and evolution behavior of the shear-bands and microcracks in a Ti-based metallic-glass–matrix composite (MGMC were investigated by using an in-situ tensile test under transmission electron microscopy (TEM. It was found that the plastic deformation of the Ti-based MGMC related with the generation of the plastic deformation zone in crystalline and shear deformation zone in glass phase near the crack tip. The dendrites can suppress the propagation of the shear band effectively. Before the rapid propagation of cracks, the extending of plastic deformation zone and shear deformation zone ahead of crack tip is the main pattern in the composite.

  5. New oxide-composite coatings for difficult metal-cutting tasks

    International Nuclear Information System (INIS)

    Westphal, H.; Berg, H. van den; Sottke, V.; Tabersky, R.

    2001-01-01

    The changes in today's metal working technology are driven by increasing cutting speeds, heavy/hard machining and an enormous amount by changes in work piece materials. These applications are asking for more tailor made cutting tool solutions. Together with the well established multi component coating technology a new approach of composite coatings is giving solutions for the tough demands of the cutting tool market. In this paper is presented composite coatings of AI 2 O 3 /ZrO-2/TiO x made by CVD. The coating is like high performance oxide ceramics for cutting applications. The coating is used in combination with MT CVD coatings and different carbide substrates. The CVD coating has optimum stress for cutting applications, low friction and very high thermal isolation. The outstanding performance of this coating is demonstrated in different applications. (author)

  6. Excellent plasticity of a new Ti-based metallic glass matrix composite upon dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.F. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Jiao, Z.M. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Y.S.; Wang, Z. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Z.H.; Ma, S.G. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Qiao, J.W., E-mail: qiaojunwei@gmail.com [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2016-11-20

    Quasi-static and dynamic compressive properties of in-situ Ti{sub 60}Zr{sub 14}V{sub 12}Cu{sub 4}Be{sub 10} bulk metallic glass matrix composites containing ductile dendrites were investigated. Upon quasi-static compressive loading, the composite exhibits a high fracture strength of ~2,600 MPa, combined with a considerable plasticity of ~40% at room temperature. However, upon dynamic loading, an excellent plasticity of ~16% can be obtained due to the abundant dislocations and severe lattice distortions within dendrites and multiplication of shear bands within the glass matrix analyzed by transmission-electron microscopy. A constitutive relationship is obtained by Johnson-Cook plasticity model, which is employed to model the dynamic flow stress behavior. In addition, under dynamic compression, the adiabatic temperature rise increases with increasing strain rates, resulting in that the softening effect within the glass matrix is obviously enhanced during deformation.

  7. Method of fabricating zirconium metal for use in composite type fuel cans

    International Nuclear Information System (INIS)

    Imahashi, Hiromichi; Inagaki, Masatoshi; Akabori, Kimihiko; Tada, Naofumi; Yasuda, Tetsuro.

    1985-01-01

    Purpose: To mass produce zirconium metal for fuel cans with less radiation hardening. Method: Zirconium sponges as raw material are inserted in a hearth mold and a procedure of melting the zirconium sponges portionwise by using a melting furnace having electron beams as a heat source while moving the hearth is repeated at least for once. Then, the rod-like ingot after melting is melted again in a vacuum or inert gas atmosphere into an ingot of a low oxygen density capable of fabrication. A composite fuel can billet is formed by using the thus obtained zirconium ingot and a zircalloy, and a predetermined composite type fuel can is manufactured by way of hot extrusion and pipe drawing fabrication. The raw material usable herein is zirconium sponge with an oxygen density of 400 ppm or higher and the content of impurity other than oxygen is between 1000 - 5000 ppm in total, or the molten material thereof. (Kamimura, M.)

  8. Band shift of 2D transition-metal dichalcogenide alloys: size and composition effects

    Science.gov (United States)

    Zhao, Yipeng; Zhang, Zhe; Ouyang, Gang

    2018-04-01

    Band engineering of 2D transition-metal dichalcogenides (2D-TMDs) is a vital task for their applications in electronic and optoelectronic nanodevices. In this study, we investigate the joint effect from size and composition contributions on the band shift of 2D-TMD alloys in terms of atomic bond relaxation consideration. A theoretical model is proposed to pursue the underlying mechanism, which can connect the band offset with the atomic bonding identities in the 2D-TMD alloys. We reveal that the bandgap of 2D-TMD alloys presents a bowing shape owing to the size-dependent interaction among atoms and shows blue shift or red shift due to different intermixing of components. It is demonstrated that both size and composition can be performed as the useful methods to modulate the band shift, which suggests an effective way to realize the desirable properties of 2D-TMD alloys.

  9. Stability of the composites: NiAl - cellular high-melting point metal

    International Nuclear Information System (INIS)

    Belomyttsev, M.Yu.; Kozlov, D.A.

    2006-01-01

    For sintered composite materials (CM) NiAl-W and NiAl-W-Mo the structure and mechanical properties are studied. A comparative analysis of the effect of hot deformation by compression at 1000-1300 Deg C on the integrity of microsamples themselves and tungsten shells of NiAl granules in CM with a cellular structure is accomplished. Local chemical composition of a NiAl/refractory metal interface in CM with cellular structure and free of it is determined. A CM structural state effect on compression yield strength at 1000 Deg C is estimated. The treatment is proposed which permits approaching cellular structured CM oxidation resistance at 1000-1100 Deg C to the level of heat stability of unalloyed NiAl or its alloy with Hf [ru

  10. Nondestructive evaluation of ceramic and metal matrix composites for NASA's HITEMP and enabling propulsion materials programs

    Science.gov (United States)

    Generazio, Edward R.

    1992-01-01

    In a preliminary study, ultrasonic, x-ray opaque, and fluorescent dye penetrants techniques were used to evaluate and characterize ceramic and metal matrix composites. Techniques are highlighted for identifying porosity, fiber alignment, fiber uniformity, matrix cracks, fiber fractures, unbonds or disbonds between laminae, and fiber-to-matrix bond variations. The nondestructive evaluations (NDE) were performed during processing and after thermomechanical testing. Specific examples are given for Si3N4/SiC (SCS-6 fiber), FeCrAlY/Al2O3 fibers, Ti-15-3/SiC (SCS-6 fiber) materials, and Si3N4/SiC (SCS-6 fiber) actively cooled panel components. Results of this study indicate that the choice of the NDE tools to be used can be optimized to yield a faithful and accurate evaluation of advanced composites.

  11. Cycling of lithium/metal oxide cells using composite electrolytes containing fumed silicas

    International Nuclear Information System (INIS)

    Zhou Jian; Fedkiw, Peter S.

    2003-01-01

    The effect on cycle capacity is reported of cathode material (metal oxide, carbon, and current collector) in lithium/metal oxide cells cycled with fumed silica-based composite electrolytes. Three types of electrolytes are compared: filler-free electrolyte consisting of methyl-terminated poly(ethylene glycol) oligomer (PEGdm, M w =250)+lithium bis(trifluromethylsufonyl)imide (LiTFSI) (Li:O=1:20), and two composite systems of the above baseline liquid electrolyte containing 10-wt% A200 (hydrophilic fumed silica) or R805 (hydrophobic fumed silica with octyl surface group). The composite electrolytes are solid-like gels. Three cathode active materials (LiCoO 2 , V 6 O 13 , and Li x MnO 2 ), four conducting carbons (graphite Timrex [reg] SFG 15, SFG 44, carbon black Vulcan XC72R, and Ketjenblack EC-600JD), and three current collector materials (Al, Ni, and carbon fiber) were studied. Cells with composite electrolytes show higher capacity, reduced capacity fade, and less cell polarization than those with filler-free electrolyte. Among the three active materials studied, V 6 O 13 cathodes deliver the highest capacity and Li x MnO 2 cathodes render the best capacity retention. Discharge capacity of Li/LiCoO 2 cells is affected greatly by cathode carbon type, and the capacity decreases in the order of Ketjenblack>SFG 15>SFG 44>Vulcan. Current collector material also plays a significant role in cell cycling performance. Lithium/vanadium oxide (V 6 O 13 ) cells deliver increased capacity using Ni foil and carbon fiber current collectors in comparison to an Al foil current collector

  12. Microstructural study of metal-metal composites elaborated by interdiffusion between pure nickel and devitrified Fe-Ni-Mo-B glasses

    International Nuclear Information System (INIS)

    Ratovondrahona, E.; Bouquet, G.; Portier, R.

    1993-01-01

    It is well known that amorphous metallic alloys are able to give rise to microcrystallized structures when submitted to the effect of temperature, i.e. when devitrification takes place. These microstructures are particularly interesting for various applications. Materials produced from devitrified amorphous phase generally exhibit good mechanical properties, but are accompanied by some brittleness. In order to avoid this disadvantage, the authors tried to elaborate a composite material resulting from diffusion heat treatments carried out on alternate stackings of amorphous alloys and pure metal sheets. The idea is that by choosing discerning metallic glass and an appropriate diffusion heat treatment temperature, it might be possible to obtain mechanically hard phases, such as metallic borides, and disperse these compounds in the pure metallic matrix to be reinforced. Here, the authors only present the microstructural results of this study, although some preliminary mechanical tests have been preformed

  13. Machinability and Tribological Properties of Stir Cast LM6/SiC/GR Hybrid Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    Tahat Montasser S.

    2016-01-01

    Full Text Available Analysis on machining characteristics in turning of LM6/SiC/Gr hybrid metal matrix composites is made of (Al-11.8%Si/SiC/Gr hybrid metal matrix composites. The process performances such as porosity, wear rate of the composites, tool wear, tool life, specific modulus, surface roughness and material removal rate with equal weight fraction of SiC and Gr particulates of 3%, 7%, 10% and 13% reinforcement are investigated. This experimental analysis and test results on the machinability of Al/SiCMMC will provide essential guidelines to the manufacturers. Hybird metal matrix composites reinforced with graphite particles posses better machinability and tribological properties.

  14. Ionic Liquid/Metal-Organic Framework Composites: From Synthesis to Applications.

    Science.gov (United States)

    Kinik, Fatma Pelin; Uzun, Alper; Keskin, Seda

    2017-07-21

    Metal-organic frameworks (MOFs) have been widely studied for different applications owing to their fascinating properties such as large surface areas, high porosities, tunable pore sizes, and acceptable thermal and chemical stabilities. Ionic liquids (ILs) have been recently incorporated into the pores of MOFs as cavity occupants to change the physicochemical properties and gas affinities of MOFs. Several recent studies have shown that IL/MOF composites show superior performances compared with pristine MOFs in various fields, such as gas storage, adsorption and membrane-based gas separation, catalysis, and ionic conductivity. In this review, we address the recent advances in syntheses of IL/MOF composites and provide a comprehensive overview of their applications. Opportunities and challenges of using IL/MOF composites in many applications are reviewed and the requirements for the utilization of these composite materials in real industrial processes are discussed to define the future directions in this field. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: high performance for water treatment applications.

    Science.gov (United States)

    Bhaumik, Madhumita; Choi, Hyoung J; McCrindle, Rob I; Maity, Arjun

    2014-07-01

    Presented here is a simple preparation of metallic iron nanoparticles, supported on polyaniline nanofibers at room temperature. The preparation is based on polymerization of interconnected nanofibers by rapid mixing of the aniline monomer with Fe(III) chloride as the oxidant, followed by reductive deposition of Fe(0) nanoparticles, using the polymerization by-products as the Fe precursor. The morphology and other physico-chemical properties of the resulting composite were characterized by scanning and transmission electron microscopy, Brunauer-Emmett-Teller method, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and vibrating-sample magnetometry. The composite fibers were 80-150 nm in diameter and exhibited the expected ferromagnetic behavior. The composite rapidly and efficiently removed As(V), Cr(VI), and also Congo red dye, from aqueous solutions suggesting their usefulness for removal of toxic materials from wastewater. The composite fibers have high capacity for toxin removal: 42.37 mg/g of As(V), 434.78 mg/g of Cr(VI), and 243.9 mg/g of Congo red. The fibers are easily recovered from fluids by exploiting their ferromagnetic properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Chemical composition dispersion in bi-metallic nanoparticles: semi-automated analysis using HAADF-STEM

    International Nuclear Information System (INIS)

    Epicier, T.; Sato, K.; Tournus, F.; Konno, T.

    2012-01-01

    We present a method using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) to determine the chemical composition of bi-metallic nanoparticles. This method, which can be applied in a semi-automated way, allows large scale analysis with a statistical number of particles (several hundreds) in a short time. Once a calibration curve has been obtained, e.g., using energy-dispersive X-ray spectroscopy (EDX) measurements on a few particles, the HAADF integrated intensity of each particle can indeed be directly related to its chemical composition. After a theoretical description, this approach is applied to the case of iron–palladium nanoparticles (expected to be nearly stoichiometric) with a mean size of 8.3 nm. It will be shown that an accurate chemical composition histogram is obtained, i.e., the Fe content has been determined to be 49.0 at.% with a dispersion of 10.4 %. HAADF-STEM analysis represents a powerful alternative to fastidious single particle EDX measurements, for the compositional dispersion in alloy nanoparticles.

  17. Strength and deformability of concrete beams reinforced by non-metallic fiber and composite rebar

    Science.gov (United States)

    Kudyakov, K. L.; Plevkov, V. S.; Nevskii, A. V.

    2015-01-01

    Production of durable and high-strength concrete structures with unique properties has always been crucial. Therefore special attention has been paid to non-metallic composite and fiber reinforcement. This article describes the experimental research of strength and deformability of concrete beams with dispersed and core fiber-based reinforcement. As composite reinforcement fiberglass reinforced plastic rods with diameters 6 mm and 10 mm are used. Carbon and basalt fibers are used as dispersed reinforcement. The developed experimental program includes designing and production of flexural structures with different parameters of dispersed fiber and composite rebar reinforcement. The preliminary testing of mechanical properties of these materials has shown their effectiveness. Structures underwent bending testing on a special bench by applying flexural static load up to complete destruction. During the tests vertical displacements were recorded, as well as value of actual load, slippage of rebars in concrete, crack formation. As a result of research were obtained structural failure and crack formation graphs, value of fracture load and maximum displacements of the beams at midspan. Analysis of experimental data showed the effectiveness of using dispersed reinforcement of concrete and the need for prestressing of fiberglass composite rebar.

  18. Heavy metal and Pb isotopic compositions of aquatic organisms in the Pearl River Estuary, South China

    International Nuclear Information System (INIS)

    Ip, C.C.M.; Li, X.D.; Zhang, G.; Wong, C.S.C.; Zhang, W.L.

    2005-01-01

    The accumulation of trace metals in aquatic organisms may lead to serious health problems through the food chain. The present research project aims to study the accumulation and potential sources of trace metals in aquatic organisms of the Pearl River Estuary (PRE). Four groups of aquatic organisms, including fish, crab, shrimp, and shellfish, were collected in the PRE for trace metal and Pb isotopic analyses. The trace metal concentrations in the aquatic organism samples ranged from 0.01 to 2.10 mg/kg Cd, 0.02 to 4.33 mg/kg Co, 0.08 to 4.27 mg/kg Cr, 0.15 to 77.8 mg/kg Cu, 0.17 to 31.0 mg/kg Ni, 0.04 to 30.7 mg/kg Pb, and 8.78 to 86.3 mg/kg Zn (wet weight). High concentrations of Cd were found in crab, shrimp and shellfish samples, while high concentration of Pb was found in fish. In comparison with the baseline reference values in other parts of the world, fish in the PRE had the highest elevated trace metals. The results of Pb isotopic compositions indicated that the bioaccumulation of Pb in fish come from a wide variety of food sources and/or exposure pathways, particularly the anthropogenic inputs. - Relative high concentrations of Cd were found in crab, shrimp and shellfish samples while high concentration of Pb was found in fish, particularly from the anthropogenic inputs

  19. Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan) composite membranes for heavy metal removal

    International Nuclear Information System (INIS)

    Genc, Oe.; Soysal, L.; Bayramoglu, G.; Arica, M.Y.; Bektas, S.

    2003-01-01

    The effective removal of toxic heavy metals from environmental samples still remains a major topic of present research. Metal-chelating membranes are very promising materials as adsorbents when compared with conventional beads because they are not compressible, and they eliminate internal diffusion limitations. The purpose of this study was to evaluate the performance of a novel adsorbent, Procion Green H-4G immobilized poly(hydroxyethylmethacrylate (HEMA)/chitosan) composite membranes, for the removal of three toxic heavy metal ions, namely, Cd(II), Pb(II) and Hg(II) from aquatic systems. The Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan) composite membranes were characterized by elemental analysis, scanning electron microscopy and Fourier transform infrared (FTIR) spectroscopy. The immobilized amount of the Procion Green H-4G was calculated as 0.018±0.003 μmol/cm 2 from the nitrogen and sulphur stoichiometry. The adsorption capacity of Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan) composite membranes for selected heavy metal ions from aqueous media containing different amounts of these ions (30-400 mg/l) and at different pH values (2.0-6.0) was investigated. The amount of Cd(II), Pb(II) and Hg(II) adsorbed onto the membranes measured at equilibrium, increased with time during the first 45 min and then remained unchanged toward the equilibrium adsorption. The maximum amounts of heavy metal ions adsorbed were 43.60±1.74, 68.81±2.75 and 48.22±1.92 mg/g for Cd(II), Pb(II) and Hg(II), respectively. The heavy metal ion adsorption on the pHEMA/chitosan membranes (carrying no dye) were relatively low, 6.31±0.13 mg/g for Cd(II), 18.73±0.37 mg/g for Pb(II) and 18.82±0.38 mg/g for Hg(II). Competitive adsorption of the metal ions was also studied. When the metal ions competed with each other, the adsorbed amounts were 12.74±0.38 mg Cd(II)/g, 28.80±0.86 mg Pb(II)/g and 18.41±0.54 mg Hg(II)/g. Procion Green H-4G

  20. Synthesis and characterization of Cerium-doped hydroxyapatite/polylactic acid composite coatings on metal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Qiuhua, E-mail: yuanqiuh@szu.edu.cn; Qin, Caoping; Wu, Jianbo; Xu, Anping; Zhang, Ziqiang; Liao, Junquan; Lin, Songxin; Ren, Xiangzhong; Zhang, Peixin

    2016-10-01

    Ce-doped hydroxyapatite/polylactic acid (HA/PLA) composites serving as implant coatings have rarely been studied by other researchers in recent years. This paper was focused to study the existence of Ce ions in structure, chemical composition and surface morphology of HA and its composite coatings. Ce-doped HA powders were synthesized by chemical precipitation method with different Ce molar fractions (0(pure HA), 0.5 mol%, 1 mol% and 2 mol%). And Ce-doped HA/PLA composite coatings were fabricated for the first time on stainless steel substrates by spin coating technique. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) coupled with energy dispersive X-ray detector (EDX), thermo gravimetric-differential thermal analysis (TG-DTA) and X-ray photoelectron spectroscopy (XPS). The results showed that Ce ions were doped into the crystal lattice of apatite successfully. The (Ce + Ca)/P atomic ratios in the doped HA/PLA samples ranged from 1.614 to 1.673, which were very close to the theoretical value of 1.67 for the stoichiometric HA. The addition of PLA could keep metal substrates from catalyzing the decomposition of HA. TG-DTA analysis indicated that Ce-doped HA powder had high thermal stability, and the SEM micrographs revealed that the surface topography of Ce-doped HA/PLA composite coatings was uniform and dense when the Ce molar fraction was 2 mol%. XPS results indicated that the Ce ions doped in HA showed mixed valences of Ce{sup 3+} and Ce{sup 4+}. - Highlights: • Ce-doped HA composite coatings were synthesized by spin-coating technique for the first time. • Ce ions were demonstrated to dope into HA crystal lattice successfully. • The addition of PLA could keep metal substrates from catalyzing the decomposition of HA. • XPS results showed that Ce ions doped in HA have mixed valences of Ce{sup 3+} and Ce{sup 4+}.

  1. Fabrication of metal matrix composite by semi-solid powder processing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yufeng [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Various metal matrix composites (MMCs) are widely used in the automotive, aerospace and electrical industries due to their capability and flexibility in improving the mechanical, thermal and electrical properties of a component. However, current manufacturing technologies may suffer from insufficient process stability and reliability and inadequate economic efficiency and may not be able to satisfy the increasing demands placed on MMCs. Semi-solid powder processing (SPP), a technology that combines traditional powder metallurgy and semi-solid forming methods, has potential to produce MMCs with low cost and high efficiency. In this work, the analytical study and experimental investigation of SPP on the fabrication of MMCs were explored. An analytical model was developed to understand the deformation mechanism of the powder compact in the semi-solid state. The densification behavior of the Al6061 and SiC powder mixtures was investigated with different liquid fractions and SiC volume fractions. The limits of SPP were analyzed in terms of reinforcement phase loading and its impact on the composite microstructure. To explore adoption of new materials, carbon nanotube (CNT) was investigated as a reinforcing material in aluminum matrix using SPP. The process was successfully modeled for the mono-phase powder (Al6061) compaction and the density and density distribution were predicted. The deformation mechanism at low and high liquid fractions was discussed. In addition, the compaction behavior of the ceramic-metal powder mixture was understood, and the SiC loading limit was identified by parametric study. For the fabrication of CNT reinforced Al6061 composite, the mechanical alloying of Al6061-CNT powders was first investigated. A mathematical model was developed to predict the CNT length change during the mechanical alloying process. The effects of mechanical alloying time and processing temperature during SPP were studied on the mechanical, microstructural and

  2. Microstructure and property of WC particles ceramic-metal composite coatings by laser surface cladding

    International Nuclear Information System (INIS)

    Zeng Xiaoyan; Zhu Beidi; Tao Zengyi; Yang Shuguo; Cui Kun

    1993-01-01

    Ceramic-metal is widely used as a kind of good hardfacing material. The coarse WC particles ceramic-metal composite coatings with WC density of 67% it weight and the thickness of 1.6-2.0 mm have been cladded on 20Ni 4 Mo steel surface by a 2kw CO 2 laser. The sintered WC particles with the size of 600-1,000 μm are chosen as the main strengthening phase, Ni-base self-flux alloy as the binder in the composite coatings. The microstructure and micro-hardness of both WC particles and binder are analyzed. The rigid ball indention with acoustic emission technique is used to evaluate the brittleness of the coating. Finally, the abrasive wear resistance of the coatings are tested, Besides, the coatings with the same ratio and size of WC particles within low carbon steel tube were cladded on 20Ni 4 Mo steel by atomic hydrogen welding technique and analyzed by the same ways their result are compared

  3. The Effect of Transition Metal Doping on the Photooxidation Process of Titania-Clay Composites

    Directory of Open Access Journals (Sweden)

    Judit Ménesi

    2008-01-01

    Full Text Available Montmorillonite-TiO2 composites containing various transition metal ions (silver, copper, or nickel were prepared, and their photocatalytic efficiencies were tested in the degradation of ethanol vapor at 70% relative humidity. Two light sources, UV-rich ( = 254 nm and visible ( = 435 nm, were used. The kinetics of degradation was monitored by gas chromatography. It was established that, in the case of each catalyst, ethanol degradation was more efficient in UV-C ( = 254 nm than in visible light, furthermore, these samples containing silver or copper ions were in each case about twice more efficient than P25 TiO2 (Degussa AG. used as a reference. In photooxidation by visible light, TiO2/clay samples doped with silver or copper were also more efficient than the reference sample, P25 TiO2. We show that doping metal ions can also be delivered to the surface of the support by ion exchange and significantly alters the optical characteristics of the TiO2/clay composite.

  4. Tailoring the supercapacitive performances of noble metal oxides, porous carbons and their composites

    Directory of Open Access Journals (Sweden)

    Panić Vladimir V.

    2013-01-01

    Full Text Available Porous electrochemical supercapacitive materials, as an important type of new-generation energy storage devices, require a detailed analysis and knowledge of their capacitive performances upon different charging/discharging regimes. The investigation of the responses to dynamic perturbations of typical representatives, noble metal oxides, carbonaceous materials and RuO2-impregnated carbon blacks, by electrochemical impedance spectroscopy (EIS is presented. This presentation follows a brief description of supercapacitive behavior and origin of pseudocapacitive response of noble metal oxides. For all investigated materials, the electrical charging/discharging equivalent of the EIS response was found to obey the transmission line model envisaged as so-called „resistor/capacitor (RC ladder“. The ladder features are correlated to material physicochemical properties, its composition and the composition of the electrolyte. Fitting of the EIS data of different supercapacitive materials to appropriate RC ladders enables the in-depth profiling of the capacitance and pore resistance of their porous thin-layers and finally the complete revelation of capacitive energy storage issues. [Projekat Ministarstva nauke Republike Srbije, br. 172060

  5. Bias-dependent model of the electrical impedance of ionic polymer-metal composites.

    Science.gov (United States)

    Cha, Youngsu; Porfiri, Maurizio

    2013-02-01

    In this paper, we analyze the charge dynamics of ionic polymer-metal composites (IPMCs) in response to voltage inputs composed of a large dc bias and a small superimposed time-varying voltage. The IPMC chemoelectrical behavior is described through the modified Poisson-Nernst-Planck framework, in which steric effects are taken into consideration. The physics of charge build-up and mass transfer in the proximity of the high surface electrodes is modeled by schematizing the IPMC as the stacked sequence of five layers, in which the ionomeric membrane is separated from the metal electrodes by two composite layers. The method of matched asymptotic expansions is used to derive a semianalytical solution for the concentration of mobile counterions and the electric potential in the IPMC, which is, in turn, used to establish an equivalent circuit model for the IPMC electrical response. The circuit model consists of the series connection of a resistor and two complex elements, each constituted by the parallel connection of a capacitor and a Warburg impedance. The resistor is associated with ion transport in the ionomeric membrane and is independent of the dc bias. The capacitors and the Warburg impedance idealize charge build-up and mass transfer in the vicinity of the electrodes and their value is controlled by the dc bias. The proposed approach is validated against experimental results on in-house fabricated IPMCs and the accuracy of the equivalent circuit is assessed through comparison with finite element results.

  6. Microstructure Effects on Spall Strength of Titanium-based Bulk Metallic Glass Composites

    Science.gov (United States)

    Diaz, Rene; Hofmann, Douglas; Thadhani, Naresh; Georgia Tech Team; GT-JPL Collaboration

    2017-06-01

    The spall strength of Ti-based metallic glass composites is investigated as a function of varying volume fractions (0-80%) of in-situ formed crystalline dendrites. With increasing dendrite content, the topology changes such that neither the harder glass nor the softer dendrites dominate the microstructure. Plate-impact experiments were performed using the 80-mm single-stage gas gun over impact stresses up to 18 GPa. VISAR interferometry was used to obtain rear free-surface velocity profiles revealing the velocity pullback spall failure signals. The spall strengths were higher than for Ti-6Al-4V alloy, and remained high up to impact stress. The influence of microstructure on the spall strength is indicated by the constants of the power law fit with the decompression strain rate. Differences in fracture behavior reveal void nucleation as a dominant mechanism affecting the spall strength. The microstructure with neither 100% glass nor with very high crystalline content, provides the most tortuous path for fracture and therefore highest spall strength. The results allow projection of spall strength predictions for design of in-situ formed metallic glass composites. ARO Grant # W911NF-09 ``1-0403 NASA JPL Contract # 1492033 ``Prime # NNN12AA01C; NSF GRFP Grant #DGE-1148903; and NDSE & G.

  7. Efficient Bisphenol-A detection based on the ternary metal oxide (TMO) composite by electrochemical approaches

    International Nuclear Information System (INIS)

    Ahmed, Jahir; Rahman, Mohammed M.; Siddiquey, Iqbal A.; Asiri, Abdullah M.; Hasnat, Mohammad A.

    2017-01-01

    Highlights: •Ternary metal oxides (TMO) composites prepared by wet-chemical method. •Highly sensitive and selective Bisphenol A (BPA) sensor by I–V method. •Ultra-low detection limit was obtained by 3N/S. •Real environmental samples were analyzed. •Health care and environmental safety -- Abstract: A facile wet chemical method in basic medium was used to synthesis the ternary metal oxides (TMO; ZnO.CoO.FeO) composites at low temperature. The calcined TMO was characterized by FESEM, EDS, UV/vis., FTIR spectroscopy, EIS, and XRD systematically. Glassy carbon electrode (GCE) was modified with the TMO using 5% Nafion at room conditions. The resultant electrode was used for selective detection of Bisphenol-A (BPA) using cyclic voltammetry (CV). It was observed that the TMO electrode exhibited an excellent sensitivity (3.28 μAμM −1 cm −2 ), low detection limit (LOD: 1.2 ± 0.1 nM; S/N = 3), higher stability, very good repeatability, and reproducibility. In diagnostic exploration, a linear calibration plot was obtained for a wide range of concentration of BPA (LDR: 0.80 to 7.20 μM; r 2 : 0.99). This method represents an efficient way of sensitive sensor development for the detection of toxic and carcinogenic phenolic compounds.

  8. Prediction of transmittance spectra for transparent composite electrodes with ultra-thin metal layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhao; Alford, T. L., E-mail: TA@asu.edu [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Khorasani, Arash Elhami [ON Semiconductor Corp., Phoenix, Arizona 85005 (United States); Theodore, N. D. [CHD-Fab, Freescale Semiconductor Inc., Tempe, Arizona 85224 (United States); Dhar, A. [Intel Corp., 2501 NW 229th Ave, Hillsboro, Oregon 97124 (United States)

    2015-11-28

    Recent interest in indium-free transparent composite-electrodes (TCEs) has motivated theoretical and experimental efforts to better understand and enhance their electrical and optical properties. Various tools have been developed to calculate the optical transmittance of multilayer thin-film structures based on the transfer-matrix method. However, the factors that affect the accuracy of these calculations have not been investigated very much. In this study, two sets of TCEs, TiO{sub 2}/Au/TiO{sub 2} and TiO{sub 2}/Ag/TiO{sub 2}, were fabricated to study the factors that affect the accuracy of transmittance predictions. We found that the predicted transmittance can deviate significantly from measured transmittance for TCEs that have ultra-thin plasmonic metal layers. The ultrathin metal layer in the TCE is typically discontinuous. When light interacts with the metallic islands in this discontinuous layer, localized surface plasmons are generated. This causes extra light absorption, which then leads to the actual transmittance being lower than the predicted transmittance.

  9. Electromechanical performance of an ionic polymer–metal composite actuator with hierarchical surface texture

    International Nuclear Information System (INIS)

    He, Qingsong; Yu, Min; Zhang, Xiaoqing; Dai, Zhendong

    2013-01-01

    Two stainless steel templates were fabricated using electric-spark machining, and a hierarchical surface texture of ionic polymer was produced using both polishing and replication methods, which produced microscale and nanoscale groove-shaped microstructures at the surface of the polymer. The surface morphology of the Nafion membrane and metal electrode were observed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). SEM and EDS line-scan analysis indicated that the interfacial surface area was considerably increased and an excellent metal electrode was obtained with the production of a hierarchical surface texture. The displacement, blocking force, and electric current were measured using home-built apparatus. The results revealed that the combined polishing and replication method significantly improved the electromechanical performance of the ionic polymer–metal composite (IPMC). Compared with sandblasted Nafion-based IPMC, the blocking force, displacement, and electric current of the replicated Nafion-based IPMC were 4.39, 2.35, and 1.87 times higher, respectively. The IPMC fabricated in this work exhibited a competitive blocking force compared with recently reported actuators. (paper)

  10. Composition and Morphology Control of Metal Dichalcogenides via Chemical Vapor Deposition for Photovoltaic and Nanoelectronic Applications

    Science.gov (United States)

    Samad, Leith L. J.

    The body of work reviewed here encompasses a variety of metal dichalcogenides all synthesized using chemical vapor deposition (CVD) for solar and electronics applications. The first reported phase-pure CVD synthesis of iron pyrite thin films is presented with detailed structural and electrochemical analysis. The phase-pure thin film and improved crystal growth on a metallic backing material represents one of the best options for potential solar applications using iron pyrite. Large tin-sulfur-selenide solid solution plates with tunable bandgaps were also synthesized via CVD as single-crystals with a thin film geometry. Solid solution tin-sulfur-selenide plates were demonstrated to be a new material for solar cells with the first observed solar conversion efficiencies up to 3.1%. Finally, a low temperature molybdenum disulfide vertical heterostructure CVD synthesis with layered controlled growth was achieved with preferential growth enabled by Van der Waals epitaxy. Through recognition of additional reaction parameters, a fully regulated CVD synthesis enabled the controlled growth of 1-6 molybdenum disulfide monolayers for nanoelectronic applications. The improvements in synthesis and materials presented here were all enabled by the control afforded by CVD such that advances in phase purity, growth, and composition control of several metal dichalcogenides were achieved. Further work will be able to take full advantage of these advances for future solar and electronics technologies.

  11. Content of heavy metals and chemical composition of the hydraulic cement marketed in Costa Rica

    International Nuclear Information System (INIS)

    Venegas Padilla, Jimmy; Calderon Jimenez, Bryan; Sibaja Brenes, Jose Pablo; Salazar Delgado, Jorge; Rodriguez Castro, Ellen

    2017-01-01

    The concentration of heavy metals, specifically lead (Pb), chromium (Cr), and mercury (Hg), and also the chemical composition (CaO, SiO 2 , Al 2 O 3 , Fe 2 O 3 among others) were quantified of the hydraulic cement marketed in Costa Rica. The physical parameters of density and fineness confirmed the homogeneity of the samples to determinate accurately the content of the major components and heavy metals in the cements. The mineralogical constitution was determined by X-ray Fluorescence (XRF). Specifically, the cements showed a mass fraction in the range of (61.22 - 63.12) % of CaO, (18.10 - 26.14) % of SiO 2 , (3.70 - 6.05) % of Al 2 O 3 , (2.57 - 3.36) % Fe 2 O 3 and (0.60 - 4.09) % de MgO. Other components such as MgO, TiO 2 , K 2 O, P 2 O 5 , Na 2 O and Mn 2 O 3 were found on an average mass fraction lower than 1%. Moreover, using the ignition test results and assuming a complete decomposition of the limestone, it was possible to estimate (indirectly) the content of CaCO 3 and CaO given by the raw materials. The metal content of the heavy metals was determined using Flame Atomic Absorption Spectroscopy (FAAS), Electrothermal Atomic Absorption Spectroscopy (ETAAS), and Cold Vapor Atomic Absorption Spectroscopy (CVAAS). The analysis demonstrated that the Pb in cements is present in different concentrations ranging the (2.45 ± 0.72) mg kg -1 to the (8.95 ± 1.34) mg kg -1 . Chromium (Cr) was presented in higher concentrations of (10.69 ± 0.92) mg kg-1. The Hg concentration was below 0.141 ± 0.021 mg kg -1 . In general terms, the hydraulic cements marketed and used in Costa Rica have a suitable chemical composition compared with some cements marketed in Germany. The results of the content of heavy metals presented in this study provide significant information for future studies in the area of toxicology, ecotoxicology, standardization and national regulation. (author) [es

  12. Polymer-encapsulated metal nanoparticles: optical, structural, micro-analytical and hydrogenation studies of a composite material

    International Nuclear Information System (INIS)

    Scalzullo, Stefania; Mondal, Kartick; Deshmukh, Amit; Scurrell, Mike; Mallick, Kaushik; Witcomb, Mike

    2008-01-01

    A single-step synthesis route is described for the preparation of a metal-polymer composite in which palladium acetate and meta-amino benzoic acid were used as the precursors for palladium nanoparticles and poly(meta-amino benzoic acid) (PABA). The palladium nanoparticles were found to be uniformly dispersed and highly stabilized throughout the macromolecule matrix. The resultant composite material was characterized by means of different techniques, such as IR and Raman spectroscopy, which provided information regarding the chemical structure of the polymer, whereas electron microscopy images yielded information regarding the morphology of the composite material and the distribution of the metal particles in the composite material. The composite material was used as a catalyst for the ethylene hydrogenation reaction and showed catalytic activity at higher temperatures. TEM studies confirmed the changed environment of the nanoparticles at these temperatures

  13. Electroless formation of conductive polymer-metal nanostructured composites at boundary of two immiscible solvents. Morphology and properties

    International Nuclear Information System (INIS)

    Gniadek, Marianna; Donten, Mikolaj; Stojek, Zbigniew

    2010-01-01

    Formation of polypyrrole (PPy) with metallic inclusions was carried out at the interface between the aqueous phase containing an oxidizer and an organic solution of the monomer. A variety of the polymer-metal composites were obtained in the system. When the oxidizers were silver- and gold salts the obtained material contained from 4 to 9 at.% of metal. In the case of Ag + oxidant the structure of the metallic silver objects varied and included beads and ultra thin wires covered by polymer film, nanocrystals, micrometer cuboid monocrystals and microplates. Metallic gold practically appeared only in one structure-granules. The granules of Au incorporated into PPy were porous and made of very fine flat crystals of thickness in the nanometer range. The use of copper salts never led to the formation of metallic species in the composite. The influence of selected process parameters such as temperature and concentration of the reactants on the polymerization reaction was investigated. The composites with metallic nanoobjects were found to be better catalysts for the electrooxidation of ascorbic acids compared to pure polypyrrole. SEM, X-ray diffractometry, Raman spectroscopy and voltammetry were used in the investigation.

  14. Electroless formation of conductive polymer-metal nanostructured composites at boundary of two immiscible solvents. Morphology and properties

    Energy Technology Data Exchange (ETDEWEB)

    Gniadek, Marianna [Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Donten, Mikolaj, E-mail: donten@chem.uw.edu.p [Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Stojek, Zbigniew, E-mail: stojek@chem.uw.edu.p [Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland)

    2010-11-01

    Formation of polypyrrole (PPy) with metallic inclusions was carried out at the interface between the aqueous phase containing an oxidizer and an organic solution of the monomer. A variety of the polymer-metal composites were obtained in the system. When the oxidizers were silver- and gold salts the obtained material contained from 4 to 9 at.% of metal. In the case of Ag{sup +} oxidant the structure of the metallic silver objects varied and included beads and ultra thin wires covered by polymer film, nanocrystals, micrometer cuboid monocrystals and microplates. Metallic gold practically appeared only in one structure-granules. The granules of Au incorporated into PPy were porous and made of very fine flat crystals of thickness in the nanometer range. The use of copper salts never led to the formation of metallic species in the composite. The influence of selected process parameters such as temperature and concentration of the reactants on the polymerization reaction was investigated. The composites with metallic nanoobjects were found to be better catalysts for the electrooxidation of ascorbic acids compared to pure polypyrrole. SEM, X-ray diffractometry, Raman spectroscopy and voltammetry were used in the investigation.

  15. Ceramic/metal and A15/metal superconducting composite materials exploiting the superconducting proximity effect and method of making the same

    International Nuclear Information System (INIS)

    Holcomb, M.J.

    1999-01-01

    A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material is disclosed. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy

  16. Ceramic/metal and A15/metal superconducting composite materials exploiting the superconducting proximity effect and method of making the same

    Science.gov (United States)

    Holcomb, Matthew J.

    1999-01-01

    A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy.

  17. The atmospheric circulation of the super Earth GJ 1214b: Dependence on composition and metallicity

    Energy Technology Data Exchange (ETDEWEB)

    Kataria, T.; Showman, A. P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Fortney, J. J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Marley, M. S.; Freedman, R. S., E-mail: tkataria@lpl.arizona.edu [NASA Ames Research Center 245-3, Moffett Field, CA 94035 (United States)

    2014-04-20

    We present three-dimensional atmospheric circulation models of GJ 1214b, a 2.7 Earth-radius, 6.5 Earth-mass super Earth detected by the MEarth survey. Here we explore the planet's circulation as a function of atmospheric metallicity and atmospheric composition, modeling atmospheres with a low mean molecular weight (MMW; i.e., H{sub 2}-dominated) and a high MMW (i.e., water- and CO{sub 2}-dominated). We find that atmospheres with a low MMW have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity lead to shallower atmospheric heating, larger day-night temperature variations, and hence stronger superrotation. In comparison, atmospheres with a high MMW have larger day-night and equator-to-pole temperature variations than low MMW atmospheres, but differences in opacity structure and energy budget lead to differences in jet structure. The circulation of a water-dominated atmosphere is dominated by equatorial superrotation, while the circulation of a CO{sub 2}-dominated atmosphere is instead dominated by high-latitude jets. By comparing emergent flux spectra and light curves for 50× solar and water-dominated compositions, we show that observations in emission can break the degeneracy in determining the atmospheric composition of GJ 1214b. The variation in opacity with wavelength for the water-dominated atmosphere leads to large phase variations within water bands and small phase variations outside of water bands. The 50× solar atmosphere, however, yields small variations within water bands and large phase variations at other characteristic wavelengths. These observations would be much less sensitive to clouds, condensates, and hazes than transit observations.

  18. Improvement of Tribological Properties of Metal Matrix Composites by Means of Slide Burnishing

    Directory of Open Access Journals (Sweden)

    Piotr BEDNARSKI

    2013-12-01

    Full Text Available Burnishing of metal surfaces can affect positively tribological and mechanical properties such as fatigue strength, wear resistance, contact stiffness and bearing capacity. Burnishing affects the entire surface topography, including surface roughness, radii of curvature of peaks and valleys, slope angles and more. We have studied A1Mg1SiCu (6xxx series aluminum matrix composites with a reinforcing phase of Al2O3 which exhibits good workability but poor machinability. The second series studied was based on an AlSi alloy (A-390 reinforced with SiC – this one characterized by poor workability but good machinability. Materials have been prepared by mixing metal powders with the reinforcement, cold pressing, sintering, hot extrusion and heat treatment. We have determined surface roughness with a Hommel tester; the arithmetical mean for A1Mg1SiCu (A6061 + Al2O3 was ~1 µm before burnishing and ~0.15 mm after burnishing. We have also determined the bearing capacity at 50 % with the same tester: before burnishing 2.30 µm and 0.47 µm afterwards for A6061 + Al2O3; before 2.30 µm, afterwards 0.37 µm for A390 + SiC. Vickers microhardness at the surface with respect to the core increases 30 % for the Al2O3 containing composite and 50 % for the SiC containing composite.DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2404

  19. CO sub 2 laser cutting of ceramics and metal-ceramic composites. CO sub 2 -Laserschneiden von Keramik und Metall-Keramik-Verbunden

    Energy Technology Data Exchange (ETDEWEB)

    Wielage, B.; Drozak, J. (Dortmund Univ. (Germany, F.R.). Lehrstuhl fuer Werkstofftechnologie)

    1991-01-01

    Oxide and non-oxide ceramics as well as active brazed and APS-sprayed metal-ceramic composites are cut by means of a 1500 Watt CO{sub 2} laser. In this context, the experience from ceramics cutting applications is applied to laser cutting of composites. The process parameters, which are adjusted to the property profile and the thickness of the material, permit cutting of ceramics of a maximum thickness of 10 mm with optimal cut edge quality and minimum damage to the material. The parameter sets were also optimized in the case of laser-cut active brazed and plasma-sprayed composites. In terms of roughness, composition and structure of the cut edge, composites can be optimally cut using oxygen as process gas. (orig.).

  20. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyun; Kwon Oh Yang [Dept. of Mechanical Engineering, Inje Univesity, Kimhae (Korea, Republic of)

    1999-05-15

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E{sub 0}) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  1. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    International Nuclear Information System (INIS)

    Kim, Tae Hyun; Kwon Oh Yang

    1999-01-01

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E 0 ) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  2. Normal variations in the isotopic composition of metabolically relevant transition metals in human blood

    Science.gov (United States)

    Van Heghe, L.; Cloquet, C.; Vanhaecke, F.

    2012-04-01

    Cu, Fe and Zn are transition metals with great catalytic, structural and regulating importance in the human body. Hence, an aberrant metabolism of these elements can have serious implications on the health of a person. It is assumed that, due to differences in isotope fractionation, the isotopic composition of these elements in whole blood of patients can be different from that in blood of healthy subjects. Therefore, isotopic analysis of the element affected by the disease can be a promising approach for early diagnosis. A method for isotopic analysis of Cu, Fe and Zn in human whole blood was developed. The simultaneous chromatographic isolation of these elements and the conditions for isotope ratio measurement via multi-collector ICP - mass spectrometry (MC-ICP-MS) were optimized. So far, only whole blood of supposedly healthy volunteers (reference population) was analyzed. Results for Fe confirmed the known differences in isotopic composition between male and female blood. It is also shown that other parameters can have influence as well, e.g., the isotopic composition of Zn seems to be governed by the diet.

  3. Shock response of Ni/Al reactive inter-metallic composites

    Science.gov (United States)

    Cherukara, Mathew; Germann, Timothy; Kober, Edward; Strachan, Alejandro

    2014-03-01

    Intermolecular reactive composites find diverse applications in defense, microelectronics and medicine, where strong, localized sources of heat are required. Motivated by experimental work which has shown that high-energy ball milling can significantly improve the reactivity as well as the ease of ignition of Ni/Al inter-metallic composites, we present large scale (~41 million atom) molecular dynamics simulations of shock-induced chemistry in porous, polycrystalline, lamellar Ni/Al nano-composites, which are designed to capture the microstructure that is obtained post milling. Shock propagation in these porous, lamellar materials is observed to be extremely diffuse, leading to substantial inhomogeneity in the local stress states of the material. We describe the importance of pores as sites of initiation, where local temperatures can rise to several thousands of degrees, and chemical mixing is accelerated by vortex formation and jetting in the pore. We also follow the evolution of the chemistry after the shock passage by allowing the sample to ``cook'' under the shock induced pressures and temperatures for up to 0.5 ns. Multiple ``tendril-like'' reaction fronts, born in the cauldron of the pores, propagate rapidly through the sample, consuming it within a nanosecond. US Defense Threat Reduction Agency, Contract No. HDTRA1-10-1-0119.

  4. Cu-TiB metal matrix composites prepared by powder metallurgy route

    Directory of Open Access Journals (Sweden)

    Guo Z.

    2015-01-01

    Full Text Available Titanium boride (TiB is characterized by good conductivity, high strength and high melting point. In this work, TiB was used to make Cu-TiB metal matrix composites (MMCs. Amounts of TiB added into Cu matrix were 2wt.%, 5wt.%, 10 wt.% and 15 wt.%. The samples were pressed at pressures of 500MPa, 600MPa, 700MPa and 800MPa and sintered at 820o and 920o, respectively. The properties of the sintered composites such as hardness and impact toughness were studied. Hardness and impact toughness of samples increased with increasing pressures and decreased with increasing contents of TiB. Composite with good mechanical properties and high conductivity was obtained from the sample containing 2wt.%TiB compacted at 800MPa and sintered at 920o. It was shown that 2wt.% TiB is a suitable content to make Cu-TiB MMCs with good mechanical properties and excellent conductivity.

  5. Fabrication process optimization for improved mechanical properties of Al 7075/SiCp metal matrix composites

    Directory of Open Access Journals (Sweden)

    Dipti Kanta Das

    2016-04-01

    Full Text Available Two sets of nine different silicon carbide particulate (SiCp reinforced Al 7075 Metal Matrix Composites (MMCs were fabricated using liquid metallurgy stir casting process. Mean particle size and weight percentage of the reinforcement were varied according to Taguchi L9 Design of Experiments (DOE. One set of the cast composites were then heat treated to T6 condition. Optical micrographs of the MMCs reveal consistent dispersion of reinforcements in the matrix phase. Mechanical properties were determined for both as-cast and heat treated MMCs for comparison of the experimental results. Linear regression models were developed for mechanical properties of the heat treated MMCs using list square method of regression analysis. The fabrication process parameters were then optimized using Taguchi based grey relational analysis for the multiple mechanical properties of the heat treated MMCs. The largest value of mean grey relational grade was obtained for the composite with mean particle size 6.18 µm and 25 weight % of reinforcement. The optimal combination of process parameters were then verified through confirmation experiments, which resulted 42% of improvement in the grey relational grade. Finally, the percentage of contribution of each process parameter on the multiple performance characteristics was calculated through Analysis of Variance (ANOVA.

  6. Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Saha, Partha

    2011-01-01

    In this investigation, crack density and wear performance of SiC particulate (SiCp) reinforced Al-based metal matrix composite (Al-MMC) fabricated by direct metal laser sintering (DMLS) process have been studied. Mainly, size and volume fraction of SiCp have been varied to analyze the crack and wear behavior of the composite. The study has suggested that crack density increases significantly after 15 volume percentage (vol.%) of SiCp. The paper has also suggested that when size (mesh) of reinforcement increases, wear resistance of the composite drops. Three hundred mesh of SiCp offers better wear resistance; above 300 mesh the specific wear rate increases significantly. Similarly, there has been no improvement of wear resistance after 20 vol.% of reinforcement. The scanning electron micrographs of the worn surfaces have revealed that during the wear test SiCp fragments into small pieces which act as abrasives to result in abrasive wear in the specimen.

  7. Possible stibnite transformation at the friction surface of the semi-metallic friction composites designed for car brake linings

    Science.gov (United States)

    Matějka, V.; Lu, Y.; Matějková, P.; Smetana, B.; Kukutschová, J.; Vaculík, M.; Tomášek, V.; Zlá, S.; Fan, Y.

    2011-12-01

    After a friction process several changes in phase composition of friction composites are often registered. High temperature, accompanied by high pressure induced during braking can cause initiation of chemical reactions which do not run at room or elevated temperatures under the atmospheric pressure. Most of the studies in the field of tribochemistry at friction surfaces of automotive semi-metallic brake linings deal with phenolic resin degradation and corrosion of metallic components. The paper addresses the formation of elemental antimony as well as the alloying process of iron with antimony observed on the surface of laboratory prepared semi-metallic friction composites containing stibnite. The role of alumina abrasives in the process of stibnite transformation is also discussed and mechanism of stibnite transformation was outlined.

  8. Wettability between TiN,TiC Containing Carbon Composite Refractory and Molten Slag or Hot Metal

    Institute of Scientific and Technical Information of China (English)

    SHIYue-xun; LIYingand; 等

    1994-01-01

    In order to develop a new-type TiC-TiN containing carbon composite refractory so as to improve the service life of blast furnace hearth,the wettability between the carbon refractory and molten slag or metal has been mea-sured.It was indicated that the carbon refractory is wet-ted by slag(θ≤90°) when(TiC+TiN)>33.52%,The effects of TiN or TiC on wetting behavior are basi-cally identical.When the amount of TiC in the carbon com-posite refractory is greater than 60% it will be wetted by hot metal;therefore,the carbon composite refractory will be wetted by slag but not permeated by hot metal when the amount of TiC is restricted.

  9. Change of Composition in Metallic Fuel Slug of U-Zr Alloy from High-Temperature Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Young Sang; Lee, Jeong Mook; Kim, Jong Yun; Kim, Jong Hwan; Song, Hoon [KAERI, Daejeon (Korea, Republic of)

    2016-09-15

    The U–Zr alloy is a candidate for fuel to be used as metallic fuel in sodium-cooled fast reactors (SFRs). Its chemical composition before and after annealing at the operational temperature of SFRs (610 .deg. C) was investigated using X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. The original alloy surface contained uranium oxides with the U(IV) and U(VI) oxidation states, Zr{sub 2}O{sub 3}, and a low amount of uranium metal. After annealing at 610 .deg. C, the alloy was composed of uranium metal, uranium carbide, uranium oxide with the U(V) valence state, zirconium metal, and amorphous carbon. Meanwhile, X-ray diffraction data indicate that the bulk composition of the alloy remained unchanged.

  10. Change of Composition in Metallic Fuel Slug of U-Zr Alloy from High-Temperature Annealing

    International Nuclear Information System (INIS)

    Youn, Young Sang; Lee, Jeong Mook; Kim, Jong Yun; Kim, Jong Hwan; Song, Hoon

    2016-01-01

    The U–Zr alloy is a candidate for fuel to be used as metallic fuel in sodium-cooled fast reactors (SFRs). Its chemical composition before and after annealing at the operational temperature of SFRs (610 .deg. C) was investigated using X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. The original alloy surface contained uranium oxides with the U(IV) and U(VI) oxidation states, Zr 2 O 3 , and a low amount of uranium metal. After annealing at 610 .deg. C, the alloy was composed of uranium metal, uranium carbide, uranium oxide with the U(V) valence state, zirconium metal, and amorphous carbon. Meanwhile, X-ray diffraction data indicate that the bulk composition of the alloy remained unchanged

  11. Polymer-Derived In- Situ Metal Matrix Composites Created by Direct Injection of a Liquid Polymer into Molten Magnesium

    Science.gov (United States)

    Sudarshan; Terauds, Kalvis; Anilchandra, A. R.; Raj, Rishi

    2014-02-01

    We show that a liquid organic precursor can be injected directly into molten magnesium to produce nanoscale ceramic dispersions within the melt. The castings made in this way possess good resistance to tensile deformation at 673 K (400 °C), confirming the non-coarsening nature of these dispersions. Direct liquid injection into molten metals is a significant step toward inserting different chemistries of liquid precursors to generate a variety of polymer-derived metal matrix composites.

  12. Obtainment, machining and wear of metal matrix composites processed by powder metallurgy

    International Nuclear Information System (INIS)

    Jesus, Edilson Rosa Barbosa de.

    1998-01-01

    The aim of this investigation was the obtainment of metal matrix composites (MMC) by the route of powder metallurgy, and the valuation of these materials with relation to their machining and wear characteristics. Firstly, were obtained pure commercial aluminium matrix composites materials, with 5, 10 and 15% volumetric fraction of silicon carbide particles. Was also obtained a material without reinforcement particles in order to verify by comparison, the influence of addition of reinforcement particles. The obtained materials were characterized physics (hydrostatic density), mechanics (hardness and tensile tests) and microstructurally (optical microscopy and scanning electron microscopy). The results showed a homogeneous distribution of reinforcement particles in the composite, and improvement in the mechanical properties, mainly tensile strength (UTS) in comparison to the unreinforced material. After, tests were made to verify the materials behavior during machining and to check the performance of several tool materials (cemented carbide, ceramics and polycrystalline diamond). In these tests, values of the cutting force were measured by instrumented tool-holders. Phenomena such as tool wear, built-up edge formation and mechanism of chip formation were also observed and evaluated. The results from the cemented carbide tool tests, were utilised for the machinability index determination of each material. These results were applied to the Taylor equation and the equation constants for each material and test conditions were determined. The results showed that the inclusion of silicon carbide particles made extremely difficult the machining of the composites, and only with diamond tool, satisfactory results were obtained. At last, wear tests were performed to verify the influence of the reinforcement particles in the characteristics of wear resistance of the materials. The results obtained were utilized in the wear coefficient determination for each material. The

  13. Evaluation of titanium carbide metal matrix composites deposited via laser cladding

    Science.gov (United States)

    Cavanaugh, Daniel Thomas

    Metal matrix composites have been widely studied in terms of abrasion resistance, but a particular material system may behave differently as particle size, morphology, composition, and distribution of the hardening phase varies. The purpose of this thesis was to understand the mechanical and microstructural effects of combining titanium carbide with 431 series stainless steel to create a unique composite via laser cladding, particularly regarding wear properties. The most predominant effect in increasing abrasion resistance, measured via ASTM G65, was confirmed to be volume fraction of titanium carbide addition. Macrohardness was directly proportional to the amount of carbide, though there was an overall reduction in individual particle microhardness after cladding. The reduction in particle hardness was obscured by the effect of volume fraction carbide and did not substantially contribute to the wear resistance changes. A model evaluating effective mean free path of the titanium carbide particles was created and correlated to the measured data. The model proved successful in linking theoretical mean free path to overall abrasion resistance. The effects of the titanium carbide particle distributions were limited, while differences in particle size were noticeable. The mean free path model did not correlate well with the particle size, but it was shown that the fine carbides were completely removed by the coarse abrasive particles in the ASTM G65 test. The particle morphology showed indications of influencing the wear mode, but no statistical reduction was observed in the volume loss figures. Future studies may more specifically focus on particle morphology or compositional effects of the carbide particles.

  14. Ionic Polymer-Metal Composites (IPMCs) as Biomimetic Sensors, Actuators and Artificial Muscles: A Review

    Science.gov (United States)

    Shahinpoor, M.; Bar-Cohen, Y.; Simpson, J. O.; Smith, J.

    1998-01-01

    This paper presents an introduction to ionic polymer-metal composites and some mathematical modeling pertaining to them. It further discusses a number of recent findings in connection with ion-exchange polymer-metal composites (IPMCS) as biomimetic sensors and actuators. Strips of these composites can undergo large bending and flapping displacement if an electric field is imposed across their thickness. Thus, in this sense they are large motion actuators. Conversely by bending the composite strip, either quasi-statically or dynamically, a voltage is produced across the thickness of the strip. Thus, they are also large motion sensors. The output voltage can be calibrated for a standard size sensor and correlated to the applied loads or stresses. They can be manufactured and cut in any size and shape. In this paper first the sensing capability of these materials is reported. The preliminary results show the existence of a linear relationship between the output voltage and the imposed displacement for almost all cases. Furthermore, the ability of these IPMCs as large motion actuators and robotic manipulators is presented. Several muscle configurations are constructed to demonstrate the capabilities of these IPMC actuators. This paper further identifies key parameters involving the vibrational and resonance characteristics of sensors and actuators made with IPMCS. When the applied signal frequency varies, so does the displacement up to a critical frequency called the resonant frequency where maximum deformation is observed, beyond which the actuator response is diminished. A data acquisition system was used to measure the parameters involved and record the results in real time basis. Also the load characterizations of the IPMCs were measured and it was shown that these actuators exhibit good force to weight characteristics in the presence of low applied voltages. Finally reported are the cryogenic properties of these muscles for potential utilization in an outer space

  15. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique — Optimization of process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Subrata Kumar, E-mail: subratagh82@gmail.com [Department of Mechanical Engineering, National Institute of Technology Agartala, Tripura 799055 (India); Bandyopadhyay, Kaushik; Saha, Partha [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2014-07-01

    In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO{sub 2} and B{sub 4}C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities. The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB{sub 2} and Al{sub 2}O{sub 3} in the composite.

  16. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique — Optimization of process parameters

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Bandyopadhyay, Kaushik; Saha, Partha

    2014-01-01

    In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO 2 and B 4 C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al 2 O 3 , TiC, and TiB 2 were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities. The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al 2 O 3 , TiC, and TiB 2 were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB 2 and Al 2 O 3 in the composite

  17. Thin and Flexible Fe-Si-B/Ni-Cu-P Metallic Glass Multilayer Composites for Efficient Electromagnetic Interference Shielding.

    Science.gov (United States)

    Zhang, Jijun; Li, Jiawei; Tan, Guoguo; Hu, Renchao; Wang, Junqiang; Chang, Chuntao; Wang, Xinmin

    2017-12-06

    Thin and flexible materials that can provide efficient electromagnetic interference (EMI) shielding are urgently needed, especially if they can be easily processed and withstand harsh environments. Herein, layer-structured Fe-Si-B/Ni-Cu-P metallic glass composites have been developed by simple electroless plating Ni-Cu-P coating on commercial Fe-Si-B metallic glasses. The 0.1 mm-thick composite shows EMI shielding effectiveness of 40 dB over the X-band frequency range, which is higher than those of traditional metals, metal oxides, and their polymer composites of larger thickness. Most of the applied electromagnetic waves are proved to be absorbed rather than bounced back. This performance originates from the combination of a superior soft magnetic property, excellent electrical conductivity, and multiple internal reflections from multilayer composites. In addition, the flexible composites also exhibit good corrosion resistance, high thermal stability, and excellent tensile strength, making them suitable for EMI shielding in harsh chemical or thermal environments.

  18. Composition of heavy metals and airborne fibers in the indoor environment of a building during renovation.

    Science.gov (United States)

    Latif, Mohd Talib; Baharudin, Nor Hafizah; Velayutham, Puvaneswary; Awang, Normah; Hamdan, Harimah; Mohamad, Ruqyyah; Mokhtar, Mazlin B

    2011-10-01

    The renovation of a building will certainly affect the quality of air in the vicinity of where associated activities were undertaken, this includes the quality of air inside the building. Indoor air pollutants such as particulate matter, heavy metals, and fine fibers are likely to be emitted during renovation work. This study was conducted to determine the concentration of heavy metals, asbestos and suspended particulates in the Biology Building, at the Universiti Kebangsaan, Malaysia (UKM). Renovation activities were carried out widely in the laboratories which were located in this building. A low-volume sampler was used to collect suspended particulate matter of a diameter size less than 10 μm (PM₁₀) and an air sampling pump, fitted with a cellulose ester membrane filter, were used for asbestos sampling. Dust was collected using a small brush and scope. The concentration of heavy metals was determined through the use of inductively coupled plasma-mass spectroscopy and the fibers were counted through a phase contrast microscope. The concentrations of PM₁₀ recorded in the building during renovation action (ranging from 166 to 542 μg m⁻³) were higher than the value set by the Department of Safety and Health for respirable dust (150 μg m⁻³). Additionally, they were higher than the value of PM₁₀ recorded in indoor environments from other studies. The composition of heavy metals in PM₁₀ and indoor dust were found to be dominated by Zn and results also showed that the concentration of heavy metals in indoor dust and PM₁₀ in this study was higher than levels recorded in other similar studies. The asbestos concentration was 0.0038 ± 0.0011 fibers/cc. This was lower than the value set by the Malaysian Department of Occupational, Safety and Health (DOSH) regulations of 0.1 fibers/cc, but higher than the background value usually recorded in indoor environments. This study strongly suggests that renovation issues need to be considered seriously

  19. Metal retention in human transferrin: consequences of solvent composition in analytical sample preparation methods.

    Science.gov (United States)

    Quarles, C Derrick; Randunu, K Manoj; Brumaghim, Julia L; Marcus, R Kenneth

    2011-10-01

    The analysis of metal-binding proteins requires careful sample manipulation to ensure that the metal-protein complex remains in its native state and the metal retention is preserved during sample preparation or analysis. Chemical analysis for the metal content in proteins typically involves some type of liquid chromatography/electrophoresis separation step coupled with an atomic (i.e., inductively coupled plasma-optical emission spectroscopy or -mass spectrometry) or molecular (i.e., electrospray ionization-mass spectrometry) analysis step that requires altered-solvent introduction techniques. UV-VIS absorbance is employed here to monitor the iron content in human holo-transferrin (Tf) under various solvent conditions, changing polarity, pH, ionic strength, and the ionic and hydrophobic environment of the protein. Iron loading percentages (i.e. 100% loading equates to 2 Fe(3+):1 Tf) were quantitatively determined to evaluate the effect of solvent composition on the retention of Fe(3+) in Tf. Maximum retention of Fe(3+) was found in buffered (20 mM Tris) solutions (96 ± 1%). Exposure to organic solvents and deionized H(2)O caused release of ~23-36% of the Fe(3+) from the binding pocket(s) at physiological pH (7.4). Salt concentrations similar to separation conditions used for ion exchange had little to no effect on Fe(3+) retention in holo-Tf. Unsurprisingly, changes in ionic strength caused by additions of guanidine HCl (0-10 M) to holo-Tf resulted in unfolding of the protein and loss of Fe(3+) from Tf; however, denaturing and metal loss was found not to be an instantaneous process for additions of 1-5 M guanidinium to Tf. In contrast, complete denaturing and loss of Fe(3+) was instantaneous with ≥6 M additions of guanidinium, and denaturing and loss of iron from Tf occurred in parallel proportions. Changes to the hydrophobicity of Tf (via addition of 0-14 M urea) had less effect on denaturing and release of Fe(3+) from the Tf binding pocket compared to changes

  20. Development of artificial muscles based on electroactive ionomeric polymer-metal composites.

    Science.gov (United States)

    Hirano, Laos A; Escote, Márcia T; Martins-Filho, Luiz S; Mantovani, Gerson L; Scuracchio, Carlos H

    2011-05-01

    This work contextualizes the research of materials that can be applied as artificial muscles. The main motivation of this research is the importance of the development of mechatronic systems for the replacement of traditional devices of actuation and motion based on rotational electrical motors by other devices that reproduce biological muscle movements. Electroactive polymers (EAPs) are materials that respond to electric stimuli with shape and/or dimension changes, and accomplish movements that are smooth enough to mimic biological muscles. Among EAPs, the ionomeric polymer-metal composites (IPMCs) are an interesting alternative to biomimetic devices due to large displacements when submitted to low applied voltage. This article presents a brief review of IPMCs, a sample preparation procedure, and some electromechanical experimental results. We also discuss the applicability of this technology in medical devices and as artificial muscles. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. Modeling of Metallic Glass Matrix Composites Under Compression: Microstructure Effect on Shear Band Evolution

    Science.gov (United States)

    Jiang, Yunpeng; Qiu, Kun; Sun, Longgang; Wu, Qingqing

    2018-01-01

    The relationship among processing, microstructure, and mechanical performance is the most important for metallic glass matrix composites (MGCs). Numerical modeling was performed on the shear banding in MGCs, and the impacts of particle concentration, morphology, agglomerate, size, and thermal residual stress were revealed. Based on the shear damage criterion, the equivalent plastic strain acted as an internal state variable to depict the nucleation, growth, and coalescence of shear bands. The element deletion technique was employed to describe the process of transformation from shear band to micro-crack. The impedance effect of particle morphology on the propagation of shear bands was discussed, whereby the toughening mechanism was clearly interpreted. The present work contributes to the subsequent strengthening and toughening design of MGCs.

  2. A Compact Ionic Polymer Metal Composite (IPMC System with Inductive Sensor for Closed Loop Feedback

    Directory of Open Access Journals (Sweden)

    Jiaqi Wang

    2015-05-01

    Full Text Available Ionic polymer metal composite (IPMC, of which a low actuating voltage (<5 V, high power efficiency and biocompatibility makes it a proven candidate for low power devices. However, due to its inherent nonlinear behaviour and time-variance, feedback control, as well as reliable sensing means, are required for accurate operations. This paper presents an IPMC actuator implemented with an inductive sensor to enhance the reliability and compactness of the overall device. A practical, low cost and importantly, compact inductive sensor fabricated on a printed circuit board (PCB is proposed here. Target material selections and coil design considerations are discussed. It is experimentally determined that the inductive sensor has comparable performance to a laser sensor. Based on a proportional-integral-derivative (PID control results the inductive sensor has demonstrated to be an alternative to a laser sensor allowing devices using IPMC actuators to be compact.

  3. Optimization of Electrochemical Parameters for Landfill Leachate Treatment Using Charcoal Base Metallic Composite Electrode

    International Nuclear Information System (INIS)

    Majd Ahmed Jumaah; Mohamed Rozali Othman

    2015-01-01

    Landfill leachate normally contains organic and inorganic pollutants in high concentrations. Electrochemical oxidation technique is an effective method to treat landfill leachate, have high efficiency in organic pollutants degradation and ammonia removal. In this study, a cost effective charcoal base metallic composite electrode to treat landfill leachate by electrochemical oxidation was fabricated. The effects of operational parameters such as supporting electrolyte, applied voltage and electrolysis time on the removal percentage of Color, COD, NH 3 -N and total-P (PO 4 -3 ) were carried out. The results obtained show that the removal percentage of Color, COD, NH 3 -N and total- P (PO 4 -3 ) are 70, 89, 73 and 80 % respectively. Under the optimum operating condition, sodium chloride concentration of 1.5 % (w/v), applied voltage of 10 V, operating time 180 min and C 60 C G 15 Co 10 - PVC 15 electrode as an anode were used. (author)

  4. Modelling of End Milling of AA6061-TiCp Metal Matrix Composite

    Science.gov (United States)

    Vijay Kumar, S.; Cheepu, Muralimohan; Venkateswarlu, D.; Asohan, P.; Senthil Kumar, V.

    2018-03-01

    The metal-matrix composites (MMCs) are used in various applications hence lot of research has been carried out on MMCs. To increase the properties of Al-based MMCs many ceramic reinforcements have been identified, among which TiC is played vital role because of its properties like high hardness, stiffness and wear resistance. In the present work, a neural network and statistical modelling approach is going to use for the prediction of surface roughness (Ra) and cutting forces in computerised numerical control milling machine. Experiments conducted on a CNC milling machine based on the full factorial design and resulted data used to train and checking the network performance. The sample prepared from in-situ technique and heat treated to get uniform properties. The ANN model has shown satisfactory performance comparatively.

  5. Effect of Sphere Properties on Microstructure and Mechanical Performance of Cast Composite Metal Foams

    Directory of Open Access Journals (Sweden)

    Matias Garcia-Avila

    2015-05-01

    Full Text Available Aluminum-steel composite metal foams (Al-S CMF are manufactured using steel hollow spheres, with a variety of sphere carbon content, surface roughness, and wall porosity, embedded in an Aluminum matrix through gravity casting technique. The microstructural and mechanical properties of the material were studied using scanning electron microscopy, energy dispersive spectroscopy, and quasi-static compressive testing. Higher carbon content and surface roughness in the sphere wall were responsible for an increase in formation of intermetallic phases which had a strengthening effect at lower strain levels, increasing the yield strength of the material by a factor of 2, while higher sphere wall porosity resulted in a decrease on the density of the material and improving its cushioning and ductility maintaining its energy absorption capabilities.

  6. Novel composite cBN-TiN coating deposition method: structure and performance in metal cutting

    International Nuclear Information System (INIS)

    Russell, W.C.; Malshe, A.P.; Yedave, S.N.; Brown, W.D.

    2001-01-01

    Cubic boron nitride coatings are under development for a variety of applications but stabilization of the pure cBN form and adhesion of films deposited by PVD and ion-based methods has been difficult. An alternative method for depositing a composite cBN-TiN film has been developed for wear related applications. The coating is deposited in a two-stage process utilizing ESC (electrostatic spray coating) and CVI (chemical vapor infiltration). Fully dense films of cBN particles evenly dispersed in a continuous TiN matrix have been developed. Testing in metal cutting has shown an increase in tool life (turning - 4340 steel) of three to seven times, depending of machining parameters, in comparison with CVD deposited TiN films. (author)

  7. Finite element implementation and numerical issues of strain gradient plasticity with application to metal matrix composites

    DEFF Research Database (Denmark)

    Frederiksson, Per; Gudmundson, Peter; Mikkelsen, Lars Pilgaard

    2009-01-01

    A framework of finite element equations for strain gradient plasticity is presented. The theoretical framework requires plastic strain degrees of freedom in addition to displacements and a plane strain version is implemented into a commercial finite element code. A couple of different elements...... of quadrilateral type are examined and a few numerical issues are addressed related to these elements as well as to strain gradient plasticity theories in general. Numerical results are presented for an idealized cell model of a metal matrix composite under shear loading. It is shown that strengthening due...... to fiber size is captured but strengthening due to fiber shape is not. A few modelling aspects of this problem are discussed as well. An analytic solution is also presented which illustrates similarities to other theories....

  8. Analysis and experiment on a self-sensing ionic polymer–metal composite actuator

    International Nuclear Information System (INIS)

    Nam, Doan Ngoc Chi; Ahn, Kyoung Kwan

    2014-01-01

    An ionic polymer–metal composite (IPMC) actuator is an electro-active polymer (EAP) that bends in response to a small applied electrical field as a result of the mobility of cations in the polymer network. This paper aims to develop a self-sensing actuator for practical use, since current sensing methods generally face limitations due to the compact size and mobility of the IPMC actuator. Firstly, the variation of surface resistance during bending operations is investigated. Then, the behavior of IPMC corresponding to the variation of surface resistance is mathematically analyzed. Based on the analysis results, a simple configuration to realize the self-sensing behavior is introduced. In this technique, the bending curvature of an IPMC can be obtained accurately by employing several feedback voltage signals along with the IPMC length. Finally, experimental evaluations proved the ability of the proposed scheme to estimate the bending behavior of IPMC actuators. (paper)

  9. Influence of cold rolling and fatigue on the residual stress state of a metal matrix composite

    International Nuclear Information System (INIS)

    Hanus, E.; Ericsson, T.; Lu, J.; Decomps, F.

    1993-01-01

    The large difference in the coefficient of thermal expansion between the matrix alloy and the particle in a metal matrix composite gives rise to residual stresses in the material. In the present work the effect of cold rolling and four-point bending fatigue on the residual stress state of a silicon carbide particle reinforced aluminium alloy (AA 2014) has been investigated. The three dimensional stress state measured in both phases: matrix and reinforcement, has been determined by using an X-ray diffraction technique. It was found that cold rolling induces surface compressive macrostresses of about -250 MPa, with a penetration depth around 2 mm. The absolute values of the pseudomacrostresses in both phases are significantly reduced due to the single track rolling. Stress relaxation occurs during four-point bending fatigue. (orig.)

  10. Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting

    International Nuclear Information System (INIS)

    Vrancken, B.; Thijs, L.; Kruth, J.-P.; Van Humbeeck, J.

    2014-01-01

    Selective laser melting (SLM) is an additive manufacturing process in which functional, complex parts are produced by selectively melting consecutive layers of powder with a laser beam. This flexibility enables the exploration of a wide spectrum of possibilities in creating novel alloys or even metal–metal composites with unique microstructures. In this research, Ti6Al4V-ELI powder was mixed with 10 wt.% Mo powder. In contrast to the fully α′ microstructure of Ti6Al4V after SLM, the novel microstructure consists of a β titanium matrix with randomly dispersed pure Mo particles, as observed by light optical microscopy, scanning electron microscopy and X-ray diffraction. Most importantly, the solidification mechanism changes from planar to cellular mode. Microstructures after heat treatment indicate that the β phase is metastable and locate the β transus at ∼900 °C, and tensile properties are equal to or better than conventional β titanium alloys

  11. Key quality aspects for a new metallic composite pipe: corrosion testing, welding, weld inspection and manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Conder, Robert J.; Felton, Peter [Xodus Group Ltd., Aberdeen (United Kingdom); Smith, Richard [Shell Global Solutions Inc., Houston, TX (United States); Burke, Raymond [Pipestream Inc., Houston, TX (United States); Dikstra, Frits; Deleye, Xavier [Applus RTD Ltd., Rotterdam (Netherlands)

    2010-07-01

    XPipeTM is a new metallic composite pipe. This paper discusses three aspects of this new technology. The first subject is determination of the probability of hydrogen embrittlement by the XPipeTM manufacturing method. Two materials were analyzed in three tests: slow strain rate test, constant load test and notched tensile test. The results showed that the high strength steels used do not appear to be susceptible to hydrogen embrittlement. The second subject of this article is weld inspection. A non-destructive testing method of girth welds is developed to allow inspection of the thin-walled austenitic liner pipe. The results demonstrated that the welds can be inspected using the creeping wave technique. The third subject is quality control systems using the SCADA system, which maintains traceability of the materials and monitors and records all parameters during the production process. This system appears to be efficient in ensuring that the product pipe meets recognized quality standards.

  12. Corrosion performance of SiCsubp/6061 Al metal matrix composites in sodium chloride solution

    International Nuclear Information System (INIS)

    Mohmad Soib bin Selamat

    1995-01-01

    The corrosion performance of silicon carbide particle/aluminium metal matrix composites (SiCsubp/Al) were studied in sodium chloride solution by means of electrochemical, microscopic, gravimetric and analytical techniques. The materials under investigation were compocasting processed 6061 Al reinforced with increasing amounts of SiC particles. Potentiostatic polarization tests were done in 0.1M NaCl solutions that were aerated or deaerated to observe overall corrosion behaviour. It was seen that the corrosion potentials did not vary greatly in relation to the amounts of SiCsubp reinforcement. Corrosion tests showed that the degree of corrosion increased with increasing SiCsubp content. SEM analysis technique was used to study the corroded samples and the pitting morphology. By TEM, no intermetallic layer was found at SiC/Al interface. A model for pitting process was proposed

  13. Comparison of various tool wear prediction methods during end milling of metal matrix composite

    Science.gov (United States)

    Wiciak, Martyna; Twardowski, Paweł; Wojciechowski, Szymon

    2018-02-01

    In this paper, the problem of tool wear prediction during milling of hard-to-cut metal matrix composite Duralcan™ was presented. The conducted research involved the measurements of acceleration of vibrations during milling with constant cutting conditions, and evaluation of the flank wear. Subsequently, the analysis of vibrations in time and frequency domain, as well as the correlation of the obtained measures with the tool wear values were conducted. The validation of tool wear diagnosis in relation to selected diagnostic measures was carried out with the use of one variable and two variables regression models, as well as with the application of artificial neural networks (ANN). The comparative analysis of the obtained results enable.

  14. Underwater energy harvesting from a turbine hosting ionic polymer metal composites

    International Nuclear Information System (INIS)

    Cellini, Filippo; Pounds, Jason; Porfiri, Maurizio; Peterson, Sean D

    2014-01-01

    In this study, we explore the possibility of energy harvesting from fluid flow through a turbine hosting ionic polymer metal composites (IPMCs). Specifically, IPMC harvesters are embedded in the blades of a small-scale vertical axis water turbine to convert flow kinetics into electrical power via low-frequency flow-induced IPMC deformations. An in-house fabricated Savonius–Darrieus hybrid active turbine with three IPMCs is tested in a laboratory water tunnel to estimate the energy harvesting capabilities of the device as a function of the shunting electrical load. The turbine is shown to harvest a few nanowatt from a mean flow of 0.43 m s −1 for shunting resistances in the range 100–1000 Ω. To establish a first understanding of the energy harvesting device, we propose a quasi-static hydroelastic model for the bending of the IPMCs and we utilize a black-box model to study their electromechanical response. (paper)

  15. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing

    Science.gov (United States)

    Liu, Dejian; Hu, Peipei; Min, Guoqing

    2015-06-01

    Laser injection of ceramic particle was conducted to produce particulate reinforced metal matrix composites (MMCs) coating on Ti-6Al-4V alloy. Cast WC particle (WCp) was used as injection reinforcement to avoid excessive release of carbon atoms into the melt pool. The interfaces and boundaries between WC and Ti matrix were investigated by electron microscopy study. Compared with single crystal WCp, cast WCp was an appropriate solution to control the reaction products (TiC) in the matrix and the total amount of reaction products was significantly reduced. Irregular-shape reaction layers were formed around cast WCp. The reaction layers consist of a W2C layer and a mixed layer of W and TiC. Such reaction layers are effective in load transfer under an external load.

  16. A biomimetic jellyfish robot based on ionic polymer metal composite actuators

    International Nuclear Information System (INIS)

    Yeom, Sung-Weon; Oh, Il-Kwon

    2009-01-01

    A biomimetic jellyfish robot based on ionic polymer metal composite actuators was fabricated and activated to mimic real locomotive behavior with pulse and recovery processes. To imitate the curved shape of the jellyfish, a thermal treatment was applied to obtain a permanent initial deformation of a hemispherical form. The bio-inspired input signal was generated for mimicking real locomotion of the jellyfish. The vertical floating displacement and the thrust force of the biomimetic jellyfish robot under various input signals were measured and compared. The present results show that the bio-inspired electrical input signal with pulse-recovery process generates much higher floating velocity of the biomimetic jellyfish robot in comparison with pure sinusoidal excitations. The curved shape of the IPMC actuator through thermal treatments can be successfully applied to mimic the real biomimetic robots with smooth curves

  17. Development of a metal-clad advanced composite shear web design concept

    Science.gov (United States)

    Laakso, J. H.

    1974-01-01

    An advanced composite web concept was developed for potential application to the Space Shuttle Orbiter main engine thrust structure. The program consisted of design synthesis, analysis, detail design, element testing, and large scale component testing. A concept was sought that offered significant weight saving by the use of Boron/Epoxy (B/E) reinforced titanium plate structure. The desired concept was one that was practical and that utilized metal to efficiently improve structural reliability. The resulting development of a unique titanium-clad B/E shear web design concept is described. Three large scale components were fabricated and tested to demonstrate the performance of the concept: a titanium-clad plus or minus 45 deg B/E web laminate stiffened with vertical B/E reinforced aluminum stiffeners.

  18. On the composition and processing of precious metals mined in Medieval Serbia

    Directory of Open Access Journals (Sweden)

    Kovačević-Kojić Desanka

    2014-01-01

    Full Text Available Accounting books of the Caboga (Kabužić brothers 1426-1433 (Squarço/Reminder, Journal and Main Ledger kept at the Historical Archives of Dubrovnik provide new evidence for the composition and advanced levels of processing of precious metals from Serbian medieval mines. Notably, that the residue left after the process of obtaining fine silver was copper. Even the price of the refining process is specified. Two items of a transaction entered in the Squarço in 1430 contain some previously unknown data about auriferous silver (argento di glama. Besides gold, it also contained copper and, moreover, the ratio of the two per pound is specified. Apart from the Caboga brothers’ accounting books, neither the other written sources nor geological research have provided any indication about the presence of copper in the auriferous silver mines.

  19. A Portable Ultrasonic Nondestructive Inspection System for Metal Matrix Composite Track Shoes

    International Nuclear Information System (INIS)

    Mi Bao; Zhao Xiaoliang; Qian Tao; Stevenson, Mark; Kwan, Chiman; Owens, Steven E.; Royer, Roger L. Jr.; Tittmann, Bernhard R.; Raju, Basavaraju B.

    2007-01-01

    Cast aluminum track shoes reinforced with metal matrix composite (MMC) inserts at heavy loading areas such as center splines and sprocket windows are light in weight, and can resist high temperature and wear. Various defects such as disbonds at the insert-substrate interface, cracks and porosity in the MMC layer, etc. can be introduced during the manufacturing process and/or in service. This paper presents a portable ultrasonic system to automatically inspect tank track shoes for disbond. Ultrasonic pulse/echo inspection has shown good reliability for disbond detection. A prototype sensor array fixture has been designed and fabricated to prove the feasibility. Good agreements between the sensor fixture results and ultrasonic C-scan images were obtained

  20. Ionic polymer-metal composite torsional sensor: physics-based modeling and experimental validation

    Science.gov (United States)

    Aidi Sharif, Montassar; Lei, Hong; Khalid Al-Rubaiai, Mohammed; Tan, Xiaobo

    2018-07-01

    Ionic polymer-metal composites (IPMCs) have intrinsic sensing and actuation properties. Typical IPMC sensors are in the shape of beams and only respond to stimuli acting along beam-bending directions. Rod or tube-shaped IPMCs have been explored as omnidirectional bending actuators or sensors. In this paper, physics-based modeling is studied for a tubular IPMC sensor under pure torsional stimulus. The Poisson–Nernst–Planck model is used to describe the fundamental physics within the IPMC, where it is hypothesized that the anion concentration is coupled to the sum of shear strains induced by the torsional stimulus. Finite element simulation is conducted to solve for the torsional sensing response, where some of the key parameters are identified based on experimental measurements using an artificial neural network. Additional experimental results suggest that the proposed model is able to capture the torsional sensing dynamics for different amplitudes and rates of the torsional stimulus.

  1. Porphyrinic metal-organic framework/macroporous carbon composites for electrocatalytic applications

    International Nuclear Information System (INIS)

    Yin, Duanduan; Liu, Jian; Bo, Xiangjie; Li, Mian; Guo, Liping

    2017-01-01

    Graphical abstract: Zr-PorMOF/MPC composites were prepared, which used to detect H 2 O 2 and simultaneously detect UA, XA and HX Display Omitted -- Highlights: •Preparing Zr-PorMOF/MPC composites by a simple one-step solvothermal reaction. •Enhanced electrocatalytic activity at Zr-PorMOF/MPC than Zr-PorMOF and MPC. •A low detection limit, short response time and low applied potential towards H 2 O 2 reduction. •Simultaneous determination of UA, XA and HX. -- Abstract: In this work, a novel porphyrinic metal-organic framework-based composite has been successfully synthesized by a simple one-step solvothermal method through growing Zr-PorMOF on macroporous carbon (MPC). Porphyrin-base MOFs combining the structural adjustable of MOFs and the specific catalytic activity of biomimetic catalysts play an important role in electrocatalysis. A series of characterization show that the roles of MPC as follow: (1) MPC could avoid the agglomeration of Zr-PorMOF particles and increase the specific surface area; (2) MPC could improve the electrochemical stability of Zr-PorMOF particles; (3) MPC could reduce the electron transfer resistance. Therefore, MPC plays the role of the conductive bridges to provide facile charge transport. The obtained Zr-PorMOF/MPC composites exhibit much better electrocatalytic activity for the reduction of hydrogen peroxide (H 2 O 2 ) than the pristine Zr-PorMOF due to the synergy of Zr-PorMOF and MPC. This enzyme-free H 2 O 2 sensor shows two linear relationships in the ranges 0.5–137 μM (R 2 = 0.991, sensitivity = 66 μA mM −1 ) and 137–3587 μM (R 2 = 0.993, sensitivity = 16 μA mM −1 ), with a low over-potential at −0.2 V, a fast response time within 1 s and a low limit of detection (LOD) of 0.18 μM. Moreover, Zr-PorMOF/MPC composites were used to simultaneously detect uric acid (UA), xanthine (XA) and hypoxanthine (HX). These three substances are degradation products of purine metabolism. In addition, Zr-PorMOF/MPC composites

  2. Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites.

    Science.gov (United States)

    Khanolkar, Gauri R; Rauls, Michael B; Kelly, James P; Graeve, Olivia A; Hodge, Andrea M; Eliasson, Veronica

    2016-03-02

    The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding.

  3. A New Class of Functionally Graded Cearamic-Metal Composites for Next Generation Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Jain, Mohit; Skandan, Ganesh; Khose, Gordon E.; Maro, Judith

    2008-01-01

    Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 C. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with various microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.

  4. "A New Class od Functionally Graded Cearamic-Metal Composites for Next Generation Very High Temperature Reactors"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain; Dr. Ganesh Skandan; Dr. Gordon E. Khose; Mrs. Judith Maro, Nuclear Reactor Laboratory, MIT

    2008-05-01

    Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 oC. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with various microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.

  5. Results of endoprosthetic hip joint replacement with the aluminum ceramic-metal composite prosthesis "Lindenhof".

    Science.gov (United States)

    Stock, D; Diezemann, E D; Gottstein, J

    1980-01-01

    The first clinical results of the Lindenhof ceramic-metal composite prosthesis implanted in our hospital in Freiburg are presented. We observed that same favorable early results as the conventional prostheses in a correct position. The implants are incorporated into the bone within 8-12 weeks. The radiographic films show the adaptation of the supporting bone around the ceramic socket. We explain the failures due to our initial lack of technical experience and/or anatomical deformation of the pelvic bone. complications caused by the post-operative treatment during the 12 weeks following surgery did not occur. The combination of a cemented metal femoral component with a ceramic head seems to be a reasonable compromise to use the favorable physical and biochemical properties of the bioceramic material as long as there is no satisfactory solution for a stable cementless fixation of the femoral stem in to the bone. The advantages of the Lindenhof prosthesis predominate the disadvantages: expensive instruments and a post-operative treatment of several months.

  6. Fused filament 3D printing of ionic polymer-metal composites for soft robotics

    Science.gov (United States)

    Carrico, James D.; Leang, Kam K.

    2017-04-01

    Additive manufacturing techniques are used to create three-dimensional structures with complex shapes and features from polymer and/or metal materials. For example, fused filament three-dimensional (3D) printing utilizes non-electroactive polymers, such as acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA), to build structures and components in a layer-by-layer fashion for a wide variety of applications. Presented here is a summary of recent work on a fused filament 3D-printing technique to create 3D ionic polymer-metal composite (IPMC) structures for applications in soft robotics. The 3D printing technique overcomes some of the limitations of existing manufacturing processes for creating IPMCs, such as limited shapes and sizes and time-consuming manufacturing steps. In the process described, first a precursor material (non-acid Nafion precursor resin) is extruded into a thermoplastic filament for 3D printing. Then, a custom-designed 3D printer is described that utilizes the precursor filament to manufacture custom-shaped structures. Finally, the 3D-printed samples are functionalized by hydrolyzing them in an aqueous solution of potassium hydroxide and dimethyl sulfoxide, followed by application of platinum electrodes. Presented are example 3D-printed single and multi-degree-of-freedom IPMC actuators and characterization results, as well as example soft-robotic devices to demonstrate the potential of this process.

  7. Fused filament 3D printing of ionic polymer-metal composites (IPMCs)

    Science.gov (United States)

    Carrico, James D.; Traeden, Nicklaus W.; Aureli, Matteo; Leang, Kam K.

    2015-12-01

    This paper describes a new three-dimensional (3D) fused filament additive manufacturing (AM) technique in which electroactive polymer filament material is used to build soft active 3D structures, layer by layer. Specifically, the unique actuation and sensing properties of ionic polymer-metal composites (IPMCs) are exploited in 3D printing to create electroactive polymer structures for application in soft robotics and bio-inspired systems. The process begins with extruding a precursor material (non-acid Nafion precursor resin) into a thermoplastic filament for 3D printing. The filament is then used by a custom-designed 3D printer to manufacture the desired soft polymer structures, layer by layer. Since at this stage the 3D-printed samples are not yet electroactive, a chemical functionalization process follows, consisting in hydrolyzing the precursor samples in an aqueous solution of potassium hydroxide and dimethyl sulfoxide. Upon functionalization, metal electrodes are applied on the samples through an electroless plating process, which enables the 3D-printed IPMC structures to be controlled by voltage signals for actuation (or to act as sensors). This innovative AM process is described in detail and the performance of 3D printed IPMC actuators is compared to an IPMC actuator fabricated from commercially available Nafion sheet material. The experimental results show comparable performance between the two types of actuators, demonstrating the potential and feasibility of creating functional 3D-printed IPMCs.

  8. Leaching of heavy metals from cementitious composites made of new ternary cements

    Science.gov (United States)

    Kuterasińska-Warwas, Justyna; Król, Anna

    2017-10-01

    The paper presents a comparison of research methods concerning the leaching of harmful substances (selected heavy metal cations ie. Pb, Cu, Zn and Cr) and their degree of immobilization in cement matrices. The new types of ternary cements were used in the study, where a large proportion of cement clinker was replaced by other non-clinker components - industrial wastes, ie. siliceous fly ash from power industry and granulated blast furnace slag from the iron and steel industry. In studied cementitious binders also ground limestone was used, which is a widely available raw material. The aim of research is determining the suitability of new cements for neutralizing harmful substances in the obtained matrices. The application of two research methods in accordance with EN 12457-4 and NEN 7275 intends to reflection of changing environmental conditions whom composite materials may actually undergo during their exploitation or storing on landfills. The results show that cements with high addition of non-clinker components are suitable for stabilization of toxic substances and the obtained cement matrices retain a high degree of immobilization of heavy metals at the level of 99%.

  9. Fused filament 3D printing of ionic polymer-metal composites (IPMCs)

    International Nuclear Information System (INIS)

    Carrico, James D; Traeden, Nicklaus W; Leang, Kam K; Aureli, Matteo

    2015-01-01

    This paper describes a new three-dimensional (3D) fused filament additive manufacturing (AM) technique in which electroactive polymer filament material is used to build soft active 3D structures, layer by layer. Specifically, the unique actuation and sensing properties of ionic polymer-metal composites (IPMCs) are exploited in 3D printing to create electroactive polymer structures for application in soft robotics and bio-inspired systems. The process begins with extruding a precursor material (non-acid Nafion precursor resin) into a thermoplastic filament for 3D printing. The filament is then used by a custom-designed 3D printer to manufacture the desired soft polymer structures, layer by layer. Since at this stage the 3D-printed samples are not yet electroactive, a chemical functionalization process follows, consisting in hydrolyzing the precursor samples in an aqueous solution of potassium hydroxide and dimethyl sulfoxide. Upon functionalization, metal electrodes are applied on the samples through an electroless plating process, which enables the 3D-printed IPMC structures to be controlled by voltage signals for actuation (or to act as sensors). This innovative AM process is described in detail and the performance of 3D printed IPMC actuators is compared to an IPMC actuator fabricated from commercially available Nafion sheet material. The experimental results show comparable performance between the two types of actuators, demonstrating the potential and feasibility of creating functional 3D-printed IPMCs. (paper)

  10. Metal Matrix Composite Coatings of Cupronickel Embedded with Nanoplatelets for Improved Corrosion Resistant Properties

    Directory of Open Access Journals (Sweden)

    Casey R. Thurber

    2018-01-01

    Full Text Available The deterioration of metals under the influence of corrosion is a costly problem faced by many industries. Therefore, particle-reinforced composite coatings are being developed in different technological fields with high demands for corrosion resistance. This work studies the effects of nanoplatelet reinforcement on the durability, corrosion resistance, and mechanical properties of copper-nickel coatings. A 90 : 10 Cu-Ni alloy was coelectrodeposited with nanoplatelets of montmorillonite (Mt embedded into the metallic matrix from electrolytic baths containing 0.05, 0.10, and 0.15% Mt. X-ray diffraction of the coatings indicated no disruption of the crystal structure with addition of the nanoplatelets into the alloy. The mechanical properties of the coatings improved with a 17% increase in hardness and an 85% increase in shear adhesion strength with nanoplatelet incorporation. The measured polarization resistance increased from 11.77 kΩ·cm2 for pure Cu-Ni to 33.28 kΩ·cm2 for the Cu-Ni-0.15% Mt coating after soaking in a simulated seawater environment for 30 days. The incorporation of montmorillonite also stabilized the corrosion potential during the immersion study and increased resistance to corrosion.

  11. Experimental Characterization of Ionic Polymer Metal Composite as a Novel Fractional Order Element

    Directory of Open Access Journals (Sweden)

    Riccardo Caponetto

    2013-01-01

    Full Text Available Ionic polymer metal composites (IPMCs are electroactive materials made of ionic polymer thin membranes with platinum metallization on their surfaces. They are interesting materials due to not only their electromechanical applications as transducers but also to their electrochemical features and the relationship between the ionic/solvent current and the potential field. Their electrochemical properties thus suggest the possibility for exploiting them as compact fractional-order elements (FOEs with a view of defining fabrication processes and production strategies that assure the desired performances. In this paper, the experimental electrical characterization of a brand new IPMC setup in a fixed sandwich configuration is proposed. Two IPMC devices with different platinum absorption times (5 h and 20 h are characterized through experimental data: first, a preliminary linearity study is performed for a fixed input voltage amplitude in order to determine the frequency region where IPMC can be approximated as linear; then, a frequency analysis is carried out in order to identify a coherent fractional-order dynamics in the bode diagrams. Such analyses take the first steps towards a simplified model of IPMC as a compact electronic FOE for which the fractional exponent value depends on fabrication parameters as the absorption time.

  12. Development of metallic system multi-composite materials for compound environment and corrosion monitoring technology

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi

    1996-01-01

    For the structural materials used for the pressure boundary of nuclear power plants and others, the long term durability over several decades under the compound environment, in which the action of radiation and the corrosion and erosion in the environment of use are superposed, is demanded. To its controlling factors, the secular change of materials due to irradiation ageing and the chemical and physical properties of extreme compound environment are related complicatedly. In the first period of this research, the development of the corrosion-resistant alloys with the most excellent adaptability to environments was carried out by the combination of new alloy design and alloy manufacturing technology. In the second period, in order to heighten the adaptability as the pressure boundary materials between different compound environments, the creation of metallic system multi-composite materials has been advanced. Also corrosion monitoring technique is being developed. The stainless steel for water-cooled reactors, the wear and corrosion-resistant superalloy for reactor core, the corrosion-resistant alloy and the metallic refractory material for reprocessing nitric acid reaction vessels are reported. (K.I.)

  13. On the Hydrogen Cyanide Removal from Air using Metal loaded Polyacrylonitrile Composite Nanofibers

    Directory of Open Access Journals (Sweden)

    Bozorgmehr Maddah

    2017-12-01

    Full Text Available The present study highlights the potential application of electrospun polyacrylonitrile/metal salts (CrO3, CuCO3 nanofibrous filter media impregnated with TEDA (PAN-M-TEDA as an efficient adsorbent for hydrogen cyanide removal from air. The PAN-M-TEDA nanofiber before and after adsorption of hydrogen cyanide was characterized with Fourier transform infrared microscopy (FTIR. The concentration of hydrogen cyanide passes through the samples was determined by measuring the absorption of hydrogen cyanide in the solution containing indicator via UV-Vis spectroscopy. The results showed that introducing metal salts to PAN nanofiber along with their impregnation with TEDA, significantly increases the adsorption capacity of nanofibrous filter media. The adsorption of hydrogen cyanide over PAN-M-TEDA nanofiber was also studied as a function of thickness, PAN concentration and TEDA concentration by response surface methodology (RSM based on central composite design. It is found that the highest adsorption capacity can be achieved at thickness 28.42 mm, PAN concentration 16.19 w/v % and TEDA concentration 14.80 w/v %.

  14. Synthesis and application of a ternary composite of clay, saw-dust and peanut husks in heavy metal adsorption.

    Science.gov (United States)

    Mungondori, Henry H; Mtetwa, Sandile; Tichagwa, Lilian; Katwire, David M; Nyamukamba, Pardon

    2017-05-01

    The adsorption of a multi-component system of ferrous, chromium, copper, nickel and lead on single, binary and ternary composites was studied. The aim of the study was to investigate whether a ternary composite of clay, peanut husks (PH) and saw-dust (SD) exhibited a higher adsorption capacity than that of a binary system of clay and SD as well as a single component adsorbent of PH alone. The materials were used in their raw state without any chemical modifications. This was done to retain the cost effective aspect of the naturally occurring adsorbents. The adsorption capacities of the ternary composite for the heavy metals Fe 2+ , Cr 3+ , Cu 2+ , Ni 2+ and Pb 2+ were 41.7 mg/g, 40.0 mg/g, 25.5 mg/g, 41.5 mg/g and 39.0 mg/g, respectively. It was found that the ternary composite exhibited excellent and enhanced adsorption capacity compared with both a binary and single adsorbent for the heavy metals Fe 2+ , Ni 2+ and Cr 3+ . Characterization of the ternary composites was done using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Kinetic models and adsorption isotherms were also studied. The pseudo second order kinetic model and the Langmuir adsorption isotherm best described the adsorption mechanisms for the ternary composite towards each of the heavy metal ions.

  15. Organic-Inorganic Graphite and Transition Metal Dichalcogenide Based Composites for 3D Printing

    Science.gov (United States)

    Catalan Gonzalez, Jorge Alfredo

    This project was multipronged to help fuse together topics of additive manufacturing and two-dimensional (2D) layered materials, and studying the mechanical and electrical properties of the composites produced. The composites are made from the thermoplastic polymer acting as a matrix and the graphite and 2D transition metal dichalcogenides (TMDs) serving as the filler or reinforcement. Different concentrations of TMD's were added to the matrix to study the effect of composition on the mechanical and electrical properties. To shed insights into the mechanical properties, test coupons were produced as "dog bone" structures for tensile testing using the ASTM D638 type 5 standard, which were printed with the aid of a Lulzbot TAZ 6 3D printer. In the same way, two-terminal resistor-like structures were printed to test the electrical properties inherent to the composites. From the measurements conducted, polyethylene terephthalate glycol (PETG)--graphite composites had a yield strength (YS) ≈ 50 MPa, an ultimate tensile strength (UTS) ≈ 30 MPa and had a better ductility (strain to rupture ≈ 8%) compared to theacrylonitrile butadiene styrene (ABS) composite counterparts. Also, molybdenum disulfide (MoS2) had a more positive effect than tungsten disulfide (WS2), since the strength was retained while the ductility was increased at low loadings of the material. Strain levels were measured to be 30%-120% when adding 1 wt% of MoS2 and WS2. On the other hand, with high additions of MoS2 and WS2 (15 and 20 wt%) ductility was completely lost since no plastic deformation occurred during the testing. Moreover, PETG - graphite resistor-like structures were 3-dimensional (3D) printed and tested with the help of a semiconductor parameter analyzer. All samples were tested at different radius of curvatures (0 cm-1, 0.072 cm-1, 0.087 cm-1, 0.112 cm-1, 0.157 cm-1, and 0.262 cm -1) which showed a composite that was strain insensitive. The obtained average conductivity and resistivity

  16. A framework for analysing relationships between chemical composition and crystal structure in metal oxides

    International Nuclear Information System (INIS)

    Thomas, N.W.

    1991-01-01

    A computer program has been written to characterize the coordination polyhedra of metal cations in terms of their volumes and polyhedral elements, i.e. corners, edges and faces. The sharing of these corners, edges and faces between polyhedra is also quantitatively monitored. In order to develop the methodology, attention is focused on ternary oxides containing the Al 3+ ion, whose structures were retrieved from the Inorganic Crystal Structure Database (ICSD). This also permits an objective assessment of the applicability of Pauling's rules. The influence of ionic valence on the structures of these compounds is examined, by calculating electrostatic bond strengths. Although Pauling's second rule is not supported in detail, the calculation of oxygen-ion valence reveals a basic structural requirement, that the average calculated oxygen-ion valence in any ionic oxide structure is equal to 2. The analysis is further developed to define a general method for the prediction of novel chemical compositions likely to adopt a given desired structure. The polyhedral volumes of this structure are calculated, and use is made of standard ionic radii for cations in sixfold coordination. The electroneutrality principle is invoked to take valence considerations into account. This method can be used to guide the development of new compositions of ceramic materials with certain desirable physical properties. (orig.)

  17. Microstructures and properties of ceramic particle-reinforced metal matrix composite layers produced by laser cladding

    Science.gov (United States)

    Zhang, Qingmao; He, Jingjiang; Liu, Wenjin; Zhong, Minlin

    2005-01-01

    Different weight ratio of titanium, zirconium, WC and Fe-based alloy powders were mixed, and cladded onto a medium carbon steel substrate using a 3kW continuous wave CO2 laser, aiming at producing Ceramic particles- reinforced metal matrix composites (MMCs) layers. The microstructures of the layers are typical hypoeutectic, and the major phases are Ni3Si2, TiSi2, Fe3C, FeNi, MC, Fe7Mo3, Fe3B, γ(residual austenite) and M(martensite). The microstructure morphologies of MMCs layers are dendrites/cells. The MC-type reinforcements are in situ synthesis Carbides which main compositions consist of transition elements Zr, Ti, W. The MC-type particles distributed within dendrite and interdendritic regions with different volume fractions for single and overlapping clad layers. The MMCs layers are dense and free of cracks with a good metallurgical bonding between the layer and substrate. The addition ratio of WC in the mixtures has the remarkable effect on the microhardness of clad layers.

  18. Brazed graphite/refractory metal composites for first-wall protection elements

    Science.gov (United States)

    Šmid, I.; Croessmann, C. D.; Salmonson, J. C.; Whitley, J. B.; Kny, E.; Reheis, N.; Kneringer, G.; Nickel, H.

    1991-03-01

    The peak surface heat flux deposition on divertor elements of near term fusion devices is expected to exceed 10 MW/m 2. The needed reliability of brazed plasma interactive components, particularly under abnormal operating conditions with peak surface temperatures well beyond 1000°C, makes refractory metallic substrates and brazes with a high melting point very attractive. TZM, a high temperature alloy of molybdenum, and isotropic graphite, materials very closely matched in their thermal expansion, were brazed with four high-temperature brazes. The brazes used were Zr, 90Ni/10Ti, 90Cu/10Ti and 70Ag/27Cu/3Ti (nominal composition prior to brazing, wt%). The resulting composite tiles of 50 × 50 mm2 with a TZM thickness of 5 mm and a graphite thickness of 10 mm have been tested in high heat flux simulation for their thermal fatigue properties. Up to 600 loading cycles were carried out with an average heat flux of 10 MW/m 2 for 0.5 s pulses. The maximum surface temperature was 1100°C. In support of the experiment, the thermal response and temperature gradients of the samples were investigated using a finite element model.

  19. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    Science.gov (United States)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-09-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  20. A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints

    International Nuclear Information System (INIS)

    Kwon, Oh Yang; Kim, Tae Hyun

    1999-01-01

    One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction (E/Eo) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures