WorldWideScience

Sample records for metal gate electrode

  1. Gate tunneling current and quantum capacitance in metal-oxide-semiconductor devices with graphene gate electrodes

    Science.gov (United States)

    An, Yanbin; Shekhawat, Aniruddh; Behnam, Ashkan; Pop, Eric; Ural, Ant

    2016-11-01

    Metal-oxide-semiconductor (MOS) devices with graphene as the metal gate electrode, silicon dioxide with thicknesses ranging from 5 to 20 nm as the dielectric, and p-type silicon as the semiconductor are fabricated and characterized. It is found that Fowler-Nordheim (F-N) tunneling dominates the gate tunneling current in these devices for oxide thicknesses of 10 nm and larger, whereas for devices with 5 nm oxide, direct tunneling starts to play a role in determining the total gate current. Furthermore, the temperature dependences of the F-N tunneling current for the 10 nm devices are characterized in the temperature range 77-300 K. The F-N coefficients and the effective tunneling barrier height are extracted as a function of temperature. It is found that the effective barrier height decreases with increasing temperature, which is in agreement with the results previously reported for conventional MOS devices with polysilicon or metal gate electrodes. In addition, high frequency capacitance-voltage measurements of these MOS devices are performed, which depict a local capacitance minimum under accumulation for thin oxides. By analyzing the data using numerical calculations based on the modified density of states of graphene in the presence of charged impurities, it is shown that this local minimum is due to the contribution of the quantum capacitance of graphene. Finally, the workfunction of the graphene gate electrode is extracted by determining the flat-band voltage as a function of oxide thickness. These results show that graphene is a promising candidate as the gate electrode in metal-oxide-semiconductor devices.

  2. A novel approach for the improvement of electrostatic behaviour of physically doped TFET using plasma formation and shortening of gate electrode with hetero-gate dielectric

    Science.gov (United States)

    Soni, Deepak; Sharma, Dheeraj; Aslam, Mohd.; Yadav, Shivendra

    2018-04-01

    This article presents a new device configuration to enhance current drivability and suppress negative conduction (ambipolar conduction) with improved RF characteristics of physically doped TFET. Here, we used a new approach to get excellent electrical characteristics of hetero-dielectric short gate source electrode TFET (HD-SG SE-TFET) by depositing a metal electrode of 5.93 eV work function over the heavily doped source (P+) region. Deposition of metal electrode induces the plasma (thin layer) of holes under the Si/HfO2 interface due to work function difference of metal and semiconductor. Plasma layer of holes is advantageous to increase abruptness as well as decrease the tunneling barrier at source/channel junction for attaining higher tunneling rate of charge carriers (i.e., electrons), which turns into 86.66 times higher ON-state current compared with the conventional physically doped TFET (C-TFET). Along with metal electrode deposition, gate electrode is under-lapped for inducing asymmetrical concentration of charge carriers in the channel region, which is helpful for widening the tunneling barrier width at the drain/channel interface. Consequently, HD-SG SE-TFET shows suppression of ambipolar behavior with reduction in gate-to-drain capacitance which is beneficial for improvement in RF performance. Furthermore, the effectiveness of hetero-gate dielectric concept has been used for improving the RF performance. Furthermore, reliability of C-TFET and proposed structures has been confirmed in term of linearity.

  3. Scaling the Serialization of MOSFETs by Magnetically Coupling Their Gate Electrodes

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Munk-Nielsen, Stig

    2013-01-01

    More than twenty years of thorough research on the serialization of power semiconductor switches, like the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) or the Insulated Gate Bipolar Transistor (IGBT), have resulted into several different stacking concepts; all aiming towards...... the establishment of a high-efficient, high-voltage, fast-switching device. Among the prevailing stacking approaches lies the gate balancing core technique, which, in its initial form, demonstrated very good performance in strings of high-power IGBT modules, by magnetically coupling their gate electrodes. Recently...

  4. Ultra-fine metal gate operated graphene optical intensity modulator

    Science.gov (United States)

    Kou, Rai; Hori, Yosuke; Tsuchizawa, Tai; Warabi, Kaori; Kobayashi, Yuzuki; Harada, Yuichi; Hibino, Hiroki; Yamamoto, Tsuyoshi; Nakajima, Hirochika; Yamada, Koji

    2016-12-01

    A graphene based top-gate optical modulator on a standard silicon photonic platform is proposed for the future optical telecommunication networks. On the basis of the device simulation, we proposed that an electro-absorption light modulation can be realized by an ultra-narrow metal top-gate electrode (width less than 400 nm) directly located on the top of a silicon wire waveguide. The designed structure also provides excellent features such as carrier doping and waveguide-planarization free fabrication processes. In terms of the fabrication, we established transferring of a CVD-grown mono-layer graphene sheet onto a CMOS compatible silicon photonic sample followed by a 25-nm thick ALD-grown Al2O3 deposition and Source-Gate-Drain electrodes formation. In addition, a pair of low-loss spot-size converter for the input and output area is integrated for the efficient light source coupling. The maximum modulation depth of over 30% (1.2 dB) is observed at a device length of 50 μm, and a metal width of 300 nm. The influence of the initial Fermi energy obtained by experiment on the modulation performance is discussed with simulation results.

  5. Optimum source/drain overlap design for 16 nm high-k/metal gate MOSFETs

    International Nuclear Information System (INIS)

    Jang, Junyong; Lim, Towoo; Kim, Youngmin

    2009-01-01

    We explore a source/drain (S/D) design for a 16 nm MOSFET utilizing a replacement process for a high-k gate dielectric and metal gate electrode integration. Using TCAD simulation, a trade-off study between series resistance and overlap capacitance is carried out for a high-k dielectric surrounding gate structure, which results from the replacement process. An optimum S/D overlap to gate for the high-k surrounding gate structure is found to be different from the conventional gate structure, i.e. 0∼1 nm underlap is preferred for the surround high-k gate structure while 1∼2 nm overlap for the conventional gate one

  6. Channel length scaling and the impact of metal gate work function ...

    Indian Academy of Sciences (India)

    As the channel length is reduced from one transistor generation to the next, ... As CMOS technology continues to scale, metal gate electrodes need to be intro .... in the z-direction, q is the electron charge, h is the Planck's constant, Ψ(x, z) is the.

  7. Interface engineering and reliability characteristics of hafnium dioxide with poly silicon gate and dual metal (ruthenium-tantalum alloy, ruthenium) gate electrode for beyond 65 nm technology

    Science.gov (United States)

    Kim, Young-Hee

    Chip density and performance improvements have been driven by aggressive scaling of semiconductor devices. In both logic and memory applications, SiO 2 gate dielectrics has reached its physical limit, direct tunneling resulting from scaling down of dielectrics thickness. Therefore high-k dielectrics have attracted a great deal of attention from industries as the replacement of conventional SiO2 gate dielectrics. So far, lots of candidate materials have been evaluated and Hf-based high-k dielectrics were chosen to the promising materials for gate dielectrics. However, lots of issues were identified and more thorough researches were carried out on Hf-based high-k dielectrics. For instances, mobility degradation, charge trapping, crystallization, Fermi level pinning, interface engineering, and reliability studies. In this research, reliability study of HfO2 were explored with poly gate and dual metal (Ru-Ta alloy, Ru) gate electrode as well as interface engineering. Hard breakdown and soft breakdown were compared and Weibull slope of soft breakdown was smaller than that of hard breakdown, which led to a potential high-k scaling issue. Dynamic reliability has been studied and the combination of trapping and detrapping contributed the enhancement of lifetime projection. Polarity dependence was shown that substrate injection might reduce lifetime projection as well as it increased soft breakdown behavior. Interface tunneling mechanism was suggested with dual metal gate technology. Soft breakdown (l st breakdown) was mainly due to one layer breakdown of bi-layer structure. Low weibull slope was in part attributed to low barrier height of HfO 2 compared to interface layer. Interface layer engineering was thoroughly studied in terms of mobility, swing, and short channel effect using deep sub-micron MOSFET devices. In fact, Hf-based high-k dielectrics could be scaled down to below EOT of ˜10A and it successfully achieved the competitive performance goals. However, it is

  8. Transferred metal electrode films for large-area electronic devices

    International Nuclear Information System (INIS)

    Yang, Jin-Guo; Kam, Fong-Yu; Chua, Lay-Lay

    2014-01-01

    The evaporation of metal-film gate electrodes for top-gate organic field-effect transistors (OFETs) limits the minimum thickness of the polymer gate dielectric to typically more than 300 nm due to deep hot metal atom penetration and damage of the dielectric. We show here that the self-release layer transfer method recently developed for high-quality graphene transfer is also capable of giving high-quality metal thin-film transfers to produce high-performance capacitors and OFETs with superior dielectric breakdown strength even for ultrathin polymer dielectric films. Dielectric breakdown strengths up to 5–6 MV cm −1 have been obtained for 50-nm thin films of polystyrene and a cyclic olefin copolymer TOPAS ® (Zeon). High-quality OFETs with sub-10 V operational voltages have been obtained this way using conventional polymer dielectrics and a high-mobility polymer semiconductor poly[2,5-bis(3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene-2,5-diyl]. The transferred metal films can make reliable contacts without damaging ultrathin polymer films, self-assembled monolayers and graphene, which is not otherwise possible from evaporated or sputtered metal films

  9. Temperature dependence of the work function of ruthenium-based gate electrodes

    International Nuclear Information System (INIS)

    Alshareef, H.N.; Wen, H.C.; Luan, H.F.; Choi, K.; Harris, H.R.; Senzaki, Y.; Majhi, P.; Lee, B.H.; Foran, B.; Lian, G.

    2006-01-01

    The effect of device fabrication temperature on the work function of ruthenium (Ru) metal gate and its bilayers was investigated. The work function shows strong temperature dependence when Ru electrodes are deposited on silicon oxide, SiO 2 , but not on hafnium silicates (HfSiO x ). Specifically, the work function of Ru on SiO 2 increased from 4.5 eV at 500 deg. C to 5.0 eV at 700 deg. C. On further annealing to 900 deg. C or higher, the work function dropped to about 4.4 eV. In the case of HfSiO x , the work function of Ru changed by less than 100 mV over the same temperature range. Identical temperature dependence was observed using hafnium (Hf)/Ru and tantalum (Ta)/Ru bilayers. However, the peak values of the work function decreased with increasing Hf/Ru and Ta/Ru thickness ratios. Materials analysis suggests that these trends are driven by interactions at the Ru metal gate-dielectric interface

  10. Investigation of High-k Dielectrics and Metal Gate Electrodes for Non-volatile Memory Applications

    Science.gov (United States)

    Jayanti, Srikant

    Due to the increasing demand of non-volatile flash memories in the portable electronics, the device structures need to be scaled down drastically. However, the scalability of traditional floating gate structures beyond 20 nm NAND flash technology node is uncertain. In this regard, the use of metal gates and high-k dielectrics as the gate and interpoly dielectrics respectively, seem to be promising substitutes in order to continue the flash scaling beyond 20nm. Furthermore, research of novel memory structures to overcome the scaling challenges need to be explored. Through this work, the use of high-k dielectrics as IPDs in a memory structure has been studied. For this purpose, IPD process optimization and barrier engineering were explored to determine and improve the memory performance. Specifically, the concept of high-k / low-k barrier engineering was studied in corroboration with simulations. In addition, a novel memory structure comprising a continuous metal floating gate was investigated in combination with high-k blocking oxides. Integration of thin metal FGs and high-k dielectrics into a dual floating gate memory structure to result in both volatile and non-volatile modes of operation has been demonstrated, for plausible application in future unified memory architectures. The electrical characterization was performed on simple MIS/MIM and memory capacitors, fabricated through CMOS compatible processes. Various analytical characterization techniques were done to gain more insight into the material behavior of the layers in the device structure. In the first part of this study, interfacial engineering was investigated by exploring La2O3 as SiO2 scavenging layer. Through the silicate formation, the consumption of low-k SiO2 was controlled and resulted in a significant improvement in dielectric leakage. The performance improvement was also gauged through memory capacitors. In the second part of the study, a novel memory structure consisting of continuous metal FG

  11. Characterization, integration and reliability of HfO2 and LaLuO3 high-κ/metal gate stacks for CMOS applications

    International Nuclear Information System (INIS)

    Nichau, Alexander

    2013-01-01

    The continued downscaling of MOSFET dimensions requires an equivalent oxide thickness (EOT) of the gate stack below 1 nm. An EOT below 1.4 nm is hereby enabled by the use of high-κ/metal gate stacks. LaLuO 3 and HfO 2 are investigated as two different high-κ oxides on silicon in conjunction with TiN as the metal electrode. LaLuO 3 and its temperature-dependent silicate formation are characterized by hard X-ray photoemission spectroscopy (HAXPES). The effective attenuation length of LaLuO 3 is determined between 7 and 13 keV to enable future interface and diffusion studies. In a first investigation of LaLuO 3 on germanium, germanate formation is shown. LaLuO 3 is further integrated in a high-temperature MOSFET process flow with varying thermal treatment. The devices feature drive currents up to 70μA/μm at 1μm gate length. Several optimization steps are presented. The effective device mobility is related to silicate formation and thermal budget. At high temperature the silicate formation leads to mobility degradation due to La-rich silicate formation. The integration of LaLuO 3 in high-T processes delicately connects with the optimization of the TiN metal electrode. Hereby, stoichiometric TiN yields the best results in terms of thermal stability with respect to Si-capping and high-κ oxide. Different approaches are presented for a further EOT reduction with LaLuO 3 and HfO 2 . Thereby the thermodynamic and kinetic predictions are employed to estimate the behavior on the nanoscale. Based on thermodynamics, excess oxygen in the gate stack, especially in oxidized metal electrodes, is identified to prevent EOT scaling below 1.2 nm. The equivalent oxide thickness of HfO 2 gate stacks is scalable below 1 nm by the use of thinned interfacial SiO 2 . The prevention of oxygen incorporation into the metal electrode by Si-capping maintains the EOT after high temperature annealing. Redox systems are employed within the gate electrode to decrease the EOT of HfO 2 gate stacks

  12. Catoptric electrodes: transparent metal electrodes using shaped surfaces.

    Science.gov (United States)

    Kik, Pieter G

    2014-09-01

    An optical electrode design is presented that theoretically allows 100% optical transmission through an interdigitated metallic electrode at 50% metal areal coverage. This is achieved by redirection of light incident on embedded metal electrode lines to an angle beyond that required for total internal reflection. Full-field electromagnetic simulations using realistic material parameters demonstrate 84% frequency-averaged transmission for unpolarized illumination across the entire visible spectral range using a silver interdigitated electrode at 50% areal coverage. The redirection is achieved through specular reflection, making it nonresonant and arbitrarily broadband, provided the electrode width exceeds the optical wavelength. These findings could significantly improve the performance of photovoltaic devices and optical detectors that require high-conductivity top contacts.

  13. Single-electron-occupation metal-oxide-semiconductor quantum dots formed from efficient poly-silicon gate layout

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Malcolm S.; rochette, sophie; Rudolph, Martin; Roy, A. -M.; Curry, Matthew Jon; Ten Eyck, Gregory A.; Manginell, Ronald P.; Wendt, Joel R.; Pluym, Tammy; Carr, Stephen M; Ward, Daniel Robert; Lilly, Michael; pioro-ladriere, michel

    2017-07-01

    We introduce a silicon metal-oxide-semiconductor quantum dot structure that achieves dot-reservoir tunnel coupling control without a dedicated barrier gate. The elementary structure consists of two accumulation gates separated spatially by a gap, one gate accumulating a reservoir and the other a quantum dot. Control of the tunnel rate between the dot and the reservoir across the gap is demonstrated in the single electron regime by varying the reservoir accumulation gate voltage while compensating with the dot accumulation gate voltage. The method is then applied to a quantum dot connected in series to source and drain reservoirs, enabling transport down to the single electron regime. Finally, tuning of the valley splitting with the dot accumulation gate voltage is observed. This split accumulation gate structure creates silicon quantum dots of similar characteristics to other realizations but with less electrodes, in a single gate stack subtractive fabrication process that is fully compatible with silicon foundry manufacturing.

  14. Low-power DRAM-compatible Replacement Gate High-k/Metal Gate Stacks

    Science.gov (United States)

    Ritzenthaler, R.; Schram, T.; Bury, E.; Spessot, A.; Caillat, C.; Srividya, V.; Sebaai, F.; Mitard, J.; Ragnarsson, L.-Å.; Groeseneken, G.; Horiguchi, N.; Fazan, P.; Thean, A.

    2013-06-01

    In this work, the possibility of integration of High-k/Metal Gate (HKMG), Replacement Metal Gate (RMG) gate stacks for low power DRAM compatible transistors is studied. First, it is shown that RMG gate stacks used for Logic applications need to be seriously reconsidered, because of the additional anneal(s) needed in a DRAM process. New solutions are therefore developed. A PMOS stack HfO2/TiN with TiN deposited in three times combined with Work Function metal oxidations is demonstrated, featuring a very good Work Function of 4.95 eV. On the other hand, the NMOS side is shown to be a thornier problem to solve: a new solution based on the use of oxidized Ta as a diffusion barrier is proposed, and a HfO2/TiN/TaOX/TiAl/TiN/TiN gate stack featuring an aggressive Work Function of 4.35 eV (allowing a Work Function separation of 600 mV between NMOS and PMOS) is demonstrated. This work paves the way toward the integration of gate-last options for DRAM periphery transistors.

  15. Charge transport properties of graphene: Effects of Cu-based gate electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Qide [School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105 (China); Zhang, C. X., E-mail: zhangchunxiao@xtu.edu.cn; Tang, Chao, E-mail: tang-chao@xtu.edu.cn; Zhong, Jianxin [School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105 (China); Hunan Provincial Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University, Hunan 411105 (China); He, Chaoyu [Hunan Provincial Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University, Hunan 411105 (China)

    2016-07-21

    Using the first-principles nonequilibrium Green's function method, we study effects of Cu and Ni@Cu used as the Cu-based gate electrode on the charge transport of graphene in the field effect transistors (FET). We find that the transmission of graphene decreases with both Cu and Ni@Cu absorbed in the scatter region. Especially, noticeable transmission gaps are present around the Femi level. The transmission gaps are still effective, and considerable cut-off regions are found under the non-equilibrium environment. The Ni@Cu depresses the transmission of graphene more seriously than the Cu and enlarges the transmission gap in armchair direction. The effects on the charge transport are attributed to the redistribution of electronic states of graphene. Both Cu and Ni@Cu induce the localization of states, so as to block the electronic transport. The Ni@Cu transforms the interaction between graphene and gate electrode from the physisorption to the chemisorption, and then induces more localized states, so that the transmission decreases further. Our results suggest that besides being used to impose gate voltage, the Cu-based gate electrode itself will have a considerable effect on the charge transport of graphene and induces noticeable transmission gap in the FET.

  16. Gate-first integration of tunable work function metal gates of different thicknesses into high-k metal gates CMOS FinFETs for multi- VTh engineering

    KAUST Repository

    Hussain, Muhammad Mustafa; Smith, Casey Eben; Harris, Harlan Rusty; Young, Chadwin; Tseng, Hsinghuang; Jammy, Rajarao

    2010-01-01

    Gate-first integration of tunable work function metal gates of different thicknesses (320 nm) into high-k/metal gates CMOS FinFETs was demonstrated to achieve multiple threshold voltages (VTh) for 32-nm technology and beyond logic, memory, input/output, and system-on-a-chip applications. The fabricated devices showed excellent short-channel effect immunity (drain-induced barrier lowering ∼ 40 mV/V), nearly symmetric VTh, low T inv(∼ 1.4 nm), and high Ion(∼780μAμm) for N/PMOS without any intentional strain enhancement. © 2006 IEEE.

  17. Gate-first integration of tunable work function metal gates of different thicknesses into high-k metal gates CMOS FinFETs for multi- VTh engineering

    KAUST Repository

    Hussain, Muhammad Mustafa

    2010-03-01

    Gate-first integration of tunable work function metal gates of different thicknesses (320 nm) into high-k/metal gates CMOS FinFETs was demonstrated to achieve multiple threshold voltages (VTh) for 32-nm technology and beyond logic, memory, input/output, and system-on-a-chip applications. The fabricated devices showed excellent short-channel effect immunity (drain-induced barrier lowering ∼ 40 mV/V), nearly symmetric VTh, low T inv(∼ 1.4 nm), and high Ion(∼780μAμm) for N/PMOS without any intentional strain enhancement. © 2006 IEEE.

  18. Characterization, integration and reliability of HfO{sub 2} and LaLuO{sub 3} high-κ/metal gate stacks for CMOS applications

    Energy Technology Data Exchange (ETDEWEB)

    Nichau, Alexander

    2013-07-15

    The continued downscaling of MOSFET dimensions requires an equivalent oxide thickness (EOT) of the gate stack below 1 nm. An EOT below 1.4 nm is hereby enabled by the use of high-κ/metal gate stacks. LaLuO{sub 3} and HfO{sub 2} are investigated as two different high-κ oxides on silicon in conjunction with TiN as the metal electrode. LaLuO{sub 3} and its temperature-dependent silicate formation are characterized by hard X-ray photoemission spectroscopy (HAXPES). The effective attenuation length of LaLuO{sub 3} is determined between 7 and 13 keV to enable future interface and diffusion studies. In a first investigation of LaLuO{sub 3} on germanium, germanate formation is shown. LaLuO{sub 3} is further integrated in a high-temperature MOSFET process flow with varying thermal treatment. The devices feature drive currents up to 70μA/μm at 1μm gate length. Several optimization steps are presented. The effective device mobility is related to silicate formation and thermal budget. At high temperature the silicate formation leads to mobility degradation due to La-rich silicate formation. The integration of LaLuO{sub 3} in high-T processes delicately connects with the optimization of the TiN metal electrode. Hereby, stoichiometric TiN yields the best results in terms of thermal stability with respect to Si-capping and high-κ oxide. Different approaches are presented for a further EOT reduction with LaLuO{sub 3} and HfO{sub 2}. Thereby the thermodynamic and kinetic predictions are employed to estimate the behavior on the nanoscale. Based on thermodynamics, excess oxygen in the gate stack, especially in oxidized metal electrodes, is identified to prevent EOT scaling below 1.2 nm. The equivalent oxide thickness of HfO{sub 2} gate stacks is scalable below 1 nm by the use of thinned interfacial SiO{sub 2}. The prevention of oxygen incorporation into the metal electrode by Si-capping maintains the EOT after high temperature annealing. Redox systems are employed within the

  19. Alkali metal ion battery with bimetallic electrode

    Science.gov (United States)

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  20. GeO{sub x} interfacial layer scavenging remotely induced by metal electrode in metal/HfO{sub 2}/GeO{sub x}/Ge capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taehoon; Jung, Yong Chan; Seong, Sejong; Ahn, Jinho, E-mail: jhahn@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 04763 (Korea, Republic of); Lee, Sung Bo [Department of Materials Science and Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826 (Korea, Republic of); Park, In-Sung, E-mail: parkis77@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 04763 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 04763 (Korea, Republic of)

    2016-07-11

    The metal gate electrodes of Ni, W, and Pt have been investigated for their scavenging effect: a reduction of the GeO{sub x} interfacial layer (IL) between HfO{sub 2} dielectric and Ge substrate in metal/HfO{sub 2}/GeO{sub x}/Ge capacitors. All the capacitors were fabricated using the same process except for the material used in the metal electrodes. Capacitance-voltage measurements, scanning transmission electron microscopy, and electron energy loss spectroscopy were conducted to confirm the scavenging of GeO{sub x} IL. Interestingly, these metals are observed to remotely scavenge the interfacial layer, reducing its thickness in the order of Ni, W, and then Pt. The capacitance equivalent thickness of these capacitors with Ni, W, and Pt electrodes are evaluated to be 2.7 nm, 3.0 nm, and 3.5 nm, and each final remnant physical thickness of GeO{sub x} IL layer is 1.1 nm 1.4 nm, and 1.9 nm, respectively. It is suggested that the scavenging effect induced by the metal electrodes is related to the concentration of oxygen vacancies generated by oxidation reaction at the metal/HfO{sub 2} interface.

  1. Emerging Novel Metal Electrodes for Photovoltaic Applications.

    Science.gov (United States)

    Lu, Haifei; Ren, Xingang; Ouyang, Dan; Choy, Wallace C H

    2018-04-01

    Emerging novel metal electrodes not only serve as the collector of free charge carriers, but also function as light trapping designs in photovoltaics. As a potential alternative to commercial indium tin oxide, transparent electrodes composed of metal nanowire, metal mesh, and ultrathin metal film are intensively investigated and developed for achieving high optical transmittance and electrical conductivity. Moreover, light trapping designs via patterning of the back thick metal electrode into different nanostructures, which can deliver a considerable efficiency improvement of photovoltaic devices, contribute by the plasmon-enhanced light-mattering interactions. Therefore, here the recent works of metal-based transparent electrodes and patterned back electrodes in photovoltaics are reviewed, which may push the future development of this exciting field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Alkali metal-refractory metal biphase electrode for AMTEC

    Science.gov (United States)

    Williams, Roger M. (Inventor); Bankston, Clyde P. (Inventor); Cole, Terry (Inventor); Khanna, Satish K. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Wheeler, Bob L. (Inventor)

    1989-01-01

    An electrode having increased output with slower degradation is formed of a film applied to a beta-alumina solid electrolyte (BASE). The film comprises a refractory first metal M.sup.1 such as a platinum group metal, suitably platinum or rhodium, capable of forming a liquid or a strong surface adsorption phase with sodium at the operating temperature of an alkali metal thermoelectric converter (AMTEC) and a second refractory metal insoluble in sodium or the NaM.sup.1 liquid phase such as a Group IVB, VB or VIB metal, suitably tungsten, molybdenum, tantalum or niobium. The liquid phase or surface film provides fast transport through the electrode while the insoluble refractory metal provides a structural matrix for the electrode during operation. A trilayer structure that is stable and not subject to deadhesion comprises a first, thin layer of tungsten, an intermediate co-deposited layer of tungsten-platinum and a thin surface layer of platinum.

  3. Atomic-Layer-Deposited SnO2 as Gate Electrode for Indium-Free Transparent Electronics

    KAUST Repository

    Alshammari, Fwzah Hamud

    2017-08-04

    Atomic-layer-deposited SnO2 is used as a gate electrode to replace indium tin oxide (ITO) in thin-film transistors and circuits for the first time. The SnO2 films deposited at 200 °C show low electrical resistivity of ≈3.1 × 10−3 Ω cm with ≈93% transparency in most of the visible range of the electromagnetic spectrum. Thin-film transistors fabricated with SnO2 gates show excellent transistor properties including saturation mobility of 15.3 cm2 V−1 s−1, a low subthreshold swing of ≈130 mV dec−1, a high on/off ratio of ≈109, and an excellent electrical stability under constant-voltage stressing conditions to the gate terminal. Moreover, the SnO2-gated thin-film transistors show excellent electrical characteristics when used in electronic circuits such as negative channel metal oxide semiconductor (NMOS) inverters and ring oscillators. The NMOS inverters exhibit a low propagation stage delay of ≈150 ns with high DC voltage gain of ≈382. A high oscillation frequency of ≈303 kHz is obtained from the output sinusoidal signal of the 11-stage NMOS inverter-based ring oscillators. These results show that SnO2 can effectively replace ITO in transparent electronics and sensor applications.

  4. Electrode for disintegrating metallic material

    International Nuclear Information System (INIS)

    Persang, J.C.

    1985-01-01

    A graphite electrode is provided for disintegrating and removing metallic material from a workpiece, e.g., such as portions of a nuclear reactor to be repaired while in an underwater and/or radioactive environment. The electrode is provided with a plurality of openings extending outwardly, and a manifold for supplying a mixture of water and compressed gas to be discharged through the openings for sweeping away the disintegrated metallic material during use of the electrode

  5. Determination of work function of graphene under a metal electrode and its role in contact resistance.

    Science.gov (United States)

    Song, Seung Min; Park, Jong Kyung; Sul, One Jae; Cho, Byung Jin

    2012-08-08

    Although the work function of graphene under a given metal electrode is critical information for the realization of high-performance graphene-based electronic devices, relatively little relevant research has been carried out to date. In this work, the work function values of graphene under various metals are accurately measured for the first time through a detailed analysis of the capacitance-voltage (C-V) characteristics of a metal-graphene-oxide-semiconductor (MGOS) capacitor structure. In contrast to the high work function of exposed graphene of 4.89-5.16 eV, the work function of graphene under a metal electrode varies depending on the metal species. With a Cr/Au or Ni contact, the work function of graphene is pinned to that of the contacted metal, whereas with a Pd or Au contact the work function assumes a value of ∼4.62 eV regardless of the work function of the contact metal. A study of the gate voltage dependence on the contact resistance shows that the latter case provides lower contact resistance.

  6. Influence of Gate Dielectrics, Electrodes and Channel Width on OFET Characteristics

    International Nuclear Information System (INIS)

    Liyana, V P; Stephania, A M; Shiju, K; Predeep, P

    2015-01-01

    Organic Field Effect Transistors (OFET) possess wide applications in large area electronics owing to their attractive features like easy fabrication process, light weight, flexibility, cost effectiveness etc. But instability, high operational voltages and low carrier mobility act as inhibitors to commercialization of OFETs and various approaches were tried on a regular basis so as to make it viable. In this work, Poly 3-hexylthiophene-2,5diyl (P3HT) based OFETs with bottom-contact top-gate configuration using Poly vinyl alcohol (PVA) and Poly (methyl methacrylate) (PMMA) as gate dielectrics, aluminium and copper as source-drain electrodes are investigated. An effort is made to compare the effect of these dielectric materials and electrodes on the performance of OFET. Also, an attempt has been made to optimize the channel width of the device. These devices are characterised with mobility (μ), threshold voltage (V T ), on-off ratio (I on /I off ) and their comparative analysis is reported. (paper)

  7. Influence of Gate Dielectrics, Electrodes and Channel Width on OFET Characteristics

    Science.gov (United States)

    Liyana, V. P.; Stephania, A. M.; Shiju, K.; Predeep, P.

    2015-06-01

    Organic Field Effect Transistors (OFET) possess wide applications in large area electronics owing to their attractive features like easy fabrication process, light weight, flexibility, cost effectiveness etc. But instability, high operational voltages and low carrier mobility act as inhibitors to commercialization of OFETs and various approaches were tried on a regular basis so as to make it viable. In this work, Poly 3-hexylthiophene-2,5diyl (P3HT) based OFETs with bottom-contact top-gate configuration using Poly vinyl alcohol (PVA) and Poly (methyl methacrylate) (PMMA) as gate dielectrics, aluminium and copper as source-drain electrodes are investigated. An effort is made to compare the effect of these dielectric materials and electrodes on the performance of OFET. Also, an attempt has been made to optimize the channel width of the device. These devices are characterised with mobility (μ), threshold voltage (VT), on-off ratio (Ion/Ioff) and their comparative analysis is reported.

  8. Plasma-Induced Damage on the Reliability of Hf-Based High-k/Dual Metal-Gates Complementary Metal Oxide Semiconductor Technology

    International Nuclear Information System (INIS)

    Weng, W.T.; Lin, H.C.; Huang, T.Y.; Lee, Y.J.; Lin, H.C.

    2009-01-01

    This study examines the effects of plasma-induced damage (PID) on Hf-based high-k/dual metal-gates transistors processed with advanced complementary metal-oxide-semiconductor (CMOS) technology. In addition to the gate dielectric degradations, this study demonstrates that thinning the gate dielectric reduces the impact of damage on transistor reliability including the positive bias temperature instability (PBTI) of n-channel metal-oxide-semiconductor field-effect transistors (NMOSFETs) and the negative bias temperature instability (NBTI) of p-channel MOSFETs. This study shows that high-k/metal-gate transistors are more robust against PID than conventional SiO 2 /poly-gate transistors with similar physical thickness. Finally this study proposes a model that successfully explains the observed experimental trends in the presence of PID for high-k/metal-gate CMOS technology.

  9. High-current and low acceleration voltage arsenic ion implanted polysilicon-gate and source-drain electrode Si mos transistor

    International Nuclear Information System (INIS)

    Saito, Yasuyuki; Sugimura, Yoshiro; Sugihara, Michiyuki

    1993-01-01

    The fabrication process of high current arsenic (As) ion implanted polysilicon (Si) gate and source drain (SD) electrode Si n-channel metal oxide-semiconductor field effect transistor (MOSFET) was examined. Poly Si film n-type doping was performed by using high current (typical current: 2mA) and relatively low acceleration voltage (40keV) As ion implantation technique (Lintott series 3). It was observed that high dose As implanted poly Si films as is show refractoriness against radical fluorine excited by microwave. Using GCA MANN4800 (m/c ID No.2, resist: OFPR) mask pattern printing technique, the high current As ion implantation technique and radical fluorine gas phase etching (Chemical dry etching: CDE) technique, the n-channel Poly Si gate (ρs = ≅100Ω/□) enhancement MQSFETs(ρs source drain = ≅50Ω/□, SiO 2 gate=380 angstrom) with off-leak-less were obtained on 3 inch Czochralski grown 2Ωcm boron doped p type wafers (Osaka titanium). By the same process, a 8 bit single chip μ-processor with 26MHz full operation was performed

  10. Cleaning Challenges of High-κ/Metal Gate Structures

    KAUST Repository

    Hussain, Muhammad Mustafa; Shamiryan, Denis G.; Paraschiv, Vasile; Sano, Kenichi; Reinhardt, Karen A.

    2010-01-01

    High-κ/metal gates are used as transistors for advanced logic applications to improve speed and eliminate electrical issues associated with polySi and SiO2 gates. Various integration schemes are possible and will be discussed, such as dual gate, gate-first, and gate-last, both of which require specialized cleaning and etching steps. Specific areas of discussion will include cleaning and conditioning of the silicon surface, forming a high-quality chemical oxide, removal of the high-κ dielectric with selectivity to the SiO2 layer, cleaning and residue removal after etching, and prevention of galvanic corrosion during cleaning. © 2011 Scrivener Publishing LLC. All rights reserved.

  11. Cleaning Challenges of High-κ/Metal Gate Structures

    KAUST Repository

    Hussain, Muhammad Mustafa

    2010-12-20

    High-κ/metal gates are used as transistors for advanced logic applications to improve speed and eliminate electrical issues associated with polySi and SiO2 gates. Various integration schemes are possible and will be discussed, such as dual gate, gate-first, and gate-last, both of which require specialized cleaning and etching steps. Specific areas of discussion will include cleaning and conditioning of the silicon surface, forming a high-quality chemical oxide, removal of the high-κ dielectric with selectivity to the SiO2 layer, cleaning and residue removal after etching, and prevention of galvanic corrosion during cleaning. © 2011 Scrivener Publishing LLC. All rights reserved.

  12. Enhanced performance of amorphous In-Ga-Zn-O thin-film transistors using different metals for source/drain electrodes

    Science.gov (United States)

    Pyo, Ju-Young; Cho, Won-Ju

    2017-09-01

    In this paper, we propose an amorphous indium gallium zinc oxide (a-IGZO) thin-film transistor (TFT) with off-planed source/drain electrodes. We applied different metals for the source/drain electrodes with Ni and Ti to control the work function as high and low. When we measured the configuration of Ni to drain and source to Ti, the a-IGZO TFT showed increased driving current, decreased leakage current, a high on/off current ratio, low subthreshold swing, and high mobility. In addition, we conducted a reliability test with a gate bias stress test at various temperatures. The results of the reliability test showed the Ni drain and Ti drain had an equivalent effective energy barrier height. Thus, we confirmed that the proposed off-planed structure improved the electrical characteristics of the fabricated devices without any degradation of characteristics. Through the a-IGZO TFT with different source/drain electrode metal engineering, we realized high-performance TFTs for next-generation display devices.

  13. Design and analysis of compact ultra energy-efficient logic gates using laterally-actuated double-electrode NEMS

    KAUST Repository

    Dadgour, Hamed F.

    2010-01-01

    Nano-Electro-Mechanical Switches (NEMS) are among the most promising emerging devices due to their near-zero subthreshold-leakage currents. This paper reports device fabrication and modeling, as well as novel logic gate design using "laterally-actuated double-electrode NEMS" structures. The new device structure has several advantages over existing NEMS architectures such as being immune to impact bouncing and release vibrations (unlike a vertically-actuated NEMS) and offer higher flexibility to implement compact logic gates (unlike a single-electrode NEMS). A comprehensive analytical framework is developed to model different properties of these devices by solving the Euler-Bernoulli\\'s beam equation. The proposed model is validated using measurement data for the fabricated devices. It is shown that by ignoring the non-uniformity of the electrostatic force distribution, the existing models "underestimate" the actual value of Vpull-in and Vpull-out. Furthermore, novel energy efficient NEMS-based circuit topologies are introduced to implement compact inverter, NAND, NOR and XOR gates. For instance, the proposed XOR gate can be implemented by using only two NEMS devices compared to that of a static CMOS-based XOR gate that requires at least 10 transistors. © Copyright 2010 ACM.

  14. Pressure sensor based on MEMS nano-cantilever beam structure as a heterodielectric gate electrode of dopingless TFET

    Science.gov (United States)

    Kumar, Gagan; Raman, Ashish

    2016-12-01

    Micro-electromechanical systems (MEMS) technology has enticed numerous scientists since recent decades particularly in the field of miniaturized-sensors and actuators. Pressure sensor is pivotal component in both of the forerunning fields. The pursuance of a pressure sensor is exigently relying upon its different physical properties i.e. Piezo-resistive, Piezoelectric, Capacitive, Magnetic and Electrostatic. This article presents an outline and scrutiny of the Doping-less Cantilever Based Pressure Sensor using tunnel field effect transistor technology. The propounded pressure sensor based on the principle of capacitive gate coupling, due to which the tunneling current is modified. Additionally, to enhance the affectability of pressure sensor, the work function of metal gate electrode is amended using gas molecule diffusion. Simulation uncovers a phenomenal relationship amongst hypothetical and practical accepts of configuration. The pressure sensor is composed at Silvaco Atlas tool utilizing 40 nm technologies. The performance results exhibit that the proposed model consumes ≤1 mW power and 250 μA tunneling current per nm bending of cantilever beam structure. The inclusive length of the proposed device is 100 nm.

  15. Metal sulfide electrodes and energy storage devices thereof

    Science.gov (United States)

    Chiang, Yet-Ming; Woodford, William Henry; Li, Zheng; Carter, W. Craig

    2017-02-28

    The present invention generally relates to energy storage devices, and to metal sulfide energy storage devices in particular. Some aspects of the invention relate to energy storage devices comprising at least one flowable electrode, wherein the flowable electrode comprises an electroactive metal sulfide material suspended and/or dissolved in a carrier fluid. In some embodiments, the flowable electrode further comprises a plurality of electronically conductive particles suspended and/or dissolved in the carrier fluid, wherein the electronically conductive particles form a percolating conductive network. An energy storage device comprising a flowable electrode comprising a metal sulfide electroactive material and a percolating conductive network may advantageously exhibit, upon reversible cycling, higher energy densities and specific capacities than conventional energy storage devices.

  16. Synthesis of carbon nanotubes bridging metal electrodes

    International Nuclear Information System (INIS)

    Kotlar, M.; Vojs, M.; Marton, M.; Vesel, M.; Redhammer, R.

    2012-01-01

    In our work we demonstrate growth of carbon nanotubes that can conductively bridge the metal electrodes. The role of different catalysts was examined. Interdigitated metal electrodes are made from copper and we are using bimetal Al/Ni as catalyst for growth of carbon nanotubes. We are using this catalyst composition for growth of the single-walled carbon nanotube network. (authors)

  17. Activation and discharge kinetics of metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Stein Egil

    2003-07-01

    Potential step chronoamperometry and Electrochemical Impedance Spectroscopy (eis) measurements were performed on single metal hydride particles. For the {alpha}-phase, the bulk diffusion coefficient and the absorption/adsorption rate parameters were determined. Materials produced by atomisation, melt spinning and conventional casting were investigated. The melt spun and conventional cast materials were identical and the atomised material similar in composition. The particles from the cast and the melt spun material were shaped like parallelepipeds. A corresponding equation, for this geometry, for diffusion coupled to an absorption/adsorption reaction was developed. It was found that materials produced by melt spinning exhibited lower bulk diffusion (1.7E-14 m2/s) and absorption/adsorption reaction rate (1.0E-8 m/s), compared to materials produced by conventionally casting (1.1E-13 m2/s and 5.5E-8 m/s respectively). In addition, the influence of particle active surface and relative diffusion length were discussed. It was concluded that there are uncertainties connected to these properties, which may explain the large distribution in the kinetic parameters measured on metal hydride particles. Activation of metal hydride forming materials has been studied and an activation procedure, for porous electrodes, was investigated. Cathodic polarisation of the electrode during a hot alkaline surface treatment gave the maximum discharge capacity on the first discharge of the electrode. The studied materials were produced by gas atomisation and the spherical shape was retained during the activation. Both an AB{sub 5} and an AB{sub 2} alloy was successfully activated and discharge rate properties determined. The AB{sub 2} material showed a higher maximum discharge capacity, but poor rate properties, compared to the AB{sub 5} material. Reduction of surface oxides, and at the same time protection against corrosion of active metallic nickel, can explain the satisfying results of

  18. Dual metal gate tunneling field effect transistors based on MOSFETs: A 2-D analytical approach

    Science.gov (United States)

    Ramezani, Zeinab; Orouji, Ali A.

    2018-01-01

    A novel 2-D analytical drain current model of novel Dual Metal Gate Tunnel Field Effect Transistors Based on MOSFETs (DMG-TFET) is presented in this paper. The proposed Tunneling FET is extracted from a MOSFET structure by employing an additional electrode in the source region with an appropriate work function to induce holes in the N+ source region and hence makes it as a P+ source region. The electric field is derived which is utilized to extract the expression of the drain current by analytically integrating the band to band tunneling generation rate in the tunneling region based on the potential profile by solving the Poisson's equation. Through this model, the effects of the thin film thickness and gate voltage on the potential, the electric field, and the effects of the thin film thickness on the tunneling current can be studied. To validate our present model we use SILVACO ATLAS device simulator and the analytical results have been compared with it and found a good agreement.

  19. Production of Manual Metal Arc Welding Electrodes with Local Raw ...

    African Journals Online (AJOL)

    Manual arc welding using flux coated electrodes is carried out by producing an electric arc between the base metal and a flux covered metal electrode with electric current that depends on the type of electrode, material, welding position and the desired strength. The composition of flux coated electrodes is complex and a ...

  20. Metal nanogrids, nanowires, and nanofibers for transparent electrodes

    KAUST Repository

    Hu, Liangbing; Wu, Hui; Cui, Yi

    2011-01-01

    Metals possess the highest conductivity among all room-temperature materials; however, ultrathin metal films demonstrate decent optical transparency but poor sheet conductance due to electron scattering from the surface and grain boundaries. This article discusses engineered metal nanostructures in the form of nanogrids, nanowires, or continuous nanofibers as efficient transparent and conductive electrodes. Metal nanogrids are discussed, as they represent an excellent platform for understanding the fundamental science. Progress toward low-cost, nano-ink-based printed silver nanowire electrodes, including silver nanowire synthesis, film fabrication, wire-wire junction resistance, optoelectronic properties, and stability, are also discussed. Another important factor for low-cost application is to use earth-abundant materials. Copper-based nanowires and nanofibers are discussed in this context. Examples of device integrations of these materials are also given. Such metal nanostructure-based transparent electrodes are particularly attractive for solar cell applications. © 2011 Materials Research Society.

  1. Metal nanogrids, nanowires, and nanofibers for transparent electrodes

    KAUST Repository

    Hu, Liangbing

    2011-10-01

    Metals possess the highest conductivity among all room-temperature materials; however, ultrathin metal films demonstrate decent optical transparency but poor sheet conductance due to electron scattering from the surface and grain boundaries. This article discusses engineered metal nanostructures in the form of nanogrids, nanowires, or continuous nanofibers as efficient transparent and conductive electrodes. Metal nanogrids are discussed, as they represent an excellent platform for understanding the fundamental science. Progress toward low-cost, nano-ink-based printed silver nanowire electrodes, including silver nanowire synthesis, film fabrication, wire-wire junction resistance, optoelectronic properties, and stability, are also discussed. Another important factor for low-cost application is to use earth-abundant materials. Copper-based nanowires and nanofibers are discussed in this context. Examples of device integrations of these materials are also given. Such metal nanostructure-based transparent electrodes are particularly attractive for solar cell applications. © 2011 Materials Research Society.

  2. Gate-dependent asymmetric transport characteristics in pentacene barristors with graphene electrodes.

    Science.gov (United States)

    Hwang, Wang-Taek; Min, Misook; Jeong, Hyunhak; Kim, Dongku; Jang, Jingon; Yoo, Daekyung; Jang, Yeonsik; Kim, Jun-Woo; Yoon, Jiyoung; Chung, Seungjun; Yi, Gyu-Chul; Lee, Hyoyoung; Wang, Gunuk; Lee, Takhee

    2016-11-25

    We investigated the electrical characteristics and the charge transport mechanism of pentacene vertical hetero-structures with graphene electrodes. The devices are composed of vertical stacks of silicon, silicon dioxide, graphene, pentacene, and gold. These vertical heterojunctions exhibited distinct transport characteristics depending on the applied bias direction, which originates from different electrode contacts (graphene and gold contacts) to the pentacene layer. These asymmetric contacts cause a current rectification and current modulation induced by the gate field-dependent bias direction. We observed a change in the charge injection barrier during variable-temperature current-voltage characterization, and we also observed that two distinct charge transport channels (thermionic emission and Poole-Frenkel effect) worked in the junctions, which was dependent on the bias magnitude.

  3. Gate-bias and temperature dependence of charge transport in dinaphtho[2,3-b:2‧,3‧-d]thiophene thin-film transistors with MoO3/Au electrodes

    Science.gov (United States)

    Shaari, Safizan; Naka, Shigeki; Okada, Hiroyuki

    2018-04-01

    We investigated the gate-bias and temperature dependence of the voltage-current (V-I) characteristics of dinaphtho[2,3-b:2‧,3‧-d]thiophene with MoO3/Au electrodes. The insertion of the MoO3 layer significantly improved the device performance. The temperature dependent V-I characteristics were evaluated and could be well fitted by the Schottky thermionic emission model with barrier height under forward- and reverse-biased regimes in the ranges of 33-57 and 49-73 meV, respectively. However, at a gate voltage of 0 V, at which a small activation energy was obtained, we needed to consider another conduction mechanism at the grain boundary. From the obtained results, we concluded that two possible conduction mechanisms governed the charge injection at the metal electrode-organic semiconductor interface: the Schottky thermionic emission model and the conduction model in the organic thin-film layer and grain boundary.

  4. Arc plasma assisted rotating electrode process for preparation of metal pebbles

    International Nuclear Information System (INIS)

    Mohanty, T.; Tripathi, B.M.; Mahata, T.; Sinha, P.K.

    2014-01-01

    Spherical beryllium pebbles of size ranging from 0.2-2 mm are required as neutron multiplying material in solid Test Blanket Module (TBM) of International Thermonuclear Experimental Reactor (ITER). Rotating electrode process (REP) has been identified as a suitable technique for preparation of beryllium pebbles. In REP, arc plasma generated between non-consumable electrode (cathode) and rotating metal electrode (anode) plays a major role for continuous consumption of metal electrode and preparation of spherical metal pebbles. This paper focuses on description of the process, selection of sub-systems for development of REP experimental set up and optimization of arc parameters, such as, cathode geometry, arc current, arc voltage, arc gap and carrier gas flow rate for preparation of required size spherical metal pebbles. Other parameters which affect the pebbles sizes are rotational speed, metal electrode diameter and physical properties of the metal. As beryllium is toxic in nature its surrogate metals such as stainless steel (SS) and Titanium (Ti) were selected to evaluate the performance of the REP equipment. Several experiments were carried out using SS and Ti electrode and process parameters have been optimized for preparation of pebbles of different sizes. (author)

  5. White organic light-emitting diodes with 4 nm metal electrode

    Science.gov (United States)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Gather, Malte C.; Reineke, Sebastian

    2015-10-01

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  6. Metal-nanoparticle single-electron transistors fabricated using electromigration

    DEFF Research Database (Denmark)

    Bolotin, K I; Kuemmeth, Ferdinand; Pasupathy, A N

    2004-01-01

    We have fabricated single-electron transistors from individual metal nanoparticles using a geometry that provides improved coupling between the particle and the gate electrode. This is accomplished by incorporating a nanoparticle into a gap created between two electrodes using electromigration, all...... on top of an oxidized aluminum gate. We achieve sufficient gate coupling to access more than ten charge states of individual gold nanoparticles (5–15 nm in diameter). The devices are sufficiently stable to permit spectroscopic studies of the electron-in-a-box level spectra within the nanoparticle as its...

  7. Electron transport in a double quantum ring: Evidence of an AND gate

    International Nuclear Information System (INIS)

    Maiti, Santanu K.

    2009-01-01

    We explore AND gate response in a double quantum ring where each ring is threaded by a magnetic flux φ. The double quantum ring is attached symmetrically to two semi-infinite one-dimensional metallic electrodes and two gate voltages, namely, V a and V b , are applied, respectively, in the lower arms of the two rings which are treated as two inputs of the AND gate. The system is described in the tight-binding framework and the calculations are done using the Green's function formalism. Here we numerically compute the conductance-energy and current-voltage characteristics as functions of the ring-to-electrode coupling strengths, magnetic flux and gate voltages. Our study suggests that, for a typical value of the magnetic flux φ=φ 0 /2 (φ 0 =ch/e, the elementary flux-quantum) a high output current (1) (in the logical sense) appears only if both the two inputs to the gate are high (1), while if neither or only one input to the gate is high (1), a low output current (0) results. It clearly demonstrates the AND gate behavior and this aspect may be utilized in designing an electronic logic gate.

  8. A transparent electrode based on a metal nanotrough network.

    Science.gov (United States)

    Wu, Hui; Kong, Desheng; Ruan, Zhichao; Hsu, Po-Chun; Wang, Shuang; Yu, Zongfu; Carney, Thomas J; Hu, Liangbing; Fan, Shanhui; Cui, Yi

    2013-06-01

    Transparent conducting electrodes are essential components for numerous flexible optoelectronic devices, including touch screens and interactive electronics. Thin films of indium tin oxide-the prototypical transparent electrode material-demonstrate excellent electronic performances, but film brittleness, low infrared transmittance and low abundance limit suitability for certain industrial applications. Alternatives to indium tin oxide have recently been reported and include conducting polymers, carbon nanotubes and graphene. However, although flexibility is greatly improved, the optoelectronic performance of these carbon-based materials is limited by low conductivity. Other examples include metal nanowire-based electrodes, which can achieve sheet resistances of less than 10Ω □(-1) at 90% transmission because of the high conductivity of the metals. To achieve these performances, however, metal nanowires must be defect-free, have conductivities close to their values in bulk, be as long as possible to minimize the number of wire-to-wire junctions, and exhibit small junction resistance. Here, we present a facile fabrication process that allows us to satisfy all these requirements and fabricate a new kind of transparent conducting electrode that exhibits both superior optoelectronic performances (sheet resistance of ~2Ω □(-1) at 90% transmission) and remarkable mechanical flexibility under both stretching and bending stresses. The electrode is composed of a free-standing metallic nanotrough network and is produced with a process involving electrospinning and metal deposition. We demonstrate the practical suitability of our transparent conducting electrode by fabricating a flexible touch-screen device and a transparent conducting tape.

  9. Design and Optimization of 22 nm Gate Length High-k/Metal gate NMOS Transistor

    International Nuclear Information System (INIS)

    Afifah Maheran A H; Menon P S; Shaari, S; Elgomati, H A; Salehuddin, F; Ahmad, I

    2013-01-01

    In this paper, we invented the optimization experiment design of a 22 nm gate length NMOS device which uses a combination of high-k material and metal as the gate which was numerically developed using an industrial-based simulator. The high-k material is Titanium dioxide (TiO 2 ), while the metal gate is Tungsten Silicide (WSi x ). The design is optimized using the L9 Taguchi method to get the optimum parameter design. There are four process parameters and two noise parameters which were varied for analyzing the effect on the threshold voltage (V th ). The objective of this experiment is to minimize the variance of V th where Taguchi's nominal-the-best signal-to-noise ratio (S/N Ratio) was used. The best settings of the process parameters were determined using Analysis of Mean (ANOM) and analysis of variance (ANOVA) to reduce the variability of V th . The results show that the V th values have least variance and the mean value can be adjusted to 0.306V ±0.027 for the NMOS device which is in line with projections by the ITRS specifications.

  10. Serializing off-the-shelf MOSFETs by Magnetically Coupling Their Gate Electrodes

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Munk-Nielsen, Stig

    2013-01-01

    While the semiconductor industry struggles with the inherent trade-offs of solid-state devices, serialization of power switches, like the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) or the Insulated Gate Bipolar Transistor (IGBT), has been proven to be an advantageous alternative...... to acquire a high-efficient, high-voltage, fast-switching device. More than twenty years of research, on the serialization of solid-state devices, have resulted into several different stacking concepts. Among the prevailing ones, the gate balancing core technique, which has demonstrated very good performance...... in strings of high-power IGBT modules. In this paper, the limitations of the gate balancing core technique, when employed to serialize low or medium power off-the-shelf switches, are identified via experimental results. A new design specification for the interwinding capacitance of the employed transformer...

  11. Flexible supercapacitor electrodes based on real metal-like cellulose papers.

    Science.gov (United States)

    Ko, Yongmin; Kwon, Minseong; Bae, Wan Ki; Lee, Byeongyong; Lee, Seung Woo; Cho, Jinhan

    2017-09-14

    The effective implantation of conductive and charge storage materials into flexible frames has been strongly demanded for the development of flexible supercapacitors. Here, we introduce metallic cellulose paper-based supercapacitor electrodes with excellent energy storage performance by minimizing the contact resistance between neighboring metal and/or metal oxide nanoparticles using an assembly approach, called ligand-mediated layer-by-layer assembly. This approach can convert the insulating paper to the highly porous metallic paper with large surface areas that can function as current collectors and nanoparticle reservoirs for supercapacitor electrodes. Moreover, we demonstrate that the alternating structure design of the metal and pseudocapacitive nanoparticles on the metallic papers can remarkably increase the areal capacitance and rate capability with a notable decrease in the internal resistance. The maximum power and energy density of the metallic paper-based supercapacitors are estimated to be 15.1 mW cm -2 and 267.3 μWh cm -2 , respectively, substantially outperforming the performance of conventional paper or textile-type supercapacitors.With ligand-mediated layer-by-layer assembly between metal nanoparticles and small organic molecules, the authors prepare metallic paper electrodes for supercapacitors with high power and energy densities. This approach could be extended to various electrodes for portable/wearable electronics.

  12. Fabrication of GaAs nanowire devices with self-aligning W-gate electrodes using selective-area MOVPE

    International Nuclear Information System (INIS)

    Ooike, N.; Motohisa, J.; Fukui, T.

    2004-01-01

    We propose and demonstrate a novel self-aligning process for fabricating the tungsten (W) gate electrode of GaAs nanowire FETs by using selective-area metalorganic vapor phase epitaxy (SA-MOVPE) where SiO 2 /W composite films are used to mask the substrates. First, to study the growth process and its dependence on mask materials, GaAs wire structures were grown on masked substrates partially covered with a single W layer or SiO 2 /W composite films. We found that lateral growth over the masked regions could be suppressed when a wire along the [110] direction and a SiO 2 /W composite mask were used. Using this composite mask, we fabricated GaAs narrow channel FETs using W as a Schottky gate electrode, and we were able to observe FET characteristics at room temperature

  13. Atomic-Layer-Deposited SnO2 as Gate Electrode for Indium-Free Transparent Electronics

    KAUST Repository

    Alshammari, Fwzah Hamud; Hota, Mrinal Kanti; Wang, Zhenwei; Aljawhari, Hala; Alshareef, Husam N.

    2017-01-01

    Atomic-layer-deposited SnO2 is used as a gate electrode to replace indium tin oxide (ITO) in thin-film transistors and circuits for the first time. The SnO2 films deposited at 200 °C show low electrical resistivity of ≈3.1 × 10−3 Ω cm with ≈93

  14. Fringing field effects in negative capacitance field-effect transistors with a ferroelectric gate insulator

    Science.gov (United States)

    Hattori, Junichi; Fukuda, Koichi; Ikegami, Tsutomu; Ota, Hiroyuki; Migita, Shinji; Asai, Hidehiro; Toriumi, Akira

    2018-04-01

    We study the effects of fringing electric fields on the behavior of negative-capacitance (NC) field-effect transistors (FETs) with a silicon-on-insulator body and a gate stack consisting of an oxide film, an internal metal film, a ferroelectric film, and a gate electrode using our own device simulator that can properly handle the complicated relationship between the polarization and the electric field in ferroelectric materials. The behaviors of such NC FETs and the corresponding metal-oxide-semiconductor (MOS) FETs are simulated and compared with each other to evaluate the effects of the NC of the ferroelectric film. Then, the fringing field effects are evaluated by comparing the NC effects in NC FETs with and without gate spacers. The fringing field between the gate stack, especially the internal metal film, and the source/drain region induces more charges at the interface of the film with the ferroelectric film. Accordingly, the function of the NC to modulate the gate voltage and the resulting function to improve the subthreshold swing are enhanced. We also investigate the relationships of these fringing field effects to the drain voltage and four design parameters of NC FETs, i.e., gate length, gate spacer permittivity, internal metal film thickness, and oxide film thickness.

  15. Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors

    International Nuclear Information System (INIS)

    Wang, Yang; Chen, Xiaolong; Ye, Weiguang; Wu, Zefei; Han, Yu; Han, Tianyi; He, Yuheng; Cai, Yuan; Wang, Ning

    2014-01-01

    High-quality BN-Graphene-BN nanoribbon capacitors with double side-gates of graphene have been experimentally realized. The double side-gates can effectively modulate the electronic properties of graphene nanoribbon capacitors. By applying anti-symmetric side-gate voltages, we observed significant upward shifting and flattening of the V-shaped capacitance curve near the charge neutrality point. Symmetric side-gate voltages, however, only resulted in tilted upward shifting along the opposite direction of applied gate voltages. These modulation effects followed the behavior of graphene nanoribbons predicted theoretically for metallic side-gate modulation. The negative quantum capacitance phenomenon predicted by numerical simulations for graphene nanoribbons modulated by graphene side-gates was not observed, possibly due to the weakened interactions between the graphene nanoribbon and side-gate electrodes caused by the Ga + beam etching process

  16. SEMICONDUCTOR TECHNOLOGY: TaN wet etch for application in dual-metal-gate integration technology

    Science.gov (United States)

    Yongliang, Li; Qiuxia, Xu

    2009-12-01

    Wet-etch etchants and the TaN film method for dual-metal-gate integration are investigated. Both HF/HN O3/H2O and NH4OH/H2O2 solutions can etch TaN effectively, but poor selectivity to the gate dielectric for the HF/HNO3/H2O solution due to HF being included in HF/HNO3/H2O, and the fact that TaN is difficult to etch in the NH4OH/H2O2 solution at the first stage due to the thin TaOxNy layer on the TaN surface, mean that they are difficult to individually apply to dual-metal-gate integration. A two-step wet etching strategy using the HF/HNO3/H2O solution first and the NH4OH/H2O2 solution later can fully remove thin TaN film with a photo-resist mask and has high selectivity to the HfSiON dielectric film underneath. High-k dielectric film surfaces are smooth after wet etching of the TaN metal gate and MOSCAPs show well-behaved C-V and Jg-Vg characteristics, which all prove that the wet etching of TaN has little impact on electrical performance and can be applied to dual-metal-gate integration technology for removing the first TaN metal gate in the PMOS region.

  17. Low temperature formation of electrode having electrically conductive metal oxide surface

    Science.gov (United States)

    Anders, Simone; Anders, Andre; Brown, Ian G.; McLarnon, Frank R.; Kong, Fanping

    1998-01-01

    A low temperature process is disclosed for forming metal suboxides on substrates by cathodic arc deposition by either controlling the pressure of the oxygen present in the deposition chamber, or by controlling the density of the metal flux, or by a combination of such adjustments, to thereby control the ratio of oxide to metal in the deposited metal suboxide coating. The density of the metal flux may, in turn, be adjusted by controlling the discharge current of the arc, by adjusting the pulse length (duration of on cycle) of the arc, and by adjusting the frequency of the arc, or any combination of these parameters. In a preferred embodiment, a low temperature process is disclosed for forming an electrically conductive metal suboxide, such as, for example, an electrically conductive suboxide of titanium, on an electrode surface, such as the surface of a nickel oxide electrode, by such cathodic arc deposition and control of the deposition parameters. In the preferred embodiment, the process results in a titanium suboxide-coated nickel oxide electrode exhibiting reduced parasitic evolution of oxygen during charging of a cell made using such an electrode as the positive electrode, as well as exhibiting high oxygen overpotential, resulting in suppression of oxygen evolution at the electrode at full charge of the cell.

  18. High-Efficiency Graphene Photo Sensor Using a Transparent Electrode

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; HUANG Zheng

    2011-01-01

    We report the first implementation of transparent electrodes in bottom-gate graphene transistors used for photo detection.Compared to conventional nontransparent electrodes,the transparent electrodes allow photons to transmit through to the graphene beneath,providing an enlarged absorption area and thereby giving rise to an enhancement of photocurrent generation.The devices are fabricated with an asymmetric metallization scheme and the experimental results show that the maximum photocurrent density using the transparent electrodes (ITO and Pd/ITO) is over two times higher than that using the nontransparent electrodes (Ti and Pd),indicating a significant enhancement in the performance of graphene photo sensors.Graphene,a single-atomic-layer of carbon atoms with a zero-gap band structure has received great attention recently.[1-4] One promising application of graphene is in high-speed photodetection,owing to its high Fermi velocity (~1/300 of the speed of light),high electrical mobility (200000 cm2/Vs for both electrons and holes) and zero-gap induced wide absorption spectrum (in the visible-to-infrared range).[5,6]%We report the first implementation of transparent electrodes in bottom-gate graphene transistors used for photo detection. Compared to conventional nontransparent electrodes, the transparent electrodes allow photons to transmit through to the graphene beneath, providing an enlarged absorption area and thereby giving rise to an enhancement of photocurrent generation. The devices are fabricated with an asymmetric metallization scheme and the experimental results show that the maximum photocurrent density using the transparent electrodes (ITO and Pd/ITO) is over two times higher than that using the nontransparent electrodes (Ti and Pd), indicating a significant enhancement in the performance of graphene photo sensors.

  19. Complaint liquid metal electrodes for dielectric elastomer actuators

    Science.gov (United States)

    Finkenauer, Lauren R.; Majidi, Carmel

    2014-03-01

    This work presents a liquid-phase metal electrode to be used with poly(dimethylsiloxane) (PDMS) for a dielectric elastomer actuator (DEA). DEAs are favorable for soft-matter applications where high efficiency and response times are desirable. A consistent challenge faced during the fabrication of these devices is the selection and deposition of electrode material. While numerous designs have been demonstrated with a variety of conductive elastomers and greases, these materials have significant and often intrinsic shortcomings, e.g. low conductivity, hysteresis, incapability of large deformations, and complex fabrication requirements. The liquid metal alloy eutectic Gallium-Indium (EGaIn) is a promising alternative to existing compliant electrodes, having both high conductivity and complete soft-matter functionality. The liquid electrode shares almost the same electrical conductivity as conventional metal wiring and provides no mechanical resistance to bending or stretching of the DEA. This research establishes a straightforward and effective method for quickly depositing EGaIn electrodes, which can be adapted for batch fabrication, and demonstrates the successful actuation of sample curved cantilever elastomer actuators using these electrodes. As with the vast majority of electrostatically actuated elastomer devices, the voltage requirements for these curved DEAs are still quite significant, though modifications to the fabrication process show some improved electrical properties. The ease and speed with which this method can be implemented suggests that the development of a more electronically efficient device is realistic and worthwhile.

  20. Manufacturing process and electrode properties of palladium-electroded ionic polymer–metal composite

    International Nuclear Information System (INIS)

    Chang, Longfei; Chen, Hualing; Zhu, Zicai; Li, Bo

    2012-01-01

    This paper primarily focuses on the manufacturing process of palladium-electroded ionic polymer–metal composite (IPMC). First, according to the special properties of Pd, many experiments were done to determine several specific procedures, including the addition of a reducing agent and the time consumed. Subsequently, the effects of the core manufacturing steps on the electrode morphology were revealed by scanning electron microscopy studies of 22 IPMC samples treated with different combinations of manufacturing steps. Finally, the effects of electrode characteristics on the electromechanical properties, including the sheet resistivity, the elastic modulus and the electro-active performance, of IPMCs were evaluated experimentally and analyzed according to the electrode morphology. (paper)

  1. Towards Flexible Transparent Electrodes Based on Carbon and Metallic Materials

    Directory of Open Access Journals (Sweden)

    Minghui Luo

    2017-01-01

    Full Text Available Flexible transparent electrodes (FTEs with high stability and scalability are in high demand for the extremely widespread applications in flexible optoelectronic devices. Traditionally, thin films of indium thin oxide (ITO served the role of FTEs, but film brittleness and scarcity of materials limit its further application. This review provides a summary of recent advances in emerging transparent electrodes and related flexible devices (e.g., touch panels, organic light-emitting diodes, sensors, supercapacitors, and solar cells. Mainly focusing on the FTEs based on carbon nanomaterials (e.g., carbon nanotubes and graphene and metal materials (e.g., metal grid and metal nanowires, we discuss the fabrication techniques, the performance improvement, and the representative applications of these highly transparent and flexible electrodes. Finally, the challenges and prospects of flexible transparent electrodes will be summarized.

  2. Fermi level pinning in metal/Al{sub 2}O{sub 3}/InGaAs gate stack after post metallization annealing

    Energy Technology Data Exchange (ETDEWEB)

    Winter, R.; Krylov, I.; Cytermann, C.; Eizenberg, M. [Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa 32000 (Israel); Tang, K.; Ahn, J.; McIntyre, P. C. [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-08-07

    The effect of post metal deposition annealing on the effective work function in metal/Al{sub 2}O{sub 3}/InGaAs gate stacks was investigated. The effective work functions of different metal gates (Al, Au, and Pt) were measured. Flat band voltage shifts for these and other metals studied suggest that their Fermi levels become pinned after the post-metallization vacuum annealing. Moreover, there is a difference between the measured effective work functions of Al and Pt, and the reported vacuum work function of these metals after annealing. We propose that this phenomenon is caused by charging of indium and gallium induced traps at the annealed metal/Al{sub 2}O{sub 3} interface.

  3. White organic light-emitting diodes with 4 nm metal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Reineke, Sebastian [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Gather, Malte C. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)

    2015-10-19

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  4. Multi-gated field emitters for a micro-column

    International Nuclear Information System (INIS)

    Mimura, Hidenori; Kioke, Akifumi; Aoki, Toru; Neo, Yoichiro; Yoshida, Tomoya; Nagao, Masayoshi

    2011-01-01

    We have developed a multi-gated field emitter (FE) such as a quadruple-gated FE with a three-stacked electrode lens and a quintuple-gated FE with a four-stacked electrode lens. Both the FEs can focus the electron beam. However, the quintuple-gated FE has a stronger electron convergence than the quadruple-gated FE, and a beam crossover is clearly observed for the quintuple-gated FE.

  5. Charge-density depinning at metal contacts of graphene field-effect transistors

    OpenAIRE

    Nouchi, Ryo; Tanigaki, Katsumi

    2010-01-01

    An anomalous distortion is often observed in the transfer characteristics of graphene field-effect transistors. We fabricate graphene transistors with ferromagnetic metal electrodes, which reproducibly display distorted transfer characteristics, and show that the distortion is caused by metal-graphene contacts with no charge-density pinning effect. The pinning effect, where the gate voltage cannot tune the charge density of graphene at the metal electrodes, has been experimentally observed; h...

  6. Nanowire-decorated microscale metallic electrodes

    DEFF Research Database (Denmark)

    Vlad, A.; Mátéfi-Tempfli, M.; Antohe, V.A.

    2008-01-01

    The fabrication of metallic nanowire patterns within anodic alumina oxide (AAO) membranes on top of continuous conducting substrates are discussed. The fabrication protocol is based on the realization of nanowire patterns using supported nanoporous alumina templates (SNAT) prepared on top...... of lithographically defined metallic microelectrodes. The anodization of the aluminum permits electroplating only on top of the metallic electrodes, leading to the nanowire patterns having the same shape as the underlying metallic tracks. The variation in the fabricated structures between the patterned and non......-patterned substrates can be interpreted in terms of different behavior during anodization. The improved quality of fabricated nanowire patterns is clearly demonstrated by the SEM imaging and the uniform growth of nanowires inside the alumina template is observed without any significant height variation....

  7. Self-Aligned Metal Electrodes in Fully Roll-to-Roll Processed Organic Transistors

    Directory of Open Access Journals (Sweden)

    Marja Vilkman

    2016-01-01

    Full Text Available We demonstrate the production of organic bottom gate transistors with self-aligned electrodes, using only continuous roll-to-roll (R2R techniques. The self-alignment allows accurate <5 µm layer-to-layer registration, which is usually a challenge in high-speed R2R environments as the standard registration methods are limited to the millimeter range—or, at best, to tens of µm if online cameras and automatic web control are utilized. The improved registration enables minimizing the overlap between the source/drain electrodes and the gate electrode, which is essential for minimizing the parasitic capacitance. The complete process is a combination of several techniques, including evaporation, reverse gravure, flexography, lift-off, UV exposure and development methods—all transferred to a continuous R2R pilot line. Altogether, approximately 80 meters of devices consisting of thousands of transistors were manufactured in a roll-to-roll fashion. Finally, a cost analysis is presented in order to ascertain the main costs and to predict whether the process would be feasible for the industrial production of organic transistors.

  8. SO-limited mobility in a germanium inversion channel with non-ideal metal gate

    International Nuclear Information System (INIS)

    Shah, Raheel; De Souza, M.M.

    2008-01-01

    Germanium is an attractive candidate for ultra fast CMOS technology due to its potential for doubling electron mobility and quadrupling hole mobility in comparison to silicon. To maintain the requirements of the International Technology Roadmap for Semiconductors (ITRS), high-κ insulators and metal gates will be required in conjunction with Ge technology. Key issues which will have to be addressed in achieving Ge technology are: trap free insulators, assessment of appropriate crystallographic orientations and the selection of gate metals for the best mobility. In this work mobilities are evaluated for Ge-nMOSFET with two metal gates (Al and TiN) and high-κ (HfO 2 ) insulator. Scattering with bulk phonons, surface roughness and high-κ phonons are taken into account. It is predicted that Al as the gate material on Ge {100} substrate performs 50% better than Ge {111} orientation at a sheet concentration of 1 x 10 13 cm -2 . Surface roughness is likely to be the most damaging mobility degradation mechanism at high fields for Ge {111}

  9. Kinetic behaviour of low-Co AB5-type metal hydride electrodes

    International Nuclear Information System (INIS)

    Tliha, M.; Boussami, S.; Mathlouthi, H.; Lamloumi, J.; Percheron-Guegan, A.

    2010-01-01

    The kinetic behaviour of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.4 Fe 0.35 metal hydride, used as a negative electrode in the nickel/metal hydride (Ni/MH) batteries, was investigated using electrochemical impedance spectroscopy (EIS) at different state of charge (SOC). Impedance measurements were performed in the frequency range from 50 kHz to 1 mHz. Electrochemical impedance spectrum of the metal hydride electrode was interpreted by an equivalent circuit including the different electrochemical processes taking place on the interface between the MH electrode and the electrolyte. Electrochemical kinetic parameters such as the charge-transfer resistance R tc , the exchange current density I 0 and the hydrogen diffusion coefficient D H were determined at different state of charge. The results of EIS measurements indicate that the electrochemical reaction activity of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.4 Fe 0.35 metal hydride electrode was markedly improved with increasing state of charge (SOC). The transformation α-β is probably a limiting step in the mechanisms of hydrogenation of metal hydride electrode.

  10. The effect of the gate electrode on the C-V- characteristics of the structure M-TmF3-SiO2-Si

    International Nuclear Information System (INIS)

    Basily, R.R.

    1979-09-01

    The C-V characteristics of the structure M-TmF 3 -SiO 2 -Si, thermally treated at a temperature of 300 0 C for 15 minutes, were investigated. At higher temperatures to about 150 0 C, the hysteresis of the C-V characteristics is completely absent, whereas at room temperature hysteresis depends on the applied voltage and on the material of the gate electrode. The dependence of the flat band voltage shift on the applied voltage, the thickness of SiO 2 layer and the material of the gate electrode were measured. (author)

  11. Microstructure and chemical analysis of Hf-based high-k dielectric layers in metal-insulator-metal capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Thangadurai, P. [Department of Materials Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel); Mikhelashvili, V.; Eisenstein, G. [Department of Electrical Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel); Kaplan, W.D., E-mail: kaplan@tx.technion.ac.i [Department of Materials Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

    2010-05-31

    The microstructure and chemistry of the high-k gate dielectric significantly influences the performance of metal-insulator-metal (MIM) and metal-oxide-semiconductor devices. In particular, the local structure, chemistry, and inter-layer mixing are important phenomena to be understood. In the present study, high resolution and analytical transmission electron microscopy are combined to study the local structure, morphology, and chemistry in MIM capacitors containing a Hf-based high-k dielectric. The gate dielectric, bottom and gate electrodes were deposited on p-type Si(100) wafers by electron beam evaporation. Four chemically distinguishable sub-layers were identified within the dielectric stack. One is an unintentionally formed 4.0 nm thick interfacial layer of Ta{sub 2}O{sub 5} at the interface between the Ta electrode and the dielectric. The other three layers are based on HfN{sub x}O{sub y} and HfTiO{sub y}, and intermixing between the nearby sub-layers including deposited SiO{sub 2}. Hf-rich clusters were found in the HfN{sub x}O{sub y} layer adjacent to the Ta{sub 2}O{sub 5} layer.

  12. Understanding interaction of curcumin and metal ions on electrode surfaces using EDXRF

    Science.gov (United States)

    Joseph, Daisy; Kumar, K. Krishna; Narayanan, S. Sriman

    2018-04-01

    A chemically modified electrode was developed for determination of metal ions (Cd, Pb, Zn, Co, Hg). The modifier used for the study was Curcumin. Curcumin acts as a complexing agent at the surface of the electrode for preconcentration of metal ions from electrolyte to electrode surface and stripped back to electrolyte during analysis. EDXRF was used to analyze these electrodes and it was concluded that the PCR modified electrode favored effective chelation for lead and mercury.

  13. Comparison of gate dielectric plasma damage from plasma-enhanced atomic layer deposited and magnetron sputtered TiN metal gates

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Christopher J.; Neumann, Christopher M.; Vitale, Steven A., E-mail: steven.vitale@ll.mit.edu [Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 (United States)

    2015-07-28

    Fully depleted silicon-on-insulator transistors were fabricated using two different metal gate deposition mechanisms to compare plasma damage effects on gate oxide quality. Devices fabricated with both plasma-enhanced atomic-layer-deposited (PE-ALD) TiN gates and magnetron plasma sputtered TiN gates showed very good electrostatics and short-channel characteristics. However, the gate oxide quality was markedly better for PE-ALD TiN. A significant reduction in interface state density was inferred from capacitance-voltage measurements as well as a 1200× reduction in gate leakage current. A high-power magnetron plasma source produces a much higher energetic ion and vacuum ultra-violet (VUV) photon flux to the wafer compared to a low-power inductively coupled PE-ALD source. The ion and VUV photons produce defect states in the bulk of the gate oxide as well as at the oxide-silicon interface, causing higher leakage and potential reliability degradation.

  14. Embedded Metal Electrode for Organic-Inorganic Hybrid Nanowire Solar Cells.

    Science.gov (United States)

    Um, Han-Don; Choi, Deokjae; Choi, Ahreum; Seo, Ji Hoon; Seo, Kwanyong

    2017-06-27

    We demonstrate here an embedded metal electrode for highly efficient organic-inorganic hybrid nanowire solar cells. The electrode proposed here is an effective alternative to the conventional bus and finger electrode which leads to a localized short circuit at a direct Si/metal contact and has a poor collection efficiency due to a nonoptimized electrode design. In our design, a Ag/SiO 2 electrode is embedded into a Si substrate while being positioned between Si nanowire arrays underneath poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), facilitating suppressed recombination at the Si/Ag interface and notable improvements in the fabrication reproducibility. With an optimized microgrid electrode, our 1 cm 2 hybrid solar cells exhibit a power conversion efficiency of up to 16.1% with an open-circuit voltage of 607 mV and a short circuit current density of 34.0 mA/cm 2 . This power conversion efficiency is more than twice as high as that of solar cells using a conventional electrode (8.0%). The microgrid electrode significantly minimizes the optical and electrical losses. This reproducibly yields a superior quantum efficiency of 99% at the main solar spectrum wavelength of 600 nm. In particular, our solar cells exhibit a significant increase in the fill factor of 78.3% compared to that of a conventional electrode (61.4%); this is because of the drastic reduction in the metal/contact resistance of the 1 μm-thick Ag electrode. Hence, the use of our embedded microgrid electrode in the construction of an ideal carrier collection path presents an opportunity in the development of highly efficient organic-inorganic hybrid solar cells.

  15. Same-Side Platinum Electrodes for Metal Assisted Etching of Porous Silicon

    Science.gov (United States)

    2015-11-01

    Platinum Electrodes for Metal Assisted Etching of Porous Silicon by Matthew H Ervin and Brian Isaacson Sensors and Electron Devices Directorate...SUBTITLE Same-Side Platinum Electrodes for Metal Assisted Etching of Porous Silicon 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  16. Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices

    KAUST Repository

    Catrysse, Peter B.; Fan, Shanhui

    2010-01-01

    We investigate the use of nanopatterned metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics of nanopatterned electrodes, which are often optically thin metallic films, differs from

  17. A refractory metal gate approach for micronic CMOS technology

    International Nuclear Information System (INIS)

    Lubowiecki, V.; Ledys, J.L.; Plossu, C.; Balland, B.

    1987-01-01

    In the future, devices scaling down, integration density and performance improvements are going to bring a number of conventional circuit design and process techniques to their fundamental limits. To avoid any severe limitations in MOS ULSI (Ultra Large Scale Integration) technologies, interconnection materials and schemes are required to emerge, in order to face the Megabits memory field. Among those, the gate approach will obviously take a keyrole, when the operating speed of ULSI chips will reach the practical upper limits imposed by parasitic resistances and capacitances which stem from the circuit interconnect wiring. Even if fairly suitable for MOS process, doped polycrystalline silicon is being gradually replaced by refractory metal silicide or polycide structures, which match better with low resistivity requirements. However, as we approach the submicronic IC's, higher conductivity materials will be paid more and more attention. Recently, works have been devoted and published on refractory metal gate technologies. Molybdenum or tungsten, deposited either by CVD or PVD methods, are currently reported even if some drawbacks in their process integration still remain. This paper is willing to present such an approach based on tungsten (more reliable than Molybdenum deposited by LPCVD (giving more conductive and more stable films than PVD). Deposition process will be first described. Then CMOS process flow will allow us to focus on specific refractory metal gate issues. Finally, electrical and physical properties will be assessed, which will demonstrate the feasibility of such a technology as well as the compatibility of the tungsten with most of the usual techniques

  18. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  19. Chirality of magneto-electrodeposited metal film electrodes

    International Nuclear Information System (INIS)

    Mogi, Iwao; Watanabe, Kazuo

    2008-01-01

    The chiral electrode behaviors of magneto-electrodeposited (MED) Ag and Cu films were examined for the electrochemical reactions of D-glucose, L-glucose and L-cysteine. The Ag and Cu films were electrodeposited under a magnetic field of 2 T parallel (+2 T) or antiparallel (-2 T) to the faradaic current. For MED films of both Ag and Cu, the oxidation current of L-glucose was larger than that of D-glucose on the +2 T-film electrodes, and the results were opposite on the - 2 T-film electrodes. These facts demonstrate that the MED metal films possess the ability of chiral recognition for D- and L-glucoses. The MED Ag film electrodes also exhibited chiral behavior for the oxidation of L-cysteine

  20. GaN Micromechanical Resonators with Meshed Metal Bottom Electrode.

    Science.gov (United States)

    Ansari, Azadeh; Liu, Che-Yu; Lin, Chien-Chung; Kuo, Hao-Chung; Ku, Pei-Cheng; Rais-Zadeh, Mina

    2015-03-17

    This work describes a novel architecture to realize high-performance gallium nitride (GaN) bulk acoustic wave (BAW) resonators. The method is based on the growth of a thick GaN layer on a metal electrode grid. The fabrication process starts with the growth of a thin GaN buffer layer on a Si (111) substrate. The GaN buffer layer is patterned and trenches are made and refilled with sputtered tungsten (W)/silicon dioxide (SiO₂) forming passivated metal electrode grids. GaN is then regrown, nucleating from the exposed GaN seed layer and coalescing to form a thick GaN device layer. A metal electrode can be deposited and patterned on top of the GaN layer. This method enables vertical piezoelectric actuation of the GaN layer using its largest piezoelectric coefficient ( d 33 ) for thickness-mode resonance. Having a bottom electrode also results in a higher coupling coefficient, useful for the implementation of acoustic filters. Growth of GaN on Si enables releasing the device from the frontside using isotropic xenon difluoride (XeF₂) etch and therefore eliminating the need for backside lithography and etching.

  1. Transparent electrode designs based on optimal nano-patterning of metallic films

    KAUST Repository

    Catrysse, Peter B.

    2010-09-10

    Transparent conductive electrodes are critical to the operation of optoelectronic devices, such as photovoltaic cells and light emitting diodes. Effective electrodes need to combine excellent electrical and optical properties. Metal oxides, such as indium tin oxide, are commonly used. There is substantial interest in replacing them, however, motivated by practical problems and recent discoveries regarding the optics of nano-patterned metals. When designing nano-patterned metallic films for use as electrodes, one needs to account for both optical and electrical properties. In general, it is insufficient to optimize nano-structured films based upon optical properties alone, since structural variations will also affect the electrical properties. In this work, we investigate the need for simultaneous optical and electrical performance by analyzing the optical properties of a class of nano-patterned metallic electrodes that is obtained by a constant-sheet-resistance transformation. Within such a class the electrical and optical properties can be separated, i.e., the sheet resistance can be kept constant and the transmittance can be optimized independently. For simple one-dimensional periodic patterns with constant sheet-resistance, we find a transmission maximum (polarization-averaged) when the metal sections are narrow (< 40 nm, ~ 10% metal fill-factor) and tall (> 100 nm). Our design carries over to more complex two-dimensional (2D) patterns. This is significant as there are no previous reports regarding numerical studies on the optical and electrical properties of 2D nano-patterns in the context of electrode design.

  2. CMOS integration of high-k/metal gate transistors in diffusion and gate replacement (D&GR) scheme for dynamic random access memory peripheral circuits

    Science.gov (United States)

    Dentoni Litta, Eugenio; Ritzenthaler, Romain; Schram, Tom; Spessot, Alessio; O’Sullivan, Barry; Machkaoutsan, Vladimir; Fazan, Pierre; Ji, Yunhyuck; Mannaert, Geert; Lorant, Christophe; Sebaai, Farid; Thiam, Arame; Ercken, Monique; Demuynck, Steven; Horiguchi, Naoto

    2018-04-01

    Integration of high-k/metal gate stacks in peripheral transistors is a major candidate to ensure continued scaling of dynamic random access memory (DRAM) technology. In this paper, the CMOS integration of diffusion and gate replacement (D&GR) high-k/metal gate stacks is investigated, evaluating four different approaches for the critical patterning step of removing the N-type field effect transistor (NFET) effective work function (eWF) shifter stack from the P-type field effect transistor (PFET) area. The effect of plasma exposure during the patterning step is investigated in detail and found to have a strong impact on threshold voltage tunability. A CMOS integration scheme based on an experimental wet-compatible photoresist is developed and the fulfillment of the main device metrics [equivalent oxide thickness (EOT), eWF, gate leakage current density, on/off currents, short channel control] is demonstrated.

  3. Lability criteria for metal complexes in micro-electrode voltammetry

    NARCIS (Netherlands)

    Leeuwen, van H.P.; Pinheiro, J.P.

    1999-01-01

    Theoretical expressions are derived for the voltammetric lability criteria of metal complexes in the micro-electrode regime. The treatment includes three limiting situations: (i) the macro-electrode limit, where both the diffusion layer and the dissociation reaction layer are linear; (ii) an

  4. Thin metal electrodes for semitransparent organic photovoltaics

    KAUST Repository

    Lee, Kyusung

    2013-08-01

    We demonstrate semitransparent organic photovoltaics (OPVs) based on thin metal electrodes and polymer photoactive layers consisting of poly(3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester. The power conversion efficiency of a semitransparent OPV device comprising a 15-nm silver (Ag) rear electrode is 1.98% under AM 1.5-G illumination through the indium-tin-oxide side of the front anode at 100 mW/cm2 with 15.6% average transmittance of the entire cell in the visible wavelength range. As its thickness increases, a thin Ag electrode mainly influences the enhancement of the short circuit current density and fill factor. Its relatively low absorption intensity makes a Ag thin film a viable option for semitransparent electrodes compatible with organic layers. © 2013 ETRI.

  5. Direct electrodeposition of metal nanowires on electrode surface

    International Nuclear Information System (INIS)

    Gambirasi, Arianna; Cattarin, Sandro; Musiani, Marco; Vazquez-Gomez, Lourdes; Verlato, Enrico

    2011-01-01

    A method for decorating the surface of disk electrodes with metal nanowires is presented. Cu and Ni nanowires with diameters from 1.0 μm to 0.2 μm are directly deposited on the electrode surface using a polycarbonate membrane filter template maintained in contact with the metal substrate by the soft homogeneous pressure of a sponge soaked with electrolyte. The morphologic and structural properties of the deposit are characterized by scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The latter shows that the head of nanowires with diameter of 0.4 μm is ordinarily polycrystalline, and that of nanowires with diameter of 0.2 μm is almost always monocrystalline for Cu and frequently also for Ni. Cyclic voltammetries and impedance investigations recorded in alkaline solutions at representative Ni electrodes decorated with nanowires provide consistent values of roughness factor, in the range 20-25.

  6. Study on effective MOSFET channel length extracted from gate capacitance

    Science.gov (United States)

    Tsuji, Katsuhiro; Terada, Kazuo; Fujisaka, Hisato

    2018-01-01

    The effective channel length (L GCM) of metal-oxide-semiconductor field-effect transistors (MOSFETs) is extracted from the gate capacitances of actual-size MOSFETs, which are measured by charge-injection-induced-error-free charge-based capacitance measurement (CIEF CBCM). To accurately evaluate the capacitances between the gate and the channel of test MOSFETs, the parasitic capacitances are removed by using test MOSFETs having various channel sizes and a source/drain reference device. A strong linear relationship between the gate-channel capacitance and the design channel length is obtained, from which L GCM is extracted. It is found that L GCM is slightly less than the effective channel length (L CRM) extracted from the measured MOSFET drain current. The reason for this is discussed, and it is found that the capacitance between the gate electrode and the source and drain regions affects this extraction.

  7. A new strategy for label-free electrochemical immunoassay based on “gate-effect” of β-cyclodextrin modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Huan [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004 (China); Li, Jianping, E-mail: likianping@263.net [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004 (China); Zhang, Yun; Pan, Hongcheng [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004 (China); Xu, Guobao, E-mail: guobaoxu@ciac.ac.cn [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004 (China); State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2016-07-05

    A novel label-free electrochemical immunoassay was developed for prostate-specific antigen (PSA) detection via using β-cyclodextrin (β-CD) assembled layer created gates for the electron transfer of probe. To construct the sensor, a gold electrode was self-assembled with monoclonal anti-PSA antibody labeled 6-mercapto-β-cyclodextrin. Interspaces among β-CD molecules in the layer were automatically formed on gold electrode, which act as the channel of the electron transfer of [Fe(CN){sub 6}]{sup 3−/4−} probe. When PSA bind with anti-PSA, it can block these channels on the electrode surface due to their steric hindrance effect, resulting in the decrease in redox current of the probe. Through such a gate-controlled effect, ultra trace amount of PSA may make the currents change greatly after the immunoreaction, which enhanced the signal-to-noise ratio to achieve the amplification effect. By evaluating the logarithm of PSA concentrations, the immunosensor had a good linear response to the current changes with a detection limit of 0.3 pg/mL (S/N = 3) when PSA concentration ranged from 1.0 pg/mL to 1.0 ng/mL. The label-free immunosensor exhibited satisfactory performances in sensitivity, repeatability as well as specificity. - Highlights: • A label-free PSA immunoassay was developed based on “gate-effect” amplification. • Interspaces among β-CD assembled for [Fe(CN){sub 6}]{sup 3−/4−} electron transfer were controlled by the immunoreaction. • Higher sensitivity was achieved with time and cost saving principle.

  8. Nonconsumable electrode assembly and use thereof for the electrolytic production of metals and silicon

    Science.gov (United States)

    Byrne, Stephen C.; Ray, Siba P.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor attached to a ceramic electrode body by a metal bond on a portion of the body having a level of free metal or metal alloy sufficient to effect a metal bond.

  9. Development of a Flexible Non-Metal Electrode for Cell Stimulation and Recording

    Directory of Open Access Journals (Sweden)

    Cihun-Siyong Alex Gong

    2016-09-01

    Full Text Available This study presents a method of producing flexible electrodes for potentially simultaneously stimulating and measuring cellular signals in retinal cells. Currently, most multi-electrode applications rely primarily on etching, but the metals involved have a certain degree of brittleness, leaving them prone to cracking under prolonged pressure. This study proposes using silver chloride ink as a conductive metal, and polydimethysiloxane (PDMS as the substrate to provide electrodes with an increased degree of flexibility to allow them to bend. This structure is divided into the electrode layer made of PDMS and silver chloride ink, and a PDMS film coating layer. PDMS can be mixed in different proportions to modify the degree of rigidity. The proposed method involved three steps. The first segment entailed the manufacturing of the electrode, using silver chloride ink as the conductive material, and using computer software to define the electrode size and micro-engraving mechanisms to produce the electrode pattern. The resulting uniform PDMS pattern was then baked onto the model, and the flow channel was filled with the conductive material before air drying to produce the required electrode. In the second stage, we tested the electrode, using an impedance analyzer to measure electrode cyclic voltammetry and impedance. In the third phase, mechanical and biocompatibility tests were conducted to determine electrode properties. This study aims to produce a flexible, non-metallic sensing electrode which fits snugly for use in a range of measurement applications.

  10. [Applications of atomic emission spectrum from liquid electrode discharge to metal ion detection].

    Science.gov (United States)

    Mao, Xiu-Ling; Wu, Jian; Ying, Yi-Bin

    2010-02-01

    The fast and precise detection of metal ion is an important research project concerning studies in diverse academic fields and different kinds of detecting technologies. In the present paper, the authors review the research on atomic emission spectrum based on liquid electrode discharge and its applications in the detection of metal ion. In the first part of this paper the principles and characteristics of the methods based on electrochemistry and spectroscopy were introduced. The methods of ion-selective electrode (ISE), anodic stripping voltammetry, atomic emission spectrum and atomic absorption spectrum were included in this part and discussed comparatively. Then the principles and characteristics of liquid electrode spectra for metal ion detection were introduced. The mechanism of the plasma production and the characteristics of the plasma spectrum as well as its advantages compared with other methods were discussed. Secondly, the authors divided the discharge system into two types and named them single liquid-electrode discharge and double-liquid electrode respectively, according to the number of the liquid electrode and the configuration of the discharge system, and the development as well as the present research status of each type was illustrated. Then the characteristics and configurations of the discharge systems including ECGD, SCGD, LS-APGD and capillary discharge were discussed in detail as examples of the two types. By taking advantage of the technology of atomic emission spectrum based on liquid electrode discharge, the detecting limit of heavy metals such as copper, mercury and argent as well as active metal ions including sodium, potass and magnesium can achieve microg x L(-1). Finally, the advantages and problems of the liquid-electrode discharge applied in detection of metal ion were discussed. And the applications of the atomic emission spectrum based on liquid electrode discharge were prospected.

  11. Ni-BaTiO3-Based Base-Metal Electrode (BME) Ceramic Capacitors for Space Applications

    Science.gov (United States)

    Liu, Donhang; Fetter, Lula; Meinhold, Bruce

    2015-01-01

    A multi-layer ceramic capacitor (MLCC) is a high-temperature (1350C typical) co-fired ceramic monolithic that is composed of many layers of alternately stacked oxide-based dielectric and internal metal electrodes. To make the dielectric layers insulating and the metal electrode layers conducting, only highly oxidation-resistant precious metals, such as platinum, palladium, and silver, can be used for the co-firing of insulating MLCCs in a regular air atmosphere. MLCCs made with precious metals as internal electrodes and terminations are called precious-metal electrode (PME) capacitors. Currently, all military and space-level applications only address the use of PME capacitors.

  12. Gate metal dependent electrical characteristics of AlGaN/GaN HEMTs

    International Nuclear Information System (INIS)

    Koo, Sang-Mo; Kang, Min-Seok

    2014-01-01

    Highlights: • We investigated transfer characteristics of AlGaN/GaN high electron mobility transistors. • We demonstrate the effect of the barrier height of Schottky gate metals. • The conduction mechanisms examine by comparing the experimental results with numerical simulations. • 2-DEG concentration depends on the barrier height of Schottky gate metals. - Abstract: We investigated transfer characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) and the effect of the barrier height of Schottky gate metals. It is found that the threshold voltage of the HEMT structures with the Ni Schottky contact shows a positive shift compared to that of the Ti Schottky contacts (ΔV th = 2.9 V). The maximum saturation current of the HEMT structures with the Ti Schottky contact (∼1.4 × 10 7 A/cm 2 ) is found to be ∼2.5 times higher than that of the Ni Schottky contact (2.9 × 10 7 A/cm 2 ). The conduction mechanisms have been examined by comparing the experimental results with numerical simulations, which confirm that the increased barrier height is mainly attributed to the reduction of 2-DEG concentration

  13. Gate metal dependent electrical characteristics of AlGaN/GaN HEMTs

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Sang-Mo, E-mail: smkoo@kw.ac.kr; Kang, Min-Seok, E-mail: hyde0220@gmail.com

    2014-10-15

    Highlights: • We investigated transfer characteristics of AlGaN/GaN high electron mobility transistors. • We demonstrate the effect of the barrier height of Schottky gate metals. • The conduction mechanisms examine by comparing the experimental results with numerical simulations. • 2-DEG concentration depends on the barrier height of Schottky gate metals. - Abstract: We investigated transfer characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) and the effect of the barrier height of Schottky gate metals. It is found that the threshold voltage of the HEMT structures with the Ni Schottky contact shows a positive shift compared to that of the Ti Schottky contacts (ΔV{sub th} = 2.9 V). The maximum saturation current of the HEMT structures with the Ti Schottky contact (∼1.4 × 10{sup 7} A/cm{sup 2}) is found to be ∼2.5 times higher than that of the Ni Schottky contact (2.9 × 10{sup 7} A/cm{sup 2}). The conduction mechanisms have been examined by comparing the experimental results with numerical simulations, which confirm that the increased barrier height is mainly attributed to the reduction of 2-DEG concentration.

  14. Influence of gate dielectric on the ambipolar characteristics of solution-processed organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ribierre, J C; Ghosh, S; Takaishi, K; Muto, T; Aoyama, T, E-mail: jcribierre@ewha.ac.kr, E-mail: taoyama@riken.jp [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2011-05-25

    Solution-processed ambipolar organic field-effect transistors based on dicyanomethylene-substituted quinoidal quaterthiophene derivative [QQT(CN)4] are fabricated using various gate dielectric materials including cross-linked polyimide and poly-4-vinylphenol. Devices with spin-coated polymeric gate dielectric layers show a reduced hysteresis in their transfer characteristics. Among the insulating polymers examined in this study, a new fluorinated polymer with a low dielectric constant of 2.8 significantly improves both hole and electron field-effect mobilities of QQT(CN)4 thin films to values as high as 0.04 and 0.002 cm{sup 2} V{sup -1} s{sup -1}. These values are close to the best mobilities obtained in QQT(CN)4 devices fabricated on SiO{sub 2} treated with octadecyltrichlorosilane. The influence of the metal used for source/drain metal electrodes on the device performance is also investigated. Whereas best device performances are achieved with gold electrodes, more balanced electron and hole field-effect mobilities could be obtained using chromium.

  15. Screen-printed electrode for alkali-metal thermoelectric converter

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T.; Shibata, K.; Tsuchida, K.; Kato, A. (Kyushu Univ., Fukuoka (Japan). Faculty of Engineering)

    1992-06-01

    An alkali-metal thermoelectric converter (AMTEC) is a device for the direct conversion of thermal to electric energy. An AMTEC contains sodium as working fluid and is divided into a high-temperature region (900-1300 K) and a low-temperature region (400-800 K) by [beta]''-alumina solid electrolyte. A high-performance electrode for an AMTEC must have good electrical conductivity, make a strong physical bond with low contact resistance to [beta]''-alumina, be highly permeable to sodium vapour, resist corrosion by sodium and have a low rate of evaporation at the operating temperature of the AMTEC. We have previously investigated the interaction of nitrides and carbides of some transition-metals (groups IV, V and VI) with [beta],[beta]''-alumina or liquid sodium (about 700degC) with the objective of finding a better electrode material for an AMTEC. The results showed that TiN, TiC, NbN and NbC were good candidates for AMTEC electrodes. We also showed that porous TiN film with low resistance can be prepared by the screen-printing method. In the present work the porous NbN film was prepared by the screen-printing method and the performance as the electrode of an AMTEC was examined. For comparison, the performance of TiN and Mo electrodes prepared by the screen-printing method was also examined. (author).

  16. Characterization of Transition-Metal Oxide Deposition on Carbon Electrodes of a Supercapacitor

    Directory of Open Access Journals (Sweden)

    Ying-Chung Chen

    2016-12-01

    Full Text Available In order to fabricate the composite electrodes of a supercapacitor, transition-metal oxide materials NiO and WO3 were deposited on carbon electrodes by electron beam evaporation. The influences of various transition-metal oxides, scan rates of cyclic voltammograms (CVs, and galvanostatic charge/discharge tests on the characteristics of supercapacitor were studied. The charge/discharge efficiency and the lifetime of the composite electrodes were also investigated. It was found that the composite electrodes exhibited more favorable capacitance properties than those of the carbon electrodes at high scan rates. The results revealed the promotion of the capacitance property of the supercapacitor with composite electrode and the improving of the decay property in capacitance at high scan rate. In addition, the charge/discharge efficiency is close to 100% after 5000 cycles, and the composite electrode retains strong adhesion between the electrode material and the substrate.

  17. A Difference in Using Atomic Layer Deposition or Physical Vapour Deposition TiN as Electrode Material in Metal-Insulator-Metal and Metal-Insulator-Silicon Capacitors

    NARCIS (Netherlands)

    Groenland, A.W.; Wolters, Robertus A.M.; Kovalgin, Alexeij Y.; Schmitz, Jurriaan

    2011-01-01

    In this work, metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) capacitors are studied using titanium nitride (TiN) as the electrode material. The effect of structural defects on the electrical properties on MIS and MIM capacitors is studied for various electrode configurations. In the

  18. Tunneling magnetoresistance phenomenon utilizing graphene magnet electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T.; Kamikawa, S.; Haruyama, J., E-mail: J-haru@ee.aoyama.ac.jp [Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258 (Japan); Soriano, D. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la UAB, Edifici ICN2, 08193 Bellaterra, Barcelona (Spain); Pedersen, J. G. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la UAB, Edifici ICN2, 08193 Bellaterra, Barcelona (Spain); Department of Micro-and Nanotechnology, DTU Nanotech, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Roche, S. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la UAB, Edifici ICN2, 08193 Bellaterra, Barcelona (Spain); ICREA - Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona (Spain)

    2014-11-03

    Using magnetic rare-metals for spintronic devices is facing serious problems for the environmental contamination and the limited material-resource. In contrast, by fabricating ferromagnetic graphene nanopore arrays (FGNPAs) consisting of honeycomb-like array of hexagonal nanopores with hydrogen-terminated zigzag-type atomic structure edges, we reported observation of polarized electron spins spontaneously driven from the pore edge states, resulting in rare-metal-free flat-energy-band ferromagnetism. Here, we demonstrate observation of tunneling magnetoresistance (TMR) behaviors on the junction of cobalt/SiO{sub 2}/FGNPA electrode, serving as a prototype structure for future rare-metal free TMR devices using magnetic graphene electrodes. Gradual change in TMR ratios is observed across zero-magnetic field, arising from specified alignment between pore-edge- and cobalt-spins. The TMR ratios can be controlled by applying back-gate voltage and by modulating interpore distance. Annealing the SiO{sub 2}/FGNPA junction also drastically enhances TMR ratios up to ∼100%.

  19. Tunneling magnetoresistance phenomenon utilizing graphene magnet electrode

    International Nuclear Information System (INIS)

    Hashimoto, T.; Kamikawa, S.; Haruyama, J.; Soriano, D.; Pedersen, J. G.; Roche, S.

    2014-01-01

    Using magnetic rare-metals for spintronic devices is facing serious problems for the environmental contamination and the limited material-resource. In contrast, by fabricating ferromagnetic graphene nanopore arrays (FGNPAs) consisting of honeycomb-like array of hexagonal nanopores with hydrogen-terminated zigzag-type atomic structure edges, we reported observation of polarized electron spins spontaneously driven from the pore edge states, resulting in rare-metal-free flat-energy-band ferromagnetism. Here, we demonstrate observation of tunneling magnetoresistance (TMR) behaviors on the junction of cobalt/SiO 2 /FGNPA electrode, serving as a prototype structure for future rare-metal free TMR devices using magnetic graphene electrodes. Gradual change in TMR ratios is observed across zero-magnetic field, arising from specified alignment between pore-edge- and cobalt-spins. The TMR ratios can be controlled by applying back-gate voltage and by modulating interpore distance. Annealing the SiO 2 /FGNPA junction also drastically enhances TMR ratios up to ∼100%

  20. A split accumulation gate architecture for silicon MOS quantum dots

    Science.gov (United States)

    Rochette, Sophie; Rudolph, Martin; Roy, Anne-Marie; Curry, Matthew; Ten Eyck, Gregory; Dominguez, Jason; Manginell, Ronald; Pluym, Tammy; King Gamble, John; Lilly, Michael; Bureau-Oxton, Chloé; Carroll, Malcolm S.; Pioro-Ladrière, Michel

    We investigate tunnel barrier modulation without barrier electrodes in a split accumulation gate architecture for silicon metal-oxide-semiconductor quantum dots (QD). The layout consists of two independent accumulation gates, one gate forming a reservoir and the other the QD. The devices are fabricated with a foundry-compatible, etched, poly-silicon gate stack. We demonstrate 4 orders of magnitude of tunnel-rate control between the QD and the reservoir by modulating the reservoir gate voltage. Last electron charging energies of app. 10 meV and tuning of the ST splitting in the range 100-200 ueV are observed in two different split gate layouts and labs. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  1. Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, T; Kim, H; Ning, XH; Sadoway, DR

    2014-08-08

    The performance of a calcium-antimony (Ca-Sb) alloy serving as the positive electrode in a Ca vertical bar vertical bar Sb liquid metal battery was investigated in an electrochemical cell, Ca(in Bi) vertical bar LiCl-NaCl-CaCl2 vertical bar Ca(in Sb). The equilibrium potential of the Ca-Sb electrode was found to lie on the interval, 1.2-0.95 V versus Ca, in good agreement with electromotive force (emf) measurements in the literature. During both alloying and dealloying of Ca at the Sb electrode, the charge transfer and mass transport at the interface are facile enough that the electrode potential varies linearly from 0.95 to 0.75 V vs Ca(s) as current density varies from 50 to 500 mA cm(-2). The discharge capacity of the Ca vertical bar vertical bar Sb cells increases as the operating temperature increases due to the higher solubility and diffusivity of Ca in Sb. The cell was successfully cycled with high coulombic efficiency (similar to 100%) and small fade rate (<0.01% cycle(-1)). These data combined with the favorable costs of these metals and salts make the Ca vertical bar vertical bar Sb liquid metal battery attractive for grid-scale energy storage. (C) The Author(s) 2014. Published by ECS. All rights reserved.

  2. Studies on metal hydride electrodes containing no binder additives

    Energy Technology Data Exchange (ETDEWEB)

    Rogulski, Z.; Dlubak, J. [Industrial Chemistry Research Institute, Rydygiera 8, 01-793 Warsaw (Poland); Karwowska, M.; Gumkowska, A.; Czerwinski, A. [Department of Chemistry, Warsaw University, Pasteura 1, 02-093 Warsaw (Poland); Krebs, M.; Pytlik, E.; Schmalz, M. [VARTA Microbattery GmbH, Daimlerstrasse 1, 73479 Ellwangen (Germany)

    2010-11-15

    Electrochemical properties of hydrogen storage alloys (AB{sub 5} type: LaMm-Ni{sub 4.1}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.45}) were studied in 6 M KOHaq using Limited Volume Electrode (LVE) method. Working electrodes were prepared by pressing alloy powder (without binding and conducting additives) into a metal net wire serving as a support and as a current collector. Cyclic voltammetry curves reveal well defined hydrogen sorption and desorption peaks which are separated from other faradic processes, such as surface oxidation. Voltammograms of LVE resemble the curves obtained by various authors for single particle metal alloy electrodes. Hydrogen diffusion coefficient calculated at room temperature for LV electrodes and for 100% state of charge reaches a constant value of ca. 3.3 x 10{sup -9} and 2.1 x 10{sup -10} cm{sup 2} s{sup -1}, for chronoamperometric and chronopotentiometric measurements, respectively. A comparison of the electrodes with average alloy particle sizes of ca. 50 and 4 {mu}m allows us to conclude that at room temperature hydrogen storage capability of AB{sub 5} alloy studied is independent on the alloy particle size. On the other hand, reduction of the particle size increases alloy capacity at temperatures below -10 C and reduces time of electrochemical activation of the electrode. (author)

  3. Diffusion welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    Science.gov (United States)

    Byrne, Stephen C.; Vasudevan, Asuri K.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor diffusion welded to a portion of a ceramic electrode body having a level of free metal or metal alloy sufficient to effect a metal bond.

  4. Integration issues of high-k and metal gate into conventional CMOS technology

    International Nuclear Information System (INIS)

    Song, S.C.; Zhang, Z.; Huffman, C.; Bae, S.H.; Sim, J.H.; Kirsch, P.; Majhi, P.; Moumen, N.; Lee, B.H.

    2006-01-01

    Issues surrounding the integration of Hf-based high-k dielectrics with metal gates in a conventional CMOS flow are discussed. The careful choice of a gate stack process as well as optimization of other CMOS process steps enables robust CMOSFETs with a wide process latitude. HfO 2 of a 2 nm physical thickness shows complete suppression of transient charge trapping resulting from a significant reduction in film volume as well as kinetically suppressed crystallization. Metal thickness is also critical when optimizing physical stress effects and minimizing dopant diffusion. A high temperature anneal after source and drain implantation in a conventional CMOSFET process reduces the interface state density and improves electron mobility

  5. Comprehensive study and design of scaled metal/high-k/Ge gate stacks with ultrathin aluminum oxide interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Asahara, Ryohei; Hideshima, Iori; Oka, Hiroshi; Minoura, Yuya; Hosoi, Takuji, E-mail: hosoi@mls.eng.osaka-u.ac.jp; Shimura, Takayoshi; Watanabe, Heiji [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ogawa, Shingo [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Toray Research Center Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan); Yoshigoe, Akitaka; Teraoka, Yuden [Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2015-06-08

    Advanced metal/high-k/Ge gate stacks with a sub-nm equivalent oxide thickness (EOT) and improved interface properties were demonstrated by controlling interface reactions using ultrathin aluminum oxide (AlO{sub x}) interlayers. A step-by-step in situ procedure by deposition of AlO{sub x} and hafnium oxide (HfO{sub x}) layers on Ge and subsequent plasma oxidation was conducted to fabricate Pt/HfO{sub 2}/AlO{sub x}/GeO{sub x}/Ge stacked structures. Comprehensive study by means of physical and electrical characterizations revealed distinct impacts of AlO{sub x} interlayers, plasma oxidation, and metal electrodes serving as capping layers on EOT scaling, improved interface quality, and thermal stability of the stacks. Aggressive EOT scaling down to 0.56 nm and very low interface state density of 2.4 × 10{sup 11 }cm{sup −2}eV{sup −1} with a sub-nm EOT and sufficient thermal stability were achieved by systematic process optimization.

  6. Metal Phosphides and Phosphates-based Electrodes for Electrochemical Supercapacitors.

    Science.gov (United States)

    Li, Xin; Elshahawy, Abdelnaby M; Guan, Cao; Wang, John

    2017-10-01

    Phosphorus compounds, such as metal phosphides and phosphates have shown excellent performances and great potential in electrochemical energy storage, which are demonstrated by research works published in recent years. Some of these metal phosphides and phosphates and their hybrids compare favorably with transition metal oxides/hydroxides, which have been studied extensively as a class of electrode materials for supercapacitor applications, where they have limitations in terms of electrical and ion conductivity and device stability. To be specific, metal phosphides have both metalloid characteristics and good electric conductivity. For metal phosphates, the open-framework structures with large channels and cavities endow them with good ion conductivity and charge storage capacity. In this review, we present the recent progress on metal phosphides and phosphates, by focusing on their advantages/disadvantages and potential applications as a new class of electrode materials in supercapacitors. The synthesis methods to prepare these metal phosphides/phosphates are looked into, together with the scientific insights involved, as they strongly affect the electrochemical energy storage performance. Particular attentions are paid to those hybrid-type materials, where strong synergistic effects exist. In the summary, the future perspectives and challenges for the metal phosphides, phosphates and hybrid-types are proposed and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Microfabrication process for patterning metallic lithium encapsulated electrodes

    International Nuclear Information System (INIS)

    Oukassi, Sami; Dunoyer, Nicolas; Salot, Raphael; Martin, Steve

    2009-01-01

    This work presents recent achievements concerning thin film encapsulation of metallic lithium negative electrode. In the context of this study, the encapsulation stack includes polymer and dielectric layers combined in such way to optimize barrier performances of the whole structure towards oxygen and water vapor permeation. The first part of this work is dedicated to the description of the barrier stack architecture and properties. A second part presents the application of a microfabrication process to the metallic lithium negative electrode and barrier stack so as to have very small features (100 μm x 100 μm patterns). The microfabrication process includes several steps of photolithography and etching (dry and wet) blocks, which allows us to reach the target critical dimensions. These results show a method of patterning functional metallic lithium. It demonstrates the feasibility of energy sources miniaturization which is an important issue in the field of autonomous and wireless sensor networks.

  8. Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices

    KAUST Repository

    Catrysse, Peter B.

    2010-08-11

    We investigate the use of nanopatterned metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics of nanopatterned electrodes, which are often optically thin metallic films, differs from that of optically thick metallic films. We analyze the optical properties when performing a geometrical transformation that maintains the electrical properties. For one-dimensional patterns of metallic wires, the analysis favors tall and narrow wires. Our design principles remain valid for oblique incidence and readily carry over to two-dimensional patterns. © 2010 American Chemical Society.

  9. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    Science.gov (United States)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g-1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  10. Feasibility study of using thin aluminum nitride film as a buffer layer for dual metal gate process

    International Nuclear Information System (INIS)

    Park, Chang Seo; Cho, Byung Jin; Balasubramanian, N.; Kwong, Dim-Lee

    2004-01-01

    We evaluated the feasibility of using an ultra thin aluminum nitride (AlN) buffer layer for dual metal gates CMOS process. Since the buffer layer should not affect the thickness of gate dielectric, it should be removed or consumed during subsequent process. In this work, it was shown that a thin AlN dielectric layer would be reacted with initial gate metals and would be consumed during subsequent annealing, resulting in no increase of equivalent oxide thickness (EOT). The reaction of AlN layer with tantalum (Ta) and hafnium (Hf) during subsequent annealing, which was confirmed with X-ray photoelectron spectroscopy (XPS) analysis, shifted the flat-band voltage of AlN buffered MOS capacitors. No contribution to equivalent oxide thickness (EOT) was also an indication showing the full consumption of AIN, which was confirmed with TEM analysis. The work functions of gate metals were modulated through the reaction, suggesting that the consumption of AlN resulted in new thin metal alloys. Finally, it was found that the barrier heights of the new alloys were consistent with their work functions

  11. MIS gas sensors based on porous silicon with Pd and WO{sub 3}/Pd electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Solntsev, V.S. [Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028, Kiev (Ukraine); Gorbanyuk, T.I., E-mail: tatyanagor@mail.r [Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028, Kiev (Ukraine); Litovchenko, V.G.; Evtukh, A.A. [Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028, Kiev (Ukraine)

    2009-09-30

    Pd and WO{sub 3}/Pd gate metal-oxide-semiconductor (MIS) gas sensitive structures based on porous silicon layers are studied by the high frequency C(V) method. The chemical compositions of composite WO{sub 3}/Pd electrodes are characterized by secondary-ion mass spectrometry (SIMS). The atomic force microscopy (AFM) was used for morphologic studies of WO{sub 3}/Pd films. As shown in the experiments, WO{sub 3}/Pd structures are more sensitive and selective to the adsorption of hydrogen sulphide compared to Pd gate. The analyses of kinetic characteristics allow us to determine the response and characteristic times for these structures. The response time of MIS-structures with thin composite WO{sub 3}/Pd electrodes (the thickness of Pd is about 50 nm with WO{sub 3} clusters on its surface) is slower compared to the structures with Pd electrodes. Slower sensor responses of WO{sub 3}-based gas sensors may be associated with different mechanism of gas sensitivity of given structures. The enhanced sensitivity and selectivity to H{sub 2}S action of WO{sub 3}/Pd MIS-structures can also be explained by the chemical reaction that occurs at the catalytic active surface of gate electrodes. The possible mechanisms of enhanced sensitivity and selectivity to H{sub 2}S adsorption of MIS gas sensors with WO{sub 3}/Pd composite gate electrodes compared to pure Pd have been analyzed.

  12. Rectified tunneling current response of bio-functionalized metal-bridge-metal junctions.

    Science.gov (United States)

    Liu, Yaqing; Offenhäusser, Andreas; Mayer, Dirk

    2010-01-15

    Biomolecular bridged nanostructures allow direct electrical addressing of electroactive biomolecules, which is of interest for the development of bioelectronic and biosensing hybrid junctions. In the present paper, the electroactive biomolecule microperoxidase-11 (MP-11) was integrated into metal-bridge-metal (MBM) junctions assembled from a scanning tunneling microscope (STM) setup. Before immobilization of MP-11, the Au working electrode was first modified by a self-assembled monolayer of 1-undecanethiol (UDT). A symmetric and potential independent response of current-bias voltage (I(t)/V(b)) was observed for the Au (substrate)/UDT/Au (tip) junction. However, the I(t)/V(b) characteristics became potential dependent and asymmetrical after binding of MP-11 between the electrodes of the junction. The rectification ratio of the asymmetric current response varies with gate electrode modulation. A resonant tunneling process between metal electrode and MP-11 enhances the tunneling current and is responsible for the observed rectification. Our investigations demonstrated that functional building blocks of proteins can be reassembled into new conceptual devices with operation modes deviating from their native function, which could prove highly useful in the design of future biosensors and bioelectronic devices. Copyright 2009 Elsevier B.V. All rights reserved.

  13. Continuous adjustment of threshold voltage in carbon nanotube field-effect transistors through gate engineering

    Science.gov (United States)

    Zhong, Donglai; Zhao, Chenyi; Liu, Lijun; Zhang, Zhiyong; Peng, Lian-Mao

    2018-04-01

    In this letter, we report a gate engineering method to adjust threshold voltage of carbon nanotube (CNT) based field-effect transistors (FETs) continuously in a wide range, which makes the application of CNT FETs especially in digital integrated circuits (ICs) easier. Top-gated FETs are fabricated using solution-processed CNT network films with stacking Pd and Sc films as gate electrodes. By decreasing the thickness of the lower layer metal (Pd) from 20 nm to zero, the effective work function of the gate decreases, thus tuning the threshold voltage (Vt) of CNT FETs from -1.0 V to 0.2 V. The continuous adjustment of threshold voltage through gate engineering lays a solid foundation for multi-threshold technology in CNT based ICs, which then can simultaneously provide high performance and low power circuit modules on one chip.

  14. Electrical analysis of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors on flexible bulk mono-crystalline silicon

    KAUST Repository

    Ghoneim, Mohamed T.; Rojas, Jhonathan Prieto; Young, Chadwin D.; Bersuker, Gennadi; Hussain, Muhammad Mustafa

    2015-01-01

    We report on the electrical study of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors (MOSCAPs) on a flexible ultra-thin (25 μm) silicon fabric which is peeled off using a CMOS compatible process from a standard

  15. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review

    Science.gov (United States)

    Zhi, Mingjia; Xiang, Chengcheng; Li, Jiangtian; Li, Ming; Wu, Nianqiang

    2012-12-01

    This paper presents a review of the research progress in the carbon-metal oxide composites for supercapacitor electrodes. In the past decade, various carbon-metal oxide composite electrodes have been developed by integrating metal oxides into different carbon nanostructures including zero-dimensional carbon nanoparticles, one-dimensional nanostructures (carbon nanotubes and carbon nanofibers), two-dimensional nanosheets (graphene and reduced graphene oxides) as well as three-dimensional porous carbon nano-architectures. This paper has described the constituent, the structure and the properties of the carbon-metal oxide composites. An emphasis is placed on the synergistic effects of the composite on the performance of supercapacitors in terms of specific capacitance, energy density, power density, rate capability and cyclic stability. This paper has also discussed the physico-chemical processes such as charge transport, ion diffusion and redox reactions involved in supercapacitors.

  16. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review.

    Science.gov (United States)

    Zhi, Mingjia; Xiang, Chengcheng; Li, Jiangtian; Li, Ming; Wu, Nianqiang

    2013-01-07

    This paper presents a review of the research progress in the carbon-metal oxide composites for supercapacitor electrodes. In the past decade, various carbon-metal oxide composite electrodes have been developed by integrating metal oxides into different carbon nanostructures including zero-dimensional carbon nanoparticles, one-dimensional nanostructures (carbon nanotubes and carbon nanofibers), two-dimensional nanosheets (graphene and reduced graphene oxides) as well as three-dimensional porous carbon nano-architectures. This paper has described the constituent, the structure and the properties of the carbon-metal oxide composites. An emphasis is placed on the synergistic effects of the composite on the performance of supercapacitors in terms of specific capacitance, energy density, power density, rate capability and cyclic stability. This paper has also discussed the physico-chemical processes such as charge transport, ion diffusion and redox reactions involved in supercapacitors.

  17. Recovery Of Electrodic Powder From Spent Nickel-Metal Hydride Batteries (NiMH

    Directory of Open Access Journals (Sweden)

    Shin S.M.

    2015-06-01

    Full Text Available This study was focused on recycling process newly proposed to recover electrodic powder enriched in nickel (Ni and rare earth elements (La and Ce from spent nickel-metal hydride batteries (NiMH. In addition, this new process was designed to prevent explosion of batteries during thermal treatment under inert atmosphere. Spent nickel metal hydride batteries were heated over range of 300°C to 600°C for 2 hours and each component was completely separated inside reactor after experiment. Electrodic powder was successfully recovered from bulk components containing several pieces of metals through sieving operation. The electrodic powder obtained was examined by X-ray diffraction (XRD and energy dispersive X-ray spectroscopy (EDX and image of the powder was taken by scanning electron microscopy (SEM. It was finally found that nickel and rare earth elements were mainly recovered to about 45 wt.% and 12 wt.% in electrodic powder, respectively.

  18. Effect of preparation method of metal hydride electrode on efficiency of hydrogen electrosorption process

    Energy Technology Data Exchange (ETDEWEB)

    Giza, Krystyna [Czestochowa University of Technology (Poland). Faculty of Production Engineering and Materials Technology; Drulis, Henryk [Trzebiatowski Institute of Low Temperatures and Structure Research PAS, Wroclaw (Poland)

    2016-02-15

    The preparation of negative electrodes for nickel-metal hydride batteries using LaNi{sub 4.3}Co{sub 0.4}Al{sub 0.3} alloy is presented. The constant current discharge technique is employed to determine the discharge capacity, the exchange current density and the hydrogen diffusion coefficient of the studied electrodes. The electrochemical performance of metal hydride electrode is strongly affected by preparation conditions. The results are compared and the advantages and disadvantages of preparation methods of the electrodes are also discussed.

  19. Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    Science.gov (United States)

    Byrne, Stephen C.; Ray, Siba P.; Rapp, Robert A.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor and a ceramic electrode body connected by a friction weld between a portion of the body having a level of free metal or metal alloy sufficient to effect such a friction weld and a portion of the metal conductor.

  20. Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography

    KAUST Repository

    Beesley, David J.

    2014-05-27

    Coplanar electrodes formed from asymmetric metals separated on the nanometre length scale are essential elements of nanoscale photonic and electronic devices. Existing fabrication methods typically involve electron-beam lithography - a technique that enables high fidelity patterning but suffers from significant limitations in terms of low throughput, poor scalability to large areas and restrictive choice of substrate and electrode materials. Here, we describe a versatile method for the rapid fabrication of asymmetric nanogap electrodes that exploits the ability of selected self-assembled monolayers to attach conformally to a prepatterned metal layer and thereby weaken adhesion to a subsequently deposited metal film. The method may be carried out under ambient conditions using simple equipment and a minimum of processing steps, enabling the rapid fabrication of nanogap electrodes and optoelectronic devices with aspect ratios in excess of 100,000.2014 Macmillan Publishers Limited. All rights reserved.

  1. Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography

    KAUST Repository

    Beesley, David J.; Semple, James; Jagadamma, Lethy Krishnan; Amassian, Aram; McLachlan, Martyn A.; Anthopoulos, Thomas D.; deMello, John C.

    2014-01-01

    Coplanar electrodes formed from asymmetric metals separated on the nanometre length scale are essential elements of nanoscale photonic and electronic devices. Existing fabrication methods typically involve electron-beam lithography - a technique that enables high fidelity patterning but suffers from significant limitations in terms of low throughput, poor scalability to large areas and restrictive choice of substrate and electrode materials. Here, we describe a versatile method for the rapid fabrication of asymmetric nanogap electrodes that exploits the ability of selected self-assembled monolayers to attach conformally to a prepatterned metal layer and thereby weaken adhesion to a subsequently deposited metal film. The method may be carried out under ambient conditions using simple equipment and a minimum of processing steps, enabling the rapid fabrication of nanogap electrodes and optoelectronic devices with aspect ratios in excess of 100,000.2014 Macmillan Publishers Limited. All rights reserved.

  2. Influence of electrode, buffer gas and control gear on metal halide lamp performance

    International Nuclear Information System (INIS)

    Lamouri, A; Naruka, A; Sulcs, J; Varanasi, C V; Brumleve, T R

    2005-01-01

    In this paper the influence of electrode composition, buffer gas fill pressure and control gear on the performance of metal halide lamps is investigated. It is shown that pure tungsten electrodes improve lumen maintenance and reduce voltage rise over lamp life. An optimum buffer gas fill pressure condition is discovered which allows for reduced electrode erosion during lamp starting as well as under normal operating conditions. Use of electronic control gear is shown to improve the performance of metal halide lamps

  3. Channel mobility degradation and charge trapping in high-k/metal gate NMOSFETs

    International Nuclear Information System (INIS)

    Mathew, Shajan; Bera, L.K.; Balasubramanian, N.; Joo, M.S.; Cho, B.J.

    2004-01-01

    NMOSFETs with Metalo-Organic Chemical Vapor Deposited (MOCVD) HfAlO gate dielectric and TiN metal gate have been fabricated. Channel electron mobility was measured using the split-CV method and compared with SiO 2 devices. All high-k devices showed lower mobility compared with SiO 2 reference devices. High-k MOSFETs exhibited significant charge trapping and threshold instability. Threshold voltage recovery with time was studied on devices with oxide/nitride interfacial layer between high-k film and silicon substrate

  4. Controlled Fabrication of Metallic Electrodes with Atomic Separation

    DEFF Research Database (Denmark)

    Morpurgo, A.; Robinson, D.; M. Marcus, C.

    1998-01-01

    We report a new technique for fabricating metallic electrodes on insulating substrates with separations on the 1 nm scale. The fabrication technique, which combines lithographic and electrochemical methods, provides atomic resolution without requiring sophisticated instrumentation. The process is...

  5. Study of surface-modified PVP gate dielectric in organic thin film transistors with the nano-particle silver ink source/drain electrode.

    Science.gov (United States)

    Yun, Ho-Jin; Ham, Yong-Hyun; Shin, Hong-Sik; Jeong, Kwang-Seok; Park, Jeong-Gyu; Choi, Deuk-Sung; Lee, Ga-Won

    2011-07-01

    We have fabricated the flexible pentacene based organic thin film transistors (OTFTs) with formulated poly[4-vinylphenol] (PVP) gate dielectrics treated by CF4/O2 plasma on poly[ethersulfones] (PES) substrate. The solution of gate dielectrics is made by adding methylated poly[melamine-co-formaldehyde] (MMF) to PVP. The PVP gate dielectric layer was cross linked at 90 degrees under UV ozone exposure. Source/drain electrodes are formed by micro contact printing (MCP) method using nano particle silver ink for the purposes of low cost and high throughput. The optimized OTFT shows the device performance with field effect mobility of the 0.88 cm2/V s, subthreshold slope of 2.2 V/decade, and on/off current ratios of 1.8 x 10(-6) at -40 V gate bias. We found that hydrophobic PVP gate dielectric surface can influence on the initial film morphologies of pentacene making dense, which is more important for high performance OTFTs than large grain size. Moreover, hydrophobic gate dielelctric surface reduces voids and -OH groups that interrupt the carrier transport in OTFTs.

  6. Mechanisms and kinetics of electrodeposition of alkali metals on solid and liquid mercury electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wenzhe.

    1993-01-01

    Electroreduction of alkali metal ions at mercury is an important area in electrochemistry related to the battery industry. In this work, four major topics were considered: alkali metal/mercury interactions; electrosorption of alkali metal ions on solid mercury; electroreduction of alkali metal/crown ether complexes; and ammonium amalgam formation. The formation of alkali metal-mercury intermetallic compounds was studied on liquid and frozen thin layer mercury electrodes. The stoichiometry of the compounds produced under these conditions was determined using cyclic voltammetry. As expected, formation of a new phase was preceded by nucleation phenomena, which were particularly easy to monitor at solid Hg electrodes. The nucleation kinetics were studied using the chronoamperometric method. At very low temperatures, when the mobility of mercury atoms was restricted, the electrosorption of alkali metal ions on solid mercury electrodes was noted. Subsequent study allowed determination of the electrosorption parameters. The free energy of electrosorption is discussed in terms of interactions between alkali metals and mercury. The effect of crown ethers on the kinetics of alkali metal ion reduction was studied at both standard size and ultramicro-mercury electrodes in nonaqueous solutions using ultrafast cyclic voltammetry and ac voltammetry. The usefulness of ultrafast cyclic voltammetry with ultramicroelectrodes in measurements of the kinetics of amalgam formation was verified in a brief study of cadmium ion reduction. The mechanism of the complex reduction at mercury was analyzed based on the free energy changes before and after the activation state. In addition, the stoichiometry and formation constants of the crown ether/alkali metal complexes were determined using cyclic voltammetry. The mechanism of electroreduction of ammonium ions at mercury electrodes in non-aqueous media was analyzed.

  7. Investigation of pentacene growth on SiO2 gate insulator after photolithography for nitrogen-doped LaB6 bottom-contact electrode formation

    Science.gov (United States)

    Maeda, Yasutaka; Hiroki, Mizuha; Ohmi, Shun-ichiro

    2018-04-01

    Nitrogen-doped (N-doped) LaB6 is a candidate material for the bottom-contact electrode of n-type organic field-effect transistors (OFETs). However, the formation of a N-doped LaB6 electrode affects the surface morphology of a pentacene film. In this study, the effects of surface treatments and a N-doped LaB6 interfacial layer (IL) were investigated to improve the pentacene film quality after N-doped LaB6 electrode patterning with diluted HNO3, followed by resist stripping with acetone and methanol. It was found that the sputtering damage during N-doped LaB6 deposition on a SiO2 gate insulator degraded the crystallinity of pentacene. The H2SO4 and H2O2 (SPM) and diluted HF treatments removed the damaged layer on the SiO2 gate insulator surface. Furthermore, the N-doped LaB6 IL improved the crystallinity of pentacene and realized dendritic grain growth. Owing to these surface treatments, the hole mobility improved from 2.8 × 10-3 to 0.11 cm2/(V·s), and a steep subthreshold swing of 78 mV/dec for the OFET with top-contact configuration was realized in air even after bottom-contact electrode patterning.

  8. Electrocatalysis of the oxidations of some organic compounds on noble-metal electrodes by foreign-metal ad-atoms

    International Nuclear Information System (INIS)

    Tsang, R.W.

    1981-10-01

    Electrochemical oxidation of formic acid was studied on Pt electrodes in acid, and that of dextrose was studied on Pt and Au in alkali. Poisoning was observed on Pt but not on Au. Several heavy-metal ad-atoms (Pb, Bi, Tl) enhance greatly the anodic currents on Pt, while transition metals (Cu, Zn) inhibit the oxidation on Pt. The enhancement effect of the metal ad-atoms is correlated with electron structure. All metal ad-atoms showed an inhibitory effect on Au. Amperometry showed that Pt electrodes are completely deactivated within 10 s during dextrose oxidation without ad-atoms, while Au retains much of its activity even after 10 min. Ad-atoms maintains the Pt activity over much more than 10 s. 50 figures, 38 tables

  9. C-V analysis at variable frequency of MOS structures with different gates, containing Hf-Doped Ta2O5

    International Nuclear Information System (INIS)

    Stojanovska-Georgievska, L.; Novkovski, N.; Atanassova, E.

    2012-01-01

    The quality of the interface between the insulating layer and the Si substrate in contemporary submicron MOS technology is a critical issue for device functioning. It is characterized through the electrically active defect centers, known as interface states. Their response to the frequency is discussed here, by analyzing capacitance-voltage and conductance-voltage curves. The C-V method is preferred in many cases, since it offers easy measurement, and it is applied to extract information about interface traps and fixed oxide charge, at different frequencies. This technique, related with frequency dependent G-V measurements, can be very useful in characterizing charge trapped in the dielectric and at the interface with Si. By extracting the value of frequency dependent flat band voltage, we have obtained the fixed oxide charges at flat band condition. A comparison between the results obtained by two different methods is made. The samples that are studied are metal-insulator-semiconductor (MIS) structures that include high-k dielectric as insulating layer (Hf doped Ta 2 O 5 ), with thickness of 8 nm, with different metal used as gate electrode. Here the influence of the top electrode on the generation and behavior of the traps in the oxide layer is discussed. The results show that the value of metal work function of the gate material is an issue that should be considered very carefully, especially in the case of high work function metal gates, when generation of extra positive charge than in the case of other metals is observed. (Author)

  10. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik; Wallentin, Jesper; Borgström, Magnus T.; Hessman, Dan; Samuelson, Lars [Solid State Physics, Nanometer Structure Consortium, Lund University, Box 118, S-221 00 Lund (Sweden)

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  11. Backside versus frontside advanced chemical analysis of high-k/metal gate stacks

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E., E-mail: eugenie.martinez@cea.fr [Univ Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Saidi, B. [STMicroelectronics, 850 rue Jean Monnet, 38926 Rousset Cedex, Crolles (France); Veillerot, M. [Univ Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Caubet, P. [STMicroelectronics, 850 rue Jean Monnet, 38926 Rousset Cedex, Crolles (France); Fabbri, J-M. [Univ Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Piallat, F. [STMicroelectronics, 850 rue Jean Monnet, 38926 Rousset Cedex, Crolles (France); Gassilloud, R. [Univ Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Schamm-Chardon, S. [CEMES-CNRS et Université de Toulouse, 29 rue Jeanne Marvig, 31055 Toulouse (France)

    2015-08-15

    Highlights: • The backside approach is a promising solution for advanced chemical characterization of future MOSFETs. • Frontside ToF-SIMS and Auger depth profiles are affected by cumulative mixing effects and thus not relevant for analyzing ultra-thin layers. • Higher in-depth resolution is possible in the backside approach for Auger and ToF-SIMS depth profiling. • Backside depth profiling allows revealing ultra-thin layers and elemental in-depth redistribution inside high-k/metal gate stacks. • Backside XPS allows preserving the full metal gate, thus enabling the analysis of real technological samples. - Abstract: Downscaling of transistors beyond the 14 nm technological node requires the implementation of new architectures and materials. Advanced characterization methods are needed to gain information about the chemical composition of buried layers and interfaces. An effective approach based on backside analysis is presented here. X-ray photoelectron spectroscopy, Auger depth profiling and time-of-flight secondary ions mass spectrometry are combined to investigate inter-diffusion phenomena. To highlight improvements related to the backside method, backside and frontside analyses are compared. Critical information regarding nitrogen, oxygen and aluminium redistribution inside the gate stacks is obtained only in the backside configuration.

  12. Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit.

    Directory of Open Access Journals (Sweden)

    Yang Yu

    Full Text Available BACKGROUND: Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs. METHODS: Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. RESULTS: With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as -0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs were lit and emitted colorful lights. CONCLUSIONS: The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and

  13. Flexible semi-transparent silicon (100) fabric with high-k/metal gate devices

    KAUST Repository

    Rojas, Jhonathan Prieto

    2013-01-07

    Can we build a flexible and transparent truly high performance computer? High-k/metal gate stack based metal-oxide-semiconductor capacitor devices are monolithically fabricated on industry\\'s most widely used low-cost bulk single-crystalline silicon (100) wafers and then released as continuous, mechanically flexible, optically semi-transparent and high thermal budget compatible silicon fabric with devices. This is the first ever demonstration with this set of materials which allows full degree of freedom to fabricate nanoelectronics devices using state-of-the-art CMOS compatible processes and then to utilize them in an unprecedented way for wide deployment over nearly any kind of shape and architecture surfaces. Electrical characterization shows uncompromising performance of post release devices. Mechanical characterization shows extra-ordinary flexibility (minimum bending radius of 1 cm) making this generic process attractive to extend the horizon of flexible electronics for truly high performance computers. Schematic and photograph of flexible high-k/metal gate MOSCAPs showing high flexibility and C-V plot showing uncompromised performance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Modification of titanium electrodes by a noble metal deposit

    Energy Technology Data Exchange (ETDEWEB)

    Devilliers, D.; Mahe, E. [Pierre et Marie Curie Univ., Paris (France). Laboratoire LI2C, UMR CNRS

    2008-07-01

    Titanium is commonly used as a substrate for dimensionally stable anodes (DSAs) because it is corrosion-resistant in acid media and because a passive titanium oxide (TiO2) film can be formed on the surface. This paper reported on a study in which titanium substrates were first covered by anodization with a TiO2 layer. The electrochemical properties of the Ti/TiO2 electrodes were investigated. The modification of the substrates by cathodic electrodeposition of a noble metal was described. The reactivity of the Ti/TiO2/Pt structures were illustrated by impedance spectroscopy experiments. The impedance studies performed with Ti/ TiO2 electrodes in the presence of a redox couple in solution (Fe3+/Fe2+ system in sulphuric acid) showed that the electronic transfer is very slow. It was concluded that the deposition of a noble metal coating on Ti/TiO2 substrates leads to modified titanium electrodes that exhibit electrocatalytic behaviour versus specific electrochemical reactions. 1 ref., 3 figs.

  15. Thermal stability of atomic layer deposited WCxNy electrodes for metal oxide semiconductor devices

    Science.gov (United States)

    Zonensain, Oren; Fadida, Sivan; Fisher, Ilanit; Gao, Juwen; Danek, Michal; Eizenberg, Moshe

    2018-01-01

    This study is a thorough investigation of the chemical, structural, and electrical stability of W based organo-metallic films, grown by atomic layer deposition, for future use as gate electrodes in advanced metal oxide semiconductor structures. In an earlier work, we have shown that high effective work-function (4.7 eV) was produced by nitrogen enriched films (WCxNy) dominated by W-N chemical bonding, and low effective work-function (4.2 eV) was produced by hydrogen plasma resulting in WCx films dominated by W-C chemical bonding. In the current work, we observe, using x-ray diffraction analysis, phase transformation of the tungsten carbide and tungsten nitride phases after 900 °C annealing to the cubic tungsten phase. Nitrogen diffusion is also observed and is analyzed with time-of-flight secondary ion mass spectroscopy. After this 900 °C anneal, WCxNy effective work function tunability is lost and effective work-function values of 4.7-4.8 eV are measured, similar to stable effective work function values measured for PVD TiN up to 900 °C anneal. All the observed changes after annealing are discussed and correlated to the observed change in the effective work function.

  16. Screen-Printed Electrodes Modified with "Green" Metals for Electrochemical Stripping Analysis of Toxic Elements.

    Science.gov (United States)

    Economou, Anastasios

    2018-03-29

    This work reviews the field of screen-printed electrodes (SPEs) modified with "green" metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of "green" metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  17. Synthesis of Carbon–Metal Multi-Strand Nanocomposites by Discharges in Heptane Between Two Metallic Electrodes

    KAUST Repository

    Hamdan, Ahmad

    2017-04-26

    We studied composite wires assembled from electric field-driven nanoparticles in a dielectric liquid (heptane) to elucidate the exact processes and controlling factors involved in the synthesis of the multi-phase nanocomposites. Filamentary wires are synthesized by a two-step process: (1) abundant nanoparticle production, mostly of carbonaceous types, from heptane decomposition by spark discharge and of metal nanoparticles by electrode erosion and (2) assembly of hydrogenated amorphous carbonaceous nano-clusters with incorporated metal nanoparticles forming wires by dielectrophoretic transport while maintaining a high electric field between electrodes kept sufficiently separated to avoid breakdown. Four types of nanocomposites products are identified to form at different steps in distinctive zones of the setup. The black carbonaceous agglomerates with metal spherules made by electrode erosion represent the pyrolytic residues of heptane decomposition by spark discharge during step 1. The filamentary wires grown in the interelectrode gap during step 2 get assembled by dielectrophoretic transport and chaining forces. Their great stability is shown to express the concurrent effect of polymerization favoured by the abundance of metal catalysts. The nature, abundance, and transformation of solid particles from the source materials versus discharge conditions control the morphological and compositional diversity of the wires. The production of mineral and metal nano-particles traces the efficiency of dielectrophoresis to separate compound particle mixtures by size and to co-synthesize nanostructured microcrystals and nanocomposites. The link between impurities and the variability from nano- to micro-scales of the synthesized products provides an innovative contribution to the knowledge of nanocomposite synthesis triggered by electric field.

  18. Magneto-electrochemical recovery of diluted metals using three-dimensionally structured electrodes

    Science.gov (United States)

    Fernández, Dámaris; Romeral, Luis; Lyons, Michael E. G.

    2015-04-01

    In a typical metal recovery process, where highly purified metals are obtained from a concentrated electrolyte, usually the cathodic electrodes are planar and can be described mainly as bi-dimensional. This leads to a low space-time yield and low normalized space velocity with an impact on production rates. New requirements of low-energy consumption yet intensive production factories impose the need to adequate electrodes in order to comply. Furthermore, a reduction in the number of steps required to achieve a product would be ideal. This suggests that direct electro-precipitation of metals contained in diluted electrolytes would be in principle a desirable technique to implement. However, the less concentrated the solution, the higher the IR drop becomes, making the process more energy-consuming and current efficiency strongly decays. Good potential alternatives arise from three-dimensionally designed electrodes in the form of mesh, porous or fluidized beds, for instance, and several examples are well known in literature. Nevertheless, current efficiency can still be a problem in the more diluted electrolytes. Furthermore, the anodic electrode, where the counter reaction takes place, plays also an important role in determining the current efficiency of the overall process. In this case, the liquid-to-gas phase transition implies that the electrodes get a strong gas shield that increases the IR drop. Whereas shifting from bi-dimensional to three-dimensional electrodes could provide an alternative for achieving better performances, it is still far from the expected targets. Therefore alternative or complementary techniques to improve efficiency are required. It is well known that magnetic fields coupled with electric fields enhance mass transport via de Lorentz and other forces. In this work, the applications and properties of three-dimensional arrays subject to magnetic field interactions are examined and compared with the traditional bi-dimensional electrodes

  19. High capacity V-based metal hydride electrodes for rechargeable batteries

    OpenAIRE

    Yang, Heng; Weadock, Nicholas J.; Tan, Hongjin; Fultz, Brent

    2017-01-01

    We report the successful development of Ti_(29)V_(62−x)Ni_9Cr_x (x = 0, 6, 12) body centered cubic metal hydride (MH) electrodes by addressing vanadium corrosion and dissolution in KOH solutions. By identifying oxygen as the primary source of corrosion and eliminating oxygen with an Ar-purged cell, the Cr-free Ti_(29)V_(62)Ni_9 alloy electrode achieved a maximum capacity of 594 mAh g^(-1), double the capacity of commercial AB_5 MH electrodes. With coin cells designed to minimize oxygen evolut...

  20. Impact of metal-ion contaminated silica particles on gate oxide integrity

    NARCIS (Netherlands)

    Rink, Ingrid; Wali, F.; Knotter, D.M.

    2009-01-01

    The impact of metal-ion contamination (present on wafer surface before oxidation) on gate oxide integrity (GOI) is well known in literature, which is not the case for clean silica particles [1, 2]. However, it is known that particles present in ultra-pure water (UPW) decrease the random yield in

  1. Method for intercalating alkali metal ions into carbon electrodes

    Science.gov (United States)

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  2. Noise analysis of gate electrode work function engineered recessed channel (GEWE-RC) MOSFET

    International Nuclear Information System (INIS)

    Agarwala, Ajita; Chaujar, Rishu

    2012-01-01

    This paper discusses the noise assessment, using ATLAS device simulation software, of a gate electrode work function engineered recessed channel (GEWE-RC) MOSFET involving an RC and GEWE design integrated onto a conventional MOSFET. Furthermore, the behaviour of GEWE-RC MOSFET is compared with that of a conventional MOSFET having the same device parameters. This paper thus optimizes and predicts the feasibility of a novel design, i.e., GEWE-RC MOSFET for high-performance applications where device and noise reduction is a major concern. The noise metrics taken into consideration are: minimum noise figure and optimum source impedance. The statistical tools auto correlation and cross correlation are also analysed owing to the random nature of noise.

  3. Biomass transition metal hydrogen-evolution electrocatalysts and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Fu; Iyer, Shweta; Iyer, Shilpa; Sasaki, Kotaro; Muckerman, James T.; Fujita, Etsuko

    2017-02-28

    A catalytic composition from earth-abundant transition metal salts and biomass is disclosed. A calcined catalytic composition formed from soybean powder and ammonium molybdate is specifically exemplified herein. Methods for making the catalytic composition are disclosed as are electrodes for hydrogen evolution reactions comprising the catalytic composition.

  4. Recent Progress in Self-Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium-Ion Batteries.

    Science.gov (United States)

    Zhang, Feng; Qi, Limin

    2016-09-01

    The rational design and fabrication of electrode materials with desirable architectures and optimized properties has been demonstrated to be an effective approach towards high-performance lithium-ion batteries (LIBs). Although nanostructured metal oxide electrodes with high specific capacity have been regarded as the most promising alternatives for replacing commercial electrodes in LIBs, their further developments are still faced with several challenges such as poor cycling stability and unsatisfying rate performance. As a new class of binder-free electrodes for LIBs, self-supported metal oxide nanoarray electrodes have many advantageous features in terms of high specific surface area, fast electron transport, improved charge transfer efficiency, and free space for alleviating volume expansion and preventing severe aggregation, holding great potential to solve the mentioned problems. This review highlights the recent progress in the utilization of self-supported metal oxide nanoarrays grown on 2D planar and 3D porous substrates, such as 1D and 2D nanostructure arrays, hierarchical nanostructure arrays, and heterostructured nanoarrays, as anodes and cathodes for advanced LIBs. Furthermore, the potential applications of these binder-free nanoarray electrodes for practical LIBs in full-cell configuration are outlined. Finally, the future prospects of these self-supported nanoarray electrodes are discussed.

  5. Channel length scaling and the impact of metal gate work function ...

    Indian Academy of Sciences (India)

    Further- more, quantum effects on the performance of DG-MOSFETs are addressed and discussed. We also study the influence of metal gate work function on the performance of nanoscale MOSFETs. We use a self-consistent Poisson–Schrödinger solver in two dimensions over the entire device. A good agreement with ...

  6. Manufacture and evaluation of integrated metal-oxide electrode prototype for corrosion monitoring in high temperature water

    International Nuclear Information System (INIS)

    Hashimoto, Yoshinori; Tani, Jun-ichi

    2014-01-01

    We have developed an integrated metal-oxide (M/O) electrode based on an yttria-stabilized-zirconia-(YSZ)-membrane M/O electrode, which was used as a reference electrode for corrosion monitoring in high temperature water. The YSZ-membrane M/O electrode can operate at high temperatures because of the conductivity of YSZ membrane tube. We cannot utilize it for long term monitoring at a wide range of temperatures. It also has a braze juncture between the YSZ membrane and metal tubes, which may corrode in high-temperature water. This corrosion should be prevented to improve the performance of the M/O electrode. An integrated M/O electrode was developed (i.e., integrated metal-oxide electrode, IMOE) to eliminate the braze juncture and increase the conductivity of YSZ. These issues should be overcome to improve the performance of M/O electrode. So we have developed two type of IMOE prototype with sputter - deposition or thermal oxidation. In this paper we will present and discuss the performance of our IMOEs in buffer solution at room temperature. (author)

  7. Voltammetry of metallic powder suspensions on mercury electrodes

    Czech Academy of Sciences Publication Activity Database

    Korshunov, A.; Heyrovský, Michael

    2006-01-01

    Roč. 18, č. 4 (2006), s. 423-426 ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42 Institutional research plan: CEZ:AV0Z40400503 Keywords : metallic particles * oxide layers * suspensions * mercury electrodes * particulate electrolysis Subject RIV: CG - Electrochemistry Impact factor: 2.444, year: 2006

  8. High performance cermet electrodes

    Science.gov (United States)

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  9. Trapped-ion quantum logic gates based on oscillating magnetic fields.

    Science.gov (United States)

    Ospelkaus, C; Langer, C E; Amini, J M; Brown, K R; Leibfried, D; Wineland, D J

    2008-08-29

    Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing (QIP). With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ion crystal and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering, a fundamental source of decoherence in laser-mediated gates.

  10. Ionic polymer metal composites with polypyrrole-silver electrodes

    Science.gov (United States)

    Cellini, F.; Grillo, A.; Porfiri, M.

    2015-03-01

    Ionic polymer metal composites (IPMCs) are a class of soft active materials that are finding increasing application in robotics, environmental sensing, and energy harvesting. In this letter, we demonstrate the fabrication of IPMCs via in-situ photoinduced polymerization of polypyrrole-silver electrodes on an ionomeric membrane. The composition, morphology, and sheet resistance of the electrodes are extensively characterized through a range of experimental techniques. We experimentally investigate IPMC electrochemistry through electrochemical impedance spectroscopy, and we propose a modified Randle's model to interpret the impedance spectrum. Finally, we demonstrate in-air dynamic actuation and sensing and assess IPMC performance against more established fabrication methods. Given the simplicity of the process and the short time required for the formation of the electrodes, we envision the application of our technique in the development of a rapid prototyping technology for IPMCs.

  11. Facile synthesis of nanostructured transition metal oxides as electrodes for Li-ion batteries

    Science.gov (United States)

    Opra, Denis P.; Gnedenkov, Sergey V.; Sokolov, Alexander A.; Minaev, Alexander N.; Kuryavyi, Valery G.; Sinebryukhov, Sergey L.

    2017-09-01

    At all times, energy storage is one of the greatest scientific challenge. Recently, Li-ion batteries are under special attention due to high working voltage, long cycle life, low self-discharge, reliability, no-memory effect. However, commercial LIBs usage in medium- and large-scale energy storage are limited by the capacity of lithiated metal oxide cathode and unsafety of graphite anode at high-rate charge. In this way, new electrode materials with higher electrochemical performance should be designed to satisfy a requirement in both energy and power. As it known, nanostructured transition metal oxides are promising electrode materials because of their elevated specific capacity and high potential vs. Li/Li+. In this work, the perspective of an original facile technique of pulsed high-voltage plasma discharge in synthesis of nanostructured transition metal oxides as electrodes for lithium-ion batteries has been demonstrated.

  12. Modified electrode voltammetric sensors for trace metals in environmental samples

    Directory of Open Access Journals (Sweden)

    Brett Christopher M.A.

    2000-01-01

    Full Text Available Nafion-modified mercury thin film electrodes have been investigated for the analysis of trace metals in environmental samples of waters and effluent by batch injection analysis with square wave anodic stripping voltammetry. The method, involving injection over the detector electrode of untreated samples of volume of the order of 50 microlitres has fast response, blocking and fouling of the electrode is minimum as shown by studies with surface-active components. Comparison is made between glassy carbon substrate electrodes and carbon fibre microelectrode array substrates, the latter leading to a small sensitivity enhancement. Application to analysis of river water and industrial effluent for labile zinc, cadmium, lead and copper ions is demonstrated in collected samples and after acid digestion.

  13. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.

    Science.gov (United States)

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang; Yuan, Changzhou; Lou, Xiong Wen David

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements

    Directory of Open Access Journals (Sweden)

    Anastasios Economou

    2018-03-01

    Full Text Available This work reviews the field of screen-printed electrodes (SPEs modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of “green” metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  15. The enhancement of heavy metal removal from polluted river water treatment by integrated carbon-aluminium electrodes using electrochemical method

    Science.gov (United States)

    Yussuf, N. M.; Embong, Z.; Abdullah, S.; Masirin, M. I. M.; Tajudin, S. A. A.; Ahmad, S.; Sahari, S. K.; Anuar, A. A.; Maxwell, O.

    2018-01-01

    The heavy metal removal enhancement from polluted river water was investigated using two types of electrodes consist of integrated carbon-aluminium and a conventional aluminium plate electrode at laboratory-scale experiments. In the integrated electrode systems, the aluminium electrode surface was coated with carbon using mixed slurry containing carbon black, polyvinyl acetate and methanol. The electrochemical treatment was conducted on the parameter condition of 90V applied voltage, 3cm of electrode distance and 60 minutes of electrolysis operational time. Surface of both electrodes was investigated for pre and post electrolysis treatment by using SEM-EDX analytical technique. Comparison between both of the electrode configuration exhibits that more metals were accumulated on carbon integrated electrode surfaces for both anode and cathode, and more heavy metals were detected on the cathode. The atomic percentage of metals distributed on the cathode conventional electrode surface consist of Al (94.62%), Zn (1.19%), Mn (0.73%), Fe (2.81%) and Cu (0.64%), while on the anode contained O (12.08%), Al (87.63%) and Zn (0.29%). Meanwhile, cathode surface of integrated electrode was accumulated with more metals; O (75.40%), Al (21.06%), Zn (0.45%), Mn (0.22), Fe (0.29%), Cu (0.84%), Pb (0.47%), Na (0.94%), Cr (0.08%), Ni (0.02%) and Ag (0.22%), while on anode contain Al (3.48%), Fe (0.49 %), C (95.77%), and Pb (0.26%). According to this experiment, it was found that integrated carbon-aluminium electrodes have a great potential to accumulate more heavy metal species from polluted water compare to the conventional aluminium electrode. Here, heavy metal accumulation process obviously very significant on the cathode surface.

  16. Structured-gate organic field-effect transistors

    International Nuclear Information System (INIS)

    Aljada, Muhsen; Pandey, Ajay K; Velusamy, Marappan; Burn, Paul L; Meredith, Paul; Namdas, Ebinazar B

    2012-01-01

    We report the fabrication and electrical characteristics of structured-gate organic field-effect transistors consisting of a gate electrode patterned with three-dimensional pillars. The pillar gate electrode was over-coated with a gate dielectric (SiO 2 ) and solution processed organic semiconductors producing both unipolar p-type and bipolar behaviour. We show that this new structured-gate architecture delivers higher source-drain currents, higher gate capacitance per unit equivalent linear channel area, and enhanced charge injection (electrons and/or holes) versus the conventional planar structure in all modes of operation. For the bipolar field-effect transistor (FET) the maximum source-drain current enhancements in p- and n-channel mode were >600% and 28%, respectively, leading to p and n charge mobilities with the same order of magnitude. Thus, we have demonstrated that it is possible to use the FET architecture to manipulate and match carrier mobilities of material combinations where one charge carrier is normally dominant. Mobility matching is advantageous for creating organic logic circuit elements such as inverters and amplifiers. Hence, the method represents a facile and generic strategy for improving the performance of standard organic semiconductors as well as new materials and blends. (paper)

  17. Structured-gate organic field-effect transistors

    Science.gov (United States)

    Aljada, Muhsen; Pandey, Ajay K.; Velusamy, Marappan; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.

    2012-06-01

    We report the fabrication and electrical characteristics of structured-gate organic field-effect transistors consisting of a gate electrode patterned with three-dimensional pillars. The pillar gate electrode was over-coated with a gate dielectric (SiO2) and solution processed organic semiconductors producing both unipolar p-type and bipolar behaviour. We show that this new structured-gate architecture delivers higher source-drain currents, higher gate capacitance per unit equivalent linear channel area, and enhanced charge injection (electrons and/or holes) versus the conventional planar structure in all modes of operation. For the bipolar field-effect transistor (FET) the maximum source-drain current enhancements in p- and n-channel mode were >600% and 28%, respectively, leading to p and n charge mobilities with the same order of magnitude. Thus, we have demonstrated that it is possible to use the FET architecture to manipulate and match carrier mobilities of material combinations where one charge carrier is normally dominant. Mobility matching is advantageous for creating organic logic circuit elements such as inverters and amplifiers. Hence, the method represents a facile and generic strategy for improving the performance of standard organic semiconductors as well as new materials and blends.

  18. Magnetic phase transition induced by electrostatic gating in two-dimensional square metal-organic frameworks

    Science.gov (United States)

    Wang, Yun-Peng; Li, Xiang-Guo; Liu, Shuang-Long; Fry, James N.; Cheng, Hai-Ping

    2018-03-01

    We investigate theoretically magnetism and magnetic phase transitions induced by electrostatic gating of two-dimensional square metal-organic framework compounds. We find that electrostatic gating can induce phase transitions between homogeneous ferromagnetic and various spin-textured antiferromagnetic states. Electronic structure and Wannier function analysis can reveal hybridizations between transition-metal d orbitals and conjugated π orbitals in the organic framework. Mn-containing compounds exhibit a strong d -π hybridization that leads to partially occupied spin-minority bands, in contrast to compounds containing transition-metal ions other than Mn, for which electronic structure around the Fermi energy is only slightly spin split due to weak d -π hybridization and the magnetic interaction is of the Ruderman-Kittel-Kasuya-Yosida type. We use a ferromagnetic Kondo lattice model to understand the phase transition in Mn-containing compounds in terms of carrier density and illuminate the complexity and the potential to control two-dimensional magnetization.

  19. Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials.

    Science.gov (United States)

    Jeong, Gyoung Hwa; Baek, Seungmin; Lee, Seungyeol; Kim, Sang-Wook

    2016-04-05

    Graphene composites with metal or metal oxide nanoparticles have been extensively investigated owing to their potential applications in the fields of fuel cells, batteries, sensing, solar cells, and catalysis. Among them, much research has focused on supercapacitor applications and have come close to realization. Composites include monometal oxides of cobalt, nickel, manganese, and iron, as well as their binary and ternary oxides. In addition, their morphological control and hybrid systems of carbon nanotubes have also been investigated. This review presents the current trends in research on metal oxide/graphene composites for supercapacitors. Furthermore, methods are suggested to improve the properties of electrochemical capacitor electrodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of oxygen on tuning the TiNx metal gate work function on LaLuO3

    International Nuclear Information System (INIS)

    Mitrovic, I.Z.; Przewlocki, H.M.; Piskorski, K.; Simutis, G.; Dhanak, V.R.; Sedghi, N.; Hall, S.

    2012-01-01

    This paper presents experimental evidence on effective work function tuning due to the presence of oxygen at the TiNx/LaLuO 3 interface. Two complementary techniques, internal photoemission and X-ray photoelectron spectroscopy, show good agreement on the position of the metal gate Fermi level to conduction (2.79 ± 0.25 eV) and valence (2.65 ± 0.08 eV) band edge for TiNx/bulk LaLuO 3 gate stacks. The chemical shifts of Ti2p and N1s core levels and different degree in ionicity of TiNx metal gates correlate with the observed valence band offset shifts. The results have significance for setting the band edge work function and resulting low threshold voltage for ultimately scaled LaLuO 3 -based p-metal oxide semiconductor field effect transistor devices. - Highlights: ► The conduction band offset measured by internal photoemission. ► The valence band offset (VBO) measured by X-ray photoelectron spectroscopy. ► Different degree in ionicity of TiNx correlates with the VBO shifts. ► The effective work function of the gate stacks varies from 4.6 to 5.2 eV. ► Oxygen at the TiNx/LaLuO 3 interface increases effective work function.

  1. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    Directory of Open Access Journals (Sweden)

    Minkyu Chun

    2015-05-01

    Full Text Available We investigated the effects of top gate voltage (VTG and temperature (in the range of 25 to 70 oC on dual-gate (DG back-channel-etched (BCE amorphous-indium-gallium-zinc-oxide (a-IGZO thin film transistors (TFTs characteristics. The increment of VTG from -20V to +20V, decreases the threshold voltage (VTH from 19.6V to 3.8V and increases the electron density to 8.8 x 1018cm−3. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on VTG. At VTG of 20V, the mobility decreases from 19.1 to 15.4 cm2/V ⋅ s with increasing temperature, showing a metallic conduction. On the other hand, at VTG of - 20V, the mobility increases from 6.4 to 7.5cm2/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate.

  2. Work Function Tuning in Sub-20nm Titanium Nitride (TiN) Metal Gate: Mechanism and Engineering

    KAUST Repository

    Hasan, Mehdi

    2011-07-01

    Scaling of transistors (the building blocks of modern information age) provides faster computation at the expense of excessive power dissipation. Thus to address these challenges, high-k/metal gate stack has been introduced in commercially available microprocessors from 2007. Since then titanium nitride (TiN) metal gate’s work function (Wf) tunability with its thickness (thickness increases, work function increases) is a well known phenomenon. Many hypotheses have been made over the years which include but not limited to: trap charge and metal gate nucleation, nitrogen concentration, microstructure agglomeration and global stress, metal oxide formation, and interfacial oxide thickness. However, clear contradictions exist in these assumptions. Also, nearly all these reports skipped a comprehensive approach to explain this complex paradigm. Therefore, in this work we first show a comprehensive physical investigation using transmission electron microcopy/electron energy loss spectroscopy (TEM/EELS), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) to show replacement of oxygen by nitrogen in the metal/dielectric interface, formation of TiONx, reduction of Ti/N concentration and grain size increment happen with TiN thickness increment and thus may increase the work function. Then, using these finding, we experimentally show 100meV of work function modulation in 10nm TiN Metal-oxide-semiconductor capacitor by using low temperature oxygen annealing. A low thermal budget flow (replicating gate-last) shows similar work function boost up. Also, a work function modulation of 250meV has been possible using oxygen annealing and applying no thermal budget. On the other hand, etch-back of TiN layer can decrease the work function. Thus this study quantifies role of various factors in TiN work function tuning; it also reproduces the thickness varied TiN work function modulation in single thickness TiN thus reducing the

  3. Employment of a metal microgrid as a front electrode in a sandwich-structured photodetector.

    Science.gov (United States)

    Zhang, Junying; Cai, Chao; Pan, Feng; Hao, Weichang; Zhang, Weiwei; Wang, Tianmin

    2009-07-01

    A highly UV-transparent metal microgrid was prepared and employed as the front electrode in a sandwich-structured ultraviolet (UV) photodetector using TiO(2) thin film as the semiconductor layer. The photo-generated charger carriers travel a shorter distance before reaching the electrodes in comparison with a photodetector using large-spaced interdigitated metal electrodes (where distance between fingers is several to tens of micrometers) on the surface of the semiconductor film. This photodetector responds to UV light irradiation, and the photocurrent intensity increases linearly with the irradiation intensity below 0.2 mW/cm(2).

  4. Large-Area CVD-Grown Sub-2 V ReS2 Transistors and Logic Gates.

    Science.gov (United States)

    Dathbun, Ajjiporn; Kim, Youngchan; Kim, Seongchan; Yoo, Youngjae; Kang, Moon Sung; Lee, Changgu; Cho, Jeong Ho

    2017-05-10

    We demonstrated the fabrication of large-area ReS 2 transistors and logic gates composed of a chemical vapor deposition (CVD)-grown multilayer ReS 2 semiconductor channel and graphene electrodes. Single-layer graphene was used as the source/drain and coplanar gate electrodes. An ion gel with an ultrahigh capacitance effectively gated the ReS 2 channel at a low voltage, below 2 V, through a coplanar gate. The contact resistance of the ion gel-gated ReS 2 transistors with graphene electrodes decreased dramatically compared with the SiO 2 -devices prepared with Cr electrodes. The resulting transistors exhibited good device performances, including a maximum electron mobility of 0.9 cm 2 /(V s) and an on/off current ratio exceeding 10 4 . NMOS logic devices, such as NOT, NAND, and NOR gates, were assembled using the resulting transistors as a proof of concept demonstration of the applicability of the devices to complex logic circuits. The large-area synthesis of ReS 2 semiconductors and graphene electrodes and their applications in logic devices open up new opportunities for realizing future flexible electronics based on 2D nanomaterials.

  5. Nanothorn electrodes for ionic polymer-metal composite artificial muscles.

    Science.gov (United States)

    Palmre, Viljar; Pugal, David; Kim, Kwang J; Leang, Kam K; Asaka, Kinji; Aabloo, Alvo

    2014-08-22

    Ionic polymer-metal composites (IPMCs) have recently received tremendous interest as soft biomimetic actuators and sensors in various bioengineering and human affinity applications, such as artificial muscles and actuators, aquatic propulsors, robotic end-effectors, and active catheters. Main challenges in developing biomimetic actuators are the attainment of high strain and actuation force at low operating voltage. Here we first report a nanostructured electrode surface design for IPMC comprising platinum nanothorn assemblies with multiple sharp tips. The newly developed actuator with the nanostructured electrodes shows a new way to achieve highly enhanced electromechanical performance over existing flat-surfaced electrodes. We demonstrate that the formation and growth of the nanothorn assemblies at the electrode interface lead to a dramatic improvement (3- to 5-fold increase) in both actuation range and blocking force at low driving voltage (1-3 V). These advances are related to the highly capacitive properties of nanothorn assemblies, increasing significantly the charge transport during the actuation process.

  6. Facile 3D Metal Electrode Fabrication for Energy Applications via Inkjet Printing and Shape Memory Polymer

    International Nuclear Information System (INIS)

    Roberts, R C; Wu, J; Li, D C; Hau, N Y; Chang, Y H; Feng, S P

    2014-01-01

    This paper reports on a simple 3D metal electrode fabrication technique via inkjet printing onto a thermally contracting shape memory polymer (SMP) substrate. Inkjet printing allows for the direct patterning of structures from metal nanoparticle bearing liquid inks. After deposition, these inks require thermal curing steps to render a stable conductive film. By printing onto a SMP substrate, the metal nanoparticle ink can be cured and substrate shrunk simultaneously to create 3D metal microstructures, forming a large surface area topology well suited for energy applications. Polystyrene SMP shrinkage was characterized in a laboratory oven from 150-240°C, resulting in a size reduction of 1.97-2.58. Silver nanoparticle ink was patterned into electrodes, shrunk, and the topology characterized using scanning electron microscopy. Zinc-Silver Oxide microbatteries were fabricated to demonstrate the 3D electrodes compared to planar references. Characterization was performed using 10M potassium hydroxide electrolyte solution doped with zinc oxide (57g/L). After a 300s oxidation at 3Vdc, the 3D electrode battery demonstrated a 125% increased capacity over the reference cell. Reference cells degraded with longer oxidations, but the 3D electrodes were fully oxidized for 4 hours, and exhibited a capacity of 5.5mA-hr/cm 2 with stable metal performance

  7. Analytical Modeling of Triple-Metal Hetero-Dielectric DG SON TFET

    Science.gov (United States)

    Mahajan, Aman; Dash, Dinesh Kumar; Banerjee, Pritha; Sarkar, Subir Kumar

    2018-02-01

    In this paper, a 2-D analytical model of triple-metal hetero-dielectric DG TFET is presented by combining the concepts of triple material gate engineering and hetero-dielectric engineering. Three metals with different work functions are used as both front- and back gate electrodes to modulate the barrier at source/channel and channel/drain interface. In addition to this, front gate dielectric consists of high-K HfO2 at source end and low-K SiO2 at drain side, whereas back gate dielectric is replaced by air to further improve the ON current of the device. Surface potential and electric field of the proposed device are formulated solving 2-D Poisson's equation and Young's approximation. Based on this electric field expression, tunneling current is obtained by using Kane's model. Several device parameters are varied to examine the behavior of the proposed device. The analytical model is validated with TCAD simulation results for proving the accuracy of our proposed model.

  8. Gate voltage and drain current stress instabilities in amorphous In–Ga–Zn–O thin-film transistors with an asymmetric graphene electrode

    Directory of Open Access Journals (Sweden)

    Joonwoo Kim

    2015-09-01

    Full Text Available The gate voltage and drain current stress instabilities in amorphous In–Ga–Zn–O thin-film transistors (a-IGZO TFTs having an asymmetric graphene electrode structure are studied. A large positive shift in the threshold voltage, which is well fitted to a stretched-exponential equation, and an increase in the subthreshold slope are observed when drain current stress is applied. This is due to an increase in temperature caused by power dissipation in the graphene/a-IGZO contact region, in addition to the channel region, which is different from the behavior in a-IGZO TFTs with a conventional transparent electrode.

  9. Electron-electron scattering-induced channel hot electron injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors with high-k/metal gate stacks

    International Nuclear Information System (INIS)

    Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Ho, Szu-Han; Tseng, Tseung-Yuen; Cheng, Osbert; Huang, Cheng-Tung; Lu, Ching-Sen

    2014-01-01

    This work investigates electron-electron scattering (EES)-induced channel hot electron (CHE) injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors (n-MOSFETs) with high-k/metal gate stacks. Many groups have proposed new models (i.e., single-particle and multiple-particle process) to well explain the hot carrier degradation in nanoscale devices and all mechanisms focused on Si-H bond dissociation at the Si/SiO 2 interface. However, for high-k dielectric devices, experiment results show that the channel hot carrier trapping in the pre-existing high-k bulk defects is the main degradation mechanism. Therefore, we propose a model of EES-induced CHE injection to illustrate the trapping-dominant mechanism in nanoscale n-MOSFETs with high-k/metal gate stacks.

  10. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jian; Liu, Jinping; Huang, Xintang [Institute of Nanoscience and Nanotechnology, Department of Physics, Central China Normal University, Wuhan, Hubei (China); Li, Yuanyuan [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan (China); Yuan, Changzhou; Lou, Xiong Wen [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore (China)

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part ''how to design superior electrode architectures''. In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Development of high-flexible triboelectric generators using plastic metal as electrodes

    Science.gov (United States)

    Yang, Sen-Yeu; Shih, Jian-Fu; Chang, Chih-Chieh; Yang, Chii-Rong

    2017-02-01

    A triboelectric generator is a device that harvests energy through the conversion of mechanical energy into electrical energy. In this work, two polymer materials (PDMS and PET) were selected as triboelectric layers in conjunction with plastic metal (PM) films as conductive layers to produce an electrode with high flexibility. The PDMS film was fabricated with a microstructural array to enhance friction. The proposed PM material was prepared by mixing gallium-indium liquid metal and a glaze powder with excellent coating ability, extensibility, and conductivity. Results demonstrate the superior characteristics of the PM flexible electrodes, including large bending angle (≥180°), small curvature radius (≤1 mm), and stable conductivity. This PM-based triboelectric generator can achieve average output voltage of 80 V and current of 37.2 μA. The proposed flexible electrode with a PM conductive layer could be expected to make a notable contribution to the development of wearable devices.

  12. Electrochemical energy storage devices using electrodes incorporating carbon nanocoils and metal oxides nanoparticles

    KAUST Repository

    Baby, Rakhi Raghavan

    2011-07-28

    Carbon nanocoil (CNC) based electrodes are shown to be promising candidates for electrochemical energy storage applications, provided the CNCs are properly functionalized. In the present study, nanocrystalline metal oxide (RuO 2, MnO2, and SnO2) dispersed CNCs were investigated as electrodes for supercapacitor applications using different electrochemical methods. In the two electrode configuration, the samples exhibited high specific capacitance with values reaching up to 311, 212, and 134 F/g for RuO2/CNCs, MnO2/CNCs, and SnO2/CNCs, respectively. The values obtained for specific capacitance and maximum storage energy per unit mass of the composites were found to be superior to those reported for metal oxide dispersed multiwalled carbon nanotubes in two electrode configuration. In addition, the fabricated supercapacitors retained excellent cycle life with ∼88% of the initial specific capacitance retained after 2000 cycles. © 2011 American Chemical Society.

  13. Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    Paul C. McIntyre

    2012-07-01

    Full Text Available The literature on polar Gallium Nitride (GaN surfaces, surface treatments and gate dielectrics relevant to metal oxide semiconductor devices is reviewed. The significance of the GaN growth technique and growth parameters on the properties of GaN epilayers, the ability to modify GaN surface properties using in situ and ex situ processes and progress on the understanding and performance of GaN metal oxide semiconductor (MOS devices are presented and discussed. Although a reasonably consistent picture is emerging from focused studies on issues covered in each of these topics, future research can achieve a better understanding of the critical oxide-semiconductor interface by probing the connections between these topics. The challenges in analyzing defect concentrations and energies in GaN MOS gate stacks are discussed. Promising gate dielectric deposition techniques such as atomic layer deposition, which is already accepted by the semiconductor industry for silicon CMOS device fabrication, coupled with more advanced physical and electrical characterization methods will likely accelerate the pace of learning required to develop future GaN-based MOS technology.

  14. Modulation of the effective work function of a TiN metal gate for NMOS requisition with Al incorporation

    International Nuclear Information System (INIS)

    Han Kai; Ma Xueli; Yang Hong; Wang Wenwu

    2013-01-01

    The effect of Al incorporation on the effective work function (EWF) of TiN metal gate was systematically investigated. Metal—oxide—semiconductor (MOS) capacitors with W/TiN/Al/TiN gate stacks were used to fulfill this purpose. Different thickness ratios of Al to TiN and different post metal annealing (PMA) conditions were employed. Significant shift of work function towards to Si conduction band was observed, which was suitable for NMOS and the magnitude of shift depends on the processing conditions. (semiconductor technology)

  15. Electrolytic trichloroethene degradation using mixed metal oxide coated titanium mesh electrodes.

    Science.gov (United States)

    Petersen, Matthew A; Sale, Thomas C; Reardon, Kenneth F

    2007-04-01

    Electrochemical systems provide a low cost, versatile, and controllable platform to potentially treat contaminants in water, including chlorinated solvents. Relative to bare metal or noble metal amended materials, dimensionally stable electrode materials such as mixed metal oxide coated titanium (Ti/MMO) have advantages in terms of stability and cost, important factors for sustainable remediation solutions. Here, we report the use of Ti/MMO as an effective cathode substrate for treatment of trichloroethene (TCE). TCE degradation in a batch reactor was measured as the decrease of TCE concentration over time and the corresponding evolution of chloride; notably, this occurred without the formation of commonly encountered chlorinated intermediates. The reaction was initiated when Ti/MMO cathode potentials were less than -0.8 V vs. the standard hydrogen electrode, and the rate of TCE degradation increased linearly with progressively more negative potentials. The maximum pseudo-first-order heterogeneous rate constant was approximately 0.05 cm min(-1), which is comparable to more commonly used cathode materials such as nickel. In laboratory-scale flow-though column reactors designed to simulate permeable reactive barriers (PRBs), TCE concentrations were reduced by 80-90%. The extent of TCE flux reduction increased with the applied potential difference across the electrodes and was largely insensitive to the spacing distance between the electrodes. This is the first report of the electrochemical reduction of a chlorinated organic contaminant at a Ti/MMO cathode, and these results support the use of this material in PRBs as a possible approach to manage TCE plume migration.

  16. Anomalous positive flatband voltage shifts in metal gate stacks containing rare-earth oxide capping layers

    KAUST Repository

    Caraveo-Frescas, J. A.

    2012-03-09

    It is shown that the well-known negative flatband voltage (VFB) shift, induced by rare-earth oxide capping in metal gate stacks, can be completely reversed in the absence of the silicon overlayer. Using TaN metal gates and Gd2O3-doped dielectric, we measure a ∼350 mV negative shift with the Si overlayer present and a ∼110 mV positive shift with the Si overlayer removed. This effect is correlated to a positive change in the average electrostatic potential at the TaN/dielectric interface which originates from an interfacial dipole. The dipole is created by the replacement of interfacial oxygen atoms in the HfO2 lattice with nitrogen atoms from TaN.

  17. Metal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes

    Science.gov (United States)

    Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I.; Maruyama, Shigeo; Matsuo, Yutaka

    2016-08-01

    Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via ‘sandwich transfer’, and MoOx thermal doping via ‘bridge transfer’. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%).

  18. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Minkyu; Chowdhury, Md Delwar Hossain; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center and Department of Information Display, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-05-15

    We investigated the effects of top gate voltage (V{sub TG}) and temperature (in the range of 25 to 70 {sup o}C) on dual-gate (DG) back-channel-etched (BCE) amorphous-indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs) characteristics. The increment of V{sub TG} from -20V to +20V, decreases the threshold voltage (V{sub TH}) from 19.6V to 3.8V and increases the electron density to 8.8 x 10{sup 18}cm{sup −3}. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on V{sub TG}. At V{sub TG} of 20V, the mobility decreases from 19.1 to 15.4 cm{sup 2}/V ⋅ s with increasing temperature, showing a metallic conduction. On the other hand, at V{sub TG} of - 20V, the mobility increases from 6.4 to 7.5cm{sup 2}/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate.

  19. Two-dimensional threshold voltage model and design considerations for gate electrode work function engineered recessed channel nanoscale MOSFET: I

    International Nuclear Information System (INIS)

    Chaujar, Rishu; Kaur, Ravneet; Gupta, Mridula; Gupta, R S; Saxena, Manoj

    2009-01-01

    This paper discusses a threshold voltage model for novel device structure: gate electrode work function engineered recessed channel (GEWE-RC) nanoscale MOSFET, which combines the advantages of both RC and GEWE structures. In part I, the model accurately predicts (a) surface potential, (b) threshold voltage and (c) sub-threshold slope for single material gate recessed channel (SMG-RC) and GEWE-RC structures. Part II focuses on the development of compact analytical drain current model taking into account the transition regimes from sub-threshold to saturation. Furthermore, the drain conductance evaluation has also been obtained, reflecting relevance of the proposed device for analogue design. The analysis takes into account the effect of gate length and groove depth in order to develop a compact model suitable for device design. The analytical results predicted by the model confirm well with the simulated results. Results in part I also provide valuable design insights in the performance of nanoscale GEWE-RC MOSFET with optimum threshold voltage and negative junction depth (NJD), and hence serves as a tool to optimize important device and technological parameters for 40 nm technology

  20. Threshold voltage control in TmSiO/HfO2 high-k/metal gate MOSFETs

    Science.gov (United States)

    Dentoni Litta, E.; Hellström, P.-E.; Östling, M.

    2015-06-01

    High-k interfacial layers have been proposed as a way to extend the scalability of Hf-based high-k/metal gate CMOS technology, which is currently limited by strong degradations in threshold voltage control, channel mobility and device reliability when the chemical oxide (SiOx) interfacial layer is scaled below 0.4 nm. We have previously demonstrated that thulium silicate (TmSiO) is a promising candidate as a high-k interfacial layer, providing competitive advantages in terms of EOT scalability and channel mobility. In this work, the effect of the TmSiO interfacial layer on threshold voltage control is evaluated, showing that the TmSiO/HfO2 dielectric stack is compatible with threshold voltage control techniques commonly used with SiOx/HfO2 stacks. Specifically, we show that the flatband voltage can be set in the range -1 V to +0.5 V by the choice of gate metal and that the effective workfunction of the stack is properly controlled by the metal workfunction in a gate-last process flow. Compatibility with a gate-first approach is also demonstrated, showing that integration of La2O3 and Al2O3 capping layers can induce a flatband voltage shift of at least 150 mV. Finally, the effect of the annealing conditions on flatband voltage is investigated, finding that the duration of the final forming gas anneal can be used as a further process knob to tune the threshold voltage. The evaluation performed on MOS capacitors is confirmed by the fabrication of TmSiO/HfO2/TiN MOSFETs achieving near-symmetric threshold voltages at sub-nm EOT.

  1. Pseudo 2-transistor active pixel sensor using an n-well/gate-tied p-channel metal oxide semiconductor field eeffect transistor-type photodetector with built-in transfer gate

    Science.gov (United States)

    Seo, Sang-Ho; Seo, Min-Woong; Kong, Jae-Sung; Shin, Jang-Kyoo; Choi, Pyung

    2008-11-01

    In this paper, a pseudo 2-transistor active pixel sensor (APS) has been designed and fabricated by using an n-well/gate-tied p-channel metal oxide semiconductor field effect transistor (PMOSFET)-type photodetector with built-in transfer gate. The proposed sensor has been fabricated using a 0.35 μm 2-poly 4-metal standard complementary metal oxide semiconductor (CMOS) logic process. The pseudo 2-transistor APS consists of two NMOSFETs and one photodetector which can amplify the generated photocurrent. The area of the pseudo 2-transistor APS is 7.1 × 6.2 μm2. The sensitivity of the proposed pixel is 49 lux/(V·s). By using this pixel, a smaller pixel area and a higher level of sensitivity can be realized when compared with a conventional 3-transistor APS which uses a pn junction photodiode.

  2. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    Science.gov (United States)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A.; Brown, Gilbert M.

    2017-04-11

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions include microspheres with an average diameter between about 200 nanometers and about 10 micrometers and mesopores on the surface and interior of the microspheres. The methods of making include forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least annealing in a reducing atmosphere, doping with an aliovalent element, and coating with a coating composition.

  3. Control of the electrode metal transfer by means of the welding current pulse generator

    Science.gov (United States)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Knyaz'kov, S.; Tyasto, A.

    2016-04-01

    The paper presents a generator of welding current pulses to transfer an electrode metal into the molten pool. A homogeneous artificial line is used to produce near rectangular pulses. The homogeneous artificial line provides the minimum heat input with in the pulse to transfer the electrode metal, and it significantly decreases the impact of disturbances affecting this transfer. The pulse frequency does not exceed 300 Hz, and the duration is 0.6 ÷ 0.9 ms.

  4. Multi-material gate poly-crystalline thin film transistors: Modeling and simulation for an improved gate transport efficiency

    International Nuclear Information System (INIS)

    Sehgal, Amit; Mangla, Tina; Gupta, Mridula; Gupta, R.S.

    2008-01-01

    In this work, a two-dimensional potential distribution formulation is presented for multi-material gate poly-crystalline silicon thin film transistors. The developed formulation incorporates the effects due to traps and grain-boundaries. In short-channel devices, short-channel effects and drain-induced barrier lowering (DIBL) effect exists, and are accounted for in the analysis. The work aims at the reduction of DIBL effect and grain-boundary effects i.e. to reduce the potential barriers generated in the channel by employing gate-engineered structures. A study of work-functions and electrode lengths of multi-material gate electrode is done to suppress the potential barriers, hot electron effect and to improve the carrier transport efficiency. Green's function approach is adopted for the two-dimensional potential solution. The results obtained show a good agreement with simulated results, thus, demonstrating the validity of our model

  5. Role of electrode metallization in the performance of bulk semi-insulating InP radiation detectors

    International Nuclear Information System (INIS)

    Zatko, B.; Dubecky, F.; Prochazkova, O.; Necas, V.

    2007-01-01

    This work deals with the study of three different electrode metallizations with the aim to form a Schottky barrier contact. Electrode geometry corresponds to the requirements of digital radiography systems. As substrates bulk Liquid Encapsulated Czochralski (LEC) SI InP wafers doped with Fe and Fe+Zn are used. Results of this study show that no one of the used metallization performs as a blocking contact. However, detectors with Ti/Pt/Au metallization attained a relatively good energy resolution of 7.0 keV in full-width at half-maximum (FWHM) and the charge collection efficiency (CCE) higher than 83% for 122 keV γ-photons at 255 K. The development of SI InP radiation detectors and in particular their electrode technology is discussed in the light of observed results

  6. Gate Engineering in SOI LDMOS for Device Reliability

    Directory of Open Access Journals (Sweden)

    Aanand

    2016-01-01

    Full Text Available A linearly graded doping drift region with step gate structure, used for improvement of reduced surface field (RESURF SOI LDMOS transistor performance has been simulated with 0.35µm technology in this paper. The proposed device has one poly gate and double metal gate arranged in a stepped manner, from channel to drift region. The first gate uses n+ poly (near source where as other two gates of aluminium. The first gate with thin gate oxide has good control over the channel charge. The third gate with thick gate oxide at drift region reduce gate to drain capacitance. The arrangement of second and third gates in a stepped manner in drift region spreads the electric field uniformly. Using two dimensional device simulations, the proposed SOI LDMOS is compared with conventional structure and the extended metal structure. We demonstrate that the proposed device exhibits significant enhancement in linearity, breakdown voltage, on-resistance and HCI. Double metal gate reduces the impact ionization area which helps to improve the Hot Carrier Injection effect..

  7. Uncharged positive electrode composition

    Science.gov (United States)

    Kaun, Thomas D.; Vissers, Donald R.; Shimotake, Hiroshi

    1977-03-08

    An uncharged positive-electrode composition contains particulate lithium sulfide, another alkali metal or alkaline earth metal compound other than sulfide, e.g., lithium carbide, and a transition metal powder. The composition along with a binder, such as electrolytic salt or a thermosetting resin is applied onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within an electrochemical cell opposite to a negative electrode containing a material such as aluminum or silicon for alloying with lithium. During charging, lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode. Excess negative electrode capacity over that from the transition metal sulfide is provided due to the electrochemical reaction of the other than sulfide alkali metal or alkaline earth metal compound.

  8. Intermodulation Linearity in High-k/Metal Gate 28 nm RF CMOS Transistors

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2015-09-01

    Full Text Available This paper presents experimental characterization, simulation, and Volterra series based analysis of intermodulation linearity on a high-k/metal gate 28 nm RF CMOS technology. A figure-of-merit is proposed to account for both VGS and VDS nonlinearity, and extracted from frequency dependence of measured IIP3. Implications to biasing current and voltage optimization for linearity are discussed.

  9. AlGaN/GaN MISHEMTs with AlN gate dielectric grown by thermal ALD technique.

    Science.gov (United States)

    Liu, Xiao-Yong; Zhao, Sheng-Xun; Zhang, Lin-Qing; Huang, Hong-Fan; Shi, Jin-Shan; Zhang, Chun-Min; Lu, Hong-Liang; Wang, Peng-Fei; Zhang, David Wei

    2015-01-01

    Recently, AlN plasma-enhanced atomic layer deposition (ALD) passivation technique had been proposed and investigated for suppressing the dynamic on-resistance degradation behavior of high-electron-mobility transistors (HEMTs). In this paper, a novel gate dielectric and passivation technique for GaN-on-Si AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MISHEMTs) is presented. This technique features the AlN thin film grown by thermal ALD at 400°C without plasma enhancement. A 10.6-nm AlN thin film was grown upon the surface of the HEMT serving as the gate dielectric under the gate electrode and as the passivation layer in the access region at the same time. The MISHEMTs with thermal ALD AlN exhibit enhanced on/off ratio, reduced channel sheet resistance, reduction of gate leakage by three orders of magnitude at a bias of 4 V, reduced threshold voltage hysteresis of 60 mV, and suppressed current collapse degradation.

  10. Test-beds for molecular electronics: metal-molecules-metal junctions based on Hg electrodes.

    Science.gov (United States)

    Simeone, Felice Carlo; Rampi, Maria Anita

    2010-01-01

    Junctions based on mesoscopic Hg electrodes are used to characterize the electrical properties of the organic molecules organized in self-assembled monolayers (SAMs). The junctions M-SAM//SAM-Hg are formed by one electrode based on metals (M) such as Hg, Ag, Au, covered by a SAM, and by a second electrode always formed by a Hg drop carrying also a SAM. The electrodes, brought together by using a micromanipulator, sandwich SAMs of different nature at the contact area (approximately = 0.7 microm2). The high versatility of the system allows a series of both electrical and electrochemical junctions to be assembled and characterized: (i) The compliant nature of the Hg electrodes allows incorporation into the junction and measurement of the electrical behavior of a large number of molecular systems and correlation of their electronic structure to the electrical behavior; (ii) by functionalizing both electrodes with SAMs exposing different functional groups, X and Y, it is possible to compare the rate of electron transfer through different X...Y molecular interactions; (iii) when the junction incorporates one of the electrode formed by a semitransparent film of Au, it allows electrical measurements under irradiation of the sandwiched SAMs. In this case the junction behaves as a photoswitch; iv) incorporation of redox centres with low lying, easily reachable energy levels, provides electron stations as indicated by the hopping mechanism dominating the current flow; (v) electrochemical junctions incorporating redox centres by both covalent and electrostatic interactions permit control of the potential of the electrodes with respect to that of the redox state by means of an external reference electrode. Both these junctions show an electrical behavior similar to that of conventional diodes, even though the mechanism generating the current flow is different. These systems, demonstrating high mechanical stability and reproducibility, easy assembly, and a wide variety of

  11. Tracking metal ions with polypyrrole thin films adhesively bonded to diazonium-modified flexible ITO electrodes.

    Science.gov (United States)

    Lo, Momath; Diaw, Abdou K D; Gningue-Sall, Diariatou; Aaron, Jean-Jacques; Oturan, Mehmet A; Chehimi, Mohamed M

    2018-05-09

    Adhesively bonded polypyrrole thin films doped with benzene sulfonic acid (BSA) were electrodeposited on aminobenzenediazonium-modified flexible ITO electrodes and further employed for the detection of Pb 2+ , Cu 2+ , and Cd 2+ metal ions in aqueous medium. The aminophenyl (AP) adhesive layer was grafted to ITO by electroreduction of the in situ generated parent diazonium compound. Polypyrrole (PPy) thin films exhibited remarkable adhesion to aminophenyl (ITO-AP). The strongly adherent polypyrrole films exhibited excellent electroactivity in the doped state with BSA which itself served to chelate the metal ions in aqueous medium. The surface of the resulting, modified flexible electrode was characterized by XPS, SEM, and electrochemical methods. The ITO-AP-PPy electrodes were then used for the simultaneous detection of Cu 2+ , Cd 2+ , and Pb 2+ by differential pulse voltammetry (DPV). The detection limits were 11.1, 8.95, and 0.99 nM for Cu 2+ , Cd 2+ , and Pb 2+ , respectively. In addition, the modified electrodes displayed a good reproducibility, making them suitable for the determination of heavy metals in real wastewater samples.

  12. Distance scaling of electric-field noise in a surface-electrode ion trap

    Science.gov (United States)

    Sedlacek, J. A.; Greene, A.; Stuart, J.; McConnell, R.; Bruzewicz, C. D.; Sage, J. M.; Chiaverini, J.

    2018-02-01

    We investigate anomalous ion-motional heating, a limitation to multiqubit quantum-logic gate fidelity in trapped-ion systems, as a function of ion-electrode separation. Using a multizone surface-electrode trap in which ions can be held at five discrete distances from the metal electrodes, we measure power-law dependencies of the electric-field noise experienced by the ion on the ion-electrode distance d . We find a scaling of approximately d-4 regardless of whether the electrodes are at room temperature or cryogenic temperature, despite the fact that the heating rates are approximately two orders of magnitude smaller in the latter case. Through auxiliary measurements using the application of noise to the electrodes, we rule out technical limitations to the measured heating rates and scalings. We also measure the frequency scaling of the inherent electric-field noise close to 1 /f at both temperatures. These measurements eliminate from consideration anomalous-heating models which do not have a d-4 distance dependence, including several microscopic models of current interest.

  13. Process development of ITO source/drain electrode for the top-gate indium-gallium-zinc oxide transparent thin-film transistor

    International Nuclear Information System (INIS)

    Cheong, Woo-Seok; Yoon, Young-sun; Shin, Jae-Heon; Hwang, Chi-Sun; Chu, Hye Yong

    2009-01-01

    Indium-tin oxide (ITO) has been widely used as electrodes for LCDs and OLEDs. The applications are expanding to the transparent thin-film transistors (TTFT S ) for the versatile circuits or transparent displays. This paper is related with optimization of ITO source and drain electrode for TTFTs on glass substrates. For example, un-etched ITO remnants, which frequently found in the wet etching process, often originate from unsuitable ITO formation processes. In order to improve them, an ion beam deposition method is introduced, which uses for forming a seed layer before the main ITO deposition. We confirm that ITO films with seed layers are effective to obtain clean and smooth glass surfaces without un-etched ITO remnants, resulting in a good long-run electrical stability of the top-gate indium-gallium-zinc oxide-TTFT.

  14. Impedance study of tea with added taste compounds using conducting polymer and metal electrodes.

    Science.gov (United States)

    Dhiman, Mopsy; Kapur, Pawan; Ganguli, Abhijit; Singla, Madan Lal

    2012-09-01

    In this study the sensing capabilities of a combination of metals and conducting polymer sensing/working electrodes for tea liquor prepared by addition of different compounds using an impedance mode in frequency range 1 Hz-100 KHz at 0.1 V potential has been carried out. Classification of six different tea liquor samples made by dissolving various compounds (black tea liquor + raw milk from milkman), (black tea liquor + sweetened clove syrup), (black tea liquor + sweetened ginger syrup), (black tea liquor + sweetened cardamom syrup), (black tea liquor + sweet chocolate syrup) and (black tea liquor + vanilla flavoured milk without sugar) using six different working electrodes in a multi electrode setup has been studied using impedance and further its PCA has been carried out. Working electrodes of Platinum (Pt), Gold (Au), Silver (Ag), Glassy Carbon (GC) and conducting polymer electrodes of Polyaniline (PANI) and Polypyrrole (PPY) grown on an ITO surface potentiostatically have been deployed in a three electrode set up. The impedance response of these tea liquor samples using number of working electrodes shows a decrease in the real and imaginary impedance values presented on nyquist plots depending upon the nature of the electrode and amount of dissolved salts present in compounds added to tea liquor/solution. The different sensing surfaces allowed a high cross-selectivity in response to the same analyte. From Principal Component Analysis (PCA) plots it was possible to classify tea liquor in 3-4 classes using conducting polymer electrodes; however tea liquors were well separated from the PCA plots employing the impedance data of both conducting polymer and metal electrodes.

  15. Low band-to-band tunnelling and gate tunnelling current in novel nanoscale double-gate architecture: simulations and investigation

    International Nuclear Information System (INIS)

    Datta, Deepanjan; Ganguly, Samiran; Dasgupta, S

    2007-01-01

    Large band-to-band tunnelling (BTBT) and gate leakage current can limit scalability of nanoscale devices. In this paper, we have proposed a novel nanoscale parallel connected heteromaterial double gate (PCHEM-DG) architecture with triple metal gate which significantly suppress BTBT leakage, making it efficient for low power design in the sub-10 nm regime. We have also proposed a triple gate device with p + poly-n + poly-p + poly gate which has substantially low gate leakage over symmetric DG MOSFET. Simulations are performed using a 2D Poisson-Schroedinger simulator and verified with a 2D device simulator ATLAS. We conclude that, due to intrinsic body doping, negligible gate leakage, suppressed BTBT over symmetric DG devices, metal gate (MG) PCHEM-DG MOSFET is efficient for low power circuit design in the nanometre regime

  16. Transparent and conductive electrodes by large-scale nano-structuring of noble metal thin-films

    DEFF Research Database (Denmark)

    Linnet, Jes; Runge Walther, Anders; Wolff, Christian

    2018-01-01

    grid, and nano-wire thin-films. The indium and carbon films do not match the chemical stability nor the electrical performance of the noble metals, and many metal films are not uniform in material distribution leading to significant surface roughness and randomized transmission haze. We demonstrate...... solution-processed masks for physical vapor-deposited metal electrodes consisting of hexagonally ordered aperture arrays with scalable aperture-size and spacing in an otherwise homogeneous noble metal thin-film that may exhibit better electrical performance than carbon nanotube-based thin-films...... for equivalent optical transparency. The fabricated electrodes are characterized optically and electrically by measuring transmittance and sheet resistance. The presented methods yield large-scale reproducible results. Experimentally realized thin-films with very low sheet resistance, Rsh = 2.01 ± 0.14 Ω...

  17. All-metallic electrically gated 2H-TaSe2 thin-film switches and logic circuits

    International Nuclear Information System (INIS)

    Renteria, J.; Jiang, C.; Yan, Z.; Samnakay, R.; Goli, P.; Pope, T. R.; Salguero, T. T.; Wickramaratne, D.; Lake, R. K.; Khitun, A. G.; Balandin, A. A.

    2014-01-01

    We report the fabrication and performance of all-metallic three-terminal devices with tantalum diselenide thin-film conducting channels. For this proof-of-concept demonstration, the layers of 2H-TaSe 2 were exfoliated mechanically from single crystals grown by the chemical vapor transport method. Devices with nanometer-scale thicknesses exhibit strongly non-linear current-voltage characteristics, unusual optical response, and electrical gating at room temperature. We have found that the drain-source current in thin-film 2H-TaSe 2 –Ti/Au devices reproducibly shows an abrupt transition from a highly resistive to a conductive state, with the threshold tunable via the gate voltage. Such current-voltage characteristics can be used, in principle, for implementing radiation-hard all-metallic logic circuits. These results may open new application space for thin films of van der Waals materials

  18. All-metallic electrically gated 2H-TaSe2 thin-film switches and logic circuits

    Science.gov (United States)

    Renteria, J.; Samnakay, R.; Jiang, C.; Pope, T. R.; Goli, P.; Yan, Z.; Wickramaratne, D.; Salguero, T. T.; Khitun, A. G.; Lake, R. K.; Balandin, A. A.

    2014-01-01

    We report the fabrication and performance of all-metallic three-terminal devices with tantalum diselenide thin-film conducting channels. For this proof-of-concept demonstration, the layers of 2H-TaSe2 were exfoliated mechanically from single crystals grown by the chemical vapor transport method. Devices with nanometer-scale thicknesses exhibit strongly non-linear current-voltage characteristics, unusual optical response, and electrical gating at room temperature. We have found that the drain-source current in thin-film 2H-TaSe2-Ti/Au devices reproducibly shows an abrupt transition from a highly resistive to a conductive state, with the threshold tunable via the gate voltage. Such current-voltage characteristics can be used, in principle, for implementing radiation-hard all-metallic logic circuits. These results may open new application space for thin films of van der Waals materials.

  19. Simplified process for leaching precious metals from fuel cell membrane electrode assemblies

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ

    2009-12-22

    The membrane electrode assemblies of fuel cells are recycled to recover the catalyst precious metals from the assemblies. The assemblies are cryogenically embrittled and pulverized to form a powder. The pulverized assemblies are then mixed with a surfactant to form a paste which is contacted with an acid solution to leach precious metals from the pulverized membranes.

  20. Four-frame gated optical imager with 120-ps resolution

    International Nuclear Information System (INIS)

    Young, P.E.; Hares, J.D.; Kilkenny, J.D.; Phillion, D.W.; Campbell, E.M.

    1988-04-01

    In this paper we describe the operation and applications of a framing camera capable of four separate two-dimensional images with each frame having a 120-ps gate width. Fast gating of a single frame is accomplished by using a wafer image intensifier tube in which the cathode is capacitively coupled to an external electrode placed outside of the photocathode of the tube. This electrode is then pulsed relative to the microchannel plate by a narrow (120 ps), high-voltage pulse. Multiple frames are obtained by using multiple gated tubes which share a single bias supply and pulser with relative gate times selected by the cable lengths between the tubes and the pulser. A beamsplitter system has been constructed which produces a separate image for each tube from a single scene. Applications of the framing camera to inertial confinement fusion experiments are discussed

  1. Low band-to-band tunnelling and gate tunnelling current in novel nanoscale double-gate architecture: simulations and investigation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Deepanjan [Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906 (United States); Ganguly, Samiran [Department of Electronics Engineering, Indian School of Mines, Dhanbad-826004 (India); Dasgupta, S [Department of Electronics and Computer Engineering, Indian Institute of Technology, Roorkee-247667 (India)

    2007-05-30

    Large band-to-band tunnelling (BTBT) and gate leakage current can limit scalability of nanoscale devices. In this paper, we have proposed a novel nanoscale parallel connected heteromaterial double gate (PCHEM-DG) architecture with triple metal gate which significantly suppress BTBT leakage, making it efficient for low power design in the sub-10 nm regime. We have also proposed a triple gate device with p{sup +} poly-n{sup +} poly-p{sup +} poly gate which has substantially low gate leakage over symmetric DG MOSFET. Simulations are performed using a 2D Poisson-Schroedinger simulator and verified with a 2D device simulator ATLAS. We conclude that, due to intrinsic body doping, negligible gate leakage, suppressed BTBT over symmetric DG devices, metal gate (MG) PCHEM-DG MOSFET is efficient for low power circuit design in the nanometre regime.

  2. Trapped-ion quantum logic gates based on oscillating magnetic fields

    Science.gov (United States)

    Ospelkaus, Christian; Langer, Christopher E.; Amini, Jason M.; Brown, Kenton R.; Leibfried, Dietrich; Wineland, David J.

    2009-05-01

    Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing. With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ions and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering decoherence, a fundamental source of decoherence in laser-mediated gates. A potentially beneficial environment for the implementation of such schemes is a cryogenic ion trap, because small length scale traps with low motional heating rates can be realized. A cryogenic ion trap experiment is currently under construction at NIST.

  3. Three-input gate logic circuits on chemically assembled single-electron transistors with organic and inorganic hybrid passivation layers.

    Science.gov (United States)

    Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu

    2017-01-01

    Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlO[Formula: see text]), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers.

  4. Electrochemically-gated single-molecule electrical devices

    International Nuclear Information System (INIS)

    Guo, Shaoyin; Artés, Juan Manuel; Díez-Pérez, Ismael

    2013-01-01

    In the last decade, single-molecule electrical contacts have emerged as a new experimental platform that allows exploring charge transport phenomena in individual molecular blocks. This novel tool has evolved into an essential element within the Molecular Electronics field to understand charge transport processes in hybrid (bio)molecule/electrode interfaces at the nanoscale, and prospect the implementation of active molecular components into functional nanoscale optoelectronic devices. Within this area, three-terminal single-molecule devices have been sought, provided that they are highly desired to achieve full functionality in logic electronic circuits. Despite the latest experimental developments offer consistent methods to bridge a molecule between two electrodes (source and drain in a transistor notation), placing a third electrode (gate) close to the single-molecule electrical contact is still technically challenging. In this vein, electrochemically-gated single-molecule devices have emerged as an experimentally affordable alternative to overcome these technical limitations. In this review, the operating principle of an electrochemically-gated single-molecule device is presented together with the latest experimental methodologies to built them and characterize their charge transport characteristics. Then, an up-to-date comprehensive overview of the most prominent examples will be given, emphasizing on the relationship between the molecular structure and the final device electrical behaviour

  5. Stress Characterization of 4H-SiC Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) using Raman Spectroscopy and the Finite Element Method.

    Science.gov (United States)

    Yoshikawa, Masanobu; Kosaka, Kenichi; Seki, Hirohumi; Kimoto, Tsunenobu

    2016-07-01

    We measured the depolarized and polarized Raman spectra of a 4H-SiC metal-oxide-semiconductor field-effect transistor (MOSFET) and found that compressive stress of approximately 20 MPa occurs under the source and gate electrodes and tensile stress of approximately 10 MPa occurs between the source and gate electrodes. The experimental result was in close agreement with the result obtained by calculation using the finite element method (FEM). A combination of Raman spectroscopy and FEM provides much data on the stresses in 4H-SiC MOSFET. © The Author(s) 2016.

  6. Hydrogen-terminated diamond vertical-type metal oxide semiconductor field-effect transistors with a trench gate

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Masafumi, E-mail: inaba-ma@ruri.waseda.jp; Muta, Tsubasa; Kobayashi, Mikinori; Saito, Toshiki; Shibata, Masanobu; Matsumura, Daisuke; Kudo, Takuya; Hiraiwa, Atsushi [Graduate School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kawarada, Hiroshi [Graduate School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051 (Japan)

    2016-07-18

    The hydrogen-terminated diamond surface (C-H diamond) has a two-dimensional hole gas (2DHG) layer independent of the crystal orientation. A 2DHG layer is ubiquitously formed on the C-H diamond surface covered by atomic-layer-deposited-Al{sub 2}O{sub 3}. Using Al{sub 2}O{sub 3} as a gate oxide, C-H diamond metal oxide semiconductor field-effect transistors (MOSFETs) operate in a trench gate structure where the diamond side-wall acts as a channel. MOSFETs with a side-wall channel exhibit equivalent performance to the lateral C-H diamond MOSFET without a side-wall channel. Here, a vertical-type MOSFET with a drain on the bottom is demonstrated in diamond with channel current modulation by the gate and pinch off.

  7. High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes

    KAUST Repository

    Baby, Rakhi Raghavan

    2011-01-01

    Metal oxide nanoparticles were chemically anchored onto graphene nanosheets (GNs) and the resultant composites - SnO2/GNs, MnO2/GNs and RuO2/GNs (58% of GNs loading) - coated over conductive carbon fabric substrates were successfully used as supercapacitor electrodes. The results showed that the incorporation of metal oxide nanoparticles improved the capacitive performance of GNs due to a combination of the effect of spacers and redox reactions. The specific capacitance values (with respect to the composite mass) obtained for SnO2/GNs (195 F g-1) and RuO 2/GNs (365 F g-1) composites at a scan rate of 20 mV s-1 in the present study are the best ones reported to date for a two electrode configuration. The resultant supercapacitors also exhibited high values for maximum energy (27.6, 33.1 and 50.6 W h kg-1) and power densities (15.9, 20.4 and 31.2 kW kg-1) for SnO2/GNs, MnO2/GNs and RuO2/GNs respectively. These findings demonstrate the importance and great potential of metal oxide/GNs based composite coated carbon fabric in the development of high-performance energy-storage systems. © 2011 The Royal Society of Chemistry.

  8. Isolation and dispersion of reduced metal particles using the surface dipole moment of F-terminated diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, M.; Tanaka, Y.; Furuta, M. [Department of Chemistry and Earth Sciences, School of Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512 (Japan); Kondo, T. [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Fujishima, A. [Kanagawa Advanced Science and Technology (KAST), 3-2-1, Sakato, Takastu-ku, Kawasaki-shi, Kanagawa 213-0012 (Japan); Honda, K. [Department of Chemistry and Earth Sciences, School of Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512 (Japan)], E-mail: khonda@yamaguchi-u.ac.jp

    2009-04-30

    Cu particles that have been reductively generated at the oxidized surface of a boron-doped diamond electrode (O-BDD) can be removed from the electrode's surface by the repulsive electrostatic force of the surface dipole moment during a potential cycle of a solution of Cu{sup 2+} ions. The objective of this study was to isolate various metal particles other than Cu by use of a fluorine-terminated BDD surface (F-BDD) with a stronger surface dipole moment than O-BDD, and to clarify the mechanism of the metal particles' separation from the electrode. During the potential cycle treatment of Cu{sup 2+} ions using F-BDD, the reionization of the reduced Cu could be suppressed in the presence of dissolved oxygen, and the Cu particles were separated from the electrode surface as CuO. A similar result was seen with O-BDD. The degree of separation of the Cu particles could be drastically enhanced by raising the upper potential limit in the potential cycle from +0.2 to +0.8 V. By setting the upper potential to a potential greater than the metal-metal oxide equilibrium line in the potential-pH equilibrium diagram of the Cu-water system (Pourbaix Diagram), oxidation of the reduced metal surface by reaction with dissolved oxygen could be accelerated and the surface of metal particles could be insulated. The Cu particles were forced from the BDD surface by the electrostatic repulsion from the surface dipole moment of F-BDD. Also, it turned out that the physical adsorption of chloride ions (Cl{sup -}) on the electrode surface intensified the electrostatic repulsive force between the F- or O-BDD surface and the metal particles, and thus increased the degree of the metal particles' separation. For Zn with a metal-metal oxide equilibrium potential of approximately -0.8 V at pH 7, complete separation of the Zn particles was achieved with F-BDD by setting the upper potential limit to +0.8 V (vs. Ag/AgCl), decreasing the Zn{sup 2+} concentration (1/10 that of Cu{sup 2

  9. Polymer-metal hybrid transparent electrodes for flexible electronics

    Science.gov (United States)

    Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee

    2015-03-01

    Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius 95% and a sheet resistance solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides.

  10. The fabrication and characterization of an ex situ plated lead film electrode prepared with the use of a reversibly deposited mediator metal

    International Nuclear Information System (INIS)

    Tyszczuk, Katarzyna

    2011-01-01

    Research highlights: → The lead film electrode prepared with use of the mediator metal was elaborated. → The lead-based sensors were characterized by optical and voltammetric methods. → The adsorptive system of folic acid was employed to investigate a new electrode. → The application of the mediator metal improved properties of a lead film electrode. - Abstract: In this paper an ex situ plated lead film electrode prepared with use of the mediator metal (Zn) was elaborated. The electrochemical method for lead film formation is based on a co-deposition of a metal of interest (Pb) with a reversibly deposited mediator metal (Zn) and then on an oxidation of zinc and further deposition of lead by the appropriate potential. This serves to increase the density of islands of lead atoms, promoting lead film growth. The lead-based sensors were characterized by optical method (atomic force microscopy (AFM)) and as well as cyclic, linear sweep and square wave voltammetry. The adsorptive system of folic acid was employed to investigate the electrochemical characteristics a novel type of lead film electrode. Well-formed stripping peaks and a linear dependence of the stripping current on the folic acid concentration were observed on the lead film electrode prepared with use of the mediator metal while comparative measurements attempted with the lead film electrode prepared without use of the mediator metal were unsuccessful.

  11. Single attosecond pulse generation by using plasmon-driven double optical gating technology in crossed metal nanostructures

    Science.gov (United States)

    Feng, Liqiang; Liu, Katheryn

    2018-05-01

    An effective method to obtain the single attosecond pulses (SAPs) by using the multi-cycle plasmon-driven double optical gating (DOG) technology in the specifically designed metal nanostructures has been proposed and investigated. It is found that with the introduction of the crossed metal nanostructures along the driven and the gating polarization directions, not only the harmonic cutoff can be extended, but also the efficient high-order harmonic generation (HHG) at the very highest orders occurs only at one side of the region inside the nanostructure. As a result, a 93 eV supercontinuum with the near stable phase can be found. Further, by properly introducing an ultraviolet (UV) pulse into the driven laser polarization direction (which is defined as the DOG), the harmonic yield can be enhanced by two orders of magnitude in comparison with the singe polarization gating (PG) technology. However, as the polarized angle or the ellipticity of the UV pulse increase, the enhancement of the harmonic yield is slightly reduced. Finally, by superposing the selected harmonics from the DOG scheme, a 30 as SAP with intensity enhancement of two orders of magnitude can be obtained.

  12. Fabrication of dissimilar metal electrodes with nanometer interelectrode distance for molecular electronic device characterization

    International Nuclear Information System (INIS)

    Guillorn, Michael A.; Carr, Dustin W.; Tiberio, Richard C.; Greenbaum, Elias; Simpson, Michael L.

    2000-01-01

    We report a versatile process for the fabrication of dissimilar metal electrodes with a minimum interelectrode distance of less than 6 nm using electron beam lithography and liftoff pattern transfer. This technique provides a controllable and reproducible method for creating structures suited for the electrical characterization of asymmetric molecules for molecular electronics applications. Electrode structures employing pairs of Au electrodes and non-Au electrodes were fabricated in three different patterns. Parallel electrode structures 300 μm long with interelectrode distances as low as 10 nm, 75 nm wide electrode pairs with interelectrode distances less than 6 nm, and a multiterminal electrode structure with reproducible interelectrode distances of 8 nm were realized using this technique. The processing issues associated with the fabrication of these structures are discussed along with the intended application of these devices. (c) 2000 American Vacuum Society

  13. Exploiting Stretchable Metallic Springs as Compliant Electrodes for Cylindrical Dielectric Elastomer Actuators (DEAs

    Directory of Open Access Journals (Sweden)

    Chien-Hao Liu

    2017-11-01

    Full Text Available In recent years, dielectric elastomer actuators (DEAs have been widely used in soft robots and artificial bio-medical applications. Most DEAs are composed of a thin dielectric elastomer layer sandwiched between two compliant electrodes. DEAs vary in their design to provide bending, torsional, and stretch/contraction motions under the application of high external voltages. Most compliant electrodes are made of carbon powders or thin metallic films. In situations involving large deformations or improper fabrication, the electrodes are susceptible to breakage and increased resistivity. The worst cases result in a loss of conductivity and functional failure. In this study, we developed a method by which to exploit stretchable metallic springs as compliant electrodes for cylindrical DEAs. This design was inspired by the extensibility of mechanical springs. The main advantage of this approach is the fact that the metallic spring-like compliant electrodes remain conductive and do not increase the stiffness as the tube-like DEAs elongate in the axial direction. This can be attributed to a reduction in thickness in the radial direction. The proposed cylindrical structure is composed of highly-stretchable VHB 4905 film folded within a hollow tube and then sandwiched between copper springs (inside and outside to allow for stretching and contraction in the axial direction under the application of high DC voltages. We fabricated a prototype and evaluated the mechanical and electromechanical properties of the device experimentally using a high-voltage source of 9.9 kV. This device demonstrated a non-linear increase in axial stretching with an increase in applied voltage, reaching a maximum extension of 0.63 mm (axial strain of 2.35% at applied voltage of 9.9 kV. Further miniaturization and the incorporation of compressive springs are expected to allow the implementation of the proposed method in soft micro-robots and bio-mimetic applications.

  14. All-metallic electrically gated 2H-TaSe{sub 2} thin-film switches and logic circuits

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, J.; Jiang, C.; Yan, Z. [Nano-Device Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Samnakay, R.; Goli, P. [Materials Science and Engineering Program, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Pope, T. R.; Salguero, T. T. [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States); Wickramaratne, D.; Lake, R. K. [Laboratory for Terascale and Terahertz Electronics, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Khitun, A. G. [Nano-Device Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Materials Science and Engineering Program, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Balandin, A. A., E-mail: balandin@ee.ucr.edu [Nano-Device Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States)

    2014-01-21

    We report the fabrication and performance of all-metallic three-terminal devices with tantalum diselenide thin-film conducting channels. For this proof-of-concept demonstration, the layers of 2H-TaSe{sub 2} were exfoliated mechanically from single crystals grown by the chemical vapor transport method. Devices with nanometer-scale thicknesses exhibit strongly non-linear current-voltage characteristics, unusual optical response, and electrical gating at room temperature. We have found that the drain-source current in thin-film 2H-TaSe{sub 2}–Ti/Au devices reproducibly shows an abrupt transition from a highly resistive to a conductive state, with the threshold tunable via the gate voltage. Such current-voltage characteristics can be used, in principle, for implementing radiation-hard all-metallic logic circuits. These results may open new application space for thin films of van der Waals materials.

  15. Local gate control in carbon nanotube quantum devices

    Science.gov (United States)

    Biercuk, Michael Jordan

    This thesis presents transport measurements of carbon nanotube electronic devices operated in the quantum regime. Nanotubes are contacted by source and drain electrodes, and multiple lithographically-patterned electrostatic gates are aligned to each device. Transport measurements of device conductance or current as a function of local gate voltages reveal that local gates couple primarily to the proximal section of the nanotube, hence providing spatially localized control over carrier density along the nanotube length. Further, using several different techniques we are able to produce local depletion regions along the length of a tube. This phenomenon is explored in detail for different contact metals to the nanotube. We utilize local gating techniques to study multiple quantum dots in carbon nanotubes produced both by naturally occurring defects, and by the controlled application of voltages to depletion gates. We study double quantum dots in detail, where transport measurements reveal honeycomb charge stability diagrams. We extract values of energy-level spacings, capacitances, and interaction energies for this system, and demonstrate independent control over all relevant tunneling rates. We report rf-reflectometry measurements of gate-defined carbon nanotube quantum dots with integrated charge sensors. Aluminum rf-SETs are electrostatically coupled to carbon nanotube devices and detect single electron charging phenomena in the Coulomb blockade regime. Simultaneous correlated measurements of single electron charging are made using reflected rf power from the nanotube itself and from the rf-SET on microsecond time scales. We map charge stability diagrams for the nanotube quantum dot via charge sensing, observing Coulomb charging diamonds beyond the first order. Conductance measurements of carbon nanotubes containing gated local depletion regions exhibit plateaus as a function of gate voltage, spaced by approximately 1e2/h, the quantum of conductance for a single

  16. Medium band gap polymer based solution-processed high-κ composite gate dielectrics for ambipolar OFET

    Science.gov (United States)

    Canımkurbey, Betül; Unay, Hande; Çakırlar, Çiğdem; Büyükköse, Serkan; Çırpan, Ali; Berber, Savas; Altürk Parlak, Elif

    2018-03-01

    The authors present a novel ambipolar organic filed-effect transistors (OFETs) composed of a hybrid dielectric thin film of Ta2O5:PMMA nanocomposite material, and solution processed poly(selenophene, benzotriazole and dialkoxy substituted [1,2-b:4, 5-b‧] dithiophene (P-SBTBDT)-based organic semiconducting material as the active layer of the device. We find that the Ta2O5:PMMA insulator shows n-type conduction character, and its combination with the p-type P-SBTBDT organic semiconductor leads to an ambipolar OFET device. Top-gated OFETs were fabricated on glass substrate consisting of interdigitated ITO electrodes. P-SBTBDT-based material was spin coated on the interdigitated ITO electrodes. Subsequently, a solution processed Ta2O5:PMMA nanocomposite material was spin coated, thereby creating the gate dielectric layer. Finally, as a gate metal, an aluminum layer was deposited by thermal evaporation. The fabricated OFETs exhibited an ambipolar performance with good air-stability, high field-induced current and relatively high electron and hole mobilities although Ta2O5:PMMA nanocomposite films have slightly higher leakage current compared to the pure Ta2O5 films. Dielectric properties of the devices with different ratios of Ta2O5:PMMA were also investigated. The dielectric constant varied between 3.6 and 5.3 at 100 Hz, depending on the Ta2O5:PMMA ratio.

  17. The role of oxygen in porous molybdenum electrodes for the alkali metal thermoelectric converter

    International Nuclear Information System (INIS)

    Williams, R.M.; Nagasubramanian, G.; Khanna, S.K.; Bankston, C.P.; Thakoor, A.P.; Cole, T.

    1986-01-01

    The alkali metal thermoelectric converter is a direct energy conversion device, utilizing a high alkali metal activity gradient to generate electrical power. Its operation is based on the unique ion conductive properties of beta''-alumina solid electrolyte. The major barrier to application of this device is identification of an electrode which can maintain optimum power densities for operation times of >10,000h. Thin, porous molybdenum electrodes have shown the best performance characteristics, but show a variety of time dependent phenomena, including eventual degradation to power densities 3-5 times lower than initial values. Several Na-Mo-O compounds, including Na/sub 2/MoO/sub 4/ and Na/sub 2/Mo/sub 3/O/sub 6/, are formed during AMTEC operation. These compounds may be responsible for enhanced Na transport through Mo electrodes via sodium ion conduction, and eventual performance degradation due to their volatilization and decomposition. No decomposition of beta''-alumina has been observed under simulated AMTEC operating conditions up to 1373 K. In this paper, we present a model for chemical reactions occurring in porous molybdenum electrodes. The model is based on thermochemical and kinetic data, known sodium-molybdenum-oxygen chemistry, x-ray diffraction analysis of molybdenum and molybdenum oxide electrodes, and the electrochemical behavior of the cell

  18. Spark igniter having precious metal ground electrode inserts

    International Nuclear Information System (INIS)

    Ryan, N.A.

    1988-01-01

    This patent describes an igniter comprising a shell of a shell metal alloy which is resistant to spark erosion and corrosion, the shell having a firing end which terminates at its lower end in an annular ring, an insulator sealed within the metal shell and having a central bore and a surface extending inwardly toward the bore from the annular ring, a center electrode sealed within the bore of the insulator and having a firing end which is in spark gap relation with the annular ring of the shell and so positioned that a spark discharge between the firing end and the annular ring occurs along the inwardly extending surface of the insulator, and a plurality of oxidation and erosion resistant inserts, each of the inserts comprising a body of a metal selected from the group consisting of iridium, osmium, ruthenium, rhodium, platinum, and tungsten or an alloy or a ductile alloy of one of the foregoing metals, each of the bodies being embedded within a matching opening which extends from the exterior of the shell through the annular ring, being bonded to the shell

  19. (abstract) Experimental and Modeling Studies of the Exchange Current at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kikkert, S.

    1993-01-01

    The microscopic mechanism of the alkali ion-electron recombination reaction at the three phase boundary zone formed by a porous metal electrode in the alkali vapor on the surface of an alkali beta'-alumina solid electrolyte (BASE) ceramic has been studied by comparison of the expected rates for the three simplest reaction mechanisms with known temperature dependent rate data; and the physical parameters of typical porous metal electrode/BASE/alkali metal vapor reaction zones. The three simplest reactions are tunneling of electrons from the alkali coated electrode to a surface bound alkali metal ion; emission of an electron from the electrode with subsequent capture by a surface bound alkali metal ion; and thermal emission of an alkali cation from the BASE and its capture on the porous metal electrode surface where it may recombine with an electron. Only the first reaction adequately accounts for both the high observed rate and its temperature dependence. New results include crude modeling of simple, one step, three phase, solid/solid/gas electrochemical reaction.

  20. Energy harvesting efficiency of piezoelectric polymer film with graphene and metal electrodes.

    Science.gov (United States)

    Park, Sanghoon; Kim, Yura; Jung, Hyosub; Park, Jun-Young; Lee, Naesung; Seo, Yongho

    2017-12-11

    In this study, we investigated an energy harvesting effect of tensile stress using piezoelectric polymers and flexible electrodes. A chemical-vapor-deposition grown graphene film was transferred onto both sides of the PVDF and P(VDF-TrFE) films simultaneously by means of a conventional wet chemical method. Output voltage induced by sound waves was measured and analyzed when a mechanical tension was applied to the device. Another energy harvester was made with a metallic electrode, where Al and Ag were deposited by using an electron-beam evaporator. When acoustic vibrations (105 dB) were applied to the graphene/PVDF/graphene device, an induced voltage of 7.6 V pp was measured with a tensile stress of 1.75 MPa, and this was increased up to 9.1 V pp with a stress of 2.18 MPa for the metal/P(VDF-TrFE)/metal device. The 9 metal/PVDF/metal layers were stacked as an energy harvester, and tension was applied by using springs. Also, we fabricated a full-wave rectifying circuit to store the electrical energy in a 100 μF capacitor, and external vibration generated the electrical charges. As a result, the stored voltage at the capacitor, obtained from the harvester via a bridge diode rectifier, was saturated to ~7.04 V after 180 s charging time.

  1. Impacts of recessed gate and fluoride-based plasma treatment approaches toward normally-off AlGaN/GaN HEMT.

    Science.gov (United States)

    Heo, Jun-Woo; Kim, Young-Jin; Kim, Hyun-Seok

    2014-12-01

    We report two approaches to fabricating high performance normally-off AIGaN/GaN high-electron mobility transistors (HEMTs). The fabrication techniques employed were based on recessed-metal-insulator-semiconductor (MIS) gate and recessed fluoride-based plasma treatment. They were selectively applied to the area under the gate electrode to deplete the two-dimensional electron gas (2-DEG) density. We found that the recessed gate structure was effective in shifting the threshold voltage by controlling the etching depth of gate region to reduce the AIGaN layer thickness to less than 8 nm. Likewise, the CF4 plasma treatment effectively incorporated negatively charged fluorine ions into the thin AIGaN barrier so that the threshold voltage shifted to higher positive values. In addition to the increased threshold voltage, experimental results showed a maximum drain current and a maximum transconductance of 315 mA/mm and 100 mS/mm, respectively, for the recessed-MIS gate HEMT, and 340 mA/mm and 330 mS/mm, respectively, for the fluoride-based plasma treated HEMT.

  2. AlGaN/GaN high-electron-mobility transistors with transparent gates by Al-doped ZnO

    International Nuclear Information System (INIS)

    Wang Chong; He Yun-Long; Zheng Xue-Feng; Ma Xiao-Hua; Zhang Jin-Cheng; Hao Yue

    2013-01-01

    AlGaN/GaN high-electron-mobility transistors (HEMTs) with Al-doped ZnO (AZO) transparent gate electrodes are fabricated, and Ni/Au/Ni-gated HEMTs are produced in comparison. The AZO-gated HEMTs show good DC characteristics and Schottky rectifying characteristics, and the gate electrodes achieve excellent transparencies. Compared with Ni/Au/Ni-gated HEMTs, AZO-gated HEMTs show a low saturation current, high threshold voltage, high Schottky barrier height, and low gate reverse leakage current. Due to the higher gate resistivity, AZO-gated HEMTs exhibit a current—gain cutoff frequency (f T ) of 10 GHz and a power gain cutoff frequency (f max ) of 5 GHz, and lower maximum oscillation frequency than Ni/Au/Ni-gated HEMTs. Moreover, the C—V characteristics are measured and the gate interface characteristics of the AZO-gated devices are investigated by a C—V dual sweep

  3. Enhanced control of electrochemical response in metallic materials in neural stimulation electrode applications

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, K.G.; Steen, W.M.; Manna, I. [Univ. of Liverpool (United Kingdom)] [and others

    1996-12-31

    New means have been investigated for the production of electrode devices (stimulation electrodes) which could be implanted in the human body in order to control pain, activate paralysed limbs or provide electrode arrays for cochlear implants for the deaf or for the relief of tinitus. To achieve this ion implantation and laser materials processing techniques were employed. Ir was ion implanted in Ti-6Al-4V alloy and the surface subsequently enriched in the noble metal by dissolution in sulphuric acid. For laser materials processing techniques, investigation has been carried out on the laser cladding and laser alloying of Ir in Ti wire. A particular aim has been the determination of conditions required for the formation of a two phase Ir, Ir-rich, and Ti-rich microstructure which would enable subsequent removal of the non-noble phase to leave a highly porous noble metal with large real surface area and hence improved charge carrying capacity compared with conventional non porous electrodes. Evaluation of the materials produced has been carried out using repetitive cyclic voltammetry, amongst other techniques. For laser alloyed Ir on Ti wire, it has been found that differences in the melting point and density of the materials makes control of the cladding or alloying process difficult. Investigation of laser process parameters for the control of alloying and cladding in this system was carried out and a set of conditions for the successful production of two phase Ir-rich and Ti-rich components in a coating layer with strong metallurgical bonding to the Ti alloy substrate was derived. The laser processed material displays excellent potential for further development in providing stimulation electrodes with the current carrying capacity of Ir but in a form which is malleable and hence capable of formation into smaller electrodes with improved spatial resolution compared with presently employed electrodes.

  4. Direct Synthesis of Carbon Nanotube Field Emitters on Metal Substrate for Open-Type X-ray Source in Medical Imaging

    Directory of Open Access Journals (Sweden)

    Amar Prasad Gupta

    2017-07-01

    Full Text Available We report the design, fabrication and characterization of a carbon nanotube enabled open-type X-ray system for medical imaging. We directly grew the carbon nanotubes used as electron emitter for electron gun on a non-polished raw metallic rectangular-rounded substrate with an area of 0.1377 cm2 through a plasma enhanced chemical vapor deposition system. The stable field emission properties with triode electrodes after electrical aging treatment showed an anode emission current of 0.63 mA at a gate field of 7.51 V/μm. The 4.5-inch cubic shape open type X-ray system was developed consisting of an X-ray aperture, a vacuum part, an anode high voltage part, and a field emission electron gun including three electrodes with focusing, gate and cathode electrodes. Using this system, we obtained high-resolution X-ray images accelerated at 42–70 kV voltage by digital switching control between emitter and ground electrode.

  5. Direct Synthesis of Carbon Nanotube Field Emitters on Metal Substrate for Open-Type X-ray Source in Medical Imaging.

    Science.gov (United States)

    Gupta, Amar Prasad; Park, Sangjun; Yeo, Seung Jun; Jung, Jaeik; Cho, Chonggil; Paik, Sang Hyun; Park, Hunkuk; Cho, Young Chul; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang

    2017-07-29

    We report the design, fabrication and characterization of a carbon nanotube enabled open-type X-ray system for medical imaging. We directly grew the carbon nanotubes used as electron emitter for electron gun on a non-polished raw metallic rectangular-rounded substrate with an area of 0.1377 cm² through a plasma enhanced chemical vapor deposition system. The stable field emission properties with triode electrodes after electrical aging treatment showed an anode emission current of 0.63 mA at a gate field of 7.51 V/μm. The 4.5-inch cubic shape open type X-ray system was developed consisting of an X-ray aperture, a vacuum part, an anode high voltage part, and a field emission electron gun including three electrodes with focusing, gate and cathode electrodes. Using this system, we obtained high-resolution X-ray images accelerated at 42-70 kV voltage by digital switching control between emitter and ground electrode.

  6. Electrical analysis of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors on flexible bulk mono-crystalline silicon

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-06-01

    We report on the electrical study of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors (MOSCAPs) on a flexible ultra-thin (25 μm) silicon fabric which is peeled off using a CMOS compatible process from a standard bulk mono-crystalline silicon substrate. A lifetime projection is extracted using statistical analysis of the ramping voltage (Vramp) breakdown and time dependent dielectric breakdown data. The obtained flexible MOSCAPs operational voltages satisfying the 10 years lifetime benchmark are compared to those of the control MOSCAPs, which are not peeled off from the silicon wafer. © 2014 IEEE.

  7. High performance high-κ/metal gate complementary metal oxide semiconductor circuit element on flexible silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-02-29

    Thinned silicon based complementary metal oxide semiconductor(CMOS)electronics can be physically flexible. To overcome challenges of limited thinning and damaging of devices originated from back grinding process, we show sequential reactive ion etching of silicon with the assistance from soft polymeric materials to efficiently achieve thinned (40 μm) and flexible (1.5 cm bending radius) silicon based functional CMOSinverters with high-κ/metal gate transistors. Notable advances through this study shows large area of silicon thinning with pre-fabricated high performance elements with ultra-large-scale-integration density (using 90 nm node technology) and then dicing of such large and thinned (seemingly fragile) pieces into smaller pieces using excimer laser. The impact of various mechanical bending and bending cycles show undeterred high performance of flexible siliconCMOSinverters. Future work will include transfer of diced silicon chips to destination site, interconnects, and packaging to obtain fully flexible electronic systems in CMOS compatible way.

  8. A Metal Matrix CNTS Modified Electrode Fabricated Using Micromachining-Based Implantation Method for Improving Sensitivity and Stability

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2013-01-01

    Full Text Available The metal matrix carbon nanotubes modified electrode (MCME has been fabricated by a novel process involving preparation of carbon nanotubes (CNTs/polyimide (PI composite film, wet, etching, sputtering, electroplating, and wet-etch releasing. Pretreated CNTs are dispersed in PI by mechanical ball milling and then CNTs solution is spin-coated on the substrate. The CNTs/PI composite film is etched away a layer of PI to expose tips of CNTs using buffering solution. These exposed tips of CNTs are covered by metal particles in sputtering process as metal seed layer, followed by metal supporting film formed by electroplating. The MCME is obtained after releasing PI film from the metal supporting film. The MCME shows well morphology of uniform distributional protruding tips of CNTs and increased electron transfer efficiency with strong bonding connection between CNTs and metal matrix, which greatly improves sensitivity and stability of the MCME. The oxidation peak of the MCME in cyclic voltammeter (CV test is 1.7 times more than that of CNTs suspension spin-coated metal electrode (SCME. The decline of peak current of the MCME after fifty cycles is only 1.8% much less than 67% of the SCME. Better sensitivity and stability may be helpful for CNTs modified electrodes wide application for trace test of many special materials.

  9. Study of the tunnelling initiated leakage current through the carbon nanotube embedded gate oxide in metal oxide semiconductor structures

    International Nuclear Information System (INIS)

    Chakraborty, Gargi; Sarkar, C K; Lu, X B; Dai, J Y

    2008-01-01

    The tunnelling currents through the gate dielectric partly embedded with semiconducting single-wall carbon nanotubes in a silicon metal-oxide-semiconductor (MOS) structure have been investigated. The application of the gate voltage to such an MOS device results in the band bending at the interface of the partly embedded oxide dielectric and the surface of the silicon, initiating tunnelling through the gate oxide responsible for the gate leakage current whenever the thickness of the oxide is scaled. A model for silicon MOS structures, where carbon nanotubes are confined in a narrow layer embedded in the gate dielectric, is proposed to investigate the direct and the Fowler-Nordheim (FN) tunnelling currents of such systems. The idea of embedding such elements in the gate oxide is to assess the possibility for charge storage for memory device applications. Comparing the FN tunnelling onset voltage between the pure gate oxide and the gate oxide embedded with carbon nanotubes, it is found that the onset voltage decreases with the introduction of the nanotubes. The direct tunnelling current has also been studied at very low gate bias, for the thin oxide MOS structure which plays an important role in scaling down the MOS transistors. The FN tunnelling current has also been studied with varying nanotube diameter

  10. A high performance gate drive for large gate turn off thyristors

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, C.P.

    1993-01-01

    Past approaches to gate turn-off (GTO) gating are application oriented, inefficient and dissipate power even when inactive. They allow the gate to avalanch, and do not reduce GTO turn-on and turn-off losses. A new approach is proposed which will allow modular construction and adaptability to large GTOs in the 50 amp to 2000 amp range. The proposed gate driver can be used in large voltage source and current source inverters and other power converters. The approach consists of a power metal-oxide-silicon field effect transistor (MOSFET) technology gating unit, with associated logic and supervisory circuits and an isolated flyback converter as the dc power source for the gating unit. The gate driver formed by the gating unit and the flyback converter is designed for 4000 V isolation. Control and supervisory signals are exchanged between the gate driver and the remote control system via fiber optics. The gating unit has programmable front-porch current amplitude and pulse-width, programmable closed-loop controlled back-porch current, and a turn-off switch capable of supplying negative gate current at demand as a function of peak controllable forward anode current. The GTO turn-on, turn-off and gate avalanch losses are reduced to a minimum. The gate driver itself has minimum operating losses. Analysis, design and practical realization are reported. 19 refs., 54 figs., 1 tab.

  11. Metal-oxide assisted surface treatment of polyimide gate insulators for high-performance organic thin-film transistors.

    Science.gov (United States)

    Kim, Sohee; Ha, Taewook; Yoo, Sungmi; Ka, Jae-Won; Kim, Jinsoo; Won, Jong Chan; Choi, Dong Hoon; Jang, Kwang-Suk; Kim, Yun Ho

    2017-06-14

    We developed a facile method for treating polyimide-based organic gate insulator (OGI) surfaces with self-assembled monolayers (SAMs) by introducing metal-oxide interlayers, called the metal-oxide assisted SAM treatment (MAST). To create sites for surface modification with SAM materials on polyimide-based OGI (KPI) surfaces, the metal-oxide interlayer, here amorphous alumina (α-Al 2 O 3 ), was deposited on the KPI gate insulator using spin-coating via a rapid sol-gel reaction, providing an excellent template for the formation of a high-quality SAM with phosphonic acid anchor groups. The SAM of octadecylphosphonic acid (ODPA) was successfully treated by spin-coating onto the α-Al 2 O 3 -deposited KPI film. After the surface treatment by ODPA/α-Al 2 O 3 , the surface energy of the KPI thin film was remarkably decreased and the molecular compatibility of the film with an organic semiconductor (OSC), 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-C 10 ), was increased. Ph-BTBT-C 10 molecules were uniformly deposited on the treated gate insulator surface and grown with high crystallinity, as confirmed by atomic force microscopy (AFM) and X-ray diffraction (XRD) analysis. The mobility of Ph-BTBT-C 10 thin-film transistors (TFTs) was approximately doubled, from 0.56 ± 0.05 cm 2 V -1 s -1 to 1.26 ± 0.06 cm 2 V -1 s -1 , after the surface treatment. The surface treatment of α-Al 2 O 3 and ODPA significantly decreased the threshold voltage from -21.2 V to -8.3 V by reducing the trap sites in the OGI and improving the interfacial properties with the OSC. We suggest that the MAST method for OGIs can be applied to various OGI materials lacking reactive sites using SAMs. It may provide a new platform for the surface treatment of OGIs, similar to that of conventional SiO 2 gate insulators.

  12. Thermal response of Ru electrodes in contact with SiO2 and Hf-based high-k gate dielectrics

    International Nuclear Information System (INIS)

    Wen, H.-C.; Lysaght, P.; Alshareef, H.N.; Huffman, C.; Harris, H.R.; Choi, K.; Senzaki, Y.; Luan, H.; Majhi, P.; Lee, B.H.; Campin, M. J.; Foran, B.; Lian, G.D.; Kwong, D.-L.

    2005-01-01

    A systematic experimental evaluation of the thermal stability of Ru metal gate electrodes in direct contact with SiO 2 and Hf-based dielectric layers was performed and correlated with electrical device measurements. The distinctly different interfacial reactions in the Ru/SiO 2 , Ru/HfO 2 , and Ru/HfSiO x film systems were observed through cross-sectional high-resolution transmission electron microscopy, high angle annular dark field scanning transmission electron microscopy with electron-energy-loss spectra, and energy dispersive x-ray spectra analysis. Ru interacted with SiO 2 , but remained stable on HfO 2 at 1000 deg. C. The onset of Ru/SiO 2 interfacial interactions is identified via silicon substrate pitting possibly from Ru diffusion into the dielectric in samples exposed to a 900 deg. C/10-s anneal. The dependence of capacitor device degradation with decreasing SiO 2 thickness suggests Ru diffuses through SiO 2 , followed by an abrupt, rapid, nonuniform interaction of ruthenium silicide as Ru contacts the Si substrate. Local interdiffusion detected on Ru/HfSiO x samples may be due to phase separation of HfSiO x into HfO 2 grains within a SiO 2 matrix, suggesting that SiO 2 provides a diffusion pathway for Ru. Detailed evidence consistent with a dual reaction mechanism for the Ru/SiO 2 system at 1000 deg. C is presented

  13. Effect of electrode design on crosstalk between neighboring organic field-effect transistors based on one single crystal

    Science.gov (United States)

    Li, Mengjie; Tang, Qingxin; Tong, Yanhong; Zhao, Xiaoli; Zhou, Shujun; Liu, Yichun

    2018-03-01

    The design of high-integration organic circuits must be such that the interference between neighboring devices is eliminated. Here, rubrene crystals were used to study the effect of the electrode design on crosstalk between neighboring organic field-effect transistors (OFETs). Results show that a decreased source/drain interval and gate electrode width can decrease the diffraction distance of the current, and therefore can weaken the crosstalk. In addition, the inherent low carrier concentration in organic semiconductors can create a high-resistance barrier at the space between gate electrodes of neighboring devices, limiting or even eliminating the crosstalk as a result of the gate electrode width being smaller than the source/drain electrode width.

  14. Single OR molecule and OR atomic circuit logic gates interconnected on a Si(100)H surface

    International Nuclear Information System (INIS)

    Ample, F; Joachim, C; Duchemin, I; Hliwa, M

    2011-01-01

    Electron transport calculations were carried out for three terminal OR logic gates constructed either with a single molecule or with a surface dangling bond circuit interconnected on a Si(100)H surface. The corresponding multi-electrode multi-channel scattering matrix (where the central three terminal junction OR gate is the scattering center) was calculated, taking into account the electronic structure of the supporting Si(100)H surface, the metallic interconnection nano-pads, the surface atomic wires and the molecule. Well interconnected, an optimized OR molecule can only run at a maximum of 10 nA output current intensity for a 0.5 V bias voltage. For the same voltage and with no molecule in the circuit, the output current of an OR surface atomic scale circuit can reach 4 μA.

  15. Lithium-aluminum-magnesium electrode composition

    Science.gov (United States)

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  16. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  17. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    Science.gov (United States)

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  18. Assembling a supercapacitor electrode with dual metal oxides and activated carbon using a liquid phase plasma.

    Science.gov (United States)

    Ki, Seo Jin; Jeon, Ki-Joon; Park, Young-Kwon; Park, Hyunwoong; Jeong, Sangmin; Lee, Heon; Jung, Sang-Chul

    2017-12-01

    Developing supercapacitor electrodes at an affordable cost while improving their energy and/or power density values is still a challenging task. This study introduced a recipe which assembled a novel electrode composite using a liquid phase plasma that was applied to a reactant solution containing an activated carbon (AC) powder with dual metal precursors of iron and manganese. A comparison was made between the composites doped with single and dual metal components as well as among those synthesized under different precursor concentrations and plasma durations. The results showed that increasing the precursor concentration and plasma duration raised the content of both metal oxides in the composites, whereas the deposition conditions were more favorable to iron oxide than manganese oxide, due to its higher standard potential. The composite treated with the longest plasma duration and highest manganese concentration was superior to the others in terms of cyclic stability and equivalent series resistance. In addition, the new composite selected out of them showed better electrochemical performance than the raw AC material only and even two types of single metal-based composites, owing largely to the synergistic effect of the two metal oxides. Therefore, the proposed methodology can be used to modify existing and future composite electrodes to improve their performance with relatively cheap host and guest materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A two dimensional analytical modeling of surface potential in triple metal gate (TMG) fully-depleted Recessed-Source/Drain (Re-S/D) SOI MOSFET

    Science.gov (United States)

    Priya, Anjali; Mishra, Ram Awadh

    2016-04-01

    In this paper, analytical modeling of surface potential is proposed for new Triple Metal Gate (TMG) fully depleted Recessed-Source/Dain Silicon On Insulator (SOI) Metal Oxide Semiconductor Field Effect Transistor (MOSFET). The metal with the highest work function is arranged near the source region and the lowest one near the drain. Since Recessed-Source/Drain SOI MOSFET has higher drain current as compared to conventional SOI MOSFET due to large source and drain region. The surface potential model developed by 2D Poisson's equation is verified by comparison to the simulation result of 2-dimensional ATLAS simulator. The model is compared with DMG and SMG devices and analysed for different device parameters. The ratio of metal gate length is varied to optimize the result.

  20. Spin-polarized current generated by magneto-electrical gating

    International Nuclear Information System (INIS)

    Ma Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Ghee

    2012-01-01

    We theoretically study spin-polarized current through a single electron tunneling transistor (SETT), in which a quantum dot (QD) is coupled to non-magnetic source and drain electrodes via tunnel junctions, and gated by a ferromagnetic (FM) electrode. The I–V characteristics of the device are investigated for both spin and charge currents, based on the non-equilibrium Green's function formalism. The FM electrode generates a magnetic field, which causes a Zeeman spin-splitting of the energy levels in the QD. By tuning the size of the Zeeman splitting and the source–drain bias, a fully spin-polarized current is generated. Additionally, by modulating the electrical gate bias, one can effect a complete switch of the polarization of the tunneling current from spin-up to spin-down current, or vice versa. - Highlights: ► The spin polarized transport through a single electron tunneling transistor is systematically studied. ► The study is based on Keldysh non-equilibrium Green's function and equation of motion method. ► A fully spin polarized current is observed. ► We propose to reverse current polarization by the means of gate voltage modulation. ► This device can be used as a bi-polarization current generator.

  1. Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors.

    Science.gov (United States)

    Muralee Gopi, Chandu V V; Ravi, Seenu; Rao, S Srinivasa; Eswar Reddy, Araveeti; Kim, Hee-Je

    2017-04-19

    Carbon nanotubes (CNT) and metal sulfides have attracted considerable attention owing to their outstanding properties and multiple application areas, such as electrochemical energy conversion and energy storage. Here we describes a cost-effective and facile solution approach to the preparation of metal sulfides (PbS, CuS, CoS, and NiS) grown directly on CNTs, such as CNT/PbS, CNT/CuS, CNT/CoS, and CNT/NiS flexible electrodes for quantum dot-sensitized solar cells (QDSSCs) and supercapacitors (SCs). X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscopy confirmed that the CNT network was covered with high-purity metal sulfide compounds. QDSSCs equipped with the CNT/NiS counter electrode (CE) showed an impressive energy conversion efficiency (η) of 6.41% and remarkable stability. Interestingly, the assembled symmetric CNT/NiS-based polysulfide SC device exhibited a maximal energy density of 35.39 W h kg -1 and superior cycling durability with 98.39% retention after 1,000 cycles compared to the other CNT/metal-sulfides. The elevated performance of the composites was attributed mainly to the good conductivity, high surface area with mesoporous structures and stability of the CNTs and the high electrocatalytic activity of the metal sulfides. Overall, the designed composite CNT/metal-sulfide electrodes offer an important guideline for the development of next level energy conversion and energy storage devices.

  2. Photoreactive and Metal-Platable Copolymer Inks for High-Throughput, Room-Temperature Printing of Flexible Metal Electrodes for Thin-Film Electronics.

    Science.gov (United States)

    Yu, You; Xiao, Xiang; Zhang, Yaokang; Li, Kan; Yan, Casey; Wei, Xiaoling; Chen, Lina; Zhen, Hongyu; Zhou, Hang; Zhang, Shengdong; Zheng, Zijian

    2016-06-01

    Photoreactive and metal-platable copolymer inks are reported for the first time to allow high-throughput printing of high-performance flexible electrodes at room temperature. This new copolymer ink accommodates various types of printing technologies, such as soft lithography molding, screen printing, and inkjet printing. Electronic devices including resistors, sensors, solar cells, and thin-film transistors fabricated with these printed electrodes show excellent electrical performance and mechanical flexibility. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Speci﬿c contact resistance of phase change materials to metal electrode

    NARCIS (Netherlands)

    Roy, Deepu; in 't Zandt, Micha A.A.; Wolters, Robertus A.M.

    2010-01-01

    For phase change random access memory (PCRAM) cells, it is important to know the contact resistance of phase change materials (PCMs) to metal electrodes at the contacts. In this letter, we report the systematic determination of the speci﬿c contact resistance (Ͽc ) of doped Sb2Te and Ge2Sb2Te5 to TiW

  4. Gate-voltage control of equal-spin Andreev reflection in half-metal/semiconductor/superconductor junctions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiuqiang, E-mail: xianqiangzhe@126.com [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Meng, Hao, E-mail: menghao1982@shu.edu.cn [School of Physics and Telecommunication Engineering, Shanxi University of Technology, Hanzhong 723001 (China)

    2016-04-22

    With the Blonder–Tinkham–Klapwijk (BTK) approach, we investigate conductance spectrum in Ferromagnet/Semiconductor/Superconductor (FM/Sm/SC) double tunnel junctions where strong Rashba spin–orbit interaction (RSOI) is taken into account in semiconductors. For the half-metal limit, we find that the in-gap conductance becomes finite except at zero voltage when inserting a ferromagnetic insulator (FI) at the Sm/SC interface, which means that the appearance of a long-range triplet states in the half-metal. This is because of the emergence of the unconventional equal-spin Andreev reflection (ESAR). When the FI locates at the FM/Sm interface, however, we find the vanishing in-gap conductance due to the absence of the ESAR. Moreover, the non-zero in-gap conductance shows a nonmonotonic dependence on RSOI which can be controlled by applying an external gate voltage. Our results can be used to generate and manipulate the long-range spin triplet correlation in the nascent field of superconducting spintronics. - Highlights: • We study the equal-spin Andreev reflection in half-metal/semiconductor/superconductor (HM/Sm/SC) junctions. • The equal-spin Andreev reflection appearance when inserting a ferromagnetic insulator at the Sm/SC interface. • The finite in-gap conductance is attributed to the emergence of the equal-spin Andreev reflection. • The finite in-gap conductance shows a nonmonotonic dependence on Rashba spin–orbit interaction. • The finite in-gap conductance can be controlled by applying an external gate voltage.

  5. Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics.

    Science.gov (United States)

    Han, Jun Hee; Kim, Do-Hong; Jeong, Eun Gyo; Lee, Tae-Woo; Lee, Myung Keun; Park, Jeong Woo; Lee, Hoseung; Choi, Kyung Cheol

    2017-05-17

    To keep pace with the era of transparent and deformable electronics, electrode functions should be improved. In this paper, an innovative structure is suggested to overcome the trade-off between optical and electrical properties that commonly arises with transparent electrodes. The structure of double-stacked metal films showed high conductivity (electronics are expected.

  6. Screen-printed electrodes for environmental monitoring of heavy metal ions: a review

    International Nuclear Information System (INIS)

    Barton, John; González García, María Begoña; Hernández Santos, David; Fanjul-Bolado, Pablo; Ribotti, Alberto; Magni, Paolo; McCaul, Margaret; Diamond, Dermot

    2016-01-01

    Heavy metals such as lead, mercury, cadmium, zinc and copper are among the most important pollutants because of their non-biodegradability and toxicity above certain thresholds. Here, we review methods for sensing heavy metal ions (HMI) in water samples using screen-printed electrodes (SPEs) as transducers. The review (with 107 refs.) starts with an introduction into the topic, and this is followed by sections on (a) mercury-coated SPEs, (b) bismuth-coated SPEs, (c) gold-coated SPEs (d) chemically modified and non-modified carbon SPEs, (e) enzyme inhibition-based SPEs, and (f) an overview of commercially available electrochemical portable heavy metal analyzers. The review reveals the significance of SPEs in terms of decentralized and of in situ analysis of heavy metal ions in environmental monitoring. (author)

  7. The effect of metal-buffer bilayer drain/source electrodes on the operational stability of the organic field effect transistors

    International Nuclear Information System (INIS)

    Karimi-Alavijeh, H.R.; Ehsani, A.

    2015-01-01

    In this paper, we have investigated experimentally the effect of different drain/source (D/S) electrodes and charge injection buffer layers on the electrical properties and operational stability of a stilbene organic field effect transistor (OFET). The results show that the organic buffer layer of copper phthalocyanine (CuPc) considerably improves the electrical properties of the transistors, but has a negligible effect on their temporal behavior. On the other hand, inorganic metal-oxide buffer layer of molybdenum oxide (MoO 3 ) drastically changes both the electrical properties and operational stability. The functionalities of this metal-oxide tightly depend on the properties of the D/S metallic electrodes. OFETs with Al/MoO 3 as the bilayer D/S electrodes have the best electrical properties: field effect mobility μ eff = 0.32 cm 2 V −1 s −1 and threshold voltage V TH = − 5 V and the transistors with Ag/MoO 3 have the longest operational stability. It was concluded that the chemical stability of the metal/metal-oxide or metal/organic interfaces of the bilayer D/S electrodes determine the operational stability of the OFETs. - Highlights: • The effect of buffer layers on the performance of the stilbene OFETs has been investigated. • Inorganic buffer layer improved the electrical and temporal behaviors simultaneously. • Organic buffer layer only changes the electrical properties. • Chemical stability of the interfaces determines the operational stability of the transistor

  8. Reliability Modeling Development and Its Applications for Ceramic Capacitors with Base-Metal Electrodes (BMEs)

    Science.gov (United States)

    Liu, Donhang

    2014-01-01

    This presentation includes a summary of NEPP-funded deliverables for the Base-Metal Electrodes (BMEs) capacitor task, development of a general reliability model for BME capacitors, and a summary and future work.

  9. Photolithographically Patterned TiO2 Films for Electrolyte-Gated Transistors.

    Science.gov (United States)

    Valitova, Irina; Kumar, Prajwal; Meng, Xiang; Soavi, Francesca; Santato, Clara; Cicoira, Fabio

    2016-06-15

    Metal oxides constitute a class of materials whose properties cover the entire range from insulators to semiconductors to metals. Most metal oxides are abundant and accessible at moderate cost. Metal oxides are widely investigated as channel materials in transistors, including electrolyte-gated transistors, where the charge carrier density can be modulated by orders of magnitude upon application of relatively low electrical bias (2 V). Electrolyte gating offers the opportunity to envisage new applications in flexible and printed electronics as well as to improve our current understanding of fundamental processes in electronic materials, e.g. insulator/metal transitions. In this work, we employ photolithographically patterned TiO2 films as channels for electrolyte-gated transistors. TiO2 stands out for its biocompatibility and wide use in sensing, electrochromics, photovoltaics and photocatalysis. We fabricated TiO2 electrolyte-gated transistors using an original unconventional parylene-based patterning technique. By using a combination of electrochemical and charge carrier transport measurements we demonstrated that patterning improves the performance of electrolyte-gated TiO2 transistors with respect to their unpatterned counterparts. Patterned electrolyte-gated (EG) TiO2 transistors show threshold voltages of about 0.9 V, ON/OFF ratios as high as 1 × 10(5), and electron mobility above 1 cm(2)/(V s).

  10. Poly(vinyl chloride) membrane alkali metal ion-selective electrodes based on crystalline synthetic zeolite of the Faujasite type

    International Nuclear Information System (INIS)

    Aghai, H.; Giahi, M.; Arvand Barmehi, M.

    2002-01-01

    Potentiometric electrodes based on the incorporation of zeolite particle in to poly (vinyl chloride) (pvc) membranes are described. The electrodes characteristics are evaluated regarding the response towards alkali ions. Pvc membranes plasticised with dibutyl phthalate and without lipophilic additives (co-exchanger) were used throughout this study. The electrode exhibits a Nernst ion response over the alkali metal cations concentration a range of 1.0x10 - 4 - 1.0 x 10 1 M with a slop of 57.0 ± 0.9 mV per decade of concentration a working ph range (3.0- 9.0) and a fast response time (≤15 c). The selective coefficients for cesium ion as test species with respect to alkaline earth, ammonium and some heavy metal ions were determined. Zeolite-PVC electrodes were applied to the determination of ionic surfactant

  11. Influence of multi-deposition multi-annealing on time-dependent dielectric breakdown characteristics of PMOS with high-k/metal gate last process

    International Nuclear Information System (INIS)

    Wang Yan-Rong; Yang Hong; Xu Hao; Wang Xiao-Lei; Luo Wei-Chun; Qi Lu-Wei; Zhang Shu-Xiang; Wang Wen-Wu; Yan Jiang; Zhu Hui-Long; Zhao Chao; Chen Da-Peng; Ye Tian-Chun

    2015-01-01

    A multi-deposition multi-annealing technique (MDMA) is introduced into the process of high-k/metal gate MOSFET for the gate last process to effectively reduce the gate leakage and improve the device’s performance. In this paper, we systematically investigate the electrical parameters and the time-dependent dielectric breakdown (TDDB) characteristics of positive channel metal oxide semiconductor (PMOS) under different MDMA process conditions, including the deposition/annealing (D and A) cycles, the D and A time, and the total annealing time. The results show that the increases of the number of D and A cycles (from 1 to 2) and D and A time (from 15 s to 30 s) can contribute to the results that the gate leakage current decreases by about one order of magnitude and that the time to fail (TTF) at 63.2% increases by about several times. However, too many D and A cycles (such as 4 cycles) make the equivalent oxide thickness (EOT) increase by about 1 Å and the TTF of PMOS worsen. Moreover, different D and A times and numbers of D and A cycles induce different breakdown mechanisms. (paper)

  12. Lattice model of ionic liquid confined by metal electrodes

    Science.gov (United States)

    Girotto, Matheus; Malossi, Rodrigo M.; dos Santos, Alexandre P.; Levin, Yan

    2018-05-01

    We study, using Monte Carlo simulations, the density profiles and differential capacitance of ionic liquids confined by metal electrodes. To compute the electrostatic energy, we use the recently developed approach based on periodic Green's functions. The method also allows us to easily calculate the induced charge on the electrodes permitting an efficient implementation of simulations in a constant electrostatic potential ensemble. To speed up the simulations further, we model the ionic liquid as a lattice Coulomb gas and precalculate the interaction potential between the ions. We show that the lattice model captures the transition between camel-shaped and bell-shaped capacitance curves—the latter characteristic of ionic liquids (strong coupling limit) and the former of electrolytes (weak coupling). We observe the appearance of a second peak in the differential capacitance at ≈0.5 V for 2:1 ionic liquids, as the packing fraction is increased. Finally, we show that ionic size asymmetry decreases substantially the capacitance maximum, when all other parameters are kept fixed.

  13. Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes.

    Science.gov (United States)

    Lan, Yingying; Zhao, Hongyang; Zong, Yan; Li, Xinghua; Sun, Yong; Feng, Juan; Wang, Yan; Zheng, Xinliang; Du, Yaping

    2018-05-01

    Binary transition metal phosphides hold immense potential as innovative electrode materials for constructing high-performance energy storage devices. Herein, porous binary nickel-cobalt phosphide (NiCoP) nanosheet arrays anchored on nickel foam (NF) were rationally designed as self-supported binder-free electrodes with high supercapacitance performance. Taking the combined advantages of compositional features and array architectures, the nickel foam supported NiCoP nanosheet array (NiCoP@NF) electrode possesses superior electrochemical performance in comparison with Ni-Co LDH@NF and NiCoO2@NF electrodes. The NiCoP@NF electrode shows an ultrahigh specific capacitance of 2143 F g-1 at 1 A g-1 and retained 1615 F g-1 even at 20 A g-1, showing excellent rate performance. Furthermore, a binder-free all-solid-state asymmetric supercapacitor device is designed, which exhibits a high energy density of 27 W h kg-1 at a power density of 647 W kg-1. The hierarchical binary nickel-cobalt phosphide nanosheet arrays hold great promise as advanced electrode materials for supercapacitors with high electrochemical performance.

  14. Lifetime studies of high power rhodium/tungsten and molybdenum electrodes for application to AMTEC (alkali metal thermal-to-electric converter)

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Underwood, M. L.; O'Connor, D.; Ryan, M. A.; Kikkert, S.; Bankston, C. P.

    1990-01-01

    A detailed and fundamental model for the electrochemical behavior of AMTEC electrodes is developed which can aid in interpreting the processes which occur during prolonged operation of these electrodes. Because the sintering and grain growth of metal particles is also a well-understood phenomenon, the changes in electrode performance which accompany its morphological evolution may be anticipated and modeled. The grain growth rate observed for porous Mo AMTEC electrodes is significantly higher than that predicted from surface diffusion data obtained at higher temperatures and incorporated into the grain growth model. The grain growth observed under AMTEC conditions is also somewhat higher than that measured for Mo films on BASE (beta-alumina solid electrolyte) substrates in vacuum or at similar temperatures. Results of modeling indicate that thin Mo electrodes may show significant performance degradation for extended operation (greater than 10,000 h) at higher operating temperatures (greater than 1150 K), whereas W/Rh and W/Pt electrodes are expected to show adequate performance at 1200 K for lifetimes greater than 10,000 h. It is pointed out that current collection grids and leads must consist of refractory metals such as Mo and W which do not accelerate sintering or metal migration.

  15. Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Omolola E. Fayemi

    2017-04-01

    Full Text Available The electrochemical response of serotonin on the modified electrode based on multiwalled-carbon-nanotube (MWCNT doped respectively with nickel, zinc and iron oxide nanoparticles coating on glassy carbon electrode (GCE at physiological pH 7 was determined using cyclic voltammetry (CV and square wave voltammetry (SWV. The modified GCE/MWCNT-metal oxide electrodes exhibited excellent electrocatalytic activity towards the detection of serotonin at large peak current and lower oxidation potentials compared to other electrodes investigated. The dynamic range for the serotonin determination was between 5.98 × 10−3 μM to 62.8 μM with detection limits 118, 129 and 166 nM for GCE/MWCNT-NiO, GCE/MWCNT-ZnO and GCE/MWCNT-Fe3O4 sensors respectively. GCE-MWCNT-NiO was the best electrode in terms of serotonin current response, electrode stability, resistance to fouling and limit of detection towards the analyte. The developed sensors were found to be electrochemically stable, reusable, economically effective due to their extremely low operational cost, and have demonstrated good limit of detection, sensitivity and selectivity towards serotonin determination in urine samples. Keywords: Metal oxides nanoparticles, Multiwalled carbon nanotubes, Glassy carbon electrode, Serotonin, Cyclic voltammetry, Square wave voltammetry

  16. Method for uniformly distributing carbon flakes in a positive electrode, the electrode made thereby and compositions. [Patent application

    Science.gov (United States)

    Mrazek, F.C.; Smaga, J.A.; Battles, J.E.

    1981-01-19

    A positive electrode for a secondary electrochemical cell is described wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.

  17. Supercapacitors Based on Metal Electrodes Prepared from Nanoparticle Mixtures at Room Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Hideyuki [Northwestern Univ., Evanston, IL (United States); Grzybowski, Bartosz A. [Northwestern Univ., Evanston, IL (United States)

    2010-01-01

    Films comprising Au and Ag nanoparticles are transformed into porous metal electrodes by desorption of weak organic ligands followed by wet chemical etching of silver. Thus prepared electrodes provide the basis for supercapacitors whose specific capacitances approach 70 F/g. Cyclic voltammetry measurement yield “rectangular” I-V curves even at high scan rates, indicating that the supercapacitors have low internal resistance. Owing to this property, the supercapacitors have a high power density ~12 kW/kg, comparable with that of the state-of-the-art carbon-based devices. The entire assembly protocol does not require high-temperature processing or the use of organic binders.

  18. Electrochemical oxidation of organic carbonate based electrolyte solutions at lithium metal oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, R; Novak, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The oxidative decomposition of carbonate based electrolyte solutions at practical lithium metal oxide composite electrodes was studied by differential electrochemical mass spectrometry. For propylene carbonate (PC), CO{sub 2} evolution was detected at LiNiO{sub 2}, LiCoO{sub 2}, and LiMn{sub 2}O{sub 4} composite electrodes. The starting point of gas evolution was 4.2 V vs. Li/Li{sup +} at LiNiO{sub 2}, whereas at LiCoO{sub 2} and LiMn{sub 2}O{sub 4}, CO{sub 2} evolution was only observed above 4.8 V vs. Li/Li{sup +}. In addition, various other volatile electrolyte decomposition products of PC were detected when using LiCoO{sub 2}, LiMn{sub 2}O4, and carbon black electrodes. In ethylene carbonate / dimethyl carbonate, CO{sub 2} evolution was only detected at LiNiO{sub 2} electrodes, again starting at about 4.2 V vs. Li/Li{sup +}. (author) 3 figs., 2 refs.

  19. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements

    OpenAIRE

    Anastasios Economou

    2018-01-01

    This work reviews the field of screen-printed electrodes (SPEs) modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have ...

  20. Contact of ZnSb thermoelectric material to metallic electrodes using S-Bond 400 solder alloy

    DEFF Research Database (Denmark)

    Malik, Safdar Abbas; Le, Thanh Hung; Van Nong, Ngo

    2018-01-01

    and metallic electrodes. In this paper, we investigate the joining of ZnSb to Ni and Ag electrodes using a commercial solder alloy S-Bond 400 and hot-pressing technique. Ti and Cr layers are also introduced as a diffusion barrier and microstructure at the interfaces is observed by scanning electron microscopy....... We found that S-bond 400 solder reacts with Ag and Ni electrodes to form different alloys at the interfaces. Cr layer was found to be broken after joining, resulting in a thicker reaction/diffusion layer at the interface, while Ti layer was preserved....

  1. Proteus Mirabilis Bacteria Biosensor Development Based on Modified Gold Electrode with 4-Carboxyphenyl Diazonium Salts for Heavy Metals Toxicity Detection

    Directory of Open Access Journals (Sweden)

    Yosra BRAHAM

    2014-05-01

    Full Text Available In this work we describe a new biosensor for heavy metals detection, based on the immobilization of bacteria, Proteus mirabilis on gold electrode modified with aryl electrografting film. To enhance the stability of the biosystem, additional materials were used such as functionalized Fe3O4 nanoparticles (NPs, cationic (PAH, anionic (PSS polyelectrolytes, Bovine Serum Albumin (BSA and glutaraldehyde as a cross-linking agent. Before the immobilization step, the activity of Proteus mirabilis bacteria in the presence of heavy metals ions was attempted using the ion ammonium selective electrodes (ISEs. The modication of the gold electrodes with the electrochemical reduction of 4- carboxyphenyl diazonium salts to form stable layers for sensing applications was characterized by cyclic voltammetry and chronoamperometry measurements. The adhesion of the bacteria cell on gold electrode was evaluated using contact angle measurements. The immobilized bacteria-metal interaction was evaluated using the electrochemical impedance spectroscopy (EIS measurements. A notable effect of metal on the bacteria activity is observed in the concentration range from 10-3 to 1 µM and from 1µM to 1nM for Co2+, Cd2+, Cu2+ and Hg2+, respectively.

  2. Development of new metal matrix composite electrodes for electrical discharge machining through powder metallurgy process

    Directory of Open Access Journals (Sweden)

    C. Mathalai Sundaram

    2014-12-01

    Full Text Available Electrical discharge machining (EDM is one of the widely used nontraditional machining methods to produce die cavities by the erosive effect of electrical discharges. This method is popular due to the fact that a relatively soft electrically conductive tool electrode can machine hard work piece. Copper electrode is normally used for machining process. Electrode wear rate is the major drawback for EDM researchers. This research focus on fabrication of metal matrix composite (MMC electrode by mixing copper powder with titanium carbide (TiC and Tungsten carbide (WC powder through powder metallurgy process, Copper powder is the major amount of mixing proportion with TiC and WC. However, this paper focus on the early stage of the project where powder metallurgy route was used to determine suitable mixing time, compaction pressure and sintering and compacting process in producing EDM electrode. The newly prepared composite electrodes in different composition are tested in EDM for OHNS steel.

  3. Sub 20 meV Schottky barriers in metal/MoTe2 junctions

    Science.gov (United States)

    Townsend, Nicola J.; Amit, Iddo; Craciun, Monica F.; Russo, Saverio

    2018-04-01

    The newly emerging class of atomically-thin materials has shown a high potential for the realisation of novel electronic and optoelectronic components. Amongst this family, semiconducting transition metal dichalcogenides (TMDCs) are of particular interest. While their band gaps are compatible with those of conventional solid state devices, they present a wide range of exciting new properties that is bound to become a crucial ingredient in the future of electronics. To utilise these properties for the prospect of electronics in general, and long-wavelength-based photodetectors in particular, the Schottky barriers formed upon contact with a metal and the contact resistance that arises at these interfaces have to be measured and controlled. We present experimental evidence for the formation of Schottky barriers as low as 10 meV between MoTe2 and metal electrodes. By varying the electrode work functions, we demonstrate that Fermi level pinning due to metal induced gap states at the interfaces occurs at 0.14 eV above the valence band maximum. In this configuration, thermionic emission is observed for the first time at temperatures between 40 K and 75 K. Finally, we discuss the ability to tune the barrier height using a gate electrode.

  4. ABOUT THE WAYS OF THE SYSTEM ANALYSIS OF METAL MOVEMENT IN GATING SYSTEMS BASED ON THE NUMERICAL SOLUTIONS OF NAVIER-STOKES EQUATIONS

    Directory of Open Access Journals (Sweden)

    S. G. Lizouzov

    2014-01-01

    Full Text Available Numerical modeling of distribution of the fields of speeds projections on axes X, Y, Z in gating system with the casting “Case of conical pair” for various temporal values is carried out. Numerical criteria for assessment of metal movement through the feeders having various spatial location relative to the gating system are offered. Dynamics of change of the offered criteria on the basis of integral average value of the speed component on axes X, Y, Z in the gating systems at the outlet from feeder is calculated.

  5. Oscillation of Critical Current by Gate Voltage in Cooper Pair Transistor

    International Nuclear Information System (INIS)

    Kim, N.; Cheong, Y.; Song, W.

    2010-01-01

    We measured the critical current of a Cooper pair transistor consisting of two Josephson junctions and a gate electrode. The Cooper pair transistors were fabricated by using electron-beam lithography and double-angle evaporation technique. The Gate voltage dependence of critical current was measured by observing voltage jumps at various gate voltages while sweeping bias current. The observed oscillation was 2e-periodic, which shows the Cooper pair transistor had low level of quasiparticle poisoning.

  6. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors

    Science.gov (United States)

    Lang, Xingyou; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2011-04-01

    Electrochemical supercapacitors can deliver high levels of electrical power and offer long operating lifetimes, but their energy storage density is too low for many important applications. Pseudocapacitive transition-metal oxides such as MnO2 could be used to make electrodes in such supercapacitors, because they are predicted to have a high capacitance for storing electrical charge while also being inexpensive and not harmful to the environment. However, the poor conductivity of MnO2 (10-5-10-6 S cm-1) limits the charge/discharge rate for high-power applications. Here, we show that hybrid structures made of nanoporous gold and nanocrystalline MnO2 have enhanced conductivity, resulting in a specific capacitance of the constituent MnO2 (~1,145 F g-1) that is close to the theoretical value. The nanoporous gold allows electron transport through the MnO2, and facilitates fast ion diffusion between the MnO2 and the electrolytes while also acting as a double-layer capacitor. The high specific capacitances and charge/discharge rates offered by such hybrid structures make them promising candidates as electrodes in supercapacitors, combining high-energy storage densities with high levels of power delivery.

  7. Competing forces in liquid metal electrodes and batteries

    Science.gov (United States)

    Ashour, Rakan F.; Kelley, Douglas H.; Salas, Alejandro; Starace, Marco; Weber, Norbert; Weier, Tom

    2018-02-01

    Liquid metal batteries are proposed for low-cost grid scale energy storage. During their operation, solid intermetallic phases often form in the cathode and are known to limit the capacity of the cell. Fluid flow in the liquid electrodes can enhance mass transfer and reduce the formation of localized intermetallics, and fluid flow can be promoted by careful choice of the locations and topology of a battery's electrical connections. In this context we study four phenomena that drive flow: Rayleigh-Bénard convection, internally heated convection, electro-vortex flow, and swirl flow, in both experiment and simulation. In experiments, we use ultrasound Doppler velocimetry (UDV) to measure the flow in a eutectic PbBi electrode at 160 °C and subject to all four phenomena. In numerical simulations, we isolate the phenomena and simulate each separately using OpenFOAM. Comparing simulated velocities to experiments via a UDV beam model, we find that all four phenomena can enhance mass transfer in LMBs. We explain the flow direction, describe how the phenomena interact, and propose dimensionless numbers for estimating their mutual relevance. A brief discussion of electrical connections summarizes the engineering implications of our work.

  8. Metal/Metal Oxide Differential Electrode pH Sensors

    Science.gov (United States)

    West, William; Buehler, Martin; Keymeulen, Didier

    2007-01-01

    Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.

  9. Virtual electrodes for high-density electrode arrays

    Science.gov (United States)

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  10. STM studies of an atomic-scale gate electrode formed by a single charged vacancy in GaAs

    Science.gov (United States)

    Lee, Donghun; Daughton, David; Gupta, Jay

    2009-03-01

    Electric-field control of spin-spin interactions at the atomic level is desirable for the realization of spintronics and spin-based quantum computation. Here we demonstrate the realization of an atomic-scale gate electrode formed by a single charged vacancy on the GaAs(110) surface[1]. We can position these vacancies with atomic precision using the tip of a home-built, low temperature STM. Tunneling spectroscopy of single Mn acceptors is used to quantify the electrostatic field as a function of distance from the vacancy. Single Mn acceptors are formed by substituting Mn adatoms for Ga atoms in the first layer of the p-GaAs(110) surface[2]. Depending on the distance, the in-gap resonance of single Mn acceptors can shift as much as 200meV. Our data indicate that the electrostatic field decays according to a screened Coulomb potential. The charge state of the vacancy can be switched to neutral, as evidenced by the Mn resonance returning to its unperturbed position. Reversible control of the local electric field as well as charged states of defects in semiconductors can open new insights such as realizing an atomic-scale gate control and studying spin-spin interactions in semiconductors. http://www.physics.ohio-state.edu/sim jgupta [1] D. Lee and J.A. Gupta (in preparation) [2] D. Kitchen et al., Nature 442, 436-439 (2006)

  11. Quasi-reference electrodes in confined electrochemical cells can result in in situ production of metallic nanoparticles.

    Science.gov (United States)

    Perera, Rukshan T; Rosenstein, Jacob K

    2018-01-31

    Nanoscale working electrodes and miniaturized electroanalytical devices are valuable platforms to probe molecular phenomena and perform chemical analyses. However, the inherent close distance of metallic electrodes integrated into a small volume of electrolyte can complicate classical electroanalytical techniques. In this study, we use a scanning nanopipette contact probe as a model miniaturized electrochemical cell to demonstrate measurable side effects of the reaction occurring at a quasi-reference electrode. We provide evidence for in situ generation of nanoparticles in the absence of any electroactive species and we critically analyze the origin, nucleation, dissolution and dynamic behavior of these nanoparticles as they appear at the working electrode. It is crucial to recognize the implications of using quasi-reference electrodes in confined electrochemical cells, in order to accurately interpret the results of nanoscale electrochemical experiments.

  12. TXRF study of electrochemical deposition of metals on glass-ceramic carbon electrode surfaces

    International Nuclear Information System (INIS)

    Alov, N.; Oskolok, K.; Wittershagen, A.; Mertens, M.; Rittmeyer, C.; Kolbesen, B.O.

    2000-01-01

    Nowadays the methods of solid surface analysis are widely used to study the thermodynamic and kinetic aspects of joint electrochemical deposition of metals on solid substrates. In this work the surfaces of some binary and ternary metal electrodeposits on disc glass-ceramic carbon electrodes were studied by total-reflection x-ray fluorescence spectroscopy (TXRF). Metal alloys were obtained as a result of electrochemical co-deposition of copper, cadmium and lead from n x 10 -4 M (Cu, Cd, Pb)(NO 3 ) 2 + 0.01 M HNO 3 solutions under mixing. TXRF measurements were performed with an ATOMIKA EXTRA II A spectrometer using Mo K α and W (Brems) primary excitation. The serious advantage of TXRF as a method of near-surface analysis is very high element sensitivity. Apart from main elements (Cu, Cd, Pb) we have detected trace elements (Cl, Ag, Pt, Hg) which are present in working solution and has an effect to the electrodeposit formation. The comparison of TXRF data with information obtained by X-ray photoelectron spectroscopy and electron-probe x-ray microanalysis permits to realize depth profiling electrochemical alloys. In particular it was found that in binary systems Cu-Pb and Cu-Cd the relative lead and cadmium content on the electrodeposit surface is considerably greater than in the bulk. These phenomena are due to the features of metal nucleation and growth mechanisms. High sensitivity of TXRF to surface morphology and the correlation of TXRF and scanning electron microscopy data allow to determine the area of prevailing location of metal in the heterogeneous alloy surface. So we have established that in Cu-Pb and Cu-Cd-Pb systems solid solution of copper and lead is formed: significant part of lead is deposited not only in specific 3D-clusters but also in copper thin film. It was demonstrated that the near-surface TXRF analysis of metal electrodeposits on solid electrodes is highly effective to study the mechanisms of metal nucleation, metal cluster and thin film

  13. Printed metal back electrodes for R2R fabricated polymer solar cells studied using the LBIC technique

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Søndergaard, Roar; Jørgensen, Mikkel

    2011-01-01

    The performance of printable metal back electrodes for polymer solar cells were investigated using light beam induced current (LBIC) mapping of the final solar cell device after preparation to identify the causes of poor performance. Three different types of silver based printable metal inks were...

  14. Structural Engineering of Metal-Mesh Structure Applicable for Transparent Electrodes Fabricated by Self-Formable Cracked Template

    Directory of Open Access Journals (Sweden)

    Yeong-gyu Kim

    2017-08-01

    Full Text Available Flexible and transparent conducting electrodes are essential for future electronic devices. In this study, we successfully fabricated a highly-interconnected metal-mesh structure (MMS using a self-formable cracked template. The template—fabricated from colloidal silica—can be easily formed and removed, presenting a simple and cost-effective way to construct a randomly and uniformly networked MMS. The structure of the MMS can be controlled by varying the spin-coating speed during the coating of the template solution or by stacking of metal-mesh layers. Through these techniques, the optical transparency and sheet resistance of the MMS can be designed for a specific purpose. A double-layered Al MMS showed high optical transparency (~80% in the visible region, low sheet resistance (~20 Ω/sq, and good flexibility under bending test compared with a single-layered MMS, because of its highly-interconnected wire structure. Additionally, we identified the applicability of the MMS in the case of practical devices by applying it to electrodes of thin-film transistors (TFTs. The TFTs with MMS electrodes showed comparable electrical characteristics to those with conventional film-type electrodes. The cracked template can be used for the fabrication of a mesh structure consisting of any material, so it can be used for not only transparent electrodes, but also various applications such as solar cells, sensors, etc.

  15. Electrical and materials properties of AlN/ HfO{sub 2} high-k stack with a metal gate

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Kimberly G. [Tokyo Electron U.S., 14338 FM 1826, Austin, TX 78737 (United States)], E-mail: kim@ireid.com; Dip, Anthony [Tokyo Electron U.S., 2400 Grove Blvd., Austin, TX 78747 (United States)], E-mail: anthony.dip@us.tel.com; Sasaki, Sadao [Tokyo Electron U.S. (United States)], E-mail: Sadao.sasaki@us.tel.com; Triyoso, Dina [Freescale Semiconductor Inc., 3501 Ed Bluestein Blvd, Austin, TX 78721 (United States)], E-mail: Dina.Triyoso@freescale.com; Samavedam, Sri [Freescale Semiconductor Inc., 3501 Ed Bluestein Blvd, Austin, TX 78721 (United States)], E-mail: Sri.Samavedam@freescale.com; Gilmer, David [SEMATECH 2706 Montopolis Drive, Austin, TX 78741 (United States)], E-mail: David.Gilmer@sematech.org; Gondran, Carolyn F.H. [Process Characterization Laboratory, ATDF/SEMATECH, 2706 Montopolis Drive, Austin, Texas 78741 (United States)], E-mail: Carolyn.Gondran@atdf.com

    2009-02-27

    In this study, aluminum nitride (AlN) was grown by molecular layer deposition on HfO{sub 2} that had been deposited on 200 mm Si (100) substrates. The AlN was grown on HfO{sub 2} using sequential exposures of trimethyl-aluminum and ammonia (NH{sub 3}) in a batch vertical furnace. Excellent thickness uniformity on test wafers from the top of the furnace to the bottom of the furnace (across the furnace load) was obtained. The equivalent oxide thickness was 16.5-18.8 A for the AlN/HfO{sub 2} stack on patterned device wafers with a molybdenum oxynitride metal gate with leakage current densities from low 10{sup -5} to mid 10{sup -6} A/cm{sup 2} at threshold voltage minus one volt. There was no change in the work function with the AlN cap on HfO{sub 2} with the MoN metal gate, even with a 1000 deg. C anneal.

  16. Investigation of the fabrication parameters of thick film metal oxide-polymer pH electrodes

    International Nuclear Information System (INIS)

    Gac, Arnaud

    2002-01-01

    This thesis describes a study into the development of an optimum material and fabrication process for the production of thick film pH electrodes. These devices consist of low cost, miniature and rugged pH sensors formed by screen printing a metal oxide bearing paste onto a high temperature (∼850 deg C) fired metal back contact supported on a standard alumina substrate. The pH sensitive metal oxide layer must be fabricated at relatively low temperatures (<300 deg C) in order to maintain the pH sensitivity of the layer and hence requires the use of a suitably stable low temperature curing binder. Bespoke fabricated inks are derived from a Taguchi style factorial experimental plans in which, different binder types, curing temperatures, hydration level and percentage mixtures of different metal oxides and layer thicknesses were investigated. The pH responses of 18 printed electrodes per batch were assessed in buffer solutions with respect to a commercial reference electrode forming a complete potentiometric circuit. The evaluation criteria used in the study included the device-to-device variation in sensitivity of the pH sensors and their sensitivity variation as a function of time. The results indicated the importance of the choice of binder type in particular on the performance characteristics. Reproducible device-to-device variation in sensitivity was determined for the best inks found, whatever the ink fabrication batch. A reduction in the sensitivity variation with time has been determined using the mathematical models derived from an experimental plan. The lack of reproducibility of the sensitivity magnitude, regardless of the ink manufacturing batch, seems to be a recurrent problem with prototype inks. Experimental sub-Nernstian responses are discussed in the light of possible pH mechanisms. (author)

  17. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica

    2017-03-30

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  18. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica; De Wolf, Stefaan; Woods-Robinson, Rachel; Ager, Joel W.; Ballif, Christophe

    2017-01-01

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  19. Metallic CoS₂ nanowire electrodes for high cycling performance supercapacitors.

    Science.gov (United States)

    Ren, Ren; Faber, Matthew S; Dziedzic, Rafal; Wen, Zhenhai; Jin, Song; Mao, Shun; Chen, Junhong

    2015-12-11

    We report metallic cobalt pyrite (CoS2) nanowires (NWs) prepared directly on current collecting electrodes, e.g., carbon cloth or graphite disc, for high-performance supercapacitors. These CoS2 NWs have a variety of advantages for supercapacitor applications. Because the metallic CoS2 NWs are synthesized directly on the current collector, the good electrical connection enables efficient charge transfer between the active CoS2 materials and the current collector. In addition, the open spaces between the sea urchin structure NWs lead to a large accessible surface area and afford rapid mass transport. Moreover, the robust CoS2 NW structure results in high stability of the active materials during long-term operation. Electrochemical characterization reveals that the CoS2 NWs enable large specific capacitance (828.2 F g(-1) at a scan rate of 0.01 V s(-1)) and excellent long term cycling stability (0-2.5% capacity loss after 4250 cycles at 5 A g(-1)) for pseudocapacitors. This example of metallic CoS2 NWs for supercapacitor applications expands the opportunities for transition metal sulfide-based nanostructures in emerging energy storage applications.

  20. Lithium-aluminum-iron electrode composition

    Science.gov (United States)

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  1. Water surface deformation in strong electrical fields and its influence on electrical breakdown in a metal pin-water electrode system

    International Nuclear Information System (INIS)

    Bruggeman, Peter; Graham, Leigh; Groote, Joris de; Vierendeels, Jan; Leys, Christophe

    2007-01-01

    Electrical breakdown and water surface deformation in a metal pin-water electrode system with dc applied voltages is studied for small inter-electrode distances (2-12 mm). The radius of curvature of the metal pin is 0.5 cm to exclude corona before breakdown at these small inter-electrode spacings. Calculations of the water surface deformation as a function of the applied voltage and initial inter-electrode spacing are compared with measurements of the water elevation. For distances smaller than 7 mm the calculated stability limit of the water surface corresponds with the experimentally obtained breakdown voltage. It is proved with fast CCD images and calculations of the electrical field distribution that the water surface instability triggers the electrical breakdown in this case. The images show that at breakdown the water surface has a Taylor cone-like shape. At inter-electrode distance of 7 mm and larger the breakdown voltage is well below the water stability limit and the conductive channel at breakdown is formed between the pin electrode and the static water surface. Both cases are discussed and compared

  2. An analytical threshold voltage model for a short-channel dual-metal-gate (DMG) recessed-source/drain (Re-S/D) SOI MOSFET

    Science.gov (United States)

    Saramekala, G. K.; Santra, Abirmoya; Dubey, Sarvesh; Jit, Satyabrata; Tiwari, Pramod Kumar

    2013-08-01

    In this paper, an analytical short-channel threshold voltage model is presented for a dual-metal-gate (DMG) fully depleted recessed source/drain (Re-S/D) SOI MOSFET. For the first time, the advantages of recessed source/drain (Re-S/D) and of dual-metal-gate structure are incorporated simultaneously in a fully depleted SOI MOSFET. The analytical surface potential model at Si-channel/SiO2 interface and Si-channel/buried-oxide (BOX) interface have been developed by solving the 2-D Poisson’s equation in the channel region with appropriate boundary conditions assuming parabolic potential profile in the transverse direction of the channel. Thereupon, a threshold voltage model is derived from the minimum surface potential in the channel. The developed model is analyzed extensively for a variety of device parameters like the oxide and silicon channel thicknesses, thickness of source/drain extension in the BOX, control and screen gate length ratio. The validity of the present 2D analytical model is verified with ATLAS™, a 2D device simulator from SILVACO Inc.

  3. Metal adsorption process in activated carbon fiber from textile PAN fiber aim electrode production

    International Nuclear Information System (INIS)

    Rodrigues, Aline Castilho; Goncalves, Emerson Sarmento; Silva, Elen Leal da; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Cuna, Andres

    2016-01-01

    Full text: Carbon fibers have a variety of applications in industry and have been increasingly studied to explore their various characteristics. Studies show that the activated carbon fiber has been effective in removing small contaminants as well as activated carbon, because of its characteristic porosity. Other studies relate carbonaceous materials to the electrical conductivity devices application. This work is based on the use of an activated carbon fiber from textile polyacrylonitrile (PAN) for metallic ion adsorption from aqueous solution. Consequently, it improves the electrical characteristics and this fact show the possibility to use this material as electrode. The work was performed by adsorption process in saline solution (NO 3 Ag and ClPd) and activated carbon fiber in felt form as adsorbent. The metal adsorption on activated carbon fiber was characterized by textural analysis, x-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive x-ray (SEM-EDX), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). It was observed that activated carbon fiber showed good adsorption capacity for the metals used. At the end of the process, the activated carbon fiber samples gained about 15% by weight, related to metallic fraction incorporated into the fiber and the process of adsorption does not changed the structural, morphological and chemistry inertness of the samples. The results indicate the feasibility of this metal incorporation techniques activated carbon fiber for the production of electrodes facing the electrochemical area. (author)

  4. Metal adsorption process in activated carbon fiber from textile PAN fiber aim electrode production

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Aline Castilho; Goncalves, Emerson Sarmento, E-mail: alinerodrigues_1@msn.com [Instituto Tecnologico Aeroespacial (ITA), Sao Jose dos Campos, SP (Brazil); Silva, Elen Leal da; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Cuna, Andres [Faculdade de Quimica, Universidad de la Republica (Uruguay)

    2016-07-01

    Full text: Carbon fibers have a variety of applications in industry and have been increasingly studied to explore their various characteristics. Studies show that the activated carbon fiber has been effective in removing small contaminants as well as activated carbon, because of its characteristic porosity. Other studies relate carbonaceous materials to the electrical conductivity devices application. This work is based on the use of an activated carbon fiber from textile polyacrylonitrile (PAN) for metallic ion adsorption from aqueous solution. Consequently, it improves the electrical characteristics and this fact show the possibility to use this material as electrode. The work was performed by adsorption process in saline solution (NO{sub 3}Ag and ClPd) and activated carbon fiber in felt form as adsorbent. The metal adsorption on activated carbon fiber was characterized by textural analysis, x-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive x-ray (SEM-EDX), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). It was observed that activated carbon fiber showed good adsorption capacity for the metals used. At the end of the process, the activated carbon fiber samples gained about 15% by weight, related to metallic fraction incorporated into the fiber and the process of adsorption does not changed the structural, morphological and chemistry inertness of the samples. The results indicate the feasibility of this metal incorporation techniques activated carbon fiber for the production of electrodes facing the electrochemical area. (author)

  5. Effect of Bainitic Microstructure on Ballistic Performance of Armour Steel Weld Metal Using Developed High Ni-Coated Electrode

    Science.gov (United States)

    Pramanick, A. K.; Das, H.; Reddy, G. M.; Ghosh, M.; Nandy, S.; Pal, T. K.

    2018-05-01

    Welding of armour steel has gained significant importance during the past few years as recent civilian and military requirements demand weld metal properties matching with base metal having good ballistic performance along with high strength and toughness at - 40 °C as per specification. The challenge of armour steel welding therefore lies in controlling the weld metal composition which is strongly dependent on welding electrode/consumables, resulting in desired weld microstructure consisting of lower bainite along with retained austenite. The performance of butt-welded armour steel joints produced by the developed electrodes was evaluated using tensile testing, ballistic testing, impact toughness at room temperature and subzero temperature. Microstructures of weld metals are exclusively characterized by x-ray diffraction technique, scanning electron microscope and transmission electron microscopy with selected area diffraction pattern. Experimental results show that weld metal with relatively lower carbon, higher manganese and lower nickel content was attributed to lower bainite with film type of retained austenite may be considered as a most covetable microstructure for armour steel weld metal.

  6. Effect of Bainitic Microstructure on Ballistic Performance of Armour Steel Weld Metal Using Developed High Ni-Coated Electrode

    Science.gov (United States)

    Pramanick, A. K.; Das, H.; Reddy, G. M.; Ghosh, M.; Nandy, S.; Pal, T. K.

    2018-04-01

    Welding of armour steel has gained significant importance during the past few years as recent civilian and military requirements demand weld metal properties matching with base metal having good ballistic performance along with high strength and toughness at - 40 °C as per specification. The challenge of armour steel welding therefore lies in controlling the weld metal composition which is strongly dependent on welding electrode/consumables, resulting in desired weld microstructure consisting of lower bainite along with retained austenite. The performance of butt-welded armour steel joints produced by the developed electrodes was evaluated using tensile testing, ballistic testing, impact toughness at room temperature and subzero temperature. Microstructures of weld metals are exclusively characterized by x-ray diffraction technique, scanning electron microscope and transmission electron microscopy with selected area diffraction pattern. Experimental results show that weld metal with relatively lower carbon, higher manganese and lower nickel content was attributed to lower bainite with film type of retained austenite may be considered as a most covetable microstructure for armour steel weld metal.

  7. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    Science.gov (United States)

    Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo

    2018-01-01

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles. PMID:29495617

  8. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position.

    Science.gov (United States)

    Ju, Hong; Yang, Yuan-Feng; Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo; Li, Yan

    2018-02-28

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current-density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  9. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    Directory of Open Access Journals (Sweden)

    Hong Ju

    2018-02-01

    Full Text Available The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2, titanium (TA2, and 316L stainless steel (316L SS. These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  10. Heavy metals modulate the activity of the purinergic P2X4 receptor

    International Nuclear Information System (INIS)

    Coddou, Claudio; Lorca, Ramon A.; Acuna-Castillo, Claudio; Grauso, Marta; Rassendren, Francois; Huidobro-Toro, J.Pablo

    2005-01-01

    To further characterize the nature of the regulatory metal-binding sites of the rat P2X 4 receptor, several transition heavy metals were tested to examine their ability to mimic the facilitator action of zinc or the inhibitory action of copper. cDNA coding for the rat P2X 4 receptor was injected into Xenopus laevis oocytes; the two-electrode voltage-clamp technique was used to measure and quantify the ATP-evoked currents in the absence or presence of the metals. Cadmium facilitated the ATP-gated currents in a reversible and voltage-independent manner; maximal potentiation occurred within less than 1 min. Cadmium displaced leftward, in a concentration-dependent manner, the ATP concentration-response curve. In contrast, mercury reduced the ATP-gated currents in a reversible, time, and concentration manner. Maximal inhibition occurred after about 5 min of metal application. Cobalt also augmented the ATP-evoked currents, but its action was long lasting and did not reverse even after 45 min of metal washout. Other metals such as lead, nickel, manganese, silver, or gallium did not significantly alter the ATP-gated currents. The co-application of cadmium plus zinc or mercury plus copper caused additive effects. Mutation of H140 by alanine (H140A) augmented both the cadmium-induced facilitation and the mercury-induced inhibition. In contrast, the H241A mutant showed characteristics indistinguishable from the wild type. The H286A mutant showed a normal cadmium-induced potentiation, but an increased mercury inhibition. Out of the metals examined, only cadmium mimicked closely the action of zinc, evidencing commonalities. While mercury mimicked the action of copper, both metals apparently interact at distinct metal-binding sites. The present findings allow us to infer that heavy metals modulate the P2X 4 receptor by acting in at least three separate metal-binding sites

  11. Leakage current suppression with a combination of planarized gate and overlap/off-set structure in metal-induced laterally crystallized polycrystalline-silicon thin-film transistors

    Science.gov (United States)

    Chae, Hee Jae; Seok, Ki Hwan; Lee, Sol Kyu; Joo, Seung Ki

    2018-04-01

    A novel inverted staggered metal-induced laterally crystallized (MILC) polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) with a combination of a planarized gate and an overlap/off-set at the source-gate/drain-gate structure were fabricated and characterized. While the MILC process is advantageous for fabricating inverted staggered poly-Si TFTs, MILC TFTs reveal higher leakage current than TFTs crystallized by other processes due to their high trap density of Ni contamination. Due to this drawback, the planarized gate and overlap/off-set structure were applied to inverted staggered MILC TFTs. The proposed device shows drastic suppression of leakage current and pinning phenomenon by reducing the lateral electric field and the space-charge limited current from the gate to the drain.

  12. Reduction of methanol crossover by thin cracked metal barriers at the interface between membrane and electrode in direct methanol fuel cells

    Science.gov (United States)

    Kim, Sungjun; Jang, Segeun; Kim, Sang Moon; Ahn, Chi-Yeong; Hwang, Wonchan; Cho, Yong-Hun; Sung, Yung-Eun; Choi, Mansoo

    2017-09-01

    This work reports the successful reduction in methanol crossover by creating a thin cracked metal barrier at the interface between a Nafion® membrane and an electrode in direct methanol fuel cells (DMFCs). The cracks are generated by simple mechanical stretching of a metal deposited Nafion® membrane as a result of the elastic mismatch between the two attached surfaces. The cracked metal barriers with varying strains (∼0.5 and ∼1.0) are investigated and successfully incorporated into the DMFC. Remarkably, the membrane electrode assembly with the thin metal crack exhibits comparable ohmic resistance as well as reduction of methanol crossover, which enhanced the device performance.

  13. Characteristics of dual-gate thin-film transistors for applications in digital radiology

    International Nuclear Information System (INIS)

    Waechter, D.; Huang, Z.; Zhao, W.; Blevis, I.; Rowlands, J.A.

    1996-01-01

    A large-area flat-panel detector for digital radiology is being developed. The detector uses an array of dual-gate thin-film transistors (TFTs) to read out X-ray-generated charge produced in an amorphous selenium (a-Se) layer. The TFTs use CdSe as the semiconductor and use the bottom gate for row selection. The top gate can be divided into a 'deliberate' gate, covering most of the channel length, and small 'parasitic' gates that consist of: overlap of source or drain metal over the top-gate oxide; and gap regions in the metal that are covered only by the a-Se. In this paper we present the properties of dual-gate TFTs and examine the effect of both the deliberate and parasitic gates on the detector operation. Various options for controlling the top-gate potential are analyzed and discussed. (author)

  14. Combined use of transcranial magnetic stimulation and metal electrode implants: a theoretical assessment of safety considerations

    Science.gov (United States)

    Golestanirad, Laleh; Rouhani, Hossein; Elahi, Behzad; Shahim, Kamal; Chen, Robert; Mosig, Juan R.; Pollo, Claudio; Graham, Simon J.

    2012-12-01

    This paper provides a theoretical assessment of the safety considerations encountered in the simultaneous use of transcranial magnetic stimulation (TMS) and neurological interventions involving implanted metallic electrodes, such as electrocorticography. Metal implants are subject to magnetic forces due to fast alternating magnetic fields produced by the TMS coil. The question of whether the mechanical movement of the implants leads to irreversible damage of brain tissue is addressed by an electromagnetic simulation which quantifies the magnitude of imposed magnetic forces. The assessment is followed by a careful mechanical analysis determining the maximum tolerable force which does not cause irreversible tissue damage. Results of this investigation provide useful information on the range of TMS stimulator output powers which can be safely used in patients having metallic implants. It is shown that conventional TMS applications can be considered safe when applied on patients with typical electrode implants as the induced stress in the brain tissue remains well below the limit of tissue damage.

  15. Structural and electrical characteristics of high-k/metal gate metal oxide semiconductor capacitors fabricated on flexible, semi-transparent silicon (100) fabric

    KAUST Repository

    Rojas, Jhonathan Prieto

    2013-02-12

    In pursuit of flexible computers with high performance devices, we demonstrate a generic process to fabricate 10 000 metal-oxide-semiconductor capacitors (MOSCAPs) with semiconductor industry\\'s most advanced high-k/metal gate stacks on widely used, inexpensive bulk silicon (100) wafers and then using a combination of iso-/anisotropic etching to release the top portion of the silicon with the already fabricated devices as a mechanically flexible (bending curvature of 133 m−1), optically semi-transparent silicon fabric (1.5 cm × 3 cm × 25 μm). The electrical characteristics show 3.7 nm effective oxide thickness, −0.2 V flat band voltage, and no hysteresis from the fabricated MOSCAPs.

  16. Structural and electrical characteristics of high-k/metal gate metal oxide semiconductor capacitors fabricated on flexible, semi-transparent silicon (100) fabric

    KAUST Repository

    Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa; Sevilla, Galo T.

    2013-01-01

    In pursuit of flexible computers with high performance devices, we demonstrate a generic process to fabricate 10 000 metal-oxide-semiconductor capacitors (MOSCAPs) with semiconductor industry's most advanced high-k/metal gate stacks on widely used, inexpensive bulk silicon (100) wafers and then using a combination of iso-/anisotropic etching to release the top portion of the silicon with the already fabricated devices as a mechanically flexible (bending curvature of 133 m−1), optically semi-transparent silicon fabric (1.5 cm × 3 cm × 25 μm). The electrical characteristics show 3.7 nm effective oxide thickness, −0.2 V flat band voltage, and no hysteresis from the fabricated MOSCAPs.

  17. Optimization of transition-metal dichalcogenides based field-effecttransistors via contact engineering

    Science.gov (United States)

    Perera, Meeghage Madusanka

    Layered transition Metal Dichalcogenides (TMDs) have demonstrated a wide range of remarkable properties for applications in next generation nano-electronics. These systems have displayed many "graphene-like" properties including a relatively high carrier mobility, mechanical flexibility, chemical and thermal stability, and moreover offer the significant advantage of a substantial band gap. However, the fabrication of high performance field-effect transistors (FETs) of TMDs is challenging mainly due to the formation of a significant Schottky barrier at metal/TMD interface in most cases. The main goal of this study is to develop novel contact engineering strategies to achieve low-resistance Ohmic contacts. Our first approach is to use Ionic Liquid (IL) gating of metal contacted MoS2 FETs to achieve highly transparent tunneling contacts due to the strong band banding at metal/MoS2 interface. The substantially reduced contact resistance in ionic-liquid-gated bilayer and few-layer MoS 2 FETs results in an ambipolar behavior with high ON/OFF ratios, a near-ideal subthreshold swing, and significantly improved field-effect mobility. Remarkably, the mobility of a 3-nm-thick MoS2 FET with an IL gate was found to increase from ˜ 100 cm2V-1s-1 to ˜ 220 cm2V-1s-1 as the temperature decreased from 180 K to 77 K. This finding is in quantitative agreement with the true channel mobility measured by four-terminal measurement, suggesting that the mobility is predominantly limited by phonon-scattering. To further improve the contacts of TMD devices, graphene was used as work function tunable electrodes. In order to achieve low Schottky barrier height, both IL gating and surface charge transfer doping were used to tune the work function of graphene electrodes close to the conduction band edge of MoS 2. As a result, the performance of our graphene contacted MoS2 FETs is limited by the channel rather than contacts, which is further verified by four-terminal measurements. Finally

  18. LiCl-LiI molten salt electrolyte with bismuth-lead positive electrode for liquid metal battery

    Science.gov (United States)

    Kim, Junsoo; Shin, Donghyeok; Jung, Youngjae; Hwang, Soo Min; Song, Taeseup; Kim, Youngsik; Paik, Ungyu

    2018-02-01

    Liquid metal batteries (LMBs) are attractive energy storage device for large-scale energy storage system (ESS) due to the simple cell configuration and their high rate capability. The high operation temperature caused by high melting temperature of both the molten salt electrolyte and metal electrodes can induce the critical issues related to the maintenance cost and degradation of electrochemical properties resulting from the thermal corrosion of materials. Here, we report a new chemistry of LiCl-LiI electrolyte and Bi-Pb positive electrode to lower the operation temperature of Li-based LMBs and achieve the long-term stability. The cell (Li|LiCl-LiI|Bi-Pb) is operated at 410 °C by employing the LiCl-LiI (LiCl:LiI = 36:64 mol %) electrolyte and Bi-Pb alloy (Bi:Pb = 55.5:44.5 mol %) positive electrode. The cell shows excellent capacity retention (86.5%) and high Coulombic efficiencies over 99.3% at a high current density of 52 mA cm-2 during 1000th cycles.

  19. Proposal for multiple-valued logic in gated semiconducting carbon nanotubes

    Science.gov (United States)

    Dragoman, D.; Dragoman, M.

    2006-06-01

    The proposal for an implementation of multi-valued logical devices based on excited states of a single quantum well is analysed for various configurations of carbon nanotube quantum wells, which were already experimentally demonstrated at room temperature. The best configuration, which gathers all the advantages of multi-valued logic, is a gated carbon nanotube device where the quantum well is imprinted via DC voltages applied on gate electrodes.

  20. Phytochelatin Modified Electrode Surface as a Sensitive Heavy- Metal Ion Biosensor

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2005-02-01

    Full Text Available Electrochemical biosensors have superior properties over other existingmeasurement systems because they can provide rapid, simple and low-cost on-fielddetermination of many biological active species and a number of dangerous pollutants. Inour work, we suggested a new heavy metal biosensor based on interaction of heavy metalions (Cd2+ and Zn2+ with phytochelatin, which was adsorbed on the surface of the hangingmercury drop electrode, using adsorptive transfer stripping differential pulse voltammetry.In addition, we applied the suggested technique for the determination of heavy metals in abiological sample – human urine and platinum in a pharmaceutical drug. The detectionlimits (3 S/N of Cd(II, Zn(II and cis-platin were about 1.0, 13.3 and 1.9 pmole in 5 μl,respectively. On the basis of the obtained results, we propose that the suggested techniqueoffers simple, rapid, and low-cost detection of heavy metals in environmental, biologicaland medical samples.

  1. A novel gate and drain engineered charge plasma tunnel field-effect transistor for low sub-threshold swing and ambipolar nature

    Science.gov (United States)

    Yadav, Dharmendra Singh; Raad, Bhagwan Ram; Sharma, Dheeraj

    2016-12-01

    In this paper, we focus on the improvement of figures of merit for charge plasma based tunnel field-effect transistor (TFET) in terms of ON-state current, threshold voltage, sub-threshold swing, ambipolar nature, and gate to drain capacitance which provides better channel controlling of the device with improved high frequency response at ultra-low supply voltages. Regarding this, we simultaneously employ work function engineering on the drain and gate electrode of the charge plasma TFET. The use of gate work function engineering modulates the barrier on the source/channel interface leads to improvement in the ON-state current, threshold voltage, and sub-threshold swing. Apart from this, for the first time use of work function engineering on the drain electrode increases the tunneling barrier for the flow of holes on the drain/channel interface, it results into suppression of ambipolar behavior. The lowering of gate to drain capacitance therefore enhanced high frequency parameters. Whereas, the presence of dual work functionality at the gate electrode and over the drain region improves the overall performance of the charge plasma based TFET.

  2. An integrated bioimpedance—ECG gating technique for respiratory and cardiac motion compensation in cardiac PET

    International Nuclear Information System (INIS)

    Koivumäki, Tuomas; Nekolla, Stephan G; Fürst, Sebastian; Loher, Simone; Schwaiger, Markus; Vauhkonen, Marko; Hakulinen, Mikko A

    2014-01-01

    Respiratory motion may degrade image quality in cardiac PET imaging. Since cardiac PET studies often involve cardiac gating by ECG, a separate respiratory monitoring system is required increasing the logistic complexity of the examination, in case respiratory gating is also needed. Thus, we investigated the simultaneous acquisition of both respiratory and cardiac gating signals using II limb lead mimicking electrode configuration during cardiac PET scans of 11 patients. In addition to conventional static and ECG-gated images, bioimpedance technique was utilized to generate respiratory- and dual-gated images. The ability of the bioimpedance technique to monitor intrathoracic respiratory motion was assessed estimating cardiac displacement between end-inspiration and -expiration. The relevance of dual gating was evaluated in left ventricular volume and myocardial wall thickness measurements. An average 7.6  ±  3.3 mm respiratory motion was observed in the study population. Dual gating showed a small but significant increase (4 ml, p = 0.042) in left ventricular myocardial volume compared to plain cardiac gating. In addition, a thinner myocardial wall was observed in dual-gated images (9.3  ±  1.3 mm) compared to cardiac-gated images (11.3  ±  1.3 mm, p = 0.003). This study shows the feasibility of bioimpedance measurements for dual gating in a clinical setting. The method enables simultaneous acquisition of respiratory and cardiac gating signals using a single device with standard ECG electrodes. (paper)

  3. Direct Structural Identification of Gas Induced Gate-Opening Coupled with Commensurate Adsorption in a Microporous Metal-Organic Framework.

    Science.gov (United States)

    Banerjee, Debasis; Wang, Hao; Plonka, Anna M; Emge, Thomas J; Parise, John B; Li, Jing

    2016-08-08

    Gate-opening is a unique and interesting phenomenon commonly observed in flexible porous frameworks, where the pore characteristics and/or crystal structures change in response to external stimuli such as adding or removing guest molecules. For gate-opening that is induced by gas adsorption, the pore-opening pressure often varies for different adsorbate molecules and, thus, can be applied to selectively separate a gas mixture. The detailed understanding of this phenomenon is of fundamental importance to the design of industrially applicable gas-selective sorbents, which remains under investigated due to the lack of direct structural evidence for such systems. We report a mechanistic study of gas-induced gate-opening process of a microporous metal-organic framework, [Mn(ina)2 ] (ina=isonicotinate) associated with commensurate adsorption, by a combination of several analytical techniques including single crystal X-ray diffraction, in situ powder X-ray diffraction coupled with differential scanning calorimetry (XRD-DSC), and gas adsorption-desorption methods. Our study reveals that the pronounced and reversible gate opening/closing phenomena observed in [Mn(ina)2 ] are coupled with a structural transition that involves rotation of the organic linker molecules as a result of interaction of the framework with adsorbed gas molecules including carbon dioxide and propane. The onset pressure to open the gate correlates with the extent of such interaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrochemical Effect of Different Modified Glassy Carbon Electrodes on the Values of Diffusion Coefficient for Some Heavy Metal Ions

    International Nuclear Information System (INIS)

    Radhi, M M; Alwan, S H; Amir, Y K A; Tee, T W

    2013-01-01

    Glassy carbon electrode (GCE) was modified with carbon nanotubes (CNT), C 60 and activated carbon (AC) by mechanical attachment method and solution evaporation technique to preparation CNT/GCE, C 60 /GCE and AC/GCE, these electrodes were modified in Li + solution via cyclic voltammetry (CV) potential cycling to preparing CNT/Li + /GCE, C 60 /Li + /GCE and AC/Li + /GCE. The sensing characteristics of the modified film electrodes, demonstrated in the application study for different heavy metal ions such as Hg 2+ , Cd 2+ , and Mn 2+ . Cyclic voltammetric effect by chronoamperometry (CA) technique was investigated to determination the diffusion coefficient (D f ) values from Cottrell equation at these ions. Based on Cottrell equation (diffusion coefficient) of the redox current peaks of different heavy metal ions at different modified electrodes were studied to evaluate the sensing of these electrodes by the diffusion coefficient values. The modification of GCE with nano materials and Li + act an enhancement for the redox current peaks to observe that the diffusion process are high at CNT/Li + /GCE, C 60 /Li + /GCE and AC/Li+/GCE, but it has low values at unmodified GCE.

  5. Electrodes synthesized from carbon nanostructures coated with a smooth and conformal metal adlayer

    Science.gov (United States)

    Adzic, Radoslav; Harris, Alexander

    2014-04-15

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by a surface preparation process involving immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing a suitable quantity of non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means. The nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. The process can be controlled and repeated to obtain a desired film coverage. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  6. Formation of strain-induced quantum dots in gated semiconductor nanostructures

    Directory of Open Access Journals (Sweden)

    Ted Thorbeck

    2015-08-01

    Full Text Available A long-standing mystery in the field of semiconductor quantum dots (QDs is: Why are there so many unintentional dots (also known as disorder dots which are neither expected nor controllable. It is typically assumed that these unintentional dots are due to charged defects, however the frequency and predictability of the location of the unintentional QDs suggests there might be additional mechanisms causing the unintentional QDs besides charged defects. We show that the typical strains in a semiconductor nanostructure from metal gates are large enough to create strain-induced quantum dots. We simulate a commonly used QD device architecture, metal gates on bulk silicon, and show the formation of strain-induced QDs. The strain-induced QD can be eliminated by replacing the metal gates with poly-silicon gates. Thus strain can be as important as electrostatics to QD device operation operation.

  7. Recent advances in Alkali Metal Thermoelectric Converter (AMTEC) electrode performance and modeling. [for space power systems

    Science.gov (United States)

    Bankston, C. P.; Williams, R. M.; Jeffries-Nakamura, B.; Loveland, M. E.; Underwood, M. L.

    1988-01-01

    The Alkali Metal Thermoelectric Converter (AMTEC) is a direct energy conversion device, utilizing a high sodium vapor pressure or activity ratio across a beta-double prime-alumina solid electrolyte (BASE). This paper describes progress on the remaining scientific issue which must be resolved to demonstrate AMTEC feasibility for space power systems: a stable, high power density electrode. Two electrode systems have recently been discovered at JPL that now have the potential to meet space power requirements. One of these is a very thin sputtered molybdenum film, less than 0.5 micron thick, with overlying current collection grids. This electrode has experimentally demonstrated stable performance at 0.4-0.5 W/sq cm for hundreds of hours. Recent modeling results show that at least 0.7 W/sq cm can be achieved. The model of electrode performance now includes all loss mechanisms, including charge transfer resistances at the electrode/electrolyte interface. A second electrode composition, cosputtered platinum/tungsten, has demonstrated 0.8 W/sq cm for 160 hours. Systems studies show that a stable electrode performance of 0.6 W/sq cm will enable high efficiency space power systems.

  8. Effects of a metallic front gate on the temperature-dependent electronic property of pentacene films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yow-Jon, E-mail: rzr2390@yahoo.com.tw [Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan (China); Tsao, Hou-Yen [Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan (China); Liu, Day-Shan [Graduate Institute of Electro-Optical and Materials Science, National Formosa University, Huwei 632, Taiwan (China)

    2014-11-14

    The effect of a metallic front gate on the temperature-dependent electronic property of pentacene films was investigated in this study. The carrier mobility exhibits strong temperature dependence, implying the dominance of tunneling (hopping) at low (high) temperatures. The room-temperature mobility was drastically increased by capping an In (Au) layer on the pentacene front surface. However, the carrier concentration is not affected. An increase in the phonon energy occurs for In-capped or Au-capped pentacene samples, which corresponds to the abrupt transition to the nonlocal electron–phonon coupling. The enhanced mobility by capping a metal layer is attributed to a change in the electron–phonon coupling. - Highlights: • For the metal-capped and uncapped pentacene films, the mobility was researched. • The mobility was dramatically increased by capping an In (Au) layer. • The induced strain by capping a metal layer is found. • The strain may lead to the electron–phonon coupling variation. • The enhanced mobility is attributed to the weakened electron–phonon coupling.

  9. Organic light emitting diode with light extracting electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Abhinav; Buhay, Harry

    2017-04-18

    An organic light emitting diode (10) includes a substrate (20), a first electrode (12), an emissive active stack (14), and a second electrode (18). At least one of the first and second electrodes (12, 18) is a light extracting electrode (26) having a metallic layer (28). The metallic layer (28) includes light scattering features (29) on and/or in the metallic layer (28). The light extracting features (29) increase light extraction from the organic light emitting diode (10).

  10. Air-gating and chemical-gating in transistors and sensing devices made from hollow TiO2 semiconductor nanotubes

    Science.gov (United States)

    Alivov, Yahya; Funke, Hans; Nagpal, Prashant

    2015-07-01

    Rapid miniaturization of electronic devices down to the nanoscale, according to Moore’s law, has led to some undesirable effects like high leakage current in transistors, which can offset additional benefits from scaling down. Development of three-dimensional transistors, by spatial extension in the third dimension, has allowed higher contact area with a gate electrode and better control over conductivity in the semiconductor channel. However, these devices do not utilize the large surface area and interfaces for new electronic functionality. Here, we demonstrate air gating and chemical gating in hollow semiconductor nanotube devices and highlight the potential for development of novel transistors that can be modulated using channel bias, gate voltage, chemical composition, and concentration. Using chemical gating, we reversibly altered the conductivity of nanoscaled semiconductor nanotubes (10-500 nm TiO2 nanotubes) by six orders of magnitude, with a tunable rectification factor (ON/OFF ratio) ranging from 1-106. While demonstrated air- and chemical-gating speeds were slow here (˜seconds) due to the mechanical-evacuation rate and size of our chamber, the small nanoscale volume of these hollow semiconductors can enable much higher switching speeds, limited by the rate of adsorption/desorption of molecules at semiconductor interfaces. These chemical-gating effects are completely reversible, additive between different chemical compositions, and can enable semiconductor nanoelectronic devices for ‘chemical transistors’, ‘chemical diodes’, and very high-efficiency sensing applications.

  11. Electrochemical Modeling and Performance of a Lithium- and Manganese-Rich Layered Transition-Metal Oxide Positive Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dees, Dennis W.; Abraham, Daniel P; Lu, Wenquan; Gallagher, Kevin G.; Bettge, Martin; Jansen, Andrew N

    2015-01-21

    The impedance of a lithium- and manganese-rich layered transition-metal oxide (MR-NMC) positive electrode, specifically Li1.2Ni0.15Mn0.55Co0.1O2, is compared to two other transition-metal layered oxide materials, specifically LiNi0.8Co0.15Al0.05O2 (NCA) and Li1.05(Ni1/3Co1/3Mn1/3)0.95O2 (NMC). A more detailed electrochemical impedance spectroscopy (EIS) study is conducted on the LMR-NMC electrode, which includes a range of states-of-charge (SOCs) for both current directions (i.e. charge and discharge) and two relaxation times (i.e. hours and one hundred hours) before the EIS sweep. The LMR-NMC electrode EIS studies are supported by half-cell constant current and galvanostatic intermittent titration technique (GITT) studies. Two types of electrochemical models are utilized to examine the results. The first type is a lithium ion cell electrochemical model for intercalation active material electrodes that includes a complex active material/electrolyte interfacial structure. In conclusion, the other is a lithium ion half-cell electrochemical model that focuses on the unique composite structure of the bulk LMR-NMC materials.

  12. Physical Modeling of Gate-Controlled Schottky Barrier Lowering of Metal-Graphene Contacts in Top-Gated Graphene Field-Effect Transistors

    Science.gov (United States)

    Mao, Ling-Feng; Ning, Huansheng; Huo, Zong-Liang; Wang, Jin-Yan

    2015-12-01

    A new physical model of the gate controlled Schottky barrier height (SBH) lowering in top-gated graphene field-effect transistors (GFETs) under saturation bias condition is proposed based on the energy conservation equation with the balance assumption. The theoretical prediction of the SBH lowering agrees well with the experimental data reported in literatures. The reduction of the SBH increases with the increasing of gate voltage and relative dielectric constant of the gate oxide, while it decreases with the increasing of oxide thickness, channel length and acceptor density. The magnitude of the reduction is slightly enhanced under high drain voltage. Moreover, it is found that the gate oxide materials with large relative dielectric constant (>20) have a significant effect on the gate controlled SBH lowering, implying that the energy relaxation of channel electrons should be taken into account for modeling SBH in GFETs.

  13. Physical Modeling of Gate-Controlled Schottky Barrier Lowering of Metal-Graphene Contacts in Top-Gated Graphene Field-Effect Transistors.

    Science.gov (United States)

    Mao, Ling-Feng; Ning, Huansheng; Huo, Zong-Liang; Wang, Jin-Yan

    2015-12-17

    A new physical model of the gate controlled Schottky barrier height (SBH) lowering in top-gated graphene field-effect transistors (GFETs) under saturation bias condition is proposed based on the energy conservation equation with the balance assumption. The theoretical prediction of the SBH lowering agrees well with the experimental data reported in literatures. The reduction of the SBH increases with the increasing of gate voltage and relative dielectric constant of the gate oxide, while it decreases with the increasing of oxide thickness, channel length and acceptor density. The magnitude of the reduction is slightly enhanced under high drain voltage. Moreover, it is found that the gate oxide materials with large relative dielectric constant (>20) have a significant effect on the gate controlled SBH lowering, implying that the energy relaxation of channel electrons should be taken into account for modeling SBH in GFETs.

  14. Performance and impedance studies of thin, porous molybdenum and tungsten electrodes for the alkali metal thermoelectric converter

    Science.gov (United States)

    Wheeler, B. L.; Williams, R. M.; Jeffries-Nakamura, B.; Lamb, J. L.; Loveland, M. E.; Bankston, C. P.; Cole, T.

    1988-01-01

    Columnar, porous, magnetron-sputtered molybdenum and tungsten films show optimum performance as alkali metal thermoelectric converter electrodes at thicknesses less than 1.0 micron when used with molybdenum or nickel current collector grids. Power densities of 0.40 W/sq cm for 0.5-micron molybdenum films at 1200 K and 0.35 W/sq cm for 0.5-micron tungsten films at 1180 K were obtained at electrode maturity after 40-90 h. Sheet resistances of magnetron sputter deposited films on sodium beta-double-prime-alumina solid electrolyte (BASE) substrates were found to increase very steeply as thickness is decreased below about 0.3-double-prime 0.4-micron. The ac impedance data for these electrodes have been interpreted in terms of contributions from the bulk BASE and the porous electrode/BASE interface. Voltage profiles of operating electrodes show that the total electrode area, of electrodes with thickness less than 2.0 microns, is not utilized efficiently unless a fairly fine (about 1 x 1 mm) current collector grid is employed.

  15. Positive electrode for a lithium battery

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2015-04-07

    A method for producing a lithium alkali transition metal oxide for use as a positive electrode material for lithium secondary batteries by a precipitation method. The positive electrode material is a lithium alkali transition metal composite oxide and is prepared by mixing a solid state mixed with alkali and transition metal carbonate and a lithium source. The mixture is thermally treated to obtain a small amount of alkali metal residual in the lithium transition metal composite oxide cathode material.

  16. Impact of oxide thickness on gate capacitance – Modelling and ...

    Indian Academy of Sciences (India)

    Department of Electronics and Communication Engineering, National ... conventional HEMT, Schottky barrier diode is formed at the gate electrode. .... term corresponds to the energy required for the electric field in the oxide layer and the.

  17. Metallic CoS2 nanowire electrodes for high cycling performance supercapacitors

    Science.gov (United States)

    Ren, Ren; Faber, Matthew S.; Dziedzic, Rafal; Wen, Zhenhai; Jin, Song; Mao, Shun; Chen, Junhong

    2015-12-01

    We report metallic cobalt pyrite (CoS2) nanowires (NWs) prepared directly on current collecting electrodes, e.g., carbon cloth or graphite disc, for high-performance supercapacitors. These CoS2 NWs have a variety of advantages for supercapacitor applications. Because the metallic CoS2 NWs are synthesized directly on the current collector, the good electrical connection enables efficient charge transfer between the active CoS2 materials and the current collector. In addition, the open spaces between the sea urchin structure NWs lead to a large accessible surface area and afford rapid mass transport. Moreover, the robust CoS2 NW structure results in high stability of the active materials during long-term operation. Electrochemical characterization reveals that the CoS2 NWs enable large specific capacitance (828.2 F g-1 at a scan rate of 0.01 V s-1) and excellent long term cycling stability (0-2.5% capacity loss after 4250 cycles at 5 A g-1) for pseudocapacitors. This example of metallic CoS2 NWs for supercapacitor applications expands the opportunities for transition metal sulfide-based nanostructures in emerging energy storage applications.

  18. DNA-FET using carbon nanotube electrodes

    International Nuclear Information System (INIS)

    Sasaki, T K; Ikegami, A; Aoki, N; Ochiai, Y

    2006-01-01

    We demonstrate DNA field effect transistor (DNA-FET) using multiwalled carbon nanotube (MWNT) as nano-structural source and drain electrodes. The MWNT electrodes have been fabricated by focused ion-beam bombardment (FIBB). A very short channel, approximately 50 nm, was easily formed between the severed MWNT. The current-voltage (I-V) characteristics of DNA molecules between the MWNT electrodes showed hopping transport property. We have also measured the gate-voltage dependence in the I-V characteristics and found that poly DNA molecules exhibits p-type conduction. The transport of DNA-FET can be explained by two hopping lengths which depend on the range of the source-drain bias voltages

  19. Features of Random Metal Nanowire Networks with Application in Transparent Conducting Electrodes

    KAUST Repository

    Maloth, Thirupathi

    2017-05-01

    Among the alternatives to conventional Indium Tin Oxide (ITO) used in making transparent conducting electrodes, the random metal nanowire (NW) networks are considered to be superior offering performance at par with ITO. The performance is measured in terms of sheet resistance and optical transmittance. However, as the electrical properties of such random networks are achieved thanks to a percolation network, a minimum size of the electrodes is needed so it actually exceeds the representative volume element (RVE) of the material and the macroscopic electrical properties are achieved. There is not much information about the compatibility of this minimum RVE size with the resolution actually needed in electronic devices. Furthermore, the efficiency of NWs in terms of electrical conduction is overlooked. In this work, we address the above industrially relevant questions - 1) The minimum size of electrodes that can be made based on the dimensions of NWs and the material coverage. For this, we propose a morphology based classification in defining the RVE size and we also compare the same with that is based on macroscopic electrical properties stabilization. 2) The amount of NWs that do not participate in electrical conduction, hence of no practical use. The results presented in this thesis are a design guide to experimentalists to design transparent electrodes with more optimal usage of the material.

  20. Epitaxial ZnO gate dielectrics deposited by RF sputter for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    Science.gov (United States)

    Yoon, Seonno; Lee, Seungmin; Kim, Hyun-Seop; Cha, Ho-Young; Lee, Hi-Deok; Oh, Jungwoo

    2018-01-01

    Radio frequency (RF)-sputtered ZnO gate dielectrics for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) were investigated with varying O2/Ar ratios. The ZnO deposited with a low oxygen content of 4.5% showed a high dielectric constant and low interface trap density due to the compensation of oxygen vacancies during the sputtering process. The good capacitance-voltage characteristics of ZnO-on-AlGaN/GaN capacitors resulted from the high crystallinity of oxide at the interface, as investigated by x-ray diffraction and high-resolution transmission electron microscopy. The MOS-HEMTs demonstrated comparable output electrical characteristics with conventional Ni/Au HEMTs but a lower gate leakage current. At a gate voltage of -20 V, the typical gate leakage current for a MOS-HEMT with a gate length of 6 μm and width of 100 μm was found to be as low as 8.2 × 10-7 mA mm-1, which was three orders lower than that of the Ni/Au Schottky gate HEMT. The reduction of the gate leakage current improved the on/off current ratio by three orders of magnitude. These results indicate that RF-sputtered ZnO with a low O2/Ar ratio is a good gate dielectric for high-performance AlGaN/GaN MOS-HEMTs.

  1. Triggering the Electrolyte-Gated Organic Field-Effect Transistor output characteristics through gate functionalization using diazonium chemistry: Application to biodetection of 2,4-dichlorophenoxyacetic acid.

    Science.gov (United States)

    Nguyen, T T K; Nguyen, T N; Anquetin, G; Reisberg, S; Noël, V; Mattana, G; Touzeau, J; Barbault, F; Pham, M C; Piro, B

    2018-04-26

    We investigated an Electrolyte-Gated Organic Field-Effect transistor based on poly(N-alkyldiketopyrrolo-pyrrole dithienylthieno[3,2-b]thiophene) as organic semiconductor whose gate electrode was functionalized by electrografting a functional diazonium salt capable to bind an antibody specific to 2,4-dichlorophenoxyacetic acid (2,4-D), an herbicide well-known to be a soil and water pollutant. Molecular docking computations were performed to design the functional diazonium salt to rationalize the antibody capture on the gate surface. Sensing of 2,4-D was performed through a displacement immunoassay. The limit of detection was estimated at around 2.5 fM. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Interface Modification of Bernal- and Rhombohedral-Stacked Trilayer-Graphene/Metal Electrode on Resistive Switching of Silver Electrochemical Metallization Cells.

    Science.gov (United States)

    Wang, Jer-Chyi; Chan, Ya-Ting; Chen, Wei-Fan; Wu, Ming-Chung; Lai, Chao-Sung

    2017-10-25

    Bernal- and rhombohedral-stacked trilayer graphene (B- and r-TLG) on nickel (Ni) and iridium (Ir) films acting as bottom electrodes (BEs) of silver electrochemical metallization cells (Ag-EMCs) have been investigated in this study. Prior to the fabrication of the EMC devices, Raman mapping and atomic force microscopy are applied to identify the B- and r-TLG sheets, with the latter revealing a significant D peak and a rough surface for the Ir film. The Ag-EMCs with the stacked BE of r-TLG on the Ir film show a conductive mechanism of Schottky emission at the positive top electrode bias for both high- and low-resistance states that can be examined by the resistance change with the device area and are modulated by pulse bias operation. Thus, an effective electron barrier height of 0.262 eV at the r-TLG and Ir interface is obtained because of the conspicuous energy gap of r-TLG on the Ir film and the van der Waals (vdW) gap between the r-TLG and Ir contact metal. With the use of Ni instead of Ir contact metal, the Ag-EMCs with TLG BE demonstrate +0.3 V/-0.75 V operation voltages, more than 10 4 s data retention at 115 °C and 250 times endurance testing, making the TLG sheets suitable for low-power nonvolatile memory applications on flexible substrates.

  3. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device.

    Science.gov (United States)

    Groenendijk, Dirk J; Buscema, Michele; Steele, Gary A; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf; van der Zant, Herre S J; Castellanos-Gomez, Andres

    2014-10-08

    Tungsten diselenide (WSe2), a semiconducting transition metal dichalcogenide (TMDC), shows great potential as active material in optoelectronic devices due to its ambipolarity and direct bandgap in its single-layer form. Recently, different groups have exploited the ambipolarity of WSe2 to realize electrically tunable PN junctions, demonstrating its potential for digital electronics and solar cell applications. In this Letter, we focus on the different photocurrent generation mechanisms in a double-gated WSe2 device by measuring the photocurrent (and photovoltage) as the local gate voltages are varied independently in combination with above- and below-bandgap illumination. This enables us to distinguish between two main photocurrent generation mechanisms, the photovoltaic and photothermoelectric effect. We find that the dominant mechanism depends on the defined gate configuration. In the PN and NP configurations, photocurrent is mainly generated by the photovoltaic effect and the device displays a maximum responsivity of 0.70 mA/W at 532 nm illumination and rise and fall times close to 10 ms. Photocurrent generated by the photothermoelectric effect emerges in the PP configuration and is a factor of 2 larger than the current generated by the photovoltaic effect (in PN and NP configurations). This demonstrates that the photothermoelectric effect can play a significant role in devices based on WSe2 where a region of strong optical absorption, caused by, for example, an asymmetry in flake thickness or optical absorption of the electrodes, generates a sizable thermal gradient upon illumination.

  4. Critical evaluation of the stability of highly concentrated LiTFSI - Acetonitrile electrolytes vs. graphite, lithium metal and LiFePO4 electrodes

    Science.gov (United States)

    Nilsson, Viktor; Younesi, Reza; Brandell, Daniel; Edström, Kristina; Johansson, Patrik

    2018-04-01

    Highly concentrated LiTFSI - acetonitrile electrolytes have recently been shown to stabilize graphite electrodes in lithium-ion batteries (LIBs) much better than comparable more dilute systems. Here we revisit this system in order to optimise the salt concentration vs. both graphite and lithium metal electrodes with respect to electrochemical stability. However, we observe an instability regardless of concentration, making lithium metal unsuitable as a counter electrode, and this also affects evaluation of e.g. graphite electrodes. While the highly concentrated electrolytes have much improved electrochemical stabilities, their reductive decomposition below ca. 1.2 V vs. Li+/Li° still makes them less practical vs. graphite electrodes, and the oxidative reaction with Al at ca. 4.1 V vs. Li+/Li° makes them problematic for high voltage LIB cells. The former originates in an insufficiently stable solid electrolyte interphase (SEI) dissolving and continuously reforming - causing self-discharge, as observed by paused galvanostatic cycling, while the latter is likely caused by aluminium current collector corrosion. Yet, we show that medium voltage LiFePO4 positive electrodes can successfully be used as counter and reference electrodes.

  5. Gate-tunable gigantic lattice deformation in VO2

    International Nuclear Information System (INIS)

    Okuyama, D.; Hatano, T.; Nakano, M.; Takeshita, S.; Ohsumi, H.; Tardif, S.; Shibuya, K.; Yumoto, H.; Koyama, T.; Ohashi, H.; Takata, M.; Kawasaki, M.; Tokura, Y.; Iwasa, Y.; Arima, T.

    2014-01-01

    We examined the impact of electric field on crystal lattice of vanadium dioxide (VO 2 ) in a field-effect transistor geometry by in-situ synchrotron x-ray diffraction measurements. Whereas the c-axis lattice parameter of VO 2 decreases through the thermally induced insulator-to-metal phase transition, the gate-induced metallization was found to result in a significant increase of the c-axis length by almost 1% from that of the thermally stabilized insulating state. We also found that this gate-induced gigantic lattice deformation occurs even at the thermally stabilized metallic state, enabling dynamic control of c-axis lattice parameter by more than 1% at room temperature

  6. Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications

    Directory of Open Access Journals (Sweden)

    Bhamini Bhujun

    Full Text Available Nanocrystallites of three mixed ternary transition metal ferrite (MTTMF were prepared by a facile sol–gel method and adopted as electrode material for supercapacitors. The phase development of the samples was determined using Fourier transform infrared (FT-IR and thermal gravimetric analysis (TG. X-ray diffraction (XRD analysis revealed the formation of a single-phase spinel ferrite in CuCoFe2O4 (CuCoF, NiCoFe2O4 (NiCoF and NiCuFe2O4 (NiCuF. The surface characteristics and elemental composition of the nanocomposites have been studied by means of field emission scanning electron microscopy (FESEM, as well as energy dispersive spectroscopy (EDS. The electrochemical performance of the nanomaterials was evaluated using a two-electrode configuration by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic technique in 1 M KOH electrolyte and was found to be in the order of: CuCoF > NiCoF > NiCuF. A maximum specific capacitance of 221 Fg−1 was obtained with CuCoF at a scan rate of 5 mV s−1. In addition to an excellent cycling stability, an energy density of 7.9 kW kg−1 was obtained at a current density of 1 Ag−1. The high electrochemical performance of the MTTMF nanocomposites obtained indicates that these materials are promising electrodes for supercapacitors. Keywords: Mixed ternary transition metal ferrite (MTTMF, Nanocomposites, Sol–gel, Cyclic voltammetry, Asymmetric supercapacitor

  7. First-principles simulations of Graphene/Transition-metal-Dichalcogenides/Graphene Field-Effect Transistor

    Science.gov (United States)

    Li, Xiangguo; Wang, Yun-Peng; Zhang, X.-G.; Cheng, Hai-Ping

    A prototype field-effect transistor (FET) with fascinating properties can be made by assembling graphene and two-dimensional insulating crystals into three-dimensional stacks with atomic layer precision. Transition metal dichalcogenides (TMDCs) such as WS2, MoS2 are good candidates for the atomically thin barrier between two layers of graphene in the vertical FET due to their sizable bandgaps. We investigate the electronic properties of the Graphene/TMDCs/Graphene sandwich structure using first-principles method. We find that the effective tunnel barrier height of the TMDC layers in contact with the graphene electrodes has a layer dependence and can be modulated by a gate voltage. Consequently a very high ON/OFF ratio can be achieved with appropriate number of TMDC layers and a suitable range of the gate voltage. The spin-orbit coupling in TMDC layers is also layer dependent but unaffected by the gate voltage. These properties can be important in future nanoelectronic device designs. DOE/BES-DE-FG02-02ER45995; NERSC.

  8. Contact engineering for efficient charge injection in organic transistors with low-cost metal electrodes

    Science.gov (United States)

    Panigrahi, D.; Kumar, S.; Dhar, A.

    2017-10-01

    Controlling charge injection at the metal-semiconductor interface is very crucial for organic electronic devices in general as it can significantly influence the overall device performance. Herein, we report a facile, yet efficient contact modification approach, to enhance the hole injection efficiency through the incorporation of a high vacuum deposited TPD [N,N'-Bis(3-methylphenyl)-N,N'-diphenylbenzidine] interlayer between the electrodes and the active semiconducting layer. The device performance parameters such as mobility and on/off ratio improved significantly after the inclusion of the TPD buffer layer, and more interestingly, the devices with cost effective Ag and Cu electrodes were able to exhibit a superior device performance than the typically used Au source-drain devices. We have also observed that this contact modification technique can be even more effective than commonly used metal oxide interface modifying layers. Our investigations demonstrate the efficacy of the TPD interlayer in effectively reducing the interfacial contact resistance through the modification of pentacene energy levels, which consequently results in the substantial improvement in the device performances.

  9. SWNT array resonant gate MOS transistor.

    Science.gov (United States)

    Arun, A; Campidelli, S; Filoramo, A; Derycke, V; Salet, P; Ionescu, A M; Goffman, M F

    2011-02-04

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.

  10. SWNT array resonant gate MOS transistor

    International Nuclear Information System (INIS)

    Arun, A; Salet, P; Ionescu, A M; Campidelli, S; Filoramo, A; Derycke, V; Goffman, M F

    2011-01-01

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.

  11. Analyzing Single-Event Gate Ruptures In Power MOSFET's

    Science.gov (United States)

    Zoutendyk, John A.

    1993-01-01

    Susceptibilities of power metal-oxide/semiconductor field-effect transistors (MOSFET's) to single-event gate ruptures analyzed by exposing devices to beams of energetic bromine ions while applying appropriate bias voltages to source, gate, and drain terminals and measuring current flowing into or out of each terminal.

  12. TiN nanoparticles on CNT-graphene hybrid support as noble-metal-free counter electrode for quantum-dot-sensitized solar cells.

    Science.gov (United States)

    Youn, Duck Hyun; Seol, Minsu; Kim, Jae Young; Jang, Ji-Wook; Choi, Youngwoo; Yong, Kijung; Lee, Jae Sung

    2013-02-01

    The development of an efficient noble-metal-free counter electrode is crucial for possible applications of quantum-dot-sensitized solar cells (QDSSCs). Herein, we present TiN nanoparticles on a carbon nanotube (CNT)-graphene hybrid support as a noble-metal-free counter electrode for QDSSCs employing a polysulfide electrolyte. The resulting TiN/CNT-graphene possesses an extremely high surface roughness, a good metal-support interaction, and less aggregation relative to unsupported TiN; it also has superior solar power conversion efficiency (4.13 %) when applying a metal mask, which is much higher than that of the state-of-the-art Au electrode (3.35 %). Based on electrochemical impedance spectroscopy measurements, the enhancement is ascribed to a synergistic effect between TiN nanoparticles and the CNT-graphene hybrid, the roles of which are to provide active sites for the reduction of polysulfide ions and electron pathways to TiN nanoparticles, respectively. The combination of graphene and CNTs leads to a favorable morphology that prevents stacking of graphene or bundling of CNTs, which maximizes the contact of the support with TiN nanoparticles and improves electron-transfer capability relative to either carbon material alone. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Tunnel field-effect transistor with two gated intrinsic regions

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2014-07-01

    Full Text Available In this paper, we propose and validate (using simulations a novel design of silicon tunnel field-effect transistor (TFET, based on a reverse-biased p+-p-n-n+ structure. 2D device simulation results show that our devices have significant improvements of switching performance compared with more conventional devices based on p-i-n structure. With independent gate voltages applied to two gated intrinsic regions, band-to-band tunneling (BTBT could take place at the p-n junction, and no abrupt degenerate doping profile is required. We developed single-side-gate (SSG structure and double-side-gate (DSG structure. SSG devices with HfO2 gate dielectric have a point subthreshold swing of 9.58 mV/decade, while DSG devices with polysilicon gate electrode material and HfO2 gate dielectric have a point subthreshold swing of 16.39 mV/decade. These DSG devices have ON-current of 0.255 μA/μm, while that is lower for SSG devices. Having two nano-scale independent gates will be quite challenging to realize with good uniformity across the wafer and the improved behavior of our TFET makes it a promising steep-slope switch candidate for further investigations.

  14. Low-power bacteriorhodopsin-silicon n-channel metal-oxide field-effect transistor photoreceiver.

    Science.gov (United States)

    Shin, Jonghyun; Bhattacharya, Pallab; Yuan, Hao-Chih; Ma, Zhenqiang; Váró, György

    2007-03-01

    A bacteriorhodopsin (bR)-silicon n-channel metal-oxide field-effect transistor (NMOSFET) monolithically integrated photoreceiver is demonstrated. The bR film is selectively formed on an external gate electrode of the transistor by electrophoretic deposition. A modified biasing circuit is incorporated, which helps to match the resistance of the bR film to the input impedance of the NMOSFET and to shift the operating point of the transistor to coincide with the maximum gain. The photoreceiver exhibits a responsivity of 4.7 mA/W.

  15. Gate-controlled metal-insulator transition in the LaAlO{sub 3}/SrTiO{sub 3} system with sub-critical LaAlO{sub 3} thickness

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon Sung; Lee, Seung Ran; Chang, Jung-Won; Noh, Hyunho; Baasandorj, Lkhagvasuren; Shim, Seung-Bo; Kim, Jinhee [Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of); Seung, Sang Keun; Shin, Hyun Sup; Song, Jonghyun [Department of Physics, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2012-12-15

    We studied the electrical conduction in the LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) interface electron system with a sub-critical LAO layer thickness of {proportional_to}3.5 unit cells (uc). It was found that the true dividing point between metallic and insulating behaviour without gating lies near the LAO thickness of 3.5 uc. Our marginally metallic 3.5 uc sample showed a sharp transition to insulating state at temperatures which strongly depended on the applied negative back-gate voltage. The superior gate-controllability of the sample was attributed to its sheet carrier density which was an order of magnitude lower than those of conducting LAO/STO samples with 4 uc or more of LAO layers. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Undoped TiO2 particles as photoactive material for integrated metal-semiconductor structures

    International Nuclear Information System (INIS)

    Molina, Joel; Calleja, Wilfrido; Hernández, Luis; Zúñiga, Carlos; Linares, Monico; Wade, F. Javier

    2015-01-01

    Rutile-phase undoped TiO 2 nanoparticles are embedded within an organic SiO 2 matrix and the final dielectric mixture is then deposited by spinning on a thin film of aluminum (previously deposited on glass covers by e-beam evaporation). This so called “horizontal” TiO 2 -SiO 2 /Al/Glass structure is then electrically characterized under dark and light conditions (I-V-light) so that the total resistance of a simple aluminum stripe is measured and correlated before and after UV-Vis irradiation. Compared to dark conditions, excess carriers are photogenerated within the TiO 2 nanoparticles during light exposure and they are directly transferred to both ends of the aluminum stripe after applying a low potential difference (photoresistor). On the other hand, “vertical” structures using ultra-thin titanium films as a gate electrode produce a capacitor in the form of a Metal-Insulator-Metal (MIM) structure. Because of the ultra-thin titanium layer, this gate electrode is highly transparent to all UV-Vis irradiation so that when all carriers are being photogenerated, a vertical transition of these carriers between top/bottom (Ti/Al) electrodes by an applied external electric field would require a shorter distance thus increasing their lifetime before recombination as compared to the horizontal structures. These vertical structures are able to photogenerate carriers more efficiently and they are similar in function to that of a so-called photocapacitor, where all carriers could be efficiently stored within the dielectric itself right after photogeneration. Therefore, a light-driven self-charging capacitor having an efficient storage mechanism of solar energy could be obtained. (full text)

  17. A Label-Free Immunosensor for IgG Based on an Extended-Gate Type Organic Field Effect Transistor

    Directory of Open Access Journals (Sweden)

    Tsukuru Minamiki

    2014-09-01

    Full Text Available A novel biosensor for immunoglobulin G (IgG detection based on an extended-gate type organic field effect transistor (OFET has been developed that possesses an anti-IgG antibody on its extended-gate electrode and can be operated below 3 V. The titration results from the target IgG in the presence of a bovine serum albumin interferent, clearly exhibiting a negative shift in the OFET transfer curve with increasing IgG concentration. This is presumed to be due an interaction between target IgG and the immobilized anti-IgG antibody on the extended-gate electrode. As a result, a linear range from 0 to 10 µg/mL was achieved with a relatively low detection limit of 0.62 µg/mL (=4 nM. We believe that these results open up opportunities for applying extended-gate-type OFETs to immunosensing.

  18. Chemo-Electrical Signal Transduction by Using Stimuli-Responsive Polymer Gate-Modified Field Effect Transistor

    Directory of Open Access Journals (Sweden)

    Akira Matsumoto

    2014-03-01

    Full Text Available A glucose-responsive polymer brush was designed on a gold electrode and exploited as an extended gate for a field effect transistor (FET based biosensor. A permittivity change at the gate interface due to the change in hydration upon specific binding with glucose was detectable. The rate of response was markedly enhanced compared to the previously studied cross-linked or gel-coupled electrode, owing to its kinetics involving no process of the polymer network diffusion. This finding may offer a new strategy of the FET-based biosensors effective not only for large molecules but also for electrically neutral molecules such as glucose with improved kinetics.

  19. Scanning gate microscopy on graphene: charge inhomogeneity and extrinsic doping

    International Nuclear Information System (INIS)

    Jalilian, Romaneh; Tian Jifa; Chen, Yong P; Jauregui, Luis A; Lopez, Gabriel; Roecker, Caleb; Jovanovic, Igor; Yazdanpanah, Mehdi M; Cohn, Robert W

    2011-01-01

    We have performed scanning gate microscopy (SGM) on graphene field effect transistors (GFET) using a biased metallic nanowire coated with a dielectric layer as a contact mode tip and local top gate. Electrical transport through graphene at various back gate voltages is monitored as a function of tip voltage and tip position. Near the Dirac point, the response of graphene resistance to the tip voltage shows significant variation with tip position, and SGM imaging displays mesoscopic domains of electron-doped and hole-doped regions. Our measurements reveal substantial spatial fluctuation in the carrier density in graphene due to extrinsic local doping from sources such as metal contacts, graphene edges, structural defects and resist residues. Our scanning gate measurements also demonstrate graphene's excellent capability to sense the local electric field and charges.

  20. Demonstration of AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors with silicon-oxy-nitride as the gate insulator

    International Nuclear Information System (INIS)

    Balachander, K.; Arulkumaran, S.; Egawa, T.; Sano, Y.; Baskar, K.

    2005-01-01

    AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOSHEMTs) were fabricated with plasma enhanced chemical vapor deposited silicon oxy-nitride (SiON) as an insulating layer. The compositions of SiON thin films were confirmed using X-ray photoelectron spectroscopy. The fabricated MOSHEMTs exhibited a very high saturation current density of 1.1 A/mm coupled with high positive operational gate voltage up to +7 V. The MOSHEMTs also exhibited four orders of low gate leakage current and high forward-on voltage when compared with the conventional HEMTs. The drain current collapse using gate pulse measurements showed only a negligible difference in the saturation current density revealing the drastic improvement in passivation of the surface states due to the high quality of dielectric thin films deposited. Thus, based on the improved direct-current operation, SiON can be considered to be a potential gate oxide comparable with other dielectric insulators

  1. Highly active, bi-functional and metal-free B4C-nanoparticle-modified graphite felt electrodes for vanadium redox flow batteries

    Science.gov (United States)

    Jiang, H. R.; Shyy, W.; Wu, M. C.; Wei, L.; Zhao, T. S.

    2017-10-01

    The potential of B4C as a metal-free catalyst for vanadium redox reactions is investigated by first-principles calculations. Results show that the central carbon atom of B4C can act as a highly active reaction site for redox reactions, due primarily to the abundant unpaired electrons around it. The catalytic effect is then verified experimentally by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests, both of which demonstrate that B4C nanoparticles can enhance the kinetics for both V2+/V3+ and VO2+/VO2+ redox reactions, indicating a bi-functional effect. The B4C-nanoparticle-modified graphite felt electrodes are finally prepared and tested in vanadium redox flow batteries (VRFBs). It is shown that the batteries with the prepared electrodes exhibit energy efficiencies of 88.9% and 80.0% at the current densities of 80 and 160 mA cm-2, which are 16.6% and 18.8% higher than those with the original graphite felt electrodes. With a further increase in current densities to 240 and 320 mA cm-2, the batteries can still maintain energy efficiencies of 72.0% and 63.8%, respectively. All these results show that the B4C-nanoparticle-modified graphite felt electrode outperforms existing metal-free catalyst modified electrodes, and thus can be promising electrodes for VRFBs.

  2. Durable fuel electrode

    DEFF Research Database (Denmark)

    2017-01-01

    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  3. Plasma Deposited SiO2 for Planar Self-Aligned Gate Metal-Insulator-Semiconductor Field Effect Transistors on Semi-Insulating InP

    Science.gov (United States)

    Tabory, Charles N.; Young, Paul G.; Smith, Edwyn D.; Alterovitz, Samuel A.

    1994-01-01

    Metal-insulator-semiconductor (MIS) field effect transistors were fabricated on InP substrates using a planar self-aligned gate process. A 700-1000 A gate insulator of Si02 doped with phosphorus was deposited by a direct plasma enhanced chemical vapor deposition at 400 mTorr, 275 C, 5 W, and power density of 8.5 MW/sq cm. High frequency capacitance-voltage measurements were taken on MIS capacitors which have been subjected to a 700 C anneal and an interface state density of lxl0(exp 11)/eV/cq cm was found. Current-voltage measurements of the capacitors show a breakdown voltage of 107 V/cm and a insulator resistivity of 10(exp 14) omega cm. Transistors were fabricated on semi-insulating InP using a standard planar self-aligned gate process in which the gate insulator was subjected to an ion implantation activation anneal of 700 C. MIS field effect transistors gave a maximum extrinsic transconductance of 23 mS/mm for a gate length of 3 microns. The drain current drift saturated at 87.5% of the initial current, while reaching to within 1% of the saturated value after only 1x10(exp 3). This is the first reported viable planar InP self-aligned gate transistor process reported to date.

  4. Mechanisms of Furfural Reduction on Metal Electrodes: Distinguishing Pathways for Selective Hydrogenation of Bioderived Oxygenates

    International Nuclear Information System (INIS)

    Chadderdon, Xiaotong H.; Chadderdon, David J.; Matthiesen, John E.

    2017-01-01

    Electrochemical reduction of biomass-derived platform molecules is an emerging route for the sustainable production of fuels and chemicals. Understanding gaps between reaction conditions, underlying mechanisms, and product selectivity have limited the rational design of active, stable, and selective catalyst systems. Here, the mechanisms of electrochemical reduction of furfural, an important biobased platform molecule and model for aldehyde reduction, are explored through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. By understanding the underlying mechanisms it enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important biobased polymer precursors and fuels.

  5. Mechanisms of Furfural Reduction on Metal Electrodes: Distinguishing Pathways for Selective Hydrogenation of Bioderived Oxygenates.

    Science.gov (United States)

    Chadderdon, Xiaotong H; Chadderdon, David J; Matthiesen, John E; Qiu, Yang; Carraher, Jack M; Tessonnier, Jean-Philippe; Li, Wenzhen

    2017-10-11

    Electrochemical reduction of biomass-derived platform molecules is an emerging route for the sustainable production of fuels and chemicals. However, understanding gaps between reaction conditions, underlying mechanisms, and product selectivity have limited the rational design of active, stable, and selective catalyst systems. In this work, the mechanisms of electrochemical reduction of furfural, an important biobased platform molecule and model for aldehyde reduction, are explored through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. Understanding the underlying mechanisms enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important biobased polymer precursors and fuels.

  6. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt and Pd alloyed with an alkaline earth metal....

  7. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic5 efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt and Pd alloyed with a lanthanide metal....

  8. Effect of top gate potential on bias-stress for dual gate amorphous indium-gallium-zinc-oxide thin film transistor

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Minkyu; Um, Jae Gwang; Park, Min Sang; Chowdhury, Md Delwar Hossain; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center and Department of Information Display, Kyung Hee University, Seoul 02447 (Korea, Republic of)

    2016-07-15

    We report the abnormal behavior of the threshold voltage (V{sub TH}) shift under positive bias Temperature stress (PBTS) and negative bias temperature stress (NBTS) at top/bottom gate in dual gate amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs). It is found that the PBTS at top gate shows negative transfer shift and NBTS shows positive transfer shift for both top and bottom gate sweep. The shift of bottom/top gate sweep is dominated by top gate bias (V{sub TG}), while bottom gate bias (V{sub BG}) is less effect than V{sub TG}. The X-ray photoelectron spectroscopy (XPS) depth profile provides the evidence of In metal diffusion to the top SiO{sub 2}/a-IGZO and also the existence of large amount of In{sup +} under positive top gate bias around top interfaces, thus negative transfer shift is observed. On the other hand, the formation of OH{sup −} at top interfaces under the stress of negative top gate bias shows negative transfer shift. The domination of V{sub TG} both on bottom/top gate sweep after PBTS/NBTS is obviously occurred due to thin active layer.

  9. Multi-component intermetallic electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  10. Highly transparent front electrodes with metal fingers for p-i-n thin-film silicon solar cells

    Directory of Open Access Journals (Sweden)

    Moulin Etienne

    2015-01-01

    Full Text Available The optical and electrical properties of transparent conductive oxides (TCOs, traditionally used in thin-film silicon (TF-Si solar cells as front-electrode materials, are interlinked, such that an increase in TCO transparency is generally achieved at the cost of reduced lateral conductance. Combining a highly transparent TCO front electrode of moderate conductance with metal fingers to support charge collection is a well-established technique in wafer-based technologies or for TF-Si solar cells in the substrate (n-i-p configuration. Here, we extend this concept to TF-Si solar cells in the superstrate (p-i-n configuration. The metal fingers are used in conjunction with a millimeter-scale textured foil, attached to the glass superstrate, which provides an antireflective and retroreflective effect; the latter effect mitigates the shadowing losses induced by the metal fingers. As a result, a substantial increase in power conversion efficiency, from 8.7% to 9.1%, is achieved for 1-μm-thick microcrystalline silicon solar cells deposited on a highly transparent thermally treated aluminum-doped zinc oxide layer combined with silver fingers, compared to cells deposited on a state-of-the-art zinc oxide layer.

  11. Analysis of gate underlap channel double gate MOS transistor for electrical detection of bio-molecules

    Science.gov (United States)

    Ajay; Narang, Rakhi; Saxena, Manoj; Gupta, Mridula

    2015-12-01

    In this paper, an analytical model for gate drain underlap channel Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (DG-MOSFET) for label free electrical detection of biomolecules has been proposed. The conformal mapping technique has been used to derive the expressions for surface potential, lateral electric field, energy bands (i.e. conduction and valence band) and threshold voltage (Vth). Subsequently a full drain current model to analyze the sensitivity of the biosensor has been developed. The shift in the threshold voltage and drain current (after the biomolecules interaction with the gate underlap channel region of the MOS transistor) has been used as a sensing metric. All the characteristic trends have been verified through ATLAS (SILVACO) device simulation results.

  12. Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method

    Energy Technology Data Exchange (ETDEWEB)

    Khosa, Muhammad Kaleem; Jamal, Muhammad Asghar; Hussain, Amira; Muneer, Majid; Zia, Khalid Mahmood [Government College Univ., Faisalabad (Pakistan); Hafeez, Samia [Bahaud-din-Zakariya Univ., Multan (Pakistan)

    2013-06-15

    Electrocoagulation (EC) technique is applied for the treatment of wastewater containing heavy metals ions such as nickel (Ni), lead (Pb) and cadmium (Cd) by using sacrificial anodes corrode to release active coagulant flocs usually aluminium or iron cations into the solution. During electrolytic reactions hydrogen gas evolve at the cathode. All the experiments were carried out in Batch mode. The tank was filled with synthetic wastewater containing heavy metals and efficiency of electrocoagulation in combination with aluminum and iron electrodes were investigated for removal of such metals. Several parameters, such as contact time, pH, electro-coagulant concentration, and current density were optimized to achieve maximum removal efficiency (%). The concentrations of heavy metals were determined by using Atomic Absorption Spectroscopy (AAS). It is found that the electro-coagulation process has potential to be utilized for the cost-effective removal of heavy metals from wastewater specially using iron electrodes in terms of high removal efficiencies and operating cost.

  13. Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method

    International Nuclear Information System (INIS)

    Khosa, Muhammad Kaleem; Jamal, Muhammad Asghar; Hussain, Amira; Muneer, Majid; Zia, Khalid Mahmood; Hafeez, Samia

    2013-01-01

    Electrocoagulation (EC) technique is applied for the treatment of wastewater containing heavy metals ions such as nickel (Ni), lead (Pb) and cadmium (Cd) by using sacrificial anodes corrode to release active coagulant flocs usually aluminium or iron cations into the solution. During electrolytic reactions hydrogen gas evolve at the cathode. All the experiments were carried out in Batch mode. The tank was filled with synthetic wastewater containing heavy metals and efficiency of electrocoagulation in combination with aluminum and iron electrodes were investigated for removal of such metals. Several parameters, such as contact time, pH, electro-coagulant concentration, and current density were optimized to achieve maximum removal efficiency (%). The concentrations of heavy metals were determined by using Atomic Absorption Spectroscopy (AAS). It is found that the electro-coagulation process has potential to be utilized for the cost-effective removal of heavy metals from wastewater specially using iron electrodes in terms of high removal efficiencies and operating cost

  14. Heavy-ion-induced, gate-rupture in power MOSFETs

    International Nuclear Information System (INIS)

    Fischer, T.A.

    1987-01-01

    A new, heavy-ion-induced, burnout mechanism has been experimentally observed in power metal-oxide-semiconductor field-effect transistors (MOSFETs). This mechanism occurs when a heavy, charged particle passes through the gate oxide region of n- or p-channel devices having sufficient gate-to-source or gate-to-drain bias. The gate-rupture leads to significant permanent degradation of the device. A proposed failure mechanism is discussed and experimentally verified. In addition, the absolute immunity of p-channel devices to heavy-ion-induced, semiconductor burnout is demonstrated and discussed along with new, non-destructive, burnout testing methods

  15. Bubble gate for in-plane flow control.

    Science.gov (United States)

    Oskooei, Ali; Abolhasani, Milad; Günther, Axel

    2013-07-07

    We introduce a miniature gate valve as a readily implementable strategy for actively controlling the flow of liquids on-chip, within a footprint of less than one square millimetre. Bubble gates provide for simple, consistent and scalable control of liquid flow in microchannel networks, are compatible with different bulk microfabrication processes and substrate materials, and require neither electrodes nor moving parts. A bubble gate consists of two microchannel sections: a liquid-filled channel and a gas channel that intercepts the liquid channel to form a T-junction. The open or closed state of a bubble gate is determined by selecting between two distinct gas pressure levels: the lower level corresponds to the "open" state while the higher level corresponds to the "closed" state. During closure, a gas bubble penetrates from the gas channel into the liquid, flanked by a column of equidistantly spaced micropillars on each side, until the flow of liquid is completely obstructed. We fabricated bubble gates using single-layer soft lithographic and bulk silicon micromachining procedures and evaluated their performance with a combination of theory and experimentation. We assessed the dynamic behaviour during more than 300 open-and-close cycles and report the operating pressure envelope for different bubble gate configurations and for the working fluids: de-ionized water, ethanol and a biological buffer. We obtained excellent agreement between the experimentally determined bubble gate operational envelope and a theoretical prediction based on static wetting behaviour. We report case studies that serve to illustrate the utility of bubble gates for liquid sampling in single and multi-layer microfluidic devices. Scalability of our strategy was demonstrated by simultaneously addressing 128 bubble gates.

  16. Activating "Invisible" Glue: Using Electron Beam for Enhancement of Interfacial Properties of Graphene-Metal Contact.

    Science.gov (United States)

    Kim, Songkil; Russell, Michael; Kulkarni, Dhaval D; Henry, Mathias; Kim, Steve; Naik, Rajesh R; Voevodin, Andrey A; Jang, Seung Soon; Tsukruk, Vladimir V; Fedorov, Andrei G

    2016-01-26

    Interfacial contact of two-dimensional graphene with three-dimensional metal electrodes is crucial to engineering high-performance graphene-based nanodevices with superior performance. Here, we report on the development of a rapid "nanowelding" method for enhancing properties of interface to graphene buried under metal electrodes using a focused electron beam induced deposition (FEBID). High energy electron irradiation activates two-dimensional graphene structure by generation of structural defects at the interface to metal contacts with subsequent strong bonding via FEBID of an atomically thin graphitic interlayer formed by low energy secondary electron-assisted dissociation of entrapped hydrocarbon contaminants. Comprehensive investigation is conducted to demonstrate formation of the FEBID graphitic interlayer and its impact on contact properties of graphene devices achieved via strong electromechanical coupling at graphene-metal interfaces. Reduction of the device electrical resistance by ∼50% at a Dirac point and by ∼30% at the gate voltage far from the Dirac point is obtained with concurrent improvement in thermomechanical reliability of the contact interface. Importantly, the process is rapid and has an excellent insertion potential into a conventional fabrication workflow of graphene-based nanodevices through single-step postprocessing modification of interfacial properties at the buried heterogeneous contact.

  17. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes.

    Science.gov (United States)

    Kabdaşli, Işik; Arslan, Tülin; Olmez-Hanci, Tuğba; Arslan-Alaton, Idil; Tünay, Olcay

    2009-06-15

    In the present study, the treatability of a metal plating wastewater containing complexed metals originating from the nickel and zinc plating process by electrocoagulation using stainless steel electrodes was experimentally investigated. The study focused on the effect of important operation parameters on electrocoagulation process performance in terms of organic complex former, nickel and zinc removals as well as sludge production and specific energy consumption. The results indicated that increasing the applied current density from 2.25 to 9.0 mA/cm(2) appreciably enhanced TOC removal efficiency from 20% to 66%, but a further increase in the applied current density to 56.25 mA/cm(2) did not accelerate TOC removal rates. Electrolyte concentration did not affect the process performance significantly and the highest TOC reduction (66%) accompanied with complete heavy metal removals were achieved at the original chloride content ( approximately 1500 mg Cl/L) of the wastewater sample. Nickel removal performance was adversely affected by the decrease of initial pH from its original value of 6. Optimum working conditions for electrocoagulation of metal plating effluent were established as follows: an applied current density of 9 mA/cm(2), the effluent's original electrolyte concentration and pH of the composite sample. TOC removal rates obtained for all electrocoagulation runs fitted pseudo-first-order kinetics very well (R(2)>92-99).

  18. Electrochemical separation of cerium and yttrium in molten chlorides on liquid-metallic electrodes

    International Nuclear Information System (INIS)

    Yamshchikov, L.F.; Lebedev, V.A.; Nichkov, I.F.

    1978-01-01

    An estimating calculation of the coefficients of separation of cerium and yttrium in the process of electrolysis in molten salts on liquid electrodes of aluminium, gallium, indium, lead, tin, antimonium and zinc is carried out. The calculation of the separation coefficients was carried out according to the known values of activation coefficients of cerium and yttrium in fusible metals. The electrolysis was carried out at 973 K in the argon air in the cell with an eutectic mixture of NaCl and KCl as an elactrolyte. It is shown that the salten phase is concentrated by yttrium, and the melallic one- by cerium on all the electrodes. The value of the separation coefficient of Ce and Y is considerably high and continuously increases on the fusible metals in the Zn, In, Ga, Al, Pb, Sn, Sb series. The experimental values of the separation coefficients practically coincide with the theoretically calculated ones, testifying to the possibility of the effective separation of elements even in a single-staged possibility of the effective separation of elements even in a single-staged process. An electrolysis of molten salts is not inferior in its selectivity to the universally recognized methods of the fine purification of substances permitting to separate Ce and Y with the Ksub(sep) approximately equal to 10

  19. Nanostructured Metal Oxide Coatings for Electrochemical Energy Conversion and Storage Electrodes

    Science.gov (United States)

    Cordova, Isvar Abraxas

    The realization of an energy future based on safe, clean, sustainable, and economically viable technologies is one of the grand challenges facing modern society. Electrochemical energy technologies underpin the potential success of this effort to divert energy sources away from fossil fuels, whether one considers alternative energy conversion strategies through photoelectrochemical (PEC) production of chemical fuels or fuel cells run with sustainable hydrogen, or energy storage strategies, such as in batteries and supercapacitors. This dissertation builds on recent advances in nanomaterials design, synthesis, and characterization to develop novel electrodes that can electrochemically convert and store energy. Chapter 2 of this dissertation focuses on refining the properties of TiO2-based PEC water-splitting photoanodes used for the direct electrochemical conversion of solar energy into hydrogen fuel. The approach utilized atomic layer deposition (ALD); a growth process uniquely suited for the conformal and uniform deposition of thin films with angstrom-level thickness precision. ALD's thickness control enabled a better understanding of how the effects of nitrogen doping via NH3 annealing treatments, used to reduce TiO2's bandgap, can have a strong dependence on TiO2's thickness and crystalline quality. In addition, it was found that some of the negative effects on the PEC performance typically associated with N-doped TiO2 could be mitigated if the NH 3-annealing was directly preceded by an air-annealing step, especially for ultrathin (i.e., transparent electrode based on a network of solution-processed Cu/Ni cores/shell nanowires (NWs) were activated by electrochemically converting the Ni metal shell into Ni(OH)2. Furthermore, an adjustment of the molar percentage of Ni plated onto the Cu NWs was found to result in a tradeoff between capacitance, transmittance, and stability of the resulting nickel hydroxide-based electrode. The nominal area capacitance and power

  20. Gate-tunable gigantic lattice deformation in VO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, D., E-mail: okuyama@riken.jp, E-mail: nakano@imr.tohoku.ac.jp, E-mail: iwasa@ap.t.u-tokyo.ac.jp; Hatano, T. [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Nakano, M., E-mail: okuyama@riken.jp, E-mail: nakano@imr.tohoku.ac.jp, E-mail: iwasa@ap.t.u-tokyo.ac.jp [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Takeshita, S.; Ohsumi, H.; Tardif, S. [RIKEN SPring-8 Center, Hyogo 679-5148 (Japan); Shibuya, K. [National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8562 (Japan); Yumoto, H.; Koyama, T.; Ohashi, H. [Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo 679-5198 (Japan); Takata, M. [RIKEN SPring-8 Center, Hyogo 679-5148 (Japan); Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo 679-5198 (Japan); Kawasaki, M.; Tokura, Y.; Iwasa, Y., E-mail: okuyama@riken.jp, E-mail: nakano@imr.tohoku.ac.jp, E-mail: iwasa@ap.t.u-tokyo.ac.jp [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Quantum-Phase Electronics Center and Department of Applied Physics, University of Tokyo, Tokyo 113-8656 (Japan); Arima, T. [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); RIKEN SPring-8 Center, Hyogo 679-5148 (Japan); Department of Advanced Materials Science, University of Tokyo, Kashiwa 277-8561 (Japan)

    2014-01-13

    We examined the impact of electric field on crystal lattice of vanadium dioxide (VO{sub 2}) in a field-effect transistor geometry by in-situ synchrotron x-ray diffraction measurements. Whereas the c-axis lattice parameter of VO{sub 2} decreases through the thermally induced insulator-to-metal phase transition, the gate-induced metallization was found to result in a significant increase of the c-axis length by almost 1% from that of the thermally stabilized insulating state. We also found that this gate-induced gigantic lattice deformation occurs even at the thermally stabilized metallic state, enabling dynamic control of c-axis lattice parameter by more than 1% at room temperature.

  1. SWNT array resonant gate MOS transistor

    Energy Technology Data Exchange (ETDEWEB)

    Arun, A; Salet, P; Ionescu, A M [NanoLab, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (Switzerland); Campidelli, S; Filoramo, A; Derycke, V; Goffman, M F, E-mail: marcelo.goffman@cea.fr [Laboratoire d' Electronique Moleculaire, SPEC (CNRS URA 2454), IRAMIS, CEA, Gif-sur-Yvette (France)

    2011-02-04

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.

  2. Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells

    Science.gov (United States)

    Lu, Haifei; Sun, Jingsong; Zhang, Hong; Lu, Shunmian; Choy, Wallace C. H.

    2016-03-01

    The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies.The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self

  3. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kappera, Rajesh; Voiry, Damien; Jen, Wesley; Acerce, Muharrem; Torrel, Sol; Chhowalla, Manish, E-mail: manish1@rci.rutgers.edu [Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, New Jersey 08854 (United States); Yalcin, Sibel Ebru; Branch, Brittany; Gupta, Gautam; Mohite, Aditya D. [MPA-11 Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lei, Sidong; Chen, Weibing; Najmaei, Sina; Lou, Jun; Ajayan, Pulickel M. [Mechanical Engineering and Materials Science Department, Rice University, Houston, Texas 77005 (United States)

    2014-09-01

    Two dimensional transition metal dichalcogenides (2D TMDs) offer promise as opto-electronic materials due to their direct band gap and reasonably good mobility values. However, most metals form high resistance contacts on semiconducting TMDs such as MoS{sub 2}. The large contact resistance limits the performance of devices. Unlike bulk materials, low contact resistance cannot be stably achieved in 2D materials by doping. Here we build on our previous work in which we demonstrated that it is possible to achieve low contact resistance electrodes by phase transformation. We show that similar to the previously demonstrated mechanically exfoliated samples, it is possible to decrease the contact resistance and enhance the FET performance by locally inducing and patterning the metallic 1T phase of MoS{sub 2} on chemically vapor deposited material. The device properties are substantially improved with 1T phase source/drain electrodes.

  4. Composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  5. Fabrication of Polymer Solar Cells Using Aqueous Processing for All Layers Including the Metal Back Electrode

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Helgesen, Martin; Jørgensen, Mikkel

    2011-01-01

    The challenges of printing all layers in polymer solar cells from aqueous solution are met by design of inks for the electron-, hole-, active-, and metallic back electrode-layers. The conversion of each layer to an insoluble state after printing enables multilayer formation from the same solvent...

  6. Gated field-emitter cathodes for high-power microwave applications

    International Nuclear Information System (INIS)

    Barasch, E.F.; Demroff, H.P.; Elliott, T.S.; Kasprowicz, T.B.; Lee, B.; Mazumdar, T.; McIntyre, P.M.; Pang, Y.; Smith, D.D.; Trost, H.J.

    1992-01-01

    Gated field-emitter cathodes have been fabricated on silicon wafers. Two fabrication approaches have been employed: a knife-edge array and a porous silicon structure. The knife-edge array consists of a pattern of knife-edges, sharpened to ∼200 A radius, configured with an insulated metal gate structure at a gap of ∼500 A. The porous silicon cathode consists of an insulating porous layer, containing pores of ∼50 A diameter, densely spaced in the native silicon, biased for field emission by a thin gate metallization on the surface. Emission current density of 20 A/cm 2 has been obtained with only 10 V bias. Fabrication processes and test results are presented. (Author) 4 figs., tab., 12 refs

  7. Enhancement mode GaN-based multiple-submicron channel array gate-recessed fin metal-oxide-semiconductor high-electron mobility transistors

    Science.gov (United States)

    Lee, Ching-Ting; Wang, Chun-Chi

    2018-04-01

    To study the function of channel width in multiple-submicron channel array, we fabricated the enhancement mode GaN-based gate-recessed fin metal-oxide-semiconductor high-electron mobility transistors (MOS-HEMTs) with a channel width of 450 nm and 195 nm, respectively. In view of the enhanced gate controllability in a narrower fin-channel structure, the transconductance was improved from 115 mS/mm to 151 mS/mm, the unit gain cutoff frequency was improved from 6.2 GHz to 6.8 GHz, and the maximum oscillation frequency was improved from 12.1 GHz to 13.1 GHz of the devices with a channel width of 195 nm, compared with the devices with a channel width of 450 nm.

  8. Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method

    Science.gov (United States)

    Van Toan, Nguyen; Inomata, Naoki; Toda, Masaya; Ono, Takahito

    2018-05-01

    In this work, we report a simple and low-cost way to create nanopores that can be employed for various applications in nanofluidics. Nano sized Ag particles in the range from 1 to 20 nm are formed on a silicon substrate with a de-wetting method. Then the silicon nanopores with an approximate 15 nm average diameter and 200 μm height are successfully produced by the metal-assisted chemical etching method. In addition, electrically driven ion transport in the nanopores is demonstrated for nanofluidic applications. Ion transport through the nanopores is observed and could be controlled by an application of a gating voltage to the nanopores.

  9. Cermet electrode

    Science.gov (United States)

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  10. Study of the electronic properties of organic molecules within a metal-molecule-metal junction

    International Nuclear Information System (INIS)

    Lambert, Mathieu

    2003-01-01

    This ph-D thesis is about electronic transport through organic molecules inserted in a metal molecule-metal junction. We describe first a simple process to prepare sub-3 nm gaps by controllable breakage (under an electrical stress) of gold wires lithographed on a SiO 2 Si substrate at low temperature (4.2 K). We show that the involved mechanism is thermally assisted electromigration. We observe that current-voltage (I-V) characteristics of resulting electrodes are stable up to ∼5 V. which gives access to the well-known Fowler-Nordheim regime in the I-V, allowing an accurate characterisation of the gap size. The average gap is found lo be between 1.5 nm in width and 2.5 eV in height. Molecules and nanoparticles have then been inserted in the junction in the case of nanoparticles for example. The resulting IV clearly shows the suppression of electrical current at low bias known as Coulomb blockade. Characteristic of single-electron tunnelling through nanometer-sized structures, finally we fabricated a single-electron tunneling device based on Au nanoparticles connected to the electrodes via terthiophene (T3) molecule. We use the silicon substrate, separated from the planar structure by a silicon oxide of 200 nm, as an electrostatic gate and observed clear current modulation with possible signature of the transport properties of the terthiophene molecules. (author) [fr

  11. A local bottom-gate structure with low parasitic capacitance for dielectrophoresis assembly and electrical characterization of suspended nanomaterials

    International Nuclear Information System (INIS)

    Wang, Tun; Liu, Bin; Jiang, Shusen; Rong, Hao; Lu, Miao

    2014-01-01

    A device including a pair of top electrodes and a local gate in the bottom of an SU-8 trench was fabricated on a glass substrate for dielectrophoresis assembly and electrical characterization of suspended nanomaterials. The three terminals were made of gold electrodes and electrically isolated from each other by an air gap. Compared to the widely used global back-gate silicon device, the parasitic capacitance between the three terminals was significantly reduced and an individual gate was assigned to each device. In addition, the spacing from the bottom-gate to either the source or drain was larger than twice the source-drain gap, which guaranteed that the electric field between the source and drain in the dielectrophoresis assembly was not distinguished by the bottom-gate. To prove the feasibility and versatility of the device, a suspended carbon nanotube and graphene film were assembled by dielectrophoresis and characterized successfully. Accordingly, the proposed device holds promise for the electrical characterization of suspended nanomaterials, especially in a high frequency resonator or transistor configuration. (paper)

  12. Study of strength of Dsub(y)150 gate valve case, manufactured by centrifugal casting

    International Nuclear Information System (INIS)

    Umanskaya, L.G.; Semenov, P.V.; Tinyakov, V.G.; Babkina, R.I.; Khatuntsev, Eh.V.

    1982-01-01

    A process for manufacturing centrifugal-cast gate valve body is developed. Structural strength of such items, homogeneity, ductile and strength properties over the cross section as well as the metal susceptibility to embrittlement have been investigated. Three cast gate valve bodies have been taken: one - of 20GSL steel - for hydraulic testing, and two - of 15Kh1MFL steel - for investigation into the metal properties across the valve thickness. The strength properties of the centrifugal-cast gate valve body of 15Kh1M1FL steel are stated to meet the specifications. The gate valve metal ductility (delta and PSI) is twice as high as that of a sand-cast valve. The microstructure, strength and ductility are uniform both over wall thickness and over different body cross sections

  13. Quantum design rules for single molecule logic gates.

    Science.gov (United States)

    Renaud, N; Hliwa, M; Joachim, C

    2011-08-28

    Recent publications have demonstrated how to implement a NOR logic gate with a single molecule using its interaction with two surface atoms as logical inputs [W. Soe et al., ACS Nano, 2011, 5, 1436]. We demonstrate here how this NOR logic gate belongs to the general family of quantum logic gates where the Boolean truth table results from a full control of the quantum trajectory of the electron transfer process through the molecule by very local and classical inputs practiced on the molecule. A new molecule OR gate is proposed for the logical inputs to be also single metal atoms, one per logical input.

  14. Electrocatalytic behavior of carbon paste electrode modified with metal phthalocyanines nanoparticles toward the hydrogen evolution

    International Nuclear Information System (INIS)

    Abbaspour, Abdolkarim; Norouz-sarvestani, Fatemeh; Mirahmadi, Ehsan

    2012-01-01

    Highlights: ► The new construction of a carbon paste electrode impregnated with nanoparticles of Zn and Ni phthalocyanine (nano ZnPc and nano NiPc). ► The decrease overpotential and higher current value obtained in nano ZnPc and nano NiPc compared to bulky ZnPc and bulky NiPc, respectively. ► Types of the catalyst and pH of the solution affect the electro catalytic proton reduction reaction considerably. - Abstract: This paper describes the construction of a carbon paste electrode (CPE) impregnated with nanoparticles of Zn and Ni phthalocyanine (nano ZnPc and nano NiPc). These new electrodes (nano ZnPc-CPE and nano NiPc-CPE) reveal interesting electrocatalytic behavior toward hydrogen evolution reaction (HER). Voltammetric characteristics indicated that the proposed electrodes display better electrocatalytic activity compared to their corresponding bulky modified metal phthalocyanines (MPcs) in minimizing overpotential and increasing the reduction current of HER. Electrocatalytic activities irregularly change with the pH of the solution. However by increasing the pH while nano MPcs are still active, bulky MPcs are almost inactive, and their corresponding ΔE increase by increasing the pH.

  15. Electrode stabilizing materials

    Science.gov (United States)

    Amine, Khalil; Abouimrane, Ali; Moore, Jeffrey S.; Odom, Susan A.

    2015-11-03

    An electrolyte includes a polar aprotic solvent; an alkali metal salt; and an electrode stabilizing compound that is a monomer, which when polymerized forms an electrically conductive polymer. The electrode stabilizing compound is a thiophene, a imidazole, a anilines, a benzene, a azulene, a carbazole, or a thiol. Electrochemical devices may incorporate such electrolytes.

  16. Novel WSi/Au T-shaped gate GaAs metal-semiconductor field-effect-transistor fabrication process for super low-noise microwave monolithic integrated circuit amplifiers

    International Nuclear Information System (INIS)

    Takano, H.; Hosogi, K.; Kato, T.

    1995-01-01

    A fully ion-implanted self-aligned T-shaped gate Ga As metal-semiconductor field-effect transistor (MESFET) with high frequency and extremely low-noise performance has been successfully fabricated for super low-noise microwave monolithic integrated circuit (MMIC) amplifiers. A subhalf-micrometer gate structure composed of WSi/Ti/Mo/Au is employed to reduce gate resistance effectively. This multilayer gate structure is formed by newly developed dummy SiON self-alignment technology and a photoresist planarization process. At an operating frequency of 12 GHz, a minimum noise figure of 0.87 dB with an associated gain of 10.62 dB has been obtained. Based on the novel FET process, a low-noise single-stage MMIC amplifier with an excellent low-noise figure of 1.2 dB with an associated gain of 8 dB in the 14 GHz band has been realized. This is the lowest noise figure ever reported at this frequency for low-noise MMICs based on ion-implanted self-aligned gate MESFET technology. 14 refs., 9 figs

  17. Microcavity-Free Broadband Light Outcoupling Enhancement in Flexible Organic Light-Emitting Diodes with Nanostructured Transparent Metal-Dielectric Composite Electrodes.

    Science.gov (United States)

    Xu, Lu-Hai; Ou, Qing-Dong; Li, Yan-Qing; Zhang, Yi-Bo; Zhao, Xin-Dong; Xiang, Heng-Yang; Chen, Jing-De; Zhou, Lei; Lee, Shuit-Tong; Tang, Jian-Xin

    2016-01-26

    Flexible organic light-emitting diodes (OLEDs) hold great promise for future bendable display and curved lighting applications. One key challenge of high-performance flexible OLEDs is to develop new flexible transparent conductive electrodes with superior mechanical, electrical, and optical properties. Herein, an effective nanostructured metal/dielectric composite electrode on a plastic substrate is reported by combining a quasi-random outcoupling structure for broadband and angle-independent light outcoupling of white emission with an ultrathin metal alloy film for optimum optical transparency, electrical conduction, and mechanical flexibility. The microcavity effect and surface plasmonic loss can be remarkably reduced in white flexible OLEDs, resulting in a substantial increase in the external quantum efficiency and power efficiency to 47.2% and 112.4 lm W(-1).

  18. Bi-axially crumpled silver thin-film electrodes for dielectric elastomer actuators

    International Nuclear Information System (INIS)

    Low, Sze-Hsien; Lau, Gih-Keong

    2014-01-01

    Metal thin films, which have high conductivity, are much stiffer and may fracture at a much lower strain than dielectric elastomers. In order to fabricate compliant electrodes for use in dielectric elastomer actuators (DEAs), metal thin films have been formed into either zigzag patterns or corrugations, which favour bending and only allow uniaxial DEA deformations. However, biaxially compliant electrodes are desired in order to maximize generated forces of DEA. In this paper, we present crumpled metal thin-film electrodes that are biaxially compliant and have full area coverage over the dielectric elastomer. These crumpled metal thin-film electrodes are more stretchable than flat metal thin films; they remain conductive beyond 110% radial strain. Also, crumpling reduced the stiffening effect of metal thin films on the soft elastomer. As such, DEAs using crumpled metal thin-film electrodes managed to attain relatively high actuated area strains of up to 128% at 1.8 kV (102 Vμm −1 ). (paper)

  19. The Electrode Characteristics of the Sintered AB{sub 5}-type Metal Hydrogen Storage Alloy for Ni-MH Secondary Battery

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sang Min; Park, Won; Choi, Seung Jun; Park, Choong Nyeon [Department of Metallurgical Engineering, Chonnam National University, Kawngju, (Korea, Republic of); Noh, Hak [Autombile Reseach Center, Chonnom National University, Kwangju (Korea, Republic of); Choi, Jeon [Department. of Iron and Metallurgical Engineering., Hanlyo Sanup University, Kwangyang (Korea, Republic of)

    1996-12-15

    The AB{sub 5} type metal hydride electrodes using (LM)Ni{sub 4.49}C0{sub 0.1}Mn{sub 0.205}Al{sub 0.205}(LM : Lanthanium rich Mischmetal) alloy powders({<=}200mesh) which were coated with 25wt% copper in an acidic bath were prepared with or without addition of 10wt% PTFE as a binder. Prior to electrochemical measurements, the electrode were sintered at 40 for 1 and 2hrs in vacuum with Mm(mischmetal) and sponge type Ti getters. The properties such as maximum capacity, cycle life and mechanical strength of the negative electrode have been investigated. The surface analysis of the electrode was also obtained before and after charge-discharge cycling using scanning election microscope(SEM). From the observations of electrochemical behavior, it was found that the sintered electrode shows a lower maximum discharge capacity compared with non-sintered electrode but it shows a better cycle life. For the both electrode with or without addition of PTFE binder, the values of mechanical strength were obtained, and their values increasing sintering time. However, there is little difference of discharge capacity for both electrodes. (author). 9 refs., 2 tabs., 4 figs., 2 ills.

  20. Prediction of transmittance spectra for transparent composite electrodes with ultra-thin metal layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhao; Alford, T. L., E-mail: TA@asu.edu [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Khorasani, Arash Elhami [ON Semiconductor Corp., Phoenix, Arizona 85005 (United States); Theodore, N. D. [CHD-Fab, Freescale Semiconductor Inc., Tempe, Arizona 85224 (United States); Dhar, A. [Intel Corp., 2501 NW 229th Ave, Hillsboro, Oregon 97124 (United States)

    2015-11-28

    Recent interest in indium-free transparent composite-electrodes (TCEs) has motivated theoretical and experimental efforts to better understand and enhance their electrical and optical properties. Various tools have been developed to calculate the optical transmittance of multilayer thin-film structures based on the transfer-matrix method. However, the factors that affect the accuracy of these calculations have not been investigated very much. In this study, two sets of TCEs, TiO{sub 2}/Au/TiO{sub 2} and TiO{sub 2}/Ag/TiO{sub 2}, were fabricated to study the factors that affect the accuracy of transmittance predictions. We found that the predicted transmittance can deviate significantly from measured transmittance for TCEs that have ultra-thin plasmonic metal layers. The ultrathin metal layer in the TCE is typically discontinuous. When light interacts with the metallic islands in this discontinuous layer, localized surface plasmons are generated. This causes extra light absorption, which then leads to the actual transmittance being lower than the predicted transmittance.

  1. Trap state passivation improved hot-carrier instability by zirconium-doping in hafnium oxide in a nanoscale n-metal-oxide semiconductor-field effect transistors with high-k/metal gate

    International Nuclear Information System (INIS)

    Liu, Hsi-Wen; Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Chang, Ting-Chang; Chen, Ching-En; Tseng, Tseung-Yuen; Lin, Chien-Yu; Cheng, Osbert; Huang, Cheng-Tung; Ye, Yi-Han

    2016-01-01

    This work investigates the effect on hot carrier degradation (HCD) of doping zirconium into the hafnium oxide high-k layer in the nanoscale high-k/metal gate n-channel metal-oxide-semiconductor field-effect-transistors. Previous n-metal-oxide semiconductor-field effect transistor studies demonstrated that zirconium-doped hafnium oxide reduces charge trapping and improves positive bias temperature instability. In this work, a clear reduction in HCD is observed with zirconium-doped hafnium oxide because channel hot electron (CHE) trapping in pre-existing high-k bulk defects is the main degradation mechanism. However, this reduced HCD became ineffective at ultra-low temperature, since CHE traps in the deeper bulk defects at ultra-low temperature, while zirconium-doping only passivates shallow bulk defects.

  2. Composite metal-hydrogen electrodes for metal-hydrogen batteries. Final report, October 1, 1993 - April 15, 1997

    International Nuclear Information System (INIS)

    Ruckman, M.W.; Strongin, M.; Weismann, H.

    1997-04-01

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped Nb films, these studies suggested that materials with metal-hydrogen ratios exceeding those of commercially available metal hydride materials and fast hydrogen charging and discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films and multilayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 μm thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices

  3. Simultaneous control of thermoelectric properties in p- and n-type materials by electric double-layer gating: New design for thermoelectric device

    Science.gov (United States)

    Takayanagi, Ryohei; Fujii, Takenori; Asamitsu, Atsushi

    2015-05-01

    We report a novel design of a thermoelectric device that can control the thermoelectric properties of p- and n-type materials simultaneously by electric double-layer gating. Here, p-type Cu2O and n-type ZnO were used as the positive and negative electrodes of the electric double-layer capacitor structure. When a gate voltage was applied between the two electrodes, holes and electrons accumulated on the surfaces of Cu2O and ZnO, respectively. The thermopower was measured by applying a thermal gradient along the accumulated layer on the electrodes. We demonstrate here that the accumulated layers worked as a p-n pair of the thermoelectric device.

  4. Protected electrodes for plasma panels

    International Nuclear Information System (INIS)

    Hall, S.W.

    1984-01-01

    A metal oxide coating is applied between the conductive base and the magnesium oxide dielectric of the input and/or erase electrode(s) in a plasma display device to prevent break-down of the dielectric

  5. Methods and systems for in-situ electroplating of electrodes

    Science.gov (United States)

    Zappi, Guillermo Daniel; Zarnoch, Kenneth Paul; Huntley, Christian Andrew; Swalla, Dana Ray

    2015-06-02

    The present techniques provide electrochemical devices having enhanced electrodes with surfaces that facilitate operation, such as by formation of a porous nickel layer on an operative surface, particularly of the cathode. The porous metal layer increases the surface area of the electrode, which may result in increasing the efficiency of the electrochemical devices. The formation of the porous metal layer is performed in situ, that is, after the assembly of the electrodes into an electrochemical device. The in situ process offers a number of advantages, including the ability to protect the porous metal layer on the electrode surface from damage during assembly of the electrochemical device. The enhanced electrode and the method for its processing may be used in any number of electrochemical devices, and is particularly well suited for electrodes in an electrolyzer useful for splitting water into hydrogen and oxygen.

  6. Fuel Cell Electrodes Based on Carbon Nanotube/Metallic Nanoparticles Hybrids Formed on Porous Stainless Steel Pellets

    Directory of Open Access Journals (Sweden)

    S. M. Khantimerov

    2013-01-01

    Full Text Available The preparation of carbon nanotube/metallic particle hybrids using pressed porous stainless steel pellets as a substrate is described. The catalytic growth of carbon nanotubes was carried out by CVD on a nickel catalyst obtained by impregnation of pellets with a highly dispersive colloidal solution of nickel acetate tetrahydrate in ethanol. Granular polyethylene was used as the carbon source. Metallic particles were deposited by thermal evaporation of Pt and Ag using pellets with grown carbon nanotubes as a base. The use of such composites as fuel cell electrodes is discussed.

  7. Toward spin-based Magneto Logic Gate in Graphene

    Science.gov (United States)

    Wen, Hua; Dery, Hanan; Amamou, Walid; Zhu, Tiancong; Lin, Zhisheng; Shi, Jing; Zutic, Igor; Krivorotov, Ilya; Sham, Lu; Kawakami, Roland

    Graphene has emerged as a leading candidate for spintronic applications due to its long spin diffusion length at room temperature. A universal magnetologic gate (MLG) based on spin transport in graphene has been recently proposed as the building block of a logic circuit which could replace the current CMOS technology. This MLG has five ferromagnetic electrodes contacting a graphene channel and can be considered as two three-terminal XOR logic gates. Here we demonstrate this XOR logic gate operation in such a device. This was achieved by systematically tuning the injection current bias to balance the spin polarization efficiency of the two inputs, and offset voltage in the detection circuit to obtain binary outputs. The output is a current which corresponds to different logic states: zero current is logic `0', and nonzero current is logic `1'. We find improved performance could be achieved by reducing device size and optimizing the contacts.

  8. 18.4%-Efficient Heterojunction Si Solar Cells Using Optimized ITO/Top Electrode.

    Science.gov (United States)

    Kim, Namwoo; Um, Han-Don; Choi, Inwoo; Kim, Ka-Hyun; Seo, Kwanyong

    2016-05-11

    We optimize the thickness of a transparent conducting oxide (TCO) layer, and apply a microscale mesh-pattern metal electrode for high-efficiency a-Si/c-Si heterojunction solar cells. A solar cell equipped with the proposed microgrid metal electrode demonstrates a high short-circuit current density (JSC) of 40.1 mA/cm(2), and achieves a high efficiency of 18.4% with an open-circuit voltage (VOC) of 618 mV and a fill factor (FF) of 74.1% as result of the shortened carrier path length and the decreased electrode area of the microgrid metal electrode. Furthermore, by optimizing the process sequence for electrode formation, we are able to effectively restore the reduction in VOC that occurs during the microgrid metal electrode formation process. This work is expected to become a fundamental study that can effectively improve current loss in a-Si/c-Si heterojunction solar cells through the optimization of transparent and metal electrodes.

  9. Liquid and gel electrodes for transverse free flow electrophoresis

    Science.gov (United States)

    Jung, Byoungsok; Rose, Klint A; Shusteff, Maxim; Persat, Alexandre; Santiago, Juan

    2015-04-07

    The present invention provides a mechanism for separating or isolating charged particles under the influence of an electric field without metal electrodes being in direct contact with the sample solution. The metal electrodes normally in contact with the sample are replaced with high conductivity fluid electrodes situated parallel and adjacent to the sample. When the fluid electrodes transmit the electric field across the sample, particles within the sample migrate according to their electrophoretic mobility.

  10. Ozone production by an atmospheric pulsed discharge with pre-ionization electrodes and partly covered electrode

    International Nuclear Information System (INIS)

    Kaneda, S.; Shimosaki, M.; Hayashi, N.; Ihara, S.; Satoh, S.; Yamabe, C.

    2002-01-01

    In this paper, results on ozone production by atmospheric pulsed discharge, are reported. In the research, two types of ozonizer (Type I and Type II) have been used to investigate improvements of ozone concentration and production efficiency. The ozonizer has plane-to-plane metal electrodes structure, and pre-ionization electrodes are placed on the high voltage electrodes (Type I). In Type II, the surface of grounded electrode with 20 mm of width is covered partly by dielectric (thin rubber) with 11 mm of width, while the geometry of both metal electrodes is same to Type I. In the case of Type I, maximum concentration of about 100 ppm and maximum yield of 70 g/kWh were obtained at input power of 0.3 W. On the other hands, in the case of Type II, 800 ppm and 100 g/kWh were obtained at input power of 1.5 W. It was found that the ozone concentration and production yield were improved by using electrode covered by dielectric. (author)

  11. Transistor-like behavior of transition metal complexes

    DEFF Research Database (Denmark)

    Albrecht, Tim; Guckian, A; Ulstrup, Jens

    2005-01-01

    scanning tunneling microscope (in situ STM). This configuration resembles a single-molecule transistor, where the reference electrode corresponds to the gate electrode. It operates at room temperature in a condensed matter (here aqueous) environment. Amplification on-off ratios up to 50 are found when...

  12. Study of the interface stability of the metal (Mo, Ni, Pd/HfO2/AlN/InGaAs MOS devices

    Directory of Open Access Journals (Sweden)

    Huy Binh Do

    2017-08-01

    Full Text Available The degeneration of the metal/HfO2 interfaces for Mo, Ni, and Pd gate metals was studied in this paper. An unstable PdOx interfacial layer formed at the Pd/HfO2 interface, inducing the oxygen segregation for the Pd/HfO2/InGaAs metal oxide capacitor (MOSCAP. The low dissociation energy for the Pd-O bond was the reason for oxygen segregation. The PdOx layer contains O2− and OH− ions which are mobile during thermal annealing and electrical stress test. The phenomenon was not observed for the (Mo, Ni/HfO2/InGaAs MOSCAPs. The results provide the guidance for choosing the proper metal electrode for the InGaAs based MOSFET.

  13. Detection of metal ions by atomic emission spectroscopy from liquid-electrode discharge plasma

    International Nuclear Information System (INIS)

    Wu Jian; Yu Jing; Li Jun; Wang Jianping; Ying Yibin

    2007-01-01

    In this paper, the discharge ignited in a capillary connecting two beakers filled with electrolyte solution is investigated. During the experiment, an external electrical voltage is applied through two platinum electrodes dipped in the beakers. A gas bubble forms inside the capillary when the applied voltage is higher than 1000 V. Since the beakers are tilted slightly, after generation, the bubble moves slowly to the uphill outlet of the capillary due to buoyancy. When the bubble reaches the end of the capillary, it cracks and a bright discharge is ignited. The emission spectra of the discharge plasma are related to the metal ions dissolved in the solution and thus can be used for metal ion detection. An application of the system to measurement of water hardness is shown

  14. Investigation of the connection between plasma temperature and electrode temperature in metal-halide lamps

    International Nuclear Information System (INIS)

    Fromm, D.C.; Gleixner, K.H.; Lieder, G.H.

    2002-01-01

    Spatial profiles of electrode temperatures and plasma temperatures have been measured on 'real' HID lamps filled with a commercial metal-halide compound. The absolute accuracy of pyrometric determination of electrode tip temperatures was ±30 K, while the determination of plasma core temperatures, using a modified Bartels method, has an accuracy of ±100 K. We could deduce a close correlation between the plasma temperature in front of an electrode T p and its tip temperature T t due to the influence of the cataphoresis. If T p is reduced at the cathode the T t value has also lowered, whereas T p at the anode is raised together with its T t data. This correlation disappears at ballast frequencies above 100 Hz, whereas the cataphoresis influence on T p continues up to 500 Hz. Based on the latter limit, a rough estimation of the cataphoresis velocity delivers 700 cm s -1 . As a tentative interpretation, we suggest that the connection between T p and T t is caused by an increase of the ion part of the total current at the cathode due to Na accumulation before it. Thus, the cathode has to emit fewer electrons and works at a lower temperature. Further results are the temporal behaviour of T t depends on the ballast type. For vertical operation the strong influence of convection on T t has also to be taken into account. Above 100 Hz, where only convection plays a role, the upper electrode T t exceeds the T t value of the lower electrode by nearly 400 K. This discrepancy one may explain, tentatively, by convection heating of the upper electrode and convection cooling of the lower one. (author)

  15. Applications of porous electrodes to metal-ion removal and the design of battery systems

    International Nuclear Information System (INIS)

    Trost, G.G.

    1983-09-01

    This dissertation treats the use of porous electrodes as electrochemical reactors for the removal of dilute metal ions. A methodology for the scale-up of porous electrodes used in battery applications is given. Removal of 4 μg Pb/cc in 1 M sulfuric acid was investigated in atmospheric and high-pressure, flow-through porous reactors. The atmospheric reactor used a reticulated vitreous carbon porous bed coated in situ with a mercury film. Best results show 98% removal of lead from the feed stream. Results are summarized in a dimensionless plot of Sherwood number vs Peclet number. High-pressure, porous-electrode experiments were performed to investigate the effect of pressure on the current efficiency. Pressures were varied up to 120 bar on electrode beds of copper or lead-coated spheres. The copper spheres showed high hydrogen evolution rates which inhibited lead deposition, even at high cathodic overpotentials. Use of lead spheres inhibited hydrogen evolution but often resulted in the formation of lead sulfate layers; these layers were difficult to reduce back to lead. Experimental data of one-dimensional porous battery electrodes are combined with a model for the current collector and cell connectors to predict ultimate specific energy and maximum specific power for complete battery systems. Discharge behavior of the plate as a whole is first presented as a function of depth of discharge. These results are combined with the voltage and weight penalties of the interconnecting bus and post, positive and negative active material, cell container, etc. to give specific results for the lithium-aluminum/iron sulfide high-temperature battery. Subject to variation is the number of positive electrodes, grid conductivity, minimum current-collector weight, and total delivered capacity. The battery can be optimized for maximum energy or power, or a compromise design may be selected

  16. Applications of porous electrodes to metal-ion removal and the design of battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Trost, G.G.

    1983-09-01

    This dissertation treats the use of porous electrodes as electrochemical reactors for the removal of dilute metal ions. A methodology for the scale-up of porous electrodes used in battery applications is given. Removal of 4 ..mu..g Pb/cc in 1 M sulfuric acid was investigated in atmospheric and high-pressure, flow-through porous reactors. The atmospheric reactor used a reticulated vitreous carbon porous bed coated in situ with a mercury film. Best results show 98% removal of lead from the feed stream. Results are summarized in a dimensionless plot of Sherwood number vs Peclet number. High-pressure, porous-electrode experiments were performed to investigate the effect of pressure on the current efficiency. Pressures were varied up to 120 bar on electrode beds of copper or lead-coated spheres. The copper spheres showed high hydrogen evolution rates which inhibited lead deposition, even at high cathodic overpotentials. Use of lead spheres inhibited hydrogen evolution but often resulted in the formation of lead sulfate layers; these layers were difficult to reduce back to lead. Experimental data of one-dimensional porous battery electrodes are combined with a model for the current collector and cell connectors to predict ultimate specific energy and maximum specific power for complete battery systems. Discharge behavior of the plate as a whole is first presented as a function of depth of discharge. These results are combined with the voltage and weight penalties of the interconnecting bus and post, positive and negative active material, cell container, etc. to give specific results for the lithium-aluminum/iron sulfide high-temperature battery. Subject to variation is the number of positive electrodes, grid conductivity, minimum current-collector weight, and total delivered capacity. The battery can be optimized for maximum energy or power, or a compromise design may be selected.

  17. All-solution-processed bottom-gate organic thin-film transistor with improved subthreshold behaviour using functionalized pentacene active layer

    International Nuclear Information System (INIS)

    Kim, Jinwoo; Jeong, Jaewook; Cho, Hyun Duk; Lee, Changhee; Hong, Yongtaek; Kim, Seul Ong; Kwon, Soon-Ki

    2009-01-01

    We report organic thin-film transistors (OTFTs) made by simple solution processes in an ambient air environment. Inkjet-printed silver electrodes were used for bottom-gate and bottom-contacted source/drain electrodes. A spin-coated cross-linked poly(4-vinylphenol) (PVP) and a spin-coated 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) were used as a gate dielectric layer and an active layer, respectively. A high-boiling-point solvent was used for TIPS-pentacene and the resulting film showed stem-like morphology. X-ray diffraction (XRD) measurement showed the spin-coated active layer was well crystallized, showing the (0 0 1) plane. The reasonable mobility, on/off ratio and threshold voltage of the fabricated device, which are comparable to those of the previously reported TIPS-pentacene OTFT with gold electrodes, show that the printed silver electrodes worked successfully as gate and source/drain electrodes. Furthermore, the device showed a subthreshold slope of 0.61 V/dec in the linear region (V DS = -5 V), which is the lowest value for spin-coated TIPS-pentacene TFT ever reported, and much lower than that of the thermally evaporated pentacene OTFTs. It is thought that the surface energy of the PVP dielectric layer is well matched with that of a well-ordered TIPS-pentacene (0 0 1) surface when a high-boiling-point solvent and a low-temperature drying process are used, thereby making good interface properties, and showing higher performances than those for pentacene TFT with the same structure.

  18. Investigating degradation behavior of hole-trapping effect under static and dynamic gate-bias stress in a dual gate a-InGaZnO thin film transistor with etch stop layer

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Po-Yung [Department of Physics, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang3708@gmail.com [Department of Physics, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Taiwan (China); Hsieh, Tien-Yu [Department of Physics, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Tsai, Ming-Yen; Chen, Bo-Wei; Chu, Ann-Kuo [Department of Photonics, National Sun Yat-Sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Chou, Cheng-Hsu; Chang, Jung-Fang [Product Technology Center, Chimei Innolux Corp., Tainan 741, Taiwan (China)

    2016-03-31

    The degree of degradation between the amorphous-indium–gallium–zinc oxide (a-IGZO) thin film transistor (TFT) using the top-gate only or bottom-gate only is compared. Under negative gate bias illumination stress (NBIS), the threshold voltage (V{sub T}) after bottom-gate NBIS monotonically shifts in the negative direction, whereas top-gate NBIS operation exhibits on-state current increases without V{sub T} shift. Such anomalous degradation behavior of NBIS under top-gate operation is due to hole-trapping in the etch stop layer above the central portion of the channel. These phenomena can be ascribed to the screening of the electric field by redundant source/drain electrodes. In addition, the device degradation of dual gate a-IGZO TFT stressed with different top gate pulse waveforms is investigated. It is observed that the degradation is dependent on the frequency of the top gate pulses. The V{sub T} shift increases with decreasing frequency, indicating the hole mobility of IGZO is low. - Highlights: • Static and dynamic gate bias stresses are imposed on dual gate InGaZnO TFTs. • Top-gate NBIS operation exhibits on-state current increases without VT shift. • The degradation behavior of top-gate NBIS is due to hole-trapping in the ESL. • The degradation is dependent on the frequency of the top gate pulses. • The V{sub T} shift increases with decreasing frequency of the top gate pulses.

  19. Investigating degradation behavior of hole-trapping effect under static and dynamic gate-bias stress in a dual gate a-InGaZnO thin film transistor with etch stop layer

    International Nuclear Information System (INIS)

    Liao, Po-Yung; Chang, Ting-Chang; Hsieh, Tien-Yu; Tsai, Ming-Yen; Chen, Bo-Wei; Chu, Ann-Kuo; Chou, Cheng-Hsu; Chang, Jung-Fang

    2016-01-01

    The degree of degradation between the amorphous-indium–gallium–zinc oxide (a-IGZO) thin film transistor (TFT) using the top-gate only or bottom-gate only is compared. Under negative gate bias illumination stress (NBIS), the threshold voltage (V T ) after bottom-gate NBIS monotonically shifts in the negative direction, whereas top-gate NBIS operation exhibits on-state current increases without V T shift. Such anomalous degradation behavior of NBIS under top-gate operation is due to hole-trapping in the etch stop layer above the central portion of the channel. These phenomena can be ascribed to the screening of the electric field by redundant source/drain electrodes. In addition, the device degradation of dual gate a-IGZO TFT stressed with different top gate pulse waveforms is investigated. It is observed that the degradation is dependent on the frequency of the top gate pulses. The V T shift increases with decreasing frequency, indicating the hole mobility of IGZO is low. - Highlights: • Static and dynamic gate bias stresses are imposed on dual gate InGaZnO TFTs. • Top-gate NBIS operation exhibits on-state current increases without VT shift. • The degradation behavior of top-gate NBIS is due to hole-trapping in the ESL. • The degradation is dependent on the frequency of the top gate pulses. • The V T shift increases with decreasing frequency of the top gate pulses.

  20. A technology development for the purification and utilization of rare metals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The electronics and semi-conductor industries require the use of high-purity rare metals and their alloys more than ever. High purity metals such as titanium, molybdenum, nickel and cobalt are used in the manufacture of gate electrodes, interconnectors, and metal barriers due to their excellent properties. However, domestic production of these rare metals has not been achieved due mainly to the low metal content in their ore in the nation. For these reasons, a strategy for the value addition of rare metal sponges by processes like vacuum melting and by the remelting of expensive scraps should be seek to meet the growing domestic demand and to reduce the import from foreign countries. The major sponge-melting methods are VAR (Vacuum Arc Remelting), VIM (Vacuum Induction Melting), Plasma melting, PAM (Plasma Arc Melting), and EBM (Electron Beam Melting) in the order of development sequence. Among these, VAR obtained most wide application due to their lower cost and ease of producing large ingots. However, the method suffers from the difficulties in the control of melting rate, segregation of certain elements including interstitial impurities during the preparation of electrode. The recent trend for more strict control of impurities in electronics industries forces titanium metal producers to use more sophisticated equipment like EBM. The objectives for this research are two fold : One is to develop a titanium purification process utilizing the EBM method. The other is to develop a multi-stage cascade process of supported liquid membrane (SLM) for separation and purification of rare metals such as cobalt and nickel. (author). 50 refs., 18 tabs., 39 figs.

  1. Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material

    KAUST Repository

    Ramadan, Khaled S.; Nasr, Tarek Adel Hosny; Foulds, Ian G.

    2013-01-01

    method using XeF2, which alleviates release-based stiction problems related to MEMS applications. In this work, an SU-8 MEMS process was developed using ;-Si as a sacrificial layer. Two conductive metal electrodes were integrated in this process to allow

  2. Patterning of metallic electrodes on flexible substrates for organic thin-film transistors using a laser thermal printing method

    International Nuclear Information System (INIS)

    Chen, Kun-Tso; Lin, Yu-Hsuan; Ho, Jeng-Rong; Chen, Chih-Kant; Liu, Sung-Ho; Liao, Jin-Long; Cheng, Hua-Chi

    2011-01-01

    We report on a laser thermal printing method for transferring patterned metallic thin films on flexible plastic substrates using a pulsed CO 2 laser. Aluminium and silver line patterns, with micrometre scale resolution on poly(ethylene terephthalate) substrates, are shown. The printed electrodes demonstrate good conductivity and fulfil the properties for bottom-contact organic thin-film transistors. In addition to providing the energy for transferring the film, the absorption of laser light results in a rise in the temperature of the film and the substrate. This also further anneals the film and softens the plastic substrate. Consequently, it is possible to obtain a film with better surface morphology and with its film thickness implanted in part into the plastic surface. This implantation reveals excellent characteristics in adhesion and flexure resistance. Being feasible to various substrates and executable at ambient temperatures renders this approach a potential alternative for patterning metallic electrodes.

  3. Pseudocapacitive and hierarchically ordered porous electrode materials supercapacitors

    Science.gov (United States)

    Saruhan, B.; Gönüllü, Y.; Arndt, B.

    2013-05-01

    Commercially available double layer capacitors store energy in an electrostatic field. This forms in the form of a double layer by charged particles arranged on two electrodes consisting mostly of active carbon. Such double layer capacitors exhibit a low energy density, so that components with large capacity according to large electrode areas are required. Our research focuses on the development of new electrode materials to realize the production of electrical energy storage systems with high energy density and high power density. Metal oxide based electrodes increase the energy density and the capacitance by addition of pseudo capacitance to the static capacitance present by the double layer super-capacitor electrodes. The so-called hybrid asymmetric cell capacitors combine both types of energy storage in a single component. In this work, the production routes followed in our laboratories for synthesis of nano-porous and aligned metal oxide electrodes using the electrochemical and sputter deposition as well as anodization methods will be described. Our characterisation studies concentrate on electrodes having redox metal-oxides (e.g. MnOx and WOx) and hierarchically aligned nano-porous Li-doped TiO2-NTs. The material specific and electrochemical properties achieved with these electrodes will be presented.

  4. Investigations on the effects of electrode materials on the device characteristics of ferroelectric memory thin film transistors fabricated on flexible substrates

    Science.gov (United States)

    Yang, Ji-Hee; Yun, Da-Jeong; Seo, Gi-Ho; Kim, Seong-Min; Yoon, Myung-Han; Yoon, Sung-Min

    2018-03-01

    For flexible memory device applications, we propose memory thin-film transistors using an organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] gate insulator and an amorphous In-Ga-Zn-O (a-IGZO) active channel. The effects of electrode materials and their deposition methods on the characteristics of memory devices exploiting the ferroelectric field effect were investigated for the proposed ferroelectric memory thin-film transistors (Fe-MTFTs) at flat and bending states. It was found that the plasma-induced sputtering deposition and mechanical brittleness of the indium-tin oxide (ITO) markedly degraded the ferroelectric-field-effect-driven memory window and bending characteristics of the Fe-MTFTs. The replacement of ITO electrodes with metal aluminum (Al) electrodes prepared by plasma-free thermal evaporation greatly enhanced the memory device characteristics even under bending conditions owing to their mechanical ductility. Furthermore, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) was introduced to achieve robust bending performance under extreme mechanical stress. The Fe-MTFTs using PEDOT:PSS source/drain electrodes were successfully fabricated and showed the potential for use as flexible memory devices. The suitable choice of electrode materials employed for the Fe-MTFTs is concluded to be one of the most important control parameters for highly functional flexible Fe-MTFTs.

  5. Electroresistance effect in gold thin film induced by ionic-liquid-gated electric double layer

    International Nuclear Information System (INIS)

    Nakayama, Hiroyasu; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Saitoh, Eiji; Ye, Jianting; Iwasa, Yoshihiro

    2012-01-01

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with 27 (-25) MV cm -1 of electric field by applying only 1.7 V of positive (negative) gate voltage. The experimental results indicate that the ionic-liquid-gated EDLT technique can be used for controlling the surface electronic states on metallic systems. (author)

  6. The electrical characterization and response to hydrogen of Schottky diodes with a resistive metal electrode-rectifying an oversight in Schottky diode investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, P; Feng, L; Penate-Quesada, L [Centre for Nanostructured Media, School of Maths and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Hill, G [EPSRC National Centre for III-V Technologies, Mappin Street, University ofSheffield, Sheffield S1 3JD (United Kingdom); Mitra, J, E-mail: P.dawson@qub.ac.uk

    2011-03-30

    Schottky-barrier structures with a resistive metal electrode are examined using the 4-point probe method where the probes are connected to the metal electrode only. The observation of a significant decrease in resistance with increasing temperature (over a range of {approx}100 K) in the diode resistance-temperature (R{sub D}-T) characteristic is considered due to charge carrier confinement to the metal electrode at low temperature (high resistance), with the semiconductor progressively opening up as a parallel current carrying channel (low resistance) with increasing temperature due to increasing thermionic emission across the barrier. A simple model is constructed, based on thermionic emission at quasi-zero bias, that generates good fits to the experimental data. The negative differential resistance (NDR) region in the R{sub D}-T characteristic is a general effect and is demonstrated across a broad temperature range for a variety of Schottky structures grown on Si-, GaAs- and InP-substrates. In addition the NDR effect is harnessed in micro-scaled Pd/n-InP devices for the detection of low levels of hydrogen in an ambient atmosphere of nitrogen.

  7. Co3O4 Electrode Prepared by Using Metal-Organic Framework as a Host for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Jiaqiang Jiang

    2015-01-01

    Full Text Available Co3O4 nanoparticles were prepared from cobalt nitrate that was accommodated in the pores of a metal-organic framework (MOF ZIF-8 (Zn(MeIM2, MeIM = 2-methylimidazole by using a simple liquid-phase method. Analysis by scanning electron microscopy (SEM and transmission electron microscopy (TEM showed that the obtained Co3O4 was composed of separate nanoparticles with a mean size of 30 nm. The obtained Co3O4 nanoparticles exhibited superior electrochemical property. Co3O4 electrode exhibited a maximum specific capacitance of 189.1 F g−1 at the specific current of 0.2 A g−1. Meanwhile, the Co3O4 electrode possessed the high specific capacitance retention ratio at the current density ranging from 0.2 to 1.0 A g−1, thereby indicating that Co3O4 electrode suited high-rate charge/discharge.

  8. Cylindrical gate all around Schottky barrier MOSFET with insulated shallow extensions at source/drain for removal of ambipolarity: a novel approach

    Science.gov (United States)

    Kumar, Manoj; Pratap, Yogesh; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2017-12-01

    In this paper TCAD-based simulation of a novel insulated shallow extension (ISE) cylindrical gate all around (CGAA) Schottky barrier (SB) MOSFET has been reported, to eliminate the suicidal ambipolar behavior (bias-dependent OFF state leakage current) of conventional SB-CGAA MOSFET by blocking the metal-induced gap states as well as unwanted charge sharing between source/channel and drain/channel regions. This novel structure offers low barrier height at the source and offers high ON-state current. The I ON/I OFF of ISE-CGAA-SB-MOSFET increases by 1177 times and offers steeper subthreshold slope (~60 mV/decade). However a little reduction in peak cut off frequency is observed and to further improve the cut-off frequency dual metal gate architecture has been employed and a comparative assessment of single metal gate, dual metal gate, single metal gate with ISE, and dual metal gate with ISE has been presented. The improved performance of Schottky barrier CGAA MOSFET by the incorporation of ISE makes it an attractive candidate for CMOS digital circuit design. The numerical simulation is performed using the ATLAS-3D device simulator.

  9. The Aharonov-Bohm effect in a side-gated graphene ring

    International Nuclear Information System (INIS)

    Huefner, Magdalena; Molitor, Francoise; Jacobsen, Arnhild; Pioda, Alessandro; Stampfer, Christoph; Ensslin, Klaus; Ihn, Thomas

    2010-01-01

    We investigate the magnetoresistance of a side-gated ring structure etched out of single-layer graphene. We observe Aharonov-Bohm oscillations with about 5% visibility. We are able to change the relative phases of the wave functions in the interfering paths and induce phase jumps of π in the Aharonov-Bohm oscillations by changing the voltage applied to the side gate or the back gate. The observed data can be interpreted within existing models for 'dirty metals'.

  10. Comparative investigation of novel hetero gate dielectric and drain engineered charge plasma TFET for improved DC and RF performance

    Science.gov (United States)

    Yadav, Dharmendra Singh; Verma, Abhishek; Sharma, Dheeraj; Tirkey, Sukeshni; Raad, Bhagwan Ram

    2017-11-01

    Tunnel-field-effect-transistor (TFET) has emerged as one of the most prominent devices to replace conventional MOSFET due to its ability to provide sub-threshold slope below 60 mV/decade (SS ≤ 60 mV/decade) and low leakage current. Despite this, TFETs suffer from ambipolar behavior, lower ON-state current, and poor RF performance. To address these issues, we have introduced drain and gate work function engineering with hetero gate dielectric for the first time in charge plasma based doping-less TFET (DL TFET). In this, the usage of dual work functionality over the drain region significantly reduces the ambipolar behavior of the device by varying the energy barrier at drain/channel interface. Whereas, the presence of dual work function at the gate terminal increases the ON-state current (ION). The combined effect of dual work function at the gate and drain electrode results in the increment of ON-state current (ION) and decrement of ambipolar conduction (Iambi) respectively. Furthermore, the incorporation of hetero gate dielectric along with dual work functionality at the drain and gate electrode provides an overall improvement in the performance of the device in terms of reduction in ambipolarity, threshold voltage and sub-threshold slope along with improved ON-state current and high frequency figures of merit.

  11. Dielectric elastomers with novel highly-conducting electrodes

    Science.gov (United States)

    Böse, Holger; Uhl, Detlev

    2013-04-01

    Beside the characteristics of the elastomer material itself, the performance of dielectric elastomers in actuator, sensor as well as generator applications depends also on the properties of the electrode material. Various electrode materials based on metallic particles dispersed in a silicone matrix were manufactured and investigated. Anisotropic particles such as silver-coated copper flakes and silver-coated glass flakes were used for the preparation of the electrodes. The concentration of the metallic particles and the thickness of the electrode layers were varied. Specific conductivities derived from resistance measurements reached about 100 S/cm and surmount those of the reference materials based on graphite and carbon black by up to three orders of magnitude. The high conductivities of the new electrode materials can be maintained even at very large stretch deformations up to 200 %.

  12. Indicator electrodes from d-elements for application in different types of potentiometric analytical methods

    Directory of Open Access Journals (Sweden)

    Z. Kunasheva

    2012-05-01

    Full Text Available The article covers the use of metal electrodes from titanium, tungsten, molybdenum as indicator electrodes at potentiometric method of analysis. The condition of measuring operation in dependence on pH, ionic strength of solutions is described in the article. Electrode potential of testing electrodes are measured in the interval of concentration of salts from 0,1∙10-1 mole/l till 0,1∙10-6 mole/l. The results of testing of electrical-analytical description of metal electrodes made of d-elements, in particular, titanium, tungsten, molybdenum in solutions of cations of some metals and anions were mentioned. As ions of metal cations Cu2+, Cd2+, Zn2+, Pb2+ and anions Cl-, I-, F- were chosen.It is identified that titanic electrode has different response to ions of copper (II, zinc and cadmium. However, dependence of electrode potential on concentration of ions of metal is rectilinear, that is vequired of indicator electrodes in the direct potential metrics.  

  13. Chemical formation of soft metal electrodes for flexible and wearable electronics.

    Science.gov (United States)

    Wang, Dongrui; Zhang, Yaokang; Lu, Xi; Ma, Zhijun; Xie, Chuan; Zheng, Zijian

    2018-06-18

    Flexible and wearable electronics is one major technology after smartphones. It shows remarkable application potential in displays and informatics, robotics, sports, energy harvesting and storage, and medicine. As an indispensable part and the cornerstone of these devices, soft metal electrodes (SMEs) are of great significance. Compared with conventional physical processes such as vacuum thermal deposition and sputtering, chemical approaches for preparing SMEs show significant advantages in terms of scalability, low-cost, and compatibility with the soft materials and substrates used for the devices. This review article provides a detailed overview on how to chemically fabricate SMEs, including the material preparation, fabrication technologies, methods to characterize their key properties, and representative studies on different wearable applications.

  14. CMOS-compatible fabrication of top-gated field-effect transistor silicon nanowire-based biosensors

    International Nuclear Information System (INIS)

    Ginet, Patrick; Akiyama, Sho; Takama, Nobuyuki; Fujita, Hiroyuki; Kim, Beomjoon

    2011-01-01

    Field-effect transistor (FET) nanowire-based biosensors are very promising tools for medical diagnosis. In this paper, we introduce a simple method to fabricate FET silicon nanowires using only standard microelectromechanical system (MEMS) processes. The key steps of our fabrication process were a local oxidation of silicon (LOCOS) and anisotropic KOH etchings that enabled us to reduce the width of the initial silicon structures from 10 µm to 170 nm. To turn the nanowires into a FET, a top-gate electrode was patterned in gold next to them in order to apply the gate voltage directly through the investigated liquid environment. An electrical characterization demonstrated the p-type behaviour of the nanowires. Preliminary chemical sensing tested the sensitivity to pH of our device. The effect of the binding of streptavidin on biotinylated nanowires was monitored in order to evaluate their biosensing ability. In this way, streptavidin was detected down to a 100 ng mL −1 concentration in phosphate buffered saline by applying a gate voltage less than 1.2 V. The use of a top-gate electrode enabled the detection of biological species with only very low voltages that were compatible with future handheld-requiring applications. We thus demonstrated the potential of our devices and their fabrication as a solution for the mass production of efficient and reliable FET nanowire-based biological sensors

  15. Cell with scrolled electrodes. Uzumaki jo denkyokutai wo sonaeta denchi

    Energy Technology Data Exchange (ETDEWEB)

    Kamibayashi, M.; Morioka, Y. (Sanyo Electric Co. Ltd., Osaka (Japan))

    1990-10-03

    Non-sintered electrode plates produced by direct filling of paste state active materials in metal fiber felt type porous body are proposed recently for use as electrode plates for alkali cells and the like. Although this type of electrode plates can be produced with a simple facility because sintering process is not required, it has a shorcoming of internal short circuiting because metal fibers pass through the separator due to fuzzing of metal fiber. According to this invention, a sheet comprising metallic fibers oriented at right angles against the scrolled direction of the electrode plate is stacked on the surface of the metal fiber felt type porous body sheet when it is scrolled with the interposed separator. As the result, fibers are not bent and does not protrude from the surface of sheet to pass through the separator because each metallic fiber comprising the metallic sheet on the surface are arranged at a right angle against the direction of scrolling of the porous sheet. 2 figs., 1 tab.

  16. Near interface traps in SiO{sub 2}/4H-SiC metal-oxide-semiconductor field effect transistors monitored by temperature dependent gate current transient measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fiorenza, Patrick; La Magna, Antonino; Vivona, Marilena; Roccaforte, Fabrizio [Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII 5, Zona Industriale 95121 Catania (Italy)

    2016-07-04

    This letter reports on the impact of gate oxide trapping states on the conduction mechanisms in SiO{sub 2}/4H-SiC metal-oxide-semiconductor field effect transistors (MOSFETs). The phenomena were studied by gate current transient measurements, performed on n-channel MOSFETs operated in “gate-controlled-diode” configuration. The measurements revealed an anomalous non-steady conduction under negative bias (V{sub G} > |20 V|) through the SiO{sub 2}/4H-SiC interface. The phenomenon was explained by the coexistence of a electron variable range hopping and a hole Fowler-Nordheim (FN) tunnelling. A semi-empirical modified FN model with a time-depended electric field is used to estimate the near interface traps in the gate oxide (N{sub trap} ∼ 2 × 10{sup 11} cm{sup −2}).

  17. Laterally configured resistive switching device based on transition-metal nano-gap electrode on Gd oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kawakita, Masatoshi; Okabe, Kyota [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kimura, Takashi [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Research Center for Quantum Nano-Spin Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)

    2016-01-11

    We have developed a fabrication process for a laterally configured resistive switching device based on a Gd oxide. A nano-gap electrode connected by a Gd oxide with the ideal interfaces has been created by adapting the electro-migration method in a metal/GdO{sub x} bilayer system. Bipolar set and reset operations have been clearly observed in the Pt/GdO{sub x} system similarly in the vertical device based on GdO{sub x}. Interestingly, we were able to observe a clear bipolar switching also in a ferromagnetic CoFeB nano-gap electrode with better stability compared to the Pt/GdO{sub x} device. The superior performance of the CoFeB/GdO{sub x} device implies the importance of the spin on the resistive switching.

  18. Electrode systems for in situ vitrification

    Science.gov (United States)

    Buelt, James L.; Carter, John G.; Eschbach, Eugene A.; FitzPatrick, Vincent F.; Koehmstedt, Paul L.; Morgan, William C.; Oma, Kenton H.; Timmerman, Craig L.

    1990-01-01

    An electrode comprising a molybdenum rod is received within a conductive collar formed of graphite. The molybdenum rod and the graphite collar may be physically joined at the bottom. A pair of such electrodes are placed in soil containing buried waste material and an electric current is passed therebetween for vitrifying the soil. The graphite collar enhances the thermal conductivity of the combination, bringing heat to the surface, and preventing formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is suitably filled with a conductive ceramic powder that sinters upon the molybdenum rod, protecting the same from oxidation as graphite material is consumed, or a metal powder which liquefies at operating temperatures. The center of the molybdenum rod, used with a collar of separately, can be hollow and filled with a powdered metal, such as copper, which liquefies at operating temperatures. Connection to electrodes can be provided below ground level to avoid open circuit due to electrode deterioration, or sacrificial electrodes may be employed when operation is started. Outboard electrodes cna be utilized to square up a vitrified area.

  19. Cleaved-edge-overgrowth nanogap electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Luber, Sebastian M; Bichler, Max; Abstreiter, Gerhard; Tornow, Marc, E-mail: m.tornow@tu-bs.de [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, 85748 Garching (Germany)

    2011-02-11

    We present a method to fabricate multiple metal nanogap electrodes of tailored width and distance in parallel, on the cleaved plane of a GaAs/AlGaAs heterostructure. The three-dimensional patterned structures are obtained by a combination of molecular-beam-epitaxial regrowth on a crystal facet, using the cleaved-edge-overgrowth (CEO) method, and subsequent wet selective etching and metallization steps. SEM and AFM studies reveal smooth and co-planar electrodes of width and distance of the order of 10 nm. Preliminary electrical characterization indicates electrical gap insulation in the 100 M{Omega} range with k{Omega} lead resistance. We propose our methodology to realize multiple electrode geometries that would allow investigation of the electrical conductivity of complex nanoscale objects such as branched organic molecules.

  20. Cleaved-edge-overgrowth nanogap electrodes.

    Science.gov (United States)

    Luber, Sebastian M; Bichler, Max; Abstreiter, Gerhard; Tornow, Marc

    2011-02-11

    We present a method to fabricate multiple metal nanogap electrodes of tailored width and distance in parallel, on the cleaved plane of a GaAs/AlGaAs heterostructure. The three-dimensional patterned structures are obtained by a combination of molecular-beam-epitaxial regrowth on a crystal facet, using the cleaved-edge-overgrowth (CEO) method, and subsequent wet selective etching and metallization steps. SEM and AFM studies reveal smooth and co-planar electrodes of width and distance of the order of 10 nm. Preliminary electrical characterization indicates electrical gap insulation in the 100 MΩ range with kΩ lead resistance. We propose our methodology to realize multiple electrode geometries that would allow investigation of the electrical conductivity of complex nanoscale objects such as branched organic molecules.

  1. A Quantitative Tunneling/Desorption Model for the Exchange Current at the Porous Electrode/Beta - Alumina/Alkali Metal Gas Three Phase Zone at 700-1300K

    Science.gov (United States)

    Williams, R. M.; Ryan, M. A.; Saipetch, C.; LeDuc, H. G.

    1996-01-01

    The exchange current observed at porous metal electrodes on sodium or potassium beta -alumina solid electrolytes in alkali metal vapor is quantitatively modeled with a multi-step process with good agreement with experimental results.

  2. Optimization of Electrochemical Parameters for Landfill Leachate Treatment Using Charcoal Base Metallic Composite Electrode

    International Nuclear Information System (INIS)

    Majd Ahmed Jumaah; Mohamed Rozali Othman

    2015-01-01

    Landfill leachate normally contains organic and inorganic pollutants in high concentrations. Electrochemical oxidation technique is an effective method to treat landfill leachate, have high efficiency in organic pollutants degradation and ammonia removal. In this study, a cost effective charcoal base metallic composite electrode to treat landfill leachate by electrochemical oxidation was fabricated. The effects of operational parameters such as supporting electrolyte, applied voltage and electrolysis time on the removal percentage of Color, COD, NH 3 -N and total-P (PO 4 -3 ) were carried out. The results obtained show that the removal percentage of Color, COD, NH 3 -N and total- P (PO 4 -3 ) are 70, 89, 73 and 80 % respectively. Under the optimum operating condition, sodium chloride concentration of 1.5 % (w/v), applied voltage of 10 V, operating time 180 min and C 60 C G 15 Co 10 - PVC 15 electrode as an anode were used. (author)

  3. Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives

    Science.gov (United States)

    Kishi, Hiroshi; Mizuno, Youichi; Chazono, Hirokazu

    2003-01-01

    Multilayer ceramic capacitor (MLCC) production and sales figures are the highest among fine-ceramic products developed in the past 30 years. The total worldwide production and sales reached 550 billion pieces and 6 billion dollars, respectively in 2000. In the course of progress, the development of base-metal electrode (BME) technology played an important role in expanding the application area. In this review, the recent progress in MLCCs with BME nickel (Ni) electrodes is reviewed from the viewpoint of nonreducible dielectric materials. Using intermediate-ionic-size rare-earth ion (Dy2O3, Ho2O3, Er2O3, Y2O3) doped BaTiO3 (ABO3)-based dielectrics, highly reliable Ni-MLCCs with a very thin layer below 2 μm in thickness have been developed. The effect of site occupancy of rare-earth ions in BaTiO3 on the electrical properties and microstructure of nonreducible dielectrics is studied systematically. It appears that intermediate-ionic-size rare-earth ions occupy both A- and B-sites in the BaTiO3 lattice and effectively control the donor/acceptor dopant ratio and microstructural evolution. The relationship between the electrical properties and the microstructure of Ni-MLCCs is also presented.

  4. Molecular Basis for Electron Flow Within Metal-and Electrode-Reducing Biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Daniel R. [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-11-01

    Electrochemical, spectral, genetic, and biochemical techniques were developed to reveal that a diverse suite of redox proteins and structural macromolecules outside the cell work together to move electrons long distances between Geobacter cells to metals and electrodes. In this project, we greatly expanded the known participants in the electron transfer pathway of Geobacter. For example, in addition to well-studied pili, polysaccharides contribute to anchoring, different cytochromes are required under different conditions, strategies change with redox potential, and the localization of these components can change depending on where cells are located in a biofilm. By inventing new electrodes compatible with real-time spectral measurements, we were able to visualize the redox status of biofilms in action, leading to a hypothesis that long-distance electron transfer is ultimately limiting in these systems and redox potentials change within biofilms. The goals of this project were met, as we were able to 1) identify new elements crucial to the expression, assembly and function of the extracellular electron transfer phenotype 2) expand spectral and electrochemical techniques to define the mechanism and route of electron transfer through the matrix, and 3) combine this knowledge to build the next generation of genetic tools for study of this complex process.

  5. Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications

    Science.gov (United States)

    Bhujun, Bhamini; Tan, Michelle T. T.; Shanmugam, Anandan S.

    Nanocrystallites of three mixed ternary transition metal ferrite (MTTMF) were prepared by a facile sol-gel method and adopted as electrode material for supercapacitors. The phase development of the samples was determined using Fourier transform infrared (FT-IR) and thermal gravimetric analysis (TG). X-ray diffraction (XRD) analysis revealed the formation of a single-phase spinel ferrite in CuCoFe2O4 (CuCoF), NiCoFe2O4 (NiCoF) and NiCuFe2O4 (NiCuF). The surface characteristics and elemental composition of the nanocomposites have been studied by means of field emission scanning electron microscopy (FESEM), as well as energy dispersive spectroscopy (EDS). The electrochemical performance of the nanomaterials was evaluated using a two-electrode configuration by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic technique in 1 M KOH electrolyte and was found to be in the order of: CuCoF > NiCoF > NiCuF. A maximum specific capacitance of 221 Fg-1 was obtained with CuCoF at a scan rate of 5 mV s-1. In addition to an excellent cycling stability, an energy density of 7.9 kW kg-1 was obtained at a current density of 1 Ag-1. The high electrochemical performance of the MTTMF nanocomposites obtained indicates that these materials are promising electrodes for supercapacitors.

  6. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes.

    Science.gov (United States)

    Chen, Po-Chiang; Shen, Guozhen; Shi, Yi; Chen, Haitian; Zhou, Chongwu

    2010-08-24

    In the work described in this paper, we have successfully fabricated flexible asymmetric supercapacitors (ASCs) based on transition-metal-oxide nanowire/single-walled carbon nanotube (SWNT) hybrid thin-film electrodes. These hybrid nanostructured films, with advantages of mechanical flexibility, uniform layered structures, and mesoporous surface morphology, were produced by using a filtration method. Here, manganese dioxide nanowire/SWNT hybrid films worked as the positive electrode, and indium oxide nanowire/SWNT hybrid films served as the negative electrode in a designed ASC. In our design, charges can be stored not only via electrochemical double-layer capacitance from SWNT films but also through a reversible faradic process from transition-metal-oxide nanowires. In addition, to obtain stable electrochemical behavior during charging/discharging cycles in a 2 V potential window, the mass balance between two electrodes has been optimized. Our optimized hybrid nanostructured ASCs exhibited a superior device performance with specific capacitance of 184 F/g, energy density of 25.5 Wh/kg, and columbic efficiency of approximately 90%. In addition, our ASCs exhibited a power density of 50.3 kW/kg, which is 10-fold higher than obtained in early reported ASC work. The high-performance hybrid nanostructured ASCs can find applications in conformal electrics, portable electronics, and electrical vehicles.

  7. Characteristics of sputtered Al-doped ZnO films for transparent electrodes of organic thin-film transistor

    International Nuclear Information System (INIS)

    Park, Yong Seob; Kim, Han-Ki

    2011-01-01

    Aluminum-doped ZnO (AZO) thin-films were deposited with various RF powers at room temperature by radio frequency (RF) magnetron sputtering method. The electrical properties of the AZO film were improved with the increasing RF power. These results can be explained by the improvement of the crystallinity in the AZO film. We fabricated the organic thin-film transistor (OTFT) of the bottom gate structure using pentacene active and poly-4-vinyl phenol gate dielectric layers on the indium tin oxide gate electrode, and estimated the device properties of the OTFTs including drain current-drain voltage (I D -V D ), drain current-gate voltage (I D -V G ), threshold voltage (V T ), on/off ratio and field effect mobility. The AZO film that grown at 160 W RF power exhibited low resistivity (1.54 x 10 -3 Ω.cm), high crystallinity and uniform surface morphology. The pentacene thin-film transistor using the AZO film that's fabricated at 160 W RF power exhibited good device performance such as the mobility of 0.94 cm 2 /V s and the on/off ratio of ∼ 10 5 . Consequently, the performance of the OTFT such as larger field-effect carrier mobility was determined the conductivity of the AZO source/drain (S/D) electrode. AZO films prepared at room temperature by the sputtering method are suitable for the S/D electrodes in the OTFTs.

  8. Platinum and Palladium Alloys Suitable as Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt, Pd and mixtures thereof alloyed with a further element selected from Sc, Y and La as well as any mixtures thereof, wherein said alloy is supported on a conductive...

  9. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    Science.gov (United States)

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.

  10. Effects of Y incorporation in TaON gate dielectric on electrical performance of GaAs metal-oxide-semiconductor capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Li Ning; Choi, Hoi Wai; Lai, Pui To [Department of Electrical and Electronic Engineering, The University of Hong Kong (China); Xu, Jing Ping [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan (China)

    2016-09-15

    In this study, GaAs metal-oxide-semiconductor (MOS) capacitors using Y-incorporated TaON as gate dielectric have been investigated. Experimental results show that the sample with a Y/(Y + Ta) atomic ratio of 27.6% exhibits the best device characteristics: high k value (22.9), low interfacestate density (9.0 x 10{sup 11} cm{sup -2} eV{sup -1}), small flatband voltage (1.05 V), small frequency dispersion and low gate leakage current (1.3 x 10{sup -5}A/cm{sup 2} at V{sub fb} + 1 V). These merits should be attributed to the complementary properties of Y{sub 2}O{sub 3} and Ta{sub 2}O{sub 5}:Y can effectively passivate the large amount of oxygen vacancies in Ta{sub 2}O{sub 5}, while the positively-charged oxygen vacancies in Ta{sub 2}O{sub 5} are capable of neutralizing the effects of the negative oxide charges in Y{sub 2}O{sub 3}. This work demonstrates that an appropriate doping of Y content in TaON gate dielectric can effectively improve the electrical performance for GaAs MOS devices. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Implementation of a funnel-and-gate remediation system

    International Nuclear Information System (INIS)

    O'Brien, K.; Keyes, G.; Sherman, N.

    1997-01-01

    A funnel-and-gate trademark system incorporating activated carbon was deemed the most attractive remediation method for an active lumber mill in the western United States. Petroleum hydrocarbons, chlorinated solvents, pentachlorophenol, and tetrachlorophenol were detected in on-site groundwater samples. The shallow aquifer consists of a heterogeneous mixture of marine deposits and artificial fill, underlain by low-permeability siltstones and mudstone. In the funnel-and-gate trademark system, a low-permeability cutoff wall was installed to funnel groundwater flow to a smaller area (a open-quotes gateclose quotes) where a passive below-grade treatment system treats the plume as it flows through the gate. Groundwater flow modeling focused on the inhomogeneities of the aquifer and the spatial relationship between gate(s) and barrier walls. The gate design incorporates several factors, including contaminant concentration, flow rate, and time between carbon changeouts. To minimize back pressure and maximize residence time, each gate was designed using 1.25-meter (4-foot) diameter corrugated metal pipe filled with a 1.25-meter (4-foot) thick bed of activated carbon. The configuration will allow water to flow through the treatment gates without pumps. The installed system is 190 meters (625 feet) long and treats approximately 76 L/min (20 gpm) during the winter months

  12. Bimodal gate-dielectric deposition for improved performance of AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    International Nuclear Information System (INIS)

    Pang Liang; Kim, Kyekyoon

    2012-01-01

    A bimodal deposition scheme combining radiofrequency magnetron sputtering and plasma enhanced chemical vapour deposition (PECVD) is proposed as a means for improving the performance of GaN-based metal-oxide-semiconductor high-electron-mobility transistors (MOSHEMTs). High-density sputtered-SiO 2 is utilized to reduce the gate leakage current and enhance the breakdown voltage while low-density PECVD-SiO 2 is employed to buffer the sputtering damage and further increase the drain current by engineering the stress-induced-polarization. Thus-fabricated MOSHEMT exhibited a low leakage current of 4.21 × 10 -9 A mm -1 and high breakdown voltage of 634 V for a gate-drain distance of 6 µm, demonstrating the promise of bimodal-SiO 2 deposition scheme for the development of GaN-based MOSHEMTs for high-power application. (paper)

  13. Magnetohydrodynamic electrode

    International Nuclear Information System (INIS)

    1980-01-01

    The object of the invention is the provision of a material capable of withstanding a high-temperature, corrosive and erosive environment for use as a ceramic-metal composite electrode current collector in the channel of a magnetohydrodynamic generator. (U.K.)

  14. Doped polymer electrodes for high performance ferroelectric capacitors on plastic substrates

    KAUST Repository

    Khan, M. A.

    2012-10-03

    Flexible ferroelectric capacitors with doped polymer electrodes have been fabricated on plastic substrates with performance as good as metal electrodes. The effect of doping on the morphology of polymer electrodes and its impact on device performance have been studied. Improved fatigue characteristics using doped and undoped poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) electrodes versus metal electrodes are observed. It is shown that the polymer electrodes follow classical ferroelectric and dielectric responses, including series resistance effects. The improved device characteristics obtained using highly conducting doped PEDOT:PSS suggest that it may be used both as an electrode and as global interconnect for all-polymer transparent circuits on flexible substrates.

  15. Influence of gate recess on the electronic characteristics of β-Ga2O3 MOSFETs

    Science.gov (United States)

    Lv, Yuanjie; Mo, Jianghui; Song, Xubo; He, Zezhao; Wang, Yuangang; Tan, Xin; Zhou, Xingye; Gu, Guodong; Guo, Hongyu; Feng, Zhihong

    2018-05-01

    Gallium oxide (Ga2O3) metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated with gate recess depths of 110 nm and 220 nm, respectively. The gate recess was formed by dry plasma etching with Cr metal as the mask. The fabricated devices with a 25-nm HfO2 gate dielectric both showed a low off-state drain current of about 1.8 × 10-10 A/mm. The effects of recess depth on the electronic characteristics of Ga2O3 MOSFETs were investigated. Upon increasing the recess depth from 110 nm to 220 nm, the saturated drain current decreased from 20.7 mA/mm to 2.6 mA/mm, while the threshold voltage moved increased to +3 V. Moreover, the breakdown voltage increased from 122 V to 190 V. This is mainly because the inverted-trapezoidal gate played the role of a gate-field plate, which suppressed the peak electric field close to the gate.

  16. Dilute NiO/carbon nanofiber composites derived from metal organic framework fibers as electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying; Yang, Feng; Hu, Hongru; Lee, Sungsik; Wang, Yue; Zhao, Hairui; Zeng, Dehong; Zhou, Biao; Hao, Shijie

    2017-01-01

    A new type of carbon nanofiber (CNF) dominated electrode materials decorated with dilute NiO particles (NiO/CNF) has been in situ fabricated by direct pyrolysis of Ni, Zn-containing metal organic framework fibers, which are skillfully constructed by assembling different proportional NiCl2·6H2O and Zn(Ac)2·2H2O with trimesic acid in the presence of N,N-dimethylformamide. With elegant combination of advantages of CNF and evenly dispersed NiO particles, as well as successful modulation of conductivity and porosity of final composites, our NiO/CNF composites display well-defined capacitive features. A high capacitance of 14926 F g–1 was obtained in 6 M KOH electrolyte when the contribution from 0.43 wt% NiO was considered alone, contributing to over 35% of the total capacitance (234 F g–1 ). This significantly exceeds its theoretical specific capacitance of 2584 F g–1. It has been established from the Ragone plot that a largest energy density of 33.4 Wh kg–1 was obtained at the current density of 0.25 A g–1. Furthermore, such composite electrode materials show good rate capability and outstanding cycling stability up to 5000 times (only 10% loss). The present study provides a brand-new approach to design a high capacitance and stable supercapacitor electrode and the concept is extendable to other composite materials. Keywords: Metal organic framework; Nickel oxide; Carbon nanofiber; In situ synthesis; Capacitance

  17. A paste type negative electrode using a MmNi{sub 5} based hydrogen storage alloy for a nickel-metal hydride (Ni-MH) battery

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, H.; Matsumoto, T.; Watanabe, S.; Kobayashi, K.; Hoshino, H. [Tokai Univ., Kanagawa (Japan). School of Engineering

    2001-07-01

    Different conducting materials (nickel, copper, cobalt, graphite) were mixed with a MmNi{sub 5} type hydrogen storage alloy, and negative electrodes for a nickel-metal hydride(Ni-MH) rechargeable battery were prepared and examined with respect to the discharge capacity of the electrodes. The change in the discharge capacity of the electrodes with different conducting materials was measured as a function of the number of electrochemical charge and discharge cycles. From the measurements, the electrodes with cobalt and graphite were found to yield much higher discharge capacities than those with nickel or cobalt. From a comparative discharge measurements for an electrode composed of only cobalt powder without the alloy and an electrode with a mixture of cobalt and the alloy, an appreciable contribution of the cobalt surface to the enhancement of charge and discharge capacities was found. (author)

  18. Layered Metal Nanoparticle Structures on Electrodes for Sensing, Switchable Controlled Uptake/Release, and Photo-electrochemical Applications.

    Science.gov (United States)

    Tel-Vered, Ran; Kahn, Jason S; Willner, Itamar

    2016-01-06

    Layered metal nanoparticle (NP) assemblies provide highly porous and conductive composites of unique electrical and optical (plasmonic) properties. Two methods to construct layered metal NP matrices are described, and these include the layer-by-layer deposition of NPs, or the electropolymerization of monolayer-functionalized NPs, specifically thioaniline-modified metal NPs. The layered NP composites are used as sensing matrices through the use of electrochemistry or surface plasmon resonance (SPR) as transduction signals. The crosslinking of the metal NP composites with molecular receptors, or the imprinting of molecular recognition sites into the electropolymerized NP matrices lead to selective and chiroselective sensing interfaces. Furthermore, the electrosynthesis of redox-active, imprinted, bis-aniline bridged Au NP composites yields electrochemically triggered "sponges" for the switchable uptake and release of electron-acceptor substrates, and results in conductive surfaces of electrochemically controlled wettability. Also, photosensitizer-relay-crosslinked Au NP composites, or electrochemically polymerized layered semiconductor quantum dot/metal NP matrices on electrodes, are demonstrated as functional nanostructures for photoelectrochemical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Exact matrix treatment of statistical mechanical lattice model of adsorption induced gate opening in metal-organic frameworks

    International Nuclear Information System (INIS)

    Dunne, Lawrence J; Manos, George

    2015-01-01

    Here we present a statistical mechanical lattice model which is exactly solvable using a matrix method and allows treatment of adsorption induced gate opening structural transformations of metal-organic frameworks which are nanoporous materials with exceptional adsorption properties. Modelling of these structural changes presents a serious theoretical challenge when the solid and gas species are treated in an even handed way. This exactly solvable model complements other simulation based approaches. The methodology presented here highlights the competition between the potential for adsorption and the energy required for structural transition as a driving force for the features in the adsorption isotherms. (paper)

  20. GaN MOSHEMT employing HfO2 as a gate dielectric with partially etched barrier

    Science.gov (United States)

    Han, Kefeng; Zhu, Lin

    2017-09-01

    In order to suppress the gate leakage current of a GaN high electron mobility transistor (GaN HEMT), a GaN metal-oxide-semiconductor high electron mobility transistor (MOSHEMT) is proposed, in which a metal-oxide-semiconductor gate with high-dielectric-constant HfO2 as an insulating dielectric is employed to replace the traditional GaN HEMT Schottky gate. A 0.5 μm gate length GaN MOSHEMT was fabricated based on the proposed structure, the {{{Al}}}0.28{{{Ga}}}0.72{{N}} barrier layer is partially etched to produce a higher transconductance without deteriorating the transport characteristics of the two-dimensional electron gas in the channel, the gate dielectric is HfO2 deposited by atomic layer deposition. Current-voltage characteristics and radio frequency characteristics are obtained after device preparation, the maximum current density of the device is 900 mA mm-1, the source-drain breakdown voltage is 75 V, gate current is significantly suppressed and the forward gate voltage swing range is about ten times higher than traditional GaN HEMTs, the GaN MOSHEMT also demonstrates radio frequency characteristics comparable to traditional GaN HEMTs with the same gate length.

  1. Surface residual stress evaluation in double-electrode butt welded steel plates

    International Nuclear Information System (INIS)

    Estefen, S.F.; Gurova, T.; Castello, X.; Leontiev, A.

    2010-01-01

    Surface residual stress evaluation for double-electrode welding was studied. The stresses were monitored after each operational step: positioning, implementing of constraints, welding and constraints removal. The measurements were performed at the deposited metal, heat affected zone, base metal close to the weld joint and along the plate using the X-ray diffraction method. It was observed differences in the stress evaluations for double-electrode welding which resulted in lower bending distortions and higher values of surface residual stresses, compared with single-electrode welding. This behavior is associated with the stress distribution just after the welding processes in both heat affected zone and base metal close to the fillet for double-electrode welding. The main results from the laboratorial tests indicated lower values of the bending distortions for double-electrode welding compared with the single-electrode. In relation to the residual stress, the double-electrode welding generated, in general, higher stress values in both longitudinal and transversal directions.

  2. A wearable 12-lead ECG acquisition system with fabric electrodes.

    Science.gov (United States)

    Haoshi Zhang; Lan Tian; Huiyang Lu; Ming Zhou; Haiqing Zou; Peng Fang; Fuan Yao; Guanglin Li

    2017-07-01

    Continuous electrocardiogram (ECG) monitoring is significant for prevention of heart disease and is becoming an important part of personal and family health care. In most of the existing wearable solutions, conventional metal sensors and corresponding chips are simply integrated into clothes and usually could only collect few leads of ECG signals that could not provide enough information for diagnosis of cardiac diseases such as arrhythmia and myocardial ischemia. In this study, a wearable 12-lead ECG acquisition system with fabric electrodes was developed and could simultaneously process 12 leads of ECG signals. By integrating the fabric electrodes into a T-shirt, the wearable system would provide a comfortable and convenient user interface for ECG recording. For comparison, the proposed fabric electrode and the gelled traditional metal electrodes were used to collect ECG signals on a subject, respectively. The approximate entropy (ApEn) of ECG signals from both types of electrodes were calculated. The experimental results show that the fabric electrodes could achieve similar performance as the gelled metal electrodes. This preliminary work has demonstrated that the developed ECG system with fabric electrodes could be utilized for wearable health management and telemedicine applications.

  3. First-principles simulations of the leakage current in metal-oxide-semiconductor structures caused by oxygen vacancies in HfO2 high-K gate dielectric

    International Nuclear Information System (INIS)

    Mao, L.F.; Wang, Z.O.

    2008-01-01

    HfO 2 high-K gate dielectric has been used as a new gate dielectric in metal-oxide-semiconductor structures. First-principles simulations are used to study the effects of oxygen vacancies on the tunneling current through the oxide. A level which is nearly 1.25 eV from the bottom of the conduction band is introduced into the bandgap due to the oxygen vacancies. The tunneling current calculations show that the tunneling currents through the gate oxide with different defect density possess the typical characteristic of stress-induced leakage current. Further analysis shows that the location of oxygen vacancies will have a marked effect on the tunneling current. The largest increase in the tunneling current caused by oxygen vacancies comes about at the middle oxide field when defects are located at the middle of the oxide. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Dielectric/metal/dielectric alternative transparent electrode: observations on stability/degradation

    Science.gov (United States)

    Cattin, L.; Jouad, El; Stephant, N.; Louarn, G.; Morsli, M.; Hssein, M.; Mouchaal, Y.; Thouiri, S.; Addou, M.; Khelil, A.; Bernède, J. C.

    2017-09-01

    The use of indium-free transparent conductive electrodes is of great interest for organic optoelectronic devices. Among the possible replacements for ITO, dielectric/metal/dielectric (D/M/D) multilayer structures have already proven to be quite efficient. One issue with organic devices is their lifetime, which depends not only on the organic molecules used but also on the electrodes. Therefore we study the variation, with elapsed time, of the electrical and optical properties of different D/M/D structures, with M  =  Ag or Cu/Ag. Six years after realization, it has been shown that if some structures retained an acceptable conductivity, some others became non-conductive. For a sample which remains conductive, in the case of a PET/MoO3/Ag/MoO3 multilayer structure, the sheet resistance changes from 5 Ω/sq-17 Ω/sq after six years. This evolution can be compared to that of a PET/ITO electrode that varies from 25 Ω/sq-900 Ω/sq after six years. It means that not only are the PET/MoO3/Ag/MoO3 multilayer structures more flexible than PET/ITO, but they can also be more stable. Nevertheless, if some PET/MoO3/Ag/MoO3 multilayer structures are quite stable, some others are not. This possible degradation appears to be caused primarily by the physical agglomeration of Ag, which can result in Ag film disruption. This Ag diffusion seems to be caused by humidity-induced degradation in these Ag-based D/M/D structures. Initially, defects begin to grow at a ‘nucleus’, usually a microscopic particle (or pinhole, etc), and then they spread radially outward to form a nearly circular pattern. For a critical density of such defects, the structure becomes non-conductive. Moreover the effect of humidity promotes Ag electrochemical reactions that produce Ag+ ions and enhances surface diffusivity with AgCl formation.

  5. Dielectric/metal/dielectric alternative transparent electrode: observations on stability/degradation

    International Nuclear Information System (INIS)

    Cattin, L; Stephant, N; Louarn, G; Hssein, M; Jouad, El; Mouchaal, Y; Thouiri, S; Bernède, J C; Morsli, M; Addou, M; Khelil, A

    2017-01-01

    The use of indium-free transparent conductive electrodes is of great interest for organic optoelectronic devices. Among the possible replacements for ITO, dielectric/metal/dielectric (D/M/D) multilayer structures have already proven to be quite efficient. One issue with organic devices is their lifetime, which depends not only on the organic molecules used but also on the electrodes. Therefore we study the variation, with elapsed time, of the electrical and optical properties of different D/M/D structures, with M  =  Ag or Cu/Ag. Six years after realization, it has been shown that if some structures retained an acceptable conductivity, some others became non-conductive. For a sample which remains conductive, in the case of a PET/MoO 3 /Ag/MoO 3 multilayer structure, the sheet resistance changes from 5 Ω/sq–17 Ω/sq after six years. This evolution can be compared to that of a PET/ITO electrode that varies from 25 Ω/sq–900 Ω/sq after six years. It means that not only are the PET/MoO 3 /Ag/MoO 3 multilayer structures more flexible than PET/ITO, but they can also be more stable. Nevertheless, if some PET/MoO 3 /Ag/MoO 3 multilayer structures are quite stable, some others are not. This possible degradation appears to be caused primarily by the physical agglomeration of Ag, which can result in Ag film disruption. This Ag diffusion seems to be caused by humidity-induced degradation in these Ag-based D/M/D structures. Initially, defects begin to grow at a ‘nucleus’, usually a microscopic particle (or pinhole, etc), and then they spread radially outward to form a nearly circular pattern. For a critical density of such defects, the structure becomes non-conductive. Moreover the effect of humidity promotes Ag electrochemical reactions that produce Ag + ions and enhances surface diffusivity with AgCl formation. (paper)

  6. Tuning the Morphology of Li2O2 by Noble and 3d metals: A Planar Model Electrode Study for Li-O2 Battery.

    Science.gov (United States)

    Yang, Yao; Liu, Wei; Wu, Nian; Wang, Xiaochen; Zhang, Tao; Chen, Linfeng; Zeng, Rui; Wang, Yingming; Lu, Juntao; Fu, Lei; Xiao, Li; Zhuang, Lin

    2017-06-14

    In this work, a planar model electrode method has been used to investigate the structure-activity relationship of multiple noble and 3d metal catalysts for the cathode reaction of Li-O 2 battery. The result shows that the battery performance (discharge/charge overpotential) strongly depends not only on the type of catalysts but also on the morphology of the discharge product (Li 2 O 2 ). Specifically, according to electrochemical characterization and scanning electron microscopy (SEM) observation, noble metals (Pd, Pt, Ru, Ir, and Au) show excellent battery performance (smaller discharge/charge overpotential), with wormlike Li 2 O 2 particles with size less than 200 nm on their surfaces. On the other hand, 3d metals (Fe, Co, Ni, and Mn) offered poor battery performance (larger discharge/charge overpotential), with much larger Li 2 O 2 particles (1 μm to a few microns) on their surfaces after discharging. Further research shows that a "volcano plot" is found by correlating the discharging/charging plateau voltage with the adsorption energy of LiO 2 on different metals. The metals with better battery performance and worm-like-shaped Li 2 O 2 are closer to the top of the "volcano", indicating adsorption energy of LiO 2 is one of the key characters for the catalyst to reach a good performance for the oxygen electrode of Li-O 2 battery, and it has a strong influence on the morphology of the discharge product on the electrode surface.

  7. High performance Ω-gated Ge nanowire MOSFET with quasi-metallic source/drain contacts.

    Science.gov (United States)

    Burchhart, T; Zeiner, C; Hyun, Y J; Lugstein, A; Hochleitner, G; Bertagnolli, E

    2010-10-29

    Ge nanowires (NWs) about 2 µm long and 35 nm in diameter are grown heteroepitaxially on Si(111) substrates in a hot wall low-pressure chemical vapor deposition (LP-CVD) system using Au as a catalyst and GeH(4) as precursor. Individual NWs are contacted to Cu pads via e-beam lithography, thermal evaporation and lift-off techniques. Self-aligned and atomically sharp quasi-metallic copper-germanide source/drain contacts are achieved by a thermal activated phase formation process. The Cu(3)Ge segments emerge from the Cu contact pads through axial diffusion of Cu which was controlled in situ by SEM, thus the active channel length of the MOSFET is adjusted without any restrictions from a lithographic process. Finally the conductivity of the channel is enhanced by Ga(+) implantation leading to a high performance Ω-gated Ge-NW MOSFET with saturation currents of a few microamperes.

  8. Transfer-free graphene synthesis on sapphire by catalyst metal agglomeration technique and demonstration of top-gate field-effect transistors

    International Nuclear Information System (INIS)

    Miyoshi, Makoto; Arima, Yukinori; Kubo, Toshiharu; Egawa, Takashi; Mizuno, Masaya; Soga, Tetsuo

    2015-01-01

    Transfer-free graphene synthesis was performed on sapphire substrates by using the catalyst metal agglomeration technique, and the graphene film quality was compared to that synthesized on sputtered SiO 2 /Si substrates. Raman scattering measurements indicated that the graphene film on sapphire has better structural qualities than that on sputtered SiO 2 /Si substrates. The cross-sectional transmission microscopic study also revealed that the film flatness was drastically improved by using sapphire substrates instead of sputtered SiO 2 /Si substrates. These quality improvements seemed to be due the chemical and thermal stabilities of sapphire. Top-gate field-effect transistors were fabricated using the graphene films on sapphire, and it was confirmed that their drain current can be modulated with applied gate voltages. The maximum field-effect mobilities were estimated to be 720 cm 2 /V s for electrons and 880 cm 2 /V s for holes, respectively

  9. Transfer-free graphene synthesis on sapphire by catalyst metal agglomeration technique and demonstration of top-gate field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Makoto, E-mail: miyoshi.makoto@nitech.ac.jp; Arima, Yukinori; Kubo, Toshiharu; Egawa, Takashi [Research Center for Nano Device and Advanced Materials, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Mizuno, Masaya [Research Center for Nano Device and Advanced Materials, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Department of Frontier Materials, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Soga, Tetsuo [Department of Frontier Materials, Nagoya Institute of Technology, Nagoya 466-8555 (Japan)

    2015-08-17

    Transfer-free graphene synthesis was performed on sapphire substrates by using the catalyst metal agglomeration technique, and the graphene film quality was compared to that synthesized on sputtered SiO{sub 2}/Si substrates. Raman scattering measurements indicated that the graphene film on sapphire has better structural qualities than that on sputtered SiO{sub 2}/Si substrates. The cross-sectional transmission microscopic study also revealed that the film flatness was drastically improved by using sapphire substrates instead of sputtered SiO{sub 2}/Si substrates. These quality improvements seemed to be due the chemical and thermal stabilities of sapphire. Top-gate field-effect transistors were fabricated using the graphene films on sapphire, and it was confirmed that their drain current can be modulated with applied gate voltages. The maximum field-effect mobilities were estimated to be 720 cm{sup 2}/V s for electrons and 880 cm{sup 2}/V s for holes, respectively.

  10. [Optimization of electrode configuration in soil electrokinetic remediation].

    Science.gov (United States)

    Liu, Fang; Fu, Rong-Bing; Xu, Zhen

    2015-02-01

    Electric field distributions of several different electrode configurations in non-uniform electric field were simulated using MATLAB software, and the electrokinetic remediation device was constructed according to the best electrode configuration. The changes of soil pH and heavy metal residues in different parts of the device during the electrokinetic remediation were also studied. The results showed that, in terms of the effectiveness of the electric field strength, the square (1-D-1) and hexagonal (2-D-3) were the optimal electrode configurations for one-dimensional and two-dimensional respectively and the changes of soil pH, the removal of heavy metals and the distribution of electric field were closely related to one another. An acidic migration band, which could prevent premature precipitation of heavy metals to a certain extent and promote electrokinetic removal of heavy metals, was formed gradually along with the remediation in the whole hexagon device when the cathodic pH was controlled during the remediation of the four cationic metallic ions, Cd2+, Ni2+, Pb2+ and Cu2+. After 480-hour remediation, the total removals of Cd, Ni, Pb and Cu were 86.6%, 86.2%, 67.7% and 73.0%, respectively. Remediation duration and replacement frequency of the electrodes could be adjusted according to the repair target.

  11. Simulation of dual-gate SOI MOSFET with different dielectric layers

    Science.gov (United States)

    Yadav, Jyoti; Chaudhary, R.; Mukhiya, R.; Sharma, R.; Khanna, V. K.

    2016-04-01

    The paper presents the process design and simulation of silicon-on-insulator (SOI)-based dual-gate metal oxide field-effect transistor (DG-MOSFET) stacked with different dielectric layers on the top of gate oxide. A detailed 2D process simulation of SOI-MOSFETs and its electrical characterization has been done using SILVACO® TCAD tool. A variation in transconductance was observed with different dielectric layers, AlN-gate MOSFET having the highest tranconductance value as compared to other three dielectric layers (SiO2, Si3N4 and Al2O3).

  12. Formation and Diffusion of Metal Impurities in Perovskite Solar Cell Material CH3NH3PbI3: Implications on Solar Cell Degradation and Choice of Electrode.

    Science.gov (United States)

    Ming, Wenmei; Yang, Dongwen; Li, Tianshu; Zhang, Lijun; Du, Mao-Hua

    2018-02-01

    Solar cells based on methylammonium lead triiodide (MAPbI 3 ) have shown remarkable progress in recent years and have demonstrated efficiencies greater than 20%. However, the long-term stability of MAPbI 3 -based solar cells has yet to be achieved. Besides the well-known chemical and thermal instabilities, significant native ion migration in lead halide perovskites leads to current-voltage hysteresis and photoinduced phase segregation. Recently, it is further revealed that, despite having excellent chemical stability, the Au electrode can cause serious solar cell degradation due to Au diffusion into MAPbI 3 . In addition to Au, many other metals have been used as electrodes in MAPbI 3 solar cells. However, how the external metal impurities introduced by electrodes affect the long-term stability of MAPbI 3 solar cells has rarely been studied. A comprehensive study of formation energetics and diffusion dynamics of a number of noble and transition metal impurities (Au, Ag, Cu, Cr, Mo, W, Co, Ni, Pd) in MAPbI 3 based on first-principles calculations is reported herein. The results uncover important general trends of impurity formation and diffusion in MAPbI 3 and provide useful guidance for identifying the optimal metal electrodes that do not introduce electrically active impurity defects in MAPbI 3 while having low resistivities and suitable work functions for carrier extraction.

  13. Impact of metal artefacts due to EEG electrodes in brain PET/CT imaging

    International Nuclear Information System (INIS)

    Lemmens, Catherine; Nuyts, Johan; Dupont, Patrick; Montandon, Marie-Louise; Ratib, Osman; Zaidi, Habib

    2008-01-01

    The goal of this study is to investigate the impact of electroencephalogram (EEG) electrodes on the visual quality and quantification of 18 F-FDG PET images in neurological PET/CT examinations. For this purpose, the scans of 20 epilepsy patients with EEG monitoring were used. The CT data were reconstructed with filtered backprojection (FBP) and with a metal artefact reduction (MAR) algorithm. Both data sets were used for CT-based attenuation correction (AC) of the PET data. Also, a calculated AC (CALC) technique was considered. A volume of interest (VOI)-based analysis and a voxel-based quantitative analysis were performed to compare the different AC methods. Images were also evaluated visually by two observers. It was shown with simulations and phantom measurements that from the considered AC methods, the MAR-AC can be used as the reference in this setting. The visual assessment of PET images showed local hot spots outside the brain corresponding to the locations of the electrodes when using FBP-AC. In the brain, no abnormalities were observed. The quantitative analysis showed a very good correlation between PET-FBP-AC and PET-MAR-AC, with a statistically significant positive bias in the PET-FBP-AC images of about 5-7% in most brain voxels. There was also good correlation between PET-CALC-AC and PET-MAR-AC, but in the PET-CALC-AC images, regions with both a significant positive and negative bias were observed. EEG electrodes give rise to local hot spots outside the brain and a positive quantification bias in the brain. However, when diagnosis is made by mere visual assessment, the presence of EEG electrodes does not seem to alter the diagnosis. When quantification is performed, the bias becomes an issue especially when comparing brain images with and without EEG monitoring

  14. Impact of metal artefacts due to EEG electrodes in brain PET/CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lemmens, Catherine; Nuyts, Johan; Dupont, Patrick [Department of Nuclear Medicine and Medical Imaging Center, University Hospital Gasthuisberg and Katholieke Universiteit Leuven, Leuven (Belgium); Montandon, Marie-Louise; Ratib, Osman; Zaidi, Habib [Division of Nuclear Medicine, Geneva University Hospital, CH-1211 Geneva (Switzerland)], E-mail: catherine.lemmens@uz.kuleuven.be

    2008-08-21

    The goal of this study is to investigate the impact of electroencephalogram (EEG) electrodes on the visual quality and quantification of {sup 18}F-FDG PET images in neurological PET/CT examinations. For this purpose, the scans of 20 epilepsy patients with EEG monitoring were used. The CT data were reconstructed with filtered backprojection (FBP) and with a metal artefact reduction (MAR) algorithm. Both data sets were used for CT-based attenuation correction (AC) of the PET data. Also, a calculated AC (CALC) technique was considered. A volume of interest (VOI)-based analysis and a voxel-based quantitative analysis were performed to compare the different AC methods. Images were also evaluated visually by two observers. It was shown with simulations and phantom measurements that from the considered AC methods, the MAR-AC can be used as the reference in this setting. The visual assessment of PET images showed local hot spots outside the brain corresponding to the locations of the electrodes when using FBP-AC. In the brain, no abnormalities were observed. The quantitative analysis showed a very good correlation between PET-FBP-AC and PET-MAR-AC, with a statistically significant positive bias in the PET-FBP-AC images of about 5-7% in most brain voxels. There was also good correlation between PET-CALC-AC and PET-MAR-AC, but in the PET-CALC-AC images, regions with both a significant positive and negative bias were observed. EEG electrodes give rise to local hot spots outside the brain and a positive quantification bias in the brain. However, when diagnosis is made by mere visual assessment, the presence of EEG electrodes does not seem to alter the diagnosis. When quantification is performed, the bias becomes an issue especially when comparing brain images with and without EEG monitoring.

  15. Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance.

    Science.gov (United States)

    Feng, Guo-Hua; Liu, Kim-Min

    2014-05-12

    This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation.

  16. Thickness engineering of atomic layer deposited Al2O3 films to suppress interfacial reaction and diffusion of Ni/Au gate metal in AlGaN/GaN HEMTs up to 600 °C in air

    Science.gov (United States)

    Suria, Ateeq J.; Yalamarthy, Ananth Saran; Heuser, Thomas A.; Bruefach, Alexandra; Chapin, Caitlin A.; So, Hongyun; Senesky, Debbie G.

    2017-06-01

    In this paper, we describe the use of 50 nm atomic layer deposited (ALD) Al2O3 to suppress the interfacial reaction and inter-diffusion between the gate metal and semiconductor interface, to extend the operation limit up to 600 °C in air. Suppression of diffusion is verified through Auger electron spectroscopy (AES) depth profiling and X-ray diffraction (XRD) and is further supported with electrical characterization. An ALD Al2O3 thin film (10 nm and 50 nm), which functions as a dielectric layer, was inserted between the gate metal (Ni/Au) and heterostructure-based semiconductor material (AlGaN/GaN) to form a metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT). This extended the 50 nm ALD Al2O3 MIS-HEMT (50-MIS) current-voltage (Ids-Vds) and gate leakage (Ig,leakage) characteristics up to 600 °C. Both, the 10 nm ALD Al2O3 MIS-HEMT (10-MIS) and HEMT, failed above 350 °C, as evidenced by a sudden increase of approximately 50 times and 5.3 × 106 times in Ig,leakage, respectively. AES on the HEMT revealed the formation of a Ni-Au alloy and Ni present in the active region. Additionally, XRD showed existence of metal gallides in the HEMT. The 50-MIS enables the operation of AlGaN/GaN based electronics in oxidizing high-temperature environments, by suppressing interfacial reaction and inter-diffusion of the gate metal with the semiconductor.

  17. Recent Developments of Nanostructured Electrodes for Bioelectrocatalysis of Dioxygen Reduction

    Directory of Open Access Journals (Sweden)

    Marcin Opallo

    2011-01-01

    Full Text Available The recent development of nanostructured electrodes for bioelectrocatalytic dioxygen reduction catalysed by two copper oxidoreductases, laccase and bilirubin oxidase, is reviewed. Carbon-based nanomaterials as carbon nanotubes or carbon nanoparticles are frequently used for electrode modification, whereas there are only few examples of biocathodes modified with metal or metal oxide nanoparticles. These nanomaterials are adsorbed on the electrode surface or embedded in multicomponent film. The nano-objects deposited act as electron shuttles between the enzyme and the electrode substrate providing favourable conditions for mediatorless bioelectrocatalysis.

  18. Rapid hydrogen charging on metal hydride negative electrode of Fuel Cell/Battery (FCB) systems

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Bokkyu; Lee, Sunmook; Kawai, Hiroyuki; Fushimi, Chihiro; Tsutsumi, Atsushi [Collaborative Research Center for Energy Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2009-02-15

    The characteristics of rapid gaseous H{sub 2} charging/electrochemical discharging of the metal hydride negative electrode were investigated for the application in Fuel Cell/Battery (FCB) systems. They were evaluated with the H{sub 2} gas absorption, followed by the subsequent electrochemical discharging in the electrolyte solution (6M KOH). Then, the cyclability of charge-discharge was also examined. It was observed that more than 70% of the theoretical capacity was charged within 10 min with 0.3 MPa and 0.5 MPa of the initial H{sub 2} pressures. The electrochemical discharge curve showed that more than 86% of the absorbed H{sub 2} was discharged. Furthermore, the cycled charge-discharge process indicated that the H{sub 2} gas charge and electrochemical discharge process is an effective way to rapidly charge and activate the metal hydride without degeneration. (author)

  19. Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes

    KAUST Repository

    Xia, Chuan

    2016-04-14

    Asymmetric supercapacitors provide a promising approach to fabricate capacitive energy storage devices with high energy and power densities. In this work, asymmetric supercapacitors with excellent performance have been fabricated using ternary (Ni, Co)0.85Se on carbon fabric as bind-free positive electrode and porous free-standing graphene films as negative electrode. Owing to their metal-like conductivity (~1.67×106 S m−1), significant electrochemical activity, and superhydrophilic nature, our nanostructured ternary nickel cobalt selenides result in a much higher areal capacitance (2.33 F cm−2 at 4 mA cm−2), better rate performance and cycling stability than their binary selenide equivalents, and other ternary oxides and chalcogenides. Those hybrid supercapacitors can afford impressive areal capacitance and stack capacitance of 529.3 mF cm−2 and 6330 mF cm−3 at 1 mA cm−2, respectively. More impressively, our optimized asymmetric device operating at 1.8 V delivers a very high stack energy density of 2.85 mWh cm−3 at a stack power density of 10.76 mW cm−3, as well as 85% capacitance retention after 10,000 continuous charge-discharge cycles. Even at a high stack power density of 1173 mW cm−3, this device still deliveries a stack energy density of 1.19 mWh cm−3, superior to most of the reported supercapacitors.

  20. Temperature dependence of trapping effects in metal gates/Al2O3/InGaAs stacks

    Science.gov (United States)

    Palumbo, F.; Pazos, S.; Aguirre, F.; Winter, R.; Krylov, I.; Eizenberg, M.

    2017-06-01

    The influence of the temperature on Metal Gate/Al2O3/n-InGaAs stacks has been studied by means of capacitance-voltage (C-V) hysteresis and flat band voltage as function of both negative and positive stress fields. It was found that the de-trapping effect decreases at low-temperature, indicating that the de-trapping of trapped electrons from oxide traps may be performed via Al2O3/InGaAs interface defects. The dependence of the C-V hysteresis on the stress field at different temperatures in our InGaAs stacks can be explained in terms of the defect spatial distribution. An oxide defect distribution can be found very close to the metal gate/Al2O3 interface. On the other side, the Al2O3/InGaAs interface presents defects distributed from the interface into the bulk of the oxide, showing the influence of InGaAs on Al2O3 in terms of the spatial defect distribution. At the present, he is a research staff of the National Council of Science and Technology (CONICET), working in the National Commission of Atomic Energy (CNEA) in Buenos Aires, Argentina, well embedded within international research collaboration. Since 2008, he is Professor at the National Technological University (UTN) in Buenos Aires, Argentina. Dr. Palumbo has received research fellowships from: Marie Curie Fellowship within the 7th European Community Framework Programme, Abdus Salam International Centre for Theoretical Physics (ICTP) Italy, National Council of Science and Technology (CONICET) Argentina, and Consiglio Nazionale delle Ricerche (CNR) Italy. He is also a frequent scientific visitor of academic institutions as IMM-CNR-Italy, Minatec Grenoble-France, the Autonomous University of Barcelona-Spain, and the Israel Institute of Technology-Technion. He has authored and co-authored more than 50 papers in international conferences and journals.

  1. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices.

    Science.gov (United States)

    Black, Jennifer M; Come, Jeremy; Bi, Sheng; Zhu, Mengyang; Zhao, Wei; Wong, Anthony T; Noh, Joo Hyon; Pudasaini, Pushpa R; Zhang, Pengfei; Okatan, Mahmut Baris; Dai, Sheng; Kalinin, Sergei V; Rack, Philip D; Ward, Thomas Zac; Feng, Guang; Balke, Nina

    2017-11-22

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal-insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment and theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.

  2. Evolution of weld metal microstructure in shielded metal arc welding of X70 HSLA steel with cellulosic electrodes: A case study

    International Nuclear Information System (INIS)

    Ghomashchi, Reza; Costin, Walter; Kurji, Rahim

    2015-01-01

    The microstructure of weld joint in X70 line pipe steel resulted from shielded metal arc welding with E6010 cellulosic electrodes is characterized using optical and electron microscopy. A range of ferritic morphologies have been identified ranging from polygonal inter- and intra-prior austenite grains allotriomorphic, idiomorphic ferrites to Widmanstätten, acicular and bainitic ferrites. Electron Backscatter Diffraction (EBSD) analysis using Image Quality (IQ) and Inverse Pole Figure (IPF) maps through superimposition of IQ and IPF maps and measurement of percentages of high and low angle grain boundaries was identified to assist in differentiation of acicular ferrite from Widmanstätten and bainitic ferrite morphologies. In addition two types of pearlitic structures were identified. There was no martensite detected in this weld structure. The morphology, size and chemistry of non-metallic inclusions are also discussed briefly. - Highlights: • Application of EBSD reveals orientation relationships in a range of phases for shielded metal arc welding of HSLA steel. • Nucleation sites of various ferrite morphologies identified • Formation of upper and lower bainite and their morphologies

  3. Evolution of weld metal microstructure in shielded metal arc welding of X70 HSLA steel with cellulosic electrodes: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Ghomashchi, Reza, E-mail: reza.ghomashchi@adelaide.edu.au; Costin, Walter; Kurji, Rahim

    2015-09-15

    The microstructure of weld joint in X70 line pipe steel resulted from shielded metal arc welding with E6010 cellulosic electrodes is characterized using optical and electron microscopy. A range of ferritic morphologies have been identified ranging from polygonal inter- and intra-prior austenite grains allotriomorphic, idiomorphic ferrites to Widmanstätten, acicular and bainitic ferrites. Electron Backscatter Diffraction (EBSD) analysis using Image Quality (IQ) and Inverse Pole Figure (IPF) maps through superimposition of IQ and IPF maps and measurement of percentages of high and low angle grain boundaries was identified to assist in differentiation of acicular ferrite from Widmanstätten and bainitic ferrite morphologies. In addition two types of pearlitic structures were identified. There was no martensite detected in this weld structure. The morphology, size and chemistry of non-metallic inclusions are also discussed briefly. - Highlights: • Application of EBSD reveals orientation relationships in a range of phases for shielded metal arc welding of HSLA steel. • Nucleation sites of various ferrite morphologies identified • Formation of upper and lower bainite and their morphologies.

  4. High-energy redox-flow batteries with hybrid metal foam electrodes.

    Science.gov (United States)

    Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook; Kim, Ki Jae; Oh, Duk-Jin; Kim, Young-Jun

    2014-07-09

    A nonaqueous redox-flow battery employing [Co(bpy)3](+/2+) and [Fe(bpy)3](2+/3+) redox couples is proposed for use in large-scale energy-storage applications. We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. Our approach intoduces a more efficient conversion of chemical energy into electrical energy and enhances long-term cell durability. The cell exhibits an outstanding cyclic performance of more than 300 cycles without any significant loss of energy efficiency. Considering the increasing demands for efficient energy storage, our achievement provides insight into a possible development pathway for nonaqueous redox-flow batteries with high energy densities.

  5. ELECTROCHEMICAL OXIDATION OF ETHANOL USING Ni-Co-PVC COMPOSITE ELECTRODE

    Directory of Open Access Journals (Sweden)

    Riyanto Riyanto

    2011-07-01

    Full Text Available The morphological characteristics and electrochemical behavior of nickel metal foil (Ni, nickel-polyvinyl chloride (Ni-PVC and nickel-cobalt-polyvinyl chloride (Ni-Co-PVC electrodes in alkaline solution has been investigated. The morphological characteristics of the electrode surface were studied using SEM and EDS, while the electrochemical behavior of the electrodes was studied using cyclic voltammetry (CV. It was found that composite electrodes (Ni-PVC and Ni-Co-PVC have a porous, irregular and rough surface. In situ studies using electrochemical technique using those three electrodes exhibited electrochemical activity for redox system, as well as selectivity in the electrooxidation of ethanol to acetic acid. The studies also found that an electrokinetics and electrocatalytic activity behaviors of the electrodes prepared were Ni metal foil

  6. Near-thermal limit gating in heavily doped III-V semiconductor nanowires using polymer electrolytes

    Science.gov (United States)

    Ullah, A. R.; Carrad, D. J.; Krogstrup, P.; Nygârd, J.; Micolich, A. P.

    2018-02-01

    Doping is a common route to reducing nanowire transistor on-resistance but it has limits. A high doping level gives significant loss in gate performance and ultimately complete gate failure. We show that electrolyte gating remains effective even when the Be doping in our GaAs nanowires is so high that traditional metal-oxide gates fail. In this regime we obtain a combination of subthreshold swing and contact resistance that surpasses the best existing p -type nanowire metal-oxide semiconductor field-effect transistors (MOSFETs). Our subthreshold swing of 75 mV/dec is within 25 % of the room-temperature thermal limit and comparable with n -InP and n -GaAs nanowire MOSFETs. Our results open a new path to extending the performance and application of nanowire transistors, and motivate further work on improved solid electrolytes for nanoscale device applications.

  7. Sensor for metal detection

    KAUST Repository

    Kodzius, Rimantas

    2014-06-26

    NOVELTY - The sensor has a microfluidic flow channel that is provided with an inlet port, an outlet port, and a detection chamber. The detection chamber is provided with a group of sensing electrodes (4) having a working electrode (8), a counter electrode (9), and a reference electrode (10). A flow sensor is configured to measure flow in the channel. A temperature sensor (6) is configured to measure temperature in the channel (3). An electrical connection is configured to connect the sensor to a sensing device. USE - Sensor for detecting metal such as toxic metal in sample such as clinical sample such as stool, saliva, sputum, bronchial lavage, urine, vaginal swab, nasal swab, biopsy, tissue, tears, breath, blood, serum, plasma, cerebrospinal fluid, peritoneal fluid, pleural fluid, pericardial fluid, joint fluid, and amniotic fluid, water sample, food sample, air sample, and soil sample (all claimed). ADVANTAGE - The sensor for use with the portable analytical instrument is configured for detection of metalsin samples. The sensor can provide the excellent solution for on-site metal detection, including heavy metal detection. The sensors can provide significant advantages in higher throughput, lower cost, at the same time being less labor intensive and less dependent on individual skills. The disposable design of the sensor, the enhanced reliability and repeatability of measurements can be obtained. The sensors can be widely applied in various industries. DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following: (1) a system for detecting metal in sample; and (2) a method for using sensor for detecting metal in sample. DESCRIPTION OF DRAWING(S) - The drawing shows a schematic view of the sensor prototype. Channel (3) Sensing electrodes (4) Temperature sensor (6) Working electrode (8) Counter electrode (9) Reference electrode (10)

  8. Decrease in effective electron mobility in the channel of a metal-oxide-semiconductor transistor as the gate length is decreased

    International Nuclear Information System (INIS)

    Frantsuzov, A. A.; Boyarkina, N. I.; Popov, V. P.

    2008-01-01

    Effective electron mobility μ eff in channels of metal-oxide-semiconductor transistors with a gate length L in the range of 3.8 to 0.34 μm was measured; the transistors were formed on wafers of the silicon-oninsulator type. It was found that μ eff decreases as L is decreased. It is shown that this decrease can be accounted for by the effect of series resistances of the source and drain only if it is assumed that there is a rapid increase in these resistances as the gate voltage is decreased. This assumption is difficult to substantiate. A more realistic model is suggested; this model accounts for the observed decrease in μ eff as L is decreased. The model implies that zones with a mobility lower than that in the middle part of the channel originate at the edges of the gate. An analysis shows that, in this case, the plot of the dependence of 1/μ eff on 1/L should be linear, which is exactly what is observed experimentally. The use of this plot makes it possible to determine both the electron mobility μ 0 in the middle part of the channel and the quantity A that characterizes the zones with lowered mobility at the gate’s edges.

  9. Electrode-analytical properties of polyvinylchloride membranes based on triple metal-polymeric complexes

    Directory of Open Access Journals (Sweden)

    Katerina V. Matorina

    2015-10-01

    Full Text Available The influence of the nature of the electrode-active substances (EAS, the composition of the external and internal solutions on the formation of the analytical signal of polyvinylchloride (PVC membranes based on associates and triple metal-polymeric complexes (TMPC was established. Dehumidification of synthesized membranes increases with the content of polyvinylpyrrolidone (PVP. The value of the swelling degree is more than two times greater for membranes, which contain as EAS TMPC, relative to membranes based on associates. The value of water absorption of membranes is determined by the nature of EAS. They formed a series of increasing of the swelling degree such as associate < background membrane < TMPC. Swelling of the background membrane is explained by the physical sorption of water molecules on the surface of plasticized membrane. Hydration of PVP macromolecules varies with the introduction of metal ions, macromolecules unit undergoes a conformational transition. PVP macromolecules form tunnels or cavities where complex particles distributed and additional water accumulated through the second coordination layer. Constructed sensors based on TMPC have slope of electrode function equal to 25 mV/pC. Linear dependence of potential on the polymer concentration is observed in the range of 5–7 pC units. Sensors based on associates have slope of the electrode function of 20–25 mV/pC that can be varied depending on the nature of the EAS. Working range is 4–8 pC. Response time of sensor is less than 1 min. The optimal time for conditioning of the synthesized PVC membrane is 24 hours. Potentiometric sensors have been developed for the determination of residual amounts of low molecular PVP which is a food additive E 1201 commonly used for thickening, stabilizing and clarifying of food products. The content of PVP was determined in real objects (apple juice, beer, red wine and cognac with using the polyvinylpyrrolidone sensors (Sr < 0.08. The

  10. Chemical gating of epitaxial graphene through ultrathin oxide layers.

    Science.gov (United States)

    Larciprete, Rosanna; Lacovig, Paolo; Orlando, Fabrizio; Dalmiglio, Matteo; Omiciuolo, Luca; Baraldi, Alessandro; Lizzit, Silvano

    2015-08-07

    We achieved a controllable chemical gating of epitaxial graphene grown on metal substrates by exploiting the electrostatic polarization of ultrathin SiO2 layers synthesized below it. Intercalated oxygen diffusing through the SiO2 layer modifies the metal-oxide work function and hole dopes graphene. The graphene/oxide/metal heterostructure behaves as a gated plane capacitor with the in situ grown SiO2 layer acting as a homogeneous dielectric spacer, whose high capacity allows the Fermi level of graphene to be shifted by a few hundreds of meV when the oxygen coverage at the metal substrate is of the order of 0.5 monolayers. The hole doping can be finely tuned by controlling the amount of interfacial oxygen, as well as by adjusting the thickness of the oxide layer. After complete thermal desorption of oxygen the intrinsic doping of SiO2 supported graphene is evaluated in the absence of contaminants and adventitious adsorbates. The demonstration that the charge state of graphene can be changed by chemically modifying the buried oxide/metal interface hints at the possibility of tuning the level and sign of doping by the use of other intercalants capable of diffusing through the ultrathin porous dielectric and reach the interface with the metal.

  11. CMOS Active-Pixel Image Sensor With Simple Floating Gates

    Science.gov (United States)

    Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.

    1996-01-01

    Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.

  12. The relevance of electrostatics for scanning-gate microscopy

    International Nuclear Information System (INIS)

    Schnez, S; Guettinger, J; Stampfer, C; Ensslin, K; Ihn, T

    2011-01-01

    Scanning-probe techniques have been developed to extract local information from a given physical system. In particular, conductance maps obtained by means of scanning-gate microscopy (SGM), where a conducting tip of an atomic-force microscope is used as a local and movable gate, seem to present an intuitive picture of the underlying physical processes. Here, we argue that the interpretation of such images is complex and not very intuitive under certain circumstances: scanning a graphene quantum dot (QD) in the Coulomb-blockaded regime, we observe an apparent shift of features in scanning-gate images as a function of gate voltages, which cannot be a real shift of the physical system. Furthermore, we demonstrate the appearance of more than one set of Coulomb rings arising from the graphene QD. We attribute these effects to screening between the metallic tip and the gates. Our results are relevant for SGM on any kind of nanostructure, but are of particular importance for nanostructures that are not covered with a dielectric, e.g. graphene or carbon nanotube structures.

  13. Large current modulation and tunneling magnetoresistance change by a side-gate electric field in a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor.

    Science.gov (United States)

    Kanaki, Toshiki; Yamasaki, Hiroki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki

    2018-05-08

    A vertical spin metal-oxide-semiconductor field-effect transistor (spin MOSFET) is a promising low-power device for the post scaling era. Here, using a ferromagnetic-semiconductor GaMnAs-based vertical spin MOSFET with a GaAs channel layer, we demonstrate a large drain-source current I DS modulation by a gate-source voltage V GS with a modulation ratio up to 130%, which is the largest value that has ever been reported for vertical spin field-effect transistors thus far. We find that the electric field effect on indirect tunneling via defect states in the GaAs channel layer is responsible for the large I DS modulation. This device shows a tunneling magnetoresistance (TMR) ratio up to ~7%, which is larger than that of the planar-type spin MOSFETs, indicating that I DS can be controlled by the magnetization configuration. Furthermore, we find that the TMR ratio can be modulated by V GS . This result mainly originates from the electric field modulation of the magnetic anisotropy of the GaMnAs ferromagnetic electrodes as well as the potential modulation of the nonmagnetic semiconductor GaAs channel layer. Our findings provide important progress towards high-performance vertical spin MOSFETs.

  14. Capacitor with a composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  15. High-frequency self-aligned graphene transistors with transferred gate stacks

    Science.gov (United States)

    Cheng, Rui; Bai, Jingwei; Liao, Lei; Zhou, Hailong; Chen, Yu; Liu, Lixin; Lin, Yung-Chen; Jiang, Shan; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Graphene has attracted enormous attention for radio-frequency transistor applications because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. Herein we report a new approach for the scalable fabrication of high-performance graphene transistors with transferred gate stacks. Specifically, arrays of gate stacks are first patterned on a sacrificial substrate, and then transferred onto arbitrary substrates with graphene on top. A self-aligned process, enabled by the unique structure of the transferred gate stacks, is then used to position precisely the source and drain electrodes with minimized access resistance or parasitic capacitance. This process has therefore enabled scalable fabrication of self-aligned graphene transistors with unprecedented performance including a record-high cutoff frequency up to 427 GHz. Our study defines a unique pathway to large-scale fabrication of high-performance graphene transistors, and holds significant potential for future application of graphene-based devices in ultra–high-frequency circuits. PMID:22753503

  16. Tailoring graphene-based electrodes from semiconducting to metallic to increase the energy density in supercapacitors

    Science.gov (United States)

    Vatamanu, Jenel; Ni, Xiaojuan; Liu, Feng; Bedrov, Dmitry

    2015-11-01

    The semiconducting character of graphene and some carbon-based electrodes can lead to noticeably lower total capacitances and stored energy densities in electric double layer (EDL) capacitors. This paper discusses the chemical and electronic structure modifications that enhance the available energy bands, density of states and quantum capacitance of graphene substrates near the Fermi level, therefore restoring the conducting character of these materials. The doping of graphene with p or n dopants, such as boron and nitrogen atoms, or the introduction of vacancy defects that introduce zigzag edges, can significantly increase the quantum capacitance within the potential range of interest for the energy storage applications by either shifting the Dirac point away from the Fermi level or by eliminating the Dirac point. We show that a combination of doping and vacancies at realistic concentrations is sufficient to increase the capacitance of a graphene-based electrode to within 1 μF cm-2 from that of a metallic surface. Using a combination of ab initio calculations and classical molecular dynamics simulations we estimate how the changes in the quantum capacitance of these electrode materials affect the total capacitance stored by the open structure EDL capacitors containing room temperature ionic liquid electrolytes.

  17. Tailoring graphene-based electrodes from semiconducting to metallic to increase the energy density in supercapacitors

    International Nuclear Information System (INIS)

    Vatamanu, Jenel; Ni, Xiaojuan; Liu, Feng; Bedrov, Dmitry

    2015-01-01

    The semiconducting character of graphene and some carbon-based electrodes can lead to noticeably lower total capacitances and stored energy densities in electric double layer (EDL) capacitors. This paper discusses the chemical and electronic structure modifications that enhance the available energy bands, density of states and quantum capacitance of graphene substrates near the Fermi level, therefore restoring the conducting character of these materials. The doping of graphene with p or n dopants, such as boron and nitrogen atoms, or the introduction of vacancy defects that introduce zigzag edges, can significantly increase the quantum capacitance within the potential range of interest for the energy storage applications by either shifting the Dirac point away from the Fermi level or by eliminating the Dirac point. We show that a combination of doping and vacancies at realistic concentrations is sufficient to increase the capacitance of a graphene-based electrode to within 1 μF cm −2 from that of a metallic surface. Using a combination of ab initio calculations and classical molecular dynamics simulations we estimate how the changes in the quantum capacitance of these electrode materials affect the total capacitance stored by the open structure EDL capacitors containing room temperature ionic liquid electrolytes. (paper)

  18. Investigation of the Alkaline Electrochemical Interface and Development of Composite Metal/Metal-Oxides for Hydrogen and Oxygen Electrodes

    Science.gov (United States)

    Bates, Michael

    Understanding the fundamentals of electrochemical interfaces will undoubtedly reveal a path forward towards a society based on clean and renewable energy. In particular, it has been proposed that hydrogen can play a major role as an energy carrier of the future. To fully utilize the clean energy potential of a hydrogen economy, it is vital to produce hydrogen via water electrolysis, thus avoiding co-production of CO2 inherent to reformate hydrogen. While significant research efforts elsewhere are focused on photo-chemical hydrogen production from water, the inherent low efficiency of this method would require a massive land-use footprint to achieve sufficient hydrogen production rates to integrate hydrogen into energy markets. Thus, this research has primarily focused on the water splitting reactions on base-metal catalysts in the alkaline environment. Development of high-performance base-metal catalysts will help move alkaline water electrolysis to the forefront of hydrogen production methods, and when paired with solar and wind energy production, represents a clean and renewable energy economy. In addition to the water electrolysis reactions, research was conducted to understand the de-activation of reversible hydrogen electrodes in the corrosive environment of the hydrogen-bromine redox flow battery. Redox flow batteries represent a promising energy storage option to overcome the intermittency challenge of wind and solar energy production methods. Optimization of modular and scalable energy storage technology will allow higher penetration of renewable wind and solar energy into the grid. In Chapter 1, an overview of renewable energy production methods and energy storage options is presented. In addition, the fundamentals of electrochemical analysis and physical characterization of the catalysts are discussed. Chapter 2 reports the development of a Ni-Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline

  19. C-V characterization of Schottky- and MIS-gate SiGe/Si HEMT structures

    International Nuclear Information System (INIS)

    Onojima, Norio; Kasamatsu, Akihumi; Hirose, Nobumitsu; Mimura, Takashi; Matsui, Toshiaki

    2008-01-01

    Electrical properties of Schottky- and metal-insulator-semiconductor (MIS)-gate SiGe/Si high electron mobility transistors (HEMTs) were investigated with capacitance-voltage (C-V) measurements. The MIS-gate HEMT structure was fabricated using a SiN gate insulator formed by catalytic chemical vapor deposition (Cat-CVD). The Cat-CVD SiN thin film (5 nm) was found to be an effective gate insulator with good gate controllability and dielectric properties. We previously investigated device characteristics of sub-100-nm-gate-length Schottky- and MIS-gate HEMTs, and reported that the MIS-gate device had larger maximum drain current density and transconductance (g m ) than the Schottky-gate device. The radio frequency (RF) measurement of the MIS-gate device, however, showed a relatively lower current gain cutoff frequency f T compared with that of the Schottky-gate device. In this study, C-V characterization of the MIS-gate HEMT structure demonstrated that two electron transport channels existed, one at the SiGe/Si buried channel and the other at the SiN/Si surface channel

  20. C-V characterization of Schottky- and MIS-gate SiGe/Si HEMT structures

    Energy Technology Data Exchange (ETDEWEB)

    Onojima, Norio [National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795 (Japan)], E-mail: nonojima@nict.go.jp; Kasamatsu, Akihumi; Hirose, Nobumitsu [National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795 (Japan); Mimura, Takashi [National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795 (Japan); Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); Matsui, Toshiaki [National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795 (Japan)

    2008-07-30

    Electrical properties of Schottky- and metal-insulator-semiconductor (MIS)-gate SiGe/Si high electron mobility transistors (HEMTs) were investigated with capacitance-voltage (C-V) measurements. The MIS-gate HEMT structure was fabricated using a SiN gate insulator formed by catalytic chemical vapor deposition (Cat-CVD). The Cat-CVD SiN thin film (5 nm) was found to be an effective gate insulator with good gate controllability and dielectric properties. We previously investigated device characteristics of sub-100-nm-gate-length Schottky- and MIS-gate HEMTs, and reported that the MIS-gate device had larger maximum drain current density and transconductance (g{sub m}) than the Schottky-gate device. The radio frequency (RF) measurement of the MIS-gate device, however, showed a relatively lower current gain cutoff frequency f{sub T} compared with that of the Schottky-gate device. In this study, C-V characterization of the MIS-gate HEMT structure demonstrated that two electron transport channels existed, one at the SiGe/Si buried channel and the other at the SiN/Si surface channel.

  1. Flexible transparent electrode

    Science.gov (United States)

    Demiryont, Hulya; Shannon, Kenneth C., III; Moorehead, David; Bratcher, Matthew

    2011-06-01

    This paper presents the properties of the EclipseTECTM transparent conductor. EclipseTECTM is a room temperature deposited nanostructured thin film coating system comprised of metal-oxide semiconductor elements. The system possesses metal-like conductivity and glass-like transparency in the visible region. These highly conductive TEC films exhibit high shielding efficiency (35dB at 1 to 100GHz). EclipseTECTM can be deposited on rigid or flexible substrates. For example, EclipseTECTM deposited on polyethylene terephthalate (PET) is extremely flexible that can be rolled around a 9mm diameter cylinder with little or no reduction in electrical conductivity and that can assume pre-extension states after an applied stress is relieved. The TEC is colorless and has been tailored to have high visible transmittance which matches the eye sensitivity curve and allows the viewing of true background colors through the coating. EclipseTECTM is flexible, durable and can be tailored at the interface for applications such as electron- or hole-injecting OLED electrodes as well as electrodes in flexible displays. Tunable work function and optical design flexibility also make EclipseTECTM well-suited as a candidate for grid electrode replacement in next-generation photovoltaic cells.

  2. Forces in Liquid Metal Contacts

    DEFF Research Database (Denmark)

    Duggen, Lars; Mátéfi-Tempfli, Stefan

    2014-01-01

    Using rather well known theory about capillary bridges between two electrodes we calculate the tensile force that can be applied to liquid metal contacts in the micrometer regime. Assuming circular symmetry, full wetting of the electrodes, and neglecting gravity, we present a brief review of the ...... of the necessary theory and find numerically the forces to be in the 100μN range for liquid metals as mercury and liquid Gallium suspended between electrodes of 20μm radius.......Using rather well known theory about capillary bridges between two electrodes we calculate the tensile force that can be applied to liquid metal contacts in the micrometer regime. Assuming circular symmetry, full wetting of the electrodes, and neglecting gravity, we present a brief review...

  3. Experimental observation of electrochemical rate limitations affecting sodium ion-electron recombination at electrodes of the alkali metal thermoelectric converter at T about 1200 K

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Loveland, M. E.; Underwood, M. L.; Bankston, C. P.

    1988-01-01

    This paper considers a model of the internal impedances of thin porous Mo and W alkali metal thermoelectric converter (AMTEC), in which the kinetic parameters associated with the reaction of the beta-double-prime alumina solid electrolite (BASE)/porous metal/gas three-phase boundary can be evaluated. Impedance data in the frequency range 0.01-100,000 Hz were collected over a range of AMTEC cell operating voltages for small-area thin porous Mo and W electrodes, yielding apparent charge transfer resistances at a series of cell potentials/currents. The ohmic resistance in the AMTEC cell could be broken down and characterized with three parameters: the BASE ionic resistance, the electrode film sheet resistance, and the contact/lead resistance, all of which could be calculated or measured independently and used to calculate power curves in good agreement with observed power curves. It is shown that these calculations can be used to predict the properties of electrodes with optimized parameters or to detect enhanced transport modes.

  4. High-Resolution Inkjet-Printed Oxide Thin-Film Transistors with a Self-Aligned Fine Channel Bank Structure.

    Science.gov (United States)

    Zhang, Qing; Shao, Shuangshuang; Chen, Zheng; Pecunia, Vincenzo; Xia, Kai; Zhao, Jianwen; Cui, Zheng

    2018-05-09

    A self-aligned inkjet printing process has been developed to construct small channel metal oxide (a-IGZO) thin-film transistors (TFTs) with independent bottom gates on transparent glass substrates. Poly(methylsilsesquioxane) was used to pattern hydrophobic banks on the transparent substrate instead of commonly used self-assembled octadecyltrichlorosilane. Photolithographic exposure from backside using bottom-gate electrodes as mask formed hydrophilic channel areas for the TFTs. IGZO ink was selectively deposited by an inkjet printer in the hydrophilic channel region and confined by the hydrophobic bank structure, resulting in the precise deposition of semiconductor layers just above the gate electrodes. Inkjet-printed IGZO TFTs with independent gate electrodes of 10 μm width have been demonstrated, avoiding completely printed channel beyond the broad of the gate electrodes. The TFTs showed on/off ratios of 10 8 , maximum mobility of 3.3 cm 2 V -1 s -1 , negligible hysteresis, and good uniformity. This method is conductive to minimizing the area of printed TFTs so as to the development of high-resolution printing displays.

  5. Mesoporous Transition Metal Oxides for Supercapacitors.

    Science.gov (United States)

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-10-14

    Recently, transition metal oxides, such as ruthenium oxide (RuO₂), manganese dioxide (MnO₂), nickel oxides (NiO) and cobalt oxide (Co₃O₄), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO₂, MnO₂, NiO, Co₃O₄ and nickel cobaltite (NiCo₂O₄), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  6. An Efficient Metal-Free Hydrophilic Carbon as a Counter Electrode for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Mojgan Kouhnavard

    2016-01-01

    Full Text Available This study presents a new cost-effective metal-free counter electrode (CE for dye-sensitized solar cells (DSSCs. CE was prepared by doctor blading a hydrophilic carbon (HC particle on a fluorine-doped tin oxide substrate. Thereafter, HC CE was characterized using X-ray diffraction, profilometry, four-point probe testing, and cyclic voltammetry. A 2 µm thick HC CE revealed a comparable catalytic activity to that of the Pt electrode under the same experimental conditions. DSSC based on HC CE was analyzed and showed Jsc of 6.87 mA/cm2 close to that of DSSC with Pt CE (7.0 mA/cm2. More importantly, DSSC based on HC CE yielded a power conversion efficiency (η of 2.93% under AM 1.5 irradiation (100 mW/cm2, which was comparable to that of DSSC based on standard Pt CE. These findings suggest that HC CE could be a promising CE for low-cost DSSCs.

  7. Non-noble metal graphene oxide-copper (II) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.

    2015-08-25

    Non-noble metal and inexpensive graphene oxide-copper (II) ions (GO-Cu2+) hybrid catalysts have been explored for the hydrogen evolution reaction (HER). We were able to tune the binding abilities of GO toward the Cu2+ ions and hence their catalytic properties by altering the pH. We have utilized the oxygen functional moieties such as carboxylate, epoxide, and hydroxyl groups on the edge and basal planes of the GO for binding the Cu2+ ions through dative bonds. The GO-Cu2+ hybrid materials were characterized by cyclic voltammetry in sodium acetate buffer solution. The morphology of the hybrid GO-Cu2+ was characterized by atomic force microscopy. The GO-Cu2+ hybrid electrodes show good electrocatalytic activity for HER with low overpotential in acidic solution. The Tafel slope for the GO-Cu2+ hybrid electrode implies that the primary discharge step is the rate determining step and HER proceed with Volmer step. © 2015 American Institute of Chemical Engineers Environ Prog.

  8. Photo-electrocatalytic hydrogen generation at dye-sensitised electrodes functionalised with a heterogeneous metal catalyst

    International Nuclear Information System (INIS)

    Hoogeveen, Dijon A.; Fournier, Maxime; Bonke, Shannon A.; Fang, Xi-Ya; Mozer, Attila J.; Mishra, Amaresh; Bäuerle, Peter; Simonov, Alexandr N.; Spiccia, Leone

    2016-01-01

    Dye-sensitised photocathodes promoting hydrogen evolution are usually coupled to a catalyst to improve the reaction rate. Herein, we report on the first successful integration of a heterogeneous metal particulate catalyst, viz., Pt aggregates electrodeposited from acidic solutions on the surface of a NiO-based photocathode sensitised with a p-type perylenemonoimid-sexithiophene-triphenylamine dye (PMI-6T-TPA). The platinised dye-NiO electrodes generate photocurrent density of ca −0.03 mA cm −2 (geom.) with 100% faradaic efficiency for the H 2 evolution at 0.059 V vs. reversible hydrogen electrode under 1 sun visible light irradiation (AM1.5G, 100 mW cm −2 , λ > 400 nm) for more than 10 hours in 0.1 M H 2 SO 4 (aq.). The Pt-free dye-NiO and dye-free Pt-modified NiO cathodes show no photo-electrocatalytic hydrogen evolution under these conditions. The performance of these Pt-modified PMI-6T-TPA-based photoelectrodes compares well to that of previously reported dye-sensitised photocathodes for H 2 evolution.

  9. The SAM, not the electrodes, dominates charge transport in metal-monolayer//Ga2O3/gallium-indium eutectic junctions.

    Science.gov (United States)

    Reus, William F; Thuo, Martin M; Shapiro, Nathan D; Nijhuis, Christian A; Whitesides, George M

    2012-06-26

    The liquid-metal eutectic of gallium and indium (EGaIn) is a useful electrode for making soft electrical contacts to self-assembled monolayers (SAMs). This electrode has, however, one feature whose effect on charge transport has been incompletely understood: a thin (approximately 0.7 nm) film-consisting primarily of Ga(2)O(3)-that covers its surface when in contact with air. SAMs that rectify current have been measured using this electrode in Ag(TS)-SAM//Ga(2)O(3)/EGaIn (where Ag(TS) = template-stripped Ag surface) junctions. This paper organizes evidence, both published and unpublished, showing that the molecular structure of the SAM (specifically, the presence of an accessible molecular orbital asymmetrically located within the SAM), not the difference between the electrodes or the characteristics of the Ga(2)O(3) film, causes the observed rectification. By examining and ruling out potential mechanisms of rectification that rely either on the Ga(2)O(3) film or on the asymmetry of the electrodes, this paper demonstrates that the structure of the SAM dominates charge transport through Ag(TS)-SAM//Ga(2)O(3)/EGaIn junctions, and that the electrical characteristics of the Ga(2)O(3) film have a negligible effect on these measurements.

  10. Influence of ultra-thin TiN thickness (1.4 nm and 2.4 nm) on positive bias temperature instability (PBTI) of high-k/metal gate nMOSFETs with gate-last process

    International Nuclear Information System (INIS)

    Qi Lu-Wei; Yang Hong; Ren Shang-Qing; Xu Ye-Feng; Luo Wei-Chun; Xu Hao; Wang Yan-Rong; Tang Bo; Wang Wen-Wu; Yan Jiang; Zhu Hui-Long; Zhao Chao; Chen Da-Peng; Ye Tian-Chun

    2015-01-01

    The positive bias temperature instability (PBTI) degradations of high-k/metal gate (HK/MG) nMOSFETs with thin TiN capping layers (1.4 nm and 2.4 nm) are systemically investigated. In this paper, the trap energy distribution in gate stack during PBTI stress is extracted by using ramped recovery stress, and the temperature dependences of PBTI (90 °C, 125 °C, 160 °C) are studied and activation energy (E a ) values (0.13 eV and 0.15 eV) are extracted. Although the equivalent oxide thickness (EOT) values of two TiN thickness values are almost similar (0.85 nm and 0.87 nm), the 2.4-nm TiN one (thicker TiN capping layer) shows better PBTI reliability (13.41% at 0.9 V, 90 °C, 1000 s). This is due to the better interfacial layer/high-k (IL/HK) interface, and HK bulk states exhibited through extracting activation energy and trap energy distribution in the high-k layer. (paper)

  11. Internal Morphologies of Cycled Li-Metal Electrodes Investigated by Nano-Scale Resolution X-ray Computed Tomography.

    Science.gov (United States)

    Frisco, Sarah; Liu, Danny X; Kumar, Arjun; Whitacre, Jay F; Love, Corey T; Swider-Lyons, Karen E; Litster, Shawn

    2017-06-07

    While some commercially available primary batteries have lithium metal anodes, there has yet to be a commercially viable secondary battery with this type of electrode. Research prototypes of these cells typically exhibit a limited cycle life before dendrites form and cause internal cell shorting, an occurrence that is more pronounced during high-rate cycling. To better understand the effects of high-rate cycling that can lead to cell failure, we use ex situ nanoscale-resolution X-ray computed tomography (nano-CT) with the aid of Zernike phase contrast to image the internal morphologies of lithium metal electrodes on copper wire current collectors that have been cycled at low and high current densities. The Li that is deposited on a Cu wire and then stripped and deposited at low current density appears uniform in morphology. Those cycled at high current density undergo short voltage transients to >3 V during Li-stripping from the electrode, during which electrolyte oxidation and Cu dissolution from the current collector may occur. The effect of temperature is also explored with separate cycling experiments performed at 5 and 33 °C. The resulting morphologies are nonuniform films filled with voids that are semispherical in shape with diameters ranging from hundreds of nanometers to tens of micrometers, where the void size distributions are temperature-dependent. Low-temperature cycling elicits a high proportion of submicrometer voids, while the higher-temperature sample morphology is dominated by voids larger than 2 μm. In evaluating these morphologies, we consider the importance of nonidealities during extreme charging, such as electrolyte decomposition. We conclude that nano-CT is an effective tool for resolving features and aggressive cycling-induced anomalies in Li films in the range of 100 nm to 100 μm.

  12. Secondary battery on cell with dual electrode. [German Patent

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, F A

    1977-08-04

    The barrier layer penetrable to alkali metal ions is in ion-conducting contact with the melted anode alkali metal on the one side and, on the other side, in ion-conducting contact with a cathode reactant of liquid electrolyte. The electrolyte is electrochemically reversibly reactive with the anode reaction component and consists of a mixture of melted polysulfide salts of the alkali metal and molten sulfur when the cell is partly discharged. The improvement on the secondary battery, according to the invention, involves electrode devices containing first and second electrodes. The first electrode is designed for battery charge; it is installed in the first section of the cathodic reaction zone and is wetted to a greater extent by the melted polysulfide than by molten sulfur. The secondary electrode is designed for battery discharge; it is installed in a second section of the cathodic reaction zone and is wetted to a greater extent by molten sulfur than by melted polysulfide.

  13. AlGaN/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistor with Polarized P(VDF-TrFE) Ferroelectric Polymer Gating

    Science.gov (United States)

    Liu, Xinke; Lu, Youming; Yu, Wenjie; Wu, Jing; He, Jiazhu; Tang, Dan; Liu, Zhihong; Somasuntharam, Pannirselvam; Zhu, Deliang; Liu, Wenjun; Cao, Peijiang; Han, Sun; Chen, Shaojun; Seow Tan, Leng

    2015-01-01

    Effect of a polarized P(VDF-TrFE) ferroelectric polymer gating on AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) was investigated. The P(VDF-TrFE) gating in the source/drain access regions of AlGaN/GaN MOS-HEMTs was positively polarized (i.e., partially positively charged hydrogen were aligned to the AlGaN surface) by an applied electric field, resulting in a shift-down of the conduction band at the AlGaN/GaN interface. This increases the 2-dimensional electron gas (2-DEG) density in the source/drain access region of the AlGaN/GaN heterostructure, and thereby reduces the source/drain series resistance. Detailed material characterization of the P(VDF-TrFE) ferroelectric film was also carried out using the atomic force microscopy (AFM), X-ray Diffraction (XRD), and ferroelectric hysteresis loop measurement. PMID:26364872

  14. Direct-write fabrication of a nanoscale digital logic element on a single nanowire

    International Nuclear Information System (INIS)

    Roy, Somenath; Gao Zhiqiang

    2010-01-01

    In this paper we report on the 'direct-write' fabrication and electrical characteristics of a nanoscale logic inverter, integrating enhancement-mode (E-mode) and depletion-mode (D-mode) field-effect transistors (FETs) on a single zinc oxide (ZnO) nanowire. 'Direct-writing' of platinum metal electrodes and a dielectric layer is executed on individual single-crystalline ZnO nanowires using either a focused electron beam (FEB) or a focused ion beam (FIB). We fabricate a top-gate FET structure, in which the gate electrode wraps around the ZnO nanowire, resulting in a more efficient gate response than the conventional back-gate nanowire transistors. For E-mode device operation, the gate electrode (platinum) is deposited directly onto the ZnO nanowire by a FEB, which creates a Schottky barrier and in turn a fully depleted channel. Conversely, sandwiching an insulating layer between the FIB-deposited gate electrode and the nanowire channel makes D-mode operation possible. Integrated E- and D-mode FETs on a single nanowire exhibit the characteristics of a direct-coupled FET logic (DCFL) inverter with a high gain and noise margin.

  15. Graphene-based battery electrodes having continuous flow paths

    Science.gov (United States)

    Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

    2014-05-24

    Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

  16. Extended Gate Field-Effect Transistor Biosensors for Point-Of-Care Testing of Uric Acid.

    Science.gov (United States)

    Guan, Weihua; Reed, Mark A

    2017-01-01

    An enzyme-free redox potential sensor using off-chip extended-gate field effect transistor (EGFET) with a ferrocenyl-alkanethiol modified gold electrode has been used to quantify uric acid concentration in human serum and urine. Hexacyanoferrate (II) and (III) ions are used as redox reagent. The potentiometric sensor measures the interface potential on the ferrocene immobilized gold electrode, which is modulated by the redox reaction between uric acid and hexacyanoferrate ions. The device shows a near Nernstian response to uric acid and is highly specific to uric acid in human serum and urine. The interference that comes from glucose, bilirubin, ascorbic acid, and hemoglobin is negligible in the normal concentration range of these interferents. The sensor also exhibits excellent long term reliability and is regenerative. This extended gate field effect transistor based sensor is promising for point-of-care detection of uric acid due to the small size, low cost, and low sample volume consumption.

  17. Low-cost electrodes for stable perovskite solar cells

    Science.gov (United States)

    Bastos, João P.; Manghooli, Sara; Jaysankar, Manoj; Tait, Jeffrey G.; Qiu, Weiming; Gehlhaar, Robert; De Volder, Michael; Uytterhoeven, Griet; Poortmans, Jef; Paetzold, Ulrich W.

    2017-06-01

    Cost-effective production of perovskite solar cells on an industrial scale requires the utilization of exclusively inexpensive materials. However, to date, highly efficient and stable perovskite solar cells rely on expensive gold electrodes since other metal electrodes are known to cause degradation of the devices. Finding a low-cost electrode that can replace gold and ensure both efficiency and long-term stability is essential for the success of the perovskite-based solar cell technology. In this work, we systematically compare three types of electrode materials: multi-walled carbon nanotubes (MWCNTs), alternative metals (silver, aluminum, and copper), and transparent oxides [indium tin oxide (ITO)] in terms of efficiency, stability, and cost. We show that multi-walled carbon nanotubes are the only electrode that is both more cost-effective and stable than gold. Devices with multi-walled carbon nanotube electrodes present remarkable shelf-life stability, with no decrease in the efficiency even after 180 h of storage in 77% relative humidity (RH). Furthermore, we demonstrate the potential of devices with multi-walled carbon nanotube electrodes to achieve high efficiencies. These developments are an important step forward to mass produce perovskite photovoltaics in a commercially viable way.

  18. Method of making composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    Science.gov (United States)

    Ray, S.P.; Rapp, R.A.

    1986-04-22

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. 8 figs.

  19. Anodized Steel Electrodes for Supercapacitors.

    Science.gov (United States)

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-09

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.

  20. Metal Selenides as Efficient Counter Electrodes for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Jin, Zhitong; Zhang, Meirong; Wang, Min; Feng, Chuanqi; Wang, Zhong-Sheng

    2017-04-18

    Solar energy is the most abundant renewable energy available to the earth and can meet the energy needs of humankind, but efficient conversion of solar energy to electricity is an urgent issue of scientific research. As the third-generation photovoltaic technology, dye-sensitized solar cells (DSSCs) have gained great attention since the landmark efficiency of ∼7% reported by O'Regan and Grätzel. The most attractive features of DSSCs include low cost, simple manufacturing processes, medium-purity materials, and theoretically high power conversion efficiencies. As one of the key materials in DSSCs, the counter electrode (CE) plays a crucial role in completing the electric circuit by catalyzing the reduction of the oxidized state to the reduced state for a redox couple (e.g., I 3 - /I - ) in the electrolyte at the CE-electrolyte interface. To lower the cost caused by the typically used Pt CE, which restricts the large-scale application because of its low reserves and high price, great effort has been made to develop new CE materials alternative to Pt. A lot of Pt-free electrocatalysts, such as carbon materials, inorganic compounds, conductive polymers, and their composites with good electrocatalytic activity, have been applied as CEs in DSSCs in the past years. Metal selenides have been widely used as electrocatalysts for the oxygen reduction reaction and light-harvesting materials for solar cells. Our group first expanded their applications to the DSSC field by using in situ-grown Co 0.85 Se nanosheet and Ni 0.85 Se nanoparticle films as CEs. This finding has inspired extensive studies on developing new metal selenides in order to seek more efficient CE materials for low-cost DSSCs, and a lot of meaningful results have been achieved in the past years. In this Account, we summarize recent advances in binary and mutinary metal selenides applied as CEs in DSSCs. The synthetic methods for metal selenides with various morphologies and stoichiometric ratios and