WorldWideScience

Sample records for metal fe mn

  1. Redox Dynamics of Mixed Metal (Mn, Cr, and Fe) Ultrafine Particles

    Energy Technology Data Exchange (ETDEWEB)

    Nico, Peter S.; Kumfer, Benjamin M.; Kennedy, Ian M.; Anastasio, Cort

    2008-08-01

    The impact of particle composition on metal oxidation state, and on changes in oxidation state with simulated atmospheric aging, are investigated experimentally in flame-generated nanoparticles containing Mn, Cr, and Fe. The results demonstrate that the initial fraction of Cr(VI) within the particles decreases with increasing total metal concentration in the flame. In contrast, the initial Mn oxidation state was only partly controlled by metal loading, suggesting the importance of other factors. Two reaction pathways, one reductive and one oxidative, were found to be operating simultaneously during simulated atmospheric aging. The oxidative pathway depended upon the presence of simulated sunlight and O{sub 3}, whereas the reductive pathway occurred in the presence of simulated sunlight alone. The reductive pathway appears to be rapid but transient, allowing the oxidative pathway to dominate with longer aging times, i.e. greater than {approx}8 hours. The presence of Mn within the particles enhanced the importance of the oxidative pathway, leading to more net Cr oxidation during aging implying that Mn can mediate oxidation by removal of electrons from other particulate metals.

  2. TRACE METAL CONTENT (Cu, Zn, Mn AND Fe) IN URTICA DIOICA L. AND PLANTAGO MAJOR L.

    Science.gov (United States)

    Krolak, Elzbieta; Raczuk, Jolanta; Borkowska, Lidia

    2016-11-01

    The aim of the study was to compare the contents of Cu, Zn, Mn and Fe in the washed and unwashed leaves and roots of two plant species: Urica dioica L. and Plantago major L., used in herbal medicine. These two herb species occur in the same environmental habitats, yet their morphological structure is different. The soil and plant samples for analyses were collected from an uncontaminated area in Eastern Poland. In each habitat location, the samples were taken from sandy soils with slightly acidic and neutral pH values. The obtained results showed that U. dioica and P. major accumulated similar amounts of trace metals, such as: Cu, Zn and Fe, in leaves, despite the differences in the morphological structure of their overground parts. The content of Mn in leaves U. dioica was about twice as much as in P. major. Also, no differences in the metal content were observed between washed and unwashed leaves of both species. However, in the same habitat conditions, a significantly higher content of Cu, Zn and Mn was found in the roots of P. major than U. dioica. The content of Fe in the roots was similar in both species. P. major and U. dioica may be a valuable source of microelements, if they are obtained from unpolluted habitats.

  3. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation.

    Science.gov (United States)

    Tang, Shoufeng; Yuan, Deling; Zhang, Qi; Liu, Yameng; Zhang, Qi; Liu, Zhengquan; Huang, Haiming

    2016-09-01

    A Fe-Mn bi-metallic oxide supported on granular activated carbon (Fe-Mn GAC) has been fabricated by an impregnation-desiccation method and tested in the catalytic ozonation of methyl orange (MO) degradation and mineralization. X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations revealed that Fe-Mn oxides were successfully loaded and uniformly distributed on the GAC, and nitrogen adsorption isotherms showed that the supported GAC retained a large surface area and a high pore volume compared with the pristine GAC. The catalytic activity was systematically assessed by monitoring the MO removal efficiencies at different operational parameters, such as catalyst dosage, initial solution pH, and ozone flow rate. The Fe-Mn GAC exhibited better catalytic activity relative to ozone alone and GAC alone, improving the TOC removal by 24.5 and 11.5 % and COD removal by 13.6 and 7.3 %, respectively. The reusability of the hybrid was examined over five consecutive cyclic treatments. The Fe-Mn GAC catalytic activity was only a slight loss in the cycles, showing good stability. The addition of Na2CO3 as hydroxyl radicals (•OH) scavengers proved that the catalytic ozonation mechanism was the enhanced generation of •OH by the Fe-Mn GAC. The above results render the Fe-Mn GAC an industrially promising candidate for catalytic ozonation of dye contaminant removal.

  4. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal.

    Science.gov (United States)

    Ma, Zichuan; Zhao, Dongyuan; Chang, Yongfang; Xing, Shengtao; Wu, Yinsu; Gao, Yuanzhe

    2013-10-21

    Magnetic nanomaterials that can be easily separated and recycled due to their magnetic properties have received considerable attention in the field of water treatment. However, these nanomaterials usually tend to aggregate and alter their properties. Herein, we report an economical and environmentally friendly method for the synthesis of magnetic nanoparticles with core-shell structure. MnFe2O4 nanoparticles have been successfully coated with amorphous Mn-Co oxide shells. The synthesized MnFe2O4@Mn-Co oxide nanoparticles have highly negatively charged surface in aqueous solution over a wide pH range, thus preventing their aggregation and enhancing their performance for heavy metal cation removal. The adsorption isotherms are well fitted to a Langmuir adsorption model, and the maximal adsorption capacities of Pb(II), Cu(II) and Cd(II) on MnFe2O4@Mn-Co oxide are 481.2, 386.2 and 345.5 mg g(-1), respectively. All the metal ions can be completely removed from the mixed metal ion solutions in a short time. Desorption studies confirm that the adsorbent can be effectively regenerated and reused.

  5. Tuning glass formation and brittle behaviors by similar solvent element substitution in (Mn,Fe)-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tao [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Ran, E-mail: liran@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Xiao, Ruijuan [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Gang [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Jianfeng [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhang, Tao, E-mail: zhangtao@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2015-02-25

    A family of Mn-rich bulk metallic glasses (BMGs) was developed through the similar solvent elements (SSE) substitution of Mn for Fe in (Mn{sub x}Fe{sub 80−x})P{sub 10}B{sub 7}C{sub 3} alloys. The effect of the SSE substitution on glass formation, thermal stability, elastic constants, mechanical properties, fracture morphologies, Weibull modulus and indentation fracture toughness was discussed. A thermodynamics analysis provided by Battezzati et al. (L. Battezzati, E. Garrone, Z. Metallkd. 75 (1984) 305–310) was adopted to explain the compositional dependence of the glass-forming ability (GFA). The elastic moduli follow roughly linear correlations with the substitution concentration of Mn in (Mn{sub x}Fe{sub 80−x})P{sub 10}B{sub 7}C{sub 3} BMGs. The introduction of Mn to replace Fe significantly decreases the plasticity of the resulting BMGs and the Weibull modulus of the fracture strength. A super-brittle Mn-based BMGs of (Mn{sub 55}Fe{sub 25})P{sub 10}B{sub 7}C{sub 3} BMGs were found with the indentation fracture toughness (K{sub c}) of 1.91±0.04 MPa m{sup 1/2}, the lowest value among all kinds of BMGs so far. The atomic and electronic structure of the selected BMGs were simulated by the first principles molecular dynamics calculations based on density functional theory, which provided a possible understanding of the brittleness caused by the similar chemical element replacement of Mn for Fe.

  6. Contamination assessment of heavy metals in the soils around Khouzestan Steel Company (Ni, Mn, Pb, Fe, Zn, Cr)

    International Nuclear Information System (INIS)

    Hormozi Nejad, F.; Rastmanesh, F.; Zarasvandi, A.

    2016-01-01

    The highest concentrations were found at soil samples 4 and 12. Comparison of heavy metals concentration with unpolluted soil standard indicated that, concentrations of Cr, Zn, Fe, Ni and Pb is higher than that of unpolluted soil standard. In general, Manganese, Chromium, Zinc and Lead are the most important elements that are found in emissions of steel plants. The soil samples near the steel plant and downwind direction have much higher pollution level. The results showed that Mn, Pb and Zn is related to human activity and Cr have geogenic source and Fe and Ni have both geogenic and anthropogenic source in the study area in the city of Ahwaz.

  7. Quality of Metal Deposited Flux Cored Wire With the System Fe-C-Si-Mn-Cr-Mo-Ni-V-Co

    Science.gov (United States)

    Gusev, Aleksander I.; Kozyrev, Nikolay A.; Osetkovskiy, Ivan V.; Kryukov, Roman E.; Kozyreva, Olga A.

    2017-10-01

    Studied the effect of the introduction of vanadium and cobalt into the charge powder fused wire system Fe-C-Si-Mn-Cr-Ni-Mo-V, used in cladding assemblies and equipment parts and mechanisms operating under abrasive and abrasive shock loads. the cored wires samples were manufactured in the laboratory conditions and using appropriate powder materials and as a carbonfluoride contained material were used the dust from gas purification of aluminum production, with the following components composition, %: Al2O3 = 21-46.23; F = 18-27; Na2O = 8-15; K2O = 0.4-6; CaO = 0.7-2.3; Si2O = 0.5-2.48; Fe2O3 = 2.1-3.27; C = 12.5-30.2; MnO = 0.07-0.9; MgO = 0.06-0.9; S = 0.09-0.19; P = 0.1-0.18. Surfacing was produced on the St3 metal plates in 6 layers under the AN-26C flux by welding truck ASAW-1250. Cutting and preparation of samples for research had been implemented. The chemical composition and the hydrogen content of the weld metal were determined by modern methods. The hardness and abrasion rate of weld metal had been measured. Conducted metallographic studies of weld metal: estimated microstructure, grain size, contamination of oxide non-metallic inclusions. Metallographic studies showed that the microstructure of the surfaced layer by cored wire system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co is uniform, thin dendrite branches are observed. The microstructure consists of martensite, which is formed inside the borders of the former austenite grain retained austenite present in small amounts in the form of separate islands, and thin layers of δ-ferrite, which is located on the borders of the former austenite grains. Carried out an assessment the effect of the chemical composition of the deposited metal on the hardness and wear and hydrogen content. In consequence of multivariate correlation analysis, it was determined dependence to the hardness of the deposited layer and the wear resistance of the mass fraction of the elements included in the flux-cored wires of the system Fe-C-Si-Mn

  8. Seasonal variation of major elements (Ca, Mg) and trace metals (Fe, Cu, Zn, Mn) and cultured mussel Perna viridis L. and seawater in the Dona Paula Bay, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Rivonker, C.U.; Parulekar, A.H.

    The major elements and trace metals were analysed from nussel tissue and the seawater taken from three depths (0, 5 and 9 meters) from the culture site. Range of variation in Ca, Mg, Fe, Cu, Zn and Mn were 226-399; 708-1329; 0.005-0.084; BDL-0...

  9. Contamination assessment of heavy metals in the soils around Khouzestan Steel Company (KSC (Ni, Mn, Pb, Fe, Zn, Cr

    Directory of Open Access Journals (Sweden)

    Fatemeh hormozi Nejad

    2017-02-01

    Full Text Available Introduction Soil plays a vital role in human life as the very survival of mankind is tied to the preservation of soil productivity (Kabata- Pendies and Mukherjee, 2007. The purpose of this study is the assessment of heavy metal contamination (Zn, Mn, Pb, Fe, Ni, Cr of the soil around the Khuzestan Steel Complex. Materials and methods For this purpose, 13 surface soil samples (0-10 cm were taken. Also a control sample was taken from an area away from the steel complex. The coordinates of each point were recorded by Global Positioning System (GPS. The samples were transferred to the laboratory and then were air dried at room temperature for 72 hours. Then they were sieved through a 2mm sieve for determining physical and chemical parameters (soil texture, pH, OC, and a 63-micron sieve for measurement of heavy metal concentration. pH was measured using a calibrated pH meter at a 2: 1 mixture (soil: water, and soil texture was determined using a hydrometer. The amount of organic matter was measured using the Valkey black method (Chopin and Alloway, 2007. After preparation of the samples in the laboratory, the samples were analyzed using the ICP-OES method to assess concentration of heavy metals. Measurement of heavy metals concentration was carried out at the Zar azma laboratory in Tehran. To ensure the accuracy of the analysis of soil samples, replicate samples were also sent to the laboratory. In order to assess the heavy metal pollution in the soil samples, different indices including contamination factor (CF, contamination degree (Cd, anthropogenic enrichment percent (An%, and saturation degree of metals (SDM were calculated. Discussion In addition, the mean concentrations of heavy metals in soil samples were compared to the concentration of these metals in Control Sample and unpolluted soil standard. Measurement of soil pH showed that the soil has a tendency to alkalinity. Also, soil texture is sandy loam (Moyes, 2011. The results showed that

  10. Magnetic properties of Mg12O12 nanocage doped with transition metal atoms (Mn, Fe, Co and Ni): DFT study

    Science.gov (United States)

    Javan, Masoud Bezi

    2015-07-01

    Binding energy of the Mg12O12 nanocage doped with transition metals (TM=Mn, Fe, Co and Ni) in endohedrally, exohedrally and substitutionally forms were studied using density functional theory with the generalized gradient approximation exchange-correlation functional along 6 different paths inside and outside of the Mg12O12 nanocage. The most stable structures were determined with full geometry optimization near the minimum of the binding energy curves of all the examined paths inside and outside of the Mg12O12 nanocage. The results reveal that for all stable structures, the Ni atom has a larger binding energy than the other TM atoms. It is also found that for all complexes additional peaks contributed by TM-3d, 4s and 4p states appear in the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) gap of the host MgO cluster. The mid-gap states are mainly due to the hybridization between TM-3d, 4s and 4p orbitals and the cage π orbitals. The magnetic moment of the endohedrally doped TM atoms in the Mg12O12 are preserved to some extent due to the interaction between the TM and Mg12O12 nanocage, in contrast to the completely quenched magnetic moment of the Fe and Ni atoms in the Mg11(TM)O12 complexes. Furthermore, charge population analysis shows that charge transfer occurs from TM atom to the cage for endohedrally and substitutionally doping.

  11. Evaluation of the heavy metals Cr, Mn, Fe, Cu, Zn and Pb in water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma River, Mexico

    International Nuclear Information System (INIS)

    Zarazua, G.; Avila P, P.; Tejeda, S.; Valdivia B, M.; Macedo M, G.; Zepeda G, C.

    2013-01-01

    The Lerma river is one of the most polluted water bodies in Mexico, it presents low biodiversity and lets grow up aquatic plants resistant to the pollution. The aim of this work was to evaluate the concentration and bioaccumulation factors of Cr, Mn, Fe, Cu, Zn and Pb in aerial and submerged structures of water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma river. Inductively coupled plasma-optical emission spectrometry was used to determine the concentration of heavy metals in water and H. ranunculoides. Results show that the bioaccumulation factors of Fe and Zn were higher than those of Cu, Mn, Cr and Pb; with the exception of Zn, bioaccumulation factors were higher in the submerged structures of the plant, which shows low mobility of analyzed metals. As a result of this study H. ranunculoides can be considered as good indicator of metal pollution in water bodies. (Author)

  12. Molecular orbital (SCF-X-α-SW) theory of Fe2+-Mn3+, Fe3+-Mn2+, and Fe3+-Mn3+ charge transfer and magnetic exchange in oxides and silicates

    Science.gov (United States)

    Sherman, David M.

    1990-01-01

    Metal-metal charge-transfer and magnetic exchange interactions have important effects on the optical spectra, crystal chemistry, and physics of minerals. Previous molecular orbital calculations have provided insight on the nature of Fe2+-Fe3+ and Fe2+-Ti4+ charge-transfer transitions in oxides and silicates. In this work, spin-unrestricted molecular orbital calculations on (FeMnO10) clusters are used to study the nature of magnetic exchange and electron delocalization (charge transfer) associated with Fe3+-Mn2+, Fe3+-Mn3+, and Fe2+-Mn3+ interactions in oxides and silicates. 

  13. Metallic elements (Ca, Hg, Fe, K, Mg, Mn, Na, Zn) in the fruiting bodies of Boletus badius.

    Science.gov (United States)

    Kojta, Anna K; Falandysz, Jerzy

    2016-06-01

    The aim of this study was to investigate and compare the levels of eight metallic elements in the fruiting bodies of Bay Bolete (Boletus badius; current name Imleria badia) collected from ten sites in Poland to understand better the value of this popular mushroom as an organic food. Bay Bolete fruiting bodies were collected from the forest area near the towns and villages of Kętrzyn, Poniatowa, Bydgoszcz, Pelplin, Włocławek, Żuromin, Chełmno, Ełk and Wilków communities, as well as in the Augustów Primeval Forest. Elements such as Ca, Fe, K, Mg, Mn, Na and Zn were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-OES), and mercury by cold vapor atomic absorption spectrometry (CV-AAS). This made it possible to assess the nutritional value of the mushroom, as well as possible toxicological risks associated with its consumption. The results were subjected to statistical analysis (Kruskal-Wallis test, cluster analysis, principal component analysis). Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Structure and magnetic properties of the 3d transition-metal mono-borides TM–B (TM=Mn, Fe, Co) under pressures

    International Nuclear Information System (INIS)

    Bourourou, Y.; Beldi, L.; Bentria, B.; Gueddouh, A.; Bouhafs, B.

    2014-01-01

    In this paper, spin-polarization and pressure effects on the structural and electronic properties of the 3d transition-metal mono-borides TM–B (TM=Mn, Fe, Co) have been studied by using both local spin-density approximation (LSDA) and generalized gradient approximation (GGA) within the framework of density-functional theory (DFT). At equilibrium, spin-polarization calculations show that MnB and FeB compounds carry magnetic moment. The non-spin-polarization results show that the non-magnetic state is unstable for MnB and FeB compounds, but a stable non-magnetic phase for CoB compound, which is discussed in the framework of the well-known Stoner criterion. The calculated lattice parameters, bulk moduli, their first-pressure derivatives and magnetic moments agree well with experimental and other theoretical results. Significant differences in volume and in bulk modulus were found between the magnetic and non-magnetic case reached 4%, 22%, respectively. The effect of pressure on the crystal structure reflects in a compression of the unit cell volume with a decreasing in the magnetic moment. The density of states of MnB and FeB ferromagnetic compounds are significantly modified under high pressures. The exchange energy decreases with increasing pressure, at approximately V/V 0 =0.6, the exchange energy becomes absent in ferromagnetic compounds causes mirror in upper and lowers half panels. Finally, we notice that spin-polarization and pressure play a crucially important role in determining the electronic and structural properties of 3d transition-metal mono-borides. - Highlights: • Spin polarization and pressure effects on TM–B (TM=Mn, Fe, Co) have been investigated. • The non-spin-polarization results show that the non-magnetic state is stable for CoB. • The magnetic states of MnB and FeB are found more stable than their nonmagnetic states. • We report significant differences between the magnetic and non-magnetic cases. • The density of states of MnB and

  15. Heavy Metals and Radioactive Characterization of the Main Materials Involved in the HC-FeMn Alloy Production Process

    Energy Technology Data Exchange (ETDEWEB)

    Badran, H. [Taif University (Saudi Arabia); Bakr, H.; Elnimr, T. [Tanta University (Egypt); Sharshar, T. [Kafrelsheikh University (Egypt)

    2014-07-01

    Natural occurring radioactive materials (NORM) are always present in association with a variety of elements in the geological formations. The extraction of non-radioactive minerals from the mineral matrices may lead to the buildup of NORM in wastes and/or end product with different concentrations of uranium and thorium daughters, depending on extraction procedures, initial concentrations and chemical forms of the NORM in the mineral matrices. Gamma-ray spectrometry was used for the quantitative assessment of radionuclides and the associated radiation hazards at the high carbon Ferromanganese alloy (HC-FeMn) production plant in Abu Zenima (West Sinai, Egypt). The low grad Mn from Um Bogma is mixed with Norwegian Mn to improve its quality. While the Egyptian raw Mn is richer in {sup 238}U, Cu and Zn, the Norwegian raw Mn is richer in {sup 40}K and Mn. The mixing process leads to increasing concentrations of {sup 226}Ra and Zn. Enhanced concentrations of Mn, Cu and Zn were also found in the waste. The radioactivity concentrations of {sup 226}Ra, {sup 232}Th and {sup 40}K in different raw materials used in the alloy formation process, HC-FeMn alloy, waste and other mining products produced by the same company are also determined. The estimated range of the total activities of wastes produced annually by the extraction process are 8.7-17.3, 0.7-1.3 and 6.7-13.4 GBq for {sup 226}Ra, {sup 232}Th and {sup 40}K, respectively. The calculated absorbed dose rate and the annual effective dose equivalent in waste dumps with these increased fractions of NORM are 225 nGy/h and 276 mSv, respectively. This investigation does not recommend the use of the waste in housing construction or as filling materials in the area where houses may be built on or near the tailing piles. Document available in abstract form only. (authors)

  16. Laser photoelectron spectroscopy of MnH - and FeH - : Electronic structures of the metal hydrides, identification of a low-spin excited state of MnH, and evidence for a low-spin ground state of FeH

    Science.gov (United States)

    Stevens, Amy E.; Feigerle, C. S.; Lineberger, W. C.

    1983-05-01

    The laser photoelectron spectra of MnH- and MnD-, and FeH- and FeD- are reported. A qualitative description of the electronic structure of the low-spin and high-spin states of the metal hydrides is developed, and used to interpret the spectra. A diagonal transition in the photodetachment to the known high-spin, 7Σ+, ground state of MnH is observed. An intense off-diagonal transition to a state of MnH, at 1725±50 cm-1 excitation energy, is attributed to loss of an antibonding electron from MnH-, to yield a low-spin quintet state of MnH. For FeH- the photodetachment to the ground state is an off-diagonal transition, attributed to loss of the antibonding electron from FeH-, to yield a low-spin quartet ground state of FeH. A diagonal transition results in an FeH state at 1945±55 cm-1; this state of FeH is assigned as the lowest-lying high-spin sextet state of FeH. An additional excited state of MnH and two other excited states of FeH are observed. Excitation energies for all the states are reported; vibrational frequencies and bond lengths for the ions and several states of the neutrals are also determined from the spectra. The electron affinity of MnH is found to be 0.869±0.010 eV; and the electron affinity of FeH is determined to be 0.934±0.011 eV. Spectroscopic constants for the various deuterides are also reported.

  17. Evaluation of the heavy metals Cr, Mn, Fe, Cu, Zn and Pb in water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma River, Mexico; Evaluacion de los metales pesados Cr, Mn, Fe, Cu, Zn y Pb en sombrerillo de agua (Hydrocotyle ranunculoides) del curso alto del Rio Lerma, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Zarazua, G.; Avila P, P.; Tejeda, S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Valdivia B, M.; Macedo M, G. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Zepeda G, C., E-mail: graciela.zarazua@inin.gob.mx [Universidad Autonoma del Estado de Mexico, Cerro de Coatepec s/n, Ciudad Universitaria, 50100 Toluca, Estado de Mexico (Mexico)

    2013-07-01

    The Lerma river is one of the most polluted water bodies in Mexico, it presents low biodiversity and lets grow up aquatic plants resistant to the pollution. The aim of this work was to evaluate the concentration and bioaccumulation factors of Cr, Mn, Fe, Cu, Zn and Pb in aerial and submerged structures of water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma river. Inductively coupled plasma-optical emission spectrometry was used to determine the concentration of heavy metals in water and H. ranunculoides. Results show that the bioaccumulation factors of Fe and Zn were higher than those of Cu, Mn, Cr and Pb; with the exception of Zn, bioaccumulation factors were higher in the submerged structures of the plant, which shows low mobility of analyzed metals. As a result of this study H. ranunculoides can be considered as good indicator of metal pollution in water bodies. (Author)

  18. Effects of Ga substitution on the structural and magnetic properties of half metallic Fe{sub 2}MnSi Heusler compound

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, S. S., E-mail: sandrapedro@uerj.br; Caraballo Vivas, R. J.; Andrade, V. M.; Cruz, C.; Paixão, L. S.; Contreras, C.; Costa-Soares, T.; Rocco, D. L.; Reis, M. S. [Instituto de Física, Universidade Federal Fluminense, Niterói-RJ (Brazil); Caldeira, L. [IF Sudeste MG, Campus Juiz de Fora - Núcleo de Física, Juiz de Fora-MG (Brazil); Coelho, A. A. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas - Unicamp, Campinas-SP (Brazil); Carvalho, A. Magnus G. [Laboratório Nacional de Luz Sincrotron, CNPEM, Campinas-SP (Brazil)

    2015-01-07

    The so-called half-metallic magnets have been proposed as good candidates for spintronic applications due to the feature of exhibiting a hundred percent spin polarization at the Fermi level. Such materials follow the Slater-Pauling rule, which relates the magnetic moment with the valence electrons in the system. In this paper, we study the bulk polycrystalline half-metallic Fe{sub 2}MnSi Heusler compound replacing Si by Ga to determine how the Ga addition changes the magnetic, the structural, and the half-metal properties of this compound. The material does not follow the Slater-Pauling rule, probably due to a minor structural disorder degree in the system, but a linear dependence on the magnetic transition temperature with the valence electron number points to the half-metallic behavior of this compound.

  19. Dissimilatory Fe(III) and Mn(IV) reduction.

    Science.gov (United States)

    Lovley, D R

    1991-06-01

    The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process.

  20. From which soil metal fractions Fe, Mn, Zn and Cu are taken up by olive trees (Olea europaea L., cv. 'Chondrolia Chalkidikis') in organic groves?

    Science.gov (United States)

    Chatzistathis, T; Papaioannou, A; Gasparatos, D; Molassiotis, A

    2017-12-01

    Organic farming has been proposed as an alternative agricultural system to help solve environmental problems, like the sustainable management of soil micronutrients, without inputs of chemical fertilizers. The purposes of this study were: i) to assess Fe, Mn, Zn and Cu bioavailability through the determination of sequentially extracted chemical forms (fractions) and their correlation with foliar micronutrient concentrations in mature organic olive (cv. 'Chondrolia Chalkidikis') groves; ii) to determine the soil depth and the available forms (fractions) by which the 4 metals are taken up by olive trees. DTPA extractable (from the soil layers 0-20, 20-40 and 40-60 cm) and foliar micronutrient concentrations were determined in two organic olive groves. Using the Tessier fractionation, five fractions, for all the metals, were found: exchangeable, bound to carbonates (acid-soluble), bound to Fe-Mn oxides (reducible), organic (oxidizable), as well as residual form. Our results indicated that Fe was taken up by the olive trees as organic complex, mainly from the soil layer 40-60 cm. Manganese was taken up from the exchangeable fraction (0-20 cm); Zinc was taken up as organic complex from the layers 0-20 and 40-60 cm, as well as in the exchangeable form from the upper 20 cm. Copper was taken up from the soil layers 0-20 and 40-60 cm as soluble organic complex, and as exchangeable ion from the upper 20 cm. Our data reveal the crucial role of organic matter to sustain metal (Fe, Zn and Cu) uptake -as soluble complexes-by olive trees, in mature organic groves grown on calcareous soils; it is also expected that these data will constitute a thorough insight and useful tool towards a successful nutrient and organic C management for organic olive groves, since no serious nutritional deficiencies were found. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Swelling of Fe-Mn and Fe-Cr-Mn alloys at high neutron fluence

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-06-01

    Swelling data on neutron-irradiated simple Fe-Cr-Mn and Fe-Mn alloys, as well as commercial Fe-Cr-Mn base alloys are now becoming available at exposure levels approaching 50 dpa. The swelling rate decreases from the ∼1%/dpa found at lower exposures, probably due to the extensive formation of ferritic phases. As expected, commercial alloys swell less than the simple alloys

  2. Qualitative aspects of biomonitoring: Sphagnum auriculatum response vs. aerosol metal concentrations (Pb, Ca, Cr, Cu, Fe, Mn, Ni and Zn) in the Porto urban atmosphere

    International Nuclear Information System (INIS)

    Teresa, M.; Vasconcelos, S.D.; Tavares Laquipai, H.M.F.

    2000-01-01

    Bags of S. auriculatum and a low-volume aerosol sampler provided with 0.8 μm pore size filters were exposed, in parallel, to the atmosphere of Porto, at different sampling points and in different periods of time, between 1991 and 1997. The levels of lead in the moss (weekly samples) and in the filters (daily samples) were determined by atomic absorption spectrophotometry and the results were compared. Living S. auriculatum exposed in bags to the Porto atmosphere died in several weeks (about a month), but continued to sorb metals from the atmosphere for about another month. In dry weather periods (relative humidity ≤ 76%) the rate of lead uptake by moss was approximately constant and proportional to the levels of the metal in atmospheric aerosols. A converting factor [CF=parallel-Pb-parallel moss (μg/g.day)/ parallel-Pb-parallel air (μg/m 3 )] allowed conversion of the lead levels in S. auriculatum to those in the atmospheric aerosols. Because the moss fixed lead from gas, aerosol and particulate matter, the rate of sorption depends markedly on the distance to the lead sources (mainly traffic) and on surrounding obstacles which retain particles. Therefore, specific calibration by mechanic monitoring, at each sampling point is required in a first stage of biomonitoring, when moss bag samplers are used to provide quantitative information about lead levels in the atmosphere. The mean Pb levels were ≤ 0.5 μg/m 3 and approximately constants at each sample point up to January 1996. After that date it decreased about 50%, in consequence of the reduction of the Pb concentration in leaded gasoline. In wet weather periods, higher but irregular rate of lead uptake was observed. In contrast, the lead levels in atmospheric aerosols decreased when the humidity increased due to wet deposition. Therefore, no proportionality between lead levels in the moss and in air were found. For about two months, in 1994, during a dry weather period, the levels of Ca, Cr, Cu, Fe, Mn, Ni

  3. Influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on development and efficacy of vesicular-arbuscular mycorrhiza in tropical and subtropical plants. Einfluss von Al und den Schwermetallen Fe, Mn, Zn, Cu, Pb und Cd auf die Effizienz der VA-Mykorrhiza bei tropischen und subtropischen Pflanzen

    Energy Technology Data Exchange (ETDEWEB)

    Fabig, B.

    1982-07-08

    In greenhouse experiments the influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on the efficacy of VA-mycorrhizal fungi was tested with special regard to several soil pH levels and soil water regimes in different combinations. The most important results were: The inoculation led to a significantly better growth of all test plants in the presence of Al, Fe, Mn, Zn, Cu, Pb, and Cd up to a specific amount of the soil-applied element; beyond this specific limit the efficacy of the mycorrhiza was more or less inhibited depending on the element. In correlation with the growth, the nearly always better P uptake of the inoculated plants was impaired only by the highest toxic amounts of the elements. In comparison with the uninoculated plants, all the inoculated plants showed higher P and Pb concentrations. The mycorrhizal plants generally had significantly higher concentrations of the elements Al, Mn, Zn, Cu, and Cd in the roots than the uninoculated plants. Generally even toxic levels of Fe in the soil did not lead to higher Fe concentrations in the plants. Even the highest amounts of Al, Fe, Mn, Zn, and Cu did not cause microscopically visible injuries to the development of the mycorrhiza and did not impede the infection. Only the toxic levels of Pb led to a decrease of the infection rate of about 50%. Pb and Cd were the reason for morphological changes of the different developmental phases of the fungus. High amounts of Pb induced an increased formation of vesicles. The highest amounts of Cd were accompanied by the crowded occurrence of arbuscules.

  4. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni

    Energy Technology Data Exchange (ETDEWEB)

    Biesinger, Mark C., E-mail: biesingr@uwo.ca [Surface Science Western, University of Western Ontario, University of Western Ontario Research Park, Room LL31, 999 Collip Circle, London, Ontario, N6G 0J3 (Canada); ACeSSS (Applied Centre for Structural and Synchrotron Studies), University of South Australia, Mawson Lakes, SA 5095 (Australia); Payne, Brad P. [Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Grosvenor, Andrew P. [Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5C9 (Canada); Lau, Leo W.M. [Surface Science Western, University of Western Ontario, University of Western Ontario Research Park, Room LL31, 999 Collip Circle, London, Ontario, N6G 0J3 (Canada); Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Gerson, Andrea R.; Smart, Roger St.C. [ACeSSS (Applied Centre for Structural and Synchrotron Studies), University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2011-01-15

    Chemical state X-ray photoelectron spectroscopic analysis of first row transition metals and their oxides and hydroxides is challenging due to the complexity of their 2p spectra resulting from peak asymmetries, complex multiplet splitting, shake-up and plasmon loss structure, and uncertain, overlapping binding energies. Our previous paper [M.C. Biesinger et al., Appl. Surf. Sci. 257 (2010) 887-898.] in which we examined Sc, Ti, V, Cu and Zn species, has shown that all the values of the spectral fitting parameters for each specific species, i.e. binding energy (eV), full wide at half maximum (FWHM) value (eV) for each pass energy, spin-orbit splitting values and asymmetric peak shape fitting parameters, are not all normally provided in the literature and data bases, and are necessary for reproducible, quantitative chemical state analysis. A more consistent, practical and effective approach to curve fitting was developed based on a combination of (1) standard spectra from quality reference samples, (2) a survey of appropriate literature databases and/or a compilation of literature references and (3) specific literature references where fitting procedures are available. This paper extends this approach to the chemical states of Cr, Mn, Fe, Co and Ni metals, and various oxides and hydroxides where intense, complex multiplet splitting in many of the chemical states of these elements poses unique difficulties for chemical state analysis. The curve fitting procedures proposed use the same criteria as proposed previously but with the additional complexity of fitting of multiplet split spectra which has been done based on spectra of numerous reference materials and theoretical XPS modeling of these transition metal species. Binding energies, FWHM values, asymmetric peak shape fitting parameters, multiplet peak separation and peak area percentages are presented. The procedures developed can be utilized to remove uncertainties in the analysis of surface states in nano

  5. Molecular magnetism of a linear Fe(III)-Mn(II)-Fe(III) complex. Influence of long-range exchange interaction

    International Nuclear Information System (INIS)

    Lengen, M.; Chaudhuri, P.

    1994-01-01

    The magnetic properties of [L-Fe(III)-dmg 3 Mn(II)-Fe(III)-L] (ClO 4 ) 2 have been characterized by magnetic susceptibility, EPR, and Moessbauer studies. L represents 1,4,7-trimethyl-,1,4,7-triazacyclononane and dmg represents dimethylglyoxime. X-ray diffraction measurements yield that the arrangement of the three metal centers is strictly linear with atomic distances d Fe-Mn 0.35 nm and d Fe-Fe = 0.7 nm. Magnetic susceptibility measurements (3-295 K) were analyzed in the framework of the spin-Hamiltonian formalism considering Heisenberg exchange and Zeeman interaction: H = J Fe-Mn (S Fe1 + S Fe2 )S Mn + J Fe-Fe S Fe1 S Fe2 + gμ B S total B. The spins S Fe1 = S Fe2 = S Mn = 5/2 of the complex are antiferromagnetically coupled, yielding a total spin of S total = 5/2 with exchange coupling constants F Fe-Mn = 13.4 cm -1 and J Fe-Fe = 4.5 cm -1 . Magnetically split Moessbauer spectra were recorded at 1.5 K under various applied fields (20 mT, 170 mT, 4 T). The spin-Hamiltonian analysis of these spectra yields isotropic magnetic hyperfine coupling with A total /(g N μ N ) = -18.5 T. The corresponding local component A Fe is related to A total via spin-projection: A total = (6/7)A Fe . The resulting A Fe /(g N μ N ) -21.6 T is in agreement with standard values of ferric high-spin complexes. Spin-Hamiltonian parameters as obtained from Moessbauer studies and exchange coupling constants as derived from susceptibility measurements are corroborated by temperature-dependent EPR studies. (orig.)

  6. Effects of metal ions on the reactivity and corrosion electrochemistry of Fe/FeS nanoparticles.

    Science.gov (United States)

    Kim, Eun-Ju; Kim, Jae-Hwan; Chang, Yoon-Seok; Turcio-Ortega, David; Tratnyek, Paul G

    2014-04-01

    Nano-zerovalent iron (nZVI) formed under sulfidic conditions results in a biphasic material (Fe/FeS) that reduces trichloroethene (TCE) more rapidly than nZVI associated only with iron oxides (Fe/FeO). Exposing Fe/FeS to dissolved metals (Pd(2+), Cu(2+), Ni(2+), Co(2+), and Mn(2+)) results in their sequestration by coprecipitation as dopants into FeS and FeO and/or by electroless precipitation as zerovalent metals that are hydrogenation catalysts. Using TCE reduction rates to probe the effect of metal amendments on the reactivity of Fe/FeS, it was found that Mn(2+) and Cu(2+) decreased TCE reduction rates, while Pd(2+), Co(2+), and Ni(2+) increased them. Electrochemical characterization of metal-amended Fe/FeS showed that aging caused passivation by growth of FeO and FeS phases and poisoning of catalytic metal deposits by sulfide. Correlation of rate constants for TCE reduction (kobs) with electrochemical parameters (corrosion potentials and currents, Tafel slopes, and polarization resistance) and descriptors of hydrogen activation by metals (exchange current density for hydrogen reduction and enthalpy of solution into metals) showed the controlling process changed with aging. For fresh Fe/FeS, kobs was best described by the exchange current density for activation of hydrogen, whereas kobs for aged Fe/FeS correlated with electrochemical descriptors of electron transfer.

  7. Magnetic properties of Mg{sub 12}O{sub 12} nanocage doped with transition metal atoms (Mn, Fe, Co and Ni): DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Javan, Masoud Bezi, E-mail: javan.masood@gmail.com

    2015-07-01

    Binding energy of the Mg{sub 12}O{sub 12} nanocage doped with transition metals (TM=Mn, Fe, Co and Ni) in endohedrally, exohedrally and substitutionally forms were studied using density functional theory with the generalized gradient approximation exchange-correlation functional along 6 different paths inside and outside of the Mg{sub 12}O{sub 12} nanocage. The most stable structures were determined with full geometry optimization near the minimum of the binding energy curves of all the examined paths inside and outside of the Mg{sub 12}O{sub 12} nanocage. The results reveal that for all stable structures, the Ni atom has a larger binding energy than the other TM atoms. It is also found that for all complexes additional peaks contributed by TM-3d, 4s and 4p states appear in the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) gap of the host MgO cluster. The mid-gap states are mainly due to the hybridization between TM-3d, 4s and 4p orbitals and the cage π orbitals. The magnetic moment of the endohedrally doped TM atoms in the Mg{sub 12}O{sub 12} are preserved to some extent due to the interaction between the TM and Mg{sub 12}O{sub 12} nanocage, in contrast to the completely quenched magnetic moment of the Fe and Ni atoms in the Mg{sub 11}(TM)O{sub 12} complexes. Furthermore, charge population analysis shows that charge transfer occurs from TM atom to the cage for endohedrally and substitutionally doping. - Highlights: • Binding energy of the Mg{sub 12}O{sub 12} nanocage doped with transition metals was studied. • The most stable structures were determined near the minimum of the binding energy. • The encapsulated Ni atom has a larger binding energy than the other TM atoms. • Magnetic moment of the endohedrally doped TM atoms in the Mg{sub 12}O{sub 12} are preserved.

  8. L1{sub 0} stacked binaries as candidates for hard-magnets. FePt, MnAl and MnGa

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Yu-ichiro [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Department of Applied Physics, The University of Tokyo (Japan); Madjarova, Galia [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University (Bulgaria); Flores-Livas, Jose A. [Department of Physics, Universitaet Basel (Switzerland); Dewhurst, J.K.; Gross, E.K.U. [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Felser, C. [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Sharma, S. [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Department of Physics, Indian Institute of Technology, Roorkee, Uttarkhand (India)

    2017-08-15

    We present a novel approach for designing new hard magnets by forming stacks of existing binary magnets to enhance the magneto crystalline anisotropy. This is followed by an attempt at reducing the amount of expensive metal in these stacks by replacing it with cheaper metal with similar ionic radius. This strategy is explored using examples of FePt, MnAl and MnGa. In this study a few promising materials are suggested as good candidates for hard magnets: stacked binary FePt{sub 2}MnGa{sub 2} in structure where each magnetic layer is separated by two non-magnetic layers, FePtMnGa and FePtMnAl in hexagonally distorted Heusler structures and FePt{sub 0.5}Ti{sub 0.5}MnAl. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. The efficacy of magnetic field on the thermal behavior of MnFe{sub 2}O{sub 4} nanofluid as a functional fluid through an open-cell metal foam tube

    Energy Technology Data Exchange (ETDEWEB)

    Amani, Mohammad [Mechanical and Energy Engineering Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Ameri, Mohammad, E-mail: ameri_m@yahoo.com [Mechanical and Energy Engineering Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Kasaeian, Alibakhsh [Department of Renewable Energies Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran (Iran, Islamic Republic of)

    2017-06-15

    Highlights: • Experiments are performed with MnFe{sub 2}O{sub 4} nanofluid through an open-cell metal foam tube. • Effects of concentration, Reynolds number and magnetic field on the nanofluid thermal behavior are examined. • Heat transfer is enhanced in attendance of constant and alternating magnetic fields. - Abstract: In the present experimental study, the influence of permanent and alternating magnetic fields on the flow and thermal behavior of MnFe{sub 2}O{sub 4} magnetic nanofluid flowing through a circular open-cell metal foam tube is investigated under homogeneous heat flux conditions. The experiments are performed at various nanoparticle concentrations, Reynolds numbers and magnetic fields with different strengths and frequencies. According to the observations, the heat transfer rate enhances directly relative to nanoparticle concentration and Reynolds number in attendance of magnetic field, whereas its maximum value of 16.4% is found for 2 wt% nanoparticles at Re = 200 under alternating field with 400 G strength and 20 Hz frequency. Moreover, it is observed that the influence of strength and frequency of magnetic field is insignificant for the pressure drop. Hydrothermal efficiency as the ratio of the Nusselt number to the ratio of the pressure drop is defined in order to evaluate the privilege of using MnFe{sub 2}O{sub 4} nanofluids in practical applications. The maximum efficiency of 1.25 is observed at 2 wt% under magnetic field with 400 G and 20 Hz at Re = 1000.

  10. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-01

    Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (Al–5Mg–Mn alloy with low Fe content (Al6(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe), intermetallic Al6(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn) to become the primary phase at a lower Mn content. PMID:28787888

  11. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al-5Mg-Mn Alloys Solidified Under Near-Rapid Cooling.

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-29

    Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (Al-5Mg-Mn alloy with low Fe content (Al₆(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al₆(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al-5Mg-Mn alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.

  12. Indolenine meso-substituted dibenzotetraaza[14]annulene and its coordination chemistry toward the transition metal ions Mn(III), Fe(III), Co(II), Ni(II), Cu(II), and Pd(II).

    Science.gov (United States)

    Khaledi, Hamid; Olmstead, Marilyn M; Ali, Hapipah Mohd; Thomas, Noel F

    2013-02-18

    A new dibenzotetraaza[14]annulene bearing two 3,3-dimethylindolenine fragments at the meso positions (LH(2)), has been synthesized through a nontemplate method. X-ray crystallography shows that the whole molecule is planar. The basicity of the indolenine ring permits the macrocycle to be protonated external to the core and form LH(4)(2+)·2Cl(-). Yet another structural modification having strong C-H···π interactions was found in the chloroform solvate of LH(2). The latter two modifications are accompanied by a degree of nonplanar distortion. The antiaromatic core of the macrocycle can accommodate a number of metal ions, Mn(III), Fe(III), Co(II), Ni(II) and Cu(II), to form complexes of [Mn(L)Br], [Mn(L)Cl], [Fe(LH(2))Cl(2)](+)·Cl(-), [Co(L)], [Ni(L)], and [Cu(L)]. In addition, the reaction of LH(2) with the larger Pd(II) ion leads to the formation of [Pd(2)(LH(2))(2)(OAc)(4)] wherein the macrocycle acts as a semiflexible ditopic ligand to coordinate pairs of metal ions via its indolenine N atoms into dinuclear metallocycles. The compounds LH(2), [Co(L)], and [Ni(L)] are isostructural and feature close π-stacking as well as linear chain arrangements in the case of the metal complexes. Variable temperature magnetic susceptibility measurements showed thermally induced paramagnetism in [Ni(L)].

  13. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Directory of Open Access Journals (Sweden)

    Yulin Liu

    2016-01-01

    Full Text Available Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (<1.0 wt % to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al–5Mg–Mn alloy with low Fe content (<0.1 wt %, intermetallic Al6(Fe,Mn was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe, intermetallic Al6(Fe,Mn became the dominant phase, even in the alloy with low Mn content (0.39 wt %. Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn to become the primary phase at a lower Mn content.

  14. Deep Drawing Behavior of CoCrFeMnNi High-Entropy Alloys

    Science.gov (United States)

    Bae, Jae Wung; Moon, Jongun; Jang, Min Ji; Ahn, Dong-Hyun; Joo, Soo-Hyun; Jung, Jaimyun; Yim, Dami; Kim, Hyoung Seop

    2017-09-01

    Herein, the deep drawability and deep drawing behavior of an equiatomic CoCrFeMnNi HEA and its microstructure and texture evolution are first studied for future applications. The CoCrFeMnNi HEA is successfully drawn to a limit drawing ratio (LDR) of 2.14, while the planar anisotropy of the drawn cup specimen is negligible. The moderate combination of strain hardening exponent and strain rate sensitivity and the formation of deformation twins in the edge region play important roles in successful deep drawing. In the meanwhile, the texture evolution of CoCrFeMnNi HEA has similarities with conventional fcc metals.

  15. Martensitic Transformations and Mechanical and Corrosion Properties of Fe-Mn-Si Alloys for Biodegradable Medical Implants

    Science.gov (United States)

    Drevet, Richard; Zhukova, Yulia; Malikova, Polina; Dubinskiy, Sergey; Korotitskiy, Andrey; Pustov, Yury; Prokoshkin, Sergey

    2018-03-01

    The Fe-Mn-Si alloys are promising materials for biodegradable metallic implants for temporary healing process in the human body. In this study, three different compositions are considered (Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si, all in wt pct). The phase composition analysis by XRD reveals ɛ-martensite, α-martensite, and γ-austenite in various proportions depending on the manganese amount. The DSC study shows that the starting temperature of the martensitic transformation ( M s) of the alloys decreases when the manganese content increases (416 K, 401 K, and 323 K (143 °C, 128 °C, and 50 °C) for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively). Moreover, mechanical compression tests indicate that these alloys have a much lower Young's modulus ( E) than pure iron (220 GPa), i.e., 145, 133, and 118 GPa for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively. The corrosion behavior of the alloys is studied in Hank's solution at 310 K (37 °C) using electrochemical experiments and weight loss measurements. The corrosion kinetics of the Fe-Mn-Si increases with the manganese content (0.48, 0.59, and 0.80 mm/year for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively). The alloy with the highest manganese content shows the most promising properties for biomedical applications as a biodegradable and biomechanically compatible implant material.

  16. Fe-Mn-Si based shape memory alloys

    International Nuclear Information System (INIS)

    Hsu, T.Y.

    2000-01-01

    Characteristics of martensitic transformation fcc(γ)→hcp(ε) in Fe-Mn-Si based alloys are briefly reviewed. By analyzing the influences of constituents and treatments on shape memory effect (SME) in Fe-Mn-Si, the main factors controlling SME are summarized as austenite strengthening, stacking fault energy (probability) and antiferromagnetic temperature. Contribution of thermomechanical training to SME is introduced. The Fe-Mn-Si-RE (rare earth elements) and Fe-Mn-Si-Cr-N alloys are recommended as two novel shape memory alloys with superior SME. (orig.)

  17. Fractionation and risk assessment of Fe and Mn in surface sediments from coastal sites of Sonora, Mexico (Gulf of California).

    Science.gov (United States)

    Jara-Marini, Martín E; García-Camarena, Raúl; Gómez-Álvarez, Agustín; García-Rico, Leticia

    2015-07-01

    The aim of this study was to evaluate Fe and Mn distribution in geochemical fractions of the surface sediment of four oyster culture sites in the Sonora coast, Mexico. A selective fractionation scheme to obtain five fractions was adapted for the microwave system. Surface sediments were analyzed for carbonates, organic matter contents, and Fe and Mn in geochemical fractions. The bulk concentrations of Fe ranged from 10,506 to 21,918 mg/kg (dry weight, dry wt), and the bulk concentrations of Mn ranged from 185.1 to 315.9 mg/kg (dry wt) in sediments, which was low and considered as non-polluted in all of the sites. The fractionation study indicated that the major geochemical phases for the metals were the residual, as well as the Fe and Mn oxide fractions. The concentrations of metals in the geochemical fractions had the following order: residual > Fe and Mn oxides > organic matter > carbonates > interchangeable. Most of the Fe and Mn were linked to the residual fraction. Among non-residual fractions, high percentages of Fe and Mn were linked to Fe and Mn oxides. The enrichment factors (EFs) for the two metals were similar in the four studied coasts, and the levels of Fe and Mn are interpreted as non-enrichment (EF < 1) because the metals concentrations were within the baseline concentrations. According to the environmental risk assessment codes, Fe and Mn posed no risk and low risk, respectively. Although the concentrations of Fe and Mn were linked to the residual fraction, the levels in non-residual fractions may significantly result in the transference of other metals, depending on several physico-chemical and biological factors.

  18. Laser photoelectron spectroscopy of MnH - 2, FeH - 2, CoH - 2, and NiH - 2: Determination of the electron affinities for the metal dihydrides

    Science.gov (United States)

    Miller, Amy E. S.; Feigerle, C. S.; Lineberger, W. C.

    1986-04-01

    The laser photoelectron spectra of MnH-2, FeH-2, CoH-2, and NiH-2 and the analogous deuterides are reported. Lack of vibrational structure in the spectra suggests that all of the dihydrides and their negative ions have linear geometries, and that the transitions observed in the spectra are due to the loss of nonbonding d electrons. The electron affinities for the metal dihydrides are determined to be 0.444±0.016 eV for MnH2, 1.049±0.014 eV for FeH2, 1.450±0.014 eV for CoH2, and 1.934±0.008 eV for NiH2. Electronic excitation energies are provided for excited states of FeH2, CoH2, and NiH2. Electron affinities and electronic excitation energies for the dideuterides are also reported. A limit on the electron affinity of CrH2 of ≥2.5 eV is determined. The electron affinities of the dihydrides directly correlate with the electron affinities of the high-spin states of the monohydrides, and with the electron affinities of the metal atoms. These results are in agreement with a qualitative model developed for bonding in the monohydrides.

  19. Electrochemical Corrosion Behavior of Oxidation Layer on Fe30Mn5Al Alloy

    Directory of Open Access Journals (Sweden)

    ZHU Xue-mei

    2017-08-01

    Full Text Available The Fe30Mn5Al alloy was oxidized at 800℃ in air for 160h, the oxidation-induced layer about 15μm thick near the scale-metal interface was induced to transform to ferrite and become enriched in Fe and depletion in Mn. The effect of the oxidation-induced Mn depletion layer on the electrochemical corrosion behavior of Fe30Mn5Al alloy was evaluated. The results show that in 1mol·L-1 Na2SO4 solution, the anodic polarization curve of the Mn depletion layer exhibits self-passivation, compared with Fe30Mn5Al austenitic alloy, and the corrosion potential Evs SCE is increased to -130mV from -750mV and the passive current density ip is decreased to 29μA/cm2 from 310μA/cm2. The electrochemical impedance spectroscopy(EIS of the Mn depletion layer has the larger diameter of capacitive arc, the higher impedance modulus|Z|, and the wider phase degree range, and the fitted polarization resistant Rt is increased to 9.9kΩ·cm2 from 2.7kΩ·cm2 by using an equivalent electric circuit of Rs-(Rt//CPE. The high insulation of the Mn depletion layer leads to an improved corrosion resistance of Fe30Mn5Al austenitic alloy.

  20. Energy-dispersive X-ray fluorescence analysis of traces of heavy metals (Mn, Fe, Co, Ni, Cu, Zn, Ta, Pb, U) in mineral waters after separation on the cellulose-exchanger Hyphan

    International Nuclear Information System (INIS)

    Burba, P.; Lieser, K.H.

    1979-01-01

    Trace elements in mineral water are separated in small columns on the cellulose-exchanger Hyphan, eluted by diluted hydrochloric acid, bound on 100 mg of Hyphan by shaking and determined by energy-dispersive X-ray fluorescence. The following heavy metals can be analysed quantitatively if present in water in concentrations >= 1 ppb: Mn, Fe, Co, Ni, Cu, Zn, Ta, Pb and U. Several commercial mineral waters, a sodium chloride spring and seawater were analyzed for trace elements. The results obtained by X-ray fluorescence and by atomic absorption agree within the limits of error. (orig.) [de

  1. Exchange biased FeNi/FeMn bilayers with coercivity and switching field enhanced by FeMn surface oxidation

    Directory of Open Access Journals (Sweden)

    A. V. Svalov

    2013-09-01

    Full Text Available FeNi/FeMn bilayers were grown in a magnetic field and subjected to heat treatments at temperatures of 50 to 350 °C in vacuum or in a gas mixture containing oxygen. In the as-deposited state, the hysteresis loop of 30 nm FeNi layer was shifted. Low temperature annealing leads to a decrease of the exchange bias field. Heat treatments at higher temperatures in gas mixture result in partial oxidation of 20 nm thick FeMn layer leading to a nonlinear dependence of coercivity and a switching field of FeNi layer on annealing temperature. The maximum of coercivity and switching field were observed after annealing at 300 °C.

  2. Study on the behavior of the heavy metals Cu, Cr, Ni, Zn, Fe, Mn and 137Cs in an estuarine ecosystem using Mytilus galloprovincialis as a bioindicator species: the case of Thermaikos gulf, Greece

    International Nuclear Information System (INIS)

    Catsiki, Vassiliki-Angelique; Florou, H.

    2006-01-01

    Mussels are worldwide recognized as pollution bioindicators and used in Mussel Watch programs, because they accumulate pollutants in their tissues at elevated levels in relation to pollutant biological availability in the marine environment. The present study deals with the use of Mytilus galloprovincialis as a local bioindicator of heavy metal and 137 Cs contamination in an estuarine ecosystem (Thermaikos gulf, Greece in Eastern Mediterranean). M. galloprovincialis samples were collected monthly from two aquaculture farms during the period April to October 2000. Analyses for the heavy metals Cu, Cr, Ni, Zn, Fe, Mn and 137 Cs showed that the concentrations measured were low and similar to those from other non-polluted Mediterranean areas. In terms of the two sampling stations, there were no statistically significant differences between them. On the contrary, the seasonal evolution of either heavy metals or 137 Cs levels presented high variation. The levels were found to increase during the cold period of the year, especially for Cu, Zn, Mn and Cr which are essential for life. Stable metals were positively inter-related and moreover, metals more involved in biochemical activities seem to present more correlations than others with less significant role in the metabolism of the organisms

  3. Superplasticity in a lean Fe-Mn-Al steel.

    Science.gov (United States)

    Han, Jeongho; Kang, Seok-Hyeon; Lee, Seung-Joon; Kawasaki, Megumi; Lee, Han-Joo; Ponge, Dirk; Raabe, Dierk; Lee, Young-Kook

    2017-09-29

    Superplastic alloys exhibit extremely high ductility (>300%) without cracks when tensile-strained at temperatures above half of their melting point. Superplasticity, which resembles the flow behavior of honey, is caused by grain boundary sliding in metals. Although several non-ferrous and ferrous superplastic alloys are reported, their practical applications are limited due to high material cost, low strength after forming, high deformation temperature, and complicated fabrication process. Here we introduce a new compositionally lean (Fe-6.6Mn-2.3Al, wt.%) superplastic medium Mn steel that resolves these limitations. The medium Mn steel is characterized by ultrafine grains, low material costs, simple fabrication, i.e., conventional hot and cold rolling, low deformation temperature (ca. 650 °C) and superior ductility above 1300% at 850 °C. We suggest that this ultrafine-grained medium Mn steel may accelerate the commercialization of superplastic ferrous alloys.Research in new alloy compositions and treatments may allow the increased strength of mass-produced, intricately shaped parts. Here authors introduce a superplastic medium manganese steel which has an inexpensive lean chemical composition and which is suited for conventional manufacturing processes.

  4. Levels Of Mn, Fe, Ni, Cu, Zn And Cd, In Effluent From A Sewage ...

    African Journals Online (AJOL)

    This study reports the results of preliminary investigation of heavy metal levels-Ni, Cd, Fe, Zn, Cu and Mn; pH; temperature and electrical conductivity in effluents from a sewage treatment oxidation pond and its receiving stream. The heavy metal concentrations were determined with Inductively Coupled Plasma-Mass ...

  5. The Fe/Mn constraint on precursors of basaltic achondrites

    Science.gov (United States)

    Delaney, Jeremy S.; Boesenberg, Joseph S.

    1993-01-01

    Most achondritic meteorites have Fe/Mn ratios that are lower than those of carbonaceous chondrites and of course are lower than the solar system abundance ratio of these elements. Models of the origin of achondritic assemblages must, therefore, account for these ratios. Fe/Mn ratios are suggested to be distinctive for samples from each achondrite parent body and for the Earth and Moon, but the correspondence between the Fe/Mn systematics of achondrites and chondritic precursors is unclear. Most models of achondrite genesis involve magmatic differentiation of chondritic precursors. The Fe/Mn difference between achondrites and chondrites is particularly significant since Fe and Mn are geochemically similar elements with similar partitioning behavior in familiar magmatic systems and are generally coupled during crystal-liquid fractionation. In contrast, however, Mn is more volatile than Fe in a nebular setting. Variation of Fe/Mn ratios based on the relative volatility of these elements in the early nebula provides a constraint for models by which the basaltic achondrites (with Fe/Mn ratios approximately = 25-50) are derived from mixtures of nebular components that were enriched in volatile components such as Mn. However, such volatile enriched components have not been identified in chondrites. When the abundance in achondrites of elements of similar volatility is examined, anomalies appear. For example, Na is massively depleted in basaltic achondrites when compared to Mn. These anomalies might be explained using current models but the alternative hypothesis, that Fe/Mn ratio is controlled not by nebular volatility constraints, but by planetary differentiation should be explored.

  6. Effect of Fe-Mn addition on microstructure and magnetic properties of NdFeB magnetic powders

    Science.gov (United States)

    Kurniawan, C.; Purba, A. S.; Setiadi, E. A.; Simbolon, S.; Warman, A.; Sebayang, P.

    2018-03-01

    In this paper, the effect of Fe-Mn alloy addition on microstructures and magnetic properties of NdFeB magnetic powders was investigated. Varied Fe-Mn compositions of 1, 5, and 10 wt% were mixed with commercial NdFeB type MQA powders for 15 minutes using shaker mill. The characterizations were performed by powder density, PSA, XRD, SEM, and VSM. The Fe-Mn addition increased the powder density of NdFeB/Fe-Mn powders. On the other side, particle size distribution slightly decreased as the Fe-Mn composition increases. Magnetic properties of NdFeB/Fe-Mn powders changed with the increasing of Fe-Mn content. SEM analysis showed the particle size of NdFeB/Fe-Mn powder was smaller as the Fe-Mn composition increases. It showed that NdFeB/Fe-Mn particles have different size and shape for NdFeB and Fe-Mn particles separately. The optimum magnetic properties of NdFeB/Fe-Mn powder was achieved on the 5 wt% Fe-Mn composition with remanence M r = 49.45 emu/g, coercivity H c = 2.201 kOe, and energy product, BH max = 2.15 MGOe.

  7. An ab initio study on the structural, electronic and mechanical properties of quaternary full-Heusler alloys FeMnCrSn and FeMnCrSb

    Science.gov (United States)

    Erkişi, Aytaç

    2018-06-01

    The quaternary full Heusler alloys FeMnCrSn and FeMnCrSb, which have face-centred cubic (FCC) crystal structure and conform to ? space group with 216 space number, have been investigated using Generalised Gradient Approximation (GGA) in the Density Functional Theory (DFT) as implemented in VASP (Vienna Ab initio Simulation Package) software. These alloys are considered in ferromagnetic (FM) order. After the investigation of structural stability of these alloys, their mechanical and thermal properties and also electronic band structures have been examined. The calculated spin-polarised electronic band structures and total electronic density of states (DOS) within GGA approximation show that these alloys can exhibit both metallic and half-metallic characters in different structural phases. The calculated formation enthalpies and the plotted energy-volume graphs show that Type-III phase is most stable structural phase for these materials. Also, FeMnCrSb alloy in Type-I/Type-III phases and FeMnCrSn alloy in Type-III phase show half-metallic behaviour with integer total magnetic moments almost 2 and 1 μB per formula unit, respectively, since there are band gaps observed in spin-down states, whereas they have metallic behaviour in majority bands. Other structural phases of both systems are also metallic. Moreover, the calculated elastic constants and the estimated anisotropy shear factors indicate that these materials are stable mechanically in all of three phases except FeMnCrSn in Type-I phase that does not satisfy Born stability criteria in this phase and have high anisotropic behaviour.

  8. Exchange interaction in MnPt/FeCo sputtered multilayers

    International Nuclear Information System (INIS)

    Honda, S.; Nawate, M.; Norikane, T.

    2000-01-01

    MnPt single-layer films have been prepared on glass substrates by RF magnetron sputtering for studying the composition dependencies of resistivity and crystalline structure. In the as-deposited state, the resistivity increases with Mn content and reaches the maximum at 69 at%. By annealing, the resistivity of the films having the Mn content around 51 at% increases, closely relating to the growth of the ordered CuAu FCT-type MnPt crystals. For the both film structures of the glass/Cu/FeCo/MnPt/Cu and the glass/MnPt/FeCo/Cu, which have been sputter-deposited on glass substrates, the exchange interaction between MnPt and FeCo layers, and the coercivity of the FeCo layer have been examined as functions of the Mn content, the layer thickness and the annealing temperature. In the as-deposited state, the exchange field (H ex ) is nearly zero up to 75 at% of Mn content, above which the value of H ex increases and shows the maximum at 85 at%, in which the blocking temperature is about 100 deg. C. By annealing, the value of H ex increases for the films of Mn content around 40-60 at%, exhibiting the higher blocking temperature than 360 deg. C. The temperature stability has also been examined using the Rutherford backscattering spectrometry

  9. Synthesis of α-Fe2O3 and Fe-Mn Oxide Foams with Highly Tunable Magnetic Properties by the Replication Method from Polyurethane Templates

    Directory of Open Access Journals (Sweden)

    Yuping Feng

    2018-02-01

    Full Text Available Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N2 atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe2O3 foams are obtained from the metallic iron slurry independently of the N2 flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N2 flow. While the main phases for a N2 flow rate of 180 L/h are α-Fe2O3 and FeMnO3, the predominant phase for high N2 flow rates (e.g., 650 L/h is Fe2MnO4. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe2MnO4 foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N2 flow rate (i.e., the amount of Fe2MnO4 is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids.

  10. Synthesis of α-Fe2O3 and Fe-Mn Oxide Foams with Highly Tunable Magnetic Properties by the Replication Method from Polyurethane Templates

    Science.gov (United States)

    Feng, Yuping; Fornell, Jordina; Zhang, Huiyan; Solsona, Pau; Barό, Maria Dolors; Suriñach, Santiago; Sort, Jordi

    2018-01-01

    Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU) templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N2 atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe2O3) foams are obtained from the metallic iron slurry independently of the N2 flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N2 flow. While the main phases for a N2 flow rate of 180 L/h are α-Fe2O3 and FeMnO3, the predominant phase for high N2 flow rates (e.g., 650 L/h) is Fe2MnO4. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe2MnO4 foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N2 flow rate (i.e., the amount of Fe2MnO4) is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids. PMID:29439450

  11. Stability and magnetic properties of SnSe monolayer doped by transition metal atom (Mn, Fe, and Co): a first-principles study

    Science.gov (United States)

    Tang, Chao; Li, Qinwen; Zhang, Chunxiao; He, Chaoyu; Li, Jin; Ouyang, Tao; Li, Hongxing; Zhong, Jianxin

    2018-06-01

    Two dimensional (2D) tin selenium (SnSe) is an intriguing material with desired thermal and electric properties in nanoelectronics. In this paper, we carry on a density functional theory study on the stability and dilute magnetism of the 3d TM (Mn, Fe, and Co) doped 2D SnSe. Both the adsorption and substitution are in consideration here. We find that all the defects are electrically active and the cation substitutional doping (TM@Sn) is energetically favorable. The TM@Sn prefers to act as accepters and exhibits high-spin state with nonzero magnetic moment. The magnetic moment is mainly contributed by the spin-polarized charge density of the TM impurities. The magnetism is determined by the arrangement of the TM-3d orbitals, which is the result of the crystal field splitting and spin exchange splitting under specific symmetry. The magnetic and electronic properties of the TM@Sn are effectively modulated by external electric field (Eext) and charge doping. The Eext shifts the TM impurities relative to the SnSe host and then modifies the crystal field splitting. In particular, the magnetic moment is sensitive to the Eext in the Fe@Sn because the Eext induces distinct structure transformation. Based on the formation energy, doping electrons is a viable way to modulate the magnetic moment of TM@Sn. Doping electrons shift the 3d states towards low energy level, which induces the occupation of more 3d states and then the reduction of magnetism. These results render SnSe monolayer a promising 2D material for applications in future spintronics.

  12. Porous Fe-Mn-O nanocomposites: Synthesis and supercapacitor electrode application

    Directory of Open Access Journals (Sweden)

    Guoxing Zhu

    2016-06-01

    Full Text Available Transition metal oxide micro-/nanostructures demonstrate high potential applications in energy storage devices. Here, we report a facile synthesis of highly homogeneous oxide composites with porous structure via a coordination polymer precursor, which was prepared with the assistance of tartaric acid. The typical product, Fe-Mn-O composite was demonstrated here. The obtained Fe-Mn-O product was systemically characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, elemental mapping analysis, and X-ray photoelectron spectroscopy. It was demonstrated that the Fe-Mn-O nanocomposite shows interconnected porous structure, in which iron, manganese, and oxygen are uniformly distributed. In addition, the Fe-Mn-O nanocomposite was then fabricated as capacitor electrodes. Operating in an aqueous neutral solution, the Fe-Mn-O composite electrodes showed an wide working potential window from −0.2 to 1.0 V (vs. SCE, and a specific capacitance of 86.7 Fg−1 or 0.4 Fcm−2 at a constant current density of 1 Ag−1 with good cycle life. This study offers a new precursor approach to prepare porous metal oxide composites, which would be applied in energy-storage/conversion devices, catalysts, sensors, and so on.

  13. Drastic effect of the Mn-substitution in the strongly correlated semiconductor FeSb2.

    Science.gov (United States)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2017-06-01

    We report the effects of Mn substitution, corresponding to hole doping, on the electronic properties of the narrow gap semiconductor, FeSb2, using single crystals of Fe1- x Mn x Sb2 grown by the Sb flux method. The orthorhombic Pnnm structure was confirmed by powder X-ray diffraction (XRD) for the pure and Mn-substituted samples. Their crystal structure parameters were refined using the Rietveld method. The chemical composition was investigated by wavelength-dispersive X-ray spectroscopy (WDX). The solubility limit of Mn in FeSb2 is x max ˜ 0.05 and the lattice constants change monotonically with increasing the actual Mn concentration. A drastic change from semiconducting to metallic electronic transports was found at very low Mn concentration at x ˜ 0.01. Our experimental results and analysis indicate that the substitution of a small amount of Mn changes drastically the electronic state in FeSb2 as well as the Co-substitution does: closing of the narrow gap and emergence of the density of states (DOS) at the Fermi level.

  14. Rietveld analysis, dielectric and impedance behaviour of Mn /Fe ion ...

    Indian Academy of Sciences (India)

    Figure 1 compares X-ray diffraction patterns of pow- ders calcined at temperature .... ground, absorption coefficient, atomic positions, two theta zero error, thermal ... attributed to segregation of Mn and Fe at grain boundaries. (Dai et al 1995).

  15. Band structure of the quaternary Heusler alloys ScMnFeSn and ScFeCoAl

    Science.gov (United States)

    Shanthi, N.; Teja, Y. N.; Shaji, Shephine M.; Hosamani, Shashikala; Divya, H. S.

    2018-04-01

    In our quest for materials with specific applications, a theoretical study plays an important role in predicting the properties of compounds. Heusler alloys or compounds are the most studied in this context. More recently, a lot of quaternary Heusler compounds are investigated for potential applications in fields like Spintronics. We report here our preliminary study of the alloys ScMnFeSn and ScFeCoAl, using the ab-initio linear muffin-tin orbital method within the atomic sphere approximation (LMTO-ASA). The alloy ScMnFeSn shows perfect half-metallicity, namely, one of the spins shows a metallic behaviour and the other spin shows semi-conducting behaviour. Such materials find application in devices such as the spin-transfer torque random access memory (STT-MRAM). In addition, the alloy ScMnFeSn is found to have an integral magnetic moment of 4 µB, as predicted by the Slater-Pauling rule. The alloy ScFeCoAl does not show half-metallicity.

  16. Synthesis and Characterization of Multimetallic Fe(II) and Mn(II ...

    African Journals Online (AJOL)

    Iron(II) and Manganese(II) complexes of the resulting ligand were obtained from its reactions with Fe(II) and Mn(II) salts in absolute methanol for the metal to ligand ratio 2:3. These complexes were characterized by Solubility, Conductivity, IR and UV-VIS spectrometry, elemental analysis and mass spectrometry. Keywords: ...

  17. The high temperature orthorhombic ⇄ hexagonal phase transformation of FeMnP

    Science.gov (United States)

    Chenevier, B.; Soubeyroux, J. L.; Bacmann, M.; Fruchart, D.; Fruchart, R.

    1987-10-01

    The compound FeMnP has the hexagonal Fe 2P structure above 1473K. The metal atoms are disordered. The disorder rate decreases with temperature and at 1413K a transition Hex → Orth. takes place. The low temperature phase is of Co 2P type. A simple transition model is proposed based on the displacement of phosphorus chains along the shortest axis of the structure. The thermal evolution of the orthorhombic cell parameters evidences the strong anisotropy of the bondings.

  18. Moessbauer and magnetic investigation of Fe-Mn alloy

    International Nuclear Information System (INIS)

    Yousif, A.A.

    1994-01-01

    Moessbauer, X-ray, magnetization and susceptibility measurements were performed to study Fe 100-x Mn x , x = 5, 15, 39, 50. The different phases of Fe-Mn were identified, and hyperfine interaction parameters and average magnetic moments of some samples were determined. The average hyperfine field and average magnetic moment decrease as x increases. The influence of the Mn neighbourhood on the derived parameters is discussed in the light of calculations using the first principle discrete variational method in the local density approximation. (orig.)

  19. Band gap depiction of quaternary FeMnTiAl alloy using Hubbard (U) potential

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Yousuf, Saleem; Khandy, Shakeel Ahmad; Gupta, Dinesh C.

    2018-05-01

    We have employed self-consistent ab-initio calculations to investigate new quaternary alloy FeMnTiAl by applying Hubbard potential (U). The alloy is found to be stable in ferromagnetic phase with cubic structure. The alloy shows half-metallic (HM) ferromagnet character. The values of minority band gap FeMnTiAl are found to be 0.33 eV respectively. Electronic charge density reveals that both types of bonds covalent as well as ionic are present in the alloy. Thus the new quaternary alloy can be proved as vital contender for spin valves and spin generator devices.

  20. Thermal, spectral, magnetic and biological studies of thiosemicarbazones complexes with metal ions: Cu(II), Co(II), Ni(II), Fe(III), Zn(II), Mn(II) and UO2(VI)

    International Nuclear Information System (INIS)

    Mashaly, M.M.; Seleem, H.S.; El-Behairy, M.A.; Habib, H.A.

    2004-01-01

    Thiosemicarbazones ligands, isatin-3-thiosemicarbazone(HIT) and N-acetylisatin-3-thiosemicarbazone (HAIT), which have tridentate ONN coordinating sites were prepared. The complexes of both ligands with Cu(II), Co(II), Ni(II), Fe(III), Zn(II), Mn(II) and UO 2 (VI) ions were isolated. The ligands and their metal complexes were characterized by elemental analysis, IR, UV-Vis and mass spectra, also by conductance, magnetic moment and TG-DSC measurements. All the transition metal complexes have octahedral configurations, except Cu-complexes which have planar geometry and the UO 2 (VI) complexes which have coordination number 8 and may acquire the distorted dodecahedral geometry. Thermal studies explored the possibility of obtaining new complexes. Inversion from octahedral to square-planar configuration occurred upon heating the parent Ni-HIAT complex to form the corresponding pyrolytic product. The antifungal activity against the tested organisms showed that some metal complexes enhanced the activity with respect to the parent ligands. (author)

  1. Anomalous superconducting spin-valve effect in NbN/FeN/Cu/FeN/FeMn multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tae Jong; Kim, Dong Ho [Yeungnam University, Gyeongsan (Korea, Republic of)

    2017-09-15

    We have studied magnetic and transport properties of NbN/FeN/Cu/FeN/FeMn spin-valve structure. In-plane magnetic moment exhibited typical hysteresis loops of spin valves in the normal state of NbN film at 20 K. On the other hand, the magnetic hysteresis loop in the superconducting state exhibited more complex behavior in which exchange bias provided by antiferrmagnetic FeMn layer to adjacent FeN layer was disturbed by superconductivity. Because of this, the ideal superconducting spin-valve effect was not detected. Instead the stray field originated from unsaturated magnetic states dominated the transport properties of NbN/FeN/Cu/FeN/FeMn multilayer.

  2. The effect of disorder on electronic and magnetic properties of quaternary Heusler alloy CoFeMnSi with LiMgPbSb-type structure

    International Nuclear Information System (INIS)

    Feng, Yu; Chen, Hong; Yuan, Hongkuan; Zhou, Ying; Chen, Xiaorui

    2015-01-01

    Thin films based on Heusler alloy often lost their theoretical predicted ultra-high spin polarization owing to the appearance of disorder. Using the first-principles calculations within density functional theory (DFT), we investigate the effect of disorder including antisite and swap on electronic and magnetic properties of quaternary Heusler alloy CoFeMnSi with LiMgPbSb-type structure. Twelve kinds of antisites and six kinds of swap disorders are proposed and studied comprehensively. In our calculations, Co(Fe)-, Mn(Fe)-, Si(Mn)-antisite and Co–Fe swap disorders are most favorable due to their lowest formation energies. Moreover, the positive binding energies of Co–Fe, Co–Si, Fe–Si and Mn–Si swap disorders with respect to their corresponding antisite disorders indicate that these complex swap disorders are more stable compared with their corresponding isolated antisite disorders. The investigations on density of states (DOS) show that the spin down energy gap of disordered structures suffers contraction and their DOS entirely move towards lower zone. Besides, the 100% spin polarization is maintained in all structures with antisite and swap disorders except for those with Co(Mn)-, Co(Si)-antisite and Co–Mn, Co–Si swap disorders. Therefore, the half-metallicity of quaternary Heusler alloy CoFeMnSi is quite robust against interfering effects such as Si(Mn), Co(Fe) and Co–Fe disorders most possibly formed in the growth. - Highlights: • CoFeMnSi with LiMgPbSb-type structure is found to be a half-metallic ferromagnet. • Si(Mn), Co(Fe), Mn(Fe) antisites and Co–Fe swap disorders are most likely to form. • The half-metallicity of CoFeMnSi is robust against the most possible disorders. • The magnetic moments of the most possible disorders follow the Pauli-Slater rule

  3. Moessbauer spectroscopy of Fe-Mn-Cu alloys

    International Nuclear Information System (INIS)

    Paduani, Clederson; Krause, Joao Carlos; Yoschida, M.I. Soares

    2004-01-01

    Full text: Although a continuous series of solid solutions exists between Cu and Mn, Fe and Cu are miscible only a few percent at higher temperatures. In moderately concentrated Cu-Mn alloys the Mn moments are bound to the long ranged antiferromagnetic order and the perpendicular components form an X-Y spin glass. Copper alloys are largely employed in various industrial applications. In this work we study the magnetic properties of iron-rich disordered Fe-Mn-Cu alloys with the bcc structure with the experimental techniques of X-ray diffraction (XRD), Moessbauer spectroscopy (MS) and thermogravimetry (TGA). We investigate the formation of a solid solution with the bcc structure as well as the effect of the composition on the structural and magnetic properties of these alloys. A Rietveld analysis of the XRD diffractograms indicate that all prepared samples are single phase and are well crystallized with a bcc structure. (author)

  4. Moessbauer spectroscopic investigations of Fe/Mn-Fischer-Tropsch-catalysts

    International Nuclear Information System (INIS)

    Deppe, P.; Papp, H.; Rosenberg, M.

    1986-01-01

    The phase composition of Fe/Mn oxide catalysts of different compositions after 200 h of Fischer-Tropsch synthesis have been investigated by Moessbauer spectroscopy at room temperature, 77 K and 5 K. The final composition of the bulk catalysts depends strongly on the Mn content and the temperature of reduction before the synthesis. Catalytic activity and selectivity are partly correlated to this phase composition. (Auth.)

  5. Manganese Abundances in the Stars with Metallicities -1 <[Fe/H]< +0.3

    Science.gov (United States)

    Mishenina, T.; Gorbaneva, T.; Pignatari, M.; Thielemann, F.-K.; Korotin, S.

    2018-01-01

    We estimate the Mn abundances in the atmospheres of 247 F-G-K-type dwarf stars belonging to the thin and thick disk populations in the metallicity range -1 LTE approximation; the synthetic spectrum for the Mn lines was computed accounting for the hyperfine structure. Starting from the results obtained, we discuss the evolution of the [Mn/Fe] ratio with respect to [Fe/H] in the galactic disk.

  6. The Nature of the intermediates in the reactions of Fe(III)- and Mn(III)-microperoxidase-8 with H2O2 : a rapid kinetic study

    NARCIS (Netherlands)

    Primus, J.L.; Grunenwald, S.; Hagedoorn, P.L.; Albrecht-Gary, A.M.; Mandon, D.; Veeger, C.

    2002-01-01

    Kinetic studies were performed with microperoxidase-8 (Fe(III)MP-8), the proteolytic breakdown product of horse heart cytochrome c containing an octapeptide linked to an iron protoporphyrin IX. Mn(III) was substituted for Fe(III) in Mn(III)MP-8.The mechanism of formation of the reactive metal-oxo

  7. Study of intergranular embrittlement in Fe-12Mn alloys

    International Nuclear Information System (INIS)

    Lee, H.J.

    1982-06-01

    A high resolution scanning Auger microscopic study has been performed on the intergranular fracture surfaces of Fe-12Mn steels in the as-austenitized condition. Fracture mode below the ductile-brittle transition temperature was intergranular whenever the alloy was quenched from the austenite field. The intergranular fracture surface failed to reveal any consistent segregation of P, S, As, O, or N. The occasional appearance of S or O on the fracture surface was found to be due to a low density precipitation of MnS and MnO 2 along the prior austenite boundaries. An AES study with Ar + ion-sputtering showed no evidence of manganese enrichment along the prior austenite boundaries, but a slight segregation of carbon which does not appear to be implicated in the tendency toward intergranular fracture. Addition of 0.002% B with a 1000 0 C/1h/WQ treatment yielded a high Charpy impact energy at liquid nitrogen temperature, preventing the intergranular fracture. High resolution AES studies showed that 3 at. % B on the prior austenite grain boundaries is most effective in increasing the grain boundary cohesive strength in an Fe-12Mn alloy. Trace additions of Mg, Zr, or V had negligible effects on the intergranular embrittlement. A 450 0 C temper of the boron-modified alloys was found to cause tempered martensite embrittlement, leading to intergranular fracture. The embrittling treatment of the Fe-12Mn alloys with and without boron additions raised the ductile-brittle transition by 150 0 C. This tempered martensite embrittlement was found to be due to the Mn enrichment of the fracture surface to 32 at. % Mn in the boron-modified alloy and 38 at. % Mn in the unmodified alloy. The Mn-enriched region along the prior austenite grain boundaries upon further tempering is believed to cause nucleation of austenite and to change the chemistry of the intergranular fracture surfaces. 61 figures

  8. Gaseous Phase and Electrochemical Hydrogen Storage Properties of Ti50Zr1Ni44X5 (X = Ni, Cr, Mn, Fe, Co, or Cu for Nickel Metal Hydride Battery Applications

    Directory of Open Access Journals (Sweden)

    Jean Nei

    2016-07-01

    Full Text Available Structural, gaseous phase hydrogen storage, and electrochemical properties of a series of the Ti50Zr1Ni44X5 (X = Ni, Cr, Mn, Fe, Co, or Cu metal hydride alloys were studied. X-ray diffraction (XRD and scanning electron microscopy (SEM revealed the multi-phase nature of all alloys, which were composed of a stoichiometric TiNi matrix, a hyperstoichiometric TiNi minor phase, and a Ti2Ni secondary phase. Improvement in synergetic effects between the main TiNi and secondary Ti2Ni phases, determined by the amount of distorted lattice region in TiNi near Ti2Ni, was accomplished by the substitution of an element with a higher work function, which consequently causes a dramatic increase in gaseous phase hydrogen storage capacity compared to the Ti50Zr1Ni49 base alloy. Capacity performance is further enhanced in the electrochemical environment, especially in the cases of the Ti50Zr1Ni49 base alloy and Ti50Zr1Ni44Co5 alloy. Although the TiNi-based alloys in the current study show poorer high-rate performances compared to the commonly used AB5, AB2, and A2B7 alloys, they have adequate capacity performances and also excel in terms of cost and cycle stability. Among the alloys investigated, the Ti50Zr1Ni44Fe5 alloy demonstrated the best balance among capacity (394 mAh·g−1, high-rate performance, activation, and cycle stability and is recommended for follow-up full-cell testing and as the base composition for future formula optimization. A review of previous research works regarding the TiNi metal hydride alloys is also included.

  9. Shape memory effect of Fe-17%Mn-X alloys

    International Nuclear Information System (INIS)

    Lee, S.-H.; Kim, H.-J.; Choi, C.-S.; Baik, S.-H.

    2000-01-01

    SME of Fe-17%Mn-X alloy decreased with increasing Ni and Cr contents. This is because the occurrence of stress-induced martensite transformation of γ to ε is difficult due to the increase in stability of retained austenite with increasing Ni and Cr contents. SME of Fe-17%Mn-X alloy increased with increasing the number of thermal cycles. The reason is that the prior bending deformation for SME is associated with coalescence of the pre-existing ε plates due to their rearrangement, thereby the more the ε content, the greater the SME. (orig.)

  10. Shape memory effect in Fe-Mn-Ni-Si-C alloys with low Mn contents

    Energy Technology Data Exchange (ETDEWEB)

    Min, X.H., E-mail: MIN.Xiaohua@nims.go.jp [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Sawaguchi, T.; Ogawa, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Maruyama, T. [Awaji Materia Co., Ltd. 2-3-13, Kanda ogawamachi, Chiyoda, Tokyo 101-0052 (Japan); Yin, F.X. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Tsuzaki, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-0047 (Japan)

    2011-06-15

    Highlights: {yields} A class of new Fe-Mn-Ni-Si-C shape memory alloys with low Mn contents has been designed. {yields} A Mn content for the onset of the {alpha}' martensite is less than 13 mass%, and the {epsilon} martensite still exists in the alloy with a 9 mass% Mn. {yields} The shape recovery strain decreases considerably when the Mn content is reduced from 13 to 11 mass%. {yields} The sudden decrease in the shape recovery strain is mainly caused by the formation of {alpha}' martensite. - Abstract: An attempt was made to develop a new Fe-Mn-Si-based shape memory alloy from a Fe-17Mn-6Si-0.3C (mass%) shape memory alloy, which was previously reported to show a superior shape memory effect without any costly training treatment, by lowering its Mn content. The shape memory effect and the phase transformation behavior were investigated for the as-solution treated Fe-(17-2x)Mn-6Si-0.3C-xNi (x = 0, 1, 2, 3, 4) polycrystalline alloys. The shape recovery strain exceeded 2% in the alloys with x = 0-2, which is sufficient for an industrially applicable shape memory effect; however, it suddenly decreased in the alloys between x = 2 and 3 although the significant shape recovery strain still exceeded 1%. In the alloys with x = 3 and 4, X-ray diffraction analysis and transmission electron microscope observation revealed the existence of {alpha}' martensite, which forms at the intersection of the {epsilon} martensite plates and suppresses the crystallographic reversibility of the {gamma} austenite to {epsilon} martensitic transformation.

  11. Exchange bias variations of the seed and top NiFe layers in NiFe/FeMn/NiFe trilayer as a function of seed layer thickness

    International Nuclear Information System (INIS)

    Sankaranarayanan, V.K.; Yoon, S.M.; Kim, C.G.; Kim, C.O.

    2005-01-01

    Development of exchange bias at the seed and top NiFe layers in the NiFe (t nm)/FeMn(10 nm)/NiFe(5 nm) trilayer structure is investigated as a function of seed layer thickness, in the range of 2-20 nm. The seed NiFe layer shows maximum exchange bias at 4 nm seed layer thickness. The bias shows inverse thickness dependence with increasing thickness. The top NiFe layer on the other hand shows only half the bias of the seed layer which is retained even after the sharp fall in seed layer bias. The much smaller bias for the top NiFe layer is related to the difference in crystalline texture and spin orientations at the top FeMn/NiFe interface, in comparison to the bottom NiFe/FeMn interface which grows on a saturated NiFe layer with (1 1 1) orientation

  12. Estudo de metais pesados (Co, Cu, Fe, Cr, Ni, Mn, Pb e Zn na Bacia do Tarumã-Açu Manaus (AM Heavy metal (Co, Cu, Fe, Cr, Ni, Mn, Pb e Zn study in the Tarumã-Açu Basin Manaus (AM

    Directory of Open Access Journals (Sweden)

    Genilson Pereira Santana

    2007-01-01

    , heavy metal of battery, and others. It is discharged continually in landfill or at any place in city as Manaus. When non-treated the landfill leachate contaminates the superficial and groundwater water. The water and sediment samples were collected from the following streams: Igarapé do Matrinxã, Igarapé do Acará, Igarapé da Bolívia, Bacia do Tarumã-Açu and within Sanitary Landfill (Manaus Amazonas - Brazil in March of 2001. The water samples were filtered in Milipore 0.45 mm, treated with concentrated HNO3. The sediment samples were served to 0.053 mm and treated with concentrated HCl:HNO3 (1:3. The Co, Cu, Fe, Cr, Ni, Mn, Pb and Zn concentrations were determined by flame atomic absorption spectrometric. The results showed that heavy metals have concentration above the level permitted by Brazilian Environmental protection law (number 357/2005 CONAMA showing that landfill is the major responsible by environment impact of aquatic system. The principal component (PCA and hierarchical cluster (HCA analyses reveal that samples collected within of sanitary landfill have different characteristics from other site sampling. Additionally, HCA and PCA show a similarity between site samplings located out landfill it allows to sustain that the leachate is dissolved by whole aquatic system studied.

  13. Accelerated Oxygen Atom Transfer and C-H Bond Oxygenation by Remote Redox Changes in Fe3 Mn-Iodosobenzene Adducts.

    Science.gov (United States)

    de Ruiter, Graham; Carsch, Kurtis M; Gul, Sheraz; Chatterjee, Ruchira; Thompson, Niklas B; Takase, Michael K; Yano, Junko; Agapie, Theodor

    2017-04-18

    We report the synthesis, characterization, and reactivity of [LFe 3 (PhPz) 3 OMn( s PhIO)][OTf] x (3: x=2; 4: x=3), where 4 is one of very few examples of iodosobenzene-metal adducts characterized by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57 Fe Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in oxidation state (Fe III 2 Fe II Mn II vs. Fe III 3 Mn II ) influence oxygen atom transfer in tetranuclear Fe 3 Mn clusters. In particular, a one-electron redox change at a distal metal site leads to a change in oxygen atom transfer reactivity by ca. two orders of magnitude. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Internal Friction of Austenitic Fe-Mn-C-Al Alloys

    Science.gov (United States)

    Lee, Young-Kook; Jeong, Sohee; Kang, Jee-Hyun; Lee, Sang-Min

    2017-12-01

    The internal friction (IF) spectra of Fe-Mn-C-Al alloys with a face-centered-cubic (fcc) austenitic phase were measured at a wide range of temperature and frequency ( f) to understand the mechanisms of anelastic relaxations occurring particularly in Fe-Mn-C twinning-induced plasticity steels. Four IF peaks were observed at 346 K (73 °C) (P1), 389 K (116 °C) (P2), 511 K (238 °C) (P3), and 634 K (361 °C) (P4) when f was 0.1 Hz. However, when f increased to 100 Hz, whereas P1, P2, and P4 disappeared, only P3 remained without the change in peak height, but with the increased peak temperature. P3 matches well with the IF peak of Fe-high Mn-C alloys reported in the literature. The effects of chemical composition and vacancy (v) on the four IF peaks were also investigated using various alloys with different concentrations of C, Mn, Al, and vacancy. As a result, the defect pair responsible for each IF peak was found as follows: a v-v pair for P1, a C-v pair for P2, a C-C pair for P3, and a C-C-v complex (major effect) + a Mn-C pair (minor effect) for P4. These results showed that the IF peaks of Fe-Mn-C-Al alloys reported previously were caused by the reorientation of C in C-C pairs, not by the reorientation of C in Mn-C pairs.

  15. Determination of hydrogen solubility in Fe-Mn-C melts

    Energy Technology Data Exchange (ETDEWEB)

    Lob, Alexander; Senk, Dieter [Institute of Ferrous Metallurgy (IEHK), RWTH Aachen University (Germany); Hallstedt, Bengt [Materials Chemistry (MCh), RWTH Aachen University (Germany)

    2011-02-15

    High manganese steels are supposed to be sensitive to hydrogen embrittlement. This can be explained by increased hydrogen solubility in comparison to unalloyed steels. To minimise hydrogen pick up during melting operations, it is necessary to know accurately the hydrogen solubility as function of hydrogen partial pressure, temperature and Mn content. In this work in situ measurements of hydrogen content at 12, 18 and 23 wt.% Mn (and 0.6 wt.% C) using the Hydris {sup registered} system are compared to pin-tube measurements. Below about 7 ppm [H] both methods gave the same results and above 7 ppm [H] the in situ measurement showed slightly higher hydrogen contents because some hydrogen is lost during quenching with the pin-tube method. The measured solubilities were compared with thermodynamic calculations. Using dilute solution theory with data developed for alloyed Fe-based melts with up to 10 wt.% Mn gives reasonable results except that the hydrogen solubility is slightly underestimated for the presently investigated Mn contents. This could be compensated by using an interaction parameter of e{sup Mn}{sub H}=-0.004 instead of e{sup Mn}{sub H}=-0.0012. A Calphad type extrapolation from the binary Fe-H, Mn-H and Fe-Mn systems gave results very close to the experimental ones. This work is a contribution from the collaborative research centre SFB 761 ''Steel - ab initio''. (Copyright copyright 2011 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. A comparative study of metabolism and concentration factors of Fe, Cu, Zn, Mn, Co and Mg in Carcinus maenas and Cancer irroratus ovaries during ovogenesis

    International Nuclear Information System (INIS)

    Martin, J.-L.M.

    1975-01-01

    Fe, Cu, Zn, Mn, Co, and Mg were analysed in the ovary of Carcinus maenas and Cancer irroratus during ovogenesis. In both ovaries, the relatives rates, expressed as parts per millions as a ratio of wet and dry weight, are the following: Mg>Zn>Fe>Cu>Mn>Co, while in the hemolymph of Cancer irroratus these relative rates are the following: Mg>Cu>Zn>Fe>Mn>Co. Compared to concentrations of these metals in sea water, Mg expected, all metals in the ovary of Cancer irroratus have a concentration factor upper than 1. Compared to the concentration of metals in the hemolymph is, for Fe, Mn, and Co, the concentration factor upper than 1, and for Cu, Zn and Mg, the concentration factor lower than 1. A study of correlations was done between the concentrations of metals considered in pairs, and between the concentrations of metals and the parameters: water content and gonad index [fr

  17. A Study of Different Doped Metal Cations on the Physicochemical Properties and Catalytic Activities of Ce20 M1 Ox (M=Zr, Cr, Mn, Fe, Co, Sn) Composite Oxides for Nitric Oxide Reduction by Carbon Monoxide.

    Science.gov (United States)

    Deng, Changshun; Li, Min; Qian, Junning; Hu, Qun; Huang, Meina; Lin, Qingjin; Ruan, Yongshun; Dong, Lihui; Li, Bin; Fan, Minguang

    2016-08-05

    This work is mainly focused on investigating the effects of different doped metal cations on the formation of Ce20 M1 Ox (M=Zr, Cr, Mn, Fe, Co, Sn) composite oxides and their physicochemical and catalytic properties for NO reduction by CO as a model reaction. The obtained samples were characterized by using N2 physisorption, X-ray diffraction, laser Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, inductively coupled plasma atomic emission spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction by hydrogen and by oxygen (H2 -TPR and O2 -TPD), in situ diffuse reflectance infrared Fourier transform spectroscopy, and the NO+CO model reaction. The results imply that the introduction of M(x+) into the lattice of CeO2 increases the specific surface area and pore volume, especially for variable valence metal cations, and enhances the catalytic performance to a great extent. In this regard, increases in the oxygen vacancies, reduction properties, and chemisorbed O2 (-) (and/or O(-) ) species of these Ce20 M1 Ox composite oxides (M refers to variable valence metals) play significant roles in this reaction. Among the samples, Ce20 Cr1 Ox exhibited the best catalytic performance, mainly because it has the best reducibility and more chemisorbed oxygen, and significant reasons for these attributes may be closely related to favorable synergistic interactions of the vacancies and near-surface Ce(3+) and Cr(3+) . Finally, a possible reaction mechanism was tentatively proposed to understand the reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Study of phase transformations in Fe-Mn-Cr Alloys

    International Nuclear Information System (INIS)

    Schule, W.; Panzarasa, A.; Lang, E.

    1988-01-01

    Nickel free alloys for fusion reactor applications are examined. Phase changes in fifteen, mainly austenitic iron-manganese-chromium-alloys of different compositions were investigated in the temperature range between -196 0 C and 1000 0 C after different thermo-mechanical treatments. A range of different physical measuring techniques was employed to investigate the structural changes occurring during heating and cooling and after cold-work: electrical resistivity techniques, differential thermal analysis, magnetic response, Vickers hardness and XRD measurement. The phase boundary between the α Fe-phase and the γ-phase of the iron manganese alloy is approximately maintained if chromium is added to the two component materials. Consequently all the alloy materials for contents of manganese smaller than about 30% Mn are not stable below 500 0 C. This concerns also the AMCR alloys. However the α Fe-phase is not formed during slow cooling from 1000 0 C to ambient temperature and is only obtained if nucleation sites are provided and after very long anneals. A cubic α Mn-type-phase is found for alloys with 18% Cr and 15% Mn, with 13% Cr and 25% Mn, with 10% Cr and 30% Mn, and with 10% Cr and 40% Mn. For these reasons the γ-phase field of the iron-chromium-manganese alloys is very small below 600 0 C and much narrower than reported in the literature. 95 figs. 22 refs

  19. Facile fabrication of composited Mn_3O_4/Fe_3O_4 nanoflowers with high electrochemical performance as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhao, Dianyun; Hao, Qin; Xu, Caixia

    2015-01-01

    Graphical abstract: Mn_3O_4/Fe_3O_4 nanoflowers are successfully prepared through one step dealloying of Mn_5Fe_5Al_9_0 alloy at room temperature. This hierarchical flower-like structure with consists of a packed array of uniform regular hexagon-like nanoslices. Combined with the specific hierarchical flower-like architecture and the synergistic effect exerted by Mn_3O_4 and Fe_3O_4, the nanocomposite exhibits enhanced performance as anode material for lithium ion batteries than pure Mn_3O_4 and Fe_3O_4 anode. - Highlights: • Mn_3O_4/Fe_3O_4 nanoflowers are easily prepared by one step dealloying method. • The nanoflowers consist of packed regular nanoslices with interconnected voids. • Mn_3O_4/Fe_3O_4 nanoflowers deliver higher discharge capacity than Mn_3O_4 and Fe_3O_4. • Mn_3O_4/Fe_3O_4 nanoflowers show lower initial irreversible loss than Mn_3O_4 anode. - Abstract: Mn_3O_4/Fe_3O_4 nanoflowers with controllable components are simply fabricated through one step etching of the Mn_5Fe_5Al_9_0 ternary alloy. The as-made hierarchical flower-like structure with interconnected voids consists of a packed array of uniform regular hexagon-like nanoslices. Based on the simple dealloying strategy the target metals are directly converted to uniform nanocomposite composed of Mn_3O_4 and Fe_3O_4 species. With the unique hierarchical flower-like structure and the synergistic effects between Mn_3O_4 and Fe_3O_4, the nanocomposite exhibits higher performance as anode material for lithium ion batteries than that of pure Mn_3O_4 and Fe_3O_4 anodes. The Mn_3O_4/Fe_3O_4 nanocomposite deliver much higher discharge capacity and lower initial irreversible loss than Mn_3O_4 anode. The Mn_3O_4/Fe_3O_4 anode material also shows an excellent cycling stability at the high rate of 1500 mA g"−"1 with outstanding rate capability. With the advantages of simple preparation and excellent electrochemical performance, Mn_3O_4/Fe_3O_4 nanoflowers manifest great application potential as

  20. Hydrogen storage in Ti-Mn-(FeV) BCC alloys

    International Nuclear Information System (INIS)

    Santos, S.F.; Huot, J.

    2009-01-01

    Recently, the replacement of vanadium by the less expensive (FeV) commercial alloy has been investigated in Ti-Cr-V BCC solid solutions and promising results were reported. In the present work, this approach of using (FeV) alloys is adopted to synthesize alloys of the Ti-Mn-V system. Compared to the V-containing alloys, the alloys containing (FeV) have a smaller hydrogen storage capacity but a larger reversible hydrogen storage capacity, which is caused by the increase of the plateau pressure of desorption. Correlations between the structure and the hydrogen storage properties of the alloys are also discussed.

  1. Spin structure of exchange biased heterostructures. Fe/MnF{sub 2} and Fe/FeF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B

    2006-12-18

    In this work, the {sup 57}Fe probe layer technique is used in order to investigate the depth- and temperature-dependent Fe-layer spin structure of exchange biased Fe/MnF{sub 2} and Fe/FeF{sub 2} (pseudo-twinned) antiferromagnetic (AFM) systems by conversion electron Moessbauer spectroscopy (CEMS) and nuclear resonant scattering (NRS) of synchrotron radiation. Two kinds of samples with a 10 A {sup 57}Fe probe layer directly at or 35 A away from the interface, labeled as interface and center sample, respectively, were studied in this work. The results obtained by CEMS for Fe/MnF{sub 2} suggests that, at 80 K, i.e., above T{sub N}=67 K of MnF{sub 2}, the remanent state Fe-layer spin structure of the two studied samples are slightly different due to their different microstructure. In the temperature range from 300 K to 80 K, the Fe-layer spin structure does not change just by zero-field cooling the sample in remanence. For Fe/FeF{sub 2}, a continuous non-monotonic change of the remanent-state Fe spin structure was observed by cooling from 300 K to 18 K. NRS of synchrotron radiation was used to investigate the temperature- and depth-dependent Fe-layer spin structure during magnetization reversal in pseudo-twinned Fe/MnF{sub 2}. A depthdependent Fe spin structure in an applied magnetic field (applied along the bisector of the twin domains) was observed at 10 K, where the Fe spins closer to the interface are not aligned along the field direction. The depth-dependence disappears at 150 K. (orig.)

  2. X-ray fluorescence analysis of Fe, Mn, Cr and V in natural silicate crystals

    International Nuclear Information System (INIS)

    Dias, O.L.; Albuquerque, A.R.P.L.; Isotani, S.

    1983-04-01

    Concentrations of Fe, Mn, Cr and V were determined in samples of beryl, topaz, tourmaline and spodumene by measuring the first order K sub(α) fluorescence lines. The intensity of these lines were calibrated by using beryl as the standard matrix. The matrices were prepared in the form of pressed pellets with 4:1 mixture of beryl and boric acid, where transition metal oxides were added. (Author) [pt

  3. X-ray fluorescence analysis of Fe, Mn, Cr and V in natural silicate crystals

    International Nuclear Information System (INIS)

    Dias, O.L.; Albuquerque, A.R.P.L.; Isotani, S.

    1983-01-01

    Concentrations of Fe, Mn, Cr and V were determined in samples of beryl, topaze, tourmaline and spodumene by measuring the first order Kα fluorescence lines. The intensity of these lines were calibrated by using beryl as the standard matrix. The matrices were prepared in the form of pressed pellets with 4:1 mixture of beryl and boric acid, where transition metal oxides were added. (Author) [pt

  4. Mechanism and kinetics of Fe, Cr, Mo and Mn atom interaction with molecular oxygen

    International Nuclear Information System (INIS)

    Akhmadov, U.S.; Zaslonko, I.S.; Smirnov, V.N.

    1988-01-01

    Rate constants of atomic interaction of some transition metals (Fe, Cr, Mo, Mn) with molecular oxygen are measured in shock waves using the resonance atomic-absorption method. A new method for determination of the parameter γ in the modified Lambert-Beer law D=ε(lN)γ is suggested and applied. Bond strength in CrO and MoO molecules is estimated

  5. Fe and Mn Transport and Settling Modelling in the Upper Course of the Lerma River

    Directory of Open Access Journals (Sweden)

    García-Aragón Juan Antonio

    2013-06-01

    Full Text Available A metal transport and deposition model together with concentration measurements of Fe and Mn was developed in the Upper Course of the Lerma River, Mexico State. The hydraulic sections of 27.9 km of the Lerma River were measured in the field in order to supply the numerical model. A general mass balance equation considering full mixing in selected reaches of the Lerma River was developed and solved using the finite-difference method. At the same time a sampling campaign of water and sediment allowed us to obtain Fe and Mn concentrations in each phase. Metal concentrations were obtained by Energy Dispersive X-Ray Fluorescence Method (EDXRF. Partition coefficients for water and suspended sediment and for water and deposited sediment were calculated. Well defined periods and areas of deposition of Fe and Mn were obtained by the transport model and the spatial variation of the partition coefficients agree with the pattern obtained in the simulation. It is concluded that the current practice of constant values of the partition coefficients could not be used in modelling transport and deposition of metals if we are dealing with hydrologic extreme events and river sediment deposition areas.

  6. Charge ordering and multiferroicity in Fe{sub 3}BO{sub 5} and Fe{sub 2}MnBO{sub 5} oxyborates

    Energy Technology Data Exchange (ETDEWEB)

    Maignan, A., E-mail: antoine.maignan@ensicaen.fr [Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN/UNICAEN, 6 bd du Maréchal Juin, 14050 CAEN Cedex 4 (France); Lainé, F.; Guesdon, A.; Malo, S. [Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN/UNICAEN, 6 bd du Maréchal Juin, 14050 CAEN Cedex 4 (France); Damay, F. [Laboratoire Léon Brillouin, UMR 12, LLB-Saclay, 91191 GIF-SUR-YVETTE Cedex (France); Martin, C. [Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN/UNICAEN, 6 bd du Maréchal Juin, 14050 CAEN Cedex 4 (France)

    2017-02-15

    The comparison of Fe{sub 3}BO{sub 5} and Fe{sub 2}MnBO{sub 5} reveals that the 2Fe{sup 2+}: Fe{sup 3+} charge ordering of the former is suppressed in the latter. Spin dynamics probed by ac susceptibility are strongly affected by the substitution, inducing superparamagnetism at low temperature in Fe{sub 2}MnBO{sub 5}. Interestingly, for both oxyborates, glassiness is observed in the dielectric properties at low temperature, but only Fe{sub 3}BO{sub 5} shows a magnetodielectric effect close to its lower magnetic transition. A change in the electrical polarization, measured by pyroelectric current integration, is observed in Fe{sub 3}BO{sub 5} and is even more pronounced in Fe{sub 2}MnBO{sub 5}. Such results suggest that these oxyborates behave like antiferromagnetic relaxor ferroelectrics. These features are proposed to be related to the distribution of the species (Fe{sup 3+}, Fe{sup 2+} and Mn{sup 2+}) over the four transition metal sites forming the ludwigite structure. - Graphical abstract: 90 K [010] electron diffraction patterns of Fe{sub 3}BO{sub 5}. The yellow arrows in the pattern indicate the extra-spots corresponding to the superstructure induced by the charge ordering. - Highlights: • The TEM (ED) study of the Fe{sub 3}BO{sub 5} oxyborate at 90 K reveals a superstructure related to a Fe{sup 2+}/Fe{sup 3+} ordering. • The Fe{sub 2}MnBO{sub 5}, Mn-substituted counterpart, does not show such ordering. • Our magnetic and electric measurements demonstrate that these magnetic ferrites exhibit glassiness in their charges (relaxor-type) with additional superparamagnetism at low T for Fe{sub 2}MnBO{sub 5} and magnetodielectric coupling near T{sub N2}=72 K in Fe{sub 3}BO{sub 5}. • The pyroelectric measurements confirm the existence of a ferroelectric behavior in these antiferromagnets. Accordingly, our results open the route to the study of other large class of the M{sub 2}{sup 2+}M’{sup 3+}BO{sub 5} ludwigites and to their complex magnetism and its

  7. Effect of mineral-enriched diet and medicinal herbs on Fe, Mn, Zn, and Cu uptake in chicken

    Directory of Open Access Journals (Sweden)

    Stef Ducu

    2012-03-01

    Full Text Available Abstract Background The goal of our study was to evaluate the effects of different medicinal herbs rich in polyphenol (Lemon balm, Sage, St. John's wort and Small-flowered Willowherb used as dietary supplements on bioaccumulation of some essential metals (Fe, Mn, Zn and Cu in different chicken meats (liver, legs and breast. Results In different type of chicken meats (liver, legs and breast from chickens fed with diets enriched in minerals and medicinal herbs, beneficial metals (Fe, Mn, Zn and Cu were analysed by flame atomic absorption spectrometry. Fe is the predominant metal in liver and Zn is the predominant metal in legs and breast chicken meats. The addition of metal salts in the feed influences the accumulations of all metals in the liver, legs and breast chicken meat with specific difference to the type of metal and meat. The greatest influences were observed in legs meat for Fe and Mn. Under the influence of polyphenol-rich medicinal herbs, accumulation of metals in the liver, legs and breast chicken meat presents specific differences for each medicinal herb, to the control group that received a diet supplemented with metal salts only. Great influence on all metal accumulation factors was observed in diet enriched with sage, which had significantly positive effect for all type of chicken meats. Conclusions Under the influence of medicinal herbs rich in different type of polyphenol, accumulation of metals in the liver, legs and breast chicken meat presents significant differences from the group that received a diet supplemented only with metal salts. Each medicinal herb from diet had a specific influence on the accumulation of metals and generally moderate or poor correlations were observed between total phenols and accumulation of metals. This may be due to antagonism between metal ions and presence of other chelating agents (amino acids and protein from feeding diets which can act as competitor for complexation of metals and influence

  8. Cross sections for the reactions 54Fe(n,α)51Cr, 54Fe(n,p)54Mn, and 56Fe(n,p)56Mn

    International Nuclear Information System (INIS)

    Paulsen, A.; Widera, R.; Arnotte, F.; Liskien, H.

    1979-01-01

    Ratios of cross sections for the reactions 54 Fe(n,α) 51 Cr, 54 Fe(n,p) 54 Mn, and 56 Fe(n,p) 56 Mn were measured by the activation technique. In the 6- to 10-MeV energy range, quasi-monoenergetic neutrons produced by the D(d,n) source reaction were used, while additional data were obtained between 12 and 17 MeV by use of the T(d,n) source reaction. The cross-section ratios have accuracies between 1.5 and 4.5%. 1 figure, 3 tables

  9. Phase transitions and magnetocaloric effects in intermetallic compounds MnFeX (X=P, As, Si, Ge)

    International Nuclear Information System (INIS)

    Tegus, O.; Bao Li-Hong; Song Lin

    2013-01-01

    Since the discovery of giant magnetocaloric effect in MnFeP 1−x As x compounds, much valuable work has been performed to develop and improve Fe 2 P-type transition-metal-based magnetic refrigerants. In this article, the recent progress of our studies on fundamental aspects of theoretical considerations and experimental techniques, effects of atomic substitution on the magnetism and magnetocalorics of Fe 2 P-type intermetallic compounds MnFeX (X=P, As, Ge, Si) is reviewed. Substituting Si (or Ge) for As leads to an As-free new magnetic material MnFeP 1−x Si(Ge) x . These new materials show large magnetocaloric effects resembling MnFe(P, As) near room temperature. Some new physical phenomena, such as huge thermal hysteresis and ‘virgin’ effect, were found in new materials. On the basis of Landau theory, a theoretical model was developed for studying the mechanism of phase transition in these materials. Our studies reveal that MnFe(P, Si) compound is a very promising material for room-temperature magnetic refrigeration and thermo-magnetic power generation. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  10. Partitioning and structural role of Mn and Fe ions in ionic sulfophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Möncke, Doris; Wondraczek, Lothar, E-mail: lothar.wondraczek@uni-jena.de [Otto-Schott-Institute of Materials Research, Friedrich-Schiller-University Jena, Fraunhoferstr. 6, 07743 Jena (Germany); Sirotkin, Sergey [Institut des Sciences Moléculaires - CNRS UMR 5255, Université de Bordeaux, 33405 Talence (France); Stavrou, Elissaios; Kamitsos, Efstratios I. [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constaniou Ave., 116 35 Athens (Greece)

    2014-12-14

    Ionic sulfophosphate liquids of the type ZnO-Na{sub 2}O-Na{sub 2}SO{sub 4}-P{sub 2}O{sub 5} exhibit surprising glass forming ability, even at slow or moderate cooling rate. As a concept, they also provide high solubility of transition metal ions which could act as cross-linking sites between the sulfate and phosphate entities. It is therefore investigated how the replacement of ZnO by MnO and/or FeO affects the glass structure and the glass properties. Increasing manganese levels are found to result in a monotonic increase of the transition temperature T{sub g} and most of the mechanical properties. This trend is attributed to the change of metal-ion coordination from four-fold around Zn{sup 2+} to six-fold around Mn{sup 2+} ions. The higher coordination facilitates cross-linking of the ionic structural entities and subsequently increases T{sub g}. Raman and infrared spectroscopy show that the structure of these glasses involves only SO{sub 4}{sup 2−} and PO{sub 4}{sup 3−} monomers as well as P{sub 2}O{sub 7}{sup 4-} dimers. Replacement of ZnO by MnO is found to favour PO{sub 4}{sup 3−} over P{sub 2}O{sub 7}{sup 4-} species, a trend which is enhanced by co-doping with FeO. Both transition metal ions show, like Zn{sup 2+}, a preference to selectively coordinate to phosphate anionic species, as opposed to sodium ions which coordinate mainly to sulfate anions. EPR spectroscopy finally shows that divalent Mn{sup 2+} ions are present primarily in MnO{sub 6}-clusters, which, in the studied sulfophosphate glasses, convert upon increasing MnO content from corner-sharing to edge-sharing entities.

  11. Partitioning and structural role of Mn and Fe ions in ionic sulfophosphate glasses

    International Nuclear Information System (INIS)

    Möncke, Doris; Wondraczek, Lothar; Sirotkin, Sergey; Stavrou, Elissaios; Kamitsos, Efstratios I.

    2014-01-01

    Ionic sulfophosphate liquids of the type ZnO-Na 2 O-Na 2 SO 4 -P 2 O 5 exhibit surprising glass forming ability, even at slow or moderate cooling rate. As a concept, they also provide high solubility of transition metal ions which could act as cross-linking sites between the sulfate and phosphate entities. It is therefore investigated how the replacement of ZnO by MnO and/or FeO affects the glass structure and the glass properties. Increasing manganese levels are found to result in a monotonic increase of the transition temperature T g and most of the mechanical properties. This trend is attributed to the change of metal-ion coordination from four-fold around Zn 2+ to six-fold around Mn 2+ ions. The higher coordination facilitates cross-linking of the ionic structural entities and subsequently increases T g . Raman and infrared spectroscopy show that the structure of these glasses involves only SO 4 2− and PO 4 3− monomers as well as P 2 O 7 4- dimers. Replacement of ZnO by MnO is found to favour PO 4 3− over P 2 O 7 4- species, a trend which is enhanced by co-doping with FeO. Both transition metal ions show, like Zn 2+ , a preference to selectively coordinate to phosphate anionic species, as opposed to sodium ions which coordinate mainly to sulfate anions. EPR spectroscopy finally shows that divalent Mn 2+ ions are present primarily in MnO 6 -clusters, which, in the studied sulfophosphate glasses, convert upon increasing MnO content from corner-sharing to edge-sharing entities

  12. Effect of Ni, Fe and Mn in different proportions on microstructure and pollutant-catalyzed properties of Ni-Fe-Mn-O negative temperature coefficient ceramic nanocompositions

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yonglin, E-mail: leiyonglin@163.com [Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Lin, Xiaoyan, E-mail: linxy@swust.edu.cn [Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Liao, Huiwei, E-mail: liaohw@swust.edu.cn [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2017-06-15

    The effect of Ni, Fe and Mn in different proportions on microstructure and pollutant-catalyzed properties of Ni-Fe-Mn-O negative temperature coefficient ceramic nanocompositions was studied. Structural and physical characterization of all the samples was carried out by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) method, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric (TG). The results revealed that the interplanar spacing decreased with increasing Fe content, the grain size decreased with increasing Ni content, the substitution of Ni{sup 2+} in the tetrahedral sites by Fe{sup 2+} increased with increasing Fe content. And increase of iron could improve Ni-Fe-Mn-O high temperature stability. The low-temperature thermal removal efficiencies of 30 mg/L methyl orange solution for NiFeMnO{sub 4}, Ni{sub 0.6}Fe{sub 0.9}Mn{sub 1.5}O{sub 4,} Ni{sub 0.6}Fe{sub 1.8}Mn{sub 0.6}O{sub 4} and Ni{sub 0.3}Fe{sub 2.1}Mn{sub 0.6}O{sub 4} systems were 83.8%, 75.2%, 78.5% and 60.3% at 2400 min, respectively. And the microwave combining with H{sub 2}O{sub 2} removal efficiencies of 30 mg/L methyl orange solution for NiFeMnO{sub 4}, Ni{sub 0.6}Fe{sub 0.9}Mn{sub 1.5}O{sub 4,} Ni{sub 0.6}Fe{sub 1.8}Mn{sub 0.6}O{sub 4} and Ni{sub 0.3}Fe{sub 2.1}Mn{sub 0.6}O{sub 4} systems were 96.5%,93.8%, 98.7% and 98% at 6.0 min, respectively. These results indicated that the Ni-Fe-Mn-O ceramics with appropriate increase of iron were useful for industrial applications on degrading organic pollute. - Highlights: • The relationship of composition and catalytic properties of Ni-Fe-Mn-O was proposed. • The interplanar spacing decreased with increasing Fe content. • The grain size decreased with increasing Ni content. • The substitution of Ni{sup 2+} in the tetrahedral site by Fe{sup 2+} with increasing Fe content.

  13. A structural phase transition coupled to the Fe{sup 3+} spin-state crossover in anhydrous RbMn[Fe(CN){sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Rykov, A. I., E-mail: rykov3@yahoo.com; Wang, J., E-mail: wangjh@dicp.ac.cn; Zhang, T. [Chinese Academy of Sciences, Moessbauer Effect Data Center, Dalian Institute of Chemical Physics (China); Nomura, K. [University of Tokyo, Graduate School of Engineering (Japan)

    2013-04-15

    Linkage isomerism is the coexistence of iso-compositional molecules or solids differing by connectivity of the metal to a ligand. In a crystalline solid state, the rotation is possible for asymmetric ligands, e.g., for cyanide ligand. Here we report on our observation of a phase transition in anhydrous RbMn[Fe(CN){sub 6}] (nearly stoichiometric) and on the effect of linkage isomerism ensuing our interpretation of the results of Moessbauer study in which we observe the iron spin state crossover among two phases involved into this transition. The anhydrous RbMn[Fe(CN){sub 6}] can be prepared via prolonged thermal treatment (1 week at at 80 Degree-Sign C) of the as-synthesized hydrated RbMn[Fe(CN){sub 6}]{center_dot}H{sub 2}O. The latter compound famous for its charge-transfer phase transition is a precursor in our case. As the temperature is raising above 80 Degree-Sign C (remaining below 100 Degree-Sign C) we observe RbMn[Fe(CN){sub 6}] that inherited its F-43 m symmetry from RbMn[Fe(CN){sub 6}]{center_dot}H{sub 2}O transforming to a phase of the Fm-3 m symmetry. In the latter, more than half of Fe{sup 3 + } ions are in high-spin state. We suggest a plausible way to explain the spin-crossover that is to allow the linkage isomerism by rotation of the cyanide ligands.

  14. Structural Series in the Ternary A-Mn-As System (A = Alkali Metal): Double-Layer-Type CsMn4As3 and RbMn4As3 and Tunnel-Type KMn4As3.

    Science.gov (United States)

    Ishida, Junichi; Iimura, Soshi; Hosono, Hideo

    2018-04-16

    New manganese arsenides CsMn 4 As 3 , RbMn 4 As 3 , and KMn 4 As 3 were synthesized by solid-state reaction. They consist of edge-sharing MnAs 4 tetrahedra, which are a building block similar to those of Fe-based superconductors. CsMn 4 As 3 and RbMn 4 As 3 adopt the KCu 4 S 3 -type structure (tetragonal P4/ mmm space group, No. 123) with a Mn 4 As 3 double layer, while KMn 4 As 3 has the CaFe 4 As 3 -type structure (orthorhombic Pnma space group, No. 62) with a Mn 4 As 3 tunnel framework. The structural change from CsMn 4 As 3 and RbMn 4 As 3 to KMn 4 As 3 as well as the structural trend of the other ternary A-Mn-As (A = alkali metal) and AE-Mn-As (AE = alkaline-earth metal) compounds is understood as a consequence of reduction of the coordination number around the A and AE sites owing to the decrease of the ionic radius from Cs + to Mg 2+ . Electrical resistivity measurements confirm that the three new phases are Mott insulators with band gaps of 0.52 (CsMn 4 As 3 ), 0.43 (RbMn 4 As 3 ), and 0.31 eV (KMn 4 As 3 ). Magnetic and heat capacity measurements revealed that CsMn 4 As 3 and RbMn 4 As 3 are antiferromagnets without apparent phase transitions below 400 K, which is similar to the magnetism of LaMnAsO and BaMn 2 As 2 , while the existence of the ferromagnetic component was indicated in KMn 4 As 3 with a magnetic transition at 179 K.

  15. Photoelectrochemical Performance Observed in Mn-Doped BiFeO3 Heterostructured Thin Films

    Directory of Open Access Journals (Sweden)

    Hao-Min Xu

    2016-11-01

    Full Text Available Pure BiFeO3 and heterostructured BiFeO3/BiFe0.95Mn0.05O3 (5% Mn-doped BiFeO3 thin films have been prepared by a chemical deposition method. The band structures and photosensitive properties of these films have been investigated elaborately. Pure BiFeO3 films showed stable and strong response to photo illumination (open circuit potential kept −0.18 V, short circuit photocurrent density was −0.023 mA·cm−2. By Mn doping, the energy band positions shifted, resulting in a smaller band gap of BiFe0.95Mn0.05O3 layer and an internal field being built in the BiFeO3/BiFe0.95Mn0.05O3 interface. BiFeO3/BiFe0.95Mn0.05O3 and BiFe0.95Mn0.05O3 thin films demonstrated poor photo activity compared with pure BiFeO3 films, which can be explained by the fact that Mn doping brought in a large amount of defects in the BiFe0.95Mn0.05O3 layers, causing higher carrier combination and correspondingly suppressing the photo response, and this negative influence was more considerable than the positive effects provided by the band modulation.

  16. Giant magnetoresistance in CrFeMn alloys

    International Nuclear Information System (INIS)

    Xu, W.M.; Zheng, P.; Chen, Z.J.

    1997-01-01

    The electrical resistance and longitudinal magnetoresistance of Cr 75 (Fe x Mn 1-x ) 25 alloys, x=0.64, 0.72, are studied in the temperature range 1.5-270 K in applied field up to 7.5 T. The magnetoresistance is negative and strongly correlated with the spin reorientation. In the temperature range where the antiferromagnetic and ferromagnetic domains coexist, the samples display giant magnetoresistance which follows a H n -law at high field. (orig.)

  17. Half-metallicity in a BiFeO3/La2/3Sr1/3MnO3 superlattice: A first-principles study

    KAUST Repository

    Jiwuer, Jilili

    2013-06-01

    We present first-principles results for the electronic, magnetic, and optical properties of the heterostructure as obtained by spin-polarized calculations using density functional theory. The electronic states of the heterostructure are compared to those of the bulk compounds. Structural relaxation turns out to have only a minor impact on the chemical bonding, even though the oxygen octahedra in develop some distortions due to the interface strain. While a small charge transfer affects the heterointerfaces, our results demonstrate that the half-metallic character of is fully maintained. © EPLA, 2013.

  18. [Seasonal variations of metal contents (Cd, Cu, Fe, Mn and Zn) in seaweed Ulva lactuca from the coast of El Jadida city (Morocco)].

    Science.gov (United States)

    Kaimoussi, Aziz; Mouzdahir, Abdelkrim; Saih, Abdelkbir

    2004-04-01

    The quality of El Jadida Atlantic coastal water was monitored from April 1998 to March 1999 by measuring hydrological parameters (dissolved oxygen, suspended particulate matter, phosphates and nitrites) and using the seaweed Ulva lactuca as a quantitative bio-indicator of cadmium, copper, iron, manganese and zinc contamination. Metal content in seaweeds, collected every month from four stations characterized by the discharge of urban and industrial waste water, showed significant variations depending on the station and sampling period. However, the seaweed of El Jadida exhibited generally lower contents compared to those of similar species from other geographical areas.

  19. High damping Fe-Mn martensitic alloys for engineering applications

    International Nuclear Information System (INIS)

    Baik, S.-H.

    2000-01-01

    Conventional methods for reducing vibration in engineering designs (i.e. by stiffening or detuning) may be undesirable or inadequate in conditions where size or weight must be minimized or where complex vibration spectra exist. Alloys which combine high damping capacity with good mechanical properties can provide attractive technical and economic solutions to problems involving seismic, shock and vibration isolation. To meet these trends, we have developed a new high damping Fe-17%Mn alloy. Also, the alloy has advantages of good mechanical properties and is more economical than any other known damping alloys (a quarter the cost of non-ferrous damping alloy). Thus, the high damping Fe-17%Mn alloy can be widely applied to household appliances, automobiles, industrial facilities and power plant components with its excellent damping capacity (SDC, 30%) and mechanical property (T.S. 700 MPa). It is the purpose of this paper to introduce the characterization of the high damping Fe-17%Mn alloy and the results of retrofit of several such applications. (orig.)

  20. Synthesis and characterization of La(Cr,Fe,Mn)O{sub 3} nanoparticles obtained by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, F.A., E-mail: fernandafabianro@gmail.com [Universidade Federal de Sergipe, Campus Prof. Aluísio Campos, Departamento de Física, 49100-000 São Cristóvão, SE (Brazil); Pedra, P.P.; Filho, J.L.S. [Universidade Federal de Sergipe, Campus Prof. Aluísio Campos, Departamento de Física, 49100-000 São Cristóvão, SE (Brazil); Duque, J.G.S.; Meneses, C.T. [Universidade Federal de Sergipe, Campus Prof. Alberto Carvalho, Departamento de Física, 49500-000 Itabaiana, SE (Brazil)

    2015-04-01

    Magnetic and structural properties have been investigated in La(Cr,Fe,Mn)O{sub 3} nanoparticles obtained by co-precipitation method. The X-ray diffraction measurements allied to Rietveld method confirm the formation of LaCrO{sub 3}, LaFeO{sub 3} and LaMnO{sub 3} nanoparticles with crystal structure orthorhombic (Pbnm), orthorhombic (Pnma) and rhombohedral (R-3c), respectively. We also verified an decreasing in the average crystallite size from 73 to 26 nm, depending of the transition metal. The magnetic measurements reveal an antiferromagnetic behavior for the LaCrO{sub 3} sample with T{sub N}~289 K, and a weak ferromagnetic ordering for the LaMnO{sub 3} sample with T{sub c}~200 K. - Highlights: • La(Cr,Fe,Mn)O{sub 3} nanoparticles were synthesized by coprecipitation method. • XRD results confirm the formation single phase in the compounds studied. • Magnetic property in the La(Fe,Cr,Mn)O{sub 3} nanoparticles dependent on the TM. • La(Cr,Fe)O{sub 3} nanoparticles presented behavior antiferromagnetic and LaMnO{sub 3} ferromagnetic.

  1. STUDY OF COATINGS OBTAINED FROM ALLOY Fe-Mn-C-B-Si-Ni-Cr

    Directory of Open Access Journals (Sweden)

    Mychajło Paszeczko

    2016-09-01

    Full Text Available Tribological behaviour of coatings obtained from eutectic alloy Fe-Mn-C-B-Si-Ni-Cr was studied. The coatings were obtained by the method of gas metal arc welding (GMA with use of powder wire. GMA welding method is widely used for the regeneration of machine parts. Eutectic Fe-Mn-C-B-Si-Ni-Cr alloys can be used to obtain high quality coatings resistant to wear and corrosion. Pin-on-disk dry sliding wear tests at sliding speeds 0.4 m/s and under load 10 MPa were conducted for pin specimens. During friction a typical tribological behavior was observed. The mechanism of wear was mechanical-chemical.

  2. Electronic structure of homoleptic transition metal hydrides: TiH4, VH4, CrH4, MnH4, FeH4, CoH4, and NiH4

    International Nuclear Information System (INIS)

    Hood, D.M.; Pitzer, R.M.; Schaefer III, H.F.

    1979-01-01

    Ab initio molecular electronic structure theory has been applied to the family of transition metal tetrahydrides TiH 4 through NiH 4 . For the TiH 4 molecule a wide range of contracted Gaussian basis sets has been tested at the self-consistent-field (SCF) level of theory. The largest basis, labeled M(14s 11p 6d/10s 8p 3d), H(5s 1p/3s 1p), was used for all members of the series and should yield wave functions approaching true Hartree-Fock quality. Predicted SCF dissociation energies (relative to M+4H) and M--H bond distances are TiH 4 132 kcal, 1.70 A; VH 4 86 kcal, 1.64 A; CrH 4 65 kcal, 1.59 A; MnH 4 -- 36 kcal, 1.58 A; FeH 4 0 kcal, 1.58 A; CoH 4 27 kcal, 1.61 A; and NiH 4 18 kcal, 1.75 A. It should be noted immediately that each of these SCF dissociation energies will be increased by electron correlation effects by perhaps as much as 90 kcal. For all of these molecules except TiH 4 excited states have also been studied. One of the most interesting trends seen for these excited states is the shortening of the M--H bond as electrons are transferred from the antibonding 4t 2 orbital to the nonbonding 1e orbitals

  3. Magnetron Sputtering as a Fabrication Method for a Biodegradable Fe32Mn Alloy

    Directory of Open Access Journals (Sweden)

    Till Jurgeleit

    2017-10-01

    Full Text Available Biodegradable metals are a topic of great interest and Fe-based materials are prominent examples. The research task is to find a suitable compromise between mechanical, corrosion, and magnetic properties. For this purpose, investigations regarding alternative fabrication processes are important. In the present study, magnetron sputtering technology in combination with UV-lithography was used in order to fabricate freestanding, microstructured Fe32Mn films. To adjust the microstructure and crystalline phase composition with respect to the requirements, the foils were post-deposition annealed under a reducing atmosphere. The microstructure and crystalline phase composition were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Furthermore, for mechanical characterization, uniaxial tensile tests were performed. The in vitro corrosion rates were determined by electrochemical polarization measurements in pseudo-physiological solution. Additionally, the magnetic properties were measured via vibrating sample magnetometry. The foils showed a fine-grained structure and a tensile strength of 712 MPa, which is approximately a factor of two higher compared to the sputtered pure Fe reference material. The yield strength was observed to be even higher than values reported in literature for alloys with similar composition. Against expectations, the corrosion rates were found to be lower in comparison to pure Fe. Since the annealed foils exist in the austenitic, and antiferromagnetic γ-phase, an additional advantage of the FeMn foils is the low magnetic saturation polarization of 0.003 T, compared to Fe with 1.978 T. This value is even lower compared to the SS 316L steel acting as a gold standard for implants, and thus enhances the MRI compatibility of the material. The study demonstrates that magnetron sputtering in combination with UV-lithography is a new concept for the fabrication of already in situ

  4. Combined effects of ultrasonic vibration and manganese on Fe-containing inter-metallic compounds and mechanical properties of Al-17Si alloy with 3wt.%Fe

    Directory of Open Access Journals (Sweden)

    Lin Chong

    2013-05-01

    Full Text Available The research studied the combined effects of ultrasonic vibration (USV and manganese on the Fe-containing inter-metallic compounds and mechanical properties of Al-17Si-3Fe-2Cu-1Ni (wt.% alloys. The results showed that, without USV, the alloys with 0.4wt.% Mn or 0.8wt.% Mn both contain a large amount of coarse plate-like δ-Al4(Fe,MnSi2 phase and long needle-like β-Al5(Fe,MnSi phase. When the Mn content changes from 0.4wt.% to 0.8wt.% in the alloys, the amount and the length of needle-like β-Al5(Fe,MnSi phase decrease and the plate-like δ-Al4(Fe,MnSi2 phase becomes much coarser. After USV treatment, the Fe-containing compounds in the alloys are refined and exist mainly as δ-Al4(Fe,MnSi2 particles with an average grain size of about 20 μm, and only a small amount of β-Al5(Fe,MnSi phase remains. With USV treatment, the ultimate tensile strengths (UTS of the alloys containing 0.4wt.%Mn and 0.8wt.%Mn at room temperature are 253 MPa and 262 MPa, respectively, and the ultimate tensile strengths at 350 °C are 129 MPa and 135 MPa, respectively. It is considered that the modified morphology and uniform distribution of the Fe-containing inter-metallic compounds, which are caused by the USV process, are the main reasons for the increase in the tensile strength of these two alloys.

  5. Kinetics and mechanism of diclofenac removal using ferrate(VI): roles of Fe3+, Fe2+, and Mn2.

    Science.gov (United States)

    Zhao, Junfeng; Wang, Qun; Fu, Yongsheng; Peng, Bo; Zhou, Gaofeng

    2018-06-01

    In this study, the effect of Fe 3+ , Fe 2+ , and Mn 2+ dose, solution pH, reaction temperature, background water matrix (i.e., inorganic anions, cations, and natural organic matters (NOM)), and the kinetics and mechanism for the reaction system of Fe(VI)/Fe 3+ , Fe(VI)/Fe 2+ , and Fe(VI)/Mn 2+ were investigated systematically. Traces of Fe 3+ , Fe 2+ , and Mn 2+ promoted the DCF removal by Fe(VI) significantly. The pseudo-first-order rate constant (k obs ) of DCF increased with decreasing pH (9-6) and increasing temperature (10-30 °C) due to the gradually reduced stability and enhanced reactivity of Fe(VI). Cu 2+ and Zn 2+ ions evidently improved the DCF removal, while CO 3 2- restrained it. Besides, SO 4 2- , Cl - , NO 3 - , Mg 2+ , and Ca 2+ almost had no influence on the degradation of DCF by Fe(VI)/Fe 3+ , Fe(VI)/Fe 2+ , and Fe(VI)/Mn 2+ within the tested concentration. The addition of 5 or 20 mg L -1 NOM decreased the removal efficiency of DCF. Moreover, Fe 2 O 3 and Fe(OH) 3 , the by-products of Fe(VI), slightly inhibited the DCF removal, while α-FeOOH, another by-product of Fe(VI), showed no influence at pH 7. In addition, MnO 2 and MnO 4 - , the by-products of Mn 2+ , enhanced the DCF degradation due to catalysis and superposition of oxidation capacity, respectively. This study indicates that Fe 3+ and Fe 2+ promoted the DCF removal mainly via the self-catalysis for Fe(VI), and meanwhile, the catalysis of Mn 2+ and the effect of its by-products (i.e., MnO 2 and MnO 4 - ) contributed synchronously for DCF degradation. Graphical abstract ᅟ.

  6. Band structure analysis on olivine LiMPO4 and delithiated MPO4 (M = Fe, Mn) cathode materials

    International Nuclear Information System (INIS)

    Yi, Ting-Feng; Fang, Zi-Kui; Xie, Ying; Zhu, Yan-Rong; Dai, Changsong

    2014-01-01

    Highlights: • The conductivity of Li x MPO 4 were discussed relying on first principles technique. • Relationship between structure properties and microscopic bonding was addressed. • A mechanism responsible for the structural instability of MnPO 4 was proposed. - Abstract: Olivine compounds, i.e. Li x MPO 4 (M = Fe, Mn), are now regarded as the most competitive positive-electrode materials for future applications of large-scale rechargeable lithium batteries. There are significant interests in their electronic structures, because the microscopic information is very important for elucidating the structural stability, electrochemical performance, and electronic conductivity issues of batteries for high-rate applications. The structure stabilities of LiMPO 4 and MPO 4 (M = Fe, Mn) cathode materials are analyzed according to first principles calculations. The result shows that LiMPO 4 (M = Fe, Mn) materials exhibit good structure stability, which is mainly contributed to the extremely strong P-O covalent bonds. Furthermore, the introduction of P ions is also helpful for the chemical potential decrease of the materials. The band structure analysis reveals that the electronic conductance of LiFePO 4 , LiMnPO 4 , and FePO 4 is poor, while MnPO 4 possesses half metallic property. According to the electron distribution, it can be confirmed that Mn-O(II) bonds are weakened after Li + extractions, which is different from the variation trend of Fe-O(II) bonds. The decrease of Mn-O(II) bond strength is thus favorable for the phase transformation observed in experiments

  7. Hardening of Fe-Cr-Mn steels cold plastic working

    International Nuclear Information System (INIS)

    Malinov, L.S.; Konop-Lyashko, V.I.; Nikoporets, N.M.

    1983-01-01

    The dependence is established between the level of proper-- ties obtained after cold plastic working and development of martensite transformations when loading in Fe-Cr-Mn steels containing 0.1-0.5% C, 13% Cr, 8-12% Mn, as well as in a number of complex alloyed steels. It is shown that the highest level of mechanical properties can be obtained after cold plastic working only in steels with definite austenite stability. Cold plastic working can both activize and stabilize austenite relatively to martensite formation during loading. The first thing is found when under the effect of preliminary cold working dislocation splitting takes place, as well as the formation of a small amount of E-phase and martensite. The second thing manifests itself when under the effect of cold working performed above Md (Md<20 deg C) cell dislocation structure is formed and dislocation pinning takes place

  8. Adsorption Kinetics of Fe and Mn with Using Fly Ash from PT Semen Baturaja in Acid Mine Drainage

    Directory of Open Access Journals (Sweden)

    Indah Purnamasari

    2017-11-01

    Full Text Available One used method to reduce heavy metal ions in acid mine drainage is to adsorb them by coal fly ash. This research aimed to study the isotherms equilibrium and the adsorpstion kinetics that fit with decreasing metals ion. Acid mine draigane and fly ash were charge into batch coloumn adsorption with specified comparison. Variables investigated were dactivated and activated fly ash, adsorption times (0, 20, 30, 40,50, and 60 minutes, adsorben weights (10, 20, 30, 40, 50, and 60 gram, and pH (1, 3, 5, 7, and 9. The results showed that fly ash can be used to reduce the levels of heavy metal ions Fe and Mn. Coal fly ash adsorption model of acid mine drainage fits to Freundlich adsorption isotherm in all condition. First order pseudo model kinetics is suitable for Fe and Mn adsorption processes. The value of adsorpsi rate constants vary around : Fe and Mn (deactivated fly ash 0.2388 min-1 with R2 = 0.4455 and 0.4173 min-1 with R2 = 0.9781, Fe and Mn (activated fly ash 0.5043 min-1 dengan R2 = 1 and  0.2027 min-1 with R2 = 0.8803.

  9. Understanding the stability of Fe incorporation within Mn_3N_2(0 0 1) surfaces: An ab-initio study

    International Nuclear Information System (INIS)

    Guerrero-Sánchez, J.; Mandru, Andrada-Oana; Takeuchi, Noboru; Cocoletzi, Gregorio H.; Smith, Arthur R.

    2016-01-01

    Graphical abstract: - Highlights: • The Fe incorporation into inner layers of the Mn_3N_2 surfaces is stable in all range of chemical potential. • Displaced Mn atoms forming cluster-like structures induce the stability of incorporated Fe atoms. • Antiferromagnetic alignment in the [0 0 1] direction and in-plane Ferromagnetic Fe–Fe and Fe–Mn alignments are the same as in Mn_3N_2 bulk structure. • Incorporated Fe layers contribute to the metallic character of these surfaces. - Abstract: We present first principles spin-polarized calculations of the adsorption and incorporation of iron in the Mn_3N_2(0 0 1) surfaces. By means of a surface formation energy criterion, it is demonstrated that Fe incorporation is energetically stable for all studied surfaces. An Fe bilayer formation is achieved after Fe atoms displace Mn atoms in the sub-surface N-vacancy layers. An analysis of the magnetic coupling shows an antiferromagnetic alignment along the [0 0 1] direction as in the clean, ideal surfaces. Also, the in-plane magnetic coupling between Fe–Fe and Fe–Mn shows a ferromagnetic tendency, similar to the clean, ideally terminated surfaces. These results clearly indicate that Fe behaves like Mn when adsorbed into the Mn_3N_2 surface. Density of states calculations of the stable structures show a slight deviation from the antiferromagnetic-like behavior, with the most important contribution around the Fermi level coming from the Fe-d and Mn-d orbitals.

  10. Understanding the stability of Fe incorporation within Mn{sub 3}N{sub 2}(0 0 1) surfaces: An ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Sánchez, J., E-mail: guerrero@ifuap.buap.mx [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Benemérita Universidad Autónoma de Puebla, Instituto de Física “Ing Luis Rivera Terrazas”, Apartado Postal J-48, Puebla 72570, México (Mexico); Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autónoma de México, Apartado Postal 14, Ensenada, Baja California Codigo Postal 22800, México (Mexico); Mandru, Andrada-Oana [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Takeuchi, Noboru [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autónoma de México, Apartado Postal 14, Ensenada, Baja California Codigo Postal 22800, México (Mexico); Cocoletzi, Gregorio H. [Benemérita Universidad Autónoma de Puebla, Instituto de Física “Ing Luis Rivera Terrazas”, Apartado Postal J-48, Puebla 72570, México (Mexico); Smith, Arthur R. [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States)

    2016-02-15

    Graphical abstract: - Highlights: • The Fe incorporation into inner layers of the Mn{sub 3}N{sub 2} surfaces is stable in all range of chemical potential. • Displaced Mn atoms forming cluster-like structures induce the stability of incorporated Fe atoms. • Antiferromagnetic alignment in the [0 0 1] direction and in-plane Ferromagnetic Fe–Fe and Fe–Mn alignments are the same as in Mn{sub 3}N{sub 2} bulk structure. • Incorporated Fe layers contribute to the metallic character of these surfaces. - Abstract: We present first principles spin-polarized calculations of the adsorption and incorporation of iron in the Mn{sub 3}N{sub 2}(0 0 1) surfaces. By means of a surface formation energy criterion, it is demonstrated that Fe incorporation is energetically stable for all studied surfaces. An Fe bilayer formation is achieved after Fe atoms displace Mn atoms in the sub-surface N-vacancy layers. An analysis of the magnetic coupling shows an antiferromagnetic alignment along the [0 0 1] direction as in the clean, ideal surfaces. Also, the in-plane magnetic coupling between Fe–Fe and Fe–Mn shows a ferromagnetic tendency, similar to the clean, ideally terminated surfaces. These results clearly indicate that Fe behaves like Mn when adsorbed into the Mn{sub 3}N{sub 2} surface. Density of states calculations of the stable structures show a slight deviation from the antiferromagnetic-like behavior, with the most important contribution around the Fermi level coming from the Fe-d and Mn-d orbitals.

  11. The effect of Fe, Mn, Ni and Pb Load on Soil and its enrichment factor ratios in different soil grain size fractions as an Indicator for soil pollution

    International Nuclear Information System (INIS)

    Rabie, F.H.; Abdel-Sabour, M.F.

    2000-01-01

    An industrial area north of greater Cairo was selected to investigate the impact of intensive industrial activities on soil characteristics and Fe, Mn, Ni and Pb total content. The studied area was divided to six sectors according to its source of irrigation water and/or probability of pollution. Sixteen soil profiles were dug and soil samples were taken, air dried, fractionated to different grain size fractions, then total heavy metals (Fe, Mn, Ni and Pb) were determined using ICP technique. The enrichment factor for each metal for each soil fraction/soil layer was estimated and discussed. The highest EF ratios in the clay fraction was mainly with Pb which indicated the industrial impact on the soil. In case of sand fraction, Mn was the highest always compared to other studied metals. Concerning silt fraction, a varied accumulation of Fe, Mn, and Pb was observed with soil depth and different soil profiles

  12. Effect of different factors on phase transformations in Fe-Mn alloys

    International Nuclear Information System (INIS)

    Balychev, Yu.M.; Tkachenko, F.K.

    1983-01-01

    Phase transformations proceeding under Fe-Mn alloy heating are studied and the effect of previous working conditions, particularly, cooling rate on these transformations is investigated. Investigations have been conducted on pure Fe-Mn alloys with 2-15% Mn. Phase transformations are shown to proceed according to α → #betta# and epsilon → #betta# reaction in Fe-Mn alloys containing 2-15% Mn under heating. Cooling rate in the range of approximately 5-1000 deg/min in preliminary working essentially affects phase transformations under subsequent heating

  13. Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets

    International Nuclear Information System (INIS)

    Cao, S.; Yue, M.; Yang, Y. X.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.; Guo, Z. H.; Li, W.

    2011-01-01

    Magnetic properties and thermal stability were investigated for the MnBi/NdFeB (MnBi = 0, 20, 40, 60, 80, and 100 wt.%) bonded hybrid magnets prepared by spark plasma sintering (SPS) technique. Effect of MnBi content on the magnetic properties of the hybrid magnets was studied. With increasing MnBi content, the coercivity of the MnBi/NdFeB hybrid magnets increases rapidly, while the remanence and maximum energy product drops simultaneously. Thermal stability measurement on MnBi magnet, NdFeB magnet, and the hybrid magnet with 20 wt.% MnBi indicates that both the NdFeB magnet and the MnBi/NdFeB hybrid magnet have a negative temperature coefficient of coercivity, while the MnBi magnet has a positive one. The (BH) max of the MnBi/NdFeB magnet (MnBi = 20 wt.%) is 5.71 MGOe at 423 K, which is much higher than 3.67 MGOe of the NdFeB magnet, indicating a remarkable improvement of thermal stability.

  14. Exchange bias in sputtered FeNi/FeMn systems: Effect of short low-temperature heat treatments

    Energy Technology Data Exchange (ETDEWEB)

    Savin, Peter, E-mail: peter.savin@urfu.ru [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Guzmán, Jorge [Instituto de Ciencia de Materiales de Madrid-CSIC, 28049 Madrid (Spain); Lepalovskij, Vladimir [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Svalov, Andrey; Kurlyandskaya, Galina [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Vizcaya (Spain); Asenjo, Agustina [Instituto de Ciencia de Materiales de Madrid-CSIC, 28049 Madrid (Spain); Vas’kovskiy, Vladimir [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Vazquez, Manuel [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Instituto de Ciencia de Materiales de Madrid-CSIC, 28049 Madrid (Spain)

    2016-03-15

    Short (5 min) post-deposition thermal treatments under magnetic field at low temperature (up to 200 °C) performed in exchange-coupled FeNi(40 nm)/FeMn(20 nm) bilayer thin films prepared by magnetron sputtering are shown to be effective to significantly modify their exchange field (from around 40 Oe down to 27 Oe) between FeNi and FeMn layers. A similar exchange field decrease was observed for the first deposited FeNi layer of the FeNi(40 nm)/FeMn(20 nm)/FeNi(40 nm) trilayer films after the same thermal treatments. The exchange field value for the second FeNi layer was not substantially changed. The X-ray diffraction patterns indicates that such a heat treatment has no effect on the grain size and crystalline texture of the films, while atomic force microscope studies reveal an increase of the surface roughness after the treatment which is more noticeable in the case of the trilayer film. Analysis of the experimental results leads us to conclude that the variations of the exchange field after heat treatment are likely caused by a modification of interfacial roughness and/or interfacial magnetic structure, but unlikely by the changes in the microstructure and/or changes of composition of the antiferromagnetic FeMn layer. - Highlights: • FeNi/FeMn bilayers and FeNi/FeMn/FeNi trilayers were prepared by magnetron sputtering. • Post-deposition heat treatments at the temperatures below 200 °C during 5 min were made. • Annealing reduces the exchange field for the first FeNi layer in trilayers. • The exchange field value for the second FeNi layer was not substantially changed. • Exchange field changes are most likely caused by a modification of interface roughness.

  15. Multiferroic BiFeO3-BiMnO3 Nanocheckerboard From First Principles

    OpenAIRE

    Palova, L.; Chandra, P.; Rabe, K. M.

    2010-01-01

    We present a first principles study of an unusual heterostructure, an atomic-scale checkerboard of BiFeO3-BiMnO3, and compare its properties to the two bulk constituent materials, BiFeO3 and BiMnO3. The "nanocheckerboard" is found to have a multiferroic ground state with the desired properties of each constituent: polar and ferrimagnetic due to BiFeO3 and BiMnO3, respectively. The effect of B-site cation ordering on magnetic ordering in the BiFeO3-BiMnO3 system is studied. The checkerboard ge...

  16. Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries

    Science.gov (United States)

    Bie, Xiaofei; Kubota, Kei; Hosaka, Tomooki; Chihara, Kuniko; Komaba, Shinichi

    2018-02-01

    Electrochemical performance of Prussian blue analogues (PBAs) as positive electrode materials for non-aqueous Na-ion batteries is known to be highly dependent on their synthesis conditions according to the previous researches. Na-rich PBAs, NaxM[Fe(CN)6]·nH2O where M = Mn, Fe, Co, and Ni, are prepared via precipitation method under the same condition. The structure, chemical composition, morphology, valence of the transition metals, and electrochemical property of these samples are comparatively researched. The PBA with Mn shows large reversible capacity of 126 mAh g-1 in 2.0-4.2 V at a current density of 30 mA g-1 and the highest working voltage owning to high redox potential of Mn2+/3+ in MnN6 and Fe2+/3+ in FeC6. While, the PBA with Ni exhibits the best cyclability and rate performance though only 66 mAh g-1 is delivered. The significant differences in electrochemical behaviors of the PBAs originate from the various properties depending on different transition metals.

  17. Teores de Fe, Mn, Zn, Cu, Ni E Co em solos de referência de Pernambuco Concentrations of Fe, Mn, Zn, Cu, Ni and Co in benchmark soils of Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Caroline Miranda Biondi

    2011-06-01

    Full Text Available Metais pesados formam um grupo de elementos com particularidades relevantes e de ocorrência natural no ambiente, como elementos acessórios na constituição de rochas. Esses elementos, apesar de associados à toxidez, exigem tratamento diferenciado em relação aos xenobióticos, uma vez que diversos metais possuem essencialidade (Fe, Mn, Cu, Zn e Ni e benefício (Co comprovados para as plantas. Nesse contexto, o objetivo deste trabalho foi determinar os teores naturais dos metais Fe, Mn, Zn, Ni, Cu e Co nos solos de referência de Pernambuco. Foram coletadas amostras de solo nas três regiões fisiográficas (Zona da Mata, Agreste e Sertão, dos dois primeiros horizontes dos 35 solos de referência do Estado de Pernambuco. A digestão das amostras baseou-se no método 3051A (USEPA, 1998, e a determinação foi efetuada em ICP-OES. Correlações significativas foram estabelecidas entre os metais e entre estes e a fração argila do solo, em ambos os horizontes, indicando a associação comum da maioria dos metais com solos mais argilosos. A maioria dos solos apresentou teores de Fe, Mn, Zn, Cu, Ni e Co menores que os de solos de outras regiões do País, com litologia mais máfica, o que corrobora o fato de que os teores desses elementos são mais diretamente relacionados aos minerais Fe-magnesianos. Os resultados indicam baixo potencial dos solos de Pernambuco em liberar Cu, Co e Ni para plantas, enquanto deficiências de Zn, Fe e Mn são menos prováveis. Os teores naturais de Fe, Mn, Zn, Cu, Ni e Co determinados podem ser utilizados como base para definição dos Valores de Referência de Qualidade para os solos de Pernambuco, de acordo com o preconizado pela legislação nacional.Heavy metals are a group of elements with specific features and natural occurrence in the environment, representing an accessory in the formation of rocks. These elements, although associated with toxicity, must be treated different from xenobiotics, since many

  18. Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in ...

    Indian Academy of Sciences (India)

    of essential minerals (such as Fe, Zn etc), breeding mineral- efficient crops that produce .... and seven digenic interactions were identified for Cu, Ca,. Zn, Mn and Fe, .... Eva P. 1993 Cadmium, copper and lead in wild rice from central. Canada.

  19. Enhanced exchange anisotropy in IrMn/CoFeB systems and its correlation with uncompensated interfacial spins

    DEFF Research Database (Denmark)

    Du, Yuqing; Pan, Genhua; Moate, Roy

    2010-01-01

    Bottom pinned exchange bias systems of IrMn/CoFe and IrMn/CoFeB on CoFe seed layers were studied. Enhanced exchange anisotropy has been observed for IrMn/CoFeB samples annealed at 350 °C. The ferromagnetic and antiferromagnetic layers of both samples are polycrystalline and textured {110} for the...

  20. A novel sandwich Fe-Mn damping alloy with ferrite shell prepared by vacuum annealing

    Science.gov (United States)

    Qian, Bingnan; Peng, Huabei; Wen, Yuhua

    2018-04-01

    To improve the corrosion resistance of high strength Fe-Mn damping alloys, we fabricated a novel sandwich Fe-17.5Mn damping alloy with Mn-depleted ferrite shell by vacuum annealing at 1100 °C. The formation behavior of the ferrite shell obeys the parabolic law for the vacuum annealed Fe-17.5Mn alloy at 1100 °C. The sandwich Fe-17.5Mn alloy with ferrite shell exhibits not only better corrosion resistance but also higher damping capacity than the conventional annealed Fe-17.5Mn alloy under argon atmosphere. The existence of only ferrite shell on the surface accounts for the better corrosion in the sandwich Fe-17.5Mn alloy. The better damping capacity in the sandwich Fe-17.5Mn alloy is owed to more stacking faults inside both ɛ martensite and γ austenite induced by the stress from ferrite shell. Vacuum annealing is a new way to improve the corrosion resistance and damping capacity of Fe-Mn damping alloys.

  1. Clarifying roughness and atomic diffusion contributions to the interface broadening in exchange-biased NiFe/FeMn/NiFe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, V.P., E-mail: valberpn@yahoo.com.br [Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória (Brazil); Merino, I.L.C.; Passamani, E.C. [Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória (Brazil); Alayo, W. [Departamento de Física, Universidade de Pelotas, 96010-610 Pelotas (Brazil); Tafur, M. [Instituto de Ciências Exatas, Universidade Federal de Itajubá, 37500-903 Itajubá (Brazil); Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, 74001-970 Goiânia (Brazil); Magalhães-Paniago, R. [Universidade Federal de Minas Gerais, Belo Horizonte (Brazil); Alvarenga, A.D. [Instituto Nacional de Metrologia, 25250-020 Xerém (Brazil); Saitovitch, E.B. [Coordenação de Física Experimental e Baixas Energias, Centro Brasileiro de Pesquisas Físicas, 22290-180 Rio de Janeiro (Brazil)

    2013-09-02

    NiFe(30 nm)/FeMn(13 nm)/NiFe(10 nm) heterostructures prepared by magnetron sputtering at different argon working pressures (0.27, 0.67 and 1.33 Pa) were systematically investigated by using specular and off-specular diffuse X-ray scattering experiments, combined with ferromagnetic resonance technique, in order to distinguish the contribution from roughness and atomic diffusion to the total structural disorder at NiFe/FeMn interfaces. It was shown that an increase in the working gas pressure from 0.27 to 1.33 Pa causes an enhancement of the atomic diffusion at the NiFe/FeMn interfaces, an effect more pronounced at the top FeMn/NiFe interface. In particular, this atomic diffusion provokes a formation of non-uniform magnetic dead-layers at the NiFe/FeMn interfaces (NiFeMn regions with paramagnetic or weak antiferromagnetic properties); that are responsible for the substantial reduction of the exchange bias field in the NiFe/FeMn system. Thus, this work generically helps to understand the discrepancies found in the literature regarding the influence of the interface broadening on the exchange bias properties (e.g., exchange bias field) of the NiFe/FeMn system. - Highlights: • Roughness and atomic diffusion contributions to the interface broadening • Clarification of the exchange bias field dependence on the interface disorder • Ferromagnetic, paramagnetic and antiferromagnetic phases at the magnetic interface • Magnetic dead layers formed by increasing the argon work pressure • Atomic diffusion in heterostructures prepared at higher argon pressure.

  2. Determination of Mn, Fe, and Cu in chemically-treated wood pulps by the XRF addition method

    Energy Technology Data Exchange (ETDEWEB)

    Raemoe, J.; Klasila, T.; Piepponen, S. [VTT Chemical Technology (Finland); Sillanpaeae, M. [Oulu Univ. (Finland)

    2001-08-01

    A rapid X-ray fluorescence addition method has been developed for quantification of the technically most important metals in wood pulp matrix (Mn, Fe, and Cu). Pretreatment consisted of just two steps: first, acid was added to the sample to achieve homogeneous distribution of the metals; the pulp was then pressed lightly on to Mylar film. Total analysis time was less than 10 min. The concentration range investigated was up to 15 mg kg{sup -1} for Mn and up to 5 mg kg{sup -1} for Fe and Cu. Metal concentrations in Scandinavian pulps are not expected to exceed these amounts. The quantification limit was 2 mg kg{sup -1} for all three metals. The reproducibilities and repeatabilities were concentration-dependent and varied between 3 and 19% and between 1 and 17%, respectively. The squares of the linear correlation coefficients between measured intensity and added metal concentration were 0.994, 0.950, and 0.932 for Mn, Fe, and Cu, respectively. (orig.)

  3. V-insertion in Li(Fe,Mn)FePO4

    Science.gov (United States)

    Wu, T.; Liu, J.; Sun, L.; Cong, L.; Xie, H.; Abdel-Ghany, A.; Mauger, A.; Julien, C. M.

    2018-04-01

    Insertion of 3% vanadium in LiMn1-yFeyPO4 has been investigated, with y = 0.2 corresponding to the highest manganese concentration before the stress/strain field degrades the electrochemical performance. V substitutes for Fe2+ in the trivalent state V3+. This substitution is accompanied with the formation of Fe vacancies while Mn remains in the Mn2+ valence state, leading to a composition LiMn0.8Fe0.2-0.045V0.03□0.015PO4 where □ is a Fe vacancy. The comparison between electrochemical properties of a pristine sample and a sample with 3 mol.% vanadium made of particles with the same morphology (spherical particles with the same dispersion 100-150 nm in size) and same carbon coating (same conductivity of the carbon layer) is reported. Although the vanadium is in the V3+ state at open circuit voltage (2.6 V) before cycling, a reversible V3+/V2+ is observed when the potential of the half-cell is lowered below the redox potential of 1.8 V vs Li+/Li, due to Li-vacancies. The V-insertion improves the electrochemical properties, due to a synergetic effect of an increase of the lithium diffusion coefficient by a factor two and an increase of the electric conductivity at any Li-concentration during the cycling process, in contradiction with prior claims that attributed the increase of conductivity to V-based impurities.

  4. Negative Thermal Expansion over a Wide Temperature Range in Fe-Doped MnNiGe Composites.

    Science.gov (United States)

    Zhao, Wenjun; Sun, Ying; Liu, Yufei; Shi, Kewen; Lu, Huiqing; Song, Ping; Wang, Lei; Han, Huimin; Yuan, Xiuliang; Wang, Cong

    2018-01-01

    Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE) behaviors with the coefficients of thermal expansion (CTE) of -285.23 × 10 -6 K -1 (192-305 K) and -1167.09 × 10 -6 K -1 (246-305 K) have been obtained in Mn 0.90 Fe 0.10 NiGe and MnNi 0.90 Fe 0.10 Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn 0.92 Fe 0.08 NiGe/ x %Cu, the CTE gradually changes from -64.92 × 10 -6 K -1 (125-274 K) to -4.73 × 10 -6 K -1 (173-229 K) with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM) state into ferromagnetic (FM) state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment.

  5. Negative Thermal Expansion over a Wide Temperature Range in Fe-Doped MnNiGe Composites

    Directory of Open Access Journals (Sweden)

    Wenjun Zhao

    2018-02-01

    Full Text Available Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE behaviors with the coefficients of thermal expansion (CTE of −285.23 × 10−6 K−1 (192–305 K and −1167.09 × 10−6 K−1 (246–305 K have been obtained in Mn0.90Fe0.10NiGe and MnNi0.90Fe0.10Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn0.92Fe0.08NiGe/x%Cu, the CTE gradually changes from −64.92 × 10−6 K−1 (125–274 K to −4.73 × 10−6 K−1 (173–229 K with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM state into ferromagnetic (FM state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment.

  6. First-principle study of structural, electronic, vibrational and magnetic properties of HCN adsorbed graphene doped with Cr, Mn and Fe

    International Nuclear Information System (INIS)

    Shi, Li Bin; Wang, Yong Ping; Dong, Hai Kuan

    2015-01-01

    Graphical abstract: - Highlights: • Cr, Mn and Fe doped graphene is more active to adsorb HCN molecule than pristine graphene. • The conductivity of Fe and Mn doped graphene hardly changes after adsorption HCN molecule. • The conductivity of Cr doped graphene can be affected significantly due to HCN adsorption. • The Cr, Mn and Fe may destroy the long range order in graphene. • Phonon density of states suggests that Cr doped graphene is stable. - Abstract: The adsorption energy, electronic structure, lattice vibration and magnetic properties of Cr, Mn and Fe doped graphene with and without HCN adsorption are investigated by the first principles based on density functional theory. The physisorption and chemisorption have been identified. In the paper, Cr-NG, Mn-NG and Fe-NG denote HCN adsorption on Cr, Mn and Fe doped graphene with N atom toward the adsorption site. It is found that the adsorption energy is −1.36 eV for Fe-NG, −0.60 eV for Mn-NG and −0.86 eV for Cr-NG. The Cr-NG will convert from half-metallic behavior to semiconductor after adsorbing HCN molecule, which indicates that the conductivity changes significantly. Phonon density of states (PDOS) shows that the long range order in graphene can be destroyed by doping Fe, Mn and Cr. The imaginary frequency mode in PDOS suggests that Fe and Mn doped graphene is unstable, while Cr doped graphene is stable. The electronic properties are sensitive toward adsorbing HCN, indicating that Cr doped graphene is a promising sensor for detecting HCN molecule. This study provides a useful basis for understanding of a wide variety of physical properties on graphene

  7. Spin correlations in (Mn,Fe)2(P,Si) magnetocaloric compounds above Curie temperature

    NARCIS (Netherlands)

    Miao, X.F.; Caron, L.; Gubbens, P.C.M.; Yaouanc, A; Dalmas de Réotier, P; Luetkens, H.; Amato, A; van Dijk, N.H.; Brück, E.H.

    2016-01-01

    The longitudinal-field muon-spin relaxation (LF-μSR) technique was employed to study the spin correlations in (Mn,Fe)2(P,Si) compounds above the ferromagnetic transition temperature (TC). The (Mn,Fe)2(P,Si) compound under study is found to show itinerant magnetism. The standard deviation of the

  8. Magnetic structure and phase formation of magnetocaloric Mn-Fe-P-X compounds

    NARCIS (Netherlands)

    Ou, Z.Q.

    2013-01-01

    This thesis presents a study of the crystal and magnetic structure, the magnetocaloric effect and related physical properties in Mn-Fe-P-X compounds. The influences of boron addition in (Mn,Fe)2(P,As) compounds have been studied. It is found that boron atoms occupy interstitial sites within the

  9. Metallic ions catalysis for improving bioleaching yield of Zn and Mn from spent Zn-Mn batteries at high pulp density of 10.

    Science.gov (United States)

    Niu, Zhirui; Huang, Qifei; Wang, Jia; Yang, Yiran; Xin, Baoping; Chen, Shi

    2015-11-15

    Bioleaching of spent batteries was often conducted at pulp density of 1.0% or lower. In this work, metallic ions catalytic bioleaching was used for release Zn and Mn from spent ZMBs at 10% of pulp density. The results showed only Cu(2+) improved mobilization of Zn and Mn from the spent batteries among tested four metallic ions. When Cu(2+) content increased from 0 to 0.8 g/L, the maximum release efficiency elevated from 47.7% to 62.5% for Zn and from 30.9% to 62.4% for Mn, respectively. The Cu(2+) catalysis boosted bioleaching of resistant hetaerolite through forming a possible intermediate CuMn2O4 which was subject to be attacked by Fe(3+) based on a cycle of Fe(3+)/Fe(2+). However, poor growth of cells, formation of KFe3(SO4)2(OH)6 and its possible blockage between cells and energy matters destroyed the cycle of Fe(3+)/Fe(2+), stopping bioleaching of hetaerolite. The chemical reaction controlled model fitted best for describing Cu(2+) catalytic bioleaching of spent ZMBs. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effect of Fe substitution at the Ni and Mn sites on the magnetic properties of Ni50Mn35In15 Heusler alloys

    International Nuclear Information System (INIS)

    Halder, Madhumita; Suresh, K.G.

    2015-01-01

    The structural and magnetic properties of Ni 48 Fe 2 Mn 35 In 15 and Ni 50 Mn 34 FeIn 15 Heusler alloys have been investigated. At room temperature, Ni 48 Fe 2 Mn 35 In 15 has L2 1 cubic structure, whereas Ni 50 Mn 34 FeIn 15 shows a two-phase structure due to the martensitic transition. In the case of Ni 48 Fe 2 Mn 35 In 15 , there is only one magnetic transition at 316 K with no martensitic transition. However, in Ni 50 Mn 34 FeIn 15 , we observe the martensitic transition at about 280 K. The Curie temperatures for austenite and martensite phases are 314 and 200 K, respectively. The maximum magnetic entropy changes are found to be 5.5 and 4.5 J kg −1 K −1 for Ni 48 Fe 2 Mn 35 In 15 and Ni 50 Mn 34 FeIn 15 , respectively, for 50 kOe. Ni 50 Mn 34 FeIn 15 exhibits exchange bias behavior, with a bias field of 130 Oe at 5 K. Both the alloys satisfy the empirical relation between the martensitic transition and the valence electron concentration (e/a) ratio. - Highlights: • Structural and magnetic properties of Ni 48 Fe 2 Mn 35 In 15 and Ni 50 Mn 34 FeIn 15 Heusler alloys have been investigated. • Ni 48 Fe 2 Mn 35 In 15 does not undergo a martensitic transition, whereas Ni 50 Mn 34 FeIn 15 shows martensitic transition. • Ni 50 Mn 34 FeIn 15 alloy exhibits exchange bias behavior. • Both alloys satisfy the empirical relation between martensitic transition and valence electron concentration (e/a)

  11. Synthesis of α-Fe₂O₃ and Fe-Mn Oxide Foams with Highly Tunable Magnetic Properties by the Replication Method from Polyurethane Templates.

    Science.gov (United States)

    Feng, Yuping; Fornell, Jordina; Zhang, Huiyan; Solsona, Pau; Barό, Maria Dolors; Suriñach, Santiago; Pellicer, Eva; Sort, Jordi

    2018-02-11

    Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU) templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N₂ atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe₂O₃) foams are obtained from the metallic iron slurry independently of the N₂ flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N₂ flow. While the main phases for a N₂ flow rate of 180 L/h are α-Fe₂O₃ and FeMnO₃, the predominant phase for high N₂ flow rates (e.g., 650 L/h) is Fe₂MnO₄. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe₂MnO₄ foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N₂ flow rate (i.e., the amount of Fe₂MnO₄) is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids.

  12. Application of damping mechanism model and stacking fault probability in Fe-Mn alloy

    International Nuclear Information System (INIS)

    Huang, S.K.; Wen, Y.H.; Li, N.; Teng, J.; Ding, S.; Xu, Y.G.

    2008-01-01

    In this paper, the damping mechanism model of Fe-Mn alloy was analyzed using dislocation theory. Moreover, as an important parameter in Fe-Mn based alloy, the effect of stacking fault probability on the damping capacity of Fe-19.35Mn alloy after deep-cooling or tensile deformation was also studied. The damping capacity was measured using reversal torsion pendulum. The stacking fault probability of γ-austenite and ε-martensite was determined by means of X-ray diffraction (XRD) profile analysis. The microstructure was observed using scanning electronic microscope (SEM). The results indicated that with the strain amplitude increasing above a critical value, the damping capacity of Fe-19.35Mn alloy increased rapidly which could be explained using the breakaway model of Shockley partial dislocations. Deep-cooling and suitable tensile deformation could improve the damping capacity owning to the increasing of stacking fault probability of Fe-19.35Mn alloy

  13. Precipitation processes in DC-cast AlMn(Fe,Si) alloys

    International Nuclear Information System (INIS)

    Voeroes, G.; Kovacs, I.

    1990-01-01

    The precipitation processes in DC cast Al-Mn alloys were investigated by electrical resistivity measurements. It was obtained that the addition of Fe or Fe and Si influences basically the precipitation of Mn. In pure Al-Mn alloys a phase transition like behaviour was observed at about 550 degC, which can be related to the formation of two different precipitate particles below and above this temperature

  14. Magnetic Fe2MO4 (M:Fe, Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange

    International Nuclear Information System (INIS)

    Nguyen, Thi Dung; Phan, Ngoc Hoa; Do, Manh Huy; Ngo, Kim Tham

    2011-01-01

    We present a simple and efficient method for the fabrication of magnetic Fe 2 MO 4 (M:Fe and Mn) activated carbons (Fe 2 MO 4 /AC-H, M:Fe and Mn) by impregnating the activated carbon with simultaneous magnetic precursor and carbon modifying agent followed by calcination. The obtained samples were characterized by nitrogen adsorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), and the catalytic activity in heterogeneous Fenton oxidation of methyl orange (MO) was evaluated. The resulting Fe 2 MnO 4 /AC-H showed higher catalytic activity in the methyl orange oxidation than Fe 3 O 4 /AC-H. The effect of operational parameters (pH, catalyst loading H 2 O 2 dosage and initial MO concentration) on degradation performance of the oxidation process was investigated. Stability and reusability of selected catalyst were also tested.

  15. Microscopic optical and photoelectron measurements of MWO4 (M=Mn, Fe, and Ni)

    International Nuclear Information System (INIS)

    Ejima, T.; Banse, T.; Takatsuka, H.; Kondo, Y.; Ishino, M.; Kimura, N.; Watanabe, M.; Matsubara, I.

    2006-01-01

    Microscopic optical (absorption and reflection) and ultraviolet photoelectron spectroscopy (UPS) measurements were performed on single microcrystals of transition-metal tungstates, MWO 4 (M=Mn, Fe, and Ni) at room temperature using Schwarzschild objectives and laboratory light sources. The diameters of the spots were 40 μm (optical) and 13 μm (UPS). From the reflectance spectra, the absorption coefficient spectra were obtained through Kramers-Kronig analyses. The weak structures of absorption spectra attributed to the d-d transitions in transition metals suggest that the M3d states contribute to the upper part of the valence band. The UPS spectra suggest that the O2p and M3d states hybridize and spread wide in the valence band. The bottom of the conduction band is attributed to the empty M3d state in NiWO 4 , but the empty M4s states in FeWO 4 and MnWO 4 . The contribution of the W5d state in the conduction band is located in the higher energy side

  16. Magnetic studies of spin wave excitations in Fe/Mn multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Salhi, H. [LPMMAT, Faculté des Sciences Ain Chock, Université Hassan II de Casablanca, B.P. 5366 Mâarif, Casablanca (Morocco); LMPG, Ecole supérieure de technologie, Université Hassan de Casablanca, Casablanca (Morocco); Moubah, R.; El Bahoui, A.; Lassri, H. [LPMMAT, Faculté des Sciences Ain Chock, Université Hassan II de Casablanca, B.P. 5366 Mâarif, Casablanca (Morocco)

    2017-04-15

    The structural and magnetic properties of Fe/Mn multilayers grown by thermal evaporation technique were investigated by transmission electron microscopy, vibrating sample magnetometer and spin wave theory. Transmission electron microscopy shows that the Fe and Mn layers are continuous with a significant interfacial roughness. The magnetic properties of Fe/Mn multilayers were studied for various Fe thicknesses (t{sub Fe}). The change of magnetization as a function of temperature is well depicted by a T{sup 3/2} law. The Fe spin-wave constant was extracted and found to be larger than that reported for bulk Fe, which we attribute to the fluctuation of magnetic moments at the interface, due to the interfacial roughness. The experimental M (T) data were satisfactory fitted for multilayers with different Fe thicknesses; and several exchange interactions were extracted. - Highlights: • The structural and magnetic properties of Fe/Mn multilayers were studied. • Fe and Mn layers are continuous with an important interfacial roughness. • The Fe spin-wave constant is larger than that reported for bulk Fe due to the fluctuation of the interfacial magnetic moments.

  17. Magnetic studies of spin wave excitations in Fe/Mn multilayers

    International Nuclear Information System (INIS)

    Salhi, H.; Moubah, R.; El Bahoui, A.; Lassri, H.

    2017-01-01

    The structural and magnetic properties of Fe/Mn multilayers grown by thermal evaporation technique were investigated by transmission electron microscopy, vibrating sample magnetometer and spin wave theory. Transmission electron microscopy shows that the Fe and Mn layers are continuous with a significant interfacial roughness. The magnetic properties of Fe/Mn multilayers were studied for various Fe thicknesses (t Fe ). The change of magnetization as a function of temperature is well depicted by a T 3/2 law. The Fe spin-wave constant was extracted and found to be larger than that reported for bulk Fe, which we attribute to the fluctuation of magnetic moments at the interface, due to the interfacial roughness. The experimental M (T) data were satisfactory fitted for multilayers with different Fe thicknesses; and several exchange interactions were extracted. - Highlights: • The structural and magnetic properties of Fe/Mn multilayers were studied. • Fe and Mn layers are continuous with an important interfacial roughness. • The Fe spin-wave constant is larger than that reported for bulk Fe due to the fluctuation of the interfacial magnetic moments.

  18. Metastable bcc Fe-Mn alloys produced by rf sputtering

    International Nuclear Information System (INIS)

    Sumiyama, Kenji; Kadono, Masaru; Nakamura, Yoji

    1981-01-01

    Fe sub(1-x)Mn sub(x) alloy films obtained by rf sputtering technique have been investigated by X-ray diffraction, magnetization and Moessbauer effect measurements. The single bcc phase extends up to about x = 0.2, while a bcc-fcc mixed phase appears for x = 0.2 - 0.26. The lattice constants of the bcc phase are about 0.5% larger than those of the bulk specimens. The magnetization decreases monotonically with increasing x in the bcc phase, while it decreases sharply in the bcc-fcc mixed phase. These results are consistent with the Moessbauer spectra of these alloy films. The volume fraction of bcc and fcc phases has been estimated from Moessbauer analyses as well as magnetization measurements. (author)

  19. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    International Nuclear Information System (INIS)

    Ma, Y.L.; Liu, X.B.; Nguyen, V.V.; Poudyal, N.; Yue, M.; Liu, J.P.

    2016-01-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd 2 Fe 14 B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%. - Highlights: • Anisotropic bulk hybrid MnBi/NdFeB magnets were prepared. • MnBi content affected the density and coercivity temperature coefficient positively. • An energy product (BH) max of 10 MGOe was obtained at NdFeB content of 50 wt%.

  20. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.L. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); College of Metallurgical and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China); Liu, X.B.; Nguyen, V.V.; Poudyal, N. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Yue, M. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Liu, J.P., E-mail: pliu@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2016-08-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd{sub 2}Fe{sub 14}B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%. - Highlights: • Anisotropic bulk hybrid MnBi/NdFeB magnets were prepared. • MnBi content affected the density and coercivity temperature coefficient positively. • An energy product (BH){sub max} of 10 MGOe was obtained at NdFeB content of 50 wt%.

  1. Temporal and spatial variability of Fe and Mn in perched groundwater flowing through weathered argillite underlying a steep forested hillslope

    Science.gov (United States)

    Kim, H.; Bishop, J. K.

    2013-12-01

    Groundwater flowing through weathered bedrock dictates the runoff chemistry to streams in many catchments yet; its chemical evolution has been rarely documented. In particular, observations of Fe and Mn dynamics in groundwater are extremely challenging due to their high reactivity. To preserve the sample integrity for these elements we have developed a new sampling scheme that is applicable to autosamplers; a gravitational filtration system (GFS). GFS is capable of filtering samples by gravity within 30 minutes after the sampling. The GFS samples showed a good agreement with reference samples, which were collected following the standard sampling method for trace metals (i.e. immediate filtration and acidification). Since October 2011, GFS has been employed to monitor Fe and Mn in perched groundwater that moves through weathered argillite in an intensively instrumented hillslope (Rivendell), in the Angelo Coast Range Reserve. The study site is located at the headwaters of the Eel River, northern California, characterized by a typical coastal Californian Mediterranean climate. We collected groundwater samples at 3 wells along the hillslope (upslope (W10), mid-slope (W3) and near the creek (W1)) with 1-3 day intervals. Additionally, rainwater and throughfall samples were collected at a meadow near the hillslope and at the middle of the hillslope, respectively. The results from our observations indicate that Fe and Mn exhibit distinct spatial and temporal behavior under variable hydrologic conditions. The concentrations of Fe in throughfall vs. rainwater were similar (0.45μM vs. 0.49μM), but Mn in throughfall was 10-fold higher than that in rainwater (1.2 μM vs. 0.1 μM). In the early rainy season, W10's water table was deep (-18m) and Fe and Mn in W10 were 30-150 nM and 1-2 μM, respectively. As the rainy season proceeds, W10's water table rose by 4-6m, indicating the arrival of new water. At this time, Mn in W10 decreased to ~0.1 μM, synchronizing with the water

  2. Shielding of electromagnetic fields by metallic glasses with Fe and Co matrix

    International Nuclear Information System (INIS)

    Nowosielski, R.; Griner, S.

    1997-01-01

    The influence of chemical composition and magnetic and electric properties for shielding of electromagnetic fields with frequency 10-1000 kHz, by metallic glasses has been analysed. For investigation were selected two groups of metallic glasses with matrix of Fe and Co. Particularly, in there were selected metallic glasses as follows; Fe 78 Si 9 B 13 , Co 68 Fe 4 Mo 1.5 Si 13.5 B 13 , Co 69 Mo 2 Fe 4 Si 14 B 11 , Co 70.5 Fe 2.5 Mn 4 Mo 1 Si 9 B 15 . The experiments were realised for casting metallic glasses by the CMBS method in the form of strips with width 10 mm. Obtained results of shielding indicate clear for very good shielding effectiveness of one layer shields both electric and magnetic components of electromagnetic fields, although shielding of magnetic component is smaller than electric. (author). 17 refs, 5 figs, 9 tabs

  3. In-plain electric properties of [CaMnO3/REMO3] (RE=Bi, La M=Fe, Fe0.8Mn0.2) superlattices grown by pulsed laser deposition method

    NARCIS (Netherlands)

    Iwata, N.; Watabe, Y.; Oikawa, T.; Takase, K.; Huijben, Mark; Inaba, T.; Oshima, K.; Rijnders, Augustinus J.H.M.; Yamamoto, H.

    2014-01-01

    The [CaMnO3 (CMO)/REMO3] (RE = Bi, La M = Fe, Fe0.8Mn0.2) superlattices show semiconducting behavior with transition temperatures (TEg) of 71, 127, and 151 K in the [CMO/BiFe0.8Mn0.2O3], [CMO/BiFeO3], and [CMO/LaFeO3] superlattices. The formation of a magnetic polaron is expected in the CMO layer of

  4. Silicon induced Fe deficiency affects Fe, Mn, Cu and Zn distribution in rice (Oryza sativa L.) growth in calcareous conditions.

    Science.gov (United States)

    Carrasco-Gil, Sandra; Rodríguez-Menéndez, Sara; Fernández, Beatriz; Pereiro, Rosario; de la Fuente, Vicenta; Hernandez-Apaolaza, Lourdes

    2018-04-01

    A protective effect by silicon in the amelioration of iron chlorosis has recently been proved for Strategy 1 species, at acidic pH. However in calcareous conditions, the Si effect on Fe acquisition and distribution is still unknown. In this work, the effect of Si on Fe, Mn, Cu and Zn distribution was studied in rice (Strategy 2 species) under Fe sufficiency and deficiency. Plants (+Si or-Si) were grown initially with Fe, and then Fe was removed from the nutrient solution. The plants were then analysed using a combined approach including LA-ICP-MS images for each element of interest, the analysis of the Fe and Si concentration at different cell layers of root and leaf cross sections by SEM-EDX, and determining the apoplastic Fe, total micronutrient concentration and oxidative stress indexes. A different Si effect was observed depending on plant Fe status. Under Fe sufficiency, Si supply increased Fe root plaque formation, decreasing Fe concentration inside the root and increasing the oxidative stress in the plants. Therefore, Fe acquisition strategies were activated, and Fe translocation rate to the aerial parts was increased, even under an optimal Fe supply. Under Fe deficiency, +Si plants absorbed Fe from the plaque more rapidly than -Si plants, due to the previous activation of Fe deficiency strategies during the growing period (+Fe + Si). Higher Fe plaque formation due to Si supply during the growing period reduced Fe uptake and could activate Fe deficiency strategies in rice, making it more efficient against Fe chlorosis alterations. Silicon influenced Mn and Cu distribution in root. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Synthesis and structural characteristics of the spinel-type solid solutions in the Mn-V-Fe-O system

    International Nuclear Information System (INIS)

    Ponomaryov, V.I.; Dubrovina, I.N.; Zakharov, R.G.

    1976-01-01

    The part of the spinel region bounded by the compounds Mn 3 O 4 , Mn 2 VO 4 , Fe 2 VO 4 , and Fe 3 O 4 in the four-component system Mn-V-Fe-O was studied. The compounds were synthesized by ceramic technology. Samples were heated in a CO 2 atmosphere free of oxygen at 1100 0 C for 25-50 hr. It was found that the average composition of the spinel compound in the system had the formula Mnsub(1.00)Fesub(1.33)Vsub(0.67)O 4 . X-ray and neutron radiogrphic analyses were made. Crystallo-chemical formulas of the solid solutions considered are tabulated. The magnetic moments of saturation, calculated by the Neel model, are shown, and their experimental values are presented. The crystallo-chemical formulas of the spinel solid solutions in the Mn-V-Fe-O system are of interest in interpreting the concentration dependence of the physico-chemical properties of solid solutions of oxides based on metals with varying valence

  6. Determination of chemical activities of Fe, Cr, Ni and Mn in stainless steel 316 by Knudsen effusion cell mass spectrometry

    International Nuclear Information System (INIS)

    Venugopal, V.; Kulkarni, S.G.; Subbanna, C.S.; Sood, D.D.

    1995-01-01

    Cold-worked austenitic stainless steel of the type AISI 316 is being used as the cladding and wrapper materials in fast reactor fuel pins. Knowledge of the thermodynamic activities of the steel constituents is necessary to predict the possibility of fuel-cladding, coolant-cladding or fission product-cladding chemical reactions. The thermodynamic activities of Fe, Cr, Ni and Mn for stainless steel 316 were determined by measuring their partial pressures in the temperature range 1293-2120 K, using Knudsen effusion cell mass spectrometry. High purity Ag was used as an internal calibrant. The chemical activities of Fe (a Fe ), Cr (a Cr ), Ni (a Ni ) and Mn (a Mn ) were evaluated using literature data for the vapour pressures of pure metals. log a Fe ±0.18=-1.586+2074/T (T=1293-1872 K)log a Cr ±0.30=-2.350+2612/T (T=1293-2120 K)log a Ni ±0.20=-2.140+1794/T (T=1468-1974 K)log a Mn ±0.23=-2.041-5478/T (T=1302-1894 K) ((orig.))

  7. Influence of substrate rocks on Fe-Mn crust composition

    Science.gov (United States)

    Hein, J.R.; Morgan, C.L.

    1999-01-01

    Principal Component and other statistical analyses of chemical and mineralogical data of Fe-Mn oxyhydroxide crusts and their underlying rock substrates in the central Pacific indicate that substrate rocks do not influence crust composition. Two ridges near Johnston Atoll were dredged repetitively and up to seven substrate rock types were recovered from small areas of similar water depths. Crusts were analyzed mineralogically and chemically for 24 elements, and substrates were analyzed mineralogically and chemically for the 10 major oxides. Compositions of crusts on phosphatized substrates are distinctly different from crusts on substrates containing no phosphorite. However, that relationship only indicates that the episodes of phosphatization that mineralized the substrate rocks also mineralized the crusts that grew on them. A two-fold increase in copper contents in crusts that grew on phosphatized clastic substrate rocks, relative to crusts on other substrate rock types, is also associated with phosphatization and must have resulted from chemical reorganization during diagenesis. Phosphatized crusts show increases in Sr, Zn, Ca, Ba, Cu, Ce, V, and Mo contents and decreases in Fe, Si, and As contents relative to non-phosphatized crusts. Our statistical results support previous studies which show that crust compositions reflect predominantly direct precipitation from seawater (hydrogenetic), and to lesser extents reflect detrital input and diagenetic replacement of parts of the older crust generation by carbonate fluorapatite.

  8. Elevated concentrations of dissolved Ba, Fe and Mn in a mangrove subterranean estuary: Consequence of sea level rise?

    Science.gov (United States)

    Sanders, Christian J.; Santos, Isaac R.; Barcellos, Renato; Silva Filho, Emmanoel V.

    2012-07-01

    Groundwater underlying a mangrove habitat was studied to determine the geochemical nature of Ba, Fe and Mn as related to dissolved organic carbon (DOC), SO4 and salinity (Sepetiba Bay, Brazil). Wells were placed across geobotanic facies and sampled monthly for a year. We observed non-conservative behavior and elevated concentrations of dissolved metals relative to local end-members (i.e., fresh river water and seawater). Average Ba concentrations were near 2000 nM in an area with low salinity (˜5.3). Dissolved Fe (up to 654 μM) was two orders of magnitude greater in fresh groundwater than in the seaward sampling stations. Manganese concentrations were greatest (112 μM) in the high salinity (˜65) zone, being directly influenced by salinity. Groundwater Ba, Fe and Mn showed differing site specific concentrations, likely related to ion exchange processes and redox-controlled cycling along distinct mangrove facies. The results of this work show that metal concentrations are altered relative to conservative mixing between terrestrial and marine endmembers, illustrating the importance of mangrove subterranean estuaries as biogeochemical reactors. Roughly-estimated submarine groundwater discharge-derived dissolved Ba, Fe and Mn fluxes were at least one order of magnitude greater than river-derived fluxes into Sepetiba Bay.

  9. Enhancement of exchange coupling interaction of NdFeB/MnBi hybrid magnets

    Science.gov (United States)

    Nguyen, Truong Xuan; Nguyen, Khanh Van; Nguyen, Vuong Van

    2018-03-01

    MnBi ribbons were fabricated by melt - spinning with subsequent annealing. The MnBi ribbons were ground and mixed with NdFeB commercial Magnequench powders (MQA). The hybrid powder mixtures were subjected thrice to the annealing and ball-milling route. The hybrid magnets (100 - x)NdFeB/xMnBi, x=0, 30, 40, 50 and 100 wt% were in-mold aligned in an 18 kOe magnetic field and warm compacted at 290 °C by 2000 psi uniaxial pressure for 10 min. An enhancement of the exchange coupling of NdFeB/MnBi hybrid magnets was obtained by optimizing the magnets' microstructures via annealing and ball-milling processes. The magnetic properties of prepared NdFeB/MnBi hybrid magnets were studied and discussed in details.

  10. Tuning of the magneto-caloric effects in MnFe(P,As) by substitution of elements

    International Nuclear Information System (INIS)

    Tegus, O.; Brueck, E.; Li, X.W.; Zhang, L.; Dagula, W.; Boer, F.R. de; Buschow, K.H.J.

    2004-01-01

    MnFe(P,As) displays a large magnetocaloric effect around room temperature. Substitution of Cr for Fe results in a reduction of both the ordering temperature and the magnetocaloric effect. Substitution of Co for Fe leads to a decrease of the ordering temperature, whereas 10% extra Fe substituted for Mn leads to an increase of the ordering temperature. Finally, 10% extra Mn substituted for Fe results in an enhanced magnetocaloric effect with hardly any change of ordering temperature

  11. MWCNT-MnFe2O4 nanocomposite for efficient hyperthermia applications

    Science.gov (United States)

    Seal, Papori; Hazarika, Monalisa; Paul, Nibedita; Borah, J. P.

    2018-04-01

    In this work we present synthesis of multi-walled carbon nanotube (MWCNT)-Manganese ferrite (MnFe2O4) nanocomposite and its probable application in hyperthermia. MnFe2O4 nanoparticles were synthesized by co-precipitation method. X ray diffractogram (XRD) confirms the formation of cubic phase of MnFe2O4 with preferred crystallographic orientation along (311) plane. High resolution electron microscope (HRTEM) image of the composites confirms the presence of MnFe2O4 spherical nanoparticles on the surface of CNT which are bound strongly to the surface. MWCNT-MnFe2O4 nanocomposite were prepared after acid functionalization of MWCNT. Vibrational features of the synthesized samples were confirmed through Fourier transformed infra-red spectroscopy (FTIR). FTIR spectra of acid functionalized MWCNT shows a peak positioned at ˜1620cm-1 which corresponds to C=O functional group of carboxylic acid. Prepared MnFe2O4 nanoparticles and MWCNT-MnFe2O4 nanocomposites were subjected to hyperthermia studies.

  12. Magnetic properties in (Mn,Fe)-codoped ZnO nanowire

    International Nuclear Information System (INIS)

    Cao, Huawei; Lu, Pengfei; Cong, Zixiang; Yu, Zhongyuan; Cai, Ningning; Zhang, Xianlong; Gao, Tao; Wang, Shumin

    2013-01-01

    Using the first-principles density functional theory, we have studied the electronic structures and magnetic properties of Mn/Fe codoped ZnO nanowires systematically. The calculated results of formation energy indicate that the configuration of the lowest energy where Mn and Fe atoms form nearest neighbors on the outer cylindrical surface layer along the [0001] direction, will be determined. The magnetic coupling of 8 types of Mn/Fe codoped ZnO nanowires was investigated and ferromagnetic state was found in certain configurations. The mechanism is from the fierce hybridization between 3d of Mn and Fe with O 2p near the Fermi level. The relative energy difference for configuration VIII is 0.221 eV, which indicates that room temperature ferromagnetism could be obtained in such a system and Mn/Fe codoped ZnO nanowires are a promising nanoscale spintronic material. - Highlights: • The stable structure prefers that Mn/Fe form nearest neighbors on the outer surface. • The fierce p–d hybridization is responsible for ferromagnetic (FM) coupling. • Mn/Fe codoped ZnO nanowire is a promising FM semiconductor material

  13. Magnetic properties in (Mn,Fe)-codoped ZnO nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huawei [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Cong, Zixiang [School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100976 (China); Yu, Zhongyuan; Cai, Ningning; Zhang, Xianlong [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Gao, Tao [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Wang, Shumin [Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden); State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2013-12-02

    Using the first-principles density functional theory, we have studied the electronic structures and magnetic properties of Mn/Fe codoped ZnO nanowires systematically. The calculated results of formation energy indicate that the configuration of the lowest energy where Mn and Fe atoms form nearest neighbors on the outer cylindrical surface layer along the [0001] direction, will be determined. The magnetic coupling of 8 types of Mn/Fe codoped ZnO nanowires was investigated and ferromagnetic state was found in certain configurations. The mechanism is from the fierce hybridization between 3d of Mn and Fe with O 2p near the Fermi level. The relative energy difference for configuration VIII is 0.221 eV, which indicates that room temperature ferromagnetism could be obtained in such a system and Mn/Fe codoped ZnO nanowires are a promising nanoscale spintronic material. - Highlights: • The stable structure prefers that Mn/Fe form nearest neighbors on the outer surface. • The fierce p–d hybridization is responsible for ferromagnetic (FM) coupling. • Mn/Fe codoped ZnO nanowire is a promising FM semiconductor material.

  14. Eutectic Al-Si-Cu-Fe-Mn alloys with enhanced mechanical properties at room and elevated temperature

    International Nuclear Information System (INIS)

    Wang, E.R.; Hui, X.D.; Chen, G.L.

    2011-01-01

    Highlights: → Fabricated a kind of high performance Al-Si alloy with low production costs. → Clarified two different morphologies of α-Fe and corresponding crystal structures. → Analyzed the crystallography of Cu-rich phases before and after T6 treatment. → Fracture mechanism of precipitates in experimental alloys during tensile process. -- Abstract: In this paper, we report a novel kind of eutectic Al-Si-Cu-Fe-Mn alloy with ultimate tensile strength up to 336 MPa and 144.3 MPa at room temperature and 300 o C, respectively. This kind of alloy was prepared by metal mold casting followed by T6 treatment. The microstructure is composed of eutectic and primary Si, α-Fe, Al 2 Cu and α-Al phases. Iron-rich phases, which were identified as BCC type of α-Fe (Al 15 (Fe,Mn) 3 Si 2 ), exist in blocky and dendrite forms. Tiny blocky Al 2 Cu crystals disperse in α-Fe dendrites or at the grain boundaries of α-Al. During T6 treatment, Cu atoms aggregate from the super-saturation solid solution to form GP zones, θ'' or θ'. Further analysis found that the enhanced mechanical properties of the experimental alloy are mainly attributed to the formation of α-Fe and copper-rich phases.

  15. HIGH TEMPERATURE TENSILE PROPERTIES OF NEW FE-CR-MN DEVELOPED STEEL

    OpenAIRE

    M. Mahmoudiniya; Sh. Kheirandish; M. Asadi Asadabad

    2017-01-01

    Nowadays, Ni-free austenitic stainless steels are being developed rapidly and high price of nickel is one of the most important motivations for this development. At present research a new FeCrMn steel was designed and produced based on Fe-Cr-Mn-C system. Comparative studies on microstructure and high temperature mechanical properties of  new steel and AISI 316 steel were done. The results showed that new FeCrMn developed steel has single austenite phase microstructure, and its tensile st...

  16. Magnetic properties and structure of FePt/FeMn multilayers

    International Nuclear Information System (INIS)

    Phuoc, Nguyen N.; Suzuki, Takao

    2007-01-01

    A systematic study of the magnetic properties by ion beam sputter-deposition system, was conducted in conjunction with the structure of FePt/FeMn multilayers fabricated onto MgO(0 0 1) substrates. Both parallel and perpendicular exchange biases were observed in the multilayers and were found to decrease drastically, as the deposition temperature is higher than 350 deg. C, which is evidently due to the interdiffusion at the interface. The thickness dependence study shows that the perpendicular magnetic anisotropy observed in the multilayers originates from surface anisotropy, being consistent with the decrease of perpendicular magnetic anisotropy as the deposition temperature is increased. The difference between parallel and perpendicular blocking temperatures that was clearly observed, is possibly due to the spin canting out of plane at the interface

  17. Asymmetrically shaped hysteresis loop in exchange-biased FeNi/FeMn film

    International Nuclear Information System (INIS)

    Gnatchenko, S.L.; Merenkov, D.N.; Bludov, A.N.; Pishko, V.V.; Shakhayeva, Yu.A.; Baran, M.; Szymczak, R.; Novosad, V.A.

    2006-01-01

    The magnetization reversal of the bilayer polycrystalline FeNi(50 A)/FeMn(50 A) film sputtered in a magnetic field has been studied by magnetic and magneto-optical techniques. The external magnetic fields were applied along the easy or hard magnetization axis of the ferromagnetic permalloy layer. The asymmetry of hysteresis loop has been found. Appreciable asymmetry and the exchange bias were observed only in the field applied along the easy axis. The specific features of magnetization reversal were explained within the phenomenological model that involves high-order exchange anisotropy and misalignment of the easy axes of the antiferromagnetic and ferromagnetic layers. It has been shown that the film can exist in one of three equilibrium magnetic states in the field applied along the easy axis. The transitions between these states occur as first-order phase transitions. The observed hysteresis loop asymmetry is related to the existence of the metastable state

  18. Generalized Synthesis of EAs [E = Fe, Co, Mn, Cr] Nanostructures and Investigating Their Morphology Evolution

    Directory of Open Access Journals (Sweden)

    P. Desai

    2015-01-01

    Full Text Available This paper illustrates a novel route for the synthesis of nanostructured transition metal arsenides including those of FeAs, CoAs, MnAs, and CrAs through a generalized protocol. The key feature of the method is the use of one-step hot-injection and the clever use of a combination of precursors which are low-melting and highly reactive such as metal carbonyls and triphenylarsine in a solventless setup. This method also facilitates the formation of one-dimensional nanostructures as we move across the periodic table from CrAs to CoAs. The chemical basis of this reaction is simple redox chemistry between the transition metals, wherein the transition metal is oxidized from elemental state (E0 to E3+in lieu of reduction of As3+ to As3−. While the thermodynamic analysis reveals that all these conversions are spontaneous, it is the kinetics of the process that influences morphology of the product nanostructures, which varies from extremely small nanoparticles to nanorods. Transition metal pnictides show interesting magnetic properties and these nanostructures can serve as model systems for the exploration of their intricate magnetism as well as their applications and can also function as starting materials for the arsenide based nanosuperconductors.

  19. Nuclear prehistory influence on transfer velocity of 54Mn impurity 'hot' atoms in irradiated metallic iron

    International Nuclear Information System (INIS)

    Alekseev, I.E.

    2007-01-01

    Influence of nuclear prehistory on transfer velocity of 54 Mn impurity 'hot'-atoms - got by different nuclear channels: 56 Fe(d, α), 54 Fe(n,p) in irradiated metallic iron - is studied. Irradiation of targets were carried out in U-120 accelerator (energy range 7.3/5.3 MeV, deuteron beam current makes up 5 μA). Mean density of thermal neutron (WWR-M reactor) makes up 8.6·10 13 neutron·cm -2 ·s -1 . It is shown, that transfer velocity of 54 Mn 'hot' atoms is defining by rate of radiation damage of targets in the irradiation process at that a key importance has a bombarding particles type applied for radioactive label getting

  20. In situ spectroscopic and solution analyses of the reductive dissolution of Mn02 by Fe(II)

    Science.gov (United States)

    Villinski, John E.; O'Day, Peggy A.; Corley, Timothy L.; Conklin, Martha H.

    2001-01-01

    The reductive dissolution of MnO2 by Fe(II) under conditions simulating acid mine drainage (pH 3, 100 mM SO42-) was investigated by utilizing a flow-through reaction cell and synchrotron X-ray absorption spectroscopy. This configuration allows collection of in situ, real-time X-ray absorption near-edge structure (XANES) spectra and bulk solution samples. Analysis of the solution chemistry suggests that the reaction mechanism changed (decreased reaction rate) as MnO2 was reduced and Fe(III) precipitated, primarily as ferrihydrite. Simultaneously, we observed an additional phase, with the local structure of jacobsite (MnFe2O4), in the Mn XANES spectra of reactants and products. The X-ray absorbance of this intermediate phase increased during the experiment, implying an increase in concentration. The presence of this phase, which probably formed as a surface coating, helps to explain the reduced rate of dissolution of manganese(IV) oxide. In natural environments affected by acid mine drainage, the formation of complex intermediate solid phases on mineral surfaces undergoing reductive dissolution may likewise influence the rate of release of metals to solution.

  1. Gibbs energy modelling of the driving forces and calculation of the fcc/hcp martensitic transformation temperatures in Fe-Mn and Fe-Mn-Si alloys

    International Nuclear Information System (INIS)

    Cotes, S.; Fernandez Guillermet, A.; Sade, M.

    1999-01-01

    Very recent, accurate dilatometric measurements of the fcc hcp martensitic transformation (MT) temperatures are used to develop a new thermodynamic description of the fcc and hcp phases in the Fe-Mn-Si system, based on phenomenological models for the Gibbs energy function. The composition dependence of the driving forces for the fcc→hcp and the hcp→fcc MTs is established. Detailed calculations of the MT temperatures are reported, which are used to investigate the systematic effects of Si additions upon the MT temperatures of Fe-Mn alloys. A critical comparison with one of the most recent thermodynamic analyses of the Fe-Mn-Si system, which is due to Forsberg and Agren, is also presented. (orig.)

  2. Multiple collinear magnetic arrangements in thin Mn films supported on Fe(001). Antiferromagnetic versus ferromagnetic behavior

    International Nuclear Information System (INIS)

    Martinez, E.; Vega, A.; Robles, R.; Vazquez de Parga, A.L.

    2005-01-01

    We present a theoretical study of the magnetic properties of thin Mn films of 6 and 7 monolayers supported on Fe(001). The ab-initio tight binding linear muffin tin orbital (TB-LMTO) method was used to investigate the competition between ferromagnetic (F) and antiferromagnetic (AF) couplings within the system. We found several collinear magnetic solutions that may coexist at room temperature. The most stable configurations are characterized by AF coupling between the surface and subsurface Mn layers together with F coupling between Mn and Fe at the interface. The ground state arrangements for the 6 and 7 Mn films display opposite sign of the surface magnetic moment relative to the Fe substrate. The implications of these results in the possible onset of non-collinear magnetism when a step is present at the interface are discussed in comparison with Cr/Fe systems where non-collinear magnetism has been recently reported

  3. Thermodynamic properties of alloys and fusibility diagram of Fe-Ni-Mn system

    International Nuclear Information System (INIS)

    Danilenko, V.M.; Turkevich, V.Z.

    1987-01-01

    Thermodynamic calculation of the fusibility diagram of Fe-Ni-Mn system in the subregular solution approximation is performed. The calculated fusibility diagram fits the experimental one in kind and degree

  4. Structural and magnetic properties of Mn{sub 50}Fe{sub 50−x}Sn{sub x} (x=10, 15 and 20) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Tanmoy [LCMP, S.N. Bose National Centre for Basic Sciences, Kolkata 700106 (India); Agarwal, Sandeep [Haldia Institute of Technology, Haldia 721657 (India); Mukhopadhyay, P.K., E-mail: pkm@bose.res.in [LCMP, S.N. Bose National Centre for Basic Sciences, Kolkata 700106 (India)

    2016-11-15

    In this work we report measurements and comparisons of the structural, magnetic and transport properties of a series of Mn{sub 50}Fe{sub 50−x}Sn{sub x} alloys (x=10, 15 and 20). We found that while the lower Sn composition sample stabilized in β-Mn-type crystallographic phase, the higher Sn composition alloys contained both β-Mn-type as well as Mn{sub 3}Sn-type hexagonal DO{sub 19} phases. Through d.c. and a.c. magnetic property measurements we have established the existence of a ferromagnetic transition near room temperature followed by a spin reorientation at lower temperature in the Mn{sub 3}Sn-type crystallographic phase of the alloys. Our resistivity study also revealed an interesting behavior with negative temperature coefficient (TCR) in these alloys. - Highlights: • Mn{sub 50}Fe{sub 50-x}Sn{sub x} alloys were studied over a limited concentration range. • Lower Sn alloys behaved similar to ß-Mn alloys both structurally and magnetically. • Higher Sn alloys showed magnetic transitions similar to Mn{sub 3}Sn and Fe{sub 3}Sn. • Resistivity showed bad metallic behavior with negetive temperature coefficient.

  5. Magnetic properties and loss separation in FeSi/MnZnFe2O4 soft magnetic composites

    International Nuclear Information System (INIS)

    Lauda, M.; Füzer, J.; Kollár, P.; Strečková, M.; Bureš, R.; Kováč, J.; Baťková, M.; Baťko, I.

    2016-01-01

    We investigated composites that have been prepared from FeSi powders covered with MnZnFe 2 O 4 (MnZn ferrite), which was prepared by sol–gel synthesis accompanied with the auto-combustion process. The aim of this paper is to analyze the complex permeability and core losses of prepared samples with different amount of MnZn ferrite. The microstructure and the powder morphology were examined by scanning electron microscopy. Magnetic measurements on bulk samples were carried out using a vibrating sample magnetometer, an impedance analyzer and hysteresisgraphs. The results indicate that the composites with 2.6 wt% MnZn ferrite show better soft magnetic properties than the composites with about 6 wt% MnZn ferrite. - Highlights: • Successful preparation of soft magnetic composite FeSi/MnZnFe 2 O 4 . • Study of the complex magnetic permeability. • Comparison of different compositions of prepared SMC's. • Determination of parts of magnetic losses.

  6. Equilibrium constant and nitrogen activity and the parameters of interaction eN(N), rN(N,Cr), rN(N,Mn) in high nitrogen steels of Fe-Cr-Mn-N type

    International Nuclear Information System (INIS)

    Svyazhin, A.G.; Siwka, J.; Rashev, T.

    1999-01-01

    In the paper a description of a thermodynamic of liquid solutions of Fe-Cr-Mn-N type with using a concept of parameters of an interaction has been presented. A temperature relationship of the equilibrium constant K N(Fe) and values of self interaction parameters e N (N) , r N (N,Cr) , r N (N,Mn) and t N (N,Cr,Cr) has been determined for mean values of temperatures of liquid metal equal 1990 K and 2090 K. By application of a theory of regular solutions those values were recalculated for a temperature 1873 K. (orig.)

  7. Solid solution inhomogeneity in DC-cast AlMn(Fe,Si) ingots

    International Nuclear Information System (INIS)

    Lakner, J.; Kovacs-Csetenyi, E.; Lal, K.

    1990-01-01

    The aim of this work was to characterize the structure in cast state of the AlMn1 alloy containing different Fe and Si concentration. The casting parameters were intended to keep constant and the effect of impurities was studied. The inhomogeneity along the diameter of cast billet was characterized by the dendrite arm spacing and by the solid solution content. To explain the results the model developed for binary AlFe and AlMn alloys was applied

  8. Exchange anisotropy and micromagnetic properties of PtMn/NiFe bilayers

    International Nuclear Information System (INIS)

    Pokhil, Taras; Linville, Eric; Mao, Sining

    2001-01-01

    Magnetic microstructure, exchange induced uniaxial and unidirectional anisotropy and structural transformation have been studied in PtMn/NiFe bilayer films and small elements as a function of annealing time. The relationship between the fcc-fct ordering phase transformation in PtMn and the development of exchange induced magnetic properties in PtMn/NiFe bilayers is complicated by the fact that the transformation occurs throughout the entire volume of the PtMn film, while the exchange between the layers is predominantly an interface effect. Consequently, the development of the exchange anisotropy should depend primarily on the character of the structural transformation at the interface between PtMn and NiFe. The purpose of this article is to correlate the volume phase transformation in PtMn to the development of exchange anisotropy and micromagnetic behavior in PtMn/NiFe bilayers. The interface structure can be inferred from the anisotropy and micromagnetic measurements, leading to a model that explains the relationship between the volume and interface transformation structures in PtMn, and magnetic properties of the bilayers. The structure and magnetic properties were characterized by x-ray diffraction, vibrating sample magnetometry, and magnetic force microscopy. [copyright] 2001 American Institute of Physics

  9. Synthesis of metal-doped Mn-Zn ferrite from the leaching solutions of vanadium slag using hydrothermal method

    Science.gov (United States)

    Liu, Shiyuan; Wang, Lijun; Chou, Kuochih

    2018-03-01

    Using vanadium slag as raw material, Metal-doped Mn-Zn ferrites were synthesized by multi-step processes including chlorination of iron and manganese by NH4Cl, selective oxidation of Fe cation, and hydrothermal synthesis. The phase composition and magnetic properties of synthesized metal-doped Mn-Zn ferrite were characterized by X-ray powder diffraction, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photon spectra (XPS) and physical property measurement. It was found that Mn/Zn mole ratio significantly affected the magnetic properties and ZnCl2 content significantly influenced the purity of the phase of ferrite. Synthesized metal-doped Mn-Zn ferrite, exhibiting a larger saturation magnetization (Ms = 60.01 emu/g) and lower coercivity (Hc = 8.9 Oe), was obtained when the hydrothermal temperature was controlled at 200 °C for 12 h with a Mn/Zn mole ratio of 4. The effect of ZnCl2 content, Mn/Zn mole ratio and temperature on magnetic properties of the synthesized metal-doped Mn-Zn ferrite were systemically investigated. This process provided a new insight to utilize resources in the aim of obtaining functional materials.

  10. Mechanisms controlling Cu, Fe, Mn, and Co profiles in peat of the Filson Creek Fen, northeastern Minnesota

    Science.gov (United States)

    Walton-Day, K.; Filipek, L.H.; Papp, C.S.E.

    1990-01-01

    Filson Creek Fen, located in northeastern Minnesota, overlies a Cu-Ni sulfide deposit. A site in the fen was studied to evaluate the hydrogeochemical mechanisms governing the development of Fe, Mn, Co, and Cu profiles in the peat. At the study site, surface peat approximately 1 m thick is separated from the underlying mineralized bedrock by a 6-12 m thickness of lake and glaciofluvial sediments and till. Concentrations of Fe, Mn, Co, and Cu in peat and major elements in pore water delineate a shallow, relatively oxidized, Cu-rich zone overlying a deeper, reduced, Fe-, Mn-, and Co-rich zone within the peat. Sequential metal extractions from peat samples reveal that 40-55% of the Cu in the shallow zone is associated with organic material, whereas the remaining Cu is distributed between iron-oxide, sulfide, and residual fractions. Sixty to seventy percent of the Fe, Mn, and Co concentrated in the deeper zone occur in the residual phase. The metal profiles and associations probably result from non-steady-state input of metals and detritus into the fen during formation of the peat column. The enrichment of organic-associated Cu in the upper, oxidized zone represents a combination of Cu transported into the fen with detrital plant fragments and soluble Cu, derived from weathering of outcrop and subcrop of the mineral deposit, transported into the fen, and fixed onto organic matter in the peat. The variable stratigraphy of the peat indicates that weathering processes and surface vegetation have changed through time in the fen. The Fe, Mn, and Co maxima at the base of the peat are associated with a maximum in detrital matter content of the peat resulting from a transition between the underlying inorganic sedimentary environment to an organic sedimentary environment. The chemistry of sediments and ground water collected beneath the peat indicate that mobilization of metals from sulfide minerals in the buried mineral deposit or glacial deposits is minimal. Therefore, the

  11. Structured mesoporous Mn, Fe, and Co oxides: Synthesis, physicochemical, and catalytic properties

    Science.gov (United States)

    Maerle, A. A.; Karakulina, A. A.; Rodionova, L. I.; Moskovskaya, I. F.; Dobryakova, I. V.; Egorov, A. V.; Romanovskii, B. V.

    2014-02-01

    Structured mesoporous Mn, Fe, and Co oxides are synthesized using "soft" and "hard" templates; the resulting materials are characterized by XRD, SEM, TEM, BET, and TG. It is shown that in the first case, the oxides have high surface areas of up to 450 m2/g that are preserved after calcination of the material up to 300°C. Even though, the surface area of the oxides prepared by the "hard-template" method does not exceed 100 m2/g; it is, however, thermally stable up to 500°C. Catalytic activity of mesoporous oxides in methanol conversion was found to depend on both the nature of the transition metal and the type of template used in synthesis.

  12. Magnetism of DyMn2 and HoMn2 - 57Fe and 119Sn Moessbauer studies

    International Nuclear Information System (INIS)

    Krop, K.; Haeufler, T.; Hilscher, G.; Steiner, W.

    1995-01-01

    Moessbauer spectra were measured for two Laves phase compounds DyMn 2 and HoMn 2 in which manganese was substituted to 0.5% with 57 Fe and to 0.2% with 119 Sn. At 4.2 K the 57 Fe and 119 Sn spectra of the Dy compound were unambiguously fitted each with two Zeeman patterns (with relative contributions to the spectra 3:1) corresponding to two different Mn sites - magnetic and nonmagnetic. Transferred hyperfine fields at 119 Sn were found to be proportional to the magnetic moment of Dy and its ferromagnetic component, corroborating the magnetic structure found in neutron diffraction (ND) experiment. The same procedure was carried on with the spectra measured for the Ho compound, but the above mentioned proportionality was not found. ((orig.))

  13. Refinement of Modeled Aqueous-Phase Sulfate Production via the Fe- and Mn-Catalyzed Oxidation Pathway

    Directory of Open Access Journals (Sweden)

    Syuichi Itahashi

    2018-04-01

    Full Text Available We refined the aqueous-phase sulfate (SO42− production in the state-of-the-art Community Multiscale Air Quality (CMAQ model during the Japanese model inter-comparison project, known as Japan’s Study for Reference Air Quality Modeling (J-STREAM. In Japan, SO42− is the major component of PM2.5, and CMAQ reproduces the observed seasonal variation of SO42− with the summer maxima and winter minima. However, CMAQ underestimates the concentration during winter over Japan. Based on a review of the current modeling system, we identified a possible reason as being the inadequate aqueous-phase SO42− production by Fe- and Mn-catalyzed O2 oxidation. This is because these trace metals are not properly included in the Asian emission inventories. Fe and Mn observations over Japan showed that the model concentrations based on the latest Japanese emission inventory were substantially underestimated. Thus, we conducted sensitivity simulations where the modeled Fe and Mn concentrations were adjusted to the observed levels, the Fe and Mn solubilities were increased, and the oxidation rate constant was revised. Adjusting the concentration increased the SO42− concentration during winter, as did increasing the solubilities and revising the rate constant to consider pH dependencies. Statistical analysis showed that these sensitivity simulations improved model performance. The approach adopted in this study can partly improve model performance in terms of the underestimation of SO42− concentration during winter. From our findings, we demonstrated the importance of developing and evaluating trace metal emission inventories in Asia.

  14. Phenomenological approach to the spin glass state of (Cu-Mn, Ag-Mn, Au-Mn and Au-Fe) alloys at low temperatures

    International Nuclear Information System (INIS)

    Al-Jalali, Muhammad A.; Kayali, Fawaz A.

    2000-01-01

    Full text.The spin glass of: (Cu-Mn, Ag-Mn, Au-Mn, Au-Fe) alloys has been extensively studied. The availability of published and assured experimental data on the susceptibility x(T) of this alloys has enabled the design and application of phenomenological approach to the spin glass state of these interesting alloys. The use of and advanced (S.P.S.S) computer software has resulted revealing some important features of the spin glass in these alloys, the most important of which is that the spin glass state do not represent as phase change

  15. Geochemical Constraints on Core-Mantle Interaction from Fe/Mn Ratios

    Science.gov (United States)

    Humayun, M.; Qin, L.

    2003-12-01

    The greater density of liquid iron alloy, and its immiscibility with silicate, maintains the physical separation of the core from the mantle. There are no a priori reasons, however, why the Earth's mantle should be chemically isolated from the core. Osmium isotopic variations in mantle plumes have been interpreted in terms of interaction between outer core and the source regions of deep mantle plumes. If chemical transport occurs across the core-mantle boundary its mechanism remains to be established. The Os isotope evidence has also been interpreted as the signatures of subducted Mn-sediments, which are known to have relatively high Pt/Os. In the mantle, Fe occurs mainly as the divalent ferrous ion, and Mn occurs solely as a divalent ion, and both behave in a geochemically coherent manner because of similarity in ionic charge and radius. Thus, the Fe/Mn ratio is a planetary constant insensitive to processes of mantle differentiation by partial melting. Two processes may perturb the ambient mantle Fe/Mn of 60: a) the subduction of Mn-sediments should decrease the Fe/Mn ratio in plume sources, while b) chemical transport from the outer core may increase the Fe/Mn ratio. The differentiation of the liquid outer core to form the solid inner core may increase abundances of the light element constituents (FeS, FeO, etc.) to the point of exsolution from the core at the CMB. The exact rate of this process is determined by the rate of inner core growth. Two end-member models include 1) inner core formation mainly prior to 3.5 Ga with heat release dominated by radioactive sources, or 2) inner core formation occurring mainly in the last 1.5 Ga with heat release dominated by latent heat. This latter model would imply large fluxes of Fe into the sources of modern mantle plumes. Existing Fe/Mn data for Gorgona and Hawaiian samples place limits on both these processes. We describe a new procedure for the precise determination of the Fe/Mn ratio in magmatic rocks by ICP-MS. This

  16. Magnetism, structures and stabilities of cluster assembled TM@Si nanotubes (TM = Cr, Mn and Fe): a density functional study.

    Science.gov (United States)

    Dhaka, Kapil; Bandyopadhyay, Debashis

    2016-08-02

    The present study reports transition metal (TM = Cr, Mn and Fe) doped silicon nanotubes with tunable band structures and magnetic properties by careful selection of cluster assemblies as building blocks using the first-principles density functional theory. We found that the transition metal doping and in addition, the hydrogen termination process can stabilize the pure silicon nanoclusters or cluster assemblies and then it could be extended as magnetic nanotubes with finite magnetic moments. Study of the band structures and density of states (DOS) of different empty and TM doped nanotubes (Type 1 to Type 4) show that these nanotubes are useful as metals, semiconductors, semi-metals and half-metals. These designer magnetic materials could be useful in spintronics and magnetic devices of nanoscale order.

  17. Radionuclide X-ray fluorescence determination of Mn, Fe, Cu, Zn and Pb in wastewaters and sludges from wastewater treatment plants in Bratislava (SR)

    International Nuclear Information System (INIS)

    Harangozo, M.; Toelgyessy, J.

    1997-01-01

    Radiometric X-ray fluorescence analysis was used for the determination of Mn, Fe, Cu, Zn and Pb in wastewater and sludges from three wastewater treatment plants in Bratislava (SR). Metals were determined in wastewaters after preconcentration by 8-hydroxyquinoline and in sludges by drying and pressing to pellets. 238 Pu and 109 Cd was used for excitation of fluorescence radiation. (author)

  18. COMPARISON OF DIFFERENT EXTRACTION METHODS REPRESENTING AVAILABLE AND TOTAL CONCENTRATIONS OF Cd, Cu, Fe, Mn and Zn IN SOIL

    Directory of Open Access Journals (Sweden)

    Vladimir Ivezić

    2013-06-01

    Full Text Available Various extraction methods are used to predict plant uptake of trace metals. Most commonly it is total concentration that is used for risk assessment and evaluation of trace metal availability. However, recent studies showed that total concentration is a poor indicator of availability while concentrations in soil solution show good correlation with plant uptake. Present study was conducted on magricultural soils with low levels of trace metals where 45 soil samples were collected from different soil types. The main objective was to compare four different extraction methods and examine how total and reactive (EDTA trace metal concentrations correlate ,with soil solution concentration (in this study determined by water extraction. The samples were analyzed by four extraction methods: strong acid extraction (ultra-pure HNO3 extraction and aqua regia, weak acid extraction by EDTA and the most available fraction, fraction in soil solution, were represented by water extraction (weakest extractant. Five elements were investigated (Cd, Cu, Fe, Mn and Zn. Water extraction significantly correlated with EDTA extraction for Cu, Fe and Mn, while total extraction (HNO3 extraction and aqua regia correlated significantly with water extraction only for Cu. No correlation between water extraction and total extraction confirmed poor role of total concentration as an indicator of availability. EDTA extraction can be used to represent reactive pool of trace metals in soil but it should be also taken with caution when using it to describe available fraction.

  19. Band structure analysis on olivine LiMPO{sub 4} and delithiated MPO{sub 4} (M = Fe, Mn) cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ting-Feng, E-mail: tfyihit@163.com [School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002 (China); Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Fang, Zi-Kui [School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002 (China); Xie, Ying, E-mail: xieying@hlju.edu.cn [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Zhu, Yan-Rong [School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002 (China); Dai, Changsong [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2014-12-25

    Highlights: • The conductivity of Li{sub x}MPO{sub 4} were discussed relying on first principles technique. • Relationship between structure properties and microscopic bonding was addressed. • A mechanism responsible for the structural instability of MnPO{sub 4} was proposed. - Abstract: Olivine compounds, i.e. Li{sub x}MPO{sub 4} (M = Fe, Mn), are now regarded as the most competitive positive-electrode materials for future applications of large-scale rechargeable lithium batteries. There are significant interests in their electronic structures, because the microscopic information is very important for elucidating the structural stability, electrochemical performance, and electronic conductivity issues of batteries for high-rate applications. The structure stabilities of LiMPO{sub 4} and MPO{sub 4} (M = Fe, Mn) cathode materials are analyzed according to first principles calculations. The result shows that LiMPO{sub 4} (M = Fe, Mn) materials exhibit good structure stability, which is mainly contributed to the extremely strong P-O covalent bonds. Furthermore, the introduction of P ions is also helpful for the chemical potential decrease of the materials. The band structure analysis reveals that the electronic conductance of LiFePO{sub 4}, LiMnPO{sub 4}, and FePO{sub 4} is poor, while MnPO{sub 4} possesses half metallic property. According to the electron distribution, it can be confirmed that Mn-O(II) bonds are weakened after Li{sup +} extractions, which is different from the variation trend of Fe-O(II) bonds. The decrease of Mn-O(II) bond strength is thus favorable for the phase transformation observed in experiments.

  20. Elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations.

    Science.gov (United States)

    Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M

    2013-06-19

    The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.

  1. Change of structure and some mechanical properties during processing of AlMn(Fe,Si) alloys

    International Nuclear Information System (INIS)

    Kovacs-Csetenyi, E.; Griger, A.; Turmezey, T.; Suchanek, V.

    1990-01-01

    The aim of this work was to study the change of structure and some mechanical properties during processing of AlMn(Fe,Si) alloys. An emphasis was given to the effect of Fe and Si on the properties measured in deformed and annealed states, because of its technological importance

  2. Fe and Mn levels regulated by agricultural activities in alluvial groundwaters underneath a flooded paddy field

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kangjoo [School of Civil and Environmental Engineering, Kunsan National University, Jeonbuk 573-701 (Korea, Republic of)], E-mail: kangjoo@kunsan.ac.kr; Kim, Hyun-Jung; Choi, Byoung-Young; Kim, Seok-Hwi; Park, Ki-hoon [School of Civil and Environmental Engineering, Kunsan National University, Jeonbuk 573-701 (Korea, Republic of); Park, Eungyu [Department of Geology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Koh, Dong-Chan [Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Yun, Seong-Taek [Department of Earth and Environmental Sciences, Korea University, Seoul 136-701 (Korea, Republic of)

    2008-01-15

    Iron and Mn concentrations in fresh groundwaters of alluvial aquifers are generally high in reducing conditions reflecting low SO{sub 4} concentrations. The mass balance and isotopic approaches of this study demonstrate that reduction of SO{sub 4}, supplied from agricultural activities such as fertilization and irrigation, is important in lowering Fe and Mn levels in alluvial groundwaters underneath a paddy field. This study was performed to investigate the processes regulating Fe and Mn levels in groundwaters of a point bar area, which has been intensively used for flood cultivation. Four multilevel-groundwater samplers were installed to examine the relationship between geology and the vertical changes in water chemistry. The results show that Fe and Mn levels are regulated by the presence of NO{sub 3} at shallow depths and by SO{sub 4} reduction at the greater depths. Isotopic and mass balance analyses revealed that NO{sub 3} and SO{sub 4} in groundwater are mostly supplied from the paddy field, suggesting that the Fe-and Mn-rich zone of the study area is confined by the agricultural activities. For this reason, the geologic conditions controlling the infiltration of agrochemicals are also important for the occurrence of Fe/Mn-rich groundwaters in the paddy field area.

  3. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    Science.gov (United States)

    Ma, Y. L.; Liu, X. B.; Nguyen, V. V.; Poudyal, N.; Yue, M.; Liu, J. P.

    2016-08-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd2Fe14B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%.

  4. Fe and Mn levels regulated by agricultural activities in alluvial groundwaters underneath a flooded paddy field

    International Nuclear Information System (INIS)

    Kim, Kangjoo; Kim, Hyun-Jung; Choi, Byoung-Young; Kim, Seok-Hwi; Park, Ki-hoon; Park, Eungyu; Koh, Dong-Chan; Yun, Seong-Taek

    2008-01-01

    Iron and Mn concentrations in fresh groundwaters of alluvial aquifers are generally high in reducing conditions reflecting low SO 4 concentrations. The mass balance and isotopic approaches of this study demonstrate that reduction of SO 4 , supplied from agricultural activities such as fertilization and irrigation, is important in lowering Fe and Mn levels in alluvial groundwaters underneath a paddy field. This study was performed to investigate the processes regulating Fe and Mn levels in groundwaters of a point bar area, which has been intensively used for flood cultivation. Four multilevel-groundwater samplers were installed to examine the relationship between geology and the vertical changes in water chemistry. The results show that Fe and Mn levels are regulated by the presence of NO 3 at shallow depths and by SO 4 reduction at the greater depths. Isotopic and mass balance analyses revealed that NO 3 and SO 4 in groundwater are mostly supplied from the paddy field, suggesting that the Fe-and Mn-rich zone of the study area is confined by the agricultural activities. For this reason, the geologic conditions controlling the infiltration of agrochemicals are also important for the occurrence of Fe/Mn-rich groundwaters in the paddy field area

  5. The effect of magnetic ordering on the giant magnetoresistance of Cr-Fe-V and Cr-Fe-Mn

    International Nuclear Information System (INIS)

    Somsen, Ch.; Acet, M.; Nepecks, G.; Wassermann, E.F.

    2000-01-01

    Cr-rich Cr 1-x Fe x alloys with compositions in the vicinity of mixed ferromagnetic and antiferromagnetic exchange (x=0.18) exhibit giant magnetoresistance. In order to understand the influence of the antiferromagnetism of Cr on the giant magnetoresistance one can manipulate the antiferromagnetic exchange either by adding vanadium, which destroys the antiferromagnetism of Cr, or by adding manganese, which enhances it. Cr-Fe-V and Cr-Fe-Mn alloys also have Curie temperatures that lie between low temperatures and room temperature in the concentration region where giant magnetoresistance is observed. Therefore, they are also used as samples to study the magnetoresistance as a function of the strength of FM exchange. We discuss these points in the light of temperature and concentration-dependent magnetoresistance experiments on Cr 0.99-x Fe x V 0.01 , Cr 0.96-x Fe x V 0.04 , Cr 0.90-x Fe x Mn 0.10 and Cr 0.55 Fe x Mn 0.45-x alloys. Results indicate that the most favorable condition for a large magnetoresistance in these alloys occurs at temperatures near the Curie temperature

  6. Microstructures and mechanical properties of heat-treated Al–5.0Cu–0.5Fe squeeze cast alloys with different Mn/Fe ratio

    International Nuclear Information System (INIS)

    Zhang, Weiwen; Lin, Bo; Fan, Jianlei; Zhang, Datong; Li, Yuanyuan

    2013-01-01

    The Al–5.0 wt% Cu–0.5 wt% Fe alloys with different Mn/Fe ratio were prepared by squeeze casting. Various test techniques, including tensile test, image analysis, scanning electron microscope (SEM), X-ray diffraction (XRD), electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM) were used to examine the microstructures and mechanical properties of the alloys in T5 heat-treated condition. The results show that the β-Fe (Al 7 Cu 2 Fe) is stable and its needle-like morphology is maintained after T5 heat treatment. However, the Chinese script Al m Fe, α-Fe or Al 6 (FeMn) partially transform to a new Chinese script Cu-rich α(CuFe) (Al 7 Cu 2 Fe or Al 7 Cu 2 (FeMn)), which is harmful to the mechanical properties of the alloys due to the decrease of the Cu content in α(Al) matrix. The optimal Mn/Fe ratio is determined by the morphology of Fe-rich intermetallics, volume fraction of θ′ and T (Al 20 Cu 2 Mn 3 ), size of α(Al) dendrite and porosity. Excessive Mn/Fe ratio will deteriorate the mechanical properties of the alloys due to the increase of the total amount of porosity and the Fe-rich intermetallics. When the Mn/Fe ratio is 1.6 and 1.2 for the applied pressure of 0 MPa and 75 MPa, respectively, the needle-like β-Fe phase is completely converted to the Chinese script Fe-rich intermetallics. The ultimate tensile strength, yield strength and elongation of the T5 heat-treated alloy with the Mn/Fe ratio of 1.2 and applied pressure of 75 MPa reach 395 MPa, 335 MPa and 14%, respectively

  7. Damage annealing in low temperature Fe/Mn implanted ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Gunnlaugsson, H. P. [University of Aarhus, Department of Physics and Astronomy (Denmark); Bharuth-Ram, K., E-mail: kbr@tlabs.ac.za [Durban University of Technology, Physics Department (South Africa); Johnston, K. [PH Department, ISOLDE/CERN (Switzerland); Langouche, G. [University of Leuven, Instituut voor Kern-en Stralings fysika (Belgium); Mantovan, R. [Laboratorio MDM, IMM-CNR (Italy); Mølholt, T. E. [University of Iceland, Science Institute (Iceland); Naidoo, D. [University of the Witwatersrand, School of Physics (South Africa); Ólafsson, O. [University of Iceland, Science Institute (Iceland); Weyer, G. [University of Aarhus, Department of Physics and Astronomy (Denmark)

    2015-04-15

    {sup 57}Fe Emission Mössbauer spectra obtained after low fluence (<10{sup 12} cm {sup −2}) implantation of {sup 57}Mn (T{sub 1/2}= 1.5 min.) into ZnO single crystal held at temperatures below room temperature (RT) are presented. The spectra can be analysed in terms of four components due to Fe {sup 2+} and Fe {sup 3+} on Zn sites, interstitial Fe and Fe in damage regions (Fe {sub D}). The Fe {sub D} component is found to be indistinguishable from similar component observed in emission Mössbauer spectra of higher fluence (∼10{sup 15} cm {sup −2}){sup 57}Fe/ {sup 57}Co implanted ZnO and {sup 57}Fe implanted ZnO, demonstrating that the nature of the damage regions in the two types of experiments is similar. The defect component observed in the low temperature regime was found to anneal below RT.

  8. Damage annealing in low temperature Fe/Mn implanted ZnO

    International Nuclear Information System (INIS)

    Gunnlaugsson, H. P.; Bharuth-Ram, K.; Johnston, K.; Langouche, G.; Mantovan, R.; Mølholt, T. E.; Naidoo, D.; Ólafsson, O.; Weyer, G.

    2015-01-01

    57 Fe Emission Mössbauer spectra obtained after low fluence (<10 12 cm −2 ) implantation of 57 Mn (T 1/2 = 1.5 min.) into ZnO single crystal held at temperatures below room temperature (RT) are presented. The spectra can be analysed in terms of four components due to Fe 2+ and Fe 3+ on Zn sites, interstitial Fe and Fe in damage regions (Fe D ). The Fe D component is found to be indistinguishable from similar component observed in emission Mössbauer spectra of higher fluence (∼10 15 cm −2 ) 57 Fe/ 57 Co implanted ZnO and 57 Fe implanted ZnO, demonstrating that the nature of the damage regions in the two types of experiments is similar. The defect component observed in the low temperature regime was found to anneal below RT

  9. Photoluminescence and Raman studies for the confirmation of oxygen vacancies to induce ferromagnetism in Fe doped Mn:ZnO compound

    Energy Technology Data Exchange (ETDEWEB)

    Das, J., E-mail: jayashree304@gmail.com [Department of Physics, Silicon Institute of Technology, Bhubaneswar 751024, Odisha (India); Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710 (South Africa); Mishra, D.K. [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710 (South Africa); Department of Physics, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan University, Khandagiri Square, Bhubaneswar 751030, Odisha (India); Srinivasu, V.V. [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710 (South Africa); Sahu, D.R. [Amity Institute of Nanotechnology, Amity University, Noida (India); Roul, B.K. [Institute of Materials Science, Planetarium Building, Acharya Vihar, Bhubaneswar, Odisha (India)

    2015-05-15

    With a motivation to compare the magnetic property, we synthesised undoped, transition metal (TM) Mn doped and (Mn:Fe) co-doped ZnO ceramics in the compositions ZnO, Zn{sub 0.98}Mn{sub 0.02}O and Zn{sub 0.96}(Mn{sub 0.02}Fe{sub 0.02})O. Systematic investigations on the structural, microstructural, defect structure and magnetic properties of the samples were performed. Low temperature as well as room temperature ferromagnetism has been observed for all our samples, however, enhanced magnetisation at room temperature has been noticed when ZnO is co-doped with Fe along with Mn. Particularly the sample with the composition Zn{sub 0.96}Mn{sub 0.02}Fe{sub 0.02}O showed a magnetisation value more than double of the sample with composition Zn{sub 0.98}Mn{sub 0.02}O, indicating long range strong interaction between the magnetic impurities leading to higher ferromagnetic ordering. Raman and PL studies reveal presence of higher defects in form of oxygen vacancy clusters created in the sample due to Fe co doping. PL study also reveals enhanced luminescence efficiency in the co doped sample. Temperature dependent magnetisation study of this sample shows the spin freezing temperature around 39 K indicating the presence of small impurity phase of Mn{sub 2−x}Zn{sub x}O{sub 3} type. Electron Spin Resonance signal obtained supports ferromagnetic state in the co doped sample. Enhancement of magnetisation is attributed to interactions mediated by magnetic impurities through large number of oxygen vacancies created by Fe{sup 3+} ions forming bound magnetic polarons (BMP) and facilitating long range ferromagnetic ordering in the co- doped system. - Highlights: • Comparison of magnetic property of ZnO, Zn{sub 0.98}Mn {sub 0.02}O and Zn{sub 0.96}(Mn{sub 0.02}Fe{sub 0.02})O. • Observation of enhanced magnetisation at room temperature in (Mn,Fe) doped ZnO. • Raman and PL studies reveal presence of higher oxygen vacancy clusters. • Electron Spin Resonance signal supports

  10. Shape memory and associated properties in Fe-Mn-Si-based ribbons produced by melt-spinning

    International Nuclear Information System (INIS)

    Valeanu, Mihaela; Filoti, G.; Kuncser, V.; Tolea, Felicia; Popescu, B.; Galatanu, A.; Schinteie, G.; Jianu, A.D.; Mitelea, I.; Schinle, D.; Craciunescu, C.M.

    2008-01-01

    Four Fe-Mn-Si alloys, Fe 62 Mn 32 Si 6 , Fe 62 Mn 20 Si 5 Cr 8 Ni 5 , Fe 62 Mn 16 Si 5 Cr 12 Ni 5 and Fe 65 Mn 9 Si 7 Cr 10 Ni 9 , were obtained by the melt-spinning method. The samples were structurally, magnetic and shape memory effect (SME) investigated, both 'as quenched' and thermally treated. The Mn-rich compositions show different phase, magnetic behavior and SME in comparison with Mn-poor compositions. The thermal treatments generate transformation between the two existing majority phases (α and γ), related magnetization and SME behavior. The features are derived from the corroboration of structural, magnetic interaction and magnitude of SME data

  11. Structural transition induced by charge-transfer in RbMn[Fe(CN) sub 6]. Investigation by synchrotron-radiation X-ray powder analysis

    CERN Document Server

    Moritomo, Y; Sakata, M; Kato, K; Kuriki, A; Tokoro, H; Ohkoshi, S I; Hashimoto, K

    2002-01-01

    Temperature dependence of atomic coordinates is determined for RbMn[Fe(CN) sub 6] by means of synchrotron-radiation (SR) X-ray powder structural analysis. We observed a structural transition from the cubic (F4-bar3m; Z=4) to the tetragonal (I4-barm2; Z=2) phase at approx. =210K in the cooling run and at approx. =300K in the warming run. In the low-temperature tetragonal phase, we found Jahn-Tellar type distortion of the MnN sub 6 octahedra and compression of the averaged Fe-C bond distance. These structural data suggest that the structural transition is triggered by the inter-metallic charge-transfer from the Mn(II) site to the Fe(III) site.

  12. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn.

    Science.gov (United States)

    Galceran, R; Fina, I; Cisneros-Fernández, J; Bozzo, B; Frontera, C; López-Mir, L; Deniz, H; Park, K-W; Park, B-G; Balcells, Ll; Martí, X; Jungwirth, T; Martínez, B

    2016-10-20

    Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.

  13. Magnetic properties of M0.3Fe2.7O4 (M = Fe, Zn and Mn) ferrites nanoparticles

    Science.gov (United States)

    Modaresi, Nahid; Afzalzadeh, Reza; Aslibeiki, Bagher; Kameli, Parviz

    2018-06-01

    In the present article a comparative study on the structural and magnetic properties of nano-sized M0.3Fe0.7Fe2O4 (M = Fe, Zn and Mn) ferrites have been reported. The X-ray diffraction (XRD) patterns show that the crystallite size depends on the cation distribution. The Rietveld refinement of XRD patterns using MAUD software determines the distribution of cations and unit cell dimensions. The magnetic measurements show that the maximum and minimum value of saturation magnetization is obtained for Zn and Mn doped samples, respectively. The peak temperature of AC magnetic susceptibility of Zn and Fe doped samples below 300 K shows the superparamagnetic behavior in these samples at room temperature. the AC susceptibility results confirm the presence of strong interactions between the nanoparticles which leads to a superspin glass state in the samples at low temperatures.

  14. Large magnetization and frustration switching of magnetoresistance in the double-perovskite ferrimagnet Mn2FeReO6.

    Science.gov (United States)

    Arévalo-López, Angel M; McNally, Graham M; Attfield, J Paul

    2015-10-05

    Ferrimagnetic A2 BB'O6 double perovskites, such as Sr2 FeMoO6 , are important spin-polarized conductors. Introducing transition metals at the A-sites offers new possibilities to increase magnetization and tune magnetoresistance. Herein we report a ferrimagnetic double perovskite, Mn2 FeReO6 , synthesized at high pressure which has a high Curie temperature of 520 K and magnetizations of up to 5.0 μB which greatly exceed those for other double perovskite ferrimagnets. A novel switching transition is discovered at 75 K where magnetoresistance changes from conventional negative tunneling behavior to large positive values, up to 265 % at 7 T and 20 K. Neutron diffraction shows that the switch is driven by magnetic frustration from antiferromagnetic Mn(2+) spin ordering which cants Fe(3+) and Re(5+) spins and reduces spin-polarization. Ferrimagnetic double perovskites based on A-site Mn(2+) thus offer new opportunities to enhance magnetization and control magnetoresistance in spintronic materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Martensitic transformation, fcc and hcp relative phase stability, and thermal cycling effects in Fe-Mn and Fe-Mn-X Alloys (X = Si, Co)

    International Nuclear Information System (INIS)

    Baruj, Alberto

    1999-01-01

    In this Thesis we present a study of the fcc and hcp relative phase stability in the Fe-Mn and Fe-Mn-Co systems. In particular, we have investigated the effect of two main factors affecting the relative phase stability: changes in the chemical composition of the alloys and changes in the density of crystalline defects in the microstructure.In order to analyse the effect of chemical composition, we have performed an experimental study of the fcc/hcp martensitic transformation temperatures in Fe-Mn-Co alloys in the composition range lying between 15% and 34% Mn, and between 1% and 16% Co.We have measured the martensitic transformation temperatures by means of dilatometry and electrical resistivity.We have combined this information with measurements of the fcc/hcp martensitic transformation temperatures in Co-rich alloys to perform a modelling of the Gibbs energy function for the hcp phase in the Fe-Mn-Co and Fe-Co systems.We found that, for alloys in the Mn range between 17% and 25%, Co additions tend to stabilise slightly the fcc phase.In the alloys with Mn contents below that range, increasing the amount of Co stabilise the bcc phase. In alloys with Mn contents above 25% the Neel temperature is depressed by the addition of Co, which stabilise the hcp phase.In order to investigate the effect of changes in the density of crystalline defects, we have performed thermal cycling experiments through the fcc/hcp martensitic transformation in Fe-Mn, Fe-Mn-Co and Fe-Mn-Si alloys.We have applied the thermodynamic description obtained before in order to analyse these experiments.We found in the thermal cycling experiments a first stage where the martensitic transformation is promoted.This stage occurs in all the studied alloys during the first cycle or the two first cycles.Increasing the number of thermal cycles, the promotion stage is replaced by an inhibition of the transformation stage.We propose a possible microstructural interpretation of these phenomena where the plastic

  16. Ferromagnetism in Fe-doped transition metal nitrides

    Science.gov (United States)

    Sharma, Ramesh; Sharma, Yamini

    2018-04-01

    Early transition metal mononitrides ScN and YN are refractory compounds with high hardness and melting points as well semiconducting properties. The presence of nitrogen vacancies in ScN/YN introduces asymmetric peaks in the density of states close to Fermi level, the same effects can be achieved by doping by Mn or Fe-atoms. Due to the substitution of TM atoms at Sc/Y sites, it was found that the p-d hybridization induces small magnetic moments at both Sc/Y and N sites giving rise to magnetic semiconductors (MS). From the calculated temperature dependent transport properties, the power factor and ZT is found to be lowered for doped ScN whereas it increases for doped YN. It is proposed that these materials have promising applications as spintronics and thermoelectric materials.

  17. The improvement of the superconducting Y-Ba-Cu-O magnet characteristics through shape recovery strain of Fe-Mn-Si alloys

    International Nuclear Information System (INIS)

    Shimpo, Y.; Seki, H.; Wongsatanawarid, A.; Taniguchi, S.; Maruyama, T.; Kurita, T.; Murakami, M.

    2010-01-01

    Since bulk Y-Ba-Cu-O superconductors are brittle ceramics, reinforcement of mechanical properties is important for practical applications. It has been reported that bulk Y-Ba-Cu-O can be reinforced with Al or Fe based alloy ring, in that compression force acts on bulk Y-Ba-Cu-O due to a difference in thermal expansion coefficients. However, the shrinkage of the metal ring was not so large, and therefore careful adjustment of the circumference of the bulk and the metal rings was necessary. In this study, we employed Fe-Mn-Si shape memory alloy rings to reinforce bulk Y-Ba-Cu-O. The advantage of the shape memory alloy is that the shrinkage can take place on heating, and furthermore, the alloy shrinks and compresses the bulk body on cooling. Bulk Y-Ba-Cu-O superconductor 22.8 mm in diameter was inserted in a Fe-Mn-Si ring 23.0 mm in inner diameter at room temperature. Beforehand, the Fe-Mn-Si ring was expanded by 12% strain at room temperature. Then the composite was heated to 673 K. At room temperature, the Fe-Mn-Si ring firmly gripped the bulk superconductor. We then measured trapped fields before and after the ring reinforcement, and found that the trapped field was improved through the treatment.

  18. Microstructure and Electrical Properties of Fe,Cu Substituted (Co,Mn)3O4 Thin Films

    DEFF Research Database (Denmark)

    Szymczewska, Dagmara; Molin, Sebastian; Hendriksen, Peter Vang

    2017-01-01

    In this work, thin films (~1000 nm) of a pure MnCo2O4 spinel together with its partially substituted derivatives (MnCo1.6Cu0.2Fe0.2O4, MnCo1.6Cu0.4O4, MnCo1.6Fe0.4O4) were prepared by spray pyrolysis and were evaluated for electrical conductivity. Doping by Cu increases the electrical conductivit...

  19. Synthesis of Core/Shell MnFe2O4/Au Nanoparticles for Advanced Proton Treatment

    International Nuclear Information System (INIS)

    Park, Jeong Chan

    2014-01-01

    Among many approaches for the surface modification with materials, such as polymers, organic ligands and metals, one of the most attractive ways is using metals. The fabrication of metal-based, monolayer-coated magnetic nanoparticles has been intensively studied. However, the synthesis of metal-capped magnetic nanoparticles with monodIspersities and controllable sizes is still challenged. Recently, gold-capped magnetic nanoparticles have been reported to increase stability and to provide biocompatibility. Magnetic nanoparticle with gold coating is an attractive system, which can be stabilized in biological conditions and readily functionalized through well-established surface modification (Au-S) chemistry. The Au coating offers plasmonic properties to magnetic nanoparticles. The core/shell nanoparticles were transferred from organic to aqueous solutions for biomedical applications. The core/shell structured MnFe 2 O 4 /Au nanoparticles have been prepared and transferred from organic phase to aqueous solutions. The resulting Au-coated nanocrystals may be an attractive system for biomedical applications, which are needed both magnetic resonance imaging and optical imaging. The phase transferred core/shell nanoparticles can be decorated with targeting moiety, such as antibodies, peptides, aptamers, small molecules and ligands for biological applications. The proton treatment with the resulting Au-MnFe 2 O 4 nanoparticles is undergoing.

  20. Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles.

    Science.gov (United States)

    Hu, Qingsong; Liu, Yuling; Gu, Xueyuan; Zhao, Yaping

    2017-08-01

    Arsenic pollution poses severe threat to human health, therefore dealing with the problem of arsenic contamination in water bodies is extremely important. The adsorption behaviors of different arsenic species, such as arsenate (As(V)), p-arsanilic acid (p-ASA), roxarsone (ROX), dimethylarsenate (DMA) from water using mesoporous bimetal oxide magnetic manganese ferrite nanoparticles (MnFe 2 O 4 ) have been detailedly investigated. The adsorbent was synthesized via a facile co-precipitation approach and recovered conveniently owing to its strong magnetic properties. The obtained MnFe 2 O 4 with large surface area and abundant hydroxyly functional groups exhibited excellent adsorption performance for As(V) and p-ASA, in contrast to ROX and DMA with the maximum adsorption capacities of As(V), p-ASA, ROX and DMA of 68.25 mg g -1 , 59.45 mg g -1 , 51.49 mg g -1 , and 35.77 mg g -1 , respectively. The Langmuir model and the pseudo-second-order kinetic model correlated satisfactorily with the adsorption thermodynamics and kinetics, and thermodynamic parameters depicted the spontaneous endothermic nature for the adsorption of different arsenic species. The adsorption mechanism of different arsenic species onto MnFe 2 O 4 nanoparticles at various pH values could be explained by surface complexation and molecular structural variations. Attenuated Total internal Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) further proved that arsenic species were bonded to the surface of MnFe 2 O 4 through the formation of an inner-sphere complex between the arsenic acid moiety and surface metal centers. The results would help to know the interaction of arsenic species with iron-manganese minerals and the mobility of arsenic species in natural environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Experimental investigation and thermodynamic calculation of the Fe-Mg-Mn and Fe-Mg-Ni systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peisheng; Zhao, Jingrui; Xu, Honghui; Liu, Shuhong; Ouyang, Hongwu [Central South Univ., Hunan (China). State Key Lab. of Powder Metallurgy; Du, Yong [Central South Univ., Hunan (China). State Key Lab. of Powder Metallurgy; Harbin Institute of Technology (China). State Key Lab. of Advanced Welding Production Technology; Gang, Tie; Fen, Jicai [Harbin Institute of Technology (China). State Key Lab. of Advanced Welding Production Technology; Zhang, Lijun [Central South Univ., Hunan (China). State Key Lab. of Powder Metallurgy; Bochum Univ. (Germany). ICAMS Inst.; He, Cuiyun [Guangxi Univ. (China). College of Physical Science and Technology

    2011-01-15

    Based on the thermodynamic calculations extrapolated from the corresponding binary sub-systems, four decisive alloys in the Fe-Mg-Mn system and three in the Fe-Mg-Ni system were selected and prepared using a powder metallurgy method to measure the isothermal sections at 500 C in both systems. The prepared samples were annealed at 500 C, and then subjected to X-ray diffraction, optical microscopy, scanning electron microscopy with energy-dispersive X-ray spectrometry as well as electron probe microanalysis. Taking into account the presently obtained experimental data and the experimental data available in the literature, thermodynamic modeling was performed for the above systems. It was found that a direct extrapolation from the corresponding three binary systems can well reproduce all the experimental data in the Fe-Mg-Mn system, while two thermodynamic parameters are needed in the Fe-Mg-Ni system to fit all the experimental data. The liquidus projections and reaction schemes for the Fe-Mg-Mn and Fe-Mg-Ni systems are also presented. (orig.)

  2. Recent advances on Fe- and Mn-based cathode materials for lithium and sodium ion batteries

    Science.gov (United States)

    Zhu, Xiaobo; Lin, Tongen; Manning, Eric; Zhang, Yuancheng; Yu, Mengmeng; Zuo, Bin; Wang, Lianzhou

    2018-06-01

    The ever-growing market of electrochemical energy storage impels the advances on cost-effective and environmentally friendly battery chemistries. Lithium-ion batteries (LIBs) are currently the most critical energy storage devices for a variety of applications, while sodium-ion batteries (SIBs) are expected to complement LIBs in large-scale applications. In respect to their constituent components, the cathode part is the most significant sector regarding weight fraction and cost. Therefore, the development of cathode materials based on Earth's abundant elements (Fe and Mn) largely determines the prospects of the batteries. Herein, we offer a comprehensive review of the up-to-date advances on Fe- and Mn-based cathode materials for LIBs and SIBs, highlighting some promising candidates, such as Li- and Mn-rich layered oxides, LiNi0.5Mn1.5O4, LiFe1-xMnxPO4, NaxFeyMn1-yO2, Na4MnFe2(PO4)(P2O7), and Prussian blue analogs. Also, challenges and prospects are discussed to direct the possible development of cost-effective and high-performance cathode materials for future rechargeable batteries.

  3. Concentrations of Mn and Fe in the Sediment Cores of Sarawak and Sabah Coastal Waters

    International Nuclear Information System (INIS)

    Zal Uyun Wan Mahmood; Zaharudin Ahmad; Che Abdul Rahim Mohamed

    2010-01-01

    Sediment cores were taken at eight stations along Sarawak and Sabah coastal waters using a gravity box corer on July 2004. The sediment cores were cut into 2 cm interval for measurement of Mn and Fe concentration using the Inductive Couple Plasma-Mass Spectrometer (ICP-MS). Overall, the sediment cores contained much mud which include a mixture of silt (46 - 67 %) and clay (18 - 53 %) compared to sand (0.4 - 16 %). The concentrations of Mn and Fe were in the range of 154 - 366 μg/ g and 0.9 - 3.4 %, respectively. The variation was studied by ANOVA, which showed a significant difference (p = 0.000) for both of Mn and Fe concentrations at all sampling stations. In those ranges, Fe concentration was higher compared to Mn. It is believed that dissolving and diluting process influenced the concentration of Mn in the water column and sediment. Fe showed a significant correlation (r > 0.5, p geo < 1 and classification 0 - 1. (author)

  4. Electrochemical characterization of FeMnO3 microspheres as potential material for energy storage applications

    Science.gov (United States)

    Saravanakumar, B.; Ramachandran, S. P.; Ravi, G.; Ganesh, V.; Guduru, Ramesh K.; Yuvakkumar, R.

    2018-01-01

    In this study, uniform iron manganese trioxide (FeMnO3) microspheres were characterized as electrode for supercapacitor applications. The microspheres were synthesized by hydrothermal method in the presence of different molar ratios of sucrose. X-ray diffraction pattern confirmed that the obtained microsphere has body-centered lattice structure of space group 1213(199). The Raman peak observed at 640 cm-1 might be attributed to the stretching mode of vibration of Mn-O bonds perpendicular to the direction of MnO6 octahedral double chains. The photoluminescence peak at the 536 nm corresponded to Fe2+ ions in FeMnO3 lattice point of body-centered cubic structure. The characteristic strong infrared (IR) bands observed at 669 cm-1 corresponded to Fe-O stretching. The electrochemical characterization of the obtained FeMnO3 products could be understood by carrying out cyclic voltammeter, electroimpedance spectra, and galvanostatic charging and discharge studies in a three-cell setup that demonstrates the exceptional specific capacitance of 773.5 F g-1 at a scan rate of 10 mV s-1 and 763.4 F g-1 at a current density of 1 A g-1.

  5. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, S.; Shimakura, H. [Niigata University of Pharmacy and Applied Life Sciences, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Tahara, S. [Faculty of Science, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213 (Japan); Okada, T. [Niigata College of Technology, Kamishin’eicho, Nishi-ku, Niigata 950-2076 (Japan)

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  6. Effect of foliar applied (Zn, Fe, Cu and Mn) in citrus production

    International Nuclear Information System (INIS)

    Khurshid, F.; Sarwar, S.; Khattak, R.A.

    2008-01-01

    A study was conducted to evaluate the impact of micronutrients (Zn, Fe, Cu and Mn) on sweet orange (Citrus Sinensis L.), blood red var., on farmer's orchard at Khanpur, district Haripur, NWFP, during 2002-03. Micronutrients were applied in foliar sprays over the canopy of each tree. The main effects and interactions of Zinc sulphate (Zn), iron sulphate (Fe), Copper Sulphate (Cu) and Manganese Sulphate (Mn) were studied in factorial combinations. A basal dose of nitrogen, phosphorus and potassium was applied at the rate 1.5, 1 and 1 kg tree/sup -1/. Zn, Fe, Cu and Mn were applied alone and in various combinations at the rate 0.115, 0.057, 0.05 and 0.13 kg in 100 liters of water. Application of micronutrients significantly increased Zn, Fe, Cu and Mn concentrations in leaves, compared with control. Zn treatments significantly increased the yield, number of fruit and total sugar. Manganese treatments significantly increased the total soluble solids and reduced the acidity of fruit juice. Other quality parameters, including fruit size, percent peel, percent pulp, sugar as well as total soluble solids, were improved with the application of Zn, Fe, Cu and Mn. (author)

  7. Role of improving the physical properties of Sm-123 phase by adding nano-magnetic MnFe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Abdeen, W. [Superconductivity and Metallic Glass Lab, Physics Department, Faculty of Science, Alexandria University, Alexandria (Egypt); Physics Department, Physics Department – University College at Al-Gamom, Umm Al-Qura University (Saudi Arabia); El-Tahan, A. [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Roumié, M. [Accelerator Laboratory, Lebanese Atomic Energy Commission, CNRS, Beirut (Lebanon); Awad, R. [Physics Department, Faculty of Science, Beirut Arab University (BAU), Beirut (Lebanon); Aly, A.I. Abou [Superconductivity and Metallic Glass Lab, Physics Department, Faculty of Science, Alexandria University, Alexandria (Egypt); El-Maghraby, E.M.; Khalaf, A. [Physics Department, Faculty of Science, Damanhur University, Damanhur (Egypt)

    2016-12-01

    Superconducting samples of SmBa{sub 2}Cu{sub 3}O{sub 7−δ} (Sm-123) added with various amounts of nanosized MnFe{sub 2}O{sub 4} addition (0.0−0.20 wt%) were investigated. The investigated samples prepared by the solid-state reaction method. The phase formation and microstructure of these samples were examined using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), proton induced X-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS). XRD data indicate that the volume fraction of Sm-123 increases as nanosized MnFe{sub 2}O{sub 4} increases up to 0.02 wt%. The elemental distribution and oxygen content were deduced from PIXE and RBS. The oxygen content slightly decreases as MnFe{sub 2}O{sub 4} wt% increases. The superconducting transition temperature (T{sub c}) and critical current density (J{sub c}) of the prepared samples were estimated from electrical resistivity and transport critical current density measurements. It was found that T{sub c} decreases as nanosized MnFe{sub 2}O{sub 4} addition increases, while J{sub c} enhances up to 0.02 wt%. Moreover, the temperature dependence of normal state electrical resistivity was studied in view of the pseudogap opening in order to determine the pseudogap temperature T* as a function of nanosized MnFe{sub 2}O{sub 4} addition. T* increases as nanosized MnFe{sub 2}O{sub 4} increased, indicating the enhancement of the pseudogap formation in HTSCs by adding magnetic impurities. The crossover to fluctuation conductivity near the T{sub c} is discussed. - Highlights: • Nanosized MnFe{sub 2}O{sub 4} most likely does not enter the Sm-123 crystal structure. • Samples present a metallic-like behavior in the normal state at high temperature. • Nanosized MnFe{sub 2}O{sub 4} lead to enhancement the formation of pseudogap in cuprates HTSCs. • The increase in T{sub LD} crossover temperature up to x=0.02 wt% has been observed. • Nanosized MnFe{sub 2}O{sub 4} can

  8. Thermal decomposition study of Mn doped Fe3O4 nanoparticles

    Science.gov (United States)

    Malek, Tasmira J.; Chaki, S. H.; Tailor, J. P.; Deshpande, M. P.

    2016-05-01

    Fe3O4 is an excellent magnetic material among iron oxides. It has a cubic inverse spinel structure exhibiting distinguished electric and magnetic properties. In this paper the authors report the synthesis of Mn doped Fe3O4 nanoparticles by wet chemical reduction technique at ambient temperature and its thermal characterization. Ferric chloride hexa-hydrate (FeCl3•6H2O), manganese chloride tetra-hydrate (MnCl2•4H2O) and sodium boro-hydrate (NaBH4) were used for synthesis of Fe3O4 nanoparticles at ambient temperature. The elemental composition of the as-synthesized Mn doped Fe3O4 nanoparticles were determined by energy dispersive analysis of X-rays (EDAX) technique. Thermogravimetric (TG) and differential thermal analysis (DTA) were carried out on the Mn doped Fe3O4 nanoparticles in the temperature range of ambient to 1124 K. The thermo-curves revealed that the particles decompose by four steps. The kinetic parameters were evaluated using non-mechanistic equations for the thermal decomposition.

  9. Mn and Fe Impurities in Si$_{1-x}$ Ge$_{x}$ alloys

    CERN Multimedia

    2002-01-01

    Following our investigations of Mn and Fe impurities in elemental semiconductors and in silicon in particular by means of on-line $^{57}$Fe Mössbauer spectroscopy, utilizing radioactive $^{57}$Mn$^{+}$ ion beams at ISOLDE, we propose to extend these studies to bulk and epitaxially-grown Si$_{1-x}$Ge$_{x}$ alloys. In these materials, although already successfully employed in electronic devices, little is known about point defects and important harmful 3d impurities. The experiments aim to determine a variety of fundamental properties: The lattice location of ion-implanted Mn/Fe, the electronic and vibrational properties of dilute Fe impurities in different lattice sites, the charge-state and composition dependence of the diffusivity of interstitial Fe on an atomic scale, the reactions and formation of complexes with lattice defects created by the $^{57}$Mn implantation or by the recoil effect in the nuclear decay to the Mössbauer state of $^{57m}$Fe. Feasibility studies in 2003 indicate that these aims can b...

  10. Kineococcus radiotolerans Dps forms a heteronuclear Mn-Fe ferroxidase center that may explain the Mn-dependent protection against oxidative stress.

    Science.gov (United States)

    Ardini, Matteo; Fiorillo, Annarita; Fittipaldi, Maria; Stefanini, Simonetta; Gatteschi, Dante; Ilari, Andrea; Chiancone, Emilia

    2013-06-01

    The ferroxidase center of DNA-binding protein from starved cells (Dps) is a major player in the iron oxidation/detoxification process that leads to a decreased reactive oxygen species production. The possible Mn(II) participation in this process has been studied in Dps from Kineococcus radiotolerans, a radiation-resistant bacterium with a high cytosolic Mn/Fe ratio and a high capacity to survive ionizing and stress conditions. The X-ray structure of recombinant K. radiotolerans Dps loaded with Mn(II) has been solved at 2.0Å resolution. Mn(II) binding to K. radiotolerans Dps and its effect on Fe(II) oxidation have been characterized in spectroscopic measurements. In K. radiotolerans Dps, the Fe-Fe ferroxidase center can have a Mn-Fe composition. Mn(II) binds only at the high affinity, so-called A site, whereas Fe(II) binds also at the low affinity, so-called B site. The Mn-Fe and Fe-Fe centers behave distinctly upon iron oxidation by O2. A site-bound Mn(II) or Fe(II) plays a catalytic role, while B site-bound Fe(II) behaves like a substrate and can be replaced by another Fe(II) after oxidation. When H2O2 is the Fe(II) oxidant, single electrons are transferred to aromatic residues near the ferroxidase center and give rise to intra-protein radicals thereby limiting OH release in solution. The presence of the Mn-Fe center results in significant differences in the development of such intra-protein radicals. Mn(II) bound at the Dps ferroxidase center A site undergoes redox cycling provided the B site contains Fe. The results provide a likely molecular mechanism for the protective role of Mn(II) under oxidative stress conditions as it participates in redox cycling in the hetero-binuclear ferroxidase center. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Decay of neutron-rich Mn nuclides and deformation of heavy Fe isotopes

    CERN Document Server

    Hannawald, M; Wöhr, A; Walters, W B; Kratz, K L; Fedosseev, V; Mishin, V I; Böhmer, W; Pfeiffer, B; Sebastian, V; Jading, Y; Köster, U; Lettry, Jacques; Ravn, H L

    1999-01-01

    The use of chemically selective laser ionization combined with beta-delayed neutron counting at CERN/ISOLDE has permitted identification and half-life measurements for 623-ms Mn-61 up through 14-ms Mn-69. The measured half-lives are found to be significantly longer near N=40 than the values calculated with a QRPA shell model using ground-state deformations from the FRDM and ETFSI models. Gamma-ray singles and coincidence spectroscopy has been performed for Mn-64 and Mn-66 decays to levels of Fe-64 and Fe-66, revealing a significant drop in the energy of the first 2+ state in these nuclides that suggests an unanticipated increase in collectivity near N=40.

  12. Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi

    Science.gov (United States)

    Jo, Min-Gu; Kim, Han-Jin; Kang, Minjung; Madakashira, Phaniraj P.; Park, Eun Soo; Suh, Jin-Yoo; Kim, Dong-Ik; Hong, Sung-Tae; Han, Heung Nam

    2018-01-01

    The high entropy alloy CrMnFeCoNi has been shown to have promising structural properties. For a new alloy to be used in a structural application it should be weldable. In the present study, friction stir welding (FSW) and laser welding (LW) techniques were used to butt weld thin plates of CrMnFeCoNi. The microstructure, chemical homogeneity and mechanical behavior of the welds were characterized and compared with the base metal. The tensile stress-strain behavior of the welded specimens were reasonable when compared with that of the base metal. FSW refined the grain size in the weld region by a factor of ˜14 when compared with the base metal. High-angle annular dark field transmission electron microscopy in combination with energy dispersive X-ray spectroscopy showed chemical inhomogeneity between dendritic and interdendritic regions in the fusion zone of LW. Large fluctuations in composition (up to 15 at%) did not change the crystal structure in the fusion zone. Hardness measurements were carried out in the weld cross section and discussed in view of the grain size, low angle grain boundaries and twin boundaries in FSW specimens and the dendritic microstructure in LW specimens.

  13. Microstructure and corrosion resistance of Sm-containing Al-Mn-Si-Fe-Cu alloy

    Directory of Open Access Journals (Sweden)

    Han Yuyin

    2017-12-01

    Full Text Available Optimizing alloy composition is an effective way to improve physical and chemical properties of automobile heat exchanger materials.A Sm-containing Al-Mn-Si-Fe-Cu alloy was investigated through transmission electron microscopy,scanning electron microscopy,and electrochemical measurement.Experimental results indicated that main phases distributed in the alloy wereα-Al(Mn,FeSi,Al2Sm and Al10Cu7Sm2.Alloying with Sm element could refine the precipitated α-Al(Mn,FeSi phase.Polarization testing results indicated that the corrosion surfacewas mainly composed of pitting pits and corrosion products.Sea water acetic acid test(SWAAT showed that corrosion loss increased first and then slowed downwith increase of the corrosion time.

  14. Interdiffusion coefficients and atomic mobilities in fcc Cu-Fe-Mn alloys

    Directory of Open Access Journals (Sweden)

    Li J.

    2014-01-01

    Full Text Available In the present work, the interdiffusion coefficients in fcc Cu-Fe-Mn alloys were experimentally determined via a combination of solid/solid diffusion couples, electron probe microanalysis (EPMA technique and Matano-Kirkaldy method. Based on the reliable thermodynamic description of fcc phase in the Cu-Fe-Mn system available in the literature as well as the ternary diffusion coefficients measured in the present work, the atomic mobilities in fcc Cu-Fe-Mn alloys were assessed by utilizing the DICTRA (Diffusion Controlled TRAnsformation software package. The calculated interdiffusion coefficients based on the assessed atomic mobilities agree well with most of the experimental data. The comprehensive comparison between various model-predicted diffusion properties and the measured data, including the concentration penetration profiles, interdiffusion flux profile, and diffusion paths, further verify the reliability of the presently obtained atomic mobilities.

  15. Nanostructured Mn-Fe Binary Mixed Oxide: Synthesis, Characterization and Evaluation for Arsenic Removal.

    Science.gov (United States)

    Pillewan, Pradnya; Mukherjee, Shrabanti; Bansiwal, Amit; Rayalu, Sadhana

    2014-07-01

    Adsorption of arsenic on bimetallic Mn and Fe mixed oxide was carried out using both field as well as simulated water. The material was synthesized using hydrothermal method and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Langmuir and Freundlich adsorption isotherms were computed using batch adsorption studies to determine the adsorption capacity of Mn-Fe binary mixed oxide for arsenic. Adsorption capacity for MFBMO obtained from Freundlich model was found to be 2.048 mg/g for simulated water and 1.084 mg/g for field water. Mn-Fe binary mixed oxide was found to be effective adsorbent for removal of arsenic from water.

  16. MnFe(PGe) compounds: Preparation, structural evolution, and magnetocaloric effects

    International Nuclear Information System (INIS)

    Yue Ming; Zhang Hong-Guo; Zhang Jiu-Xing; Liu Dan-Min

    2015-01-01

    The interdependences of preparation conditions, magnetic and crystal structures, and magnetocaloric effects (MCE) of the MnFePGe-based compounds are reviewed. Based upon those findings, a new method for the evaluation of the MCE in these compounds, based on differential scanning calorimetry (DSC), is proposed. The MnFePGe-based compounds are a group of magnetic refrigerants with giant magnetocaloric effect (GMCE), and as such, have drawn tremendous attention, especially due to their many advantages for practical applications. Structural evolution and phase transformation in the compounds as functions of temperature, pressure, and magnetic field are reported. Influences of preparation conditions upon the homogeneity of the compounds’ chemical composition and microstructure, both of which play a key role in the MCE and thermal hysteresis of the compounds, are introduced. Lastly, the origin of the “virgin effect” in the MnFePGe-based compounds is discussed. (paper)

  17. Magnetocaloric effects in MnFeP1-x As x -based compounds

    International Nuclear Information System (INIS)

    Brueck, E.; Ilyn, M.; Tishin, A.M.; Tegus, O.

    2005-01-01

    Here we present the results of an investigation of some magnetic and thermal properties of the compounds MnFeP 0.45 As 0.55 , MnFeP 0.47 As 0.53 , and Mn 1.1 Fe 0.9 P 0.47 As 0.53 which can be regarded as possible magnetic refrigerants for room temperature applications. Magnetization measurements are performed in the temperature range 250-330 K, in magnetic fields up to 5 T. The coexistence of the magnetic and structural first-order phase transitions is revealed in all three samples, suggesting its key role in the large values observed for the magnetocaloric effect. The adiabatic temperature change measured directly was up to 4.0, 3.4, and 4.2 K for a magnetic field change of 1.45 T

  18. Effects of crystalline FE and MN oxides on contaminant migration through soil liners

    International Nuclear Information System (INIS)

    Dodson, M.E.; Serne, R.J.; Gee, G.W.

    1983-12-01

    Tailings solution, produced from tailings excavated at the Canonsburg, Pennsylvania UMTRAP site, was used in liner material column flow studies to test the attenuation characteristics of local borrow pit soil found adjacent to the tailings area. The effluents from linear columns, under saturated conditions, were sampled at fractional pore volumes and analyzed for macro cation, anion, trace metal and radionuclide contents. Solution displacement was allowed to continue until three pore volumes of tailings solution had contacted the liner material. In addition, two amended liner mixtures were contacted with Canonsburg tailings solution to assess the effects of crystalline iron and manganese oxides in attenuating contaminants. The amended mixes represented Canonsburg soil plus either 2% (dry wt basis) reagent grade iron oxide of 2% manganese saturated green sand zeolite. Attenuation of most trace metals and readionuclides was high in all three column studies, while macro ions, zinc, and the anions Cl and SO 4 showed limited signs of attenuation regardless of whether the soil was amended or not. In addition, there were no signs of excess leaching to Fe or Mn from the columns enriched with their oxides. General results indicate that the addition of iron and manganese oxides in their crystalline form is of little additional value compared to the attenuation of contaminants achieved with native iron and manganese oxides found as partial coatings on the silicate minerals of the unamended Canonsburg soil. 8 references, 3 figures, 3 tables

  19. The effects of crystalline Fe and Mn oxides on contaminant migration through soil liners

    International Nuclear Information System (INIS)

    Dodson, M.E.; Gee, G.W.; Serne, R.J.

    1984-01-01

    Tailings solution, produced from tailings excavated at the Canonsburg, Pennsylvania UMTRAP site, was used in liner material column flow studies to test the attenuation characteristics of local borrow pit soil found adjacent to the tailings area. The effluents from liner columns, under saturated conditions, were sampled at fractional pore volumes and analyzed for macro cation, anion, trace metal and radionuclide contents. Solution displacement was allowed to continue until three pore volumes of tailings solution had contacted the liner material. In addition, two amended liner mixtures were contacted with Canonsburg tailings solution to assess the effects of crystalline iron and manganese oxides in attenuating contaminants. The amended mixes represented Canonsburg soil plus either 2% (dry wt. basis) reagent grade iron oxide or 2% manganese saturated green sand zeolite. Attenuation of most trace metals and radionuclides was high in all three column studies, while macro ions, zinc, and the anions C1 and SO 4 showed limited signs of attenuation regardless of whether the soil was amended or not. In addition, there were no signs of excess leaching of Fe or Mn from the columns enriched with their oxides. General results indicate that the addition of iron and manganese oxides in their crystaline form is of little additional value compared to the attenuation of contaminants achieved with native iron and manganese oxides found as partial coatings on the silicate minerals of the unamended Canonsburg soil

  20. Synthesis of porous LiFe0.2Mn1.8O4 with high performance for lithium-ion battery

    International Nuclear Information System (INIS)

    Shi, Yishan; Zhu, Shenmin; Zhu, Chengling; Li, Yao; Chen, Zhixin; Zhang, Di

    2015-01-01

    Highlights: • Porous LiFe 0.2 Mn 1.8 O 4 was fabricated with P123 as a template through a nitrate decomposition method • A high rate capacity and cycling stability were demonstrated when used as cathode in LIBs • This strategy is expected to fabricate other multiple metal oxides with porous structures - Abstract: A facile and effective route was developed for the fabrication of LiFe 0.2 Mn 1.8 O 4 with porous structures by using Pluronic P-123 as a soft template, based on a nitrate decomposition method. The resultant LiFe 0.2 Mn 1.8 O 4 was characterized by XRD, SEM, as well as N 2 adsorption/desorption measurements which showed a porous structure with a pore size centered at 20 nm. When used as cathode materials in lithium battery, the as-synthesized LiFe 0.2 Mn 1.8 O 4 exhibited a discharge capacity of 122 mAh g −1 at 1 C and 102 mAh g −1 at 5 C. Moreover, after 500 cycles, the capacity retention (108 mAh g −1 ) reached 88% of the initial capacity at 1 C. As compared with conventional cathode LiMn 2 O 4 , the high performance is believed to originate from the combined effects of porous structure, iron doping and highly crystalline nature of the obtained LiFe 0.2 Mn 1.8 O 4 . This strategy is expected to allow the fabrication of other multiple metal oxides with porous structures for high performance cathode materials

  1. Atomic absorption spectrophotometric determination of microgram levels of Co, Ni, Cu, Pb, and Zn in soil and sediment extracts containing large amounts of Mn and Fe

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.

    1973-01-01

    An atomic absorption spectrophotometric method has been developed for the determination of seven metal ions in the hydroxylamine extract of soils and sediments. Mn, Fe, and Zn are directly determined in the aqueous extract upon dilution. Co, Ni, Cu, and Pb in a separate aliquot of the extract are chelated with APDC (ammonium pyrrolidine dithiocarbamate) and extracted into MIBK (methyl isobutyl ketone) before determination. Data are presented to show the quantitative recovery of microgram levels of Co, Ni, Cu, and Pb by APDC-MIBK chelation-extraction from synthetic solutions containing as much as 2,000 ug/ml (micrograms per milliliter) Mn or 50 ug/ml Fe. Recovery of known amounts of the metal ions from sample solutions is equally satisfactory. Reproducible results are obtained by replicate analyses of two sediment samples for the seven metals.

  2. Influence of Mn-dopant on the properties of α-FeOOH particles precipitated in highly alkaline media

    International Nuclear Information System (INIS)

    Krehula, Stjepko; Music, Svetozar

    2006-01-01

    The effects of Mn-dopant on the formation of solid solutions α-(Fe, Mn)OOH in dependence on the initial concentration ratio r = [Mn]/([Mn] + [Fe]), as well as on the size and morphology of the corresponding particles were investigated using Moessbauer and FT-IR spectroscopies, high-resolution scanning electron microscopy (FE SEM) and an energy dispersive X-ray analyser (EDS). The value of the hyperfine magnetic field of 34.9 T, as recorded for the reference α-FeOOH sample at RT, decreased linearly up to 21.4 T for sample with r = 0.1667. Only a paramagnetic doublet at RT was recorded for sample with r = 0.2308, a ferrite phase was additionally found for r = 0.3333. Fe-OH bending IR bands, δ OH and γ OH , were influenced by the Mn-substitution as manifested through their gradual shifts. FE SEM micrographs showed a great elongation of the starting acicular particles along the c-axis with an increase in Mn-doping. For r = 0.1667 and 0.2308 star-shaped and dendritic twin α-(Fe, Mn)OOH particles were observed. The length of these α-(Fe, Mn)OOH particles decreased, whereas their width increased. The α-Fe 2 O 3 phase was not detected in any of the samples prepared

  3. Monitoring the role of Mn and Fe in the As-removal efficiency of tetravalent manganese feroxyhyte nanoparticles from drinking water: An X-ray absorption spectroscopy study.

    Science.gov (United States)

    Pinakidou, F; Katsikini, M; Paloura, E C; Simeonidis, K; Mitraka, E; Mitrakas, M

    2016-09-01

    The implementation of amorphous tetravalent manganese feroxyhyte (TMFx) nanoparticles, prepared via co-precipitation synthesis, as an efficient As(V)-removal material is investigated using X-ray absorption fine structure (XAFS) spectroscopy at the Fe-, Mn- and As-K-edges. The optimum synthesis conditions and chemical composition of the TMFx adsorbent were determined by the degree of polymerization in the adsorbents' microstructure. Under synthesis into mildly acidic conditions, the change in the polymerization of the metal-oxyhydroxyl chains (metal=Fe, Mn) provides more adsorption sites at edges and corner sites in the bonding environment of Fe and Mn, respectively, thereby enhancing As uptake. After exposure to As-polluted water, similar microstructural changes related to As-bidentate and monodentate geometries are generated: As(V) preferentially occupies the high energy adsorption sites ((2)C complexes) available in the Mn-oxyhydroxyl groups and the low energy edge sites offered by Fe ((2)E complexes). It is revealed that optimum arsenic-removal by TMFx occurs into mildly acidic synthesis pH and for iron to manganese molar ratio equal to 3. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. MnFe2 O4 Nanocrystals Wrapped in a Porous Organic Polymer: A Designed Architecture for Water-Splitting Photocatalysis.

    Science.gov (United States)

    Dhanalaxmi, Karnekanti; Yadav, Rajkumar; Kundu, Sudipta K; Reddy, Benjaram Mahipal; Amoli, Vipin; Sinha, Anil Kumar; Mondal, John

    2016-10-24

    A novel MnFe 2 O 4 -porous organic polymer (POP) nanocomposite was synthesized by a facile hydrothermal method and using the highly cross-linked N-rich benzene-benzylamine POP. The nanocomposite presented highly efficient photocatalytic performance in the hydrogen evolution reaction (HER) from pure water without addition of any sacrificial agent under one AM 1.5 G sunlight illumination. A photocatalytic activity of 6.12 mmol h -1  g -1 was achieved in the absence of any noble metal cocatalyst, which is the highest H 2 production rate reported for nonprecious metal catalysts. The photocatalytic performance of MnFe 2 O 4 -POP could be attributed to the intrinsic synergistic effects of manganese ferrite (MnFe 2 O 4 ) nanoclusters interacting with the nitrogen dopant POP with a unique mesoporous nanoarchitecture and spatially confined growth of MnFe 2 O 4 in the interconnected POP network, leading to high visible-light absorption with fast electron transport. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of alloying elements on σ phase formation in Fe-Cr-Mn alloys

    International Nuclear Information System (INIS)

    Okazaki, Yoshimitsu; Miyahara, Kazuya; Hosoi, Yuzo; Tanino, Mitsuru; Komatsu, Hazime.

    1989-01-01

    Alloys of Fe-(8∼12%) Cr-(5∼30%) Mn were solution-treated at 1373 K for 3.6 ks, followed by cold-working of 50% reduction. Both solution-treated and 50% cold-worked materials were aged in the temperature range from 773 to 973 K for 3.6 x 10 3 ks. The identification of σ phase formation was made by using X-ray diffraction from the electrolytically extracted residues of the aged specimens. The region of σ phase formation determined by the present work is wider than that on the phase diagram already reported. It is to be noted that Mn promotes markedly the σ phase formation, and that three different types of σ phase formation are observed depending on Mn content: α→γ + α→γ + α + σ in 10% Mn, α→γ + σ in 15 to 20% Mn alloys, α→χ(Chi) →χ + σ + γ in 25 to 30% Mn alloys. An average electron concentration (e/a) in the σ phase was estimated by quantitative analysis of alloying elements using EPMA. The e/a value in the σ phase formed in Fe-(12∼16%) Cr-Mn alloys aged at 873 K for 3.6 x 10 3 ks is about 7.3, which is independent of Mn content. In order to prevent σ phase formation in Fe-12% Cr-15% Mn alloy, the value of Ni * eq of 11 (Ni * eq = Ni + 30(C) + 25(N)) is required. (author)

  6. Synthesis of nanocrystalline Zn0.5Mn0.5Fe2O4 via in situ polymerization technique

    International Nuclear Information System (INIS)

    Liu Xianming; Fu Shaoyun

    2007-01-01

    Nanocrystalline Zn 0.5 Mn 0.5 Fe 2 O 4 was synthesized through the pyrolysis of polyacrylate salt precursors prepared via in situ polymerization of the metal salts and acrylic acid. The pyrolysis behavior of the polymeric precursors was studied by use of thermal analysis. The as-obtained product was characterized by powder X-ray diffraction (XRD), transmission electron microscope (TEM), electron diffraction (ED) pattern, scanning electron microscopy (SEM) and electron dispersive X-ray (EDX) analysis. The results revealed that the particle size is in the range of 15-25 nm for Zn-Mn ferrites with good crystallinity. Magnetic properties of the sample at 300 K were measured using a vibrating sample magnetometer, which showed that the sample exhibited characteristics of superparamagnetism

  7. Removing Fe, Zn and Mn from steel making plant wastewater using RO and NF membranes

    Directory of Open Access Journals (Sweden)

    Seyed Ahmad Mirbagheri

    2016-12-01

    Full Text Available Background and purpose: Excessive amount of heavy metals in industrial wastewater is a seriously crucial issue and requires efficient methods to be introduced and dealt with. Meanwhile, steel making plants as productive units in every country release large amounts of fluid into surface and underground sources. Typically, this wastewater contains heavy metals in minor amounts, while this amount could cause severe damages to the living organisms. Materials and methods: In this study, removing iron, manganese, zinc and total dissolved solid in a typical wastewater resulted from steel making plant was considered using reverse osmosis (RO and nanofiltration (NF membranes. At first, different pH values and operating pressures were applied to the wastewater. Then, these parameters were evaluated for a wastewater only containing iron to compare the interaction of other elements in iron removal. Results: The results indicated that RO and NF membranes could successfully treat industrial wastewater containing several heavy metals with high concentrations of Fe, Zn and Mn, especially at optimum pH and pressure. Moreover, the interaction of other heavy metals and components in the influent decreased the efficiency of RO but improved the NF efficiency to remove iron. To have a better image, a formula was proposed for each method to represent the influence of the parameters on removal rates. Finally, cost estimation for both procedures showed that RO was not economically-technically efficient in comparison with NF. Conclusion: NF showed an acceptable performance with high water flow which made it more suitable for industries. At the end, the relative cost analysis showed that even if the initial price of NF is high, the energy consumption and total cost of RO will be higher.

  8. Magnetic properties of melt-spun FeMnAlB alloys

    International Nuclear Information System (INIS)

    Betancourt, I.; Nava, F.

    2007-01-01

    Magnetic properties of melt spun Fe 89-x Mn 11 Al x (x=2,4,8,15) and Fe 87-y Mn 11 Al 2 By(y=6,8,10) alloy series were studied by vibrating sample magnetometry and complex permeability measurements. The saturation magnetization exhibited an initial high value of 210emu/g followed by a decreasing tendency with increasing Al and B additions (up to 139emu/g). On the other hand, the initial permeability showed variations within the range 1000-2000, whereas the relaxation frequency displayed a maximum of 2MHz for the 4at% Al alloy

  9. The crystallization of amorphous Fe2MnGe powder prepared by ball milling

    International Nuclear Information System (INIS)

    Zhang, L.; Brueck, E.; Tegus, O.; Buschow, K.H.J.; Boer, F.R. de

    2003-01-01

    We synthesized for the first time the intermetallic compound Fe 2 MnGe. To avoid preferential evaporation of volatile components we exploited mechanical alloying. Amorphous Fe 2 MnGe alloy powder was prepared by planetary ball milling elemental starting materials. The amorphous-to-crystalline transition was studied by means of differential scanning calorimetry (DSC) and X-ray diffraction (XRD). A cubic D0 3 phase is formed at low temperature and transforms to a high-temperature hexagonal D0 19 phase. The apparent activation energy was determined by means of the Kissinger method

  10. Polarized neutron reflectivity study of a thermally treated MnIr/CoFe exchange bias system.

    Science.gov (United States)

    Awaji, Naoki; Miyajima, Toyoo; Doi, Shuuichi; Nomura, Kenji

    2010-12-01

    It has recently been found that the exchange bias of a MnIr/CoFe system can be increased significantly by adding a thermal treatment to the bilayer. To reveal the origin of the higher exchange bias, we performed polarized neutron reflectivity measurements at the JRR-3 neutron source. The magnetization vector near the MnIr/CoFe interface for thermally treated samples differed from that for samples without the treatment. We propose a model in which the pinned spin area at the interface is extended due to the increased roughness and atomic interdiffusion that result from the thermal treatment.

  11. Local and average structure of Mn- and La-substituted BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Bo; Selbach, Sverre M., E-mail: selbach@ntnu.no

    2017-06-15

    The local and average structure of solid solutions of the multiferroic perovskite BiFeO{sub 3} is investigated by synchrotron X-ray diffraction (XRD) and electron density functional theory (DFT) calculations. The average experimental structure is determined by Rietveld refinement and the local structure by total scattering data analyzed in real space with the pair distribution function (PDF) method. With equal concentrations of La on the Bi site or Mn on the Fe site, La causes larger structural distortions than Mn. Structural models based on DFT relaxed geometry give an improved fit to experimental PDFs compared to models constrained by the space group symmetry. Berry phase calculations predict a higher ferroelectric polarization than the experimental literature values, reflecting that structural disorder is not captured in either average structure space group models or DFT calculations with artificial long range order imposed by periodic boundary conditions. Only by including point defects in a supercell, here Bi vacancies, can DFT calculations reproduce the literature results on the structure and ferroelectric polarization of Mn-substituted BiFeO{sub 3}. The combination of local and average structure sensitive experimental methods with DFT calculations is useful for illuminating the structure-property-composition relationships in complex functional oxides with local structural distortions. - Graphical abstract: The experimental and simulated partial pair distribution functions (PDF) for BiFeO{sub 3}, BiFe{sub 0.875}Mn{sub 0.125}O{sub 3}, BiFe{sub 0.75}Mn{sub 0.25}O{sub 3} and Bi{sub 0.9}La{sub 0.1}FeO{sub 3}.

  12. Intermartensitic transitions in Ni-Mn-Fe-Cu-Ga Heusler alloys

    International Nuclear Information System (INIS)

    Khan, Mahmud; Gautam, Bhoj; Pathak, Arjun; Dubenko, Igor; Stadler, Shane; Ali, Naushad

    2008-01-01

    A series of Fe doped Ni 2 Mn 0.75-x Fe x Cu 0.25 Ga Heusler alloys have been investigated by means of x-ray diffraction, magnetizations, thermal expansion, and electrical resistivity measurements. In Ni 2 Mn 0.75 Cu 0.25 Ga, martensitic and ferromagnetic transitions occur at the same temperature. Partial substitution of Mn by Fe results in a decrease of the martensitic transition temperature, T M , and an increase of the ferromagnetic transition temperature, T C , resulting in separation of the two transitions. In addition to the martensitic transition, complete thermoelastic intermartensitic transformations have been observed in the Fe doped Ni 2 Mn 0.75-x Fe x Cu 0.25 Ga samples with x>0.04. An unusual transition is observed in the alloy with x = 0.04. The magnetization curve as a function of increasing temperature shows only one first-order transition in the temperature range 5-400 K, which is identified as a typical coupled magnetostructural martensitic transformation. The magnetization curve as a function of decreasing temperature shows three different transitions, which are characterized as the ferromagnetic transition, the martensitic transition and the intermartensitic transition.

  13. Spectro-photometric determinations of Mn, Fe and Cu in aluminum master alloys

    Science.gov (United States)

    Rehan; Naveed, A.; Shan, A.; Afzal, M.; Saleem, J.; Noshad, M. A.

    2016-08-01

    Highly reliable, fast and cost effective Spectro-photometric methods have been developed for the determination of Mn, Fe & Cu in aluminum master alloys, based on the development of calibration curves being prepared via laboratory standards. The calibration curves are designed so as to induce maximum sensitivity and minimum instrumental error (Mn 1mg/100ml-2mg/100ml, Fe 0.01mg/100ml-0.2mg/100ml and Cu 2mg/100ml-10mg/ 100ml). The developed Spectro-photometric methods produce accurate results while analyzing Mn, Fe and Cu in certified reference materials. Particularly, these methods are suitable for all types of Al-Mn, Al-Fe and Al-Cu master alloys (5%, 10%, 50% etc. master alloys).Moreover, the sampling practices suggested herein include a reasonable amount of analytical sample, which truly represent the whole lot of a particular master alloy. Successive dilution technique was utilized to meet the calibration curve range. Furthermore, the workout methods were also found suitable for the analysis of said elements in ordinary aluminum alloys. However, it was observed that Cush owed a considerable interference with Fe, the later one may not be accurately measured in the presence of Cu greater than 0.01 %.

  14. Serrated Flow and Dynamic Strain Aging in Fe-Mn-C TWIP Steel

    Science.gov (United States)

    Lan, Peng; Zhang, Jiaquan

    2018-01-01

    The tensile behavior, serrated flow, and dynamic strain aging of Fe-(20 to 24)Mn-(0.4 to 0.6)C twinning-induced plasticity (TWIP) steel have been investigated. A mathematical approach to analyze the DSA and PLC band parameters has been developed. For Fe-(20 to 24)Mn-(0.4 to 0.6)C TWIP steel with a theoretical ordering index (TOI) between 0.1 and 0.3, DSA can occur at the very beginning of plastic deformation and provide serrations during work hardening, while for TOI less than 0.1 the occurrence of DSA is delayed and twinning-dominant work hardening remains relatively smooth. The critical strain for the onset of DSA and PLC bands in Fe-Mn-C TWIP steels decreases as C content increases, while the numbers of serrations and bands increase. As Mn content increases, the critical strain for DSA and PLC band varies irregularly, but the numbers of serrations and bands increase. For Fe-(20 to 24)Mn-(0.4 to 0.6)C TWIP steel with grain size of about 10 to 20 μm, the twinning-induced work hardening rate is about 2.5 to 3.0 GPa, while the DSA-dominant hardening rate is about 2.0 GPa on average. With increasing engineering strain from 0.01 to 0.55 at an applied strain rate of 0.001s-1, the cycle time for PLC bands in Fe-Mn-C TWIP steel increases from 6.5 to 162 seconds, while the band velocity decreases from 4.5 to 0.5 mm s-1, and the band strain increases from 0.005 to 0.08. Increasing applied strain rate leads to a linear increase of band velocity despite composition differences. In addition, the influence of the Mn and C content on the tensile properties of Fe-Mn-C TWIP steel has been also studied. As C content increases, the yield strength and tensile strength of Fe-Mn-C TWIP steel increase, but the total elongation variation against C content is dependent on Mn content. As Mn content increases, the yield strength and tensile strength decrease, while the total elongation increases, despite C content. Taking both tensile properties and serrated flow behavior into

  15. Experimental and thermodynamic assessments of substitutions in the AlFeSi, FeMnSi, FeSiZr and AlCaFeSi systems (65 wt % Si) - solidification simulation

    International Nuclear Information System (INIS)

    Gueneau, C.; Ansara, I.

    1994-01-01

    The substitutions of Al Si, Fe Mn and Fe Zr in some intermetallic compounds of the Al-Fe-Si, Fe-Mn-Si and Fe-Si-Zr systems are modelled in the Si-rich corner using a two sublattice model. The solidification paths of the studied alloys are determined at equilibrium. The ascalculated phase volume fractions of the alloys are compared to the experimental ones. Finally, a solidification simulation using the Gulliver-Scheil's model is performed in order to explain the formation of some precipitates experimentally observed. (authors). 14 figs., 19 refs

  16. Structural, mechanical, electronic and magnetic properties of a new series of quaternary Heusler alloys CoFeMnZ (Z=Si, As, Sb): A first-principle study

    Energy Technology Data Exchange (ETDEWEB)

    Elahmar, M.H.; Rached, H.; Rached, D. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université Djillali Liabès de SidiBel-Abbès, SidiBel-Abbès 22000 (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 (Algeria); Murtaza, G. [Materials Modeling Lab, Department of Physics, Islamia College Peshawar, KPK (Pakistan); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Ahmed, W.K. [ERU, College of Engineering, United Arab Emirates University, Al Ain, Abu Dhabi (United Arab Emirates)

    2015-11-01

    The structural, mechanical, electronic and magnetic properties of the series of Heusler alloys CoFeMnZ (Z=Si, As, and Sb) have been investigated theoretically. The objective is to seek for stable half-metallic ferromagnets materials with Curie temperatures higher than room temperature. The series of CoFeMnZ (Z=Si, As and Sb) is found to exhibit half-metallic ferromagnetism with high magnetic moment and the localized moment in these magnetic compounds resides at the Mn atom. It has been observed that all our compounds have high Curie temperatures with high spin polarizations. - Highlights: • Density functional calculations for CoFeMnZ (Z=Si, As, Sb) compounds are performed. • Half-metallic ferromagnetism in CoFeMnZ (Z=Si, As, Sb) compounds is established. • The magnetic and mechanical properties for CoFeMnZ (Z=As, Sb) are studied for the first time. • The studied compounds possess high Curie temperatures with high spin polarizations.

  17. Mixed phase in cubic and hexagonal HoMn2111Cd PAC and 119Sn, 57Fe Moessbauer studies

    International Nuclear Information System (INIS)

    Cottenier, S.; Meersschaut, J.; Demuynck, S.; Swinnen, B.; Rots, M.

    1998-01-01

    Hyperfine parameters on 57 Fe, 119 Sn and 111 Cd substituted into the Mn sublattice were measured by Moessbauer and PAC spectroscopies. From these results it is tentatively concluded that C15 and C14 HoMn 2 are mixed-phase compounds. In C14 HoMn 2 there is no (or small) moment on the 2a site. (orig.)

  18. Exposure of Mn and FeSODs, but not Cu/ZnSOD, to NO leads to nitrosonium and nitroxyl ions generation which cause enzyme modification and inactivation: an in vitro study.

    Science.gov (United States)

    Niketíc, V; Stojanović, S; Nikolić, A; Spasić, M; Michelson, A M

    1999-11-01

    The effect of NO treatment in vitro on structural and functional alterations of Cu/Zn, Mn, and Fe type of SODs was studied. Significant difference in response to NO of Cu/ZnSOD compared to the Mn and Fe types was demonstrated. Cu/ZnSOD was shown to be stable with respect to NO: even on prolonged exposure, NO produced negligible effect on its structure and activity. In contrast, both Mn and Fe types were found to be NO-sensitive: exposure to NO led to their fast and extensive inactivation, which was accompanied by extensive structural alterations, including (in some of the samples tested) the cleavage of enzyme polypeptide chains, presumably at His residues of the enzyme metal binding sites. The generation of nitrosonium (NO+) and nitroxyl (NO-) ions in NO treated Mn and FeSODs, which produce enzyme modifications and inactivation, was demonstrated. The physiological and biomedical significance of described findings is briefly discussed.

  19. Mn doping effect on structure and magnetism of epitaxial (FePt)1-xMnx films

    International Nuclear Information System (INIS)

    Huang, J.C.A.; Chang, Y.C.; Yu, C.C.; Yao, Y.D.; Hu, Y.M.; Fu, C.M.

    2003-01-01

    We study the structure and perpendicular magnetism of molecular beam epitaxy grown (FePt) 1-x Mn x films with doping concentration x=0, 1%, 2%, 3%, 4%, and 5%. The (FePt) 1-x Mn x films were made by multilayers growth of [Fe/Pt/Mn]xN at 100 deg. C and annealed at 600 deg. C. X-ray diffraction scans indicate that relatively better L1 0 ordered structure for low Mn doping (x 3%. The perpendicular magnetic anisotropy effect of the (FePt) 1-x Mn x films tends to decrease with the increase of Mn doping for x>1%. However, the x=1% doped films possess slightly better perpendicular magnetic anisotropy effect than the zero doped film. The perpendicular magnetic anisotropy constant are of about 1.3x10 7 and 1.6x10 7 erg/cm 3 for x=0% and x=1%, respectively

  20. Low-energy Coulomb excitation of $^{62}$Fe and $^{62}$Mn following in-beam decay of $^{62}$Mn

    CERN Document Server

    Gaffney, L P; Bastin, B; Bildstein, V; Blazhev, A; Bree, N; Darby, I; De Witte, H; DiJulio, D; Diriken, J; Fedosseev, V N; Fransen, Ch; Gernhäuser, R; Gustafsson, A; Hess, H; Huyse, M; Kesteloot, N; Kröll, Th; Lutter, R; Marsh, B A; Reiter, P; Seidlitz, M; Van Duppen, P; Voulot, D; Warr, N; Wenander, F; Wimmer, K; Wrzosek-Lipska, K

    2015-01-01

    Sub-barrier Coulomb-excitation was performed on a mixed beam of $^{62}$Mn and $^{62}$Fe, following in-trap $\\beta^{-}$ decay of $^{62}$Mn at REX-ISOLDE, CERN. The trapping and charge breeding times were varied in order to alter the composition of the beam, which was measured by means of an ionisation chamber at the zero-angle position of the Miniball array. A new transition was observed at 418 keV, which has been tentatively associated to a $2^{(+)},3^{(+)}\\rightarrow1^{+}_{g.s.}$ transition. This fixes the relative positions of the $\\beta$-decaying $4^{(+)}$ and $1^{+}$ states in $^{62}$Mn for the first time. Population of the $2^{+}_{1}$ state was observed in $^{62}$Fe and the cross-section determined by normalisation to the $^{109}$Ag target excitation. Combining this Coulomb-excitation cross-section with previously measured lifetimes of the $2^{+}_{1}$ state, the spectroscopic quadrupole moment, $Q_{s}(2^{+}_{1})$, is extracted, albeit with a large uncertainty.

  1. Damage induced by helium ion irradiation in Fe-based metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaonan; Mei, Xianxiu, E-mail: xxmei@dlut.edu.cn; Zhang, Qi; Li, Xiaona; Qiang, Jianbing; Wang, Younian

    2017-07-15

    The changes in structure and surface morphology of metallic glasses Fe{sub 80}Si{sub 7.43}B{sub 12.57} and Fe{sub 68}Zr{sub 7}B{sub 25} before and after the irradiation of He ions with the energy of 300 keV were investigated, and were compared with that of the tungsten. The results show that after the He{sup 2+} irradiation, metallic glass Fe{sub 68}Zr{sub 7}B{sub 25} still maintained amorphous. While a small amount of metastable β-Mn type phase nanocrystals formed in metallic glass Fe{sub 80}Si{sub 7.43}B{sub 12.57} at the fluence of 4.0 × 10{sup 17}ions/cm{sup 2} (19dpa). The nanocrystals transformed into α-Fe phase and tetragonal Fe{sub 2}B phase as the fluence increased to 1.0 × 10{sup 18}ions/cm{sup 2} (47dpa). Then the new orthogonal Fe{sub 3}B phase and β-Mn type phase nanocrystals appeared when the fluence increased further, and the quantities of nanocrystals increased. Blisters and cracks appeared on the surface of tungsten under the irradiation fluence of 1.0 × 10{sup 18}ions/cm{sup 2}, however only when the fluence was up to 1.6 × 10{sup 18}ions/cm{sup 2}, could cracks and spalling appear on the surfaces of metallic glasses. - Highlights: •Metallic glass Fe{sub 68}Zr{sub 7}B{sub 25} could maintain amorphous state after the irradiation. •A series of crystallization behaviors occurred in metallic glass Fe{sub 80}Si{sub 7.43}B{sub 12.57}. •The surface of tungsten appeared blisters at the fluence of 1.0 × 10{sup 18} ions/cm{sup 2}. •Surfaces of Fe-based metallic glasses cracked at the fluence of 1.6 × 10{sup 18}ions/cm{sup 2}.

  2. Magnetoresistance in ferromagnetic shape memory alloy NiMnFeGa

    International Nuclear Information System (INIS)

    Liu, Z.H.; Ma, X.Q.; Zhu, Z.Y.; Luo, H.Z.; Liu, G.D.; Chen, J.L.; Wu, G.H.; Zhang Xiaokai; Xiao, John Q.

    2011-01-01

    The magnetoresistance (MR){=[R(H)-R(0)]/R(0)} properties in ferromagnetic shape memory alloy of NiMnFeGa ribbons and single crystals, and NiFeGa ribbons have been investigated. It is found that the NiMnFeGa melt-spun ribbon exhibited GMR effect, arising from the spin-dependent scattering from magnetic inhomogeneities consisting of antiferromagnetically coupled Mn atoms in B2 structure. In the absence of these magnetic inhomogeneities, Heusler alloys seem to show a common linear MR behavior at around 0.8T C , regardless of sample structures. This may be explained by the s-d model. At low temperatures, conventional AMR behaviors due to the spin-orbital coupling are observed. This is most likely due to the diminished MR from s-d model because of much less spin fluctuation, and is not associated with martensite phase. MR anomaly at intermediate field (ρ perpendicular >ρ || ) is also observed in single crystal samples, which may be related to unique features of Heusler alloys. - Highlights: → NiMnFeGa melt-spun ribbon exhibited GMR effect with a large negative MR up to -13%. → GMR behavior is arising from the spin-dependent scattering from magnetic inhomogeneities. → In the absence of these magnetic inhomogeneities, Heusler alloys seem to show a common linear MR behavior at around 0.8T C . → Conventional AMR behaviors due to the spin-orbital coupling are observed in NiMnFeGa single crystal and Ni 2 FeGa ribbon samples at low temperatures.

  3. Influence of varying Germanium content on the optical function dispersion of Fe{sub 2}MnSi{sub x}Ge{sub 1-x}: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, Ali H., E-mail: maalidph@yahoo.co.uk [School of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); School of Material Engineering, Malaysia University of Perlis, P.O. Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis (Malaysia); Charifi, Z., E-mail: charifizoulikha@gmail.com [Physics Department, Faculty of Science, University of M' sila, 28000 M' sila (Algeria); Baaziz, H. [Physics Department, Faculty of Science, University of M' sila, 28000 M' sila (Algeria)

    2013-01-15

    The optical dielectric functions of Fe{sub 2}MnSi{sub 1-x}Ge{sub x} alloys for selected concentrations (x=0.0, 0.25, 0.5, 0.75 and 1.0) were investigated. The ferromagnetic Fe{sub 2}MnSi{sub x}Ge{sub 1-x} is semiconducting with optical band gaps 0.507, 0.531, 0.539, 0.514 and 0.547 eV for the minority spin and is metallic for the majority spin. From the calculated results the half-metallic character and stability of ferromagnetic state for Fe{sub 2}MnSi{sub x}Ge{sub 1-x} is determined. The total magnetic moment is found to be 3.0{mu}{sub B} for all alloys with the most contribution from Mn local magnetic moments. Iron atoms however exhibit much smaller spin moments, about 10% of the bulk value, and the sp atoms have induced magnetic moments due to the proximity of Fe first nearest neighbors, which couple antiferromagnetically with Fe and Mn spin moments. We have employed full-potential linearized augmented plane wave method based on spin-polarized density functional theory. The generalized gradient approximation exchange-correlation potential was used. The edge of optical absorption for {epsilon}{sub 2}({omega}) of spin-down varies between 0.507 (Fe{sub 2}MnGe) and 0.547 eV (Fe{sub 2}MnSi). Since the spin-up shows metallic nature, the Drude term was included in the spin-up optical dielectric functions. This confirms our finding that these materials are half-metallic. Furthermore, the reflectivity, refractivity and the absorption coefficient were calculated. These results show that the materials possess half-metallic character. - Highlights: Black-Right-Pointing-Pointer The optical dielectric functions of Fe{sub 2}MnSi{sub 1-x}Ge{sub x} were investigated. Black-Right-Pointing-Pointer Fe{sub 2}MnSi{sub x}Ge{sub 1-x} is semiconducting for majority spin and is metallic for minority spin. Black-Right-Pointing-Pointer The total magnetic moment is found to be 3.0{mu}{sub B} for all alloys. Black-Right-Pointing-Pointer The edge of optical absorption for {epsilon}{sub 2

  4. Defect annealing in Mn/Fe-implanted TiO2 (rutile)

    International Nuclear Information System (INIS)

    Gunnlaugsson, H P; Svane, A; Weyer, G; Mantovan, R; Masenda, H; Naidoo, D; Mølholt, T E; Gislason, H; Ólafsson, S; Johnston, K; Bharuth-Ram, K; Langouche, G

    2014-01-01

    A study of the annealing processes and charge state of dilute Fe in rutile TiO 2 single crystals was performed in the temperature range 143–662 K, utilizing online 57 Fe emission Mössbauer spectroscopy following low concentrations (<10 −3  at%) implantation of 57 Mn (T 1/2  = 1.5 min). Both Fe 3+ and Fe 2+ were detected throughout the temperature range. Three annealing stages were distinguished: (i) a broad annealing stage below room temperature leading to an increased Fe 3+ fraction; (ii) a sharp annealing stage at ∼330 K characterized by conversion of Fe 3+ to Fe 2+ and changes in the hyperfine parameters of Fe 2+ , attributed to the annealing of Ti vacancies in the vicinity of the probe atoms; and (iii) an annealing stage in the temperature range from 550 to 600 K, where all Fe ions are transformed to Fe 3+ , attributed to the annealing of the nearby O vacancies. The dissociation energy of Mn Ti –V O pairs was estimated to be 1.60(15) eV. Fe 2+ is found in an environment where it can probe the lattice structure through the nuclear quadrupole interaction evidencing the extreme radiation hardness of rutile TiO 2 . Fe 3+ is found in a paramagnetic state with slow spin–lattice relaxation which follows a ∼T n temperature dependence with 4.1 < n < 6.3 at T > 350 K. (paper)

  5. Health Risk Assessment of Fe, Mn, Cu, Cr in Drinking Water in some Wells and Springs of Shush and Andimeshk, Khuzestan Province, Southern Iran

    Directory of Open Access Journals (Sweden)

    Mohamad Sakizadeh

    2016-02-01

    Full Text Available Background: In the current study,the hazard quotient, the hazard index (HI and spatial variations of Fe,Mn,Cu and Cr in drinking water sources of Andimesk-Shush, Khuzestan Province, Southern Iranaquifer were assessed. Methods: We compared theconcentrations of aforementioned heavy metals in wells and springs inAndimeshk and Shush regions. The non-carcinogenic risk assessment of heavy metals was implemented usingUnited States Environmental Protection Agency (USEPA index.The spatial maps in the area were developed by geostatistical methods. Results: Mean concentrations of heavy metals in groundwater sources of the study area in decreasing order was as follows: Cu >Mn> Fe> Cr. Except for iron,mean heavy metal concentrations were higher than the standard levels. Manganese concentration in 41.5% of the samples exceeded the permissible limits. Copper was higher than the safety limit in 74% of the samples, and chromium in 54% of the cases. The spatial pattern of heavy metals concentrations indicated higher concentrations in the southern parts of the region. The mean hazard quotients of most samples for the four heavy metals were lower than one, indicating that there was no immediate threat due to the exposure to these heavy metals. The calculated accumulated hazards of these heavy metals produced different results, with hazard indices of higher than one. Conclusion: The accumulated hazard indicesfor the evaluated metals were higher than one, indicating that chronic ingestion of these waters threatens the health of local consumers on the long run.

  6. Effect of Manganese on Microstructures and Solidification Modes of Cast Fe-Mn-Si-Cr-Ni Shape Memory Alloys

    Science.gov (United States)

    Peng, Huabei; Wen, Yuhua; Du, Yangyang; Yu, Qinxu; Yang, Qin

    2013-10-01

    We investigated microstructures and solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys to clarify whether Mn was an austenite former during solidification. Furthermore, we examined whether the Creq/Nieq equations (Delong, Hull, Hammer and WRC-1992 equations) and Thermo-Calc software® together with database TCFE6 were valid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys. The results have shown that the solidification modes of Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni alloys changed from the F mode to the FA mode with increasing the Mn concentration. Mn is an austenite former during the solidification for the cast Fe-Mn-Si-Cr-Ni shape memory alloys. The Delong, Hull, Hammer, and WRC-1992 equations as well as Thermo-Calc software® together with database TCFE6 are invalid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni SMAs. To predict the solidification modes of cast Fe-Mn-Si-Cr-Ni alloys, a new Creq/Nieq equation should be developed or the thermodynamic database of Thermo-Calc software® should be corrected.

  7. Assessment of the concentration of Cr, Mn and Fe in sediment using ...

    African Journals Online (AJOL)

    In the present study, laser-induced breakdown spectroscopy (LIBS) has been applied for the determination of levels of Cr, Mn and Fe in sediment samples and the results have been compared with that of flame-atomic absorption spectroscopy (F-AAS). Fourteen sediment samples were collected from Tinishu Akaki River ...

  8. Effect of Carbon Doping on the Structure and Magnetic Phase Transition in (Mn,Fe

    NARCIS (Netherlands)

    Nguyên, V.T.; Yibole, -.; Miao, X.F.; Goubitz, K.; van Eijck, L.; van Dijk, N.H.; Brück, E.H.

    2017-01-01

    Given the potential applications of (Mn,Fe2(P,Si))-based materials for room-temperature magnetic refrigeration, several research groups have carried out fundamental studies aimed at understanding the role of the magneto-elastic coupling in the first-order magnetic transition and

  9. Microstructural, mechanical, corrosion and cytotoxicity characterization of the hot forged FeMn30(wt.%) alloy

    Czech Academy of Sciences Publication Activity Database

    Čapek, Jaroslav; Kubásek, J.; Vojtěch, D.; Jablonská, E.; Lipov, J.; Ruml, T.

    2016-01-01

    Roč. 58, Jan (2016), s. 900-908 ISSN 0928-4931 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : FeMn alloys * biodegradability * cytotoxicity * microstructure * mechanical properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.164, year: 2016

  10. Local structure of 57Mn/57Fe implanted into lithium hydride

    International Nuclear Information System (INIS)

    Miyazaki, Jun; Nagatomo, Takashi; Kobayashi, Yoshio

    2013-01-01

    We report the in-beam Moessbauer Spectra of 57 Mn implanted into polycrystalline LiH at under room temperature. As compared with the result of DFT calculations, 57 Fe atoms were implanted into Li or H substitutional site in LiH crystal. With an increase the sample temperature, we could observe the decrease of lattice defects. (author)

  11. Structural, optical, and magnetic properties of Mn and Fe-doped Co3O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    C. Stella

    2015-08-01

    Full Text Available Mn and Fe-doped Co3O4 nanoparticles were prepared by a simple precipitation method. The synthesized particles were characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, and vibrating sample magnetometer (VSM techniques. XRD analysis showed the cubic structure of Co3O4. SEM and TEM images confirmed the formation of interconnected nanoparticles. Mn and Fe-doped Co3O4 showed broad absorption in the visible region compared to undoped sample and the band gap values are red shifted. Five Raman active modes were observed from the Raman spectra. FTIR spectra confirmed the spinel structure of Co3O4 and the doping of Mn and Fe shifts the vibrational modes to lower wave number region. The magnetic measurements confirmed that Fe-doped Co3O4 shows a little ferromagnetic behavior compared to undoped and Mn-doped Co3O4, which could be related to the uncompensated surface spins and the finite size effects.

  12. The geochemical profile of Mn, Co, Cu and Fe in Kerteh Mangrove Forest, Terengganu

    International Nuclear Information System (INIS)

    Kamaruzzaman, B.Y.; Antotina, A.; Airiza, Z.; Syalindran, S.; Ong, M.C.

    2007-01-01

    The geochemical profile of Kerteh mangrove sediments was analyzed for the vertical and horizontal distribution. The 100 cm core sediment sample and 15 surface sediments samples were taken from the field. The geochemical elements of Mn, Co, Cu and Fe of the sediments were analyzed. Geochemical proxy of Mn, Co, Cu and Fe were analyzed by using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The mean concentrations of Mn, Co, Cu and Fe for the vertical distribution were 210.18 μg/ g, 15.55 μg/ g, 43.65 μg/ g and 1.88 μg/ g respectively. on the other hand, the mean concentrations of the geochemical elements for horizontal distributions were 230.50 μg/ g for Mn, 17.57 μg/ g for Co, 43.381 μg/ g for Cu and 2.93 μg/ g for Fe. Enrichment factor and normalization was used to point out the level of pollution. The EF and the normalization indicated that all the geochemical elements were from the natural sources. (author)

  13. Degradable and porous Fe-Mn-C alloy for biomaterials candidate

    Science.gov (United States)

    Pratesa, Yudha; Harjanto, Sri; Larasati, Almira; Suharno, Bambang; Ariati, Myrna

    2018-02-01

    Nowadays, degradable implants attract attention to be developed because it can improve the quality of life of patients. The degradable implant is expected to degrade easily in the body until the bone healing process already achieved. However, there is limited material that could be used as a degradable implant, polymer, magnesium, and iron. In the previous study, Fe-Mn-C alloys had succesfully produced austenitic phase. However, the weakness of the alloy is degradation rate of materials was considered below the expectation. This study aimed to produce porous Fe-Mn-C materials to improve degradation rate and reduce the density of alloy without losing it non-magnetic properties. Potassium carbonate (K2CO3) were chosen as filler material to produce foam structure by sintering and dissolution process. Multisteps sintering process under argon gas environment was performed to generate austenite phase. The product showed an increment of the degradation rate of the foamed Fe-Mn-C alloy compared with the solid Fe-Mn-C alloy without losing the Austenitic Structure

  14. Assessment of the concentration of Cr, Mn and Fe in sediment using ...

    African Journals Online (AJOL)

    Preferred Customer

    determination of levels of Cr, Mn and Fe in sediment samples and the results have ... produced within the plasma emit radiation over a broad spectral range, from UV ... intake [36] and their oxides play important role in the soil for fixing trace ...

  15. Jahn-teller domains and magnetic domains in Mn2FeO4

    NARCIS (Netherlands)

    Kub, J.; Brabers, V.A.M.; Novák, P.; Gemperle, R.; Simsova, J.

    2000-01-01

    Elastic (Jahn–Teller) domains and magnetic domains in the tetragonal spinel Mn2FeO4 were studied using X-ray double-crystal topography, X-ray diffractometry and the colloid-SEM method. The Jahn–Teller domains of the measured samples are tetragonal with the [0 0 1] c-axis alternating perpendicularly

  16. HIGH TEMPERATURE TENSILE PROPERTIES OF NEW FE-CR-MN DEVELOPED STEEL

    Directory of Open Access Journals (Sweden)

    M. Mahmoudiniya

    2017-03-01

    Full Text Available Nowadays, Ni-free austenitic stainless steels are being developed rapidly and high price of nickel is one of the most important motivations for this development. At present research a new FeCrMn steel was designed and produced based on Fe-Cr-Mn-C system. Comparative studies on microstructure and high temperature mechanical properties of  new steel and AISI 316 steel were done. The results showed that new FeCrMn developed steel has single austenite phase microstructure, and its tensile strength and toughness were higher than those of 316 steel at 25, 200,350 and 500°C. In contrast with 316 steel, the new FeCrMn steel did not show strain induced transformation and dynamic strain aging phenomena during tensile tests that represented higher austenite stability of new developed steel. Lower density and higher strength of the new steel caused higher specific strength in comparison with the 316 one that can be considered as an important advantage in structural applications but in less corrosive environment

  17. Magnetic properties of the CrMnFeCoNi high-entropy alloy

    International Nuclear Information System (INIS)

    Schneeweiss, Oldřich; Friák, Martin; Masaryk University, Brno; Dudová, Marie; Holec, David

    2017-01-01

    In this paper, we present experimental data showing that the equiatomic CrMnFeCoNi high-entropy alloy undergoes two magnetic transformations at temperatures below 100 K while maintaining its fcc structure down to 3 K. The first transition, paramagnetic to spin glass, was detected at 93 K and the second transition of the ferromagnetic type occurred at 38 K. Field-assisted cooling below 38 K resulted in a systematic vertical shift of the hysteresis curves. Strength and direction of the associated magnetization bias was proportional to the strength and direction of the cooling field and shows a linear dependence with a slope of 0.006 ± 0.001 emu T. The local magnetic moments of individual atoms in the CrMnFeCoNi quinary fcc random solid solution were investigated by ab initio (electronic density functional theory) calculations. Results of the numerical analysis suggest that, irrespective of the initial configuration of local magnetic moments, the magnetic moments associated with Cr atoms align antiferromagnetically with respect to a cumulative magnetic moment of their first coordination shell. The ab initio calculations further showed that the magnetic moments of Fe and Mn atoms remain strong (between 1.5 and 2 μ B ), while the local moments of Ni atoms effectively vanish. Finally, these results indicate that interactions of Mn- and/or Fe-located moments with the surrounding magnetic structure account for the observed macroscopic magnetization bias.

  18. Radioactivity of β / γ and the Content of Ca, Fe, Mn, Mg, Na on the Spring of Ponorogo East Java Lime Area

    International Nuclear Information System (INIS)

    Sutjipto

    2002-01-01

    Radioactivity of β / γ and the content of Ca, Fe, Mn, Mg, Na on the source of Ponorogo East-Java lime area has been studied. This research was carried out to know radioactivity of β / γ and the content of Ca, Fe, Mn, Mg, Na on the spring of different three places were Ngebel-lake source, Ngembak source and Gonggang source. Samples taken, preparation and analysis based on the procedures of environmental radioactivity analysis and water sampling guidelines. The instrument used for the analysis radioactivity were low level β counter modified P3TM-BATAN Yogyakarta with detector GM and spectrometer γ with detector Ge(Li). Radioactivity of β (gross) from the source of different three places (β ≤ 1 Bq/L) are lower than the value of PPRI No. 20/1990. Radioactivity of γ comes from the natural radionuclides of Tl-208 and K-40 are lower than 1 Bq/L for the different of three places, respectively. The metals concentration of Ngebel-lake source were Ca ≤ 14.34 ppm; Fe ≤ 0.04 ppm; Mn ≤ 0.02 ppm; Mg ≤ 6.75 ppm; Na ≤ 14.63 ppm, Ngembak source were Ca ≤ 11.6 ppm; Fe ≤ 0.04 ppm; Mn ≤ 0.02 ppm; Mg ≤ 11.13 ppm; Na ≤ 16.75 ppm and Gonggang source were Ca ≤ 13.78 ppm; Fe ≤ 0.26 ppm; Mn ≤ 0.02 ppm; Mg ≤ 6.13 ppm; Na ≤ 15.00 ppm. The water of Ngebel-lake source, Ngembak source and Gonggang source can be classified as B category water based on radioactivity and the content of the metals concentration in its. (author)

  19. Effects of phase transformation and interdiffusion on the exchange bias of NiFe/NiMn

    International Nuclear Information System (INIS)

    Lai, Chih-Huang; Lien, W. C.; Chen, F. R.; Kai, J. J.; Mao, S.

    2001-01-01

    The correlation between the exchange field of NiFe/NiMn and the phase transformation of NiMn was investigated. Transmission electron microscopy (TEM) dark-field images, contributed by the order phase of NiMn, were used to identify the location and volume fraction of the order phase. TEM selected area diffraction patterns showed the (110) superlattice diffraction rings of NiMn, verifying the existence of the order phase in the annealed samples. The order volume fraction can be calculated by the dark field image contributed by the (110) diffraction. The exchange field increased almost linearly with increasing order volume fraction. Energy dispersive x-ray spectroscopy attached to TEM indicated that Mn diffused into NiFe for annealing at 280 degreeC, leading to a larger coercivity and small coercivity squareness. Part of the NiMn still maintains the paramagnetic phase even after annealing at 280 degreeC. [copyright] 2001 American Institute of Physics

  20. New understanding on separation of Mn and Fe from ferruginous manganese ores by the magnetic reduction roasting process

    Science.gov (United States)

    Liu, Bingbing; Zhang, Yuanbo; Wang, Juan; Wang, Jia; Su, Zijian; Li, Guanghui; Jiang, Tao

    2018-06-01

    Magnetic reduction roasting followed by magnetic separation process is reported as a simple route to realize separation of Mn and Fe from ferruginous manganese ores (Fe-Mn ores). However, the separation and recovery of Mn and Fe oxides are not very effective. This work clarified the underlying reason for the poor separation and also proposed some suggestions for the magnetic reduction process. In this work, the effect of temperature on the magnetic reduction roasting - magnetic separation of Fe-Mn ore was investigated firstly. Then the reduction behaviors of MnO2-Fe2O3 system and MnO2-Fe2O3-10 wt.%SiO2 system under 10 vol.% CO-90 vol.% CO2 at 600-1000 °C were investigated by XRD, XPS, SEM-EDS, VSM, DSC and thermodynamics analyses. Reduction and separation tests showed that higher reduction temperature was beneficial to the recovery of iron while it's not in favor of the recovery of manganese when the temperature was over 800 °C. The formation of composite oxide MnxFe3-xO4 with strong magnetism between the interface of the MnO2 and Fe2O3 particles leaded to the poor separation of iron and manganese. In addition, the formation mechanism of MnxFe3-xO4 from MnO2 and Fe2O3 as well as the interface reaction reduced under 10 vol.% CO was discussed in this study. Finally, some suggestions were recommended for the magnetic reduction roasting for utilizing the Fe-Mn ores effectively.

  1. Interplay of magnetism and superconductivity in the compressed Fe-ladder compound BaFe>2mn>Se>3mn>

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Jianjun; Lei, Hechang; Petrovic, Cedomir; Xiao, Yuming; Struzhkin, Viktor V. (BNL); (CIW)

    2017-06-01

    High pressure resistance, susceptibility, and Fe K β x-ray emission spectroscopy measurements were performed on Fe-ladder compound BaFe 2 Se 3 . Pressure-induced superconductivity was observed which is similar to the previously reported superconductivity in the BaFe 2 S 3 samples. The slope of local magnetic moment versus pressure shows an anomaly across the insulator-metal transition pressure in the BaFe 2 Se 3 samples. The local magnetic moment is continuously decreasing with increasing pressure, and the superconductivity appears only when the local magnetic moment value is comparable to the one in the iron-pnictide superconductors. Our results indicate that the compressed BaFe 2 C h 3 ( C h = S , Se) is a new family of iron-based superconductors. Despite the crystal structures completely different from the known iron-based superconducting materials, the magnetism in this Fe-ladder material plays a critical role in superconductivity. This behavior is similar to the other members of iron-based superconducting materials.

  2. A Dilute-Limit Heat of Solution of 3d Transition Metals in Iron Studied with 57Fe Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Chojcan, Jan

    2004-01-01

    The room-temperature 57 Fe Moessbauer spectra for binary iron-based solid solutions Fe 1-x D x with D=V, Cr, Mn and Co, were analysed in terms of binding energy E b between two D atoms in the Fe-D system. The extrapolated values of E b for x=0 were used for computation of the dilute-limit heat of solution of D metals in iron. The results were compared with those derived from calorimetric data concerning the heat of formation of the systems mentioned as well as with those resulting from the Miedema's model of alloys. The comparison shows that our Moessbauer spectroscopy findings are in a qualitative agreement with the available calorimetric data and they are at variance with corresponding Miedema's values for Fe-Mn and Fe-Co systems.

  3. Superior Properties of Energetically Stable La2/3Sr1/3MnO3/Tetragonal BiFeO3 Multiferroic Superlattices

    KAUST Repository

    Feng, Nan; Mi, Wenbo; Wang, Xiaocha; Cheng, Yingchun; Schwingenschlö gl, Udo

    2015-01-01

    The superlattice of energetically stable La2/3Sr1/3MnO3 and tetragonal BiFeO3 is investigated by means of density functional theory. The superlattice as a whole exhibits a half-metallic character, as is desired for spintronic devices. The interfacial electronic states and exchange coupling are analyzed in details. We demonstrate that the interfacial O atoms play a key role in controlling the coupling. The higher ferroelectricity of tetragonal BiFeO3 and stronger response to the magnetic moment in La2/3Sr1/3MnO3/BiFeO3 superlattice show a strongly enhanced electric control of the magnetism as compared to the rhombohedral one. Therefore, it is particularly practical interest in the magnetoelectric controlled spintronic devices.

  4. Superior Properties of Energetically Stable La2/3Sr1/3MnO3/Tetragonal BiFeO3 Multiferroic Superlattices

    KAUST Repository

    Feng, Nan

    2015-04-30

    The superlattice of energetically stable La2/3Sr1/3MnO3 and tetragonal BiFeO3 is investigated by means of density functional theory. The superlattice as a whole exhibits a half-metallic character, as is desired for spintronic devices. The interfacial electronic states and exchange coupling are analyzed in details. We demonstrate that the interfacial O atoms play a key role in controlling the coupling. The higher ferroelectricity of tetragonal BiFeO3 and stronger response to the magnetic moment in La2/3Sr1/3MnO3/BiFeO3 superlattice show a strongly enhanced electric control of the magnetism as compared to the rhombohedral one. Therefore, it is particularly practical interest in the magnetoelectric controlled spintronic devices.

  5. Magnetic, electrical transport and electron spin resonance studies of Fe-doped manganite LaMn0.7Fe0.3O3+δ

    International Nuclear Information System (INIS)

    Liu, X.J.; Li, Z.Q.; Yu, A.; Liu, M.L.; Li, W.R.; Li, B.L.; Wu, P.; Bai, H.L.; Jiang, E.Y.

    2007-01-01

    We have investigated the magnetic, electrical transport and electron spin resonance (ESR) properties of polycrystalline Fe-doped manganite LaMn 0.7 Fe 0.3 O 3+ δ prepared by sol-gel method. A typical cluster-glass feature is presented by DC magnetization and AC susceptibility measurements and a sharp but shallow memory effect was observed. Symmetrical Lorentzian lines of the Mn/Fe spectra were detected above 120 K, where the sample is a paramagnetic (PM) insulator. When the temperature decreases from 120 K, magnetic clusters contributed from ferromagnetic (FM) interaction between Mn 3+ and Mn 3+ /Fe 3+ ions develop and coexist with PM phase. At lower temperature, these FM clusters compete with antiferromagnetic (AFM) ones between Fe 3+ ions, which are associated with a distinct field-cooled (FC) effect in characteristic of cluster-glass state

  6. First-principle study on magnetic properties of Mn/Fe codoped ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hongxia, E-mail: chenhongxia1@sina.com [College of Physical Science and Electronic Techniques, Yancheng Teachers University, Yancheng 224002 (China); Department of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2012-07-15

    We studied the magnetic properties of Mn/Fe codoped ZnS comparatively with and without defects using first-principle calculation. The calculated results indicate that the Mn/Fe codoped ZnS system tends to stabilize in a ferrimagnetic (FiM) configuration. To obtain a ferromagnetic (FM) configuration, we consider the doped system with defects, such as S or Zn vacancy. The calculated results indicate that the doped system with Zn vacancy favors FiM states. Although the FM states of the doped system with S vacancy are more stable than the FiM states in negative charge states, the FM states are not stable enough to exist. Finally, we replaced an S atom by a C atom in the doped system. The C atom prefers to substitute the S atom connecting Mn and Fe atoms. The formation energy of this defect is -0.40 eV, showing that Mn/Fe/C codoped ZnS can be fabricated easily by experiments. Furthermore, the FM state was lower in energy than the FiM state by 114 meV. Such a large energy difference between the FM and FiM states implies that room temperature ferromagnetism could be expected in such a system. - Highlights: Black-Right-Pointing-Pointer Mn/Fe codoped ZnS system tends to stabilize in a ferrimagnetic configuration with or without defects. Black-Right-Pointing-Pointer By additional C codoping, the doped system tends to stabilize in a ferromagnetic configuration. Black-Right-Pointing-Pointer Energy difference between ferrimagnetic and ferromagnetic states is 114 meV. Black-Right-Pointing-Pointer This indicates room temperature ferromagnetism can be likely in such a system.

  7. Enhanced exchange bias in MnN/CoFe bilayers after high-temperature annealing

    Science.gov (United States)

    Dunz, M.; Schmalhorst, J.; Meinert, M.

    2018-05-01

    We report an exchange bias of more than 2700 Oe at room temperature in MnN/CoFe bilayers after high-temperature annealing. We studied the dependence of exchange bias on the annealing temperature for different MnN thicknesses in detail and found that samples with tMnN > 32nm show an increase of exchange bias for annealing temperatures higher than TA = 400 °C. Maximum exchange bias values exceeding 2000 Oe with reasonably small coercive fields around 600 Oe are achieved for tMnN = 42, 48 nm. The median blocking temperature of those systems is determined to be 180 °C after initial annealing at TA = 525 °C. X-ray diffraction measurements and Auger depth profiling show that the large increase of exchange bias after high-temperature annealing is accompanied by strong nitrogen diffusion into the Ta buffer layer of the stacks.

  8. Optimisation of the FeMn and ZnO production from spent pyrolised primary batteries. Feasibility of a DC-submerged arc furnace process

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Alvarado, R.; Friedrich, B. [RWTH Aachen (Germany). IME Process Metallurgy and Metal Recycling

    2008-07-01

    In the present work the feasibility to produce a Fe-Mn-alloy and a ZnO-concentrate from spent pyrolised primary batteries has been investigated based on fundamental research, already reported in 'World of Metallurgy' - ERZ-METALL 1/2007. Through a carbothermic reduction in a Direct Current Submerged Arc Furnace process (DC-SAF) at IME Aachen, several laboratory-scale as well as semi-pilot scale tests were conducted with three different slag-compositions using solid- and hollow-electrode technique. The process was theoretically modelled with the thermochemical package FactSage 5.3.1. The effect of the process parameters temperature, slag composition and carbon addition were analysed. The results show that it is possible to recycle spent primary batteries through the submerged arc route to obtain a Fe-Mn alloy with a ratio Mn/Fe>1 and a ZnO concentrate as a separated product, reaching recycling quotes for Mn between 44 and 62%, for Fe between 56 and 96% and for zinc of more than 90%. (orig.)

  9. Determination of hyperfine fields and atomic ordering in NiMnFeGe exhibiting martensitic transformation

    Directory of Open Access Journals (Sweden)

    Satuła Dariusz

    2015-03-01

    Full Text Available The hyperfine fields and atomic ordering in Ni1−xFexMnGe (x = 0.1, 0.2, 0.3 alloys were investigated using X-ray diffraction and Mössbauer spectroscopy at room temperature. The X-ray diffraction measurements show that the samples with x = 0.2, 0.3 crystallized in the hexagonal Ni2In-type of structure, whereas in the sample with x = 0.1, the coexistence of two phases, Ni2In- and orthorhombic TiNiSi-type of structures, were found. The Mössbauer spectra measured with x = 0.2, 0.3 show three doublets with different values of isomer shift (IS and quadrupole splitting (QS related to three different local surroundings of Fe atoms in the hexagonal Ni2In-type structure. It was shown that Fe atoms in the hexagonal Ni2In-type structure of as-cast Ni1−xFexMnGe alloys are preferentially located in Ni sites and small amount of Fe is located in Mn and probably in Ge sites. The spectrum for x = 0.1 shows the doublets in the central part of spectrum and a broad sextet. The doublets originate from the Fe atoms in the paramagnetic state of hexagonal Ni2In-type structure, whereas the sextet results from the Fe atoms in orthorhombic TiNiSi-type structure.

  10. New Insights into Mn1−xZnxFe2O4 via Fabricating Magnetic Photocatalyst Material BiVO4/Mn1−xZnxFe2O4

    Directory of Open Access Journals (Sweden)

    Taiping Xie

    2018-02-01

    Full Text Available BiVO4/Mn1−xZnxFe2O4 was prepared by the impregnation roasting method. XRD (X-ray Diffractometer tests showed that the prepared BiVO4 is monoclinic crystal, and the introduction of Mn1−xZnxFe2O4 does not change the crystal structure of BiVO4. The introduction of a soft-magnetic material, Mn1−xZnxFe2O4, was beneficial to the composite photocatalyst’s separation from the liquid solution using an extra magnet after use. UV-vis spectra analysis indicated that Mn1−xZnxFe2O4 enhanced the absorption intensity of visible light for BiVO4. EIS (electrochemical impedance spectroscopy investigation revealed that the introduction of Mn1−xZnxFe2O4 enhanced the conductivity of BiVO4, further decreasing its electron transfer impedance. The photocatalytic efficiency of BiVO4/Mn1−xZnxFe2O4 was higher than that of pure BiVO4. In other words, Mn1−xZnxFe2O4 could enhance the photocatalytic reaction rate.

  11. Microstructural Influence on Dynamic Properties of Age Hardenable FeMnAl Alloys

    Science.gov (United States)

    2011-04-01

    strain amplitude on a wrought Fe-28Mn-9Al-0.86C-0.7W-0.43Mo-0.49Nb alloy and on a martensitic stainless steel of composition Fe-12Cr-1.25Ni-0.2V-1.8W...the martensite and loss of strength was used to explain the lower cyclic life of the stainless steel at elevated temperatures. Within the Fe-Mn-Al-C...through F in Table 2), 1010 carbon steel and 304 stainless steel as functions of exposure time in 1 atm flowing oxygen at 700°C (a) and 500°C (b).56

  12. Effect of MnCuFe{sub 2}O{sub 4} content on magnetic and dielectric properties of poly (O-Phenylenediamine)/MnCuFe{sub 2}O{sub 4} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kannapiran, Nagarajan [PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu (India); Muthusamy, Athianna, E-mail: muthusrkv@gmail.com [PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu (India); Chitra, Palanisamy [PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu (India)

    2016-03-01

    Poly o-phenylenediamine (PoPD)/MnCuFe{sub 2}O{sub 4} nanocomposites with three different ratios of MnCuFe{sub 2}O{sub 4} (10%, 20%, 30% w/w) were synthesized by in-situ oxidative chemical polymerization method ammonium persulphate used as oxidant, while MnCuFe{sub 2}O{sub 4} nanoparticles was prepared by auto-combustion method. The structure, morphology and magnetic properties of synthesized PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites were characterized by FT-IR, UV–visible absorption spectra, X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermogravimetric analysis (TGA) and Vibrating sample magnetometer (VSM). FTIR spectra and XRD were confirmed the formation of the PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites. The morphology of PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites is visualized through SEM and TEM. The spherical morphology of the PoPD was confirmed using SEM analysis. Dielectric properties of PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites at different temperatures have been performed in the frequency range of 50 Hz–5 MHz. The optical absorption experiments of PoPD/MnCuFe{sub 2}O{sub 4} nanocomposites reveal that the direct transition with an energy band gap is around 2 eV. - Highlights: • Green synthesis of PoPD (the polymerization carried out only in aqueous medium) by in-situ chemical polymerization method. • For the first time, PoPD incorporated with MnCuFe{sub 2}O{sub 4} with lesser particle size. • The auto combustion reaction, support to achieve less particle size. • Ferrite content affects the magnetic properties of the nanocomposites.

  13. Effect of chitosan coating on the structural and magnetic properties of MnFe2O4 and Mn0.5Co0.5Fe2O4 nanoparticles

    Science.gov (United States)

    Mdlalose, W. B.; Mokhosi, S. R.; Dlamini, S.; Moyo, T.; Singh, M.

    2018-05-01

    We report the influence of polymer coatings on structural and magnetic properties of MnFe2O4 and Mn0.5Co0.5Fe2O4 nanoferrites synthesized by glycol thermal technique and then coated with chitosan viz. CHI-MnFe2O4 and CHI-Mn0.5Co0.5Fe2O4. The compounds were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), high-resolution scanning electron microscopy (HRSEM), Mössbauer spectroscopy and magnetization measurements. The powder XRD patterns of naked nanoferrites confirmed single-phase spinel cubic structure with an average crystallite size of 13 nm, while the coated samples exhibited an average particle size of 15 nm. We observed a reduction in lattice parameters with coating. HRTEM results correlated well with XRD results. 57Fe Mössbauer spectra showed ordered magnetic spin states in both nanoferrites. This study shows that coatings have significant effects on the structural and magnetic properties of Mn-nanoferrites. Magnetization studies performed at room temperature in fields up to 14 kOe revealed the superparamagnetic nature of both naked and coated nanoparticles with spontaneous magnetizations at room temperature of 49.2 emu/g for MnFe2O4, 23.6 emu/g for coated CHI-MnFe2O4 nanoparticles, 63.2 emu/g for Mn0.5Co0.5Fe2O4 and 33.2 emu/g for coated CHI-Mn0.5Co0.5Fe2O4 nanoparticles. We observed reduction in coercive fields due to coating. Overall, chitosan-coated manganese and manganese-cobalt nanoferrites present as suitable candidates for biomedical applications owing to physicochemical, and magnetic properties exhibited.

  14. Local moments, exchange interactions, and magnetic order in Mn-doped LaFe2Si2 alloys

    International Nuclear Information System (INIS)

    Turek, I.; Divis, M.; Niznansky, D.; Vejpravova, J.

    2007-01-01

    Formation of local magnetic moments in the intermetallic compound LaFe 2 Si 2 due to doping by a few at% of Mn has been investigated by theoretical and experimental tools. While a number of low-temperature experiments prove appearance of non-zero magnetic moments due to the Mn doping, the measured 57 Fe Moessbauer spectra rule out sizable local moments of Fe atoms. This conclusion is in agreement with results of first-principles electronic structure calculations that yield non-vanishing moments only on Mn atoms. The calculated Mn-Mn exchange interactions are of both signs which indicate a magnetically frustrated ground state, probably with a spin-glass-like arrangement of the Mn moments

  15. Microstructures and mechanical properties of heat-treated Al–5.0Cu–0.5Fe squeeze cast alloys with different Mn/Fe ratio

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiwen, E-mail: mewzhang@scut.edu.cn; Lin, Bo; Fan, Jianlei; Zhang, Datong; Li, Yuanyuan

    2013-12-20

    The Al–5.0 wt% Cu–0.5 wt% Fe alloys with different Mn/Fe ratio were prepared by squeeze casting. Various test techniques, including tensile test, image analysis, scanning electron microscope (SEM), X-ray diffraction (XRD), electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM) were used to examine the microstructures and mechanical properties of the alloys in T5 heat-treated condition. The results show that the β-Fe (Al{sub 7}Cu{sub 2}Fe) is stable and its needle-like morphology is maintained after T5 heat treatment. However, the Chinese script Al{sub m}Fe, α-Fe or Al{sub 6}(FeMn) partially transform to a new Chinese script Cu-rich α(CuFe) (Al{sub 7}Cu{sub 2}Fe or Al{sub 7}Cu{sub 2}(FeMn)), which is harmful to the mechanical properties of the alloys due to the decrease of the Cu content in α(Al) matrix. The optimal Mn/Fe ratio is determined by the morphology of Fe-rich intermetallics, volume fraction of θ′ and T (Al{sub 20}Cu{sub 2}Mn{sub 3}), size of α(Al) dendrite and porosity. Excessive Mn/Fe ratio will deteriorate the mechanical properties of the alloys due to the increase of the total amount of porosity and the Fe-rich intermetallics. When the Mn/Fe ratio is 1.6 and 1.2 for the applied pressure of 0 MPa and 75 MPa, respectively, the needle-like β-Fe phase is completely converted to the Chinese script Fe-rich intermetallics. The ultimate tensile strength, yield strength and elongation of the T5 heat-treated alloy with the Mn/Fe ratio of 1.2 and applied pressure of 75 MPa reach 395 MPa, 335 MPa and 14%, respectively.

  16. Structural and dielectric characteristics of double perovskite La2(NiFe)1/2MnO6

    Science.gov (United States)

    Nasir, Mohd.; Kandasami, Asokan; Sen, Somaditya

    2018-05-01

    Recently, La2NiMnO6 has drawn significant interest because large magnetic field induced changes in dielectric properties makes this compound a promising material for potential spintronic device applications. In the present study, the structural and dielectric characteristics of sol-gel prepared La2(Ni1/2Fe1/2)MnO6 double perovskite ceramics were evaluated. La2(Ni1/2Fe1/2)MnO6 was crystallized in the monoclinic P21/n structure with ordered Ni2+/Fe2+ and Mn4+ cations. A giant dielectric constant with relaxor-like behavior was observed, which was attributed to the dipolar effects arising from hopping between Ni2+/Fe2+ and Mn4+ ions.

  17. Graphite furnace analysis of a series of metals (Cu, Mn, Pb, Zn and Cd) in ox kidney

    International Nuclear Information System (INIS)

    Souza, Vivianne L.B. de; Nascimento, Rizia K. do; Paiva, Ana Claudia de; Silva, Josenilda M. da; Melo, Jessica V. de

    2013-01-01

    The aim of this study was to create a methodology for animal tissue analysis, with the use of flame atomic absorption spectrophotometry techniques and graphite furnace analysis to determining metal concentrations in ox kidney. The organ of this animal can be considered a great nutritional food, due to the high protein and micronutrient content beyond the ability to absorb and concentrate important metals such as Zn, Fe, Mn and Se. On the other hand, there is a risk when eating this food owing to the capacity to accumulate toxic metals such as Pb and Cd. In accordance with the laboratory analysis, Zn can be analyzed by flame atomic absorption spectrophotometry, but other metals such as Cu, Mn, Pb and Cd, could only be detected by graphite furnace analysis. The results showed that there is more Zn and Cu than other metals. Such metals follows an order reported by the literature (Zn > Cu > Cd > Pb > Mn). The results showed that kidney is actually a rich source of Zn and Cu. The Cd levels in the ox kidney did not exceed the values which cause toxic effects. The adequacy of the results indicates that the proposed methodology can be used for animal tissue analysis.(author)

  18. Graphite furnace analysis of a series of metals (Cu, Mn, Pb, Zn and Cd) in ox kidney

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne L.B. de; Nascimento, Rizia K. do; Paiva, Ana Claudia de; Silva, Josenilda M. da, E-mail: vlsouza@cnen.gov.br, E-mail: riziakelia@hotmail.com, E-mail: acpaiva@cnen.gov.br, E-mail: jmnilda@hotmail.com [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Melo, Jessica V. de, E-mail: Jessica_clorofila@hotmail.com [Universidade de Pernambuco, Recife, PE (Brazil)

    2013-07-01

    The aim of this study was to create a methodology for animal tissue analysis, with the use of flame atomic absorption spectrophotometry techniques and graphite furnace analysis to determining metal concentrations in ox kidney. The organ of this animal can be considered a great nutritional food, due to the high protein and micronutrient content beyond the ability to absorb and concentrate important metals such as Zn, Fe, Mn and Se. On the other hand, there is a risk when eating this food owing to the capacity to accumulate toxic metals such as Pb and Cd. In accordance with the laboratory analysis, Zn can be analyzed by flame atomic absorption spectrophotometry, but other metals such as Cu, Mn, Pb and Cd, could only be detected by graphite furnace analysis. The results showed that there is more Zn and Cu than other metals. Such metals follows an order reported by the literature (Zn > Cu > Cd > Pb > Mn). The results showed that kidney is actually a rich source of Zn and Cu. The Cd levels in the ox kidney did not exceed the values which cause toxic effects. The adequacy of the results indicates that the proposed methodology can be used for animal tissue analysis.(author)

  19. The centralized control of elemental mercury emission from the flue gas by a magnetic rengenerable Fe-Ti-Mn spinel.

    Science.gov (United States)

    Liao, Yong; Xiong, Shangchao; Dang, Hao; Xiao, Xin; Yang, Shijian; Wong, Po Keung

    2015-12-15

    A magnetic Fe-Ti-Mn spinel was developed to adsorb gaseous Hg(0) in our previous study. However, it is currently extremely restricted in the control of Hg(0) emission from the flue gas for at least three reasons: sorbent recovery, sorbent regeneration and the interference of the chemical composition in the flue gas. Therefore, the effect of SO2 and H2O on the adsorption of gaseous Hg(0) on the Fe-Ti-Mn spinel and the regeneration of spent Fe-Ti-Mn spinel were investigated in this study. Meanwhile, the procedure of the centralized control of Hg(0) emission from the flue gas by the magnetic Fe-Ti-Mn spinel has been analyzed for industrial application. The spent Fe-Ti-Mn spinel can be regenerated by water washing followed by the thermal treatment at 450 °C with no obvious decrease of its ability for Hg(0) capture. Meanwhile, gaseous Hg(0) in the flue gas can be remarkably concentrated during the regeneration, facilitating its safe disposal. Initial pilot test demonstrated that gaseous Hg(0) in the real flue gas can be concentrated at least 100 times by the Fe-Ti-Mn spinel. Therefore, Fe-Ti-Mn spinel was a novel magnetic regenerable sorbent, which can be used for the centralized control of Hg(0) emission from the flue gas. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Moessbauer effect and infrared study of some borate glass containing Mn and Fe oxides

    International Nuclear Information System (INIS)

    Gabr, M.

    2005-01-01

    Lithium borate glasses containing transition metals appeared now of very high technological and scientific interest. Therefore some lithium borate glasses containing mixed transition metal ions (manganese and iron) were investigated. The glass batches were melted at 1250 degree C for three hours and annealed at 350 degree C -over night- to obtain strain free glasses. Moessbauer Effect spectroscopy and Infrared analysis were employed to investigate the structural changes due to the change of their batches composition. Differential thermal analysis, magnetic susceptibility, density and molar volume measurements were also performed to study the effect of changing both manganese and iron oxides at the expense of boron oxide on these properties. Infrared analysis indicated the presence of different structural groups such as BO 3 , BO 4 , FeO 4 and MnO 6 as well as different vibrations indicated the presence of various bonds in the glass network. The values of the characteristic temperatures (T g , T c and T m ) showed gradual increase except those of the last sample where they showed a decrease. The mid sample showed the lowest stability value. It was found that the molar volume showed its highest value at R=0.33 [where R is the ratio of glass network modifier to the glass network former]. After that it showed gradual linear decrease. The magnetic susceptibility measurements showed approximately stable value between R=0.29 and 0.33, then it increased up to R=0.38, and after that, it decreased up to R= 0.43. The obtained magnetic susceptibility values indicated that all these glasses are paramagnetic. The obtained Moessbauer spectra and the calculated parameters confirmed that iron ions participated in the glass network as network former cations. It confirmed also that all glasses reflect paramagnetic character. The observed structural change were explained and correlated with the change of the measured physical properties

  1. FeOOH-loaded MnO2 nano-composite: An efficient emergency material for thallium pollution incident.

    Science.gov (United States)

    Chen, Meiqing; Wu, Pingxiao; Yu, Langfeng; Liu, Shuai; Ruan, Bo; Hu, Haihui; Zhu, Nengwu; Lin, Zhang

    2017-05-01

    A FeOOH-loaded MnO 2 nano-composite was developed as an emergency material for Tl(I) pollution incident. Structural characterizations showed that FeOOH successfully loaded onto MnO 2 , the nanosheet-flower structure and high surface area (191 m 2  g -1 ) of material contributed to the excellent performance for Tl(I) removal. FeOOH-loaded MnO 2 with a Fe/Mn molar ratio of 1:2 exhibited a noticeable enhanced capacity for Tl(I) removal compared to that of pure MnO 2 . The outstanding performance for Tl(I) removal involves in extremely high efficiency (achieved equilibrium and drinking water standard within 4 min) and the large maximum adsorption capacity (450 mg g -1 ). Both the control-experiment and XPS characterization proved that the removal mechanism of Tl(I) on FeOOH-loaded MnO 2 included adsorption and oxidation: the oxidation of MnO 2 played an important role for Tl(I) removal, and the adsorption of FeOOH loaded on MnO 2 enhanced Tl(I) purification at the same time. In-depth purification of Tl(I) had reach drinking water standards (0.1 μg L -1 ) at pH above 7, and there wasn't security risk produced from the dissolution of Mn 2+ and Fe 2+ . Moreover, the as-prepared material could be utilized as a recyclable adsorbent regenerated by using NaOH-NaClO binary solution. Therefore, the synthesized FeOOH-loaded MnO 2 in this study has the potential to be applied as an emergency material for thallium pollution incident. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Reduced-activation austenitic stainless steels: The Fe--Mn--Cr--C system

    International Nuclear Information System (INIS)

    Klueh, R.L.; Maziasz, P.J.

    1988-01-01

    Nickel-free manganese-stabilized steels are being developed for fusion-reactor applications. As the first part of this effort, the austenite-stable region in the Fe--Mn--Cr--C system was determined. Results indicated that the Schaeffler diagram developed for Fe--Ni--Cr--C alloys cannot be used to predict the constituents expected for high-manganese steels. This is true because manganese is not as strong an austenite stabilizer relative to δ-ferrite formation as predicted by the diagram, but it is a stronger austenite stabilizer relative to martensite than predicted. Therefore, the austenite-stable region for Ne--Mn--Cr--C alloys occurs at lower chromium and hugher combinations of manganese and carbon than predicted by the Schaeffler diagram. Development of a manganese-stabilized stainless steel should be possible in the composition range of 20 to 25% Mn, 10 to 15% Cr, and 0.01 to 0.25%C. Tensile behavior of an Fe--20%Mn--12%Cr--0.25%C alloy was determined. The strength and ductility of this possible base composition was comparable to type 316 stainless steel in both the solution-annealed and cold-worked condition

  3. Phase transformation, magnetic property and microstructure of Ni-Mn-Fe-Co-Ga ferromagnetic shape memory alloys

    International Nuclear Information System (INIS)

    Tsuchiya, K.; Sho, Y.; Kushima, T.; Todaka, Y.; Umemoto, M.

    2007-01-01

    Effects of addition of Fe and Co on the phase stability, magnetic property and microstructures were investigated for Ni-Mn-Ga. In Ni-Mn 21- x -Fe x -Ga 27 alloys, martensitic transformation temperatures decreased with increasing amount of Fe (x) up to 15 mol%, then slightly increased by the further addition. The crystal structure of martensite phase was 10 M for x 15 mol%. Relatively high martensite stability was obtained for Ni 52 -Mn 16- x -Fe x -Co 5 -Ga 27 alloys. The highest stability of the ferromagnetic martensite phase was achieved in Ni 52 -Mn 6 -Fe 10 -Co 5 -Ga 27 after aging at 773 K for 3.6 ks. Martensite structure was non-modulated 2 M in this series of alloys

  4. Body retention and tissue distribution of 59Fe and 54Mn in newborn rats fed iron-supplemented cow's milk

    International Nuclear Information System (INIS)

    Gruden, Nevenka

    1980-01-01

    The effect of iron-fortified cow's milk on body 59 Fe and 54 Mn retention and selective tissue distribution has been studied in newborn rats. Six-day old rats, divided into three groups were artificially fed for 7 hrs 0,45 ml of cow's milk or cow's milk enriched with either 52 or 103 μg of Fe /ml and marked with 59 Fe and 54 Mn. After 4 days there was no significant difference in whole body or carcass activity between the groups. Iron added to milk in large amounts did not influence body 59 Fe or 54 Mn retention in newborn rats, whereas it enhanced 59 Fe deposition in the liver and the intestinal wall and, to a lesser extent, 54 Mn deposition in the liver

  5. One-pot hydrothermal synthesis, characterization, and electrochemical properties of rGO/MnFe2O4 nanocomposites

    Science.gov (United States)

    Kotutha, Isara; Swatsitang, Ekaphan; Meewassana, Worawat; Maensiri, Santi

    2015-06-01

    In this work, a simple facile route for preparing an rGO/MnFe2O4 nanocomposite through a one-pot hydrothermal approach was demonstrated. Graphite oxide (GO) was prepared from graphite powder by a modified Hummers method. Fe(NO3)2 • 9H2O and Mn(NO3)2 • H2O were used as the precursors for the preparation of the rGO/MnFe2O4 nanocomposite. The formation of the rGO/MnFe2O4 nanocomposite was confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Rama spectroscopy (Raman). The specific surface area of the prepared composite obtained by Brunauer-Emmett-Teller (BET) analysis was lower than that of pure rGO but higher than that of pure MnFe2O4. Consequently, the electrochemical performance was investigated by using a three-electrode cell system in 6.0 M KOH. The results show that the specific capacitance was determined to be 190.3, 276.9, and 144.5 F/g at a scan rate of 10 mV/s, and 194.9, 274.6, and 134.4 F/g at a current density of 5.0 A/g for rGO, rGO/(5 mmol) MnFe2O4, and rGO/(10 mmol) MnFe2O4, respectively. These results suggest that the composite of MnFe2O4 nanoparticles on an rGO nanosheet can improve the capacitive behavior of the fabricated electrode, but the electrochemical properties are reduced when the MnFe2O4 concentration ratio is high.

  6. The investigation of Fe-Mn-based alloys with shape memory effect by small-angle scattering of polarized neutrons

    International Nuclear Information System (INIS)

    Kopitsa, G.P.; Runov, V.V.; Grigoriev, S.V.; Bliznuk, V.V.; Gavriljuk, V.G.; Glavatska, N.I.

    2003-01-01

    The small-angle polarized neutron scattering (SAPNS) technique has been used to study a nuclear and magnetic homogeneity in the distribution of both substituent (Si, Cr, Ni) and interstitial (C, N) alloying elements on the mesoscopic range in Fe-Mn-based alloys with shape memory effect (SME). The four groups of alloys with various basic compositions: FeMn 18 (wt%), FeMn 20 Si 6 , FeMn 20 Cr 9 N 0.2 and FeMn 17 Cr 9 Ni 4 Si 6 were investigated. It was found that the small-angle scattering of neutrons and depolarization on these alloys are very small altogether. The scattering did not exceed 1.5% from the incident beam and depolarization ∼2% for all samples. It means that these alloys are well nuclear and magnetically homogeneous on the scale of 10-1000 A. However, the difference in the homogeneity depending on the compositions still takes place. Thus, the adding of Si in FeMn 18 and FeMn 20 Cr 9 N 0.2 alloys improves the homogeneity pronouncedly. At once, the effect of the doping by C or N atoms on the homogeneity in FeMn 20 Si 6 and FeMn 17 Cr 9 Ni 4 Si 6 alloys is multivalued and depend on the presence of substitutional atoms (Ni and Cr). The capability of SAPNS as a method for the study of mesoscopic homogeneity in materials with SME and testing of the quality of their preparation is discussed

  7. Study of the Thermodynamics of Chromium(III) and Chromium(VI) Binding to Fe3O4 and MnFe2O4 nanoparticles

    Science.gov (United States)

    Luther, Steven; Brogfeld, Nathan; Kim, Jisoo; Parsons, J.G.

    2013-01-01

    Removal of chromium(III) or (VI) from aqueous solution was achieved using Fe3O4, and MnFe2O4 nanomaterials. The nanomaterials were synthesized using a precipitation method and characterized using XRD. The size of the nanomaterials was determined to be 22.4 ± 0.9 nm (Fe3O4) and 15.5 ± 0.5 nm (MnFe2O4). The optimal binding pH for chromium(III) and chromium(VI) were pH 6 and pH 3. Isotherm studies were performed, under light and dark conditions, to determine the capacity of the nanomaterials. The capacities for the light studies with MnFe2O4 and Fe3O4 were determined to be 7.189 and 10.63 mg/g, respectively, for chromium(III). The capacities for the light studies with MnFe2O4 and Fe3O4 were 3.21 and 3.46 mg/g, respectively, for chromium(VI). Under dark reaction conditions the binding of chromium(III) to the MnFe2O4 and Fe3O4 nanomaterials were 5.74 and 15.9 mg/g, respectively. The binding capacity for the binding of chromium(VI) to MnFe2O4 and Fe3O4 under dark reaction conditions were 3.87 and 8.54 mg/g, respectively. The thermodynamics for the reactions showed negative ΔG values, and positive ΔH values. The ΔS values were positive for the binding of chromium(III) and for chromium(VI) binding under dark reaction conditions. The ΔS values for chromium(VI) binding under the light reaction conditions were determined to be negative. PMID:23558081

  8. Transition metals and PET - the challenge 52Fe

    International Nuclear Information System (INIS)

    Calonder, C.; Leenders, K.L.

    1997-01-01

    Methodology and limits of studying the biodistribution of 52 Fe in the brain with positron emission tomography (PET). The influence of the iron's daughter nuclide 52m Mn quantification of physiological relevant parameters is of special interest. (author) 1 fig., 3 refs

  9. Magnetic properties of PrMn2-xFexGe2-57Fe Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Wang, J L; Campbell, S J; Cadogan, J M; Tegus, O; Studer, A J; Hofmann, M

    2006-01-01

    We have investigated the magnetic behaviour of PrMn 2-x Fe x Ge 2 compounds with x = 0.4, 0.6 and 0.8 over the temperature range 4.2-350 K using ac magnetic susceptibility, dc magnetization and 57 Fe Moessbauer effect spectroscopy, as well as neutron diffraction for the PrMn 1.2 Fe 0.8 Ge 2 compound. Replacement of Mn with Fe leads to contraction of the unit cell and a shortening of the Mn-Mn spacing, resulting in modification of the magnetic structure. PrMn 1.6 Fe 0.4 Ge 2 is an intralayer antiferromagnet at room temperature and ferromagnetic below T C inter ∼230 K with additional ferromagnetic ordering of the Pr sublattice detected below T C Pr ∼30 K. Re-entrant ferromagnetism has been observed in PrMn 1.4 Fe 0.6 Ge 2 with four magnetic transitions (T N intra ∼333 K, T C inter ∼168 K, T N inter ∼152 K and T C Pr ∼40 K). Moreover, it was found that T C inter and T C Pr increase with applied field while T N inter decreases. PrMn 1.2 Fe 0.8 Ge 2 is antiferromagnetic with T N intra ∼242 K and T N inter ∼154 K. The magnetic transition temperatures for all compounds are also marked by changes in the 57 Fe magnetic hyperfine field and the electric quadrupole interaction parameters. The 57 Fe transferred hyperfine field at 4.5 K in PrMn 1.6 Fe 0.4 Ge 2 and PrMn 1.4 Fe 0.6 Ge 2 is reduced (below the ordering temperature of the Pr sublattice) compared with that at 80 K (above T C Pr ), indicating that the transferred hyperfine field from Pr acts in the opposite direction to that from the Mn atoms. The neutron data for PrMn 1.2 Fe 0.8 Ge 2 demonstrate that an anisotropic thermal expansion occurs within the interplanar antiferromagnetic range

  10. Microbial Immobilization of Si, Mn, Fe, and Sr Ions in the Nacreous Layer of Sinohyliopsis schlegeli and Environmental Factors

    Science.gov (United States)

    Tazaki, Kazue; Morii, Issei

    Environmental changes recorded in the shell nacre of Sinohyliopsis schlegeli were observed with elemental factors of characteristic water and nutrition for eight months in a cultivated drainage pond at Kanazawa University, Ishikawa Prefecture, Japan. Tetracycline as an indicator was injected into the shell nacre once every month from May to November in 2007. Water qualities such as the pH, redox potential, electrical conductivity, dissolved oxygen concentration, and water temperature were measured periodically, and the suspended solids in the water were removed by filtration for optical microscopy, X-ray fluorescence analysis, and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) observations. X-ray fluorescence chemical analysis of shell nacre indicated layers with strong tetracycline accumulation corresponding to high concentrations of Si, Mn, Fe, and Sr ions. The redox potential and dissolved oxygen concentration measurements supported the existence of layers in the nacre. The suspended materials in the drainage pond water comprised mainly of Si, Mn, and Fe elements, which were the same elements involved in microbial immobilization in the shell nacre during the summer of 2007. SEM-EDX analyses confirmed that the ions originated from diatoms, Siderocapsa sp. and Gallionella ferruginea in the stomach. There was little microbial immobilization of the ions in winter. The results suggested elemental immobilization in the layered shell nacre and indicated that Sinohyliopsis schlegeli fed on the ions, to grow the nacre during summer. Sinohyliopsis schlegeli with these biogenic oxides might contribute to the scavenging of heavy metals in natural water.

  11. Al–Mn coating electrodeposited from ionic liquid on NdFeB magnet with high hardness and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jingjing; Xu, Bajin; Ling, Guoping, E-mail: linggp@zju.edu.cn

    2014-06-01

    Al–Mn coatings were electrodeposited on sintered NdFeB permanent magnet in MnCl{sub 2}–AlCl{sub 3}–1-ethyl-3-methylim-idazolium chloride (MnCl{sub 2}–AlCl{sub 3}–EMIC) ionic liquid at room temperature. The coatings were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The adhesion strength of the coating on NdFeB substrate was evaluated by thermal shock and scratch test. The hardness and corrosion behavior of Al–Mn coating were measured by a Knoop microhardness tester, immersion test and neutral salt spray test respectively. The results showed that the amorphous structure of the deposits was obtained at the current density of 6 mA/cm{sup 2}, while higher current densities resulted in a mixed structure of amorphous and crystalline. The Al–Mn coating showed excellent adhesion strength on NdFeB substrate with the thermal shock test over 30 cycles and L{sub c} > 80 N. The hardness of Al–Mn coating was up to 5.4 GPa. The amorphous Al–Mn coating showed an anodic sacrificial protection with a low corrosion rate for NdFeB. Meanwhile, the magnetic properties measured by an AMT-4 magnetic measurement device showed that Al–Mn coating did not deteriorate the magnetic property of NdFeB.

  12. Al–Mn coating electrodeposited from ionic liquid on NdFeB magnet with high hardness and corrosion resistance

    International Nuclear Information System (INIS)

    Ding, Jingjing; Xu, Bajin; Ling, Guoping

    2014-01-01

    Al–Mn coatings were electrodeposited on sintered NdFeB permanent magnet in MnCl 2 –AlCl 3 –1-ethyl-3-methylim-idazolium chloride (MnCl 2 –AlCl 3 –EMIC) ionic liquid at room temperature. The coatings were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The adhesion strength of the coating on NdFeB substrate was evaluated by thermal shock and scratch test. The hardness and corrosion behavior of Al–Mn coating were measured by a Knoop microhardness tester, immersion test and neutral salt spray test respectively. The results showed that the amorphous structure of the deposits was obtained at the current density of 6 mA/cm 2 , while higher current densities resulted in a mixed structure of amorphous and crystalline. The Al–Mn coating showed excellent adhesion strength on NdFeB substrate with the thermal shock test over 30 cycles and L c > 80 N. The hardness of Al–Mn coating was up to 5.4 GPa. The amorphous Al–Mn coating showed an anodic sacrificial protection with a low corrosion rate for NdFeB. Meanwhile, the magnetic properties measured by an AMT-4 magnetic measurement device showed that Al–Mn coating did not deteriorate the magnetic property of NdFeB.

  13. Crystal structure and magnetic properties of the Cr-doped spiral antiferromagnet BiMnFe2O6

    International Nuclear Information System (INIS)

    Batuk, Dmitry; De Dobbelaere, Christopher; Tsirlin, Alexander A.; Abakumov, Artem M.; Hardy, An; Van Bael, Marlies K.; Greenblatt, Martha; Hadermann, Joke

    2013-01-01

    Graphical abstract: - Highlights: • The substitution of Cr for Mn in BiMnFe 2 O 6 is possible by the solution–gel method. • The BiCr x Mn 1−x Fe 2 O 6 solid solution is obtained for the x values up to 0.3. • Increasing Cr content lowers the temperature of the antiferromagnetic ordering. - Abstract: We report the Cr 3+ for Mn 3+ substitution in the BiMnFe 2 O 6 structure. The BiCr x Mn 1−x Fe 2 O 6 solid solution is obtained by the solution–gel synthesis technique for the x values up to 0.3. The crystal structure investigation using a combination of X-ray powder diffraction and transmission electron microscopy demonstrates that the compounds retain the parent BiMnFe 2 O 6 structure (for x = 0.3, a = 5.02010(6)Å, b = 7.06594(7)Å, c = 12.6174(1)Å, S.G. Pbcm, R I = 0.036, R P = 0.011) with only a slight decrease in the cell parameters associated with the Cr 3+ for Mn 3+ substitution. Magnetic susceptibility measurements suggest strong similarities in the magnetic behavior of BiCr x Mn 1−x Fe 2 O 6 (x = 0.2; 0.3) and parent BiMnFe 2 O 6 . Only T N slightly decreases upon Cr doping that indicates a very subtle influence of Cr 3+ cations on the magnetic properties at the available substitution rates

  14. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction.

    Science.gov (United States)

    Beliaev, A S; Saffarini, D A

    1998-12-01

    Iron and manganese oxides or oxyhydroxides are abundant transition metals, and in aquatic environments they serve as terminal electron acceptors for a large number of bacterial species. The molecular mechanisms of anaerobic metal reduction, however, are not understood. Shewanella putrefaciens is a facultative anaerobe that uses Fe(III) and Mn(IV) as terminal electron acceptors during anaerobic respiration. Transposon mutagenesis was used to generate mutants of S. putrefaciens, and one such mutant, SR-21, was analyzed in detail. Growth and enzyme assays indicated that the mutation in SR-21 resulted in loss of Fe(III) and Mn(IV) reduction but did not affect its ability to reduce other electron acceptors used by the wild type. This deficiency was due to Tn5 inactivation of an open reading frame (ORF) designated mtrB. mtrB encodes a protein of 679 amino acids and contains a signal sequence characteristic of secreted proteins. Analysis of membrane fractions of the mutant, SR-21, and wild-type cells indicated that MtrB is located on the outer membrane of S. putrefaciens. A 5.2-kb DNA fragment that contains mtrB was isolated and completely sequenced. A second ORF, designated mtrA, was found directly upstream of mtrB. The two ORFs appear to be arranged in an operon. mtrA encodes a putative 10-heme c-type cytochrome of 333 amino acids. The N-terminal sequence of MtrA contains a potential signal sequence for secretion across the cell membrane. The amino acid sequence of MtrA exhibited 34% identity to NrfB from Escherichia coli, which is involved in formate-dependent nitrite reduction. To our knowledge, this is the first report of genes encoding proteins involved in metal reduction.

  15. Gamma→alpha transformation during cooling of Fe-Mn alloys

    International Nuclear Information System (INIS)

    Shtejnberg, M.M.; Mirzaev, D.A.; Ponomareva, T.N.

    1977-01-01

    Consideration is given to the effect of the cooling rate on the temperatures of γ→α transformation initiation, the structure and microhardness of Fe-Mn alloys. The general principles governing phase transformations in these alloys are similar to those which have been the subject of earlier investigations for Fe-Ni, Fe-Cr, Fe-Mo systems. It has been found that the higher manganese content results in a more intensive temperature drop for all the stages and elimination of stage 111 at a relatively low manganese content. Support is provided for the existence of the four stages of γ→α transformation in the iron alloys. The yield point, ultimate strength and microhardness of each alloy are related by Petch's relations to the size of the martensite packet which at the given grain size of the γsup(')-phase is defined by a transformation stage and a cooling rate at the given stage

  16. Molybdenum isotopes in modern marine hydrothermal Fe/Mn deposits: Implications for Archean and Paleoproterozoic Mo cycles

    Science.gov (United States)

    Goto, K. T.; Hein, J. R.; Shimoda, G.; Aoki, S.; Ishikawa, A.; Suzuki, K.; Gordon, G. W.; Anbar, A. D.

    2016-12-01

    Molybdenum isotope (δ98/95Mo) variations recorded in Archean and Paleoproterozoic Fe/Mn-rich sediments have been used to constrain ocean redox conditions at the time of deposition (Canfield et al., 2013 PNAS; Planavsky et al., 2014 Nat. Geo.; Kurzweil et al., 2015 GCA). However, except for hydrogenous Fe-Mn crusts (Siebert et al., 2003), δ98/95Mo variation of modern Fe and Mn oxide deposits has been poorly investigated. Marine hydrothermal systems are thought to be the major source of Fe and Mn in Archean and Paleoproterozoic Fe- and Mn-rich sediments. Hence, to accurately interpret Mo isotope data of those ancient sedimentary rocks, it is important to evaluate the possible influence of hydrothermally derived Mo on δ98/95Mo of modern Fe- and Mn-rich sediments. In this study, we analyzed Mo isotopic compositions of one hydrothermal Fe oxide and 15 Mn oxides from five different hydrothermal systems in the modern ocean. The Fe oxide is composed mainly of goethite, and has a δ98/95Mo of 0.7‰, which is 1.4‰ lighter than that of present-day seawater. The observed offset is similar to isotope fractionation observed during adsorption experiments of Mo on goethite (Δ98/95Mogoethite-solution = -1.4 ± 0.5%; Goldberg et al., 2009 GCA). The 15 hydrothermal Mn oxides show large variations in δ98/95Mo ranging from -1.7 to 0.5‰. However, most of the values are similar to those of modern hydrogenous Fe-Mn crusts (Siebert et al., 2003 EPSL), and fall within the range of estimated δ98/95Mo of Mn oxides precipitated from present-day seawater using the isotope offset reported from adsorption experiments (Δ98/95Mo = -2.7 ± 0.3‰; Wasylenki et al., 2008 GCA). These findings indicate that seawater is the dominant source of Mo for modern hydrothermal Fe and Mn deposits. However, the observed large variation indicates that the contribution Mo from local hydrothermal systems is not negligible. The oceanic Mo inventory during the Archean and Paleoproterozoic is thought to be

  17. Remoción de Fe y Mn en aguas naturales por adsorción-oxidación sobre clinoptilolita

    Directory of Open Access Journals (Sweden)

    Carolina Cuchimaque Lugo

    2013-01-01

    Full Text Available En el presente trabajo de investigación se comprueba la eficiencia en la remoción de Fe y Mn de aguas naturales por el empleo de un medio adsorbente que consiste de zeolita natural (clinoptilolita, recubierta con Fe 2O3 y MnO2 a partir de FeCl3 y MnSO4, respectivamente. La zeolita por su gran capacidad de intercambio de cationes es un excelente soporte de estos óxidos. El mecanismo de la remoción es por adsorción-oxidación de estos metales sobre la superficie de la capa de óxido que cubre el grano de zeolita. En las pruebas de remoción mediante un sistema de filtración se estudiaron las variables pH, concentraciones de Fe y Mn, caudal en el a fluente y altura de la capa de la zeolita, resultando las dos últimas ser las de mayor relevancia en la remoción. Se utilizaron concentraciones de 1,0-7,0 mg/L para Fe y de 0,5-3,0 mg/L para Mn, en un rango de pH de 6,0-8,0. La eficiencia de la remoción disminuye con el aumento en la concentración de Fe, especialmente a valores de pH altos (> 7,5, por la formación de precipitados de Fe2O3 causando aceleración en la saturación del medio. No se obtuvo una diferencia significativa sobre la remoción con el empleo de los dos tipos de recubrimiento, aunque a altas concentraciones de estos metales, con la capa de Fe 2O3 se obtuvieron porcentajes de remoción un poco mayores, pero la desventaja es que con este tipo de óxido se obtuvo menor corrida de los filtros por la saturación del medio.

  18. Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G., E-mail: gubbiotti@fisica.unipg.it; Tacchi, S. [Istituto Officina dei Materiali del CNR (IOM-CNR), Unità di Perugia, I-06123 Perugia (Italy); Del Bianco, L. [Department of Physics and Astronomy, University of Bologna, I-40127 Bologna (Italy); Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Bonfiglioli, E.; Giovannini, L.; Spizzo, F.; Zivieri, R. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Tamisari, M. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, I-06123 Perugia (Italy)

    2015-05-07

    Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence of the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.

  19. Thermodynamics of oxygen solutions in Fe-40% Ni-15% Cr melts containing Mn, Si, Ti, Al

    International Nuclear Information System (INIS)

    Dashevskij, V.Ya.; Makarova, N.N.; Grigorovich, K.V.; Kashin, V.I.; Polikarpova, N.V.

    2000-01-01

    Thermodynamic analysis and experimental studied are performed for oxygen solutions in Fe-40% Ni-15% Cr melts where Mn, Si, Ti, Al are used as reducing agents. It is revealed that in the alloys studied the affinity of reducing agents to oxygen essentially lower than in liquid iron, nickel and Fe-40% Ni alloy. This is explained by the fact that the oxygen activity in melts noticeably decreases due to a high chromium content whereas the activity of reducing elements increases in a rather less degree. The agreement between analytical and experimental results confirms the validity of the calculation technique [ru

  20. Calculation of exchange constants in manganese ferrite (MnFe2O4)

    International Nuclear Information System (INIS)

    Zuo Xu; Barbiellini, Bernardo; Vittoria, Carmine

    2004-01-01

    The exchange constants and electronic structure of manganese ferrite (MnFe 2 O 4 ) were calculated using Becke's density functional. The total exchange energy consists of Hartree-Fock (HF) and Becke's density functional terms. We introduced one parameter w as the weight of HF's contribution. We also introduced a parameter α to scale the radial part of the 3d wave functions of Fe 3+ ions. By varying w and α the calculated exchange constants were quantitatively fitted to the experimental values of a spinel ferrite for the first time. Direct (d-d) and indirect (d-p-d) hopping are controlled by the parameters w and α

  1. Characterization of High Dose Mn, Fe, and Ni implantation into p-GaN

    CERN Document Server

    Pearton, S J; Thaler, G; Abernathy, C R; Theodoropoulou, N; Hebard, A F; Chu, S N G; Wilson, R G; Zavada, J M; Polyakov, A Y; Osinsky, A V; Norris, P E; Chow, P P; Wowchack, A M; Hove, J M V; Park, Y D

    2002-01-01

    The magnetization of p-GaN or p-AlGaN/GaN superlattices was measured after implantation with high doses (3-5x10 sup 1 sup 6 cm sup - sup 2) of Mn, Fe, or Ni and subsequent annealing at 700-1000 deg. C. The samples showed ferromagnetic contributions below temperatures ranging from 190-250 K for Mn to 45-185 K for Ni and 80-250 K for Fe. The use of superlattices to enhance the hole concentration did not produce any change in ferromagnetic ordering temperature. No secondary phase formation was observed by x-ray diffraction, transmission electron microscopy, or selected area diffraction pattern analysis for the doses we employed.

  2. Strength of "Light" Ferritic and Austenitic Steels Based on the Fe - Mn - Al - C System

    Science.gov (United States)

    Kaputkina, L. M.; Svyazhin, A. G.; Smarygina, I. V.; Kindop, V. E.

    2017-01-01

    The phase composition, the hardness, the mechanical properties at room temperature, and the resistance to hot (950 - 1000°C) and warm (550°C) deformation are studied for cast deformable "light" ferritic and austenitic steels of the Fe - (12 - 25)% Mn - (0 - 15)% Al - (0 - 2)% C system alloyed additionally with about 5% Ni. The high-aluminum high-manganese low-carbon and carbonless ferritic steels at a temperature of about 0.5 T melt have a specific strength close to that of the austenitic steels and may be used as weldable scale-resistant and wear-resistant materials. The high-carbon Fe - (20 - 24)% Mn - (5 - 9)% Al - 5% Ni - 1.5% C austenitic steels may be applied as light high-strength materials operating at cryogenic temperatures after a solution treatment and as scale- and heat-resistant materials in an aged condition.

  3. Martensitic Transformation and Superelasticity in Fe-Mn-Al-Based Shape Memory Alloys

    Science.gov (United States)

    Omori, Toshihiro; Kainuma, Ryosuke

    2017-12-01

    Ferrous shape memory alloys showing superelasticity have recently been obtained in two alloy systems in the 2010s. One is Fe-Mn-Al-Ni, which undergoes martensitic transformation (MT) between the α (bcc) parent and γ' (fcc) martensite phases. This MT can be thermodynamically understood by considering the magnetic contribution to the Gibbs energy, and the β-NiAl (B2) nanoprecipitates play an important role in the thermoelastic MT. The temperature dependence of critical stress for the MT is very small (about 0.5 MPa/°C) due to the small entropy difference between the parent and martensite phases in the Fe-Mn-Al-Ni alloy, and consequently, superelasticity can be obtained in a wide temperature range from cryogenic temperature to about 200 °C. Microstructural control is of great importance for obtaining superelasticity, and the relative grain size is among the most crucial factors.

  4. The La(Fe,Mn,Si)13Hz magnetic phase transition under pressure

    DEFF Research Database (Denmark)

    Lovell, Edmund; Bez, Henrique N.; Boldrin, David C.

    2017-01-01

    We study the magnetocaloric metamagnetic transition in LaFe11.74Mn0.06Si1.20 and LaFe11.76Mn0.06Si1.18H1.65 under hydrostatic pressure up to 1.2 GPa. For both compounds, hydrostatic pressure depresses the zero field critical temperature. However, in detail, pressure influences the magnetic...... and extrinsic hysteresis loss brought about by the use of hydrostatic pressure. We explore the multicaloric field-pressure cycle, demonstrating that although the gain introduced by overcoming the magnetic hysteresis loss is closely countered by the loss introduced in the pressure cycle, there are significant...... properties in different ways in the two compounds. In the dehydrogenated case the transition broadens under pressure whereas in the hydrogenated case the transition sharpens. In both cases thermal hysteresis increases under pressure, although with different trends. These observations suggest both intrinsic...

  5. Effects of compositional modifications on the sensitization behavior of Fe-Cr-Mn steels

    International Nuclear Information System (INIS)

    Edgemon, G.L.; Tortorelli, P.F.; Bell, G.E.C.

    1992-01-01

    Fe-Cr-Mn steels may possibly be used in conjuction with aqueous blankets or coolants in a fusion device. Therefore, standard chemical immersion (modified Strauss) tests were conducted to characterize the effects of compositional modifications on the thermal sensitization behavior of these steels. A good correlation among weight losses, intergranular corrosion, and cracking was found. The most effective means of decreasing their susceptibility was through reduction of the carbon concentration of these steels to 0.1%, but the sensitization resistance of Fe-Cr-Mn-0.1 C compositions was still inferior to type 304L and other similar stainless steels. Alloying additions that form stable carbides did not have a very significant influence on the sensitization behavior. (orig.)

  6. Characteristics of Fe-28Mn-6Si-5Cr shape memory alloy produced by centrifugal casting

    International Nuclear Information System (INIS)

    Otsuka, H.; Maruyama, T.; Kubo, H.

    2000-01-01

    Recent application of ferrous shape memory alloys, particularly Fe-Mn-Si alloys as pipe joints used for a tunnel driving technique in the field of civil engineering, requires efficient production of alloy pipes. Centrifugal casting is one of the efficient manufacturing techniques which can produce suitable sizes of pipes of approximately 4 to 14 inches in outside diameter. The mechanical properties of the centrifugally cast Fe-Mn-Si shape memory alloy were investigated to have 700 MPa in tensile strength and shape recovery of ∝3% of the initial deformation. The shape recovery achieved by the centrifugally cast materials proved to be comparable to that of the rolled materials. The TEM microstructure of the centrifugally cast materials deformed necessarily in the process of shape recovery reveals random distribution of ε (hcp) bands containing many dislocations inside, whereas the structure of the rolled materials shows ε phases containing fewer dislocations. (orig.)

  7. Interface adjustment and exchange coupling in the IrMn/NiFe system

    Energy Technology Data Exchange (ETDEWEB)

    Spizzo, F.; Tamisari, M.; Chinni, F.; Bonfiglioli, E.; Del Bianco, L., E-mail: lucia.delbianco@unife.it

    2017-01-01

    The exchange bias effect was investigated, in the 5–300 K temperature range, in samples of IrMn [100 Å]/NiFe [50 Å] (set A) and in samples with inverted layer-stacking sequence (set B), produced at room temperature by DC magnetron sputtering in a static magnetic field of 400 Oe. The samples of each set differ for the nominal thickness (t{sub Cu}) of a Cu spacer, grown at the interface between the antiferromagnetic and ferromagnetic layers, which was varied between 0 and 2 Å. It has been found out that the Cu insertion reduces the values of the exchange field and of the coercivity and can also affect their thermal evolution, depending on the stack configuration. Indeed, the latter also determines a peculiar variation of the exchange bias properties with time, shown and discussed with reference to the samples without Cu of the two sets. The results have been explained considering that, in this system, the exchange coupling mechanism is ruled by the glassy magnetic behavior of the IrMn spins located at the interface with the NiFe layer. Varying the stack configuration and t{sub Cu} results in a modulation of the structural and magnetic features of the interface, which ultimately affects the spins dynamics of the glassy IrMn interfacial component. - Highlights: • Exchange bias effect in IrMn/NiFe samples with interfacial Cu spacer. • A variation of exchange bias with time is observed in as-deposited samples. • Magnetic modification of the interface by varying the stack sequence and Cu thickness. • Interface adjustment affects the dynamics of interfacial IrMn spins. • The exchange bias properties can be tuned by interface adjustment.

  8. The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)

    International Nuclear Information System (INIS)

    Schuon, S.R.

    1982-01-01

    The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life

  9. Mechanical properties of thermomechanical treated hyper-eutectic Al-Si-(Fe, Mn, Cu) materials

    OpenAIRE

    Umezawa, Osamu

    2005-01-01

    Tensile and high-cycle fatigue behavior of thermomechanical treated hyper-eutectic Al-Si-(Fe, Mn, Cu) materials were studied. Through the repeated thermomechanical treatment (RTMT) which is a repeat of the multi steps cold-working followed by heat treatment, Si crystals and/or intermetallic compounds were broken into some fragments and dispersed in the aluminum matrix. Fine dispersion of the second phase particles exhibited good ductility, since early fracture was overcome. A few large Si cry...

  10. Mechanical Stabilisation for Bainitic Reaction in a Fe-Mn-Si-C Bainitic Steel

    OpenAIRE

    Yang , J.; Huang , C.; Hsieh , W.; Chiou , C.

    1995-01-01

    In this work, the effects of different amounts (5, 10, 20, 40%) of compressive deformation of austenite on the isothermal transformation of bainite in a Fe-Mn-Si-C alloy steel have been investigated. It is found that the prior deformation of austenite retards significantly the bainitic transformation. At the same isothermal transformation temperature, as the amount of prior deformation is higher, the quantity of bainite (which can be obtained after the isothermal transformation is completed) ...

  11. About the mechanical stability of MnFe(P,Si,B) giant-magnetocaloric materials

    Energy Technology Data Exchange (ETDEWEB)

    Guillou, F., E-mail: f.guillou@tudelft.nl [FAME, Faculty of Applied Sciences, TU Delft, Mekelweg 15, 2629 JB Delft (Netherlands); Yibole, H.; Dijk, N.H. van [FAME, Faculty of Applied Sciences, TU Delft, Mekelweg 15, 2629 JB Delft (Netherlands); Zhang, L. [BASF Netherlands B.V., Strijkviertel 67, 3454 PK De Meern (Netherlands); Hardy, V. [CRISMAT, Ensicaen, UMR 6508 CNRS, 6 B" d Maréchal Juin, 14050 Caen Cedex (France); Brück, E. [FAME, Faculty of Applied Sciences, TU Delft, Mekelweg 15, 2629 JB Delft (Netherlands)

    2014-12-25

    Highlights: • Electrical resistivity and hardness show an evolution at T{sub C} with thermal cycling. • Degradation depends on the (c/a) lattice discontinuity at the transition. • Boron substituted materials present an improved mechanical stability. - Abstract: Due to its ability to control the latent heat and the hysteresis (thermal or magnetic) at the first-order transition (FOT) without deteriorating the saturation magnetisation, boron substitution in MnFe(P,Si) materials has recently been reported to be an ideal parameter to reach promising magnetocaloric performances: ΔS ≈ 10 Jkg{sup −1} K{sup −1} and cyclic ΔT of 2.6 K (and more) at a moderate magnetic field of ΔB = 1 T. Additionally, an interesting aspect for applications is the improvement of the mechanical stability in B doped materials compared to the pristine MnFe(P,Si) compounds. These improved mechanical properties were initially supported by naked-eye inspection and the observation of a constant ΔT during a few thousands of magnetic cycles. (Guillou et al., 2014) Here, the evolution upon cycling of MnFe(P,Si,B) materials is studied in a more quantitative and systematic manner. For that purpose transformation temperatures, electrical resistivity, micro-hardness and the microstructure are tracked as a function of the thermal cycling across the FOT for three prototypical compositions in the MnFe(P,Si,B) system. It turns out this set of data confirms the initial finding that B substitution has a positive effect on the mechanical stability. The origin of this improvement is discussed, in particular in respect to the lattice parameter discontinuities at the phase transition.

  12. A review on the martensitic transformation and shape memory effect in Fe-Mn-Si alloys

    International Nuclear Information System (INIS)

    Gu, Q.; Humbeeck, J. van; Delaey, L.

    1994-01-01

    The martensitic transformation and the shape memory effect in Fe-Mn-Si alloys received great attention recently due to its potential commercial value. In this paper, the mechanisms for the martensitic transformation and various parameters influencing the shape memory effect like alloy composition, applied stress, prestrain, crystal orientation, temperature, grain size, pre-existing martensite, thermal cycling and training etc. are reviewed and discussed. (orig.)

  13. MnFe 2 O 4 /bentonite nano composite as a novel magnetic material ...

    African Journals Online (AJOL)

    It is also found that the presence of bentonite in the magnetic composite has not made any changes in the spinel structure of MnFe2O4. SEM images of the sorbent shows nanocomposite with a uniform structure and nanochannels from 0.3 to 0.8 mμ in diameter having a surface area of 130 m2 g-1. The results also revealed ...

  14. Ab initio lattice stability of fcc and hcp Fe-Mn random alloys

    International Nuclear Information System (INIS)

    Gebhardt, T; Music, D; Hallstedt, B; Schneider, J M; Ekholm, M; Abrikosov, I A; Vitos, L

    2010-01-01

    We have studied the lattice stability of face centred cubic (fcc) versus hexagonal close packed (hcp) Fe-Mn random alloys using ab initio calculations. In the calculations we considered the antiferromagnetic order of local moments, which for fcc alloys models the magnetic configuration of this phase at room temperature (below its Neel temperature) as well as their complete disorder, corresponding to paramagnetic fcc and hcp alloys. For both cases, the results are consistent with our thermodynamic calculations, obtained within the Calphad approach. For the room temperature magnetic configuration, the cross-over of the total energies of the hcp phase and the fcc phase of Fe-Mn alloys is at the expected Mn content, whereas for the magnetic configuration above the fcc Neel temperature, the hcp lattice is more stable within the whole composition range studied. The increase of the total energy difference between hcp and antiferromagnetic fcc due to additions of Mn as well as the stabilizing effect of antiferromagnetic ordering on the fcc phase are well displayed. These results are of relevance for understanding the deformation mechanisms of these random alloys.

  15. Ab initio lattice stability of fcc and hcp Fe-Mn random alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, T; Music, D; Hallstedt, B; Schneider, J M [Materials Chemistry, RWTH Aachen University, D-52056 Aachen (Germany); Ekholm, M; Abrikosov, I A [Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-581 83 Linkoeping (Sweden); Vitos, L, E-mail: gebhardt@mch.rwth-aachen.d [Department of Materials Science and Engineering, Applied Materials Physics, oyal Institute of Technology, SE-10044 Stockholm (Sweden)

    2010-07-28

    We have studied the lattice stability of face centred cubic (fcc) versus hexagonal close packed (hcp) Fe-Mn random alloys using ab initio calculations. In the calculations we considered the antiferromagnetic order of local moments, which for fcc alloys models the magnetic configuration of this phase at room temperature (below its Neel temperature) as well as their complete disorder, corresponding to paramagnetic fcc and hcp alloys. For both cases, the results are consistent with our thermodynamic calculations, obtained within the Calphad approach. For the room temperature magnetic configuration, the cross-over of the total energies of the hcp phase and the fcc phase of Fe-Mn alloys is at the expected Mn content, whereas for the magnetic configuration above the fcc Neel temperature, the hcp lattice is more stable within the whole composition range studied. The increase of the total energy difference between hcp and antiferromagnetic fcc due to additions of Mn as well as the stabilizing effect of antiferromagnetic ordering on the fcc phase are well displayed. These results are of relevance for understanding the deformation mechanisms of these random alloys.

  16. Crystal structure and thermal expansion of Mn(1-x)Fe(x)Ge.

    Science.gov (United States)

    Dyadkin, Vadim; Grigoriev, Sergey; Ovsyannikov, Sergey V; Bykova, Elena; Dubrovinsky, Leonid; Tsvyashchenko, Anatoly; Fomicheva, L N; Chernyshov, Dmitry

    2014-08-01

    A series of temperature-dependent single-crystal and powder diffraction experiments has been carried out using synchrotron radiation in order to characterize the monogermanides of Mn, Fe and their solid solutions. The MnGe single crystal is found to be enantiopure and we report the absolute structure determination. The thermal expansion, parametrized with the Debye model, is discussed from the temperature-dependent powder diffraction measurements for Mn(1-x)Fe(x)Ge (x = 0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9). Whereas the unit-cell dimension and the Debye temperature follow a linear trend as a function of composition, the thermal expansion coefficient deviates from linear dependence with increasing Mn content. No structural phase transformations have been observed for any composition in the temperature range 80-500 K for both single-crystal and powder diffraction, indicating that the phase transition previously observed with neutron powder diffraction most probably has a magnetic origin.

  17. Effect of addition of V and C on strain recovery characteristics in Fe-Mn-Si alloy

    International Nuclear Information System (INIS)

    Lin Chengxin; Wang Guixin; Wu Yandong; Liu Qingsuo; Zhang Jianjun

    2006-01-01

    Shape recoverable strain, recovery stress and low-temperature stress relaxation characteristics in an Fe-17Mn-5Si-10Cr-4Ni (0.08C) alloy and an Fe-17Mn-2Cr-5Si-2Ni-1V (0.23C) alloy have been studied by means of X-ray diffraction, transmission electron microscopy and measurement of recoverable strain and recovery stress. The amount of stress-induced ε martensite under tensile deformation at room temperature, recoverable strain and recovery stress are increased obviously with addition V and C in Fe-Mn-Si alloy, which is owing to the influence of addition V and C on strengthening austenitic matrix. Addition of V and C in Fe-Mn-Si alloy is evidently effective to reduce the degree of low-temperature stress relaxation, for the dispersed VC particles 50-180 nm in size precipitated during annealing restrain the stress induced martensitic transformation

  18. Structural, magnetic and thermal properties of CaMn0.9957Fe0.01O3-δ

    International Nuclear Information System (INIS)

    Przewoznik, J.; Chmist, J.; Kolwicz-Chodak, L.; Tarnawski, Z.; Kapusta, Cz.; Kolodziejczyk, A.

    2007-01-01

    The polycrystalline CaMn 0.99 57 Fe 0.01 O 3-δ compound was studied using powder X-ray diffraction, 57 Fe Moessbauer spectroscopy, ac susceptometry, dc magnetometry, specific heat and electrical resistivity measurements. X-ray diffraction measurements performed between 70 and 300 K show a thermal expansion anomaly at the Neel temperature. A weak ferromagnetic component and a spin-glass behaviour below Neel temperature are found in magnetic measurements. The Moessbauer spectroscopy measurements performed between 30 and 300 K provided the Neel temperature value of 118 K, the same as obtained from dc magnetisation and close to that derived from the specific heat (119 K). The temperature evolution of the Fe hyperfine field was analysed within a molecular field model and revealed equal strengths of the Fe-Mn and Mn-Mn exchange interactions in this compound

  19. Half-metallicity in a BiFeO3/La2/3Sr1/3MnO3 superlattice: A first-principles study

    KAUST Repository

    Jiwuer, Jilili; Eckern, Ulrich; Schwingenschlö gl, Udo

    2013-01-01

    We present first-principles results for the electronic, magnetic, and optical properties of the heterostructure as obtained by spin-polarized calculations using density functional theory. The electronic states of the heterostructure are compared to those of the bulk compounds. Structural relaxation turns out to have only a minor impact on the chemical bonding, even though the oxygen octahedra in develop some distortions due to the interface strain. While a small charge transfer affects the heterointerfaces, our results demonstrate that the half-metallic character of is fully maintained. © EPLA, 2013.

  20. Relationships between environment and characteristics of marine Fe-Mn deposits in the Romanche trench

    International Nuclear Information System (INIS)

    Bonte, Philippe.

    1981-11-01

    The geological characteristics and Fe-Mn deposits from the North wall of the Romanche trench (Atlantic ocean) were studied in order to investigate possible relationships of these deposits with hydrothermalism. The results indicate diffuse hydrothermal activity in all of the rock samples which may explain the notable mineralogical associations observed, such as talc-dolomite-hematite-serpentine. All rock outcrops were covered with Fe-Mn deposits, but no such deposits were noted on sedimentary platforms. The variations in average chemical composition are very low among the different deposits. Hence, the phenomenon which produces these deposits is not localized. From this study, we conclude that marine Fe-Mn deposits result from the continuous supply of terrigenous iron and discontinuous supply of manganese, probably hydrothermal in origin. Detrital particles and numerous chemical elements are scavenged during the accretion process itself, whereas some trace elements, among the least soluble (Co, Ti, Th, Ce), are adsorbed on these deposits, independently of the accretion. This explains the inverse variation of the content of these elements versus deposit thickness [fr

  1. Shape-Memory Effect and Pseudoelasticity in Fe-Mn-Based Alloys

    Science.gov (United States)

    La Roca, P.; Baruj, A.; Sade, M.

    2017-03-01

    Several Fe-based alloys are being considered as potential candidates for applications which require shape-memory behavior or superelastic properties. The possibility of using fabrication methods which are well known in the steel industry is very attractive and encourages a large amount of research in the field. In the present article, Fe-Mn-based alloys are mainly addressed. On the one hand, attention is paid to the shape-memory effect where the alloys contain (a) a maximum amount of Mn up to around 30 wt%, (b) several possible substitutional elements like Si, Cr, Ni, Co, and Nb and (c) some possible interstitial elements like C. On the other hand, superelastic alloys are analyzed, mainly the Fe-Mn-Al-Ni system discovered a few years ago. The most noticeable properties resulting from the martensitic transformations which are responsible for the mentioned properties, i.e., the fcc-hcp in the first case and the bcc-fcc in the latter are discussed. Selected potential applications are also analyzed.

  2. Local and average structure of Mn- and La-substituted BiFeO3

    Science.gov (United States)

    Jiang, Bo; Selbach, Sverre M.

    2017-06-01

    The local and average structure of solid solutions of the multiferroic perovskite BiFeO3 is investigated by synchrotron X-ray diffraction (XRD) and electron density functional theory (DFT) calculations. The average experimental structure is determined by Rietveld refinement and the local structure by total scattering data analyzed in real space with the pair distribution function (PDF) method. With equal concentrations of La on the Bi site or Mn on the Fe site, La causes larger structural distortions than Mn. Structural models based on DFT relaxed geometry give an improved fit to experimental PDFs compared to models constrained by the space group symmetry. Berry phase calculations predict a higher ferroelectric polarization than the experimental literature values, reflecting that structural disorder is not captured in either average structure space group models or DFT calculations with artificial long range order imposed by periodic boundary conditions. Only by including point defects in a supercell, here Bi vacancies, can DFT calculations reproduce the literature results on the structure and ferroelectric polarization of Mn-substituted BiFeO3. The combination of local and average structure sensitive experimental methods with DFT calculations is useful for illuminating the structure-property-composition relationships in complex functional oxides with local structural distortions.

  3. Effects of Alloyed Carbon on the General Corrosion and the Pitting Corrosion Behavior of FeCrMnN Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Heon-Young; Lee, Tae-Ho; Kim, Sung-Joon [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2011-10-15

    The effects of alloyed carbon on the pitting corrosion, the general corrosion, and the passivity behavior of Fe{sub 1}8Cr{sub 1}0Mn{sub 0}.4Nx{sub C} (x=0 ⁓ 0.38 wt%) alloys were investigated by various electrochemical methods and XPS analysis. The alloyed carbon increased the general corrosion resistance of the FeCrMnN matrix. Carbon enhanced the corrosion potential, reduced the metal dissolution rate, and accelerated the hydrogen evolution reaction rate in various acidic solutions. In addition, carbon promoted the pitting corrosion resistance of the matrix in a chloride solution. The alloyed carbon in the matrix increased the chromium content in the passive film, and thus the passive film became more protective.

  4. Fe-ion implantation in pulse laser deposited La0⋅75Ca0⋅25MnO3 ...

    Indian Academy of Sciences (India)

    Unknown

    effect of Al substitution (Martin et al 1996) on Pr based compounds have been reported. Fe doping (Ahn et al. 1996) have consistently suppressed conduction and ferro- magnetism. The physics governing the observed proper- ties has still not been fully understood and Mn3+–O–Mn4+ chains are believed to be responsible ...

  5. Influence of manganese, carbon and nitrogen on high-temperature strength of Fe-Cr-Mn austenitic alloys

    International Nuclear Information System (INIS)

    Hosoi, Y.; Okazaki, Y.; Wade, N.; Miyahara, K.

    1990-01-01

    High Mn-Cr-Fe base alloys are candidates for the first wall material of fusion reactors because of rapid decay of radioactivity of the alloys after neutron irradiation compared with that of Ni-Cr-Fe base alloys. Their high temperature properties, however, are not clearly understood at present. In this paper, a study has been made of the effects of Mn, C and N content on the high-temperature tensile strength and creep properties of a 12% CR-Fe base alloy. Mn tends to decrease tensile strength and proof stress at intermediate temperatures. At higher temperatures in the austenite range, however, tensile properties scarcely depend on Mn content. C and N additions improve the tensile properties markedly. The combined addition of 0.2%C and 0.2%N to a 12%Cr-15%Mn-Fe base alloy makes the strength at 873K as high as that of a modified type 316 stainless steel. Combined alloying with C and N also improves the creep strength. Cold working is very useful in increasing the creep strength because of the finely dispersed precipitates in the matrix during creep. From these results, Fe-12%Cr-15%Mn-15%Mn-0.2%c-0.2%N is recommended as one of the most suitable alloys in this system for high temperature usage. (author)

  6. Effect of CeLa addition on the microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy

    International Nuclear Information System (INIS)

    Du, Jiandi; Ding, Dongyan; Xu, Zhou; Zhang, Junchao; Zhang, Wenlong; Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua; Chen, Renzong; Huang, Yuanwei; Tang, Jinsong

    2017-01-01

    Development of high strength lithium battery shell alloy is highly desired for new energy automobile industry. The microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy with different CeLa additions were investigated through optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rietveld refinement and tensile testing. Experimental results indicate that Al 8 Cu 4 Ce and Al 6 Cu 6 La phases formed due to CeLa addition. Addition of 0.25 wt.% CeLa could promote the formation of denser precipitation of Al 20 Cu 2 Mn 3 and Al 6 (Mn, Fe) phases, which improved the mechanical properties of the alloy at room temperature. However, up to 0.50 wt.% CeLa addition could promote the formation of coarse Al 8 Cu 4 Ce phase, Al 6 Cu 6 La phase and Al 6 (Mn, Fe) phase, which resulted in weakened mechanical properties. - Highlights: •Al-Cu-Mn-Mg-Fe alloys with different CeLa addition were fabricated through casting and rolling. •Al 8 Cu 4 Ce and Al 6 Cu 6 La phases formed after CeLa addition. •Addition of 0.25 wt.% CeLa promoted formation of denser precipitates of Al 20 Cu 2 Mn 3 and Al 6 (Mn, Fe). •Mechanical properties of the alloy was improved after 0.25 wt.% CeLa addition.

  7. Ab Initio Guided Low Temperature Synthesis Strategy for Smooth Face–Centred Cubic FeMn Thin Films

    Directory of Open Access Journals (Sweden)

    Friederike Herrig

    2018-05-01

    Full Text Available The sputter deposition of FeMn thin films with thicknesses in the range of hundred nanometres and beyond requires relatively high growth temperatures for the formation of the face-centred cubic (fcc phase, which results in high thin film roughness. A low temperature synthesis strategy, based on local epitaxial growth of a 100 nm thick fcc FeMn film as well as a Cu nucleation layer on an α-Al2O3 substrate at 160 °C, enables roughness values (Ra as low as ~0.6 nm, which is in the same order of magnitude as the pristine substrate (~0.1 nm. The synthesis strategy is guided by ab initio calculations, indicating very strong interfacial bonding of the Cu nucleation layer to an α-Al2O3 substrate (work of separation 5.48 J/m²—which can be understood based on the high Cu coordination at the interface—and between fcc FeMn and Cu (3.45 J/m². Accompanied by small lattice misfits between these structures, the strong interfacial bonding is proposed to enable the local epitaxial growth of a smooth fcc FeMn thin film. Based on the here introduced synthesis strategy, the implementation of fcc FeMn based thin film model systems for materials with interface dominated properties such as FeMn steels containing κ-carbide precipitates or secondary phases appears meaningful.

  8. Biotic and a-biotic Mn and Fe cycling in deep sediments across a gradient of sulfate reduction rates along the California margin

    Science.gov (United States)

    Schneider-Mor, A.; Steefel, C.; Maher, K.

    2011-12-01

    The coupling between the biological and a-biotic processes controlling trace metals in deep marine sediments are not well understood, although the fluxes of elements and trace metals across the sediment-water interface can be a major contribution to ocean water. Four marine sediment profiles (ODP leg 167 sites 1011, 1017, 1018 and 1020)were examined to evaluate and quantify the biotic and abiotic reaction networks and fluxes that occur in deep marine sediments. We compared biogeochemical processes across a gradient of sulfate reduction (SR) rates with the objective of studying the processes that control these rates and how they affect major elements as well as trace metal redistribution. The rates of sulfate reduction, methanogenesis and anaerobic methane oxidation (AMO) were constrained using a multicomponent reactive transport model (CrunchFlow). Constraints for the model include: sediment and pore water concentrations, as well as %CaCO3, %biogenic silica, wt% carbon and δ13C of total organic carbon (TOC), particulate organic matter (POC) and mineral associated carbon (MAC). The sites are distinguished by the depth of AMO: a shallow zone is observed at sites 1018 (9 to 19 meters composite depth (mcd)) and 1017 (19 to 30 mcd), while deeper zones occur at sites 1011 (56 to 76 mcd) and 1020 (101 to 116 mcd). Sulfate reduction rates at the shallow AMO sites are on the order 1x10-16 mol/L/yr, much faster than rates in the deeper zone sulfate reduction (1-3x10-17 mol/L/yr), as expected. The dissolved metal ion concentrations varied between the sites, with Fe (0.01-7 μM) and Mn (0.01-57 μM) concentrations highest at Site 1020 and lowest at site 1017. The highest Fe and Mn concentrations occurred at various depths, and were not directly correlated with the rates of sulfate reduction and the maximum alkalinity values. The main processes that control cycling of Fe are the production of sulfide from sulfate reduction and the distribution of Fe-oxides. The Mn distribution

  9. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Qingfeng [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Lu, Fenggui [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Li, Ruifeng [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003 (China); Huang, Jian; Wu, Yixiong [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China)

    2017-02-28

    Highlights: • Equimolar CrMnFeCoNi high entropy alloy coating are prepared by laser cladding. • The cladding layer forms a simple FCC phase solid solution with identical dendritic structure. • The cladding layer exhibits a noble corrosion resistance in both 3.5 wt.% NaCl and 0.5 M sulfuric acid. • Element segregation makes Cr-depleted interdendrites the starting point of corrosion reaction. - Abstract: Equimolar CrMnFeCoNi high entropy alloy (HEA) is one of the most notable single phase multi-component alloys up-to-date with promising mechanical properties at cryogenic temperatures. However, the study on the corrosion behavior of CrMnFeCoNi HEA coating has still been lacking. In this paper, HEA coating with a nominal composition of CrMnFeCoNi is fabricated by laser surface alloying and studied in detail. Microstructure and chemical composition are determined by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) are used to investigate the corrosion behavior. The coating forms a simple FCC phase with an identical dendritic structure composed of Fe/Co/Ni-rich dendrites and Mn/Ni-rich interdendrites. Both in 3.5 wt.% NaCl solution and 0.5 M sulfuric acid the coating exhibits nobler corrosion resistance than A36 steel substrate and even lower i{sub corr} than 304 stainless steel (304SS). EIS plots coupled with fitted parameters reveal that a spontaneous protective film is formed and developed during immersion in 0.5 M sulfuric acid. The fitted R{sub t} value reaches its maximum at 24 h during a 48 h’ immersion test, indicating the passive film starts to break down after that. EDS analysis conducted on a corroded surface immersed in 0.5 M H{sub 2}SO{sub 4} reveals that corrosion starts from Cr-depleted interdendrites.

  10. Hyperfine interactions studies in perovskite oxides of the type LaMO3 (M = Fe, Cr, Mn and Co)

    International Nuclear Information System (INIS)

    Junqueira, Astrogildo de Carvalho

    2004-01-01

    ABO 3 -type perovskite oxides have ideal cubic structure and usually show distortions to the orthorhombic or rombohedric symmetry. The A and B siteshave 12-fold and 6-fold oxygen coordination, respectively. Distortions of thecubic structure give rise to new electric, structural and magnetic propertieswhich have great technological and scientific interests. Magnetic dipole and electric quadrupole hyperfine interaction measurements were obtained using 111 In -> 111 Cd , 181 Hf -> 181 Ta e 140 La -> 140 Ceradioactive nuclei substituting for the A or B sites via Perturbed Angulargamma-gamma Correlation technique (1-4) . LaMO 3 (M = Fe, Cr, Mn and Co)samples were prepared through the chemical route known as Sol-Gel techniqueand analyzed with x-ray diffraction. Both 111 In and 181 Hf nuclei wereintroduced in to the sample during the chemical procedure and the 140 Lawas obtained by irradiating with neutrons in the IPEN reactor the natural Lapresent in the samples. One of the aims of this work was the analysis of theElectric Field Gradient (EFG) in the A and B sites as function oftemperature, crystal structure or the electronic characteristic of thetransition metal in the B site. The temperature range of the measurements wasabout from 4 K to 1400 K. The experimental EFG showed to be dependent of thesite occupation and the nuclear probe used in the measurements. Spintransition phenomena were also observed in LaCoO 3 samples, which confirmed amodel used to interpret the spin properties in such compound.Crystallographic phase transition effects on the hyperfine parameters inperovskites where M = Fe, Cr and K4n were also analyzed. An additional aim ofthis work was to carry out measurements in the antiferromagnetic region ofthe systems with M = Fe, Cr and Mn using the three radioactive nuclei. Theresults for the magnetic interaction measurements showed a strong influenceof the substitutional sites in the supertransferred magnetic hyperfine fieldfor all the three probe nuclei

  11. Effect of Mn addition on the structural and magnetic properties of Fe-Pd ferromagnetic shape memory alloys

    International Nuclear Information System (INIS)

    Sanchez-Alarcos, V.; Recarte, V.; Perez-Landazabal, J.I.; Gonzalez, M.A.; Rodriguez-Velamazan, J.A.

    2009-01-01

    The effect of Mn addition on the structural and magnetic properties of Fe-Pd ferromagnetic shape memory alloys is investigated. In particular, a complete characterization of the influence of the partial substitution of Fe by Mn has been performed on Fe 69.4-x Pd 30.6 Mn x (x = 0, 1, 2.5 and 5) alloys. The substitution of 1% Fe by Mn fully inhibits the undesirable irreversible face-centered tetragonal to body-centered tetragonal transformation without decreasing the face-centered cubic to face-centered tetragonal temperature. In addition, the substitution of 2.5% Fe by Mn gives rise to the highest thermoelastic transformation temperature observed to date in the Fe-Pd system, probably due to an increase in the valence electron concentration. The magnetocaloric effect has been evaluated in this alloy system for the first time. Nevertheless, the low values obtained suggest that the Fe-Pd alloys are not good candidates for magnetic refrigeration applications.

  12. Composition design of Ti–Cr–Mn–Fe alloys for hybrid high-pressure metal hydride tanks

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zhijie [School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Ouyang, Liuzhang, E-mail: meouyang@scut.edu.cn [School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Key Laboratory for Fuel Cell Technology in Guangdong Province, Guangzhou 510641 (China); Wang, Hui; Liu, Jiangwen [School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Sun, Lixian [Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin 541004 (China); Zhu, Min, E-mail: memzhu@scut.edu.cn [School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China)

    2015-08-05

    Highlights: • New non-stoichiometric Ti–Cr–Mn–Fe alloys are prepared for the hybrid tank. • (Ti{sub 0.85}Zr{sub 0.15}){sub 1.1}Cr{sub 0.925}MnFe{sub 0.075} has the best overall properties. • The desorption pressure at 0 °C is 10.6 atm. • The reversible gravimetric density remains as a high value of 1.49 wt%. - Abstract: (Ti{sub 0.85}Zr{sub 0.15}){sub 1.1}Cr{sub 1−x}MnFe{sub x} (x = 0, 0.05, 0.075, 0.1, 0.15) alloys with a C14-type Laves structure have been investigated for potential application in hybrid high-pressure metal hydride tanks used for fuel cell vehicles. The effects of the partial substitution of Cr with Fe on the hydrogen storage properties of (Ti{sub 0.85}Zr{sub 0.15}){sub 1.1}CrMn have been systematically investigated. Results show that the desorption plateau pressure increases with increasing the Fe content in (Ti{sub 0.85}Zr{sub 0.15}){sub 1.1}Cr{sub 1−x}MnFe{sub x} alloys, whereas the hydrogen capacity decreases. Among these alloys, (Ti{sub 0.85}Zr{sub 0.15}){sub 1.1}Cr{sub 0.925}MnFe{sub 0.075} has the best overall properties, with a hydrogen desorption pressure of 10.6 atm and a reversible capacity of 1.54 wt% at 0 °C under the pressure range between 0.1 atm and 120 atm.

  13. Composition design of Ti–Cr–Mn–Fe alloys for hybrid high-pressure metal hydride tanks

    International Nuclear Information System (INIS)

    Cao, Zhijie; Ouyang, Liuzhang; Wang, Hui; Liu, Jiangwen; Sun, Lixian; Zhu, Min

    2015-01-01

    Highlights: • New non-stoichiometric Ti–Cr–Mn–Fe alloys are prepared for the hybrid tank. • (Ti 0.85 Zr 0.15 ) 1.1 Cr 0.925 MnFe 0.075 has the best overall properties. • The desorption pressure at 0 °C is 10.6 atm. • The reversible gravimetric density remains as a high value of 1.49 wt%. - Abstract: (Ti 0.85 Zr 0.15 ) 1.1 Cr 1−x MnFe x (x = 0, 0.05, 0.075, 0.1, 0.15) alloys with a C14-type Laves structure have been investigated for potential application in hybrid high-pressure metal hydride tanks used for fuel cell vehicles. The effects of the partial substitution of Cr with Fe on the hydrogen storage properties of (Ti 0.85 Zr 0.15 ) 1.1 CrMn have been systematically investigated. Results show that the desorption plateau pressure increases with increasing the Fe content in (Ti 0.85 Zr 0.15 ) 1.1 Cr 1−x MnFe x alloys, whereas the hydrogen capacity decreases. Among these alloys, (Ti 0.85 Zr 0.15 ) 1.1 Cr 0.925 MnFe 0.075 has the best overall properties, with a hydrogen desorption pressure of 10.6 atm and a reversible capacity of 1.54 wt% at 0 °C under the pressure range between 0.1 atm and 120 atm

  14. Properties of Mn0.4Zn0.6Fe2O4 and Mn0.6Zn0.4Fe2O4 as Nanocatalyst for Ammonia Production

    Directory of Open Access Journals (Sweden)

    Puspitasari Poppy

    2017-01-01

    Full Text Available Ammonia synthesis requires high pressure and high temperature process. Unfortunately, the capital intensive cost resulting low yield of ammonia by using recent catalyst which is iron oxide. Therefore, manganese zinc ferrite as a soft ferrite material will be introduced as a new nanocatalyst to enhance the ammonia yield. As a new nanocatalyst for ammonia production, study of comparasion two different concentration of MnZn Ferrite is very important. This paper will compare the yield of ammonia by using two different nanocatalyst which are Mn0.4Zn0.6Fe2O4 and Mn0.6Zn0.4Fe2O4. Both were synthesized by sol-gel method and has been characterize by using FESEM (morphology, XRD (phase identification, EDX (elemental analysis and TPR (oxide reduction. The ammonia was produce with and without magnetic field applied. The result shows that the ammonia yield is higher for Mn0.4Zn0.6Fe2O4 nanocatalyst than Mn0.6Zn0.4Fe2O4 by using magnetic field applied. 67.2% of yield has been achieved by using new nanocatalyst Mn0.6Zn0.4Fe2O4 and magnetic field applied at ambient environment.

  15. Fe-induced enhancement of antiferromagnetic spin correlations in Mn2-xFexBO4

    Science.gov (United States)

    Kazak, N. V.; Platunov, M. S.; Knyazev, Yu. V.; Moshkina, E. M.; Gavrilkin, S. Yu.; Bayukov, O. A.; Gorev, M. V.; Pogoreltsev, E. I.; Zeer, G. M.; Zharkov, S. M.; Ovchinnikov, S. G.

    2018-04-01

    Fe substitution effect on the magnetic behavior of Mn2-xFexBO4 (x = 0.3, 0.5, 0.7) warwickites has been investigated combining Mössbauer spectroscopy, dc magnetization, ac magnetic susceptibility, and heat capacity measurements. The Fe3+ ions distribution over two crystallographic nonequivalent sites is studied. The Fe introduction breaks a long-range antiferromagnetic order and leads to onset of spin-glass ground state. The antiferromagnetic short-range-order spin correlations persist up to temperatures well above TSG reflecting in increasing deviations from the Curie-Weiss law, the reduced effective magnetic moment and "missing" entropy. The results are interpreted in the terms of the progressive increase of the frustration effect and the formation of spin-correlated regions.

  16. Cyanide-bridged Fe(III)-Mn(III) bimetallic complexes with dimeric and chain structures constructed from a newly made mer-Fe tricyanide: structures and magnetic properties.

    Science.gov (United States)

    Kim, Jae Il; Kwak, Hyun Young; Yoon, Jung Hee; Ryu, Dae Won; Yoo, In Young; Yang, Namgeun; Cho, Beong Ki; Park, Je-Geun; Lee, Hyosug; Hong, Chang Seop

    2009-04-06

    Four cyanide-linked Fe(III)-Mn(III) complexes were prepared by reacting Mn Schiff bases with a new molecular precursor (PPh(4))[Fe(qcq)(CN)(3)] [1; qcq = 8-(2-quinolinecarboxamido)quinoline anion]. They include a dimeric molecule, [Fe(qcq)(CN)(3)][Mn(3-MeOsalen)(H(2)O)] x 2 H(2)O [2 x 2 H(2)O; 3-MeOsalen = N,N'-ethylenebis(3-methoxysalicylideneiminato) dianion], and three 1D zigzag chains, [Fe(qcq)(CN)(3)][Mn(5-Clsalen)] x 3 H(2)O [3 x 2 MeOH; 5-Clsalen = N,N'-ethylenebis(5-chlorosalicylideneiminato) dianion], [Fe(qcq)(CN)(3)][Mn(5-Brsalen)] x 2 MeOH [4 x 2 MeOH; 5-Brsalen = N,N'-ethylenebis(5-bromosalicylideneiminato) dianion], and Fe(qcq)(CN)(3)][Mn(salen)].MeCN x H(2)O [5 x MeCN; salen = N,N'-ethylenebis(salicylideneiminato) dianion]. The complexes consist of extensive hydrogen bonding and pi-pi stacking interactions, generating multidimensional structures. Magnetic studies demonstrate that antiferromagnetic couplings are operative between Fe(III) and Mn(III) centers bridged by cyanide ligands. On the basis of an infinite chain model, magnetic coupling parameters of 2-5 range from -9.3 to -14.1 cm(-1). A long-range order is observed at 2.3 K for 3 and 2.2 K for 4, while compound 5 shows spin glass behavior possibly coupled with magnetic ordering.

  17. Fe-Ca-phosphate, Fe-silicate, and Mn-oxide minerals in concretions from the Monterey Formation

    Science.gov (United States)

    Medrano, M.D.; Piper, D.Z.

    1997-01-01

    Concentrically zoned phosphatic-enriched concretions were collected at three sites from the Monterey Formation. The following minerals were identified: vivianite, lipscombite, rockbridgeite, leucophosphite, mitridatite, carbonate fluorapatite, nontronite, todorokite, and barite. The mineralogy of the concretions was slightly different at each of the three collection sites. None of the concretions contains all of the minerals, but the spatial distribution of minerals in individual concretions, overlapping mineralogies between different concretions, and the geochemical properties of the separate minerals suggest a paragenesis represented by the above order. Eh increased from the precipitation of vivianite to that of rockbridgeite/lipscombite. The precipitation of leucophosphite, then mitridatite, carbonate fluorapatite and todorokite/Fe-oxide indicates increasing pH. Concretion growth culminated with the precipitation of todorokite, a Mn oxide, and minor amounts of barite along microfractures. Conspicuously absent are Fe-sulfide and Mn-phosphate minerals. The concretions are hosted by finely laminated diatomite. The laminations exhibit little to no deformation around the concretions, requiring that the concretions formed after compaction. We interpret this sediment feature and the paragenesis as recording the evolving pore-water chemistry as the formation was uplifted into the fresh-ground-water zone.

  18. Thermodynamic calculation on the stability of (Fe,Mn){sub 3}AlC carbide in high aluminum steels

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Kwang-Geun [Automotive Steel Products Research Group, POSCO Technical Research Laboratories, POSCO, Jeonnam 545-090 (Korea, Republic of); School of Materials Science and Engineering, Pusan National University, Pusan, 609-735 (Korea, Republic of); Lee, Hyuk-Joong [Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Kwak, Jai-Hyun [Automotive Steel Products Research Group, POSCO Technical Research Laboratories, POSCO, Jeonnam 545-090 (Korea, Republic of); Kang, Jung-Yoon [School of Materials Science and Engineering, Pusan National University, Pusan, 609-735 (Korea, Republic of); Lee, Byeong-Joo, E-mail: calphad@postech.ac.k [Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of)

    2010-08-27

    A CALPHAD type thermodynamic description for the Fe-Mn-Al-C quaternary system has been constructed by combining a newly assessed Mn-Al-C ternary description and a partly modified Fe-Al-C description to an existing thermodynamic database for steels. A special attention was paid to reproduce experimentally reported phase stability of {kappa} carbide in high Al and high Mn steels. This paper demonstrates that the proposed thermodynamic description makes it possible to predict phase equilibria in corresponding alloys with a practically acceptable accuracy. The applicability of the thermodynamic calculation is also demonstrated for the interpretation of microstructural and constitutional evolution during industrial processes for high Al steels.

  19. Thermodynamic calculation on the stability of (Fe,Mn)3AlC carbide in high aluminum steels

    International Nuclear Information System (INIS)

    Chin, Kwang-Geun; Lee, Hyuk-Joong; Kwak, Jai-Hyun; Kang, Jung-Yoon; Lee, Byeong-Joo

    2010-01-01

    A CALPHAD type thermodynamic description for the Fe-Mn-Al-C quaternary system has been constructed by combining a newly assessed Mn-Al-C ternary description and a partly modified Fe-Al-C description to an existing thermodynamic database for steels. A special attention was paid to reproduce experimentally reported phase stability of κ carbide in high Al and high Mn steels. This paper demonstrates that the proposed thermodynamic description makes it possible to predict phase equilibria in corresponding alloys with a practically acceptable accuracy. The applicability of the thermodynamic calculation is also demonstrated for the interpretation of microstructural and constitutional evolution during industrial processes for high Al steels.

  20. Structural, Raman, and dielectric studies on multiferroic Mn-doped Bi 1-xLax FeO 3 ceramics

    KAUST Repository

    Xing, Zhibiao

    2014-04-03

    Multiferroic Bi1-xLaxFeO3 [BLFO (x)] ceramics with x = 0.10-0.50 and Mn-doped BLFO (x = 0.30) ceramics with different doping contents (0.1-1.0 mol%) were prepared by solid-state reaction method. They were crystallized in a perovskite phase with rhombohedral symmetry. In the BLFO (x) system, a composition (x)-driven structural transformation (R3c→C222) was observed at x = 0.30. The formation of Bi2Fe 4O9 impure phase was effectively suppressed with increasing the x value, and the rhombohedral distortion in the BLFO ceramics was decreased, leading to some Raman active modes disappeared. A significant red frequency shift (~13 cm-1) of the Raman mode of 232 cm-1 in the BLFO ceramics was observed, which strongly perceived a significant destabilization in the octahedral oxygen chains, and in turn affected the local FeO6 octahedral environment. In the Mn-doped BLFO (x = 0.30) ceramics, the intensity of the Raman mode near 628 cm-1 was increased with increasing the Mn-doping content, which was resulted from an enhanced local Jahn-Teller distortions of the (Mn,Fe)O6 octahedra. Electron microscopy images revealed some changes in the ceramic grain sizes and their morphologies in the Mn-doped samples at different contents. Wedge-shaped 71° ferroelectric domains with domain walls lying on the {110} planes were observed in the BLFO (x = 0.30) ceramics, whereas in the 1.0 mol% Mn-doped BLFO (x = 0.30) samples, 71° ferroelectric domains exhibited a parallel band-shaped morphology with average domain width of 95 nm. Dielectric studies revealed that high dielectric loss of the BLFO (x = 0.30) ceramics was drastically reduced from 0.8 to 0.01 (measured @ 104 Hz) via 1.0 mol% Mn-doping. The underlying mechanisms can be understood by a charge disproportion between the Mn4+ and Fe2+ in the Mn-doped samples, where a reaction of Mn4+ + Fe2+→Mn3+ + Fe3+ is taken place, resulting in the reduction in the oxygen vacancies and a suppression of the electron hopping from Fe3+ to Fe2+ ions

  1. Structural, Raman, and dielectric studies on multiferroic Mn-doped Bi 1-xLax FeO 3 ceramics

    KAUST Repository

    Xing, Zhibiao; Zhu, Xinhua; Zhu, Jianmin; Liu, Zhiguo; Al-Kassab, Talaat

    2014-01-01

    Multiferroic Bi1-xLaxFeO3 [BLFO (x)] ceramics with x = 0.10-0.50 and Mn-doped BLFO (x = 0.30) ceramics with different doping contents (0.1-1.0 mol%) were prepared by solid-state reaction method. They were crystallized in a perovskite phase with rhombohedral symmetry. In the BLFO (x) system, a composition (x)-driven structural transformation (R3c→C222) was observed at x = 0.30. The formation of Bi2Fe 4O9 impure phase was effectively suppressed with increasing the x value, and the rhombohedral distortion in the BLFO ceramics was decreased, leading to some Raman active modes disappeared. A significant red frequency shift (~13 cm-1) of the Raman mode of 232 cm-1 in the BLFO ceramics was observed, which strongly perceived a significant destabilization in the octahedral oxygen chains, and in turn affected the local FeO6 octahedral environment. In the Mn-doped BLFO (x = 0.30) ceramics, the intensity of the Raman mode near 628 cm-1 was increased with increasing the Mn-doping content, which was resulted from an enhanced local Jahn-Teller distortions of the (Mn,Fe)O6 octahedra. Electron microscopy images revealed some changes in the ceramic grain sizes and their morphologies in the Mn-doped samples at different contents. Wedge-shaped 71° ferroelectric domains with domain walls lying on the {110} planes were observed in the BLFO (x = 0.30) ceramics, whereas in the 1.0 mol% Mn-doped BLFO (x = 0.30) samples, 71° ferroelectric domains exhibited a parallel band-shaped morphology with average domain width of 95 nm. Dielectric studies revealed that high dielectric loss of the BLFO (x = 0.30) ceramics was drastically reduced from 0.8 to 0.01 (measured @ 104 Hz) via 1.0 mol% Mn-doping. The underlying mechanisms can be understood by a charge disproportion between the Mn4+ and Fe2+ in the Mn-doped samples, where a reaction of Mn4+ + Fe2+→Mn3+ + Fe3+ is taken place, resulting in the reduction in the oxygen vacancies and a suppression of the electron hopping from Fe3+ to Fe2+ ions

  2. Magnetic hybride layers. Magnetic properties of locally exchange-coupled NiFe/IrMn layers; Magnetische Hybridschichten. Magnetische Eigenschaften lokal austauschgekoppelter NiFe/IrMn-Schichten

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Christine

    2010-10-06

    By the lateral modification of the magnetic properties of exchange-coupled NiFe/IrMn layers soft-magnetic layers were produced, which show both new static and dynamic properties. As lateral structuration methods hereby the localoxidation as well as ion implantation were applied. By means of thes procedures it has been succeeded to mould specific magnetic domain configurations with strp structure into the layers. In dependence of the structure orientation as well as strip period the remagnetization behavior as well as the magnetic-resonance frequency and damping of the layers could directly be modified. The new dynamical properties are hereby discussed in the framework of the coupling via dynamical charges and the direct affection of the effective field of the artificially inserted domain state. The presented results prove by this the large potential of the lateral magneto-structuration for the tuning of specifical static as well as dynamic properties of magnetically thin layers.

  3. Semiconductor Ceramic Mn0.5Fe1.5O3-Fe2O3 from Natural Minerals as Ethanol Gas Sensors

    Science.gov (United States)

    Aliah, H.; Syarif, D. G.; Iman, R. N.; Sawitri, A.; Sanjaya WS, M.; Nurul Subkhi, M.; Pitriana, P.

    2018-05-01

    In this research, Mn and Fe-based ceramic gas sensing were fabricated and characterized. This research used natural mineral which is widely available in Indonesia and intended to observe the characteristics of Mn and Fe-based semiconducting material. Fabricating process of the thick films started by synthesizing the ceramic powder of Fe(OH)3 and Mn oxide material using the precipitation method. The deposition from precipitation method previously was calcined at a temperature of 800 °C to produce nanoparticle powder. Nanoparticle powder that contains Mn and Fe oxide was mixed with an organic vehicle (OV) to produce a paste. Then, the paste was layered on the alumina substrate by using the screen printing method. XRD method was utilized to characterize the thick film crystal structure that has been produced. XRD spectra showed that the ceramic layer was formed from the solid Mn0.5Fe1.5O3 (bixbyite) and Fe2O3. In addition, the electrical properties (resistance) examination was held in the room that contains air and ethanol to determine the sensor sensitivity of ethanol gas. The sensor resistance decreases as the ethanol gas was added, showing that the sensor was sensitive to ethanol gas and an n-type semiconductor. Gas sensor exhibit sensitive characterization of ethanol gas on the concentration of (100 to 300) ppm at a temperature of (150 to 200) °C. This showed that the Mn0.5Fe1.5O3-Fe2O3 ceramic semiconductor could be utilized as the ethanol gas detector.

  4. Surface composition of Cd{sub 1–x}Fe(Mn){sub x}Te{sub 1–y}Se{sub y} systems exposed to air

    Energy Technology Data Exchange (ETDEWEB)

    Bundaleski, Nenad [University of Belgrade–Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Universidade Nova de Lisboa–Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829–516 Caparica (Portugal); Radisavljević, Ivana, E-mail: iva@vin.bg.ac.rs [University of Belgrade–Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Trigueiro, João [Universidade Nova de Lisboa–Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829–516 Caparica (Portugal); Tolstogouzov, Alexander [Universidade Nova de Lisboa–Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829–516 Caparica (Portugal); Ryazan State Radio Engineering University, Gagarin 59/1, 390005 Ryazan (Russian Federation); Rakočević, Zlatko; Medić, Mirjana [University of Belgrade–Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Teodoro, Orlando M.N.D. [Universidade Nova de Lisboa–Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829–516 Caparica (Portugal); Romčević, Nebojša [University of Belgrade–Institute of Physics, Pregrevica 118, 11000 Belgrade (Serbia); Ivanović, Nenad [University of Belgrade–Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia)

    2017-03-01

    Using X–ray induced Photoelectron Spectroscopy, Time–of–Flight Secondary Ion Mass Spectrometry and Atomic Force Microscopy we have investigated elemental composition, structure and oxidation process taking place at the surfaces of polycrystalline Cd{sub 0.99}Fe{sub 0.01}Te{sub 0.97}Se{sub 0.03} and Cd{sub 0.95}Mn{sub 0.05}Te{sub 0.97}Se{sub 0.03} systems stored in ambient conditions. The surface oxidation destroys the native CdTe matrix and provokes substantial atomic rearrangement in the first few atomic layers. The near–surface region of both systems is enriched in Cd and to some extent Te–deficient, but the surface structure, morphology and the native oxide composition are all found to be considerably different. In Cd{sub 0.99}Fe{sub 0.01}Te{sub 0.97}Se{sub 0.03} system both Fe and Se dopants diffuse into the bulk and oxidation of its surface results in formation of a thin CdTeO{sub 3} layer which covers the CdTe matrix. In Cd{sub 0.95}Mn{sub 0.05}Te{sub 0.97}Se{sub 0.03} system oxygen–rich atmosphere triggers Mn and Se out–diffusion and the nonuniform oxide layer predominantly consists of MnO and a small amount of Te–oxide which both lay underneath a thin layer of metallic Cd segregated at the top of the surface. - Highlights: • Nature of the CdFe(Mn)TeSe surfaces exposed to air is substantially different. • Near–surface region is enriched in Cd and to some extent Te–deficient. • Presence of Mn drastically changes the surface oxidation conditions. • The surface oxidation in ambient conditions undergoes different mechanisms. • Oxygen triggers Mn out–diffusion, while Fe diffuses into the bulk.

  5. Synthesis and magnetic properties of the thin film exchange spring system of MnBi/FeCo

    Science.gov (United States)

    Sabet, S.; Hildebrandt, E.; Alff, L.

    2017-10-01

    Manganese bismuth thin films with a nominal thickness of ∼40 nm were grown at room temperature onto quartz glass substrate in a DC magnetron sputtering unit. In contrast to the usual multilayer approach, the MnBi films were deposited using a single sputtering target with a stoichiometry of Mn55Bi45 (at. %). A subsequent in-situ annealing step was performed in vacuum in order to form the ferromagnetic LTP of MnBi. X-ray diffraction confirmed the formation of a textured LTP MnBi hard phase after annealing at 330 °C. This film shows a maximum saturation magnetization of 530 emu/cm3, high out-of-plane coercivity of 15 kOe induced by unreacted bismuth. The exchange coupling effect was investigated by deposition of a second layer of FeCo with 1 nm and 2 nm thickness onto the LTP MnBi films. The MnBi/FeCo double layer showed as expected higher saturation magnetization with increasing thickness of the FeCo layer while the coercive field remained constant. The fabrication of the MnBi/FeCo double layer for an exchange spring magnet was facilitated by deposition from a single stoichiometric target.

  6. Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: Characterization and mechanism.

    Science.gov (United States)

    Lin, Lina; Qiu, Weiwen; Wang, Di; Huang, Qing; Song, Zhengguo; Chau, Henry Wai

    2017-10-01

    The aim of this study was to develop a cost-effective method for As removal from aqueous systems. To this end, pristine biochar (BC) was impregnated with Fe-Mn oxides and a comparative analysis was conducted on the adsorption capacities of BC, Fe-Mn binary oxide (FMO), and Fe/Mn modified biochar (FMBC). The ferromanganese oxides increased the specific surface areas of BC. FMBC presented greater adsorption of As (Q max = 8.25mgg -1 ) than FMO and BC. Energy dispersive spectrometer analysis and electron microscope scanning revealed numerous pores of FMBC with the existence of Fe-Mn oxide using. Distinguished binding energy shifting of the As3d, Fe2p, O1s, and Mn2p3/2 regions after As sorption were found, indicating that Mn(III) oxidation and interaction of oxygen-containing function groups in the FMBC promoted the conversion of As(III) to As(V). Furthermore, chemisorption was found to be the main mechanism for As sorption on FMBC. Thus, the results suggest that FMBC could be used as an inexpensive and highly efficient adsorbent for As removal from water environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Corrosion behaviour of Fe-Mn-Si based shape memory steels trained by cold rolling

    International Nuclear Information System (INIS)

    Soederberg, O.; Liu, X.W.; Ullakko, K.; Lindroos, V.K.

    1999-01-01

    Fe-Mn-Si based high nitrogen steels have been studied in recent years for potential industrial applications. These steels show good shape memory properties, high strength and excellent ductility. In the present study, the effects of training history on the corrosion properties of Fe-Mn-Si-Cr-Ni based high nitrogen steels were investigated. The corrosion behaviour of shape memory alloys was analyzed by implementing anodic polarisation measurements and immersion tests. The shape memory steels in annealed, deformed and recovered conditions were studied to examine the training effect on their corrosion behaviour. The features of the anodic polarisation curves indicated a general corrosion type of these steels. The experimental results showed that Cr and Mn had a marked influence on the corrosion behaviour of the steels, followed by Ni, N and V. It was also apparent that the deformation during the shape memory training by cold rolling decreased the corrosion stability, and the recovery heating reduced further their corrosion resistance. However, further studies are needed in order to better understand the corrosion behaviour of the investigated alloys. (orig.)

  8. A FeNiMnC alloy with strain glass transition

    Directory of Open Access Journals (Sweden)

    Hui Ma

    2018-02-01

    Full Text Available Recent experimental and theoretical investigations suggested that doping sufficient point defects into a normal ferroelastic/martensitic alloy systems could lead to a frozen disordered state of local lattice strains (nanomartensite domains, thereby suppressing the long-range strain-ordering martensitic transition. In this study, we attempt to explore the possibility of developing novel ferrous Elinvar alloys by replacing nickel with carbon and manganese as dopant species. A nominal Fe89Ni5Mn4.6C1.4 alloy was prepared by argon arc melting, and XRD, DSC, DMA and TEM techniques were employed to characterize the strain glass transition signatures, such as invariance in average structure, frequency dispersion in dynamic mechanical properties (storage modulus and internal friction and the formation of nanosized strain domains. It is indicated that doping of Ni, Mn and C suppresses γ→α long-range strain-ordering martensitic transformation in Fe89Ni5Mn4.6C1.4 alloy, generating randomly distributed nanosized domains by strain glass transition. Keywords: Strain glass transition, Elinvar alloys, Point defects, Nanosized domains

  9. Building Composite Fe-Mn Oxide Flower-Like Nanostructures: A Detailed Magnetic Study

    KAUST Repository

    Zuddas, Efisio; Lentijo Mozo, Sergio; Casu, Alberto; Deiana, Davide; Falqui, Andrea

    2017-01-01

    Here we show that it’s possible to produce different magnetic core-multiple shells heterostructures from monodispersed iron oxide spherical magnetic seeds by finely controlling the amount of a manganese precursor and using in a smart and simple way a cation exchange synthetic approach. In particular, by increasing the amount of precursor we were able to produce nanostructures ranging from Fe3O4/Mn-ferrite core/single shell nanospheres to larger, flower-like Fe3O4/Mn-ferrite/Mn3O4 core-double shell nanoparticles. We first demonstrate how the formation of the initial thin manganese-ferrite shell determines a dramatic reduction of the superficial disorder in the starting iron oxide, bringing to nanomagnets with lower hardness. Then, the growth of the second and most external manganese oxide shell causes the magnetical hardening of the heterostructures, while its magnetic exchange coupling with the rest of the heterostructure can be antiferromagentic or ferromagnetic, depending on the strength of the applied external magnetic field. This response is similar to that of an iron oxide-manganese oxide core-shell system but differs from what observed in multiple-shell heterostructures. Finally, we report as the most external shell becomes magnetically irrelevant above the ferrimagnetic-paramagnetic transition of the manganese oxide and the resulting magnetic behavior of the flower-like structures is then studied in-depth.

  10. Evaluation of erosion-corrosion resistance in Fe-Mn-Al austenitic steels

    Directory of Open Access Journals (Sweden)

    William Arnulfo Aperador

    2013-04-01

    Full Text Available In this paper, the effects of Mn and Al against corrosion/errosion resistance of three samples of the Fe-Mn-Al austenitic alloys are evaluated. The samples have composition Fe-(4,9 ~ 11,0 wt. (% Al-(17,49 ~ 34,3 wt. (% Mn-(0,43 ~ 1,25 wt. (%C, those were prepared in an induction furnace from high purity materials. The alloys were evaluated in a composed solution of NaCl 0,5 M and Silica in a special chamber and AISI 316 stainless steel as reference material. The electrochemical characterization was performed by Tafel curve polarizations technique. This microstructural characterization was by Scanning Electron Microscopy (SEM. It was observed the significant decrease in the corrosion rate for steels Fermanal with a lower percentage of aluminum and manganese under conditions of dynamic corrosion and erosion-corrosion. SEM allows assessment of the dominant damage mechanisms and corroborated the results obtained by electrochemical measurements.

  11. Building Composite Fe-Mn Oxide Flower-Like Nanostructures: A Detailed Magnetic Study

    KAUST Repository

    Zuddas, Efisio

    2017-07-21

    Here we show that it’s possible to produce different magnetic core-multiple shells heterostructures from monodispersed iron oxide spherical magnetic seeds by finely controlling the amount of a manganese precursor and using in a smart and simple way a cation exchange synthetic approach. In particular, by increasing the amount of precursor we were able to produce nanostructures ranging from Fe3O4/Mn-ferrite core/single shell nanospheres to larger, flower-like Fe3O4/Mn-ferrite/Mn3O4 core-double shell nanoparticles. We first demonstrate how the formation of the initial thin manganese-ferrite shell determines a dramatic reduction of the superficial disorder in the starting iron oxide, bringing to nanomagnets with lower hardness. Then, the growth of the second and most external manganese oxide shell causes the magnetical hardening of the heterostructures, while its magnetic exchange coupling with the rest of the heterostructure can be antiferromagentic or ferromagnetic, depending on the strength of the applied external magnetic field. This response is similar to that of an iron oxide-manganese oxide core-shell system but differs from what observed in multiple-shell heterostructures. Finally, we report as the most external shell becomes magnetically irrelevant above the ferrimagnetic-paramagnetic transition of the manganese oxide and the resulting magnetic behavior of the flower-like structures is then studied in-depth.

  12. The End of Monterey Submarine Canyon Incision and Potential River Source Areas-Os, Nd, and Pb Isotope Constraints from Hydrogenetic Fe-Mn Crusts

    Science.gov (United States)

    Conrad, T. A.; Nielsen, S.; Ehrenbrink, B. P. E.; Blusztajn, J.; Hein, J. R.; Paytan, A.

    2015-12-01

    The Monterey Canyon off central California is the largest submarine canyon off North America and is comparable in scale to the Grand Canyon. The age and history of the Monterey Canyon are poorly constrained due to thick sediment cover and sediment disruption from turbidity currents. To address this deficit we analyzed isotopic proxies (Os, Pb, Nd) from hydrogenetic ferromanganese (Fe-Mn) crusts, which grow over millions of years on elevated rock surfaces by precipitation of metals from seawater. Fe-Mn crusts were studied from Davidson Seamount near the base of the Monterey submarine fan, the Taney Seamount Chain, and from Hoss Seamount, which serves as a regional control (Fig.). Fe-Mn crusts were dated using Os isotope ratios compared to those that define the Cenozoic Os isotope seawater curve. Four Fe-Mn crust samples from Davidson and Taney Seamounts deviate from the Os isotopic seawater curve towards radiogenic values after 4.5±1 Ma. Osmium is well mixed in the global ocean and is not subject to significant diffusive reequilibration in Fe-Mn crusts. We therefore attribute deviations from the Os isotope seawater curve to large-scale terrestrial input that ended about 4.5±1 Ma. The two Davidson samples also show more radiogenic Nd isotope values from about 4.5±1 Ma. Lead isotopes in one Davidson Seamount crust, measured by LA-ICPMS, deviate from regional values after 4.5±1 Ma for about 500 ka towards terrestrial sources. The Taney Seamount Fe-Mn crust does not deviate from regional Nd nor Pb isotope values due to its greater distance from Monterey Canyon and the shorter marine residence times of Nd and Pb. Isotope plots of our crust data and compiled data for potential source rocks indicate that the river that carved Monterey Canyon carried sediment with values closer to the Sierra Nevada than to a Colorado Plateau source, with cessation of major riverine input occurring approximately 4.5±1 Ma, an age that we interpret as the end of the Monterey Canyon

  13. Magnetic properties and loss separation in FeSi/MnZnFe{sub 2}O{sub 4} soft magnetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Lauda, M. [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik Univesity, Park Angelinum 9, 04154 Košice (Slovakia); Füzer, J., E-mail: jan.fuzer@upjs.sk [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik Univesity, Park Angelinum 9, 04154 Košice (Slovakia); Kollár, P. [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik Univesity, Park Angelinum 9, 04154 Košice (Slovakia); Strečková, M.; Bureš, R. [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Košice (Slovakia); Kováč, J.; Baťková, M.; Baťko, I. [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice (Slovakia)

    2016-08-01

    We investigated composites that have been prepared from FeSi powders covered with MnZnFe{sub 2}O{sub 4} (MnZn ferrite), which was prepared by sol–gel synthesis accompanied with the auto-combustion process. The aim of this paper is to analyze the complex permeability and core losses of prepared samples with different amount of MnZn ferrite. The microstructure and the powder morphology were examined by scanning electron microscopy. Magnetic measurements on bulk samples were carried out using a vibrating sample magnetometer, an impedance analyzer and hysteresisgraphs. The results indicate that the composites with 2.6 wt% MnZn ferrite show better soft magnetic properties than the composites with about 6 wt% MnZn ferrite. - Highlights: • Successful preparation of soft magnetic composite FeSi/MnZnFe{sub 2}O{sub 4}. • Study of the complex magnetic permeability. • Comparison of different compositions of prepared SMC's. • Determination of parts of magnetic losses.

  14. Synthesis of KMnO4-treated magnetic graphene oxide nanocomposite (Fe3O4@GO/MnO x ) and its application for removing of Cu2+ ions from aqueous solution

    Science.gov (United States)

    Zhang, Huining; Chang, Qing; Jiang, Yu; Li, Huili; Yang, Yahong

    2018-04-01

    A magnetic KMnO4-treated graphene-oxide-based nanocomposite, Fe3O4@GO/MnO x , was synthesized through a facile hydrothermal technique. The properties of the Fe3O4@GO/MnO x nanocomposite were characterized by SEM, XRD and FTIR. Batch experiments showed that the maximum adsorption capacity calculated by the Langmuir model for Cu2+ was 62.65 mg g-1 at T = 303.15 K. Kinetics and XPS analysis also revealed that the mechanism of Cu2+ removal was mainly a chemical adsorption process involving both the MnO x particles and oxygen functional groups. The prepared Fe3O4@GO/MnO x was found to be an ideal adsorbent for the removal of Cu2+ ions due to the MnO x particle coating, and was easily separated using a magnetic field after utilization. Reusability studies imply that Fe3O4@GO/MnO x is a suitable material for heavy metal ion removal from aqueous solutions in real applications.

  15. Magnetic properties of the Ce2Fe17-x Mn x helical magnets up to high magnetic fields

    International Nuclear Information System (INIS)

    Kuchin, A.G.; Mushnikov, N.V.; Bartashevich, M.I.; Prokhnenko, O.; Khrabrov, V.I.; Lapina, T.P.

    2007-01-01

    Magnetic properties of the Ce 2 Fe 17- x Mn x , x=0-2, alloys in magnetic fields up to 40 T are reported. The compounds with x=0.5-1 are helical antiferromagnets and those with 1 B that couple antiparallelly to the Fe moments. Easy-plane magnetic anisotropy in the Ce 2 Fe 17- x Mn x compounds weakens upon substitution of Mn for Fe. The absolute value of the first anisotropy constant in the Ce 2 Fe 17- x Mn x helical ferromagnets decreases slower with increasing temperature than that calculated from the third power of the spontaneous magnetization. Noticeable magnetic hysteresis in the Ce 2 Fe 17- x Mn x , x=0.5-2, helical magnets over the whole range of magnetic fields reflects mainly irreversible deformation of the helical magnetic structure during the magnetization of the compounds. A contribution from short-range order (SRO) magnetic clusters to the magnetic hysteresis of the helical magnets has been also estimated

  16. A general strategy for the in situ decoration of porous Mn-Co bi-metal oxides on metal mesh/foam for high performance de-NOx monolith catalysts.

    Science.gov (United States)

    Cai, Sixiang; Liu, Jie; Zha, Kaiwen; Li, Hongrui; Shi, Liyi; Zhang, Dengsong

    2017-05-04

    Owing to their advantages of strong mechanical stability, plasticity, thermal conductivity and mass transfer ability, metal foam or meshes are considered promising monolith supports for de-NO x application. In this work, we developed a facile method for the decoration of porous Mn-Co bi-metal oxides on Fe meshes. The block-like structure was derived from in situ coating, and simultaneous nucleation and growth of the Mn-Co hydroxide precursor, while the porous Mn-Co oxides were formed via the calcination process. Moreover, the decoration of the high-purity Co 2 MnO 4 spinel could lead to enhanced reducibility and adsorption behaviors, which are crucial to the catalytic process. Of note is the fact that the Fe mesh used in the synthesis procedure could be substituted by various metal supports including Ti mesh, Cu foam and Ni foam. Driven by the above motivations, metal supports decorated with Mn-Co oxides were evaluated as monolith de-NO x catalysts for the first time. Inspiringly, these catalysts demonstrate outstanding low-temperature catalytic activity, desirable stability and excellent H 2 O resistance. This work might open up a new path for the design and development of high performance de-NO x monolith catalysts.

  17. Irradiation-Induced Solute Clustering in a Low Nickel FeMnNi Ferritic Alloy

    International Nuclear Information System (INIS)

    Meslin, E.; Barbu, A.; Radiguet, B.; Pareige, P.; Toffolon, C.

    2011-01-01

    Understanding the radiation embrittlement of reactor pressure vessel (RPV) steels is required to be able to operate safely a nuclear power plant or to extend its lifetime. The mechanical properties degradation is partly due to the clustering of solute under irradiation. To gain knowledge about the clustering process, a Fe-1.1 Mn-0.7 Ni (at.%) alloy was irradiated in a test reactor at two fluxes of 0.15 and 9 *10 17 n E≥1MeV . m -2 .s -1 and at increasing doses from 0.18 to 1.3 *10 24 n E≥1MeV ) . m -2 at 300 degrees C. Atom probe tomography (APT) experiments revealed that the irradiation promotes the formation in the α iron matrix of Mn/Mn and/or Ni/Ni pair correlations at low dose and Mn-Ni enriched clusters at high dose. These clusters dissolve partially after a thermal treatment at 400 degrees C. Based on a comparison with thermodynamic calculations, we show that the solute clustering under irradiation can just result from an induced mechanism. (authors)

  18. Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Joo, S.-H.; Kato, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Jang, M.J.; Moon, J. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Tsai, C.W.; Yeh, J.W. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Kim, H.S., E-mail: hskim@postech.ac.kr [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Center for High Entropy Alloys, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of)

    2017-03-24

    The tensile deformation and strain hardening behaviors of an equimolar CoCrFeMnNi high-entropy alloy (HEA) were investigated and compared with low and medium entropy equiatomic alloys (LEA and MEA). The HEA had a lower yield strength than the MEA because the addition of Mn weakens solid solution hardening in the HEA. However, deformation twinning induced the multiple stage strain hardening behavior of the HEA and enhanced strength and elongation. Using tensile-interrupted electron backscatter diffraction analysis, geometrically necessary dislocations were observed as plume-shaped features in grain interior, and a considerable texture was characterized, which is typical of face centered cubic metals. Moreover, the relationship between favorably oriented grains and twinning in the HEA bore a clear resemblance to the same tendency in TWIP steels. The thickness of the twin bundles was less than 100 nm. A high density of stacking defects was found in the nanotwins. Nano twinning and stacking faults were found to contribute to the remarkable mechanical properties. Deformation induced twinning not only demonstrated the dynamic Hall-Petch effect but also changed dislocation cell substructures into microband structures.

  19. Magnetic properties and magnetocaloric effects in Mn1.2Fe0.8P1-xGex compounds

    International Nuclear Information System (INIS)

    Ou, Z Q; Wang, G F; Lin Song; Tegus, O; Brueck, E; Buschow, K H J

    2006-01-01

    We have studied the magnetic properties and magnetocaloric effects in the Mn 1.2 Fe 0.8 P 1-x Ge x compounds with x = 0.2, 0.22, 0.3, 0.4 and 0.5. X-ray diffraction patterns show that the Mn 1.2 Fe 0.8 P 1-x Ge x compounds crystallize in the hexagonal Fe 2 P-type crystal structure. The magnetic moments of the Mn 1.2 Fe 0.8 P 1-x Ge x compounds measured at 5 K and 5 T increase with increasing Ge content. The Curie temperature increases strongly and the magnetic entropy change has a maximum around 233 K for the compound with x = 0.22, which is about 19 and 31 J kg -1 K -1 for a field change of 2 and 5 T, respectively

  20. Magnetic properties of Fe-rich rare-earth intermetallic compounds with a ThMn12 structure

    International Nuclear Information System (INIS)

    Ohashi, K.; Tawara, Y.; Osugi, R.; Shimao, M.

    1988-01-01

    Sm(Fe/sub 1-//sub x/M/sub x/) 12 ternary compounds based on the tetragonal ThMn 12 structure where M is Ti, Si, V, Cr, and Mo were investigated. M atoms have a preference for site occupation. Ti atoms occupy the 8i or 8j site and Cr atoms occupy the 8i site. Curie temperatures on Sm(M,Fe) 12 compounds are around 590 K except for the SmMo 2 Fe 10 compound (T/sub c/ = 483 K). The SmTiFe 11 and SmSi 2 Fe 10 compounds have a high saturation magnetization and magnetic anisotropy

  1. Ab initio study of structural, electronic and optical properties of MnHg(SCN)4 and FeHg(SCN)4

    International Nuclear Information System (INIS)

    He, K.H.; Zheng, G.; Chen, G.; Lue, T.; Wan, M.; Ji, G.F.

    2007-01-01

    The structural, electronic and optical properties of MnHg(SCN) 4 and FeHg(SCN) 4 were studied by means of quantum-mechanical calculations based on the density-functional theory and pseudopotential method. The lattice constants can be compared with the experimental values when the effects of temperature are considered. The peaks of partial density of states of S, C, N and Hg of FeHg(SCN) 4 have a tendency of shifting to the higher energy levels relative to those of MnHg(SCN) 4 . The distributions of the 3d electronic states in the transition metal atoms show quite large difference and decide different optical properties. We found that absorptional peaks of FeHg(SCN) 4 lag behind those of MnHg(SCN) 4 and the peak in the infrared range has a higher absorptional intensity, which are in accord with the experimental results. By analyzing the distributions and transitions of the 3d electronic states, we explained the different absorption phenomena

  2. Electrochemical Sensing toward Trace As(III Based on Mesoporous MnFe2O4/Au Hybrid Nanospheres Modified Glass Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Shaofeng Zhou

    2016-06-01

    Full Text Available Au nanoparticles decorated mesoporous MnFe2O4 nanocrystal clusters (MnFe2O4/Au hybrid nanospheres were used for the electrochemical sensing of As(III by square wave anodic stripping voltammetry (SWASV. Modified on a cheap glass carbon electrode, these MnFe2O4/Au hybrid nanospheres show favorable sensitivity (0.315 μA/ppb and limit of detection (LOD (3.37 ppb toward As(III under the optimized conditions in 0.1 M NaAc-HAc (pH 5.0 by depositing for 150 s at the deposition potential of −0.9 V. No obvious interference from Cd(II and Hg(II was recognized during the detection of As(III. Additionally, the developed electrode displayed good reproducibility, stability, and repeatability, and offered potential practical applicability for electrochemical detection of As(III in real water samples. The present work provides a potential method for the design of new and cheap sensors in the application of electrochemical determination toward trace As(III and other toxic metal ions.

  3. Ab initio study of structural, electronic and optical properties of MnHg(SCN){sub 4} and FeHg(SCN){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    He, K.H. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China)]. E-mail: he23981006@126.com; Zheng, G. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China)]. E-mail: gzheng25@yahoo.com; Chen, G. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China); Lue, T. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China); Wan, M. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China); Ji, G.F. [Laboratory for Shock Wave and Detonation Physics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2007-03-01

    The structural, electronic and optical properties of MnHg(SCN){sub 4} and FeHg(SCN){sub 4} were studied by means of quantum-mechanical calculations based on the density-functional theory and pseudopotential method. The lattice constants can be compared with the experimental values when the effects of temperature are considered. The peaks of partial density of states of S, C, N and Hg of FeHg(SCN){sub 4} have a tendency of shifting to the higher energy levels relative to those of MnHg(SCN){sub 4}. The distributions of the 3d electronic states in the transition metal atoms show quite large difference and decide different optical properties. We found that absorptional peaks of FeHg(SCN){sub 4} lag behind those of MnHg(SCN){sub 4} and the peak in the infrared range has a higher absorptional intensity, which are in accord with the experimental results. By analyzing the distributions and transitions of the 3d electronic states, we explained the different absorption phenomena.

  4. Structural and morphological study of Zn0.9Mn0.05Fe0.05O synthesized by sol-gel wet chemical precipitation route

    Science.gov (United States)

    Jain, S. K.; Dolia, S. N.; Choudhary, B. L.; Prashant, B. L.

    2018-04-01

    Transition metal substituted Zinc oxide (ZnO) has drawn a great deal of attention due to its excellent properties. Zn0.9Mn0.05Fe0.05O sample synthesized was by Sol-gel wet chemical precipitation route at temperature 350°C. The crystallinity and the structure of Zn0.9Mn0.05Fe0.05O was determined by X-ray diffraction by Cu-Kα radiations operated at 40kV and 35mA in the range of 20° to 80°. The pattern gets indexed in wurtzite (hexagonal) structure with lattice constants a=b=3.2525Å and c=5.2071Å and approves the single phase material with no impurity. The values of particle size assessed by Debye Scherer’s (DS) formula lie in the range of 13nm to 33nm indicating the nano-crystalline nature of the sample. The morphological analysis of the sample was performed by Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) measurements. The observed size of Zn0.9Mn0.05Fe0.05O nanoparticles by TEM micrograph exhibits the similar trend with the size calculated by Debye-Scherer formula. TEM image show the irregular shape of the nanoparticles and particle size lies in the range of 10-35nm. Similar to SEM image, the slight agglomeration of the nanoparticles have been observed from TEM.

  5. Fabrication of Mg-X-O (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn) barriers for magnetic tunnel junctions

    Science.gov (United States)

    Yakushiji, K.; Kitagawa, E.; Ochiai, T.; Kubota, H.; Shimomura, N.; Ito, J.; Yoda, H.; Yuasa, S.

    2018-05-01

    We fabricated magnetic tunnel junctions with a 3d-transition material(X)-doped MgO (Mg-X-O) barrier, and evaluated the effect of the doping on magnetoresistance (MR) and microstructure. Among the variations of X (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn), X = Fe and Mn showed a high MR ratio of more than 100%, even at a low resistance-area product of 3 Ωμm2. The microstructure analysis revealed that (001) textured orientation formed for X = Fe and Mn despite substantial doping (about 10 at%). The elemental mappings indicated that Fe atoms in the Mg-Fe-O barrier were segregated at the interfaces, while Mn atoms were evenly involved in the Mg-Mn-O barrier. This suggests that MgO has high adaptability for Fe and Mn dopants in terms of high MR ratio.

  6. Creation of a 3Mn/1Fe cluster in the oxygen-evolving complex of photosystem II and investigation of its functional activity.

    Science.gov (United States)

    Semin, B К; Davletshina, L N; Seibert, M; Rubin, A B

    2018-01-01

    Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2 Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH5.7) than at neutral pH (3Mn/RC are extracted at pH6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extract only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster. Also we found that the presence of Fe cations in a heteronuclear cluster (2Mn/2Fe) increases the resistance of the remaining Mn cations to H 2 Q action, since H 2 Q can extract Mn cations from homonuclear Mn clusters of PSII(-Ca,4Mn) and PSII(-Ca,2Mn) membranes but not from the heteronuclear cluster in PSII(-Ca,2Mn,2Fe) membranes. H 2 Q also cannot extract Mn from PSII membranes obtained by incubation of PSII(-Ca,4Mn) membranes with Fe(II) cations at pH5.7, which suggests the formation of a heteronuclear 3Mn/1Fe cluster in the OEC. Functional activity of PSII with a 3Mn/1Fe cluster was investigated. PSII preparations with a 3Mn/1Fe cluster in the OEC are able to photoreduce the exogenous electron acceptor 2,6-dichlorophenolindophenol, possibly due to incomplete oxidation of water molecules as is the case with PSII(-Ca,2Mn,2Fe) samples. However, in the contrast to PSII(-Ca,2Mn,2Fe) samples PSII(-Ca,3Mn,1Fe) membranes can evolve O 2 at a low rate in the presence of exogenous Ca 2+ (at about 27% of the rate of O 2 evolution in native PSII membranes). The explanation for this phenomenon (either water splitting and production of molecular O 2 by the 3Mn/1Fe cluster or apparent O 2 evolution due to minor contamination of PSII(3Mn,1Fe) samples with PSII(-Ca,4Mn) membranes

  7. Effect of partial substitution of Fe by Mn in Ni{sub 55}Fe{sub 19}Ga{sub 26} on its microstructure and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Sudip Kumar, E-mail: sudips@barc.gov.in [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Biswas, Aniruddha [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Babu, P.D.; Kaushik, S.D. [UGC–DAE Consortium for Scientific Research, Mumbai Centre, Mumbai 400 085 (India); Srivastava, Amita [Seismology Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Siruguri, Vasudeva [UGC–DAE Consortium for Scientific Research, Mumbai Centre, Mumbai 400 085 (India); Krishnan, Madangopal [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-02-15

    Highlights: • Effect of Mn in Ni{sub 55}Fe{sub 19}Ga{sub 26} on microstructure and MCE is presented. • Mn stabilizes 14M martensite in place of NM martensite. • Increasing Mn also leads to a drastic reduction in γ-phase content. • MCE shows significant improvement with increasing Mn. • A maximum value of ΔS{sub M}= −19.8 J/kg K has been observed at 9 T for the Mn-10 alloy. -- Abstract: Ni–Fe–Ga-based Ferromagnetic Shape Memory Alloys (FSMAs) show considerable formability because of the presence of a disordered FCC γ-phase, but they lack in magnetocaloric property. Addition of Mn has been explored as a way to improve their magnetocaloric property. The current study presents a detailed structural and magnetization analyses of a two-phase ternary Ni{sub 55}Fe{sub 19}Ga{sub 26} alloy and its quaternary counterparts obtained by partial replacement of Fe by Mn, Ni{sub 55}Fe{sub 19−x}Mn{sub x}Ga{sub 26} (x = 2.5, 2.75, 3, 5, 10). Characterization of these alloys has been carried out using Optical and Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray (XRD) and Neutron Diffraction (ND), Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC) and DC magnetization measurement. Ni{sub 55}Fe{sub 19}Ga{sub 26} alloy shows predominantly non-modulated (NM) internally-twinned martensite, with traces of a modulated 14M martensite and the parent L2{sub 1} phase along with the FCC γ-phase. Quaternary addition of Mn in partial replacement of Fe stabilizes 14M martensite, drastically reduces the amount of γ-phase, keeps the martensitic transition temperatures unchanged, but raises T{sub C} considerably. Magnetocaloric effect improves significantly with increasing Mn-content and a maximum value of −19.8 J/kg K for ΔS{sub M} has been observed at 9 T for the alloy containing 10 at.% Mn.

  8. Synergetic Fe substitution and carbon connection in LiMn1−xFexPO4/C cathode materials for enhanced electrochemical performances

    International Nuclear Information System (INIS)

    Yan, Su-Yuan; Wang, Cheng-Yang; Gu, Rong-Min; Sun, Shuai; Li, Ming-Wei

    2015-01-01

    Highlights: • LiMn 0.6 Fe 0.4 PO 4 /C cathode material shows enhanced rate capability. • The Fe doped in the partial Mn sites could significantly facilitate the Li ions transfer. • The enhanced Li + ions diffusion contributes to the optimized rate capability of LiMn 0.6 Fe 0.4 PO 4 . • ACM carbonization forms well carbon coating and a 3D carbon network structure. - Abstract: To enhance the rate and cyclic performances of LiMnPO 4 cathode material for lithium-ion batteries, Mn is partially substituted with Fe, and LiMn 1−x Fe x PO 4 (x = 0.2, 0.3, 0.4, 0.5) solid solutions are synthesized and investigated. Amphiphilic carbonaceous material (ACM) forms well carbon coating and connects the LiMn 1−x Fe x PO 4 crystallites by a three-dimensional (3D) carbon network. The synergetic Fe substitution and carbon connection obviously improve the samples’ rate capacities and cyclic stability. The optimized LiMn 0.6 Fe 0.4 PO 4 /C sample delivers discharge capacities of 160 mA h g −1 at 0.05 C, 148 mA h g −1 at 1 C, and 115 mA h g −1 at 20 C. All samples have well capacity retention (>92%) after 50 charge/discharge cycles at 1 C. The enhanced electrochemical properties are mainly attributed to the improvement of Li ion and electron transport in the LiMn 1−x Fe x PO 4 /C samples, respectively mainly resulting from their modified crystal structures caused by Fe substitution and the 3D carbon coating/connection originating from ACM carbonization. LiMn 1−x Fe x PO 4 materials exhibit two discharge plateaus at ∼4.0 and ∼3.5 V (vs. Li + /Li), whose heights respectively reflect the redox potentials of Mn 3+ /Mn 2+ and Fe 3+ /Fe 2+ couples. The plateaus’ lengths correspond to the Mn/Fe ratio in LiMn 1−x Fe x PO 4 and are affected by the kinetic behavior of samples. Though the ∼4.0 V plateau shrinks with increasing discharge rate, the ∼3.5 V plateau may slightly elongate. Moreover, the Fe substituted in the partial Mn sites could significantly improve

  9. 238U-234U-230Th chronometry of Fe-Mn crusts: Growth processes and recovery of thorium isotopic ratios of seawater

    International Nuclear Information System (INIS)

    Chabaux, F.; Cohen, A.S.; O'Nions, R.K.; Hein, J.R.

    1995-01-01

    Comparison of ( 234 U) excess /( 238 U) and ( 230 Th)/( 232 Th) activity ratios in oceanic Fe-Mn deposits provides a method for assessing the closed-system behaviour of 238 U- 234 U- 230 Th, as well as variations in the initial uranium and thorium isotopic ratios of the precipitated metal oxides. This approach is illustrated using a Fe-Mn crust from Lotab seamount (Marshall Islands, west equatorial Pacific). Here we report uranium and thorium isotopic compositions in five subsamples from the surface of one large 5 cm diameter botyroid of this crust, and from two depth profiles of the outermost rim of the same botyroid. The decrease of ( 234 U) excess /( 238 U) and ( 230 Th/ 232 Th) activity ratio with depth in the two profiles gives mean growth rates, for the last 150 ka, of 7.8 ± 2 mm/Ma and 6.6 ± 1 mm/Ma, respectively. All data points (surface and core samples) but one, define a linear correlation in the Ln ( 230 Th/ 232 Th) - Ln [( 234 U) excess ( 238 U)] diagram. This correlation indicates that for all points the U-Th system remained closed after the Fe-Mn layer precipitated, and that the different samples possessed the same initial Uranium and thorium isotope ratios. Furthermore, these results show that the preserved surface of this Fe-Mn crust may not be the present-day growth surface, and that the thorium and uranium isotopic ratios of seawater in west equatorial Pacific have not changed during the past 150 ka. The initial thorium activity ratio is estimated from the correlation obtained between Ln( 230 Th/ 232 Th) and Ln [( 234 U) excess /( 238 U)

  10. Magnetism of DyMn{sub 2} and HoMn{sub 2} - {sup 57}Fe and {sup 119}Sn Moessbauer studies

    Energy Technology Data Exchange (ETDEWEB)

    Krop, K. [University of Min. and Metall., Krakow (Poland). Dept. of Solid State Phys.; Zukrowski, J. [University of Min. and Metall., Krakow (Poland). Dept. of Solid State Phys.; Przewoznik, J. [University of Min. and Metall., Krakow (Poland). Dept. of Solid State Phys.; Marzec, J. [University of Min. and Metall., Krakow (Poland). Dept. of Solid State Phys.; Wiesinger, G. [Institute for Experimental Physics, Technical University, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Haeufler, T. [Institute for Experimental Physics, Technical University, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Hilscher, G. [Institute for Experimental Physics, Technical University, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Steiner, W. [Institute for Applied and Technical Physics, Technical University, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria)

    1995-05-01

    Moessbauer spectra were measured for two Laves phase compounds DyMn{sub 2} and HoMn{sub 2} in which manganese was substituted to 0.5% with {sup 57}Fe and to 0.2% with {sup 119}Sn. At 4.2 K the {sup 57}Fe and {sup 119}Sn spectra of the Dy compound were unambiguously fitted each with two Zeeman patterns (with relative contributions to the spectra 3:1) corresponding to two different Mn sites - magnetic and nonmagnetic. Transferred hyperfine fields at {sup 119}Sn were found to be proportional to the magnetic moment of Dy and its ferromagnetic component, corroborating the magnetic structure found in neutron diffraction (ND) experiment. The same procedure was carried on with the spectra measured for the Ho compound, but the above mentioned proportionality was not found. ((orig.)).

  11. Controlled reduction of LaFe xMn yMo zO3/Al2O3 composites to produce highly dispersed and stable Fe0 catalysts: a Mössbauer investigation

    Directory of Open Access Journals (Sweden)

    Juliana Cristina Tristão

    2008-06-01

    Full Text Available In this work, controlled reduction of perovskites supported on Al2O3 was used to prepare thermally stable nanodispersed iron catalysts based on Fe0/La2O3/Al2O3. The perovskites composites LaFe0.90Mn0.08Mo0.02O3(25, 33 and 50 wt (% /Al2O3 and LaFe0.90Mn0.1O3(25 wt (% /Al2O3 were prepared and characterized by XRD, BET, TPR, SEM and Mössbauer spectroscopy. XRD for unsupported perovskite showed the formation of a single phase perovskite structure. The Mössbauer spectra of the perovskites were fitted with hyperfine field distribution model for the perovskite. Supported perovskites on Al2O3 showed a decrease of the hyperfine field in respect to unsupported perovskite, due to decrease of particle size and dispersion of the Fe3+ specimens on the support. Also showed broaden lines and relaxation effects due to the small particle size. To produce the Fe0 catalyst, the composite perovskite(25%/Al2O3 was reduced with H2 at 900, 1000 and 1100 °C for 1 hour. XRD data indicated the formation of Fe0 catalyst with particles sizes of ca. 35 nm. The Mössbauer spectrum showed the formation of metallic iron and doublets corresponding to species of octahedric Fe2+ and Fe3+ sites dispersed on Al2O3. These catalysts showed improved stability towards sintering even upon treatment at 1000 and 1100 °C under H2.

  12. Shape memory and pseudoelastic properties of Fe-Mn-Si and Ti-Ni based alloys

    International Nuclear Information System (INIS)

    Guenin, G.

    1997-01-01

    The aim of this presentation is to analyse and discuss some recent advances in shape memory and pseudoelastic properties of different alloys. Experimental work in connection with theoretical ones will be reviewed. The first part is devoted to the microstructural origin of shape memory properties of Fe-Mn-Si based alloys (γ-ε transformation); the second part is a synthetic analysis of the effects of thermomechanical treatments on shape memory and pseudoelastic effects in Ti-Ni alloys, with some focus on the behaviour of the R phase introduced. (orig.)

  13. TEM and Moessbauer Study of Nano Sized Fe2MnAl Flakes

    International Nuclear Information System (INIS)

    Vinesh, A.; Sudheesh, V. D.; Lakshmi, N.; Venugopalan, K.

    2011-01-01

    Magnetic and structural properties of L21 ordered Fe 2 MnAl Heusler alloy have been studied by X-ray diffraction, Transmission electron microscopy (TEM), Moessbauer spectroscopy and DC magnetization. Structural texturing induced by ball milling is destroyed on heating while Moessbauer and DC magnetization studies show magnetic texturing persists after thermal treatment. TEM shows large distribution in particle size with an average size of 27 nm. Thermal annealing of ball milled sample results L2 1 ordering and the needle shaped particle contributes spin texturing.

  14. Transformation lines in an Fe-Cr-Ni-Mn-Si polycrystalline shape memory alloy

    International Nuclear Information System (INIS)

    Tanaka, Kikuaki; Hayashi, Toshimitsu; Fischer, F.D.; Buchmayr, B.

    1994-01-01

    Transformation lines, the martensite/austenite start and finish conditions in the stress-temperature plane, are determined in an Fe-Cr-Ni-Mn-Si polycrystalline shape memory alloy with two different experimental procedures. The transformation lines are shown to be almost linear with nearly the same slope. The martensitic transformation zone and the reverse transformation zone do not coincide, and the reverse transformation zone is very wide; T Af -T As ∼ 180 K. The strong dependence on the preloading of the transformation lines, especially of the reverse transformation lines, is examined. (orig.)

  15. Mechanistic studies of mercury adsorption and oxidation by oxygen over spinel-type MnFe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yingju [State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Liu, Jing, E-mail: liujing27@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen 518000 (China); Zhang, Bingkai; Liu, Feng [State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2017-01-05

    Highlights: • Hg adsorption and oxidation mechanisms on MnFe{sub 2}O{sub 4} were studied using DFT method. • Hg{sup 0} adsorption on Mn-terminated MnFe{sub 2}O{sub 4} (100) surface is a chemisorption process. • HgO shows high chemical reactivity for its adsorption on MnFe{sub 2}O{sub 4} surface. • The reaction between adsorbed Hg and surface oxygen is the rate-determining step. - Abstract: MnFe{sub 2}O{sub 4} has been regarded as a very promising sorbent for mercury emission control in coal-fired power plants because of its high adsorption capacity, magnetic, recyclable and regenerable properties. First-principle calculations based on density functional theory (DFT) were used to elucidate the mercury adsorption and oxidation mechanisms on MnFe{sub 2}O{sub 4} surface. DFT calculations show that Mn-terminated MnFe{sub 2}O{sub 4} (1 0 0) surface is much more stable than Fe-terminated surface. Hg{sup 0} is physically adsorbed on Fe-terminated MnFe{sub 2}O{sub 4} (1 0 0) surface. Hg{sup 0} adsorption on Mn-terminated MnFe{sub 2}O{sub 4} (1 0 0) surface is a chemisorption process. The partial density of states (PDOS) analysis indicates that Hg atom interacts strongly with surface Mn atoms through the orbital hybridization. HgO is adsorbed on the MnFe{sub 2}O{sub 4} surface in a chemical adsorption manner. The small HOMO–LUMO energy gap implies that HgO molecular shows high chemical reactivity for HgO adsorption on MnFe{sub 2}O{sub 4} surface. The energy barriers of Hg{sup 0} oxidation by oxygen on Fe- and Mn-terminated MnFe{sub 2}O{sub 4} surfaces are 206.37 and 76.07 kJ/mol, respectively. Mn-terminated surface is much more favorable for Hg{sup 0} oxidation than Fe-terminated surface. In the whole Hg{sup 0} oxidation process, the reaction between adsorbed mercury and surface oxygen is the rate-determining step.

  16. Synthesis and electromagnetic absorption properties of Ag-coated reduced graphene oxide with MnFe_2O_4 particles

    International Nuclear Information System (INIS)

    Wang, Yan; Wu, Xinming; Zhang, Wenzhi; Huang, Shuo

    2016-01-01

    A ternary composite of Ag/MnFe_2O_4/reduced graphene oxide (RGO) was synthesized by a facile hydrothermal method. The morphology, microstructure, magnetic and electromagnetic properties of as-prepared Ag/MnFe_2O_4/RGO composite were characterized by means of XRD, TEM, XPS, VSM and vector network analyzer. The maximum reflection loss (R_L) of Ag/ MnFe_2O_4/RGO composite shows maximum absorption of −38 dB at 6 GHz with the thickness of 3.5 mm, and the absorption bandwidth with the R_L below −10 dB is up to 3.5 GHz (from 3.7 to 7.2 GHz). The result demonstrates that the introduction of Ag significantly leads to the multiple absorbing mechanisms. It is believed that such composite could serve as a powerful candidate for microwave absorber. - Highlights: • A ternary composite of Ag/MnFe_2O_4/reduced graphene oxide (RGO) was synthesized by a facile method. • The morphology, microstructure, magnetic and electromagnetic properties were characterized. • The maximum reflection loss of Ag/MnFe_2O_4/RGO is −38 dB at 6 GHz with a thickness of 3.5 mm. • The composite shows a wide absorption band.

  17. Structural and magnetocaloric properties of (Mn,Fe){sub 2}(P,Si) materials with added nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Thang, N.V., E-mail: v.t.nguyen-1@tudelft.nl; Miao, X.F., E-mail: X.F.Miao@tudelft.nl; Dijk, N.H. van, E-mail: N.H.vanDijk@tudelft.nl; Brück, E., E-mail: E.H.Bruck@tudelft.nl

    2016-06-15

    Amongst magnetic materials that exhibit a giant magnetocaloric effect near room temperature, the (Mn,Fe){sub 2}(P,Si) system is one of the most promising candidates for magnetic refrigeration. Although the (Mn,Fe){sub 2}(P,Si) materials hold many advantages, controlling the magnetic entropy change ΔS{sub m}, the adiabatic temperature change ΔT{sub ad}, the thermal hysteresis and the mechanical stability across the ferromagnetic transition requires a delicate tuning of the composition. This work investigates the addition of nitrogen, as an interstitial or substitutional element, as a new parameter to tune the properties of (Mn,Fe){sub 2}(P,Si) materials. We found that the nitrogen addition results in a decrease of the Curie temperature, consistent with the observed increase in the c/a ratio. The introduction of nitrogen in (Mn,Fe){sub 2}(P,Si) materials also results in a strong enhancement of the mechanical stability. - Highlights: • N-doped materials were synthesized by high-energy ball milling and solid-state reactions. • Nitrogen atoms enter the structure both as substitutional and as interstitial element in (Mn,Fe){sub 2}(P,Si) materials. • Nitrogen addition leads to a decrease in the Curie temperature, while improving the mechanical stability and preserving the magnetocaloric properties. • The origin of the increase in the thermal hysteresis by increasing the N content has been investigated by analyzing the XRD data.

  18. Magnetic properties of the HoMn6-xFe xSn6 compounds

    International Nuclear Information System (INIS)

    Cakir, O.; Dincer, I.; Duman, E.; Krenke, T.; Elmali, A.; Elerman, Y.

    2007-01-01

    Intermetallic compounds of HoMn 6-x Fe x Sn 6 (0 ≤ x ≤ 1.2) were studied by means of field-cooled (FC) and zero-field-cooled (ZFC) magnetization measurements in the temperature range 5 K ≤ T ≤ 600 K. The unit cell parameters decrease with the increasing of Fe content. The compounds with x = 0 and 0.3 behave ferrimagnetically in the whole temperature range and spin reorientation transition is observed at 200 and 185 K, respectively. The x = 0.5 and 0.6 compounds show ferrimagnetic-helimagnetic-ferrimagnetic phase transitions with decreasing temperature while the compounds with x = 0.9 and 1.2 only show helimagnetic-ferrimagnetic phase transitions. Additionally, for the x = 0.6 compound the metamagnetic phase transition from helimagnetism to ferrimagnetism is induced by an applied field 20 kOe

  19. Magnetic behavior of PdFeMn on mesoscopic and macroscopic length scales

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, V. E-mail: volker.wagner@ptb.de; Ahlers, H.; Axelrod, L.; Gordeev, G.; Zabenkin, V

    2001-05-01

    By 3D neutron depolarization (ND) the magnetization and the domain structure were observed for FC and ZFC samples of (Pd{sub 0.9965}Fe{sub 0.0035}){sub 1-x} Mn{sub x} with x=0.05, showing both an FM and a spin-glass-like transition, and x=0 being ferromagnetic. The evolution of the domain structure along the magnetization/demagnetization process - as seen by depolarization - is strongly asymmetric, with maximum change in the domain structure only after magnetization reversal (typical domain size {delta}{approx}3 {mu}m in the virgin state). Near T{sub c}, the alloy approached the behavior of FM PdFe, showing a symmetric change of domain structure on the applied field.

  20. Annealing temperature dependent structural and magnetic properties of MnFe{sub 2}O{sub 4} nanoparticles grown by sol-gel auto-combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Bhandare, S.V. [Department of Physics, Gulbarga University, Gulbarga 585106 (India); Kumar, R.; Anupama, A.V.; Choudhary, H.K. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Jali, V.M., E-mail: vmjali@gmail.com [Department of Physics, Gulbarga University, Gulbarga 585106 (India); Sahoo, B., E-mail: bsahoo@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)

    2017-07-01

    Highlights: • Phase pure MnFe{sub 2}O{sub 4} samples were prepared by sol-gel auto-combustion method. • Annealing MnFe{sub 2}O{sub 4} below ∼500 °C, two spinel phases were observed indicating partial oxidation of Mn{sup 2+} to Mn{sup 3+}. • Oxidation of Mn{sup 2+} to Mn{sup 3+} results in decrease in lattice parameter of the spinel lattice. • Annealing at ≥ 600 °C, MnFe{sub 2}O{sub 4} decomposes into crystalline α-Mn{sub 2}O{sub 3} and α-Fe{sub 2}O{sub 3} along with amorphous-FeO phase. - Abstract: Manganese ferrite (MnFe{sub 2}O{sub 4}) nanoparticles were synthesized by sol-gel auto-combustion method using manganese nitrate and ferric nitrate as precursors and citric acid as a fuel. Scanning electron micrographs show irregularly shaped morphology of the particles. The as-prepared samples were annealed at 400, 500, 600 and 800 °C for 2 h in air. The phase identification and structural characterizations were performed using powder X-ray diffraction technique along with Mössbauer spectroscopy. Magnetization loops and {sup 57}Fe Mössbauer spectra were measured at RT. After annealing the sample at or below ∼ 500 °C, we observed two different spinel phases corresponding to two different lattice parameters. This is originating due to the partial oxidation of Mn{sup 2+} to Mn{sup 3+}. At high annealing temperatures (∼ 600 °C or above) the spinel MnFe{sub 2}O{sub 4} phase decomposes into crystalline α-Mn{sub 2}O{sub 3} and α-Fe{sub 2}O{sub 3} phases, and amorphous FeO phase.

  1. Effect of Fe substitution on the structure and magnetocaloric effect of Mn{sub 5−x}Fe{sub x}GeSi{sub 2} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.W.; Yan, J.L., E-mail: yjl@gxu.edu.cn; Feng, E.L.; Tang, G.W.; Zhou, K.W.

    2017-01-15

    The structure and magnetocaloric effect of Mn{sub 5−x}Fe{sub x}GeSi{sub 2} compounds were studied. Analysis of X-ray powder diffraction and energy dispersive X-Ray spectroscopy revealed that Mn{sub 5−x}Fe{sub x}GeSi{sub 2} alloys with x<1 crystallize in the Mn{sub 5}Si{sub 3}-type structure (space group P6{sub 3}/mcm), maintaining the structure of Mn{sub 5}Ge{sub 3}; and alloys with x=1.5 and 2 consist of the major Mn{sub 5}Si{sub 3}-type phase and the minor Ni{sub 2}In-type phase (space group P6{sub 3}/mmc). The results of Rietveld refinement showed that the cell parameters for the Mn{sub 5}Si{sub 3}-type phase decrease with increasing Fe content. The positive slopes in Arrott plots indicate that a second-order ferromagnetic to paramagnetic transition occurs. The Curie temperature increases with increasing Fe content from 182 K for x=0.6 to 224 K for x=2. The maximum magnetic entropy change of 3.7 J/(kg K) for x=0.8 was found under a magnetic field change of 0–20 kOe. - Highlights: • Mn{sub 5−x}Fe{sub x}GeSi{sub 2} alloys with x<1 crystallize in the hexagonal Mn{sub 5}Si{sub 3}-type structure. Alloys with x=1.5 and 2 consist of a major Mn{sub 5}Si{sub 3}-type phase and a secondary Ni{sub 2}In-type phase. • The cell parameters decrease and the Curie temperature increases with increasing x in Mn{sub 5−x}Fe{sub x}GeSi{sub 2} alloys. • The maximum -∆S{sub M} of 3.7 J/(kg K) and RCP of 211 J/kg for x=0.8 was found under a magnetic field change of 0–20 kOe.

  2. Magnetic properties of ball-milled Fe0.6Mn0.1Al0.3 alloys

    International Nuclear Information System (INIS)

    Rebolledo, A.F.; Romero, J.J.; Cuadrado, R.; Gonzalez, J.M.; Pigazo, F.; Palomares, F.J.; Medina, M.H.; Perez Alcazar, G.A.

    2007-01-01

    The FeMnAl-disordered alloy system exhibits, depending on the composition and the temperature, a rich variety of magnetic phases including the occurrence of ferromagnetism, antiferromagnetism, paramagnetism and spin-glass and reentrant spin glass behaviors. These latter phases result from the presence of atomic disorder and magnetic dilution and from the competing exchange interactions taking place between an Fe atom and its Mn and Fe first neighbors. The use of mechanical alloying in order to prepare these alloys is specially interesting since it allows to introduce in a progressive way large amounts of disorder. In this work, we describe the evolution with the milling time of the temperature dependence of the magnetic properties of mechanically alloyed Fe 0.6 Mn 0.1 Al 0.3 samples. The materials were prepared in a planetary ball mill using a balls-to-powder mass ratio of 15:1 and pure (99.95 at%) Fe, Mn and Al powders for times up to 19 h. The X-rays diffraction (XRD) spectra show the coexistence of three phases at short milling times. For milling times over 6 h, only the FeMnAl ternary alloy BCC phase is observed. Moesbauer spectroscopy reveals the complete formation of the FeMnAl alloy after 9 h milling time. The magnetic characterization showed that all the samples were ferromagnetic at room temperature with coercivities decreasing from 105 Oe (3 h milled sample) down to 5 Oe in the case of the sample milled for 19 h

  3. Achievement report for fiscal 1995 on the research and development of comprehensive basic technologies on marine resources (manganese nodule mining system) in industrial and scientific technology research and development project. Trends and forecasts of the supply-demand for metal resources (Ni, Co, Cu, Fe, Mn) that are contained in manganese nodules; 1995 nendo kaiyo shigen sogo kiban gijutsu no kenkyu kaihatsu (mangan dankai saiko system) seika hokokusho. Mangan dankai ni kakawaru kinzoku shigen (Ni, Co, Cu, Fe, Mn) no kyokyu ni kansuru shorai doko no suitei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    Living standards improving in developing countries especially in China are the most influential factor to determine the demand for Cu. Consumption of Ni will depend on the trends of advanced technologies such as Ni-hydrogen battery, fuel cell, shape memory alloy, hydrogen absorbing alloy, in addition to increase in global population and developing countries' living standards improvement. Co is far more dependent on advanced technologies than Ni is. On the land, Ni ore is increasingly lower in quality and Co is being retrieved from by-products of Cu production, both meeting the problem of unstable supply. Consideration is made to apply new extraction methods to Cu production; there are some potential resources for Fe and Mn. The Mn nodule exists in great quantities and is a attractive source of supply, but a long time will be required before it is exploited. It is necessary to speed up the study to exploit the Mn nodule, but first of all the problem of its competition with land resources in terms of cost has to be solved. It needs to be found out at what stage of production the Mn nodule is competitive with land products. In any case, Japan should undertake the efforts of marine resources exploitation leading other countries of the world. (NEDO)

  4. Mn(ii) mediated degradation of artemisinin based on Fe3O4@MnSiO3-FA nanospheres for cancer therapy in vivo

    Science.gov (United States)

    Chen, Jian; Zhang, Weijie; Zhang, Min; Guo, Zhen; Wang, Haibao; He, Mengni; Xu, Pengping; Zhou, Jiajia; Liu, Zhenbang; Chen, Qianwang

    2015-07-01

    Artemisinin (ART) is a natural drug with potent anticancer activities related with Fe2+ mediated cleavage of the endoperoxide bridge in ART. Herein, we reported that Mn2+ could substitute for Fe2+ to react with ART and generate toxic products, inducing a much higher anticancer efficiency. On this basis, we prepared pH-responsive Fe3O4@MnSiO3-FA nanospheres which can efficiently deliver hydrophobic ART into tumors in mice models. Mn2+ was released in acidic tumor environments and intracellular lysosomes, interacting with ART to kill cancer cells. The ART-loaded nanocarriers could suppress tumor growth more efficiently than free ART, which could be further illustrated by magnetic resonance imaging (MRI). Histological analysis revealed that the drug delivery system had no obvious effect on the major organs of mice. ART has been reported to have lower toxicity than chemotherapeutics. The ART-loaded nanocarriers are promising to be used in improving the survival of chemotherapy patients, providing a novel method for clinical tumor therapy.Artemisinin (ART) is a natural drug with potent anticancer activities related with Fe2+ mediated cleavage of the endoperoxide bridge in ART. Herein, we reported that Mn2+ could substitute for Fe2+ to react with ART and generate toxic products, inducing a much higher anticancer efficiency. On this basis, we prepared pH-responsive Fe3O4@MnSiO3-FA nanospheres which can efficiently deliver hydrophobic ART into tumors in mice models. Mn2+ was released in acidic tumor environments and intracellular lysosomes, interacting with ART to kill cancer cells. The ART-loaded nanocarriers could suppress tumor growth more efficiently than free ART, which could be further illustrated by magnetic resonance imaging (MRI). Histological analysis revealed that the drug delivery system had no obvious effect on the major organs of mice. ART has been reported to have lower toxicity than chemotherapeutics. The ART-loaded nanocarriers are promising to be used in

  5. Insight into cation disorder of Li{sub 2}Fe{sub 0.5}Mn{sub 0.5}SiO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Bini, Marcella [Dept. of Chemistry, University of Pavia, viale Taramelli 16, Pavia 27100 (Italy); Ferrari, Stefania, E-mail: stefania.ferrari@unipv.it [Dept. of Chemistry, University of Pavia, viale Taramelli 16, Pavia 27100 (Italy); Capsoni, Doretta; Spreafico, Clelia; Tealdi, Cristina; Mustarelli, Piercarlo [Dept. of Chemistry, University of Pavia, viale Taramelli 16, Pavia 27100 (Italy)

    2013-04-15

    Transition metal lithium orthosilicates are promising cathode materials for lithium-ion batteries. Here we report a combined experimental (in situ X-ray diffraction) and computational (static lattice and molecular dynamics) study of the thermal behavior of the Li{sub 2}Fe{sub 0.5}Mn{sub 0.5}SiO{sub 4} orthosilicate from room temperature to 950 °C. Our X-ray results showed that Pmnb polymorph is the most stable all over the explored temperature range. A significant cation disorder up to 80%, based on the anti-site defect, was found. The defect concentration depends on the synthesis route and temperature, and is completely reversible after the thermal treatments. Moreover, a careful analysis of the impurity phases allowed us to identify Li{sub 2}SiO{sub 3}, Fe{sub 3}O{sub 4} and Li{sub 3}Fe{sub 5}O{sub 8}, the last one never reported before. The minimization of defects by opportunely tuning the synthetic parameters would be of great importance in view of potential applications of these materials in lithium batteries. - Graphical abstract: A combined experimental in situ X-ray diffraction and computational study of the thermal behavior of the Li{sub 2}Fe{sub 0.5}Mn{sub 0.5}SiO{sub 4} is reported herein. The anti-site defect does justify the diffraction patterns changes with temperature. Highlights: ► Study of the thermal behavior of Li{sub 2}Fe{sub 0.5}Mn{sub 0.5}SiO{sub 4}. ► The anti-site defect does justify the diffraction patterns changes with temperature. ► The Pmnb polymorph is stable in the investigated temperaturerange.

  6. Shape-Control of a 0D/1D NaFe0.9Mn0.1PO4 Nano-Complex by Electrospinning

    Science.gov (United States)

    Shin, Mi-Ra; Son, Jong-Tae

    2018-03-01

    NaFePO4 with a maricite structure was one of the most promising candidates for sodium ion batteries (SIBs) due to its advantages of environmental friendly and having low cost. However, it has low electrochemical conductivity and energy density, which impose limitations on its application as commercial cathode materials. In this study, other transition-metal ions such as Mn2+ were substituted into the iron (Fe2+) site in NaFePO4 to increase the surface area and the number of nanofibers in the prepared one-dimensional (1D) nano-sized material with 0D/1D dimensions to enhance the energy density. Also, the 0D/1D NaFe0.9Mn0.1PO4 cathode material has increased electrochemical conductivity because the fiber size was reduced to the nano-scale level by using the electrospinning method in order to decrease the diffusion path of Na-ions. The morphology of the 0D/1D nanofiber was evaluated by Field-emission scanning electron microscope and atomic force microscope analyses. The NaFe0.9Mn0.1PO4 nanofibers had a diameter of approximately 180 nm, while the spherical particle had a diameter 1 μm. The 0D/1D nano-sized cathode material show a discharge capacity of 27 mAhg -1 at a 0.05 C rate within the 2.0 4.5 V voltage range and a low R ct of 110 Ω.

  7. Positron Annihilation Spectroscopy and Small Angle Neutron Scattering Characterization of Nanostructural Features in Irradiated Fe-Cu-Mn Alloys

    International Nuclear Information System (INIS)

    Wirth, B D; Asoka-Kumar, P; Howell, R H; Odette, G R; Sterne, P A

    2001-01-01

    Radiation embrittlement of nuclear reactor pressure vessel steels results from a high number density of nanometer sized Cu-Mn-Ni rich precipitates (CRPs) and sub-nanometer matrix features, thought to be vacancy-solute cluster complexes (VSC). However, questions exist regarding both the composition of the precipitates and the defect character and composition of the matrix features. We present results of positron annihilation spectroscopy (PAS) and small angle neutron scattering (SANS) characterization of irradiated and thermally aged Fe-Cu and Fe-Cu-Mn alloys. These complementary techniques provide insight into the composition and character of both types of nanoscale features. The SANS measurements indicate populations of CRPs and VSCs in both alloys. The CRPs are coarser in the Fe-Cu alloy and the number densities of CRP and VSC increase with the addition of Mn. The PAS involved measuring both the positron lifetimes and the Doppler broadened annihilation spectra in the high momentum region to provide elemental sensitivity at the annihilation site. The spectra in Fe-Cu-Mn specimens thermally aged to peak hardness at 450 C and irradiated at 288 C are nearly identical to elemental Cu. Positron lifetime and spectrum measurements in Fe-Cu specimens irradiated at 288 C clearly show the existence of long lifetime (∼500 ps) open volume defects, which also contain Cu. Thus the SANS and PAS provide a self-consistent picture of nanostructures composed of CRPs and VSCs and tend to discount high Fe concentrations in the CRPs

  8. Effect of Metal (Mn, Ti) Doping on NCA Cathode Materials for Lithium Ion Batteries

    OpenAIRE

    Wan, Dao Yong; Fan, Zhi Yu; Dong, Yong Xiang; Baasanjav, Erdenebayar; Jun, Hang-Bae; Jin, Bo; Jin, En Mei; Jeong, Sang Mun

    2018-01-01

    NCA (LiNi0.85Co0.10Al0.05-x MxO2, M=Mn or Ti, x < 0.01) cathode materials are prepared by a hydrothermal reaction at 170°C and doped with Mn and Ti to improve their electrochemical properties. The crystalline phases and morphologies of various NCA cathode materials are characterized by XRD, FE-SEM, and particle size distribution analysis. The CV, EIS, and galvanostatic charge/discharge test are employed to determine the electrochemical properties of the cathode materials. Mn and Ti doping res...

  9. Distributions of dissolved trace metals (Cd, Cu, Mn, Pb, Ag in the southeastern Atlantic and the Southern Ocean

    Directory of Open Access Journals (Sweden)

    M. Boye

    2012-08-01

    Full Text Available Comprehensive synoptic datasets (surface water down to 4000 m of dissolved cadmium (Cd, copper (Cu, manganese (Mn, lead (Pb and silver (Ag are presented along a section between 34° S and 57° S in the southeastern Atlantic Ocean and the Southern Ocean to the south off South Africa. The vertical distributions of Cu and Ag display nutrient-like profiles similar to silicic acid, and of Cd similar to phosphate. The distribution of Mn shows a subsurface maximum in the oxygen minimum zone, whereas Pb concentrations are rather invariable with depth. Dry deposition of aerosols is thought to be an important source of Pb to surface waters close to South Africa, and dry deposition and snowfall may have been significant sources of Cu and Mn at the higher latitudes. Furthermore, the advection of water masses enriched in trace metals following contact with continental margins appeared to be an important source of trace elements to the surface, intermediate and deep waters in the southeastern Atlantic Ocean and the Antarctic Circumpolar Current. Hydrothermal inputs may have formed a source of trace metals to the deep waters over the Bouvet Triple Junction ridge crest, as suggested by relatively enhanced dissolved Mn concentrations. The biological utilization of Cu and Ag was proportional to that of silicic acid across the section, suggesting that diatoms formed an important control over the removal of Cu and Ag from surface waters. However, uptake by dino- and nano-flagellates may have influenced the distribution of Cu and Ag in the surface waters of the subtropical Atlantic domain. Cadmium correlated strongly with phosphate (P, yielding lower Cd / P ratios in the subtropical surface waters where phosphate concentrations were below 0.95 μM. The greater depletion of Cd relative to P observed in the Weddell Gyre compared to the Antarctic Circumpolar Current could be due to increase Cd uptake induced by iron-limiting conditions in these high

  10. Comparative studies on magnetic properties of Mn/Fe codoped ZnS nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongxia, E-mail: chenhongxia1@sina.com [College of Physical Science and Electronic Techniques, Yancheng Teachers University, Yancheng 224002 (China); Department of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Chen, Changyuan [College of Physical Science and Electronic Techniques, Yancheng Teachers University, Yancheng 224002 (China)

    2013-03-15

    We studied magnetic properties of Mn and Fe codoped ZnS nanowires (NWs) using the first-principles calculations. Our results indicate that the doped ZnS NWs tend to adopt the ferrimagnetic (FiM) configuration with and without surface dangling bonds. To obtain ferromagnetic (FM) configuration, we considered effects of both defects and anion codoping. We found that S vacancies facilitate FM states; the FM state is lower in energy than the FiM state by as much as 0.219 eV. We further replaced an S atom by a C atom and found that the C atom prefers to substitute the S atom connecting the Mn and Fe atoms. The FM states are lower in energy than the FiM states by 0.361 and 0.641 eV. Such large energy differences imply that room temperature ferromagnetism can be expected in these systems. - Highlights: Black-Right-Pointing-Pointer The doped system favors ferrimagnetic configuration both with and without surface dangling bonds. Black-Right-Pointing-Pointer The doped system with S vacancy favors stable ferromagnetic states at negative charge state. Black-Right-Pointing-Pointer With additional C codoping, the doped system tends to stabilize in a ferromagnetic configuration. Black-Right-Pointing-Pointer Large energy difference indicates that room temperature ferromagnetism could be expected.

  11. Spin-reorientation magnetic transitions in Mn-doped SmFeO3

    Directory of Open Access Journals (Sweden)

    Jian Kang

    2017-09-01

    Full Text Available Spin reorientation is a magnetic phase transition in which rotation of the magnetization vector with respect to the crystallographic axes occurs upon a change in the temperature or magnetic field. For example, SmFeO3 shows a magnetization rotation from the c axis above 480 K to the a axis below 450 K, known as the Γ4 → Γ2 transition. This work reports the successful synthesis of the new single-crystal perovskite SmFe0.75Mn0.25O3 and finds interesting spin reorientations above and below room temperature. In addition to the spin reorientation of the Γ4 → Γ2 magnetic phase transition observed at around TSR2 = 382 K, a new spin reorientation, Γ2 → Γ1, was seen at around TSR1 = 212 K due to Mn doping, which could not be observed in the parent rare earth perovskite compound. This unexpected spin configuration has complete antiferromagnetic order without any canting-induced weak ferromagnetic moment, resulting in zero magnetization in the low-temperature regime. M–T and M–H measurements have been made to study the temperature and magnetic-field dependence of the observed spin reorientation transitions.

  12. Probing the extended non-Fermi liquid regimes of MnSi and Fe

    Energy Technology Data Exchange (ETDEWEB)

    Pedrazzini, P. [DPMC, Universite de Geneve, Q. Ernest-Ansermet 24, 1211 Geneve (Switzerland)]. E-mail: Pablo.Pedrazzini@physics.unige.ch; Jaccard, D. [DPMC, Universite de Geneve, Q. Ernest-Ansermet 24, 1211 Geneve (Switzerland); Lapertot, G. [DRFMC, CEA Grenoble, 38054 Grenoble Cedex 9 (France); Flouquet, J. [DRFMC, CEA Grenoble, 38054 Grenoble Cedex 9 (France); Inada, Y. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Kohara, H. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Onuki, Y. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2006-05-01

    Recent studies show that the non-Fermi liquid (NFL) behavior of MnSi and Fe spans over an unexpectedly broad pressure range, between the critical pressure p{sub c} and around 2p{sub c}. In order to determine the extension of their NFL regions, we analyze the evolution of the resistivity {rho}(T){approx}A(p)T{sup n} at higher pressures. We find that in MnSi the n=32 exponent holds below 4.8GPa{approx}3p{sub c}, but it increases above that pressure. At 7.2GPa we observe the low-temperature Fermi liquid exponent n=2 whereas for T>1.5K, n=53. Our measurements in Fe show that the NFL behavior {rho}{approx}T{sup 5/3} extends at least up to 30.5GPa, above the entire superconducting (SC) region. In the studied pressure range, the onset of the SC transition reduces by a factor 10 down to T{sub c}{sup onset}(30.5GPa)=0.23K, while the A-coefficient diminishes monotonically by around 50%.

  13. Hot deformation of a Fe-Mn-Al-C steel susceptible of κ-carbide precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano, O.A., E-mail: oscar.zambrano@correounivalle.edu.co [Research Group of Fatigue and Surfaces (GIFS), Mechanical Engineering School, Universidad del Valle, Cali (Colombia); Research Group of Tribology, Polymers, Powder Metallurgy and Processing of Solid Waste (TPMR), Materials Engineering School, Universidad del Valle, Cali (Colombia); Valdés, J. [Research Group of Fatigue and Surfaces (GIFS), Mechanical Engineering School, Universidad del Valle, Cali (Colombia); Aguilar, Y. [Research Group of Tribology, Polymers, Powder Metallurgy and Processing of Solid Waste (TPMR), Materials Engineering School, Universidad del Valle, Cali (Colombia); Coronado, J.J.; Rodríguez, S.A. [Research Group of Fatigue and Surfaces (GIFS), Mechanical Engineering School, Universidad del Valle, Cali (Colombia); Logé, Roland E. [Thermomechanical Metallurgy Laboratory – PX Group Chair, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-2002 Neuchâtel (Switzerland)

    2017-03-24

    The mechanical properties of Fe-Mn-Al-C steel are significantly enhanced after κ-carbide precipitation via aging; however, most aging treatments are energy demanding because they require relatively high temperatures and extended holding times. This research determined that the precipitation of these carbides can also occur within a few seconds of thermomechanical treatments (TMTs). This behaviour has not been reported post-TMTs for this steel group. Hot compression tests were performed on Fe-21Mn-11Al-1.5C-2Si wt% specimens at test temperatures ranging from 900 °C to 1150 °C and strain rates varying from 0.01 s{sup −1} to 1 s{sup −1}. The effects of strain rate and test temperature on dynamic recrystallization behaviour were evaluated. The microstructures were characterized by scanning electron microscope and electron backscatter diffraction. Hardness tests were performed before and after applying processes studied i.e., TMT and aging treatment to determine the change in hardness induced. Particularly, nanoindentation tests were also used to collect indirect evidence about the deformation mechanisms. The load-displacement curves P-h and (P/h)-h showed the occurrence of several pop-ins and slope changes related to the nucleation of dislocations and strain-induced phase transformations. The occurrence of these phenomena is discussed.

  14. Catalytic Performance of Fe-Mn/SiO2 Nanocatalysts for CO Hydrogenation

    Directory of Open Access Journals (Sweden)

    Mostafa Feyzi

    2013-01-01

    Full Text Available A series of x(Fe, Mn/SiO2 nanocatalysts (x=5, 10, 15, 20, 25, and 30 wt.% were prepared by sol-gel method and studied for the light olefins production from synthesis gas. It was found that the catalyst containing 20 wt.% (Fe, Mn/SiO2 is an optimal nano catalyst for production of C2–C4 olefins. Effects of sulfur treatment on the catalyst performance of optimal catalyst have been studied by espousing different volume fractions of H2S in a fixed bed stainless steel reactor. The results show that the catalyst treated with 6 v% of H2S had high catalytic performance for C2–C4 light olefins production. The best operational conditions were H2/CO = 3/2 molar feed ratio at 260°C and GHSV = 1100 h−1 under 1 bar total pressure. Characterization of catalysts was carried out using X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and surface area measurements.

  15. The effect of grinding on magnetic properties of agglomereted MnFe2O4 nanoparticles

    International Nuclear Information System (INIS)

    Aslibeiki, B.; Kameli, P.; Salamati, H.

    2012-01-01

    The effects of grinding on interparticle magnetic interactions for an ensemble of agglomerated MnFe 2 O 4 nanoparticles have been studied. Structural analyses showed that by grinding the samples, a small variation in size of crystallites and lattice strain will occur. ac Magnetic susceptibility measurements under different conditions and spin dynamics analysis suggest that freezing temperature is frequency dependent and it is in good agreement with critical slowing down model. This is an indication that these nanoparticles have superspin glass behavior. The estimated zυ and τ 0 parameters using critical slowing down model show that by increasing the grinding time the interaction between nanoparticles decreases. ac Susceptibility measurements in cooling and heating process show a thermal hysteresis. The thermal hysteresis decreased by increasing the grinding time. Also, the thermal hysteresis is frequency dependent and it increased as frequency decreased. These results showed that interparticle interactions such as dipole-dipole and exchange interactions between nanoparticles become weaker by grinding. - Highlights: → We studied the effects of grinding on interparticle interactions of MnFe 2 O 4 nanoparticles. → Critical slowing model used to estimate the interparticle interaction strength. → The results showed interparticle interactions become weaker by grinding. → Ac Susceptibility shows the irreversibility of spins decreased by grinding.

  16. A dedicated AMS setup for 53Mn/60Fe at the Cologne FN tandem accelerator

    Science.gov (United States)

    Schiffer, M.; Dewald, A.; Feuerstein, C.; Altenkirch, R.; Stolz, A.; Heinze, S.

    2015-10-01

    Following demands for AMS measurements of medium mass isotopes, especially for 53Mn and 60Fe, we started to build a dedicated AMS setup at the Cologne FN tandem accelerator. This accelerator with a maximum terminal voltage of 10 MV can be reliably operated at a terminal voltage of 9.5 MV which corresponds to energies of 93-102 MeV for 60Fe or 53Mn beams using the 9+ or 10+ charge state. These charge states can be obtained by foil stripping with efficiencies of 30% and 20%, respectively. Energies around 100 MeV are sufficient to effectively suppress the stable isobars 60Ni and 53Cr by (dE/dx) techniques using combinations of energy degrader foils and dispersive elements like electrostatic analyzers and time of flight (TOF) systems as well as (dE/dx)E ion detectors. In this contribution we report on the actual status of the AMS setup and discuss details and expected features.

  17. DETERMINATION OF Cu, Fe, Mn, Zn AND FREE FATTY ACIDS IN PEQUI OIL

    Directory of Open Access Journals (Sweden)

    Aparecida M. S. Mimura

    2016-06-01

    Full Text Available Pequi (Caryocar brasiliense Camb., a typical fruit of the Brazilian Cerrado, is an important source of micronutrients and fatty acids. In this work, a new approach for the acid digestion (using H2SO4, HNO3 and H2O2 of pequi oil samples and the determination of Cu, Fe, Zn and Mn by flame atomic absorption spectrometry (F AAS was employed. Capillary zone electrophoresis (CZE was used for free fatty acid (FFA determination after simple and fast extraction with heated ethanol. Good results regarding precision (RSD < 10%, in most cases, sensitivity and adequate LOD and LOQ values were obtained. The accuracy was evaluated using spike tests and the recoveries were from 97 to 107%. The analytes were investigated in four different pequi oil samples. Fe was the trace element with the highest concentration (from 1.99 to 10.3 mg/100 g, followed by Zn, Mn and Cu (1.15 to 3.19, 0.42 to 0.91 and 0.31 to 0.56 mg/100 g, respectively. The main FFA found were oleic acid and palmitic acid (1.61 to 10.7 and 0.82 to 2.69 g/100 g, respectively, while linoleic acid (0.50 g/100 g was detected in only one sample. The pequi oil chemical composition showed good characteristics to be used as a food additive, in cosmetic formulations and for traditional medicine.

  18. The crystallographic phases and magnetic properties of Fe2MnSi1-xGex

    International Nuclear Information System (INIS)

    Zhang, L.; Brueck, E.; Tegus, O.; Buschow, K.H.J.; Boer, F.R. de

    2003-01-01

    Fe 2 MnSi 1-x Ge x (x=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) compounds were prepared by a mechanically activated solid-state diffusion method. Both X-ray diffraction and differential scanning calorimetry evidenced the presence of an amorphous phase after 10 h of milling. The X-ray data reveal that in the high-temperature annealing the single D0 3 -type phase can be retained up to 50% substitution of Ge for Si in Fe 2 MnSi. A metastable D0 3 phase is obtained after crystallization of the as-milled amorphous compounds with x>0.5. High-temperature annealing transforms the low-temperature D0 3 phase into a single D0 19 phase (x=1) or a mixture of D0 3 and D0 19 phase (x=0.6 and 0.8). Low-field thermomagnetic measurements show a moderately sharp ferromagnetic-paramagnetic transition, which becomes enormously broad in higher magnetic fields. The Curie temperature is significantly enhanced when going from the D0 3 phase to the D0 19 phase. Neither a magnetic-field-induced transition nor a reversible structural transition is observed throughout this compound series. The magnetocaloric effect associated with the magnetic transition is small

  19. Strengths, Weaknesses, Opportunities and Threats: Computational Studies of Mn- and Fe-Catalyzed Epoxidations

    Directory of Open Access Journals (Sweden)

    Filipe Teixeira

    2016-12-01

    Full Text Available The importance of epoxides as synthetic intermediates in a number of highly added-value chemicals, as well as the search for novel and more sustainable chemical processes have brought considerable attention to the catalytic activity of manganese and iron complexes towards the epoxidation of alkenes using non-toxic terminal oxidants. Particular attention has been given to Mn(salen and Fe(porphyrin catalysts. While the former attain remarkable enantioselectivity towards the epoxidation of cis-alkenes, the latter also serve as an important model for the behavior of cytochrome P450, thus allowing the exploration of complex biological processes. In this review, a systematic survey of the bibliographical data for the theoretical studies on Mn- and Fe-catalyzed epoxidations is presented. The most interesting patterns and trends are reported and finally analyzed using an evaluation framework similar to the SWOT (Strengths, Weaknesses, Opportunities and Threats analysis performed in enterprise media, with the ultimate aim to provide an overview of current trends and areas for future exploration.

  20. Shape recovery characteristics of biaxially prestrained Fe-Mn-Si-based shape memory alloy

    International Nuclear Information System (INIS)

    Wada, M.; Naoi, H.; Yasuda, H.; Maruyama, T.

    2008-01-01

    Fe-Mn-Si-based shape memory alloy has already been used practically for steel pipe joints. In most of the applications including the steel pipe joints, it is possible to estimate the reduction of diameter from the experimental data of the shape recovery after uniaxial stretching of the alloy materials. However, studies on shape recovery effects after biaxial stretching are important for the extensive applications of the alloy. In this study, we investigated the shape recovery strain after uniaxial and biaxial stretching and the microstructures of the alloy in order to see the effects of uniaxial and biaxial prestrain on the stress-induced martensitic transformation. Amounts of shape recovery strain in the biaxially prestrained specimens are smaller than those in the uniaxially prestrained specimens. Transmission electron microscopy revealed that reverse transformations of stress-induced martensitic ε-phase are prevented by slip bands formed at the same time in the biaxially prestrained specimens, but not in the uniaxially prestrained specimens. The technological data and interpretations presented in this study should be useful in forming design guidelines for promoting the extensive applications of Fe-Mn-Si-based shape memory alloy

  1. The thermal stability of magnetically exchange coupled MnBi/FeCo composites at electric motor working temperature

    Science.gov (United States)

    Cheng, Ye; Wang, Hongying; Li, Zhigang; Liu, Wanhui; Bao, Ilian

    2018-04-01

    The magnetically exchange coupled MnBi/FeCo composites were synthesized through a magnetic self-assembly process. The MnBi/FeCo composites were then hot pressed in a magnetic field to form magnets. The thermal stability of the magnets were tested by annealing at electric motor working temperature of 200 °C for 20, 40 and 60 h, respectively. It was found that after heating for 20 h, there was negligible change in its hysteresis loop. However, when the heating time was increased 40 and 60 h, the magnetic hysteresis loops presented two-phase magnetic behaviors, and the maximum energy products of the magnet were decreased. This research showed that the magnetically exchange coupled MnBi/FeCo composites had low thermal stability at electric motor working temperature.

  2. Filtering of canted magnetic phase of SpFeMn(C2O4)3 in membrane nanopores

    International Nuclear Information System (INIS)

    Dmitriev, A.I.; Morgunov, R.B.

    2015-01-01

    Ordered arrays of nanowires of pure SpFeMn(C 2 O 4 ) 3 collinear antiferromagnet have been synthesized in pores of anodized aluminum oxide (AAO) 20 nm and 200 nm in diameter. It was found that the growth of spin-canted phase presented in the bulk samples is suppressed in nanowires. The decrease in the nanowires diameter results in magneto-crystalline anisotropy increase. - Highlights: • The method for separation of two magnetic phases of SpFeMn(C 2 O 4 ) 3 was developed. • Nanowires of collinear antiferromagnet SpFeMn(C 2 O 4 ) 3 was synthesized in pores of AAO. • Suppression of canted phase presented in the bulk samples was found in nanowires. • Magnetic anisotropy indicates monocrystallinity of nanowires grown in AAO pores. • The decrease of nanowires diameter results in magnetocrystalline anisotropy increase

  3. MnFe2O4/CdSe magneto-fluorescent nanocomposite for possible biomedical applications

    Science.gov (United States)

    Chandunika, R. K.; Vijayaraghavan, R.; Sahu, Niroj Kumar

    2018-04-01

    Acombined superparamagnetic and fluorescent MnFe2O4/CdSe multifunctional nanocompositehas been prepared by suitable surface functionalizationswith citric acid, polyethyleneimine(PEI) and thioglycolic acid (ThA).and the samples were characterized by XRD, FT-IR, TEM, Zeta Potential, VSM, UV-Vis and PL spectroscopy. MnFe2O4 crystalizes with average size of 38.6 nm whereas CdSe with average size of 2.03 nm. In composite, the CdSe quantum dots (QD) are homogeneously distributed in the matrix of porous MnFe2O4 nanoparticles. Thenanocomposites are well dispersed in aqueous solvent and possess significant magnetic and luminescence properties which may be utilised for magnetic resonance imaging and luminescence tagging of biomolecules.

  4. Effect of pre-deformation temperature on reverse transformation characteristic in Fe-Mn-Si based alloys

    International Nuclear Information System (INIS)

    Wang, D.; Xing, X.; Chen, J.; Dong, Z.; Liu, W.

    2000-01-01

    Two alloys of A: Fe-28Mn-6Si-5Cr(wt.%) and B: Fe-13Mn-5Si-12Cr-6Ni(wt.%) with different Ms temperatures were selected to be subjected to tensile deformation under different temperatures. The effect of deformation temperature on shape memory effect (SME) and the reverse transformation kinetics were studied respectively. It was found that: (1) The best SME could be obtained by deformation at Ms temperature; (2) The As temperature varied with deformation temperature. The lower the deformation temperature was, the lower the As temperature would be; (3) Some non-transformation related strain recovery between deformation temperature and As temperature was observed to be resulted from the retraction of stacking faults. The facts that the variation of As temperature with deformation temperature, as well as the non-transformation strain recovery imply that the γ→ε martensitic transformation in Fe-Mn-Si based shape memory alloys exhibits quasithermoelastic property. (orig.)

  5. Effect of CeLa addition on the microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jiandi [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Ding, Dongyan, E-mail: dyding@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Xu, Zhou; Zhang, Junchao; Zhang, Wenlong [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua [Huafon NLM Al Co., Ltd, Shanghai 201506 (China); Chen, Renzong; Huang, Yuanwei; Tang, Jinsong [Shanghai Huafon Materials Technology Institute, Shanghai 201203 (China)

    2017-01-15

    Development of high strength lithium battery shell alloy is highly desired for new energy automobile industry. The microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy with different CeLa additions were investigated through optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rietveld refinement and tensile testing. Experimental results indicate that Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed due to CeLa addition. Addition of 0.25 wt.% CeLa could promote the formation of denser precipitation of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe) phases, which improved the mechanical properties of the alloy at room temperature. However, up to 0.50 wt.% CeLa addition could promote the formation of coarse Al{sub 8}Cu{sub 4}Ce phase, Al{sub 6}Cu{sub 6}La phase and Al{sub 6}(Mn, Fe) phase, which resulted in weakened mechanical properties. - Highlights: •Al-Cu-Mn-Mg-Fe alloys with different CeLa addition were fabricated through casting and rolling. •Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed after CeLa addition. •Addition of 0.25 wt.% CeLa promoted formation of denser precipitates of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe). •Mechanical properties of the alloy was improved after 0.25 wt.% CeLa addition.

  6. Investigation of structural imitation and lattice vibrations of Pr{sub 2}Fe{sub 17-} {sub x} Mn {sub x} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shen Jiang [Institute of Applied Physics, University of Science and Technology Beijing, 30 Xueyuou Road, HaiDian District, Beijing 100083 (China)]. E-mail: shenj@sas.ustb.edu.cn; Qian Ping [Institute of Applied Physics, University of Science and Technology Beijing, 30 Xueyuou Road, HaiDian District, Beijing 100083 (China); Chen Nanxian [Institute of Applied Physics, University of Science and Technology Beijing, 30 Xueyuou Road, HaiDian District, Beijing 100083 (China); Department of Physics, Tsinghua University, Beijing 100084 (China)

    2005-03-15

    We have investigated the structural properties of Pr{sub 2}Fe{sub 17-} {sub x} Mn {sub x} compounds by using quasi-ab initio pair potentials {phi} {sub Fe-Fe}(r), {phi} {sub Pr-Fe}(r), {phi} {sub Pr-Pr}(r), {phi} {sub Pr-Mn}(r), {phi} {sub Fe-Mn}(r) and {phi} {sub Mn-Mn}(r). In Pr{sub 2}Fe{sub 17-} {sub x} Mn {sub x} , the ternary elements Mn substitute for Fe atoms without changing the crystal structure. The calculated cohesive energy curves show that for all values of x, Mn preferentially substitutes for Fe in the 6c site and randomly substitutes for Fe in the 18f and 18h site. The calculated lattice constants coincide quite well with experimental values. Furthermore, the phonon density, specific heat and vibrational entropy of these compounds are also calculated. It is interesting that simple pair potentials can describe these extremely anisotropic materials.

  7. High pressure structural investigation on alluaudites Na{sub 2}Fe{sub 3}(PO{sub 4}){sub 3}-Na{sub 2}FeMn{sub 2}(PO{sub 4}){sub 3} system

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jing [Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Huang, Weifeng [College of Engineering, Peking University, Beijing 100871 (China); Qin, Shan [Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Wu, Xiang, E-mail: wuxiang@cug.edu.cn [State key laboratory of geological processes and mineral resources, China University of Geosciences, Wuhan 430074 (China)

    2017-03-15

    Alluaudites are promising electrochemical materials benefited from the open structure. Structural variations of alluaudites Na{sub 2}M{sub 3}(PO{sub 4}){sub 3} (M{sub 3}=Fe{sub 3}, Fe{sub 2}Mn and FeMn{sub 2}) system have been studied by synchrotron radiation X-ray diffraction combined with diamond anvil cell technique up to ~10 GPa at room temperature. No phase transition is observed. The excellent structural stability is mainly due to the flexible framework plus strong covalent P-O bond. Mn{sup 2+} instead of Fe can be described as Na{sup +}+2Fe{sup 2+}→Mn{sup 2+}+Fe{sup 3+}+□ where □ represents a lattice vacancy. The replacement of Fe with larger Mn{sup 2+} is equivalent to applying negative chemical pressure to the material. And it causes a more compressible b-axis, lattice expansion, structural compressibility and intensifies the core/electron-electron interactions of Fe. External pressure effect produces anisotropic lattice shrinkage. Structural considerations related to these variations and promising application prospects are discussed. - Graphical abstract: Figure 1 The crystal structure of alluaudites Na{sub 2}M{sub 3}(PO{sub 4}){sub 3} (M{sub 3}=Fe{sub 3}, Fe{sub 2}Mn and FeMn{sub 2}) projected along the c-axis. Alluaudites adopt a flexible framework plus strong covalent P-O bond, which contribute to excellent structural stability up to ~10 GPa. Mn{sup 2+} instead of Fe can be described as Na{sup ++}2Fe{sup 2+}→Mn{sup 2+}+Fe{sup 3+}+□ where □ represents a lattice vacancy, and it is equivalent to applying negative chemical pressure to the host. The substitution causes a more compressible b-axis, lattice expansion, structural compressibility and intensifies the core/electron-electron interactions of Fe.

  8. Solid-state transformation of Fe-rich intermetallic phases in Al–5.0Cu–0.6Mn squeeze cast alloy with variable Fe contents during solution heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Bo [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); School of Mechanical Engineering, Gui Zhou University, Guiyang 550000 (China); Zhang, Weiwen, E-mail: mewzhang@scut.edu.cn [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Zhao, Yuliang; Li, Yuanyuan [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China)

    2015-06-15

    The Al–5.0 wt.% Cu–0.6 wt.% Mn alloys with a variable Fe content were prepared by squeeze casting. Optical microscopy (OM), Deep etching technique, scanning electron microscopy(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to examine the solid-state transformation of Fe-rich intermetallics during the solution heat treatment. The results showed that the Chinese script-like α-Fe, Al{sub 6}(FeMn) and needle-like Al{sub 3}(FeMn) phases transform to a new Cu-rich β-Fe (Al{sub 7}Cu{sub 2}(FeMn)) phase during solution heat treatment. The possible reaction and overall transformation kinetics of the solid-state phase transformation for the Fe-rich intermetallics were investigated. - Graphical abstract: Display Omitted - Highlights: • The α-Fe, Al{sub 6}(FeMn) and Al{sub 3}(FeMn) phases change to the β-Fe phases. • Possible reactions of Fe phases during solution heat treatment are discussed. • The overall fractional transformation rate follows an Avrami curve.

  9. Solid-state transformation of Fe-rich intermetallic phases in Al–5.0Cu–0.6Mn squeeze cast alloy with variable Fe contents during solution heat treatment

    International Nuclear Information System (INIS)

    Lin, Bo; Zhang, Weiwen; Zhao, Yuliang; Li, Yuanyuan

    2015-01-01

    The Al–5.0 wt.% Cu–0.6 wt.% Mn alloys with a variable Fe content were prepared by squeeze casting. Optical microscopy (OM), Deep etching technique, scanning electron microscopy(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to examine the solid-state transformation of Fe-rich intermetallics during the solution heat treatment. The results showed that the Chinese script-like α-Fe, Al 6 (FeMn) and needle-like Al 3 (FeMn) phases transform to a new Cu-rich β-Fe (Al 7 Cu 2 (FeMn)) phase during solution heat treatment. The possible reaction and overall transformation kinetics of the solid-state phase transformation for the Fe-rich intermetallics were investigated. - Graphical abstract: Display Omitted - Highlights: • The α-Fe, Al 6 (FeMn) and Al 3 (FeMn) phases change to the β-Fe phases. • Possible reactions of Fe phases during solution heat treatment are discussed. • The overall fractional transformation rate follows an Avrami curve

  10. LaMn1-xFe xO3 and LaMn0.1-xFe0.90Mo x O3 perovskites: synthesis, characterization and catalytic activity in H2O2 reactions

    Directory of Open Access Journals (Sweden)

    Fabiano Magalhães

    2008-09-01

    Full Text Available In this work two perovskites were prepared: LaMn1-xFe xO3, and LaMn0.1-x Fe0.90Mo xO3. XRD and Mössbauer spectroscopy suggest the formation of pure phase perovskite with the incorporation of Fe and Mo in the structure. The catalytic activity of these materials was studied in two reactions with H2O2: the decomposition to O2, and the oxidation of the model organic contaminant methylene blue. The perovskite composition strongly affects the catalytic activity, while Fe decreases the H2O2 decomposition Mo strongly improves dye oxidation.

  11. Efektivitas Unit Pengolahan Air di Depot Air Minum Isi Ulang (DAMIU Dalam Menurunkan Kadar Logam (Fe, Mn dan Mikroba di Kota Pekalongan

    Directory of Open Access Journals (Sweden)

    Rosmiati Saleh

    2013-12-01

    Full Text Available Background:The number of drinking-water-refill center were increasing only in quantity but not in providing the quality of water. Therefore it takes a special handling and attention, not only because the low-quality of water causing various diseases.The data from the Pekalongan City Health servic showed that only 13 of 55 drinking-water-refill center (24% which have actively examined their sample water each month in bacteriological test, 3 of them (20% proved to be unqualified. Furthermore, while for chemical examination, there were only 6 (11% which actively doing it, and 2 of them (33% mentioned as unqualified. After doing examination to the raw water, it was found that the content of Fe metal was 2.51 mg/1, Mn metal was 2.41 mg/1, the parameters found was beyond the standard. Methode:The kind of research held was explanatory research using cross sectional design. The sample was taken by proportional sampling. The number of samples was 35 refill centers.The data would be analyzed uding Chi-Square,pairedt-test,Kruskall Wallis, McNemar Test and multivariate test (Logistc regression. Result:The results of this research showed that 23 samples (66% had an unqualified Fe metal content with the average content was 0,34 mg/l, 19 samples (54% had an unqualified Mn metal content, with the average content was 0.47 mg/1, 26 samples (74% with The unqualified quality of E.coli. The other test carried out in the drinking-water refill, resulted that 25 samples (71% had a qualified Fe metal content, the average was 0.29/1 and 22 samples (63% had a qualified E.coli content.The results of Bivariate analysis showed that the condition of raw water, the equipment, the processing, the sanitation, the SOP compliance, significantly related to the decreasing of Fe, Mn metal content and E.coli (p. <0.05. While the results of the multivariate analysis from 5 variables, 1 of which were statistically proven that there was a asosiation relationship between raw water

  12. Microbially-induced Fe and Mn oxides in condensed pelagic sediments (Middle-Upper Jurassic, Western Sicily)

    Science.gov (United States)

    Préat, A.; Mamet, B.; Di Stefano, P.; Martire, L.; Kolo, K.

    2011-06-01

    This article presents a petrographic comparison of the Rosso Ammonitico facies of Western Sicily and the original Rosso Ammonitico Veronese of Northern Italy based on a total of 27 sections. The Rosso Ammonitico has been the subject of numerous controversies that range from bathyal to shallow-water platform sedimentation. Therefore it seemed interesting to verify if the term Rosso Ammonitico has the same geologic connotation from region to region. The Middle-Upper Jurassic Rosso Ammonitico of Western Sicily is a condensed succession formed during a period of extensional synsedimentary tectonics related to the spreading of the Ionian Ocean. Slope-to-basin or pelagic carbonate deposits characterize the sedimentation which consists of reddish mudstones and wackestones. The abundant fauna is composed of radiolarians, protoglobigerinids, Saccocoma, Bositra associated with ammonites. A few ferruginous hardgrounds, Fe-Mn oxide crusts and Mn-coated condensation horizons are also present. The red matrices contain abundant Fe-Mn encrusted, microbored and bioeroded bioclasts. Sporadic Fe-Mn oncolites composed of amorphous Mn-minerals and goethite are also conspicuous. The matrix, as well as the shells and the fillings of the complex associated veinlets, are frequently altered into calcite microsparite. Submicronic iron bacterial and fungal filaments associated with mineralized extracellular polymeric substances (EPS) are observed in the matrix. They record dysaerobic microenvironments at or near the sediment-water interfaces. Early mineralized discontinuities enhanced by subsequent pressure dissolution are reported in the succession. Mn-(Ni) bacterial filaments are exceptionally observed in the cortex of the Fe-Mn oncolites. As a consequence of an early lithification, the Mn filaments are poorly preserved. The pigmentation of the rock is due to the dispersion of submicronic oxyhydroxides (now goethite and amorphous iron) formed by bacterial mediation during early diagenesis

  13. Sr doped BiMO{sub 3} (M = Mn, Fe, Y) perovskites: Structure correlated thermal and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Samita, E-mail: samitasthakur@gmail.com [School of Physics and Materials Science, Thapar University, Patiala 147004 (India); School of Basic Sciences, Arni University, Kathgarh (India); Singh, K.; Pandey, O.P. [School of Physics and Materials Science, Thapar University, Patiala 147004 (India)

    2017-02-01

    Sr{sup 2+} substituted BiMnO{sub 3−δ} (BSM), BiFeO{sub 3−δ} (BSF) and BiYO{sub 3−δ} (BSY) perovskites structured samples have been investigated for their structural, thermal and electrical properties. These samples are characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), iodometric titration, Raman spectroscopy, thermogravimetric analysis (TGA) and conductivity. Rietveld refinement confirms that BSY sample has cubic (Fm-3m) symmetry with limited solid solubility of Sr{sup 2+} as compared to tetragonal symmetry (p4mm) of BSM and BSF samples. X-ray photoelectron spectroscopy study confirms the presence of Mn{sup 4+} and Fe{sup 4+} content in BSM and BSF samples. The amount of Mn{sup 3+}, Fe{sup 4+} and oxygen vacancies in these systems are calculated by iodometric titration. The highest oxygen vacancies are found in BSF sample. The BSM system exhibit the highest conductivity followed by BSF and BSY samples due to the presence of Mn{sup 4+} content and moderate oxygen vacancies in this particular sample. - Highlights: • (BiSr)MO{sub 3} (M = Mn, Fe, Y) was synthesized by solid state reaction method. • The B-site cation highly affect the generation of defects in perovskites. • The structural and electrical properties strongly depend upon the B-site cation.

  14. Magnetic Fe{sub 2}MO{sub 4} (M:Fe, Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thi Dung [Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Phan, Ngoc Hoa [Department of Chemical Technology, Hochiminh University of Technology, 268 Ly Thuong Kiet, District 10, Ho Chi Minh (Viet Nam); Do, Manh Huy, E-mail: huydoma@vast-hcm.ac.vn [Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Ngo, Kim Tham [Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); College of science, Can Tho University, 3/2, Can Tho (Viet Nam)

    2011-01-30

    We present a simple and efficient method for the fabrication of magnetic Fe{sub 2}MO{sub 4} (M:Fe and Mn) activated carbons (Fe{sub 2}MO{sub 4}/AC-H, M:Fe and Mn) by impregnating the activated carbon with simultaneous magnetic precursor and carbon modifying agent followed by calcination. The obtained samples were characterized by nitrogen adsorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), and the catalytic activity in heterogeneous Fenton oxidation of methyl orange (MO) was evaluated. The resulting Fe{sub 2}MnO{sub 4}/AC-H showed higher catalytic activity in the methyl orange oxidation than Fe{sub 3}O{sub 4}/AC-H. The effect of operational parameters (pH, catalyst loading H{sub 2}O{sub 2} dosage and initial MO concentration) on degradation performance of the oxidation process was investigated. Stability and reusability of selected catalyst were also tested.

  15. Competition of dipositive metal ions for Fe (III) binding sites in chelation therapy of Iron Load

    International Nuclear Information System (INIS)

    Rehmani, Fouzia S.

    2005-01-01

    Iron overload is a condition in which excessive iron deposited in the liver, kidney and spleen of human beings in the patients of beta thalassemia and sickle cell anemia. Instead of its importance iron could be toxic when in excess, it damages the tissues. For the treatment of iron overload, a drug desferrioxamine mesylate has been used. It is linear trihydroxamic acid, a natural siderophore produced by streptomyces which removes the extra iron from body. Salicylhydroxamate type siderphore. In present research salicylhydroxamate was used for the complexation with dipositive metal ions which are available in biological environments such as Mn (II), Co (II), Ni (II) and Cu (II). The aim of our work was to study the competition reactions between Fe (III) and other dipositive ions; to calculate the thermodynamic data of chelation of these metal ions complexes with hydroxamate by computer program and comparison with hydroxamate complexes. (author)

  16. Hydrothermal Fe-Si-Mn oxide deposits from the Central and South Valu Fa Ridge, Lau Basin

    International Nuclear Information System (INIS)

    Sun Zhilei; Zhou Huaiyang; Yang Qunhui; Sun Zhixue; Bao Shenxu; Yao Huiqiang

    2011-01-01

    Highlights: → The Fe-Mn crust in the HHF has seawater contribution, whereas the Fe-Si oxide in the MHF is dominated by hydrothermal fluid → The Nd isotope of diffuse flow Fe-Si-Mn deposits indicates the obvious hydrothermal origin. → The Mn/Fe ratio in hydrothermal deposit may be a good indicator of propagating activities of the Valu Fa Ridge. - Abstract: A series of samples from the Hine Hina hydrothermal field (HHF) and the Mariner hydrothermal field (MHF) in the Central and Southern Valu Fa Ridge (VFR), Lau Basin were examined to explain the source origin and formation of the hydrothermal Fe-Si-Mn oxide deposits. The mineralogy was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Moessbauer spectroscopy, and energy-dispersive spectroscopy (EDS). For the Fe-Mn oxide crusts in the HHF, varying amounts of volcanic fragments and some seawater contributions were recognized, along with higher concentrations of Mn, Al, Co, Ni, Zn, Sr, Mo, elevated ΣREE and negative Ce anomalies. In contrast, the Si-rich oxide samples of the MHF were enriched in Cu, Pb and Ba, indicative of proximity to a hydrothermal jet. Moreover, conductive cooling of hydrothermal fluid evoked the Si-rich deposit formation in the MHF. The Sr, Nd and Pb isotope data provided further constraints regarding the source and formation of the Fe-Si-Mn deposits in the VFR by showing that the samples of the HHF are a mixture of three components, namely, hydrothermal fluid, seawater and volcanic materials, whereas the samples of the MHF were dominated by hydrothermal fluids. The seawater had a minor influence on the Nd isotope data, and the Pb isotope data exhibited a close association with the substrate rock and preformed volcaniclastic layers in this area. The occurrence of relatively high Mn/Fe ratios in the hydrothermal deposits of this area may be a good indicator of the propagating activities of the VFR over geological time.

  17. Determination of adiabatic temperature change in MnFe(P,Ge) compounds with pulse-field method

    International Nuclear Information System (INIS)

    Trung, N T; Tegus, O; Cam Thanh, D T; Buschow, K H J; Brueck, E; Klaasse, J C P

    2010-01-01

    Fast magnetic measurements performed by means of a 20 T pulse-field magnet provide a good approach for directly monitoring the magnetocaloric effect of the MnFe(P,Ge) compounds. Based on the comparison of magnetization curves obtained either in an adiabatic or isothermal process, we propose that the method introduced by Levitin et al is applicable to determine the adiabatic temperature change for an equivalent field change in first-order magnetic transition materials. More strikingly, experimental results confirm that the first-order nature of the transition in MnFe(P,Ge) alloys is not a limiting factor to the operation frequency of a magnetic refrigerator.

  18. Magneto-elastic coupling in La(Fe, Mn, Si)13Hy within the Bean-Rodbell model

    DEFF Research Database (Denmark)

    Neves Bez, Henrique; Nielsen, Kaspar Kirstein; Norby, Poul

    2016-01-01

    , due to high internal stresses. A promising magnetocaloric material is La(Fe, Mn, Si)13Hy, where the transition temperature can be controlled through the Mn amount. In this work we use XRD measurements to evaluate the temperature dependence of the unit cell volume with a varying Mn amount. The system...... is modelled using the Bean-Rodbell model, which is based on the assumption that the spin-lattice coupling depends linearly on the unit cell volume. This coupling is defined by the model parameter η, where for η > 1 the material undergoes a first order transition and for η ≤ 1 a second order transition. We...

  19. Effect of Carbon Doping on the Structure and Magnetic Phase Transition in (Mn,Fe2(P,Si))

    Science.gov (United States)

    Thang, N. V.; Yibole, H.; Miao, X. F.; Goubitz, K.; van Eijck, L.; van Dijk, N. H.; Brück, E.

    2017-08-01

    Given the potential applications of (Mn,Fe2(P,Si))-based materials for room-temperature magnetic refrigeration, several research groups have carried out fundamental studies aimed at understanding the role of the magneto-elastic coupling in the first-order magnetic transition and further optimizing this system. Inspired by the beneficial effect of the addition of boron on the magnetocaloric effect of (Mn,Fe2(P,Si))-based materials, we have investigated the effect of carbon (C) addition on the structural properties and the magnetic phase transition of Mn_{1.25}Fe_{0.70}P_{0.50}Si_{0.50}C_z and Mn_{1.25}Fe_{0.70}P_{0.55}Si_{0.45}C_z compounds by x-ray diffraction, neutron diffraction and magnetic measurements in order to find an additional control parameter to further optimize the performance of these materials. All samples crystallize in the hexagonal Fe_2P-type structure (space group P-62m), suggesting that C doping does not affect the phase formation. It is found that the Curie temperature increases, while the thermal hysteresis and the isothermal magnetic entropy change decrease by adding carbon. Room-temperature neutron diffraction experiments on Mn_{1.25}Fe_{0.70}P_{0.55}Si_{0.45}C_z compounds reveal that the added C substitutes P/Si on the 2 c site and/or occupies the 6 k interstitial site of the hexagonal Fe_2P-type structure.

  20. In situ synthesis and characterization of fine-patterned La and Mn co-doped BiFeO{sub 3} film

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Fuxue, E-mail: yanfuxue@126.com; Zhao, Gaoyang, E-mail: zhaogy@xaut.edu.cn; Song, Na; Zhao, Nana; Chen, Yuanqing

    2013-09-05

    Highlights: •La and Mn co-doped BiFeO{sub 3} film was prepared by a photosensitive sol–gel method. •XRD and Raman spectra confirmed single-phase rhombohedral structure with space group R3c. •Fine-patterned BLFMO film was obtained by a direct-patterning technique. •The saturation magnetization and Pr were enhanced in the fine-patterned BLFMO film. -- Abstract: La and Mn co-doped BiFeO{sub 3} (BLFMO) film was prepared by a photosensitive sol–gel method utilizing bismuth nitrate, lanthanum nitrate, manganese nitrate and ferric nitrate as starting materials. After a chelating reaction between benzoylacetone (BzAcH) and metallic ions, the precursor solution presented photosensitivity. Through a direct patterning process, a fine-patterned BLFMO film was obtained. The phase constituents, morphology, electric and magnetic properties of the as-prepared BLFMO film were characterized by X-ray diffractometer (XRD), Raman spectroscopy, scanning electron microscopy (SEM), ferroelectric testing unit, LCR Meter and vibrating sample magnetometer (VSM). The Mn dopant enhanced the saturation magnetization and remnant polarization of the BLFMO film.

  1. EXAFS study of Mn1.28Fe0.67P0.46Si0.54 compound with first-order phase transition

    International Nuclear Information System (INIS)

    L, Yingjie; Huliyageqi, B; Haschaolu, W; Song, Zhiqiang; Tegus, O; Nakai, Ikuo

    2014-01-01

    Highlights: • We have investigated the Fe and Mn K edge XAFS spectra of the Mn 1.28 Fe 0.67 P 0.46 Si 0.54 compound at 25 K and 295 K. • The site occupation of the Fe and Mn atoms and local structure of Mn 1.28 Fe 0.67 P 0.46 Si 0.54 are determined. • The atomic distances between Fe–Fe in c-plane for the ferromagnetic state are larger than those in the paramagnetic state. - Abstract: The Fe 2 P-type MnFe(P,Si) compounds are investigated by means of magnetic measurements and X-ray absorption fine structure spectroscopy. Magnetic measurements show that the Mn 1.28 Fe 0.67 P 0.46 Si 0.54 compound undergoes a first-order phase transition at the Curie temperature of 254 K. The Fe K-edge and Mn K-edge X-ray absorption fine structure spectra show that Mn atom mainly located at the 3g sites, while the 3f sites are occupied by Fe atoms and Mn atom randomly. The distances between the Fe atom and its nearest neighbor atoms in a triangle Fe–Mn–Fe change from 2.80 Å at 25 K to 2.74 Å at 300 K. On the other hand, the distances between Fe atom and its second neighbor atoms change from 4.06 Å at 25 K to 4.02 Å at 300 K

  2. Hyperfine field distribution of Fe83B17 glassy metal

    International Nuclear Information System (INIS)

    Miglierini, M.; Sitek, J.

    1990-01-01

    Convolutions of Gaussian and Lorentzian lines are proposed to fit the Moessbauer spectrum of Fe 83 B 17 metallic glass. The hyperfine field distribution is constructed from three Gaussian lines corresponding to the individual line pairs. (author). 1 fig., 7 refs

  3. Effect of adding Cr on magnetic properties and metallic behavior in MnTe film

    International Nuclear Information System (INIS)

    Wang, Z.H.; Geng, D.Y.; Gong, W.J.; Li, J.; Li, Y.B.; Zhang, Z.D.

    2012-01-01

    Mn 1−x Cr x Te films with x = 0, 0.02, and 0.05 was synthesized by pulsed laser deposition and crystallize in hexagonal NiAs-type structure. The spin glass behavior predicted before by Monte Carlo calculation is observed in the MnTe film. This behavior is destroyed by adding Cr in the MnTe film. The temperature dependence of magnetization shows a sharp rise at around 66 K, due to the magneto-elastic coupling. Metallic behavior is observed in the MnTe film in the temperature range 120–220 K, which is ascribed to the magnetic ordering. The metallic behavior disappears with adding Cr, because adding Cr ions destroys the magnetic ordering which is mediated by the sp–d exchange interaction between the Cr ions. - Highlights: ► Mn 1−x Cr x Te films with NiAs-type structure was prepared by pulsed laser deposition. ► The spin glass behavior was observed in MnTe film at low temperature. ► The spin glass behavior was destroyed by adding Cr. ► The temperature dependence of magnetization showed a sharp rise at around 66 K. ► Metallic behavior was observed in MnTe film, which disappeared by adding Cr.

  4. Parallel ferromagnetic resonance and spin-wave excitation in exchange-biased NiFe/IrMn bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Marcos Antonio de, E-mail: marcossharp@gmail.com [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Pelegrini, Fernando [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Alayo, Willian [Departamento de Física, Universidade Federal de Pelotas, Pelotas, 96010-900 (Brazil); Quispe-Marcatoma, Justiniano; Baggio-Saitovitch, Elisa [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, 22290-180 (Brazil)

    2014-10-01

    Ferromagnetic Resonance study of sputtered Ru(7 nm)/NiFe(t{sub FM})/IrMn(6 nm)/Ru(5 nm) exchange-biased bilayers at X and Q-band microwave frequencies reveals the excitation of spin-wave and NiFe resonance modes. Angular variations of the in-plane resonance fields of spin-wave and NiFe resonance modes show the effect of the unidirectional anisotropy, which is about twice larger for the spin-wave mode due to spin pinning at the NiFe/IrMn interface. At Q-band frequency the angular variations of in-plane resonance fields also reveal the symmetry of a uniaxial anisotropy. A modified theoretical model which also includes the contribution of a rotatable anisotropy provides a good description of the experimental results.

  5. Study of the analytic quality in the determinations of Cr, Fe, Mn, Cu, Zn, Pb and Hg through conventional and nuclear analytical techniques in mosses of the MATV

    International Nuclear Information System (INIS)

    Caballero S, B.

    2013-01-01

    To evaluate the environmental risks of air pollution and to facilitate the decision-making for control, is necessary to have the capacity to generate data with analytical quality. A comparison between nuclear (Neutron activation analysis and total reflection X-ray fluorescence spectrometry) and no nuclear analytical techniques (atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry) for simultaneous determination of metal content (Cr, Cu, Fe, Hg, Mn, Pb and Zn) in mosses from Metropolitan Area of the Toluca Valley (MATV) was performed. Epiphytic mosses (Fabriona ciliaris and Leskea angustata) were sampled in two campaigns, 16 sites (urban, transition and natural) and were prepared for each technique. The biological certified reference materials were used for the quality control and to evaluate accuracy, precision, linearity, detection and quantification limits. Results show that nuclear analytical techniques and no nuclear applied in chemical analysis of Cr, Cu, Fe, Hg, Mn, Pb and Zn in moss from MATV are comparable and therefore all of these can potentially be used for this purpose. However, if its considered both, the performance parameters and economic/operational characteristics is widely recommended inductively coupled plasma optical emission spectrometry, conventional analytical technique, which showed the highest analytical grade quality. Also were observed spatial and temporal variations in the concentrations of Cr, Cu, Fe, Hg, Mn, Pb and Zn in mosses from MATV and was discussed its potential origin. The urban sites had the highest concentration of anthropogenic elements as Cr, Cu, Fe, Hg, Pb and Zn because are strongly impacted by roads with high vehicle traffic. (Author)

  6. Stress induced anisotropy in CoFeMn soft magnetic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Leary, A. M., E-mail: leary@cmu.edu; Keylin, V.; McHenry, M. E. [Materials Science and Engineering Department, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States); Ohodnicki, P. R. [Functional Materials Development Division, National Energy Technology Laboratory (NETL), 626 Cochrans Mill Road, Pittsburgh, Pennsylvania 15236 (United States)

    2015-05-07

    The use of processing techniques to create magnetic anisotropy in soft magnetic materials is a well-known method to control permeability and losses. In nanocomposite materials, field annealing below the Curie temperature results in uniaxial anisotropy energies up to ∼2 kJ/m{sup 3}. Higher anisotropies up to ∼10 kJ/m{sup 3} result after annealing Fe-Si compositions under stress due to residual stress in the amorphous matrix acting on body centered cubic crystals. This work describes near zero magnetostriction Co{sub 80−x−y}Fe{sub x}Mn{sub y}Nb{sub 4}B{sub 14}Si{sub 2} soft magnetic nanocomposites, where x and y < 8 at.% with close packed crystalline grains that show stress induced anisotropies up to ∼50 kJ/m{sup 3} and improved mechanical properties with respect to Fe-Si compositions. Difference patterns measured using transmission X-ray diffraction show evidence of affine strain with respect to the stress axis.

  7. Morphology-controlled synthesis and novel microwave electromagnetic properties of hollow urchin-like chain Fe-doped MnO2 under 10 T high magnetic field

    International Nuclear Information System (INIS)

    Yuping, Duan; Jia, Zhang; Hui, Jing; Shunhua, Liu

    2011-01-01

    Fe-doped MnO 2 with a hollow sea urchin-like ball chain shape was first synthesized under a high magnetic field of 10 T. The formation mechanism was investigated and discussed in detail. The synthesized samples were characterized by XRD, SEM, TEM, EMPA, and vector network analysis. By doping MnO 2 with Fe, the relative complex permittivity of MnO 2 and its corresponding loss tangent clearly decreases, but its relative complex permeability and its corresponding loss tangent markedly increases. Moreover, the theoretically calculated values of reflection loss show that with increasing the Fe content, the as-prepared Fe-doped MnO 2 exhibits good microwave absorption capability. -- Graphical Abstract: Fe-doped MnO 2 with a hollow sea urchin-like ball chain shape was first synthesized in a high magnetic field of 10 T via a simple chemical process. Display Omitted Highlights: → Fe-doped MnO 2 with a hollow sea urchin-like ball chain shape was first synthesized. → We investigated formation mechanism and electromagnetic properties of the Fe-doped MnO 2 . → By doping MnO 2 with Fe, the electromagnetic properties are improved obviously.

  8. Origin of the ESR spectrum in the Prussian blue analog RbMn[Fe(CN)(6)]center dot H2O

    NARCIS (Netherlands)

    Antal, A.; Janossy, A.; Forro, L.; Vertelman, E. J. M.; van Koningsbruggen, P. J.; van Loosdrecht, P. H. M.

    2010-01-01

    We present an electron spin resonance (ESR) study at excitation frequencies of 9.4 and 222.4 GHz of powders and single crystals of a Prussian blue analog (PBA), RbMn[Fe(CN)(6)]center dot H2O in which Fe and Mn undergoes a charge-transfer transition between 175 and 300 K. The ESR of PBA powders, also

  9. Microstructural analysis nanoferritas Mn_0_,_5Zn_0_,_5Fe_2O_4 e Mn_0_,_6_5Zn_0_,_3_5Fe_2O_4 synthesized by combustion reaction

    International Nuclear Information System (INIS)

    Diniz, V.C.S.; Figueiredo, A.R.; Costa Junior, A.D.S.; Diniz, H.M.; Vieira, D.A.; Costa, A.C.F.M.

    2014-01-01

    The MnZn ferrites are ferrimagnetic materials that have been studied and used in various technological fields. In this work investigated the microstructural characteristics of ferrites and Mn_0_,_5Zn_0_,_5Fe_2O_4 Mn_0_,_6_5Zn_0_,_3_5Fe_2O_4 synthesized by combustion reaction in 200g scale production. The samples were characterized by XRD, crystallinity, crystallite size, X-ray fluorescence and scanning electron microscopy. Given the results it was observed that for both samples the synthesis combustion reaction was efficient for the production of single-phase ferrites with high crystallinity. With respect to the analysis of X-ray fluorescence was noted that the experimental values composition were consistent with the theoretical values calculated for both samples. Regarding morphology for both samples, the formation of the porous powders with feature consisting of dense clumps in the form of irregular foam was observed. (author)

  10. Magnetic properties and EXAFS study of nanocrystalline Fe2Mn0.5Cu0.5Al synthesized using mechanical alloying technique

    International Nuclear Information System (INIS)

    Nanto, Dwi; Yang, Dong-Seok; Yu, Seong-Cho

    2014-01-01

    Nanocrystalline Fe 2 Mn 0.5 Cu 0.5 Al has been synthesized by the mechanical alloying technique and studied as a function of milling time. Alloy nature of Fe 2 Mn 0.5 Cu 0.5 Al was observed in a sample milled for 96 h. The magnetic saturation is 4.0 μ B /f.u., which coincidently follows Slater–Pauling rule at 5 K. Nanocrystalline Fe 2 Mn 0.5 Cu 0.5 Al has enhanced saturate magnetization compared to any other fabrication of Fe 2 MnAl reported. Cu element plays an important role in site competes with other elements and may result in the enhancement of saturate magnetization. In accordance to the magnetic results and EXAFS pattern, it was revealed that the dynamics of magnetic properties were confirmed as structural changes of nanocrystalline Fe 2 Mn 0.5 Cu 0.5 Al

  11. Uptake of soil P, Al, Fe, Mn, Mg and Ca by Italian rye grass (Lolium multiflorum Lam. induced by synthetic chelating agent

    Directory of Open Access Journals (Sweden)

    Helinä Hartikainen

    1981-05-01

    Full Text Available The effect of a synthetic chelating compound on the dry matter yield and the uptake of soil P, Al, Fe, Mn, Mg and Ca by Italian rye grass was studied in a pot experiment with three mineral soil samples irrigated with water or 0.001 M Na2-EDTA(dinatrium salt of ethylenediaminetetraacetic acid solution. The Na2-EDTA treatment seemed not to affect the quantity of the dry matter yields, but it affected markedly their chemical composition. Increased contents of P, Al and Fe were found in all the harvests. In two soil samples the P supply was improved by 35—45 %. The accumulation of Al, Fe and Mn induced by Na2-EDTA tended to be the more effective the greater the stability constant for the corresponding metal-EDTA chelate was. Thus, the iron uptake increased most intensively, i.e. by 217—458 %, and that of aluminium by 33—120 %. On the basis of the first two harvests the manganese absorption by the rye grass seemed to decrease probably due to the enormous accumulation of iron. The results also suggested that the addition of Na2-EDTA to the soil was not able essentially to affect the magnesium and calcium supply to the plants.

  12. Magnetocaloric effects in Mn1.35Fe0.65P1−xSix compounds

    International Nuclear Information System (INIS)

    Geng Yao-Xiang; Tegus O; Bi Li-Ge

    2012-01-01

    The structural and magnetocaloric properties of Mn 1.35 Fe 0.65 P 1−x Si x compounds are investigated. The Si-substituted compounds, Mn 1.35 Fe 0.65 P 1−x Si x with x = 0.52, 0.54, 0.55, 0.56, and 0.57, are prepared by high-energy ball milling and the solid-state reaction. The X-ray diffraction shows that the compounds crystallize into the Fe 2 P-type hexagonal structure with space group P6-bar2m. The magnetic measurements show that the Curie temperature of the compound increases from 253 K for x = 0.52 to 296 K for x = 0.56. The isothermal magnetic-entropy change of the Mn 1.35 Fe 0.65 P 1−x Si x compound decreases with the Si content increasing. The maximal value of the magnetic-entropy change is about 7.0 J/kg·K in the Mn 1.35 Fe 0.65 P 0.48 Si 0.52 compound with a field change of 1.5 T. The compound quenched in water possesses a larger magnetic entropy change and a smaller thermal hysteresis than the non-quenched samples. The thermal hysteresis of the compound is less than 3.5 K. The maximum adiabatic temperature change is about 1.4 K in the Mn 1.35 Fe 0.65 P 0.45 Si 0.55 compound with a field change of 1.48 T. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Magnetic and electronic properties of half-metallic ferromagnetic Mn-stabilised zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Maznichenko, Igor; Daene, Markus; Hergert, Wolfram; Mertig, Ingrid [Martin-Luther-Univ. Halle-Wittenberg, Inst. Phys., 06099 Halle (Germany); Ernst, Arthur; Ostanin, Sergey; Sandratskii, Leonid; Bruno, Patrick [Max-Planck-Inst. Mikrostrukturphys., Weinberg 2, 06120 Halle (Germany); Bergqvist, Lars [Dept. Phys., Uppsala Univ., Box 530, 751 21 Uppsala (Sweden); Hughes, Ian; Staunton, Julie [Dept. Phys., Univ. Warwick, Coventry CV4 7AL (United Kingdom); Kudrnovsky, Josef [Max-Planck-Inst. Mikrostrukturphys., Weinberg 2, 06120 Halle (Germany); Inst. Phys., Acad. Sci. of the Czech Republic, Na Slovance 2, 18221 Prague (Czech Republic)

    2007-07-01

    The investigations of the manganese stabilised cubic zirconia (Mn-SZ) show that this dilute magnetic semiconductors possess unique magnetic properties. Based on ab-initio electronic structure calculations which include the effects of thermally excited magnetic fluctuations, the autors predict Mn-SZ to be ferromagnetic for a wide range of Mn concentration up to high T{sub C}. It was found that this material, which is well known both as a diamond imitation and as a catalyst, is halfmetallic with majority and minority spin states of the Mn impurities lying in the wide band gap of zirconia. The high T{sub C} ferromagnetism is robust against oxygen vacancies and against the distribution of Mn impurities on the Zr fcc sublattice. This work responds to the question concerning the key electronic and structure factors behind an optimal doping. The autors propose this stable half-metallic ferromagnet to be a promising candidate for future spintronics applications.

  14. Effects of Manganese Content on Solidification Structures, Thermal Properties, and Phase Transformation Characteristics in Fe-Mn-Al-C Steels

    Science.gov (United States)

    Yang, Jian; Wang, Yu-Nan; Ruan, Xiao-Ming; Wang, Rui-Zhi; Zhu, Kai; Fan, Zheng-Jie; Wang, Ying-Chun; Li, Cheng-Bin; Jiang, Xiao-Fang

    2015-04-01

    To assist developments of the continuous-casting technology of Fe-Mn-Al-C steels, the solidification structures and the thermal properties of Fe-Mn-Al-C steel ingots with different manganese contents have been investigated and the phase transformation characteristics have been revealed by FactSage (CRCT-ThermFact Inc., Montréal, Canada). The results show that the thermal conductivity of the 0Mn steel is the highest, whereas the thermal conductivity of the 8Mn steel is slightly higher than that of the 17Mn steel. Increasing the manganese content promotes a columnar solidification structure and coarse grains in steel. With the increase of manganese content, the mass fraction of austenite phase is increased. Finally, a single austenite phase is formed in the 17Mn steel. The mean thermal expansion coefficients of the steels are in the range from 1.3 × 10-5 to 2.3 × 10-5 K-1, and these values increase with the increase of manganese content. The ductility of the 17Mn steel and the 8Mn steel are higher than 40 pct in the temperature range from 873 K to 1473 K (600 °C to 1200 °C), and the cracking during the straightening operation should be avoided. However, the ductility of the 0Mn steel is lower than 40 pct at 973 K and 1123 K (700 °C and 850 °C), which indicates that the temperature of the straightening operation during the continuous-casting process should be above 1173 K (900 °C). Manganese has the effect of enlarging the austenite phase region and reducing the δ-ferrite phase region and α-ferrite phase region. At the 2.1 mass pct aluminum level, the precipitate temperature of AlN is high. Thus, the formed AlN is too coarse to deteriorate the hot ductility of steel.

  15. Thermoelectric power measurements in Fe doped La sub 0 sub . sub 6 sub 5 Ca sub 0 sub . sub 3 sub 5 MnO sub 3

    CERN Document Server

    Aslam, A; Zubair, M; Akhtar, M J; Nadeem, M

    2002-01-01

    We report measurements of the thermoelectric power (TEP) on the La sub 0 sub . sub 6 sub 5 Ca sub 0 sub . sub 3 sub 5 Mn sub 1 sub - sub x Fe sub x O sub 3 system for 0.00 <= x <= 0.07. The ferromagnetic and metallic transition temperatures are lowered and the TEP shows an increasingly positive trend with the addition of Fe. We also observe a clear magnetic contribution that manifests itself as a peak in the TEP close to the critical temperature. The activation energies determined from the TEP are seen to be insensitive to the Fe content. The data are interpreted firstly as showing a decrease in the density of active holes, i.e. holes that can participate in the hopping process, with increasing Fe content. Secondly the data suggest the role of magnetic scattering due to the clusters formed by the antiferromagnetically coupled Fe. Abrupt changes in the variation of the TEP are observed at the concentration region x approx 0.04 consistent with the hole density variation and with previously reported transp...

  16. Sequestration of Radionuclides and Heavy Metals by Hydroxyapatite Doped with Fe, Cu and Sn

    International Nuclear Information System (INIS)

    K.B. Helean; R.C. Moore

    2005-01-01

    Apatite, Ca 5 (PO 4 ) 3 (F,OH,Cl) (P6 3 /m, Z=2), is the most abundant phosphate mineral on Earth. The end-member hydroxyapatite, Ca 5 (PO 4 ) 3 OH (P2 1 /b), is the primary mineral component in bones and teeth and tends to scavenge and sequester heavy metals in the human body. Hydroxyapatite has also been shown to be effective at sequestering radionuclides and heavy metals in certain natural systems (Dybowska et al., 2004). Hydroxyapatite has been the focus of many laboratory studies and is utilized for environmental remediation of contaminated sites (Moore et al., 2002). The crystal structure of apatite tolerates a great deal of distortion caused by extensive chemical substitutions. Metal cations (e.g. REE, actinides, K, Na, Mn, Ni, Cu, Co, Zn, Sr, Ba, Pb, Cd, Fe) substitute for Ca, and oxyanions (e.g. AsO 4 3- , SO 4 2- , CO 3 2- , SiO 4 4- , CrO 4 2- ) replace PO 4 3- through a series of coupled substitutions that preserve electroneutrality. Owing to the ability of apatite to incorporate ''impurities'' (including actinides) gives rise to its proposed use as a waste form for radionuclides. Recent work at Sandia National Laboratory demonstrated that hydroxyapatite has a strong affinity for U, Pu, Np, Sr and Tc reduced from pertechnetate (TcO 4 - ) by SnCl 2 (Moore et al., 2002). Based on these earlier promising results, an investigation was initiated into the use of apatite-type materials doped with aliovalent cations including Fe, Cu and Sn as Tc-scavengers. Synthetic Fe and Cu-doped hydroxyapatite samples were prepared by precipitation of Ca, from Ca-acetate, and P, from ammonium phosphate. The Fe and Cu were introduced as chlorides into the Ca-acetate solution. Stannous chloride was used as a reducing agent and was apparently incorporated into the crystal structures of the hydroxyapatite samples in small, as yet undetermined quantities

  17. Accumulation of Heavy Metals in Ricinus communis L. from Mn Contaminated Area

    Directory of Open Access Journals (Sweden)

    YI Xin-yu

    2014-02-01

    Full Text Available Xiangbi No. 1 and Zibi No. 7 were planted in the Mn contaminated soils to explore its potential of ecological remediation and ener-gy utilization in the areas of Mn contaminated site. The major nutrient elements and the concentrations of heavy metals(Mn, Pb, Zn, Cu and Cr in different parts(root, branch and leaf and topsoil samples were detected after entering into the period of reproductive growth.The results showed that the average content of Mn was as high as 7 884.96 mg·kg-1,which exceeded 6.5 times of national soil environmental quality standard(level 2.The mean level of Mn in tissues of Xiangbi No. 1 was found to be in the sequence of root>leaf>branch,whereas,the mean level of Mn in different parts of Zibi No. 7 was found to be in the order of leaf>fruit>branchroot respectively. The average concentration of Mn in the leaf reached the peak value(765.43 mg·kg-1,which was higher than Xiangbi No.1 about 79.53%.The leaf/root ratios of Pb, Cu, Cr contents in Zibi No. 7 were higher than those of Xiangbi No. 1 samples.The accumulation and translocation in plants was affect-ed by different heavy metal elements in soils.The results demonstrated that Zibi No. 7 had a better uptake and translocation capacity of Mn,Pb,Cu and Cr, meanwhile,plants of two species had differences in accumulation and translocation ability and were proved to possess good Mn-tolerance ability for remediation of heavy metal contaminated soils.

  18. Effect of Ta buffer and NiFe seed layers on pulsed-DC magnetron sputtered Ir{sub 20}Mn{sub 80}/Co{sub 90}Fe{sub 10} exchange bias

    Energy Technology Data Exchange (ETDEWEB)

    Oksuezoglu, Ramis Mustafa, E-mail: rmoksuzoglu@anadolu.edu.t [University of Anadolu, Faculty of Engineering and Architecture, Department of Materials Sciences and Engineering, Iki Eyluel Campus, 26555 Eskisehir (Turkey); Yildirim, Mustafa; Cinar, Hakan [University of Anadolu, Faculty of Engineering and Architecture, Department of Materials Sciences and Engineering, Iki Eyluel Campus, 26555 Eskisehir (Turkey); Hildebrandt, Erwin; Alff, Lambert [Department of Materials Sciences, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt (Germany)

    2011-07-15

    A systematic investigation has been done on the correlation between texture, grain size evolution and magnetic properties in Ta/Ni{sub 81}Fe{sub 19}/Ir{sub 20}Mn{sub 80}/Co{sub 90}Fe{sub 10}/Ta exchange bias in dependence of Ta buffer and NiFe seed layer thickness in the range of 2-10 nm, deposited by pulsed DC magnetron sputtering technique. A strong dependence of <1 1 1> texture on the Ta/NiFe thicknesses was found, where the reducing and increasing texture was correlated with exchange bias field and unidirectional anisotropy energy constant at both NiFe/IrMn and IrMn/CoFe interfaces. However, a direct correlation between average grain size in IrMn and H{sub ex} and H{sub c} was not observed. L1{sub 2} phase IrMn{sub 3} could be formed by thickness optimization of Ta/NiFe layers by deposition at room temperature, for which the maximum exchange coupling parameters were achieved. We conclude finally that the coercivity is mainly influenced by texture induced interfacial effects at NiFe/IrMn/CoFe interfaces developing with Ta/NiFe thicknesses. - Research highlights: We discussed the influence of Ta/NiFe thicknesses on structure and grain size in AF layer and texture. A direct correlation between the <1 1 1> texture and exchange coupling was found. A direct relation between average grain size and H{sub ex} and H{sub c} was not observed. L1{sub 2} phase IrMn{sub 3} was formed by deposition at room temperature for Ta (5-6 nm)/NiFe (6-8 nm). We conclude that the coercivity is influenced by order/disorder at NiFe/IrMn/CoFe interfaces.

  19. Effect of manganese and chromium on microstructure and toughness of Fe-Cr-Mn alloys resulting from solid-solution treatment

    International Nuclear Information System (INIS)

    Okazaki, Yoshimitsu; Miyahara, Kazuya; Wade, Noboru; Hosoi, Yuzo

    1989-01-01

    This study is aimed at making clear the effect of Mn and Cr on the microstructure and toughness of an Fe-Cr-Mn alloy which is considered as one of the candidate alloys for reduced activation materials for the first wall application of the fusion reactor. The microstructures of Fe-12% Cr-(5∼30)% Mn(mass%) alloys after solution treatment at 1373 K for 3.6 ks are markedly varied with Mn contents; α'(martensite) + δ(ferrite) in 5% Mn alloy, α' + δ + ε(martensite) + γ(austenite) in the 10% Mn alloy, α' + ε + γ in 15% Mn alloy, ε + γ in the 20% Mn alloy, and ε + γ +δ in the 25% Mn alloy, and γ + δ in the 30% Mn alloy. It is to be noted that the δ phase increases with increasing Mn content when the Fe-12% Cr alloy contains more than 25% Mn, which suggests that Mn plays the role of a ferrite former. In Fe-15% Mn-Cr alloy, the δ phase is not observed in the range of Cr contents up to 12%, whereas it is markedly increased with the addition of 16% Cr. C, N and Ni are very helpful in forming the γ phase in these alloys as generally known in Fe-Cr-Ni alloys. The toughness evaluated by the Charpy impact test at 273 K and room temperature is very low in the 5% Mn alloy which consists of the α' and δ phases. It is, however, significantly improved by a small amount of the γ phase and increases with increase of γ phase stability. (author)

  20. Anomalous Fe and Mn heterogeneity observed in microscopic inclusions in diamond using nuclear microscopy

    International Nuclear Information System (INIS)

    Sideras-Haddad, E.; Hart, R.J.; Connell, S.H.; Sellschop, J.P.F.; Tredoux, M.

    1999-01-01

    A Fe and Mn heterogeneity effect was observed in microscopic garnet inclusion in diamond using micro-PIXE. Results are presented and the implications of these disequilibrium element distributions during growth of garnets are discussed. The occurrence of zoning or any type of chemical inhomogeneity within inclusions encapsulated within diamond has implications on the age of formation of the inclusion and the diamond. It is believed that the age of the inclusion is that of the diamond formation itself, with subsequent isolation of the inclusion from the mantle by the diamond. The significance of the chemical heterogeneity or zoning is that it should not exist given the high temperature and long time of encapsulation

  1. Precipitation hardening of a FeMnC TWIP steel by vanadium carbides

    International Nuclear Information System (INIS)

    Chateau, J P; Dumay, A; Jacques, A; Allain, S

    2010-01-01

    A fine precipitation of spherical vanadium carbides is obtained in a Fe22Mn0.6C base steel during the final recrystallisation heat treatment. Precipitates formed in recrystallised grains have a cube-cube orientation relation with the matrix, confirmed by Moire patterns observed in TEM. The theoretical size for loss of coherency is below the nm, much lower than the precipitates' size. Deformation contrasts were observed around the precipitates and their residual coherency was measured. It was shown to decrease when the carbides' size increases, to vanish above 30 nm. The net increase of the yield stress was estimated to be 140 MPa. Precipitation hardening by vanadium carbides do not alter the strain hardening rate by TWIP effect, as they do not seem to act as obstacles for the propagation of microtwins.

  2. Effect of machining parameters on surface textures in EDM of Fe-Mn-Al alloy

    International Nuclear Information System (INIS)

    Guu, Y.H.; Hou, Max Ti-Kuang

    2007-01-01

    In this work, the surface characteristics caused by EDM were analyzed by means of the atomic force microscopy (AFM) technique. An empirical model of Fe-Mn-Al alloy was proposed based on the experimental data. A qualitative energy dispersive spectroscopic analyzer was used to measure the chemical composition of the specimen. Surface hardness was determined with a microhardness tester. Experimental results indicate that the EDM process causes a ridged surface and induces machining damage in the surface layer, and increases the surface roughness. The depth of micro-cracks, micro-voids and machined damage increase with an increase in the amount of pulsed current and pulse-on duration. The effect of the magnitude of the pulse-on duration on the surface texture of the specimen is more significant than the pulsed current. Furthermore, the AFM method reveals the 3D surface textures of the EDM specimen with a nanometer scale

  3. Determination of Fe, Mn and Pb by GFAAS in red wine

    International Nuclear Information System (INIS)

    Ying Zhecong; Jin Hua; Su Yulan

    2008-01-01

    A method for determination of Fe, Mn and Pb in red wine samples was developed by the graphite furnace atomic absorption spectrometric. Several different matrix modifiers were necessary because of evident analyte losses that occurred immediately in sample incineration. Red wine samples were analyzed after microwave digestion using HNO 3 . Standard addition method was used, the calibration concentration was 1 ng · ml -1 , 3 ng · ml -1 , 5 ng · ml -1 which containing 580 μg/ml KNO 3 as matrix and 0.2% HNO 3 . The correlation coefficient of the calibration line was very good within the measurement area. The recovery with red wine sample was very good at the range from 95%-107.5%. (authors)

  4. Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire

    Directory of Open Access Journals (Sweden)

    T. Omori

    2013-09-01

    Full Text Available Effects of grain size on superelastic properties in Fe-34Mn-15Al-7.5Ni alloy wires with a ⟨110⟩ fiber-texture were investigated by cyclic tensile tests. It was confirmed that the critical stress for induced martensitic transformation and the superelastic strain are functions of relative grain size d/D (d: mean grain diameter, D: wire diameter, and that the critical stress is proportional to (1–d/D2 as well as in Cu-based shape memory alloys. A large superelastic strain of about 5% was obtained in the specimen with a large relative grain size over d/D = 1.

  5. Synthesis of Co/MFe(2)O(4) (M = Fe, Mn) Core/Shell Nanocomposite Particles.

    Science.gov (United States)

    Peng, Sheng; Xie, Jin; Sun, Shouheng

    2008-01-01

    Monodispersed cobalt nanoparticles (NPs) with controllable size (8-14 nm) have been synthesized using thermal decomposition of dicobaltoctacarbonyl in organic solvent. The as-synthesized high magnetic moment (125 emu/g) Co NPs are dispersible in various organic solvents, and can be easily transferred into aqueous phase by surface modification using phospholipids. However, the modified hydrophilic Co NPs are not stable as they are quickly oxidized, agglomerated in buffer. Co NPs are stabilized by coating the MFe(2)O(4) (M = Fe, Mn) ferrite shell. Core/shell structured bimagnetic Co/MFe(2)O(4) nanocomposites are prepared with tunable shell thickness (1-5 nm). The Co/MFe(2)O(4) nanocomposites retain the high magnetic moment density from the Co core, while gaining chemical and magnetic stability from the ferrite shell. Comparing to Co NPs, the nanocomposites show much enhanced stability in buffer solution at elevated temperatures, making them promising for biomedical applications.

  6. Mechanical properties of Fe-Mn-Cu-Al alloy systems and optimization of their composition

    International Nuclear Information System (INIS)

    Tkachenko, I.F.; Baranov, A.A.

    1981-01-01

    Studied is the separate and combined effect of Cu and Al on mechanical properties of the Fe-Mn-Al-Cu system alloys using a simplex- lattice method of experiment planning. Heat treated specimens in the form of plates have been subjected to mechanical tests. It is shown that mechanical properties of studied alloys change sufficiently in the result of tempering in heterogeneous (α+γ) region. Studied alloys have the most favourable conbination of characteristics of strength, plasticity and impact strength after tempering at 630 deg C during 2 hours. Diagrams are obtained which characterizes dependence of mechanical properties of alloys on their composition. They permit to select optimum compositions of alloys with the necessary combination of strength, plasticity and impact strength [ru

  7. Characterization of microstructural evolution in Fe-C(-Mn) alloys during early stages of ageing using atom probe

    International Nuclear Information System (INIS)

    Xiong, X.Y.; Tran, P.; Pereloma, E.; Ringer, S.P.

    2004-01-01

    Full text: Extensive studies on the effect of ageing treatment on the micro structure and mechanical properties of most commercial ferritic (a) Fe-C(-X) alloys reveal age-hardening characteristics that involve a monotonic increase towards a peak hardness after several hours of ageing. Peak hardness is always associated with the formation of precipitate particles (e.g: MnC 3 ). However, there is relatively little systematic work on the very early stages of ageing using direct nanostructural analysis and many questions remain on the potential for clustering of interstitial C atoms prior to the precipitation reaction. In this experimental work, we report a small but significant hardness peak within 300 sec during ageing at 550 deg C. High resolution transmission electron microscopy (HRTEM) observations did not show any microstructural change during this early stage of ageing. In order to understand the microstructural evolution in ultra-low carbon a-Fe-C(-Mn) alloys during these early stages of ageing, 3-dimensional atom probe (3DAP) has been used to examine the C atom distribution and possible segregation of C and Mn atoms in these alloys. In this report, the 3DAP analyses and HRTEM observations of Fe-C and Fe-C-Mn alloys are correlated with age hardening measurements and possible mechanisms of the initial hardening phenomenon will be discussed

  8. Effect of co-addition of RE, Fe and Mn on the microstructure and performance of A390 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Yunguo; Wu Yuying; Qian Zhao [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Liu Xiangfa, E-mail: xfliu@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2009-12-15

    The co-addition effect of RE, Mn and Fe on the microstructure and high-temperature strength of A390 has been conducted. The alloying effect of RE has also been explored. Formation of detrimental long-acicular RE-rich phase is not observed. The AlSiCuCeLa phase, {alpha}-Al(Mn,Fe)-Si phase and another complex phase composed of Al, Si, Mn, Fe, Cu and RE are observed to form after addition. RE can decrease the diffusion rates of Cu, Mg in the aging process and the intermetallics nucleate on a localized scale, but could not become coarse during heat-treatment. The electronegativity differences between RE and Al or Si are larger than those between Cu and Al or Si, so the RE-rich intermetallic compounds in Al-Si alloys are more stable. The co-addition of RE, Mn and Fe proves to be an effective method to enhance the high-temperature strength of A390. The high-temperature strength of A390 is increased by 25% in this article using this method.

  9. Spark plasma sintering and microwave electromagnetic properties of MnFe{sub 2}O{sub 4} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Penchal Reddy, M., E-mail: drlpenchal@gmail.com [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Mohamed, A.M.A. [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 4372 (Egypt); Venkata Ramana, M. [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Zhou, X.B.; Huang, Q. [Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Ningbo 315201 (China)

    2015-12-01

    MnFe{sub 2}O{sub 4} ferrite powder was synthesized by a facile one-pot hydrothermal route and then consolidated into dense nanostructured compacts by the spark plasma sintering (SPS) technique. The effect of sintering temperature, on densification, morphology, magnetic and microwave absorption properties was examined. Spark plasma sintering resulted in uniform microstructure, as well as maximum relative density of 98%. The magnetic analysis indicated that the MnFe{sub 2}O{sub 4} ferrite nanoparticles showed ferrimagnetic behavior. Moreover, the dielectric loss and magnetic loss properties of MnFe{sub 2}O{sub 4} ferrite nanoparticles were both enhanced due to its better dipole polarization, interfacial polarization and shape anisotropy. It is believed that such spark plasma sintered ceramic material will be applied widely in microwave absorbing area. - Highlights: • Successful synthesis of dense MnFe{sub 2}O{sub 4} ceramics using spark plasma sintering. • Lower temperature and shorter sintering time, compared to conventional methods. • Optimal sintering condition was achieved. • The magnetic properties of the sintered samples are sensitive to the density and microstructure.

  10. Variability of Mn, Fe, Ni, Cu and Co in manganese nodules from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Jauhari, P.

    clays which contain higher Fe and Co. Clustering of analysed shows that Ni and Cu are geochemically associated with Mn, and Co with in both sediment types. However, the degree of correlation between all the elements is higher in the nodules from red clay...

  11. Data on xylem sap proteins from Mn- and Fe-deficient tomato plants obtained using shotgun proteomics.

    Science.gov (United States)

    Ceballos-Laita, Laura; Gutierrez-Carbonell, Elain; Takahashi, Daisuke; Abadía, Anunciación; Uemura, Matsuo; Abadía, Javier; López-Millán, Ana Flor

    2018-04-01

    This article contains consolidated proteomic data obtained from xylem sap collected from tomato plants grown in Fe- and Mn-sufficient control, as well as Fe-deficient and Mn-deficient conditions. Data presented here cover proteins identified and quantified by shotgun proteomics and Progenesis LC-MS analyses: proteins identified with at least two peptides and showing changes statistically significant (ANOVA; p ≤ 0.05) and above a biologically relevant selected threshold (fold ≥ 2) between treatments are listed. The comparison between Fe-deficient, Mn-deficient and control xylem sap samples using a multivariate statistical data analysis (Principal Component Analysis, PCA) is also included. Data included in this article are discussed in depth in the research article entitled "Effects of Fe and Mn deficiencies on the protein profiles of tomato ( Solanum lycopersicum) xylem sap as revealed by shotgun analyses" [1]. This dataset is made available to support the cited study as well to extend analyses at a later stage.

  12. Pressure effects on the magnetocaloric properties of MnFeP.sub.1-x./sub.As.sub.x./sub..

    Czech Academy of Sciences Publication Activity Database

    Brück, E.; Kamarád, Jiří; Sechovský, V.; Arnold, Zdeněk; Tegus, O.; De Boer, F. R.

    2007-01-01

    Roč. 310, - (2007), e1008-e1009 ISSN 0304-8853 Institutional research plan: CEZ:AV0Z10100521 Keywords : magnetic refrigeration * magnetocaloric effect * pressure effect * MnFe(P, As) compounds Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2007

  13. The design of an Fe-12Mn-O.2Ti alloy steel for low temperature use

    Science.gov (United States)

    Hwang, S. K.; Morris, J. W., Jr.

    1977-01-01

    An investigation was made to improve the low temperature mechanical properties of Fe-8 approximately 12% Mn-O 2Ti alloy steels. A two-phase(alpha + gamma) tempering in combination with cold working or hot working was identified as an effective treatment. A potential application as a Ni-free cryogenic steel was shown for this alloy. It was also shown that an Fe-8Mn steel could be grain-refined by a purely thermal treatment because of its dislocated martensitic structure and absence of epsilon phase. A significant reduction of the ductile-brittle transition temperature was obtained in this alloy. The nature and origin of brittle fracture in Fe-Mn alloys were also investigated. Two embrittling regions were found in a cooling curve of an Fe-12Mn-O 2Ti steel which was shown to be responsible for intergranular fracture. Auger electron spectroscopy identified no segregation during solution-annealing treatment. Avoiding the embrittling zones by controlled cooling led to a high cryogenic toughness in a solution-annealed condition.

  14. EFFECT OF FLY ASHES AND SEWAGE SLUDGE ON Fe, Mn, Al, Si AND Co UPTAKE BY GRASS MIXTURE

    Directory of Open Access Journals (Sweden)

    Jacek Antonkiewicz

    2014-07-01

    Full Text Available Application of sewage sludge for environmental management of fly ashes landfill site affects chemical composition of plants. The aim of the present investigations was learning the effect of growing doses of municipal sewage sludge on the yield and uptake of Fe, Mn, Al, Si and Co by grass mixture used for environmental management of fly ashes landfill. The experimental design comprised of 5 objects differing by a dose of municipal sewage sludge supplied per 1 hectare: I. control, II. 25 t d.m., III. 50 t d.m., IV. 75 t d.m. and V. 100 t d.m. Application of sewage sludge resulted in the increase in yield. The content of analyzed elements in the grass mixture depended significantly on sewage sludge dose. Increasing doses of sewage sludge caused marked increase in Mn and Co contents, while they decreased Fe, Al and Si contents in the grass mixture. It was found that growing doses of sewage sludge caused an improvement of Fe to Mn ratio value in the grass mixture. Assessing the element content in the grass mixture in the view of forage value, it was found that Fe and Mn content did not meet the optimal value. Si content in plants was below the optimal value.

  15. First-principles study on electronic and magnetic properties of (Mn,Fe)-codoped ZnO

    International Nuclear Information System (INIS)

    Cao, Huawei; Lu, Pengfei; Cai, Ningning; Zhang, Xianlong; Yu, Zhongyuan; Gao, Tao; Wang, Shumin

    2014-01-01

    First-principle calculations have been performed to investigate the electronic and magnetic properties of (Mn,Fe)-codoped ZnO within the generalized gradient approximation (GGA) and GGA+U schemes. The formation energy of five different configurations is investigated and the ground state is demonstrated to be ferromagnetic ordering. By applying the U correction, the band gap energy of pure ZnO is close to the experimental values, while the ferromagnetic ordering of the ground state remains unchanged. The ferromagnetic stabilization is mediated by double exchange mechanism. In addition, defects corresponding to Zn-vacancy and O-vacancy cannot enhance the ferromagnetism obviously. These results indicate that (Mn,Fe)-codoped ZnO are promising magneto-electronic and spintronic materials. - Highlights: • We have considered 5 different configurations of Mn/Fe codoped bulk ZnO. • The formation energy is calculated to investigate the structural stability. • The double exchange mechanism is responsible for the ferromagnetic behavior. • Defects are not effective method to get room temperature ferromagnetism. • Mn/Fe codoped ZnO are promising ferromagnetic semiconductor materials

  16. First-principles study on electronic and magnetic properties of (Mn,Fe)-codoped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huawei [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Cai, Ningning; Zhang, Xianlong; Yu, Zhongyuan [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Gao, Tao [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Wang, Shumin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2014-02-15

    First-principle calculations have been performed to investigate the electronic and magnetic properties of (Mn,Fe)-codoped ZnO within the generalized gradient approximation (GGA) and GGA+U schemes. The formation energy of five different configurations is investigated and the ground state is demonstrated to be ferromagnetic ordering. By applying the U correction, the band gap energy of pure ZnO is close to the experimental values, while the ferromagnetic ordering of the ground state remains unchanged. The ferromagnetic stabilization is mediated by double exchange mechanism. In addition, defects corresponding to Zn-vacancy and O-vacancy cannot enhance the ferromagnetism obviously. These results indicate that (Mn,Fe)-codoped ZnO are promising magneto-electronic and spintronic materials. - Highlights: • We have considered 5 different configurations of Mn/Fe codoped bulk ZnO. • The formation energy is calculated to investigate the structural stability. • The double exchange mechanism is responsible for the ferromagnetic behavior. • Defects are not effective method to get room temperature ferromagnetism. • Mn/Fe codoped ZnO are promising ferromagnetic semiconductor materials.

  17. Correlations between atomic structure and giant magnetoresistance ratio in Co2(Fe,Mn)Si spin valves

    International Nuclear Information System (INIS)

    Lari, L; Sizeland, J; Gilks, D; Uddin, G M; Nedelkoski, Z; Hasnip, P J; Lazarov, V K; Yoshida, K; Galindo, P L; Sato, J; Oogane, M; Ando, Y; Hirohata, A

    2014-01-01

    We show that the magnetoresistance of Co 2 Fe x Mn 1−x Si-based spin valves, over 70% at low temperature, is directly related to the structural ordering in the electrodes and at the electrodes/spacer (Co 2 Fe x Mn 1−x Si/Ag) interfaces. Aberration-corrected atomic resolution Z-contrast scanning transmission electron microscopy of device structures reveals that annealing at 350 °C and 500 °C creates partial B2/L2 1 and fully L2 1 ordering of electrodes, respectively. Interface structural studies show that the Ag/Co 2 Fe x Mn 1−x Si interface is more ordered compared to the Co 2 Fe x Mn 1−x Si/Ag interface. The release of interface strain is mediated by misfit dislocations that localize the strain around the dislocation cores, and the effect of this strain is assessed by first principles electronic structure calculations. This study suggests that by improving the atomic ordering and strain at the interfaces, further enhancement of the magnetoresistance of CFMS-based current-perpendicular-to-plane spin valves is possible. (fast track communication)

  18. Effect of co-addition of RE, Fe and Mn on the microstructure and performance of A390 alloy

    International Nuclear Information System (INIS)

    Li Yunguo; Wu Yuying; Qian Zhao; Liu Xiangfa

    2009-01-01

    The co-addition effect of RE, Mn and Fe on the microstructure and high-temperature strength of A390 has been conducted. The alloying effect of RE has also been explored. Formation of detrimental long-acicular RE-rich phase is not observed. The AlSiCuCeLa phase, α-Al(Mn,Fe)-Si phase and another complex phase composed of Al, Si, Mn, Fe, Cu and RE are observed to form after addition. RE can decrease the diffusion rates of Cu, Mg in the aging process and the intermetallics nucleate on a localized scale, but could not become coarse during heat-treatment. The electronegativity differences between RE and Al or Si are larger than those between Cu and Al or Si, so the RE-rich intermetallic compounds in Al-Si alloys are more stable. The co-addition of RE, Mn and Fe proves to be an effective method to enhance the high-temperature strength of A390. The high-temperature strength of A390 is increased by 25% in this article using this method.

  19. Influence of Fe substitution on structural and magnetic features of BiMn2O5 nanostructures

    Science.gov (United States)

    Gaikwad, Vishwajit M.; Goyal, Saveena; Yanda, Premakumar; Sundaresan, A.; Chakraverty, Suvankar; Ganguli, Ashok K.

    2018-04-01

    Nanostructures of complex oxides [BiFexMn2-xO5 (x = 0, 1, 2)] have been designed to study their structural, optical and magnetic behaviour. X-ray diffraction data (XRD) revealed orthorhombic phase with Pbam space group. Noticeable expansion in unit cell parameters has been found from BiMn2O5 (x = 0) to BiFe2O4.5 (x = 2). The observed structural changes via tuning of B-site (x = 0-2) played an important role in overall magnetic properties. Transmission electron microscopic images confirm that the average particle size of all the materials are in nano domain range with different morphologies. From optical studies, it has been found that the observed energy band gap values are strongly related to 3d electron numbers. These values appear to be larger than that reported for bulk. Isothermal magnetization plots (at 5 K) show increase in coercivity (Hc) from x = 0 to x = 2. Temperature dependent magnetization studies implied anti-ferromagnetic interactions for BiMn2O5, frustrated magnet for BiFeMnO5 and ferromagnetic behaviour for BiFe2O4.5. Ferromagnetic state of nanostructured BiFe2O4.5 is in contrast with its bulk counterparts.

  20. Structural and electrical properties of La{sub 0.5}Ca{sub 0.5}Mn{sub 0.95}Fe{sub 0.05}O{sub 3+{delta}} perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, E.A., E-mail: emanattamohammed@yahoo.com [Department of Physics, Faculty of Science (Girl' s Branch), Al Azhar University, Nasr City, Cairo (Egypt)

    2012-12-05

    Highlights: Black-Right-Pointing-Pointer La{sub 0.5}Ca{sub 0.5}Mn{sub 0.95}Fe{sub 0.05}O{sub 3+{delta}} synthesis has been achieved by co-precipitation process. Black-Right-Pointing-Pointer Moessbauer results show an evidence for the local distortion of Mn(Fe)O{sub 6} octahedron. Black-Right-Pointing-Pointer Metal-Semiconductor transition temperature (T{sub p}) is observed. - Abstract: La{sub 0.5}Ca{sub 0.5}Mn{sub 0.95}Fe{sub 0.05}O{sub 3+{delta}} was synthesized by co-precipitation method. The structure refinement by using the Rietveld method indicates that the sample was single phase with the presence of small impurities (Mn{sub 3}O{sub 4}) and crystallizes in an orthorhombic (Pbmn) structure. The room temperature (RT) Moessbauer spectrum shows clear evidence of the local structural distortion of the Mn(Fe)O{sub 6} octahedron on the basis of non-zero nuclear quadrupole interactions for high-spin Fe{sup 3+} ions. The Jahn-Teller coupling strength (E{sub JT}) was estimated from the Moessbauer results. Metal-Semiconductor transition temperature (T{sub p}) is observed at 80 K. At high temperature (T{sub P} < T < {theta}{sub D}/2) conductivity data satisfy the variable range hopping (VRH) model. For T > {theta}{sub D}/2 the small polaron hopping model is more appropriate than the VRH model.

  1. Metal Injection Molding (MIM) of NdFeB Magnets

    OpenAIRE

    Hartwig T.; Lopes L.; Wendhausen P.; Ünal N.

    2014-01-01

    Due to the increased and unstable prices for Rare Earth elements there are activities to develop alternative hard magnetic materials. Reducing the amount of material necessary to produce complex sintered NdFeB magnets can also help to reduce some of the supply problem. Metal Injection Molding (MIM) is able to produce near net shape parts and can reduce the amount of finishing to achieve final geometry. Although MIM of NdFeB has been patented and published fairly soon after the development of ...

  2. Demetalation of Fe, Mn, and Cu chelates and complexes: application to the NMR analysis of micronutrient fertilizers.

    Science.gov (United States)

    López-Rayo, Sandra; Lucena, Juan J; Laghi, Luca; Cremonini, Mauro A

    2011-12-28

    The application of nuclear magnetic resonance (NMR) for the quality control of fertilizers based on Fe(3+), Mn(2+), and Cu(2+) chelates and complexes is precluded by the strong paramagnetism of metals. Recently, a method based on the use of ferrocyanide has been described to remove iron from commercial iron chelates based on the o,o-EDDHA [ethylenediamine-N,N'bis(2-hydroxyphenylacetic)acid] chelating agent for their analysis and quantification by NMR. The present work extended that procedure to other paramagnetic ions, manganese and copper, and other chelating, EDTA (ethylenediaminetetraacetic acid), IDHA [N-(1,2-dicarboxyethyl)-d,l-aspartic acid], and complexing agents, gluconate and heptagluconate. Results showed that the removal of the paramagnetic ions was complete, allowing us to obtain (1)H NMR spectra characterized by narrow peaks. The quantification of the ligands by NMR and high-performance liquid chromatography showed that their complete recovery was granted. The NMR analysis enabled detection and quantification of unknown impurities without the need of pure compounds as internal standards.

  3. Factors influencing shape memory effect and phase transformation behaviour of Fe-Mn-Si based shape memory alloys

    International Nuclear Information System (INIS)

    Li, H.; Dunne, D.; Kennon, N.

    1999-01-01

    The objective of this research work was to investigate the factors influencing the shape memory effect and phase transformation behaviour of three Fe-Mn-Si based shape memory alloys: Fe-28Mn-6Si, Fe-13Mn-5Si-10Cr-6Ni and Fe-20Mn-6Si-7Cr-1Cu. The research results show that the shape memory capacity of Fe-Mn-Si based shape memory alloys varies with annealing temperature, and this effect can be explained in terms of the effect of annealing on γ ε transformation. The nature and concentration of defects in austenite are strongly affected by annealing conditions. A high annealing temperature results in a low density of stacking faults, leading to a low nucleation rate during stress induced γ→ε transformation. The growth of ε martensite plates is favoured rather than the formation of new ε martensite plates. Coarse martensite plates produce high local transformation strains which can be accommodated by local slip deformation, leading to a reduction in the reversibility of the martensitic transformation and to a degradation of the shape memory effect. Annealing at low temperatures (≤673 K) for reasonable times does not eliminate complex defects (dislocation jogs, kinks and vacancy clusters) created by hot and cold working strains. These defects can retard the movement and rearrangement of Shockley partial dislocations, i.e. suppress γ→ε transformation, also leading to a degradation of shape memory effect. Annealing at about 873 K was found to be optimal to form the dislocation structures which are favourable for stress induced martensitic transformation, thus resulting in the best shape memory behaviour. (orig.)

  4. Dissolved trace metals (Ni, Zn, Co, Cd, Pb, Al, and Mn) around the Crozet Islands, Southern Ocean

    Science.gov (United States)

    Castrillejo, Maxi; Statham, Peter J.; Fones, Gary R.; Planquette, Hélène; Idrus, Farah; Roberts, Keiron

    2013-10-01

    A phytoplankton bloom shown to be naturally iron (Fe) induced occurs north of the Crozet Islands (Southern Ocean) every year, providing an ideal opportunity to study dissolved trace metal distributions within an island system located in a high nutrient low chlorophyll (HNLC) region. We present water column profiles of dissolved nickel (Ni), zinc (Zn), cobalt (Co), cadmium (Cd), lead (Pb), aluminium (Al), and manganese (Mn) obtained as part of the NERC CROZEX program during austral summer (2004-2005). Two stations (M3 and M1) were sampled downstream (north) of Crozet in the bloom area and near the islands, along with a control station (M2) in the HNLC zone upstream (south) of the islands. The general range found was for Ni, 4.64-6.31 nM; Zn, 1.59-7.75 nM; Co, 24-49 pM; Cd, 135-673 pM; Pb, 6-22 pM; Al, 0.13-2.15 nM; and Mn, 0.07-0.64 nM. Vertical profiles indicate little island influence to the south with values in the range of other trace metal deprived regions of the Southern Ocean. Significant removal of Ni and Cd was observed in the bloom and Zn was moderately correlated with reactive silicate (Si) indicating diatom control over the internal cycling of this metal. Higher concentrations of Zn and Cd were observed near the islands. Pb, Al, and Mn distributions also suggest small but significant atmospheric dust supply particularly in the northern region.

  5. Decay properties of 68,69,70Mn: Probing collectivity up to N=44 in Fe isotopic chain

    Directory of Open Access Journals (Sweden)

    G. Benzoni

    2015-12-01

    Full Text Available The β decays Mn68→Fe68, Mn69→Fe69 and Mn70→Fe70 have been measured at the RIBF facility at RIKEN using the EURICA γ spectrometer combined with an active stopper consisting of a stack of Si detectors. The nuclei were produced as fission fragments from a beam of 238U at a bombarding energy of 345 MeV/nucleon impinging on a Be target and selected using the BigRIPS separator. Half-lives and β-delayed neutron emission probabilities have been extracted for these decays, together with first experimental information on excited states populated in 69,70Fe. The data indicate a continuously increasing deformation for Fe isotopes up to A=70. This is interpreted, as for Cr isotopes, in terms of the interplay between the quadrupole correlations of the ν1d5/2 and ν0g9/2 orbitals and the monopole component of the π0f7/2–ν0f5/2 interaction.

  6. Fabrication and characterization of nanostructured Fe3S4, an isostructural compound of half-metallic Fe3O4

    KAUST Repository

    Li, Peng; Xia, Chuan; Zhang, Qiang; Guo, Zaibing; Cui, Wenyao; Bai, Haili; Alshareef, Husam N.; Zhang, Xixiang

    2015-01-01

    High-purity, well-crystallized spinel Fe3S4 nanoplatelets were synthesized by the hydrothermal method, and the saturation magnetic moment of Fe3S4 was measured at 1.83 μB/f.u. The temperature-dependent resistivity of Fe3S4 was metallic

  7. The Two-Dimensional MnO2/Graphene Interface: Half-metallicity and Quantum Anomalous Hall State

    KAUST Repository

    Gan, Liyong

    2015-10-07

    We explore the electronic properties of the MnO2/graphene interface by first-principles calculations, showing that MnO2 becomes half-metallic. MnO2 in the MnO2/graphene/MnO2 system provides time-reversal and inversion symmetry breaking. Spin splitting by proximity occurs at the Dirac points and a topologically nontrivial band gap is opened, enabling a quantum anomalous Hall state. The half-metallicity, spin splitting, and size of the band gap depend on the interfacial interaction, which can be tuned by strain engineering.

  8. The Two-Dimensional MnO2/Graphene Interface: Half-metallicity and Quantum Anomalous Hall State

    KAUST Repository

    Gan, Liyong; Zhang, Qingyun; Guo, Chun-Sheng; Schwingenschlö gl, Udo; Zhao, Yong

    2015-01-01

    We explore the electronic properties of the MnO2/graphene interface by first-principles calculations, showing that MnO2 becomes half-metallic. MnO2 in the MnO2/graphene/MnO2 system provides time-reversal and inversion symmetry breaking. Spin splitting by proximity occurs at the Dirac points and a topologically nontrivial band gap is opened, enabling a quantum anomalous Hall state. The half-metallicity, spin splitting, and size of the band gap depend on the interfacial interaction, which can be tuned by strain engineering.

  9. Measurement of carbon activity in sodium by Fe-Mn 20% alloy, and by strainless austenitic steel 304L and 316L

    International Nuclear Information System (INIS)

    Oberlin, C.; Saint Paul, P.; Baque, P.; Champeix, L.

    1980-01-01

    Precise knowledge of carbon activity in sodium used as coolant in fast breeder reactors, is essential for continuous survey of carburization-decarburization processes. Carbon activity can be periodically surveyed by measuring the carbon concentration or by hot trap like metal alloy strip placed in sodium loop. In fact, in equilibrium, activity of carbon in sodium is equal to the activity in metal alloy. Thus if the relation between concentration of carbon and it activity in the alloy is known, it is possible to estimate the activity of carbon in sodium. Materials to be used should have high solubility in carbon at the needed temperature. They should quickly attain equilibrium with sodium and they should not contain impurities that can affect the results. Materials chosen according to these criteria were Fe-Mn 20%, stainless austenitic steel AISI 304L and 316L

  10. Impact of lattice strain on the tunnel magnetoresistance in Fe/insulator/Fe and Fe/insulator/La0.67Sr0.33MnO3 magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur

    2013-08-19

    The objective of this work is to describe the tunnel electron current in single-barrier magnetic tunnel junctions within an approach that goes beyond the single-band transport model. We propose a ballistic multichannel electron transport model that can explain the influence of in-plane lattice strain on the tunnel magnetoresistance as well as the asymmetric voltage behavior. We consider as an example single-crystal magnetic Fe(110) electrodes for Fe/insulator/Fe and Fe/insulator/La0.67Sr0.33MnO3 tunnel junctions, where the electronic band structures of Fe and La0.67Sr0.33MnO3 are derived by ab initio calculations.

  11. Impact of lattice strain on the tunnel magnetoresistance in Fe/insulator/Fe and Fe/insulator/La0.67Sr0.33MnO3 magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur; Saeed, Yasir; Schwingenschlö gl, Udo; Singh, Nirpendra; Useinov, N.

    2013-01-01

    The objective of this work is to describe the tunnel electron current in single-barrier magnetic tunnel junctions within an approach that goes beyond the single-band transport model. We propose a ballistic multichannel electron transport model that can explain the influence of in-plane lattice strain on the tunnel magnetoresistance as well as the asymmetric voltage behavior. We consider as an example single-crystal magnetic Fe(110) electrodes for Fe/insulator/Fe and Fe/insulator/La0.67Sr0.33MnO3 tunnel junctions, where the electronic band structures of Fe and La0.67Sr0.33MnO3 are derived by ab initio calculations.

  12. Rapid liquid phase sintered Mn doped BiFeO3 ceramics with enhanced polarization and weak magnetization

    Science.gov (United States)

    Kumar, Manoj; Yadav, K. L.

    2007-12-01

    Single-phase BiFe1-xMnxO3 multiferroic ceramics have been synthesized by rapid liquid phase sintering method to study the influence of Mn substitution on their crystal structure, dielectric, magnetic, and ferroelectric behaviors. From XRD analysis it is seen that Mn substitution does not affect the crystal structure of the BiFe1-xMnxO3 system. An enhancement in magnetization was observed for BiFe1-xMnxO3 ceramics. However, the ferooelectric hysteresis loops were not really saturated, we observed a spontaneous polarization of 10.23μC /cm2 under the applied field of 42kV/cm and remanent polarization of 3.99μC/cm2 for x =0.3 ceramic.

  13. Shape memory effect of Fe-14% Mn-6% Si-9% Cr-6% Ni alloy polycrystals

    International Nuclear Information System (INIS)

    Inagaki, Hirosuke

    1992-01-01

    Factors affecting the shape memory effect in Fe-14% Mn-6% Si-9% Cr-6% Ni alloy polycrystals were studied in detail. It was found that the shape memory effect in this alloy was most influenced by the amount of deformation. With increasing amount of deformation, the shape memory effect diminished appreciably. Although the fraction of the initial dimensional change that could be restored was about 45% in the specimen strained by 4%, only 21% of the initial dimensional change was recovered in the specimen strained by 9%. Temperatures of deformation were found to be also an important factor that affected the shape memory effect. The maximum shape memory effect was observed in the specimens strained at temperatures between the M s and M d temperatures. In this alloy, however, specimens strained at temperatures below the M s temperature indicated a relatively large shape memory effect, too. It was further found that the shape memory effect was appreciably intensified by repeated straining and annealing, especially when straining was performed at 500deg C. It was suggested that the shape memory effect in Fe base alloys was strongly influenced by the dislocation substructure present in the starting material. (orig.) [de

  14. Synthesis, Characterization, and Microwave-Absorbing Properties of Polypyrrole/MnFe2O4 Nanocomposite

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Hosseini

    2012-01-01

    Full Text Available Conductive polypyrrole (PPy-manganese ferrite (MnFe2O4 nanocomposites with core-shell structure were synthesized by in situ polymerization in the presence of dodecyl benzene sulfonic acid (DBSA as the surfactant and dopant and iron chloride (FeCl3 as the oxidant. The structure and magnetic properties of manganese ferrite nanoparticles were measured by using powder X-ray diffraction (XRD and vibrating sample magnetometer (VSM, respectively. Its morphology, microstructure, and DC conductivity of the nanocomposite were characterized by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, and four-wire technique, respectively. The microwave-absorbing properties of the nanocomposite powders dispersing in resin acrylic coating with the coating thickness of 1.5 mm were investigated by using vector network analyzers in the frequency range of 8–12 GHz. A minimum reflection loss of −12 dB was observed at 11.3 GHz.

  15. Negative and positive magnetocaloric effect in Ni-Fe-Mn-Ga alloy

    International Nuclear Information System (INIS)

    Duan Jingfang; Huang Peng; Zhang Hu; Long Yi; Wu Guangheng; Rongchang Ye; Chang Yongqin; Farong Wan

    2007-01-01

    The phase transition process and magnetic entropy change ΔS of Ni 54.5 FeMn 20 Ga 24.5 alloy were studied. Substitution of Fe for Ni increases