WorldWideScience

Sample records for metal contaminated stream

  1. 49 Trace Metals' Contamination of Stream Water and Irrigated Crop ...

    African Journals Online (AJOL)

    ABUBAKAR AHMED

    contamination. Solid waste and run-off that are discharged into the stream indiscriminately are also sources of contamination with such metals. Municipal solid waste contains a variety of materials which contain trace metals. An investigation on municipal waste site in. Yola, Nigeria showed that the soil of the dump site was ...

  2. Heavy metal contamination in stream water and sediments of gold ...

    African Journals Online (AJOL)

    This study assessed the seasonal variation in heavy metal contamination of stream water and sediments in the gold mining area of Atakunmosa West local Government, Osun State, Nigeria. Twelve villages of prominence in illegal gold mining were selected for the study covering dry and wet seasons of 2012. Stream water ...

  3. Trace Metals' Contamination of Stream Water and Irrigated Crop at ...

    African Journals Online (AJOL)

    Therefore, water and Daucus Carota sativa obtained from these sites were unsafe for human consumption as they pose serious health risks due to contamination with the metals. For environmental sustainability the management strategies suggested includes proper treatment of effluents discharged into the stream and ...

  4. DOWN-STREAM SPATIAL DISTRIBUTION OF ANTIBIOTIC RESISTANCE TRAITS ALONG METAL CONTAMINATED STREAM REACHES

    Energy Technology Data Exchange (ETDEWEB)

    Tuckfield, C; J V Mcarthur (NOEMAIL), J

    2007-04-16

    Sediment bacteria samples were collected from three streams in South Carolina, two contaminated with multiple metals (Four Mile Creek and Castor Creek), one uncontaminated (Meyers Branch), and another metal contaminated stream (Lampert Creek) in northern Washington State. Growth plates inoculated with Four Mile Creek sample extracts show bacteria colony growth after incubation on plates containing either one of two aminoglycosides (kanamycin or streptomycin), tetracycline or chloramphenocol. This study analyzes the spatial pattern of antibiotic resistance in culturable sediment bacteria in all four streams that may be due to metal contamination. We summarize the two aminoglycoside resistance measures and the 10 metals concentrations by Principal Components Analysis. Respectively, 63% and 58% of the variability was explained in the 1st principal component of each variable set. We used the respective multivariate summary metrics (i.e. 1st principal component scores) as input measures for exploring the spatial correlation between antibiotic resistance and metal concentration for each stream reach sampled. Results show a significant and negative correlation between metals scores versus aminoglycoside resistance scores and suggest that selection for metal tolerance among sediment bacteria may influence selection for antibiotic resistance differently than previously supposed.. In addition, we borrow a method from geostatistics (variography) wherein a spatial cross-correlation analysis shows that decreasing metal concentrations scores are associated with increasing aminoglycoside resistance scores as the separation distance between sediment samples decreases, but for contaminated streams only. Since these results were counter to our initial expectation and to other experimental evidence for water column bacteria, we suspect our field results are influenced by metal bioavailability in the sediments and by a contaminant promoted interaction or ''cocktail effect

  5. Fingerprinting two metal contaminants in streams with Cu isotopes near the Dexing Mine, China

    Energy Technology Data Exchange (ETDEWEB)

    Song, Shiming [Chinese Geological Survey, Nanjing Center, Nanjing (China); Mathur, Ryan, E-mail: mathurr@juniata.edu [Department of Geology, Juniata College, Huntingdon, PA (United States); Ruiz, Joaquin [Department of Geosciences, University of Arizona, Tucson, AZ (United States); Chen, Dandan [Chinese Geological Survey, Nanjing Center, Nanjing (China); Allin, Nicholas [Department of Geology, Juniata College, Huntingdon, PA (United States); Guo, Kunyi; Kang, Wenkai [Chinese Geological Survey, Nanjing Center, Nanjing (China)

    2016-02-15

    Transition metal isotope signatures are becoming useful for fingerprinting sources in surface waters. This study explored the use of Cu isotope values to trace dissolved metal contaminants in stream water throughout a watershed affected by mining by-products of the Dexing Mine, the largest porphyry Cu operation in Asia. Cu isotope values of stream water were compared to potential mineral sources of Cu in the mining operation, and to proximity to the known Cu sources. The first mineral source, chalcopyrite, CuFeS{sub 2} has a ‘tight’ cluster of Cu isotope values (− 0.15‰ to + 1.65‰; + 0.37 ± 0.6‰, 1σ, n = 10), and the second mineral source, pyrite (FeS{sub 2}), has a much larger range of Cu isotope values (− 4‰ to + 11.9‰; 2.7 ± 4.3‰, 1σ, n = 16). Dissolved Cu isotope values of stream water indicated metal derived from either chalcopyrite or pyrite. Above known Cu mineralization, stream waters are approximately + 1.5‰ greater than the average chalcopyrite and are interpreted as derived from weathering of chalcopyrite. In contrast, dissolved Cu isotope values in stream water emanating from tailings piles had Cu isotope values similar to or greater than pyrite (>+6‰, a common mineral in the tailings). These values are interpreted as sourced from the tailings, even in solutions that possess significantly lower concentrations of Cu (< 0.05 ppm). Elevated Cu isotope values were also found in two soil and two tailings samples (δ{sup 65}Cu ranging between + 2 to + 5‰). These data point to the mineral pyrite in tailings as the mineral source for the elevated Cu isotope values. Therefore, Cu isotope values of waters emanating from a clearly contaminated drainage possess different Cu isotope values, permitting the discrimination of Cu derived from chalcopyrite and pyrite in solution. Data demonstrate the utility of Cu isotopic values in waters, minerals, and soils to fingerprint metallic contamination for environmental problems. - Highlights:

  6. Heavy metal contamination of stream water and sediment in the Taejon area

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Woong [Paichai University, Taejon (Korea, Republic of); Lee, Hyun Koo [Chungnam National University, Taejon (Korea, Republic of)

    1996-08-31

    Associated with the rapid pace of overpopulation and industrialization is the increase of municipal and industrial wastewater and heavy metal contamination from these point sources have received much attention in the Taejon area. To reduce the environmental problems, 21 stream sediments from Gap-chun, Yudeung-chun, Yusung-chun and Keum river have been analyzed for Cd, Cu, Pb and Zn. The results show that heavy metal concentrations are high in sediments from the Sintanjin and Taehwa Industrial Complex area with particular reference to 1388 {mu}g/g Cu in the stream sediment of Yusung-chun. When the geochemical map drawn from the Kriging technique of these data are compared with the industrialization and urbanization index map, high concentrations of heavy metals are found in stream sediments in industrialized areas resulting from the accumulation of heavy metals from the polluting factories. Concentrations of Cu in sediments from the Taehwa Industrial Complex area and those of Zn in sediments from the Sintanjin Complex area higher than EPA standard in the U.S.A and may be the potential sources of pollution in Keum river with possible implications to human health. For the speciation of Cu, Pb and Zn, the high proportions of exchangeable phase of Cu and Zn in stream sediments indicate that the metals originate not from parent materials but from wastewater and exist as the adsorbed phase on the surface of sediments. These metals are easily dissolved into the water by the reaction and relative amounts of easily dissolved phase of metals are in the order of Cu = Zn > Pb. (author). 17 refs., 4 tabs., 7 figs.

  7. Effects of anthropogenic heavy metal contamination on litter decomposition in streams – A meta-analysis

    International Nuclear Information System (INIS)

    Ferreira, Verónica; Koricheva, Julia; Duarte, Sofia; Niyogi, Dev K.; Guérold, François

    2016-01-01

    Many streams worldwide are affected by heavy metal contamination, mostly due to past and present mining activities. Here we present a meta-analysis of 38 studies (reporting 133 cases) published between 1978 and 2014 that reported the effects of heavy metal contamination on the decomposition of terrestrial litter in running waters. Overall, heavy metal contamination significantly inhibited litter decomposition. The effect was stronger for laboratory than for field studies, likely due to better control of confounding variables in the former, antagonistic interactions between metals and other environmental variables in the latter or differences in metal identity and concentration between studies. For laboratory studies, only copper + zinc mixtures significantly inhibited litter decomposition, while no significant effects were found for silver, aluminum, cadmium or zinc considered individually. For field studies, coal and metal mine drainage strongly inhibited litter decomposition, while drainage from motorways had no significant effects. The effect of coal mine drainage did not depend on drainage pH. Coal mine drainage negatively affected leaf litter decomposition independently of leaf litter identity; no significant effect was found for wood decomposition, but sample size was low. Considering metal mine drainage, arsenic mines had a stronger negative effect on leaf litter decomposition than gold or pyrite mines. Metal mine drainage significantly inhibited leaf litter decomposition driven by both microbes and invertebrates, independently of leaf litter identity; no significant effect was found for microbially driven decomposition, but sample size was low. Overall, mine drainage negatively affects leaf litter decomposition, likely through negative effects on invertebrates. - Highlights: • A meta-analysis was done to assess the effects of heavy metals on litter decomposition. • Heavy metals significantly and strongly inhibited litter decomposition in streams.

  8. Effects of anthropogenic heavy metal contamination on litter decomposition in streams - A meta-analysis.

    Science.gov (United States)

    Ferreira, Verónica; Koricheva, Julia; Duarte, Sofia; Niyogi, Dev K; Guérold, François

    2016-03-01

    Many streams worldwide are affected by heavy metal contamination, mostly due to past and present mining activities. Here we present a meta-analysis of 38 studies (reporting 133 cases) published between 1978 and 2014 that reported the effects of heavy metal contamination on the decomposition of terrestrial litter in running waters. Overall, heavy metal contamination significantly inhibited litter decomposition. The effect was stronger for laboratory than for field studies, likely due to better control of confounding variables in the former, antagonistic interactions between metals and other environmental variables in the latter or differences in metal identity and concentration between studies. For laboratory studies, only copper + zinc mixtures significantly inhibited litter decomposition, while no significant effects were found for silver, aluminum, cadmium or zinc considered individually. For field studies, coal and metal mine drainage strongly inhibited litter decomposition, while drainage from motorways had no significant effects. The effect of coal mine drainage did not depend on drainage pH. Coal mine drainage negatively affected leaf litter decomposition independently of leaf litter identity; no significant effect was found for wood decomposition, but sample size was low. Considering metal mine drainage, arsenic mines had a stronger negative effect on leaf litter decomposition than gold or pyrite mines. Metal mine drainage significantly inhibited leaf litter decomposition driven by both microbes and invertebrates, independently of leaf litter identity; no significant effect was found for microbially driven decomposition, but sample size was low. Overall, mine drainage negatively affects leaf litter decomposition, likely through negative effects on invertebrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Assessment of trace metal contamination in stream sediments of the Tuul River, Mongolia

    Science.gov (United States)

    Dalai, B.

    2011-12-01

    Thirty four sediment samples were collected in Ulaanbaatar basin, along the Tuul River which is the main source of water for the capital city Ulaanbaatar, Mongolia. The catchment can be divided three parts (upper, middle, and lower) according to the extent of urbanization. The upper part of the river basin is comparatively less affected by human activity and it can be represent the natural background condition. The middle part is the urban area of Ulaanbaatar and lower part extends SW of the end of the urban area mostly used for agriculture and farming activity. The present study focused on the levels of potentially toxic metals such as As, Pb, Zn, Cu, Ni and Cr in order to assess the extent of environmental pollution and to discuss the origin of these contaminants in sediments of the Tuul River using X-ray fluorescence analyses. Metal concentrations in the sediments are discussed by comparison with average Upper Continental Crust values (UCC) and ecological risk assessment by reference to sediment quality guidelines (SQG). The results showed thet average abundances of metals are measurable contrast between upper, middle and lower parts of the river. The Upper part and its surrounding area's sediment signature indicated that more depletion comparatively other parts (Pb, Zn, Cu, Ni and Cr), whereas enrichment sign did not detect. However, among the Upper part sediments, two samples (NA1 and NA2) enriched with trace metals which sampled from Nalaikh area were significantly affected by coal mining activity. Most metals are (As, Pb, Zn, Cu and Ni) higher in the middle part (within the city) than the upper and lower part due to the urban activities. The small tributaries such as Selbe, Uliastai, Gachuurt and Tolgoit were significantly affected by urban activities and highest values are detected from them. Lower part significantly enriched with Cr (av 98 ppm). Highest concentration of Cr (183 ppm) was at Shuvuu which is receiving point of domestic and industrial

  10. Environmental impact of mining activities in the Lousal area (Portugal): chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream.

    Science.gov (United States)

    Luís, Ana Teresa; Teixeira, Paula; Almeida, Salomé Fernandes Pinheiro; Matos, João Xavier; da Silva, Eduardo Ferreira

    2011-09-15

    Lousal mine is a typical "abandoned mine" with all sorts of problems as consequence of the cessation of the mining activity and lack of infrastructure maintenance. The mine is closed at present, but the heavy metal enriched tailings remain at the surface in oxidizing conditions. Surface water and stream sediments revealed much higher concentrations than the local geochemical background values, which the "Contaminated Sediment Standing Team" classifies as very toxic. High concentrations of Cu, Pb, Zn, As, Cd and Hg occurred within the stream sediments downstream of the tailings sites (up to: 817 mg kg(-1) As, 6.7 mg kg(-1) Cd, 1568 mg kg(-1) Cu, 1059 mg kg(-1) Pb, 82.4 mg kg(-1) Sb, 4373 mg kg(-1) Zn). The AMD waters showed values of pH ranging from 1.9 to 2.9 and concentrations of 9249 to 20,700 mg L(-1) SO(4)(-2), 959 to 4830 mg L(-1) Fe and 136 to 624 mg L(-1) Al. Meanwhile, the acid effluents and mixed stream waters also carried high contents of SO(4)(2-,) Fe, Al, Cu, Pb, Zn, Cd, and As, generally exceeding the Fresh Water Aquatic Life Acute Criteria. Negative impacts in the diatom communities growing at different sites along a strong metal pollution gradient were shown through Canonical Correspondence Analysis: in the sites influenced by Acid Mine Drainage (AMD), the dominant taxon was Achnanthidium minutissimum. However, Pinnularia acoricola was the dominant species when the environmental conditions were extremely adverse: very low pH and high metal concentrations (sites 2 and 3). Teratological forms of Achnanthidium minutissimum (Kützing) Czarnecki, Brachysira vitrea (Grunow) Ross in Hartley, Fragilaria rumpens (Kützing) G. W. F. Carlson and Nitzschia hantzschiana Rabenhorst were found. A morphometric study of B. vitrea showed that a decrease in size was evident at the most contaminated sites. These results are evidence of metal and acidic pollution. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Removal of heavy metals and organic contaminants from aqueous streams by novel filtration methods. 1998 annual progress report

    International Nuclear Information System (INIS)

    Rodriguez, N.M.

    1998-01-01

    'Graphite nanofibers are a new type of material consisting of nanosized graphite platelets where only edges are exposed. Taking advantage of this unique configuration the authors objective is: (1) To produce graphite nanofibers with structural properties suitable for the removal of contaminants from water. (2) To test the suitability of the material in the removal of organic from aqueous solutions. (3) To determine the ability of the nanofibers to function as an electrochemical separation medium the selective removal of metal contaminants from solutions. This report summarizes work after 1.5 of a 3-year project. During this period, efforts have been concentrated on the production, characterization and optimization of graphite nanofibers (GNF). This novel material has been developed in the laboratory from the metal catalyzed decomposition of certain hydrocarbons (1). The structures possess a cross-sectional area that varies between 5 to 100 nm and have lengths ranging from 5 to 100 mm (2). High-resolution transmission electron microscopy studies have revealed that the nanofibers consist of extremely well-ordered graphite platelets, which are oriented in various directions with respect to the fiber axis (3). The arrangement of the graphene layers can be tailored to a desired geometry by choice of the correct catalyst system and reaction conditions, and it is therefore possible to generate structures where the layers are stacked in a ribbon, herring-bone, or stacked orientation. The research has been directed on two fronts: (a) the use of the material for the removal of organic contaminants, and (b) taking advantage of the high electrical conductivity as well as high surface area of the material to use it as electrode for the electrochemical removal of metal pollutants from aqueous streams.'

  12. Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Pribram, Czech Republic

    International Nuclear Information System (INIS)

    Ettler, Vojtech; Mihaljevic, Martin; Sebek, Ondrej; Molek, Michael; Grygar, Tomas; Zeman, Josef

    2006-01-01

    Stream sediments from the mining and smelting district of Pribram, Czech Republic, were studied to determine the degree, sources and dispersal of metal contamination using a combination of bulk metal and mineralogical determinations, sequential extractions and Pb isotopic analyses. The highest metal concentrations were found 3-4 km downstream from the main polymetallic mining site (9800 mg Pb kg -1 , 26 039 mg Zn kg -1 , 316.4 mg Cd kg -1 , 256.9 mg Cu kg -1 ). The calculated enrichment factors (EFs) confirmed the extreme degree of contamination by Pb, Zn and Cd (EF > 40). Lead, Zn and Cd are bound mainly to Fe oxides and hydroxides. In the most contaminated samples Pb is also present as Pb carbonates and litharge (PbO). Lead isotopic analysis indicates that the predominant source of stream sediment contamination is historic Pb-Ag mining and primary Pb smelting ( 206 Pb/ 207 Pb = 1.16), while the role of secondary smelting (car battery processing) is negligible. - Pb isotopes properly complete traditional investigations of metal sources and dispersal in contaminated stream sediments

  13. Metal speciation and attenuation in stream waters and sediments contaminated by landfill leachate

    Czech Academy of Sciences Publication Activity Database

    Ettler, V.; Matura, M.; Mihaljevič, M.; Bezdička, Petr

    2006-01-01

    Roč. 49, č. 4 (2006), s. 610-619 ISSN 0943-0105 R&D Projects: GA AV ČR(CZ) KJB3111402; GA MŠk(CZ) LN00A028 Institutional research plan: CEZ:AV0Z40320502 Keywords : metals * water * sediment Subject RIV: CA - Inorganic Chemistry Impact factor: 0.610, year: 2006

  14. Occurrence, distribution, and volume of metals-contaminated sediment of selected streams draining the Tri-State Mining District, Missouri, Oklahoma, and Kansas, 2011–12

    Science.gov (United States)

    Smith, D. Charlie

    2016-12-14

    Lead and zinc were mined in the Tri-State Mining District (TSMD) of southwest Missouri, northeast Oklahoma, and southeast Kansas for more than 100 years. The effects of mining on the landscape are still evident, nearly 50 years after the last mine ceased operation. The legacies of mining are the mine waste and discharge of groundwater from underground mines. The mine-waste piles and underground mines are continuous sources of trace metals (primarily lead, zinc, and cadmium) to the streams that drain the TSMD. Many previous studies characterized the horizontal extent of mine-waste contamination in streams but little information exists on the depth of mine-waste contamination in these streams. Characterizing the vertical extent of contamination is difficult because of the large amount of coarse-grained material, ranging from coarse gravel to boulders, within channel sediment. The U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife service, collected channel-sediment samples at depth for subsequent analyses that would allow attainment of the following goals: (1) determination of the relation between concentration and depth for lead, zinc and cadmium in channel sediments and flood-plain sediments, and (2) determination of the volume of gravel-bar sediment from the surface to the maximum depth with concentrations of these metals that exceeded sediment-quality guidelines. For the purpose of this report, volume of gravel-bar sediment is considered to be distributed in two forms, gravel bars and the wetted channel, and this study focused on gravel bars. Concentrations of lead, zinc, and cadmium in samples were compared to the consensus probable effects concentration (CPEC) and Tri-State Mining District specific probable effects concentration (TPEC) sediment-quality guidelines.During the study, more than 700 sediment samples were collected from borings at multiple sites, including gravel bars and flood plains, along Center Creek, Turkey Creek, Shoal Creek

  15. THE METALLICITY OF THE MONOCEROS STREAM

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, Aaron M.; Finkbeiner, Douglas P. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Frebel, Anna; Juric, Mario, E-mail: ameisner@fas.harvard.edu, E-mail: mjuric@cfa.harvard.edu, E-mail: dfinkbeiner@cfa.harvard.edu, E-mail: afrebel@mit.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-07-10

    We present low-resolution MMT Hectospec spectroscopy of 594 candidate Monoceros stream member stars. Based on strong color-magnitude diagram overdensities, we targeted three fields within the stream's footprint, with 178 Degree-Sign {<=} l {<=} 203 Degree-Sign and -25 Degree-Sign {<=} b {<=} 25 Degree-Sign . By comparing the measured iron abundances with those expected from smooth Galactic components alone, we measure, for the first time, the spectroscopic metallicity distribution function for Monoceros. We find the stream to be chemically distinct from both the thick disk and halo, with [Fe/H] = -1, and do not detect a trend in the stream's metallicity with Galactic longitude. Passing from b = +25 Degree-Sign to b = -25 Degree-Sign , the median Monoceros metallicity trends upward by 0.1 dex, though uncertainties in modeling sample contamination by the disk and halo make this a marginal detection. In each field, we find Monoceros to have an intrinsic [Fe/H] dispersion of 0.10-0.22 dex. From the Ca II K line, we measure [Ca/Fe] for a subsample of metal-poor program stars with -1.1 < [Fe/H] < -0.5. In two of three fields, we find calcium deficiencies qualitatively similar to previously reported [Ti/Fe] underabundances in Monoceros and the Sagittarius tidal stream. Further, using 90 spectra of thick disk stars in the Monoceros pointings with b Almost-Equal-To {+-}25 Degree-Sign , we detect a 0.22 dex north/south metallicity asymmetry coincident with known stellar density asymmetry at R{sub GC} Almost-Equal-To 12 kpc and |Z| Almost-Equal-To 1.7 kpc. Our median Monoceros [Fe/H] = -1.0 and its relatively low dispersion naturally fit the expectation for an appropriately luminous M{sub V} {approx} - 13 dwarf galaxy progenitor.

  16. Removal of metallic and organic contaminants from aqueous streams by novel filtration methods. 1997 annual progress report

    International Nuclear Information System (INIS)

    Rodriguez, N.M.

    1997-01-01

    'Graphite nanofibers, are a novel material that has been developed in the laboratory from the metal catalyzed decomposition of certain hydrocarbons (1). These structures possess a cross-sectional area that varies between 5 to 100 nm and have lengths ranging from 5 to 100 mm (2). High-resolution transmission electron microscopy studies have revealed that the nanofibers consist of extremely well-ordered graphite platelets (3), which are oriented in various directions with respect to the fiber axis. The arrangement of the graphene layers can be tailored to a desired geometry by choice of the correct catalyst system and reaction conditions, and it is therefore possible to generate structures where the layers are stacked in a ribbon, herring-bone, or stacked orientation. An example of the later structure is shown in the high resolution electron micrograph, Figure 1a, where the lines across correspond to individual planes of graphite that are separated at a minimum distance of 0.34 nm. The structural features of the nanofiber can be better appreciated in the schematic renditions, Figures 1b and 1c. The unique combination of small cross-sectional area, which is estimated to be on average 20 nm, and the abundance of exposed edges makes the material an ideal solid for adsorption. The suitability of the material for the selective adsorption of a variety of molecules is illustrated in Figure 1c, where it can be seen that adsorption could be achieved upon access of the molecule to the inner regions of the solid. One the most outstanding features of graphite nanofibers, is that the solid consists entirely of non-rigid wall nanopores that extend across the entire solid. The process for the synthesis of graphite nanofibers produced from the decomposition of hydrocarbons and carbon monoxide over selected metal surfaces at temperatures over the range 450 to 700 C has been optimized and it is possible to produce relatively large quantities of high purity material in short periods of

  17. Evolution of Microbial “Streamer” Growths in an Acidic, Metal-Contaminated Stream Draining an Abandoned Underground Copper Mine

    Directory of Open Access Journals (Sweden)

    Catherine M. Kay

    2013-02-01

    Full Text Available A nine year study was carried out on the evolution of macroscopic “acid streamer” growths in acidic, metal-rich mine water from the point of construction of a new channel to drain an abandoned underground copper mine. The new channel became rapidly colonized by acidophilic bacteria: two species of autotrophic iron-oxidizers (Acidithiobacillus ferrivorans and “Ferrovum myxofaciens” and a heterotrophic iron-oxidizer (a novel genus/species with the proposed name “Acidithrix ferrooxidans”. The same bacteria dominated the acid streamer communities for the entire nine year period, with the autotrophic species accounting for ~80% of the micro-organisms in the streamer growths (as determined by terminal restriction enzyme fragment length polymorphism (T-RFLP analysis. Biodiversity of the acid streamers became somewhat greater in time, and included species of heterotrophic acidophiles that reduce ferric iron (Acidiphilium, Acidobacterium, Acidocella and gammaproteobacterium WJ2 and other autotrophic iron-oxidizers (Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans. The diversity of archaea in the acid streamers was far more limited; relatively few clones were obtained, all of which were very distantly related to known species of euryarchaeotes. Some differences were apparent between the acid streamer community and planktonic-phase bacteria. This study has provided unique insights into the evolution of an extremophilic microbial community, and identified several novel species of acidophilic prokaryotes.

  18. Concentration-Discharge Behavior of Contaminants in a Stream Impacted by Acid Mine Drainage

    Science.gov (United States)

    Shaw, M. E.; Klein, M.; Herndon, E.

    2017-12-01

    Acid mine drainage (AMD) has severely degraded streams throughout the Appalachian coal region of the United States. AMD occurs when pyrite contained in coal is exposed to water and air during mining activities and oxidized to release high concentrations of sulfate, metals, and acidity into water bodies. Little is known about the concentration-discharge (CQ) relationships of solutes in AMD-impacted streams due to the complicated nature of acid mine drainage systems. For example, streams may receive inputs from multiple sources that include runoff, constructed treatment systems, and abandoned mines that bypass these systems to continue to contaminate the streams. It is important to understand the CQ relationships of contaminants in AMD-impacted streams in order to elucidate contaminant sources and to predict effects on aquatic ecosystems. Here, we study the CQ behaviors of acid and metals in a contaminated watershed in northeastern Ohio where limestone channels have been installed to remediate water draining from a mine pool into the stream. Stream chemistry was measured in samples collected once per day or once per hour during storm events, and stream flow was measured continuously at the watershed outlet. Increases in stream velocity during storm events resulted in an increase in pH (from 3 to 6) that subsequently decreased back to 3 as flow decreased. Additionally, Fe and Mn concentrations in the stream were high during baseflow (7 and 15 mg/L, respectively) and decreased with increasing discharge during storm events. These results indicate that the treatment system is only effective at neutralizing stream acidity and removing metals when water flow through the limestone channel is continuous. We infer that the acidic and metal-rich baseflow derives from upwelling of contaminated groundwater or subsurface flow from a mine pool. Ongoing studies aim to isolate the source of this baseflow contamination and evaluate the geochemical transformations that occur as it

  19. Characterizing Soil Lead Contamination Near Streams in Oakland, California

    Science.gov (United States)

    Tanouye, D.

    2017-12-01

    Lead (Pb) contamination of soils, groundwater, and surface waters is a major concern because of the potential health risks related to accumulation of high levels of lead in blood. This is a pervasive issue in many low-income neighborhoods throughout the United States, and is documented to be particularly acute in West Oakland, California. The fate and transport of lead in the environment is largely dependent on how it will bind to various solids and compounds in solution. These adsorption mechanisms are a principal aspect of metal dissolution and chemical speciation. Stream channels are natural drainage areas for urban runoff, and may represent a hot spot for increased levels of lead. This study evaluates the environmental conditions at 15 sites near streams in West Oakland using in-situ soil sampling with the handheld X-Ray Fluorescence (XRF) analyzer to measure concentrations of lead in soil. Results from this study suggest that the levels of lead in soils near stream channels are generally lower than the regional regulatory screening level of 80 milligrams per kilogram (mg/kg), but the highest concentrations are found near stream banks. The spatial distribution can be explained by a contaminant transport process related to the presence of fluvial channels.

  20. Heavy metals in Pantanoso and Miguelete small stream

    International Nuclear Information System (INIS)

    Odino, R.; Delmonte, D.; Feola, G.; Velez, A.; Cacho, C.

    1998-01-01

    The streams Miguelete and Pantanoso in the city of Montevideo present high levels of organic and inorganic contamination. The main causes of this deterioration are: old and inadequate reparation systems and the contamination is generated by the pokers and the industry. The tanneries and laundries of wools are the highly pollutant industries. The analytic technique applied is the Fluorescence of Rays x Dispersiva in Energy (EDFRX). In the two streams a marked relationship between the levels of heavy metals and the distribution of the industries responsible for the contamination was observed. A study of the enrichment of Pb,Cu, Zn and Cr in the sediments exists. Levels of Chromium in the Pantanoso Stream is very high due to the existence of three tanneries [es

  1. Melting of contaminated metallic waste

    International Nuclear Information System (INIS)

    Lee, Y.-S.; Cheng, S.-Y.; Kung, H.-T.; Lin, L.-F.

    2004-01-01

    Approximately 100 tons of contaminated metallic wastes were produced each year due to maintenance for each TPC's nuclear power reactor and it was roughly estimated that there will be 10,000 tons of metallic scraps resulted from decommissioning of each reactor in the future. One means of handling the contaminated metal is to melt it. Melting process owns not only volume reduction which saves the high cost of final disposal but also resource conservation and recycling benefits. Melting contaminated copper and aluminum scraps in the laboratory scale have been conducted at INER. A total of 546 kg copper condenser tubes with a specific activity of about 2.7 Bq/g was melted in a vacuum induction melting facility. Three types of products, ingot, slag and dust were derived from the melting process, with average activities of 0.10 Bq/g, 2.33 Bq/g and 84.3 Bq/g respectively. After the laboratory melting stage, a pilot plant with a 500 kg induction furnace is being designed to melt the increasingly produced contaminated metallic scraps from nuclear facilities and to investigate the behavior of different radionuclides during melting. (author)

  2. Growth and secondary production of aquatic insects along a gradient of Zn contamination in Rocky Mountain streams

    Science.gov (United States)

    Carlisle, D.M.; Clements, W.H.

    2003-01-01

    Secondary production estimates from several Rocky Mountain streams were used to test hypotheses about the effects of chronic metal contamination on insect populations and ecosystem processes. Quantitative samples of chemistry, habitat, and benthic insects were collected monthly during the ice-free period (May-November) from five 2nd- to 3rd-order streams that varied primarily in Zn contamination. Secondary production was estimated for the 19 dominant taxa using increment-summation, size-frequency, and P/B methods. Uncertainty was estimated by bootstrapping estimates of mean abundance, biomass, and cohort production intervals. Secondary production of metal-sensitive Heptageniidae (Rhithrogena robusta, Cinygmula spp., and Epeorus longimanus) was lower in lightly to moderately contaminated streams than in reference streams. Experiments were done to determine whether herbivore growth was influenced by food quality in contaminated streams. Growth estimates from field and microcosm experiments revealed that low mayfly production in contaminated streams was caused mostly by reduced population abundances. Production of predatory stoneflies was also lower in contaminated streams than reference streams. Estimates of the trophic basis of production revealed that, although the relative contribution to community production from various food sources was similar among streams, total production attributable to algae and animal prey declined in contaminated streams. Much of the reduction in herbivory in contaminated streams was the result of lower production of heptageniids, especially R. robusta. Assemblage and taxon-specific estimates of secondary production were sensitive to variation in metal contamination and indicated that relatively low metal concentrations may have ecosystem-wide consequences for energy flow.

  3. Assessing the chemical contamination dynamics in a mixed land use stream system

    DEFF Research Database (Denmark)

    Sonne, Anne Thobo; McKnight, Ursula S.; Rønde, Vinni

    2017-01-01

    stressors in these systems and applied the approach to a 16-km groundwater-fed stream corridor (Grindsted, Denmark). Three methods were combined: (i) in-stream contaminant mass discharge for source quantification, (ii) Toxic Units and (iii) environmental standards. An evaluation of the chemical quality...... of all three stream compartments – stream water, hyporheic zone, streambed sediment – made it possible to link chemical stressors to their respective sources and obtain new knowledge about source composition and origin. Moreover, toxic unit estimation and comparison to environmental standards revealed...... the stream water quality was substantially impaired by both geogenic and diffuse anthropogenic sources of metals along the entire corridor, while the streambed was less impacted. Quantification of the contaminant mass discharge originating from a former pharmaceutical factory revealed that several 100 kgs...

  4. Re-thinking stressor interactions: The role of groundwater contamination impacting stream ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Sonne, Anne Thobo; Rønde, Vinni Kampman

    ) to quantify the contaminant discharges, and potentially link the chemical impact and stream water quality. Potential pollution sources include two contaminated sites (Grindstedfactory/landfill), aquaculture, waste water discharges, and diffuse sources from agriculture and urban areas. Datafor xenobiotic...... stressor. Our hypothesis, however, is that this will underestimate the combined impact caused by chemical cocktail effects, and interactions between stressors (e.g. contaminant-effected change in redox conditions releasing heavy metals). Moreover, a stream system impacted by multiple stressors has a high...... chronic stress level, so even small perturbations on top of changes in water flow or additional chemical stressors may be detrimental to the stream health. To address this issue, we identified contaminant sources and chemical stressors along a 16-km groundwater-fedstream stretch (Grindsted, Denmark...

  5. Petroleum Hydrocarbons Contamination Profile of Ochani Stream in ...

    African Journals Online (AJOL)

    Depth of contamination was very shallow. At an estimated average depth of 150mm over an area of 6.05 Ha the total volume of contaminated soil/sediment was 9075m3. The levels of toxic species such as heavy metals, PAH and BTEX compounds were found to be very low and they do not pose a significant environmental ...

  6. Leaf litter breakdown, microbial respiration and shredder production in metal-polluted streams

    Science.gov (United States)

    Carlisle, D.M.; Clements, W.H.

    2005-01-01

    1. If species disproportionately influence ecosystem functioning and also differ in their sensitivities to environmental conditions, the selective removal of species by anthropogenic stressors may lead to strong effects on ecosystem processes. We evaluated whether these circumstances held for several Colorado, U.S.A. streams stressed by Zn. 2. Benthic invertebrates and chemistry were sampled in five second-third order streams for 1 year. Study streams differed in dissolved metal concentrations, but were otherwise similar in chemical and physical characteristics. Secondary production of leaf-shredding insects was estimated using the increment summation and size-frequency methods. Leaf litter breakdown rates were estimated by retrieving litter-bags over a 171 day period. Microbial activity on leaf litter was measured in the laboratory using changes in oxygen concentration over a 48 h incubation period. 3. Dissolved Zn concentrations varied eightfold among two reference and three polluted streams. Total secondary production of shredders was negatively associated with metal contamination. Secondary production in reference streams was dominated by Taenionema pallidum. Results of previous studies and the current investigation demonstrate that this shredder is highly sensitive to metals in Colorado headwater streams. Leaf litter breakdown rates were similar between reference streams and declined significantly in the polluted streams. Microbial respiration at the most contaminated site was significantly lower than at reference sites. 4. Our results supported the hypothesis that some shredder species contribute disproportionately to leaf litter breakdown. Furthermore, the functionally dominant taxon was also the most sensitive to metal contamination. We conclude that leaf litter breakdown in our study streams lacked functional redundancy and was therefore highly sensitive to contaminant-induced alterations in community structure. We argue for the necessity of simultaneously

  7. Considerations in recycling contaminated scrap metal and rubble

    International Nuclear Information System (INIS)

    Kluk, A.F.; Hocking, E.K.

    1992-01-01

    Management options for the Department of Energy's increasing amounts of contaminated scrap metal and rubble include reuse as is, disposal, and recycling. Recycling, with its promise of resource recovery, virgin materials conservation, and land disposal minimization, emerges as a preferred management technique. Implementing a cost effective recycling program requires resolution of several issues including: establishing release limits for contaminants, controlling use of recycled materials creating effective public communication programs; developing economical, reliable assay technologies; managing secondary waste streams, expanding availability of unrestricted markets; and solving conflicting legal considerations

  8. Disintegration and size reduction of slags and metals after melt refining of contaminated metallic wastes

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.; Heestand, R.L.

    1981-04-01

    Melting under an oxidizing slag is an attractive method of decontaminating and reducing the volume of radioactively contaminated metal scrap. The contaminants are concentrated in a relatively small volume of slag, which leaves the metal essentially clean. A potential method of permanently disposing of the resulting slags (and metals if necessary) is emplacing them into deep shale by grout hydrofracture. Suspension in grout mixtures requires that the slag and metal be granular. The feasibility of size-reducing slags and disintegrating metals and subsequently incorporating both into grout mixtures was demonstrated. Various types of slags were crushed with a small jaw crusher into particles smaller than 3 mm. Several metals were also melted and water-blasted into coarse metal powder or shot ranging in size from 0.05 to 3 mm. A simple low-pressure water atomizer having a multiple nozzle with a converging-line jet stream was developed and used for this purpose. No significant slag dust and steam were generated during slag crushing and liquid-metal water-blasting tests, indicating that contamination can be well contained within the system. The crushed slags and the coarse metal powders were suspendable in group fluids, which indicates probable disposability by shale hydrofracture. The granulation of slags and metals facilitates their containment, transport, and storage

  9. HEAVY METALS CONTAMINATION OF TOPSOIL AND ...

    African Journals Online (AJOL)

    a

    ABSTRACT. Growing concern about reclamation of auto-repair workshop areas for residential and agricultural purposes makes risk assessment of heavy metal contamination of the study area imperative. In addition, the study is aimed at ascertaining the dispersion of contaminated Zn, Ni, Cr, Hg, and Pb within the soil profile ...

  10. Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

    Science.gov (United States)

    Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.

    2001-01-01

    Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream

  11. ECOLOGICAL EFFECTS OF METALS IN STREAMS ON A DEFENSE MATERIALS PROCESSING SITE IN SOUTH CAROLINA, USA

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M.; Dyer, S.

    2009-09-01

    The Savannah River Site (SRS) is a 780 km{sup 2} U.S. Department of Energy facility near Aiken SC established in 1950 to produce nuclear materials. SRS streams are 'integrators' that potentially receive water transportable contaminants from all sources within their watersheds necessitating a GIS-based watershed approach to organize contaminant distribution data and accurately characterize the effects of multiple contaminant sources on aquatic organisms. Concentrations of metals in sediments, fish, and water were elevated in streams affected by SRS operations, but contaminant exposure models for Lontra Canadensis and Ceryle alcyon indicated that toxicological reference values were exceeded only by Hg and Al. Macroinvertebrate community structure was unrelated to sediment metal concentrations. This study indicated that (1) modeling studies and field bioassessments provide a complementary basis for addressing the individual and cumulative effects of contaminants, (2) habitat effects must be controlled when assessing contaminant impacts, (3) sensitivity analyses of contaminant exposure models are helpful in apportioning sampling effort, and (4) contaminants released during fifty years of industrial operations have not resulted in demonstrable harm to aquatic organisms in SRS streams.

  12. Dilution and volatilization of groundwater contaminant discharges in streams

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Bjerg, Poul Løgstrup; Sonne, Anne Thobo

    2015-01-01

    distributions of the contaminant plume concentration (Gaussian, homogeneous or heterogeneous distribution) are considered. The model considering the plume discharged through the bank of the river, with a uniform concentration distribution was the most appropriate for risk assessment due to its simplicity...... measurement. The solution was successfully applied to published field data obtained in a large and a small Danish stream and provided valuable information on the risk posed by the groundwater contaminant plumes. The results provided by the dilution and volatilization model are very different to those obtained...... with existing point source models, with a distributed source leading to a larger mixing length and different concentration field. The dilution model can also provide recommendations for sampling locations and the size of impact zones in streams. This is of interest for regulators, for example when developing...

  13. Organic waste compounds as contaminants in Milwaukee-area streams

    Science.gov (United States)

    Baldwin, Austin K.; Corsi, Steven R.; Magruder, Christopher; Magruder, Matthew; Bruce, Jennifer L.

    2015-09-22

    Organic waste compounds (OWCs) are ingredients and by-products of common agricultural, industrial, and household substances that can contaminate our streams through sources like urban runoff, sewage overflows, and leaking septic systems. To better understand how OWCs are affecting Milwaukee-area streams, the U.S. Geological Survey, in cooperation with the Milwaukee Metropolitan Sewerage District, conducted a three-year study to investigate the presence and potential toxicity of 69 OWCs in base flow, stormflow, pore water, and sediment at 14 stream sites and 3 Milwaukee harbor locations. This fact sheet summarizes the major findings of this study, including detection frequencies and concentrations, potential toxicity, the prevalence of polycyclic aromatic hydrocarbons (PAHs), and the influence of urbanization.

  14. Remediating sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    Swartzbaugh, J.; Sturgill, J.; Cormier, B.; Williams, H.D.

    1992-01-01

    This article is intended to serve as a reference for decision makers who must choose an approach to remediate sites contaminated with heavy metals. Its purpose is to explain pertinent chemical and physical characteristics of heavy metals, how to use these characteristics to select remedial technologies, and how to interpret and use data from field investigations. Different metal species are typically associated with different industrial processes. The contaminant species behave differently in various media (i.e., groundwater, soils, air), and require different technologies for containment and treatment. We focus on the metals that are used in industries that generate regulated waste. These include steelmaking, paint and pigment manufacturing, metal finishing, leather tanning, papermaking, aluminum anodizing, and battery manufacturing. Heavy metals are also present in refinery wastes as well as in smelting wastes and drilling muds

  15. Catalytic extraction processing of contaminated scrap metal

    International Nuclear Information System (INIS)

    Griffin, T.P.; Johnston, J.E.

    1994-01-01

    The contract was conceived to establish the commercial capability of Catalytic Extraction Processing (CEP) to treat contaminated scrap metal in the DOE inventory. In so doing, Molten Metal Technology, Inc. (MMT), pursued the following objectives: demonstration of the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal can be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP will concentrate the radionuclides in a dense vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP will convert hazardous organics to valuable industrial gases, which can be used as feed gases for chemical synthesis or as an energy source; recovery volatile heavy metals--that CEP's off-gas treatment system will capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory--that CEP is a more cost-effective and, complete treatment and recycling technology than competing technologies for processing contaminated scrap. The process and its performance are described

  16. Unravelling metal mobility under complex contaminant signatures.

    Science.gov (United States)

    de Souza Machado, Anderson Abel; Spencer, Kate L; Zarfl, Christiane; O'Shea, Francis T

    2018-05-01

    Metals are concerning pollutants in estuaries, where contamination can undergo significant remobilisation driven by physico-chemical forcing. Environmental concentrations of metals in estuarine sediments are often higher than natural backgrounds, but show no contiguity to potential sources. Thus, better understanding the metal mobility in estuaries is essential to improve identification of pollution sources and their accountability for environmental effects. This study aims to identify the key biogeochemical drivers of metal mobilisation on contaminated estuarine sediments through (1) evaluation of the potential mobilisation under controlled conditions, and (2) investigation of the relevance of metal mobilisation for in situ pollution levels in an area with multiple contaminant sources. Sediments from a saltmarsh adjacent to a coastal landfill, a marina, and a shipyard on the Thames Estuary (Essex, UK) were exposed in the laboratory (24h, N=96, 20°C) to water under various salinity, pH, and redox potential. Major cations, Fe(II), and trace metal concentrations were analysed in the leachate and sediment. Salinity, pH and redox had a significant effect on metal mobilisation (pmetal spatial distribution. However, physicochemical parameters explained up to 97% of geochemically normalized metal concentrations in sediments. Organic matter and pH were dominant factors for most of the metal concentrations at the sediment surface. At subsurface, major cations (Ca, Na, Mg and K) were determinant predictors of metal concentrations. Applying the empirical model obtained in the laboratory to geochemical conditions of the studied saltmarsh it was possible to demonstrate that Fe mobilisation regulates the fate of this (and other) metal in that area. Thus, present results highlight the importance of metal mobility to control sediment pollution and estuarine fate of metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Persistence and potential effects of complex organic contaminant mixtures in wastewater-impacted streams

    Science.gov (United States)

    Barber, Larry B.; Keefe, Steffanie H.; Brown, Greg K.; Furlong, Edward T.; Gray, James L.; Kolpin, Dana W.; Meyer, Michael T.; Sandstrom, Mark W.; Zaugg, Steven D.

    2013-01-01

    Natural and synthetic organic contaminants in municipal wastewater treatment plant (WWTP) effluents can cause ecosystem impacts, raising concerns about their persistence in receiving streams. In this study, Lagrangian sampling, in which the same approximate parcel of water is tracked as it moves downstream, was conducted at Boulder Creek, Colorado and Fourmile Creek, Iowa to determine in-stream transport and attenuation of organic contaminants discharged from two secondary WWTPs. Similar stream reaches were evaluated, and samples were collected at multiple sites during summer and spring hydrologic conditions. Travel times to the most downstream (7.4 km) site in Boulder Creek were 6.2 h during the summer and 9.3 h during the spring, and to the Fourmile Creek 8.4 km downstream site times were 18 and 8.8 h, respectively. Discharge was measured at each site, and integrated composite samples were collected and analyzed for >200 organic contaminants including metal complexing agents, nonionic surfactant degradates, personal care products, pharmaceuticals, steroidal hormones, and pesticides. The highest concentration (>100 μg L–1) compounds detected in both WWTP effluents were ethylenediaminetetraacetic acid and 4-nonylphenolethoxycarboxylate oligomers, both of which persisted for at least 7 km downstream from the WWTPs. Concentrations of pharmaceuticals were lower (<1 μg L–1), and several compounds, including carbamazepine and sulfamethoxazole, were detected throughout the study reaches. After accounting for in-stream dilution, a complex mixture of contaminants showed little attenuation and was persistent in the receiving streams at concentrations with potential ecosystem implications.

  18. Aromatic plant production on metal contaminated soils

    International Nuclear Information System (INIS)

    Zheljazkov, Valtcho D.; Craker, Lyle E.; Xing Baoshan; Nielsen, Niels E.; Wilcox, Andrew

    2008-01-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha -1 for Cd, 660 g ha -1 for Pb, 180 g ha -1 for Cu, 350 g ha -1 for Mn, and 205 g ha -1 for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 μm) particles, although there were larger particles (1-5 μm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil

  19. Aromatic plant production on metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State, Department of Plant and Soil Sciences and North Mississippi Research and Extension Center, 5421 Highway 145 South, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Craker, Lyle E.; Xing Baoshan [Department of Plant and Soil Sciences, 12 Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Nielsen, Niels E. [Plant Nutrition and Soil Fertility Lab, Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK1871, Copenhagen (Denmark); Wilcox, Andrew [Harper Adams University College, Newport, Shropshire, TF10 8NB (United Kingdom)

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha{sup -1} for Cd, 660 g ha{sup -1} for Pb, 180 g ha{sup -1} for Cu, 350 g ha{sup -1} for Mn, and 205 g ha{sup -1} for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 {mu}m) particles, although there were larger particles (1-5 {mu}m) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  20. Aromatic plant production on metal contaminated soils.

    Science.gov (United States)

    Zheljazkov, Valtcho D; Craker, Lyle E; Xing, Baoshan; Nielsen, Niels E; Wilcox, Andrew

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha(-1) for Cd, 660 g ha(-1) for Pb, 180 g ha(-1) for Cu, 350 g ha(-1) for Mn, and 205 g ha(-1) for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  1. Contaminant Sources in Stream Water of a Missouri Claypan Watershed

    Science.gov (United States)

    Peters, G. R.; Liu, F.; Lerch, R. N.; Lee, H.

    2014-12-01

    Elevated concentrations of nitrate-nitrogen and herbicides in stream water have degraded water quality and caused serious problems affecting human and aquatic ecosystem health in the Central Claypan Region of the US Midwest. However, the contribution of specific recharge sources to stream water is not well understood in claypan-dominated watersheds. The purpose of this study was to estimate the recharge sources to Goodwater Creek Experimental Watershed (GCEW) in north-central Missouri and investigate their importance to contaminant transport. Samples were collected from 2011 to 2014 from streams, piezometers, seep flows, and groundwater in GCEW and analyzed for major ions (including nitrate and nitrite), trace elements, stable H and O isotopes, total nitrogen (TN) and herbicides. Using an endmember mixing analysis based on conservative tracers, recharge contributions to stream flow were an average of 25% surface runoff, 44% shallow subsurface water, and 31% groundwater. TN concentrations were, on average, management practices that better protect surface water and groundwater in claypan-dominated watersheds.

  2. Feasibility of re-melting NORM-contaminated scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Winters, S. J.; Smith, K. P.

    1999-10-26

    Naturally occurring radioactive materials (NORM) sometimes accumulate inside pieces of equipment associated with oil and gas production and processing activities. Typically, the NORM accumulates when radium that is present in solution in produced water precipitates out in scale and sludge deposits. Scrap equipment containing residual quantities of these NORM-bearing scales and sludges can present a waste management problem if the radium concentrations exceed regulatory limits or activate the alarms on radiation screening devices installed at most scrap metal recycling facilities. Although NORM-contaminated scrap metal currently is not disposed of by re-melting, this form of recycling could present a viable disposition option for this waste stream. Studies indicate that re-melting NORM-contaminated scrap metal is a viable recycling option from a risk-based perspective. However, a myriad of economic, regulatory, and policy issues have caused the recyclers to turn away virtually all radioactive scrap metal. Until these issues can be resolved, re-melting of the petroleum industry's NORM-impacted scrap metal is unlikely to be a widespread practice. This paper summarizes the issues associated with re-melting radioactive scrap so that the petroleum industry and its regulators will understand the obstacles. This paper was prepared as part of a report being prepared by the Interstate Oil and Gas Compact Commission's NORM Subcommittee.

  3. Compact, electromagnetic multiple-stream multiple-stream pump for liquid metals - Design concept

    Science.gov (United States)

    Davis, J. P.

    1970-01-01

    Pump provides independent liquid-metal streams at a uniform flow rate. The toroidal magnet structure can accomodate any reasonable number of pump circuits. The power requirement is suited to the output voltage of the basic thermionic diode output.

  4. Heavy metals contamination of Chrysichthys nigrodigitatus and ...

    African Journals Online (AJOL)

    This study investigates the presence of heavy metal contamination of Chrysichthys nigrodigitatus and Lates niloticus. Adult C. nigrodigitatus and L. niloticus were obtained from fishermen in Ikere Gorge, Oyo state, Nigeria. Water samples were also collected during the wet and dry seasons of the year in the same locality.

  5. Metal contamination in environmental media in residential ...

    Science.gov (United States)

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary concern, but human exposure to soil contaminants either directly, via inhalation of airborne dust particles, or indirectly, via food chain (ingestion of animal products and/or vegetables grown in contaminated areas), is also, significant. In this research, we analyzed data collected in 2007, as part of a larger environmental study performed in the Rosia Montana area in Transylvania, to provide the Romanian governmental authorities with data on the levels of metal contamination in environmental media from this historical mining area. The data were also considered in policy decision to address mining-related environmental concerns in the area. We examined soil and water data collected from residential areas near the mining sites to determine relationships among metals analyzed in these different environmental media, using the correlation procedure in SAS statistical software. Results for residential soil and water analysis indicate that the average values for arsenic (As) (85 mg/kg), cadmium (Cd) (3.2 mg/kg), mercury (Hg) (2.3 mg/kg) and lead (Pb) (92 mg/kg) exceeded the Romanian regulatory exposure levels [the intervention thresholds for residential soil in case of As (25 mg/kg) and Hg

  6. Influence of gut content in immature aquatic insects on assessments of environmental metal contamination

    Science.gov (United States)

    Cain, D.J.; Luoma, S.N.; Axtmann, E.V.

    1995-01-01

    We evaluated the effect of metal associated with the gut content in immature aquatic insects (larvae and nymphs) on spatial and interspecific comparisons of whole-body metal concentrations. Four species, common to cobble-bottom rivers and streams, were collected along an established contamination gradient in the Clark Fork River, and from tributaries of the Clark Fork. Metal concentrations were determined in the gut and its content and in the insect body. Whole-body metal concentrations were higher and more variable as a result of gut content. The positive bias produced by the gut content did not alter interpretations of site contamination in most cases. Interspecific comparisons of metal bioaccumulation also were not greatly affected by the presence of gut content. The influence of gut content was specific for metal, species, and site. Feeding habit, gut size, and metal bioaccumulation in the body affected the relative contribution of the gut and its content to metal concentrations in the whole insect.

  7. Electro-Hydrodynamic Shooting Phenomenon of Liquid Metal Stream

    OpenAIRE

    Fang, Wen-Qiang; He, Zhi-Zhu; Liu, Jing

    2014-01-01

    We reported an electro-hydrodynamic shooting phenomenon of liquid metal stream. A small voltage direct current electric field would induce ejection of liquid metal inside capillary tube and then shooting into sodium hydroxide solution to form discrete droplets. The shooting velocity has positive relationship with the applied voltage while the droplet size is dominated by the aperture diameter of the capillary nozzle. Further, the motion of the liquid metal droplets can be flexibly manipulated...

  8. Radiocesium leaching from contaminated litter in forest streams

    International Nuclear Information System (INIS)

    Sakai, Masaru; Gomi, Takashi; Naito, Risa S.; Negishi, Junjiro N.; Sasaki, Michiko; Toda, Hiroto; Nunokawa, Masanori; Murase, Kaori

    2015-01-01

    In Japanese forests suffering from the Fukushima Daiichi Nuclear Power Plant accident, litter fall provides a large amount of radiocesium from forests to streams. Submerged litter is processed to become a vital food resource for various stream organisms through initial leaching and subsequent decomposition. Although leaching from litter can detach radiocesium similarly to potassium, radiocesium leaching and its migration are poorly understood. We examined both radiocesium and potassium leaching to the water column and radiocesium allocation to minerals (glass beads, silica sand, and vermiculite) in the laboratory using soaked litter with and without minerals on a water column. The mineral types did not affect radiocesium leaching from litter, but soaking in water for 1, 7, and 30 days decreased the radiocesium concentration in litter by ×0.71, ×0.66, and ×0.56, respectively. Meanwhile, the 1-, 7-, and 30-day experiments decreased potassium concentration in litter by ×0.17, ×0.11, and ×0.09, respectively. Leached radiocesium remained in a dissolved form when there was no mineral phases present in the water, whereas there was sorption onto the minerals when they were present. In particular, vermiculite adsorbed radiocesium by two to three orders of magnitude more effectively than the other minerals. Because radiocesium forms (such as that dissolved or adsorbed to organic matter or minerals) can further mobilize to ecosystems, our findings will increase our understanding regarding the dynamics of radiocesium in stream ecosystems. - Highlights: • Radiocesium in contaminated litter was leached when soaked in water. • Radiocesium in litter leached slowly compared to potassium. • Minerals adsorbed dissolved radiocesium that was leached from litter. • Vermiculite effectively adsorbed radiocesium leached from litter

  9. Metal and metalloid contaminants in atmospheric aerosols from mining operations

    Science.gov (United States)

    Csavina, Janae

    Mining operations, including crushing, grinding, smelting, refining, and tailings management, are a significant source of airborne metal and metalloid contaminants such as As, Pb, Cd and other potentially toxic elements. Dust particles emitted from mining operations can accumulate in surrounding soils, natural waters and vegetation at relatively high concentrations through wind and water transport. Human exposure to the dust can occur through inhalation and, especially in the case of children, incidental dust ingestion, particularly during the early years when children are likely to exhibit pica. Furthermore, smelting operations release metals and metalloids in the form of fumes and ultra-fine particulate matter, which disperses more readily than coarser soil dusts. Of specific concern, these fine particulates can be transported to the lungs, allowing contaminants to be transferred into the blood stream. The main aim of this research is to assess the role of atmospheric aerosol and dust in the transport of metal and metalloid contaminants from mining operations to assess the deleterious impacts of these emissions to ecology and human health. In a field campaign, ambient particulates from five mining sites and four reference sites were examined utilizing micro-orifice deposit impactors (MOUDI), total suspended particulate (TSP) collectors, a scanning mobility particle sizer (SMPS), and Dusttrak optical particle counters for an understanding of the fate and transport of atmospheric aerosols. One of the major findings from size-resolved chemical characterization at three mining sites showed that the majority of the contaminant concentrations were found in the fine size fraction (fine size fraction when compared to reference sites. Additionally, with dust events being a growing concern because of predicted climate change and mine tailings being a significant source for dust, high wind conditions around mine tailings were studied for dust generation. Relative humidity

  10. Dissolved Trace Metals in Soft-Water Streams of the Northeast, USA

    Science.gov (United States)

    Colman, J. A.

    2004-05-01

    The free dissolved fraction of trace metals is biologically available and correlated with acute toxicity in aquatic organisms that respire through gills. Consensus regarding prevalence of dissolved trace-metal occurrence in streams in the United States has varied, ranging from widespread occurrence in the 1 to 10's of micrograms per liter for cadmium, copper, chromium, lead, molybdenum, nickel, silver, and zinc, during 1975 to 1995, but less than 1 microgram per liter during the late 1990's to present. Whereas much of the earlier data is thought to have been affected by contamination during sampling and sample processing, later data after implementation of clean-sampling techniques indicates dissolved trace-metal concentrations in hard-water streams are very low because of sorption on suspended solids. In low-conductance, low-suspended-load streams of the northeast, USA, however, substantial dissolved metals concentrations have been measured with periods of record now approaching 6 years since implementation of clean sampling methods. The high concentrations are associated with industrial and domestic-development source, low surface area on suspended loads, and stabilizing dissolved organic ligands, including natural fulvic acids and chelating compounds of anthropogenic origin, such as EDTA. Although present at substantial concentrations, only a small part of the total dissolved metals is in a free state, unassociated with organic ligands, so that acute toxicity of the dissolved trace metals may be low.

  11. Heavy metal contamination in canned foods

    International Nuclear Information System (INIS)

    Sand, W.A.; Flex, H.; Allan, K.F.; Mahmoud, R.M.; Abdel-Haleem, A.E.

    2001-01-01

    The work carried out in this paper aims to the study of contamination of different foodstuffs, that are consumed frequently in our daily life, such as tomatoes concentrate, jam, tuna, and bean, as a result of canning in glass or tin cans. The effect of the storage time on the contamination of the aforementioned foods with heavy metals was also investigated. The technique used for the simultaneous determination of these elements was the instrumental neutron activation analysis (INAA). This technique was selected due to its high accuracy, sensitivity and selectivity. In the light of the obtained results it was suggested that tin cans is the best choice for canning jam and it is suitable also for preserving tuna. On the other hand, glass utensils were found to be the most suitable for preserving tomatoes concentrate. detailed studies are needed to throw more light on the effect of canning material on the concentration level of both essential and toxic trace elements in bean

  12. Engineering Hyporheic Zones to Attenuate Heavy Metals in Constructed Urban Streams: Performance Data from Constructed Stream Flumes

    Science.gov (United States)

    Halpin, B. N.; Portmann, A. C.; Herzog, S.; Higgins, C.; McCray, J. E.

    2017-12-01

    Urban stormwater runoff is a major cause of water quality impairment along ocean shorelines and in rivers, lakes and estuaries across the United States. In addition to pathogens, nutrients, and organic contaminants, a variety of heavy metals are commonly found at elevated concentrations in urban runoff. Although such metals occur in both dissolved and particulate-bound phases, conventional stormwater controls are typically designed to remove suspended solids, while dissolved phase contaminants remain largely untreated. To address this gap in available stormwater controls, a novel technology, termed Biohydrochemical Enhancements for Streamwater Treatment (BEST), has been developed based on inspiration from the natural hyporheic zone (HZ). BEST utilizes a series of alternating streambed permeabilities to drive efficient surface water-HZ exchange. This is combined with reactive and/or sorptive streambed geomedia designed to remove dissolved phase contaminants from constructed urban drainage channels. Previous research at the Colorado School of Mines has shown that a 15-meter flume modified with BEST exhibits greater hyporheic exchange than an all-sand control flume, though both flumes provided greater contaminant attenuation than a selection of actual urban streams. This study again utilized the 15-meter flumes at Colorado School of Mines to evaluate two configurations of BEST for removal of heavy metals commonly found in stormwater runoff, including cadmium, copper, nickel, lead and zinc. In both BEST configurations, the geomedia consisted of a 30/70 (v/v) mix of woodchips and sand, with one configuration using coarse sand (K=0.48 cm/s) and the other using finer sand (K=0.16 cm/s). Both configurations were compared to an all-sand control. To evaluate metals removal, a suite of aqueous metals solution was spiked into each flume, and aqueous concentrations of the five metals of interest were monitored in both the surface and pore water over 24 hours. Differences in

  13. Predicting the Fate and Effects of Resuspended Metal Contaminated Sediments

    Science.gov (United States)

    2015-12-23

    equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: metal mixtures (cadmium, Cu, lead, nickel, silver , and Zn...FINAL REPORT Predicting the Fate and Effects of Resuspended Metal Contaminated Sediments SERDP Project ER-1746 DECEMBER 2015 Dr. G...Resuspended Metal Contaminated Sediments 5a. CONTRACT NUMBER (ER-1746) 5b. GRANT NUMBER ER-1746 5c. PROGRAM ELEMENT NUMBER 6

  14. Phytoremediation of water bodies contaminated with radioactive heavy metal

    International Nuclear Information System (INIS)

    Yan Zhen; Yuan Shichao; Ling Hui; Xie Shuibo

    2012-01-01

    The sources of the radioactive heavy metal in the water bodies were analyzed. The factors that affect phyto remediation of water contaminated with radioactive heavy metal were discussed. The plant species, mechanism and major technology of phyto remediation of water contaminated with radioactive heavy metal were particularly introduced. The prospective study was remarked. (authors)

  15. Metal Contamination in the Republic of Armenia.

    Science.gov (United States)

    Kurkjian

    2000-05-01

    / Air, soil, and water samples were collected throughout the Republic of Armenia both before and after its independence from the Soviet Union in 1991. Reported analyses of those samples indicated that levels of several trace metal concentrations (Ag, Cd, Cr, Cu, Mo, Ni, Pb, Ti, and Zn) exceeded the maximum allowable concentrations established by the former Soviet Union (FSU) and subsequently adopted by Armenia. Although industrial production has declined by more than 80% since the 1980s, the economy is improving and there is potential for a significant increase in the generation of industrial metal emissions. These include automobile emissions, which are now considered to be the primary source of atmospheric lead. Historically, the Soviet Union did not strictly enforce environmental standards, and Armenia is now faced with the resulting environmental problems and the associated risks to public health. Since some trace metal concentrations may be at or near potentially toxic levels, there is a need to accurately assess the extent of metal contamination in order to devise cleanup plans and develop long-term environmental protection and public health strategies in Armenia.

  16. Macroinvertebrate community structure and function along gradients of physical stream quality and pesticide contamination in Danish streams

    DEFF Research Database (Denmark)

    Rasmussen, Jes

    in each stream were measured applying sediment sampling and event triggered water samplers. Furthermore, on all reaches macroinvertebrate community structure was assessed before, during and after the spring application season. Stream reaches with good physical quality generally contain a higher abundance......  A wide array of pesticides are applied to agricultural crops during spring and autumn spraying season, and detections of pesticides in stream water and bed sediments of agricultural streams emphasize the potential exposure of benthic macroinvertebrates. Major transportation routes from catchment...... to stream are surface runoff and tile drainage giving rise to short pulses of acute contamination strongly coinciding with high levels of precipitation. Field studies indicate that macroinvertebrate community structure can be impacted by pesticides during spraying seasons in May and June, but also...

  17. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa.

    Science.gov (United States)

    Polidoro, Beth A; Comeros-Raynal, Mia T; Cahill, Thomas; Clement, Cassandra

    2017-03-15

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Heavy metal contamination in bats in Britain

    International Nuclear Information System (INIS)

    Walker, L.A.; Simpson, V.R.; Rockett, L.; Wienburg, C.L.; Shore, R.F.

    2007-01-01

    Toxic metals are bioaccumulated by insectivorous mammals but few studies (none from Britain) have quantified residues in bats. We measured renal mercury (Hg), lead (Pb) and cadmium (Cd) concentrations in bats from south-west England to determine how they varied with species, sex, age, and over time, and if they were likely to cause adverse effects. Residues were generally highest in whiskered bats (Myotis mystacinus). Compared with other species, pipistrelle (Pipistrellus spp) and Natterer's bats (Myotis nattereri) had significantly lower kidney Hg and Pb concentrations, respectively. Renal Hg increased over time in pipistrelles but the contributory sources are unknown. Kidney Pb did not decrease over time despite concurrent declines in atmospheric Pb. Overall, median renal metal concentrations were similar to those in bats from mainland Europe and 6- to 10-fold below those associated with clinical effect, although 5% of pipistrelles had kidney Pb residues diagnostic of acute lead poisoning. - Heavy metal contamination has been quantified in bats from Britain for the first time and indicates increased accumulation of Hg and no reduction in Pb

  19. Heavy Metals Contamination in Coastal Sediments of Karachi, Pakistan

    Science.gov (United States)

    Siddique, A.; Mumtaz, M.; Zaigham, N. A.; Mallick, K. A.; Saied, S.; Khwaja, H. A.

    2008-12-01

    Toxic compounds such as heavy metals exert chronic and lethal effects in animals, plants, and human health. With the rapid industrialization, urbanization, and economic development in Karachi, heavy metals are continuing to be introduced to estuarine and coastal environment through rivers, runoff and land-based point sources. Pollution in the Karachi coastal region (167 km long) is mainly attributed to Lyari and Malir Rivers flowing through the city of Karachi. Both rivers are served by various channels of domestic and industrial wastes carrying more than 300 million gallons per day untreated effluent of 6000 industries and ultimately drain into the beaches of Arabian Sea. Concentrations of selected heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in surface sediments from eighty-eight sites in Karachi coastal region were studied in order to understand metal contamination due to industrialization, urbanization, and economic development in Karachi. Sediment samples were collected in 2005 and 2006. We have found that heavy metal concentrations in surface sediments varied from 0.006 to 24.3 ug/g for Cd, 5.1 to 95 ug/g for Co, 2.9 to 571 ug/g for Cr, 6.9 to 272 ug/g for Cu, 0.55 to 6.5% for Fe, 1.2 to 318 ug/g for Mn, 7.5 to 75 ug/g for Ni, 6.3 to 121 ug/g for Pb, and 3.3 to 389 ug/g for Zn. Enrichment factors (EFs) were calculated to assess whether the concentrations observed represent background or contaminated levels. The highest levels of metals were found to be at the confluence of the Lyari and Malir River streams at the Arabian Sea, indicating the impact of the effluents of the highly urbanized and industrialized city of Karachi. Furthermore, this study assessed heavy metal toxicity risk with the application of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM). Results indicated that the potential toxicity of marine environment can cause adverse biological effects to the biota directly and the human health

  20. Method of electrolytic decontamination of contaminated metal materials for radioactivity

    International Nuclear Information System (INIS)

    Harada, Yoshio; Ishibashi, Masaru; Matsumoto, Hiroyo.

    1985-01-01

    Purpose: To electrolytically eliminate radioactive materials from metal materials contaminated with radioactive materials, as well as efficiently remove metal ions leached out in an electrolyte. Method: In the case of anodic dissolution of metal materials contaminated with radioactivity in an electrolyte to eliminate radioactive contaminating materials on the surface of the metal materials, a portion of an electrolytic cell is defined with partition membranes capable of permeating metal ions therethrough. A cathode connected to a different power source is disposed to the inside of the partition membranes and fine particle of metals are suspended and floated in the electrolyte. By supplying an electric current between an insoluble anode disposed outside of the partition membranes and the cathode, metal ions permeating from the outside of the partition membranes are deposited on the fine metal particles. Accordingly, since metal ions in the electrolyte are removed, the electrolyte can always be kept clean. (Yoshihara, H.)

  1. Contaminated Stream Water as Source for Escherichia coli O157 Illness in Children

    OpenAIRE

    Probert, William S.; Miller, Glen M.; Ledin, Katya E.

    2017-01-01

    In May 2016, an outbreak of Shiga toxin?producing Escherichia coli O157 infections occurred among children who had played in a stream flowing through a park. Analysis of E. coli isolates from the patients, stream water, and deer and coyote scat showed that feces from deer were the most likely source of contamination.

  2. Contaminated Stream Water as Source for Escherichia coli O157 Illness in Children.

    Science.gov (United States)

    Probert, William S; Miller, Glen M; Ledin, Katya E

    2017-07-01

    In May 2016, an outbreak of Shiga toxin-producing Escherichia coli O157 infections occurred among children who had played in a stream flowing through a park. Analysis of E. coli isolates from the patients, stream water, and deer and coyote scat showed that feces from deer were the most likely source of contamination.

  3. Biological removal of metal ions from aqueous process streams

    International Nuclear Information System (INIS)

    Shumate, S.E. II; Strandberg, G.W.; Parrott, J.R. Jr.

    1978-01-01

    Aqueous waste streams from nuclear fuel processing operations may contain trace quantities of heavy metals such as uranium. Conventional chemical and physical treatment may be ineffective or very expensive when uranium concentrations in the range of 10 to 100 g/m 3 must be reduced to 1 g/m 3 or less. The ability of some microorganisms to adsorb or complex dissolved heavy metals offers an alternative treatment method. Uranium uptake by Saccharomyces cerevisiae NRRL Y-2574 and a strain of Pseudomonas aeruginosa was examined to identify factors which might affect a process for the removal of uranium from wastewater streams. At uranium concentrations in the range of 10 to 500 g/m 3 , where the binding capacity of the biomass was not exceeded, temperature, pH, and initial uranium concentration were found to influence the rate of uranium uptake, but not the soluble uranium concentration at equilibrium. 6 figs

  4. Heavy Metal Contamination Of Soils Around Municipal Solid Wastes ...

    African Journals Online (AJOL)

    Heavy Metal Contamination Of Soils Around Municipal Solid Wastes Dump In Port Harcourt, Nigeria. ... Global Journal of Environmental Sciences ... Soils around the waste dump were also contaminated as a result of continuous dispersion of heavy metals from the waste dump by run-off water, wind and scavengers.

  5. Buffer strip width and agricultural pesticide contamination in Danish lowland streams: Implications for stream and riparian management

    DEFF Research Database (Denmark)

    Rasmussen, Jes J.; Baattrup-Pedersen, Annette; Wiberg-Larsen, Peter

    2011-01-01

    . Total pesticide concentrations and toxic potential were highest during storm flow events with maximum TU ranging from −6.63 to −1.72. We found that minimum buffer strip width in the near upstream area was the most important parameter governing TU. Furthermore, adding a function for minimum buffer strip...... emphasise the importance of considering buffer strips as risk mitigation tools in terms of non-point source pesticide contamination. We furthermore apply our results for discussing the minimum dimensions that vegetated buffer strips should have in order to sufficiently protect stream ecosystems from...... of the most important anthropogenic stressors in stream ecosystems.We surveyed the occurrence of 31 pesticides and evaluated their potential toxicity for benthic macroinvertebrates using Toxic Units (TU) in 14 Danish 1st-and 2nd-order streams in bed sediments and stream water during storm flow and base flow...

  6. Buffer strip width and agricultural pesticide contamination in Danish lowland streams: Implications for stream and riparian management

    DEFF Research Database (Denmark)

    Rasmussen, Jes; Baattrup-Pedersen, Annette; Wiberg-Larsen, Peter

    .5, and the highest observed TU is proposed to have significant effects on benthic macroinvertebrates. This study emphasises the importance of integrating buffer strip characteristics in the assessment and mitigation of risk in agricultural streams. Based on the correlation between BSW and TU, we link BSW......Non-point source contamination with agricultural pesticides is widely acknowledged as one of the greatest sources of pollution in stream ecosystems, and surface runoff is an important transport route. Consequently, maximum pesticide concentrations occur briefly during heavy precipitation events...... the most important environmental parameters governing the occurrence of agricultural pesticides in Danish streams. We measured the concentration of 23 selected agricultural pesticides in 15 Danish 1st and 2nd order streams. Water samples (storm flow) and sediment samples (bed sediment) were collected...

  7. Modeling of simultaneous exchange of colloids and sorbing contaminants between streams and streambeds.

    Science.gov (United States)

    Ren, Jianhong; Packman, Aaron I

    2004-05-15

    Contaminant transport in streams can be significantly modified by both stream-subsurface exchange and the presence of colloidal particles, but the interaction of these effects is notwell understood. Exchange with the hyporheic zone exposes contaminants to surface-chemical reactions with streambed sediments, while colloidal particles have a large reactive surface area that allows them to carry pollutants that would otherwise be transported primarily as dissolved species. A new theoretical model is developed to predict the role of colloids in mediating advective contaminant exchange between streams and streambeds. Bedform-induced pumping theory is applied to model physical transport, and colloid filtration and reversible contaminant sorption are used to calculate the local distributions of colloids and contaminants within the streambed. Residence time functions of both colloids and contaminants in the bed are then used to link contaminant concentrations in the pore water and streamwater. Model simulations indicate that, under conditions of low colloid filtration and strong contaminant sorption to colloids, contaminants are mobilized by colloids and there is less retention of contaminants in the streambed. This is the case of "colloid-facilitated contaminant transport" commonly considered in groundwater transport. On the other hand, when colloid filtration is high and contaminants still sorb strongly to colloids, contaminant mobility decreases and there is greater contaminant retention in the streambed. We term this case "colloid-impeded contaminant transport". Thus, we find that a variety of contaminanttransport behavior can occur depending on the concentration and mobility of suspended particles in the system and the relative affinity of contaminants for colloids and other solid phases.

  8. Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream

    Science.gov (United States)

    Kansa, E.J.; Anderson, B.L.; Wijesinghe, A.M.; Viani, B.E.

    1999-05-25

    This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced. 3 figs.

  9. Metal contamination and post-remediation recovery in the Boulder River watershed, Jefferson County, Montana

    Science.gov (United States)

    Unruh, Daniel M.; Church, Stanley E; Nimick, David A.; Fey, David L.

    2009-01-01

    The legacy of acid mine drainage and toxic trace metals left in streams by historical mining is being addressed by many important yet costly remediation efforts. Monitoring of environmental conditions frequently is not performed but is essential to evaluate remediation effectiveness, determine whether clean-up goals have been met, and assess which remediation strategies are most effective. Extensive pre- and post-remediation data for water and sediment quality for the Boulder River watershed in southwestern Montana provide an unusual opportunity to demonstrate the importance of monitoring. The most extensive restoration in the watershed occurred at the Comet mine on High Ore Creek and resulted in the most dramatic improvement in aquatic habitat. Removal of contaminated sediment and tailings, and stream-channel reconstruction reduced Cd and Zn concentrations in water such that fish are now present, and reduced metal concentrations in streambed sediment by a factor of c. 10, the largest improvement in the district. Waste removals at the Buckeye/Enterprise and Bullion mine sites produced limited or no improvement in water and sediment quality, and acidic drainage from mine adits continues to degrade stream aquatic habitat. Recontouring of hillslopes that had funnelled runoff into the workings of the Crystal mine substantially reduced metal concentrations in Uncle Sam Gulch, but did not eliminate all of the acidic adit drainage. Lead isotopic evidence suggests that the Crystal mine rather than the Comet mine is now the largest source of metals in streambed sediment of the Boulder River. The completed removal actions prevent additional contaminants from entering the stream, but it may take many years for erosional processes to diminish the effects of contaminated sediment already in streams. Although significant strides have been made, additional efforts to seal draining adits or treat the adit effluent at the Bullion and Crystal mines would need to be completed to

  10. Groundwater-derived contaminant fluxes along a channelized Coastal Plain stream

    Energy Technology Data Exchange (ETDEWEB)

    LaSage, Danita m [JL Sexton and Son; Fryar, Alan E [Dept of Earth and Geoligical Sciences, Univ of KY,; Mukherjee, Abhijit [Univ of Tx, Jackson School of Geosciences, Bur of Econ. Geology; Sturchio, Neil C [Dept of earth and Env. Sciences, Univ of Ill at Chicago; Heraty, Linnea J [Dept of earth and Env. Sciences, Univ of Ill at Chicago

    2008-10-01

    Recent studies in various settings across eastern North America have examined the movement of volatile organic compound (VOC) plumes from groundwater to streams, but few studies have addressed focused discharge of such plumes in unlithified sediments. From 1999 through 2002, we monitored concentrations of trichloroethene (TCE) and the non-volatile co-contaminant technetium-99 along Little Bayou Creek, a first -order perennial stream in the Coastal Plain of western Kentucky. Spring flow contributed TCE and technetium-99 to the creek, and TCE concentrations tended to vary with technetium-99 in springs. Contaminant concentrations in stream water fluctuated seasonally, but not always synchronously with stream flow. However, contaminant influxes varied seasonally with stream flow and were dominated by a few springs. Concentrations of O2, NO3⁻, and SO2-4, values of δ37CL in groundwater, and the lack of less-chlorinated ethenes in groundwater and stream water indicated that aerobic biodegradation of TCE was unlikely. Losses of TCE along Little Bayou Creek resulted mainly from volatilization, in contrast to streams receiving diffuse contaminated discharge, where intrinsic bioremediation of VOCs appears to be prevalent.

  11. Macroinvertebrate community structure and function along gradients of physical stream quality and pesticide contamination in Danish streams

    DEFF Research Database (Denmark)

    Rasmussen, Jes

    to stream are surface runoff and tile drainage giving rise to short pulses of acute contamination strongly coinciding with high levels of precipitation. Field studies indicate that macroinvertebrate community structure can be impacted by pesticides during spraying seasons in May and June, but also...... was calculated for 1 km2 catchments (produced from topographical maps) on Funen, Denmark. The physical condition (substrate, meandering etc.) of 1st and 2nd order streams (based on existing data from the National Monitoring Programme and personal exploring) draining these catchments was, additionally, assessed...

  12. Testing a community water supply well located near a stream for susceptibility to stream contamination and low-flows.

    Science.gov (United States)

    Stewart-Maddox, N. S.; Tysor, E. H.; Swanson, J.; Degon, A.; Howard, J.; Tsinnajinnie, L.; Frisbee, M. D.; Wilson, J. L.; Newman, B. D.

    2014-12-01

    A community well is the primary water supply to the town of El Rito. This small rural town in is located in a semi-arid, mountainous portion of northern New Mexico where water is scarce. The well is 72 meters from a nearby intermittent stream. Initial tritium sampling suggests a groundwater connection between the stream and well. The community is concerned with the sustainability and future quality of the well water. If this well is as tightly connected to the stream as the tritium data suggests, then the well is potentially at risk due to upstream contamination and the impacts of extended drought. To examine this, we observed the well over a two-week period performing pump and recovery tests, electrical resistivity surveys, and physical observations of the nearby stream. We also collected general chemistry, stable isotope and radon samples from the well and stream. Despite the large well diameter, our pump test data exhibited behavior similar to a Theis curve, but the rate of drawdown decreased below the Theis curve late in the test. This decrease suggests that the aquifer is being recharged, possibly through delayed yield, upwelling of groundwater, or from the stream. The delayed yield hypothesis is supported by our electrical resistivity surveys, which shows very little change in the saturated zone over the course of the pump test, and by low values of pump-test estimated aquifer storativity. Observations of the nearby stream showed no change in stream-water level throughout the pump test. Together this data suggests that the interaction between the stream and the well is low, but recharge could be occurring through other mechanisms such as delayed yield. Additional pump tests of longer duration are required to determine the exact nature of the aquifer and its communication with the well.

  13. Melting-decontamination method for radioactive contaminated metals

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Tsuchiya, Hiroyuki; Miura, Noboru; Iba, Hajime.

    1985-01-01

    Purpose: To eliminate uranium components remaining in metals even after the uranium-contaminated metals are melted. Method: Metal wastes contaminated with actinide element or its compound as nuclear fuel substance are melted in a crucible. Molten metals are fallen through a filter disposed at the bottom of the crucible into another receiving crucible. Uranium compounds are still left in the molten metal fallen in the receiving crucible. The residual uranium compounds are concentrated by utilizing the principle of the zone-refining process. That is, a displaceable local-heating heater is disposed to the receiving crucible, by which metals once solidified in the receiving crucible is again heated locally to transfer from solid to molten phase in a quasi-equibilized manner. In this way, by eliminating the end of the metal rod at which the uranium is segregated, the contaminating coefficient can be improved. (Ikeda, J.)

  14. Spatial and Seasonal Variations of Heavy Metal Loads in Uyo Urban Drainage Stream under PS and NPS Pollution

    Directory of Open Access Journals (Sweden)

    O. E. Essien

    2012-12-01

    Full Text Available The concentration of heavy metals (HM in the 4km urban drainage stream in Uyo was studied using grab and composite sampling of water from six stations on the stream, and analyzed by a multipurpose atomic absorption spectrophotometer. The data were statistically analyzed using SPSS version 17 software arid correlated between stations and among samples. HM contamination was evaluated with the coefficient and rate of dispersion between stations and the Normalized Scatter Coefficient (NSC. The seasonal distribution of metal pollution varied individually amongst metals at stations. The Fe and Pb concentrations exceeded the safe drinking water standard, rendering the water quality not acceptable for drinking; however, the quality was within the safe limit for crop production along the river bank. The relative.dominance of heavy metals followed a different sequence in upstream leachate effluent from all downstream stations. The NSC in dry-wet season was higher than in wet season, and was in the order: Fe>Cu>Zn>Pb, showing that large but variable concentration of Fe from PS and NPS contaminated the stream at faster rate in the wet season while Pb contaminated at nearly constant rate. However, in the dry season, Fe and Pb depleted at downstream at rates far higher than Zn as Cu was increasing. Fe and Pb could be good pollution monitor for total maximum daily load (TMDL pollution monitoring programme.

  15. Metal accumulation by stream bryophytes, related to chemical speciation

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)], E-mail: et@ceh.ac.uk; Vincent, C.D.; Lawlor, A.J.; Lofts, S. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)

    2008-12-15

    Metal accumulation by aquatic bryophytes was investigated using data for headwater streams of differing chemistry. The Windermere Humic Aqueous Model (WHAM) was applied to calculate chemical speciation, including competitive proton and metal interactions with external binding sites on the plants. The speciation modelling approach gives smaller deviations between observed and predicted bryophyte contents of Cu, Zn, Cd and Pb than regressions based on total filtered metal concentrations. If all four metals, and Ni, are considered together, the WHAM predictions are superior at the 1% level. Optimised constants for bryophyte binding by the trace metals are similar to those for humic substances and simple carboxylate ligands. Bryophyte contents of Na, Mg and Ca are approximately explained by binding at external sites, while most of the K is intracellular. Oxide phases account for some of the Al, and most of the Mn, Fe and Co. - Speciation modelling can be used to interpret the accumulation of Ni, Cu, Zn, Cd and Pb by bryophytes, supporting its use to quantify trace metal bioavailability in the field.

  16. Trace Metal Contamination in Water from Abandoned Mining and ...

    African Journals Online (AJOL)

    Fiifi Baidoo

    Abstract. A survey was conducted on the levels of trace metals (Ni, Cu, Hg, Pb, Mn, Fe, Zn, Cr, Cd, Mg and Ca) in ground and surface water sources from the northern parts of the Ashanti gold belt. Water samples were collected from 67 boreholes, 24 wells, and 10 streams during dry and wet seasons for trace metal analyses ...

  17. Water-soluble metal-binding polymers with ultrafiltration: A technology for the removal, concentration, and recovery of metal ions from aqueous streams

    International Nuclear Information System (INIS)

    Smith, B.F.; Robison, T.W.; Jarvinen, G.D.

    1997-01-01

    The use of water-soluble metal-binding polymers coupled with ultrafiltration (UF) is a technology under development to selectively concentrate and recover valuable or regulated metal-ions from dilute process or waste waters. The polymers have a sufficiently large molecular size that they can be separated and concentrated using commercially available UF technology. The polymers can then be reused by changing the solution conditions to release the metal-ions, which are recovered in a concentrated form for recycle or disposal. Pilot-scale demonstrations have been completed for a variety of waste streams containing low concentrations of metal ions including electroplating wastes (zinc and nickel) and nuclear waste streams (plutonium and americium). Many other potential commercial applications exist including remediation of contaminated solids. An overview of both the pilot-scale demonstrated applications and small scale testing of this technology are presented

  18. Water-soluble metal-binding polymers with ultrafiltration: A technology for the removal, concentration, and recovery of metal ions from aqueous streams

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F.; Robison, T.W.; Jarvinen, G.D.

    1997-12-31

    The use of water-soluble metal-binding polymers coupled with ultrafiltration (UF) is a technology under development to selectively concentrate and recover valuable or regulated metal-ions from dilute process or waste waters. The polymers have a sufficiently large molecular size that they can be separated and concentrated using commercially available UF technology. The polymers can then be reused by changing the solution conditions to release the metal-ions, which are recovered in a concentrated form for recycle or disposal. Pilot-scale demonstrations have been completed for a variety of waste streams containing low concentrations of metal ions including electroplating wastes (zinc and nickel) and nuclear waste streams (plutonium and americium). Many other potential commercial applications exist including remediation of contaminated solids. An overview of both the pilot-scale demonstrated applications and small scale testing of this technology are presented.

  19. Geochemical characteristics of an urban river: Geochemical contamination and urban stream syndrome

    Science.gov (United States)

    MacAvoy, S. E.; Connor, N.; Sarraino, S.; Frantz, D.; Bushaw-Newton, K. L.

    2013-12-01

    The Anacostia River in Washington, D.C. is among the 10 most contaminated rivers in the USA, containing sewage, metals, PAHs, and PCBs. The biogeochemical characteristics of urban rivers, including the Anacostia, remain largely unstudied. Here we examine the base-flow geochemistry of the tidal freshwater Anacostia over a two-year period (April 2010- April 2012), concentrating on water chemistry (pH, hardness, SAR, alkalinity, Ca, Mg, Na, K, Fe, Mn, Zn, Al, Ba, Ni, P, S, Sr, NO3, NH4, PO4) at 3 locations in the stream. Mean NO3was generally between 1.1 and 1.3 mg/L, although occasionally concentrations increased to 3-4 mg/L at all sites. NH4 was very low generally (0.0 to 0.3 mg/L) with occasional peaks of 1.5-3.9 mg/L downstream. A Principle Components Analysis of stream chemistry showed that the upstream site had two components that explained 34.2 and 29.2% of the data variance; PC1 was most strongly negatively correlated with Ca (-.896), Mg (-.585) and hardness (-.823), and was positively correlated with Ba (which is sometimes associated with disturbance), B, NO3, P, PO4, Sr and Al. PC2 was strongly correlated with Mg, K, S, Ni and NH4. Na was positively and significantly correlated with both components, but more so with PC1. At the middle and downstream sites, two components explained 41 to 44% (PC1) and 22 to 28% (PC2) of the data set variance respectively. The components were essentially the same as the upstream site, with the dominance switched. PC1 was positively and highly correlated with ions associated with bedrock components (Ca, Mg, K, Na, and pH but also S and NH4). PC2 was not positively correlated with any of the dominant geochemical variables, but was negatively correlated with Ca and K and positively correlated with NO3, Ba and Mn. The principle components analysis suggests that there is a strong geochemical component and weaker anion/nitrate component contributing to the ion distribution, and their relative dominance changes moving downstream

  20. Treatment of heavy metal contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Hansen, J.E.

    1991-01-01

    Contaminated soil site remediation objectives call for the destruction, removal, and/or immobilization of contaminant species. Destruction is applicable to hazardous compounds (e.g., hazardous organics such as PCBs; hazardous inorganics such as cyanide); however, it is not applicable to hazardous elements such as the heavy metals. Removal and/or immobilization are typical objectives for heavy metal contaminants present in soil. Many technologies have been developed specifically to meet these needs. One such technology is In Situ Vitrification (ISV), an innovative mobile, onsite, in situ solids remediation technology that has been available on a commercial basis for about two years. ISV holds potential for the safe and permanent treatment/remediation of previously disposed or current process solids waste (e.g., soil, sludge, sediment, tailings) contaminated with hazardous chemical and/or radioactive materials. This paper focuses on the application of ISV to heavy metal-contaminated soils

  1. Heavy metal contamination of selected spices obtained from Nigeria ...

    African Journals Online (AJOL)

    ADOWIE PERE

    info and www.bioline.org.br/ja. Heavy metal contamination of selected spices obtained from Nigeria ... rhizome) from a major market in Northern Nigeria were determined using atomic absorption ..... sensitive humans (WHO, 1999b). Food is the ...

  2. Brine contamination of shallow ground water and streams in the Brookhaven Oil Field, Lincoln County, Mississippi

    Science.gov (United States)

    Kalkhoff, S.J.

    1986-01-01

    A hydrologic investigation to define areas of brine contamination in shallow freshwater aquifers commonly used for streams that drain the Brookhaven Oil Field, was conducted from October 1983 to September 1984. The Brookhaven Oil Field covers approximately 15 sq mi in northwestern Lincoln County, Mississippi. Since 1943, disposal of approximately 544.2 million barrels of brine pumped from the oil producing zone (lower part of the Tuscaloosa Formation) has contaminated the Citronelle aquifer, the Hattiesburg aquifers, and streams that drain the oil field. Approximately 5 sq mi of the shallow Citronelle aquifer contain water with chloride concentrations higher than normal for this area ( > 20 mg/L). Brine contamination has moved from the source laterally through the Citronelle aquifer to discharge into nearby streams and vertically into the underlying Hattiesburg aquifers. Contamination is most noticeable in Shaws Creek when streamflow originates primarily from groundwater inflow (approximately 87% of the time during the study). Additional study is required to define contaminant plumes, rates of groundwater movement and geohydrochemical reactions between the contaminant and aquifer materials. These data would allow accurate predictions of location, extent and degree of contamination in the study area. (Author 's abstract)

  3. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    International Nuclear Information System (INIS)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-01-01

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible

  4. Removal and recovery of metal ions from process and waste streams using polymer filtration

    International Nuclear Information System (INIS)

    Jarvinen, G.D.; Smith, B.F.; Robison, T.W.; Kraus, K.M.; Thompson, J.A.

    1999-01-01

    Polymer Filtration (PF) is an innovative, selective metal removal technology. Chelating, water-soluble polymers are used to selectively bind the desired metal ions and ultrafiltration is used to concentrate the polymer-metal complex producing a permeate with low levels of the targeted metal ion. When applied to the treatment of industrial metal-bearing aqueous process streams, the permeate water can often be reused within the process and the metal ions reclaimed. This technology is applicable to many types of industrial aqueous streams with widely varying chemistries. Application of PF to aqueous streams from nuclear materials processing and electroplating operations will be described

  5. Phytoremediation of heavy metal contaminated soil using different ...

    African Journals Online (AJOL)

    A pot experiment was conducted to compare the plant biomass accumulation and heavy metal (HM) uptake by plant species grown in HM contaminated soils. The shoot dry weights of Eucalyptus camaldeulensis, Medicago sativum, and Brassica juncea grown in contaminated soils were reduced by 8, 5, and 3-fold, ...

  6. Geospatial analyses in support of heavy metal contamination ...

    African Journals Online (AJOL)

    This paper presents an exploratory assessment of heavy metal contamination along the main highways in Mafikeng, and illustrates how spatial analyses of the contamination for environmental management purposes can be supported by GIS and Remote Sensing. Roadside soil and grass (Stenotaphrum sp.) samples were ...

  7. Short communication Assessment of heavy metal contamination in ...

    African Journals Online (AJOL)

    2016-05-27

    May 27, 2016 ... Assessment of heavy metal contamination in raw milk for human consumption. M. Younus1#, T. ... studies on the amount of chemical contaminants in unprocessed and raw milk that is available at .... the environment in large quantities through atmospheric deposition, solid waste disposal, sludge application.

  8. Heavy Metals and Microbial Contaminants in a Commercial ...

    African Journals Online (AJOL)

    The heavy metal and microbial contaminants levels were evaluated in a commercial polyherbal product against the backdrop of reports of high levels of such contaminants in similar herbal products elsewhere in Nigeria, India and China. Atomic absorption spctrophotometric technique was used for the analysis of the herbal ...

  9. Heavy metals contamination of topsoil and dispersion in the ...

    African Journals Online (AJOL)

    Growing concern about reclamation of auto-repair workshop areas for residential and agricultural purposes makes risk assessment of heavy metal contamination of the study area imperative. In addition, the study is aimed at ascertaining the dispersion of contaminated Zn, Ni, Cr, Hg, and Pb within the soil profile. A total of 75 ...

  10. Heavy metals contamination: implications for health and food safety

    OpenAIRE

    Yulieth C. Reyes; Inés Vergara; Omar E. Torres; Mercedes Díaz; Edgar E. González

    2016-01-01

    Contamination by heavy metals in water resources, soil and air poses one of the most severe problems that compromise food safety and public health at global and local level. In this review, the specific problem of contamination by mercury (Hg), arsenic (As), cadmium (Cd) and lead (Pb) in the environment and food is presented. A description of the sources of contamination, exposure in living beings, accumulation and retention in food and consumer products is carried out. Study cases and result...

  11. Legacy of a Chemical Factory Site: Contaminated Groundwater Impacts Stream Macroinvertebrates.

    Science.gov (United States)

    Rasmussen, Jes J; McKnight, Ursula S; Sonne, Anne Th; Wiberg-Larsen, Peter; Bjerg, Poul L

    2016-02-01

    Legislative and managing entities of EU member states face a comprehensive task because the chemical and ecological impacts of contaminated sites on surface waters must be assessed. The ecological assessment is further complicated by the low availability or, in some cases, absence of ecotoxicity data for many of the compounds occurring at contaminated sites. We studied the potential impact of a contaminated site, characterised by chlorinated solvents, sulfonamides, and barbiturates, on benthic macroinvertebrates in a receiving stream. Most of these compounds are characterised by low or unknown ecotoxicity, but they are continuously discharged into the stream by way of a long-lasting source generating long-term chronic exposure of the stream biota. Our results show that taxonomical density and diversity of especially sediment dwelling taxa were reduced by >50 % at the sampling sites situated in the primary inflow zone of the contaminated GW. Moreover, macroinvertebrate communities at these sampling sites could be distinguished from those at upstream control sites and sites situated along a downstream dilution gradient using multidimensional scaling. Importantly, macroinvertebrate indices currently used did not identify this impairment, thus underpinning an urgent need for developing suitable tools for the assessment of ecological effects of contaminated sites in streams.

  12. Petroleum Hydrocarbons Contamination Profile of Ochani Stream in ...

    African Journals Online (AJOL)

    Michael Horsfall

    Ground water contamination by crude oil therefore is becoming an increasing sensitive issue in Nigeria because most of the water supply is derived from shallow and unconfined aquifers. ... the identification of pathways and targets which may be impacted by .... D3974 in a semi-automatic digestion unit with. Turbosog fume ...

  13. Bioavailability and toxicity of metals from a contaminated sediment by acid mine drainage: linking exposure-response relationships of the freshwater bivalve Corbicula fluminea to contaminated sediment.

    Science.gov (United States)

    Sarmiento, Aguasanta M; Bonnail, Estefanía; Nieto, José Miguel; DelValls, Ángel

    2016-11-01

    Streams and rivers strongly affected by acid mine drainage (AMD) have legal vacuum in terms of assessing the water toxicity, since the use of conventional environmental quality biomarkers is not possible due to the absence of macroinvertebrate organisms. The Asian clam Corbicula fluminea has been widely used as a biomonitor of metal contamination by AMD in freshwater systems. However, these clams are considered an invasive species in Spain and the transplantation in the field study is not allowed by the Environmental Protection Agency. To evaluate the use of the freshwater bivalve C. fluminea as a potential biomonitor for sediments contaminated by AMD, the metal bioavailability and toxicity were investigated in laboratory by exposure of clams to polluted sediments for 14 days. The studied sediments were classified as slightly contaminated with As, Cr, and Ni; moderately contaminated with Co; considerably contaminated with Pb; and heavily contaminated with Cd, Zn, and specially Cu, being reported as very toxic to Microtox. On the fourth day of the exposure, the clams exhibited an increase in concentration of Ga, Ba, Sb, and Bi (more than 100 %), followed by Co, Ni, and Pb (more than 60 %). After the fourth day, a decrease in concentration was observed for almost all metals studied except Ni. An allometric function was used to determine the relationship between the increases in metal concentration in soft tissue and the increasing bioavailable metal concentrations in sediments.

  14. Some Case Studies on Metal-Microbe Interactions to Remediate Heavy Metals- Contaminated Soils in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2015-04-01

    Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.

  15. Toward zero waste events: Reducing contamination in waste streams with volunteer assistance.

    Science.gov (United States)

    Zelenika, Ivana; Moreau, Tara; Zhao, Jiaying

    2018-03-22

    Public festivals and events generate a tremendous amount of waste, especially when they involve food and drink. To reduce contamination across waste streams, we evaluated three types of interventions at a public event. In a randomized control trial, we examined the impact of volunteer staff assistance, bin tops, and sample 3D items with bin tops, on the amount of contamination and the weight of the organics, recyclable containers, paper, and garbage bins at a public event. The event was the annual Apple Festival held at the University of British Columbia, which was attended by around 10,000 visitors. We found that contamination was the lowest in the volunteer staff condition among all conditions. Specifically, volunteer staff reduced contamination by 96.1% on average in the organics bin, 96.9% in the recyclable containers bin, 97.0% in the paper bin, and 84.9% in the garbage bin. Our interventions did not influence the weight of the materials in the bins. This finding highlights the impact of volunteers on reducing contamination in waste streams at events, and provides suggestions and implications for waste management for event organizers to minimize contamination in all waste streams to achieve zero waste goals. Copyright © 2018. Published by Elsevier Ltd.

  16. Assessment of heavy metal contamination in raw milk for human ...

    African Journals Online (AJOL)

    The presence of heavy metals in various farm inputs, including feed, fertilizer, water and environment leads to excretion of the residues in animals' milk. Because consumption of milk contaminated with heavy metals poses serious threats to consumers' health, a study was conducted in 2012 – 2013 in Pakistan to evaluate ...

  17. Metal Hydride assited contamination on Ru/Si surfaces

    NARCIS (Netherlands)

    Pachecka, Malgorzata; Lee, Christopher James; Sturm, Jacobus Marinus; Bijkerk, Frederik

    2013-01-01

    In extreme ultraviolet lithography (EUVL) residual tin, in the form of particles, ions, and atoms, can be deposited on nearby EUV optics. During the EUV pulse, a reactive hydrogen plasma is formed, which may be able to react with metal contaminants, creating volatile and unstable metal hydrides that

  18. Metal contamination of agricultural soils in the copper mining areas ...

    Indian Academy of Sciences (India)

    Soma Giri

    2017-06-07

    Jun 7, 2017 ... monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution. Keywords. Agricultural soil; heavy metals; copper mining areas; multivariate analysis; geo-accumu- lation index; Nemerow index. 1. Introduction. The contamination of agricultural ...

  19. Assessment of trace metal contamination of soils around Oluyole ...

    African Journals Online (AJOL)

    This study was carried out to determine the level of metals contamination of the soils around Oluyole industrial estate in Ibadan. Oluyole industrial estate has heavy concentration of manufacturing industries that generate a lot of waste products capable of introducing metals into the environment. Consequently, twenty-one ...

  20. Assessment of trace metals contamination of soils around some ...

    African Journals Online (AJOL)

    This study was carried out to determine the level of soil contamination by metals around some automobile mechanic workshops in Oyo town in order to assess their possible adverse health implications on man and his environment. Concentrations of metals above certain levels have been shown to impair man's health.

  1. Evaluation of some heavy metal contaminants in biscuits, fruit drinks ...

    African Journals Online (AJOL)

    There is an increasing concern about the health effect in human due to continual consumption of food contaminated with heavy metals gotten from raw materials, manufacturing and packaging processes. It is therefore crucial to know the level of heavy metals in them because of its bio-accumulative property. A total of twelve ...

  2. Worker exposures from recycling surface contaminated radioactive scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Kluk, A. [Dept. of Energy, Germantown, MD (United States); Phillips, J.W.; Culp, J. [Analytical Services, Inc., Columbia, MD (United States)

    1996-12-31

    Current DOE policy permits release from DOE control of real property with residual levels of surficial radioactive contamination if the contamination is below approved guidelines. If the material contains contamination that is evenly distributed throughout its volume (referred to as volumetric contamination), then Departmental approval for release must be obtained in advance. Several DOE sites presently recycle surface contaminated metal, although the quantities are small relative to the quantities of metal processed by typical mini-mills, hence the potential radiation exposures to mill workers from processing DOE metals and the public from the processed metal are at present also a very small fraction of their potential value. The exposures calculated in this analysis are based on 100% of the scrap metal being processed at the maximum contamination levels and are therefore assumed to be maximum values and not likely to occur in actual practice. This paper examines the relationship between the surface contamination limits established under DOE Order 5400.5, {open_quotes}Radiation Protection of the Public and the Environment,{close_quotes} and radiation exposures to workers involved in the scrap metal recycling process. The analysis is limited to surficial contamination at or below the guideline levels established in DOE Order 5400.5 at the time of release. Workers involved in the melting and subsequent fabrication of products are not considered radiation workers (no requirements for monitoring) and must be considered members of the public. The majority of the exposures calculated in this analysis range from tenths of a millirem per year (mrem/yr) to less than 5 mrem/yr. The incremental risk of cancer associated with these exposures ranges from 10{sup -8} cancers per year to 10{sup -6} cancers per year.

  3. Worker exposures from recycling surface contaminated radioactive scrap metal

    International Nuclear Information System (INIS)

    Kluk, A.; Phillips, J.W.; Culp, J.

    1996-01-01

    Current DOE policy permits release from DOE control of real property with residual levels of surficial radioactive contamination if the contamination is below approved guidelines. If the material contains contamination that is evenly distributed throughout its volume (referred to as volumetric contamination), then Departmental approval for release must be obtained in advance. Several DOE sites presently recycle surface contaminated metal, although the quantities are small relative to the quantities of metal processed by typical mini-mills, hence the potential radiation exposures to mill workers from processing DOE metals and the public from the processed metal are at present also a very small fraction of their potential value. The exposures calculated in this analysis are based on 100% of the scrap metal being processed at the maximum contamination levels and are therefore assumed to be maximum values and not likely to occur in actual practice. This paper examines the relationship between the surface contamination limits established under DOE Order 5400.5, open-quotes Radiation Protection of the Public and the Environment,close quotes and radiation exposures to workers involved in the scrap metal recycling process. The analysis is limited to surficial contamination at or below the guideline levels established in DOE Order 5400.5 at the time of release. Workers involved in the melting and subsequent fabrication of products are not considered radiation workers (no requirements for monitoring) and must be considered members of the public. The majority of the exposures calculated in this analysis range from tenths of a millirem per year (mrem/yr) to less than 5 mrem/yr. The incremental risk of cancer associated with these exposures ranges from 10 -8 cancers per year to 10 -6 cancers per year

  4. Contaminated scrap-metal inventories at ORO-managed sites

    International Nuclear Information System (INIS)

    Mack, J.E.

    1981-01-01

    Radioactively contaminated scrap metal inventories were surveyed at facilities operating under contract with the US Department of Energy and managed through the Oak Ridge Operations Office. Nearly 90,000 tons of nickel, aluminum, copper, and ferrous metals (steels) contaminated with low-enriched uranium have accumulated, primarily at the uranium enrichment facilities. The potential value of this metal on the scrap market is over $100 million. However, existing regulations do not permit sale for unlicensed use of materials contaminated with low-enriched uranium. Therefore, current handling practices include burial and above-ground storage. Smelting is also used for shape declassification, with subsequent storage of ingots. This survey of existing inventories, generation rates, and handling capabilities is part of an overall metal waste management program to coordinate related activities among the ORO-managed sites

  5. Process for treating waste water having low concentrations of metallic contaminants

    Science.gov (United States)

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  6. Photocatalytic oxidation of gas-phase BTEX-contaminated waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Gratson, D A; Nimlos, M R; Wolfrum, E J

    1995-03-01

    Researchers at the National Renewable Energy Laboratory (NREL) have been exploring heterogeneous photocatalytic oxidation (PCO) as a remediation technology for air streams contaminated with benzene, toluene, ethyl-benzene, and xylenes (BTEX). This research is a continuation of work performed on chlorinated organics. The photocatalytic oxidation of BTEX has been studied in the aqueous phase, however, a study by Turchi et al. showed a more economical system would involve stripping organic contaminants from the aqueous phase and treating the resulting gas stream. Another recent study by Turchi et al. indicated that PCO is cost competitive with such remediation technologies as activated carbon adsorption and catalytic incineration for some types of contaminated air streams. In this work we have examined the photocatalytic oxidation of benzene using ozone (0{sub 3}) as an additional oxidant. We varied the residence time in the PCO reactor, the initial concentration of the organic pollutant, and the initial ozone concentration in a single-pass reactor. Because aromatic hydrocarbons represent only a small fraction of the total hydrocarbons present in gasoline and other fuels, we also added octane to the reaction mixture to simulate the composition of air streams produced from soil-vapor-extraction or groundwater-stripping of sites contaminated with gasoline.

  7. Lead mobilisation in the hyporheic zone and river bank sediments of a contaminated stream. Contribution to diffuse pollution

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo-Roe, Barbara; Wragg, Joanna; Banks, Vanessa J. [British Geological Survey, Keyworth Nottingham (United Kingdom)

    2012-12-15

    Purpose: Past metal mining has left a legacy of highly contaminated sediments representing a significant diffuse source of contamination to water bodies in the UK and worldwide. This paper presents the results of an integrated approach used to define the role of sediments in contributing to the dissolved lead (Pb) loading to surface water in a mining-impacted catchment. Materials and methods: The Rookhope Burn catchment, northern England, UK is affected by historical mining and processing of lead ore. Quantitative geochemical loading determinations, measurements of interstitial water chemistry from the stream hyporheic zone and inundation tests of bank sediments were carried out. Results and discussion: High concentrations of Pb in the sediments from the catchment, identified from the British Geological Survey Geochemical Baseline Survey of the Environment (GBASE) data, demonstrate both the impact of mineralisation and widespread historical mining. The results from stream water show that the stream Pb load increased in the lower part of the catchment, without any apparent or significant contribution of point sources of Pb to the stream. Relative to surface water, the interstitial water of the hyporheic zone contained high concentrations of dissolved Pb in the lower reaches of the Rookhope Burn catchment, downstream of a former mine washing plant. Concentrations of 56 {mu}g l{sup -1} of dissolved Pb in the interstitial water of the hyporheic zone may be a major cause of the deterioration of fish habitats in the stream and be regarded as a serious risk to the target of good ecological status as defined in the European Water Framework Directive. Inundation tests provide an indication that bank sediments have the potential to contribute dissolved Pb to surface water. Conclusions: The determination of Pb in the interstitial water and in the inundation water, taken with water Pb mass balance and sediment Pb distribution maps at the catchment scale, implicate the

  8. Buffer strip width and agricultural pesticide contamination in Danish lowland streams: Implications for stream and riparian management

    DEFF Research Database (Denmark)

    Rasmussen, Jes; Baattrup-Pedersen, Annette; Wiberg-Larsen, Peter

    ) of agricultural pesticides originating from normal agricultural practices. We link the findings to a predictive model for pesticide surface runoff (RP) and evaluate the potential impact of pesticides on benthic macroinvertebrates. Furthermore, we apply detailed land-use data and field characteristics to identify....... According to the WFD, member states are obliged to obtain good ecosystem quality in natural surface waters in 2015. Mitigating the risk of non-point source contamination by agricultural pesticides is therefore an essential management task in river basins. Recently, the SPEAR index was introduced for German....... The streams represent a gradient of potential pesticide contamination based on the percentage of agricultural land in the catchment. Preliminary analyses show that the strongest predictor of TU was minimum buffer strip width (BSW) (Pland and applied amounts...

  9. Quantifying restoration success and recovery in a metal-polluted stream: A 17-year assessment of physicochemical and biological responses

    Science.gov (United States)

    Clements, W.H.; Vieira, N.K.M.; Church, S.E.

    2010-01-01

    Evaluating the effectiveness of stream restoration is often challenging because of the lack of pre-treatment data, narrow focus on physicochemical measures and insufficient post-restoration monitoring. Even when these fundamental elements are present, quantifying restoration success is difficult because of the challenges associated with distinguishing treatment effects from seasonal variation, episodic events and long-term climatic changes.2. We report results of one of the most comprehensive and continuous records of physical, chemical and biological data available to assess restoration success for a stream ecosystem in North America. Over a 17 year period we measured seasonal and annual changes in metal concentrations, physicochemical characteristics, macroinvertebrate communities, and brown trout Salmo trutta populations in the Arkansas River, a metal-contaminated stream in Colorado, USA.3. Although we observed significant improvements in water quality after treatment, the effectiveness of restoration varied temporally, spatially and among biological response variables. The fastest recovery was observed at stations where restoration eliminated point sources of metal contamination. Recovery of macroinvertebrates was significantly delayed at some stations because of residual sediment contamination and because extreme seasonal and episodic variation in metal concentrations prevented recolonization by sensitive species. Synthesis and applications. Because recovery trajectories after the removal of a stressor are often complex or nonlinear, long-term studies are necessary to assess restoration success within the context of episodic events and changes in regional climate. The observed variation in recovery among chemical and biological endpoints highlights the importance of developing objective criteria to assess restoration success. Although the rapid response of macroinvertebrates to reduced metal concentrations is encouraging, we have previously demonstrated that

  10. Algal-bacterial interactions in metal contaminated floodplain sediments

    International Nuclear Information System (INIS)

    Boivin, M.E.Y.; Greve, G.D.; Garcia-Meza, J.V.; Massieux, B.; Sprenger, W.; Kraak, M.H.S.; Breure, A.M.; Rutgers, M.; Admiraal, W.

    2007-01-01

    The aim of the present study was to investigate algal-bacterial interactions in a gradient of metal contaminated natural sediments. By means of multivariate techniques, we related the genetic structure (denaturing gradient gel electrophoresis, DGGE) and the physiological structure (community-level physiological profiling, CLPP) of the bacterial communities to the species composition of the algal communities and to the abiotic environmental variables, including metal contamination. The results revealed that genetic and physiological structure of the bacterial communities correlated with the species composition of the algal community, but hardly to the level of metal pollution. This must be interpreted as an indication for a strong and species-specific linkage of algal and bacterial species in floodplain sediments. Metals were, however, not proven to affect either the algal or the bacterial communities of the Dutch river floodplains. - Algal and bacterial communities in floodplain sediments are interlinked, but are not affected by metal pollution

  11. Considering bioavailability in the remediation of heavy metal contaminated sites

    Directory of Open Access Journals (Sweden)

    Leita L.

    2013-04-01

    Full Text Available Many years of research have demonstrated that instead of the total concentration of metals in soil, bioavailability is the key to understand the environmental risk derived by metals, since adverse effects are related only to the biologically available forms of these elements. The knowledge of bioavailability can decrease the uncertainties in evaluating exposure in human and ecological risk assessment. At the same time, the efficiency of remediation treatments could be greatly influenced by availability of the contaminants. Consideration of the bioavailability processes at contaminated sites could be useful in site-specific risk assessment: the fraction of mobile metals, instead of total content should be provided as estimates of metal exposure. Moreover, knowledge of the chemical forms of heavy metals in soils is a critical component in the evaluation of applicability of different remediation technologies such as phytoremdiation or soil washing.

  12. Hydrometallurgical Approach for Leaching of Metals from Copper Rich Side Stream Originating from Base Metal Production

    Directory of Open Access Journals (Sweden)

    Udit Surya Mohanty

    2018-01-01

    Full Text Available Pyrometallurgical metal production results in side streams, such as dusts and slags, which are carriers of metals, though commonly containing lower metal concentrations compared to the main process stream. In order to improve the circular economy of metals, selective leaching of copper from an intermediate raw material originating from primary base metal production plant was investigated. The raw material investigated was rich in Cu (12.5%, Ni (2.6%, Zn (1.6%, and Fe (23.6% with the particle size D80 of 124 µm. The main compounds present were nickel ferrite (NiFe2O4, fayalite (Fe2SiO4, cuprite (Cu2O, and metallic copper. Leaching was studied in 16 different solutions. The results revealed that copper phases could be dissolved with high yield (>90% and selectivity towards nickel (Cu/Ni > 7 already at room temperature with the following solutions: 0.5 M HCl, 1.5 M HCl, 4 M NaOH, and 2 M HNO3. A concentration of 4 M NaOH provided a superior selectivity between Cu/Ni (340 and Cu/Zn (51. In addition, 1–2 M HNO3 and 0.5 M HCl solutions were shown to result in high Pb dissolution (>98%. Consequently, 0.5 M HCl leaching is suggested to provide a low temperature, low chemical consumption method for selective copper removal from the investigated side stream, resulting in PLS (pregnant leach solution which is a rich in Cu and lead free residue, also rich in Ni and Fe.

  13. Heavy Metal Contaminated Soil Treatment: Conceptual Development

    Science.gov (United States)

    1987-02-01

    associated with Army industrial )perations. Activities that contributed to soil contaminatioa included equipment rebuilding and repair, munitions maiufacturing...Hazardous Waste Engineering Research Laboratory, U.S. EPA, Cincinnati, Ohio 45268 (undated). 2. Personal communication with Dennis Hotaling , Technical...been used in several chemical industry installations to treat metal bearing wastewaters. NaBH 4 is a strong reducing agent which can reduce many metal

  14. Oxidation and metal contamination of EUV optics

    NARCIS (Netherlands)

    Sturm, Jacobus Marinus; Liu, Feng; Pachecka, Malgorzata; Lee, Christopher James; Bijkerk, Frederik

    2013-01-01

    The next generation photolithography will use 13.5 nm Extreme Ultraviolet (EUV) for printing smaller features on chips. One of the hallenges is to optimally control the contamination of the multilayer mirrors used in the imaging system. The aim of this project is generating fundamental understanding

  15. DOE's radioactively - contaminated metal recycling: The policy and its implementation

    International Nuclear Information System (INIS)

    Warren, S.; Rizkalla, E.

    1997-01-01

    In 1994, the Department of Energy's Office of Environmental Restoration initiated development of a recycling policy to minimize the amount of radioactively-contaminated metal being disposed of as waste. During the following two years, stakeholders (including DOE and contractor personnel, regulators, members of the public, and representatives of labor and industry) were invited to identify key issues of concern, and to provide input on the final policy. As a result of this process, a demonstration policy for recycling radioactively-contaminated carbon steel resulting from decommissioning activities within the Environmental Management program was signed on September 20, 1996. It specifically recognizes that the Office of Environmental Management has a tremendous opportunity to minimize the disposal of metals as waste by the use of disposal containers fabricated from contaminated steel. The policy further recognizes the program's demand for disposal containers, and it's role as the major generator of radioactively-contaminated steel

  16. Assessment of toxic metal contamination using a regional lithogenic geochemical background, Pampean area river basin, Argentina.

    Science.gov (United States)

    Castro, Liliana Norma; Rendina, Alicia Elena; Orgeira, Maria Julia

    2018-06-15

    Contamination assessment in riverbed sediments depends on the accurate determination of the background values. The aim of this study is to assess the degree of contamination and to evaluate the most adequate background for the determination of anthropogenic contamination in Cd, Cr, Cu, Ni, Pb and Zn in bed sediments of the Pampean area river basin (Matanza-Riachuelo River and tributary streams), Argentina. The geo-accumulation index (Igeo) values were calculated using selected lithogenic backgrounds (loess, loessoid sediments and paleosoils), the metal concentrations in the residual fraction (F4) in riverbed sediments and a global average shale often applied in the estimation of toxic metal Igeo. The IgeoF4, IgeoLZB and most of the others Igeos, indicated that in land areas used mainly for agriculture and cattle grazing, the superficial sediments were uncontaminated with Cd, Cr, Cu and Zn, and slightly contaminated with Ni and Pb. Conversely, in those areas dedicated to urban and industrial use, the metal contamination was greater. Overall, the relatively significant anthropogenic contamination of Cr > Pb ≥ Cu > Zn > Ni > Cd in the Riachuelo River area was associated with metallurgic activities, tanning and industrial waste. The comparative analysis of different values suggested that Buenos Aires' "pristine" loess could be recommended to evaluate the Igeo index of riverbed sediments in the Pampean area. To enhance the use of the selected background, the normalized enrichment factor using Al. In this study case, the Igeo and the EF using LZB background display the same trend, showing the greatest degree of contamination, as would be expected, in Riachuelo samples (RIA 1 and RIA 2) located in the urban/industrial area. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Prospects for separating heavy metal from contaminated soil

    International Nuclear Information System (INIS)

    Langen, M.; Hoberg, H.; Hamacher, B.

    1994-01-01

    For decades, large quantities of organic and inorganic pollutants have been brought into the soil as a result of the industrial operations of smelting and coking plants. This paper reports on the prospects of separating heavy metals from soil contaminated by smelting and coking plants by means of a physical/chemical washing procedure. Besides the description of virgin soil characteristics, cleaning results and process parameters of calssification, density separation and flotation processes are presented. It is shown that heavy metal pollution of virgin soil can be reduced by the classical process stages of soil washing. The metal content of virgin soil are critically assessed whereby the limits of the physical-chimical washing process will also be entered into. Emphasis is placed on the significance of the determination of limiting values for inorganic contamination, especially for soil contaminated with both organic and inorganic pollution. (orig.) [de

  18. Radioactive contamination of fishes in lake and streams impacted by the Fukushima nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Mayumi, E-mail: yoshi887@ffpri.affrc.go.jp [Kansai Research Center, Forestry and Forest Products Research Institute, Nagaikyuutaro 68, Momoyama, Fushimi, Kyoto 612-0855 (Japan); Yokoduka, Tetsuya [Tochigi Prefectural Fisheries Experimental Station, Sarado 2599, Ohtawara, Tochigi 324-0404 (Japan)

    2014-06-01

    The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in March 2011 emitted radioactive substances into the environment, contaminating a wide array of organisms including fishes. We found higher concentrations of radioactive cesium ({sup 137}Cs) in brown trout (Salmo trutta) than in rainbow trout (Oncorhynchus nerka), and {sup 137}Cs concentrations in brown trout were higher in a lake than in a stream. Our analyses indicated that these differences were primarily due to differences in diet, but that habitat also had an effect. Radiocesium concentrations ({sup 137}Cs) in stream charr (Salvelinus leucomaenis) were higher in regions with more concentrated aerial activity and in older fish. These results were also attributed to dietary and habitat differences. Preserving uncontaminated areas by remediating soils and releasing uncontaminated fish would help restore this popular fishing area but would require a significant effort, followed by a waiting period to allow activity concentrations to fall below the threshold limits for consumption. - Highlight: • Concentration of {sup 137}Cs in brown trout was higher than in rainbow trout. • {sup 137}Cs concentration of brown trout in a lake was higher than in a stream. • {sup 137}Cs concentration of stream charr was higher in region with higher aerial activity. • Concentration of {sup 137}Cs in stream charr was higher in older fish. • Difference of contamination among fishes was due to difference in diet and habitat.

  19. Radioactive contamination of fishes in lake and streams impacted by the Fukushima nuclear power plant accident

    International Nuclear Information System (INIS)

    Yoshimura, Mayumi; Yokoduka, Tetsuya

    2014-01-01

    The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in March 2011 emitted radioactive substances into the environment, contaminating a wide array of organisms including fishes. We found higher concentrations of radioactive cesium ( 137 Cs) in brown trout (Salmo trutta) than in rainbow trout (Oncorhynchus nerka), and 137 Cs concentrations in brown trout were higher in a lake than in a stream. Our analyses indicated that these differences were primarily due to differences in diet, but that habitat also had an effect. Radiocesium concentrations ( 137 Cs) in stream charr (Salvelinus leucomaenis) were higher in regions with more concentrated aerial activity and in older fish. These results were also attributed to dietary and habitat differences. Preserving uncontaminated areas by remediating soils and releasing uncontaminated fish would help restore this popular fishing area but would require a significant effort, followed by a waiting period to allow activity concentrations to fall below the threshold limits for consumption. - Highlight: • Concentration of 137 Cs in brown trout was higher than in rainbow trout. • 137 Cs concentration of brown trout in a lake was higher than in a stream. • 137 Cs concentration of stream charr was higher in region with higher aerial activity. • Concentration of 137 Cs in stream charr was higher in older fish. • Difference of contamination among fishes was due to difference in diet and habitat

  20. Spectroscopic analysis of soil metal contamination around a derelict mine site in the Blue Mountains, Australia

    Science.gov (United States)

    Shamsoddini, A.; Raval, S.; Taplin, R.

    2014-09-01

    Abandoned mine sites pose the potential threat of the heavy metal pollution spread through streams and via runoff leading to contamination of soil and water in their surrounding areas. Regular monitoring of these areas is critical to minimise impacts on water resources, flora and fauna. Conventional ground based monitoring is expensive and sometimes impractical; spectroscopic methods have been emerged as a reliable alternative for this purpose. In this study, the capabilities of the spectroscopy method were examined for modelling soil contamination from around the abandoned silver-zinc mine located at Yerranderie, NSW Australia. The diagnostic characteristics of the original reflectance data were compared with models derived from first and second derivatives of the reflectance data. The results indicate that the models derived from the first derivative of the reflectance data estimate heavy metals significantly more accurately than model derived from the original reflectance. It was also found in this study that there is no need to use second derivative for modelling heavy metal soil contamination. Finally, the results indicate that estimates were of greater accuracy for arsenic and lead compared to other heavy metals, while the estimation for silver was found to be the most erroneous.

  1. Mercury and other heavy metals influence bacterial community structure in low-order Tennessee streams

    Energy Technology Data Exchange (ETDEWEB)

    Vishnivetskaya, Tatiana A [ORNL; Mosher, Jennifer J [ORNL; Palumbo, Anthony Vito [ORNL; Podar, Mircea [ORNL; Brown, Steven D [ORNL; Brooks, Scott C [ORNL; Southworth, George R [ORNL; Drake, Meghan M [ORNL; Brandt, Craig C [ORNL

    2011-01-01

    High concentrations of the heavy metals U(VI) and Hg(II) as well as inorganic compounds including nitrate have contaminated streams located in the Department of Energy reservation in Oak Ridge, TN. Of particular concern is methylmercury (MeHg) as it is more neurotoxic than Hg0. Deltaproteobacteria including sulfate reducing bacteria (SRB) and iron reducing bacteria (IRB) have been generally identified as the primary methylators. In order to determine potential effects on microbial community composition by the contamination, surface stream sediments were collected 7 times during the year from 5 contaminated sites and 1 control site. Sixty samples were analyzed for bacterial community composition and geochemistry. Community characterization used GS 454 FLX pyrosequencing with 235 Mb of 16S rDNA sequence targeting the V4 region. Sorting and filtering of the raw reads resulted in 588,699 high quality sequences with lengths of >200 bp. The bacterial community was represented by 24 phyla and unclassified Bacteria including Proteobacteria (22.9-58.5%), Cyanobacteria (0.2-32.0%), Acidobacteria (1.6-30.6%), and Verrucomicrobia (3.4-31.0%). Redundancy analysis indicated there were no significant differences in the bacterial community structure between midchannel and near bank samples. However, significant correlations existed between the bacterial community and seasonal as well as geochemical variation. Further, several members of the community appear to be positively associated with MeHg including the Proteobacteria group that includes SRBs as well as Verrucomicrobia. This study is the first to indicate the influence of MeHg on an in-situ microbial community and suggests possible roles for each of these phyla in the Hg/MeHg cycle.

  2. Heavy metals contamination of Chrysichthys nigrodigitatus and ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... The presence of five metals were analyzed in both fish and water. Iron, copper, zinc, lead ... Health Organisation (WHO) guideline for maximum concentration recorded in the tissue of the two samples. Iron was found to be ... Development Authority has its jurisdiction covering land area of. 66.264 square ...

  3. Heavy metals contamination: implications for health and food safety

    Directory of Open Access Journals (Sweden)

    Yulieth C. Reyes

    2016-07-01

    Full Text Available Contamination by heavy metals in water resources, soil and air poses one of the most severe problems that compromise food safety and public health at global and local level. In this review, the specific problem of contamination by mercury (Hg, arsenic (As, cadmium (Cd and lead (Pb in the environment and food is presented. A description of the sources of contamination, exposure in living beings, accumulation and retention in food and consumer products is carried out. Study cases and results in some countries included Colombia are discussed.

  4. Do Spawning Salmon Contribute Marine-Derived Contaminants to Southeast Alaskan Streams?

    Science.gov (United States)

    Nagorski, S. A.; Hudson, J. P.; Fellman, J.; Hood, E. W.; Vermilyea, A.; Krabbenhoft, D. P.; Ylitalo, G.

    2016-12-01

    Pacific salmon are well known contributors of marine-derived nutrients and carbon to freshwater systems where they spawn and die. A potentially negative side effect of their freshwater spawning legacy is their additional contribution of pollutants accumulated during the marine phase of their life cycle. Alaskan salmon, which undergo the majority of their bodily growth in the North Pacific, are being exposed to rising concentrations of pollutants in the waters and foodwebs of the north Pacific. In this study we investigated the contribution of mercury and persistent organic pollutants (POPs) by spawning Pacific salmon to five streams in the vicinity of Juneau, Alaska. Using a nested experimental design inherent in streams with natural migration barriers or steep density gradients, we collected samples from stream reaches with and without spawning salmon. We measured total and methyl mercury in filtered water, suspended particulates, streambed sediment, biofilm on incubated leaf packs, two taxa of benthic macroinvertebrate larvae, and rearing and/or resident fishes. The benthic macroinvertebrates and fishes were also analyzed for a suite of POPs, consisting of historic and current use pesticides and historic and urban use chemicals. For most parameters, contaminant concentrations were higher in the lower reaches where salmon spawners were present, with stronger effects in the streams with higher spawner densities. For example, in the two streams with the highest spawner densities, filtered methylmercury was an order of magnitude higher in the lower stream reach and comprised up to 33% of the total mercury. Alder leaf packs resulted in particularly consistent spatial patterns, while benthic macroinvertebrate larvae results were the least spatially consistent for both mercury and POPs. Although fish tissue mercury concentrations were not uniformly higher in lower stream reaches across our 5 study streams due to upstream sources of mercury and different fish species and

  5. Evolution of cadmium tolerance and associated costs in a Gammarus fossarum population inhabiting a low-level contaminated stream.

    Science.gov (United States)

    Vigneron, A; Geffard, O; Coquery, M; François, A; Quéau, H; Chaumot, A

    2015-08-01

    Deciphering evolutionary processes occurring within long-term contaminated wild populations is essential for the ecological risk assessment of persistent chemical contaminations. Using field populations of Gammarus, a commonly-used genus in aquatic ecotoxicology, the present study sought to gain insights into the extent to which long-term exposure to metals in the field could effectively lead to shifts in toxicological sensitivities. For this, we identified a Gammarus population inhabiting a stream contaminated by cadmium (Cd). We compared the Cd-exposure and Cd-sensitivity of this population to those of five reference populations. Active biomonitoring determined in different years and seasons that significant levels of Cd were bioavailable in the contaminated site. Laboratory sensitivity tests under common garden conditions established that this long-term field exposure led to the development of a moderate Cd tolerance, which was maintained after a 3-week acclimatization in the laboratory, and transmitted to offspring produced under clean conditions. The potential physiological costs of tolerance were assessed by means of feeding rate measurements (in the laboratory and in situ). They revealed that, unlike for reference populations, the feeding activity of organisms from the tolerant population was greatly decreased when they were maintained under laboratory conditions, potentially indicating a high population vulnerability to environmental perturbations. Because dissolved Cd concentrations in water from the contaminated site were low (averaging 0.045 µg L(-1)) and below the current European environmental quality standard for Cd for inland surface waters (fixed at 0.08 µg L(-1) in soft water environments), this case study sheds light onto the extent to which current environmental quality standards are protective against potential adverse outcomes of adaptive and micro-evolutionary processes occurring in contaminated environments.

  6. Challenges in the Management of Potentially Contaminated Scrap Metal

    International Nuclear Information System (INIS)

    Meehan, R.W.

    2011-01-01

    This paper describes the background and current status of the management of potentially contaminated metals and materials at the US Department of Energy (DOE) sites across the USA. The current DOE policy prohibiting the release of metal scrap for recycling from radiation areas is explained. Finally, a potential path forward to competently assess, characterize and clear material from radiological control is proposed that uses a combination of administrative processes and empirical techniques that are valid irrespective of the standard used for clearance. (author)

  7. Removal of trace metal contaminants from potable water by electrocoagulation

    OpenAIRE

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-01-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more...

  8. Assessment of Heavy Metal Contamination in Soils around Cassava ...

    African Journals Online (AJOL)

    The concentrations, contamination/pollution index, anthropogenic input and enrichment factors for metals in soil in the vicinity of cassava processing mills in sub-urban areas of Delta State of Nigeria were examined. The concentrations of metals in all sites and depths ranged from 0.1 to 383.2 mg kg-1 for Mn, 4.0 to 11.3 mg ...

  9. Legacy of a Chemical Factory Site: Contaminated Groundwater Impacts Stream Macroinvertebrates

    DEFF Research Database (Denmark)

    Rasmussen, Jes J.; McKnight, Ursula S.; Sonne, Anne Thobo

    2016-01-01

    Legislative and managing entities of EU member states face a comprehensive task because the chemical and ecological impacts of contaminated sites on surface waters must be assessed. The ecological assessment is further complicated by the low availability or, in some cases, absence of ecotoxicity...... data for many of the compounds occurring at contaminated sites. We studied the potential impact of a contaminated site, characterised by chlorinated solvents, sulfonamides, and barbiturates, on benthic macroinvertebrates in a receiving stream. Most of these compounds are characterised by low or unknown...... in the primary inflow zone of the contaminated GW. Moreover, macroinvertebrate communities at these sampling sites could be distinguished from those at upstream control sites and sites situated along a downstream dilution gradient using multidimensional scaling. Importantly, macroinvertebrate indices currently...

  10. Oral bioaccessibility of toxic metals in contaminated oysters and relationships with metal internal sequestration.

    Science.gov (United States)

    Gao, Shi; Wang, Wen-Xiong

    2014-12-01

    The Hong Kong oysters Crassostrea hongkongensis are widely farmed in the estuarine waters of Southern China, but they accumulate Cu and Zn to alarmingly high concentrations in the soft tissues. Health risks of seafood consumption are related to contaminants such as toxic metals which are bioaccessible to humans. In the present study, we investigated the oral bioaccessibility of five toxic metals (Ag, Pb, Cd, Cu and Zn) in contaminated oysters collected from different locations of a large estuary in southern China. In all oysters, total Zn concentration was the highest whereas total Pb concentration was the lowest. Among the five metals, Ag had the lowest oral bioaccessibility (38.9-60.8%), whereas Cu and Zn had the highest bioaccessibility (72.3-93.1%). Significant negative correlation was observed between metal bioaccessibility and metal concentration in the oysters for Ag, Cd, and Cu. We found that the oral bioaccessibility of the five metals was positively correlated with their trophically available metal fraction (TAM) in the oyster tissues, and negatively correlated with metal distribution in the cellular debris. Thus, metal partitioning in the TAM and cellular debris controlled the oral bioaccessibility to humans. Given the dependence of oral bioaccessibility on tissue metal contamination, bioaccessibility needs to be incorporated in the risk assessments of contaminated shellfish. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Economic comparison of management modes for contaminated metal scrap

    International Nuclear Information System (INIS)

    Janberg, K.

    1987-01-01

    This report presents an economic study of the three following management modes for contaminated metal scrap: - decontamination of scrap metal followed by release, - direct melting of scrap metal, followed by release or restricted reuse, - super-compaction followed by disposal as radioactive waste. The present study, which refers to conditions prevailing in Germany, includes reviews of the contaminated scrap arisings, of experience with scrap management and of the licensing conditions for metal recycling. The results obtained during the treatment of more than 140 t of contaminated scrap metal show that: - super-compaction is the best procedure for all mixed metallic wastes of small dimensions and complex geometries, as decontamination is very costly in such a case and the melting would lead to undefined metallurgical products; - decontamination is recommendable for simple geometries and activities higher than the regulatory upper limit for melting in an industrial foundry (74 Bq/g); - direct melting for lower activity levels is gaining in competitiveness and has a good chance to be the best solution, in particular when the free use levels will be reduced below the currently accepted levels in Germany

  12. Integrated Assessment of Heavy Metal Contamination in Sediments from a Coastal Industrial Basin, NE China

    Science.gov (United States)

    Li, Xiaoyu; Liu, Lijuan; Wang, Yugang; Luo, Geping; Chen, Xi; Yang, Xiaoliang; Gao, Bin; He, Xingyuan

    2012-01-01

    The purpose of this study is to investigate the current status of metal pollution of the sediments from urban-stream, estuary and Jinzhou Bay of the coastal industrial city, NE China. Forty surface sediment samples from river, estuary and bay and one sediment core from Jinzhou bay were collected and analyzed for heavy metal concentrations of Cu, Zn, Pb, Cd, Ni and Mn. The data reveals that there was a remarkable change in the contents of heavy metals among the sampling sediments, and all the mean values of heavy metal concentration were higher than the national guideline values of marine sediment quality of China (GB 18668-2002). This is one of the most polluted of the world’s impacted coastal systems. Both the correlation analyses and geostatistical analyses showed that Cu, Zn, Pb and Cd have a very similar spatial pattern and come from the industrial activities, and the concentration of Mn mainly caused by natural factors. The estuary is the most polluted area with extremely high potential ecological risk; however the contamination decreased with distance seaward of the river estuary. This study clearly highlights the urgent need to make great efforts to control the industrial emission and the exceptionally severe heavy metal pollution in the coastal area, and the immediate measures should be carried out to minimize the rate of contamination, and extent of future pollution problems. PMID:22768107

  13. Integrated assessment of heavy metal contamination in sediments from a coastal industrial basin, NE China.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Li

    Full Text Available The purpose of this study is to investigate the current status of metal pollution of the sediments from urban-stream, estuary and Jinzhou Bay of the coastal industrial city, NE China. Forty surface sediment samples from river, estuary and bay and one sediment core from Jinzhou bay were collected and analyzed for heavy metal concentrations of Cu, Zn, Pb, Cd, Ni and Mn. The data reveals that there was a remarkable change in the contents of heavy metals among the sampling sediments, and all the mean values of heavy metal concentration were higher than the national guideline values of marine sediment quality of China (GB 18668-2002. This is one of the most polluted of the world's impacted coastal systems. Both the correlation analyses and geostatistical analyses showed that Cu, Zn, Pb and Cd have a very similar spatial pattern and come from the industrial activities, and the concentration of Mn mainly caused by natural factors. The estuary is the most polluted area with extremely high potential ecological risk; however the contamination decreased with distance seaward of the river estuary. This study clearly highlights the urgent need to make great efforts to control the industrial emission and the exceptionally severe heavy metal pollution in the coastal area, and the immediate measures should be carried out to minimize the rate of contamination, and extent of future pollution problems.

  14. Application of HEC-RAS water quality model to estimate contaminant spreading in small stream

    International Nuclear Information System (INIS)

    Halaj, Peter; Bárek, Viliam; Halajová, Anna Báreková; Halajová, Denisa

    2013-01-01

    The paper presents study of some aspects of HEC-RAS water quality model connected to simulation of contaminant transport in small stream. Authors mainly focused on one of the key tasks in process of pollutant transport modelling in streams - determination of the dispersion characteristics represented by longitudinal dispersion coefficient D. Different theoretical and empirical formulas have been proposed for D value determination and they have revealed that the coefficient is variable parameter that depends on hydraulic and morphometric characteristics of the stream reaches. Authors compare the results of several methods of coefficient D assessment, assuming experimental data obtained by tracer studies and compare them with results optimized by HEC-RAS water quality model. The analyses of tracer study and computation outputs allow us to outline the important aspects of longitudinal dispersion coefficient set up in process of the HEC-RAS model use. Key words: longitudinal dispersion coefficient, HEC-RAS, water quality modeling

  15. Biomonitoring of some heavy metal contaminations from a steel ...

    African Journals Online (AJOL)

    Soil and plants growing in the vicinity of industrial areas display increased concentrations of heavy metals and give an indication of the environmental quality. The contamination source for aluminum, iron, nickel and lead in the Botanical garden of Mobarakeh Steel Company was recognized by analyzing the leaves and ...

  16. assessment of trace metals contamination of soils around some ...

    African Journals Online (AJOL)

    susceptible to metal contamination (Ololade, 2014;. Olanrewaju et al, 2015). There has been a gradual increase in the number of automobile mechanic workshops in many cities of Nigeria as a result of urban development and increase in population. Waste from these automobile mechanic workshops are disposed and ...

  17. Assessment of contamination sources of trace metals in wastewater ...

    African Journals Online (AJOL)

    The distribution and potential contamination sources of trace metals (Fe, Nb, Pb, Rb, Sr, Ti, Y and Zr) in long-term wastewater irrigated garden soils were investigated by using radioisotope excited X-ray fluorescence. The result indicates that the soils have elevated concentration of Fe, Pb, Ti and Y in comparison with mean ...

  18. Assessment of metallic contaminants in grinded millet using ...

    African Journals Online (AJOL)

    In this study, the quantity of metallic contaminants extracted from grinded millet was evaluated. The millet was grinded in three different forms; wet, paste, and dry forms for up to 3 minutes using locally fabricated grinding machine with cast grinding discs. Separate grinding discs were used for different millet forms, while the ...

  19. Predicting the phytoextraction duration to remediate heavy metal contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Römkens, P.F.A.M.; Song, J.; Temminghoff, E.J.M.; Japenga, J.

    2007-01-01

    The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain

  20. Characterizing toxicity of metal-contaminated sediments from mining areas

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate communities can help document causal relationships between metal contamination and biological effects. Total or total-recoverable metal concentrations in sediments are the most common measure of metal contamination in sediments, but metal concentrations in labile sediment fractions (e.g., determined as part of selective sediment extraction protocols) may better represent metal bioavailability. Metals released by the weak-acid extraction

  1. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  2. Impacts of groundwater metal loads from bedrock fractures on water quality of a mountain stream.

    Science.gov (United States)

    Caruso, Brian S; Dawson, Helen E

    2009-06-01

    Acid mine drainage and metal loads from hardrock mines to surface waters is a significant problem in the western USA and many parts of the world. Mines often occur in mountain environments with fractured bedrock aquifers that serve as pathways for metals transport to streams. This study evaluates impacts from current and potential future groundwater metal (Cd, Cu, and Zn) loads from fractures underlying the Gilt Edge Mine, South Dakota, on concentrations in Strawberry Creek using existing flow and water quality data and simple mixing/dilution mass balance models. Results showed that metal loads from bedrock fractures to the creek currently contribute water quality is achieved upstream in Strawberry Creek, fracture metal loads would be water quality standards exceedances once groundwater with elevated metals concentrations in the aquifer matrix migrates to the fractures and discharges to the stream. Potential future metal loads from an upstream fracture would contribute a small proportion of the total load relative to current loads in the stream. Cd has the highest stream concentrations relative to standards. Even if all stream water was treated to remove 90% of the Cd, the standard would still not be achieved. At a fracture farther downstream, the Cd standard can only be met if the upstream water is treated achieving a 90% reduction in Cd concentrations and the median stream flow is maintained.

  3. Stabilization of Rocky Flats combustible residues contaminated with plutonium metal and organic solvents

    International Nuclear Information System (INIS)

    Bowen, S.M.; Cisneros, M.R.; Jacobson, L.L.; Schroeder, N.C.; Ames, R.L.

    1998-01-01

    This report describes tests on a proposed flowsheet designed to stabilize combustible residues that were generated at the Rocky Flats Environmental Technology Site (RFETS) during the machining of plutonium metal. Combustible residues are essentially laboratory trash contaminated with halogenated organic solvents and plutonium metal. The proposed flowsheet, designed by RFETS, follows a glovebox procedure that includes (1) the sorting and shredding of materials, (2) a low temperature thermal desorption of solvents from the combustible materials, (3) an oxidation of plutonium metal with steam, and (4) packaging of the stabilized residues. The role of Los Alamos National Laboratory (LANL) in this study was to determine parameters for the low temperature thermal desorption and steam oxidation steps. Thermal desorption of carbon tetrachloride (CCl 4 ) was examined using a heated air stream on a Rocky Flats combustible residue surrogate contaminated with CCl 4 . Three types of plutonium metal were oxidized with steam in a LANL glovebox to determine the effectiveness of this procedure for residue stabilization. The results from these LANL experiments are used to recommend parameters for the proposed RFETS stabilization flowsheet

  4. HEAVY METALS CONTAMINATION IN HERBAL PLANTS FROM SOME GHANAIAN MARKETS

    Directory of Open Access Journals (Sweden)

    Crentsil Kofi Bempah

    2012-12-01

    Full Text Available A study was conducted to investigate the magnitude of heavy metals (arsenic [As], copper [Cu], cadmium [Cd] and mercury [Hg] contamination that may be present in some Ghanaian medicinal herbs/plants available in local markets and also to compare the levels with recommended levels by the International Organization. A total of 267 samples of herbal plants representing 18 different plants collected from several markets in Ghana were tested for heavy metals contamination. Atomic Absorption Spectrophotometry was used for the analyses, and content of metals per sample was expressed as percent µg/g. The study showed differences in metal concentrations according to the parts analysed (leaf, fruit, root bark and crown. The obtained results which showed the predominance of Cd in almost all the analysed parts of the samples followed by Zn, Cu, As and Hg. However, Hg was the least predominant metal detected in the analyzed samples. All the monitored metals in the herbal plants were within the safe limit approved by Codex Alimentarius Commission and FAO/WHO limit for spices. The findings generally suggest that consumers of these herbal products would not be exposed to any risk associated with the intake of herbal plant products for the management of diseases.

  5. Remediation of metal contaminated soil with mineral-amended composts

    Energy Technology Data Exchange (ETDEWEB)

    Herwijnen, Rene van [University of Surrey, School of Engineering, Guildford, Surrey GU2 7XH (United Kingdom); Forest Research, Land Regeneration and Urban Greening Group, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); University of Cambridge, Department of Engineering, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); University of Cambridge, Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Hutchings, Tony R. [Forest Research, Land Regeneration and Urban Greening Group, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Al-Tabbaa, Abir [University of Cambridge, Department of Engineering, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Moffat, Andy J. [Forest Research, Land Regeneration and Urban Greening Group, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Johns, Mike L. [University of Cambridge, Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Ouki, Sabeha K. [University of Surrey, School of Engineering, Guildford, Surrey GU2 7XH (United Kingdom)], E-mail: s.ouki@surrey.ac.uk

    2007-12-15

    This study examined the use of two composts derived from green waste and sewage sludge, amended with minerals (clinoptilolite or bentonite), for the remediation of metal-contaminated brownfield sites to transform them into greenspace. Soils contaminated with high or low levels of metals were mixed with the mineral-enhanced composts at different ratios and assessed by leaching tests, biomass production and metal accumulation of ryegrass (Lolium perenne L.). The results showed that the green waste compost reduced the leaching of Cd and Zn up to 48% whereas the composted sewage sludge doubled the leachate concentration of Zn. However, the same soil amended with composted sewage sludge showed an efficient reduction in plant concentrations of Cd, Cu, Pb or Zn by up to 80%. The results suggest that metal immobilisation and bioavailability are governed by the formation of complexes between the metals and organic matter. The amendment with minerals had only limited effects. - Composts can increase or decrease the bioavailability of metals in soil.

  6. Magnetic mineralogy of heavy metals-contaminated soils

    Science.gov (United States)

    Shenggao, L.

    2012-04-01

    Soils around mine and in urban areas are often contaminated by heavy metals derived from industrial and human activities [1, 2]. These contaminated soils are often characterized by a magnetic enhancement on topsoils. Many studies demonstrated that there are significant correlations between heavy metals and various magnetic parameters in contaminated soils, indicating a strong affinity of heavy metals to magnetic minerals. The magnetic particles in contaminated soils were separated by a magnetic separation technique. The rock magnetism, XRD, field emission scanning electron microscopy equiped with an energy-dispersive X-ray analyzer (FESEM/EDX) were used to characterize their magnetic mineralogy. Results of XRD analysis indicated that the magnetic particles separated from heavy metal-contaminated soils are composed of quartz, magnetite, and hematite. Based on the X-ray diffraction peak intensity, the Fe3O4 was identified as the predominant magnetic mineral phase. The high-temperature magnetization (Ms-T) curves of magnetic particles extracted from contaminated soils show a sharp Ms decrease at about 580C (the Curie temperature of magnetite), suggesting that magnetite is the dominant magnetic carrier. The hysteresis loops of contaminated soils are closed at about 100-200 mT which is consistent with the presence of a dominant ferrimagnetic mineral phase. The FESEM analysis showed a great variety of shapes of magnetic particles in contaminated soils. The most common morphology are observed in the form of spherules, with the sizes ranging from 20 to 100 um. The chemical composition of magnetic particles consist mainly of Fe, Si, Al, and Ca with minor heavy metal elements (Cu, Zn, Hg, and Cr). The semi-quantitative Fe content identified by FESEM/EDX ranged from 40 to 90%. Combined studies of rock magnetism, XRD, and FESEM/EDX indicated that magnetic mineral phases responsible for the magnetic enhancement of contaminated soils are anthropogenic origin which are coarse

  7. Heavy Metal Uptake by Novel Miscanthus Seed-Based Hybrids Cultivated in Heavy Metal Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Krzyżak Jacek

    2017-09-01

    Full Text Available When heavy metal contaminated soils are excluded from food production, biomass crops offer an alternative commercial opportunity. Perennial crops have potential for phytoremediation. Whilst the conditions at heavy metal contaminated sites are challenging, successful phytoremediation would bring significant economic and social benefits. Seed-based Miscanthus hybrids were tested alongside the commercial clone Miscanthus × giganteus on arable land, contaminated with Pb, Cd and Zn near Katowice. Before the randomized experimental plots were established (25m2 plots with plant density 2/m2 ‘time-zero’ soil samples were taken to determine initial levels of total (aqua regia and bioavailable (CaCl2 extraction concentration of Pb, Cd and Zn. After the growing season plant material was sampled during autumn (October, green harvest and winter (March, brown harvest to determine differences in heavy metal uptake. Results after the first growing season are presented, including the plot establishment success, biomass yield and heavy metal uptake.

  8. Heavy Metal Uptake by Novel Miscanthus Seed-Based Hybrids Cultivated in Heavy Metal Contaminated Soil

    Science.gov (United States)

    Krzyżak, Jacek; Pogrzeba, Marta; Rusinowski, Szymon; Clifton-Brown, John; McCalmont, Jon Paul; Kiesel, Andreas; Mangold, Anja; Mos, Michal

    2017-09-01

    When heavy metal contaminated soils are excluded from food production, biomass crops offer an alternative commercial opportunity. Perennial crops have potential for phytoremediation. Whilst the conditions at heavy metal contaminated sites are challenging, successful phytoremediation would bring significant economic and social benefits. Seed-based Miscanthus hybrids were tested alongside the commercial clone Miscanthus × giganteus on arable land, contaminated with Pb, Cd and Zn near Katowice. Before the randomized experimental plots were established (25m2 plots with plant density 2/m2) `time-zero' soil samples were taken to determine initial levels of total (aqua regia) and bioavailable (CaCl2 extraction) concentration of Pb, Cd and Zn. After the growing season plant material was sampled during autumn (October, green harvest) and winter (March, brown harvest) to determine differences in heavy metal uptake. Results after the first growing season are presented, including the plot establishment success, biomass yield and heavy metal uptake.

  9. A watershed-scale approach to tracing metal contamination in the environment

    Science.gov (United States)

    Church, Stanley E

    1996-01-01

    IntroductionPublic policy during the 1800's encouraged mining in the western United States. Mining on Federal lands played an important role in the growing economy creating national wealth from our abundant and diverse mineral resource base. The common industrial practice from the early days of mining through about 1970 in the U.S. was for mine operators to dispose of the mine wastes and mill tailings in the nearest stream reach or lake. As a result of this contamination, many stream reaches below old mines, mills, and mining districts and some major rivers and lakes no longer support aquatic life. Riparian habitats within these affected watersheds have also been impacted. Often, the water from these affected stream reaches is generally not suitable for drinking, creating a public health hazard. The recent Department of Interior Abandoned Mine Lands (AML) Initiative is an effort on the part of the Federal Government to address the adverse environmental impact of these past mining practices on Federal lands. The AML Initiative has adopted a watershed approach to determine those sites that contribute the majority of the contaminants in the watershed. By remediating the largest sources of contamination within the watershed, the impact of metal contamination in the environment within the watershed as a whole is reduced rather than focusing largely on those sites for which principal responsible parties can be found.The scope of the problem of metal contamination in the environment from past mining practices in the coterminous U.S. is addressed in a recent report by Ferderer (1996). Using the USGS1:2,000,000-scale hydrologic drainage basin boundaries and the USGS Minerals Availability System (MAS) data base, he plotted the distribution of 48,000 past-producing metal mines on maps showing the boundaries of lands administered by the various Federal Land Management Agencies (FLMA). Census analysis of these data provided an initial screening tool for prioritization of

  10. Comparison of active and passive sampling strategies for the monitoring of pesticide contamination in streams

    Science.gov (United States)

    Assoumani, Azziz; Margoum, Christelle; Guillemain, Céline; Coquery, Marina

    2014-05-01

    The monitoring of water bodies regarding organic contaminants, and the determination of reliable estimates of concentrations are challenging issues, in particular for the implementation of the Water Framework Directive. Several strategies can be applied to collect water samples for the determination of their contamination level. Grab sampling is fast, easy, and requires little logistical and analytical needs in case of low frequency sampling campaigns. However, this technique lacks of representativeness for streams with high variations of contaminant concentrations, such as pesticides in rivers located in small agricultural watersheds. Increasing the representativeness of this sampling strategy implies greater logistical needs and higher analytical costs. Average automated sampling is therefore a solution as it allows, in a single analysis, the determination of more accurate and more relevant estimates of concentrations. Two types of automatic samplings can be performed: time-related sampling allows the assessment of average concentrations, whereas flow-dependent sampling leads to average flux concentrations. However, the purchase and the maintenance of automatic samplers are quite expensive. Passive sampling has recently been developed as an alternative to grab or average automated sampling, to obtain at lower cost, more realistic estimates of the average concentrations of contaminants in streams. These devices allow the passive accumulation of contaminants from large volumes of water, resulting in ultratrace level detection and smoothed integrative sampling over periods ranging from days to weeks. They allow the determination of time-weighted average (TWA) concentrations of the dissolved fraction of target contaminants, but they need to be calibrated in controlled conditions prior to field applications. In other words, the kinetics of the uptake of the target contaminants into the sampler must be studied in order to determine the corresponding sampling rate

  11. The role of carbon contamination in metallic nanowires

    Directory of Open Access Journals (Sweden)

    Douglas Soares Galvão

    2004-06-01

    Full Text Available Metallic nanowires have attracted much attention in the last years due to new phenomena such as quantum conductance and the existence of unexpected long interatomic distances attaining 0.3-0.5 nm. These large distances represented a challenge for physical interpretation. In this work we present experimental data from high-resolution transmission electron microscopy and results from ab initio calculations for suspended gold chains and show that these large distances can be easily explained by the presence of carbon atoms as contaminants. In principle the present conclusions can be also applied to other metallic nanowires (such as Ag and Pt whose structures also present large interatomic distances.

  12. Heavy metals contamination of soils surrounding waste deposits in Romania

    Science.gov (United States)

    Matache, M.; Rozylowicz, L.; Ropota, M.; Patroescu, C.

    2003-05-01

    Soils contamination with heavy metals is one of the most severe aspects of environmental pollution in Romania, independently of the origin sources (domestic or industrial activities) or type of disposal (organised landfill or hazardous deposits)[l-2]. This fact is the consequence of the poor state of the existing waste deposits in Romania and of the significant costs involved by the establishing of a new landfill according with the international regulations. The present study is trying to emphasise the contamination of soils surrounding different categories of waste deposits (sewage sludge ponds, domestic and industrial waste landfills, hillocks, sterile deposits) from various regions of Romania. Some case studies show a special interest being localise in a protected area (Iron Gates Natural Park). In order to quantify the concentration of metals like Cd, Cr, Cu, Pb, Zn, Ni, Mo in soil samples, analysis were performed using Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES). Romanian standards were used as reference values[3].

  13. Automated methodology for estimating waste streams generated from decommissioning contaminated facilities

    International Nuclear Information System (INIS)

    Toth, J.J.; King, D.A.; Humphreys, K.K.; Haffner, D.R.

    1994-01-01

    As part of the DOE Programmatic Environmental Impact Statement (PEIS), a viable way to determine aggregate waste volumes, cost, and direct labor hours for decommissioning and decontaminating facilities is required. In this paper, a methodology is provided for determining waste streams, cost and direct labor hours from remediation of contaminated facilities. The method is developed utilizing U.S. facility remediation data and information from several decommissioning programs, including reactor decommissioning projects. The method provides for rapid, consistent analysis for many facility types. Three remediation scenarios are considered for facility D ampersand D: unrestricted land use, semi-restricted land use, and restricted land use. Unrestricted land use involves removing radioactive components, decontaminating the building surfaces, and demolishing the remaining structure. Semi-restricted land use involves removing transuranic contamination and immobilizing the contamination on-site. Restricted land use involves removing the transuranic contamination and leaving the building standing. In both semi-restricted and restricted land use scenarios, verification of containment with environmental monitoring is required. To use the methodology, facilities are placed in a building category depending upon the level of contamination, construction design, and function of the building. Unit volume and unit area waste generation factors are used to calculate waste volumes and estimate the amount of waste generated in each of the following classifications: low-level, transuranic, and hazardous waste. Unit factors for cost and labor hours are also applied to the result to estimate D ampersand D cost and labor hours

  14. Heavy metal contamination of vegetables in Isfahan, Iran

    OpenAIRE

    Jafarian-Dehkordi, A.; Alehashem, M.

    2013-01-01

    Vegetables are an inevitable and important part of a healthy and balanced diet. They could be contaminated by heavy metals in many ways including irrigation by sewage water and industrial effluents sewage sludge, vehicular emissions, industrial waste and atmospheric deposition. In this study, we sought to determine if some vegetables (cucumbers, tomatoes, cabbage, lettuce, potatoes, onions, carrots, persian leeks, dill, spinach, coriander, parsley) grown locally in the suburban of Isfahan cit...

  15. Factors Controlling the Metal Levels in Headwater Stream Draining an Agroforestry Catchment (Galicia, NW Spain)

    Science.gov (United States)

    Palleiro, Laura; Rodríguez-Blanco, M. Luz; Mercedes Taboada-Castro, M.; Taboada-Castro, M. Teresa

    2016-10-01

    Concentrations of Al, Fe, Mn, Cu and Zn (dissolved and particulate), suspended sediment, dissolved organic carbon, and pH and discharge were determined during a 3-year period in a stream water of an agroforestry catchment in Galicia (NW Spain). The objective of this study is to investigate the role of these variables in the control of dissolved and particulate concentrations of each metal in the stream water. The soils in the catchment are developed on metamorphic schist. Stream water samples were collected at the catchment outlet every 15 days and more frequently with increased stream flows. Metal concentrations were measured by ICP- MS. Pearson correlation coefficients were calculated to examine the possible associations between metals and the four variables under consideration. Stepwise multiple regressions were applied to determine which predictor variables have the strongest influences on controlling concentrations of each metal in the stream. The results showed that metal concentrations were relatively low (Fe > Al > Mn > Zn > Cu), but particulate metals were predominant over those dissolved. Stepwise multiple regression analysis revealed that the most important variable to explain dissolved concentrations for Al, Fe and Cu was the dissolved organic carbon, whereas the suspended sediment was for dissolved Zn and the discharge was for dissolved Mn. The suspended sediment was also a good predictor of particulate metal levels.

  16. Antimicrobial efficacy of chemical disinfectants on contaminated full metal crowns.

    Science.gov (United States)

    Orsi, Iara Augusta; Villabona, Camilo Andrés; Kameoka, Eliana; Ferreira, Marly Christiènne C G; Ito, Izabel Yoko; Saravia, Marta Estela

    2010-01-01

    Prosthetic restorations that have been tried in the patient's mouth are potential sources of infection. In order to avoid cross-infection, protocols for infection control should be established in dental office and laboratory. This study evaluated the antimicrobial efficacy of disinfectants on full metal crowns contaminated with microorganisms. Full crowns cast in a Ni-Cr alloy were assigned to one control group (n=6) and 5 experimental groups (n=18). The crowns were placed in flat-bottom glass balloons and were autoclaved. A microbial suspension of each type of strain - S. aureus, P. aeruginosa, S. mutans, E. faecalis and C. albicans- was aseptically added to each experimental group, the crowns being allowed for contamination during 30 min. The contaminated specimens were placed into recipients with the chemical disinfectants (1% and 2% sodium hypochlorite and 2% glutaraldehyde) for 5, 10 and 15 min. Thereafter, the crowns were placed into tubes containing different broths and incubated at 35ºC. The control specimens were contaminated, immersed in distilled water for 20 min and cultured in Thioglycollate broth at 35ºC. Microbial growth assay was performed by qualitative visual examination after 48 h, 7 and 12 days. Microbial growth was noticed only in the control group. In the experimental groups, turbidity of the broths was not observed, regardless of the strains and immersion intervals, thus indicating absence of microbial growth. In conclusion, all chemical disinfectants were effective in preventing microbial growth onto full metal crowns.

  17. Air separation of heavy metal contaminants from soil

    International Nuclear Information System (INIS)

    Nelson, M.E.; Harper, M.J.; Buckon, A.D.

    1995-01-01

    Several heavy metal separation techniques are currently being developed for soil remediation at various Department of Defense and Department of Energy (DOE) Facilities. The majority of these techniques involve a wet process using water, pH modifiers or other compounds. The US Naval Academy (USNA) has developed a dry process for heavy metal separation. The process uses air classification technology to concentrate the metal contaminant into a fraction of the soil. The advantages of this dry process are that it creates no contaminated byproduct and uses commercially available technology. The USNA process is based on using a Gayco-Reliance air classifier. Tests have been conducted with the system at the Naval Academy and the University of Nevada-Reno (UNR). The USNA tests used soil from the Nevada Test Site mixed with bismuth at a concentration of 500--1,000 ppm. The UNR tests used soil from four DOE sites mixed with uranium oxides and plutonium at an activity level of 100--700 pCi per gram. Concentration of activities and volume reduction percentages are presented for the various soils and contaminants tested

  18. Radiation protection aspects of the trafficking radionuclides contaminated metal scrap

    International Nuclear Information System (INIS)

    Prouza, Z.

    1999-01-01

    This paper covers the legal base of the release in the environment of radionuclides containing materials and the radiation protection aspects of trafficking in radionuclides contaminated materials. Materials, substance and objects containing radionuclides or contaminated by them may be released into the environment, if they do not exceed values authorized by SONS (State Office of Nuclear Safety). Legislative measures should be taken against illicit trafficking of the nuclear material in all the areas. The creation of a sophisticated system for the control and regulation of all important radionuclides released into the environment should be based on the radiation protection limits, constraints, reference and exemption levels which are introduced in the legislative documents; the strong supervision of producers and users of the sealed sources by SONS side, in addition to the requirements of the licensing process of their sources; a complete data-base and information exchange system related to illicit trafficking in contaminated material; in this system all the authorities with jurisdiction should be involved. The responsibilities of the persons involved in metal scrap trafficking should include arrangement of appropriate monitoring, rules for transport of the metal scrap, an adequate measuring system to monitor metal scrap including monitoring to prevent processing or smelting of the radioactive material, control measures, etc. All of the above items of legislation are an important challenge for the Czech Republic. (author)

  19. Metal and nutrient dynamics in decomposing tree litter on a metal contaminated site

    International Nuclear Information System (INIS)

    Van Nevel, Lotte; Mertens, Jan; Demey, Andreas; De Schrijver, An; De Neve, Stefaan; Tack, Filip M.G.; Verheyen, Kris

    2014-01-01

    In a forest on sandy, metal polluted soil, we examined effects of six tree species on litter decomposition rates and accompanied changes in metal (Cd, Zn) and nutrient (base cations, N, C) amounts. Decomposition dynamics were studied by means of a litterbag experiment lasting for 30 months. The decomposition peak occurred within the first year for all tree species, except for aspen. During litter decomposition, high metal litter types released part of their accumulated metals, whereas low metal litter types were characterized by a metal enrichment. Base cations, N and C were released from all litter types. Metal release from contaminated litter might involve risks for metal dispersion towards the soil. On the other hand, metal enrichment of uncontaminated litter may be ecologically relevant as it can be easily transported or serve as food source. - Highlights: • Litter decomposition peak occurred within the first year for all tree species, except for aspen. • Base cations, N and C were released from all litter types during decomposition. • Cd and Zn were released from the high metal litter types. • Low metal litter types were characterized by a net Cd and Zn enrichment. • Metal and nutrient releases were reflected in topsoil characteristics. - Litter decomposition rates, as well as enrichment and release dynamics of metals and nutrients in decomposing litter were divergent under the different tree species

  20. Heavy Metal Contamination of Foods by Refuse Dump Sites in Awka, Southeastern Nigeria

    Directory of Open Access Journals (Sweden)

    J. K. C. Nduka

    2008-01-01

    Full Text Available The impact of heavy metals from refuse dumps on soil, food, and water qualities in Awka, Nigeria was studied. Soil samples (top and 1.35 m deep were collected from five refuse dumps digested with conc. HNO3 and HClO4. The heavy metals (lead, manganese, arsenic, chromium, cadmium, and nickel in vegetables (spinach, fluted pumpkin, root crop (cocoyam, and surface and ground water were determined using an atomic absorption spectrophotometer (AAS. Chemical properties of the soil and bacteria were determined. Heavy metals were found to be more concentrated at a depth of 1.35 m. Manganese was high in shallow wells and borehole water samples with the highest levels as 0.538 and 0.325 mg/l, respectively. Nickel levels in the borehole sample ranged from 0.001 to 0.227 mg/l, whereas the highest level of lead was 0.01 mg/l. The Obibia stream had the highest levels of manganese and lead. Linear regression analyses showed that the relationship between soil heavy metals and farm produce heavy metals was strong. Taken together, we may conclude that the consumption of leafy vegetables and crops produced on contaminated soils may pose a health risk to those that reside around the refuse dumps.

  1. Spatial distribution of trace metals in sediments from urban streams of Semarang, Central Java, Indonesia.

    NARCIS (Netherlands)

    Widianarko, B.; Verweij, R.A.; van Gestel, C.A.M.; van Straalen, N.M.

    2000-01-01

    Elevated environmental concentrations of metals are usually associated with the impact of urbanization. The present study is focused on metal contamination in urban sediments. A field survey was carried out to determine the distribution of four metals, i.e., cadmium (Cd), lead (Pb), copper (Cu), and

  2. Residual metallic contamination of transferred chemical vapor deposited graphene.

    Science.gov (United States)

    Lupina, Grzegorz; Kitzmann, Julia; Costina, Ioan; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Vaziri, Sam; Östling, Mikael; Pasternak, Iwona; Krajewska, Aleksandra; Strupinski, Wlodek; Kataria, Satender; Gahoi, Amit; Lemme, Max C; Ruhl, Guenther; Zoth, Guenther; Luxenhofer, Oliver; Mehr, Wolfgang

    2015-05-26

    Integration of graphene with Si microelectronics is very appealing by offering a potentially broad range of new functionalities. New materials to be integrated with the Si platform must conform to stringent purity standards. Here, we investigate graphene layers grown on copper foils by chemical vapor deposition and transferred to silicon wafers by wet etching and electrochemical delamination methods with respect to residual submonolayer metallic contaminations. Regardless of the transfer method and associated cleaning scheme, time-of-flight secondary ion mass spectrometry and total reflection X-ray fluorescence measurements indicate that the graphene sheets are contaminated with residual metals (copper, iron) with a concentration exceeding 10(13) atoms/cm(2). These metal impurities appear to be partially mobile upon thermal treatment, as shown by depth profiling and reduction of the minority charge carrier diffusion length in the silicon substrate. As residual metallic impurities can significantly alter electronic and electrochemical properties of graphene and can severely impede the process of integration with silicon microelectronics, these results reveal that further progress in synthesis, handling, and cleaning of graphene is required to advance electronic and optoelectronic applications.

  3. Characterisation of contaminated metals using an advanced statistical toolbox - Geostatistical characterisation of contaminated metals: methodology and illustrations

    International Nuclear Information System (INIS)

    Larsson, Arne; Lidar, Per; Desnoyers, Yvon

    2014-01-01

    Radiological characterisation plays an important role in the process to recycle contaminated or potentially contaminated metals. It is a platform for planning, identification of the extent and nature of contamination, assessing potential risk impacts, cost estimation, radiation protection, management of material arising from decommissioning as well as for the release of the materials as well as the disposal of the generated secondary waste as radioactive waste. Key issues in radiological characterisation are identification of objectives, development of a measurement and sampling strategy (probabilistic, judgmental or a combination thereof), knowledge management, traceability, recording and processing of obtained information. By applying advanced combination of statistical and geostatistical in the concept better performance can be achieved at a lower cost. This paper will describe the benefits with the usage of the available methods in the different stages of the characterisation, treatment and clearance processes aiming for reliable results in line with the data quality objectives. (authors)

  4. Anthropogenic and natural sources of acidity and metals and their influence on the structure of stream food webs

    International Nuclear Information System (INIS)

    Hogsden, Kristy L.; Harding, Jon S.

    2012-01-01

    We compared food web structure in 20 streams with either anthropogenic or natural sources of acidity and metals or circumneutral water chemistry in New Zealand. Community and diet analysis indicated that mining streams receiving anthropogenic inputs of acidic and metal-rich drainage had much simpler food webs (fewer species, shorter food chains, less links) than those in naturally acidic, naturally high metal, and circumneutral streams. Food webs of naturally high metal streams were structurally similar to those in mining streams, lacking fish predators and having few species. Whereas, webs in naturally acidic streams differed very little from those in circumneutral streams due to strong similarities in community composition and diets of secondary and top consumers. The combined negative effects of acidity and metals on stream food webs are clear. However, elevated metal concentrations, regardless of source, appear to play a more important role than acidity in driving food web structure. - Highlights: ► Food webs in acid mine drainage impacted streams are small and extremely simplified. ► Conductivity explained differences in food web properties between streams. ► Number of links and web size accounted for much dissimilarity between food webs. ► Food web structure was comparable in naturally acidic and circumneutral streams. - Food web structure differs in streams with anthropogenic and natural sources of acidity and metals.

  5. Effects of acclimation on the toxicity of stream water contaminated with zinc and cadmium to juvenile cutthroat trout

    Science.gov (United States)

    Harper, D.D.; Farag, A.M.; Brumbaugh, W.G.

    2008-01-01

    We investigated the influence of acclimation on results of in situ bioassays with cutthroat trout in metal-contaminated streams. Cutthroat trout (Oncorhynchus clarki) were held for 21 days (1) in live containers at a reference or "clean" site having dissolved metals near detection limits (0.01 ??g/L cadmium [Cd] and 2.8 ??g/L zinc [Zn]; hardness 32 mg/L as CaCO3) and (2) at a site in a mining-impacted watershed having moderately increased metals (0.07 ??g/L Cd and 38 to 40 ??g/L Zn; hardness 50 mg/L as CaCO3). The 96-hour survival of each treatment group was then tested in situ at five sites from September 5 to 9, 2002, and each group exhibited a range of metal concentrations (0.44 to 39 ??g/L arsenic [As], 0.01 to 2.2 ??g/L Cd, and 0.49 to 856 ??g/L Zn). Survival was 100% at three sites for both treatments. However, a higher percentage of metal-acclimated fish survived at the site with the second highest concentrations of Cd and Zn (0.90 and 238 ??g/L, respectively) compared with fish acclimated at the reference site (100% vs. 55%, respectively). Survival was 65% for acclimated fish and 0% for metal-nai??ve fish at the site with the largest metal concentrations (2.2 ??g/L Cd and 856 ??g/L Zn). Water collected from the site with the largest concentrations of dissolved metals (on October 30, 2002) was used in a laboratory serial dilution to determine 96-hour LC50 values. The 96-hour LC50 estimates of nai??ve fish during the in situ and laboratory experiments were similar (0.60 ??g Cd/L and 226 ??g Zn/L for in situ and 0.64 ??g Cd/L and 201 ??g Zn/L for laboratory serial dilutions). However, mortality of nai??ve cutthroat trout tested under laboratory conditions was more rapid in dilutions of 100%, 75%, and 38% site water than in situ experiments. ?? 2007 Springer Science+Business Media, LLC.

  6. Enhancement of metal bioleaching from contaminated sediment using silver ion.

    Science.gov (United States)

    Chen, Shen-Yi; Lin, Jih-Gaw

    2009-01-30

    A silver-catalyzed bioleaching process was used to remove heavy metals from contaminated sediment in this study. The effects of silver concentration added on the performance of bioleaching process were investigated. High pH reduction rate was observed in the bioleaching process with silver ion. The silver ion added in the bioleaching process was incorporated into the lattice of the initial sulfide through a cationic interchange reaction. This resulted in the short lag phase and high metal solubilization in the bioleaching process. The maximum pH reduction rate and the ideal metal solubilization were obtained in the presence of 30 mg/L of silver ion. When the added silver ion was greater than 30 mg/L, the rates of pH reduction and metal solubilization gradually decreased. The solubilization efficiencies of heavy metals (Cu, Zn, Mn, Ni and Cr) were relatively high in the silver-enhanced bioleaching process, except Pb. No apparent effect of silver ion on the growth of sulfur-oxidizing bacteria was found in the bioleaching. These results indicate that the kinetics of metal solubilization can be enhanced by the addition of silver ion.

  7. Radioactive contamination in metal recycling industry - an environmental issue

    International Nuclear Information System (INIS)

    Agarwal, S.P.

    2012-01-01

    Metal recycling has become an important industrial activity worldwide; it is seen as being socially and environmentally beneficial because it conserves natural ore resources and saves energy. However, there have been several accidents over the past decades involving orphan radioactive sources or other radioactive material that were inadvertently collected as metal scrap that was destined for recycling. The consequences of these accidents have been serious with regard to the protection of people and the environment from the harmful effects of ionizing radiation as well as from an economic point of view. India produces and exports steel products to various countries. In the recent years there were rejection and return of steel products as they were found to be contaminated with trace quantities of radioactive materials. During investigation of incidents of radioactive contamination in steel products exported from India, it was observed that steel products are contaminated with low level radioactivity. Though radioactivity level in steel products is found to be too low to pose any significant hazards to the handling personnel or to the users or the public at large, its presence is undesirable and need to be probed as to how it has entered in the steel products. Atomic Energy Regulatory Board (AERB) has investigated the incidents of such nature in the recent past and it is gathered that the steel products are made out of steel produced in a foundry where metal scrap containing radioactive material has been used. In this talk, incidents of radioactive contamination, its roots cause, and its radiological impact on person, property and environment, lessons learnt, remedial measures and international concerns will be discussed

  8. Electrokinetic In Situ Treatment of Metal-Contaminated Soil

    Science.gov (United States)

    Quinn, Jacqueline; Clausen, Christian A., III; Geiger, Cherie; Reinhart, Debra

    2004-01-01

    An electrokinetic technique has been developed as a means of in situ remediation of soils, sludges, and sediments that are contaminated with heavy metals. Examples of common metal contaminants that can be removed by this technique include cadmium, chromium, zinc, lead, mercury, and radionuclides. Some organic contaminants can also be removed by this technique. In the electrokinetic technique, a low-intensity direct current is applied between electrodes that have been implanted in the ground on each side of a contaminated soil mass. The electric current causes electro-osmosis and migration of ions, thereby moving aqueous-phase subsurface contaminants from one electrode to the other. The half reaction at the anode yields H+, thereby generating an acid front that travels from the anode toward the cathode. As this acid front passes through a given location, the local increase in acidity increases the solubility of cations that were previously adsorbed on soil particles. Ions are transported towards one electrode or the other which one depending on their respective electric charges. Upon arrival at the electrodes, the ionic contaminants can be allowed to become deposited on the electrodes or can be extracted to a recovery system. Surfactants and other reagents can be introduced at the electrodes to enhance rates of removal of contaminants. Placements of electrodes and concentrations and rates of pumping of reagents can be adjusted to maximize efficiency. The basic concept of electrokinetic treatment of soil is not new. What is new here are some of the details of application and the utilization of this technique as an alternative to other techniques (e.g., flushing or bioremediation) that are not suitable for treating soils of low hydraulic conductivity. Another novel aspect is the use of this technique as a less expensive alternative to excavation: The cost advantage over excavation is especially large in settings in which contaminated soil lies near and/or under

  9. Monitoring of streams: macrozoobenthos and accumulation of heavy metals and radionuclides in bottom sediments

    International Nuclear Information System (INIS)

    Arbaciauskas, K.; Mackeviciene, G.; Striupkuviene, N.; Motiejunas, S; Kreslauskaite, R.

    1998-01-01

    To evaluate the environmental quality of streams in integrated monitoring sites (IMS) and agrostations (AS), the macrozoobenthos communities and accumulation of heavy metals and radionuclides in bottom sediments were studied during 1993-1996. Samples of macrozoobenthos were collected in stream biotopes which were recommended for monitoring. Community biodiversity was assessed by Shannon-Wiener and Simpson indices, and water quality of streams was estimated by Trent and Mean Chandler biotic indices. Heavy metal (Pb, Cd, Cu, Cr, Ni, Mn) concentrations and radionuclide ( 137 Cs, 134 Cs, 40 K, 90 Sr) activity were determined in sediments. Macrozoobenthos communities indicated that the studied streams were clean waters. The heavy metal concentrations in surficial sediments showed annual and seasonal changes and differences between monitoring sites. The Cu concentration in the soft turfy stream sediments at the Aukstaitija IMS was twice as high as that in sediments of other monitoring streams with hard sandy-gravel bottoms. During 1994-1996, the Ni concentration decreased, while levels of Cu, Cd and Cr were relatively stable. The Pb concentrations decreased in all IMS, while those in AS increased. The concentration of 137 Cs was relatively stable in agrostation streams. Compared to levels in 1993, an increase of 137 Cs activity was observed in sediments at the Dzuklija IMS during 1995-1996. 90 Sr activity fluctuated in the monitoring sites from 1.6 to 3.7 Bq/kg dry weight. (author)

  10. Speciation and leaching of trace metal contaminants from e-waste contaminated soils.

    Science.gov (United States)

    Cui, Jin-Li; Luo, Chun-Ling; Tang, Chloe Wing-Yee; Chan, Ting-Shan; Li, Xiang-Dong

    2017-05-05

    Primitive electrical and electronic waste (e-waste) recycling activities have caused serious environmental problems. However, little is known about the speciation and leaching behaviors of metal contaminants at e-waste contaminated sites. This study investigated trace metal speciation/mobilization from e-waste polluted soil through column leaching experiments involving irrigation with rainwater for almost 2.5 years. Over the experimental period, Cu and Zn levels in the porewater were 0.14±0.08mg/L, and 0.16±0.08mg/L, respectively, increasing to 0.33±0.16mg/L, and 0.69±0.28mg/L with plant growth. The amounts of Cu, Zn, and Pb released in surface soil (0-2cm) contributed 43.8%, 22.5%, and 13.8%, respectively, to the original levels. The released Cu and Zn were primarily caused by the mobilization of the carbonate species of metals, including Cu(OH) 2 , CuCO 3 , and Zn 5 (CO 3 ) 2 (OH) 6 , and amorphous Fe/Mn oxides associated fractions characterized by sequential extraction coupling with X-ray absorption spectroscopy. During the experiments, trace metals were not detected in the effluent, and the re-sequestration of trace metals was mainly attributed to the adsorption on the abundant Fe/Mn oxides in the sub-layer soil. This study quantitatively elucidated the molecular speciation of Cu and Zn in e-waste contaminated soil during the column leaching process. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Remediation of Cd-contaminated soil around metal sulfide mines

    Science.gov (United States)

    Lu, Xinzhe; Hu, Xuefeng; Kang, Zhanjun; Luo, Fan

    2017-04-01

    The mines of metal sulfides are widely distributed in the southwestern part of Zhejiang Province, Southeast China. The activities of mining, however, often lead to the severe pollution of heavy metals in soils, especially Cd contamination. According to our field investigations, the spatial distribution of Cd-contaminated soils is highly consistent with the presence of metal sulfide mines in the areas, further proving that the mining activities are responsible for Cd accumulation in the soils. To study the remediation of Cd-contaminated soils, a paddy field nearby large sulfide mines, with soil pH 6 and Cd more than 1.56 mg kg-1, five times higher than the national recommended threshold, was selected. Plastic boards were deeply inserted into soil to separate the field and make experimental plots, with each plot being 4 m×4 m. Six treatments, TK01˜TK06, were designed to study the effects of different experimental materials on remediating Cd-contaminated soils. The treatment of TK01 was the addition of 100 kg zeolites to the plot; TK02, 100 kg apatites; TK03, 100 kg humid manure; TK04, 50 kg zeolites + 50 kg apatites; TK05, 50 kg zeolites + 50 kg humid manure; TK06 was blank control (CK). One month after the treatments, soil samples at the plots were collected to study the possible change of chemical forms of Cd in the soils. The results indicated that these treatments reduced the content of available Cd in the soils effectively, by a decreasing sequence of TK04 (33%) > TK02 (25%) > TK01 (23%) > TK05 (22%) > TK03 (15%), on the basis of CK. Correspondingly, the treatments also reduced the content of Cd in rice grains significantly, by a similar decreasing sequence of TK04 (83%) > TK02 (77%) > TK05 (63%) > TK01 (47%) > TK03 (27%). The content of Cd in the rice grains was 0.071 mg kg-1, 0.094 mg kg-1, 0.159 mg kg-1, 0.22 mg kg-1 and 0.306 mg kg-1, respectively, compared with CK, 0.418 mg kg-1. This experiment suggested that the reduction of available Cd in the soils is

  12. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae.

    Science.gov (United States)

    Napan, Katerine; Hess, Derek; McNeil, Brian; Quinn, Jason C

    2015-07-10

    Increasing demand for renewable fuels has researchers investigating the feasibility of alternative feedstocks, such as microalgae. Inherent advantages include high potential yield, use of non-arable land and integration with waste streams. The nutrient requirements of a large-scale microalgae production system will require the coupling of cultivation systems with industrial waste resources, such as carbon dioxide from flue gas and nutrients from wastewater. Inorganic contaminants present in these wastes can potentially lead to bioaccumulation in microalgal biomass negatively impact productivity and limiting end use. This study focuses on the experimental evaluation of the impact and the fate of 14 inorganic contaminants (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Se, Sn, V and Zn) on Nannochloropsis salina growth. Microalgae were cultivated in photobioreactors illuminated at 984 µmol m(-2) sec(-1) and maintained at pH 7 in a growth media polluted with inorganic contaminants at levels expected based on the composition found in commercial coal flue gas systems. Contaminants present in the biomass and the medium at the end of a 7 day growth period were analytically quantified through cold vapor atomic absorption spectrometry for Hg and through inductively coupled plasma mass spectrometry for As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, V and Zn. Results show N. salina is a sensitive strain to the multi-metal environment with a statistical decrease in biomass yieldwith the introduction of these contaminants. The techniques presented here are adequate for quantifying algal growth and determining the fate of inorganic contaminants.

  13. Assessing atmospheric concentration of polychlorinated biphenyls by evergreen Rhododendron maximum next to a contaminated stream.

    Science.gov (United States)

    Dang, Viet D; Walters, David M; Lee, Cindy M

    2016-09-01

    Conifers are often used as an air passive sampler, but few studies have focused on the implication of broadleaf evergreens to monitor atmospheric semivolatile organic compounds such as polychlorinated biphenyls (PCBs). In the present study, the authors used Rhododendron maximum (rhododendron) growing next to a contaminated stream to assess atmospheric PCB concentrations. The present study area was located in a rural setting and approximately 2 km downstream of a former capacitor plant. Leaves from the same mature shrubs were collected in late fall 2010 and winter and spring 2011. Polychlorinated biphenyls were detected in the collected leaves, suggesting that rhododendron can be used as air passive samplers in rural areas where active sampling is impractical. Estimated ΣPCB (47 congeners) concentrations in the atmosphere decreased from fall 2010 to spring 2011 with concentration means at 3990 pg m(-3) , 2850 pg m(-3) , and 931 pg m(-3) in fall 2010, winter 2011, and spring 2011, respectively. These results indicate that the atmospheric concentrations at this location continue to be high despite termination of active discharge from the former industrial source. Leaves had a consistent pattern of high concentrations of tetra-CBs and penta-CBs similar to the congener distribution in polyethylene passive samplers deployed in the water column, suggesting that volatilized PCBs from the stream were the primary source of contaminants in rhododendron leaves. Environ Toxicol Chem 2016;35:2192-2198. © 2016 SETAC. © 2016 SETAC.

  14. Assessing atmospheric concentration of polychlorinated biphenyls (PCBs) by evergreen Rhododendron maximum next to a contaminated stream

    Science.gov (United States)

    Dang, Viet D.; Walter, W. David; Lee, Cindy M.

    2016-01-01

    Conifers are often used as an “air passive sampler”, but few studies have focused on the implication of broadleaf evergreens to monitor atmospheric semivolatile organic compounds such as polychlorinated biphenyls (PCBs). In this study, we used Rhododendron maximum (rhododendron) growing next to a contaminated stream to assess atmospheric PCB concentrations. The study area was located in a rural setting and approximately 2 km downstream of a former Sangamo-Weston (S-W) plant. Leaves from the same mature shrubs were collected in late fall 2010, and winter and spring 2011. PCBs were detected in the collected leaves suggesting that rhododendron can be used as air passive samplers in rural areas where active sampling is impractical. Estimated ΣPCB (47 congeners) concentrations in the atmosphere decreased from fall 2010 to spring 2011 with concentration means at 3990, 2850, and 931 pg m-3 in fall 2010, winter 2011, and spring 2011, respectively. These results indicate that the atmospheric concentrations at this location continue to be high despite termination of active discharge from the former S-W plant. Leaves had a consistent pattern of high concentrations of tetra- and penta-CBs similar to the congener distribution in polyethylene (PE) passive samplers deployed in the water column suggesting that volatilized PCBs from the stream were the primary source of contaminants in rhododendron leaves.

  15. Sources and Pathways of Bacterial Contamination in Urban Streams and Ocean Beaches, Santa Barbara, California

    Science.gov (United States)

    Johnson, R. D.; Mendez, G. O.; La, J. X.; Izbicki, J. A.

    2005-12-01

    Streams and ocean beaches in Santa Barbara, California, occasionally have concentrations of fecal indicator bacteria that exceed public health standards for recreational water, forcing temporary beach closures. Possible sources of fecal bacteria contamination include transient human populations, animal populations, and leaking sewer lines. The purpose of this three-year study is to identify important sources of fecal bacteria affecting the urban streams and beaches and to identify important pathways of transport. Contamination may enter streams and beaches directly by surface runoff, but also may be transmitted short distances through shallow ground water. Our analysis of existing historical data shows that fecal indicator bacteria concentrations are higher in near-shore ocean water following extreme high tides. The possible role of near shore ground water in supplying contaminants to the sea will be investigated by sampling water from an array of shallow wells installed for this study between an older city sewer line and the ocean. The ground water flux to the ocean will be inferred from water levels in these wells, and further tested by radium isotope values in near shore ocean samples. Two additional well arrays will be installed to test for leakage from residential sewage hookups and measure associated exchanges between ground water, streams, and ocean. Preliminary data collected by this study show fecal indicator bacteria concentrations in urban reaches of Mission Creek and its tributaries, the principle drainage through the city, are higher during low flow periods than during periods of higher flow. Analysis of preliminary data also shows short-term temporal variations in bacterial concentrations during twenty-four hour periods. Human enterovirus has been detected in our sample from one urban-drain tributary to Mission Creek. In order to identify the origins of fecal indicator bacteria water samples from Mission Creek, its tributaries, urban drains, and

  16. Three common metal contaminants of urban runoff (Zn, Cu and Pb) accumulate in freshwater biofilm and modify embedded bacterial communities

    International Nuclear Information System (INIS)

    Ancion, Pierre-Yves; Lear, Gavin; Lewis, Gillian D.

    2010-01-01

    We investigated the absorption rates of zinc, copper and lead in freshwater biofilm and assessed whether biofilm bacterial populations are affected by exposure to environmentally relevant concentrations of these metals in flow chamber microcosms. Metals were rapidly accumulated by the biofilm and then retained for at least 14 days after transfer to uncontaminated water. Changes in bacterial populations were assessed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene clone libraries. Significant differences in bacterial community structure occurred within only three days of exposure to metals and remained detectable at least 14 days after transfer to uncontaminated water. The rapid uptake of stormwater-associated metals and their retention in the biofilm highlight the potential role of biofilms in the transfer of metals to organisms at higher trophic levels. The sensitivity of stream biofilm bacterial populations to metal exposure supports their use as an indicator of stream ecological health. - The rapid accumulation of metals in biofilms and their impact on bacterial communities provide new insights into how these contaminants affect freshwater ecosystems.

  17. Wastewater contamination in Antarctic melt-water streams evidenced by virological and organic molecular markers.

    Science.gov (United States)

    Tort, L F L; Iglesias, K; Bueno, C; Lizasoain, A; Salvo, M; Cristina, J; Kandratavicius, N; Pérez, L; Figueira, R; Bícego, M C; Taniguchi, S; Venturini, N; Brugnoli, E; Colina, R; Victoria, M

    2017-12-31

    Human activities in the Antarctica including tourism and scientific research have been raised substantially in the last century with the concomitant impact on the Antarctic ecosystems through the release of wastewater mainly from different scientific stations activities. The aim of this study was to assess the wastewater contamination of surface waters and sediments of three melt-water streams (11 sites) by leaking septic tanks located in the vicinity of the Uruguayan Scientific Station in the Fildes Peninsula, King George Island, Antarctica, during summer 2015. For this purpose, we combined the analysis of fecal steroids in sediments by using gas chromatography and six enteric viruses in surface waters by quantitative and qualitative PCR. Coprostanol concentrations (from 0.03 to 3.31μgg -1 ) and fecal steroids diagnostic ratios indicated that stations C7 and C8 located in the kitchen stream presented sewage contamination. Rotavirus was the only enteric virus detected in five sites with concentration ranging from 1.2×10 5 gcL - 1 to 5.1×10 5 gcL - 1 being three of them located downstream from the leaking AINA and Kitchen septic tanks. This study shows for the first time the presence of both virological and molecular biomarkers of wastewater pollution in surface waters and sediments of three melt-water streams in the vicinity of a scientific station in the Antarctica. These results highlight the importance of the complementation of these biomarkers in two different matrices (surface waters and sediments) to assess wastewater pollution in an Antarctic environment related to anthropogenic activities in the area. Copyright © 2017. Published by Elsevier B.V.

  18. Heavy metal contamination in a school vegetable garden in Johannesburg.

    Science.gov (United States)

    Kootbodien, T; Mathee, A; Naicker, N; Moodley, N

    2012-03-07

    Feeding schemes based on school garden produce have been proposed as an effective solution to food insecurity and hunger among learners in South Africa. However, few studies have looked at the potential contamination of school food gardens when situated near mine tailing dams. The aim of the study was to evaluate the potential heavy metal contamination in a school vegetable garden in Johannesburg. Twenty soil samples were collected from the study school and a comparison school. Surface and deep (±10 cm beneath the surface) soil samples were analysed using X-ray fluorescence for levels of arsenic, chromium, copper, lead and zinc. Thirteen vegetables samples were collected from the school garden, and compared with six samples from a national retailer and four obtained from a private organic garden. The heavy metal concentrations of the vegetable samples were analysed in the laboratories of the South African Agricultural Research Council. High levels of arsenic were found in the school soil samples, and elevated concentrations of lead and mercury in the school vegetables. Calculation of the estimated daily intake for a child of 30 kg however, indicated that levels of lead, mercury and arsenic in vegetables were within acceptable limits. However, the levels of lead in the vegetable samples were high across all three sites. Further investigation and research should be undertaken to assess the source/s and extent of public exposure to heavy metals in vegetables in South Africa.

  19. Studies on heavy metal contamination in Godavari river basin

    Science.gov (United States)

    Hussain, Jakir; Husain, Ikbal; Arif, Mohammed; Gupta, Nidhi

    2017-12-01

    Surface water samples from Godavari river basin was analyzed quantitatively for the concentration of eight heavy metals such as arsenic, cadmium, chromium, copper, iron, lead, nickel and zinc using atomic absorption spectrophotometer. The analyzed data revealed that iron and zinc metals were found to be the most abundant metals in the river Godavari and its tributaries. Iron (Fe) recorded the highest, while cadmium (Cd) had the least concentration. Arsenic, cadmium, chromium, iron and zinc metals are within the acceptable limit of BIS (Bureau of Indian Standards (BIS) 1050 (2012) Specification for drinking water, pp 1-5). The analysis of Godavari river and its tributary's water samples reveals that the water is contaminated at selected points which are not suitable for drinking. Nickel and Copper concentration is above acceptable limit and other metal concentration is within the acceptable limit. Comprehensive study of the results reveals that out of 18 water quality stations monitored, water samples collected at 7 water quality stations are found to be within the permissible limit for all purposes. While Rajegaon, Tekra, Nandgaon, P. G. Bridge, Bhatpalli, Kumhari, Pauni, Hivra, Ashti, Bamini, and Jagda stations were beyond the desirable limit due to presence of copper and nickel metals. The contents of copper metal ions were higher at some water quality stations on Wunna river (Nandgaon); Wardha river (Hivra) and Wainganga river (Kumhari, Pauni, Ashti) during Feb. 2012, while nickel concentration during Feb. 2012, June 2012, March 2013 and Aug. 2013 at some water quality stations on rivers Bagh, Indravati, Pranhita, Wunna, Penganga, Peddavagu, Wainganga and Wardha. It can be concluded that rapid population growth and industrialization have brought about resource degradation and a decline in environmental quality.

  20. Metal resistant plants and phytoremediation of environmental contamination

    Science.gov (United States)

    Meagher, Richard B.; Li, Yujing; Dhankher, Om P.

    2010-04-20

    The present disclosure provides a method of producing transgenic plants which are resistant to at least one metal ion by transforming the plant with a recombinant DNA comprising a nucleic acid encoding a bacterial arsenic reductase under the control of a plant expressible promoter, and a nucleic acid encoding a nucleotide sequence encoding a phytochelatin biosynthetic enzyme under the control of a plant expressible promoter. The invention also relates a method of phytoremediation of a contaminated site by growing in the site a transgenic plant expressing a nucleic acid encoding a bacterial arsenate reductase and a nucleic acid encoding a phytochelatin biosynthetic enzyme.

  1. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil

    DEFF Research Database (Denmark)

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils...... from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42– radiotracer method, was restricted to reduced soil horizons with rates of 142 ± 20 nmol cm–3 day–1. Concentrations...... of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone...

  2. Movements of adult chinook salmon during spawning migration in a metals-contaminated system, Coeur d'Alene River, Idaho

    Science.gov (United States)

    Goldstein, J.N.; Woodward, D.F.; Farag, A.M.

    1999-01-01

    Spawning migration of adult male chinook salmon Oncorhynchus tshawytscha was monitored by radio telemetry to determine their response to the presence of metals contamination in the South Fork of the Coeur d'Alene River, Idaho. The North Fork of the Coeur d'Alene River is relatively free of metals contamination and was used as a control. In all, 45 chinook salmon were transported from their natal stream, Wolf Lodge Creek, tagged with radio transmitters, and released in the Coeur d'Alene River 2 km downstream of the confluence of the South Fork and the North Fork of the Coeur d'Alene River. Fixed telemetry receivers were used to monitor the upstream movement of the tagged chinook salmon through the confluence area for 3 weeks after release. During this period, general water quality and metals concentrations were monitored in the study area. Of the 23 chinook salmon observed to move upstream from the release site and through the confluence area, the majority (16 fish, 70%) moved up the North Fork, and only 7 fish (30%) moved up the South Fork, where greater metals concentrations were observed. Our results agree with laboratory findings and suggest that natural fish populations will avoid tributaries with high metals contamination.

  3. Risk of antibiotic resistance from metal contaminated soils

    Science.gov (United States)

    Knapp, Charles

    2013-04-01

    It is known that contaminated soils can lead to increased incidence of illness and disease, but it may also prevent our ability to fight disease. Many antibiotic resistant genes (ARG) acquired by bacteria originate from the environment. It is important to understand factors that influence levels of ARG in the environment, which could affect us clinically and agriculturally. The presence of elevated metal content in soils often promotes antibiotic resistance in exposed microorganisms. Using qPCR, the abundances of ARG to compare levels with geochemical conditions in randomly selected soils from several countries. Many ARG positively correlated with soil metal content, especially copper, chromium, nickel, lead, and iron. Results suggest that geochemical metal conditions influence the potential for antibiotic resistance in soil, which might be used to estimate baseline gene presence on various landscape scales and may translate to epidemiological risk of antibiotic-resistance transmission from the environment. This suggests that we may have to reconsider tolerances of metal pollution in the environment.

  4. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.

    Science.gov (United States)

    Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten

    2010-05-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined uranium increased in carbon-amended treatments, reaching metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.

  5. Some physiochemical and heavy metal concentration in surface water stream of Tutuka in the Kenyasi mining catchment area

    Directory of Open Access Journals (Sweden)

    B.M. Tiimub

    2012-09-01

    Full Text Available The research was conducted in the Akantansu stream of Tutuka in Kenyasi in the Brong Ahafo Region of Ghana from October 2010 to January 2011. The objectives of the study were to find out the contamination levels of pH, BOD5, Lead, Chromium, and Arsenic in the Akantansu stream of Tutuka to promote public health safety of people patronizing the stream for bathing and cooking. Determination of pH was achieved using Etech instrument (PC 300 series where as BOD5 level was assessed by means of empirical standard laboratory test which determined the relative oxygen requirements of waste water, effluents and polluted water using the standard procedure as per America Public Health Association (2006. An AAS 220 atomic absorption spectrometer was used for the analyses of heavy metals (lead, chromium and arsenic. The Research revealed that, the geometric mean levels of (0.01- 0.02, 0.03 – 0.26, 0 - 0.01, 3.99 – 7.06 mg/L and 5.64 – 6.40 for Arsenic, Lead, Chromium, BOD5 and pH compared to the EPA Maximum Permissible Limits of ( 0.5, 0.1, 0.1, 50 mg/L and 6-9 were respectively within the acceptable standards. However, due to slightly higher concentration of chromium (0.26 mg/L up the stream, the people of Tutuka may develop health effects such as nausea, vomiting, diarrhea, hallucinations, headaches, depression, sleeping disorders, skin cancers, tumours in lungs, bladder, kidney and liver if they continue to use water from the stream for bathing and cooking.

  6. Remediation of soil contaminated with the heavy metal (Cd2+)

    International Nuclear Information System (INIS)

    Lin, C.-C.; Lin, H.-L.

    2005-01-01

    Soil contamination by heavy metals is increasing. The biosorption process for removal of the heavy metal Cd 2+ from contaminated soil is chosen for this study due to its economy, commercial applications, and because it acts without destroying soil structure. The study is divided into four parts (1) soil leaching: the relationships between the soil leaching effect and agitation rates, solvent concentrations, ratios of soil to solvent, leaching time and pH were studied to identify their optimum conditions; (2) adsorption Cd 2+ tests of immobilized Saccharomycetes pombe beads: different weight percentages of chitosan and polyvinyl alcohol (PVAL) were added to alginate (10 wt.%) and then blended or cross-linked by epichlorohydrin (ECH) to increase their mechanical strength. Next, before blending or cross-linking, different weight percentages of S. pombe 806 or S. pombe ATCC 2476 were added to increase Cd 2+ adsorption. Thus, the optimum beads (blending or cross-linking, the percentages of chitosan, PVAL and S. pombe 806 or S. pombe ATCC 2476) and the optimum adsorption conditions (agitation rate, equilibrium adsorption time, and pH in the aqueous solution) were ascertained; (3) regeneration tests of the optimum beads: the optimum beads adsorbing Cd 2+ were regenerated by various concentrations of aqueous HCl solutions. The results indicate that the reuse of immobilized pombe beads was feasible; and (4) adsorption model/kinetic model/thermodynamic property: the equilibrium adsorption, kinetics, change in Gibbs free energy of adsorption of Cd 2+ on optimum beads were also investigated

  7. Study of Wastewaters Contaminated with Heavy Metals in Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Bartošová Alica

    2017-06-01

    Full Text Available Bioethanol as a substitute for traditional sources of energy, especially oil transport, is currently one of the most researched alternative motor fuels. Normally, bioethanol is produced from agricultural crops such as sugar cane or corn. However, this is counter-productive, because agriculture is primarily serving to ensure enough food for the people. It is therefore necessary to look for new production of appropriate non-food crops or find an added value to this process. Utilisation of contaminated water from metal industry could be one of them. Based on the hypothesis of reduction of some toxic metals with higher oxidation number is opening the possibility of using this wastewater in alcohol fermentation of any kind of biomass. In this study, hexavalent chromium Cr(VI was used as a model contaminant in the process of aerobic fermentation of corn to bioethanol. To determine the reduction potential of glucose to Cr(VI, and to quantitatively determinate the glucose content after saccharification, UV/VIS spectrophotometry was used. As a method of qualitative determination of fermentation product, gas chromatography with mass detection was used. Infrared spectrometry was used for qualitative analyses of produced ethanol. Based on the established results shown in this paper, we can conclude that the presence of hexavalent chromium in the fermentation process does not have a significant negative impact, while offering the opportunity of using the industrial wastewaters for the production of bioethanol fuel.

  8. Study of Wastewaters Contaminated with Heavy Metals in Bioethanol Production

    Science.gov (United States)

    Bartošová, Alica; Blinová, Lenka

    2017-06-01

    Bioethanol as a substitute for traditional sources of energy, especially oil transport, is currently one of the most researched alternative motor fuels. Normally, bioethanol is produced from agricultural crops such as sugar cane or corn. However, this is counter-productive, because agriculture is primarily serving to ensure enough food for the people. It is therefore necessary to look for new production of appropriate non-food crops or find an added value to this process. Utilisation of contaminated water from metal industry could be one of them. Based on the hypothesis of reduction of some toxic metals with higher oxidation number is opening the possibility of using this wastewater in alcohol fermentation of any kind of biomass. In this study, hexavalent chromium Cr(VI) was used as a model contaminant in the process of aerobic fermentation of corn to bioethanol. To determine the reduction potential of glucose to Cr(VI), and to quantitatively determinate the glucose content after saccharification, UV/VIS spectrophotometry was used. As a method of qualitative determination of fermentation product, gas chromatography with mass detection was used. Infrared spectrometry was used for qualitative analyses of produced ethanol. Based on the established results shown in this paper, we can conclude that the presence of hexavalent chromium in the fermentation process does not have a significant negative impact, while offering the opportunity of using the industrial wastewaters for the production of bioethanol fuel.

  9. Synoptic sampling and principal components analysis to identify sources of water and metals to an acid mine drainage stream.

    Science.gov (United States)

    Byrne, Patrick; Runkel, Robert L; Walton-Day, Katherine

    2017-07-01

    Combining the synoptic mass balance approach with principal components analysis (PCA) can be an effective method for discretising the chemistry of inflows and source areas in watersheds where contamination is diffuse in nature and/or complicated by groundwater interactions. This paper presents a field-scale study in which synoptic sampling and PCA are employed in a mineralized watershed (Lion Creek, Colorado, USA) under low flow conditions to (i) quantify the impacts of mining activity on stream water quality; (ii) quantify the spatial pattern of constituent loading; and (iii) identify inflow sources most responsible for observed changes in stream chemistry and constituent loading. Several of the constituents investigated (Al, Cd, Cu, Fe, Mn, Zn) fail to meet chronic aquatic life standards along most of the study reach. The spatial pattern of constituent loading suggests four primary sources of contamination under low flow conditions. Three of these sources are associated with acidic (pH water (trace metal and major ion) chemistry using PCA suggests a hydraulic connection between many of the left bank inflows and mine water in the Minnesota Mine shaft located to the north-east of the river channel. In addition, water chemistry data during a rainfall-runoff event suggests the spatial pattern of constituent loading may be modified during rainfall due to dissolution of efflorescent salts or erosion of streamside tailings. These data point to the complexity of contaminant mobilisation processes and constituent loading in mining-affected watersheds but the combined synoptic sampling and PCA approach enables a conceptual model of contaminant dynamics to be developed to inform remediation.

  10. Fractionation of chemical elements including the REEs and 226Ra in stream contaminated with coal-mine effluent

    International Nuclear Information System (INIS)

    Centeno, L.M.; Faure, G.; Lee, G.; Talnagi, J.

    2004-01-01

    Water draining from abandoned open-pit coal mines in southeastern Ohio typically has a low pH and high concentrations of Fe, Al and Mn, as well as of trace metals (Pb, Cu, Zn, Ni, Co, etc.) and of the rare earth elements (REEs). The cations of different elements are sorbed selectively by Fe and Al hydroxide precipitates which form with increasing pH. As a result, the trace elements are separated from each other when the hydroxide precipitates are deposited in the channel of a flowing stream. Therefore, the low-energy environment of a stream contaminated by mine effluent is a favorable site for the chemical fractionation of the REEs and of other groups of elements with similar chemical properties. The interpretation of chemical analyses of water collected along a 30-km-stretch of Rush Creek near the town of New Lexington, Perry County, Ohio, indicates that the abundances of the REEs in the water appear to change downstream when they are normalized to the REE concentrations of the mine effluent. In addition, the Ce/La ratios (and those of all REEs) in the water decrease consistently downstream. The evidence indicates that the REEs which remain in solution are enriched La and Ce because the other REEs are sorbed more efficiently. The solid Fe(OH) 3 precipitates in the channel of Rush Creek upstream of New Lexington also contain radioactive 226 Ra that was sorbed from the water. This isotope of Ra is a decay product of 238 U which occurs in the Middle Pennsylvanian (Upper Carboniferous) coal and in the associated shale of southeastern Ohio. The activity of 226 Ra of the Fe(OH) 3 precipitates increases with rising pH, but then declines farther downstream as the concentration of Ra remaining in the water decreases

  11. Bioremediation of metals, organic and mixed contaminants with microbial mats

    Energy Technology Data Exchange (ETDEWEB)

    Bender, J.

    1995-12-31

    Microbial mats are natural heterotrophic and autotrophic communities dominated by cyanobacteria (blue-green algae). They are self-organized laminated structures annealed tightly together by slimy secretions from various microbial components. The surface slime of the mats effectively immobilizes the ecosystem to a variety of substrates, thereby stabilizing the most efficient internal microbial structure. Cyanobacteria mats are generated for bioremediation applications by enriching a water surface with ensiled grass clippings. These constructed mats have been used to reduce selenate to elemental selenium, remove Pb, Cd, Cu, Zn, Co, Cr, Fe and Mn from water and to remove Pb from sediments of shallow laboratory ponds. Uranium, U{sup 238}, was removed from groundwater samples at the rate of 3.19 Mg/m{sup 2}/h. Degradation of recalcitrant organic contaminants by mats is relatively rapid under both dark and light conditions. The following contaminants have been degraded in water and/or soil media by constructed mats: TNT, chrysene, naphthalene, hexadecane, phenanthrene, PCB, TCE, pulp and paper mill wastes, and three pesticides: chlordane, carbofuran and paraquat. Radio-labeled experiments with mat-treated carbofuran, petroleum distillates, TNT, chlordane, PCB and TCE show that these compounds are mineralized by the constructed mats. Mats applied to mixed contaminant solutions (TCE + Zn and TNT + pb) sequestered the metal while mineralizing the TCE. Remediation rates of the organic and inorganic components were the same in mixed solution as they were in single application.

  12. Metal and Metalloid Contaminants in Atmospheric Aerosols from Mining Operations.

    Science.gov (United States)

    Csavina, Janae; Landázuri, Andrea; Wonaschütz, Anna; Rine, Kyle; Rheinheimer, Paul; Barbaris, Brian; Conant, William; Sáez, A Eduardo; Betterton, Eric A

    2011-10-01

    Mining operations are potential sources of airborne metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, with potential deleterious effects on human health and ecology. Fine particulates such as those resulting from smelting operations may disperse more readily into the environment than coarser tailings dust. Fine particles also penetrate more deeply into the human respiratory system, and may become more bioavailable due to their high specific surface area. In this work, we report the size-fractionated chemical characterization of atmospheric aerosols sampled over a period of a year near an active mining and smelting site in Arizona. Aerosols were characterized with a 10-stage (0.054 to 18 μm aerodynamic diameter) multiple orifice uniform deposit impactor (MOUDI), a scanning mobility particle sizer (SMPS), and a total suspended particulate (TSP) collector. The MOUDI results show that arsenic and lead concentrations follow a bimodal distribution, with maxima centered at approximately 0.3 and 7.0 μm diameter. We hypothesize that the sub-micron arsenic and lead are the product of condensation and coagulation of smelting vapors. In the coarse size, contaminants are thought to originate as aeolian dust from mine tailings and other sources. Observation of ultrafine particle number concentration (SMPS) show the highest readings when the wind comes from the general direction of the smelting operations site.

  13. Heavy metal contamination of vegetables in Isfahan, Iran.

    Science.gov (United States)

    Jafarian-Dehkordi, A; Alehashem, M

    2013-01-01

    Vegetables are an inevitable and important part of a healthy and balanced diet. They could be contaminated by heavy metals in many ways including irrigation by sewage water and industrial effluents sewage sludge, vehicular emissions, industrial waste and atmospheric deposition. In this study, we sought to determine if some vegetables (cucumbers, tomatoes, cabbage, lettuce, potatoes, onions, carrots, persian leeks, dill, spinach, coriander, parsley) grown locally in the suburban of Isfahan city and sold in the urban markets are contaminated with cadmium (Cd), chromium (Cr) and lead (Pb). Vegetables were sampled from August to October 2010. After washing, they were oven-dried and digested using three-acid mixture (70% HNO3, 65% HClO4 and 70% H2SO4). Analyzes of the heavy metals was performed using atomic absorption spectrophotometry. To validate the assay method, intra-day and inter-day variation studies were performed. The concentrations (μg/g) of heavy metals in the samples ranged from 0.00 to 3.66 for Cd, 0.00 to 6.00 for Cr and 0.00 to 7.14 for Pb. The highest concentration of heavy metals was for Pb. The results showed that the amount of Cd, Cr and Pb of some samples exceeded the recommended levels. The amount of Cd in cucumber, tomatoes, potatoes with skin, carrots, and spinach was significantly higher in the samples collected from Isfahanak, Dashti and Ilchi farms than those of Dorche farms. Also, the amount of Cr in onion, carrots, and spinach was significantly higher in samples collected from Isfahanak, Dashti and Ilchi farms than those of Dorche farms. However, the amount of Pb in the carrots and leek was significantly higher in the samples collected from Dorche farms than those of Isfahanak, Dashti and Ilchi farms. It can be concluded from the findings of this study that the amounts of Cd, Cr, and Pb were higher than the acceptable levels recommended by WHO/FAO. Also, higher amount of Cd and Cr in some samples collected from Isfahanak, Dashti and Ilchi

  14. Removal of Contaminants from Waste Streams at Gas Evolving Flow-Through Porous Electrodes

    International Nuclear Information System (INIS)

    Mahmoud Saleh, M.

    1999-01-01

    Electrochemical techniques have been used for the removal of inorganic and organic toxic materials from industrial waste streams. One of the most important branch of these electrochemical techniques is the flow-through porous electrode. Such systems allow for the continuous operation and hence continuous removal of the contaminants from waste streams at high rates and high efficiency. However, when there is an evolution of gas bubbles with the removal process, the treatment process needs a much different treatment of both the design and the mathematical treatment of the such these systems. The evolving gas bubbles within the electrode decrease the pore electrolyte conductivity of the porous electrodes, decrease the efficiency and make the current more non-uniform. This cause the under utilization of the reaction area and finally make the electrode inoperable. In this work the harmful effects of the gas bubbles on the performance of the porous electrode will be modeled. The model accounts for the effects of kinetic, mass transfer and gas bubbles resistance on the overall performance of the electrode. This will help in optimizing the operating conditions and the cell design

  15. Using host-associated genetic markers to investigate sources of fecal contamination in two Vermont streams

    Science.gov (United States)

    Medalie, Laura; Matthews, Leslie J.; Stelzer, Erin A.

    2011-01-01

    The use of host-associated Bacteroidales-based 16S ribosomal ribonucleic acid genetic markers was investigated as a tool for providing information to managers on sources of bacterial impairment in Vermont streams. The study was conducted during 2009 in two watersheds on the U.S. Environmental Protection Agency's 303(d) List of Impaired Waters, the Huntington and the Mettawee Rivers. Streamwater samples collected during high-flow and base-flow conditions were analyzed for concentrations of Escherichia coli (E. coli) and Bacteroidales genetic markers (General AllBac, Human qHF183 and BacHum, Ruminant BoBac, and Canid BacCan) to identify humans, ruminants, and canids as likely or unlikely major sources of fecal contamination. Fecal reference samples from each of the potential source groups, as well as from common species of wildlife, were collected during the same season and from the same watersheds as water samples. The results were combined with data from other states to assess marker cross reaction and to relate marker results to E. coli, the regulated water-quality parameter, with a higher degree of statistical significance. Results from samples from the Huntington River collected under different flow conditions on three dates indicated that humans were unlikely to be a major source of fecal contamination, except for a single positive result at one station that indicated the potential for human sources. Ruminants (deer, moose, cow, or sheep) were potential sources of fecal contamination at all six stations on the Huntington River during one high-flow event and at all but two stations during the other high-flow event. Canids were potential sources of fecal contamination at some stations during two high-flow events, with genetic-marker concentrations in samples from two of the six stations showing consistent positive results for canids for both storm dates. A base-flow sample showed no evidence of major fecal contamination in the Huntington River from humans

  16. Phytoremediation Opportunities with Alimurgic Species in Metal-Contaminated Environments

    Directory of Open Access Journals (Sweden)

    Marianna Bandiera

    2016-04-01

    Full Text Available Alimurgic species are edible wild plants growing spontaneously as invasive weeds in natural grassland and farmed fields. Growing interest in biodiversity conservation projects suggests deeper study of the multifunctional roles they can play in metal uptake for phytoremediation and their food safety when cultivated in polluted land. In this study, the responses of the tap-rooted perennial species Cichorium intybus L., Sonchus oleracerus L., Taraxacum officinale Web., Tragopogon porrifolius L. and Rumex acetosa L. were studied in artificially-highly Cd-Co-Cu-Pb-Zn-contaminated soil in a pot-scale trial, and those of T. officinale and R. acetosa in critical open environments (i.e., landfill, ditch sediments, and sides of highly-trafficked roads. Germination was not inhibited, and all species showed appreciable growth, despite considerable increases in tissue metal rates. Substantial growth impairments were observed in C. intybus, T. officinale and T. porrifolius; R. acetosa and S. oleracerus were only marginally affected. Zn was generally well translocated and reached a high leaf concentration, especially in T. officinale (~600 mg·kg−1·dry weight, DW, a result which can be exploited for phytoremediation purposes. The elevated Cd translocation also suggested applications to phytoextraction, particularly with C. intybus, in which leaf Cd reached ~16 mg·kg−1·DW. The generally high root retention of Pb and Cu may allow their phytostabilisation in the medium-term in no-tillage systems, together with significant reductions in metal leaching compared with bare soil. In open systems, critical soil Pb and Zn were associated with heavily trafficked roadsides, although this was only seldom reflected in shoot metal accumulation. It is concluded that a community of alimurgic species can serve to establish an efficient, long-lasting vegetation cover applied for phytoremediation and reduction of soil metal movements in degraded environments. However

  17. Risk Assessment of Heavy Metals in Abandoned Mine Lands as Signifcant Contamination Problem in Romania

    Science.gov (United States)

    Horvath, E.; Jordan, G.; Fugedi, U.; Bartha, A.; Kuti, L.; Heltai, G.; Kalmar, J.; Waldmann, I.; Napradean, I.; Damian, G.

    2009-04-01

    lower topographic elevations. Several mine adits, waste rock dumps are located along the main stream and a large tailings dump is found next to village Baiut just above the receiving floodplain. Predominant land cover is coniferous and mixed forests with agricultural lands on the downstream floodplain. METHODS Six samples at vaious depths were collected from the two major waste rock dumps in the headwater area, and the large tailings dump was also sampled for heavy metal source characterisation. 11 stream sediment samples were collected along the main surface water contamination transport pathway, and a further 11 soil samples were collected in 2 boreholes in the receptor floodplain in October 2008. Besides background stream sediment samples, samples from the exposed rock formations were also collected in order to capture natural background geochemistry in the studied mineralised area. The collected waste rock, stream sediment, soil and rock samples are analysed for total chemical composition (major elements and heavy metals) by ICP-MS spectroscopy, and XRD is used for the determination of mineralogical composition. Rock sample mineralogy is further investigated in thin-sections by petrological microscopy. According to EU legislation expectations, a special emphasis is taken on the determination of metal mobility from the waste rock dumps and various leaching tests are performed and compared including US EPA, USGS and ISO methods. A simple cathcment-based distributed sediment transport model (Jordan et al, 2005; Jordan et al. 2005, 2008) is used to decribe the pathways and quantities of particle-bound contamination. RESULTS AND CONCLUSIONS Results show that (1) sediments are an efficient means for the preliminary inventory of mine contamination as a preparation for the more detailed hydrological sampling and assessment, and (2) the risk-based contamination assessment of mining sites often located in diverse geological, hydrological and landcover environment requires

  18. Electrochemical Analysis of Heavy Metal Contaminants in Plant Matter

    Science.gov (United States)

    Burghard, C. J.; Atkinson, D. B.; Zhu, X.

    2016-12-01

    Cadmium and Lead are toxic heavy metals found in the aerosol phase that can cause cancer (Cd) or neurological and developmental problems (Pb). In October 2015 the Oregon DEQ and USFS performed a follow-up investigation after a 2013 USFS moss study in Portland, Oregon showed high levels of Cadmium and Lead in a neighborhood in the Southeast part of the city. Findings from the ODEQ study implicated emissions from the Bullseye Glass Factory, and to a lesser extent, the Uroboros Glass Studio in producing the elevated Cadmium and Lead. These facilities were ordered to stop production until particulate filtering systems could be installed. Once production had ceased, ambient Cadmium concentrations dropped from 29.4 ng/m3 (49 times higher than the 0.6 ng/m3 Oregon Benchmark) to 1.1 ng/m3 near one factory and 0.67 ng/m3 near the other. The emissions of these metals were highly concentrated in an approximate 0.5 kilometer radius around the Bullseye facility and contamination of edible produce from gardens in the area is of concern. A simple extraction method, paired with Anodic Stripping Voltammetry was used to determine the levels of the two metals in produce and other plants from the area. Preliminary findings indicate that low levels of lead and cadmium are detectable in the vegetation samples from the area.

  19. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE).

    Science.gov (United States)

    Stenvall, Erik; Tostar, Sandra; Boldizar, Antal; Foreman, Mark R StJ; Möller, Kenneth

    2013-04-01

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile-butadiene-styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Remediation techniques for heavy-metals contamination in lakes: A Mini-Review

    Digital Repository Service at National Institute of Oceanography (India)

    Giripunje, M.D.; Fulke, A.B.; Meshram, P.U.

    Heavy-metals contamination in lakes has a negative impact on lake ecosystems This review provides an insight into possible heavy-metals remediation techniques for lake environments using different techniques, for example, physical, chemical...

  1. Expanded target-chemical analysis reveals extensive mixed-organic-contaminant exposure in USA streams

    Science.gov (United States)

    Bradley, Paul M.; Journey, Celeste A.; Romanok, Kristin; Barber, Larry B.; Buxton, Herbert T.; Foreman, William; Furlong, Edward T.; Glassmeyer, Susan T.; Hladik, Michelle L.; Iwanowicz, Luke R.; Jones, Daniel K.; Kolpin, Dana W.; Kuivila, Kathryn M.; Loftin, Keith A.; Mills, Marc A.; Meyer, Michael T.; Orlando, James L.; Reilly, Timothy J.; Smalling, Kelly L.; Villeneuve, Daniel L.

    2017-01-01

    Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66–84% of all sites. Detected contaminant concentrations varied from less than 1 ng L–1 to greater than 10 μg L–1, with 77 and 278 having median detected concentrations greater than 100 ng L–1 and 10 ng L–1, respectively. Cumulative detections and concentrations ranged 4–161 compounds (median 70) and 8.5–102 847 ng L–1, respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log10 concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71–82% of the variability in the total number of compounds detected (linear regression; p-values: environment application (pesticides), designed-bioactive organics (median 41 per site at μg L–1 cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L–1.

  2. Identifying environmental and geochemical variables governing metal concentrations in a stream draining headwaters in NW Spain

    International Nuclear Information System (INIS)

    Soto-Varela, F.; Rodríguez-Blanco, M.L.; Taboada-Castro, M.M.; Taboada-Castro, M.T.

    2014-01-01

    Highlights: • All metals occur in association with suspended sediment. • DOC and SS appeared to influence the partitioning of metals. • The SS was a good predictor of particulate metal levels. • The most important variable to explain storm-event K D for Al and Fe is DOC. • Enrichment factor values suggest a natural origin for the particulate metals. - Abstract: Headwater stream, draining from a rural catchment in NW Spain, was sampled during baseflow and storm-event conditions to investigate the temporal variability in dissolved and particulate Al, Fe, Mn, Cu and Zn concentrations and the role of discharge (Q), pH, dissolved organic carbon (DOC) and suspended sediment (SS) in the transport of dissolved and particulate metals. Under baseflow and storm-event conditions, concentrations of the five metals were highly variable. The results of this study reveal that all metal concentrations are correlated with SS. DOC and SS appeared to influence both the metal concentrations and the partitioning of metals between dissolved and particulate. The SS was a good predictor of particulate metal levels. Distribution coefficients (K D ) were similar between metals (4.72–6.55) and did not change significantly as a function of discharge regime. Stepwise multiple linear regression analysis reveals that the most important variable to explain storm-event K D for Al and Fe is DOC. The positive relationships found between metals, in each fraction, indicate that these elements mainly come from the same source. Metal concentrations in the stream were relatively low

  3. Persistence of chironomids in metal polluted Andean high altitude streams: does melanin play a role?

    NARCIS (Netherlands)

    Loayza Muro, R.A.; Marticorena-Ruíz, J.K.; Palomino, E.J.; Merritt, C.; de Baat, M.L.; van Gemert, M.; Verweij, R.A.; Kraak, M.H.S.; Admiraal, W.

    2013-01-01

    In high altitude Andean streams an intense solar radiation and coinciding metal pollution allow the persistence of only a few specialized taxa, including chironomids. The aim of the present study was therefore to determine the mechanisms underlying the persistence of chironomids under these multiple

  4. Delivery of suspended sediment and associated phosphorus and heavy metals to small rural Danish streams

    DEFF Research Database (Denmark)

    Laubel, A. R.

    The aim of this study is to examine delivery pathways for suspended sediment, and particulate phosphorus (P) and heavy metals from open rural areas to small Danish streams. A further aim is to quantify the contribution from different path-ways and source areas. Such studies are useful as a basis...

  5. Assessment of metal contamination in the biota of four rivers experiencing varying degrees of human impact.

    Science.gov (United States)

    Bielmyer-Fraser, Gretchen K; Waters, Matthew Neal; Duckworth, Christina G; Patel, Pratik P; Webster, Benjamin Cole; Blocker, Amber; Crummey, Cliff Hunter; Duncan, Aundrea Nicole; Nwokike, Somuayiro Nadia; Picariello, Codie Richard; Ragan, James T; Schumacher, Erika L; Tucker, Rebecca Lea; Tuttle, Elizabeth Ann; Wiggins, Charlie Rufus

    2017-01-01

    Urbanization, agriculture, and other land transformations can affect water quality, decrease species biodiversity, and increase metal and nutrient concentrations in aquatic systems. Metal pollution, in particular, is a reported consequence of elevated anthropogenic inputs, especially from urbanized areas. The objectives of this study were to quantify metal (Cu, Al, Cd, Ni, and Pb) concentrations in the waters and biota of four streams in South Georgia, USA, and relate metal concentrations to land use and abiotic and biotic stream processes. Additionally, macrophytes, invertebrates, and fish were identified to assess biodiversity at each site. Metal concentrations in the three trophic levels differed among sites and species, correlating to differences in land use surrounding the rivers. The highest metal concentrations (except Al) were found in the streams most impacted by urbanization and development. Al concentrations were highest in streams surrounded by land dominated by forested areas. Metal content in macrophytes reflected metal concentrations in the water and was at least three orders of magnitude higher than any other trophic level. Despite metal concentration differences, all four streams contained similar water quality and were healthy based on macroinvertebrate community structure. This study provides insight into the impact of urbanization and the fate and effects of metals in river ecosystems with varying degrees of anthropogenic impact.

  6. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.

    Science.gov (United States)

    Zhang, Xiaokai; Wang, Hailong; He, Lizhi; Lu, Kouping; Sarmah, Ajit; Li, Jianwu; Bolan, Nanthi S; Pei, Jianchuan; Huang, Huagang

    2013-12-01

    Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.

  7. Identification of discharge zones and quantification of contaminant mass discharges into a local stream from a landfill in a heterogeneous geologic setting

    DEFF Research Database (Denmark)

    Milosevic, Nemanja; Thomsen, Nanna Isbak; Juhler, R.K.

    2012-01-01

    concentration levels. A comparison between mass balance for selected stream stretches and upscaled measurements of the contaminant discharge from groundwater into the stream indicated that only a small part of the actual contaminant discharge of the stream could be explained by the inflowing contaminant......Contaminants from Risby Landfill (Denmark) are expected to leach through the underlying geologic strata and eventually reach the local Risby Stream. Identification of the groundwater discharge zone was conducted systematically by an array of methods including studies on site geology....... The groundwater discharge was quantified by two methods: direct collection of discharged groundwater by seepage meters and calculations from measurement of streambed temperature gradients. The landfill impacted the stream seasonally during dry periods when concentrations in the stream reached groundwater...

  8. Is metal contamination responsible for increasing aneuploidy levels in the Manila clam Ruditapes philippinarum?

    KAUST Repository

    Piló, D.

    2016-11-03

    The present study assessed the metal genotoxicity potential at chromosome-level in the bivalve Ruditapes philippinarum collected along different areas of the Tagus estuary. Higher levels of aneuploidy on gill cells were detected at the most sediment contaminated area both in May (31.7%) and October (36.0%) when compared to a less contaminated area over the same periods (20.3% and 29.0% respectively). Interestingly, metal bioaccumulation in gills was higher in the specimens collected at the least contaminated area with the exception of Pb. Indeed, the multivariate analysis revealed a stronger relation between aneuploidy and sediment contamination than between aneuploidy and the bioaccumulation of the metals. The temporal and spatial inconsistency found for the bioaccumulation of metals in R. philippinarum and the positive correlation between sediment contamination and aneuploidy at the most contaminated area suggest that these chromosome-level effects might be due to chronic metal contamination occurring in the Tagus estuary, rather than a direct result of the temporal variation of bioavailable contaminants. The vertical transmission phenomenon of bivalve aneuploidy levels may then be perpetuating those levels on clams from the most contaminated area. The present results shed light about the effect of metal toxicity at the chromosome-level in species inhabiting chronic contaminated areas and highlight the use of aneuploidy as an effective tool to identify persistent contamination in worldwide transitional waters.

  9. Mycodiversity in marine sediments contaminated by heavy metals: preliminary results

    Science.gov (United States)

    Zotti, Mirca; Carbone, Cristina; Cecchi, Grazia; Consani, Sirio; Cutroneo, Laura; Di Piazza, Simone; Gabutto, Giacomo; Greco, Giuseppe; Vagge, Greta; Capello, Marco

    2016-04-01

    Fungi represent the main decomposers of woody and herbaceous substrates in the marine ecosystems. To date there is a gap in the knowledge about the global diversity and distribution of fungi in marine habitats. On the basis of their biological diversity and their role in ecosystem processes, marine fungi may be considered one of the most attractive groups of organisms in modern biotechnology, e.g. ecotoxic metal bioaccumulation. Here we report the data about the first mycological survey in the metal contaminated coastal sediments of the Gromolo Bay. The latter is located in Ligurian Sea (Eastern Liguria, Italy) and is characterized by an enrichment of heavy metals due to pollution of Gromolo Torrent by acidic processes that interest Fe-Cu sulphide mine. 24 samples of marine sediments were collected along a linear plot in front of the shoreline in July 2015. Each sample was separated into three aliquot for mineralogical, chemical analyses and fungal characterization. The sediment samples are characterised by clay fractions (illite and chlorite), minerals of ophiolitic rocks (mainly serpentine, pyroxene and plagioclase) and quartz and are enriched some chemical elements of environmental importance (such as Cu, Zn, Pb, Cd, As). For fungal characterisation the sediment samples were inoculated in Petri dishes on different culture media (Malt Extract Agar and Rose Bengal) prepared with sea water and added with antibiotics. The inoculated dishes were incubated at 20°C in the dark for 28 days. Every week fungal growth was monitored counting the number of colonies. Later, the colonies were isolated in axenic culture for further molecular analysis. The mycodiversity evaluate on the basis of Colony Forming Units (CFU) and microfungal-morphotype characterised by macro-and micro-morphology. Until now on the 72 Petri dishes inoculated 112 CFU of filamentous fungi were counted, among these about 50 morphotypes were characterized. The quantitative results show a mean value of 4

  10. HEAVY METALS CONTAMINATION IN FISH OF THE LIGURIAN SEA

    Directory of Open Access Journals (Sweden)

    M. Prearo

    2013-02-01

    Full Text Available Aim of this investigation was to evaluate heavy metals contamination (mercury, cadmium and lead in fish and shellfish from Ligurian Sea. 58 muscle samples (45 fish and 13 shellfish were collected and analyzed. 20 samples exceeded the maximum residue limits (MRLs set by regulation for mercury (16 fish and 4 shellfish samples, while only one fish sample was not consistent with the MRL for lead. Therefore, 35,8% of Ligurian fishing turned out to be not adequate and potentially harmful for consumers. In order to estimate the real risk for human health it is necessary to enforce this study, correlating the results with fish species and with the effective fish consumption.

  11. Spatial patterns of heavy metal contamination by urbanization

    Science.gov (United States)

    Delbecque, Nele; Verdoodt, Ann

    2015-04-01

    Source identification is an important step towards predictive models of urban heavy metal (HM) contamination. This study assesses the spatial distribution of enrichment of eight HMs (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in the city of Ghent (156.18 km2; Belgium). A database with HM concentrations measured in the topsoil at 2138 point observations was collected from the Public Waste Agency of Flanders. The degree of anthropogenic HM enrichment was quantified using an urban pollution index (PI). Enrichment of HMs showed high variations throughout the study area due to manifold anthropogenic sources. Topsoil in Ghent was especially enriched with Cu, Ni, Pb and Zn, with median PI's of 1.91, 1.74, 2.12 and 2.02 respectively. Contrastingly, As, Cd, Hg, Cr generally did not exceed expected background concentrations, with median PI values agriculture, park and recreation, residential zones, harbor and industry) generally revealed high enrichment of Cu, Ni, Pb and Zn in residential areas linked to housing and traffic, but proved unsatisfactory to capture major trends in urban spatial HM distributions. Moreover, an important control of industrial and traffic emissions is suggested for Ni, Cu, Pb and Zn. Industrial non-airborne point source contaminations were mainly historical, rather than linked to current industrial activities. Results indicated that urban-rural gradients or current land use stratification approaches are inadequate to predict spatial HM distributions in cities with a long history of industrialization.

  12. Heavy metal contamination in vegetables grown in Rawalpindi, Pakistan

    International Nuclear Information System (INIS)

    Ahmed, W.; Ahmed, A.; Ahmad, A.; Randhawa, M.A.; Ahmad, R.; Khalid, N.

    2012-01-01

    Copper (Cu), cadmium (Cd), chromium (Cr) nickel (Ni), lead (Pb), Iron (Fe), Manganese (Mn) and zinc (Zn) contents of various vegetables (bitter melon, tomato, eggplant, lettuce, cucumber and bell pepper) produced in Rawalpindi, Pakistan was determined using Atomic absorption spectrophotometer (AAS). These plants are the basis of human nutrition in the study area. All vegetables grown at sewage water by farmers showed the highest contamination of heavy metals, followed by local market, Progressive farmers and hydroponic plant. The concentration ranges in mg/kg were (1.45 -2.55) for Cd, (3.10 to 4.92) Cr, (12.15- 20.50) Cu, (25.00-51.00) for Fe, (7.80 to 15.60) for Mn, (10.16 to 15.42) for Ni, (2.12 to 5.41) Pb and (16.58 to 24.08) for zinc. The contamination was above the Maximum Residue Limits (MRLs), set out by WHO. Irregular trends in concentration were also observed in vegetables obtained from local market, progressive farmers and hydroponic plant. (author)

  13. METAL TOLERANCE ANALYSIS OF MICROFUNGI ISOLATED FROM METAL CONTAMINATED SOIL AND WASTE WATER

    Directory of Open Access Journals (Sweden)

    Mathan Jayaraman

    2014-08-01

    Full Text Available The influence of Cr6+, Pb2+, Cu2+, Ni2+, Zn2+ and Cd2+ on the development of 24 fungi was investigated for Metal Tolerance Index (MTI at 1mg ml-1 Cr6+, Pb2+, Cu2+, Ni2+, Zn2+ and Cd2+ concentrations and also for Minimum Inhibitory Concentration (MIC. The MIC ranged from 0.5 to 1.5 mg ml-1 depending on the isolate Aspergillus, Fusarium and Penicillium sp. were tested for their metal tolerance index. Out of these Aspergillus flavus (ED4 shows a better tolerance index of 0.80 Cr6+, 0.72 for Pb2+ , 0.63 for Cu2+, 0.58 for Ni2+, 0.46 for Zn2+ and 0.60 Cd2+ for MIC value for the removal of heavy metals from contaminated soil and wastewaters.

  14. Beyond the bed: Effects of metal contamination on recruitment to bedded sediments and overlying substrata

    International Nuclear Information System (INIS)

    Hill, Nicole A.; Simpson, Stuart L.; Johnston, Emma L.

    2013-01-01

    Metal-contaminated sediments pose a recognised threat to sediment-dwelling fauna. Re-mobilisation of contaminated sediments however, may impact more broadly on benthic ecosystems, including on diverse assemblages living on hard substrata patches immediately above sediments. We used manipulative field experiments to simultaneously test for the effects of metal contamination on recruitment to marine sediments and overlying hard substrata. Recruitment to sediments was strongly and negatively affected by metal contamination. However, while assemblage-level effects on hard-substratum fauna and flora were observed, most functional groups were unaffected or slightly enhanced by exposure to contaminated sediments. Diversity of hard-substratum fauna was also enhanced by metal contamination at one site. Metal-contaminated sediments appear to pose less of a hazard to hard-substratum than sediment-dwelling assemblages, perhaps due to a lower direct contaminant exposure or to indirect effects mediated by contaminant impacts on sediment fauna. Our results indicate that current sediment quality guidelines are protective of hard-substrata organisms. - Highlights: ► Potential for contaminated sediments to exert impacts beyond the sediment communities. ► We examine effects on recruitment to sediments and overlying hard substrata simultaneously. ► Metal-contaminated sediments had a strong negative impact on sediment fauna. ► Metal-contaminated sediments pose less of a hazard to hard-substratum fauna. ► Sediment quality guidelines are likely protective of hard-substrata organisms. - Under natural disturbance regimes, metal-contaminated sediments pose less of a direct risk to hard-substratum fauna than to sediment-dwelling fauna and SQG appear appropriate.

  15. METALLICITY AND AGE OF THE STELLAR STREAM AROUND THE DISK GALAXY NGC 5907

    Energy Technology Data Exchange (ETDEWEB)

    Laine, Seppo; Grillmair, Carl J.; Capak, Peter [Spitzer Science Center-Caltech, MS 314-6, Pasadena, CA 91125 (United States); Arendt, Richard G. [CRESST/UMBC/NASA GSFC, Code 665, Greenbelt, MD 20771 (United States); Romanowsky, Aaron J. [Department of Physics and Astronomy, San José State University, One Washington Square, San Jose, CA 95192 (United States); Martínez-Delgado, David [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Ashby, Matthew L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Davies, James E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Majewski, Stephen R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Brodie, Jean P.; Arnold, Jacob A. [University of California Observatories and Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); GaBany, R. Jay, E-mail: seppo@ipac.caltech.edu [Black Bird Observatory, 5660 Brionne Drive, San Jose, CA 95118 (United States)

    2016-09-01

    Stellar streams have become central to studies of the interaction histories of nearby galaxies. To characterize the most prominent parts of the stellar stream around the well-known nearby ( d  = 17 Mpc) edge-on disk galaxy NGC 5907, we have obtained and analyzed new, deep gri Subaru/Suprime-Cam and 3.6 μ m Spitzer /Infrared Array Camera observations. Combining the near-infrared 3.6 μ m data with visible-light images allows us to use a long wavelength baseline to estimate the metallicity and age of the stellar population along an ∼60 kpc long segment of the stream. We have fitted the stellar spectral energy distribution with a single-burst stellar population synthesis model and we use it to distinguish between the proposed satellite accretion and minor/major merger formation models of the stellar stream around this galaxy. We conclude that a massive minor merger (stellar mass ratio of at least 1:8) can best account for the metallicity of −0.3 inferred along the brightest parts of the stream.

  16. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    International Nuclear Information System (INIS)

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2015-01-01

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad ® 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils

  17. Influence of seasonality and vegetation on the attenuation of emerging contaminants in wastewater effluent-dominated streams. A preliminary study.

    Science.gov (United States)

    Matamoros, Víctor; Rodríguez, Yolanda

    2017-11-01

    Treated wastewater from small communities is discharged into rivers or streams with a high biodiversity value. This is particularly important in Mediterranean countries, where most of the streams are dry almost all year round. This preliminary study assessed the occurrence and attenuation of 23 emerging contaminants (ECs) in 4 wastewater-dominated streams in which treated wastewater accounted for the entire stream flow. The concentration of ECs was monitored in the warm and cold seasons in the wastewater treatment plant (WWTP) effluent and at 6 downstream locations. The concentration of ECs in the WWTP effluents ranged from undetected to 12 μg L -1 . The attenuation of ECs 1 km downstream ranged from no removal to up to 80% (48% on average). The half-lives of ECs in the 4 streams ranged from 0.4 to 20 h (3.9 ± 3.5 h on average). Compounds such as benzodiazepine drugs and flame retardants were the most recalcitrant (half-lives >5 h). The highest attenuation of ECs and ammonia was observed in the stream completely covered by vegetation. The cumulative hazardous quotient 1 km downstream was reduced on average by more than 60%. Therefore, the results suggest that both seasonality and vegetation play an important role in in-stream attenuation of ECs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Remediation of Heavy Metal(loid)s Contaminated Soils – To Mobilize or To Immobilize?

    Science.gov (United States)

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy ...

  19. Assessment of a mussel as a metal bioindicator of coastal contamination: Relationships between metal bioaccumulation and multiple biomarker responses

    Energy Technology Data Exchange (ETDEWEB)

    Chandurvelan, Rathishri, E-mail: rch118@uclive.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Marsden, Islay D., E-mail: islay.marsden@canterbury.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Glover, Chris N., E-mail: chris.glover@canterbury.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Gaw, Sally, E-mail: sally.gaw@canterbury.ac.nz [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand)

    2015-04-01

    This is the first study to use a multiple biomarker approach on the green-lipped mussel, Perna canaliculus to test its feasibility as a bioindicator of coastal metal contamination in New Zealand (NZ). Mussels were collected from six low intertidal sites varying in terms of anthropogenic impacts, within two regions (West Coast and Nelson) of the South Island of NZ. Trace elements, including arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn), were measured in the gills, digestive gland, foot and mantle, and in the surface sediments from where mussels were collected. Metal levels in the sediment were relatively low and there was only one site (Mapua, Nelson) where a metal (Ni) exceeded the Australian and New Zealand Interim Sediment Quality Guideline values. Metal levels in the digestive gland were generally higher than those from the other tissues. A variety of biomarkers were assessed to ascertain mussel health. Clearance rate, a physiological endpoint, correlated with metal level in the tissues, and along with scope for growth, was reduced in the most contaminated site. Metallothionein-like protein content and catalase activity in the digestive gland, and catalase activity and lipid peroxidation in the gill, were also correlated to metal accumulation. Although there were few regional differences, the sampling sites were clearly distinguishable based on the metal contamination profiles and biomarker responses. P. canaliculus appears to be a useful bioindicator species for coastal habitats subject to metal contamination. In this study tissue and whole organism responses provided insight into the biological stress responses of mussels to metal contaminants, indicating that such measurements could be a useful addition to biomonitoring programmes in NZ. - Highlights: • Multiple biomarker responses were measured in mussels from 6 sites. • Metal content of mussel tissues correlated with specific biomarker responses. • Clearance rate

  20. Characterisation of heavy metal-bearing phases in stream sediments of the Meza River Valley, Slovenia, by means of SEM/EDS analysis

    International Nuclear Information System (INIS)

    Miler, M; Gosar, M

    2010-01-01

    Stream sediment reflects the rock structure of the catchment area, its geochemical characteristics and possible recent contamination upstream of the sampling point and thus, it is most frequently used in geochemical researches of heavy metal pollution. Stream sediment samples were collected along the Mez'a River and its tributaries and the Drava River, located in the NNE part of Slovenia. Previous geochemical studies have shown that these sediments are heavily polluted with heavy metals as a consequence of past mining of Pb-Zn ore and steelworks activities. Conventional geochemical analyses (ICP-MS, AAS, etc.) provided limited information on mineralogy, morphology and sources of heavy metal-bearing phases therefore SEM/EDS was utilized. Several problems were confronted with during EDS analysis, which are related to identification and quantification of light elements, identification of elements due to peak overlaps and quantification of spectra from unpolished samples. These problems were successfully dealt with. SEM/EDS enabled successful identification of heavy metal-bearing phases in stream sediments. Ore mineral phases, such as cerussite, sphalerite, smithsonite and galena, different heavy metal-bearing Fe-alloys, Fe-oxides and spherical particles and common rock-forming and accessory mineral phases, such as barite, rutile, ilmenite, zircon and monazite, were identified using solely SEM/EDS. These results were used for subsequent geochemical interpretation and source apportionment of heavy metals, according to associations of different heavy metal-bearing phases. Heavy metal-bearing phases were arranged by their source and genesis into three groups, denoted as geogenic/technogenic, technogenic and geogenic.

  1. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques.

    Science.gov (United States)

    Benson, Nsikak U; Asuquo, Francis E; Williams, Akan B; Essien, Joseph P; Ekong, Cyril I; Akpabio, Otobong; Olajire, Abaas A

    2016-01-01

    Trace metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources.

  2. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques.

    Directory of Open Access Journals (Sweden)

    Nsikak U Benson

    Full Text Available Trace metals (Cd, Cr, Cu, Ni and Pb concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria. The degree of contamination was assessed using the individual contamination factors (ICF and global contamination factor (GCF. Multivariate statistical approaches including principal component analysis (PCA, cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources.

  3. Quantifying differences in responses of aquatic insects to trace metal exposure in field studies and short-term stream mesocosm experiments

    Science.gov (United States)

    Iwasaki, Yuichi; Schmidt, Travis S.; Clements, William H.

    2018-01-01

    Characterizing macroinvertebrate taxa as either sensitive or tolerant is of critical importance for investigating impacts of anthropogenic stressors in aquatic ecosystems and for inferring causality. However, our understanding of relative sensitivity of aquatic insects to metals in the field and under controlled conditions in the laboratory or mesocosm experiments is limited. In this study, we compared the response of 16 lotic macroinvertebrate families to metals in short-term (10-day) stream mesocosm experiments and in a spatially extensive field study of 154 Colorado streams. Comparisons of field and mesocosm-derived EC20 (effect concentration of 20%) values showed that aquatic insects were generally more sensitive to metals in the field. Although the ranked sensitivity to metals was similar for many families, we observed large differences between field and mesocosm responses for some groups (e.g., Baetidae and Heptageniidae). These differences most likely resulted from the inability of short-term experiments to account for factors such as dietary exposure to metals, rapid recolonization in the field, and effects of metals on sensitive life stages. Understanding mechanisms responsible for differences among field, mesocosm, and laboratory approaches would improve our ability to predict contaminant effects and establish ecologically meaningful water-quality criteria.

  4. Temporal and spatial trends for trace metals in streams and rivers across Sweden (1996–2009

    Directory of Open Access Journals (Sweden)

    J. Fölster

    2011-07-01

    Full Text Available Long term data series (1996 through 2009 for trace metals were analyzed from a large number of streams and rivers across Sweden varying in tributary watershed size from 0.05 to 48 193 km2. The final data set included 139 stream sites with data for arsenic (As, cobalt (Co, copper (Cu, chromium (Cr, nickel (Ni, lead (Pb, zinc (Zn, and vanadium (V. Between 7 % and 46 % of the sites analyzed showed significant trends according to the seasonal Kendall test. However, in contrast to previous studies and depositional patterns, a substantial portion of the trends were positive, especially for V (100 %, As (95 %, and Pb (68 %. Other metals (Zn and Cr generally decreased, were mixed (Ni and Zn, or had very few trends (Co over the study period. Trends by region were also analyzed and some showed significant variation between the north and south of Sweden. Regional trends for both Cu and Pb were positive (60 % and 93 %, respectively in the southern region but strongly negative (93 % and 75 %, respectively in the northern region. Kendall's τ coefficients were used to determine dependence between metals and potential in-stream drivers including total organic carbon (TOC, iron (Fe, pH, and sulphate (SO42−. TOC and Fe correlated positively and strongly with As, V, Pb, and Co while pH and SO42− generally correlated weakly, or not at all with the metals studied.

  5. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    Directory of Open Access Journals (Sweden)

    Amir Waseem

    2014-01-01

    Full Text Available Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water, soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  6. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    Science.gov (United States)

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  7. Community-level physiological profiles of microorganisms inhabiting soil contaminated with heavy metals

    Science.gov (United States)

    Kuźniar, Agnieszka; Banach, Artur; Stępniewska, Zofia; Frąc, Magdalena; Oszust, Karolina; Gryta, Agata; Kłos, Marta; Wolińska, Agnieszka

    2018-01-01

    The aim of the study was to assess the differences in the bacterial community physiological profiles in soils contaminated with heavy metals versus soils without metal contaminations. The study's contaminated soil originated from the surrounding area of the Szopienice non-ferrous metal smelter (Silesia Region, Poland). The control was soil unexposed to heavy metals. Metal concentration was appraised by flame atomic absorption spectrometry, whereas the the community-level physiological profile was determined with the Biolog EcoPlatesTM system. The soil microbiological activity in both sites was also assessed via dehydrogenase activity. The mean concentrations of metals (Cd and Zn) in contaminated soil samples were in a range from 147.27 to 12265.42 mg kg-1, and the heavy metal contamination brought about a situation where dehydrogenase activity inhibition was observed mostly in the soil surface layers. Our results demonstrated that there is diversity in the physiological profiles of microorganisms inhabiting contaminated and colntrol soils; therefore, for assessment purposes, these were treated as two clusters. Cluster I included colntrol soil samples in which microbial communities utilised most of the available substrates. Cluster II incorporated contaminated soil samples in which a smaller number of the tested substrates was utilised by the contained microorganisms. The physiological profiles of micro-organisms inhabiting the contaminated and the colntrol soils are distinctly different.

  8. Occurrence of organic wastewater and other contaminants in cave streams in northeastern Oklahoma and northwestern Arkansas

    Science.gov (United States)

    Bidwell, Joseph R.; Becker, C.; Hensley, S.; Stark, R.; Meyer, M.T.

    2010-01-01

    The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and ??-sitosterol), plasticizers [diethylhexylphthalate and tris (2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surfacewater site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewaterassociated chemicals into the cave. Halogenated organics

  9. Bioremediation of Heavy Metals in Liquid Media Through Fungi Isolated from Contaminated Sources

    OpenAIRE

    Joshi, P. K.; Swarup, Anand; Maheshwari, Sonu; Kumar, Raman; Singh, Namita

    2011-01-01

    Wastewater particularly from electroplating, paint, leather, metal and tanning industries contain enormous amount of heavy metals. Microorganisms including fungi have been reported to exclude heavy metals from wastewater through bioaccumulation and biosorption at low cost and in eco-friendly way. An attempt was, therefore, made to isolate fungi from sites contaminated with heavy metals for higher tolerance and removal of heavy metals from wastewater. Seventy-six fungal isolates tolerant to he...

  10. Design and Development of a Continuous-Flow Countercurrent Metal Extraction System to Remove Heavy Metals from Contaminated Soils

    National Research Council Canada - National Science Library

    Neale, Christopher M. U

    1997-01-01

    .... The research focused on eight contaminated soils from Army installations and the metal extraction capabilities of eight extracting agents including HNO3, HCI, fluorosilicic acid, citric acid, EDTA, DTPA, NTA, and NaOH...

  11. Inductively coupled plasma mass spectrometer installation modifications in a radioactive contaminated laboratory for the analysis of DOE radioactive waste streams

    International Nuclear Information System (INIS)

    Giaquinto, J.M.; Keller, J.M.; Meeks, A.M.

    1997-04-01

    The operation and maintenance of a complex analytical instrument such as an inductively coupled plasma mass spectrometer in a radioactive contaminated environment presents unique problems and challenges that have to be considered in the purchasing and installation process. Considerations such as vendor experience, typical radiation levels, sample matrices encountered during sample analysis, instrument accessibility for maintenance, and upkeep must be incorporated into the decision process. The Radioactive Materials Analytical Laboratory (RMAL) at Oak Ridge National Laboratory (ORNL) recently purchased and installed an inductively coupled plasma mass spectrometer for the analysis of Department of Energy (DOE) radioactive waste streams. This presentation will outline the purchasing decision, installation of the instrument, and how the modifications needed to operate in a radioactive contaminated laboratory do not significantly impact the daily operation and maintenance requirements of the instrument. Also, a contamination survey of the system will be presented which demonstrates the contamination levels in the instrument from the sample introduction system to the detector

  12. Inductively coupled plasma mass spectrometer installation modifications in a radioactive contaminated laboratory for the analysis of DOE radioactive waste streams

    International Nuclear Information System (INIS)

    Giaquinto, J.M.; Keller, J.M.; Meeks, A.M.

    1998-01-01

    The operation and maintenance of a complex analytical instrument such as an inductively coupled plasma mass spectrometer in a radioactive contaminated environment presents unique problems and challenges that have to be considered in the purchasing and installation process. Considerations such as vendor experience, typical radiation levels, sample matrices encountered during sample analysis, instrument accessibility for maintenance, and upkeep must be incorporated into the decision process. The Radioactive Materials Analytical Laboratory (RMAL) at Oak Ridge National Laboratory (ORNL) recently purchased and installed an inductively coupled plasma mass spectrometer for the analysis of Department of Energy (DOE) radioactive waste streams. This presentation will outline the purchasing decision, installation of the instrument, and how the modifications needed to operate in a radioactive contaminated laboratory do not significantly impact the daily operation and maintenance requirements of the instrument. Also, a contamination survey of the system will be presented which demonstrates the contamination levels in the instrument from the sample introduction system to the detector. (author)

  13. Subcellular partitioning of metals in Aporrectodea caliginosa along a gradient of metal exposure in 31 field-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Beaumelle, Léa [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France); Gimbert, Frédéric [Laboratoire Chrono-Environnement, UMR 6249 University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, 25030 Besançon Cedex (France); Hedde, Mickaël [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France); Guérin, Annie [INRA, US 0010 LAS Laboratoire d' analyses des sols, 273 rue de Cambrai, 62000 Arras (France); Lamy, Isabelle, E-mail: lamy@versailles.inra.fr [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France)

    2015-07-01

    Subcellular fractionation of metals in organisms was proposed as a better way to characterize metal bioaccumulation. Here we report the impact of a laboratory exposure to a wide range of field-metal contaminated soils on the subcellular partitioning of metals in the earthworm Aporrectodea caliginosa. Soils moderately contaminated were chosen to create a gradient of soil metal availability; covering ranges of both soil metal contents and of several soil parameters. Following exposure, Cd, Pb and Zn concentrations were determined both in total earthworm body and in three subcellular compartments: cytosolic, granular and debris fractions. Three distinct proxies of soil metal availability were investigated: CaCl{sub 2}-extractable content dissolved content predicted by a semi-mechanistic model and free ion concentration predicted by a geochemical speciation model. Subcellular partitionings of Cd and Pb were modified along the gradient of metal exposure, while stable Zn partitioning reflected regulation processes. Cd subcellular distribution responded more strongly to increasing soil Cd concentration than the total internal content, when Pb subcellular distribution and total internal content were similarly affected. Free ion concentrations were better descriptors of Cd and Pb subcellular distribution than CaCl{sub 2} extractable and dissolved metal concentrations. However, free ion concentrations and soil total metal contents were equivalent descriptors of the subcellular partitioning of Cd and Pb because they were highly correlated. Considering lowly contaminated soils, our results raise the question of the added value of three proxies of metal availability compared to soil total metal content in the assessment of metal bioavailability to earthworm. - Highlights: • Earthworms were exposed to a wide panel of historically contaminated soils • Subcellular partitioning of Cd, Pb and Zn was investigated in earthworms • Three proxies of soil metal availability were

  14. STREAM

    DEFF Research Database (Denmark)

    Godsk, Mikkel

    This paper presents a flexible model, ‘STREAM’, for transforming higher science education into blended and online learning. The model is inspired by ideas of active and collaborative learning and builds on feedback strategies well-known from Just-in-Time Teaching, Flipped Classroom, and Peer...... Instruction. The aim of the model is to provide both a concrete and comprehensible design toolkit for adopting and implementing educational technologies in higher science teaching practice and at the same time comply with diverse ambitions. As opposed to the above-mentioned feedback strategies, the STREAM...

  15. Summary of biological and contaminant investigations related to stream water quality and environmental setting in the Upper Colorado River basin, 1938-95

    Science.gov (United States)

    Deacon, Jeffrey R.; Stephens, Verlin C.

    1996-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program, an inventory of the biological and contaminant investigations for the Upper Colorado River Basin study unit was conducted. To enhance the sampling design for the biological component of the program, previous studies about the ecology of aquatic organisms and contaminants were compiled from computerized literature searches of biological data bases and by contacting other Federal, State, and local agencies. Biological and contaminant investigations that have been conducted throughout the basin since 1938 were categorized according to four general categories of biological investigations and two categories of contaminant investigations: algal communities, macroinvertebrate communities, fish communities, habitat characterization, contaminants in organism tissue, and contaminants in bed sediment. The studies were identified by their locations in two physiographic provinces, the Southern Rocky Mountains and the Colorado Plateau, and by the predominant land use in the area of the investigation. Studies on algal communities and contaminants in organism tissue and in bed sediment are limited throughout the basin. Studies on macroinvertebrate and fish communities and habitat characterization are the most abundant in the study unit. Natural and human factors can affect biological communities and their composition. Natural factors that affect background water-quality conditions are physiography, climate, geology, and soils. Algae, macroinvertebrates, and fish that are present in the Southern Rocky Mountains and the Colorado Plateau physiographic provinces vary with altitude and physical environment. Green algae and diatoms are predominant in the higher altitude streams, and blue-green, golden-brown, and green algae are predominant in the lower altitude streams. Caddisflies, mayflies, and stoneflies are the dominant macroinvertebrates in the higher altitudes, whereas aquatic worms, leeches

  16. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water.

    Science.gov (United States)

    Sharma, Sunita; Singh, Bikram; Manchanda, V K

    2015-01-01

    Nuclear power reactors are operating in 31 countries around the world. Along with reactor operations, activities like mining, fuel fabrication, fuel reprocessing and military operations are the major contributors to the nuclear waste. The presence of a large number of fission products along with multiple oxidation state long-lived radionuclides such as neptunium ((237)Np), plutonium ((239)Pu), americium ((241/243)Am) and curium ((245)Cm) make the waste streams a potential radiological threat to the environment. Commonly high concentrations of cesium ((137)Cs) and strontium ((90)Sr) are found in a nuclear waste. These radionuclides are capable enough to produce potential health threat due to their long half-lives and effortless translocation into the human body. Besides the radionuclides, heavy metal contamination is also a serious issue. Heavy metals occur naturally in the earth crust and in low concentration, are also essential for the metabolism of living beings. Bioaccumulation of these heavy metals causes hazardous effects. These pollutants enter the human body directly via contaminated drinking water or through the food chain. This issue has drawn the attention of scientists throughout the world to device eco-friendly treatments to remediate the soil and water resources. Various physical and chemical treatments are being applied to clean the waste, but these techniques are quite expensive, complicated and comprise various side effects. One of the promising techniques, which has been pursued vigorously to overcome these demerits, is phytoremediation. The process is very effective, eco-friendly, easy and affordable. This technique utilizes the plants and its associated microbes to decontaminate the low and moderately contaminated sites efficiently. Many plant species are successfully used for remediation of contaminated soil and water systems. Remediation of these systems turns into a serious problem due to various anthropogenic activities that have

  17. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques

    Directory of Open Access Journals (Sweden)

    Chao Su

    2014-06-01

    Full Text Available Heavy metals in the soil refers to some significant heavy metals of biological toxicity, including mercury (Hg, cadmium (Cd, lead (Pb, chromium (Cr, and arsenic (As, etc. With the development of the global economy, both type and content of heavy metals in the soil caused by human activities have gradually increased in recent years, which have resulted in serious environment deterioration. In present study we compared and analyzed soil contamination of heavy metals in various cities/countries, and reviewed background, impact and remediation methods of soil heavy metal contamination worldwide.

  18. Is Metal Contamination a Health Risk in Study Subjects from Urban Vadodara?

    OpenAIRE

    Suneeta Chandorkar; Priyanka Bajaj and Prachi Deota

    2015-01-01

    Metal contamination of food is a major food safety concern emerging at global as well as national level. Air, water and soil are the major routes through which metals enter the food chain. Gujarat being the second most industrialized state of India and Vadodara having the highest number of chemical factories in Gujarat is at a higher risk of metal toxicity. Research has also been done to analyze metal contamination of raw food hence in the present study investigations were done on metal conta...

  19. Characterisation by PIXE RBS of metallic contamination of tissues surrounding a metallic prosthesis on a knee

    Science.gov (United States)

    Guibert, G.; Irigaray, J. L.; Moretto, Ph.; Sauvage, T.; Kemeny, J. L.; Cazenave, A.; Jallot, E.

    2006-09-01

    Implants used as biomaterials have to fulfill conditions of functionality, compatibility and sometimes bioactivity. There are four main families of biomaterials: metals and metal alloys, polymers, bioceramics and natural materials. Because of corrosion and friction in the human body, implants generate debris. This debris may develop toxicity, inflammation and prosthetic unsealing by osseous dissolution. Nature, size, morphology and amount of debris are the parameters influencing the tissue responses. In this paper, we characterised metallic contamination produced by knee prosthesis, composed with TiAl 6V 4 or Co-Cr-Mo alloys, into surrounding capsular tissue by depth migration, in vivo behaviour, content, size and nature of debris by PIXE (Particle Induced X-ray Emission) method associated with RBS (Rutherford Backscattering Spectroscopy). Debris distribution in the whole articulation is very heterogeneous. Debris migrates several thousand micrometers in tissues, with a characteristic decrease. Solid metallic particles of about micrometer size are found in the most polluted samples, in both alloys TiAl 6V 4 and Cr-Co-Mo. In the mean volume analysed by PIXE, the concentration mass ratios [Ti]/[V] and [Co]/[Cr] confirm the chemical stability of TiAl 6V 4 debris and show the chemical evolution of Cr-Co-Mo debris. Development of a protocol to prepare thin targets permits us to correlate PIXE and histological analysis in the same zone. The fibrous tissue (collagen fibres, fibroblasts) and macrophage cells are observed with optical microscope in polluted areas. This protocol could locate other pathologies in ppm contamination range, thanks to the great sensitivity of the PIXE method.

  20. CHANGING THE LANDSCAPE--LOW-TECH SOLUTIONS TO THE PADUCAH SCRAP METAL REMOVAL PROJECT ARE PROVIDING SAFE, COST-EFFECTIVE REMEDIATION OF CONTAMINATED SCRAP YARDS

    International Nuclear Information System (INIS)

    Watson, Dan; Eyman, Jeff

    2003-01-01

    Between 1974 and 1983, contaminated equipment was removed from the Paducah Gaseous Diffusion Plant (PGDP) process buildings as part of an enrichment process upgrade program. The upgrades consisted of the dismantlement, removal, and on-site storage of contaminated equipment, cell components, and scrap material (e.g., metal) from the cascade facilities. Scrap metal including other materials (e.g., drums, obsolete equipment) not related to this upgrade program have thus far accumulated in nine contiguous radiologically-contaminated and non-contaminated scrap yards covering 1.05E5 m2 (26 acres) located in the northwestern portion of the PGDP. This paper presents the sequencing of field operations and methods used to achieve the safe removal and disposition of over 47,000 tonnes (53,000 tons) of metal and miscellaneous items contained in these yards. The methods of accomplishment consist of mobilization, performing nuclear criticality safety evaluations, moving scrap metal to ground level, inspection and segregation, sampling and characterization, scrap metal sizing, packaging and disposal, and finally demobilization. Preventing the intermingling of characteristically hazardous and non-hazardous wastes promotes waste minimization, allowing for the metal and materials to be segregated into 13 separate waste streams. Low-tech solutions such as using heavy equipment to retrieve, size, and package scrap materials in conjunction with thorough planning that integrates safe work practices, commitment to teamwork, and incorporating lessons learned ensures that field operations will be conducted efficiently and safely

  1. Estimation of heavy metal-contaminated soils' mechanical characteristics using electrical resistivity.

    Science.gov (United States)

    Chu, Ya; Liu, Songyu; Wang, Fei; Cai, Guojun; Bian, Hanliang

    2017-05-01

    Under the process of urbanization in China, more and more attention has been paid to the reuse of heavy metal-contaminated sites. The shear characteristics of heavy metal-contaminated soils are investigated by electrical detection in this paper. Three metal ions (Zn 2+ , Cd 2+ , and Pb 2+ ) were used, the metal concentrations of which are 50, 166.67, 500, 1666.67, and 5000 mg/kg, respectively. Direct shear tests were used to investigate the influence of heavy metal ions on the shear characters of soil samples. It is found that with the addition of heavy metal ions, the shear strength, cohesion, and friction angle of contaminated soils are higher than the control samples. The higher concentration of heavy metal ions penetrated in soils, the higher these engineering characteristics of contaminated soils observed. In addition, an electrical resistivity detection machine is used to evaluate the shear characteristics of contaminated soils. The electrical resistivity test results show that there is a decreasing tendency of resistivity with the increase of heavy metal ion concentrations in soils. Compared with the electrical resistivity and the shear characteristics of metal-contaminated soils, it is found that, under fixed compactness and saturation, shear strength of metal-contaminated soils decreased with the increase of resistivity. A basic linear relationship between C/log(N + 10) and resistivity can be observed, and there is a basic linear relationship between φ/log(N + 10) and resistivity. Besides, a comparison of the measured and predicted shear characteristics shows a high accuracy, indicating that the resistivity can be used to evaluate the shear characteristics of heavy metal contaminated soils.

  2. Health hazards and heavy metals accumulation by summer squash (Cucurbita pepo L.) cultivated in contaminated soils.

    Science.gov (United States)

    Galal, Tarek M

    2016-07-01

    The present study was carried out to investigate the heavy metal concentration accumulated by summer squash cultivated in contaminated soil and their health hazards for public consumers at south Cairo Province, Egypt. Soil and plants were sampled from contaminated and reference farms, using 1 m(2) quadrats, for biomass estimation and nutrient analysis. The daily intake of metals (DIM) and health risk index (HRI) were estimated. Significant differences in soil variables (except As) between contaminated and reference sites were recognized. Summer squash showed remarkable reduction in fresh and dry biomass, fruit production, and photosynthetic pigments under pollution stress. The inorganic and organic nutrients in the aboveground and belowground parts showed significant reduction in contaminated site. In addition, higher concentrations of heavy metals were accumulated in the edible parts and roots more than shoots. The bioaccumulation factor of summer squash for investigated metals was greater than 1, while the translocation factor did not exceed unity in both contaminated and reference sites. The DIM for all investigated metals in the reference site and in the contaminated site (except Fe and Mn) did not exceed 1 in both adults and children. However, HRI of Ni and Mn in the reference site and Pb, Cd, Cu, Ni, Fe, Mn, and Zn in the contaminated one exceeded unity indicating great potential to pose health risk to the consumers. The author recommends that people living in the contaminated area should not eat large quantities of summer squash, so as to avoid excess accumulation of heavy metals in their bodies.

  3. Contaminated Metal Components in Dismantling by Hot Cutting Processes

    International Nuclear Information System (INIS)

    Cesari, Franco G.; Conforti, Gianmario; Rogante, Massimo; Giostri, Angelo

    2006-01-01

    During the preparatory dismantling activities of Caorso's Nuclear Power Plant (NPP), an experimental campaign using plasma and oxyacetylene metal cutting processes has been performed and applied to plates and tubes exposed to the coolant steam of the reactor. The plant (Boiling Water Reactor, 870 MWe) was designed and built in the 70's, and it was fully operating by 1981 to 1986 being shut down after 1987 Italy's poll that abrogated nuclear power based on U235 fission. The campaign concerns no activated materials, even if the analyses have been performed of by use contaminated components under the free release level, not yet taking into account radioactivity. In this paper, the parameters related to inhalable aerosol, solid and volatile residuals production have been, studied during hot processes which applies the same characteristics of the cutting in field for the dismantling programs of Caorso NPP. The technical parameters such as cutting time and cutting rate vs. pipe diameter/thickness/schedule or plate thickness for ferritic alloys and the emissions composition coming from the sectioning are also reported. The results underline the sort of trouble that can emerge in the cutting processes, in particular focusing on the effects comparison between the two cutting processes and the chemical composition of powders captured by filtering the gaseous emission. Some preliminary considerations on methodology to be used during the dismantling have been presented. (authors)

  4. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology.

    Science.gov (United States)

    Derakhshan Nejad, Zahra; Jung, Myung Chae; Kim, Ki-Hyun

    2017-04-26

    The major frequent contaminants in soil are heavy metals which may be responsible for detrimental health effects. The remediation of heavy metals in contaminated soils is considered as one of the most complicated tasks. Among different technologies, in situ immobilization of metals has received a great deal of attention and turned out to be a promising solution for soil remediation. In this review, remediation methods for removal of heavy metals in soil are explored with an emphasis on the in situ immobilization technique of metal(loid)s. Besides, the immobilization technique in contaminated soils is evaluated through the manipulation of the bioavailability of heavy metals using a range of soil amendment conditions. This technique is expected to efficiently alleviate the risk of groundwater contamination, plant uptake, and exposure to other living organisms. The efficacy of several amendments (e.g., red mud, biochar, phosphate rock) has been examined to emphasize the need for the simultaneous measurement of leaching and the phytoavailability of heavy metals. In addition, some amendments that are used in this technique are inexpensive and readily available in large quantities because they have been derived from bio-products or industrial by-products (e.g., biochar, red mud, and steel slag). Among different amendments, iron-rich compounds and biochars show high efficiency to remediate multi-metal contaminated soils. Thereupon, immobilization technique can be considered a preferable option as it is inexpensive and easily applicable to large quantities of contaminants derived from various sources.

  5. New methodology to investigate potential contaminant mass fluxes at the stream-aquifer interface by combining integral pumping tests and streambed temperatures

    International Nuclear Information System (INIS)

    Kalbus, E.; Schmidt, C.; Bayer-Raich, M.; Leschik, S.; Reinstorf, F.; Balcke, G.U.; Schirmer, M.

    2007-01-01

    The spatial pattern and magnitude of mass fluxes at the stream-aquifer interface have important implications for the fate and transport of contaminants in river basins. Integral pumping tests were performed to quantify average concentrations of chlorinated benzenes in an unconfined aquifer partially penetrated by a stream. Four pumping wells were operated simultaneously for a time period of 5 days and sampled for contaminant concentrations. Streambed temperatures were mapped at multiple depths along a 60 m long stream reach to identify the spatial patterns of groundwater discharge and to quantify water fluxes at the stream-aquifer interface. The combined interpretation of the results showed average potential contaminant mass fluxes from the aquifer to the stream of 272 μg m -2 d -1 MCB and 71 μg m -2 d -1 DCB, respectively. This methodology combines a large-scale assessment of aquifer contamination with a high-resolution survey of groundwater discharge zones to estimate contaminant mass fluxes between aquifer and stream. - We provide a new methodology to quantify the potential contaminant mass flux from an aquifer to a stream

  6. The Pseudomonas community in metal-contaminated sediments as revealed by quantitative PCR: a link with metal bioavailability.

    Science.gov (United States)

    Roosa, Stéphanie; Wauven, Corinne Vander; Billon, Gabriel; Matthijs, Sandra; Wattiez, Ruddy; Gillan, David C

    2014-10-01

    Pseudomonas bacteria are ubiquitous Gram-negative and aerobic microorganisms that are known to harbor metal resistance mechanisms such as efflux pumps and intracellular redox enzymes. Specific Pseudomonas bacteria have been quantified in some metal-contaminated environments, but the entire Pseudomonas population has been poorly investigated under these conditions, and the link with metal bioavailability was not previously examined. In the present study, quantitative PCR and cell cultivation were used to monitor and characterize the Pseudomonas population at 4 different sediment sites contaminated with various levels of metals. At the same time, total metals and metal bioavailability (as estimated using an HCl 1 m extraction) were measured. It was found that the total level of Pseudomonas, as determined by qPCR using two different genes (oprI and the 16S rRNA gene), was positively and significantly correlated with total and HCl-extractable Cu, Co, Ni, Pb and Zn, with high correlation coefficients (>0.8). Metal-contaminated sediments featured isolates of the Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas lutea and Pseudomonas aeruginosa groups, with other bacterial genera such as Mycobacterium, Klebsiella and Methylobacterium. It is concluded that Pseudomonas bacteria do proliferate in metal-contaminated sediments, but are still part of a complex community. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Trace metal contamination of Beaufort's Dyke, North Channel, Irish Sea: A legacy of ordnance disposal

    International Nuclear Information System (INIS)

    Callaway, Alexander; Quinn, Rory; Brown, Craig J.; Service, Matthew; Benetti, Sara

    2011-01-01

    Highlights: → Our samples are the first trace metal concentrations taken from the valley of Beaufort's Dyke. → There is no clear trend between concentrations of trace metals in Dyke and NMMP sediments. → Particle transport simulations show dispersal of trace metals from Beaufort's Dyke is possible. → Disposed ordnance may also contribute to contamination of surrounding areas. → These methods could help predict areas at risk of future trace metal contamination as a result of ordnance disposal. - Abstract: Beaufort's Dyke is a disused ordnance disposal ground within the North Channel of the Irish Sea. Over 1 million tonnes of ordnance were disposed of in the dyke over a 40 year period representing a substantial volume of trace metal pollutants introduced to the seabed. Utilising particle transport modelling software we simulated the potential transport of metal particles from Beaufort's Dyke over a 3 month period. This demonstrated that Beaufort's Dyke has the potential to act as a source for trace metal contamination to areas beyond the submarine valley. Trace metal analysis of sediments from the Dyke and surrounding National Marine Monitoring Programme areas demonstrate that the Dyke is not the most contaminated site in the region. Particle transport modelling enables the transport pathways of trace metal contaminants to be predicted. Implementation of the technique in other munitions disposal grounds will provide valuable information for the selection of monitoring stations.

  8. Metal inhibition on the reactivity of manganese dioxide toward organic contaminant oxidation in relation to metal adsorption and ionic potential.

    Science.gov (United States)

    Jiang, Jing; Wang, Zhuopu; Chen, Yang; He, Anfei; Li, Jianliang; Sheng, G Daniel

    2017-03-01

    Coexisting metal ions may significantly inhibit the oxidative reactivity of manganese oxides toward organic contaminants in metal-organic multi-pollutant waters. While the metal inhibition on the oxidation of organic contaminants by manganese oxides has previously been reported, the extent of the inhibition in relation to metal properties has not been established. Six alkali, alkaline, and transition metals, as well as two testing metals were evaluated for their abilities to inhibit the reactivity of birnessite. Regardless of the pathways of phenol and diuron oxidation (polymerization vs. breakdown), the extent of metal inhibition depended mainly on the metal itself and its concentration. The observed metal inhibition efficiency followed the order of Mn 2+  > Co 2+  > Cu 2+  > Al 3+  > Mg 2+  > K + , consistent with metal adsorption on birnessite. The first-order organic oxidation rate constant (k obs ) was linearly negatively correlated with metal adsorption (q e ) on birnessite. These observations demonstrated that the metal inhibition efficiency was determined by metal adsorption on birnessite. The slopes of the k obs -q e varied among metals and followed the order of K +  > Ca 2+  > Mg 2+  > Mn 2+  > Cd 2+  > Co 2+  > Cu 2+  > Al 3+ . These slopes defined intrinsic inhibitory abilities of metals. As metals were adsorbed hydrated on birnessite, the intrinsic inhibitory ability was significantly linearly correlated with ionic potentials of metals, leading to a single straight line. Metals with multiple d electrons in the outermost orbit with polarizing energy that promotes hydrolysis sat slightly below the line, and vice versa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface

    Science.gov (United States)

    Lovley, Derek R.; Anderson, Robert T.

    Dissimilatory Fe(III)-reducing microorganisms have the ability to destroy organic contaminants under anaerobic conditions by oxidizing them to carbon dioxide. Some Fe(III)-reducing microorganisms can also reductively dechlorinate chlorinated contaminants. Fe(III)-reducing microorganisms can reduce a variety of contaminant metals and convert them from soluble forms to forms that are likely to be immobilized in the subsurface. Studies in petroleum-contaminated aquifers have demonstrated that Fe(III)-reducing microorganisms can be effective agents in removing aromatic hydrocarbons from groundwater under anaerobic conditions. Laboratory studies have demonstrated the potential for Fe(III)-reducing microorganisms to remove uranium from contaminated groundwaters. The activity of Fe(III)-reducing microorganisms can be stimulated in several ways to enhance organic contaminant oxidation and metal reduction. Molecular analyses in both field and laboratory studies have demonstrated that microorganisms of the genus Geobacter become dominant members of the microbial community when Fe(III)-reducing conditions develop as the result of organic contamination, or when Fe(III) reduction is artificially stimulated. These results suggest that further understanding of the ecophysiology of Geobacter species would aid in better prediction of the natural attenuation of organic contaminants under anaerobic conditions and in the design of strategies for the bioremediation of subsurface metal contamination. Des micro-organismes simulant la réduction du fer ont la capacité de détruire des polluants organiques dans des conditions anérobies en les oxydant en dioxyde de carbone. Certains micro-organismes réducteurs de fer peuvent aussi dé-chlorer par réduction des polluants chlorés. Des micro-organismes réducteurs de fer peuvent réduire tout un ensemble de métaux polluants et les faire passer de formes solubles à des formes qui sont susceptibles d'être immobilisées dans le milieu

  10. Trace metals of an acid mine drainage stream using a chemical model (WATEQ) and sediment analysis

    International Nuclear Information System (INIS)

    West, K.A.; Wilson, T.P.

    1992-01-01

    The high metal contents common to the discharge of acid-mine drainage (AMD) from mines and mine spoils is an environmental concern to both government and industry. This paper reports the results of investigation of the behavior of metals in an AMD system at a former surface coal mine in Tuscarawas County, Oh. AMD discharges from seeps travels, in respective order through a laminar flow stream; a Typha-dominated wetland; a turbulent flow stream; and a sediment retention pond. Dissolved metals (Fe, Mn, Zn, Cr, Cd, Cu, and Al) major and minor components, and other parameters (pH, dissolved oxygen and Eh) were measured in the AMD water at each sample location. A chemical mineral equilibrium model (WATEQ) was used to predict the minerals which should precipitate at each site. Results suggest that the seeps are supersaturated and should be precipitating hematite, goethite and magnetite (iron oxides), and siderite (iron carbonate), whereas water of the other downstream sites were at or below equilibrium conditions for these minerals. The hydrogeochemistry of the AMD was further studied using sequential chemical attacks on the precipitate sediment surface coatings, in order to determine metal concentrations in the exchangeable, carbonate, Fe-Mn oxyhydroxide, and oxidizable fractions. The carbonate and exchangeable fractions of the precipitate are dominated by Ca and Fe, as well as Mg in the carbonate fraction. The Fe-Mn oxyhydroxide fraction contained Fe, Al, Mn, Mg, and trace metals, and also contained the greatest concentration of total elements in the system. The Fe-Mn oxyhydroxide is therefore, the major sink for metals of this AMD system. The decrease in the concentration of metals in the sediment precipitates in the downstream locations, is consistent with WATEQ and water analysis results

  11. Spatial assessment of soil contamination by heavy metals from informal electronic waste recycling in Agbogbloshie, Ghana.

    Science.gov (United States)

    Kyere, Vincent Nartey; Greve, Klaus; Atiemo, Sampson M

    2016-01-01

    This study examined the spatial distribution and the extent of soil contamination by heavy metals resulting from primitive, unconventional informal electronic waste recycling in the Agbogbloshie e-waste processing site (AEPS) in Ghana. A total of 132 samples were collected at 100 m intervals, with a handheld global position system used in taking the location data of the soil sample points. Observing all procedural and quality assurance measures, the samples were analyzed for barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn), using X-ray fluorescence. Using environmental risk indices of contamination factor and degree of contamination (C deg ), we analyzed the individual contribution of each heavy metal contamination and the overall C deg . We further used geostatistical techniques of spatial autocorrelation and variability to examine spatial distribution and extent of heavy metal contamination. Results from soil analysis showed that heavy metal concentrations were significantly higher than the Canadian Environmental Protection Agency and Dutch environmental standards. In an increasing order, Pb>Cd>Hg>Cu>Zn>Cr>Co>Ba>Ni contributed significantly to the overall C deg . Contamination was highest in the main working areas of burning and dismantling sites, indicating the influence of recycling activities. Geostatistical analysis also revealed that heavy metal contamination spreads beyond the main working areas to residential, recreational, farming, and commercial areas. Our results show that the studied heavy metals are ubiquitous within AEPS and the significantly high concentration of these metals reflect the contamination factor and C deg , indicating soil contamination in AEPS with the nine heavy metals studied.

  12. Spatial assessment of soil contamination by heavy metals from informal electronic waste recycling in Agbogbloshie, Ghana

    Science.gov (United States)

    Greve, Klaus; Atiemo, Sampson M.

    2016-01-01

    Objectives This study examined the spatial distribution and the extent of soil contamination by heavy metals resulting from primitive, unconventional informal electronic waste recycling in the Agbogbloshie e-waste processing site (AEPS) in Ghana. Methods A total of 132 samples were collected at 100 m intervals, with a handheld global position system used in taking the location data of the soil sample points. Observing all procedural and quality assurance measures, the samples were analyzed for barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn), using X-ray fluorescence. Using environmental risk indices of contamination factor and degree of contamination (Cdeg), we analyzed the individual contribution of each heavy metal contamination and the overall Cdeg. We further used geostatistical techniques of spatial autocorrelation and variability to examine spatial distribution and extent of heavy metal contamination. Results Results from soil analysis showed that heavy metal concentrations were significantly higher than the Canadian Environmental Protection Agency and Dutch environmental standards. In an increasing order, Pb>Cd>Hg>Cu>Zn>Cr>Co>Ba>Ni contributed significantly to the overall Cdeg. Contamination was highest in the main working areas of burning and dismantling sites, indicating the influence of recycling activities. Geostatistical analysis also revealed that heavy metal contamination spreads beyond the main working areas to residential, recreational, farming, and commercial areas. Conclusions Our results show that the studied heavy metals are ubiquitous within AEPS and the significantly high concentration of these metals reflect the contamination factor and Cdeg, indicating soil contamination in AEPS with the nine heavy metals studied. PMID:26987962

  13. Assessing the impact of groundwater contamination on stream water quality by multiple approaches at the groundwater-surface water interface (Invited Presentation)

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Rønde, Vinni Kampman; Balbarini, Nicola

    Contaminants such as chlorinated solvents and pesticides, as well as new classes of compounds or emerging micropollutants are extensively produced, utilized and then discarded in society and subsequently released to streams from multiple point and diffuse sources. Sustainable management of water...... resources requires assessment of multiple contamination sources within a watershed in order to assess their direct impact on water quality. Determination of flow paths and groundwater fluxes are essential for evaluating the transport, fate and potential impact of contaminant plumes discharging to streams...... of the Grindsted stream area including geology, hydrogeology, geophysics, environmental chemistry, ecology and environmental engineering was carried out in 2012-2017, to develop the scientific basis for conducting risk assessments for contaminated sites impacting surface waters. The Grindsted stream area is a well...

  14. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment

    OpenAIRE

    Zhou, Hang; Yang, Wen-Tao; Zhou, Xin; Liu, Li; Gu, Jiao-Feng; Wang, Wen-Lei; Zou, Jia-Ling; Tian, Tao; Peng, Pei-Qin; Liao, Bo-Han

    2016-01-01

    The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As). The target hazard quotient (THQ) method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the...

  15. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques

    OpenAIRE

    Chao Su; LiQin Jiang; WenJun Zhang

    2014-01-01

    Heavy metals in the soil refers to some significant heavy metals of biological toxicity, including mercury (Hg), cadmium (Cd), lead (Pb), chromium (Cr), and arsenic (As), etc. With the development of the global economy, both type and content of heavy metals in the soil caused by human activities have gradually increased in recent years, which have resulted in serious environment deterioration. In present study we compared and analyzed soil contamination of heavy metals in various cities/count...

  16. A comparison of technologies for remediation of heavy metal contaminated soils

    OpenAIRE

    Khalid , Sana; Shahid , Muhammad; Niazi , Nabeel Khan; Murtaza , Behzad; Bibi , Irshad; Dumat , Camille

    2016-01-01

    International audience; Soil contamination with persistent and potentially (eco)toxic heavy metal(loid)s is ubiquitous around the globe. Concentration of these heavy metal(loid)s in soil has increased drastically over the last three decades, thus posing risk to the environment and human health. Some technologies have long been in use to remediate the hazardous heavy metal(loid)s. Conventional remediation methods for heavy metal(loid)s are generally based on physical, chemical and biological a...

  17. Assessment of streambed sediment contamination by heavy metals: The case of the Gabes Catchment, South-eastern Tunisia

    Science.gov (United States)

    Dahri, Noura; Atoui, Abdelfattah; Ellouze, Manel; Abida, Habib

    2018-04-01

    This study deals with the assessment of the behaviour of seven heavy metals (Cd, Zn, Cu, Pb, Ni, Cr and As) in streambed sediments within the Gabes Catchment, located in South-eastern Tunisia. To understand the effect of intense human activities in the Gabes Basin on the quality of the environment, 22 sediment samples, spread all over the study basin, were taken and analyzed for heavy metals. Heavy metal concentrations were shown to vary in the following order: Zn > Pb > Cu > Cr > Ni > Cd > As. Sediment quality was assessed based on the evaluation of various indices. A total of 27% of the sampling stations are characterised by sediment Enrichment Factors (EF) exceeding 40, reflecting extremely severe pollution. This result was also confirmed by different indices, including Sediment Pollution Index (SPI), Pollution Load Index (PLI) and Geo-accumulation index. The calculation of Mean Effect Range-Median Quotient (M-ERM-Q) indicated that in stream discharge, all metals have a probability of 21% to be toxic. The ecological toxicity risk of heavy metals increases close to urban (traffic activity) and industrial activities (industrial complex of Gabes). Close to Gabes City, the situation and the degree of contamination that may be transferred into marine ecosystems is worrisome and requires immediate intervention.

  18. Removal of Heavy Metals and Organic Contaminants from Wwater by Novel Filtration Methods. Final report

    International Nuclear Information System (INIS)

    Rodriguez, N.M.

    2000-01-01

    The removal of hazardous waste, generated by the dismantling of nuclear weapons is a problem that requires urgent attention by the US Department of Energy. Low levels of radioactive contaminants combined with organic solvent residues have leaked from aging containers into the soil and underground water in the surrounding area. Due to the complexity of the problem, it is evident that traditional adsorption methods are ineffective, since the adsorbent tends to saturate with the aqueous component. It has become apparent that a much more aggressive approach is required which involves the use of specially designed materials. We have investigated the potential of solids that combine high surface area/high pore volume and high electrical conductivity, a rare combination of properties found in a single material. In this program we examined the potential of newly developed materials for the trapping of organic solvents within specially engineered cavities without allowing the material to become saturated with water. Catalytically grown carbon nanofibers are a set of novel structures that are produced by the decomposition of selected carbon-containing gases over metal particles. These materials consist of extremely small graphite platelets stacked in various orientations with respect to the fiber axis. Such an arrangement results in a unique structure that is composed of an infinite number of extremely short and narrow pores, suitable for sequestering small molecules. In addition, when the graphene layers are aligned parallel to the fiber axis, an unusual combination of high surface area and low electrical resistivity solids are attained. We have attempted to capitalize on this blend of properties by using such structures for the selective removal of organic contaminants from aqueous streams. Experimental results indicate that nanofibers possessing a structure in which the graphite platelets are aligned perpendicular to the fiber axis and possessing a high degree of

  19. Low-cost bioremediation of heavy metals and radionuclides of contaminated soils

    International Nuclear Information System (INIS)

    Sathiyamoorthy, P.; Golan-Goldhrish, A.

    2005-01-01

    The environmental pollution by toxic metals, especially lead (Pb), mercury (Hg), cadmium (Cd), nickel (Ni), copper (Cu), selenium (Se), chromium (Cr) and radionuclides ( 137 Cs, 90 Sr, 238 Pu, 226 Ra) is a potential hazard to health and welfare of mankind. Rapid industrial revolution has left an international legacy of soil and water contaminated with a combination of toxic and potentially carcinogenic compounds and heavy metals. Many of the contaminated sites were abandoned due to high cost of traditional clean-up approaches. Various approaches are being practiced to decontaminate heavy metals and radionuclides from polluted-soil. Remediation of heavy metal and radionuclides contaminated soils poses a significant expense to many industries and government organizations. Remediation cost in the United States and European Union alone is expected to exceed US$20 billion annually. Bioremediation strategy depends on the limitations of technology, cost and nature of the contaminant in the soil. Certain higher plants are capable of accumulation of heavy metals (2-5 %) in roots and shoots to the level far exceeding those present in the soils, these are called hyper-accumulators. Using heavy metal hyper-accumulating higher plants for environmental clean-up of contaminated soil is a recently emerged technology known as 'phytoremediation'. Genetically engineered (Transgenic) plants have a remarkable potential to absorb heavy metals and show a new avenue for biotechnology technique in Phytoremediation. The cost-effective approach of using heavy metal and radionuclide hyper-accumulators in phytoremediation is discussed. (author)

  20. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Bhabananda; Sarkar, Binoy [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia); Mandal, Asit [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Division of Soil Biology, Indian Institute of Soil Science, Bhopal, Madhya Pradesh (India); Naidu, Ravi [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia)

    2015-11-15

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad{sup ®} 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils.

  1. Heavy metals contamination and their risk assessment around the abandoned base metals and Au-Ag mines in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2017-04-01

    Heavy metals contamination in the areas of abandoned Au-Ag and base metal mines in Korea was investigated in order to assess the level of metal pollution, and to draw general summaries about the fate of toxic heavy metals in different environments. Efforts have been made to compare the level of heavy metals, chemical forms, and plant uptake of heavy metals in each mine site. In the base-metals mine areas, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials and tailings. Leafy vegetables tend to accumulate heavy metals(in particular, Cd and Zn) higher than other crop plants, and high metal concentrations in rice crops may affect the local residents' health. In the Au-Ag mining areas, arsenic would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and the mobility of these metals would be enhanced by the effect of continuing weathering and oxidation. According to the sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. The concept of pollution index(PI) of soils gives important information on the extent and degree of multi-element contamination, and can be applied to the evaluation of mine soils before their agricultural use and remediation. The risk assessment process comprising exposure assessment, dose-response assessment, and risk characterization was discussed, and the results of non-cancer risk of As, Cd, and Zn, and those of cancer risk of As were suggested.

  2. Remediation of Steel Slag on Acidic Soil Contaminated by Heavy Metal

    OpenAIRE

    Gu, Haihong; Li, Fuping; Guan, Xiang; Li, Zhongwei; Yu, Qiang

    2013-01-01

    The technology of in situ immobilization with amendments is an important measure that remediates the soil contaminated by heavy metal, and selecting economical and effective modifier is the key. The effects and mechanism of steel slag, the silicon-rich alkaline by-product which can remediate acidic soil contaminated by heavy metal, are mainly introduced in this paper to provide theory inferences for future research. Firstly, the paper analyzes current research situation of in situ immobilizat...

  3. Changes in element availability induced by sterilization in heavy metal contaminated substrates: A comprehensive study.

    Science.gov (United States)

    Krauße, Thomas; Schütze, Eileen; Phieler, René; Fürst, David; Merten, Dirk; Büchel, Georg; Kothe, Erika

    2017-11-10

    Microbiome analyses of soils and microcosm experiments depend on conditions that include sterilization in order to perform experimental manipulation of microbial communities. Still, they should represent conditions close to nature. When using metal contaminated soils, sterilization methods might alter metal availability. Here, four typical metal contaminated substrates were analyzed, representing different contamination histories and soil types. They included two very poor substrates, as they are often found at metal contaminated sites. The low contents in organic carbon and nitrogen as well as two substrates with slightly higher nutrient availability were used to perform a comprehesive study for element availability changes induced by sterilization. Autoclaving, dry heat or gamma raγ sterilization were applied and compared to a non-treated control. The sterile substrates were analyzed using sequential extraction to account for different associations of the elements. Metals forming specific (hydro)oxide layers were specifically analyzed since they in turn may also impact other metals or ions. In addition, (heavy) metals and (micro)nutrients were analyzed for changes in speciation. The effects of autoclaving (wet heat) was found acceptable, while γ-ray irradiation did show unexpected changes in metal associations, especially for one substrate. Dry heat changed metal availability to the highest degree. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-01-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. - Highlights: • Plant shoot Cd decreased in high-Cd acid soil and also plant Zn did in two acid soils. • Plant shoot Cd remained constant in low-Cd acid soil and also plant Zn did in alkaline soils. • Acidic soils showed much higher total metal removal efficiency than the alkaline soils. - Acid soil has high total metal phytoremediation efficiency while a strategy based on stripping of the bioavailable contaminant might be feasible for alkaline soil phytoremediation

  5. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review.

    Science.gov (United States)

    Rehman, Muhammad Zia Ur; Rizwan, Muhammad; Ali, Shafaqat; Ok, Yong Sik; Ishaque, Wajid; Saifullah; Nawaz, Muhammad Farrakh; Akmal, Fatima; Waqar, Maqsooda

    2017-09-01

    Heavy metals are among the major environmental pollutants and the accumulation of these metals in soils is of great concern in agricultural production due to the toxic effects on crop growth and food quality. Phytoremediation is a promising technique which is being considered as an alternative and low-cost technology for the remediation of metal-contaminated soils. Solanum nigrum is widely studied for the remediation of heavy metal-contaminated soils owing to its ability for metal uptake and tolerance. S. nigrum can tolerate excess amount of certain metals through different mechanism including enhancing the activities of antioxidant enzymes and metal deposition in non-active parts of the plant. An overview of heavy metal uptake and tolerance in S. nigrum is given. Both endophytic and soil microorganisms can play a role in enhancing metal tolerance in S. nigrum. Additionally, optimization of soil management practices and exogenous application of amendments can also be used to enhance metal uptake and tolerance in this plant. The main objective of the present review is to highlight and discuss the recent progresses in using S. nigrum for remediation of metal contaminated soils. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Determination of heavy metal pollution in soils from selected potentially contaminated sites in Tema

    International Nuclear Information System (INIS)

    Nyaaba, A.K.L.

    2011-01-01

    The objective of the study was to assess the concentration and determine the level of pollution by harmful heavy metals in soils from selected potentially contaminated sites in Tema. The metals of interest include; mercury, lead, cadmium, cobalt zinc, arsenic, nickel, copper and chromium. A total of forty seven (47) samples comprising thirty eight sub-samples (38) and nine (9) composite samples were collected from nine (9) different locations. These included playgrounds, steel processing factories, used Lead Acid Battery (ULAB) recycling plant, mechanic workshops and the municipal waste disposal site. The samples were prepared after which the elemental concentrations were determined using energy dispersive X-ray fluorescence (EDXRF) with a secondary target excitation arrangement (5.9 keV). The analysis of the samples yielded the following mean heavy metal concentrations in mg/kg: 424.38 (Cr); 408.68 (Ni); 14427 (Cu); 4129.87 (Zn); 1580.68 (As); 647.48 (Hg); 73361.51 (Pb) and 1176.16 (Co). The mean concentrations of heavy metals in the soils were in the following order Pb>Zn>As>Co>Cu>Hg>Cr>Ni. Mercury was detected at only two of the sites. The average heavy metals in the soils from the sites were generally high since most of them exceeded the optimum and action values of the New Dutch List. The Enrichment Factor (EF) ratios show that the enrichment of the elements in the soils ranged from deficiently to extremely highly enriched. The contamination factor show that the contamination by the heavy metals were low at some of the sites and very high at others. The geoaccumulation indices indicated that the playground (PG) has not been contaminated by any of the metals, C8 is contaminated strongly by mercury only and the contamination at the remaining sites varied from moderately contaminated to extremely contaminated by the metals. The Igeo also indicated that the elements accounting for extreme contamination are lead, arsenic, copper, zinc mercury and chromium. Lead

  7. Extractive decontamination of heavy metals from CCA contaminated ...

    African Journals Online (AJOL)

    In this paper, the mobilization and extraction of As, Cr and Cu from chromated copper arsenate (CCA) contaminated soil obtained from a wood treatment factory site by four organic acids are presented and discussed. The CCA contaminated soil (pH = 5.91, carbon = 0.32, CEC = 47.84 meq/100 g) was found to contain 39.55 ...

  8. Heavy metal contamination assessment and partition for industrial and mining gathering areas.

    Science.gov (United States)

    Guan, Yang; Shao, Chaofeng; Ju, Meiting

    2014-07-16

    Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China) as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1) Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2) The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3) The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4) The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies.

  9. Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas

    Directory of Open Access Journals (Sweden)

    Yang Guan

    2014-07-01

    Full Text Available Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1 Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2 The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3 The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4 The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies.

  10. Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas

    Science.gov (United States)

    Guan, Yang; Shao, Chaofeng; Ju, Meiting

    2014-01-01

    Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China) as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1) Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2) The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3) The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4) The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies. PMID:25032743

  11. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    Science.gov (United States)

    Matos, Martim P. S. R.; Correia, António Alberto S.; Rasteiro, Maria G.

    2017-04-01

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb2+), copper (Cu2+), nickel (Ni2+), and zinc (Zn2+), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  12. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    International Nuclear Information System (INIS)

    Matos, Martim P. S. R.; Correia, António Alberto S.; Rasteiro, Maria G.

    2017-01-01

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb 2+ ), copper (Cu 2+ ), nickel (Ni 2+ ), and zinc (Zn 2+ ), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  13. Arbuscular mycorrhizal colonization has little consequence for plant heavy metal uptake in contaminated field soils.

    Science.gov (United States)

    Dietterich, Lee H; Gonneau, Cédric; Casper, Brenda B

    2017-09-01

    The factors affecting plant uptake of heavy metals from metalliferous soils are deeply important to the remediation of polluted areas. Arbuscular mycorrhizal fungi (AMF), soil-dwelling fungi that engage in an intimate exchange of nutrients with plant roots, are thought to be involved in plant metal uptake as well. Here, we used a novel field-based approach to investigate the effects of AMF on plant metal uptake from soils in Palmerton, Pennsylvania, USA contaminated with heavy metals from a nearby zinc smelter. Previous studies often focus on one or two plant species or metals, tend to use highly artificial growing conditions and metal applications, and rarely consider metals' effects on plants and AMF together. In contrast, we examined both direct and AMF-mediated effects of soil concentrations on plant concentrations of 8-13 metals in five wild plant species sampled across a field site with continuous variation in Zn, Pb, Cd, and Cu contamination. Plant and soil metal concentration profiles were closely matched despite high variability in soil metal concentrations even at small spatial scales. However, we observed few effects of soil metals on AMF colonization, and no effects of AMF colonization on plant metal uptake. Manipulating soil chemistry or plant community composition directly may control landscape-level plant metal uptake more effectively than altering AMF communities. Plant species identities may serve as highly local indicators of soil chemical characteristics. © 2017 by the Ecological Society of America.

  14. Contaminants in stream sediments from seven United States metropolitan areas: part I: distribution in relation to urbanization

    Science.gov (United States)

    Nowell, Lisa H.; Moran, Patrick W.; Gilliom, Robert J.; Calhoun, Daniel L.; Ingersoll, Christopher G.; Kemble, Nile E.; Kuivila, Kathryn; Phillips, Patrick J.

    2013-01-01

    Organic contaminants and trace elements were measured in bed sediments collected from streams in seven metropolitan study areas across the United States to assess concentrations in relation to urbanization. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine pesticides, the pyrethroid insecticide bifenthrin, and several trace elements were significantly related to urbanization across study areas. Most contaminants (except bifenthrin, chromium, nickel) were significantly related to the total organic carbon (TOC) content of the sediments. Regression models explained 45–80 % of the variability in individual contaminant concentrations using degree of urbanization, sediment-TOC, and study-area indicator variables (which represent the combined influence of unknown factors, such as chemical use or release, that are not captured by available explanatory variables). The significance of one or more study-area indicator variables in all models indicates marked differences in contaminant levels among some study areas, even after accounting for the nationally modeled effects of urbanization and sediment-TOC. Mean probable effect concentration quotients (PECQs) were significantly related to urbanization. Trace elements were the major contributors to mean PECQs at undeveloped sites, whereas organic contaminants, especially bifenthrin, were the major contributors at highly urban sites. Pyrethroids, where detected, accounted for the largest share of the mean PECQ. Part 2 of this series (Kemble et al. 2012) evaluates sediment toxicity to amphipods and midge in relation to sediment chemistry.

  15. Micropropagation of Myriophyllum alterniflorum (Haloragaceae) for stream rehabilitation: first in vitro culture and reintroduction assays of a heavy-metal hyperaccumulator immersed macrophyte.

    Science.gov (United States)

    Delmail, David; Labrousse, Pascal; Hourdin, Philippe; Larcher, Laure; Moesch, Christian; Botineau, Michel

    2013-01-01

    Nowadays, submersed aquatic macrophytes play a key role in stream ecology and they are often used as biomonitors of freshwater quality. So, these plants appear as natural candidates to stream rehabilitation experiments. Among them, the stream macrophyte Myriophyllum alterniflorum is used recently as biomonitor and is potentially useful for the restoration of heavy-metal contaminated localities. The best way to obtain a mass production of watermilfoil plants is micropropagation. We developed in vitro culture of M. alterniflorum and the effects of five media on the plant development were assessed. Five morphological and four physiological endpoints were examined leading to the recommendation of the Murashige and Skoog medium for ecotoxicological studies on chlorophyllous parts, and of the Gaudet medium for root cytotoxicity and phytoremediation studies. Micropropagated clones were acclimatized in a synthetic medium and in situ reintroduction was performed efficiently. This is the first report of micropropagated plants transplantation in streams. The successful establishment of watermilfoil beds even in polluted areas strongly suggested that ecological restoration using micropropagated watermilfoil is a promising biotechnology for phytoremediation and rehabilitation of degraded areas. Moreover, high bioconcentration factors evidenced that watermilfoil hyperaccumulates Cd and Cu, and could be potentially used in phytoremediation studies.

  16. Effects of remediation train sequence on decontamination of heavy metal-contaminated soil containing mercury.

    Science.gov (United States)

    Hseu, Zeng-Yei; Huang, Yu-Tuan; Hsi, Hsing-Cheng

    2014-09-01

    When a contaminated site contains pollutants including both nonvolatile metals and Hg, one single remediation technology may not satisfactorily remove all contaminants. Therefore, in this study, chemical extraction and thermal treatment were combined as a remediation train to remove heavy metals, including Hg, from contaminated soil. A 0.2 M solution of ethylenediamine tetraacetic acid (EDTA) was shown to be the most effective reagent for extraction of considerable amounts of Cu, Pb, and Zn (> 50%). Hg removal was ineffective using 0.2 M EDTA, but thermogravimetric analysis suggested that heating to 550 degrees C with a heating rate of 5 degrees C/min for a duration of 1 hr appeared to be an effective approach for Hg removal. With the employment of thermal treatment, up to 99% of Hg could be removed. However executing thermal treatment prior to chemical extraction reduced the effectiveness of the subsequent EDTA extraction because nonvolatile heavy metals were immobilized in soil aggregates after the 550 degrees C treatment. The remediation train of chemical extraction followed by thermal treatment appears to remediate soils that have been contaminated by many nonvolatile heavy metals and Hg. Implications: A remediation train conjoining two or more techniques has been initialized to remove multiple metals. Better understandings of the impacts of treatment sequences, namely, which technique should be employed first on the soil properties and the decontamination efficiency, are in high demand. This study provides a strategy to remove multiple heavy metals including Hg from a contaminated soil. The interactions between thermal treatment and chemical extraction on repartitioning of heavy metals was revealed. The obtained results could offer an integrating strategy to remediate the soil contaminated with both heavy metals and volatile contaminants.

  17. Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study.

    Science.gov (United States)

    Liati, Anthi; Schreiber, Daniel; Dimopoulos Eggenschwiler, Panayotis; Arroyo Rojas Dasilva, Yadira

    2013-12-17

    Scanning electron microscopy and transmission electron microscopy were applied to investigate the morphology, mode of occurrence and chemical composition of metal particles (diesel ash) in the exhaust stream of a small truck outfitted with a typical after-treatment system (a diesel oxidation catalyst (DOC) and a downstream diesel particulate filter (DPF)). Ash consists of Ca-Zn-P-Mg-S-Na-Al-K-phases (lube-oil related), Fe, Cr, Ni, Sn, Pb, Sn (engine wear), and Pd (DOC coating). Soot agglomerates of variable sizes (1-5 μm, exceptionally 13 μm), rarely engine wear and escape into the atmosphere.

  18. Evidence for groundwater contamination by heavy metals through soil passage under acidifying conditions

    NARCIS (Netherlands)

    Wilkens, B.J.

    1995-01-01

    The research reported here is aimed at improving the knowledge of the mobility of the heavy metals cadmium and zinc in vulnerable soil types. We use the term vulnerable with reference to vulnerability of groundwater for contamination by soil leaching. At diffuse soil immissions of heavy metals,

  19. Heavy Metal Contaminated Soil Imitation Biological Treatment Overview

    Science.gov (United States)

    Pan, Chang; Chen, Jun; Wu, Ke; Zhou, Zhongkai; Cheng, Tingting

    2018-01-01

    In this paper, the treatment methods of heavy metal pollution in soils were analyzed, the existence and transformation of heavy metals in soil were explored, and the mechanism of heavy metal absorption by plants was studied. It was concluded that the main form of plants absorb heavy metals in the soil is exchangeable. The main mechanism was that the plant cell wall can form complex with heavy metals, so that heavy metals fixed on the cell wall, and through the selective absorption of plasma membrane into the plant body. In addition, the adsorption mechanism of the adsorbed material was analyzed. According to the results of some researchers, it was found that the mechanism of adsorption of heavy metals was similar to that of plants. According to this, using adsorbent material as the main material, Imitate the principle of plant absorption of heavy metals in the soil to removing heavy metals in the soil at one-time and can be separated from the soil after adsorption to achieve permanent removal of heavy metals in the soil was feasibility.

  20. Contamination of water in Oliwski Stream after the flood in 2016

    Directory of Open Access Journals (Sweden)

    Matej-Łukowicz Karolina

    2017-01-01

    Full Text Available In the article pollution of stream waters with surface runoff from an urbanized area caused by an extremely high rainfall is discussed. The analyzes were carried out after the rainfall of the depth 152 mm which took place in Gdańsk on 14th and 15th July 2016. This extreme rainfall caused urban flooding, damage of several retention ponds and pollution of surface waters. In the article the results of physical and chemical analyzes of the water samples from Oliwski Stream, inflowing to the Gulf of Gdańsk at the beach in Jelitkowo, are presented. The samples were collected at six points along the Stream in order to evaluate potential pollution sources. The results of the study indicated elevated concentrations of phosphorus compounds and nitrates (V. Additionally, the concentrations of total suspended solids (TSS, solids granulometry and grain size distribution along the stream was investigated.

  1. Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bidar, G. [Laboratoire Sols et Environnement, Institut Superieur d' Agriculture, 48 Boulevard Vauban, 59046 Lille Cedex (France); LCE-EA2598, Toxicologie Industrielle et Environnementale, MREI2, Maison de la Recherche en Environnement Industriel de Dunkerque 2, Universite du Littoral-Cote d' Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque (France); Garcon, G. [LCE-EA2598, Toxicologie Industrielle et Environnementale, MREI2, Maison de la Recherche en Environnement Industriel de Dunkerque 2, Universite du Littoral-Cote d' Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque (France); Pruvot, C. [Laboratoire Sols et Environnement, Institut Superieur d' Agriculture, 48 Boulevard Vauban, 59046 Lille Cedex (France); Dewaele, D. [Centre Commun de Mesures, MREI 1, Universite du Littoral-Cote d' Opale, 145, Avenue Maurice Schumann, 59140 Dunkerque (France); Cazier, F. [Centre Commun de Mesures, MREI 1, Universite du Littoral-Cote d' Opale, 145, Avenue Maurice Schumann, 59140 Dunkerque (France); Douay, F. [Laboratoire Sols et Environnement, Institut Superieur d' Agriculture, 48 Boulevard Vauban, 59046 Lille Cedex (France); Shirali, P. [LCE-EA2598, Toxicologie Industrielle et Environnementale, MREI2, Maison de la Recherche en Environnement Industriel de Dunkerque 2, Universite du Littoral-Cote d' Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque (France)]. E-mail: pirouz.shirali@univ-littoral.fr

    2007-06-15

    The use of a vegetation cover for the management of heavy metal contaminated soils needs prior investigations on the plant species the best sustainable. In this work, behaviors of Trifolium repens and Lolium perenne, growing in a metal-polluted field located near a closed lead smelter, were investigated through Cd, Pb and Zn-plant metal concentrations and their phytotoxicity. In these plant species, metals were preferentially accumulated in roots than in shoots, as follow: Cd > Zn > Pb. Plant exposure to such metals induced oxidative stress in the considered organs as revealed by the variations in malondialdehyde levels and superoxide dismutase activities. These oxidative changes were closely related to metal levels, plant species and organs. Accordingly, L. perenne seemed to be more affected by metal-induced oxidative stress than T. repens. Taken together, these findings allow us to conclude that both the plant species could be suitable for the phytomanagement of metal-polluted soils. - Usefulness of Trifolium repens and Lolium perenne for the phytomanagement of heavy metal-contaminated soils.

  2. Research Progress of Artificial Forest in the Remediation of Heavy Metal Contaminated Soils

    Science.gov (United States)

    Jiafang, MA; Guangtao, MENG; Liping, HE; Guixiang, LI

    2017-01-01

    (1) Remediation of soil contaminated by heavy metals has become a hot topic in the world, and phytoremediation technology is the most widely used. (2) In addition to traditional economic benefits, ecological benefits of artificial forest have been more and more important, which are very helpful to soil polluted with heavy metals in the environment. (3) The characteristics of heavy metal pollution of soil and plantations of repair mechanism have been reviewed, and the current mining areas, wetlands, urban plantations on heavy metal elements have enriched the research results. The purpose is to find a new path for governance of heavy metal soil pollution.

  3. Food safety of milk and dairy product of dairy cattle from heavy metal contamination

    Science.gov (United States)

    Harlia, E.; Rahmah, KN; Suryanto, D.

    2018-01-01

    Food safety of milk and dairy products is a prerequisite for consumption, which must be free from physical, biological and chemical contamination. Chemical contamination of heavy metals Pb (Plumbum/Lead) and Cd (Cadmium) is generally derived from the environment such as from water, grass, feed additives, medicines and farm equipment. The contamination of milk and dairy products can affect quality and food safety for human consumption. The aim of this research is to investigate contamination of heavy metals Pb and Cd on fresh milk, pasteurized milk, and dodol milk compared with the Maximum Residue Limits (MRL). The methods of this researched was through case study and data obtained analyzed descriptively. Milk samples were obtained from Bandung and surrounding areas. The number of samples used was 30 samples for each product: 30 samples of fresh milk directly obtained from dairy farm, 30 samples of pasteurized milk obtained from street vendors and 30 samples of dodol milk obtained from home industry. Parameters observed were heavy metal residues of Pb and Cd. The results showed that: 1) approximately 83% of fresh milk samples were contaminated by Pb which 57% samples were above MRL and 90% samples were contaminated by Cd above MRL; 2) 67% of pasteurized milk samples were contaminated by Pb below MRL; 3) 60% of dodol milk samples were contaminated by Pb and Cd above MRL.

  4. Indices of soil contamination by heavy metals - methodology of calculation for pollution assessment (minireview).

    Science.gov (United States)

    Weissmannová, Helena Doležalová; Pavlovský, Jiří

    2017-11-07

    This article provides the assessment of heavy metal soil pollution with using the calculation of various pollution indices and contains also summarization of the sources of heavy metal soil pollution. Twenty described indices of the assessment of soil pollution consist of two groups: single indices and total complex indices of pollution or contamination with relevant classes of pollution. This minireview provides also the classification of pollution indices in terms of the complex assessment of soil quality. In addition, based on the comparison of metal concentrations in soil-selected sites of the world and used indices of pollution or contamination in soils, the concentration of heavy metal in contaminated soils varied widely, and pollution indices confirmed the significant contribution of soil pollution from anthropogenic activities mainly in urban and industrial areas.

  5. Remediation of heavy metal contaminated ecosystem: an overview on technology advancement

    International Nuclear Information System (INIS)

    Singh, A.; Prasad, S. M.

    2015-01-01

    The issue of heavy metal pollution is very much concerned because of their toxicity for plant, animal and human beings and their lack of biodegradability. Excess concentrations of heavy metals have adverse effect on plant metabolic activities hence affect the food production, quantitatively and qualitatively. Heavy metal when reaches human tissues through various absorption pathways such as direct ingestion, dermal contact, diet through the soil-food chain, inhalation, and oral intake may seriously affect their health. Therefore, several management practices are being applied to minimize metal toxicity by attenuating the availability of metal to the plants. Some of the traditional methods are either extremely costly or they are simply applied to isolate contaminated site. The biology based technology like use of hyper metal accumulator plants occurring naturally or created by transgenic technology, in recent years draws great attention to remediate heavy metal contamination. Recently, applications of nanoparticle for metal remediation are also attracting great research interest due to their exceptional adsorption and mechanical properties and unique electrical property, highly chemical stability, and large specific surface area. Thus the present review deals with different management approaches to reduce level of metal contamination in soil and finally to the food chain

  6. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?

    Science.gov (United States)

    Bolan, Nanthi; Kunhikrishnan, Anitha; Thangarajan, Ramya; Kumpiene, Jurate; Park, Jinhee; Makino, Tomoyuki; Kirkham, Mary Beth; Scheckel, Kirk

    2014-02-15

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy metal(loid) contaminated soils through manipulating their bioavailability using a range of soil amendments will be presented. Mobilizing amendments such as chelating and desorbing agents increase the bioavailability and mobility of metal(loid)s. Immobilizing amendments such of precipitating agents and sorbent materials decrease the bioavailabilty and mobility of metal(loid)s. Mobilizing agents can be used to enhance the removal of heavy metal(loid)s though plant uptake and soil washing. Immobilizing agents can be used to reduce the transfer to metal(loid)s to food chain via plant uptake and leaching to groundwater. One of the major limitations of mobilizing technique is susceptibility to leaching of the mobilized heavy metal(loid)s in the absence of active plant uptake. Similarly, in the case of the immobilization technique the long-term stability of the immobilized heavy metal(loid)s needs to be monitored. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Heavy metal contamination of some vegetables from pesticides and ...

    African Journals Online (AJOL)

    Vegetable farming in developing countries is characterized by the indiscriminate application of pesticides and the resultant pollution of agricultural soil with heavy metals that form constituents of these pesticides. These heavy metals have long term toxicity to human and other biota in the ecosystem. This problem is ...

  8. Remediation of heavy metal contaminated soil | Nanda | African ...

    African Journals Online (AJOL)

    The worldwide awareness of the deleterious effects of heavy metal pollution has resulted in intensive research aiming at understanding metal interactions in soil and their removal in an efficient way. Although, the knowledge and practice of the conventional physio-chemical remedial technologies for degraded soils are ...

  9. Investigation into metal contamination of the Berg River, Western ...

    African Journals Online (AJOL)

    A recent decline in water quality of the Berg River, Western Cape, South Africa, has led to the investigation into the degree of metal pollution in the river system. This study was conducted over a period of one year, from May 2004 to May 2005. The nitric acid digestion technique was used to extract metals from water, ...

  10. Evaluation of metal contaminants of surface water sources in an ...

    African Journals Online (AJOL)

    The concentrations of Pb, Zn, Mn, Co, Cu, Ni and Cr were quantitatively determined in water samples collected from Enyigba Pb-Zn mine and a nearby Uruva pond using atomic absorption spectrophotometer. The results showed varying concentrations of these metals in the samples. The mean values of the metals (mg/L) in ...

  11. Effect of biosludge and biofertilizer amendment on growth of Jatropha curcas in heavy metal contaminated soils.

    Science.gov (United States)

    Juwarkar, Asha Ashok; Yadav, Santosh Kumar; Kumar, Phani; Singh, Sanjeev Kumar

    2008-10-01

    The pot experiments were conducted to evaluate the effect of different concentrations of arsenic, chromium and zinc contaminated soils, amended with biosludge and biofertilizer on the growth of Jatropha curcas which is a biodiesel crop. The results further showed that biosludge alone and in combination with biofertilizer significantly improved the survival rates and enhanced the growth of the plant. With the amendments, the plant was able to grow and survive upto 500, 250 and 4,000 mg kg(-1) of As, Cr and Zn contaminated soils, respectively. The results also showed that zinc enhanced the growth of J. curcas more as compared to other metals contaminated soils. The heavy metal accumulation in plant increased with increasing concentrations of heavy metals in soil, where as a significant reduction in the metal uptake in plant was observed, when amended with biosludge and biofertilizer and biosludge alone. It seems that the organic matter present in the biosludge acted as metal chelator thereby reducing the toxicity of metals to the plant. Findings suggest that plantation of J. curcas may be promoted in metal contaminated soils, degraded soils or wasteland suitably after amending with organic waste.

  12. Chelant extraction of heavy metals from contaminated soils using new selective EDTA derivatives.

    Science.gov (United States)

    Zhang, Tao; Liu, Jun-Min; Huang, Xiong-Fei; Xia, Bing; Su, Cheng-Yong; Luo, Guo-Fan; Xu, Yao-Wei; Wu, Ying-Xin; Mao, Zong-Wan; Qiu, Rong-Liang

    2013-11-15

    Soil washing is one of the few permanent treatment alternatives for removing metal contaminants. Ethylenediaminetetraacetic acid (EDTA) and its salts can substantially increase heavy metal removal from contaminated soils and have been extensively studied for soil washing. However, EDTA has a poor utilization ratio due to its low selectivity resulting from the competition between soil major cations and trace metal ions for chelation. The present study evaluated the potential for soil washing using EDTA and three of its derivatives: CDTA (trans-1,2-cyclohexanediaminetetraacetic acid), BDTA (benzyldiaminetetraacetic acid), and PDTA (phenyldiaminetetraacetic acid), which contain a cylcohexane ring, a benzyl group, and a phenyl group, respectively. Titration results showed that PDTA had the highest stability constants for Cu(2+) and Ni(2+) and the highest overall selectivity for trace metals over major cations. Equilibrium batch experiments were conducted to evaluate the efficacy of the EDTA derivatives at extracting Cu(2+), Zn(2+), Ni(2+), Pb(2+), Ca(2+), and Fe(3+) from a contaminated soil. At pH 7.0, PDTA extracted 1.5 times more Cu(2+) than did EDTA, but only 75% as much Ca(2+). Although CDTA was a strong chelator of heavy metal ions, its overall selectivity was lower and comparable to that of EDTA. BDTA was the least effective extractant because its stability constants with heavy metals were low. PDTA is potentially a practical washing agent for soils contaminated with trace metals. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Reconstructing Early Industrial Contributions to Legacy Trace Metal Contamination in Southwestern Pennsylvania.

    Science.gov (United States)

    Rossi, Robert J; Bain, Daniel J; Hillman, Aubrey L; Pompeani, David P; Finkenbinder, Matthew S; Abbott, Mark B

    2017-04-18

    Early industrial trace metal loadings are poorly characterized but potentially substantial sources of trace metals to the landscape. The magnitude of legacy contamination in southwestern Pennsylvania, the cradle of North American fossil fuel industrialization, is reconstructed from trace metal concentrations in a sediment core with proxies including major and trace metal chemistry, bulk density, and magnetic susceptibility. Trace metal chemistry in this sediment record reflects 19th and 20th century land use and industry. In particular, early 19th century arsenic loadings to the lake are elevated from pesticides used by early European settlers at a lakeside tannery. Later, sediment barium concentrations rise, likely reflecting the onset of acidic mine drainage from coal operations. Twentieth century zinc, cadmium, and lead concentrations are dominated by emissions from the nearby, infamous Donora Zinc Works yet record both the opening of a nearby coal-fired power plant and amendments to the Clean Air Act. The impact of early industry is substantial and rivals more recent metal fluxes, resulting in a significant potential source of contaminated sediments. Thus, modern assessments of trace metal contamination cannot ignore early industrial inputs, as the potential remobilization of legacy contamination would impact ecosystem and human health.

  14. Contrasting metal detoxification in polychaetes, bivalves and fish from a contaminated bay.

    Science.gov (United States)

    Fan, Wenhong; Xu, Zhizhen; Wang, Wen-Xiong

    2015-02-01

    Jinzhou Bay in Bohai, Northern China, is historically contaminated with metals, but the organisms living in such contaminated environments are much less well studied. In this study, we contrasted the different subcellular and detoxification responses of polychaetes, bivalves and fish collected from different contaminated sites in Jinzhou Bay. In polychaete Neanthes japonica, metal-rich granule (MRG) was the main biologically detoxified metal compartment, and metallothionein-like protein (MTLP) detoxified a relatively smaller fraction of accumulated metals. The importance of MRG increased whereas that of MTLP decreased with increasing metal bioaccumulation. Detoxification in the two bivalves was similar to that in the polychaetes. However, the MRG appeared to play only a minor role in metal binding and detoxification in the gills and livers of fish, whereas MTLP was the dominating detoxification pool. Cellular debris was an important pool binding with metals in the three marine animals. Our study highlighted the contrasting cellular binding and detoxification among different marine organisms living in contaminated environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Identifying Sources of Fecal Contamination in Streams Associated with Chicken Farms

    Science.gov (United States)

    Poultry is responsible for 44% of the total feces production in the U.S., followed by cattle and swine. The large U.S. production of feces poses a contamination risk for affected watersheds across the country. To aid in the identification of the sources of contamination, many D...

  16. Assessment of metal contamination, bioavailability, toxicity and bioaccumulation in extreme metallic environments (Iberian Pyrite Belt) using Corbicula fluminea.

    Science.gov (United States)

    Bonnail, E; Sarmiento, A M; DelValls, T A; Nieto, J M; Riba, I

    2016-02-15

    The Iberian Pyrite Belt (SW Iberian Peninsula) has intense mining activity. Currently, its fluvial networks receive extremely acid lixiviate residue discharges that are rich in sulphates and metals in solution (acid mine drainage, AMD) from abandoned mines. In the current study, the sediment and water quality were analysed in three different areas of the Odiel River to assess the risk associated with the metal content and its speciation and bioavailability. Furthermore, sediment contact bioassays were performed using the freshwater clam Corbicula fluminea to determine its adequacy as a biomonitoring tool in relation to theoretical risk indexes and regulatory thresholds. Reburial activity and mortality were used as the toxic responses of clams when exposed to contaminated sediment. The results showed coherence between the water and sediment chemical contamination for most of the metals. The reburial activity was correlated with the metal toxicity, but no clam mortality was registered. The bioaccumulation of the studied metals in the clam did not have a significant correlation with the bioavailable fraction of the metal content in the environment, which could be related to a potential different speciation in this singular environment. The bioaccumulation responses were negative for As, Cd and Zn in highly contaminated environments and were characterized as severe, considerable and low potential environmental risks, respectively. The results show that C. fluminea is a good biomonitor of Cu and Pb. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants.

    Science.gov (United States)

    Das, Surajit; Dash, Hirak R; Chakraborty, Jaya

    2016-04-01

    Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites.

  18. Endophytes and their Potential to Deal with Co-contamination of Organic Contaminants (Toluene) and Toxic Metals (Nickel) during Phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Weyens, N.; van der Lelie, D.; Truyens, S.; Saenen, E.; Boulet, J.; Dupae, J.; Taghavi, S.; Carleer, R.; Vangronsveld, J.

    2011-01-15

    The aim was to investigate if engineered endophytes that are capable of degrading organic contaminants, and deal with or ideally improve uptake and translocation of toxic metals, can improve phytoremediation of mixed organic-metal pollution. As a model system, yellow lupine was inoculated with the endophyte Burkholderia cepacia VM1468 possessing (a) the pTOM-Bu61 plasmid, coding for constitutive toluene/TCE degradation, and (b) the chromosomally inserted ncc-nre Ni resistance/sequestration system. As controls, plants were inoculated with B. vietnamiensis BU61 (pTOM-Bu61) and B. cepacia BU72 (containing the ncc-nre Ni resistance/sequestration system). Plants were exposed to mixes of toluene and Ni. Only inoculation with B. cepacia VM1468 resulted in decreased Ni and toluene phytotoxicity, as measured by a protective effect on plant growth and decreased activities of enzymes involved in antioxidative defence (catalase, guaiacol peroxidase, superoxide dismutase) in the roots. Besides, plants inoculated with B. cepacia VM1468 and B. vietnamiensis BU61 released less toluene through the leaves than non-inoculated plants and those inoculated with B. cepacia BU72. Ni-uptake in roots was slightly increased for B. cepacia BU72 inoculated plants. These results indicate that engineered endophytes have the potential to assist their host plant to deal with co-contamination of toxic metals and organic contaminants during phytoremediation.

  19. Tungsten- and cobalt-dominated heavy metal contamination of mangrove sediments in Shenzhen, China.

    Science.gov (United States)

    Xu, Songjun; Lin, Chuxia; Qiu, Penghua; Song, Yan; Yang, Wenhuai; Xu, Guanchang; Feng, Xiaodan; Yang, Qian; Yang, Xiu; Niu, Anyi

    2015-11-15

    A baseline investigation into heavy metal status in the mangrove sediments was conducted in Shenzhen, China where rapid urban development has caused severe environmental contamination. It is found that heavy metal contamination in this mangrove wetland is characterized by the dominant presence of tungsten and cobalt, which is markedly different from the neighboring Hong Kong and other parts of the world. The vertical variation pattern of these two metals along the sediment profile differed from other heavy metals, suggesting an increasing influx of tungsten and cobalt into the investigated mangrove habitat, as a result of uncontrolled discharge of industrial wastewater from factories that produce or use chemical compounds or alloys containing these two heavy metals. Laboratory simulation experiment indicated that seawater had a stronger capacity to mobilize sediment-borne tungsten and cobalt, as compared to deionized water, diluted acetic, sulfuric and nitric acids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Laboratory and field magnetic evaluation of the heavy metal contamination on Shilaoren Beach, China.

    Science.gov (United States)

    Wang, Yonghong; Huang, Qinghui; Lemckert, Charles; Ma, Ying

    2017-04-15

    This study uses magnetic measurements to evaluate the heavy metal contamination of the surface sediments on Shilaoren Beach. The values of the laboratory magnetic measurements have a positive relationship with the concentrations of Fe, Mn, Cr, Ni, As and Pb. The field magnetic parameter provides an effective and rapid method for evaluating the distribution and dispersal of heavy metal. Sediments with higher heavy metal contents generally accumulate near higher and lower tide lines on the beach, reflecting the control of waves and tides. The sewage and stormwater outlets are the primary sources of the heavy metal contamination. Variations in seasonal waves and winds affect the sediment transport and the heavy metal distribution patterns. Based on the Australian ISQG-Low sediment quality criteria, Fe, Mn and Cr generally exhibit intermediate accumulation levels, whereas Pb and Zn exhibit higher accumulation levels because of the socioeconomic status of the area surrounding the beach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Testing Single and Combinations of Amendments for Stabilization of Metals in Contrasting Extremely Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Siebielec G.

    2013-04-01

    Full Text Available Metals can be stabilized by soil amendments that increase metals adsorption or alter their chemical forms. Such treatments may limit the risk related to the contamination through reduction of metal transfer to the food chain (reduction of metal uptake by plants and its availability to soil organisms and metals migration within the environment. There is a need for experiments comparing various soil amendments available at reasonable amounts under similar environmental conditions. The other question is whether all components of soil environment or soil functions are similarly protected after remediation treatment. We conducted a series of pot studies to test some traditional and novel amendments and their combinations. The treatments were tested for several highly Zn/Cd/Pb contaminated soils. Among traditional amendments composts were the most effective – they ensured plant growth, increased soil microbial activity, reduced Cd in earthworms, reduced Pb bioaccessibility and increased share of unavailable forms of Cd and Pb.

  2. Uptake of certain heavy metals from contaminated soil by mushroom--Galerina vittiformis.

    Science.gov (United States)

    Damodaran, Dilna; Vidya Shetty, K; Raj Mohan, B

    2014-06-01

    Remediation of soil contaminated with heavy metals has received considerable attention in recent years. In this study, the heavy metal uptake potential of the mushroom, Galerina vittiformis, was studied in soil artificially contaminated with Cu (II), Cd (II), Cr (VI), Pb (II) and Zn (II) at concentrations of 50 and 100mg/kg. G. vittiformis was found to be effective in removing the metals from soil within 30 days. The bioaccumulation factor (BAF) for both mycelia and fruiting bodies with respect to these heavy metals at 50mg/kg concentrations were found to be greater than one, indicating hyper accumulating nature by the mushroom. The metal removal rates by G. vittiformis was analyzed using different kinetic rate constants and found to follow the second order kinetic rate equation except for Cd (II), which followed the first order rate kinetics. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Geostatistical exploration of dataset assessing the heavy metal contamination in Ewekoro limestone, Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Kehinde D. Oyeyemi

    2017-10-01

    Full Text Available The dataset for this article contains geostatistical analysis of heavy metals contamination from limestone samples collected from Ewekoro Formation in the eastern Dahomey basin, Ogun State Nigeria. The samples were manually collected and analysed using Microwave Plasma Atomic Absorption Spectrometer (MPAS. Analysis of the twenty different samples showed different levels of heavy metals concentration. The analysed nine elements are Arsenic, Mercury, Cadmium, Cobalt, Chromium, Nickel, Lead, Vanadium and Zinc. Descriptive statistics was used to explore the heavy metal concentrations individually. Pearson, Kendall tau and Spearman rho correlation coefficients was used to establish the relationships among the elements and the analysis of variance showed that there is a significant difference in the mean distribution of the heavy metals concentration within and between the groups of the 20 samples analysed. The dataset can provide insights into the health implications of the contaminants especially when the mean concentration levels of the heavy metals are compared with recommended regulatory limit concentration.

  4. Effects of heavy-metal-contaminated soil on growth, phenology and biomass turnover of Hieracium piloselloides

    International Nuclear Information System (INIS)

    Ryser, Peter; Sauder, Wendy R.

    2006-01-01

    The effects of low levels of heavy metals on plant growth, biomass turnover and reproduction were investigated for Hieracium pilosella. Plants were grown for 12 weeks on substrates with different concentrations of heavy metals obtained by diluting contaminated soils with silica sand. To minimize effects of other soil factors, the substrates were limed, fertilized, and well watered. The more metal-contaminated soil the substrate contained, the lower the leaf production rate and the plant mass were, and the more the phenological development was delayed. Flowering phenology was very sensitive to metals. Leaf life span was reduced at the highest and the lowest metal levels, the latter being a result of advanced seed ripening. Even if the effect of low metal levels on plant growth may be small, the delayed and reduced reproduction may have large effects at population, community and ecosystem level, and contribute to rapid evolution of metal tolerance. - Flowering phenology shows a very sensitive response to heavy metal contamination of soils

  5. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil

    International Nuclear Information System (INIS)

    Brunner, Ivano; Luster, Joerg; Guenthardt-Goerg, Madeleine S.; Frey, Beat

    2008-01-01

    Root systems of Norway spruce (Picea abies) and poplar (Populus tremula) were long-term exposed to metal-contaminated soils in open-top chambers to investigate the accumulation of the heavy metals in the fine roots and to assess the plants suitability for phytostabilisation. The heavy metals from the contaminated soil accumulated in the fine roots about 10-20 times more than in the controls. The capacity to bind heavy metals already reached its maximum after the first vegetation period. Fine roots of spruce tend to accumulate more heavy metals than poplar. Copper and Zinc were mainly detected in the cell walls with larger values in the epidermis than in the cortex. The heavy metals accumulated in the fine roots made up 0.03-0.2% of the total amount in the soils. We conclude that tree fine roots adapt well to conditions with heavy metal contamination, but their phytostabilisation capabilities seem to be very low. - Long-term exposed fine roots of trees are well adapted to soils with high heavy metal contents, but their phytostabilisation capabilities are rather low

  6. Heavy metal contamination in sandy beach macrofauna communities from the Rio de Janeiro coast, Southeastern Brazil.

    Science.gov (United States)

    Cabrini, Tatiana M B; Barboza, Carlos A M; Skinner, Viviane B; Hauser-Davis, Rachel A; Rocha, Rafael C; Saint'Pierre, Tatiana D; Valentin, Jean L; Cardoso, Ricardo S

    2017-02-01

    We evaluated concentrations of eight heavy metals Cr, Zn, Pb, Ni, Cu, Cd, Co and V, in tissues of representative macrofauna species from 68 sandy beaches from the coast of Rio de Janeiro state. The links between contamination levels and community descriptors such as diversity, evenness, density and biomass, were also investigated. Metal concentrations from macrofaunal tissues were compared to maximum permissible limits for human ingestion stipulated by the Brazilian regulatory agency (ANVISA). Generalized linear models (GLM's) were used to investigate the variability in macrofauna density, richness, eveness and biomass in the seven different regions. A non-metric multidimensional scaling analysis (n-MDS) was used to investigate the spatial pattern of heavy metal concentrations along the seven regions of Rio de Janeiro coast. Variation partitioning was applied to evaluate the variance in the community assemblage explained by the environmental variables and the heavy metal concentrations. Our data suggested high spatial variation in the concentration of heavy metals in macrofauna species from the beaches of Rio de Janeiro. This result highlighted a diffuse source of contamination along the coast. Most of the metals concentrations were under the limits established by ANVISA. The variability in community descriptors was related to morphodynamic variables, but not with metal contamination values, indicating the lack of direct relationships at the community level. Concentration levels of eight heavy metals in macrofauna species from 68 sandy beaches on Rio de Janeiro coast (Brazil) were spatially correlated with anthropogenic activities such as industrialization and urbanization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Extractive decontamination of heavy metals from CCA contaminated ...

    African Journals Online (AJOL)

    user

    of metal extracted at the contact time of 6 h were 10.41, 12.50, 17.71 and 18.75 mg/kg As using oxalic, malonic, citric and ... Levels of the metals in the decontaminated soil after 6 h of washing were found to be below the target value for all ...... recovery of uranium DAE-BRNS Biennial Symposium on Emerging. Trends in ...

  8. Feasibility study of X-ray K-edge analysis of RCRA heavy metal contamination of sludge packaged in drums

    International Nuclear Information System (INIS)

    Jensen, T.

    1999-01-01

    A study has been completed to assess the capabilities of X-ray K-edge analysis in the measurement of RCRA metal contamination of sludge packaged in drums. Results were obtained for mercury and lead contamination. It was not possible to measure cadmium contamination using this technique. No false positive signals were observed. In cases where uniformity of the sludge can be assumed, this analysis can provide a quick, accurate measurement of heavy-metal contamination

  9. Study of different environmental matrices to access the extension of metal contamination along highways.

    Science.gov (United States)

    Zanello, Sônia; Melo, Vander Freitas; Nagata, Noemi

    2018-02-01

    Metals are indicators of contamination by anthropic activities, such as road traffic. To assess the extent of the metal contamination, more comprehensive studies analyzing different environmental matrices, such as soils, dust, and plants, collected in different sites that are potential sources of these pollutants along the highways, must be prioritized. Samples of soils, dust, and plants were collected alongside the highways of Brazil at 20 sites selected in strategic locations of metal accumulation (Cr, Pb, Zn, As, and Sb) or different situations of the high ways during two rain conditions (wet and dry weeks of sampling): nearby gutters and water supplies, tolls, petrol stations, a federal road police station, and areas associated with agriculture (yearly culture planting upstream of the highway). The geoaccumulation index (metal concentration in the sample of interest/background) varied from 0 to 6, and the decreasing order of contamination by metals during the wet and dry periods were, respectively: Zn > As > Pb = Sb > Cr and Zn > As > Pb > Cr > Sb. In the soils near the highways, the highest concentrations of metals were as follows (mg kg -1 ): As = 15.6, Cr = 81.9, Pb = 39.7, Sb = 5.0, and Zn = 379.3. The highest amounts of these elements in the most superficial layer in soils indicated their addition through atmospheric emissions. The most prominent metal was Sb, whose concentration was greater than the quality limits for soils. The concentration of Sb in soils was higher in the wet week than in the dry week. The emissions from road traffic promoted the increase in metals in the dust on the track, especially Zn and Pb. The highest metal concentrations in grasses (Brachiaria) were found in the roots, except for Sb and Zn, which suggests leaf absorption of atmospheric deposition. Metal contamination was widespread in all studied matrices along the highways.

  10. Assessment of metals contamination of soils in Ulaanbaatar, Mongolia.

    Science.gov (United States)

    Batjargal, Tserennyam; Otgonjargal, Enktur; Baek, Kitae; Yang, Jung-Seok

    2010-12-15

    The purpose of this survey is to investigate the current status of metal pollution of the soil in Ulaanbaatar, the capital city of Mongolia. During the last decade, the city has been rapidly urbanized. Twenty-two soil samples were collected from different parts of the city and analyzed by aqua regia extraction. Generally, metal pollution was not a serious problem in the city and there was no significant evidence of infiltration of metal solutions into subsoil (at a depth of 30 cm). However, it was recently found that the arsenic(As) concentration in the soil was higher than the guideline value and the lead(Pb) content in some samples was higher than normal. The source of As pollution appears to be the coal combustion in three power plants in the city. The sources of the increase in Pb pollution might be the remarkable increase in the number of used vehicles and the increase in the use of leaded fuel in the last few years. To evaluate the leaching potential of heavy metals, sequential extraction was conducted. The quantity of the easily extractable fraction of metals was lower than that of the hardly extractable (residual) fraction. As a result, the leaching potential of heavy metals in Ulaanbaatar was found to be quite low. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Proximal spectral sensing to monitor phytoremediation of metal - contaminated soils

    NARCIS (Netherlands)

    Rathod, P.H.; Rossiter, D.; Noomen, M.; van der Meer, F.D.

    2013-01-01

    Assessment of soil contamination and its long-term monitoring are necessary to evaluate the effectiveness of phytoremediation systems. Spectral sensing-based monitoring methods promise obvious benefits compared to field-based methods: lower cost, faster data acquisition and better spatio-temporal

  12. Removal of metal ions from contaminated water using agricultural residues

    Science.gov (United States)

    Roger M. Rowell

    2006-01-01

    As the world population grows, there is a growing awareness that our environment is getting more polluted. Clean water is becoming a critical issue for many parts of the world for human, animal and agricultural use. Filtration systems to clean our air and water are a growing industry. There are many approaches to removing contaminates from our water supply ranging from...

  13. Microbial and heavy metal contamination of pineapple products ...

    African Journals Online (AJOL)

    SAM

    maximum permissible limits set by Codex Alimentarius Commission (CAC), East African Standards. (EAS) and Rwanda ... permissible Codex and RBS limits with total plate counts >300 CFU/ml and yeasts and mould counts. >300 CFU/ml. ...... maximum levels for certain contaminants in foodstuffs (Text with EEA relevance).

  14. Deciphering heavy metal contamination zones in soils of a granitic ...

    Indian Academy of Sciences (India)

    may enter the food chain or leach down to ground- water and contaminate drinking water resources. (Jeevan ... international airport that has been expanding at a fast pace and now has the distinction of being one of the ...... Abrahams P W 2002 Soils: Their implications to human health; The Science of the Total Environ.

  15. Heavy metal contamination of soil and sediment in Zambia

    African Journals Online (AJOL)

    USER

    Tel: +81-11-706-6949. Fax: +81-11-706-5105. drinking water and inhaling air or soil contaminated by .... washed in 3% HNO3 and rinsed at least twice with distilled water. One gram of each soil or sediment sample ... using a mercury analysis system MA-2000 (Nippon Instruments. Corp., Tokyo, Japan) after preparation of ...

  16. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance

    Science.gov (United States)

    Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T.

    2002-01-01

    To provide the first nationwide reconnaissance of the occurrence of pharmaceuticals, hormones, and other organic wastewater contaminants (OWCs) in water resources, the U.S. Geological Survey used five newly developed analytical methods to measure concentrations of 95 OWCs in water samples from a network of 139 streams across 30 states during 1999 and 2000. The selection of sampling sites was biased toward streams susceptible to contamination (i.e. downstream of intense urbanization and livestock production). OWCs were prevalent during this study, being found in 80% of the streams sampled. The compounds detected represent a wide range of residential, industrial, and agricultural origins and uses with 82 of the 95 OWCs being found during this study. The most frequently detected compounds were coprostanol (fecal steroid), cholesterol (plant and animal steroid), N,N-diethyltoluamide (insect repellant), caffeine (stimulant), triclosan (antimicrobial disinfectant), tri(2-chloroethyl)phosphate (fire retardant), and 4-nonylphenol (nonionic detergent metabolite). Measured concentrations for this study were generally low and rarely exceeded drinking-water guidelines, drinking-water health advisories, or aquatic-life criteria. Many compounds, however, do not have such guidelines established. The detection of multiple OWCs was common for this study, with a median of seven and as many as 38 OWCs being found in a given water sample. Little is known about the potential interactive effects (such as synergistic or antagonistic toxicity) that may occur from complex mixtures of OWCs in the environment. In addition, results of this study demonstrate the importance of obtaining data on metabolites to fully understand not only the fate and transport of OWCs in the hydrologic system but also their ultimate overall effect on human health and the environment.

  17. Environmental impact of ongoing sources of metal contamination on remediated sediments

    International Nuclear Information System (INIS)

    Knox, Anna Sophia; Paller, Michael H.; Milliken, Charles E.; Redder, Todd M.; Wolfe, John R.; Seaman, John

    2016-01-01

    A challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixed amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 h experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p < 0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. These findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination. - Graphical abstract: Conventional methods of remediating contaminated sediments may be inadequate for the protection of benthic organisms when ongoing sources of contamination are present. However, sediment caps with chemically active sequestering agents have the ability to reduce the bioavailable pool of metals in ongoing sources of contamination (red dots), reduce toxicity to

  18. Environmental impact of ongoing sources of metal contamination on remediated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Knox, Anna Sophia, E-mail: anna.knox@srn.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Paller, Michael H., E-mail: michael.paller@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Milliken, Charles E., E-mail: charles.milliken@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Redder, Todd M., E-mail: tredder@limno.com [LimnoTech, Ann Arbor, Minnesota 48108 (United States); Wolfe, John R., E-mail: jwolfe@limno.com [LimnoTech, Ann Arbor, Minnesota 48108 (United States); Seaman, John, E-mail: seaman@srel.uga.edu [Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 (United States)

    2016-09-01

    A challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixed amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 h experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p < 0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. These findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination. - Graphical abstract: Conventional methods of remediating contaminated sediments may be inadequate for the protection of benthic organisms when ongoing sources of contamination are present. However, sediment caps with chemically active sequestering agents have the ability to reduce the bioavailable pool of metals in ongoing sources of contamination (red dots), reduce toxicity to

  19. Sediment contamination of residential streams in the metropolitan kansas city area, USA: Part II. whole-sediment toxicity to the amphipod hyalella azteca

    Science.gov (United States)

    Tao, J.; Ingersoll, C.G.; Kemble, N.E.; Dias, J.R.; Murowchick, J.B.; Welker, G.; Huggins, D.

    2010-01-01

    This is the second part of a study that evaluates the influence of nonpoint sources on the sediment quality of five adjacent streams within the metropolitan Kansas City area, central United States. Physical, chemical, and toxicity data (Hyalella azteca 28-day whole-sediment toxicity test) for 29 samples collected in 2003 were used for this evaluation, and the potential causes for the toxic effects were explored. The sediments exhibited a low to moderate toxicity, with five samples identified as toxic to H. azteca. Metals did not likely cause the toxicity based on low concentrations of metals in the pore water and elevated concentrations of acid volatile sulfide in the sediments. Although individual polycyclic aromatic hydrocarbons (PAHs) frequently exceeded effect-based sediment quality guidelines [probable effect concentrations (PECs)], only four of the samples had a PEC quotient (PEC-Q) for total PAHs over 1.0 and only one of these four samples was identified as toxic. For the mean PEC-Q for organochlorine compounds (chlordane, dieldrin, sum DDEs), 4 of the 12 samples with a mean PEC-Q above 1.0 were toxic and 4 of the 8 samples with a mean PEC-Q above 3.0 were toxic. Additionally, four of eight samples were toxic, with a mean PEC-Q above 1.0 based on metals, PAHs, polychlorinated biphenyls (PCBs), and organochlorine pesticides. The increase in the incidence of toxicity with the increase in the mean PEC-Q based on organochlorine pesticides or based on metals, PAHs, PCBs, and organochlorine pesticides suggests that organochlorine pesticides might have contributed to the observed toxicity and that the use of a mean PEC-Q, rather than PEC-Qs for individual compounds, might be more informative in predicting toxic effects. Our study shows that stream sediments subject to predominant nonpoint sources contamination can be toxic and that many factors, including analysis of a full suite of PAHs and pesticides of both past and present urban applications and the origins of

  20. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination.

    Science.gov (United States)

    Li, Xiaoqi; Meng, Delong; Li, Juan; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan; Cheng, Cheng; Xiao, Yunhua; Liu, Zhenghua; Yan, Mingli

    2017-12-01

    Due to the persistence of metals in the ecosystem and their threat to all living organisms, effects of heavy metal on soil microbial communities were widely studied. However, little was known about the interactions among microorganisms in heavy metal-contaminated soils. In the present study, microbial communities in Non (CON), moderately (CL) and severely (CH) contaminated soils were investigated through high-throughput Illumina sequencing of 16s rRNA gene amplicons, and networks were constructed to show the interactions among microbes. Results showed that the microbial community composition was significantly, while the microbial diversity was not significantly affected by heavy metal contamination. Bacteria showed various response to heavy metals. Bacteria that positively correlated with Cd, e.g. Acidobacteria_Gp and Proteobacteria_thiobacillus, had more links between nodes and more positive interactions among microbes in CL- and CH-networks, while bacteria that negatively correlated with Cd, e.g. Longilinea, Gp2 and Gp4 had fewer network links and more negative interactions in CL and CH-networks. Unlike bacteria, members of the archaeal domain, i.e. phyla Crenarchaeota and Euryarchaeota, class Thermoprotei and order Thermoplasmatales showed only positive correlation with Cd and had more network interactions in CH-networks. The present study indicated that (i) the microbial community composition, as well as network interactions was shift to strengthen adaptability of microorganisms to heavy metal contamination, (ii) archaea were resistant to heavy metal contamination and may contribute to the adaption to heavy metals. It was proposed that the contribution might be achieved either by improving environment conditions or by cooperative interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Mycotoxins: diffuse and point source contributions of natural contaminants of emerging concern to streams.

    Science.gov (United States)

    Kolpin, Dana W; Schenzel, Judith; Meyer, Michael T; Phillips, Patrick J; Hubbard, Laura E; Scott, Tia-Marie; Bucheli, Thomas D

    2014-02-01

    To determine the prevalence of mycotoxins in streams, 116 water samples from 32 streams and three wastewater treatment plant effluents were collected in 2010 providing the broadest investigation on the spatial and temporal occurrence of mycotoxins in streams conducted in the United States to date. Out of the 33 target mycotoxins measured, nine were detected at least once during this study. The detections of mycotoxins were nearly ubiquitous during this study even though the basin size spanned four orders of magnitude. At least one mycotoxin was detected in 94% of the 116 samples collected. Deoxynivalenol was the most frequently detected mycotoxin (77%), followed by nivalenol (59%), beauvericin (43%), zearalenone (26%), β-zearalenol (20%), 3-acetyl-deoxynivalenol (16%), α-zearalenol (10%), diacetoxyscirpenol (5%), and verrucarin A (1%). In addition, one or more of the three known estrogenic compounds (i.e. zearalenone, α-zearalenol, and β-zearalenol) were detected in 43% of the samples, with maximum concentrations substantially higher than observed in previous research. While concentrations were generally low (i.e. applications from exposed livestock) and point (e.g. wastewater treatment plants and food processing plants) sources are important environmental pathways for mycotoxin transport to streams. The ecotoxicological impacts from the long-term, low-level exposures to mycotoxins alone or in combination with complex chemical mixtures are unknown. © 2013.

  2. Metales pesados en hongos de areas contaminadas Heavy metals in wild mushrooms from contaminated areas

    Directory of Open Access Journals (Sweden)

    A. Moyano

    2010-01-01

    organic matter. Mycorrhizal improve their hosts mineral nutrition. The mycorrhizal as­sociations give resistance in contaminated areas to the plants. Sometimes inoculated plants hold up better the contamination that non-inoculated plants. The mycelia absorbs (extracts the soil available fraction and de­crease the heavy metal concentration in the plants. The fruit-bodies can be eaten by many animal specie as well as by humans. Some specie wild fungi have a high nutri­tional value and represent an important eco­nomical resource. Soil, mushrooms and litter were sampled in a lead (Pb-zinc (Zn mine (Soria prov­ince, Spain. The distribution of metals in soil, litter and fungi shows a high concentra­tion of metals in relation to the control ar­eas. The Zn soil contents ranges are 797­3540 mg/kg, Cd: 2.1-10 mg/kg and Pb: 1485-8166 mg/kg, Litter content ranges: (Zn: 92-1475 mg/kg; Cd 0.9-4.2 mg/kg; Pb: 54-2756 mg/kg and fruit-bodies ranges: (Zn 118-915 mg/kg; Cd: 1.2-45.2 mg/kg and Pb 12-1475 mg/kg. The bioacumula­tion factors show high environmental and toxicological risks.

  3. Soil Contamination with Heavy Metals around Jinja Steel Rolling Mills in Jinja Municipality, Uganda

    Directory of Open Access Journals (Sweden)

    Noel Namuhani

    2015-01-01

    Conclusions. The concentration levels of heavy metals around the steel rolling mills did not appear to be of serious concern, except for copper and cadmium, which showed moderate pollution and moderate to strong pollution, respectively. All heavy metals were within the limits of the United States Environmental Protection Agency (USEPA residential soil standards and the Dutch intervention soil standards. Overall, soils around the Jinja steel rolling mills were slightly polluted with heavy metals, and measures therefore need to be taken to prevent further soil contamination with heavy metals.

  4. Assessment of attenuation processes in a chlorinated ethene plume by use of stream bed Passive Flux Meters, streambed Point Velocity Probes and contaminant mass balances

    Science.gov (United States)

    Rønde, V.; McKnight, U. S.; Annable, M. D.; Devlin, J. F.; Cremeans, M.; Sonne, A. T.; Bjerg, P. L.

    2017-12-01

    Chlorinated ethenes (CE) are abundant groundwater contaminants and pose risk to both groundwater and surface water bodies, as plumes can migrate through aquifers to streams. After release to the environment, CE may undergo attenuation. The hyporheic zone is believed to enhance CE attenuation, however studies contradicting this have also been reported. Since dilution commonly reduces contaminant concentrations in streams to below quantification limits, use of mass balances along the pathway from groundwater to stream is unusual. Our study is conducted at the low-land Grindsted stream, Denmark, which is impacted by a contaminant plume. CE have been observed in the stream water; hence our study site provides an unusual opportunity to study attenuation processes in a CE plume as it migrates through the groundwater at the stream bank, through the stream bed and further to the point of fully mixed conditions in the stream. The study undertook the determination of redox conditions and CE distribution from bank to stream; streambed contaminant flux estimation using streambed Passive Flux Meters (sPFM); and quantification of streambed water fluxes using temperature profiling and streambed Point Velocity Probes (SBPVP). The advantage of the sPFM is that it directly measures the contaminant flux without the need for water samples, while the advantage of the SBPVP is its ability to measure the vertical seepage velocity without the need for additional geological parameters. Finally, a mass balance assessment along the plume pathway was conducted to account for any losses or accumulations. The results show consistencies in spatial patterns between redox conditions and extent of dechlorination; between contaminant fluxes from sPFM and concentrations from water samples; and between seepage velocities from SBPVP and temperature-based water fluxes. Mass balances and parent-metabolite compound ratios indicate limited degradation between the bank and the point of fully mixed stream

  5. Lead (Pb) and other metals in New York City community garden soils: factors influencing contaminant distributions

    Science.gov (United States)

    Mitchell, Rebecca G.; Spliethoff, Henry M.; Ribaudo, Lisa N.; Lopp, Donna M.; Shayler, Hannah A.; Marquez-Bravo, Lydia G.; Lambert, Veronique T.; Ferenz, Gretchen S.; Russell-Anelli, Jonathan M.; Stone, Edie B.; McBride, Murray B.

    2014-01-01

    Urban gardens provide affordable fresh produce to communities with limited access to healthy food but may also increase exposure to lead (Pb) and other soil contaminants. Metals analysis of 564 soil samples from 54 New York City (NYC) community gardens found at least one sample exceeding health-based guidance values in 70% of gardens. However, most samples (78%) did not exceed guidance values, and medians were generally below those reported in NYC soil and other urban gardening studies. Barium (Ba) and Pb most frequently exceeded guidance values and along with cadmium (Cd) were strongly correlated with zinc (Zn), a commonly measured nutrient. Principal component analysis suggested that contaminants varied independently from organic matter and geogenic metals. Contaminants were associated with visible debris and a lack of raised beds; management practices (e.g., importing uncontaminated soil) have likely reduced metals concentrations. Continued exposure reduction efforts would benefit communities already burdened by environmental exposures. PMID:24502997

  6. Effect of weak metallic contamination on silicon epitaxial layer and gate oxide integrity

    Energy Technology Data Exchange (ETDEWEB)

    Mello, D.; Coccorese, C.; Ferlito, E.; Sciuto, G.; Ricciari, R.; Barbarino, P.; Astuto, M. [STMicroelectronics, Physics Lab. Stradale primosole, 50 I-95121 Catania (Italy)

    2011-08-15

    The detection of metallic contaminants in microelectronics devices is one of the main issues in production line. In fact they could diffuse rapidly into the silicon bulk and establishing energy states into the silicon energy-band gap. The presence of trace of metals on the silicon surface can also degrade the gate oxide integrity, cause structural defect in silicon epitaxial layers or anomalies in silicon/gate oxide interface. Usually in semiconductor manufacturing superficial metallic contamination is monitored using Total X-ray Reflection Fluorescence spectroscopy (TXRF) and performing specific electrical measurements on dedicated capacitor. In this work a weak contamination, undetected by TXRF analysis, was revealed by Transmission Electron Microscopy (TEM) observing lattice damaging and Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) detecting an anomalous Na distribution in depth profile. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Spatiotemporal trend analysis of metal concentrations in sediments of a residential California stream with toxicity and regulatory implications.

    Science.gov (United States)

    Hall, Lenwood W; Anderson, Ronald D; Killen, William D

    2017-06-07

    The objective of this study was to determine if concentrations of arsenic, cadmium, chromium, copper, lead, nickel and zinc measured in the sediments of a residential stream in California (Pleasant Grove Creek) have changed temporally or spatially from 2006 to 2016. Threshold Effect Levels (TELs), conservative ecological effects benchmarks, and exceedances for the seven metals were also evaluated over the 11-year time period to provide insight into potential metal toxicity to resident benthic communities. In addition, the bioavailability of metals in sediments was also determined by calculating Simultaneous Extracted Metal/Acid Volatle Sulfide (SEM/AVS) ratios to allow an additional assessment of toxicity. Regulatory implications of this data set and the role of metal toxicity are also discussed. Stream-wide temporal trend analysis showed no statistically significant trends for any of the metals. However, spatial analysis for several sites located near storm drains did show a significant increase for most metals over the 11-year period. TEL exceedances during the 7 years of sampling, spanning 2006-2016, were reported for all metals with the number of exceedances ranging from 47 for copper and zinc to 1 for lead. A spatial analysis showed that the highest number of TEL exceedances and the highest number of SEM/AVS ratios greater than one with at least one metal exceeding a TEL occurred at upstream sites. The potentially toxic metal concentrations reported in Pleasant Grove Creek should be used in the 303 (d) listing process for impaired water bodies in California.

  8. Heavy Metal Contamination of Popular Nail Polishes in Iran

    Directory of Open Access Journals (Sweden)

    Golnaz Karimi

    2015-06-01

    Full Text Available Background: Toxic and hazardous heavy metals like arsenic, lead, mercury, zinc, chromium and iron are found in a variety of personal care products, e.g. lipstick, whitening toothpaste, eyeliner and nail color. The nails absorb the pigments of nail polishes and vaporized or soluble metals can easily pass it. The goal of this survey was to assess whether the different colors of nail polishes comply with maximum concentrations of heavy metals in the EPA’s guidelines. Methods: 150 samples of different popular brands of nail polishes in 13 colors (yellow, beige, silver, pink, white, violet, brown, golden, green, black, colorless, red and blue were randomly purchased from beauty shops in Tehran City, Iran, in 2014. Microwave digestion EPA method 3051 was used by a microwave oven to determine the amount of 5 heavy metals; Nickel, Chromium, Lead, Arsenic and Cadmium. One-way ANOVA, Two-way ANOVA, hierarchical cluster, and principal component analyses were applied by Statistica 7.0 software. Results: The concentrations of chrome, lead, nickel and arsenic showed significant differences between the colors (p<0.05. In all studied samples, the level of cadmium was beyond the safe maximum permissible limit (MPS, but no significance difference in the cadmium content was identified. Conclusion: Due to the high concentrations of toxic metals in many brands of nail polishes, meticulous quality control is recommended for these beauty products.

  9. Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area

    International Nuclear Information System (INIS)

    Zhang Junhui; Hang Min

    2009-01-01

    Paddy soil samples taken from different sites in an old primitive electronic-waste (e-waste) processing region were examined for eco-toxicity and metal contamination. Using the environmental quality standard for soils (China, Grade II) as reference, soil samples of two sites were weakly contaminated with trace metal, but site G was heavily contaminated with Cd (6.37 mg kg -1 ), and weakly contaminated with Cu (256.36 mg kg -1 ) and Zn (209.85 mg kg -1 ). Zn appeared to be strongly bound in the residual fraction (72.24-77.86%), no matter the soil was metal contaminated or not. However, more than 9% Cd and 16% Cu was present in the non-residual fraction in the metal contaminated soils than in the uncontaminated soil, especially for site G and site F. Compared with that of the control soil, the micronucleus rates of site G and site F soil treatments increased by 2.7-fold and 1.7-fold, respectively. Low germination rates were observed in site C (50%) and site G (50%) soil extraction treated rice seeds. The shortest root length (0.2377 cm) was observed in site G soil treated groups, which is only 37.57% of that of the control soil treated groups. All of the micronucleus ratio of Vicia faba root cells, rice germination rate and root length after treatment of soil extraction indicate the eco-toxicity in site F and G soils although the three indexes are different in sensitivity to soil metal contamination.

  10. Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India

    Science.gov (United States)

    Giri, Soma; Singh, Abhay Kumar; Mahato, Mukesh Kumar

    2017-06-01

    The study was intended to investigate the heavy metal contamination in the agricultural soils of the copper mining areas in Singhbhum shear zone, India. The total concentrations of the metals were determined by inductively coupled plasma-mass spectrometer (ICPMS). Pollution levels were assessed by calculating enrichment factor (EF), geo-accumulation index (I_geo), contamination factors (CF), pollution load index ( PLI), Nemerow index and ecological risk index (RI). The metal concentrations in the soil samples exceeded the average shale values for almost all the metals. Principal component analysis resulted in extraction of three factors explaining 82.6% of the data variability and indicated anthropogenic contribution of Cu, Ni, Co, Cr, Mn and Pb. The EF and I_geo values indicated very high contamination with respect to Cu followed by As and Zn in the agricultural soils. The values of PLI, RI and Nemerow index, which considered the overall effect of all the studied metals on the soils, revealed that 50% of the locations were highly polluted with respect to metals. The pollution levels varied with the proximity to the copper mining and processing units. Consequently, the results advocate the necessity of periodic monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution.

  11. Metal contamination in benthic macroinvertebrates in a sub-basin in the southeast of Brazil.

    Science.gov (United States)

    Chiba, W A C; Passerini, M D; Tundisi, J G

    2011-05-01

    Benthic macroinvertebrates have many useful properties that make possible the use of these organisms as sentinel in biomonitoring programmes in freshwater. Combined with the characteristics of the water and sediment, benthic macroinvertebrates are potential indicators of environmental quality. Thus, the spatial occurrence of potentially toxic metals (Al, Zn, Cr, Co, Cu, Fe, Mn and Ni) in the water, sediment and benthic macroinvertebrates samples were investigated in a sub-basin in the southeast of Brazil in the city of São Carlos, São Paulo state, with the aim of verifying the metals and environment interaction with benthic communities regarding bioaccumulation. Hypothetically, there can be contamination by metals in the aquatic environment in the city due to lack of industrial effluent treatment. All samples were analysed by the USEPA adapted method and processed in an atomic absorption spectrophotometer. The sub-basin studied is contaminated by toxic metals in superficial water, sediment and benthic macroinvertebrates. The Bioaccumulation Factor showed a tendency for metal bioaccumulation by the benthic organisms for almost all the metal species. The results show a potential human and ecosystem health risk, contributing to metal contamination studies in aquatic environments in urban areas.

  12. Metal contamination in benthic macroinvertebrates in a sub-basin in the southeast of Brazil

    Directory of Open Access Journals (Sweden)

    WAC Chiba

    Full Text Available Benthic macroinvertebrates have many useful properties that make possible the use of these organisms as sentinel in biomonitoring programmes in freshwater. Combined with the characteristics of the water and sediment, benthic macroinvertebrates are potential indicators of environmental quality. Thus, the spatial occurrence of potentially toxic metals (Al, Zn, Cr, Co, Cu, Fe, Mn and Ni in the water, sediment and benthic macroinvertebrates samples were investigated in a sub-basin in the southeast of Brazil in the city of São Carlos, São Paulo state, with the aim of verifying the metals and environment interaction with benthic communities regarding bioaccumulation. Hypothetically, there can be contamination by metals in the aquatic environment in the city due to lack of industrial effluent treatment. All samples were analysed by the USEPA adapted method and processed in an atomic absorption spectrophotometer. The sub-basin studied is contaminated by toxic metals in superficial water, sediment and benthic macroinvertebrates. The Bioaccumulation Factor showed a tendency for metal bioaccumulation by the benthic organisms for almost all the metal species. The results show a potential human and ecosystem health risk, contributing to metal contamination studies in aquatic environments in urban areas.

  13. Metal contamination in zebra mussels (Dreissena polymorpha) along the St. Lawrence River.

    Science.gov (United States)

    Kwan, K H Michael; Chan, Hing Man; de Lafontaine, Yves

    2003-01-01

    In order to evaluate the use of zebra mussels as biomonitors for metal bioavailability in the St. Lawrence River, we tested the hypothesis that the concentrations of 11 metals in zebra mussels vary significantly between sites along the river and that the season of collection and body size affect metal bioaccumulation. Mussels were collected at 14 sites during June 1996 and at monthly intervals at one site. Specimens were grouped in three size classes and their soft tissue was analyzed for As, Ca, Cd, Cr, Hg, Mn, Ni, Pb, Se, and Zn. Significant size effects were found for Ca, Cd, Cr, Cu, Ni and Zn. Spatial and seasonal variations in bioconcentration were significant for all metals. Spatial patterns in contamination that corresponded to known point sources of pollution or hydrology of the river were identified by principal component analysis. Seasonal variations can be attributed to the reproductive cycle of mussels and hydrological variability of the river. In comparison with values reported for zebra mussels in other contaminated sites in North America and Europe, levels of metal in the St. Lawrence River are low or intermediate. Our results show that when controlled for size and seasonal effects, zebra mussels represent a useful biomonitor for metal availability in the river and may offer an interesting alternative to native mussels and fish for such a role. Local contamination by some toxic metals is still a cause for concern in the St. Lawrence River.

  14. EXTRACTION, RECOVERY, AND BIOSTABILITY OF EDTA FOR REMEDIATION OF HEAVY METAL-CONTAMINATED SOIL. (R825549C052)

    Science.gov (United States)

    Chelation removal of heavy metals from contaminated soil is seen as a viable remediation technique. A useful chelating agent should be strong, reusable, and biostable during metal extraction and recovery operations. This work tested the extraction, recovery, and biostability o...

  15. Metal Contamination In Plants Due To Tannery Effluent

    Directory of Open Access Journals (Sweden)

    Md. Farhad Ali

    2015-08-01

    Full Text Available Abstract This paper analyzes the determination of heavy metals named Chromium Lead and Cadmium deposited in soil as well as in the plants and vegetables due to the tanning industries of the area of Hazaribagh Dhaka. The tanneries discharge untreated tannery effluents which get mixed with the soil water of rivers and canals in this area. The determination of metals was performed for the soil that was collected from the land adjacent to the canals which bear untreated tannery effluents. The soil is affected with the untreated effluents through the deposition of heavy metals. The metals were furthers deposited into the plants and vegetables grown on that soil. The roots stems and leaves of the plants of Jute Corchorus capsularis and Spinach Basella alba grown on that soil were analyzed for determining these metals. Extreme amount of chromium was found for plants and again Lead Cadmium were found in higher amount in these parts of the two plants. These two plants are taken as a popular vegetables extensively. In case of soil the amount of Chromium Lead and Cadmium were analyzed as 87 mgL 0.131 mgL and 0.190 mgL respectively. For the roots stems and leaves of Jute Corchorus capsularis the average values are 115.62 mgL for Chromium 11.25 mgL for Lead and 2.27 mgL for Cadmium respectively. Again in case of Spinach Basella alba 124.42 mgL was found for Chromium 7.38 mgL for lead and 2.97 mgL for Cadmium as average values for these parts of the two trees. All the observed values of metals of Chromium Lead and Cadmium are higher than the permissible and specially for Chromium the amount is extremely higher.

  16. Surfactant-induced mobilisation of trace metals from estuarine sediment: Implications for contaminant bioaccessibility and remediation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anu [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Turner, Andrew [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: aturner@plymouth.ac.uk

    2009-02-15

    The mobilisation of metals (Al, Fe, Cd, Cu, Mn, Ni, Pb, Sn, Zn) from contaminated estuarine sediment has been examined using commercially available surfactants. Metal release by the anionic surfactant, sodium dodecyl sulphate (SDS), increased with increasing amphiphile concentration up to and above its critical micelle concentration (CMC). Metal mobilisation by the bile acid salt, sodium taurocholate, and the nonionic surfactant, Triton X-100, however, did not vary with amphiphile concentration. SDS was the most efficient surfactant in mobilising metals from the sample, and Cd, Cu and Ni were released to the greatest extents (12-18% of total metal at [SDS] > CMC). Metal mobilisation appeared to proceed via complexation with anionic amphiphiles and denudation of hydrophobic host phases. Surfactants may play an important role in the solubilisation of metals in the digestive environment of deposit-feeding animals and, potentially, in the remediation of metal-contaminated soil and sediment. - Significant quantities of metals are mobilised from estuarine sediment by commercially available surfactants.

  17. A new cleaning process for the metallic contaminants on a post-CMP wafer's surface

    International Nuclear Information System (INIS)

    Gao Baohong; Liu Yuling; Wang Chenwei; Wang Shengli; Zhou Qiang; Tan Baimei; Zhu Yadong

    2010-01-01

    This paper presents a new cleaning process using boron-doped diamond (BDD) film anode electrochemical oxidation for metallic contaminants on polished silicon wafer surfaces. The BDD film anode electrochemical oxidation can efficiently prepare pyrophosphate peroxide, pyrophosphate peroxide can oxidize organic contaminants, and pyrophosphate peroxide is deoxidized into pyrophosphate. Pyrophosphate, a good complexing agent, can form a metal complex, which is a structure consisting of a copper ion, bonded to a surrounding array of two pyrophosphate anions. Three polished wafers were immersed in the 0.01 mol/L CuSO 4 solution for 2 h in order to make comparative experiments. The first one was cleaned by pyrophosphate peroxide, the second by RCA (Radio Corporation of America) cleaning, and the third by deionized (DI) water. The XPS measurement result shows that the metallic contaminants on wafers cleaned by the RCA method and by pyrophosphate peroxide is less than the XPS detection limits of 1 ppm. And the wafer's surface cleaned by pyrophosphate peroxide is more efficient in removing organic carbon residues than RCA cleaning. Therefore, BDD film anode electrochemical oxidation can be used for microelectronics cleaning, and it can effectively remove organic contaminants and metallic contaminants in one step. It also achieves energy saving and environmental protection. (semiconductor technology)

  18. Chelant extraction and REDOX manipulation for mobilization of heavy metals from contaminated soils

    International Nuclear Information System (INIS)

    Brewster, M.D.; Peters, R.W.; Miller, G.A.; Patton, T.L.; Martino, L.E.

    1994-01-01

    Was the result of open burning and open detonation of chemical agents and munitions in the Toxic Burning Pits area at J-Field, located in the Edgewood Area of Aberdeen Proving Ground in Harford County, Maryland, soils have been contaminated with heavy metals. Simultaneous extraction is complicated because of the multitude of contaminant forms that exist. This paper uses data from a treatability study performed at Argonne National Laboratory to discuss and compare several treatment methods that were evaluated for remediating metals-contaminated soils. J-Field soils were subjected to a series of treatability experiments designed to determine the feasibility of using soil washing/soil flushing, enhancements to soil washing/soil flushing, solidification/stabilization, and electrokinetics for remediating soils contaminated with metals. Chelating and mobilizing agents evaluated included ammonium acetate, ethylenediaminetetraacetic acid, citric acid, Citranox, gluconic acid, phosphoric acid, oxalic acid, and nitrilotriacetic acid, in addition to pH-adjusted water. REDOX manipulation can maximize solubilities, increase desorption, and promote removal of heavy metal contaminants. Reducing agents that were studied included sodium borohydride, sodium metabisulfite, and thiourea dioxide. The oxidants studied included hydrogen peroxide, sodium percarbonate, sodium hypochlorite, and potassium permanganate. This paper summaries the results from the physical/chemical characterization, soil washing/soil flushing, and enhancements to soil washing/soil flushing portions of the study

  19. Heavy metal sedimentary record in a Galician Ria (NW Spain): background values and recent contamination.

    Science.gov (United States)

    Cobelo-García, Antonio; Prego, Ricardo

    2003-10-01

    Two long sediment cores were sampled at the Ferrol Ria (Galicia, NW Spain) and the heavy metal (Co, Cr, Cu, Fe, Ni, Pb and Zn) concentrations measured in order to (i) state accurate background values providing baseline relationships with respect to a reference element and (ii) to investigate the recent metal contamination trends. Background values were found to agree well with the world average values for granite/schists-genisses rocks. However, Cu, Co, Pb and Zn were found to be lower than those previously reported as background values for the Galician Rias. Results emphasize the importance of using baseline relationships with respect to a normalizing element in order to reduce the scattering of data and to allow an accurate statement of background values. The distribution of metals in the cores showed an evident enrichment in the surface layers belonging to the industrial era. Normalized enrichment factors (NEF) for copper and zinc are in the order of 3-5 (certain/severe contamination) in the surface sediments, decreasing with depth. Lead contamination has decreased in the recent years from NEF of 3-7 down to a NEF of 2 (i.e. moderate contamination), probably due to the introduction of unleaded gasolines. Chromium, cobalt and nickel NEFs were always in the <1-2 range indicating null/low contamination by these metals.

  20. The DOE's radioactively contaminated metal recycling: The policy and its implementation

    International Nuclear Information System (INIS)

    Warren, S.; Rizkalla, E.

    1997-01-01

    Millions of tons of potentially recoverable materials have accumulated over the years at U.S. DOE sites and facilities now undergrowing environmental restoration. These materials include thousands of tones of scrap metals, both radioactively contaminated and not. This article discusses the DOE's policy on contaminated metal recycling and its implementation in the following topic areas: the recycling policy concept; an innovative policy development approach; the policy itself; stakeholder input into the final policy; innovative approaches to implementation; other recycling initiatives; standardized LLW disposal container development. 3 figs

  1. Review in Strengthening Technology for Phytoremediation of Soil Contaminated by Heavy Metals

    Science.gov (United States)

    Wu, Chishan; Zhang, Xingfeng; Deng, Yang

    2017-07-01

    In view of current problems of phytoremediation technology, this paper summarizes research progress for phytoremediation technology of heavy metal contaminated soil. When the efficiency of phytoremediation may not meet the demand in practice of contaminated soil or water. Effective measures should be taken to improve the plant uptake and translocation. This paper focuses on strengthening technology mechanism, which can not only increase the biomass of plant and hyperaccumulators, but also enhance the tolerance and resistance to heavy metals, and application effect of phytoremediation, including agronomic methods, earthworm bioremediation and chemical induction technology. In the end of paper, deficiencies of each methods also be discussed, methods of strengthening technology for phytoremediation need further research.

  2. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Martim P. S. R.; Correia, António Alberto S., E-mail: aalberto@dec.uc.pt [University of Coimbra, Department of Civil Engineering, CIEPQPF—Chemical Process Engineering and Forest Products Research Centre (Portugal); Rasteiro, Maria G. [University of Coimbra, Department of Chemical Engineering, CIEPQPF (Portugal)

    2017-04-15

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb{sup 2+}), copper (Cu{sup 2+}), nickel (Ni{sup 2+}), and zinc (Zn{sup 2+}), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  3. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.

    Science.gov (United States)

    Antonkiewicz, Jacek; Para, Andrzej

    2016-01-01

    Products of the reaction between dialdehyde starch and Y-NH2 compounds (e.g. semicarbazide or hydrazine) are effective ligands for metal ions. The usefulness of these derivatives was tested in the experiment, both in terms of the immobilization of heavy metal ions in soil and the potential application in phytoextraction processes. The experimental model comprised maize and the ions of such metals as: Zn(II), Pb(II), Cu(II), Cd(II), and Ni(II). The amount of maize yield, as well as heavy metal content and uptake by the aboveground parts and roots of maize, were studied during a three-year pot experiment. The results of the study indicate the significant impact of heavy metals on reduced yield and increased heavy metal content in maize. Soil-applied dialdehyde starch derivatives resulted in lower yields, particularly disemicarbazone (DASS), but in heavy metal-contaminated soils they largely limited the negative impact of these metals both on yielding and heavy metal content in plants, particularly dihydrazone (DASH). It was demonstrated that the application of dihydrazone (DASH) to a soil polluted with heavy metals boosted the uptake of Zn, Pb, Cu, and Cd from the soil, hence there is a possibility to use this compound in the phytoextraction of these metals from the soil. Decreased Ni uptake was also determined, hence the possibility of using this compound in the immobilization of this metal. The study showed that dialdehyde starch disemicarbazone was ineffective in the discussed processes.

  4. Anthropogenic metal contamination and sapropel imprints in deep Mediterranean sediments

    International Nuclear Information System (INIS)

    Angelidis, M.O.; Radakovitch, O.; Veron, A.; Aloupi, M.; Heussner, S.; Price, B.

    2011-01-01

    Research highlights: → Metal pollution was recorded in deep Mediterranean sediments. → Atmospheric imprint was characterized with radioactive and stable Pb isotopes. → 210 Pb data suggests metal pollution from atmospheric deposition. → Pollutant Pb input to the western basin is 20-25% of coastal atmospheric inventories. → Trace element redistribution is associated with sapropel and turbidite events. - Abstract: Sediment cores from the deep Balearic basin and the Cretan Sea provide evidence for the accumulation of Cd, Pd and Zn in the top few centimeters of the abyssal Mediterranean sea-bottom. In both cores, 206Pb/207Pb profiles confirm this anthropogenic impact with less radiogenic imprints toward surface sediments. The similarity between excess 210Pb accumulated in the top core and the 210Pb flux suggests that top core metal inventories reasonably reflect long-term atmospheric deposition to the open Mediterranean. Pb inventory in the western core for the past 100 years represents 20-30% of sediment coastal inventories, suggesting that long-term atmospheric deposition determined from coastal areas has to be used cautiously for mass balance calculations in the open Mediterranean. In the deeper section of both cores, Al normalized trace metal profiles suggest diagenetic remobilization of Fe, Mn, Cu and, to a lesser extent, Pb that likely corresponds to sapropel event S1.

  5. Heavy metal and faecal bacterial contamination of urban lakes in ...

    African Journals Online (AJOL)

    Concentrations of faecal bacteria and heavy metals (Cr, Cd, Hg, Pb and Zn) were measured in fish, mud and water from two urban lakes in Yaoundé, Cameroon. The mean densities of faecal coliforms (FC) and faecal streptococci (FS) in water were 6 160 ± 8 493CFU 100ml-1 and 387 ± 320CFU 100ml-1, respectively, ...

  6. Heavy metal contamination of selected spices obtained from Nigeria ...

    African Journals Online (AJOL)

    In this study, the levels of trace metals (Cd, Cr, Cu, Co, Fe, Mn, Ni, Mo, Pb, Zn) in twenty two spices representing four spice groups (seeds, bulbs, leaves, fruit pods and rhizome) from a major market in Northern Nigeria were determined using atomic absorption spectroscopy, and assessed based on regulatory standards.

  7. Microbial and heavy metal contamination of pineapple products ...

    African Journals Online (AJOL)

    The samples were tested for yeasts and moulds, total plate counts, Faecal coliforms, total coliforms, Escherichia coli, Salmonella, Shigella and Staphylococcus aureus using tested International Organization for Standardization (ISO) microbial determination methods. Quantitative determination of heavy metals: zinc, iron, ...

  8. Assessment of heavy metal contamination of Robertkiri oil field's soil ...

    African Journals Online (AJOL)

    The soil reaction was within the acidic pH range, while moderate to high organic matter contents were recorded. Heavy metals measured in the soil showed varying concentrations among sample locations within the field. Some levels of significant difference (p<0.05) were observed for nickel and mercury concentrations ...

  9. Deciphering heavy metal contamination zones in soils of a granitic ...

    Indian Academy of Sciences (India)

    Manufacturing industries producing chemicals, pharmaceuticals, batteries, foundries, metal plating and plastic product have engulfed the area. Most of these industries directly ..... glass manufacturing units and poultry farms. These anthropogenic activities pollute the soil both directly as well as indirectly. The detailed discus-.

  10. Assessment of Metallic Contaminants in Grinded Millet using ...

    African Journals Online (AJOL)

    OLUWASOGO

    millet using magnetic bed along with sedimentation and decantation. The extracted materials were then quantified to ... whenever we eat these grinded food items. These iron filings and metallic inclusions are heavy ... grinding disc from the same manufacturer, magnetic bed, electronic weighing scales, measuring cylinder, ...

  11. Innovative technologies for recycling contaminated concrete and scrap metal

    International Nuclear Information System (INIS)

    Bossart, S.J.; Moore, J.

    1993-01-01

    Decontamination and decommissioning of US DOE's surplus facilities will generate enormous quantities of concrete and scrap metal. A solicitation was issued, seeking innovative technologies for recycling and reusing these materials. Eight proposals were selected for award. If successfully developed, these technologies will enable DOE to clean its facilities by 2019

  12. Optimal selection of biochars for remediating metals contaminated mine soils

    Science.gov (United States)

    Approximately 500,000 abandoned mines across the U.S. pose a considerable, pervasive risk to human health and the environment due to possible exposure to the residuals of heavy metal extraction. Historically, a variety of chemical and biological methods have been used to reduce ...

  13. evaluation of metal contaminants of surface water sources in an ...

    African Journals Online (AJOL)

    SAMSUNG

    This study evaluated the potential health risks associated with domestic use of surface water from an active Pb-Zn mine pit, compared to a ... about the health and environmental risks associated with high levels of metal ... S. O. Ngele, Department of Industrial Chemistry, Ebonyi State University Abakaliki, Nigeria. E. J. Itumoh ...

  14. METAL CONTAMINATION AT DUMP SITES IN MAKURDI, NIGERIA ...

    African Journals Online (AJOL)

    Samples were pretreated, digested by aqua regia and the resulting solution analyzed for Fe, Zn, Cu, Pb and Cd using atomic absorption spectrophotometer ... Result shows that extraction rates (mobility) were in the order Zn>Cd>Cu>Pd> Fe which may be due to differences in geochemical behaviour of metals in the soil.

  15. Deciphering heavy metal contamination zones in soils of a granitic ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 4 ... The spatial variation maps deciphering different zones of heavy metal concentration in the soil were generated in a GIS (geographic information system) based environment ... Department of Geology, Osmania University, Hyderabad 500 007, India.

  16. Metal contamination of agricultural soils in the copper mining areas ...

    Indian Academy of Sciences (India)

    Soma Giri

    2017-06-07

    Jun 7, 2017 ... 2001; Prüss-Ustün et al. 2011). The study area falls in the Singhbhum shear zone (SSZ) which is known for its rich mineral deposits and production of copper and uranium ores. Although, few studies were carried out on the heavy metal distribution in the sediments, surface and groundwater sources and fish ...

  17. Heavy metal contamination of Clarias gariepinus from a lake and ...

    African Journals Online (AJOL)

    Adult Clarias gariepinus (African Catfish) were purchased from Eleiyele Lake and Zartech fish farm in Ibadan. Water samples were also collected in February (dry season) and June (rainy season), 2002. Gill, bone, intestine, muscle and water samples were analyzed for five metals: manganese, copper, zinc, iron, and ...

  18. Bacterial community structure and abundances of antibiotic resistance genes in heavy metals contaminated agricultural soil.

    Science.gov (United States)

    Zhang, Fengli; Zhao, Xiaoxue; Li, Qingbo; Liu, Jia; Ding, Jizhe; Wu, Huiying; Zhao, Zongsheng; Ba, Yue; Cheng, Xuemin; Cui, Liuxin; Li, Hongping; Zhu, Jingyuan

    2018-01-22

    Soil contamination with heavy metals is a worldwide problem especially in China. The interrelation of soil bacterial community structure, antibiotic resistance genes, and heavy metal contamination in soil is still unclear. Here, seven agricultural areas (G1-G7) with heavy metal contamination were sampled with different distances (741 to 2556 m) to the factory. Denaturing gradient gel electrophoresis (DGGE) and Shannon index were used to analyze bacterial community diversity. Real-time fluorescence quantitative PCR was used to detect the relative abundance of ARGs sul1, sul2, tetA, tetM, tetW, one mobile genetic elements (MGE) inti1. Results showed that all samples were polluted by Cadmium (Cd), and some of them were polluted by lead (Pb), mercury (Hg), arsenic (As), copper (Cu), and zinc (Zn). DGGE showed that the most abundant bacterial species were found in G7 with the lightest heavy metal contamination. The results of the principal component analysis and clustering analysis both showed that G7 could not be classified with other samples. The relative abundance of sul1 was correlated with Cu, Zn concentration. Gene sul2 are positively related with total phosphorus, and tetM was associated with organic matter. Total gene abundances and relative abundance of inti1 both correlated with organic matter. Redundancy analysis showed that Zn and sul2 were significantly related with bacterial community structure. Together, our results indicate a complex linkage between soil heavy metal concentration, bacterial community composition, and some global disseminated ARG abundance.

  19. Risks to humans and wildlife from metal contamination in soils/sediments at CERCLA sites

    International Nuclear Information System (INIS)

    Hitch, J.P.; Hovatter, P.S.; Opresko, D.M.; Sample, B.; Young, R.A.

    1994-01-01

    A common problem that occurs at DOD and DOE CERCLA sites is metal contamination in soils and aquatic sediments and the protection of humans and wildlife from potential exposure to this contamination. Consequently, the authors have developed a site-specific reference dose for mercury in sediments at the Oak Ridge Reservation and site-specific cleanup levels for certain metals, including arsenic and nickel, in soils at an Army ammunition plant. Another concern during remediation of these sites is that limited data are available to determine the direct risks to indigenous wildlife. Therefore, the authors have developed toxicological benchmarks for certain metals and metal compounds to be used as screening tools to determine the potential hazard of a contaminant to representative mammalian and avian wildlife species. These values should enable the Army and DOE to more accurately determine the risks to humans and wildlife associated with exposure to these contaminated media at their sites in order to achieve a more effective remediation. This effort is ongoing at ORNL with toxicological benchmarks also being developed for metal compounds and other chemicals of concern to DOD and DOE in order to address the potential hazard to

  20. The Research of Nanoparticle and Microparticle Hydroxyapatite Amendment in Multiple Heavy Metals Contaminated Soil Remediation

    Directory of Open Access Journals (Sweden)

    Zhangwei Li

    2014-01-01

    Full Text Available It was believed that when hydroxyapatite (HAP was used to remediate heavy metal-contaminated soils, its effectiveness seemed likely to be affected by its particle size. In this study, a pot trial was conducted to evaluate the efficiency of two particle sizes of HAP: nanometer particle size of HAP (nHAP and micrometer particle size of HAP (mHAP induced metal immobilization in soils. Both mHAP and nHAP were assessed for their ability to reduce lead (Pb, zinc (Zn, copper (Cu, and chromium (Cr bioavailability in an artificially metal-contaminated soil. The pakchoi (Brassica chinensis L. uptake and soil sequential extraction method were used to determine the immobilization and bioavailability of Pb, Zn, Cu, and Cr. The results indicated that both mHAP and nHAP had significant effect on reducing the uptake of Pb, Zn, Cu, and Cr by pakchoi. Furthermore, both mHAP and nHAP were efficient in covering Pb, Zn, Cu, and Cr from nonresidual into residual forms. However, mHAP was superior to nHAP in immobilization of Pb, Zn, Cu, and Cr in metal-contaminated soil and reducing the Pb, Zn, Cu, and Cr utilized by pakchoi. The results suggested that mHAP had the better effect on remediation multiple metal-contaminated soils than nHAP and was more suitable for applying in in situ remediation technology.

  1. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils.

    Science.gov (United States)

    Sharma, Swati; Tiwari, Sakshi; Hasan, Abshar; Saxena, Varun; Pandey, Lalit M

    2018-04-01

    Remediation of heavy metal-contaminated soils has been drawing our attention toward it for quite some time now and a need for developing new methods toward reclamation has come up as the need of the hour. Conventional methods of heavy metal-contaminated soil remediation have been in use for decades and have shown great results, but they have their own setbacks. The chemical and physical techniques when used singularly generally generate by-products (toxic sludge or pollutants) and are not cost-effective, while the biological process is very slow and time-consuming. Hence to overcome them, an amalgamation of two or more techniques is being used. In view of the facts, new methods of biosorption, nanoremediation as well as microbial fuel cell techniques have been developed, which utilize the metabolic activities of microorganisms for bioremediation purpose. These are cost-effective and efficient methods of remediation, which are now becoming an integral part of all environmental and bioresource technology. In this contribution, we have highlighted various augmentations in physical, chemical, and biological methods for the remediation of heavy metal-contaminated soils, weighing up their pros and cons. Further, we have discussed the amalgamation of the above techniques such as physiochemical and physiobiological methods with recent literature for the removal of heavy metals from the contaminated soils. These combinations have showed synergetic effects with a many fold increase in removal efficiency of heavy metals along with economic feasibility.

  2. The effect of flow heterogeneity on the mobilization of colloids from metal-contaminated soils

    Science.gov (United States)

    Denovio, N. M.; Ryan, J. N.

    2003-12-01

    In vadose zone soils, colloid-facilitated transport has been shown to play a significant role in contaminant transport because colloids are abundant and the kinetics of contaminant desorption are likely to be slow relative to the time scale for colloid transport through the unsaturated zone. Understanding the rate of colloid generation and transport with respect to the surface area available for contaminant sorption and chemical composition of these colloids is critical for predicting colloid-facilitated transport. Soil cores (approximately 20 cm3)obtained from the Arkansas River Valley in Leadville, Colorado, where there is significant metal contamination, were leached at three rainfall rates corresponding to 10-, 20-, and 100-year storm events. Effluent water samples were collected with a 2.5 cm spatial resolution at the base of the column. Samples were analyzed for colloid concentration, size and metal elements (Pb, Zn, Cu) in addition to Al, Si, and other metals. Despite significant variability in the spatial distribution of water flow, there was little to no variability in the rate of colloid generation, size of the colloids, or heavy metal generation within a time step. Generally, colloid size appeared to increase during the course of the experiments and greater concentrations of heavy metals were generated with increasing duration of each rainfall event.

  3. Adverse events associated with metal contamination of traditional chinese medicines in Korea: a clinical review.

    Science.gov (United States)

    Kim, Hyunah; Hughes, Peter J; Hawes, Emily M

    2014-09-01

    This study was performed to review studies carried out in Korea reporting toxic reactions to traditional Chinese medicines (TCMs) as a result of heavy metal contamination. PubMed (1966-August 2013) and International Pharmaceutical Abstracts (1965-August 2013) were searched using the medical subject heading terms of "Medicine, Chinese Traditional," "Medicine, Korean Traditional," "Medicine, Traditional," "Metals, Heavy," and "Drug Contamination". For Korean literature, Korea Med (http://www.koreamed.org), the Korean Medical Database (http://kmbase.medric.or.kr), National Discovery for Science Leaders (www.ndsl.kr), Research Information Sharing Service (http://www.riss.kr), and Google Scholar were searched using the terms "Chinese medicine," "Korean medicine," "herbal medicine," and "metallic contamination" in Korean. Bibliographies of case reports and case series, identified using secondary resources, were also utilized. Only literature describing cases or studies performed in Korea were included. Case reports identified clear issues with heavy metal, particularly lead, contamination of TCMs utilized in Korea. No international standardization guidelines for processing, manufacturing and marketing of herbal products exist. Unacceptably high levels of toxic metals can be present in TCM preparations. Health care providers and patients should be educated on the potential risks associated with TCMs. International advocacy for stricter standardization procedures for production of TCMs is warranted.

  4. Source identification of heavy metal contamination using metal association and Pb isotopes in Ulsan Bay sediments, East Sea, Korea

    International Nuclear Information System (INIS)

    Chae, Jung Sun; Choi, Man Sik; Song, Yun Ho; Um, In Kwon; Kim, Jae Gon

    2014-01-01

    Highlights: • The levels of Cu, Zn, and Pb in sediments were higher than the Korean TEL at one-third of all sites. • The primary source of metal contamination came from activities related to nonferrous metal refineries near Onsan Harbor. • Three different anthropogenic sources and background sediments could be identified as endmembers using Pb isotopes. • The major anthropogenic Pb sources were identified as imported ores from Australia and Peru. • Isotope ratios in anthropogenic Pb discharged from Ulsan Bay to offshore could be identified. - Abstract: To determine the characteristics of metal pollution sources in Ulsan Bay, East Sea, 39 surface and nine core sediments were collected within the bay and offshore area, and analyzed for metals and stable lead (Pb) isotopes. Most surface sediments (>95% from 48 sites) had high copper (Cu), zinc (Zn), cadmium (Cd), and Pb concentrations that were as much as 1.3 times higher than background values. The primary source of metal contamination came from activities related to nonferrous metal refineries near Onsan Harbor, and the next largest source was from shipbuilding companies located at the mouth of the Taehwa River. Three different anthropogenic sources and background sediments could be identified as end-members using Pb isotopes. Isotopic ratios for the anthropogenic Pb revealed that the sources were imported ores from Australia, Peru, and the United States. In addition, Pb isotopes of anthropogenic Pb discharged from Ulsan Bay toward offshore could be determined

  5. Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site.

    Science.gov (United States)

    Quan, Sheng-Xiang; Yan, Bo; Yang, Fan; Li, Ning; Xiao, Xian-Ming; Fu, Jia-Mo

    2015-01-01

    The total concentrations of 12 heavy metals in surface soils (SS, 0-20 cm), middle soils (MS, 30-50 cm) and deep soils (DS, 60-80 cm) from an acid-leaching area, a deserted paddy field and a deserted area of Guiyu were measured. The results showed that the acid-leaching area was heavily contaminated with heavy metals, especially in SS. The mean concentrations of Ni, Cu, Zn, Cd, Sn, Sb and Pb in SS from the acid-leaching area were 278.4, 684.1, 572.8, 1.36, 3,472, 1,706 and 222.8 mg/kg, respectively. Heavy metal pollution in the deserted paddy field was mainly concentrated in SS and MS. The average values of Sb in SS and MS from the deserted paddy field were 16.3 and 20.2 mg/kg, respectively. However, heavy metal contamination of the deserted area was principally found in the DS. Extremely high concentrations of heavy metals were also observed at some special research sites, further confirming that the level of heavy metal pollution was very serious. The geoaccumulation index (Igeo) values revealed that the acid-leaching area was severely polluted with heavy metals in the order of Sb > Sn > Cu > Cd > Ni > Zn > Pb, while deserted paddy field was contaminated predominately by metals in the order of Sb > Sn > Cu. It was obvious that the concentrations of some uncommon contaminants, such as Sb and Sn, were higher than principal contaminants, such as Ni, Cu, Zn and Pb, suggesting that particular attention should be directed to Sn and Sb contamination in the future research of heavy metals in soils from e-waste-processing areas. Correlation analysis suggested that Li and Be in soils from the acid-leaching area and its surrounding environment might have originated from other industrial activities and from batteries, whereas Ni, Cu, Zn, Cd, Pb, Sn and Sb contamination was most likely caused by uncontrolled electronic waste (e-waste) processing. These results indicate the significant need for optimisation of e-waste-dismantling technologies and remediation of polluted soil

  6. Contamination by heavy metals and petroleum hydrocarbons: a threat to mangroves

    Directory of Open Access Journals (Sweden)

    Thaís dos Santos Alencar

    2016-12-01

    Full Text Available The mangrove ecosystem is one of the most productive ecosystems on the planet with relevant ecological importance. It offers several services such as protection of the coastal region, immobilization of contaminants, as it is a food source and refuge for various organisms. However, mangroves are threatened by human activities. Oil spills in areas close to mangroves, for example, are potential sources for the entry of contaminants such as heavy metals and hydrocarbons. Among other sources of threat, we list industrial waste and sewage, mining and fertilizer use. When they reach the mangroves, these contaminants may cause several negative effects and affect its balance.

  7. Fingerprinting sedimentary and soil units by their natural metal contents: a new approach to assess metal contamination.

    Science.gov (United States)

    Amorosi, Alessandro; Guermandi, Marina; Marchi, Nazaria; Sammartino, Irene

    2014-12-01

    One of the major issues when assessing soil contamination by inorganic substances is reliable determination of natural metal concentrations. Through integrated sedimentological, pedological and geochemical analyses of 1414 (topsoil/subsoil) samples from 707 sampling stations in the southern Po Plain (Italy), we document that the natural distribution of five potentially toxic metals (Cr, Ni, Cu, Zn and Pb) can be spatially predicted as a function of three major factors: source-rock composition, grain size variability and degree of soil weathering. Thirteen genetic and functional soil units (GFUs), each reflecting a unique combination of these three variables, are fingerprinted by distinctive geochemical signatures. Where sediment is supplied by ultramafic (ophiolite-rich) sources, the natural contents of Cr and Ni in soils almost invariably exceed the Italian threshold limits designated for contaminated lands (150 mg/kg and 120 mg/kg, respectively), with median values around twice the maximum permissible levels (345 mg/kg for Cr and 207 mg/kg for Ni in GFU B5). The original provenance signal is commonly confounded by soil texture, with general tendency toward higher metal concentrations in the finest-grained fractions. Once reliable natural metal concentrations in soils are established, the anthropogenic contribution can be promptly assessed by calculating metal enrichments in topsoil samples. The use of combined sedimentological and pedological criteria to fingerprint GFU geochemical composition is presented here as a new approach to enhance predictability of natural metal contents, with obvious positive feedbacks for legislative purposes and environmental protection. Particularly, natural metal concentrations inferred directly from a new type of pedogeochemical map, built according to the international guideline ISO 19258, are proposed as an efficient alternative to the pre-determined threshold values for soil contamination commonly established by the national

  8. Relationship between aquatic insects and heavy metals in an urban stream using multivariate techniques

    International Nuclear Information System (INIS)

    Girgin, S.; Kazanci, N.; Dugel, M.

    2010-01-01

    In the study, the relationship between some aquatic insect species (Ephemeroptera, Plecoptera, Trichoptera and Odonata) and some heavy metals (cadmium, lead, copper, zinc, nickel, iron and manganese) and boron were assessed using data obtained from the Ankara Stream, which flows through Ankara, the capital city of Turkey and receives high organic and industrial wastes. Sampling was carried out monthly along the Ankara Stream in 1991. Environmental data were used to explain biological variation using multivariate techniques provided by the program canonical correspondence analysis ordination. The ordination method canonical correspondence analysis was applied to evaluate the relationships between environmental variables and distribution of aquatic insect larvae. Data sets were classified by two way indicator species analysis. In this study, aquatic insecta communities have been shown by canonical correspondence analysis ordination as related to total hardness, p H, cadmium, lead, copper, zinc, nickel, iron, manganese and boron. Cadmium, lead, copper and boron exceeded limits of the United States Environmental Protection Agency criteria for aquatic life. Trichopteran, Dinarthrum iranicum was an indicator of two way indicator species analysis and was placed close to the arrow representing copper. Odonate, Aeschna juncea was an indicator of two way indicator species analysis in site 10 and was placed close to the arrows representing manganese, lead, and nickel. Trichopteran, Cheumatopsyche lepida and odonate, Platycnemis pennipes were indicators of two way indicator species analysis for sites 6, 7, 11, 14, 15, 18 and were placed close to the arrows representing cadmium, boron, iron and total hardness.

  9. Heavy metal contamination and its indexing approach for groundwater of Goa mining region, India

    Science.gov (United States)

    Singh, Gurdeep; Kamal, Rakesh Kant

    2017-06-01

    The objective of the study is to reveal the seasonal variations in the groundwater quality with respect to heavy metal contamination. To get the extent of the heavy metals contamination, groundwater samples were collected from 45 different locations in and around Goa mining area during the monsoon and post-monsoon seasons. The concentration of heavy metals, such as lead, copper, manganese, zinc, cadmium, iron, and chromium, were determined using atomic absorption spectrophotometer. Most of the samples were found within limit except for Fe content during the monsoon season at two sampling locations which is above desirable limit, i.e., 300 µg/L as per Indian drinking water standard. The data generated were used to calculate the heavy metal pollution index (HPI) for groundwater. The mean values of HPI were 1.5 in the monsoon season and 2.1 in the post-monsoon season, and these values are well below the critical index limit of 100.

  10. Lagrangian mass-flow investigations of inorganic contaminants in wastewater-impacted streams

    Science.gov (United States)

    Barber, L.B.; Antweiler, Ronald C.; Flynn, J.L.; Keefe, S.H.; Kolpin, D.W.; Roth, D.A.; Schnoebelen, D.J.; Taylor, Howard E.; Verplanck, P.L.

    2011-01-01

    Understanding the potential effects of increased reliance on wastewater treatment plant (WWTP) effluents to meet municipal, agricultural, and environmental flow requires an understanding of the complex chemical loading characteristics of the WWTPs and the assimilative capacity of receiving waters. Stream ecosystem effects are linked to proportions of WWTP effluent under low-flow conditions as well as the nature of the effluent chemical mixtures. This study quantifies the loading of 58 inorganic constituents (nutrients to rare earth elements) from WWTP discharges relative to upstream landscape-based sources. Stream assimilation capacity was evaluated by Lagrangian sampling, using flow velocities determined from tracer experiments to track the same parcel of water as it moved downstream. Boulder Creek, Colorado and Fourmile Creek, Iowa, representing two different geologic and hydrologic landscapes, were sampled under low-flow conditions in the summer and spring. One-half of the constituents had greater loads from the WWTP effluents than the upstream drainages, and once introduced into the streams, dilution was the predominant assimilation mechanism. Only ammonium and bismuth had significant decreases in mass load downstream from the WWTPs during all samplings. The link between hydrology and water chemistry inherent in Lagrangian sampling allows quantitative assessment of chemical fate across different landscapes. ?? 2011 American Chemical Society.

  11. Metal availability in a highly contaminated, dredged-sediment disposal site: field measurements and geochemical modeling.

    Science.gov (United States)

    Lions, Julie; Guérin, Valérie; Bataillard, Philippe; van der Lee, Jan; Laboudigue, Agnès

    2010-09-01

    Two complementary approaches were used to characterize arsenic and metal mobilizations from a dredged-sediment disposal site: a detailed field study combined with hydrogeochemical modeling. Contaminants in sediments were found to be mainly present as sulfides subject to oxidation. Secondary phases (carbonates, sulfates, (hydr)oxides) were also observed. Oxidative processes occurred at different rates depending on physicochemical conditions and contaminant contents in the sediment. Two distinct areas were identified on the site, each corresponding to a specific contaminant mobility behavior. In a reducing area, Fe and As were highly soluble and illustrated anoxic behavior. In well-oxygenated material, groundwater was highly contaminated in Zn, Cd and Pb. A third zone in which sediments and groundwater were less contaminated was also characterized. This study enabled us to prioritize remediation work, which should aim to limit infiltration and long-term environmental impact. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. Microbe and Mineral Mediated Transformation of Heavy Metals, Radionuclides, and Organic Contaminants

    Science.gov (United States)

    Gerlach, R.

    2011-12-01

    Microorganisms influence their surroundings in many ways and humans have utilized microbially catalyzed reactions for benefit for centuries. Over the past few decades, microorganisms have been used for the control of contaminant transport in subsurface environments where many microbe mineral interactions occur. This presentation will discuss microbially influenced mineral formation and transformation as well as their influence on the fate of organic contaminants such as chlorinated aliphatics & 2,4,6-trinitrotoluene (TNT), heavy metals such as chromium, and radionuclides such as uranium & strontium. Both, batch and flow experiments have been performed, which monitor the net effect of microbe mineral interactions on the fate of these contaminants. This invited presentation will place an emphasis on the relative importance of direct microbial (i.e. biotic) transformations, mineral-mediated transformations as well as other abiotic reactions influencing the fate of environmental contaminants. Experiments will be summarized and placed in context of past and future engineered applications for the control of subsurface contaminants.

  13. Remediation of Deep Vadose Zone Radionuclide and Metal Contamination: Status and Issues

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P. Evan; Truex, Michael J.; Cantrell, Keri

    2008-12-30

    This report documents the results of a PNNL literature review to report on the state of maturity of deep vadose zone remediation technologies for metal contaminants including some radionuclides. Its recommendations feed into decisionmakers need for scientific information and cost-effective in situ remediation technlogies needed under DOE's Environmental Management initiative Enhanced Remediation Methods: Scientific & Technical Basis for In Stu Treatment Systems for Metals and Radionuclides.

  14. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, Avit Kumar [Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau in der Pfalz (Germany); Alamdar, Ambreen [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Katsoyiannis, Ioannis [Aristotle University of Thessaloniki, Department of Chemistry, Division of Chemical Technology, Box 116, Thessaloniki 54124 (Greece); Shen, Heqing [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Ali, Nadeem [Department of Environmental Sciences, FBAS, International Islamic University, Islamabad (Pakistan); Ali, Syeda Maria [Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Bokhari, Habib [Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad (Pakistan); Schäfer, Ralf B. [Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau in der Pfalz (Germany); Eqani, Syed Ali Musstjab Akber Shah, E-mail: ali_ebl2@yahoo.com [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2015-12-15

    The consumption of contaminated drinking water is one of the major causes of mortality and many severe diseases in developing countries. The principal drinking water sources in Pakistan, i.e. ground and surface water, are subject to geogenic and anthropogenic trace metal contamination. However, water quality monitoring activities have been limited to a few administrative areas and a nationwide human health risk assessment from trace metal exposure is lacking. Using geographically weighted regression (GWR) and eight relevant spatial predictors, we calculated nationwide human health risk maps by predicting the concentration of 10 trace metals in the drinking water sources of Pakistan and comparing them to guideline values. GWR incorporated local variations of trace metal concentrations into prediction models and hence mitigated effects of large distances between sampled districts due to data scarcity. Predicted concentrations mostly exhibited high accuracy and low uncertainty, and were in good agreement with observed concentrations. Concentrations for Central Pakistan were predicted with higher accuracy than for the North and South. A maximum 150–200 fold exceedance of guideline values was observed for predicted cadmium concentrations in ground water and arsenic concentrations in surface water. In more than 53% (4 and 100% for the lower and upper boundaries of 95% confidence interval (CI)) of the total area of Pakistan, the drinking water was predicted to be at risk of contamination from arsenic, chromium, iron, nickel and lead. The area with elevated risks is inhabited by more than 74 million (8 and 172 million for the lower and upper boundaries of 95% CI) people. Although these predictions require further validation by field monitoring, the results can inform disease mitigation and water resources management regarding potential hot spots. - Highlights: • Predictions of trace metal concentration use geographically weighted regression • Human health risk

  15. Beneficial of Coriander Leaves (Coriandrum sativum L.) to Reduce Heavy Metals Contamination in Rod Shellfish

    Science.gov (United States)

    Winarti, S.; Pertiwi, C. N.; Hanani, A. Z.; Mujamil, S. I.; Putra, K. A.; Herlambang, K. C.

    2018-01-01

    Contamination of heavy metals in certain levels of food can disrupt human health. Heavy metals have toxic properties, cannot be overhauled or destroyed by living organisms, can accumulate in the body of organisms including humans, either directly or indirectly. Heavy metal Hg, Cd, Cr is a very toxic metals (can result in death or health problems that are not recovered in a short time), while heavy metal Co, Pb, Cu toxicity is moderate (can lead to both recoverable and non-recoverable health problems in a relatively long time). Hence the heavy metal contaminating the food must be eliminated or reduced to a safe level. One effort was use coriander leaves to reduce the contamination of heavy metals in fish/shellfish. The objective of the research was to prove the extract of coriander leaves can reduce heavy metal contamination of Pb, Hg and Cu in rod shellfish (lorjuk). The treatment of this research was long soaking in coriander leaves extract that were 0, 30, 60 and 90 minutes. The results showed that the longer time of soaking can decrease Pb level from 4.4 ± 0.424 ppb to 1.7 ± 0.5 ppb, Hg level from 4.11± 0.07 to 1.12± 0.6 ppb, and Cu level from 433.7 ± 0.1 ppb to 117 ± 0.78 ppb. Protein content not significant decrease in rod shellfish (lorjuk) after 90 minutes soaking time, that was from 28.56 ± 0.403% to 26,625 ± 0.19%.

  16. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil

    International Nuclear Information System (INIS)

    Salati, S.; Quadri, G.; Tambone, F.; Adani, F.

    2010-01-01

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. - Organic fraction of MSW affects the bioavailability of heavy metals in soil.

  17. Orientation behavior is a good biomarker of trace metal contamination in Parallelomorphus laevigatus (Coleoptera, Carabidae).

    Science.gov (United States)

    Conti, Erminia; Dattilo, Sandro; Costa, Giovanni; Puglisi, Concetto

    2017-07-01

    Behavioral ecotoxicology has become very important in the short time since a change in behavior is very often the first response to environmental altered conditions. We investigated the influence of trace metal intake on the spatial orientation performances of the carabid beetle Parallelomorphus laevigatus, fundamental ability for its survival. The aim of this study was to consider the solar orientation as behavioral biomarker for exposure to trace metal contamination. Therefore, we tested the ability of solar orientation of specimens of this species, fed with shrimps contaminated with three different concentrations of Cu, Zn, or Hg. We carried out the orientation tests after 1, 3, 7, and 10 days of contaminated feeding. Subsequently, we fed these beetles with not contaminated shrimps and again tested them after 1, 3, 7, and 10 days. For all three metals considered and, regardless of the degree of contamination of the food, we have found a progressive and significant counterclockwise displacement of the angle of orientation and a corresponding progressive reduction in the precision in the directional choices by the animals. We also noticed a clear growing recovery in the normal orientation by these insects after returning to their feeding with uncontaminated food. In conclusion, we can consider the orientation in space of P. laevigatus as a behavioral biomarker for exposure to trace metal contamination. We believe that the intake of trace metals may induce the insects to make mistakes in their spatial orientation, due to an acceleration of their biological clock. Such a clock malfunction is not definitive, since the return to a normal diet restores P. laevigatus the ability to re-make the correct directional choices. Ultimately, our results confirm the usefulness of behavioral ecotoxicology investigations; moreover, they stimulate the opportunity to deepen the understanding of functioning of the biological clock in the animals.

  18. Monitoring of plutonium contaminated solid waste streams. Chapter IV: Passive neutron assay

    International Nuclear Information System (INIS)

    Birkhoff, G.; Bondar, L.

    1978-01-01

    The fundamentals of the passive neutron technique for the non destructive assay of plutonium bearing materials are summarized. A reference monitor for the passive neutron assay of Pu contaminated solids is described in terms of instrumental design principles and performances. The theoretical model of this reference monitor with pertinent nuclear data and functions for the interpretation of experimental data is given

  19. Influence of dams on sediment continuity: A study case of a natural metallic contamination.

    Science.gov (United States)

    Frémion, Franck; Bordas, François; Mourier, Brice; Lenain, Jean-François; Kestens, Tim; Courtin-Nomade, Alexandra

    2016-03-15

    Sediments play an important role on the quality of aquatic ecosystems, notably in the reservoir areas where they can either be a sink or a source of contaminants, depending on the management and hydrological conditions. The physicochemical properties of 25 surface sediments samples of a reservoir catchment (Vaussaire, Cantal, France) were studied. Results show a strong influence of dam presence, notably on the grain size and organic matter (OM) contents. The concentrations of trace metals and metalloids (As, Cd, Cr, Cu, Ni, Pb and Zn) were also measured and compared with worldwide reservoir concentrations and international sediment quality guideline levels in order to assess the intensity of the metallic contamination. Cr and Ni are the trace elements presenting the significantly highest values at the catchment scale. Enrichment Factors (EF), calculated using both local and national backgrounds, show that metals have mainly a natural origin, explaining especially the Cr and Ni values, linked with the composition of parental rocks. Unexpectedly, all the observed metal concentrations are lower in the reservoir than upstream and downstream, which might be related to the high fresh OM inputs in the reservoir, diluting the global metallic contamination. Multivariate statistical analyses, carried out in order to identify the relationship between the studied metals and sediment characteristics, tend to support this hypothesis, confirming the unusually low influence of such poorly-degraded OM on trace element accumulation in the reservoir. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Heavy metals mobility in harbour contaminated sediments: The case of Port-en-Bessin

    International Nuclear Information System (INIS)

    Caplat, C.; Texier, H.; Barillier, D.; Lelievre, C.

    2005-01-01

    Metallic contaminants associated with sediments showed various behaviours depending on physicochemical conditions. A contaminated sediment core from a harbour in the Bay of Seine was sampled to derive information about metal solubilization from anoxic sediment. In these anaerobic surroundings, physicochemical processes depended on the organic matter cycle, on vertical variation of redox conditions and on precipitation conditions of iron and manganese. In the studied core, anoxic conditions were developed at -15 cm depth. A three-step sequential extraction procedure, modified from the BCR method (now the SM and T), was applied to the anoxic sediment in order to evaluate the potential mobility of fixed metals. Zinc was the most labile metal, recovered in the first extraction stages, and was associated with the non-residual fraction of sediment. Lead was the least labile metal, with up to 70% associated with the residual fraction of the sediment. Copper was associated with organic matter, and its mobility was controlled by the concentration and degradation of the organic fraction. Discharge of organic-rich dredged sediments at sea results in degradation of contained organic matter and may affect the environmental impact of these metals significantly. These results therefore help to improve the waste management of such contaminated sediments

  1. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite.

    Science.gov (United States)

    Malandrino, Mery; Abollino, Ornella; Buoso, Sandro; Giacomino, Agnese; La Gioia, Carmela; Mentasti, Edoardo

    2011-01-01

    We evaluated the distribution of 15 metal ions, namely Al, Cd, Cu, Cr, Fe, La, Mn, Ni, Pb, Sc, Ti, V, Y, Zn and Zr, in the soil of a contaminated site in Piedmont (Italy). This area was found to be heavily contaminated with Cu, Cr and Ni. The availability of these metal ions was studied using Tessier's sequential extraction procedure: the fraction of mobile species, which potentially is the most harmful for the environment, was much higher than that normally present in unpolluted soils. This soil was hence used to evaluate the effectiveness of treatment with vermiculite to reduce the availability of the pollutants to two plants, Lactuca sativa and Spinacia oleracea, by pot experiments. The results indicated that the addition of vermiculite significantly reduces the uptake of metal pollutants by plants, confirming the possibility of using this clay in amendment treatments of metal-contaminated soils. The effect of plant growth on metal fractionation in soils was investigated. Finally, the sum of the metal percentages extracted into the first two fractions of Tessier's protocol was found to be suitable in predicting the phytoavailability of most of the pollutants present in the investigated soil. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Ren Wanxia, E-mail: ren_laura@163.com [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Li Peijun, E-mail: lipeijun@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Geng Yong; Li Xiaojun [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2009-08-15

    Bioleaching of heavy metals from a contaminated soil in an industrial area using metabolites, mainly weak organic acids, produced by a fungus Aspergillus niger was investigated. Batch experiments were performed to compare the leaching efficiencies of one-step and two-step processes and to determine the transformation of heavy metal chemical forms during the bioleaching process. After the one or two-step processes, the metal removals were compared using analysis of variance (ANOVA) and least-significance difference (LSD). A. niger exhibits a good potential in generating a variety of organic acids effective for metal solubilisation. Results showed that after the one-step process, maximum removals of 56%, 100%, 30% and 19% were achieved for copper, cadmium, lead and zinc, respectively. After the two-step process, highest removals of 97.5% Cu, 88.2% Cd, 26% Pb, and 14.5% Zn were obtained. Results of sequential extraction showed that organic acids produced by A. niger were effective in removing the exchangeable, carbonate, and Fe/Mn oxide fractions of Cu, Cd, Pb and Zn; and after both processes the metals remaining in the soil were mainly bound in stable fractions. Such a treatment procedure indicated that leaching of heavy metals from contaminated soil using A. niger has the potential for use in remediation of contaminated soils.

  3. Phytoremediation of heavy metals and hydrocarbon contaminated soils; Phytoremediation des sols contamines aux metaux lourds et aux hydrocarbures recalcitrants

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, R.; Chateauneuf, G.; Sura, C. [Inspec-Sol Inc., Montreal, PQ (Canada); Labrecque, M.; Galipeau, C. [Jardin botanique de Montreal, Montreal, PQ (Canada). Institut de Recherche en Biologie Vegetale; Greer, C.; Delisle, S.; Roy, S.; Labelle, S. [National Research Council of Canada, Montreal, PQ (Canada). Inst. for Research in Biotechnology

    2003-07-01

    Phytoremediation is a technology that uses plants to decontaminate soils and underground water. Inspec-Sol, a company located in Montreal, Quebec, conducted a two-year study to evaluate the decontamination capabilities of this technology. Trials in greenhouses and field studies at the Pitt Park along the Lachine Canal were conducted. The soils chosen for the studies were soils with concentrations of polycyclic aromatic hydrocarbons (PAH) and heavy metals (lead, copper, zinc) higher than those prescribed for the safe utilization of soils. The trials identified the three plant species (Salix viminalis, Brassica juncea, and Festuca arundinacea) which had the best characteristics for phytoremediation. Controlled experiments were performed to optimize the technology to achieve the maximum extraction of contaminant. It was concluded that phytoremediation has potential for the remediation of urban soils contaminated with organic and inorganic pollutants.

  4. The fate of heavy metals during combustion and gasification of contaminated biomass—A brief review

    Energy Technology Data Exchange (ETDEWEB)

    Nzihou, Ange, E-mail: ange.nzihou@mines-albi.fr [Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi cedex 09 (France); Stanmore, Brian [Formerly of the University of Queensland, Brisbane, QLD 4072 (Australia)

    2013-07-15

    Highlights: ► A review on metal behaviour during the thermal treatment of contamined biomass. ► Wide range of biomass waste reported. ► Distribution of metals in the ash, and in the sub-micron particles discussed. -- Abstract: The literature on the presence of heavy metals in contaminated wastes is reviewed. Various categories of materials produced from domestic and industrial activities are included, but municipal solid waste, which is a more complex material, is excluded. This review considers among the most abundant the following materials – wood waste including demolition wood, phytoremediation scavengers and chromated copper arsenate (CCA) timber, sludges including de-inking sludge and sewage sludge, chicken litter and spent pot liner. The partitioning of the metals in the ashes after combustion or gasification follows conventional behaviour, with most metals retained, and higher concentrations in the finer sizes due to vaporisation and recondensation. The alkali metals have been shown to catalyse the biomass conversion, particularly lithium and potassium, although other metals are active to a lesser extent. The most prevalent in biomass is potassium, which is not only inherently active, but volatilises to become finely distributed throughout the char mass. Because the metals are predominantly found in the ash, the effectiveness of their removal depends on the efficiency of the collection of particulates. The potential for disposal into soil depends on the initial concentration in the feed material.

  5. Trace metal Contamination in Water from abandoned mining and ...

    African Journals Online (AJOL)

    A survey was conducted on the levels of trace metals (Ni, Cu, Hg, Pb, Mn, Fe, Zn, Cr, Cd, Mg and Ca) in ground and surface water sources from the northern parts ... The results showed that ground water (pH range 4.09–7.29 and mean 5.87 pH units) was slightly acidic (low pH) than surface water (pH range 5.81–7.74 and ...

  6. Assessment of Heavy Metal Contamination in Soils around Cassava ...

    African Journals Online (AJOL)

    Nigerian Journal of Basic and Applied Science (June, 2013), 21(2): 96-104. DOI: http://dx.doi.org/10.4314/njbas.v21i2.2 ..... possible sources of copper in these sites are engine wear and cassava wastes. With respect to ..... Applied Science Research, 2(26): 515-521. Iwegbue, C.M..A. (2007). Distribution of heavy metals.

  7. Recent history of sediment metal contamination in Lake Macquarie, Australia, and an assessment of ash handling procedure effectiveness in mitigating metal contamination from coal-fired power stations

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Larissa, E-mail: Larissa.Schneider@canberra.edu.au [Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601 (Australia); Maher, William [Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601 (Australia); Potts, Jaimie [New South Wales Office of Environmental and Heritage, Lidcombe, NSW, 2141 Australia (Australia); Gruber, Bernd [Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601 (Australia); Batley, Graeme [CSIRO Land and Water, Lucas Heights, NSW 2234 (Australia); Taylor, Anne [Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601 (Australia); Chariton, Anthony [CSIRO Land and Water, Lucas Heights, NSW 2234 (Australia); Krikowa, Frank [Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601 (Australia); Zawadzki, Atun; Heijnis, Henk [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234 (Australia)

    2014-08-15

    This study assessed historical changes in metal concentrations in sediments of southern Lake Macquarie resulting from the activities of coal-fired power stations, using a multi-proxy approach which combines {sup 210}Pb, {sup 137}Cs and metal concentrations in sediment cores. Metal concentrations in the lake were on average, Zn: 67 mg/kg, Cu: 15 mg/kg, As: 8 mg/kg, Se: 2 mg/kg, Cd: 1.5 mg/kg, Pb: 8 mg/kg with a maximum of Zn: 280 mg/kg, Cu: 80 mg/kg, As: 21 mg/kg, Se: 5 mg/kg, Cd: 4 mg/kg, Pb: 48 mg/kg. The ratios of measured concentrations in sediment cores to their sediment guidelines were Cd 1.8, As 1.0, Cu 0.5, Pb 0.2 and Zn 0.2, with the highest concern being for cadmium. Of special interest was assessment of the effects of changes in ash handling procedures by the Vales Point power station on the metal concentrations in the sediments. Comparing sediment layers before and after ash handling procedures were implemented, zinc concentrations have decreased 10%, arsenic 37%, selenium 20%, cadmium 38% and lead 14%. An analysis of contaminant depth profiles showed that, after implementation of new ash handling procedures in 1995, selenium and cadmium, the main contaminants in Australian black coal had decreased significantly in this estuary. - Highlights: • The main sources of metals to Southern Lake Macquarie are coal-fired power stations. • The metal of highest concern in this estuary is cadmium. • Arsenic was mobile in sediments. • Selenium and cadmium decreased in sediments following new ash handling procedures.

  8. Metals fate and transport modelling in streams and watersheds: state of the science and USEPA workshop review

    Science.gov (United States)

    Caruso, B.S.; Cox, T.J.; Runkel, Robert L.; Velleux, M.L.; Bencala, Kenneth E.; Nordstrom, D. Kirk; Julien, P.Y.; Butler, B.A.; Alpers, Charles N.; Marion, A.; Smith, Kathleen S.

    2008-01-01

    Metals pollution in surface waters from point and non-point sources (NPS) is a widespread problem in the United States and worldwide (Lofts et al., 2007; USEPA, 2007). In the western United States, metals associated with acid mine drainage (AMD) from hardrock mines in mountainous areas impact aquatic ecosystems and human health (USEPA, 1997a; Caruso and Ward, 1998; Church et al., 2007). Metals fate and transport modelling in streams and watersheds is sometimes needed for assessment and restoration of surface waters, including mining-impacted streams (Runkel and Kimball, 2002; Caruso, 2003; Velleux et al., 2006). The Water Quality Analysis Simulation Program (WASP; Wool et al., 2001), developed by the US Environmental Protection Agency (USEPA), is an example of a model used for such analyses. Other approaches exist and appropriate model selection depends on site characteristics, data availability and modelling objectives. However, there are a wide range of assumptions, input parameters, data requirements and gaps, and calibration and validation issues that must be addressed by model developers, users and decision makers. Despite substantial work on model development, their successful application has been more limited because they are not often used by decision makers for stream and watershed assessment and restoration. Bringing together scientists, model developers, users and decision makers should stimulate the development of appropriate models and improve the applicability of their results. To address these issues, the USEPA Office of Research and Development and Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming) hosted a workshop in Denver, Colorado on February 13–14, 2007. The workshop brought together approximately 35 experts from government, academia and consulting to address the state of the art for modelling metals fate and transport, knowledge gaps and future directions in metals modelling. It focused on modelling metals in high

  9. Geochemical distribution and mobility of heavy metals in sediments of urban streams affected by combined sewer overflows

    Czech Academy of Sciences Publication Activity Database

    Hnaťuková, Petra

    2011-01-01

    Roč. 59, č. 2 (2011), s. 85-94 ISSN 0042-790X R&D Projects: GA AV ČR IAA200600902 Institutional research plan: CEZ:AV0Z20600510 Keywords : sediment s * heavy metal s * urban streams * sequential extraction * combined sewer overflows Subject RIV: BK - Fluid Dynamics Impact factor: 0.340, year: 2011

  10. Apparatus and method for removing mercury vapor from a gas stream

    Science.gov (United States)

    Ganesan, Kumar [Butte, MT

    2008-01-01

    A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.

  11. A combination of bioleaching and bioprecipitation for deep removal of contaminating metals from dredged sediment

    International Nuclear Information System (INIS)

    Fang Di; Zhang Ruichang; Zhou Lixiang; Li Jie

    2011-01-01

    Highlights: → Bioleaching-bioprecipitation can deeply cleanup sediment-borne metal contaminants. → Bioleaching results in a sufficient solubilisation of sediment-borne metals. → Bioprecipitation removes most of solubilised metals from sediment leachate at pH 3.7. → Bioremoval of soluble Zn, Cu and Cr is due to the formation of ZnS, Cu 2 S and CrOOH. → Alkalization of bioleached sediment by Ca(OH) 2 excludes the risk of re-acidification. - Abstract: A linked microbial process comprising bioleaching with sulfate-oxidizing bacteria and bioprecipitation with sulfate-reducing bacteria operating sequentially was investigated to deeply remove contaminating metals from dredged sediment. The results showed that sediment bioleaching resulted in a sharp decrease in sediment pH from an initial pH ∼7.6 to pH ∼2.5 within 10-20 days, approximately 65% of the main heavy metals present (Zn + Cu + Cr) were solubilized, and most of the unsolubilized metals existed in residual form of sediment. The acidic leachate that resulted from sediment bioleaching was efficiently stripped of metal sulfates using a bioprecipitation reactor when challenged with influent as low as pH ∼3.7. More than 99% of Zn 2+ , 99% of Cu 2+ and 90% of Cr 3+ were removed from the leachate, respectively, due to the formation of ZnS, Cu 2 S and CrOOH precipitates, as confirmed by SEM-EDS and XRD detection. It was also found that alkalization of bioleached sediment using Ca(OH) 2 excluded the risk of sediment re-acidification. The ability of the combined process developed in this study to deeply remove heavy metals in insoluble sulfides or hydroxides forms makes it particularly attractive for the treatment of different types of metal contaminants.

  12. Can heavy metal tolerant clones of Salix be used as vegetation filters on heavy metal contaminated land?

    International Nuclear Information System (INIS)

    Landberg, T.; Greger, M.

    1994-01-01

    In order to find Salix clones which have different types of tolerance to metals, Salix clones, cultivated in Uppsala, Sweden, and clones from a heavily polluted area in southern Poland, were collected and screened for heavy-metal accumulation and heavy-metal tolerance. 94 Swedish clones of two Salix species (S. dasyclados and S. viminalis) and nine Polish clones of four species (S. daphnoides, S. triandra, S. purpurea and S. viminalis) were collected. Woody cuttings of the 103 different clones were rooted and cultivated in 100 μM Ca(NO 3 ) 2 and 0-10 μM CdCl 2 or 0-100 μM ZnCl 2 for 20 days. The accumulation of heavy metals in roots and shoots was analysed with atomic absorption spectrophotometry (flame) and the tolerance was measured as affected length and weight of roots and shoots. The results show that some clones were tolerant to both cadmium and zinc, while other clones were tolerant only to one of the analysed metals. The net transport of heavy metals to the shoots varied between 1 and 72% of the total metal uptake and the accumulation in the shoots in some of the clones was 7-10 times higher than the mean value for all analysed clones. These clones, which transported large amounts of heavy metals, could be used as vegetation filter and in short rotation forestry if it is possible to separate the heavy metals in the combustion process. Tolerant clones, with high accumulation in the roots, and clones with low net uptake (excluding or exudating metals) were also found. These clones could be used on contaminated soils when low metal content is preferred in the harvested shoots. 14 refs, 10 figs

  13. Soil contamination of heavy metals in the Katedan Industrial Development Area, Hyderabad, India.

    Science.gov (United States)

    Govil, P K; Sorlie, J E; Murthy, N N; Sujatha, D; Reddy, G L N; Rudolph-Lund, Kim; Krishna, A K; Rama Mohan, K

    2008-05-01

    Studies on quantitative soil contamination due to heavy metals were carried out in Katedan Industrial Development Area (KIDA), south of Hyderabad, Andhra Pradesh, India under the Indo-Norwegian Institutional Cooperation Programme. The study area falls under a semi-arid type of climate and consists of granites and pegmatite of igneous origin belonging to the Archaean age. There are about 300 industries dealing with dyeing, edible oil production, battery manufacturing, metal plating, chemicals, etc. Most of the industries discharge their untreated effluents either on open land or into ditches. Solid waste from industries is randomly dumped along roads and open grounds. Soil samples were collected throughout the industrial area and from downstream residential areas and were analysed by X-ray Fluorescence Spectrometer for fourteen trace metals and ten major oxides. The analytical data shows very high concentrations of lead, chromium, nickel, zinc, arsenic and cadmium through out the industrial area. The random dumping of hazardous waste in the industrial area could be the main cause of the soil contamination spreading by rainwater and wind. In the residential areas the local dumping is expected to be the main source as it is difficult to foresee that rain and wind can transport the contaminants from the industrial area. If emission to air by the smokestacks is significant, this may contribute to considerable spreading of contaminants like As, Cd and Pb throughout the area. A comparison of the results with the Canadian Soil Quality Guidelines (SQGL) show that most of the industrial area is heavily contaminated by As, Pb and Zn and local areas by Cr, Cu and Ni. The residential area is also contaminated by As and some small areas by Cr, Cu, Pb and Zn. The Cd contamination is detected over large area but it is not exceeding the SQGL value. Natural background values of As and Cr exceed the SQGL values and contribute significantly to the contamination in the residential area

  14. Preliminary evaluation of heavy metal contamination in the Zarrin-Gol River sediments, Iran.

    Science.gov (United States)

    Malvandi, Hassan

    2017-04-15

    The major objectives of the study were to test the hypothesis of the Zarrin-Gol River as a reference site for ecotoxicological studies and to assess the contamination degree of heavy metals and metalloids in the river using four contamination indices. For these purposes, eleven heavy metal and metalloid concentrations were analyzed. The average concentrations (mgkg -1 ) in the sediments were: 37.67 (chromium) 286.28 (manganese), 13,751.04 (iron), 8.79 (cobalt), 12.39 (nickel), 32.68 (zinc), 21.91 (arsenic), 40.59 (selenium), 2923.86 (aluminum), ND (silver) and 785.96 (magnesium). Contamination factor, enrichment factor, pollution load index, and geoaccumulation index were calculated to evaluate the contamination degree and influence of human activities on heavy metal levels. The contamination indices of the sediment samples showed that arsenic and selenium were the highest pollutants. The results indicated that the Zarrin-Gol River could not be used as a reference site at least for arsenic and selenium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Strong links between metal contamination, habitat modification and estuarine larval fish distributions

    International Nuclear Information System (INIS)

    McKinley, Andrew C.; Miskiewicz, Anthony; Taylor, Matthew D.; Johnston, Emma L.

    2011-01-01

    Changes to larval fish assemblages may have far reaching ecological impacts. Correlations between habitat modification, contamination and marine larval fish communities have rarely been assessed in situ. We investigated links between the large-scale distribution of stressors and larval fish assemblages in estuarine environments. Larval fish communities were sampled using a benthic sled within the inner and outer zones of three heavily modified and three relatively unmodified estuaries. Larval abundances were significantly greater in modified estuaries, and there were trends towards greater diversity in these systems. Differences in larval community composition were strongly related to sediment metal levels and reduced seagrass cover. The differences observed were driven by two abundant species, Paedogobius kimurai and Ambassis jacksoniensis, which occurred in large numbers almost exclusively in highly contaminated and pristine locations respectively. These findings suggest that contamination and habitat alteration manifest in substantial differences in the composition of estuarine larval fish assemblages. - Highlights: → We examine contamination/habitat modification impacts on larval fish. → Larvae communities differ between modified/unmodified estuaries. → Larvae are more abundant/diverse in modified areas. → Trends are strongly related to sediment metals/seagrass cover. → Larval impacts have wider ecological importance. - We describe strong links between sediment metals contamination, habitat modification and substantial differences in the composition of the estuarine larval fish assemblage.

  16. Strong links between metal contamination, habitat modification and estuarine larval fish distributions

    Energy Technology Data Exchange (ETDEWEB)

    McKinley, Andrew C., E-mail: andrew.mckinley@hotmail.com [Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052 (Australia); Miskiewicz, Anthony [Environment and Recreation, Wollongong City Council, 41 Burelli Street, Wollongong, New South Wales 2500 (Australia); Taylor, Matthew D.; Johnston, Emma L. [Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052 (Australia)

    2011-06-15

    Changes to larval fish assemblages may have far reaching ecological impacts. Correlations between habitat modification, contamination and marine larval fish communities have rarely been assessed in situ. We investigated links between the large-scale distribution of stressors and larval fish assemblages in estuarine environments. Larval fish communities were sampled using a benthic sled within the inner and outer zones of three heavily modified and three relatively unmodified estuaries. Larval abundances were significantly greater in modified estuaries, and there were trends towards greater diversity in these systems. Differences in larval community composition were strongly related to sediment metal levels and reduced seagrass cover. The differences observed were driven by two abundant species, Paedogobius kimurai and Ambassis jacksoniensis, which occurred in large numbers almost exclusively in highly contaminated and pristine locations respectively. These findings suggest that contamination and habitat alteration manifest in substantial differences in the composition of estuarine larval fish assemblages. - Highlights: > We examine contamination/habitat modification impacts on larval fish. > Larvae communities differ between modified/unmodified estuaries. > Larvae are more abundant/diverse in modified areas. > Trends are strongly related to sediment metals/seagrass cover. > Larval impacts have wider ecological importance. - We describe strong links between sediment metals contamination, habitat modification and substantial differences in the composition of the estuarine larval fish assemblage.

  17. Effects of incubation on solubility and mobility of trace metals in two contaminated soils

    International Nuclear Information System (INIS)

    Ma, Lena Q.; Dong Yan

    2004-01-01

    Much research has focused on changes in solubility and mobility of trace metals in soils under incubation. In this experiment, changes in solubility and mobility of trace metals (Pb, Cu and As) and Fe in two contaminated soils from Tampa, Florida and Montreal, Canada were examined. Soils of 30 g were packed in columns and were incubated for 3-80 days under water-flooding incubation. Following incubation, metal concentrations in pore water (water soluble) and in 0.01 M CaCl 2 leachates (exchangeable+water soluble) were determined. While both soils were contaminated with Pb (1600-2500 mg kg -1 ), Tampa soil was also contaminated with As (230 mg kg -1 ). Contrast to the low pH (3.8) of Tampa soil, Montreal soil had an alkaline pH of 7.7 and high Ca of 1.6%. Concentrations of Fe(II) increased with incubation time in the Tampa soil mainly due to reductive Fe dissolution, but decreased in the Montreal soil possibly due to formation of FeCO 3 . The inverse relationship between concentrations of Pb and Fe(II) in pore water coupled with the fact that Fe(II) concentrations were much greater than those of Pb in pore water may suggest the importance of Fe(II) in controlling Pb solubility in soils. However, changes in concentrations of Fe(II), Pb, Cu and As in pore water with incubation time were similar to those in leachate, i.e. water soluble metals were positively related to exchangeable metals in the two contaminated soils. This research suggests the importance of Fe in controlling metal solubility and mobility in soils under water-flooded incubation. - Iron is important in controlling metal solubility and mobility in flooded soils

  18. Health Risk-Based Assessment and Management of Heavy Metals-Contaminated Soil Sites in Taiwan

    Directory of Open Access Journals (Sweden)

    Zueng-Sang Chen

    2010-10-01

    Full Text Available Risk-based assessment is a way to evaluate the potential hazards of contaminated sites and is based on considering linkages between pollution sources, pathways, and receptors. These linkages can be broken by source reduction, pathway management, and modifying exposure of the receptors. In Taiwan, the Soil and Groundwater Pollution Remediation Act (SGWPR Act uses one target regulation to evaluate the contamination status of soil and groundwater pollution. More than 600 sites contaminated with heavy metals (HMs have been remediated and the costs of this process are always high. Besides using soil remediation techniques to remove contaminants from these sites, the selection of possible remediation methods to obtain rapid risk reduction is permissible and of increasing interest. This paper discusses previous soil remediation techniques applied to different sites in Taiwan and also clarified the differences of risk assessment before and after soil remediation obtained by applying different risk assessment models. This paper also includes many case studies on: (1 food safety risk assessment for brown rice growing in a HMs-contaminated site; (2 a tiered approach to health risk assessment for a contaminated site; (3 risk assessment for phytoremediation techniques applied in HMs-contaminated sites; and (4 soil remediation cost analysis for contaminated sites in Taiwan.

  19. Aquatic communities and contaminants in fish from streams of the Red River of the North basin, Minnesota and North Dakota

    Science.gov (United States)

    Goldstein, R.M.

    1995-01-01

    Available data on the ecology of aquatic organisms in the Red River of the North Basin, a study unit of the U.S. Geological Survey's National Water-Quality Assessment program, were collated from numerous sources. Lack of information for invertebrates and algae precluded a general summary of distribution and ecology throughout the basin. Data on fish species distributions in the major streams of the Red River of the North Basin were analyzed based on the drainage area of the stream and the number of ecoregions the stream flowed through. Species richness increased with both drainage area (log drainage area in square kilometers, R2=0.41, p=0.0055) and the number of ecoregions a river flowed through. However, theses two factors are autocorrelated because the larger the drainage, the more likely that the river will flow through more than one ecoregion. A cluster analysis identified five river groups based on similarity of species within the fish community. Analysis of trophic and taxonomic composition provided justification for the cluster groups. There were significant differences (p=0.05) in the trophic composition of the river cluster groups with respect to the number of predator species, omnivore species, benthic insectivore species, and general insectivore species. Although there were no significant differences in the number of species in the bass and sunfish family or the sucker family, the number of species in the minnow family and the darter subfamily were different (p=0.05) among the groups identified by cluster analysis. Data on contaminant concentrations in fish from the Red River of the North indicated that most trace elements and organochlorine compounds present in tissues were not at levels toxic to fish or humans. Minnesota and North Dakota have issued a fish consumption advisory based on levels of mercury and (or) PCBs found in some species.

  20. Initial field test of High-Energy Corona process for treating a contaminated soil-offgas stream

    International Nuclear Information System (INIS)

    Shah, R.R.; Garcia, R.E.; Jeffs, J.T.; Virden, J.W.; Heath, W.O.

    1995-04-01

    The High-Energy Corona (HEC) technology for treating process offgases has been under development at Pacific Northwest Laboratory (PNL) since 1991. The HEC process uses high-voltage electrical discharges in air to ionize the air, forming a low-temperature plasma that would be expected to destroy a wide variety of organic compounds in air. The plasma contains strong oxidants, possibly including hydroxyl radicals, hydroperoxy radicals, superoxide radicals, various excited as well as ionized forms of oxygen, high-energy electrons, and ultraviolet (UV) light. Because the high-voltage plasma is produced near ambient temperatures and pressures, yet exhibits extremely rapid destruction kinetics with relatively low power requirements, the HEC technique appears promising as a low-cost treatment technique (Virden et al. 1992). As part of the Volatile Organic Compound (VOC) Nonarid Integrated Demonstration (ID) at the DOE Savannah River Site, research activities were initiated in December 1991 to develop a prototype HEC process for a small-scale field demonstration to treat a soil-offgas stream contaminated with trichloroethylene (TCE) and perchloroethylene (PCE) at varying concentrations. Over an 18-month period, the HEC technology was developed on a fast track, through bench and pilot scales into a trailer-mounted system that was tested at the Nonarid ID. Other national laboratories, universities, and private companies have also participated at the Nonarid ID to demonstrate a number of conventional, emerging and innovative approaches for treating the same soil-offgas stream

  1. MINE WASTE TECHNOLOGY PROGRAM; PHOSPHATE STABILIZATION OF HEAVY METALS CONTAMINATED MINE WASTE YARD SOILS, JOPLIN, MISSOURI NPL SITE

    Science.gov (United States)

    This document summarizes the results of Mine Waste Technology Project 22-Phosphate Stabilization of Heavy Metals-Contaminated Mine Waste Yard Soils. Mining, milling, and smelting of ores near Joplin, Missouri, have resulted in heavy metal contamination of the area. The Joplin s...

  2. The effect of heavy metal contamination on the bacterial community structure at Jiaozhou Bay, China

    Directory of Open Access Journals (Sweden)

    Xie-feng Yao

    Full Text Available Abstract In this study, determination of heavy metal parameters and microbiological characterization of marine sediments obtained from two heavily polluted sites and one low-grade contaminated reference station at Jiaozhou Bay in China were carried out. The microbial communities found in the sampled marine sediments were studied using PCR-DGGE (denaturing gradient gel electrophoresis fingerprinting profiles in combination with multivariate analysis. Clustering analysis of DGGE and matrix of heavy metals displayed similar occurrence patterns. On this basis, 17 samples were classified into two clusters depending on the presence or absence of the high level contamination. Moreover, the cluster of highly contaminated samples was further classified into two sub-groups based on the stations of their origin. These results showed that the composition of the bacterial community is strongly influenced by heavy metal variables present in the sediments found in the Jiaozhou Bay. This study also suggested that metagenomic techniques such as PCR-DGGE fingerprinting in combination with multivariate analysis is an efficient method to examine the effect of metal contamination on the bacterial community structure.

  3. heavy metal fixation in contaminated soil using non-toxic agents

    African Journals Online (AJOL)

    USER

    2013-05-08

    May 8, 2013 ... agricultural ecosystems (Chukwuka and Omotayo,. 2008), as well as remediation of former industrial sites which have been exposed to diffuse pollution by toxic heavy metals (Finžgar et al., 2006; Belviso et al., 2010). Among the remediation technologies available for contaminated sites, in situ (in place) ...

  4. Leaching of heavy metals from contaminated soils: An experimental and modeling study

    NARCIS (Netherlands)

    Dijkstra, J.J.; Meeussen, J.C.L.; Comans, R.N.J.

    2004-01-01

    In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling.

  5. Impact of metal-ion contaminated silica particles on gate oxide integrity

    NARCIS (Netherlands)

    Rink, Ingrid; Wali, F.; Knotter, D.M.

    2009-01-01

    The impact of metal-ion contamination (present on wafer surface before oxidation) on gate oxide integrity (GOI) is well known in literature, which is not the case for clean silica particles [1, 2]. However, it is known that particles present in ultra-pure water (UPW) decrease the random yield in

  6. Evidence for groundwater contamination by heavy metals through soil passage under acidifying conditions

    NARCIS (Netherlands)

    Wilkens, B.J,

    1995-01-01

    The research reported here is aimed at improving the knowledge of the mobility of the heavy metals cadmium and zinc in vulnerable soil types. We use the term vulnerable with reference to vulnerability of groundwater for contamination by soil leaching. At diffuse soil immissions of heavy

  7. Metal contamination in environmental media in residential areas around Romanian mining sites

    Science.gov (United States)

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary co...

  8. Determination of the Content of Heavy Metals in Pyrite Contaminated Soil and Plants

    Directory of Open Access Journals (Sweden)

    Miroslava Marić

    2008-09-01

    Full Text Available Determination of a pyrite contaminated soil texture, content of heavy metals in the soil and soil pH, was the aim in the investigation. Acidification of damaged soil was corrected by calcium carbonate. Mineral nutrients and organic matter (NPK, dung, earthworm cast, straw and coal dust were added to damaged soil. Afterwards, the soil was used for oat production. Determination of total heavy metal contents (Cu, Pb, Zn, Fe in soil was performed by atomic absorption spectrofotometry. Plant material (stems, seeds was analysed, too. Total concentration of the heavy metals in the plant material were greater than in crop obtained in unaffected soil.

  9. Native fungi as metal remediators: Silver myco-accumulation from metal contaminated waste-rock dumps (Libiola Mine, Italy).

    Science.gov (United States)

    Cecchi, Grazia; Marescotti, Pietro; Di Piazza, Simone; Zotti, Mirca

    2017-03-04

    Metal contamination constitutes a major source of pollution globally. Many recent studies emphasized the need to develop cheap and green technologies for the remediation or reclamation of environmental matrices contaminated by heavy metals. In this context, fungi are versatile organisms that can be exploited for bioremediation activities. In our work, we tested silver (Ag) bioaccumulation capabilities of three microfungal strains (Aspergillus alliaceus Thom & Church, Trichoderma harzianum Rifai, Clonostachys rosea (Link) Schroers, Samuels, Seifert & W. Gams) isolated from a silver polluted site. The aim was to select silver tolerant native strains and test their potential silver uptake. Among the three species tested, T. harzianum was the most efficient strain to tolerate and accumulate silver, showing an uptake capability of 153 mg L -1 taken at the Ag concentration of 330 mg L -1 . Our study highlights the potential use of native microfungi spontaneously growing in sulphide-rich waste rock dumps, for silver bioaccumulation and bioremediation.

  10. Environmental technology applications: fact file on toxic contaminants in industrial waste process streams

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, H.W.

    1977-05-11

    This report is a compendium of facts related to chemical materials present in industrial waste process streams which have already been declared or are being evaluated as hazardous under the Toxic Substances Control Act. Since some 400 chemicals are presently covered by consensus standards, the substances reviewed are only those considered to be a major threat to public health and welfare by Federal and State regulatory agencies. For each hazardous material cited, the facts relate, where possible, to an identification of the stationary industrial sources, the kind of waste stream impacted, proposed regulations and established effluent standards, the volume of emissions produced each year, the volume of emissions per unit of industrial product produced, present clean-up capabilities, limitations, and costs. These data should be helpful in providing information for the assessment of potential problems, should be of use to the manufacturers of pollution control equipment or of chemicals for pollution control, should be of use to the operators or potential operators of processes which produce pollutants, and should help to define industry-wide emission practices and magnitudes.

  11. Incurred environmental risks and potential contamination sources in ...

    African Journals Online (AJOL)

    hp4710s

    metals. Geochemical analysis of soil has revealed high total contents of Pb, Zn and Cd, respectively: 3. 646, 3 236 and 17 mg.kg-1. Chemical analysis of ... Key words: Heavy metals, mine tailings, abandoned mining-district, plant contamination. ...... uranium contamination of streams - A case study from a gold mining.

  12. Tolerance to Cadmium of Agave lechuguilla (Agavaceae) Seeds and Seedlings from Sites Contaminated with Heavy Metals

    Science.gov (United States)

    Méndez-Hurtado, Alejandra; Rangel-Méndez, René; Flores, Joel

    2013-01-01

    We investigated if seeds of Agave lechuguilla from contaminated sites with heavy metals were more tolerant to Cd ions than seeds from noncontaminated sites. Seeds from a highly contaminated site (Villa de la Paz) and from a noncontaminated site (Villa de Zaragoza) were evaluated. We tested the effect of Cd concentrations on several ecophysiological, morphological, genetical, and anatomical responses. Seed viability, seed germination, seedling biomass, and radicle length were higher for the non-polluted site than for the contaminated one. The leaves of seedlings from the contaminated place had more cadmium and showed peaks attributed to chemical functional groups such as amines, amides, carboxyl, and alkenes that tended to disappear due to increasing the concentration of cadmium than those from Villa de Zaragoza. Malformed cells in the parenchyma surrounding the vascular bundles were found in seedlings grown with Cd from both sites. The leaves from the contaminated place showed a higher metallothioneins expression in seedlings from the control group than that of seedlings at different Cd concentrations. Most of our results fitted into the hypothesis that plants from metal-contaminated places do not tolerate more pollution, because of the accumulative effect that cadmium might have on them. PMID:24453802

  13. Review on utilization of biochar for metal-contaminated soil and sediment remediation.

    Science.gov (United States)

    Wang, Mingming; Zhu, Yi; Cheng, Lirong; Andserson, Bruce; Zhao, Xiaohui; Wang, Dayang; Ding, Aizhong

    2018-01-01

    Biochar is a carbon-neutral or even carbon-negative material produced through thermal decomposition of plant- and animal-based biomass under oxygen-limited conditions. Recently, there has been an increasing interest in the application of biochar as an adsorbent, soil ameliorant and climate mitigation approach in many types of applications. Metal-contaminated soil remediation using biochar has been intensively investigated in small-scale and pilot-scale trials with obtained beneficial results and multifaceted effects. But so far, the study and application of biochar in contaminated sediment management has been very limited, and this is also a worldwide problem. Nonetheless, there is reason to believe that the same multiple benefits can also be realized with these sediments due to similar mechanisms for stabilizing contaminants. This paper provides a review on current biochar properties and its use as a sorbent/amendment for metal-contaminated soil/sediment remediation and its effect on plant growth, fauna habits as well as microorganism communities. In addition, the use of biochar as a potential strategy for contaminated sediment management is also discussed, especially as regards in-situ planning. Finally, we highlight the possibility of biochar application as an effective amendment and propose further research directions to ensure the safe and sustainable use of biochar as an amendment for remediation of contaminated soil and sediment. Copyright © 2017. Published by Elsevier B.V.

  14. Tolerance to Cadmium of Agave lechuguilla (Agavaceae Seeds and Seedlings from Sites Contaminated with Heavy Metals

    Directory of Open Access Journals (Sweden)

    Alejandra Méndez-Hurtado

    2013-01-01

    Full Text Available We investigated if seeds of Agave lechuguilla from contaminated sites with heavy metals were more tolerant to Cd ions than seeds from noncontaminated sites. Seeds from a highly contaminated site (Villa de la Paz and from a noncontaminated site (Villa de Zaragoza were evaluated. We tested the effect of Cd concentrations on several ecophysiological, morphological, genetical, and anatomical responses. Seed viability, seed germination, seedling biomass, and radicle length were higher for the non-polluted site than for the contaminated one. The leaves of seedlings from the contaminated place had more cadmium and showed peaks attributed to chemical functional groups such as amines, amides, carboxyl, and alkenes that tended to disappear due to increasing the concentration of cadmium than those from Villa de Zaragoza. Malformed cells in the parenchyma surrounding the vascular bundles were found in seedlings grown with Cd from both sites. The leaves from the contaminated place showed a higher metallothioneins expression in seedlings from the control group than that of seedlings at different Cd concentrations. Most of our results fitted into the hypothesis that plants from metal-contaminated places do not tolerate more pollution, because of the accumulative effect that cadmium might have on them.

  15. Toxic heavy metal contamination assessment and speciation in sugarcane soil

    Science.gov (United States)

    Wang, Xiaofei; Deng, Chaobing; Yin, Juan; Tang, Xiang

    2018-01-01

    The increasing heavy metal pollution in the sugarcane soils along the Great Huanjiang River was caused by leakage and spills of Lead (Pb) and Zinc (Zn) tailing dams during a flood event. Copper (Cu), Zn, Pb, Cadmium (Cd), and Arsenic (As) concentrations of soil samples collected from 16 different sites along the Great Huanjiang River coast typical pollution area were analyzed by Inductive Coupled Plasma Mass Spectrometry (ICP-MS). The mean concentrations of Pb, Cd, Zn, Cu, and As in the sugarcane soils were 151.57 mg/kg, 0.33 mg/kg, 155.52 mg/kg, 14.19 mg/kg, and 18.74 mg/kg, respectively. Results from the analysis of heavy metal speciation distribution showed that Cu, Zn, Pb, and Cd existed in weak acid, reducible, and oxidizable fractions, and the sum of these fractions accounted for significant proportions in sugarcane soils. However, the residual fraction of As with high proportion of reducible fraction indicated that this trace element still poses some environmental risk in the sugarcane soils because of its high content. Assessments of pollution levels revealed that the highest environmental risk was arouse by Pb. In addition, moderate to strong Cd and Zn pollution were found, while As has zero to medium level of pollution and Cu has zero level.

  16. Pine forest and grassland differently influence the response of soil microbial communities to metal contamination.

    Science.gov (United States)

    Stefanowicz, Anna M; Niklińska, Maria; Kapusta, Paweł; Szarek-Łukaszewska, Grażyna

    2010-11-15

    Metal pollution can affect soil microbial communities, and vegetation potentially influences this relationship. It can, for example, modify the toxicity of metal to soil microbes by controlling its input to the ground or by altering soil physicochemical properties. This study examined metal effects on soil respiration, potentially active microbial biomass (SIR) and catabolic abilities of culturable heterotrophic bacterial communities (Biolog GN) in pine forest and grassland ecosystems developed on soils contaminated with Zn, Pb and Cd. In samples from non-forested areas we found that metal pollution reduced the microbial biomass and functional diversity of bacteria, while increasing the metabolic quotient. In samples from pine forests we found no relationship between metal pollution and microbial parameters. Metals induced changes in soil respiration neither in forest nor in grassland sites. Generally, microbial performance was determined predominantly by soil physicochemical properties (nutrient content, acidity, contamination level). Vegetation type seemed a minor but important factor influencing microbial communities. More work is needed to determine why even relatively high metal concentrations do not significantly affect microbial communities in forest soils. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment

    Directory of Open Access Journals (Sweden)

    Hang Zhou

    2016-03-01

    Full Text Available The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As. The target hazard quotient (THQ method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the different vegetables. The concentrations of heavy metals decreased in the sequence as leafy vegetables > stalk vegetables/root vegetables/solanaceous vegetables > legume vegetables/melon vegetables. The ability of leafy vegetables to uptake and accumulate heavy metals was the highest, and that of melon vegetables was the lowest. This indicated that the low accumulators (melon vegetables were suitable for being planted on contaminated soil, while the high accumulators (leafy vegetables were unsuitable. In Shizhuyuan area, China, the total THQ values of adults and children through consumption of vegetables were 4.12 and 5.41, respectively, suggesting that the residents may be facing health risks due to vegetable consumption, and that children were vulnerable to the adverse effects of heavy metal ingestion.

  18. Magnetic susceptibility as an indicator of heavy metal contamination in compost.

    Science.gov (United States)

    Paradelo, Remigio; Moldes, Ana Belén; Barral, María Teresa

    2009-02-01

    One of the main restrictions to the agronomic use of compost is the excess of heavy metals, which are often present due to inadequate separation of biodegradable fractions from non-degradable or inert materials. Magnetic susceptibility (MS) measurements are a simple technique that has been reported as a useful tool for assessing anthropogenic pollution, especially heavy metal pollution on soil and sediment samples. The close relationship of MS with heavy metal contamination has been proved by combined analyses of chemical and magnetic data. In this study, the MS and total heavy metal concentrations of eight composts from different origins were determined; all composts were passed under a magnet to remove the magnetic material, and total heavy metals were determined again. In our work, high correlations were found between magnetic susceptibility and total Cd, Zn, Pb, Cr and Ni, thus confirming the applicability of MS measurement as a proxy for heavy metal contamination in compost quality assessments. The application of a magnet over the composts reduced the MS as well as the heavy metal content, the reduction of Fe and MS being the most significantly correlated. Thus, the inclusion of an additional magnetic separation step in the post-process compost finishing could be envisaged.

  19. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment

    Science.gov (United States)

    Zhou, Hang; Yang, Wen-Tao; Zhou, Xin; Liu, Li; Gu, Jiao-Feng; Wang, Wen-Lei; Zou, Jia-Ling; Tian, Tao; Peng, Pei-Qin; Liao, Bo-Han

    2016-01-01

    The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As). The target hazard quotient (THQ) method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the different vegetables. The concentrations of heavy metals decreased in the sequence as leafy vegetables > stalk vegetables/root vegetables/solanaceous vegetables > legume vegetables/melon vegetables. The ability of leafy vegetables to uptake and accumulate heavy metals was the highest, and that of melon vegetables was the lowest. This indicated that the low accumulators (melon vegetables) were suitable for being planted on contaminated soil, while the high accumulators (leafy vegetables) were unsuitable. In Shizhuyuan area, China, the total THQ values of adults and children through consumption of vegetables were 4.12 and 5.41, respectively, suggesting that the residents may be facing health risks due to vegetable consumption, and that children were vulnerable to the adverse effects of heavy metal ingestion. PMID:26959043

  20. The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.J.; Clemente, Rafael; Roig, Asuncion; Bernal, M.P

    2003-04-01

    The effects of organic amendments on metal bioavailability were not always related to their degree of humification. - Two heavy metal contaminated calcareous soils from the Mediterranean region of Spain were studied. One soil, from the province of Murcia, was characterised by very high total levels of Pb (1572 mg kg{sup -1}) and Zn (2602 mg kg{sup -1}), whilst the second, from Valencia, had elevated concentrations of Cu (72 mg kg{sup -1}) and Pb (190 mg kg{sup -1}). The effects of two contrasting organic amendments (fresh manure and mature compost) and the chelate ethylenediaminetetraacetic acid (EDTA) on soil fractionation of Cu, Fe, Mn, Pb and Zn, their uptake by plants and plant growth were determined. For Murcia soil, Brassica juncea (L.) Czern. was grown first, followed by radish (Raphanus sativus L.). For Valencia soil, Beta maritima L. was followed by radish. Bioavailability of metals was expressed in terms of concentrations extractable with 0.1 M CaCl{sub 2} or diethylenetriaminepentaacetic acid (DTPA). In the Murcia soil, heavy metal bioavailability was decreased more greatly by manure than by the highly-humified compost. EDTA (2 mmol kg{sup -1} soil) had only a limited effect on metal uptake by plants. The metal-solubilising effect of EDTA was shorter-lived in the less contaminated, more highly calcareous Valencia soil. When correlation coefficients were calculated for plant tissue and bioavailable metals, the clearest relationships were for Beta maritima and radish.

  1. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment.

    Science.gov (United States)

    Zhou, Hang; Yang, Wen-Tao; Zhou, Xin; Liu, Li; Gu, Jiao-Feng; Wang, Wen-Lei; Zou, Jia-Ling; Tian, Tao; Peng, Pei-Qin; Liao, Bo-Han

    2016-03-04

    The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As). The target hazard quotient (THQ) method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the different vegetables. The concentrations of heavy metals decreased in the sequence as leafy vegetables > stalk vegetables/root vegetables/solanaceous vegetables > legume vegetables/melon vegetables. The ability of leafy vegetables to uptake and accumulate heavy metals was the highest, and that of melon vegetables was the lowest. This indicated that the low accumulators (melon vegetables) were suitable for being planted on contaminated soil, while the high accumulators (leafy vegetables) were unsuitable. In Shizhuyuan area, China, the total THQ values of adults and children through consumption of vegetables were 4.12 and 5.41, respectively, suggesting that the residents may be facing health risks due to vegetable consumption, and that children were vulnerable to the adverse effects of heavy metal ingestion.

  2. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China.

    Science.gov (United States)

    Xiao, Ran; Wang, Shuang; Li, Ronghua; Wang, Jim J; Zhang, Zengqiang

    2017-07-01

    Soil contamination with heavy metals due to mining activities poses risks to ecological safety and human well-being. Limited studies have investigated heavy metal pollution due to artisanal mining. The present study focused on soil contamination and the health risk in villages in China with historical artisanal mining activities. Heavy metal levels in soils, tailings, cereal and vegetable crops were analyzed and health risk assessed. Additionally, a botany investigation was conducted to identify potential plants for further phytoremediation. The results showed that soils were highly contaminated by residual tailings and previous mining activities. Hg and Cd were the main pollutants in soils. The Hg and Pb concentrations in grains and some vegetables exceeded tolerance limits. Moreover, heavy metal contents in wheat grains were higher than those in maize grains, and leafy vegetables had high concentrations of metals. Ingestion of local grain-based food was the main sources of Hg, Cd, and Pb intake. Local residents had high chronic risks due to the intake of Hg and Pb, while their carcinogenic risk associated with Cd through inhalation was low. Three plants (Erigeron canadensis L., Digitaria ciliaris (Retz.) Koel., and Solanum nigrum L.) were identified as suitable species for phytoremediation. Copyright © 2017. Published by Elsevier Inc.

  3. Contamination features and health risk of soil heavy metals in China

    International Nuclear Information System (INIS)

    Chen, Haiyang; Teng, Yanguo; Lu, Sijin; Wang, Yeyao; Wang, Jinsheng

    2015-01-01

    China faces a big challenge of environmental deterioration amid its rapid economic development. To comprehensively identify the contamination characteristics of heavy metals in Chinese soils on a national scale, data set of the first national soil pollution survey was employed to evaluate the pollution levels using several pollution indicators (pollution index, geoaccumulation index and enrichment factor) and to quantify their exposure risks posed to human health with the risk assessment model recommended by the US Environmental Protection Agency. The results showed that, due to the drastically increased industrial operations and fast urban expansion, Chinese soils were contaminated by heavy metals in varying degrees. As a whole, the exposure risk levels of soil metals in China were tolerable or close to acceptable. Comparatively speaking, children and adult females were the relatively vulnerable populations for the non-carcinogenic and carcinogenic risks, respectively. Cadmium and mercury have been identified as the priority control metals due to their higher concentrations in soils or higher health risks posed to the public, as well as, arsenic, lead, chromium and nickel. Spatial distribution pattern analysis implied that the soil metal pollutions in southern provinces of China were relatively higher than that in other provinces, which would be related to the higher geochemical background in southwest regions and the increasing human activities in southeast areas. Meanwhile, it should be noticed that Beijing, the capital of China, also has been labeled as the priority control province for its higher mercury concentration. These results will provide basic information for the improvement of soil environment management and heavy metal pollution prevention and control in China. - Highlights: • Soil contamination with heavy metals in China was systematically studied. • Spatial distribution patterns of heavy metals in Chinese soils were identified. • Monte

  4. Heavy metal contaminant remediation study of western Xiamen Bay sediment, China: laboratory bench scale testing results.

    Science.gov (United States)

    Zhang, Luoping; Feng, Huan; Li, Xiaoxia; Ye, Xin; Jing, Youhai; Ouyang, Tong; Yu, Xingtian; Liang, Rongyuan; Chen, Weiqi

    2009-12-15

    A surface sediment sample (metal removal, whereas agitation, aeration and rotation of the samples in chemical complexation solutions yield much better metal removal efficiency (up to 90%). A low pH condition (e.g., pHliquid ratio (e.g., S:L=1:50) could increase metal removal efficiency. The experimental results suggest that 0.20 M (NH4)2C2O4+0.025 M EDTA combination with solid:liquid ratio=1:50 and 0.50 M ammonium acetate (NH4Ac)+0.025 M EDTA combination with solid:liquid ratio=1:50 are the most effective methods for metal removal from the contaminated sediments. This research provides additional useful information for sediment metal remediation technology development.

  5. Heavy metal distribution and contamination status in the sedimentary environment of Cochin estuary.

    Science.gov (United States)

    Salas, P M; Sujatha, C H; Ratheesh Kumar, C S; Cheriyan, Eldhose

    2017-06-30

    Heavy metals (Fe, Mn, Cr, Zn, Ni, Pb, Cu, Co and Cd) in the surface sediments of Cochin estuary, Southwest coast of India were analyzed to understand the spatio-temporal variation and contamination status via six sampling campaigns. Pollution indices like enrichment factor, geoaccumulation index and pollution load index inferred that the sediments of the northern arm of the estuary exhibited severe trace metal accumulation. Numerical sediment quality guidelines were applied to assess adverse biological effects of the trace metals, suggesting that occasional biological effect may occur due to Cr, Cu, Ni and Pb. Correlations between metals, organic carbon, silt and clay suggested that both fine grained sediment and organic matter were important carriers for these metals. Multivariate statistics indicated that the sources of Cu and Ni resulted primarily from natural weathering processes, whereas enriched levels of Cd, Cr, Zn and Pb were mainly attributed to anthropogenic activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Chemical stabilization of metals and arsenic in contaminated soils using oxides – A review

    International Nuclear Information System (INIS)

    Komárek, Michael; Vaněk, Aleš; Ettler, Vojtěch

    2013-01-01

    Oxides and their precursors have been extensively studied, either singly or in combination with other amendments promoting sorption, for in situ stabilization of metals and As in contaminated soils. This remediation option aims at reducing the available fraction of metal(loid)s, notably in the root zone, and thus lowering the risks associated with their leaching, ecotoxicity, plant uptake and human exposure. This review summarizes literature data on mechanisms involved in the immobilization process and presents results from laboratory and field experiments, including the subsequent influence on higher plants and aided phytostabilization. Despite the partial successes in the field, recent knowledge highlights the importance of long-term and large-scale field studies evaluating the stability of the oxide-based amendments in the treated soils and their efficiency in the long-term. - In situ stabilization of metals and As in contaminated soils using oxides combined with phytostabilization is a potential alternative to conventional remediation techniques.

  7. Quantitative relations between soil heavy metal contamination and landscape pattern in Wuxi, China

    Science.gov (United States)

    Zhu, Ming; Pu, Lijie; Xu, Yan

    2017-04-01

    Land use practices changed landscape pattern and meanwhile, brought forth numerous environmental problems including heavy metal contamination in soil. In this study, we investigated the quantitative relations between soil heavy metal contamination and its surrounding landscape pattern based on topsoil samples and land use map of Wuxi in 2009. The results of vector fitting with Redundancy analysis in R package vegan showed that Percent Coverage of build-up area (PCB) within 2500 m, Perimeter-Area Fractal Dimension (PAFD) within 2500 m, Edge Density (ED) within 2500 m, Patch Density (PD) within 200 m, Percent Coverage of wetland (PCW) within 2000 m and Patch Cohesion (PC) within 200 m significantly affected the contents of heavy metal elements. The results of Stepwise regression suggested that increase of build-up area and fragmentation would increase Cu and Zn, while increase of wetland would decrease the contents of As and Cu. PAFD was negative with Cd, Hg, Pb and Zn.

  8. Characterizing the effect of heavy metal contamination on marine mussels using metabolomics.

    Science.gov (United States)

    Kwon, Yong-Kook; Jung, Young-Sang; Park, Jong-Chul; Seo, Jungju; Choi, Man-Sik; Hwang, Geum-Sook

    2012-09-01

    Marine mussels (Mytilus) are widely used as bioindicators to measure pollution in marine environments. In this study, (1)H NMR spectroscopy and multivariate statistical analyses were used to differentiate mussel groups from a heavy metal-polluted area (Onsan Bay) and a clean area (Dokdo area). Principal component analysis and orthogonal projection to latent structure-discriminant analysis revealed significant separation between extracts of mussels from Onsan Bay and from the Dokdo area. Organic osmolytes (betaine and taurine) and free amino acids (alanine, arginine, glutamine, phenylalanine, and threonine) were more highly accumulated in Onsan Bay mussels compared with Dokdo mussels. These results demonstrate that NMR-based metabolomics can be used as an efficient method for characterizing heavy metal contamination derived from polluted area compared to clean area and to identify metabolites related to environments that are contaminated with heavy metals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing.

    Science.gov (United States)

    Guo, Honghong; Nasir, Mubasher; Lv, Jialong; Dai, Yunchao; Gao, Jiakai

    2017-10-01

    To improve the understanding of bacterial community in heavy metals contaminated soils, we studied the effects of environmental factors on the bacterial community structure in contaminated fields located in Shaanxi Province of China. Our results showed that microbial community structure varied among sites, and it was significantly affected by soil environmental factors such as pH, soil organic matter (SOM), Cd, Pb and Zn. In addition, Spearman's rank-order correlation indicated heavy metal sensitive (Ralstonia, Gemmatimona, Rhodanobacter and Mizugakiibacter) and tolerant (unidentified-Nitrospiraceae, Blastocatella and unidentified-Acidobacteria) microbial groups. Our findings are crucial to understanding microbial diversity in heavy metal polluted soils of China and can be used to evaluate microbial communities for scientific applications such as bioremediation projects. Copyright © 2017. Published by Elsevier Inc.

  10. Determination of heavy metals contamination using a silicon sensor with extended responsive to the UV

    International Nuclear Information System (INIS)

    Aceves-Mijares, M; Ramírez, J M; Pedraza, J; Román-López, S; Chávez, C

    2013-01-01

    Due to its potential risk to human health and ecology, the presence of heavy metals in water demands of techniques to determine them in a simple and economical way. Currently, new developments of light emitters and detectors open a window of opportunities to use optical properties to analyze contaminated water. In this paper, a silicon sensor developed to extend its sensitivity up to the UV range is used to determine heavy metals in water. Cadmium, Zinc, Lead, Copper and Manganese mixed in pure water at different concentrations were used as test samples. The photocurrent obtained by the light that passes through the samples was used to determine the optical transmittance of pure and contaminated water. Preliminary results show a good separability between samples, which can be used for qualitative and quantitative detection of such heavy metals in water.

  11. Analysis of disposition alternatives for radioactively contaminated scrap metal

    International Nuclear Information System (INIS)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1997-01-01

    Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling that will safeguard human health or to dispose of the scrap and replace the metal stocks. To evaluate the alternatives, we estimate quantities of scrap arising from nuclear power plant decommissioning, evaluate potential price impacts of recycling on regional markets, and assess the health and environmental impacts of the management alternatives. We conclude that decontaminating and recycling the scrap is the superior alternative

  12. Heavy metal contamination of vegetables irrigated by urban stormwater: a matter of time?

    Directory of Open Access Journals (Sweden)

    Minna Tom

    Full Text Available Urban stormwater is a crucial resource at a time when climate change and population growth threaten freshwater supplies; but there are health risks from contaminants, such as toxic metals. It is vitally important to understand how to use this resource safely and responsibly. Our study investigated the extent of metal contamination in vegetable crops irrigated with stormwater under short- and long-term conditions. We created artificially aged gardens by adding metal-contaminated sediment to soil, simulating accumulation of metals in the soil from irrigation with raw stormwater over zero, five and ten years. Our crops--French bean (Phaseolus vulgaris, kale (Brassica oleracea var. acephala, and beetroot (Beta vulgaris--were irrigated twice a week for 11 weeks, with either synthetic stormwater or potable water. They were then tested for concentrations of Cd, Cr, Pb, Cu and Zn. An accumulation of Pb was the most marked sign of contamination, with six of nine French bean and seven of nine beetroot leaf samples breaching Australia's existing guidelines. Metal concentration in a crop tended to increase with the effective age of the garden; but importantly, its rate of increase did not match the rate of increase in the soil. Our study also highlighted differences in sensitivity between different crop types. French bean demonstrated the highest levels of uptake, while kale displayed restrictive behaviour. Our study makes it clear: irrigation with stormwater is indeed feasible, as long as appropriate crops are selected and media are frequently turned over. We have also shown that an understanding of such risks yields meaningful information on appropriate safeguards. A holistic approach is needed--to account for all routes to toxic metal exposure, including especially Pb. A major outcome of our study is critical information for minimising health risks from stormwater irrigation of crops.

  13. Integrated assessment of sources, chemical stressors and stream quality along a groundwater fed stream system

    Science.gov (United States)

    Løgstrup Bjerg, Poul; Sonne, Anne T.; Rønde, Vinni; McKnight, Ursula S.

    2016-04-01

    Streams are impacted by significant contamination at the catchment scale, as they are often locations of multiple chemical stressor inputs. The European Water Framework Directive requires EU member states to ensure good chemical and ecological status of surface water bodies by 2027. This requires monitoring of stream water quality, comparison with environmental quality standards (EQS) and assessment of ecological status. However, the achievement of good status of stream water also requires a strong focus on contaminant sources, pathways and links to stream water impacts, so source management and remedial measures can be implemented. Fate and impacts of different contaminant groups are governed by different processes and are dependent on the origin (geogenic, anthropogenic), source type (point or diffuse) and pathway of the contaminant. To address this issue, we identified contaminant sources and chemical stressors on a groundwater-fed stream to quantify the contaminant discharges, link the chemical impact and stream water quality and assess the main chemical risk drivers in the stream system potentially driving ecological impact. The study was conducted in the 8 m wide Grindsted stream (Denmark) along a 16 km stream stretch that is potentially impacted by two contaminated sites (Grindsted Factory site, Grindsted Landfill), fish farms, waste water discharges, and diffuse sources from agriculture and urban areas. Water samples from the stream and the hyporheic zone as well as bed sediment samples were collected during three campaigns in 2012 and 2014. Data for xenobiotic organic groundwater contaminants, pesticides, heavy metals, general water chemistry, physical conditions and stream flow were collected. The measured chemical concentrations were converted to toxic units (TU) based on the 48h acute toxicity tests with D. magna. The results show a substantial impact of the Grindsted Factory site at a specific stretch of the stream. The groundwater plume caused

  14. Evaluation of residual uranium contamination in the dirt floor of an abandoned metal rolling mill.

    Science.gov (United States)

    Glassford, Eric; Spitz, Henry; Lobaugh, Megan; Spitler, Grant; Succop, Paul; Rice, Carol

    2013-02-01

    A single, large, bulk sample of uranium-contaminated material from the dirt floor of an abandoned metal rolling mill was separated into different types and sizes of aliquots to simulate samples that would be collected during site remediation. The facility rolled approximately 11,000 tons of hot-forged ingots of uranium metal approximately 60 y ago, and it has not been used since that time. Thirty small mass (≈ 0.7 g) and 15 large mass (≈ 70 g) samples were prepared from the heterogeneously contaminated bulk material to determine how measurements of the uranium contamination vary with sample size. Aliquots of bulk material were also resuspended in an exposure chamber to produce six samples of respirable particles that were obtained using a cascade impactor. Samples of removable surface contamination were collected by wiping 100 cm of the interior surfaces of the exposure chamber with 47-mm-diameter fiber filters. Uranium contamination in each of the samples was measured directly using high-resolution gamma ray spectrometry. As expected, results for isotopic uranium (i.e., U and U) measured with the large-mass and small-mass samples are significantly different (p uranium isotopic concentrations measured in the air and on the wipe samples were not significantly different and were also not significantly different (p > 0.05) from results for the large- or small-mass samples. Large-mass samples are more reliable for characterizing heterogeneously distributed radiological contamination than small-mass samples since they exhibit the least variation compared to the mean. Thus, samples should be sufficiently large in mass to insure that the results are truly representative of the heterogeneously distributed uranium contamination present at the facility. Monitoring exposure of workers and the public as a result of uranium contamination resuspended during site remediation should be evaluated using samples of sufficient size and type to accommodate the heterogeneous

  15. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil.

    Science.gov (United States)

    Lu, Mingmei; Jiao, Shuo; Gao, Enting; Song, Xiuyong; Li, Zhefei; Hao, Xiuli; Rensing, Christopher; Wei, Gehong

    2017-10-15

    metal-contaminated soils. Considering the plant-growth-promoting traits and survival advantage of metal-resistant rhizobia in contaminated environments, more heavy metal-resistant rhizobia and genetically manipulated strains were investigated. In view of the genetic diversity of metal resistance determinants in rhizobia, their effects on phytoremediation by the rhizobium-legume symbiosis must be different and depend on their specific assigned functions. Our work provides a better understanding of the mechanism of heavy metal resistance determinants involved in the rhizobium-legume symbiosis, and in further studies, genetically modified rhizobia harboring effective heavy metal resistance determinants may be engineered for the practical application of rhizobium-legume symbiosis for bioremediation in metal-contaminated soils. Copyright © 2017 American Society for Microbiology.

  16. The GALAH Survey: Stellar streams and how stellar velocity distributions vary with Galactic longitude, hemisphere and metallicity

    Science.gov (United States)

    Quillen, Alice C.; De Silva, Gayandhi; Sharma, Sanjib; Hayden, Michael; Freeman, Ken; Bland-Hawthorn, Joss; Žerjal, Maruša; Asplund, Martin; Buder, Sven; D'Orazi, Valentina; Duong, Ly; Kos, Janez; Lin, Jane; Lind, Karin; Martell, Sarah; Schlesinger, Katharine; Simpson, Jeffrey D.; Zucker, Daniel B.; Zwitter, Tomaz; Anguiano, Borja; Carollo, Daniela; Casagrande, Luca; Cotar, Klemen; Cottrell, Peter L.; Ireland, Michael; Kafle, Prajwal R.; Horner, Jonathan; Lewis, Geraint F.; Nataf, David M.; Ting, Yuan-Sen; Watson, Fred; Wittenmyer, Rob; Wyse, Rosemary

    2018-04-01

    Using GALAH survey data of nearby stars, we look at how structure in the planar (u, v) velocity distribution depends on metallicity and on viewing direction within the Galaxy. In nearby stars with distance d ≲ 1 kpc, the Hercules stream is most strongly seen in higher metallicity stars [Fe/H]>0.2. The Hercules stream peak v value depends on viewed galactic longitude, which we interpret as due to the gap between the stellar stream and more circular orbits being associated with a specific angular momentum value of about 1640 km s-1 kpc. The association of the gap with a particular angular momentum value supports a bar resonant model for the Hercules stream. Moving groups previously identified in Hipparcos observations are easiest to see in stars nearer than 250 pc, and their visibility and peak velocities in the velocity distributions depends on both viewing direction (galactic longitude and hemisphere) and metallicity. We infer that there is fine structure in local velocity distributions that varies over distances of a few hundred pc in the Galaxy.

  17. Assessment of metal contaminations leaching out from recycling plastic bottles upon treatments.

    Science.gov (United States)

    Cheng, Xiaoliang; Shi, Honglan; Adams, Craig D; Ma, Yinfa

    2010-08-01

    Heavy metal contaminants in environment, especially in drinking water, are always of great concern due to their health impact. Due to the use of heavy metals as catalysts during plastic syntheses, particularly antimony, human exposure to metal release from plastic bottles has been a serious concern in recent years. The aim and scope of this study were to assess metal contaminations leaching out from a series of recycling plastic bottles upon treatments. In this study, leaching concentrations of 16 metal elements were determined in 21 different types of plastic bottles from five commercial brands, which were made of recycling materials ranging from no. 1 to no. 7. Several sets of experiments were conducted to study the factors that could potentially affect the metal elements leaching from plastic bottles, which include cooling with frozen water, heating with boiling water, microwave, incubating with low-pH water, outdoor sunlight irradiation, and in-car storage. Heating and microwave can lead to a noticeable increase of antimony leaching relative to the controls in bottle samples A to G, and some even reached to a higher level than the maximum contamination level (MCL) of the US Environmental Protection Agency (USEPA) regulations. Incubation with low-pH water, outdoor sunlight irradiation, and in-car storage had no significant effect on antimony leaching relative to controls in bottle samples A to G, and the levels of antimony leaching detected were below 6 ppb which is the MCL of USEPA regulations. Cooling had almost no effect on antimony leaching based on our results. For the other interested 15 metal elements (Al, V, Cr, Mn, Co, Ni, Cu, As, Se, Mo, Ag, Cd, Ba, Tl, Pb), no significant leaching was detected or the level was far below the MCL of USEPA regulations in all bottle samples in this study. In addition, washing procedure did contribute to the antimony leaching concentration for polyethylene terephthalate (PET) bottles. The difference of antimony leaching

  18. Uptake kinetics of metals by the earthworm Eisenia fetida exposed to field-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Nahmani, Johanne, E-mail: nahmani@univ-metz.f [Laboratoire Interactions Ecotoxicite, Biodiversite, Ecosystemes, CNRS UMR 7146, Universite Paul Verlaine - Metz, Rue du General Delestraint, 57070 Metz (France); Department of Soil Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DW (United Kingdom); Hodson, Mark E. [Department of Soil Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DW (United Kingdom); Devin, Simon [Laboratoire Interactions Ecotoxicite, Biodiversite, Ecosystemes, CNRS UMR 7146, Universite Paul Verlaine - Metz, Rue du General Delestraint, 57070 Metz (France); Vijver, Martina G. [Leiden University, Institute of Environmental Sciences (CML), P.O. Box 9518, 2300 RA Leiden (Netherlands)

    2009-10-15

    It is well known that earthworms can accumulate metals. However, most accumulation studies focus on Cd-, Cu-, Pb- or Zn-amended soils, additionally few studies consider accumulation kinetics. Here we model the accumulation kinetics of 18 elements by Eisenia fetida, exposed to 8 metal-contaminated and 2 uncontaminated soils. Tissue metal concentration was determined after 3, 7, 14, 21, 28 and 42 days. Metal elimination rate was important in determining time to reach steady-state tissue metal concentration. Uptake flux to elimination rate ratios showed less variation and lower values for essential than for non-essential metals. In theory kinetic rate constants are dependent only on species and metal. Therefore it should be possible to predict steady-state tissue metal concentrations on the basis of very few measurements using the rate constants. However, our experiments show that it is difficult to extrapolate the accumulation kinetic constants derived using one soil to another. - Earthworm metal uptake and elimination constants derived from a one-compartment model show little systematic variation with soil properties.

  19. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    Science.gov (United States)

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Biological monitoring of heavy metal contaminations using owls.

    Science.gov (United States)

    Kim, Jungsoo; Oh, Jong-Min

    2012-03-01

    Iron, manganese, copper, lead and cadmium were measured in the livers, muscles, kidneys and bones of Eurasian Eagle Owls (Bubo bubo), Brown Hawk Owls (Nixos scutulata) and Collared Scops Owls (Otus lempiji) from Korea. Iron concentrations by tissue within species did not differ, but there were significant differences among tissues across all species. Manganese and copper concentrations in muscles, kidneys and bones, but not livers, differed among species and also differed among tissues in the three owl species. We suggest that manganese and copper concentrations from this study were far below the level associated with their toxicity. Lead concentrations significantly differed among all species for livers and bones, and among tissues for each species. Cadmium concentrations were significantly different among species for all tissues and among tissues in Eurasian Eagle Owls and Collared Scops Owls. For most samples, lead concentrations in livers and bones, and cadmium in livers and kidneys, were within the background levels for wild birds. For some Eurasian Eagle Owls and Collared Scops Owls, lead concentrations were at an acute exposure level, whilst lead concentrations were at a chronic exposure level in Brown Hawk Owls. Cadmium concentrations were at a chronic exposure level in all three owl species. Acute and chronic poisoning was significantly correlated between indicator tissues. We suggest that lead and cadmium contamination in Eurasian Eagle Owls may reflect a Korean source, Brown Hawk Owls may reflect Korean and wintering sites, and Collared Scops Owls may reflect breeding and/or wintering sites. This journal is © The Royal Society of Chemistry 2012

  1. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions

    Science.gov (United States)

    Barber, Larry B.; Loyo-Rosales, Jorge E.; Rice, Clifford P.; Minarik, Thomas A.; Oskouie, Ali K.

    2015-01-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  2. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions.

    Science.gov (United States)

    Barber, Larry B; Loyo-Rosales, Jorge E; Rice, Clifford P; Minarik, Thomas A; Oskouie, Ali K

    2015-06-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  3. Metal fractionation in a contaminated soil after reforestation: temporal changes versus spatial variability.

    Science.gov (United States)

    Nowack, Bernd; Schulin, Rainer; Luster, Jörg

    2010-10-01

    In a lysimeter experiment, topsoils were polluted with filter dust from a non-ferrous metal smelter and then planted with trees. Sequential extractions were used to follow the changes in metal fractionation of Cu, Zn, Cd, and Pb over 42 months. Plant-free and uncontaminated soils served as reference. In the contaminated and planted soils, the largest changes in speciation occurred within the first 6 months. The relative amounts of certain metal fractions were linearly related to each other, indicating systematic redistribution between fractions. The results indicate that under natural conditions with high heterogeneity in total metal contents spatial differences are more important than temporal variations in determining the fractionation and solubility of metals in contaminated soils. In the absence of plants soils exhibited a completely different fractionation 30 months after pollution, with much higher proportions in the more refractory phases. This suggests that plant activity kept the metals in a more soluble form. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Metal contamination of Posidonia oceanica meadows along the Corsican coastline (Mediterranean)

    Energy Technology Data Exchange (ETDEWEB)

    Lafabrie, C. [University of Corsica, Faculty of Sciences, Equipe Ecosystemes Littoraux, BP 52, 20250 Corte (France)], E-mail: lafabrie@univ-corse.fr; Pergent-Martini, C.; Pergent, G. [University of Corsica, Faculty of Sciences, Equipe Ecosystemes Littoraux, BP 52, 20250 Corte (France)

    2008-01-15

    The aim of this study is to determine metal (Cd, Co, Cr, Hg, Ni, Pb) concentrations in Posidonia oceanica tissues along the Corsican coastline. The results show that except for Cr, all the metals are preferentially accumulated in the blades; this is particularly interesting as it means that future metal analyses may be carried out only on the blades avoiding thus the removal of the shoots. Moreover, they show that metal concentrations may reflect the 'background noise' of the Mediterranean Sea. Station 15 (Canari) can however be distinguished from the others due to its high Co, Cr and Ni concentrations. This result may be related to the presence of a previous asbestos mine, located near this station. Therefore, this study reinforces the usefulness and the relevance of Posidonia oceanica as a tracer of spatial metal contamination and as an interesting tool for water quality evaluation. - The seagrass Posidonia oceanica is a relevant tracer of spatial metal contamination and an interesting tool for water quality evaluation.

  5. Metal impacts on microbial biomass in the anoxic sediments of a contaminated lake

    Energy Technology Data Exchange (ETDEWEB)

    Gough, Heidi L.; Dahl, Amy L.; Nolan, Melissa A.; Gaillard, Jean-Francois; Stahl, David A.

    2008-04-26

    Little is known about the long-term impacts of metal contamination on the microbiota of anoxic lake sediments. In this study, we examined microbial biomass and metals (arsenic, cadmium, chromium, copper, iron, lead, manganese, and zinc) in the sediments of Lake DePue, a backwater lake located near a former zinc smelter. Sediment core samples were examined using two independent measures for microbial biomass (total microscopic counts and total phospholipid-phosphate concentrations), and for various fractions of each metal (pore water extracts, sequential extractions, and total extracts of all studied metals and zinc speciation by X-ray absorption fine structure (XAFS). Zinc concentrations were up to 1000 times higher than reported for sediments in the adjacent Illinois River, and ranged from 21,400 mg/kg near the source to 1,680 mg/kg near the river. However, solid metal fractions were not well correlated with pore water concentrations, and were not good predictors of biomass concentrations. Instead, biomass, which varied among sites by as much as two-times, was inversely correlated with concentrations of pore water zinc and arsenic as established by multiple linear regression. Monitoring of other parameters known to naturally influence biomass in sediments (e.g., organic carbon concentrations, nitrogen concentrations, pH, sediment texture, and macrophytes) revealed no differences that could explain observed biomass trends. This study provides strong support for control of microbial abundance by pore water metal concentrations in contaminated freshwater sediments.

  6. Metal contamination of Posidonia oceanica meadows along the Corsican coastline (Mediterranean)

    International Nuclear Information System (INIS)

    Lafabrie, C.; Pergent-Martini, C.; Pergent, G.

    2008-01-01

    The aim of this study is to determine metal (Cd, Co, Cr, Hg, Ni, Pb) concentrations in Posidonia oceanica tissues along the Corsican coastline. The results show that except for Cr, all the metals are preferentially accumulated in the blades; this is particularly interesting as it means that future metal analyses may be carried out only on the blades avoiding thus the removal of the shoots. Moreover, they show that metal concentrations may reflect the 'background noise' of the Mediterranean Sea. Station 15 (Canari) can however be distinguished from the others due to its high Co, Cr and Ni concentrations. This result may be related to the presence of a previous asbestos mine, located near this station. Therefore, this study reinforces the usefulness and the relevance of Posidonia oceanica as a tracer of spatial metal contamination and as an interesting tool for water quality evaluation. - The seagrass Posidonia oceanica is a relevant tracer of spatial metal contamination and an interesting tool for water quality evaluation

  7. Metal contamination in water sediments; Contaminacion por metales en sedimentos acuaticos

    Energy Technology Data Exchange (ETDEWEB)

    Usero Garcia, J.; Morillo Aguado, J.; Gracia Manarillo, I. [Universidad de Sevilla. Sevilla (Spain)

    1997-09-01

    The origin, distribution, and behaviour of metals in aquatic systems, and factors affecting the solubilization and entry into the water column of metals associated with sediments are examined. Also, the interaction of these metals with and toxic effects on living organisms are studied. Finally, the existing methods for assessing the degree of pollution of sediments and the mobility of the metals associated with the sediments are explained. In the second section of this paper, the methods used for sampling, preparing, and analysing the sediments are described. (Author) 48 refs.

  8. Heavy Metal Uptake, Translocation, and Bioaccumulation Studies of Triticum aestivum Cultivated in Contaminated Dredged Materials

    Directory of Open Access Journals (Sweden)

    Gregorio Begonia

    2005-08-01

    Full Text Available Phytoremediation is a technology that uses vegetation to remediate contaminants from water, soil, and sediments. Unlike traditional remediation techniques such as soil washing or vitrification, phytoremediation offers a technology that is solar-driven, aesthetically pleasing, and cost effective. Recent studies indicate that winter wheat (Triticum aestivum L. is a potential accumulator for heavy metals such as lead (Pb and cadmium (Cd in hydroponic systems. Based on these findings, a laboratory study was conducted with the primary objective of determining the phytoaccumulation capability of this plant species for heavy metals from contaminated dredged materials (DMs originating from two confined disposal facilities (CDF. The United States Army Corps of Engineers (USACE manages several hundred million cubic meters of DMs each year, and 5 to 10 % of these DMs require special handling because they are contaminated with hazardous substances that can move from the substrates into food webs causing unacceptable risk outside CDFs. Phytoremediation may offer an alternative to decrease this risk. Chemical analyses by USACE personnel identified 17 metals in various DMs, but in this present study, only zinc (Zn and Cd were investigated. Pre-germinated seeds of the test plants were planted under laboratory conditions in pots containing the various DMs and reference soil. Four weeks after planting, plants were harvested and separated into roots and shoots for biomass production and tissue metal concentrations analyses. Results showed that T. aestivum plants have the capacity to tolerate and grow in multiple-metal contaminated DMs with the potential of accumulating various amounts of Zn and Cd. Root and shoot biomass of T. aestivum were not significantly affected by the DMs on which the plants were grown suggesting that this plant species can grow just as well on DMs contaminated by various metals as in the reference soil. No significant differences in the Zn

  9. Heavy metal uptake, translocation, and bioaccumulation studies of Triticum aestivum cultivated in contaminated dredged materials.

    Science.gov (United States)

    Shumaker, Ketia L; Begonia, Gregorio

    2005-08-01

    Phytoremediation is a technology that uses vegetation to remediate contaminants from water, soil, and sediments. Unlike traditional remediation techniques such as soil washing or vitrification, phytoremediation offers a technology that is solar-driven, aesthetically pleasing, and cost effective. Recent studies indicate that winter wheat (Triticum aestivum L.) is a potential accumulator for heavy metals such as lead (Pb) and cadmium (Cd) in hydroponic systems. Based on these findings, a laboratory study was conducted with the primary objective of determining the phytoaccumulation capability of this plant species for heavy metals from contaminated dredged materials (DMs) originating from two confined disposal facilities (CDF). The United States Army Corps of Engineers (USACE) manages several hundred million cubic meters of DMs each year, and 5 to 10 % of these DMs require special handling because they are contaminated with hazardous substances that can move from the substrates into food webs causing unacceptable risk outside CDFs. Phytoremediation may offer an alternative to decrease this risk. Chemical analyses by USACE personnel identified 17 metals in various DMs, but in this present study, only zinc (Zn) and Cd were investigated. Pre-germinated seeds of the test plants were planted under laboratory conditions in pots containing the various DMs and reference soil. Four weeks after planting, plants were harvested and separated into roots and shoots for biomass production and tissue metal concentrations analyses. Results showed that T. aestivum plants have the capacity to tolerate and grow in multiple-metal contaminated DMs with the potential of accumulating various amounts of Zn and Cd. Root and shoot biomass of T. aestivum were not significantly affected by the DMs on which the plants were grown suggesting that this plant species can grow just as well on DMs contaminated by various metals as in the reference soil. No significant differences in the Zn tissue

  10. Effects of petroleum and metal contaminated soil on plants and earthworms: Survival and bioaccumulation

    International Nuclear Information System (INIS)

    Tatem, H.E.; Simmers, J.W.; Skogerboe, J.G.; Lee, C.R.

    1993-01-01

    Earthworms, Eisenia foetida, and bermudagrass, Cynodon dactylon, were used in the laboratory to test the toxicity of contaminated sediment taken from a small fresh water lake in North Carolina. This work was part of an investigation to determine the potential effects of upland disposal of this sediment. The contaminated sediment contained As, Cr, Cu, Pb, Hg, Ni, Zn and petroleum hydrocarbons at concentrations much greater than nearby soils. Test cylinders were planted with bermudagrass; earthworms were added 30 days later. Both species were harvested at 60 days, weighed and submitted for chemical analyses. Cynodon was affected by the contaminated sediment but grew well in the mixtures of sediment and upland soil. Similar results were obtained with the Eisenia. These species did not accumulate hydrocarbons from the sediment with the possible exception of pyrene. The metals Cd, Pb, and Zn were elevated in plants exposed to the contaminated sediment. Earthworms exposed to this sediment accumulated Pb to concentrations greater than animals exposed to the manure control. This work demonstrated that a contaminated freshwater sediment was not toxic to plants or earthworms and that most petroleum hydrocarbons were not accumulated. The only metal that may be of some concern was Pb

  11. Use of Hydrophilic Insoluble Polymers in the Restoration of Metal-Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Guiwei Qu

    2009-01-01

    Full Text Available To develop cost-effective techniques that contribute to phytostabilization of severely metal-contaminated soils is a necessary task in environmental research. Hydrophilic insoluble polymers have been used for some time in diapers and other hygienic products and to increase the water-holding capacity of coarse-textured soils. These polymers contain groups, such as carboxyl groups, that are capable of forming bonds with metallic cations, thereby decreasing their bioavailability in soils. The use of polyacrylate polymers as soil amendments to restore metal-contaminated soils has been investigated in the Technical University of Lisbon since the late nineties. Plant growth and plant nutrients concentrations, extractable levels of metals in soil, and soil enzyme activities were used to monitor the improvement in soil quality following the application of these polymers. In contaminated soils, hydrophilic insoluble polymers can create microcosms that are rich in water and nutrients (counterions but only contain small concentrations of toxic elements; the conditions of these microenvironments are favorable to roots and microorganisms. In this paper we described the most relevant information available about this topic.

  12. How functional traits of estuarine macrobenthic assemblages respond to metal contamination?

    KAUST Repository

    Piló, D.

    2016-08-06

    The effects of metal contamination on estuarine macrobenthic communities were investigated using the Biological Traits Analysis (BTA). The study was carried out in the Tagus estuary (western Portugal). Samples of macrobenthic communities and associated environmental variables were taken in four surveys (September 2012, and February, May and October 2013) across the contamination gradient from three main zones: a slightly contaminated, a moderately contaminated and a highly contaminated zone. Functional traits for the most abundant species were assigned using seven categories based on “Feeding mode”, “Life span”, “Body size”, “Motility”, “Position in sediments”, “Larval type” and “AMBI ecological group”. To investigate whether the macroinvertebrate community structure was associated with the environmental parameters and biological traits an integrative multivariate analysis, combining the RLQ analysis and the fourth-corner method, was applied. Within this analysis, human-induced estuarine variables (metals) were rendered independent from natural ones (sediment fine particles) through partial correlations. Following this approach, it was possible to decouple the effects of two typically highly correlated environmental descriptors with different origins. Overall, the study identified significant relationships between sediment environmental descriptors and the functional traits of macrobenthic communities. Further, RLQ/Fourth-corner combined analysis successfully isolated the traits and corresponding species that were most correlated with the measured concentration of trace metals in sediments, supporting the knowledge that benthic organisms exhibit distinct responses to different levels of disturbance. A shift in species dominance occurred along the contamination gradient with epifaunal tolerant species with very small size, long life span, and crawling motility dominating the highest contaminated area. This area was also related with

  13. Metal release from contaminated leaf litter and leachate toxicity for the freshwater crustacean Gammarus fossarum.

    Science.gov (United States)

    Maunoury-Danger, Florence; Felten, Vincent; Bojic, Clément; Fraysse, Fabrice; Cosin Ponce, Mar; Dedourge-Geffard, Odile; Geffard, Alain; Guérold, François; Danger, Michael

    2017-06-18

    Industrialization has left large surfaces of contaminated soils, which may act as a source of pollution for contiguous ecosystems, either terrestrial or aquatic. When polluted sites are recolonized by plants, dispersion of leaf litter might represent a non-negligible source of contaminants, especially metals. To evaluate the risks associated to contaminated leaf litter dispersion in aquatic ecosystems, we first measured the dynamics of metal loss from leaf litter during a 48-h experimental leaching. We used aspen (Populus tremula L.), a common tree species on these polluted sites, and collected leaf litter on three polluted sites (settling pond of a former steel mill) and three control sites situated in the same geographic area. Then, toxicity tests were carried out on individuals of a key detritivore species widely used in ecotoxicology tests, Gammarus fossarum (Crustacea, Amphipoda), with uncontaminated and contaminated leaf litter leachates, using a battery of biomarkers selected for their sensitivity to metallic stress. Leaf litters collected on polluted sites exhibited not only significantly higher cadmium and zinc concentrations but also lower lignin contents. All leaf litters released high amounts of chemical elements during the leaching process, especially potassium and magnesium, and, in a lesser extent, phosphorus, calcium, and trace metals (copper, cadmium, and zinc but not lead). Toxicity tests revealed that the most important toxic effects measured on G. fossarum were due to leaf litter leachates by themselves, whatever the origin of litter (from polluted or control sites), confirming the toxicity of such substances, probably due to their high content in phenolic compounds. Small additional toxic effects of leachates from contaminated leaf litters were only evidenced on gammarid lipid peroxidation, indicating that contaminated leaf litter leachates might be slightly more toxic than uncontaminated ones, but in a very reduced manner. Further studies will

  14. Radiometric monitoring of contaminated scrap metals imported in Italy. Technical and regulatory features

    International Nuclear Information System (INIS)

    Dobici, F.; Piermattei, S.; Susanna, A.

    1996-01-01

    During these last ten years there have been occasional reports of mishaps from trafficking of contaminated scraps or containing radioactive sources. Recently an increase of events indicated that the problem becomes more important as to generate possible consequences, from a radiation protection standpoint, for workers and general public. Following the detection of contaminated metal scraps in some recycling industries and in some consignments entering the Italian borders, the competent Authorities laid down rules to put the matter under control. In this paper technical and regulatory features are discussed. (author)

  15. Effects of metal burden and food avoidance on the transfer of metals from naturally contaminated prey to a marine predator Nassarius siquijorensis.

    Science.gov (United States)

    Guo, Feng; Yang, Lulu; Wang, Wen-Xiong

    2013-05-15

    Nassarid snails are important opportunistic scavengers widely found in marine intertidal shores and trophic transfer is a predominant source of metal accumulation in these species, thus there is a significant need to understand the controls of metal trophic transfer. In the present study, we took advantage of a severely contaminated estuary and collected two prey organisms (oysters Crassostrea angulata and barnacles Fistulobalanus albicostatus) with different contamination histories. These naturally contaminated prey were fed to a marine neogastropod Nassarius siquijorensis for a period of up to 7 weeks. We then investigated the influences of prey type, metal burden, and subcellular distribution in the prey on the metal accumulation, trophic transfer, and potential toxicity on N. siquijorensis. We demonstrated an obvious negative relationship between the trophic transfer and the metal concentration in prey or the metal dosage. N. siquijorensis exhibited food avoidance behavior to the Cu contaminated food, which effectively reduced the metal ingestion and resulted in a decrease of trophic transfer, as well as a potential toxic effect from dietary exposure. On the other hand, our results also implied the metal-specific impact of subcellular metal distribution in prey on the trophic transfer to N. siquijorensis. Our study suggested that metal burden and feeding avoidance should be considered in studying the trophic transfer of metals in marine benthic food chain. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Soil and groundwater contamination with heavy metals at two scrap iron and metal recycling facilities

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Holm, P. E.; Christensen, Thomas Højlund

    2000-01-01

    Field studies were performed at two actual scrap iron and metal recycling facilities in order to evaluate the extent of heavy metal migration into subsoil and groundwater caused by more than 25 years of handling scrap directly on the ground without any measures to prevent leaching. Surface soil s...

  17. Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants.

    Science.gov (United States)

    Begum, Zinnat A; Rahman, Ismail M M; Tate, Yousuke; Sawai, Hikaru; Maki, Teruya; Hasegawa, Hiroshi

    2012-06-01

    Ex situ soil washing with synthetic extractants such as, aminopolycarboxylate chelants (APCs) is a viable treatment alternative for metal-contaminated site remediation. EDTA and its homologs are widely used among the APCs in the ex situ soil washing processes. These APCs are merely biodegradable and highly persistent in the aquatic environments leading to the post-use toxic effects. Therefore, an increasing interest is focused on the development and use of the eco-friendly APCs having better biodegradability and less environmental toxicity. The paper deals with the results from the lab-scale washing treatments of a real sample of metal-contaminated soil for the removal of the ecotoxic metal ions (Cd, Cu, Ni, Pb, and Zn) using five biodegradable APCs, namely [S,S]-ethylenediaminedisuccinic acid, imminodisuccinic acid, methylglycinediacetic acid, DL-2-(2-carboxymethyl) nitrilotriacetic acid (GLDA), and 3-hydroxy-2,2'-iminodisuccinic acid. The performance of those biodegradable APCs was evaluated for their interaction with the soil mineral constituents in terms of the solution pH and metal-chelant stability constants, and compared with that of EDTA. Speciation calculations were performed to identify the optimal conditions for the washing process in terms of the metal-chelant interactions as well as to understand the selectivity in the separation ability of the biodegradable chelants towards the metal ions. A linear relationship between the metal extraction capacity of the individual chelants towards each of the metal ions from the soil matrix and metal-chelant conditional stability constants for a solution pH greater than 6 was observed. Additional considerations were derived from the behavior of the major potentially interfering cations (Al, Ca, Fe, Mg, and Mn), and it was hypothesized that use of an excess of chelant may minimize the possible competition effects during the single-step washing treatments. Sequential extraction procedure was used to determine the

  18. Volume reduction of low-level contaminated metal waste by melting: selection of method and conceptual plan

    International Nuclear Information System (INIS)

    Copeland, G.L.; Heestand, R.L.; Mateer, R.S.

    1978-06-01

    A review of the literature and prior experience led to selection of induction melting as the most promising method for volume reduction of low-level transuranic contaminated metal waste. The literature indicates that melting with the appropriate slags significantly lowers the total contamination level of the metals by preferentially concentrating contaminants in the smaller volume of slag. Surface contamination not removed to the slag is diluted in the ingot and is contained uniformly in the metal. This dilution and decontamination offers the potential of lower cost disposal such as shallow burial rather than placement in a national repository. A processing plan is proposed as a model for economic analysis of the collection and volume reduction of contaminated metals. Further development is required to demonstrate feasibility of the plan

  19. Synthetic routes contaminate graphene materials with a whole spectrum of unanticipated metallic elements.

    Science.gov (United States)

    Wong, Colin Hong An; Sofer, Zdeněk; Kubešová, Marie; Kučera, Jan; Matějková, Stanislava; Pumera, Martin

    2014-09-23

    The synthesis of graphene materials is typically carried out by oxidizing graphite to graphite oxide followed by a reduction process. Numerous methods exist for both the oxidation and reduction steps, which causes unpredictable contamination from metallic impurities into the final material. These impurities are known to have considerable impact on the properties of graphene materials. We synthesized several reduced graphene oxides from extremely pure graphite using several popular oxidation and reduction methods and tracked the concentrations of metallic impurities at each stage of synthesis. We show that different combinations of oxidation and reduction introduce varying types as well as amounts of metallic elements into the graphene materials, and their origin can be traced to impurities within the chemical reagents used during synthesis. These metallic impurities are able to alter the graphene materials' electrochemical properties significantly and have wide-reaching implications on the potential applications of graphene materials.

  20. Assessment of toxicity of heavy metal contaminated soils for Collembola in the field and laboratory

    DEFF Research Database (Denmark)

    Xu, Jie; Krogh, Paul Henning; Luo, Yongming

    2008-01-01

    of Zhejiang province, Fuyang county. We addressed the questions: 1) how do different collembolan life-forms respond to heavy metals in long-time pollution field site. 2) Are laboratory toxicity testing of field collected polluted soil predictable for the population effects observed in aged heavy metal...... pollutions. Effects of the heavy metals in the soil from the paddy fields were assessed for growth, survival and reproduction under laboratory conditions. For the tests we used two soil arthropod species: the parthenogenetic, Folsomia candida Willem 1902, and the sexually reproducing, Sinella curviseta Brook......We present a field and laboratory investigation of effects of increasing levels of heavy metal contamination on the biodiversity and performance of collembolans. A 40 year old pollution with Cu, Zn, Pb and Cd pollution due to Cu smelting over 40 years was investigated in a paddy field area...

  1. Contamination by urban superficial runoff: accumulated heavy metals on a road surface

    Directory of Open Access Journals (Sweden)

    Carlos Alfonso Zafra Mejía

    2007-01-01

    Full Text Available Studying the behaviour of accumulated contamination on urban surfaces is important in designing control methods minimising the impacts of surface runoff on the environment. This paper presents data regarding the sediment collected on the surface of an urban road in the city of Torrelavega in northern Spain during a period of 65 days during which 132 samples were collected. Two types of sediment collection samples were obtained: vacuumed dry samples (free load and those swept up following vacuuming (fixed load. The results showed that heavy metal concentration in the collected sediment (Pb, Zn, Cu and Cd was inversely proportional to particle diameter. High heavy metal concentrations were found in the smaller fraction (63 pm. Regression equations were calculated for heavy metal concentration regarding particle diameter. Large heavy metal loads were found in the larger fraction (125 pm. The results provide information for analysing runoff water quality in urban areas and designing treatment strategies.

  2. Ancient Heavy Metal Contamination in Soils as a Driver of Tolerant Anthyllis vulneraria Rhizobial Communities.

    Science.gov (United States)

    Mohamad, Roba; Maynaud, Geraldine; Le Quéré, Antoine; Vidal, Céline; Klonowska, Agnieszka; Yashiro, Erika; Cleyet-Marel, Jean-Claude; Brunel, Brigitte

    2017-01-15

    living in symbiosis with rhizobia that can stimulate plant growth naturally through biological nitrogen fixation. We studied microsymbiont partners of a metal-tolerant legume, Anthyllis vulneraria, which is tolerant to very highly metal-polluted soils in mining and nonmining sites. Site-specific rhizobial communities were linked to taxonomic composition and metal tolerance capacity. The rhizobial species Mesorhizobium metallidurans was dominant in all Zn-Pb mines but one. It was not detected in unpolluted sites where other distinct Mesorhizobium species occur. Given the different soil conditions at the respective mining sites, including their heavy-metal contamination, revegetation strategies based on rhizobia adapting to local conditions are more likely to succeed over the long term compared to strategies based on introducing less-well-adapted strains. Copyright © 2016 American Society for Microbiology.

  3. Relationships between metal compartmentalization and biomarkers in earthworms exposed to field-contaminated soils.

    Science.gov (United States)

    Beaumelle, Léa; Hedde, Mickaël; Vandenbulcke, Franck; Lamy, Isabelle

    2017-05-01

    Partitioning tissue metal concentration into subcellular compartments reflecting toxicologically available pools may provide good descriptors of the toxicological effects of metals on organisms. Here we investigated the relationships between internal compartmentalization of Cd, Pb and Zn and biomarker responses in a model soil organism: the earthworm. The aim of this study was to identify metal fractions reflecting the toxic pressure in an endogeic, naturally occurring earthworm species (Aporrectodea caliginosa) exposed to realistic field-contaminated soils. After a 21 days exposure experiment to 31 field-contaminated soils, Cd, Pb and Zn concentrations in earthworms and in three subcellular fractions (cytosol, debris and granules) were quantified. Different biomarkers were measured: the expression of a metallothionein gene (mt), the activity of catalase (CAT) and of glutathione-s-transferase (GST), and the protein, lipid and glycogen reserves. Biomarkers were further combined into an integrated biomarker index (IBR). The subcellular fractionation provided better predictors of biomarkers than the total internal contents hence supporting its use when assessing toxicological bioavailability of metals to earthworms. The most soluble internal pools of metals were not always the best predictors of biomarker responses. metallothionein expression responded to increasing concentrations of Cd in the insoluble fraction (debris + granules). Protein and glycogen contents were also mainly related to Cd and Pb in the insoluble fraction. On the other hand, GST activity was better explained by Pb in the cytosolic fraction. CAT activity and lipid contents variations were not related to metal subcellular distribution. The IBR was best explained by both soluble and insoluble fractions of Pb and Cd. This study further extends the scope of mt expression as a robust and specific biomarker in an ecologically representative earthworm species exposed to field-contaminated soils. The

  4. Aided phytostabilization using Miscanthus sinensis × giganteus on heavy metal-contaminated soils.

    Science.gov (United States)

    Pavel, Petronela-Bianca; Puschenreiter, Markus; Wenzel, Walter W; Diacu, Elena; Barbu, Constantin Horia

    2014-05-01

    A field experiment was carried out to evaluate the use of red mud, a by-product of the alumina industry, as a soil amendment on highly contaminated soils in the vicinity of a former Pb-Zn smelter in Copșa Mică (Romania). Changes in the distribution of Zn, Cd and Pb in various soil fractions, mobility of heavy metals in the soil, and their uptake and effects on growth and productivity of Miscanthus sinensis × giganteus were evaluated. Uptake of Zn, Cd and Pb was determined in different tissues of M. sinensis × giganteus cultivated in field plots situated at increasing distance from the pollution source and with different levels of contamination and metal availabilities. Soluble metal concentrations were determined in centrifugates, whereas potentially soluble fractions were analyzed by diffusive gradients in thin films. In terms of the biomass productivity there were significant differences among the plants obtained in plots with different characteristics and pollution levels. Bioconcentration factors were much lower than 1, indicating that M. sinensis × giganteus is an excluder of heavy metals, especially Pb. Amending soils with red mud reduced the exchangeable or phytoavailable fractions of Zn, Cd and Pb. Overall the results suggest that M. sinensis × giganteus is a valuable energy plant and can be successfully grown on heavily contaminated soils with Zn, Cd and Pb. Moreover, the addition of red mud to these soils can lead to a significant decrease in the concentration of heavy metals in the soil and in metal uptake by plant tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. [Numerical simulation and application of electrical resistivity survey in heavy metal contaminated sites].

    Science.gov (United States)

    Wang, Yu-ling; Nai, Chang-xin; Wang, Yan-wen; Dong, Lu

    2013-05-01

    In order to analyze the effects of electrical resistivity in heavy metal contaminated sites, we established the resistivity model of typical contaminated sites and simulate the DC resistivity method with Wenner arrays using the finite element method. The simulation results showed that the electrical method was influenced by the contamination concentration and the location of pollution. The more serious the degree of pollution was, the more obvious the low resistivity anomaly, thus the easier the identification of the contaminated area; otherwise, if there was light pollution, Wenner array could not get obvious low resistivity anomalies, so it would be hard to judge the contaminated area. Our simulation results also showed that the closer the contaminated areas were to the surface, the more easily the pollution was detected and the low resistivity anomalies shown in the apparent resistivity diagram were influenced by the Layered medium. The actual field survey results using resistivity method also show that the resistivity method can correctly detect the area with serious pollution.

  6. Effects of metal-contaminated forest soils from the Canadian shield to terrestrial organisms.

    Science.gov (United States)

    Feisthauer, Natalie C; Stephenson, Gladys L; Princz, Juliska I; Scroggins, Richard P

    2006-03-01

    The effects of elevated metal concentrations in forest soils on terrestrial organisms were investigated by determining the toxicity of six site soils from northern Ontario and Quebec, Canada, using a battery of terrestrial toxicity tests. Soils were collected from three sites on each of two transects established downwind of nickel (Sudbury, ON, Canada) and copper (Rouyn-Noranda, PQ, Canada) smelting operations. Site soils were diluted to determine if toxicity estimates for the most-contaminated site soils could be quantified as a percent of site soil. Rouyn-Noranda soils were toxic following acute exposure (14 d) to plants, but not to invertebrates (7 d for collembola and 14 d for earthworms). However, Rouyn-Noranda soils were toxic to all species following chronic exposure (21, 35, and 63 d for plants, collembola, and earthworms, respectively). The toxicity of the Rouyn-Noranda site soils did not correspond to the gradient of metal concentrations in soil. Metal-contaminated Sudbury soils were toxic to plants but not to invertebrates, following acute exposure. Chronic exposure to Sudbury soils caused adverse effects to plant growth and invertebrate survival and reproduction. The toxicity of Sudbury soils corresponded to the metal concentration gradient, with one exception: The reference soil collected in October was toxic to collembola following acute and chronic exposure. This study evaluated the applicability of the new Environment Canada terrestrial toxicity test methods, developed using agricultural soils, to forest soils and also provided useful data to assess the ecological risk associated with mixtures of metals in soil.

  7. Evaluation and mapping spatial distribution of bottom sediment heavy metal contamination in Burullus Lake, Egypt

    Directory of Open Access Journals (Sweden)

    Yasser A. El-Amier

    2017-03-01

    Full Text Available Burullus Lake is one of most important lakes in north Delta of Egypt. It is exposed to huge amounts of serious pollutants especially heavy metals. The sediments within the lake aid in the dispersion of these metals. The main objectives of this research were to evaluate and map the spatial distribution of heavy metals in Burullus Lake sediments. Accordingly, 37 locations were randomly distributed within the lake. Sediment samples were taken from these locations. These samples were analyzed for seven metals including Fe, Cu, Zn, Cr, Co, Cd and Pb. Also, five indices were used to identify the status of metal pollutants in the Lake. These indices are: enrichment factor (EF, contamination factor (CF, degree of contamination (DC, pollution load index (PLI and geo-accumulation index (Igeo. Ordinary Kriging was used to interpolate the spatial distribution of the studied elements within the lake. The obtained results indicated that cadmium was the most enriched element in the lake sediments due to industrial and agricultural wastes drained into the lake. The Igeo index revealed that Cd and Pb were the common pollutants in lake sediments. The DC values ranged between low (near El-Boughaz and moderate (near drainage areas. The spatial distribution of pollutants within the lake indicated that the highly polluted areas are located close to the drains, whereas as the less polluted areas were close to El-Boughaz.

  8. Application of biowaste materials for the sorption of heavy metals in contaminated aqueous medium

    International Nuclear Information System (INIS)

    Saeed, A.; Iqbal, M.; Akhtar, M.W.

    2002-01-01

    Biowaste materials were evaluated as metal ion adsorbents in aqueous medium. The biowaste used were black gram husk, wheat bran, sheesham (dalbergia sissoo) sawdust pea pod, rice husk and cotton and mustard seed cakes. All these biosorbents, except pea pod and rice husk, exhibited good adsorption potential for Cd, Pb, Cu, Zn and Ni. Black gram husk (bgh) was found to have the highest sorption capacity with 100, 99.4, 95.7, 98.2 and 93.1% removal of Cd, Pb, Cu, Zn and Ni, respectively. The metal ions adsorbed by bgh desorbed with 0.1 M HCl and the regenerated biosorbent was reused successfully for sorption of metal ions in the next cycle. Concentration of the tested metals achieved at equilibrium in the contaminated aqueous medium was well below the maximum limits recommended by UNEP for sewage discharge. The study indicates the potential of bgh as a new, inexpensive and efficient biosorbent for the treatment of water contaminated with heavy metals. (author)

  9. Assessment of metals contamination in Klang River surface sediments by using different indexes

    Directory of Open Access Journals (Sweden)

    Abolfazl Naji

    2011-01-01

    Full Text Available Surface sediments (0-5 cm from 21 stations throughout Klang River were sampled for metal concentration as well sediment's pH, total organic carbon (TOC and particles sizes to obtain an overall classification of metal contaminations in the area. The concentration of metals (µg∕g, Fe%, dw were as follows: 0.57- 2.19 Cd; 31.89-272.33 Zn; 5.96-24.47 Ni; 10.57- 52.87 Cu; 24.23-64.11 Pb and 1.56-3.03 Fe. The degree of sediment contaminations were computed using an enrichment factor (EF and geoaccumulation index (Igeo. The results suggested that enrichment factor and geoaccumulation values of Cd were greatest among the studied metals. Pearson's correlation indicated that effectiveness of TOC in controlling the distribution and enrichment of metals was a more important factor than that of the grain size (< 63µm. The study revealed that on the basis of computed indexes, Klang River is classified as moderately polluted river.

  10. Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption.

    Science.gov (United States)

    Gong, Xiaomin; Huang, Danlian; Liu, Yunguo; Zeng, Guangming; Wang, R