WorldWideScience

Sample records for metal cleaning degreasing

  1. Cleaning Process Development for Metallic Additively Manufactured Parts

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  2. Clean Metal Casting

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  3. Clean Metal Casting; FINAL

    Makhlouf M. Makhlouf; Diran Apelian

    2002-01-01

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components

  4. STUDY ON ULTRASONIC DEGREASING OF SHEEPSKIN WASTE

    BĂLĂU MÎNDRU Tudorel

    2014-05-01

    Full Text Available Leather industry is a relatively large source of waste from raw material, so skin waste recovery is a goal of clean technologies. Capitalization of skin waste aims to obtain: chemical auxiliaries, technical articles, hydrolyzed protein, artificial leather, composite building materials, heat sources and collagen biomaterials with applications in medicine, cosmetics, etc. A first step in the recovery of skin waste is the degreasing operation. Ultrasound is an effective tool to improve the efficiency of the conventional degreasing affecting the chemical substances as well as the treated skin. In addition, the processing time is reduced. Ultrasound is known to enhance the emulsification and dispersion of oils/fat. The usual degreasing methods requires more emulsifier/solvent ratio and process time for emulsification and additional solvent for washing out the emulsified fat. This paper investigates the possibility of recovery through ecological processes of leather waste from finishing operations for further capitalization. The present study aims emulsification and subsequent removal of the fat present in the chamois powder waste from polishing operation with the aid of ultrasound by an aqueous ecofriendly method. The study also took into account the ultrasonic treatment of the leather waste using trichlorethylene as a medium of propagation-degreasing, and realized a comparative analysis of efficiency of fat extraction by Soxhlet method and via ultrasonication. IR-ATR and optical microscopy highlight both morphological and chemical-structural changes of treated materials by different degreasing methods

  5. THE EFFECT OF DEGREASING ON ADHESIVE JOINT STRENGTH

    Anna Rudawska

    2017-03-01

    Full Text Available The paper investigates the effect of degreasing, a surface preparation methods in adhesive bonding, on adhesive joint strength. 5 types of degreasing agents were used in the study: acetone, extraction naphtha, Ultramyt, Wiko and Loctite 7061. The degreasing operation was performed by three methods: rubbing, spraying and immersion. Strength tests were performed on single-lap adhesive joints of hot-dip galvanized metal sheets made with Loctite 9466 adhesive according to the above variants of surface preparation. The experimental results demonstrate that adhesive joint strength is significantly affected by the applied degreasing agent. Moreover, the method of application of the degreasing agent is crucial, too. The results of strength testing reveal that the most effective degreasing method for hot-dip galvanized metal sheet adhesive joints is spraying using extraction naphtha. Thereby degreased samples have the highest immediate strength and shear strength. The use of extraction naph-tha is also effective in combination with degreasing by rubbing; however, it is not effective when used in combi-nation with immersion, as reflected in the lowest strength results.

  6. STUDY ON ULTRASONIC DEGREASING OF SHEEPSKIN WASTE

    BĂLĂU MÎNDRU Tudorel; POPA Emil; PRUNEANU Melinda; BĂLĂU MÎNDRU Iulia; MUREŞAN Augustin

    2014-01-01

    Leather industry is a relatively large source of waste from raw material, so skin waste recovery is a goal of clean technologies. Capitalization of skin waste aims to obtain: chemical auxiliaries, technical articles, hydrolyzed protein, artificial leather, composite building materials, heat sources and collagen biomaterials with applications in medicine, cosmetics, etc. A first step in the recovery of skin waste is the degreasing operation. Ultrasound is an effective tool to improve the...

  7. Method of cleaning alkaline metal

    Kawakami, Yukio; Naito, Kesahiro; Iizawa, Katsuyuki; Nakasuji, Takashi

    1981-01-01

    Purpose: To prevent scattering of used sodium and aqueous alkaline solution when cleaning used sodium and metallic sodium adhering to equipment with an aqueous alkaline solution. Method: A sodium treating container is filled with an aqueous alkaline solution, and stainless steel gauze is sunk in the container. Equipment to be cleaned such as equipment with sodium adhering to it are retained under the gauze and are thus cleaned. On the other hand, the surface of the aqueous alkaline solution is covered with a fluid paraffin liquid covering material. Thus, the hydrogen produced by the reaction of the sodium and the aqueous alkaline solution will float up, pass through the liquid covering material and be discharged. The sodium will pass through the gauze and float upwardly while reacting with the aqueous alkaline solution in a partic ulate state to the boundary between the aqueous alkaline solution and up to the covering material, and thus the theratment reaction will continue. Thus, the cover material prevents the sodium and the aqueous alkaline solution from scattering. (Kamimura, M.)

  8. Cleaning metal filters by pulse-jet

    Pickard, P.; Perry, R.A.

    1986-01-01

    Cleanable metal filters have an established use in the Nuclear Industry. The filters that have been installed in the past have not proved to be sufficiently cleanable. A series of tests were undertaken to study the application of pulse-jet cleaning to metal fibre filter elements. The efficiency of dust removal was examined under various operating conditions. A very high degree of particulate removal was achieved, with a return to almost clean pressure drop. The effectiveness of cleaning was found to vary inversely with blowback pressure. The position of the blowback nozzle with respect to the filter element throat was also found to be important to cleaning efficiency. Under the test conditions the effect of re-entrainment when cleaning on line was found to be minimal. (author)

  9. Process for cleaning radioactively contaminated metal surfaces

    Mihram, R.G.; Snyder, G.A.

    1975-01-01

    A process is described for removing radioactive scale from a ferrous metal surface, including the steps of initially preconditioning the surface by contacting it with an oxidizing solution (such as an aqueous solution of an alkali metal permanganate or hydrogen peroxide), then, after removal or decomposition of the oxidizing solution, the metallic surface is contacted with a cleaning solution which is a mixture of a mineral acid and a complexing agent (such as sulfuric acid and oxalic acid), and which preferably contains a corrosion inhibitor. A final step in the process is the treatment of the spent cleaning solution containing radioactive waste materials in solution by adding a reagent selected from the group consisting of calcium hydroxide or potassium permanganate and an alkali metal hydroxide to thereby form easily recovered metallic compounds containing substantially all of the dissolved metals and radioactivity. (auth)

  10. Cleaning of dismantled metals by electropolishing

    Wei, T.Y.; Chung, Z.J.; Lu, D.L.; Hsieh, J.C.

    1995-01-01

    A project of cleaning dismantled metals is going on at INER. The test work has been performed. Results showed that the activity decreased from 45 microSv/h to background level after 20 minutes electrolytic polishing. These cleaned metals could be reused through melting and fabricating. These metals could also be classified as BRC waste to facilitate the waste management if they can pass the identification and be admitted by the government authority. In order to achieve the planned target, some electro-decontamination facilities have been established. An automatic electropolishing facility with six cells was designed to clean the contaminated metals in plate type with dimensions less than 50 cm x 50 cm. Another automatic electropolishing facility was specially designed for treating the contaminated pipes. In addition, mobile electropolishing facilities were also established for large pieces of metal and some fixed equipment. In this cleaning project, a practical recycling and treatment method for electrolyte has been developed in order to comply with the requirement of secondary waste minimization

  11. The role of surface chemical analysis in a study to select replacement processes for TCA vapor degreasing

    Lesley, Michael W.; Davis, Lawrence E.; Moulder, John F.; Carlson, Brad A.

    1995-01-01

    The role of surface-sensitive chemical analysis (ESCA, AES, and SIMS) in a study to select a process to replace 1, 1, 1-trichloroethane (TCA) vapor degreasing as a steel and aluminum bonding surface preparation method is described. The effort was primarily concerned with spray-in-air cleaning processes involving aqueous alkaline and semi-aqueous cleaners and a contamination sensitive epoxy-to-metal bondline. While all five cleaners tested produced bonding strength results equal to or better than those produced by vapor degreasing, the aqueous alkaline cleaners yielded results which were superior to those produced by the semi-aqueous cleaners. The main reason for the enhanced performance appears to be a silicate layer left behind by the aqueous alkaline cleaners. The silicate layer increases the polarity of the surface and enhances epoxy-to-metal bonding. On the other hand, one of the semi-aqueous cleaners left a nonpolar carbonaceous residue which appeared to have a negative effect on epoxy-to-metal bonding. Differences in cleaning efficiency between cleaners/processes were also identified. These differences in surface chemistry, which were sufficient to affect bonding, were not detected by conventional chemical analysis techniques.

  12. LABORATORY SCALE EVALUATION OF HYDRA-TONE GRAFF-OFF™ COCONUT OIL BASED DEGREASER

    This technical and economic assessment evaluated the effectiveness of a biodegradable, coconut oil-based degreaser called Graff-Off™. In immersion (cold) cleaning and rinse tests, Graff-Off™ was compared to a conventional chlorinated solvent 1,1,1 trichloroethane (TCA) and to an ...

  13. Alternatives to Organic Solvents in Industrial Cleaning Processes

    Jacobsen, Thomas

    1998-01-01

    To control chemical hazards in work places, substitution of harmful substances with less harmful or non-toxic products is now a method used in many countries and in many companies. It has previously been demonstrated that it is desirable and possible to use non-volatile, low-toxic vegetable...... cleaning agents in offset printing companies instead of volatile, toxic organic solvents. The present study is based on a project with the aim of defining other industrial processes, where organic solvents used for cleaning or degreasing can be replaced by non-volatile, low-toxic products, which are based...... on esters from fatty acids of vegetable origin (vegetable esters - VE).The study indicates that industrial cleaning/degreasing with organic solvents may be substituted with VEs on metal surfaces and on some coated surfaces, in manufacture of paints and inks, use of paints, use of inks (printing), metal...

  14. Ion-induced electron emission from clean metals

    Baragiola, R.A.; Alonso, E.V.; Ferron, J.; Oliva-Florio, A.; Universidad Nacional de Cuyo, San Carlos de Bariloche

    1979-01-01

    We report recent experimental work on electron emission from clean polycrystalline metal surfaces under ion bombardment. We critically discuss existing theories and point out the presently unsolved problems. (orig.)

  15. Cleaning Challenges of High-κ/Metal Gate Structures

    Hussain, Muhammad Mustafa; Shamiryan, Denis G.; Paraschiv, Vasile; Sano, Kenichi; Reinhardt, Karen A.

    2010-01-01

    High-κ/metal gates are used as transistors for advanced logic applications to improve speed and eliminate electrical issues associated with polySi and SiO2 gates. Various integration schemes are possible and will be discussed, such as dual gate, gate-first, and gate-last, both of which require specialized cleaning and etching steps. Specific areas of discussion will include cleaning and conditioning of the silicon surface, forming a high-quality chemical oxide, removal of the high-κ dielectric with selectivity to the SiO2 layer, cleaning and residue removal after etching, and prevention of galvanic corrosion during cleaning. © 2011 Scrivener Publishing LLC. All rights reserved.

  16. Cleaning Challenges of High-κ/Metal Gate Structures

    Hussain, Muhammad Mustafa

    2010-12-20

    High-κ/metal gates are used as transistors for advanced logic applications to improve speed and eliminate electrical issues associated with polySi and SiO2 gates. Various integration schemes are possible and will be discussed, such as dual gate, gate-first, and gate-last, both of which require specialized cleaning and etching steps. Specific areas of discussion will include cleaning and conditioning of the silicon surface, forming a high-quality chemical oxide, removal of the high-κ dielectric with selectivity to the SiO2 layer, cleaning and residue removal after etching, and prevention of galvanic corrosion during cleaning. © 2011 Scrivener Publishing LLC. All rights reserved.

  17. Comparative study of aqueous and solvent methods for cleaning metals

    Briggs, J.L.; Goad, H.A.

    1976-01-01

    Studies were performed to determine the comparative effectiveness of solvent and aqueous detergent methods for cleaning various metals. The metals investigated included 304L stainless steel, beryllium, uranium-6.5 wt percent niobium alloy, and unalloyed uranium ( 238 U). The studies were initiated in response to governmental regulations restricting the use of some chlorinated solvents. Results showed that aqueous detergent cleaning was more effective than solvents, i.e. trichloroethylene and methyl chloroform, for the removal of light industrial soils. The subsequent adoption of aqueous cleaning at this plant has facilitated waste disposal, which contributed to recorded economic savings. The controlled use of aqueous detergents is environmentally acceptable and has decreased the hazards of fire and toxicity that are generally associated with solvents. 8 tables, 15 figures

  18. Surface cleaning of metal wire by atmospheric pressure plasma

    Nakamura, T.; Buttapeng, C.; Furuya, S.; Harada, N.

    2009-01-01

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  19. Degreasing method for the seborrheic areas with respect to regaining sebum excretion rate to casual level.

    Rode, Birgitte; Ivens, Ulla; Serup, Jørgen

    2000-05-01

    BACKGROUND/AIMS: Sebum excreted from the seborrheic glands keeps the skin surface subtle and moist. Before determining the activity of seborrheic glands, the skin surface must be degreased to remove contamination but without provoking sebum excretion. The purpose of this study was to set up a standardised degreasing procedure for various seborrheic areas in different skin types. The method will take day-to-day variations into account with respect to the kinetics of refatting. METHODS: The Sebumeter(R) from Courage+Khazaka is used to quantify the sebum excretion. Day-to-day variations were measured on the forehead in groups of 12 volunteers on 2 consecutive days. The degreasing procedure was investigated by individual cleaning with alcohol compared to washing with a mild detergent followed by wipes with alcohol on the forehead. The degree of refatting was monitored until 3 h after defatting on seborrheic areas: the forehead, cheek, nose, chin and upper back. RESULTS: There was no statistical significant difference in the variation from day to day (Pskin types was observed. An individual difference in the number of alcoholic wipes needed to degrease the forehead was seen. Washing followed by several repetitions of alcoholic wipes was not sufficient for the forehead, chin and nose (P>0.05). For the cheek and upper back, it was sufficient to wash with soap (Pskin until the sebum output reached the casual level was 2 h (P>0.05). The area under the curve (AUC) indicates that individual skin types return to casual level after defatting. CONCLUSION: There was no statistically significant day-to-day variation using the Sebumeter(R). We ended up with different degreasing procedures in different seborrheic areas. Washing gently with a detergent solution and then performing three wipes with alcohol was optimal for degreasing the forehead, nose and chin. For the cheek and upper back, it was sufficient to use a mild soap. Casual level was reached after 2 h in all seborrheic

  20. Nonhazardous solvent composition and method for cleaning metal surfaces

    Googin, J.M.; Simandl, R.F.; Thompson, L.M.

    1993-01-01

    A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140 F and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140 F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material

  1. Investigation of Alternative Approaches for Cleaning Mott Porous Metal Filters

    Poirier, M.R.

    2003-01-01

    The Department of Energy selected Caustic Side Solvent Extraction (CSSX) as the preferred cesium removal technology for Savannah River Site (SRS) waste. As a pretreatment step for the CSSX flowsheet, the incoming salt solution that contains entrained sludge is contacted with monosodium titanate (MST) to adsorb strontium and select actinides. The resulting slurry is filtered to remove the sludge and MST. Filter fouling occurs during this process. At times, personnel can increase the filtrate rate by backpulsing or scouring. At other times, the filtrate rate drops significantly and only chemical cleaning will restore filter performance. The current baseline technology for filter cleaning uses 0.5 M oxalic acid. The Salt Processing Project (SPP) at SRS, through the Tanks Focus Area, requested an evaluation of other cleaning agents to determine their effectiveness at removing trapped sludge and MST solids compared with the baseline oxalic acid method. A review of the technical literature identified compounds that appear effective at dissolving solid compounds. Consultation with the SPP management team, engineering personnel, and researchers led to a selection of oxalic acid, nitric acid, citric acid, and ascorbic acid for testing. Tests used simulated waste and actual waste as follows. Personnel placed simulated or actual SRS High Level Waste sludge and MST in a beaker. They added the selected cleaning agents, stirred the beakers, and collected supernate samples periodically analyzing for dissolved metals

  2. Plasma cleaning and the removal of carbon from metal surfaces

    Baker, M.A.

    1980-01-01

    In an investigation of the plasma cleaning of metals and the plasma etching of carbon, a mass spectrometer was used as a sensitive process monitor. CO 2 produced by the plasma oxidation of carbon films or of organic contamination and occluded carbon at the surfaces of metals proved to be the most suitable gas to monitor. A good correlation was obtained between the measured etch rate of carbon and the resulting CO 2 partial pressure monitored continuously with the mass spectrometer. The rate of etching of carbon in an oxygen-argon plasma at 0.1 Torr was high when the carbon was at cathode potential and low when it was electrically isolated in the plasma, thus confirming the findings of previous workers and indicating the importance of ion bombardment in the etching process. Superficial organic contamination on the surfaces of the metals aluminium and copper and of the alloy Inconel 625 was quickly removed by the oxygen-argon plasma when the metal was electrically isolated and also when it was at cathode potential. Occluded carbon (or carbides) at or near the surfaces of the metals was removed slowly and only when the metal was at cathode potential, thus illustrating again the importance of ion bombardment. (Auth.)

  3. Characterization of emission factors related to source activity for trichloroethylene degreasing and chrome plating processes.

    Wadden, R A; Hawkins, J L; Scheff, P A; Franke, J E

    1991-09-01

    A study at an automotive parts fabrication plant evaluated four metal surface treatment processes during production conditions. The evaluation provides examples of how to estimate process emission factors from activity and air concentration data. The processes were open tank and enclosed tank degreasing with trichloroethylene (TCE), chromium conversion coating, and chromium electroplating. Area concentrations of TCE and chromium (Cr) were monitored for 1-hr periods at three distances from each process. Source activities at each process were recorded during each sampling interval. Emission rates were determined by applying appropriate mass balance models to the concentration patterns around each source. The emission factors obtained from regression analysis of the emission rate and activity data were 16.9 g TCE/basket of parts for the open-top degreaser; 1.0 g TCE/1000 parts for the enclosed degreaser; 1.48-1.64 mg Cr/1000 parts processed in the hot CrO3/HNO3 tank for the chrome conversion coating; and 5.35-9.17 mg Cr/rack of parts for chrome electroplating. The factors were also used to determine the efficiency of collection for the local exhaust systems serving each process. Although the number of observations were limited, these factors may be useful for providing initial estimates of emissions from similar processes in other settings.

  4. Recommended values of clean metal surface work functions

    Derry, Gregory N.; Kern, Megan E.; Worth, Eli H.

    2015-01-01

    A critical review of the experimental literature for measurements of the work functions of clean metal surfaces of single-crystals is presented. The tables presented include all results found for low-index crystal faces except cases that were known to be contaminated surfaces. These results are used to construct a recommended value of the work function for each surface examined, along with an uncertainty estimate for that value. The uncertainties are based in part on the error distribution for all measured work functions in the literature, which is included here. The metals included in this review are silver (Ag), aluminum (Al), gold (Au), copper (Cu), iron (Fe), iridium (Ir), molybdenum (Mo), niobium (Nb), nickel (Ni), palladium (Pd), platinum (Pt), rhodium (Rh), ruthenium (Ru), tantalum (Ta), and tungsten (W)

  5. Recommended values of clean metal surface work functions

    Derry, Gregory N., E-mail: gderry@loyola.edu; Kern, Megan E.; Worth, Eli H. [Department of Physics, Loyola University Maryland, 4501 N. Charles St., Baltimore, Maryland 21210 (United States)

    2015-11-15

    A critical review of the experimental literature for measurements of the work functions of clean metal surfaces of single-crystals is presented. The tables presented include all results found for low-index crystal faces except cases that were known to be contaminated surfaces. These results are used to construct a recommended value of the work function for each surface examined, along with an uncertainty estimate for that value. The uncertainties are based in part on the error distribution for all measured work functions in the literature, which is included here. The metals included in this review are silver (Ag), aluminum (Al), gold (Au), copper (Cu), iron (Fe), iridium (Ir), molybdenum (Mo), niobium (Nb), nickel (Ni), palladium (Pd), platinum (Pt), rhodium (Rh), ruthenium (Ru), tantalum (Ta), and tungsten (W)

  6. 21 CFR 878.4730 - Surgical skin degreaser or adhesive tape solvent.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgical skin degreaser or adhesive tape solvent... Surgical skin degreaser or adhesive tape solvent. (a) Identification. A surgical skin degreaser or an adhesive tape solvent is a device that consists of a liquid such as 1,1,2-trichloro-1,2,2-trifluoroethane...

  7. Structural and vibrational studies of clean and chemisorbed metal surfaces

    Jiang, Qing-Tang.

    1992-01-01

    Using Medium Energy Ion Scattering, we have studied the structural and vibrational properties of a number of clean and chemisorbed metal surfaces. The work presented in this thesis is mainly of a fundamental nature. However, it is believed that an atomistic understanding of the forces that affect surface structural and vibrational properties can have a beneficial impact on a large number of areas of applied nature. We find that the surface structure of Cu(001) follows the common trend for metal surfaces, where a small oscillatory relaxation exists beginning with a slight contraction in the top layer. In addition, the surface vibrational amplitude is enhanced (as s usually the case) by ∼80%. A detailed analysis of our data shows an unexpected anisotropy of the vibrational amplitude, such that the out-of-plane vibrational amplitude is 30% smaller than the in-plane vibrational amplitude. The unexpected results may imply a large tensile stress on Cu(001). Upon adsorption of 1/4 of a monolayer of S, a p(2 x 2)-S/Cu(001) surface is created. This submonolayer amount of S atoms makes the surface bulk-like, in which the anisotropy of the surface vibrations is removed and the first interlayer contraction is lifted. By comparing our model to earlier contradictory results on this controversial system. We find excellent agreement with a recent LEED study. The presence of 0.1 monolayer of Ca atoms on the Au(113) surface induces a drastic atomic rearrangements, in which half of the top layer Au atoms are missing and a (1 x 2) symmetry results. In addition, the first interlayer spacing of Au(113) is significantly reduced. Our results are discussed in terms of the energy balance between competing surface electronic charge densities

  8. Preparation Method of Co3O4 Nanoparticles Using Degreasing Cotton and Their Electrochemical Performances in Supercapacitors

    Hongyan Xu

    2014-01-01

    Full Text Available Co3O4 nanoparticles were fabricated by a novel, facile, and environment-friendly carbon-assisted method using degreasing cotton. Structural and morphological characterizations were performed using X-ray diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The component of the sample obtained at different temperatures was measured by Fourier transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS. Nitrogen adsorption and desorption isotherms were utilized to reveal the specific surface areas. The formation mechanism of Co3O4 nanoparticles was also proposed, demonstrating that the additive degreasing cotton played an indispensable role in the process of synthesizing the sample. The resultant Co3O4 sample calcined at 600°C exhibited superior electrochemical performance with better specific capacitance and long-term cycling life, due to its high specific surface areas and pores structures. Additionally, it has been proved that this facile synthetic strategy can be extended to produce other metal oxide materials (e.g., Fe3O4. As a consequence, the carbon-assisted method using degreasing cotton accompanied a promising prospect for practical application.

  9. Surface Analysis of the Laser Cleaned Metal Threads

    Sokhan, M.; Hartog, F.; McPhail, D.

    The laser cleaning of the tarnished silver threads was carried out using Nd:YAG laser radiation at IR (1064 nm) and visible wavelengths (532 nm). The preliminary tests were made on the piece of silk with the silver embroidery with the clean and tarnished areas. FIBS and SIMS analysis were used for analysing the condition of the surface before and after laser irradiation. It was found that irradiation below 0.4 J/cm-2 and higher than 1.0 J/cm-2 fluences aggravates the process of tarnishing and leads to the yellowing effect. The results of preliminary tests were used for finding the optimum cleaning regime for the laser cleaning of the real museum artefact: "Women Riding Jacket" dated to the beginning of 18th century.

  10. Basis of the detection, assessment and cleaning up of sites contaminated with heavy metals

    Calmano, W.; Foerstner, U.

    1993-01-01

    The cleaning up of sites contaminated with heavy metals is still in its infancy. Depending on the type and extent of the contamination, new methods of treatment must be developed and matched to each situation. A survey is given of the groundwater contamination of soil heavy metals; the binding, availability and mobilisation of heavy metals; geo-chemical concepts for sites contaminated by heavy metals; judging the potential danger; safety measures; cleaning up processes and the reinstatement and renaturing of the soil. (orig.) [de

  11. Laser decontamination and cleaning of metal surfaces: modelling and experimental studies

    Leontyev, A.

    2011-01-01

    Metal surface cleaning is highly required in different fields of modern industry. Nuclear industry seeks for new methods for oxidized surface decontamination, and thermonuclear installations require the cleaning of plasma facing components from tritium-containing deposited layer. The laser ablation is proposed as an effective and safe method for metal surface cleaning and decontamination. The important factor influencing the laser heating and ablation is the in-depth distribution of laser radiation. The model of light propagation in a scattering layer on a metal substrate is developed and applied to analyse the features of light distribution. To simulate the contaminated surfaces, the stainless steel AISI 304L was oxidized by laser and in a furnace. Radioactive contamination of the oxide layer was simulated by introducing europium and/or sodium. The decontamination factor of more than 300 was demonstrated with found optimal cleaning regime. The decreasing of the corrosion resistance was found after laser cleaning. The ablation thresholds of ITER-like surfaces were measured. The cleaning productivity of 0.07 m 2 /hour.W was found. For mirror surfaces, the damage thresholds were determined to avoid damage during laser cleaning. The possibility to restore reflectivity after thin carbon layer deposition was demonstrated. The perspectives of further development of laser cleaning are discussed. (author) [fr

  12. A new cleaning process for the metallic contaminants on a post-CMP wafer's surface

    Gao Baohong; Liu Yuling; Wang Chenwei; Wang Shengli; Zhou Qiang; Tan Baimei; Zhu Yadong

    2010-01-01

    This paper presents a new cleaning process using boron-doped diamond (BDD) film anode electrochemical oxidation for metallic contaminants on polished silicon wafer surfaces. The BDD film anode electrochemical oxidation can efficiently prepare pyrophosphate peroxide, pyrophosphate peroxide can oxidize organic contaminants, and pyrophosphate peroxide is deoxidized into pyrophosphate. Pyrophosphate, a good complexing agent, can form a metal complex, which is a structure consisting of a copper ion, bonded to a surrounding array of two pyrophosphate anions. Three polished wafers were immersed in the 0.01 mol/L CuSO 4 solution for 2 h in order to make comparative experiments. The first one was cleaned by pyrophosphate peroxide, the second by RCA (Radio Corporation of America) cleaning, and the third by deionized (DI) water. The XPS measurement result shows that the metallic contaminants on wafers cleaned by the RCA method and by pyrophosphate peroxide is less than the XPS detection limits of 1 ppm. And the wafer's surface cleaned by pyrophosphate peroxide is more efficient in removing organic carbon residues than RCA cleaning. Therefore, BDD film anode electrochemical oxidation can be used for microelectronics cleaning, and it can effectively remove organic contaminants and metallic contaminants in one step. It also achieves energy saving and environmental protection. (semiconductor technology)

  13. Distribution of six heavy metals in contaminated clay soils before and after extractive cleaning

    Tuin, B.J.W.; Tels, M.

    1990-01-01

    A sequential extraction procedure according to Tessier et al. is carried out to compare the distribution of six metals (Cd, Cr, Cu, Ni, Pb and Zn) in contaminated clay soils before and after extractive cleaning. Extraction of metals from the ‘soil fractions’ with 0.1 N HC1 or 0.1 M EDTA becomes more

  14. Electronic properties of adsorbates and clean surfaces of metals and semiconductors

    Lecante, J.

    1980-01-01

    This paper surveys recent progress in experimental studies on electronic properties of adsorbates and clean metal surfaces. Electron spectroscopy and particularly angle resolved photoelectron spectroscopy appears to be a very powerful tool to get informations on electronic levels of adsorbates or clean surfaces. Moreover this technique may also give informations about the atomic geometry of the surface. Experimental investigation about surface plasmons, surface states, core level shifts are presented for clean surfaces. As examples of adsorbate covered surfaces two typical cases are chosen: two dimensional band structure and oriented molecules. Finally the photoelectron diffraction may be used for surface structure determination either in the case of an adsorbate or a clean metal surface [fr

  15. Metal-Detergent/Cleaner Compatibility

    Hindin, Barry

    1994-01-01

    ...) such as CFC-1 13 or 1,1,1 Trichioroethane (TCA) in their cleaning and degreasing procedures. During the last few years, AGMC has been evaluating alternative, environmentally acceptable chemicals to replace their ODC cleaners...

  16. Effects of different cleaning treatments on heavy metal removal of Panax notoginseng (Burk) F. H. Chen.

    Dahui, Liu; Na, Xu; Li, Wang; Xiuming, Cui; Lanping, Guo; Zhihui, Zhang; Jiajin, Wang; Ye, Yang

    2014-01-01

    The quality and safety of Panax notoginseng products has become a focus of concern in recent years. Contamination with heavy metals is one of the important factors as to P. notoginseng safety. Cleaning treatments can remove dust, soil, impurities or even heavy metals and pesticide residues on agricultural products. But effects of cleaning treatments on the heavy metal content of P. notoginseng roots have still not been studied. In order to elucidate this issue, the effects of five different cleaning treatments (CK, no treatment; T1, warm water (50°C) washing; T2, tap water (10°C) washing; T3, drying followed by polishing; and T4, drying followed by tap water (10°C) washing) on P. notoginseng roots' heavy metal (Cu, Pb, Cd, As and Hg) contents were studied. The results showed that heavy metal (all five) content in the three parts all followed the order of hair root > rhizome > root tuber under the same treatment. Heavy metal removals were in the order of Hg > As > Pb > Cu > Cd. Removal efficiencies of the four treatments were in the order of T2 > T1 > T3 > T4. Treatments (T1-T4) could decrease the contents of heavy metal in P. notoginseng root significantly. Compared with the requirements of WM/T2-2004, P. notoginseng roots' heavy metal contents of Cu, Pb, As and Hg were safe under treatments T1 and T2. In conclusion, the cleaning process after production was necessary and could reduce the content of heavy metals significantly. Fresh P. notoginseng root washed with warm water (T2) was the most efficient treatment to remove heavy metal and should be applied in production.

  17. Surface chemistry and fundamental limitations on the plasma cleaning of metals

    Dong, Bin, E-mail: bindong@my.unt.edu [Department of Chemistry, University of North Texas, 1155 Union Circle 305070, Denton, TX, 76203 (United States); Driver, M. Sky, E-mail: Marcus.Driver@unt.edu [Department of Chemistry, University of North Texas, 1155 Union Circle 305070, Denton, TX, 76203 (United States); Emesh, Ismail, E-mail: Ismail_Emesh@amat.com [Applied Materials Inc., 3050 Bowers Ave, Santa Clara, CA, 95054 (United States); Shaviv, Roey, E-mail: Roey_Shaviv@amat.com [Applied Materials Inc., 3050 Bowers Ave, Santa Clara, CA, 95054 (United States); Kelber, Jeffry A., E-mail: Jeffry.Kelber@unt.edu [Department of Chemistry, University of North Texas, 1155 Union Circle 305070, Denton, TX, 76203 (United States)

    2016-10-30

    Highlights: • O{sub 2}-free plasma treatment of air-exposed Co or Cu surfaces yields remnant C layers inert to further plasma cleaning. • The formation of the remnant C layer is graphitic (Cu) or carbidic (Co). • The formation of a remnant C layer is linked to plasma cleaning of a metal surface. - Abstract: In-situ X-ray photoelectron spectroscopy (XPS) studies reveal that plasma cleaning of air-exposed Co or Cu transition metal surfaces results in the formation of a remnant C film 1–3 monolayers thick, which is not reduced upon extensive further plasma exposure. This effect is observed for H{sub 2} or NH{sub 3} plasma cleaning of Co, and He or NH{sub 3} plasma cleaning of Cu, and is observed with both inductively coupled (ICP) and capacitively-coupled plasma (CCP). Changes in C 1 s XPS spectra indicate that this remnant film formation is accompanied by the formation of carbidic C on Co and of graphitic C on Cu. This is in contrast to published work showing no such remnant carbidic/carbon layer after similar treatments of Si oxynitride surfaces. The observation of the remnant carbidic C film on Co and graphitic film on Cu, but not on silicon oxynitride (SiO{sub x}N{sub y}), regardless of plasma chemistry or type, indicates that this effect is due to plasma induced secondary electron emission from the metal surface, resulting in transformation of sp{sup 3} adventitious C to either a metal carbide or graphite. These results suggest fundamental limitations to plasma-based surface cleaning procedures on metal surfaces.

  18. Comparison of trace metals in intake and discharge waters of power plants using clean techniques

    Salvito, D.T.; Allen, H.E.

    1995-01-01

    In order to determine the impact to receiving waters of trace metals potentially discharged from a once-through, non-contact cooling water system from a power plant, a study was conducted utilizing clean sampling and analytical techniques for a series of metals. Once-through, non-contact cooling water at power plants is frequently discharged back to the fresh or saline waterbody utilized for its intake water. This water is used to cool plant condensers. Intake and discharge data were collected and evaluated using paired t-tests. Study results indicate that there is no measurable contribution of metals from non-contact cooling water from this power plant

  19. Differences in metal sequestration between zebra mussels from clean and polluted field locations.

    Voets, Judith; Redeker, Erik Steen; Blust, Ronny; Bervoets, Lieven

    2009-06-04

    Organisms are able to detoxify accumulated metals by, e.g. binding them to metallothionein (MT) and/or sequestering them in metal-rich granules (MRG). The different factors involved in determining the capacity or efficiency with which metals are detoxified are not yet known. In this work we studied how the sub-cellular distribution pattern of cadmium, copper and zinc in whole tissue of zebra mussels from clean and polluted surface waters is influenced by the total accumulated metal concentration and by its physiological condition. Additionally we measured the metallothionein concentration in the mussel tissue. Metal concentration increased gradually in the metal-sensitive and detoxified sub-cellular fractions with increasing whole tissue concentrations. However, metal concentrations in the sensitive fractions did not increase to the same extent as metal concentrations in whole tissues. In more polluted mussels the contribution of MRG and MT became more important. Nevertheless, metal detoxification was not sufficient to prevent metal binding to heat-sensitive low molecular weight proteins (HDP fraction). Finally we found an indication that metal detoxification was influenced by the condition of the zebra mussels. MT content could be explained for up to 83% by variations in Zn concentration and physiological condition of the mussels.

  20. Differences in metal sequestration between zebra mussels from clean and polluted field locations

    Voets, Judith; Redeker, Erik Steen; Blust, Ronny; Bervoets, Lieven

    2009-01-01

    Organisms are able to detoxify accumulated metals by, e.g. binding them to metallothionein (MT) and/or sequestering them in metal-rich granules (MRG). The different factors involved in determining the capacity or efficiency with which metals are detoxified are not yet known. In this work we studied how the sub-cellular distribution pattern of cadmium, copper and zinc in whole tissue of zebra mussels from clean and polluted surface waters is influenced by the total accumulated metal concentration and by its physiological condition. Additionally we measured the metallothionein concentration in the mussel tissue. Metal concentration increased gradually in the metal-sensitive and detoxified sub-cellular fractions with increasing whole tissue concentrations. However, metal concentrations in the sensitive fractions did not increase to the same extent as metal concentrations in whole tissues. In more polluted mussels the contribution of MRG and MT became more important. Nevertheless, metal detoxification was not sufficient to prevent metal binding to heat-sensitive low molecular weight proteins (HDP fraction). Finally we found an indication that metal detoxification was influenced by the condition of the zebra mussels. MT content could be explained for up to 83% by variations in Zn concentration and physiological condition of the mussels.

  1. Differences in metal sequestration between zebra mussels from clean and polluted field locations

    Voets, Judith [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Redeker, Erik Steen [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Institute for Materials Research, Chemistry Division, Hasselt University, Agoralaan Building D G1-36, B 3590 Diepenbeek (Belgium); Blust, Ronny [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Bervoets, Lieven, E-mail: Lieven.bervoets@ua.ac.be [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2009-06-04

    Organisms are able to detoxify accumulated metals by, e.g. binding them to metallothionein (MT) and/or sequestering them in metal-rich granules (MRG). The different factors involved in determining the capacity or efficiency with which metals are detoxified are not yet known. In this work we studied how the sub-cellular distribution pattern of cadmium, copper and zinc in whole tissue of zebra mussels from clean and polluted surface waters is influenced by the total accumulated metal concentration and by its physiological condition. Additionally we measured the metallothionein concentration in the mussel tissue. Metal concentration increased gradually in the metal-sensitive and detoxified sub-cellular fractions with increasing whole tissue concentrations. However, metal concentrations in the sensitive fractions did not increase to the same extent as metal concentrations in whole tissues. In more polluted mussels the contribution of MRG and MT became more important. Nevertheless, metal detoxification was not sufficient to prevent metal binding to heat-sensitive low molecular weight proteins (HDP fraction). Finally we found an indication that metal detoxification was influenced by the condition of the zebra mussels. MT content could be explained for up to 83% by variations in Zn concentration and physiological condition of the mussels.

  2. Gas storage in porous metal-organic frameworks for clean energy applications.

    Ma, Shengqian; Zhou, Hong-Cai

    2010-01-07

    Depletion of fossil oil deposits and the escalating threat of global warming have put clean energy research, which includes the search for clean energy carriers such as hydrogen and methane as well as the reduction of carbon dioxide emissions, on the urgent agenda. A significant technical challenge has been recognized as the development of a viable method to efficiently trap hydrogen, methane and carbon dioxide gas molecules in a confined space for various applications. This issue can be addressed by employing highly porous materials as storage media, and porous metal-organic frameworks (MOFs) which have exceptionally high surface areas as well as chemically-tunable structures are playing an unusual role in this respect. In this feature article we provide an overview of the current status of clean energy applications of porous MOFs, including hydrogen storage, methane storage and carbon dioxide capture.

  3. Parametric Effect of Sodium Hydroxide and Sodium Carbonate on the Potency of a Degreaser

    Babatope Abimbola Olufemi

    2016-01-01

    Experimental and statistical analysis was carried out on the comparative effect of sodium hydroxide and sodium carbonate on the potency of a laboratory produced degreaser in this work. The materials used include; octadecyl benzene sulphonic acid, sodium hydroxide, sodium carbonate, sodium metasilicate, carboxyl methyl cellulose (C.M.C), formadelhyde, perfume, colourant and distilled water. Different samples of degreaser were produced with varying composition of sodium hydroxide and sodium car...

  4. Deep cleaning of a metallurgical zinc leaching residue and recovery of valuable metals

    Xing, Peng; Ma, Bao-zhong; Zeng, Peng; Wang, Cheng-yan; Wang, Ling; Zhang, Yong-lu; Chen, Yong-qiang; Wang, Shuo; Wang, Qiu-yin

    2017-11-01

    Huge quantities of zinc leaching residues (ZLRs) generated from zinc production are dumped continuously around the world and pose a potential environmental threat because of their considerable amounts of entrained heavy metals (mainly lead). Most ZLRs have not been properly treated and the valuable metals in them have not yet been effectively recovered. Herein, the deep cleaning of a ZLR and recovery of valuable metals via a hydrometallurgical route were investigated. The cleaning process consists of two essential stages: acid leaching followed by calcium chloride leaching. The optimum conditions for extracting zinc, copper, and indium by acid leaching were a sulfuric acid concentration of 200 g·L-1, a liquid/solid ratio of 4:1 (mL/g), a leaching time of 2 h, and a temperature of 90°C. For lead and silver extractions, the optimum conditions were a calcium chloride concentration of 400 g·L-1, a pH value of 1.0, a leaching time of 1 h, and a temperature of 30°C. After calcium chloride leaching, silver and lead were extracted out and the lead was finally recovered as electrolytic lead by electrowinning. The anglesite phase, which poses the greatest potential environmental hazard, was removed from the ZLR after deep cleaning, thus reducing the cost of environmental management of ZLRs. The treatment of chlorine and spent electrolyte generated in the process was discussed.

  5. Next steps in the development of ecological soil clean-up values for metals.

    Wentsel, Randall; Fairbrother, Anne

    2014-07-01

    This special series in Integrated Environmental Assessment Management presents the results from 6 workgroups that were formed at the workshop on Ecological Soil Levels-Next Steps in the Development of Metal Clean-Up Values (17-21 September 2012, Sundance, Utah). This introductory article presents an overview of the issues assessors face when conducting risk assessments for metals in soils, key US Environmental Protection Agency (USEPA) documents on metals risk assessment, and discusses the importance of leveraging from recent major terrestrial research projects, primarily to address Registration, Evaluation, Authorization and Restriction of Chemical Substances (REACH) requirements in Europe, that have significantly advanced our understanding of the behavior and toxicity of metals in soils. These projects developed large data sets that are useful for the risk assessment of metals in soil environments. The workshop attendees met to work toward developing a process for establishing ecological soil clean-up values (Eco-SCVs). The goal of the workshop was to progress from ecological soil screening values (Eco-SSLs) to final clean-up values by providing regulators with the methods and processes to incorporate bioavailability, normalize toxicity thresholds, address food-web issues, and incorporate background concentrations. The REACH data sets were used by workshop participants as case studies in the development of the ecological standards for soils. The workshop attendees discussed scientific advancements in bioavailability, soil biota and wildlife case studies, soil processes, and food-chain modeling. In addition, one of the workgroups discussed the processes needed to frame the topics to gain regulatory acceptance as a directive or guidance by Canada, the USEPA, or the United States. © 2013 SETAC.

  6. RECYCLING A NONIONIC AQUEOUS-BASED METAL-CLEANING SOLUTION WITH A CERAMIC MEMBRANE: PILOT SCALE EVALUATION

    The effectiveness of a zirconium dioxide (ZrO2) membrane filter was evaluated for recycling a nonionic aqueous metal cleaning bath under real-world conditions. The pilot-scale study consisted of four 7- to 16-day filtration runs, each processed a portion of the cleaning bath duri...

  7. Contamination spike simulation and measurement in a clean metal vapor laser

    Lin, C.E.; Yang, C.Y.

    1990-01-01

    This paper describes a new method for the generation of contamination-induced voltage spikes in a clean metal vapor laser. The method facilitates the study of the characteristics of this troublesome phenomenon in laser systems. Analysis of these artificially generated dirt spikes shows that the breakdown time of the laser tube is increased when these spike appear. The concept of a Townsend discharge is used to identify the parameter which changes the breakdown time of the discharges. The residual ionization control method is proposed to generate dirt spikes in a clean laser. Experimental results show that a wide range of dirt spike magnitudes can be obtained by using the proposed method. The method provides easy and accurate control of the magnitude of the dirt spike, and the laser tube does not become polluted. Results based on the measurements can be used in actual laser systems to monitor the appearance of dirt spikes and thus avoid the danger of thyratron failure

  8. Post-CMP cleaning for metallic contaminant removal by using a remote plasma and UV/ozone

    Lim, Jong Min; Jeon, Bu Yong; Lee, Chong Mu

    2000-01-01

    For the chemical mechanical polishing (CMP) process to be successful, it is important to establish a good post-CMP cleaning process that will remove not only slurry and particles but also metallic impurities from the polished surface. The common metallic contaminants found after oxide CMP and Cu CMP include Cu, K, and Fe. Scrubbing, a popular method for post-CMP cleaning, is effective in removing particles, but removal of metallic contaminants using this method is not so effective. In this study, the removal of Fe metallic contaminants like Fe, which are commonly found on the wafer surface after CMP processes, was investigated using remote-hydrogen-plasma and UV/O 3 cleaning techniques. Our results show that metal contaminants, including Fe, can be effectively removed by using a hydrogen-plasma or UV/O 3 cleaning technique performed under optimal process conditions. In remote plasma H 2 cleaning, contaminant removal is enhanced with decreasing plasma exposure time and increasing rf-power. The optimal process condition for the removal of the Fe impurities existing on the wafer surface is an rf-power of 100 W. Plasma cleaning for 5 min or less is effective in removing Fe contaminants, but a plasma exposure time of 1 min is more appropriate than 5 min in view of the process time, The surface roughness decreased by 30∼50 % after remote-H 2 -plasma cleaning. On the other hand, the highest efficiency of Fe-impurity removal was achieved for an UV exposure time of 30 s. The removal mechanism for the Fe contaminants in the remote-H 2 -plasma and the UV/O 3 cleaning processes is considered to be the liftoff of Fe atoms when the SiO is removed by evaporation after the chemical or native SiO 2 formed underneath the metal atoms reacts with H + and e - to form SiO

  9. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-01-01

    This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

  10. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-11

    This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

  11. Fiber laser cleaning of metal mirror surfaces for optical diagnostic systems of the ITER

    Kuznetsov, A. P., E-mail: APKuznetsov@mephi.ru; Alexandrova, A. S. [National Research Nuclear University MEPhI (Russian Federation); Buzhinsky, O. I. [State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research (Russian Federation); Gubskiy, K. L.; Kazieva, T. V.; Savchenkov, A. V. [National Research Nuclear University MEPhI (Russian Federation); Tugarinov, S. N. [State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2015-12-15

    The results of experimental studies into efficiency of removal of films with a complex composition from metal mirrors by pulsed fiber laser irradiation are presented. It is shown that the initial reflectivity of optical elements can be restored by the selection of modes of irradiation impacting the surface with the sputtered film. Effective cleaning is performed by radiation with a power density lower than 10{sup 7} W/cm{sup 2}. The removal of contaminations at such a relatively low power density occurs in a solid phase, owing to which the thermal effect on the mirror is insignificant.

  12. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-12

    This twelfth quarterly report describes work done during the twelfth three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  13. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  14. Fiber laser cleaning of metal mirror surfaces for optical diagnostic systems of the ITER

    Kuznetsov, A. P.; Alexandrova, A. S.; Buzhinsky, O. I.; Gubskiy, K. L.; Kazieva, T. V.; Savchenkov, A. V.; Tugarinov, S. N.

    2015-01-01

    The results of experimental studies into efficiency of removal of films with a complex composition from metal mirrors by pulsed fiber laser irradiation are presented. It is shown that the initial reflectivity of optical elements can be restored by the selection of modes of irradiation impacting the surface with the sputtered film. Effective cleaning is performed by radiation with a power density lower than 10 7 W/cm 2 . The removal of contaminations at such a relatively low power density occurs in a solid phase, owing to which the thermal effect on the mirror is insignificant

  15. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  16. Improving the cleaning procedure to make kitchen floors less slippery.

    Quirion, F; Poirier, P; Lehane, P

    2008-12-01

    This investigation shows that, in most cases, the floor cleaning procedure of typical restaurants could be improved, resulting in a better cleaning efficiency and a better floor friction. This simple approach could help reduce slips and falls in the workplace. Food safety officers visited ten European style restaurants in the London Borough of Bromley (UK) to identify their floor cleaning procedure in terms of the cleaning method, the concentration and type of floor cleaner and the temperature of the wash water. For all 10 restaurants visited, the cleaning method was damp mopping. Degreasers were used in three sites while neutral floor cleaners were used in seven sites. Typically, the degreasers were over diluted and the neutrals were overdosed. The wash water temperature ranged from 10 to 72 degrees C. The on-site cleaning procedures were repeated in the laboratory for the removal of olive oil from new and sealed quarry tiles, fouled and worn quarry tiles and new porcelain tiles. It is found that in 24 out of 30 cases, cleaning efficiency can be improved by simple changes in the floor cleaning procedure and that these changes result in a significant improvement of the floor friction. The nature of the improved floor cleaning procedure depends on the flooring type. New and properly sealed flooring tiles can be cleaned using damp mopping with a degreaser diluted as recommended by the manufacturer in warm or hot water (24 to 50 degrees C). But as the tiles become worn and fouled, a more aggressive floor cleaning is required such as two-step mopping with a degreaser diluted as recommended by the manufacturer in warm water (24 degrees C).

  17. Used Solvent Testing and Reclamation. Volume 2. Vapor Degreasing and Precision Cleaning Solvents

    1988-12-01

    relative intensity as the ordinate. This plot is referred to as a "mass spectrum." The mass spectrum of a compound can be considered its " fingerprint ...several designs, including roll-type plastic covers, canvas curtains, and guillotine covers. Automatic covers are designed to open for the time it takes

  18. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  19. Assessment of workers' exposure to microorganisms when using biological degreasing stations.

    Villeneuve, Carol-Anne; Marchand, Geneviève; Gardette, Marie; Lavoie, Jacques; Neesham-Grenon, Eve; Bégin, Denis; Debia, Maximilien

    2018-06-01

    Biological degreasing stations (BDSs) are used by mechanics. These BDSs use a water-based solution with a microbial degradation process. Occupational exposure during the use of BDSs has not been reported and few studies have identified the bacteria present. The objectives were to measure the concentration of microorganisms during BDSs' use and monitor the bacterial community in the liquid over time. Five mechanical workshops were studied. Six 30-min samples were taken at each workshop over one year. Bioaerosols in the ambient air samples were collected with Andersen impactors near the BDS Bioaerosols in the workers' breathing zone (WBZ) were collected on filters. Fresh bio-degreasing fluids were collected from unopened containers, and used bio-degreasing fluids were collected in the BDS. The results show that the use of BDSs does not seem to increase bioaerosols concentrations in the WBZ (concentrations lower than 480 CFU/m 3 ) and that the bacterial communities (mainly yeasts, Bacillus subtilis and Pseudomonas aeruginosa) in the bio-degreasing fluids change through time and differ from the original community (B. subtilis). This study established that workers using BDSs were exposed to low levels of bioaerosols. No respiratory protection is recommended based on bioaerosols concentrations, but gloves and strict personal hygiene practices are essential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Development of an emergency air-cleaning system for liquid-metal reactors

    Owen, R.K.

    1980-11-01

    A novel air cleaning concept has been developed for potential use in venting future commercial liquid metal fast breeder reactor containment buildings in the unlikely event of postulated core disruptive accidents. The passive concept consists of a submerged gravel bed to collect the bulk of particulate contaminates carried by the vented gas. A fibrous scrubber could be combined with the submerged gravel scrubber to enhance collection efficiencies for the smaller sized particles. The submerged gravel scrubber is unique in that water flow through the packed bed is induced by the gas flow, eliminating the need for an active liquid pump. In addition, design gas velocities through the packed bed are 10 to 20 times higher than for a conventional sand bed filter

  1. AN ELECTROLYTIC CIP-CLEANING PROCESS FOR REMOVING IMPURITIES FROM THE INNER SURFACE OF A METALLIC CONTAINER

    2008-01-01

    The invention relates to a novel electrolytic process for removing impurities from the inner surface of a metallic container. The process is particularly useful for cleaning process reactors used for culturing microorganisms, and storage tanks used for storing metabolites formed in the process...... reactor, as well as containers for dairy products....

  2. Photoemission studies of clean and adsorbate covered metal surfaces using synchrotron and uv radiation sources

    Apai, G.R. II.

    1977-09-01

    Photoemission energy distribution experiments on clean metal and adsorbate-covered surfaces were performed under ultrahigh vacuum conditions by using x-ray and ultraviolet photon sources in the laboratory as well as continuously-tunable, highly polarized synchrotron radiation obtainable at the Stanford Synchrotron Radiation Laboratory (SSRL). Studies focused on two general areas: cross-section modulation in the photoemission process was studied as a function of photon energy and orbital composition. Sharp decreases in intensity of the valence bands of several transition metals (i.e., Ag, Au, and Pt) are attributed to the radial nodes in the respective wave functions. Adsorbate photoemission studies of CO adsorbed on platinum single crystals have demonstrated a very high spectral sensitivity to the 4sigma and (1π + 5sigma) peaks of CO at photon energies of 150 eV. Angle-resolved photoemission allowed determination of the orientation of CO chemisorbed on a Pt (111) or Ni(111) surface. Prelinimary results at high photon energies (approximately 150 eV) indicated scattering from the substrate which could yield chemisorption site geometries

  3. Development of Azeotropic Blends to Replace TCE and nPB in Vapor Degreasing Operations

    2016-12-21

    York, NY August 4, 2014, pp 1–3. (7) Abbott, S.; Hansen, C. M.; Yamamoto, H. Hansen Solubility Parameters in Practice Complete with eBook , Software...OPERATING PROCEDURE SOLVENT COMPARISON FOR GREASE Page 5 of 7 Note: Do not allow the residue to get cooked to the vials or pans! 2.11. Allow...Pour the dirty solvent from the degreaser into properly labeled containers for solvent- recovery distillation. 3.7. Close the valve on the bath

  4. Removal of Malachite Green from aqueous solution using degreased coffee bean.

    Baek, Mi-Hwa; Ijagbemi, Christianah Olakitan; O, Se-Jin; Kim, Dong-Su

    2010-04-15

    This study reports on the feasibility of employing degreased coffee beans (DCB) as adsorbent for Malachite Green (MG) removal in dyeing wastewater. The iodine value (IV), specific surface area (SSA) and porosity of the raw coffee beans (RCB) used in the study increased after the degreasing process, resulting in significant increase in the adsorption of MG onto DCB. Employing a batch experimental set-up, optimum conditions for complete color removal and adsorption of MG by DCB was studied considering parameters such as effect of degreasing process, adsorbent dosage, initial dye concentration, reaction temperature and pH. Adsorbed amount of MG by DCB increased with increasing DCB dosage and initial MG concentration. The rate of the adsorption reaction followed the pseudo second-order kinetics with the sorption isotherm well fitted to the Freundlich and the Langmuir isotherm models. Thermodynamic studies revealed that the adsorption processes is spontaneous and endothermic in nature. DCB has potentials for application as adsorbent for the removal of MG from dyeing process wastewater. 2009 Elsevier B.V. All rights reserved.

  5. Removal of Malachite Green from aqueous solution using degreased coffee bean

    Baek, Mi-Hwa; Ijagbemi, Christianah Olakitan; O, Se-Jin [Department of Environmental Science and Engineering, Ewha Womans University, Daehyundong 11-1, Seodaemungu, Seoul 120-750 (Korea, Republic of); Kim, Dong-Su, E-mail: dongsu@ewha.ac.kr [Department of Environmental Science and Engineering, Ewha Womans University, Daehyundong 11-1, Seodaemungu, Seoul 120-750 (Korea, Republic of)

    2010-04-15

    This study reports on the feasibility of employing degreased coffee beans (DCB) as adsorbent for Malachite Green (MG) removal in dyeing wastewater. The iodine value (IV), specific surface area (SSA) and porosity of the raw coffee beans (RCB) used in the study increased after the degreasing process, resulting in significant increase in the adsorption of MG onto DCB. Employing a batch experimental set-up, optimum conditions for complete color removal and adsorption of MG by DCB was studied considering parameters such as effect of degreasing process, adsorbent dosage, initial dye concentration, reaction temperature and pH. Adsorbed amount of MG by DCB increased with increasing DCB dosage and initial MG concentration. The rate of the adsorption reaction followed the pseudo second-order kinetics with the sorption isotherm well fitted to the Freundlich and the Langmuir isotherm models. Thermodynamic studies revealed that the adsorption processes is spontaneous and endothermic in nature. DCB has potentials for application as adsorbent for the removal of MG from dyeing process wastewater.

  6. Removal of Malachite Green from aqueous solution using degreased coffee bean

    Baek, Mi-Hwa; Ijagbemi, Christianah Olakitan; O, Se-Jin; Kim, Dong-Su

    2010-01-01

    This study reports on the feasibility of employing degreased coffee beans (DCB) as adsorbent for Malachite Green (MG) removal in dyeing wastewater. The iodine value (IV), specific surface area (SSA) and porosity of the raw coffee beans (RCB) used in the study increased after the degreasing process, resulting in significant increase in the adsorption of MG onto DCB. Employing a batch experimental set-up, optimum conditions for complete color removal and adsorption of MG by DCB was studied considering parameters such as effect of degreasing process, adsorbent dosage, initial dye concentration, reaction temperature and pH. Adsorbed amount of MG by DCB increased with increasing DCB dosage and initial MG concentration. The rate of the adsorption reaction followed the pseudo second-order kinetics with the sorption isotherm well fitted to the Freundlich and the Langmuir isotherm models. Thermodynamic studies revealed that the adsorption processes is spontaneous and endothermic in nature. DCB has potentials for application as adsorbent for the removal of MG from dyeing process wastewater.

  7. Off gas processing device for degreasing furnace for uranium/plutonium mixed oxide fuel

    Ueda, Masaya; Akasaka, Takayuki; Noura, Takeshi.

    1996-01-01

    A low melting ingredient capturing-cooling trap connected to a degreasing sintering furnace by way of sealed pipelines, a burning/decomposing device for decomposing high melting ingredient gases discharged from the cooling trap by burning them and a gas sucking means for forming the flow of off gases are contained in a glovebox, the inside pressure of which is kept negative. Since the degreasing sintering furnace for uranium/plutonium mixed oxide fuels is disposed outside of the glovebox, operation can be performed safely without greatly increasing the scale of the device, and the back flow of gases is prevented easily by keeping the pressure in the inside of the glovebox negative. Further, a heater is disposed at the midway of the sealed pipelines from the degreasing sintering furnace to the cooling trap, the temperature is kept high to prevent deposition of low melting ingredients to prevent clogging of the sealed pipelines. Further, a portion of the pipelines is made extensible in the axial direction to eliminate thermal stresses caused by temperature change thereby enabling to extend the life of the sealed pipelines. (N.H.)

  8. Finishing of precision generated metal optical components

    Baker, P.C.; Sonderman, J.B.

    1975-08-01

    Diamond turning and precision generation of aspheric metal surfaces has promoted a change in lapping techniques due to the extremely close figure tolerances and surface finishes that have been achieved. Special tooling, diamond abrasive, silicon oil and special techniques used to polish the unusual aspheric figures are described. The studies include small flat diamond turned samples of copper, electroplated copper, electroplated silver, electroplated nickel and silver as well as large aspheres such as an f/0.75, 35 cm dia copper ellipse. Results from cleaning studies on flat samples using ultrasonics and vapor degreasers are also summarized. Interferograms of wavefront distortion and analysis of focal volume are included as well as 10.6 μm reflectivity and a summary of laser damage experiments. (TFD)

  9. Aluminum metal surface cleaning and activation by atmospheric-pressure remote plasma

    Muñoz, J., E-mail: jmespadero@uco.es; Bravo, J.A.; Calzada, M.D.

    2017-06-15

    Highlights: • Atmospheric-pressure postdischarges have been applied on aluminium surfaces. • The outer hydrocarbon layer is reduced by the action of the postdischarge. • The treatment promotes the appearance of hydrophilic OH radicals in the surface. • Effectivity for distances up to 5 cm allows for treating irregular surfaces. • Ageing in air due to the disappearance of OH radicals has been reported. - Abstract: The use of the remote plasma (postdischarge) of argon and argon-nitrogen microwave plasmas for cleaning and activating the surface of metallic commercial aluminum samples has been studied. The influence of the nitrogen content and the distance between the treated samples and the end of the discharge on the hydrophilicity and the surface energy has been analyzed by means of the sessile drop technique and the Owens-Wendt method. A significant increase in the hydrophilicity has been noted in the treated samples, together with an increase in the surface energy from values around 37 mJ/m{sup 2} to 77 mJ/m{sup 2}. Such increase weakly depends on the nitrogen content of the discharge, and the effectivity of the treatment extends to distances up to 5 cm from the end of the discharge, much longer than those reported in other plasma-based treatments. The analysis of the treated samples using X-ray photoelectron spectroscopy reveals that such increase in the surface energy takes place due to a reduction of the carbon content and an increase in the amount of OH radicals in the surface. These radicals tend to disappear within 24–48 h after the treatment when the samples are stored in contact with ambient air, resulting in the ageing of the treated surface and a partial retrieval of the hydrophobicity of the surface.

  10. Recycling of residual IGCC slags and their benefits as degreasers in ceramics.

    Iglesias Martín, I; Acosta Echeverría, A; García-Romero, E

    2013-11-15

    This work studies the evolution of IGCC slag grains within a ceramic matrix fired at different temperatures to investigate the effect of using IGCC slag as a degreaser. Pressed ceramic specimens from two clay mixtures are used in this study. The M1 mixture is composed of standard clays, whereas the M2 mixture is composed of the same clay mixture as M1 mixture but contains 15% by weight IGCC slag. The amount of IGCC slag added coincides with the amount of slag typically used as a degreaser in the ceramic industry. Specimens are fired at 950 °C, 1000 °C, 1050 °C, 1100 °C and 1150 °C. The mineralogical composition and the IGCC slag grain shape within the ceramic matrix are determined by X-ray diffraction, polarized light microscopy and scanning electron microscopy. The results reveal that the surface of the slag grains is welded to the ceramic matrix while the quartz grains are separated, which causes increased water absorption and reduces the mechanical strength. IGCC slag, however, reduces water absorption. This behaviour is due to the softening temperature of the slag. This property is quite important from an industrial viewpoint because IGCC slag can serve as an alternative to traditional degreasing agents in the ceramic building industry. Additionally, using IGCC slag allows for the transformation of waste into a secondary raw material, thereby avoiding disposal at landfills; moreover, these industrial wastes are made inert and improve the properties of ceramics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Evaluation of methods for cleaning low carbon uranium metal and alloy samples

    Kirchner, K.; Dixon, M.

    1979-01-01

    Several methods for cleaning uranium samples prior to carbon analysis, using a Leco Carbon Analyzer, were evaluated. Use of Oakite Aluminum NST Cleaner followed by water and acetone rinse was found to be the best overall technique

  12. From conceptual model to remediation: bioavailability, a key to clean up heavy metal contaminated soils.

    Petruzzelli, Gianniantonio; Pedron, Francesca; Pezzarossa, Beatrice

    2013-04-01

    Processes of metal bioavailability in the soil To know the bioavailability processes at site specific levels is essential to understand in detail the risks associated with pollution, and to support the decision-making process, i.e. description of the conceptual model and choice of clean up technologies. It is particularly important to assess how chemical, physical and biological processes in the soil affect the reactions leading to adsorption, precipitation or release of contaminants. The measurement of bioavailability One of the main difficulties in the practical application of the bioavailability concept in soil remediation is the lack of consensus on the method to be used to measure bioavailability. The best strategy is to apply a series of tests to assess bioavailability, since no applicable method is universally valid under all conditions. As an example, bioavailability tests for phytotechnology application should consider two distinct aspects: a physico-chemical driven solubilization process and a physiologically driven uptake process. Soil and plant characteristics strongly influence bioavailability. Bioavailability as a tool in remediation strategies Bioavailability can be used at all stages in remediation strategies: development of the conceptual model, evaluation of risk assessment, and selection of the best technology, considering different scenarios and including different environmental objectives. Two different strategies can be followed: the reduction and the increase of bioavailability. Procedures that reduce bioavailability aim to prevent the movement of pollutants from the soil to the living organisms, essentially by: i) removal of the labile phase of the contaminant, i.e. the fraction which is intrinsic to the processes of bioavailability (phytostabilization); ii) conversion of the labile fraction into a stable fraction (precipitation or adsorption); iii) increase of the resistance to mass transfer of the contaminants (inertization). Procedures

  13. Calculation of aerodynamics of aerosol filter designs for cleaning of heavy liquid metal cooler reactor gas loops

    Valery P Melnikov; Pyotr N Martynov; Albert K Papovyants; Ivan V Yagodkin

    2005-01-01

    Full text of publication follows: One of the basic performances of aerosol filters is the aerodynamic resistance to the flow of gaseous medium to be cleaned. Calculation of the aerodynamics of aerosol filters in reference to the gas loops of reactor installations with heavy liquid metal coolant (HLMC) allows the design of the structural components of filters to be optimized to provide minimum initial resistance values. It is established that owing to various factors aerosol particles of different concentration and disperse composition are present always in the gas spaces of heavy liquid metal cooled reactor gas loops. To prevent the negative effect of aerosols on the equipment of the gas loops, it is reasonable to use filters of multistep design with sections of preliminary and fine cleaning to catch micron and submicron particles, respectively. A computer program and technique have been developed to evaluate the aerodynamics of folded aerosol filters for different parameters of their structural components, taking account of the aerosol spectrum and concentration. The algorithm of the calculation is presented by the example of a two-step design assembled in single vessel; the filter dimensions and pattern of the air flow to be cleaned are determined under the given boundary conditions. The evaluation of the aerodynamic resistance of filters was performed with consideration for local resistances and resistances of all the structural components of the filter (sudden constriction, expansion, the flow in air channels, filtering material and so on). Correlations have been derived for the resistance of air channels, filtering materials of preliminary and fine cleaning sections as a function of such parameters as the section depth (50-500 mm), the height of separators (3,5-20 mm), the filtering surface area (1,5-30 m 2 ). Based on the calculation results, the auto-similarity domain was brought out for the minimal values of filter resistances as a function of the ratio of

  14. Molecular effects in ion-electron emission from clean metal surfaces

    Baragiola, R.A.; Alonso, E.V.; Auciello, O.; Ferron, J.; Lantschner, G.; Oliva Florio, A.

    1978-01-01

    The authors have measured electron emission yields from clean Al, Cu and Ag under 2-50 keV H + , D + , H 2 + impact. It is found that molecular ion yields are lower than twice the yield of atomic ions. No isotope effects are observed for equal-velocity ions. (Auth.)

  15. USING CERAMIC MEMBRANES TO RECYCLE TWO NONIONIC ALKALINE METAL-CLEANING SOLUTIONS

    One ZrO2 ultrafilter (0.05 um pore size) and two a-Al2O3 microfilters (0.2 and 0.8 um) were used to remove one synthetic ester oil and two polyalphaolefin-based and two petroleum hydrocarbon-based oils and greases from two nonionic alkaline cleaning solutions (e.g., Turco 4215-NC...

  16. Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals.

    Maweja, Kasonde; Mukongo, Tshikele; Mutombo, Ilunga

    2009-05-30

    Cleaning experiments of a copper matte smelting slag from the water-jacket furnace was undertaken by direct reduction in a laboratory-scale electric furnace. The effects of coal-to-slag ratio, w, and the reduction time, t, were considered for two different coal/slag mixing procedures. In the first procedure, metallurgical coal was added to the molten slag, whereas in the second procedure, coal was premixed with the solid slag before charging into the furnace. The recovery of heavy metals (Cu, Co), and the fuming of Pb and Zn were investigated. Contamination of the metal phase by iron and the acidity index of the final slag were analysed as these may impede the economical viability of the process. The lower w value of 2.56% yielded a recovery rate of less than 60% for copper and less than 50% for cobalt, and around 70% for zinc. However, increasing w to 5% allowed the recovery of 70-90% for Cu, Co and Zn simultaneously after 30-60 min reduction of the molten slag. After reduction, the cleaned slags contained only small amounts of copper and cobalt (zinc was efficient as the %Pb of the residual slag dropped to levels lower than 0.04% after 30 min of reduction. Ninety percent of the lead was removed from the initial slag and collected in the dusts. The zinc content of the cleaned slags quickly dropped to between 1 and 3 wt% from the initial 8.2% after 30 min reduction for w value of 5 and after 60 min reduction for w value of 2.56. The dusts contained about 60% Zn and 10% Pb. Recovery of lead from fuming of the slag was higher than 90% in all the experimental conditions considered in this study.

  17. Utilization of plants for stabilization and cleaning up of metal contaminated soil and water

    Miroslav Štofko

    2006-06-01

    Full Text Available Phytoremediation has been defined as the use of green plants and their associated rhizospheric microorganisms to remove, degrade, or contain contaminants located in soisl, sediments, groundwater, surface water, and even the atmosphere. Categories of phytoremediation include - phytoextraction or phytoaccumulation, phytotransformation, phytostimulation or plant-assisted bioremediation, phytovolatilization, rhizofiltration, pump and tree, phytostabilization, and hydraulic control. Phytoremediation of heavy metal contaminated soils basically includes phytostabilization, phytoextraction, rhizofiltration and phytovolatilization. Selection of plants for phytoremediation of metals depends on a particular application.

  18. Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells

    Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young

    2016-11-01

    We report the preparation of Cu2S, In2S3, CuInS2 and Cu(In,Ga)S2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200-400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.

  19. Metal phosphonate hybrid mesostructures: environmentally friendly multifunctional materials for clean energy and other applications.

    Ma, Tian-Yi; Yuan, Zhong-Yong

    2011-10-17

    The synthesis of porous hybrid materials has been extended to mesoporous non-silica-based organic-inorganic hybrid materials, in which mesoporous metal phosphonates represent an important family. By using organically bridged polyphosphonic acids as coupling molecules, the homogeneous incorporation of a considerable number of organic functional groups into the metal phosphonate hybrid framework has been realized. Small amounts of organic additives and the pH value of the reaction solution have a large impact on the morphology and textural properties of the resultant hybrid mesoporous metal phosphonate solids. Cationic and nonionic surfactants can be used as templates for the synthesis of ordered mesoporous metal phosphonates. The materials are used as efficient adsorbents for heavy metal ions, CO₂, and aldehydes, as well as in the separation of polycyclic aromatic hydrocarbons. They are also useful photocatalysts under UV and simulated solar light irradiation for organic dye degradation. Further functionalization of the synthesized mesoporous hybrids makes them oxidation and acid catalysts, both with impressive performances in the fields of sustainable energy and environment. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dependence of ion-electron emission from clean metals on the incidence angle of the projectile

    Ferron, J.; Alonso, E.V.; Baragiola, R.A.; Oliva-Florio, A.

    1981-01-01

    We have studied the dependence of electron yields γ from clean Cu and Au surfaces on the incidence angle theta of 5--50-keV He + , Ar + , and Xe + projectiles, in the angular range 0--80 0 , and under ultrahigh-vacuum conditions. We have found that, at small angles, γproportionalsec/sup f/theta, with f generally different from unity. For Xe + on Cu, γ(theta) presents an energy-dependence maximum, similar to that obtained for sputtering. The results are explained in terms of the anisotropy of the electron cascade in the solid, the depth distribution of the inelastic energy deposited by the projectile and by rapidly recoiling target atoms in the near-surface region of the solid

  1. Dependence of ion-electron emission from clean metals on the incidence angle of the projectile

    Ferron, J.; Alonso, E.V.; Baragiola, R.A.; Oliva-Florio, A.

    1981-10-15

    We have studied the dependence of electron yields ..gamma.. from clean Cu and Au surfaces on the incidence angle theta of 5--50-keV He/sup +/, Ar/sup +/, and Xe/sup +/ projectiles, in the angular range 0--80 /sup 0/, and under ultrahigh-vacuum conditions. We have found that, at small angles, ..gamma..proportionalsec/sup f/theta, with f generally different from unity. For Xe/sup +/ on Cu, ..gamma..(theta) presents an energy-dependence maximum, similar to that obtained for sputtering. The results are explained in terms of the anisotropy of the electron cascade in the solid, the depth distribution of the inelastic energy deposited by the projectile and by rapidly recoiling target atoms in the near-surface region of the solid.

  2. An X-ray photoelectron spectroscopic study of a nitric acid/argon ion cleaned uranium metal surface at elevated temperature

    Paul, A.J.; Sherwood, P.M.A.

    1987-01-01

    X-ray photoelectron spectroscopy has been used to study the surface of uranium metal cleaned by nitric acid treatment and argon ion etching, followed by heating in a high vacuum. The surface is shown to contain UOsub(2-x) species over the entire temperature range studied. Heating to temperatures in the range 400-600 0 C generates a mixture of this oxide, the metal and a carbide and/or oxycarbide species. (author)

  3. Demonstration/Validation of a Surface Cleaning Control to Mitigate Storm Water Metal Contaminants

    2014-04-01

    added to a pre- weighed 125-ml low density polyethylene (LDPE) bottle. The particles were digested with 1.0 ml of concentrated trace metal grade (TMG...Sorenson. 2005. “ Residential Street-Dirt Accumulation Rates and Chemical Composition, and Removal Efficiencies by Mechanical- and Vacuum-Type...Bay, and M. Kayhanian. 2003. “A Review of the Contaminants and Toxicity Associated with Particles in Stormwater Runoff.” Caltrans CTSW-RT-03-059.73.15

  4. Demonstration/Validation of a Surface Cleaning Control Practice to Mitigate Storm Water Metal Contaminants

    2014-04-01

    added to a pre- weighed 125-ml low density polyethylene (LDPE) bottle. The particles were digested with 1.0 ml of concentrated trace metal grade (TMG...consideration to ensure completion of operations.   33 9. REFERENCES Breault, R. F., K. P. Smith, and J. R. Sorenson. 2005. “ Residential Street...of the Contaminants and Toxicity Associated with Particles in Stormwater Runoff.” Caltrans CTSW-RT-03-059.73.15. California Department of

  5. Determination of the clean 4f peak shape in XPS for plutonium metal

    Morrall, P. [AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom)], E-mail: peter.morrall@awe.co.uk; Roussel, P. [AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Jolly, L.; Brevet, A.; Delaunay, F. [Commissariat a l' Energie Atomique, Centre de Valduc, 21120 Is-sur-Tille (France)

    2009-03-15

    Many of the interesting properties observed with plutonium are ascribed to the influence of 5f electrons, and to the degree of localisation observed within these electrons. Indeed, changes in 5f localisation are sensitively reflected in the final states observed in core-level photoemission measurements. However, when analysing the 4f manifold of elemental plutonium, it is essential to obtain spectra without the influence of oxidation, which can easily be misinterpreted as 5f localisation. The ideal method to extract elemental plutonium 4f spectra is to remove any influence of oxidation from the 'clean' plutonium data by careful measurement of the oxygen 1s region, and the subsequent subtraction of the unwanted oxide features. However, in order to achieve this objective it is essential to determine the relative sensitivity factor (RSF) for plutonium 4f and the precise shape of the 4f features from plutonium sesqui-oxide. In this paper, we report an experimental determination of the RSF for the plutonium 4f manifold using experimental data captured from two different Vacuum Generators spectrometers; an ESCALAB Mk II and an ESCALAB 220i.

  6. Field emission and high voltage cleaning of particulate contaminants on extended metallic surfaces

    Tan, J.; Bonin, B.; Safa, H.

    1996-01-01

    The vacuum insulation properties of extended metallic surfaces depends strongly on their cleanliness. The usual technique to reduce electronic field emission from such surfaces consists in exposing them to very high electric fields during limited periods of time. This kind of processing also reduces the occurrence of vacuum breakdown. The processing of the surface is generally believed to be due to a thermomechanical destruction of the emitting sites, initiated by the emission itself. Comparison of the electric forces vs adherence forces which act on dust particles lying on the surface shows that the processing could also be due simply to the mechanical removal of the dust particles, with a subsequent reduction of field emission from the contaminated surface. (author)

  7. Development of Chemosorbent Based on Metallic Waste for Cleaning Mine Water From Molybdenum

    Alexander Evgenyevich Isakov

    2018-01-01

    Full Text Available The article presents the results of hydrochemical studies of water objects, located in the impact zone of one of the largest mining enterprises in the Russian Federation – JSC “Apatite”. According to the monitoring studies, the source of surface water pollution with molybdenum was determined, geochemical assessment of the molybdenum transformation in the system “ore-bearing rocks – mine water – surface water” was performed. In order to reduce the technogenic load on the surface water located in the considered area, the way of large-tonnage mine waters purificationfrom molybdenum was proposed. The method involves using the chemical sorbent based on waste metals. The method of sewage purificationwill allow solving one of the key environmental problems of the considered enterprise and, in addition, to improve the environmental situation in the considered area as well as the quality of the local population life.

  8. Ultrasonic aqueous cleaning as a replacement for chlorinated solvent cleaning

    Thompson, L.M.; Simandl, R.F.

    1992-01-01

    The Oak Ridge Y-12 Plant has been involved in the replacement of chlorinated solvents since 1982. One of the most successful replacement efforts has been the substitution of vapor degreasers or soak tanks using chlorinated solvents with ultrasonic cleaning using aqueous detergents. Recently, funding was obtained from the Department of Energy Office (DOE) of Technology Development to demonstrate this technology. A unit has been procured and installed in the vacuum pump shop area to replace the use of a solvent soak tank. Initially, the solvents used in the shop were CFC-113 and a commercial brand cleaner which contained both perchloroethylene and methylene chloride. While the ultrasonic unit was being procured, a terpene-based solvent was used. Generally, parts were soaked overnight in order to soften baked-on vanish. Many times, wire brushing was used to help remove remaining contamination. Initial testing with the ultrasonic cleaner indicated cleaning times of 20 min were as effective as the overnight solvent soaks in removing contamination. Wire brushing was also not required following the ultrasonic cleaning as was sometimes required with the solvent soak

  9. Cleaning and electrochemistry restoration of archaeological metalic objects | Limpieza y restauración electroquímica de objetos arqueológicos metálicos

    Tomás España Guisolphe; Vicente Montiel Leguey; Marcelo López Segura; Antonio Aldaz Riera

    1985-01-01

    This paper shows how electrochemical methods can be applied to the cleaning and restoration of coins and metallic objects proceeding from archaeological finds. A description is given of the electrochemical methods used and a comparison with the usual cleaning methods is also made. | El presente estudio pone de manifiesto la aplicabilidad de los métodos electroquímicos a la limpieza y restauración de monedas y piezas metálicas que proceden de yacimientos arqueológicos. Se hace una descripción ...

  10. Theoretical Studies of the Structure and the Dynamics on Clean and Chemisorbed Metal Surfaces

    Yang, Liqiu

    Molecular dynamics (MD) and lattice dynamics (LD) techniques are employed to investigate several phenomena related to the structure and vibrations at metal surfaces. The MD simulations are performed with the many-body interaction potentials obtained using the Embedded-Atom Method (EAM). As specific examples, we present the results for Ag(100) at 300 K and Cu(100) at 150 K, 300 K, and 600 K. The calculated frequencies and polarizations of all surface modes and resonances at the high-symmetry points in the two-dimensional Brillouin zone are in good agreement with available data, as well as, existing lattice dynamics results with force constants obtained from first-principles calculations. Our calculated surface relaxation is also in reasonable agreement with the data. We also test a much simpler lattice dynamics model with nearest neighbor central force interactions, and conclude that it can reproduce the main features of the phonon modes, but only when adjustable surface parameters are used. Additionally, the temperature dependent studies of the phonon line-widths and the mean-square displacement (MSD) of surface atoms are indicative of enhanced surface anharmonicity. On several chemisorbed metal surfaces, for which force constants are not available from first-principles calculations or the EAM, we perform lattice dynamics studies of phonon dispersion curves using simple force-constant models. These studies provide reliable mean-square displacement of surface atoms and can distinguish between possible reconstruction patterns, the results being insensitive to the exact values of the surface parameters. On c(2 times 2)S-Ni(100), it is found that the parallel component of the mean-square displacement for sulfur is around 50% larger than the vertical component, but for the mean-square displacement of oxygen atoms in the system c(2 times 2)O-Ni(100), the opposite is the case. As regards surface reconstruction, for both p(2 times 1)O-Ag(110) and p(2 times 1)O-Ni(110

  11. Emerging 0D Transition-Metal Dichalcogenides for Sensors, Biomedicine, and Clean Energy.

    Li, Bang Lin; Setyawati, Magdiel Inggrid; Zou, Hao Lin; Dong, Jiang Xue; Luo, Hong Qun; Li, Nian Bing; Leong, David Tai

    2017-08-01

    Following research on two-dimensional (2D) transition metal dichalcogenides (TMDs), zero-dimensional (0D) TMDs nanostructures have also garnered some attention due to their unique properties; exploitable for new applications. The 0D TMDs nanostructures stand distinct from their larger 2D TMDs cousins in terms of their general structure and properties. 0D TMDs possess higher bandgaps, ultra-small sizes, high surface-to-volume ratios with more active edge sites per unit mass. So far, reported 0D TMDs can be mainly classified as quantum dots, nanodots, nanoparticles, and small nanoflakes. All exhibited diverse applications in various fields due to their unique and excellent properties. Of significance, through exploiting inherent characteristics of 0D TMDs materials, enhanced catalytic, biomedical, and photoluminescence applications can be realized through this exciting sub-class of TMDs. Herein, we comprehensively review the properties and synthesis methods of 0D TMDs nanostructures and focus on their potential applications in sensor, biomedicine, and energy fields. This article aims to educate potential adopters of these excitingly new nanomaterials as well as to inspire and promote the development of more impactful applications. Especially in this rapidly evolving field, this review may be a good resource of critical insights and in-depth comparisons between the 0D and 2D TMDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Comprehensive Study for the Laser Cleaning of Corrosion Layers due to Environmental Pollution for Metal Objects of Cultural Value: Preliminary Studies on Artificially Corroded Coupons

    Siatou, A.; Charalambous, D.; Argyropoulos, V.; Pouli, P.

    2006-01-01

    This paper is focused on the systematic investigation of the layer-by-layer removal of corrosion products on artificially corroded metal coupons aiming to introduce a methodology for the optimum laser cleaning approach of historical metal objects. Thus, it is very important to determine the chemical composition of the studied surfaces before and after irradiation. A series of laser cleaning studies has been performed on test coupons (reference and artificially corroded). Wavelength and pulse duration effects are investigated. Initial studies were focused on the use of infrared (1064 nm) and ultraviolet (355 nm and 248 nm) radiations of nanosecond (ns) pulse duration. Damage and removal threshold values were determined for the substrates and the corrosion layers, respectively. The irradiated surfaces are evaluated microscopically under the optical and the scanning electron microscope, while the mineralogical and chemical composition of the various layers is determined with X-ray diffraction and SEM-EDAX analyses, respectively. The results obtained are providing a comprehensive approach for understanding the main mechanisms that are significant in the different laser cleaning regimes, while the optimum cleaning methodologies for the studied materials are being established.

  13. Elemental analyses of goundwater: demonstrated advantage of low-flow sampling and trace-metal clean techniques over standard techniques

    Creasey, C. L.; Flegal, A. R.

    The combined use of both (1) low-flow purging and sampling and (2) trace-metal clean techniques provides more representative measurements of trace-element concentrations in groundwater than results derived with standard techniques. The use of low-flow purging and sampling provides relatively undisturbed groundwater samples that are more representative of in situ conditions, and the use of trace-element clean techniques limits the inadvertent introduction of contaminants during sampling, storage, and analysis. When these techniques are applied, resultant trace-element concentrations are likely to be markedly lower than results based on standard sampling techniques. In a comparison of data derived from contaminated and control groundwater wells at a site in California, USA, trace-element concentrations from this study were 2-1000 times lower than those determined by the conventional techniques used in sampling of the same wells prior to (5months) and subsequent to (1month) the collections for this study. Specifically, the cadmium and chromium concentrations derived using standard sampling techniques exceed the California Maximum Contaminant Levels (MCL), whereas in this investigation concentrations of both of those elements are substantially below their MCLs. Consequently, the combined use of low-flow and trace-metal clean techniques may preclude erroneous reports of trace-element contamination in groundwater. Résumé L'utilisation simultanée de la purge et de l'échantillonnage à faible débit et des techniques sans traces de métaux permet d'obtenir des mesures de concentrations en éléments en traces dans les eaux souterraines plus représentatives que les résultats fournis par les techniques classiques. L'utilisation de la purge et de l'échantillonnage à faible débit donne des échantillons d'eau souterraine relativement peu perturbés qui sont plus représentatifs des conditions in situ, et le recours aux techniques sans éléments en traces limite l

  14. Reticular Chemistry and Metal-Organic Frameworks: Design and Synthesis of Functional Materials for Clean Energy Applications

    Alezi, Dalal A.

    2017-06-01

    Gaining control over the assembly of crystalline solid-state materials has been significantly advanced through the field of reticular chemistry and metal organic frameworks (MOFs). MOFs have emerged as a unique modular class of porous materials amenable to a rational design with targeted properties for given applications. Several design approaches have been deployed to construct targeted functional MOFs, where desired structural and geometrical attributes are incorporated in preselected building units prior to the assembly process. This dissertation illustrates the merit of the molecular building block approach (MBB) for the rational construction and discovery of stable and highly porous MOFs, and their exploration as potential gas storage medium for sustainable and clean energy applications. Specifically, emphasis was placed on gaining insights into the structure-property relationships that impact the methane (CH4) storage in MOFs and its subsequent delivery. The foreseen gained understanding is essential for the design of new adsorbent materials or adjusting existing MOF platforms to encompass the desired features that subsequently afford meeting the challenging targets for methane storage in mobile and stationary applications.In this context, we report the successful use of the MBB approach for the design and deliberate construction of a series of novel isoreticular, highly porous and stable, aluminum based MOFs with the square-octahedral (soc) underlying net topology. From this platform, Al-soc-MOF-1, with more than 6000 m2/g apparent Langmuir specific surface area, exhibits outstanding gravimetric CH4 uptake (total and working capacities). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the U.S. Department of Energy (DOE) challenging gravimetric and volumetric targets for the CH4 working capacity for on-board CH4 storage. Furthermore, Al-soc-MOF-1 exhibits the highest total gravimetric and volumetric uptake for carbon

  15. Plasma Cleaning

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  16. Optimization of the process of steel strip perforation and nickel platting for the purpose of elimination of trichloroethylene from the cleaning process of perforated steel strip

    Petrović Aleksandra B.

    2009-01-01

    Full Text Available In the production of pocket type electrodes for Ni-Cd batteries perforation of proper steel strips and then nickel platting of perforated steel strips were made. In the nickel platting process, the organic solvent, trichloroethylene, has previously been used for cleaning. Due to the carcinogenic nature of trichloroethylene and the many operations previously required during cleaning, it was considered to do cleaning of perforated steel strips without use of the mentioned organic solvent. In the purpose of elimination of trichloroethylene from the cleaning process of perforated steel strips, the tests of perforation of steel strips with use of oils of different viscosity were made. It was shown that there was no dysfunction during the work of the perforation plants, meaning there was no additional heating of the strips, deterring of the steel filings, nor excessive wearing of the perforation apparatus. The perforation percent was the same irrelevant of the viscosity of the used oil. Before being perforated using the oils with different viscosity, the nickel platting steel strips were cleaned in different degreasers (based on NaOH as well as on KOH. It was shown that efficient cleaning without the use of trichloroethylene is possible with the use of oil with smaller viscosity in the perforated steel strips process and the degreaser based on KOH in the cleaning process, before nickel platting. It also appeared that the alkali degreaser based on KOH was more efficient, bath corrections were made less often and the working period of the baths was longer, which all in summary means less quantity of chemicals needed for degreasing of perforated steel strips.

  17. Fabrication of superhydrophilic or superhydrophobic self-cleaning metal surfaces using picosecond laser pulses and chemical fluorination

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun; Mei, Xuesong

    2016-05-01

    Bioinspired superhydrophilic/phobic self-cleaning surfaces have recently drawn a lot of interest in both fundamental and applied research. A hybrid method to produce the self-cleaning property of micro/nanostructured surface using ultra-fast laser pulses followed by chemical fluorination is proposed. The typical micro/nanocomposite structures that form from microporous arrays and microgroove groups have been processed by picosecond laser on titanium alloy surface. The surface hydrophilic/phobic and self-cleaning properties of micro/nanostructures before and after fluorination with fluoroalkyl-silane were investigated using surface contact angle measurements. The results indicate that surface properties change from hydrophilic to hydrophobic after fluorination, and the micro/nanostructured surface with increased roughness contributes to the improvement of surface hydrophobicity. The micro/nanomodification can make the original hydrophilic titanium alloy surface more hydrophilic or superhydrophilic. It also can make an originally hydrophobic fluorinated titanium alloy surface more hydrophobic or superhydrophobic. The produced micro/nanostructured titanium alloy surfaces show excellent self-cleaning properties regardless of the fluorination treatment, although the fluorinated surfaces have slightly better self-cleaning properties. It is found that surface treatment using ultra-fast laser pulses and subsequent chemical fluorination is an effective way to manipulate surface wettability and obtain self-cleaning properties.

  18. Cleaning and electrochemistry restoration of archaeological metalic objects | Limpieza y restauración electroquímica de objetos arqueológicos metálicos

    Tomás España Guisolphe

    1985-12-01

    Full Text Available This paper shows how electrochemical methods can be applied to the cleaning and restoration of coins and metallic objects proceeding from archaeological finds. A description is given of the electrochemical methods used and a comparison with the usual cleaning methods is also made. | El presente estudio pone de manifiesto la aplicabilidad de los métodos electroquímicos a la limpieza y restauración de monedas y piezas metálicas que proceden de yacimientos arqueológicos. Se hace una descripción de los métodos electroquímicos utilizados y una comparación con los métodos habituales de limpieza.

  19. Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios

    Nassar, Nedal T.; Wilburn, David R.; Goonan, Thomas G.

    2016-01-01

    The United States has and will likely continue to obtain an increasing share of its electricity from solar photovoltaics (PV) and wind power, especially under the Clean Power Plan (CPP). The need for additional solar PV modules and wind turbines will, among other things, result in greater demand for a number of minor metals that are produced mainly or only as byproducts. In this analysis, the quantities of 11 byproduct metals (Ag, Cd, Te, In, Ga, Se, Ge, Nd, Pr, Dy, and Tb) required for wind turbines with rare-earth permanent magnets and four solar PV technologies are assessed through the year 2040. Three key uncertainties (electricity generation capacities, technology market shares, and material intensities) are varied to develop 42 scenarios for each byproduct metal. The results indicate that byproduct metal requirements vary significantly across technologies, scenarios, and over time. In certain scenarios, the requirements are projected to become a significant portion of current primary production. This is especially the case for Te, Ge, Dy, In, and Tb under the more aggressive scenarios of increasing market share and conservative material intensities. Te and Dy are, perhaps, of most concern given their substitution limitations. In certain years, the differences in byproduct metal requirements between the technology market share and material intensity scenarios are greater than those between the various CPP and No CPP scenarios. Cumulatively across years 2016–2040, the various CPP scenarios are estimated to require 15–43% more byproduct metals than the No CPP scenario depending on the specific byproduct metal and scenario. Increasing primary production via enhanced recovery rates of the byproduct metals during the beneficiation and enrichment operations, improving end-of-life recycling rates, and developing substitutes are important strategies that may help meet the increased demand for these byproduct metals.

  20. Investigation of the influence of pretreatment parameters on the surface characteristics of amorphous metal for use in power industry

    Nieroda, Jolanta; Rybak, Andrzej; Kmita, Grzegorz; Sitarz, Maciej

    2018-05-01

    Metallic glasses are metallic materials, which exhibit an amorphous structure. These are mostly three or more component alloys, and some of them are magnetic metals. Materials of this kind are characterized by high electrical resistivity and at the same time exhibit very good magnetic properties (e.g. low-magnetization loss). The above mentioned properties are very useful in electrical engineering industry and this material is more and more popular as a substance for high-efficiency electrical devices production. This industry area is still evolving, and thus even higher efficiency of apparatus based on amorphous material is expected. A raw material must be carefully investigated and characterized before the main production process is started. Presented work contains results of complementary examination of amorphous metal Metglas 2605. Studies involve two ways to obtain clean and oxidized surface with high reactivity, namely degreasing followed by annealing process and plasma treatment. The amorphous metal parameters were examined by means of several techniques: surface free energy (SFE) measurements by sessile drop method, X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and both ex situ and in situ Raman spectroscopy. Additionally, influence of plasma parameters on wetting properties were optimized in systematic way with Design of Experiments (DOE) method. A wide range of used methods allow to fully investigate the amorphous metal material during preliminary preparation of surface. Obtained results provide information about appropriate parameters that should be applied in order to obtain highly reactive surface with functional oxide layer on it.

  1. IBA analysis of a laser cleaned archaeological metal object: The San Esteban de Gormaz cross (Soria-Spain)

    Zucchiatti, A.; Gutiérrez Neira, P.C.; Climent-Font, A.; Escudero, C.; Barrera, M.

    2011-01-01

    The object under study, a 12th century gilded copper cross with a wooden core, now almost disappeared, shows the typical features produced by a long burial time: the entire surface of the copper alloys is covered by several layers of degradation products, which hinder the “legibility” of the cross in terms of the original materials and manufacturing techniques employed. In its cleaning several techniques have been applied and compared (dry and wet laser ablation, mechanical ablation, ultrasound brush). In the intermediate cleaning phase the cross has been extensively analysed with the external proton micro-beam of the Centro de Micro-Análisis de Materiales (CMAM) of the Universidad Autónoma de Madrid. PIXE and RBS techniques have been used in parallel, to asses both the chemical composition and the layered structure of cleaned and original parts with the aim of verifying that none of the object structural features are being modified by the cleaning process leaving intact the possibility of artistic interpretation of the object (e.g. small series production of the cross elements). The recovery of this exceptional ornamental object is made possible by the coordinated work of several professionals coming from various disciplines and aimed at establishing the importance of this cross in terms of its physical appearance and in terms of the manufacturing techniques.

  2. IBA analysis of a laser cleaned archaeological metal object: The San Esteban de Gormaz cross (Soria-Spain)

    Zucchiatti, A.; Gutiérrez Neira, P. C.; Climent-Font, A.; Escudero, C.; Barrera, M.

    2011-12-01

    The object under study, a 12th century gilded copper cross with a wooden core, now almost disappeared, shows the typical features produced by a long burial time: the entire surface of the copper alloys is covered by several layers of degradation products, which hinder the "legibility" of the cross in terms of the original materials and manufacturing techniques employed. In its cleaning several techniques have been applied and compared (dry and wet laser ablation, mechanical ablation, ultrasound brush). In the intermediate cleaning phase the cross has been extensively analysed with the external proton micro-beam of the Centro de Micro-Análisis de Materiales (CMAM) of the Universidad Autónoma de Madrid. PIXE and RBS techniques have been used in parallel, to asses both the chemical composition and the layered structure of cleaned and original parts with the aim of verifying that none of the object structural features are being modified by the cleaning process leaving intact the possibility of artistic interpretation of the object (e.g. small series production of the cross elements). The recovery of this exceptional ornamental object is made possible by the coordinated work of several professionals coming from various disciplines and aimed at establishing the importance of this cross in terms of its physical appearance and in terms of the manufacturing techniques.

  3. IBA analysis of a laser cleaned archaeological metal object: The San Esteban de Gormaz cross (Soria-Spain)

    Zucchiatti, A., E-mail: alessandro.zucchiatti@uam.es [CMAM, Universidad Autonoma de Madrid, c/Farady 3, E-28049 Madrid (Spain); Gutierrez Neira, P.C., E-mail: carolina.gutierrez@uam.es [CMAM, Universidad Autonoma de Madrid, c/Farady 3, E-28049 Madrid (Spain); Climent-Font, A., E-mail: acf@uam.es [CMAM, Universidad Autonoma de Madrid, c/Farady 3, E-28049 Madrid (Spain); Escudero, C., E-mail: escremcr@jcyl.es [Centro de Conservacion y Restauracion de Bienes Culturales (CCRBC) de la Junta de Castilla y Leon, C/Carretera No. 2, 47130 Valladolid (Spain); Barrera, M., E-mail: barbarmr@jcyl.es [Centro de Conservacion y Restauracion de Bienes Culturales (CCRBC) de la Junta de Castilla y Leon, C/Carretera No. 2, 47130 Valladolid (Spain)

    2011-12-15

    The object under study, a 12th century gilded copper cross with a wooden core, now almost disappeared, shows the typical features produced by a long burial time: the entire surface of the copper alloys is covered by several layers of degradation products, which hinder the 'legibility' of the cross in terms of the original materials and manufacturing techniques employed. In its cleaning several techniques have been applied and compared (dry and wet laser ablation, mechanical ablation, ultrasound brush). In the intermediate cleaning phase the cross has been extensively analysed with the external proton micro-beam of the Centro de Micro-Analisis de Materiales (CMAM) of the Universidad Autonoma de Madrid. PIXE and RBS techniques have been used in parallel, to asses both the chemical composition and the layered structure of cleaned and original parts with the aim of verifying that none of the object structural features are being modified by the cleaning process leaving intact the possibility of artistic interpretation of the object (e.g. small series production of the cross elements). The recovery of this exceptional ornamental object is made possible by the coordinated work of several professionals coming from various disciplines and aimed at establishing the importance of this cross in terms of its physical appearance and in terms of the manufacturing techniques.

  4. Clean data

    Squire, Megan

    2015-01-01

    If you are a data scientist of any level, beginners included, and interested in cleaning up your data, this is the book for you! Experience with Python or PHP is assumed, but no previous knowledge of data cleaning is needed.

  5. Hot Gas Particulate Cleaning Technology Applied for PFBC/IGFC -The Ceramic Tube Filter (CTF) and Metal Filter-

    Sasatsu, H; Misawa, N; Kobori, K; Iritani, J

    2002-09-18

    Coal is a fossil fuel abundant and widespread all over world. It is a vital resource for energy security, because the supply is stable. However, its CO2 emission per unit calorific value is greater than that of other fossil fuels. It is necessary to develop more efficient coal utilization technologies to expand the coal utilization that meets the social demand for better environment. The Pressurized Fluidized Bed Combustion (PFBC) combined cycle has become a subject of world attention in terms of better plant operation, improved plant efficiency, lower flue gas emission and fuel flexibility. The gas turbine, one of the most important components in the PFBC, is eager for a hot gas (approximately 650-850C) cleaning system in order to eliminate the severe erosion problem with the less thermal loss. The cyclone is most popular system for a hot gas cleaning, however, the severe damage for gas turbine blades by highly concentrated fine fly ash from PFBC boiler is reported.

  6. Laser surface cleaning

    Freiwald, J.G.; Freiwald, D.A.

    1994-01-01

    The objective of this work is a laboratory demonstration that red-lead primer and two-part epoxy paints can be stripped from concrete and metal surfaces using surface cleaning systems based on pulsed-repetition CO 2 lasers. The three goals are to: (1) demonstrate coatings removal, including surface pore cleaning; (2) demonstrate that there is negligible release of ablated contaminants to the environment; and (3) demonstrate that the process will generate negligible amounts of additional waste compared to competing technologies. Phase 1 involved site visits to RMI and Fernald to assess the cleaning issues for buildings and parts. In addition, Phase 1 included detailed designs of a more powerful system for industrial cleaning rates, including laser, articulating optics, ablated-material capture suction nozzle attached to a horizontal raster scanner for floor cleaning, and filtration system. Some concept development is also being done for using robots, and for parts cleaning. In Phase 2 a transportable 6 kW system will be built and tested, with a horizontal surface scanner for cleaning paint from floors. The laboratory tests will again be instrumented. Some concept development will continue for using robots, and for parts cleaning. This report describes Phase 1 results

  7. Plasma cleaning for waste minimization

    Ward, P.P.

    1993-07-01

    Although plasma cleaning is a recognized substitute for solvent cleaning in removing organic contaminants, some universal problems in plasma cleaning processes prevent wider use of plasma techniques. Lack of understanding of the fundamental mechanisms of the process, unreliable endpoint detection techniques, and slow process times make plasma cleaning processes less than desirable. Our approach to address these plasma cleaning problems is described. A comparison of plasma cleaning rates of oxygen and oxygen/sulfur hexafluoride gases shows that fluorine-containing plasmas can enhance etch rates by 400% over oxygen alone. A discussion of various endpoint indication techniques is discussed and compared for application suitability. Work toward a plasma cleaning database is discussed. In addition to the global problems of plasma cleaning, an experiment where the specific mixed-waste problem of removal of machine oils from radioactive scrap metal is discussed.

  8. Reticular Chemistry and Metal-Organic Frameworks: Design and Synthesis of Functional Materials for Clean Energy Applications

    Alezi, Dalal

    2017-01-01

    Gaining control over the assembly of crystalline solid-state materials has been significantly advanced through the field of reticular chemistry and metal organic frameworks (MOFs). MOFs have emerged as a unique modular class of porous materials

  9. Surface cleaning in thin film technology

    Mattox, D.M.

    1978-01-01

    A ''clean surface'' is one that contains no significant amounts of undesirable material. This paper discusses the types and origin of various contaminants. Since cleaning is often equated with adhesion, the mechanisms of adhesion to oxide, metal, and organic surfaces are reviewed and cleaning processes for these surfaces are outlined. Techniques for monitoring surface cleaning are presented, and the importance of storage of clean surfaces is discussed. An extensive bibliography is given. 4 figs., 89 references

  10. Laser-assisted cleaning

    Experiments conducted with loose contamination on metal and transparent dielectric surfaces proved conclusively the dominant role played by the absorption of the incident radiation by the surface towards the generation of the cleaning force as against the absorption in the particulates alone. Further, the presence of ...

  11. Development of Statistical Process Control Methodology for an Environmentally Compliant Surface Cleaning Process in a Bonding Laboratory

    Hutchens, Dale E.; Doan, Patrick A.; Boothe, Richard E.

    1997-01-01

    Bonding labs at both MSFC and the northern Utah production plant prepare bond test specimens which simulate or witness the production of NASA's Reusable Solid Rocket Motor (RSRM). The current process for preparing the bonding surfaces employs 1,1,1-trichloroethane vapor degreasing, which simulates the current RSRM process. Government regulations (e.g., the 1990 Amendments to the Clean Air Act) have mandated a production phase-out of a number of ozone depleting compounds (ODC) including 1,1,1-trichloroethane. In order to comply with these regulations, the RSRM Program is qualifying a spray-in-air (SIA) precision cleaning process using Brulin 1990, an aqueous blend of surfactants. Accordingly, surface preparation prior to bonding process simulation test specimens must reflect the new production cleaning process. The Bonding Lab Statistical Process Control (SPC) program monitors the progress of the lab and its capabilities, as well as certifies the bonding technicians, by periodically preparing D6AC steel tensile adhesion panels with EA-91 3NA epoxy adhesive using a standardized process. SPC methods are then used to ensure the process is statistically in control, thus producing reliable data for bonding studies, and identify any problems which might develop. Since the specimen cleaning process is being changed, new SPC limits must be established. This report summarizes side-by-side testing of D6AC steel tensile adhesion witness panels and tapered double cantilevered beams (TDCBs) using both the current baseline vapor degreasing process and a lab-scale spray-in-air process. A Proceco 26 inches Typhoon dishwasher cleaned both tensile adhesion witness panels and TDCBs in a process which simulates the new production process. The tests were performed six times during 1995, subsequent statistical analysis of the data established new upper control limits (UCL) and lower control limits (LCL). The data also demonstrated that the new process was equivalent to the vapor

  12. Efficacy of Chicken Litter and Wood Biochars and Their Activated Counterparts in Heavy Metal Clean up from Wastewater

    Isabel M. Lima

    2015-09-01

    Full Text Available It is known that properties of activated biochars are tightly associated with those of the original feedstock as well as pyrolysis and activation conditions. This study examined two feedstock types, pine wood shavings and chicken litter, to produce biochars at two different pyrolysis temperatures and subsequently activated by steam, acid or base. In order to measure activation efficiency, all materials were characterized for their properties and ability to remediate two well-known heavy metals of concern: copper and arsenic. Base activated biochars were superior in arsenic adsorption, to acid or steam activated samples, but increase in adsorption was not significant to warrant use. For wood biochars, significant increases of surface functionality as related to oxygen bearing groups and surface charge were observed upon acid activation which led to increased copper ion adsorption. However, oxygen bearing functionalities were not sufficient to explain why chicken litter biochars and steam activated biochars appeared to be significantly superior to wood shavings in positively charged metal ion adsorption. For chicken litter, functionality of respective biochars could be related to phosphate containing groups inherited from feedstock composition, favorably positioning this feedstock in metal ion remediation applications.

  13. Use of complexones solutions in liquid carbon dioxide for cleaning of materials contaminated with heavy and radioactive metals

    Shadrin, A.Yu.; Kamachev, V.A.; Kiseleva, R.N.; Murzin, A.A.; Shafikov, D.N.; Bondin, V.V.; Efremov, I.V.; Kovalev, D.N.; Podoinitsyn, S.V.

    2003-01-01

    I n this paper liquid carbon dioxide (pressure 50-70 atm) was used for decontamination. The performed experiments on removal of cobalt, nickel, uranium and americium nitrates and carbonates by different solutions have shown that the solutions of such complexing agents as hexafluoroacetylacetone (HFA), tributylphosphate (TBP), di-2-ethylhexylphosphoric acid (D2EHPA) in liquid CO 2 can be used for purification of pulps, metals, paper and fabrics. Liquid CO 2 is high viscosity of the medium and hence low diffusion coefficients and long duration of the processes. It is known that 20 minutes are sufficient to attain equilibrium in supercritical CO 2 medium on metal removal by HFA solutions. During the experiments it was established that with the use of liquid CO 2 the keeping time should be increased to 40 min, which is acceptable from the standpoint of technical feasibility of decontamination processes in these solutions. Experiments on really contaminated samples of pulps, metals and fabrics have confirmed that the decontamination coefficients of 30-100 can be easily obtained by 2-3 fold material treatment operations. The secondary waste volume therewith is less by a factor of 20-200 than that of traditional techniques. (authors)

  14. Chemical dynamics of acidity and heavy metals in a mine water-polluted soil during decontamination using clean water.

    Chen, A; Lin, C; Lu, W; Ma, Y; Bai, Y; Chen, H; Li, J

    2010-03-15

    A column leaching experiment was conducted to investigate the chemical dynamics of the percolating water and washed soil during decontamination of an acidic mine water-polluted soil. The results show that leaching of the contaminated soil with clean water rapidly reduced soluble acidity and ion concentrations in the soils. However, only soil column was eliminated after 30 leaching cycles. It is likely that the stored acidity continues to be released to the percolating water over a long period of time. During the column leaching, dissolved Cu and Pb were rapidly leached out, followed by mobilization of colloidal Cu and Pb from the exchangeable and the oxide-bound fractions as a result of reduced ionic strength in the soil solution. The soluble Fe contained in the soil was rare, probably because the soil pH was not sufficiently low; marked mobility of colloidal Fe took place after the ionic strength of the percolating water was weakened and the mobilized Fe was mainly derived from iron oxides. In contrast with Cu, Pb and Fe, the concentration of leachate Zn and Mn showed a continuously decreasing trend during the entire period of the experiment. (c) 2009 Elsevier B.V. All rights reserved.

  15. Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys

    Hao-Ting Shen

    2016-06-01

    Full Text Available The grain boundaries of three Laves phase-related body-center-cubic (bcc solid-solution, metal hydride (MH alloys with different phase abundances were closely examined by scanning electron microscopy (SEM, transmission electron microscopy (TEM, and more importantly, electron backscatter diffraction (EBSD techniques. By using EBSD, we were able to identify the alignment of the crystallographic orientations of the three major phases in the alloys (C14, bcc, and B2 structures. This finding confirms the presence of crystallographically sharp interfaces between neighboring phases, which is a basic assumption for synergetic effects in a multi-phase MH system.

  16. Potency of Centrocema pubescence, Calopogonium mucunoides, and Micania cordata for cleaning metal contaminants of gold mines waste

    NURIL HIDAYATI

    2006-01-01

    Full Text Available Based on some findings that some plants are tolerant to contaminated media, this research was conducted to study more thoroughly about characters and potencies of some of them as hyperaccumulators. Three of the most tolerant plants were studied in this research i.e Centrocema pubescence, Calopogonium mucunoides,and Micania cordata. The plants were grown in different waste media, i.e. tailing from PT. Aneka Tambang (ANTAM and people mine waste. Both waste have different characters, physically and chemically. Waste of PT ANTAM major contaminant was cianide (Cn whereas people mine waste major contaminant was mercury (Hg. This different characters resulted in different plant responses. The plants grown under PT ANTAM waste media gave better performance than that grown under people mine waste media. The most tolerant species was C. pubescence followed by M. cordata and C. mucunoides. Ability in metal accumulation of C. mucunoides was the highest, followed by M. cordata and C. pubescence.The results raised some-prospects for phytoremediation technology for rehabilitating contaminated mined lands.

  17. [Myelofibrosis in a benzene-exposed cleaning worker].

    Bausà, Roser; Navarro, Lydia; Cortès-Franch, Imma

    Long-term exposure to benzene has been associated with several blood malignancies, including aplastic anemia, myeloproliferative neoplasms, and different leukemias. We present a case of primary myelofibrosis in a 59-year-old woman who worked as a cleaner at a car dealership and automobile mechanic shop. For 25 years, she used gasoline as a degreaser and solvent to clean engine parts, floors and work desks on a daily basis. She was referred by her primary care provider to the Occupational Health Unit of Barcelona to assess whether her illness was work-related. Review of her job history and working conditions revealed chronic exposure to benzene in the absence of adequate preventive measures. An association between benzene exposure and myeloproliferative disease was established, suspicious for an occupational disease. Copyright belongs to the Societat Catalana de Salut Laboral.

  18. Deriving site-specific soil clean-up values for metals and metalloids: rationale for including protection of soil microbial processes.

    Kuperman, Roman G; Siciliano, Steven D; Römbke, Jörg; Oorts, Koen

    2014-07-01

    Although it is widely recognized that microorganisms are essential for sustaining soil fertility, structure, nutrient cycling, groundwater purification, and other soil functions, soil microbial toxicity data were excluded from the derivation of Ecological Soil Screening Levels (Eco-SSL) in the United States. Among the reasons for such exclusion were claims that microbial toxicity tests were too difficult to interpret because of the high variability of microbial responses, uncertainty regarding the relevance of the various endpoints, and functional redundancy. Since the release of the first draft of the Eco-SSL Guidance document by the US Environmental Protection Agency in 2003, soil microbial toxicity testing and its use in ecological risk assessments have substantially improved. A wide range of standardized and nonstandardized methods became available for testing chemical toxicity to microbial functions in soil. Regulatory frameworks in the European Union and Australia have successfully incorporated microbial toxicity data into the derivation of soil threshold concentrations for ecological risk assessments. This article provides the 3-part rationale for including soil microbial processes in the development of soil clean-up values (SCVs): 1) presenting a brief overview of relevant test methods for assessing microbial functions in soil, 2) examining data sets for Cu, Ni, Zn, and Mo that incorporated soil microbial toxicity data into regulatory frameworks, and 3) offering recommendations on how to integrate the best available science into the method development for deriving site-specific SCVs that account for bioavailability of metals and metalloids in soil. Although the primary focus of this article is on the development of the approach for deriving SCVs for metals and metalloids in the United States, the recommendations provided in this article may also be applicable in other jurisdictions that aim at developing ecological soil threshold values for protection of

  19. Cleaning Services.

    Sharpton, James L.

    This curriculum guide provides cleaning services instructional materials for a ninth- and tenth-grade Coordinated Vocational Education and Training: Home and Community Services program. It includes 2 sections and 11 instructional units. Each unit of instruction consists of eight basic components: performance objectives, teacher activities,…

  20. The influence of in situ argon cleaning of GaAs on Schottky diodes and metal-semiconductor field-effect transistors

    Hassel, van J.G.; Heyker, H.C.; Kwaspen, J.J.M.

    1995-01-01

    The influence of in situ argon cleaning of GaAs on the electrical characteristics of Schottky diodes and metal–semiconductor field-effect transistors (MESFETs) is investigated. The beam energy was varied from 50 to 500 eV and the characteristics were compared to wet chemically cleaned devices. The

  1. Clean cars

    Piffaretti, M.

    2008-07-01

    This well-illustrated presentation made at the Swiss 2008 research conference on traffic by the Protoscar company takes a look at research, design, engineering and communication topics in the area of 'clean cars'. The present situation with electrically driven and hybrid-drive cars is reviewed and the chances and problems of the present-day vehicles are examined. New developments and a number of vehicles that should be on the market in the period from 2012 to 2015 are presented. Also, 'clean' specialist vehicles such as trucks and buses are reviewed. Battery systems and associated problems and new developments are looked at. The promotion scheme in Mendrisio, Switzerland is reviewed. Bottom-up and top-down approaches are discussed and future market developments are looked at, as are promotional activities in various countries.

  2. Carbon dioxide cleaning pilot project

    Knight, L.; Blackman, T.E.

    1994-01-01

    In 1989, radioactive-contaminated metal at the Rocky Flats Plant (RFP) was cleaned using a solvent paint stripper (Methylene chloride). One-third of the radioactive material was able to be recycled; two-thirds went to the scrap pile as low-level mixed waste. In addition, waste solvent solutions also required disposal. Not only was this an inefficient process, it was later prohibited by the Resource Conservation and Recovery Act (RCRA), 40 CFR 268. A better way of doing business was needed. In the search for a solution to this situation, it was decided to study the advantages of using a new technology - pelletized carbon dioxide cleaning. A proof of principle demonstration occurred in December 1990 to test whether such a system could clean radioactive-contaminated metal. The proof of principle demonstration was expanded in June 1992 with a pilot project. The purpose of the pilot project was three fold: (1) to clean metal so that it can satisfy free release criteria for residual radioactive contamination at the Rocky Flats Plant (RFP); (2) to compare two different carbon dioxide cleaning systems; and (3) to determine the cost-effectiveness of decontamination process in a production situation and compare the cost of shipping the metal off site for waste disposal. The pilot project was completed in August 1993. The results of the pilot project were: (1) 90% of those items which were decontaminated, successfully met the free release criteria , (2) the Alpheus Model 250 was selected to be used on plantsite and (3) the break even cost of decontaminating the metal vs shipping the contaminated material offsite for disposal was a cleaning rate of 90 pounds per hour, which was easily achieved

  3. Pickering Unit 1 chemical cleaning

    Smee, J.L.; Fiola, R.J.; Brennenstuhl, K.R.; Zerkee, D.D.; Daniel, C.M.

    1995-01-01

    The secondary sides of all 12 boilers at Pickering Unit 1 were chemically cleaned in 1994 by the team of Ontario Hydro, B and W International (Cambridge, Ontario) and B and W Nuclear Technologies (Lynchburg, Virginia). A multi-step EPRI/SGOG process was employed in a similar manner to previous clearings at Units 5 and 6 in 1992 and 1993, respectively. A major innovation with the Unit 1 cleaning was the incorporation of a crevice cleaning step, the first time this had been done on Ontario Hydro plants. In addition, six boilers were cleaned in parallel compared to three at a time in previous Pickering cleanings. This significantly reduced cleaning time. A total of 6,770 kg of sludge was removed through direct chemical dissolution. It consisted of 66% iron/nickel oxides and 28% copper metal. A total of 1,600,000 L (420,000 US gallons) of liquid waste was produced. It was processed through the spent solvent treatment facility located at the Bruce Nuclear Power Development site. Visual inspection performed after the cleaning indicated that the crevices between the boiler tubes and the tube support structure were completely clear of deposit and the general condition of the tubing and lattice bars appeared to be in 'as new' condition. (author)

  4. Portable sandblaster cleans small areas

    Severin, H. J.

    1966-01-01

    Portable sandblasting unit rapidly and effectively cleans localized areas on a metal surface. The unit incorporates a bellows enclosure, masking plate, sand container, and used sand accummulator connected to a vacuum system. The bellows is equipped with an inspection window and light for observation of the sanding operation.

  5. Calculation of a vacuum system of the installation for cleaning the surface of metal rolling by a cathode spot of a vacuum arc

    Kuznetsov, V. G.; Kurbanov, T. A.; Kostrin, D. K.

    2017-07-01

    In this work are presented the installations for cleaning the surface of rolled products (wire and ribbon) from scale and technological lubricant with gateway systems of open type. The calculation of gateway devices and the optimal selection of pumping systems are shown.

  6. Clean Cities Fact Sheet

    2004-01-01

    This fact sheet explains the Clean Cities Program and provides contact information for all coalitions and regional offices. It answers key questions such as: What is the Clean Cities Program? What are alternative fuels? How does the Clean Cities Program work? What sort of assistance does Clean Cities offer? What has Clean Cities accomplished? What is Clean Cities International? and Where can I find more information?

  7. Short-term respiratory effects of cleaning exposures in female domestic cleaners.

    Medina-Ramón, M; Zock, J P; Kogevinas, M; Sunyer, J; Basagaña, X; Schwartz, J; Burge, P S; Moore, V; Antó, J M

    2006-06-01

    Symptoms of obstructive lung disease in domestic cleaners have been related to the use of bleach and other irritant cleaning products. The short-term effects of cleaning exposures on respiratory symptoms and peak expiratory flow (PEF) were investigated in domestic cleaners with respiratory disorders. In a panel study, 43 female domestic cleaners with a recent history of asthma and/or chronic bronchitis completed a 2-week diary, collecting information on respiratory symptoms, PEF and cleaning exposures. Mixed regression models were used to assess daily changes in symptoms and PEF associated with specific cleaning exposures. The probability of having work-related asthma was individually assessed by a computerised diagnostic system and an occupational asthma expert. Lower respiratory tract symptoms were more common on working days and were predominantly associated with exposure to diluted bleach, degreasing sprays/atomisers and air fresheners. Associations with upper respiratory tract symptoms and PEF were less apparent. Eleven (30%) subjects scored positively for work-related asthma. It is concluded that exposure to certain irritant cleaning products aggravates lower respiratory tract symptoms in female domestic cleaners with asthma or chronic bronchitis.

  8. Rudimentary Cleaning Compared to Level 300A

    Arpin, Christina Y. Pina; Stoltzfus, Joel

    2012-01-01

    A study was done to characterize the cleanliness level achievable when using a rudimentary cleaning process, and results were compared to JPR 5322.1G Level 300A. While it is not ideal to clean in a shop environment, some situations (e.g., field combat operations) require oxygen system hardware to be maintained and cleaned to prevent a fire hazard, even though it cannot be sent back to a precision cleaning facility. This study measured the effectiveness of basic shop cleaning. Initially, three items representing parts of an oxygen system were contaminated: a metal plate, valve body, and metal oxygen bottle. The contaminants chosen were those most likely to be introduced to the system during normal use: oil, lubricant, metal shavings/powder, sand, fingerprints, tape, lip balm, and hand lotion. The cleaning process used hot water, soap, various brushes, gaseous nitrogen, water nozzle, plastic trays, scouring pads, and a controlled shop environment. Test subjects were classified into three groups: technical professionals having an appreciation for oxygen hazards; professional precision cleaners; and a group with no previous professional knowledge of oxygen or precision cleaning. Three test subjects were in each group, and each was provided with standard cleaning equipment, a cleaning procedure, and one of each of the three test items to clean. The results indicated that the achievable cleanliness level was independent of the technical knowledge or proficiency of the personnel cleaning the items. Results also showed that achieving a Level 300 particle count was more difficult than achieving a Level A nonvolatile residue amount.

  9. Performances in Tank Cleaning

    Fanel-Viorel Panaitescu

    2018-03-01

    Full Text Available There are several operations which must do to maximize the performance of tank cleaning. The new advanced technologies in tank cleaning have raised the standards in marine areas. There are many ways to realise optimal cleaning efficiency for different tanks. The evaluation of tank cleaning options means to start with audit of operations: how many tanks require cleaning, are there obstructions in tanks (e.g. agitators, mixers, what residue needs to be removed, are cleaning agents required or is water sufficient, what methods can used for tank cleaning. After these steps, must be verify the results and ensure that the best cleaning values can be achieved in terms of accuracy and reliability. Technology advancements have made it easier to remove stubborn residues, shorten cleaning cycle times and achieve higher levels of automation. In this paper are presented the performances in tank cleaning in accordance with legislation in force. If tank cleaning technologies are effective, then operating costs are minimal.

  10. Branchial cadmium and copper binding and intestinal cadmium uptake in wild yellow perch (Perca flavescens) from clean and metal-contaminated lakes

    Klinck, J.S.; Green, W.W.; Mirza, R.S.; Nadella, S.R.; Chowdhury, M.J.; Wood, C.M.; Pyle, G.G.

    2007-01-01

    Branchial binding kinetics and gastro-intestinal uptake of copper and cadmium where examined in yellow perch (Perca flavescens) from a metal-contaminated lake (Hannah Lake, Sudbury, Ontario, Canada) and an uncontaminated lake (James Lake, North Bay, Ontario, Canada). An in vivo approach was taken for gill binding comparisons while an in vitro gut binding assay was employed for gastro-intestinal tract (GIT) uptake analysis. By investigating metal uptake at the gill and the gut we cover the two main routes of metal entry into fish. Comparisons of water and sediment chemistries, metal burdens in benthic invertebrate, and metal burdens in the livers of perch from the two study lakes clearly show that yellow perch from Hannah L. are chronically exposed to a highly metal-contaminated environment compared to a reference lake. We found that metal-contaminated yellow perch showed no significant difference in gill Cd binding compared to reference fish, but they did show significant decreases in new Cd binding and absorption in their GITs. The results show that gill Cd binding may involve low-capacity, high-affinity binding sites, while gastro-intestinal Cd uptake involves binding sites that are high-capacity, low-affinity. From this we infer that Cd may be more critically controlled at the gut rather than gills. Significant differences in branchial Cu binding (increased binding) were observed in metal-contaminated yellow perch. We suggest that chronic waterborne exposure to Cu (and/or other metals) may be the dominant influence in gill Cu binding rather than chronic exposure to high Cu diets. We give supporting evidence that Cd is taken up in the GIT, at least in part, by a similar pathway as Ca 2+ , principally that elevated dietary Ca 2+ reduces Cd binding and uptake. Overall our study reveals that metal pre-exposure via water and diet can alter uptake kinetics of Cu and Cd at the gill and/or the gut

  11. Branchial cadmium and copper binding and intestinal cadmium uptake in wild yellow perch (Perca flavescens) from clean and metal-contaminated lakes

    Klinck, J.S. [Department of Biology, McMaster University, Hamilton, Ont. L8S 4K1 (Canada)], E-mail: klinckjs@mcmaster.ca; Green, W.W.; Mirza, R.S. [Department of Biology, McMaster University, Hamilton, Ont. L8S 4K1 (Canada); Department of Biology, Nipissing University, North Bay, Ont. P1B 8L7 (Canada); Nadella, S.R.; Chowdhury, M.J.; Wood, C.M. [Department of Biology, McMaster University, Hamilton, Ont. L8S 4K1 (Canada); Pyle, G.G. [Department of Biology, Nipissing University, North Bay, Ont. P1B 8L7 (Canada)

    2007-08-30

    Branchial binding kinetics and gastro-intestinal uptake of copper and cadmium where examined in yellow perch (Perca flavescens) from a metal-contaminated lake (Hannah Lake, Sudbury, Ontario, Canada) and an uncontaminated lake (James Lake, North Bay, Ontario, Canada). An in vivo approach was taken for gill binding comparisons while an in vitro gut binding assay was employed for gastro-intestinal tract (GIT) uptake analysis. By investigating metal uptake at the gill and the gut we cover the two main routes of metal entry into fish. Comparisons of water and sediment chemistries, metal burdens in benthic invertebrate, and metal burdens in the livers of perch from the two study lakes clearly show that yellow perch from Hannah L. are chronically exposed to a highly metal-contaminated environment compared to a reference lake. We found that metal-contaminated yellow perch showed no significant difference in gill Cd binding compared to reference fish, but they did show significant decreases in new Cd binding and absorption in their GITs. The results show that gill Cd binding may involve low-capacity, high-affinity binding sites, while gastro-intestinal Cd uptake involves binding sites that are high-capacity, low-affinity. From this we infer that Cd may be more critically controlled at the gut rather than gills. Significant differences in branchial Cu binding (increased binding) were observed in metal-contaminated yellow perch. We suggest that chronic waterborne exposure to Cu (and/or other metals) may be the dominant influence in gill Cu binding rather than chronic exposure to high Cu diets. We give supporting evidence that Cd is taken up in the GIT, at least in part, by a similar pathway as Ca{sup 2+}, principally that elevated dietary Ca{sup 2+} reduces Cd binding and uptake. Overall our study reveals that metal pre-exposure via water and diet can alter uptake kinetics of Cu and Cd at the gill and/or the gut.

  12. Battery Technology Stores Clean Energy

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  13. What is safe and clean water in rural Bolivian communities? A preliminary investigation of heavy metal contamination in rural community water systems in the Bolivian Altiplano

    Borella, M.; Guido, Z.; Borella, P.; Ketron, T.

    2009-12-01

    A proliferation of potable water systems utilizing groundwater is currently underway in the Lake Titicaca region of the Bolivian Altiplano. With the aid of national and international organizations, rural communities are developing groundwater sources because the region’s surface water is highly contaminated with waterborne pathogens—the primary factor contributing to high child mortality rates in developing nations. According to UNICEF, 86 percent of Bolivian families have access to “improved” water systems, which predominantly take the form of deep groundwater wells or contained natural springs. While the water systems have worked well to reduce pathogens in drinking water systems that cause illnesses such as dysentery, the water is rarely tested for heavy metal contamination, such as arsenic and lead. While bacteria analysis is essential, it is not the only component of healthy drinking water. Testing for heavy metals is especially important in the Bolivian Altiplano because abundant volcanic deposits and massive sulfide deposits suggest that in some areas it is likely that the water contains elevated concentrations of heavy metals. In this study, Terra Resource Development International, A California-based 502(c)3 nonprofit organization, partnered with Stanford University, the Technical University of Bolivia, and the Bolivian Geologic and Mining Survey to collect water samples in 36 rural community situated in four watersheds feeding into Lake Titicaca. Water was collected from shallow, hand dug wells, deep groundwater wells, springs, and small rivers in the Tiwanku, Laja, Batallas, Achacachi watersheds and were analyzed for inorganic contaminants. Samples were analyzed at Stanford’s Environmental Measurements Facility using the Inductively Coupled Plasma (ICP) Spectrometer for major ions and heavy metals. Results will help determine which, if any, community water systems are at risk of heavy metal contamination, where more comprehensive sampling is

  14. 75 FR 34647 - Approval of the Clean Air Act, Section 112(l), Authority for Hazardous Air Pollutants: Air...

    2010-06-18

    ... Solvent NESHAP for cleaning or drying parts, except any cold cleaning machine that uses a solvent which... cleaning machines in which parts such as film, coils, wire, and metal strips are cleaned at speeds... requires each cleaning machine to have [[Page 34650

  15. Late washing filter cleaning cycle demonstration

    Meyer, M.L.; McCabe, D.J.

    1992-01-01

    The DWPF Late Washing Facility will filter cesium and potassium tetraphenyl borate (TPB) solids using a Mott sintered metal filter, identical to the filter now used in the In-tank Precipitation Facility. The purpose of the late wash step is primarily to remove the nitrite salts from the slurry prior to delivery to DWPF. Periodic chemical cleaning of the filter will be required, presumably after each batch although the actual required frequency could not be determined on the lab-scale. Minimization of chemical cleaning solution volumes is key to maximizing the attainment of the Late Wash facility. This report summarizes work completed in experiments designed to identify minimum cleaning solution requirements

  16. Plasma cleaning of ITER first mirrors

    Moser, L.; Marot, L.; Steiner, R.; Reichle, R.; Leipold, F.; Vorpahl, C.; Le Guern, F.; Walach, U.; Alberti, S.; Furno, I.; Yan, R.; Peng, J.; Ben Yaala, M.; Meyer, E.

    2017-12-01

    Nuclear fusion is an extremely attractive option for future generations to compete with the strong increase in energy consumption. Proper control of the fusion plasma is mandatory to reach the ambitious objectives set while preserving the machine’s integrity, which requests a large number of plasma diagnostic systems. Due to the large neutron flux expected in the International Thermonuclear Experimental Reactor (ITER), regular windows or fibre optics are unusable and were replaced by so-called metallic first mirrors (FMs) embedded in the neutron shielding, forming an optical labyrinth. Materials eroded from the first wall reactor through physical or chemical sputtering will migrate and will be deposited onto mirrors. Mirrors subject to net deposition will suffer from reflectivity losses due to the deposition of impurities. Cleaning systems of metallic FMs are required in more than 20 optical diagnostic systems in ITER. Plasma cleaning using radio frequency (RF) generated plasmas is currently being considered the most promising in situ cleaning technique. An update of recent results obtained with this technique will be presented. These include the demonstration of cleaning of several deposit types (beryllium, tungsten and beryllium proxy, i.e. aluminium) at 13.56 or 60 MHz as well as large scale cleaning (mirror size: 200 × 300 mm2). Tests under a strong magnetic field up to 3.5 T in laboratory and first experiments of RF plasma cleaning in EAST tokamak will also be discussed. A specific focus will be given on repetitive cleaning experiments performed on several FM material candidates.

  17. Clean Hands Count

    Full Text Available ... has been rented. This feature is not available right now. Please try again later. Published on May ... 34 How The Clean Hands - Safe Hands System Works - Duration: 3:38. Clean Hands-Safe Hands 5, ...

  18. Chemical cleaning review

    Dow, B.L.; Thomas, R.C.

    1995-01-01

    Three main chemical processes for cleaning steam generators have evolved from the early work of the industry. Of the more than 50 chemical cleanings carried out to date most have been considered a success by the utilities performing them. (author)

  19. Cleaning fluid emulsions

    Prikryl, J; Kotyza, R; Krulikovsky, J; Mjartan, V; Valisova, I

    1981-09-15

    Composition of cleaning fluid emulsion are presented for drilling small diameter wells in clay soils, at high drill bit rotation velocity. The emulsions have lubricating properties and the abilty to improve stability of the drilled soil. The given fluids have a high fatty acid content with 12-24 carbon atoms in a single molecule, with a predominance of resinous acids 1-5% in mass, and having been emulsified in water or clay suspension without additives, or in a clay suspension with high-molecular polymer additives (glycobate cellulose compounds and/or polysaccharides, and/or their derivatives) in an amount of 0.1-3% per mass; thinning agents - huminite or lignite compounds in the amount of 0.01 to 0.5% in mass; weighting material - barite or lime 0.01 to 50% per mass; medium stabilizers - organic poly-electrolyte with polyacrylate in the amount of 0.05 to 2% in mass, or alkaline chloride/alkaline-ground metals 1-10% per mass. A cleaning emulsion fluid was prepared in the laboratory according to the given method. Add 3 kg tall oil to a solution of 1 kg K/sub 2/CO/sub 3/ per 100 l of water. Dynamic viscosity was equal to 1.4 x 10-/sup 3/ Pa/s. When drilling in compacted clay soils, when the emulsions require improved stability, it is necessary to add the maximum amount of tall oil whose molecules are absorbed by the clay soil and increase its durability.

  20. Laser cleaning on Roman coins

    Drakaki, E.; Karydas, A. G.; Klinkenberg, B.; Kokkoris, M.; Serafetinides, A. A.; Stavrou, E.; Vlastou, R.; Zarkadas, C.

    Ancient metal objects react with moisture and environmental chemicals to form various corrosion products. Because of the unique character and high value of such objects, any cleaning procedure should guarantee minimum destructiveness. The most common treatment used is mechanical stripping, in which it is difficult to avoid surface damage when employed. Lasers are currently being tested for a wide range of conservation applications. Since they are highly controllable and can be selectively applied, lasers can be used to achieve more effective and safer cleaning of archaeological artifacts and protect their surface details. The basic criterion that motivated us to use lasers to clean Roman coins was the requirement of pulsed emission, in order to minimize heat-induced damages. In fact, the laser interaction with the coins has to be short enough, to produce a fast removal of the encrustation, avoiding heat conduction into the substrate. The cleaning effects of three lasers operating at different wavelengths, namely a TEA CO2 laser emitting at 10.6 μm, an Er:YAG laser at 2.94 μm, and a 2ω-Nd:YAG laser at 532 nm have been compared on corroded Romans coins and various atomic and nuclear techniques have also been applied to evaluate the efficiency of the applied procedure.

  1. Chemical cleaning, decontamination and corrosion

    Gadiyar, H.S.; Das Chintamani; Gaonkar, K.B.

    1991-01-01

    Chemical cleaning of process equipments and pipings in chemical/petrochemical industries is necessitated for improving operation, for preventing premature failures and for avoiding contamination. In developing a chemical formulation for cleaning equipments, the important aspects to be considered include (i) effective removal of corrosion products and scales, (ii) minimum corrosion of the base metal, (iii) easy to handle chemicals and (iv) economic viability. As on date, a wide variety of chemical formulations are available, many of them are either proprietory or patented. For evolving an effective formulation, knowledge of the oxides of various metals and alloys on the one hand and acid concentration, complexing agents and inhibitors to be incorporated on the other, is quite essential. Organic acids like citric acid, acetic acid and formic acid are more popular ones, often used with EDTA for effective removal of corrosion products from ferrous components. The report enumerates some of the concepts in developing effective formulations for chemical cleaning of carbon steel components and further, makes an attempt to suggest simple formulations to be developed for chemical decontamination. (author). 6 refs., 3 fi gs., 4 tabs

  2. TCV mirrors cleaned by plasma

    L. Marot

    2017-08-01

    Full Text Available Metallic mirrors exposed in TCV tokamak were cleaned by plasma in laboratory. A gold (Au mirror was deposited with 185–285nm of amorphous carbon (aC:D film coming from the carbon tiles of TCV. Another molybdenum (Mo mirror had a thicker deposit due to a different location within the tokamak. The thickness measurements were carried out using ellipsometry and the reflectivity measurements performed by spectrophotometry revealed a decrease of the specular reflectivity in the entire range (250–2500nm for the Mo mirror and specifically in the visible spectrum for the Au. Comparison of the simulated reflectivity using a refractive index of 1.5 and a Cauchy model for the aC:D gives good confidence on the estimated film thickness. Plasma cleaning using radio frequency directly applied to a metallic plate where the mirrors were fixed demonstrated the ability to remove the carbon deposits. A mixture of 50% hydrogen and 50% helium was used with a −200V self-bias. Due to the low sputtering yield of He and the low chemical erosion of hydrogen leading to volatile molecules, 20h of cleaning were needed for Au mirror and more than 60h for Mo mirror. Recovery of the reflectivity was not complete for the Au mirror most likely due to damage of the surface during tokamak exposure (breakdown phenomena.

  3. Cleaning of Sodium in the Cold Trap

    Kim, Byung Ho; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun

    2005-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Several types of failures due to improper cleaning procedures have been defined in the past. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either the intergranular penetration characteristic of a high- oxygen sodium or an accelerated corrosion due to oxygen. The methods used for cleaning sodium equipment depend on the condition and types of equipment to be cleaned and whether the equipment is to be reused. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, chemical, physical, or mechanical damage, and external effects. This paper discusses a steam-nitrogen gas cleaning method for the routine applications that permits the reuse of the cold trap in sodium

  4. Should you get your heating ducts cleaned?

    NONE

    2001-07-01

    Canada Mortgage and Housing Corporation conducted research into duct cleaning during which time several houses were tested for hot air furnace duct performance before and after cleaning. Duct cleaning is a major industry which claims that cleaning of ducts will provide you with better indoor air quality, reduce household molds and allergens, get rid of house dust, result in more airflow and better delivery of warm air and reduce energy costs. This report does not substantiate those claims. Researchers found little or no discernible differences in the concentrations of house airborne particles or in duct airflows due to duct cleaning. This is because ducts are metal passages that cannot create dust. Most household dusts come from outdoors that has been tracked in or blows through windows and other openings. While duct cleaning may be justifiable personally, it does not change the quality of the air you breathe, nor will it significantly affect airflow or heating costs. Some filters effectively clean the air in the ducts but they do not create a dust-free environment because of the above-mentioned dust sources. The only time that duct cleaning may make sense is if you have water in your ducts that can result in mold growth, if you are moving into a newly constructed house to remove drywall dust, if your are having trouble with furnace airflow, or if you see an accumulation of debris in the return air ducts. It was emphasized that broadcast spraying of biocides within the duct system should not be performed.

  5. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles

    Abdel-Kareem, Omar; Harith, M.A.

    2008-01-01

    Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles

  6. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles

    Abdel-Kareem, Omar [Conservation Department, Faculty of Archaeology, Cairo University, El-Gamaa Street, El-Giza (Egypt)], E-mail: Omaa67@yahoo.com; Harith, M.A. [National Institute of Laser Enhanced Science, Cairo University (Egypt)], E-mail: mharithm@niles.edu.eg

    2008-07-15

    Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles.

  7. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles

    Abdel-Kareem, Omar; Harith, M. A.

    2008-07-01

    Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles.

  8. Exhaust gas clean up process

    Walker, R.J.

    1988-06-16

    A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

  9. New Approaches to Cleaning Liquid Radioactive Waste

    Zabulonov, Yu.L.

    2015-05-01

    Full Text Available The industrial cleaning methods of liquid radioactive waste and technologically contaminated solutions, which contain heavy metals and radionuclides, are considered. It is shown that in the case when heavy metal ions exclusively exist in ionic form, the cleaning method with highest efficiency is electrodialysis. In the case when components, which must be removed, are in ionic and colloidal forms at the same time, the previous destruction of colloidal and organic matter (method of hydrodynamic cavitation, lowtemperature plasma etc is necessary. The developed «PTANK» method enables an effective purification of multicomponent metalcontaining man-made solutions, which contain additionally organic substances and complexes. Development of advanced membrane technologies, creation of complex recycling schemes and their synergistic combination will provide an opportunity to achieve deep cleaning of technologically contaminated solutions and minimize the amount of secondary wastes.

  10. Clean Energy Progress Report

    NONE

    2011-07-01

    For the past several years, the IEA and others have been calling for a clean energy revolution to achieve global energy security, economic growth and climate change goals. This report analyses for the first time progress in global clean energy technology deployment against the pathways that are needed to achieve these goals. It provides an overview of technology deployment status, key policy developments and public spending on RDD&D of clean energy technologies.

  11. Ultra-clean

    Hergenroether, K.

    1987-01-01

    No other method guarantees such a thorough cleaning of contaminated materials' surfaces. Only ultrasound can reach those cavities crevices and corners where any manual cleaning fails. Furthermore there is no cumbersome and time-consuming manual decontamination which often has to be carried out in glove boxes and hot cells. Depending on the design the cleaning effect can reach from removing adhering dirt particles to removing complete surface layers. (orig./PW) [de

  12. How clean is clean?---How clean is needed?

    Hays, A.K.

    1991-01-01

    This paper will provide an overview of cleaning qualifications used in a variety of industries: from small-scale manufacturer's of precision-machined products to large-scale manufacturer's of electronics (printed wiring boards and surface mount technology) and microelectronics. Cleanliness testing techniques used in the production of precision-machined products, will be described. The on-going DOD program to obtain high-reliability electronics, through the use of military specifications for cleaning and cleanliness levels, will be reviewed. In addition, the continually changing cleanroom/materials standards of the microelectronics industry will be discussed. Finally, we will speculate on the role that new and improved analytical techniques and sensor technologies will play in the factories of the future. 4 refs., 1 tab

  13. Carbon pricing comes clean

    De Wit, Elisa

    2011-01-01

    Together with the Clean Energy Bill, the implications of the Australian Federal Government's climate change legislative package are far reaching. Norton Rose gives business a heads-up in this breakdown of the draft legislation underpinning the carbon pricing and clean energy scheme. It is a summary of Norton Rose's full analysis.

  14. Mechanical cleaning of graphene

    Goossens, A.M.; Calado, V.E.; Barreiro, A.; Watanabe, K.; Taniguchi, T.; Vandersypen, L.M.K.

    2012-01-01

    Contamination of graphene due to residues from nanofabrication often introduces background doping and reduces electron mobility. For samples of high electronic quality, post-lithography cleaning treatments are therefore needed. We report that mechanical cleaning based on contact mode atomic force

  15. Green Cleaning Label Power

    Balek, Bill

    2012-01-01

    Green cleaning plays a significant and supportive role in helping education institutions meet their sustainability goals. However, identifying cleaning products, supplies and equipment that truly are environmentally preferable can be daunting. The marketplace is inundated with products and services purporting to be "green" or environmentally…

  16. Correlating Cleaning Thoroughness with Effectiveness and Briefly Intervening to Affect Cleaning Outcomes: How Clean Is Cleaned?

    Robert Clifford

    Full Text Available The most efficient approach to monitoring and improving cleaning outcomes remains unresolved. We sought to extend the findings of a previous study by determining whether cleaning thoroughness (dye removal correlates with cleaning efficacy (absence of molecular or cultivable biomaterial and whether one brief educational intervention improves cleaning outcomes.Before-after trial.Newly built community hospital.90 minute training refresher with surface-specific performance results.Dye removal, measured by fluorescence, and biomaterial removal and acquisition, measured with culture and culture-independent PCR-based assays, were clandestinely assessed for eight consecutive months. At this midpoint, results were presented to the cleaning staff (intervention and assessments continued for another eight consecutive months.1273 surfaces were sampled before and after terminal room cleaning. In the short-term, dye removal increased from 40.3% to 50.0% (not significant. For the entire study period, dye removal also improved but not significantly. After the intervention, the number of rooms testing positive for specific pathogenic species by culturing decreased from 55.6% to 36.6% (not significant, and those testing positive by PCR fell from 80.6% to 53.7% (P = 0.016. For nonspecific biomaterial on surfaces: a removal of cultivable Gram-negatives (GN trended toward improvement (P = 0.056; b removal of any cultivable growth was unchanged but acquisition (detection of biomaterial on post-cleaned surfaces that were contaminant-free before cleaning worsened (P = 0.017; c removal of PCR-based detection of bacterial DNA improved (P = 0.046, but acquisition worsened (P = 0.003; d cleaning thoroughness and efficacy were not correlated.At this facility, a minor intervention or minimally more aggressive cleaning may reduce pathogen-specific contamination, but not without unintended consequences.

  17. Waste cleaning using CO2-acid microemulsion

    Park, Kwangheon; Sung, Jinhyun; Koh, Moonsung; Ju, Minsu

    2011-01-01

    Frequently we need to decontaminate radioactive wastes for volume reduction purposes. Metallic contaminants in wastes can be removed by dissolution to acid; however, this process produces a large amount of liquid acid waste. To reduce this 2ndary liquid waste, we suggest CO 2 -acid emulsion in removing metallic contaminants. Micro- and macro-emulsion of acid in liquid/supercritical CO 2 were successfully made. The formation region of microemulsion (water or acid in CO 2 ) was measured, and stability of the microemulsion was analyzed with respect to surfactant types. We applied micro- and macro-emulsion containing acid to the decontamination of radioactive metallic parts contaminated on the surface. The cleaning methods of micro- and macro-emulsion seemed better compared to the conventional acid cleaning. Moreover, these methods produce very small amount of secondary wastes. (author)

  18. Clean coal technologies

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  19. Metal sponge for cryosorption pumping applications

    Myneni, G.R.; Kneisel, P.

    1995-01-01

    A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area. 4 figs

  20. Diamond-cleaning investigations

    Derry, T.E.

    Four parcels of diamonds which either had or had not been cleaned using the usual techniques, chiefly involving etch in molten potassium nitrate were supplied by De Beers Diamond Research Laboratories. Each parcel contained about 40 stones, amounting to about 10 carats. Half the diamonds in each parcel were cleaned by a standard procedure involving half an hours ultrasonic agitation in a 20% solution of the commercial detergent 'Contrad' which is effectively a surfactant and chelating agent. Visual comparisons by a number of observers who were not told the stones' histories, established that these diamonds generally had a more sparkling appearance after the cleaning procedure had been applied

  1. Investigation of aluminum surface cleaning using cavitating fluid flow

    Ralys, Aurimas; Striška, Vytautas; Mokšin, Vadim [Vilnius Gediminas Technical University, Faculty of Mechanics, Department of Machine Engineering, J. Basanavičiaus str.28, 03224, Vilnius (Lithuania)

    2013-12-16

    This paper investigates efficiency of specially designed atomizer used to spray water and cavitate microbubbles in water flow. Surface cleaning system was used to clean machined (grinded) aluminum surface from abrasive particles. It is established that cleaning efficiency depends on diameter of the diffuser, water pressure and distance between nozzle and metal surface. It is obtained that the best cleaning efficiency (100%) is achieved at pressure 36 bar, when diameter of diffuser is 0.4 mm and distance between nozzle and surface is 1 mm. It is also established that satisfactory cleaning efficiency (80%) is achieved not only when atomizer is placed closer to metal surface, but also at larger (120 mm) distances.

  2. Controlling the clean room atmosphere

    Meeks, R.F.

    1979-01-01

    Several types of clean rooms are commonly in use. They include the conventional clean room, the horizontal laminar flow clean room, the vertical laminar flow clean room and a fourth type that incorporates ideas from the previous types and is known as a clean air bench or hood. These clean rooms are briefly described. The origin of contamination and methods for controlling the contamination are discussed

  3. Deriving site-specific clean-up criteria to protect ecological receptors (plants and soil invertebrates) exposed to metal or metalloid soil contaminants via the direct contact exposure pathway

    Checkai, Ron; Van Genderen, Eric; Sousa, José Paulo; Stephenson, Gladys; Smolders, Erik

    2014-01-01

    Soil contaminant concentration limits for the protection of terrestrial plants and soil invertebrates are commonly based on thresholds derived using data from laboratory ecotoxicity tests. A comprehensive assessment has been made for the derivation of ecological soil screening levels (Eco-SSL) in the United States; however, these limits are conservative because of their focus on high bioavailability scenarios. Here, we explain and evaluate approaches to soil limit derivation taken by 4 jurisdictions, 2 of which allow for correction of data for factors affecting bioavailability among soils, and between spiked and field-contaminated soils (Registration Evaluation Authorisation and Restriction of Chemicals [REACH] Regulation, European Union [EU], and the National Environment Protection Council [NEPC], Australia). Scientifically advanced features from these methods have been integrated into a newly developed method for deriving soil clean-up values (SCVs) within the context of site-specific baseline ecological risk assessment. Resulting site-specific SCVs that account for bioavailability may permit a greater residual concentration in soil when compared to generic screening limit concentrations (e.g., Eco-SSL), while still affording acceptable protection. Two choices for selecting the level of protection are compared (i.e., allowing higher effect levels per species, or allowing a higher percentile of species that are potentially unprotected). Implementation of this new method is presented for the jurisdiction of the United States, with a focus on metal and metalloid contaminants; however, the new method can be used in any jurisdiction. A case study for molybdate shows the large effect of bioavailability corrections and smaller effects of protection level choices when deriving SCVs. Integr Environ Assess Manag 2014;10:346–357. PMID:24470189

  4. Clean Hands Count

    Full Text Available ... Clean Hands Count Centers for Disease Control and Prevention (CDC) Loading... Unsubscribe from Centers for Disease Control and Prevention (CDC)? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 65K ...

  5. Clean Hands Count

    Full Text Available ... Clean Hands Count Centers for Disease Control and Prevention (CDC) Loading... Unsubscribe from Centers for Disease Control and Prevention (CDC)? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 66K ...

  6. Clean Hands Count

    Full Text Available ... to promote or encourage adherence to CDC hand hygiene recommendations. It is a component of the Clean ... aims to address myths and misperceptions about hand hygiene and empower patients to play a role in ...

  7. Clean Hands Count

    Full Text Available ... intended to promote or encourage adherence to CDC hand hygiene recommendations. It is a component of the Clean ... also aims to address myths and misperceptions about hand hygiene and empower patients to play a role in ...

  8. Clean Hands Count

    ... intended to promote or encourage adherence to CDC hand hygiene recommendations. It is a component of the Clean ... also aims to address myths and misperceptions about hand hygiene and empower patients to play a role in ...

  9. Clean Hands Count

    Full Text Available ... reminding healthcare providers to clean their hands. See: https://www.cdc.gov/handhygiene/campa... . Comments on this ... are allowed in accordance with our comment policy: http://www.cdc.gov/SocialMedia/Tools/... This video can ...

  10. Clean Water Act

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent geographic terms used within the Clean Water Act (CWA). The CWA establishes the basic structure for regulating the addition of pollutants...

  11. 6 Home Cleaning Recipes

    ... aluminum, brass, ceramics, chrome, copper, fiberglass, glass/quartz, plastic, and steel. GLASS CLEANER 1 cup vinegar 1 ... originally filled with commercial cleaning products. Instead, reuse plastic water bottles.  Always place a label on the ...

  12. Nuclear air cleaning

    Bellamy, R.R.

    1994-01-01

    This report briefly describes the history of the use of high- efficiency particulate air filters for air cleaning at nuclear installations in the United States and discusses future uses of such filters

  13. Clean Hands Count

    Full Text Available ... empower patients to play a role in their care by asking or reminding healthcare providers to clean ... It's in your hands - prevent sepsis in health care' A 5 May 2018 advocacy message from WHO - ...

  14. Clean Energy Finance Tool

    State and local governments interested in developing a financing program can use this Excel tool to support energy efficiency and clean energy improvements for large numbers of buildings within their jurisdiction.

  15. Steam cleaning device

    Karaki, Mikio; Muraoka, Shoichi.

    1985-01-01

    Purpose: To clean complicated and long objects to be cleaned having a structure like that of nuclear reactor fuel assembly. Constitution: Steams are blown from the bottom of a fuel assembly and soon condensated initially at the bottom of a vertical water tank due to water filled therein. Then, since water in the tank is warmed nearly to the saturation temperature, purified water is supplied from a injection device below to the injection device above the water tank on every device. In this way, since purified water is sprayed successively from below to above and steams are condensated in each of the places, the entire fuel assembly elongated in the vertical direction can be cleaned completely. Water in the reservoir goes upward like the steam flow and is drained together with the eliminated contaminations through an overflow pipe. After the cleaning has been completed, a main steam valve is closed and the drain valve is opened to drain water. (Kawakami, Y.)

  16. Clean Hands Count

    Full Text Available ... why Close Clean Hands Count Centers for Disease Control and Prevention (CDC) Loading... Unsubscribe from Centers for Disease Control and Prevention (CDC)? Cancel Unsubscribe Working... Subscribe Subscribed ...

  17. Clean Hands Count

    Full Text Available ... Published on May 5, 2017 This video for healthcare providers is intended to promote or encourage adherence ... role in their care by asking or reminding healthcare providers to clean their hands. See: https://www. ...

  18. Processing method for cleaning water waste from cement kneader

    Soda, Kenzo; Fujita, Hisao; Nakajima, Tadashi.

    1990-01-01

    The present invention concerns a method of processing cleaning water wastes from a cement kneader in a case of processing liquid wastes containing radioactive wastes or deleterious materials such as heavy metals by means of cement solidification. Cleaning waste wastes from the kneader are sent to a cleaning water waste tank, in which gentle stirring is applied near the bottom and sludges are retained so as not to be coagulated. Sludges retained at the bottom of the cleaning water waste tank are sent after elapse of a predetermined time and then kneaded with cements. Thus, since the sludges in the cleaning water are solidified with cement, inhomogenous solidification products consisting only of cleaning sludges with low strength are not formed. The resultant solidification product is homogenous and the compression strength thereof reaches such a level as capable of satisfying marine disposal standards required for the solidification products of radioactive wastes. (I.N.)

  19. Heat exchanger cleaning

    Gatewood, J.R.

    1980-01-01

    A survey covers the various types of heat-exchange equipment that is cleaned routinely in fossil-fired generating plants, the hydrocarbon-processing industry, pulp and paper mills, and other industries; the various types, sources, and adverse effects of deposits in heat-exchange equipment; some details of the actual procedures for high-pressure water jetting and chemical cleaning of some specific pieces of equipment, including nuclear steam generators. (DN)

  20. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    NONE

    1996-10-01

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  1. Valence band photoemission studies of clean metals

    Wehner, P.S.

    1978-04-01

    The application of Angle-Resolved Photoelectron Spectroscopy (ARPES) to crystalline solids and the utilization of such studies to illuminate several questions concerning the detailed electronic structure of such materials, are discussed. Specifically, by construction of a Direct Transition (DT) model and the utilization of energy-dependent angle-resolved normal photoemission in the photon energy range 32 eV < or = hν < or = 200 eV, the bulk band structure of copper is experimentally mapped out along three different directions in the Brillouin Zone; GAMMA to K, GAMMA to L, and GAMMA to X. In addition, various effects which influence the obtainable resolution in vector k-space, namely, thermal disorder, momentum broadening, and band mixing, are discussed and are shown to place severe limitations on the applicability of the DT model. Finally, a model for Angle-Resolved X-ray Photoelectron Spectroscopy (ARXPS) based on the symmetry of the initial-state wavefunctions is presented and compared to experimental results obtained from copper single crystals

  2. Continuing challenges in nuclear air cleaning

    Moeller, D.W.

    1976-01-01

    The safe operation of nuclear facilities is heavily dependent upon the adequate performance of air cleaning systems. Although many problems have been solved, new questions and new challenges continue to arise. These are well illustrated by weaknesses in air cleaning and ventilating systems revealed by the Browns Ferry fire, and the need to develop additional data on the reliability of such systems, particularly under emergency conditions, as revealed by the Reactor Safety Study. Assessments of the degree to which engineered safety features can compensate for deficiencies in nuclear power plant sites continue to challenge those involved in risk/benefit evaluations. Additional challenges are being generated by the air cleaning requirements associated with the commercial development of the liquid metal fast breeder reactor

  3. Corrosion monitoring during a chemical cleaning

    Delepine, J.; Feron, D.; Roy, M.

    1994-01-01

    In order to estimate the possible corrosion induced by the chemical cleaning, a corrosion monitoring has been realized during the cleaning of the secondary circuit (including the model boiler) of ORION loop. It included coupons and electrodes and has required a preliminary setting in laboratory. The electrochemical device which was used during the chemical cleaning included two reference electrodes (Ag/AgCl) and eight metallic electrodes (carbon steel, stainless steel, Alloy 600 and Alloy 690) for free corrosion potential monitoring, three other carbon steel electrodes for instantaneous corrosion rate measurements by polarization resistance and three coupling devices with different surface ratios between carbon steel and Alloy 600. The results showed a good agreement between corrosion rates measured by weight losses on coupons or by electrochemistry (polarization resistance), and an increase of the carbon steel corrosion rate when it was coupled with Alloy 600. (authors). 5 figs., 2 tabs., 3 refs

  4. Ecological effectiveness of oil spill countermeasures: how clean is clean?

    Baker, J.M.

    1999-01-01

    This paper with 94 references examines background levels of hydrocarbons and the difficulty of defining clean. Processes and timescales for natural cleaning, and factors affecting natural cleaning timescales are considered. Ecological advantages and disadvantages of clean-up methods are highlighted, and five case histories of oil spills are summarised. The relationships between ecological and socio-economic considerations, and the need for a net environmental benefit analysis which takes into account the advantages and disadvantages of clean-up responses and natural clean-up are discussed. A decision tree for evaluating the requirement for shore clean-up is illustrated. (UK)

  5. TiO 2 Thin Films Prepared via Adsorptive Self-Assembly for Self-Cleaning Applications

    Xi, Baojuan; Verma, Lalit Kumar; Li, Jing; Bhatia, Charanjit Singh; Danner, Aaron James; Yang, Hyunsoo; Zeng, Hua Chun

    2012-01-01

    oxidation processes for wastewater and bactericidal treatments, self-cleaning window glass for green intelligent buildings, dye-sensitized solar cells, solid-state semiconductor metal-oxide solar cells, self-cleaning glass for photovoltaic devices

  6. Is dry cleaning all wet?

    Ryan, M.

    1993-01-01

    Chemical solvents from dry cleaning, particularly perchloroethylene (perc), have contributed to groundwater contamination, significant levels of air pollution in and around cleaners, and chemical accumulation in food. Questions are being raised about the process of cleaning clothes with chemical, and other less toxic cleaning methods are being explored. The EPA has focused attention on the 50 year old Friedburg method of cleaning, Ecoclean, which uses no dangerous chemicals and achieves comparable results. Unfortunately, the cleaning industry is resistant to change, so cutting back on amount of clothes that need dry cleaning and making sure labels aren't exaggerating when they say dry clean only, is frequently the only consumer option now

  7. Phytoremediation of heavy metals: Recent techniques | Jadia ...

    microorganisms/biomass or live plants to clean polluted areas. Phytoremediation is an emerging technology for cleaning up contaminated sites, which is ... A brief review on phytoremediation of heavy metals and its effect on plants have been ...

  8. Clean technologies: methods for minimizing the releases and choice of the effluents valorization processes. Application to metal workshops; Technologies propres: methodes de minimisation des rejets et de choix des procedes de valorisation des effluents. Application aux ateliers de traitement de surface

    Laforest, V.

    1999-12-10

    Currently, the essential part of the money invested by the industrialist is for the water treatment. In France, most of the 20 billions francs per year devoted to the water treatment is used for the industrial activity. The global management of effluents favour the integration of clean technologies (optimization, change and modification of the production process) in order to reduce the pollution problem at its source. Our study aims at the introduction of clean technologies in the metal workshops (consumer and generator of water and chemicals) by the development of two data management methods, which lead to two decision support systems. The aim of the first one is to minimize both the water consumption and the wastewater disposal by optimizing the production process (optimum yield and efficiency of the rinsing baths). The second one concerns the choice of valorization techniques considering the valorization objectives, the effluents characteristics and the parameters limiting the use of the techniques. Our approach fits into a global management method for the metal finishing industry wastewater. Its aim is to limit the quantity of wastewater generated, to valorize effluents and by this way to develop the clean technologies.

  9. Clean utilization of coal

    Yueruem, Y.

    1992-01-01

    This volume contains 23 lectures presented at the Advanced Study Institute on 'Chemistry and Chemical Engineering of Catalytic Solid Fuel Conversion for the Production of Clean Synthetic Fuels', which was held at Akcay, Edremit, Turkey, between 21 July and August 3, 1991. Three main subjects: structure and reactivity of coal; cleaning of coal and its products, and factors affecting the environmental balance of energy usage and solutions for the future, were discussed in the Institute and these are presented under six groups in the book: Part 1. Structure and reactivity of coal; Part 2. Factors affecting environmental balance; Part 3. Pre-usage cleaning operations and processes; Part 4. Upgrading of coal liquids and gases; Part 5. Oxygen enriched processes; and Part 6. Probable future solution for energy and pollution problems. Separate abstracts have been prepared for all the lectures

  10. Clean room actuators

    Higuchi, Toshiro

    1987-06-01

    This report explains on the present status of the clean room actuators including the author's research results. In a clean room, there exists a possibility of dust generation, even when a direct human work is eliminated by the use of robots or automatic machines, from the machines themselves. For this, it is important to develop such clean robots and transfer/positioning mechanism that do not generate dusts, and to develop an actuator and its control technique. Topics described in the report are as follows: 1. Prevention of dust diffusion by means of sealing. 2. Elimination of mechanical contact (Linear induction motor and pneumatic float, linear motor and magnetic attraction float, linear motor and air bearing, and magnetic bearing). 3. Contactless actuator having a positioning mechanism (Use of linear step motor and rotary contactless actuator). (15 figs, 11 refs)

  11. The Clean Air Act

    Coburn, L.L.

    1990-01-01

    The Clean Air Act amendments alter the complex laws affecting atmospheric pollution and at the same time have broad implications for energy. Specifically, the Clean Air Act amendments for the first time deal with the environmental problem of acid deposition in a way that minimizes energy and economic impacts. By relying upon a market-based system of emission trading, a least cost solution will be used to reduce sulfur dioxide (SO 2 ) emissions by almost 40 percent. The emission trading system is the centerpiece of the Clean Air Act (CAA) amendments effort to resolve energy and environmental interactions in a manner that will maximize environmental solutions while minimizing energy impacts. This paper will explore how the present CAA amendments deal with the emission trading system and the likely impact of the emission trading system and the CAA amendments upon the electric power industry

  12. Pool water cleaning facility

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro [Hitachi Ltd., Tokyo (Japan); Asano, Takashi

    1998-05-29

    Only one system comprising a suppression poor water cleaning system (SPCU) and a filtration desalting tower (F/D) is connected for a plurality of nuclear power plants. Pipelines/valves for connecting the one system of the SPCU pump, the F/D and the plurality of nuclear power plants are disposed, and the system is used in common with the plurality of nuclear power plants. Pipelines/valves for connecting a pipeline for passing SP water to the commonly used SPCU pump and a skimmer surge tank are disposed, and fuel pool water is cooled and cleaned by the commonly used SPCU pump and the commonly used F/D. The number of SPCU pumps and the F/D facilities can be reduced, and a fuel pool water cooling operation mode and a fuel pool water cleaning operation mode which were conducted by an FPC pump so far are conducted by the SPCU pump. (N.H.)

  13. Keeping condensers clean

    Wicker, K.

    2006-04-15

    The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

  14. CLEANING OF FRENCH SITES

    Mauro Nonis

    2002-01-01

    In the last two weeks some cleaning problems have been remarked in several CERN buildings on the French part of CERN sites. This is mainly due to the start up of the new cleaning contract from the 1st July. These problems are not related to a budgetary reduction of the activity. We excuse for the malfunctions that have been created to CERN community and we assure you that we have taken all the needed measures to solve the problem in the shortest delay. Mauro Nonis (ST/FM)

  15. Environmental cleaning and disinfection.

    Traverse, Michelle; Aceto, Helen

    2015-03-01

    The guidelines in this article provide veterinarians, veterinary technicians, and veterinary health care workers with an overview of evidence-based recommendations for the best practices associated with environmental cleaning and disinfection of a veterinary clinic that deals with small animals. Hospital-associated infections and the control and prevention programs necessary to alleviate them are addressed from an environmental perspective. Measures of hospital cleaning and disinfection include understanding mechanisms and types of contamination in veterinary settings, recognizing areas of potential concern, addressing appropriate decontamination techniques and selection of disinfectants, the management of potentially contaminated equipment, laundry, and waste management, and environmental surveillance strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Reactor water clean-up device

    Sawa, Toshio; Takahashi, Sankichi; Takashima, Yoshie.

    1983-01-01

    Purpose: To efficiently eliminate radioactive materials such as iron oxide and cobalt ions with less heat loss by the use of an electrode assembly applied with a direct current. Constitution: In a reactor water clean-up device adapted to pass reactor water through an electrode assembly comprising at least a pair of anode and cathode applied with a direct current to eliminate various types of ions contained in the reactor water by way of the electrolysis or charge neutralization at the anode, the cathode is constituted with a corrosion resistant grid-like or porous metal plate and a layer to the upper portion of the metal plate filled with a plurality of metal spheres of about 1 - 5 mm diameter, and the anode is made of insoluble porous or spirally wound metal material. (Seki, T.)

  17. Road-Cleaning Device

    Roman, Harry T.

    2014-01-01

    Roadways are literally soaked with petrochemical byproducts, oils, gasoline, and other volatile substances that eventually run off into sewers and end up in rivers, waterways, and other undesirable places. Can the roads be cleaned of these wastes, with their proper disposal? Can vehicles, robots, or other devices be designed that could be driven…

  18. Clean energy microgrids

    Obara, Shin'ya

    2017-01-01

    This book describes the latest technology in microgrids and economic, environmental and policy aspects of their implementation, including microgrids for cold regions, and future trends. The aim of this work is to give this complete overview of the latest technology around the world, and the interrelation with clean energy systems.

  19. Clean Hands Count

    Full Text Available ... starting stop Loading... Watch Queue Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos with ... ads? Get YouTube Red. Working... Not now Try it free Find out why Close Clean Hands Count ...

  20. WINDOW-CLEANING

    Environmental Section / ST-TFM

    2001-01-01

    The two-month window-cleaning session on the Meyrin, Prévessin and LEP sites will soon begin. The cleaning contractors will work from Monday to Saturday, every week from 4.00 a.m. to 8.00 p.m. The work will be organised so as to disturb users as little as possible. In any event, a work notice will be left in each office 24 hours beforehand. To prevent any damage to documents or items which could occur despite the precautions taken, please clear completely the window-sills and the area immediately around them. If, however, for valid reasons, the work cannot be done on the scheduled day, please inform the Environmental Section by telephoning: 73753 / 74233 / 72242 If you are going to be absent during this two-month period, we should be grateful if you would clear the above mentioned areas before your departure. REMINDER To allow more thorough cleaning of the entrance doors to buildings and also facilitate the weekly work of the cleaning contractors, we ask you to make use of the notice boards at the...

  1. Acrylic vessel cleaning tests

    Earle, D.; Hahn, R.L.; Boger, J.; Bonvin, E.

    1997-01-01

    The acrylic vessel as constructed is dirty. The dirt includes blue tape, Al tape, grease pencil, gemak, the glue or residue form these tapes, finger prints and dust of an unknown composition but probably mostly acrylic dust. This dirt has to be removed and once removed, the vessel has to be kept clean or at least to be easily cleanable at some future stage when access becomes much more difficult. The authors report on the results of a series of tests designed: (a) to prepare typical dirty samples of acrylic; (b) to remove dirt stuck to the acrylic surface; and (c) to measure the optical quality and Th concentration after cleaning. Specifications of the vessel call for very low levels of Th which could come from tape residues, the grease pencil, or other sources of dirt. This report does not address the concerns of how to keep the vessel clean after an initial cleaning and during the removal of the scaffolding. Alconox is recommended as the cleaner of choice. This acrylic vessel will be used in the Sudbury Neutrino Observatory

  2. Clean Hands Count

    Full Text Available ... is starting stop Loading... Watch Queue Queue __count__/__total__ It’s YouTube. Uninterrupted. Loading... Want music and videos ... empower patients to play a role in their care by asking or reminding healthcare providers to clean ...

  3. Clean Energy Solutions Center: Assisting Countries with Clean Energy Policy

    advice on financing instruments. In a recent keynote to the Climate and Clean Energy Investment Forum renewable energy technologies in the country. Informing Energy Access and Clean Energy Project Finance understanding and knowledge of how to design policies that enable financing and encourage investment in clean

  4. Comparison between polluted and clean air masses over Lake Michigan

    Alkezweeny, A.J.; Laulainen, N.S.

    1981-01-01

    Clean and polluted air masses, advected over Lake Michigan, were studied using instrumental aircraft during the summers of 1976 and 1978. The results show that regardless of the degree of pollution, the particle size distribution is bimodal. The concentrations of sulfate, nitrate and trace metals in a clean air mass are more than an order of magnitude lower than those in polluted air masses. Furthermore, these concentrations are comparable with those measured in remote areas of the world. In clean air the ratio of the total light scattering to Rayleigh scattering is very close to one, indicating very low concentrations of particulates in the optically active size classes

  5. Clean Energy Solutions Center Services

    2016-03-01

    The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  6. Automated cleaning of electronic components

    Drotning, W.; Meirans, L.; Wapman, W.; Hwang, Y.; Koenig, L.; Petterson, B.

    1994-01-01

    Environmental and operator safety concerns are leading to the elimination of trichloroethylene and chlorofluorocarbon solvents in cleaning processes that remove rosin flux, organic and inorganic contamination, and particulates from electronic components. Present processes depend heavily on these solvents for manual spray cleaning of small components and subassemblies. Use of alternative solvent systems can lead to longer processing times and reduced quality. Automated spray cleaning can improve the quality of the cleaning process, thus enabling the productive use of environmentally conscious materials, while minimizing personnel exposure to hazardous materials. We describe the development of a prototype robotic system for cleaning electronic components in a spray cleaning workcell. An important feature of the prototype system is the capability to generate the robot paths and motions automatically from the CAD models of the part to be cleaned, and to embed cleaning process knowledge into the automatically programmed operations

  7. Sustainable development with clean coal

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  8. Canyon solvent cleaning

    Reif, D.J.

    1986-01-01

    The HM Process at the Savannah River Plant (SRP) uses 7.5% tributylphosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, produce decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown the carbonate washing, although removing residual solvent activity does not remove binding ligands that hold fission products in the solvent. Treatment of solvent by an alumina adsorption process removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale alumina adsorption process and the use of the process to clean HM Process first cycle solvent are presented

  9. Solar panel cleaning robot

    Nalladhimmu, Pavan Kumar Reddy; Priyadarshini, S.

    2018-04-01

    As the demand of electricity is increasing, there is need to using the renewable sources to produce the energy at present of power shortage, the use of solar energy could be beneficial to great extent and easy to get the maximum efficiency. There is an urgent in improving the efficiency of solar power generation. Current solar panels setups take a major power loss when unwanted obstructions cover the surface of the panels. To make solar energy more efficiency of solar array systems must be maximized efficiency evaluation of PV panels, that has been discussed with particular attention to the presence of dust on the efficiency of the PV panels have been highlighted. This paper gives the how the solar panel cleaning system works and designing of the cleaning system.

  10. Evaporator Cleaning Studies

    Wilmarth, W.R.

    1999-01-01

    Operation of the 242-16H High Level Waste Evaporator proves crucial to liquid waste management in the H-Area Tank Farm. Recent operational history of the Evaporator showed significant solid formation in secondary lines and in the evaporator pot. Additional samples remain necessary to ensure material identity in the evaporator pot. Analysis of these future samples will provide actinide partitioning information and dissolution characteristics of the solid material from the pot to ensure safe chemical cleaning

  11. Cleanly: trashducation urban system

    Reif, Inbal; Alt, Florian; Ramos, Juan David Hincapie

    Half the world's population is expected to live in urban areas by 2020. The high human density and changes in peoples' consumption habits result in an ever-increasing amount of trash that must be handled by governing bodies. Problems created by inefficient or dysfunctional cleaning services are e......, which not only motivates our research but also provides useful information on reasons and possible solutions for trash problems....

  12. Laser cleaning of Rakowicze sandstone

    Nijland, T.G.; Wijffels, T.J.

    2003-01-01

    Decisions about the cleaning of natural stone should always be made within the awareness of direct and indirect damage that may be the result of cleaning. During the last decade, laser cleaning of objects and monuments of natural stone has become increasingly popular. Whereas a considerable amount

  13. Clean energy utilization technology

    Honma, Takuya

    1992-01-01

    The technical development of clean energy including the utilization of solar energy was begun in 1973 at the time of the oil crisis, and about 20 years elapsed. Also in Japan, the electric power buying system by electric power companies for solar light electric power and wind electric power has been started in 1992, namely their value as a merchandise was recognized. As for these two technologies, the works of making the international standards and JIS were begun. The range of clean energy or natural energy is wide, and its kinds are many. The utilization of solar heat and the electric power generation utilizing waves, tide and geotherm already reached the stage of practical use. Generally in order to practically use new energy, the problem of price must be solved, but the price is largely dependent on the degree of spread. Also the reliability, durability and safety must be ensured, and the easiness of use, effectiveness and trouble-saving maintenance and operation are required. For the purpose, it is important to packaging those skillfully in a system. The cases of intelligent natural energy systems are shown. Solar light and wind electric power generation systems and the technology of transporting clean energy are described. (K.I.)

  14. Clean steels for fusion

    Gelles, D.S.

    1995-03-01

    Fusion energy production has an inherent advantage over fission: a fuel supply with reduced long term radioactivity. One of the leading candidate materials for structural applications in a fusion reactor is a tungsten stabilized 9% chromium Martensitic steel. This alloy class is being considered because it offers the opportunity to maintain that advantage in the reactor structure as well as provide good high temperature strength and radiation induced swelling and embrittlement resistance. However, calculations indicate that to obtain acceptable radioactivity levels within 500 years after service, clean steel will be required because the niobium impurity levels must be kept below about 2 appm and nickel, molybdenum, nitrogen, copper, and aluminum must be intentionally restricted. International efforts are addressing the problems of clean steel production. Recently, a 5,000 kg heat was vacuum induction melted in Japan using high purity commercial raw materials giving niobium levels less than 0.7 appm. This paper reviews the need for reduced long term radioactivity, defines the advantageous properties of the tungsten stabilized Martensitic steel class, and describes the international efforts to produce acceptable clean steels

  15. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  16. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  17. Report of the results of the fiscal 1997 regional consortium R and D project. Regional consortium energy field / Development of an environmentally friendly industrial cleaning system using near-critical and supercritical carbon dioxide (first fiscal year); 1997 nendo chiiki consortium kenkyu kaihatsu jigyo. Chiiki consortium energy bun`ya / chorinkai ryutai wo mochiita kankyo chowagata kogyo senjo sochi no kaihatsu (daiichi nendo) seika hokokusho

    NONE

    1998-03-01

    In the manufacturing process of semiconductors and in the high tech industry, cleaning is indispensable. At present, when regulation of the use of CFC which used to be much used has been decided on, the conversion to the use of substitutes for CFC cleaning is urgently needed. Transfer to cleaning by water/alcohol/hydrocarbon has been proceeded with, but there are a lot of problems. Out of the development of the cleaning method using supercritical fluid, the paper described the fiscal 1997 result. As to enhancement of efficiency and decrease in size of equipment, a cleaning experiment by high pressure CO2 around the critical point was conducted by integrating nozzle, ultrasonic generator and cavitation generator and adding solvent circulating system. Multi-purpose and energy saving of the equipment were also studied. To establish an analysis method for the cleaning degree, the contaminated component film of trace organic matter with a specified thickness was formed on the silicon wafer, and using the Fourier transform ultrared spectroscopy, a method to determine the film thickness was studied. For the function evaluation for precision machine parts and determination of optimum cleaning conditions, the cleaning/degreasing process of valves were compared with the conventional method. For the product manufacturing, the paper investigated and prepared the data in Japan and from abroad. 55 refs., 79 figs., 18 tabs.

  18. Cleaning and decontamination: Experimental feedback from PHENIX

    Masse, F.; Rodriguez, G.

    1997-01-01

    After the first few years of operation of PHENIX, it proved necessary to clean, then decontaminate sodium-polluted components, particularly large components such as the intermediate heat exchangers (IHX) and the primary pumps (PP). Ibis document presents the evolution of the cleaning and decontamination processes used, and specifies the reasons for this evolution. As regards the cleaning, experimental feedback and a greater rigour with respect to the hydrogen hazard have resulted in a modification of the process. The new cleaning process used at present (since 1994) is described in greater detail in this document. The main steps are: cold CO 2 bubbling in water, followed by hot CO 2 bubbling, spraying phase, then drying for inspection before immersion. In order to optimize and validate the process, the cleaning and decontamination plant has been highly instrumented, which, in particular, has allowed confirmation of the contention that the major part of the sodium is eliminated during the bubbling phases. With respect to decontamination, the objective is to perfect an efficient process that allows both human intervention with no particular biological shield for repair or maintenance of the components, and requalification of the materials after the decontamination operation. Owing to the high operating temperature of Fast Breeder Reactor components (400 to 550 deg. C), the activated corrosion products deposited on the components melt into the metal. The decontamination process therefore consists in either dissolving the deposits on the surface, or dissolving a thickness of about less than ten micrometers of the base metal. The reference process for austenitic-type steels is the SPm process, which consists in immersing the component in a sulphuric-phosphoric bath (sulphuric acid and phosphoric acid) at a temperature of 60 deg. C for 6 hours. The problem linked to this process is the treatment of the effluents that are produced, particularly phosphate releases. A

  19. Clean electricity from photovoltaics

    Green, Martin A

    2015-01-01

    The second edition of Clean Electricity from Photovoltaics , first published in 2001, provides an updated account of the underlying science, technology and market prospects for photovoltaics. All areas have advanced considerably in the decade since the first edition was published, which include: multi-crystalline silicon cell efficiencies having made impressive advances, thin-film CdTe cells having established a decisive market presence, and organic photovoltaics holding out the prospect of economical large-scale power production. Contents: The Past and Present (M D Archer); Limits to Photovol

  20. Cleaning Up Our Drinking Water

    Manke, Kristin L.

    2007-01-01

    Imagine drinking water that you wring out of the sponge you've just used to wash your car. This is what is happening around the world. Rain and snow pass through soil polluted with pesticides, poisonous metals and radionuclides into the underground lakes and streams that supply our drinking water. 'We need to understand this natural system better to protect our groundwater and, by extension, our drinking water,' said Pacific Northwest National Laboratory's Applied Geology and Geochemistry Group Manager, Wayne Martin. Biologists, statisticians, hydrologists, geochemists, geologists and computer scientists at PNNL work together to clean up contaminated soils and groundwater. The teams begin by looking at the complexities of the whole environment, not just the soil or just the groundwater. PNNL researchers also perform work for private industries under a unique use agreement between the Department of Energy and Battelle, which operates the laboratory for DOE. This research leads to new remediation methods and technologies to tackle problems ranging from arsenic at old fertilizer plants to uranium at former nuclear sites. Our results help regulators, policy makers and the public make critical decisions on complex environmental issues

  1. Cleaning method of aluminium surface by argon discharge for photon factory

    Mizuno, Hajime; Yamaguchi, Hiroshi; Watabe, Hiromi; Horikoshi, Gen-ichi; Mathewson, A.G.

    1978-01-01

    In the Photon Factory program of High Energy Research Laboratory, in which the electron storage ring as a photon source stores the electron beam of 2.5 GeV and 500 mA, beam intensity the probability of gas discharge from the inner surface of doughnut wall due to electron bombardment (for 100 eV electorns) must be limited to 1 x 10 -6 or less, according to the estimation by A.G. Mathewson and others. The pressure inside the ring can be maintained at 1 x 10 -9 Torr only with the above probability value. The standard surface treatment of degreasing and evacuation for 24 hours with heating at 150 deg. C can be of no practical use. Since the ion bombardment of surfaces by argon glow discharge is effective for decreasing the probability, the reduction of the probability by argon discharge cleaning was measured with the surface of aluminium, which is planned to be used as the doughnut material. Two methods were employed for the measurement; the one is analysis of gases being discharged, by introducting them to the analyzing chamber during argon discharge and the other is the measurement of the probability when bombardment with electrons of 100 eV is applied, after stopping argon introduction and evacuating after argon discharge had been performed for a definite period. As a result, the probability of approximately 2 x 10 -5 at the beginning of electron beam incidence was obtained by adding argon discharge cleaning to the standard method. This is estimated to correspondent to approximately 25 mA of beam intensity, which is equivalent to 1/20 of the planned value. (Wakatsuki, Y.)

  2. International Clean Energy Coalition

    Erin Skootsky; Matt Gardner; Bevan Flansburgh

    2010-09-28

    In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

  3. Impurity studies and discharge cleaning in Doublet III

    Marcus, F.B.

    1979-10-01

    The goal of present and next generation tokamak experiments is to produce high-density, high-purity plasmas during high-power, extended-duration discharges. Plasma discharges with Z/sub eff/ values near unity and low concentrations of medium and high-Z metallic impurities have been obtained in Doublet III using a combination of low-power hydrogen discharge cleaning, gas puffing, precise plasma shape and position control, and high-Z limiters. Analysis of the first wall surface and residual gas impurities confirmed that clean conditions have been achieved. The high-Z limiters showed very limited amounts of melting or arcing. The progress of the wall cleaning process was monitored by three diagnostic techniques: Auger electron spectroscopy of metallic samples at the vessel wall, residual gas analysis, and the resistivity of full power discharges

  4. Impurity studies and discharge cleaning in Doublet III

    Marcus, F.B.

    1979-10-01

    The goal of present and next generation tokamak experiments is to produce high-density, high-purity plasmas during high-power, extended-duration discharges. Plasma discharges with Z/sub eff/ values near unity and low concentrations of medium and high-Z metallic impurities have been obtained in Doublet III using a combination of low-power hydrogen discharge cleaning, gas puffing, precise plasma shape and position control, and high-Z limiters. Analysis of the first wall surface and residual gas impurities confirmed that clean conditions have been achieved. The high-Z limiters showed very limited amounts of melting or arcing. The progress of the wall cleaning process was monitored by three diagnostic techniques: Auger electron spectroscopy of metallic samples at the vessel wall, residual gas analysis, and the resistivity of full power discharges.

  5. Cleaning of boreholes

    Rautio, T.; Alaverronen, M.; Lohva, K.; Teivaala, V.

    2004-09-01

    In terms of long-term safety it is a risk that the boreholes can eventually function as short-circuits between the repository and ground surface. Therefore sealing of investigation boreholes is an important issue for the long- term safety of high-level nuclear waste repositories. In order to seal a borehole properly, the conditions of the borehole have to meet certain predetermined requirements. One of the requirements is that no instruments or materials endangering the plugging operation or the long-term function of the sealing materials, are allowed to be left in the borehole. Sometimes drilling equipment will be left in the hole or it cannot be recovered from the hole with the given constraints of time, cost and resources in spite of attempts. Additionally various measurements may be carried out in the holes after the drilling has been completed and measuring devices may get stuck in holes. Consequently cleaning of the borehole is carried out as an essential activity before sealing can be implemented. There are two common reasons identified for the drill strings to get stuck in holes. First the drill string may get stuck due to acute drilling problems. The second case is where rods are left as casing in a hole either based on the structure of the upper part of the hole or in order to support the hole. To remove the drilling or measuring equipment lost in a borehole, special techniques and professional skill must be applied. Removing measuring equipment from a hole is often demanding and time consuming work. A vital part of the cleaning operation is planning the work in advance. In order to make the plan and to select the suitable methods it is important to know the condition of the stuck material. It is also important to know the exact depth where the equipment are stuck and to have an estimate of the reasons why they have got stuck. It is also very important to know the correct dimensions of the equipment or drill string before commencing the cleaning work

  6. Combustion and environmental performance of clean coal end products

    Skodras, G.; Sakellaropoulos, G. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications]|[Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab]|[Chemical Process Engineering Research Inst., Thessaloniki (Greece). Lab. of Solid Fuels and Environment; Someus, E. [Thermal Desorption Technology Group (Greece); Grammelis, P.; Amarantos, P.S. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications; Palladas, A.; Basinas, P.; Natas, P.; Prokopidou, M.; Diamantopoulou, I.; Sakellaropoulos, G. [Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab

    2006-07-01

    Clean and affordable power production is needed in order to achieve sustainable economic development. This paper focused on clean coal technologies in which coal-fired power plants are used in conjunction with large amounts of renewable energy sources to offer a high level of process safety and long term management of all residual operation streams. Thermal Desorption Recycle-Reduce-Reuse Technology (TDT-3R) was described as being a promising solid fuel pretreatment process for clean energy production up to 300 MWe capacities. TDT-3R is based on low temperature carbonisation fuel pre-treatment principles, which produce cleansed anthracite type fuels from coal and other carbonaceous material such as biomass and organic wastes. The combustion efficiency of such clean coals and the environmental performance of the TDT-3R process were investigated in this study via pilot scale tests of clean fuel production. Tests included flue gas emissions monitoring, raw fuel and product characterisation and thermogravimetric tests, polychlorinated dibenzo-p-dioxins and dibenzo-furans, and heavy metals analyses, and toxicity tests. Raw material included coal and biomass, such as willow, straw and demolition wood. The fuels were heated in a rotary kiln operating at 550 degrees C under slightly vacuum conditions. Clean coals were tested either alone or in conjunction with biomass fuels in a pilot scale combustion facility at Dresden, Germany. The clean coal samples were shown to have higher fixed carbon and ash content and lower volatiles compared to the respective raw coal samples. The major advantage of the TDT-3R process is the production of fuels with much lower pollutants content. Low nitrogen, sulphur, chlorine and heavy metal contents result in produced fuels that have excellent environmental performance, allow boiler operation in higher temperatures and overall better efficiency. Moreover, the use of clean fuels reduces deposition problems in the combustion chamber due to the

  7. How the nuclear industry keeps it gases clean

    Anon.

    1985-01-01

    The paper surveys briefly the papers presented at a conference on gas filtration in the nuclear industry. The theory, development, design, use (under various conditions of temperature, humidity, corrosion), performance, cleaning and testing of fibrous, HEPA, metal, packed bed and magnetic filters are included, and the problems, advantages and disadvantages of the various types of filter are discussed. (U.K.)

  8. Fouling and cleaning of seawater reverse osmosis membranes in Kalpakkam Nuclear Desalination Plant

    Murugan, V.; Rajanbabu, K.; Tiwari, S.A.; Balasubramanian, C.; Yadav, Manoj Kumar; Dangore, A.Y.; Prabhakar, S.; Tewari, P.K.

    2005-01-01

    Seawater reverse osmosis plant of 1800 m 3 /day capacity is a part of 6300 m 3 /day capacity Nuclear Desalination Demonstration Project, at Kalpakkam. The plant was commissioned in October 2002 and is in continuous operation. This paper deals with types of foulants, membrane cleaning procedures and the improvement in the reverse osmosis system after cleaning. This paper also describes analysis of foulants which may consist of adsorbed organic compounds, particulate matter, microorganisms, metallic oxides and chemical cleaning procedure to be adopted, which is characteristics of sea water used as the membrane foulant is very much specific with respect to the sea water constituents. The cleaning of the membranes in Kalpakkam Nuclear Desalination plant were taken up as the quality of permeate deteriorated and differential pressure across membrane had gone-up. This paper essentially deals with selection of cleaning chemicals, the experience gained in cleaning procedure adopted and effects of cleaning for the membrane system. (author)

  9. Cleaning the soil

    Stegmann, R.

    1993-01-01

    Volume 6 of the Hamburg Reports contains contributions from scientists from the Special Research Field 188 'Cleaning up Contaminated Soils' of the Technical University of Hamburg-Harburg and the University of Hamburg and of experts from science and from the practical field. The soil science and analytical aspects of the biological and chemical/physical treatment processes are shown and open questions specific to processes are dealt with. Scientific results are compared with practical experience here. The evaluation of treated soils for reuse in the environment is a very important question, which is explained in the first articles here. Examples of case studies are shown in the last part of the volume. (orig.) [de

  10. Flue gas cleaning chemistry

    Gutberlet, H [VEBA Kraftwerke Ruhr AG, Gelsenkirchen (Germany)

    1996-12-01

    The introduction of modern flue gas cleaning technology into fossil-fueled power stations has repeatedly confronted the power station chemists with new and interesting problems over the last 15 - 20 years. Both flue gas desulphurization by lime washing and catalytic removal of nitrogen oxides are based on simple basic chemical reactions. Owing to the use of readily available starting materials, the production of safe, useful end products and, last but not least, the possibility of implementing all this on an industrial scale by means of efficient process engineering, limestone desulphurization and catalytic removal of nitrogen oxides dominate the world market and, little by little, are becoming still more widespread. The origin and thus the quality of fuels and starting materials, the firing method, the mode of operation and engineering peculiarities in each plant interact in a complex manner. Simple cause/effect relationships are frequently incapable of explaining phenomena; thinking in complex interrelationships is needed. (EG)

  11. Ultrasound cleaning of microfilters

    Hald, Jens; Bjørnø, Irina; Jensen, Leif Bjørnø

    1999-01-01

    The aim of the present work is to develop, design, and manufacture a high-power ultrasound transducer module to be used for preventing the blocking of plastic-based microfilters by organic materials, and possibly to prolong the lifetime of the filters in industry using the cavitation on the surface...... suitable for cleaning of microfilters without damaging the filter structure. The filter surface was studied using an optical microscope before and after the experiment. When high-power ultrasound (max. 75 W/cm2) was applied to the surface of some microfilters, no visible damage was found, while others...... of the filter. A numerical, FE- and BE-based model for calculation of the response of ultrasonic transducers of various geometries formed the basis for the design of such transducers. During laboratory experiments frequency and output power have been varied in order to find the optimal transducer design...

  12. Progress in cold roll bonding of metals

    Li Long; Nagai, Kotobu; Yin Fuxing

    2008-01-01

    Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for fcc structure metals to bond compared with bcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described. Corrections were made to the abstract and conclusion of this article on 18 June 2008. The corrected electronic version is identical to the print version. (topical review)

  13. Evaluation of boiler chemical cleaning techniques

    1993-04-01

    The EPRI/SGOG process, which has been selected by Ontario Hydro for use at the Bruce A station, is described. This process consists of alternating iron removal and copper removal steps, the two metals which comprise the bulk of the deposit in the Bruce A SGs. The iron removal solvent consists of ethylenediameinetetraacetic acid (EDTA), hydrazine, ammonium hydroxide and a proprietary corrosion inhibitor CCI-801. The copper removal solvent consists of EDTA, ethylene diamine and hydrogen peroxide. Ontario Hydro proposes to clean a bank of four SGs in parallel employing a total of six copper removal steps and four iron removal steps. Cleaning all eight SGs in a single Bruce A unit will generate 2,200 m 3 of liquid waste which will be treated by a wet air oxidation process. The iron and copper sludges will be buried in a landfill site while the liquid waste will be further treated by the Bruce sewage treatment plant. Some ammonia vapour will be generated through the wet air oxidation process and will be vented through a stack on top of the high bay of the spent solvent treatment plant. With the exception of the proprietary corrosion inhibitor, all chemicals that will be employed in the cleaning and waste treatment operations are standard industrial chemicals which are well characterized. No extraordinary hazards are anticipated with their use as long as adequate safety precautions are taken

  14. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1996-05-07

    The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  15. Limonene and tetrahydrofurfurly alcohol cleaning agent

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  16. Plasma metallization

    Crowther, J.M.

    1997-09-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of surface contamination of the films due to plasma treatment was observed but was easily removed by argon ion cleaning. Hydrogen plasma reduction of glass supported silver(l) nitrate and palladium(ll) acetate films reveals that this metallization technique is applicable to a wide variety of metal salts and supports, and has also shown the ability of plasma reduction to retain the complex 'fern-like' structures seen for spin coated silver(l) nitrate layers. Some metal salts are susceptible to decomposition by X-rays. The reduction of Nylon 66 supported gold(lll) chloride films by soft X-rays to produce nanoscopic gold particles has been studied. The spontaneous reduction of these X-ray irradiated support gold(lll) chloride films on exposure to the atmosphere to produce gold rich metallic films has also been reported. (author)

  17. Overview of shoreline cleaning agents

    Clayton, J.

    1992-01-01

    Chemical cleaning agents may be used to promote release of stranded oil from shorelines for reasons including biological sensitivity of indigenous fauna and flora to the oil, amenity considerations of the shoreline, or concern about refloating of the oil and subsequent stranding on adjacent shorelines. While use of chemical cleaning agents may be appropriate under proper toxic responses in circumstances, certain limitations should be recognized. The potential for toxic responses in indigenous fauna and flora to the cleaning agents must be considered. Enhanced penetration of oil into permeable shorelines following treatment with chemical cleaning agents also is not desirable. However, if conditions related to toxicity and substrate permeability are determined to be acceptable, the use of chemical cleaning agents for treatment of stranded oil can be considered. Chemical agents for cleaning oiled shorelines can be grouped into three categories: (1) non-surfactant-based solvents, (2) chemical dispersants, and (3) formulations especially designed to release stranded oil from shoreline substrates (i.e., shoreline-cleaning-agents). Depending on the specific circumstances present on an oiled shoreline, it is generally desirable that chemical agents used for cleaning will release oil from shoreline substrate(s) to surface waters. Recovery of the oil can then be accomplished by mechanical procedures such as booming and skimming operations

  18. Programmed Cleaning and Environmental Sanitation.

    Gardner, John C., Ed.

    Maintenance of sanitation in buildings, plants, offices, and institutions; the selection of cleaning materials for these purposes; and the organization and supervision of the cleaning program are becoming increasingly complex and needful of a higher cost of handling. This book describes these problems and gives helpful information and guidance for…

  19. Fire protection for clean rooms

    Kirson, D.

    1990-01-01

    The fire protection engineer often must decide what size fire can be tolerated before automatic fire suppression systems actuate. Is it a wastepaper basket fire, a bushel basket fire...? In the case of state-of-the-art clean rooms, the answer clearly is not even an incipient fire. Minor fires in clean rooms can cause major losses. This paper discusses what a clean room is and gives a brief overview of the unique fire protection challenges encountered. The two major causes of fire related to clean rooms in the semiconductor industry are flammable/pyrophoric gas fires in plastic ducts and polypropylene wet bench fires. This paper concentrates on plastic ductwork in clean rooms, sprinkler protection in ductwork, and protection for wet benches

  20. Critical cleaning agents for Di-2-ethylhexyl sebacate.

    Hartley, Mya; Archuleta, Kim M.

    2013-08-01

    It is required that Di-2-ethylhexyl Sebacate oil, also commonly known as Dioctyl Sebacate oil, be thoroughly removed from certain metals, in this case stainless steel parts with narrow, enclosed spaces. Dioctyl Sebacate oil is a synthetic oil with a low compressibility. As such, it is ideally used for high pressure calibrations. The current method to remove the Dioctyl Sebacate from stainless steel parts with narrow, enclosed spaces is a labor-intensive, multi-step process, including a detergent clean, a deionized (DI) water rinse, and several solvent rinses, to achieve a nonvolatile residue of 0.04 mg per 50 mL rinse effluent. This study was undertaken to determine a superior detergent/solvent cleaning method for the oil to reduce cleaning time and/or the amount of detergent/solvent used. It was determined that while some detergent clean the oil off the metal better than the current procedure, using only solvents obtained the best result. In addition, it can be inferred, based on elevated temperature test results, that raising the temperature of the oil-contaminated stainless steel parts to approximately 50ÀC will provide for improved cleaning efficacy.

  1. Air-cleaning apparatus

    Howard, A.G.

    1981-01-01

    An air-cleaning, heat-exchange apparatus includes a main housing portion connected by means of an air inlet fan to the kitchen exhaust stack of a restaurant. The apparatus includes a plurality of heat exchangers through which a heat-absorptive fluid is circulated, simultaneously, by means of a suitable fluid pump. These heat exchangers absorb heat from the hot exhaust gas, out of the exhaust stack of the restaurant, which flows over and through these heat exchangers and transfers this heat to the circulating fluid which communicates with remote heat exchangers. These remote heat exchangers further transfer this heat to a stream of air, such as that from a cold-air return duct for supplementing the conventional heating system of the restaurant. Due to the fact that such hot exhaust gas is heavily grease laden , grease will be deposited on virtually all internal surfaces of the apparatus which this exhaust gas contacts. Consequently, means are provided for spraying these contacted internal surfaces , as well as the hot exhaust gas itself, with a detergent solution in which the grease is soluble, thereby removing grease buildup from these internal surfaces

  2. Clean coal technology

    Abelson, P.H.

    1990-01-01

    One of the major technology challenges in the next decade will be to develop means of using coal imaginatively as a source of chemicals and in a more energy-efficient manner. The Clean Air Act will help to diminish the acid rain but will not reduce CO 2 emissions. The Department of Energy (DOE) is fostering many innovations that are likely to have a positive effect on coal usage. Of the different innovations in the use of coal fostered by DOE, two are of particular interest. One is the new pressurized fluid bed combustion (PFBC) combined-cycle demonstration. The PFBC plant now becoming operational can reduce SO 2 emissions by more than 90% and NO x emissions by 50-70%. A second new technology co-sponsored by DOE is the Encoal mild coal gasification project that will convert a sub-bituminous low-BTU coal into a useful higher BTU solid while producing significant amounts of a liquid fuel

  3. Clean tracks for ATLAS

    2006-01-01

    First cosmic ray tracks in the integrated ATLAS barrel SCT and TRT tracking detectors. A snap-shot of a cosmic ray event seen in the different layers of both the SCT and TRT detectors. The ATLAS Inner Detector Integration Team celebrated a major success recently, when clean tracks of cosmic rays were detected in the completed semiconductor tracker (SCT) and transition radiation tracker (TRT) barrels. These tracking tests come just months after the successful insertion of the SCT into the TRT (See Bulletin 09/2006). The cosmic ray test is important for the experiment because, after 15 years of hard work, it is the last test performed on the fully assembled barrel before lowering it into the ATLAS cavern. The two trackers work together to provide millions of channels so that particles' tracks can be identified and measured with great accuracy. According to the team, the preliminary results were very encouraging. After first checks of noise levels in the final detectors, a critical goal was to study their re...

  4. Canada's Clean Air Act

    2006-01-01

    This paper provided an outline of Canada's Clean Air Act and examined some of the regulatory changes that will occur as a result of its implementation. The Act is being introduced to strengthen the legislative basis for taking action on reducing air pollution and GHGs, and will allow the government to regulate both indoor and outdoor air pollutants and GHGs. The Act will require the Ministers of the Environment and Health to establish national air quality objectives, as well as to monitor and report on their attainment. The Canadian Environmental Protection Act will be amended to enable the government to regulate the blending of fuels and their components. The Motor Vehicle Fuel Consumption Standards Act will also be amended to enhance the government's authority to regulate vehicle fuel efficiency. The Energy Efficiency Act will also be expanded to allow the government to set energy efficiency standards and labelling requirements for a wider range of consumer and commercial products. The Act will commit to short, medium and long-term industrial air pollution targets. Regulations will be proposed for emissions from industry; on-road and off-road vehicles and engines; and consumer and commercial products. It was concluded that the Government of Canada will continue to consult with provinces, territories, industries and Canadians to set and reach targets for the reduction of both indoor and outdoor air pollutants and GHG emissions. 6 figs

  5. Plasma cleaning and analysis of archeological artefacts from Sipan

    Saettone, E A O [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Matta, J A S da [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Alva, W [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Chubaci, J F O [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Fantini, M C A [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Galvao, R M O [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Kiyohara, P [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Tabacniks, M H [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil)

    2003-04-07

    A novel procedure using plasma sputtering in an electron-cyclotron-resonance device has been applied to clean archeological MOCHE artefacts, unearthed at the Royal Tombs of Sipan. After successful cleaning, the pieces were analysed by a variety of complementary techniques, namely proton-induced x-ray emission, Rutherford backscattering spectroscopy, x-ray diffraction, electron microscopy, and inductively coupled plasma mass spectroscopy. With these techniques, it has been possible to not only determine the profiles of the gold and silver surface layers, but also to detect elements that may be relevant to explain the gilding techniques skillfully developed by the metal smiths of the MOCHE culture.

  6. Chemical cleaning of steam generators: application to Nogent 1

    Fiquet, J.M.; Veysset, J.P.; Esteban, L.; Saurin, P.

    1991-01-01

    EDF has patented a chemical cleaning process for PWR steam generators, based on the use of a mixture or organic acids in order to dissolve iron oxides and copper with a single solution and clean dented crevices. Qualification tests have permitted to demonstrate effectiveness of the solution and its innocuousness related to steam generator materials. The process, the licence of which belongs to SOMAFER RA and Framatome has been implemented in France at Nogent. The goal was to dissolve iron oxides allowing metallic particles, aggregated on the tubesheet, to be released and mechanically removed. The effectiveness was satisfactory and this treatment is to be extended to other units. (author)

  7. Chemical cleaning of PWR steam generators: application at Nogent 1

    Fiquet, J.M.; Veysset, J.P.; Esteban, L.; Saurin, P.

    1990-01-01

    EDF has developed and patented a chemical cleaning process for PWR steam generators, based on the use of a mixture of organic acids in order to: - dissolve iron oxides and copper with a single solution; - clean dented crevices. Qualification tests have permitted to demonstrate effectiveness of the solution and its inocuousness related to steam generator materials. The process, the license of which belongs to SOMAFER R.A. and FRAMATOME, has been implemented in France at Nogent. The goal was to dissolve iron oxides allowing metallic particles, aggregated on the tubesheet, to be released and mechanically removed. The effectiveness was satisfactory and this treatment is to be extended to other units [fr

  8. Dry-cleaning of graphene

    Algara-Siller, Gerardo; Lehtinen, Ossi; Kaiser, Ute; Turchanin, Andrey

    2014-01-01

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy

  9. Dry-cleaning of graphene

    Algara-Siller, Gerardo [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Department of Chemistry, Technical University Ilmenau, Weimarer Strasse 25, Ilmenau 98693 (Germany); Lehtinen, Ossi; Kaiser, Ute, E-mail: ute.kaiser@uni-ulm.de [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Turchanin, Andrey [Faculty of Physics, University of Bielefeld, Universitätsstr. 25, Bielefeld 33615 (Germany)

    2014-04-14

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  10. Cleaning of the first mirrors and diagnostic windows by YAG laser on HL-2A

    Zhou, Y; Zheng, L; Li, Y G; Li, L C; Jiao, Y M; Gao, H; Zhao, G

    2009-01-01

    A laser cleaning system for HL-2A tokamak first mirrors and diagnostic windows has been developed recently. A detailed description of the laser cleaning procedure is presented. The optical transmission performance measured before and after the laser cleaning of the impurity film deposited on the optical elements is investigated. HL-2A deposited layers on metal mirrors and glass windows with thicknesses of about 1 and 4 μm, respectively, are clearly removed by irradiation with a single pulse of a Q-switched Nd:YAG laser with energy density of 0.4 and 2.8 J cm -2 , respectively. The feasibility of cleaning ECE windows is demonstrated. A cleaning time of about 5 min is suitable for application in fusion devices. The comparison of results obtained at different laser wavelengths shows that there is a greater probability of damage to the metallic mirror surface with a short laser wavelength than with longer wavelength.

  11. Tracking Clean Energy Progress 2013

    NONE

    2013-06-01

    Tracking Clean Energy Progress 2013 (TCEP 2013) examines progress in the development and deployment of key clean energy technologies. Each technology and sector is tracked against interim 2020 targets in the IEA Energy Technology Perspectives 2012 2°C scenario, which lays out pathways to a sustainable energy system in 2050. Stark message emerge: progress has not been fast enough; large market failures are preventing clean energy solutions from being taken up; considerable energy efficiency remains untapped; policies need to better address the energy system as a whole; and energy-related research, development and demonstration need to accelerate. Alongside these grim conclusions there is positive news. In 2012, hybrid-electric vehicle sales passed the 1 million mark. Solar photovoltaic systems were being installed at a record pace. The costs of most clean energy technologies fell more rapidly than anticipated.

  12. Uniquely Strongly Clean Group Rings

    WANG XIU-LAN

    2012-01-01

    A ring R is called clean if every element is the sum of an idempotent and a unit,and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute.In this article,some conditions on a ring R and a group G such that RG is clean are given.It is also shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring.

  13. Emulsion type dry cleaning system

    Kohanawa, Osamu; Matsumoto, Hiroyo.

    1988-01-01

    Protective clothing against radioactive contamination used in the radiation controlled areas of nuclear plants has been washed by the same wet washing as used for underwear washing, but recently dry cleaning is getting used in place of wet washing, which generates a large quantity of laundry drain. However, it was required to use wet washing once every five to ten dry cleanings for washing protective clothing, because conventional dry cleaning is less effective in removing water-soluble soils. Therefore, in order to eliminate wet washing, and to decrease the quantity of laundry drains, the emulsion type dry cleaning system capable of removing both oil-soluble and water-soluble soils at a time has been developed. The results of developmental experiments and actual application are presented in this paper. (author)

  14. Efficient methods of piping cleaning

    Orlov Vladimir Aleksandrovich

    2014-01-01

    Full Text Available The article contains the analysis of the efficient methods of piping cleaning of water supply and sanitation systems. Special attention is paid to the ice cleaning method, in course of which biological foil and various mineral and organic deposits are removed due to the ice crust buildup on the inner surface of water supply and drainage pipes. These impurities are responsible for the deterioration of the organoleptic properties of the transported drinking water or narrowing cross-section of drainage pipes. The co-authors emphasize that the use of ice compared to other methods of pipe cleaning has a number of advantages due to the relative simplicity and cheapness of the process, economical efficiency and lack of environmental risk. The equipment for performing ice cleaning is presented, its technological options, terms of cleansing operations, as well as the volumes of disposed pollution per unit length of the water supply and drainage pipelines. It is noted that ice cleaning requires careful planning in the process of cooking ice and in the process of its supply in the pipe. There are specific requirements to its quality. In particular, when you clean drinking water system the ice applied should be hygienically clean and meet sanitary requirements.In pilot projects, in particular, quantitative and qualitative analysis of sediments adsorbed by ice is conducted, as well as temperature and the duration of the process. The degree of pollution of the pipeline was estimated by the volume of the remote sediment on 1 km of pipeline. Cleaning pipelines using ice can be considered one of the methods of trenchless technologies, being a significant alternative to traditional methods of cleaning the pipes. The method can be applied in urban pipeline systems of drinking water supply for the diameters of 100—600 mm, and also to diversion collectors. In the world today 450 km of pipelines are subject to ice cleaning method.Ice cleaning method is simple

  15. Clean Energy Solutions Center (Presentation)

    Reategui, S.

    2012-07-01

    The Clean Energy Ministerial launched the Clean Energy Solutions Center in April, 2011 for major economy countries, led by Australia and U.S. with other CEM partners. Partnership with UN-Energy is extending scope to support all developing countries: 1. Enhance resources on policies relating to energy access, small to medium enterprises (SMEs), and financing programs; 2. Offer expert policy assistance to all countries; 3. Expand peer to peer learning, training, and deployment and policy data for developing countries.

  16. Clean Energy Application Center

    Freihaut, Jim [Pennsylvania State Univ., University Park, PA (United States)

    2013-09-30

    The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive

  17. Discharge cleaning for a tokamak

    Ishii, Shigeyuki

    1983-01-01

    Various methods of discharge cleaning for tokamaks are described. The material of the first walls of tokamaks is usually stainless steel, inconel, titanium and so on. Hydrogen is exclusively used as the discharge gas. Glow discharge cleaning (GDC), Taylor discharge cleaning (TDC), and electron cyclotron resonance discharge cleaning (ECR-DC) are discussed in this paper. The cleaning by GDC is made by moving a movable anode to the center of a tokamak vassel. Taylor found the good cleaning effect of induced discharge by high pressure and low power discharge. This is called TDC. When the frequency of high frequency discharge in a magnetic field is equal to that of the electron cyclotron resonance, the break down potential is lowered if the pressure is sufficiently low. The ECR-CD is made by using this effect. In TDC and ECR-DC, the electron temperature, which has a close relation to the production rate of H 0 , can be controlled by the pressure. In GDC, the operating pressure was improved by the radio frequency glow (RG) method. However, there is still the danger of arcing. In case of GDC and ECR-DC, the position of plasma can be controlled, but not in case of TDC. The TDC is accepted by most of takamak devices in the world. (Kato, T.)

  18. Gas plant cleaning case history

    Woods, B

    1971-03-22

    Basic steps to be taken before using any cleaning method are select a responsible group and give it full responsibility; know the problem, what type of fouling, lab samples, amount of material, time and cost; sell the idea to management; maintain the cleaning equipment; and follow up each cleaning operation. These principles have been applied to advantage in the amine contractor at Taylor, a vessel 60 ft high with 78-in. OD, containing carbon steel deck trays with stainless steel caps. The original attempt to clean with wire scrapers manually involved much lost time and several crews. There was limited space in the tray vessels, design created areas difficult to clean, working conditions were unpleasant, equipment downtime was extended, labor cost was high, and the final result was not satisfactory. Chemical cleaning was substituted, preceded by a water wash. Five hours of caustic wash with a 3% solution at 170$F were followed by a water wash, an acid wash, 1-hr neutralization with a weak soda ash solution, and finally passivation to eliminate iron oxide. For the acid wash, sulfamic acid was found best, in 10% concentration for 4 hr. Cascading was most economical, but flooding has been employed sometimes at 2-1/2 times the cost, to reach all the dark corners.

  19. An ultra-clean technique for accurately analysing Pb isotopes and heavy metals at high spatial resolution in ice cores with sub-pg g{sup -1} Pb concentrations

    Burn, Laurie J. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U1987, Perth 6845, Western Australia (Australia); Rosman, Kevin J.R. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U1987, Perth 6845, Western Australia (Australia)], E-mail: K.Rosman@curtin.edu.au; Candelone, Jean-Pierre [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U1987, Perth 6845, Western Australia (Australia); Vallelonga, Paul [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U1987, Perth 6845, Western Australia (Australia); Istituto per la Dinamica dei Processi Ambientali (IDPA-CNR), Dorsoduro 2137, 30123 Venice (Italy); Burton, Graeme R. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U1987, Perth 6845, Western Australia (Australia); Smith, Andrew M. [Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, NSW 2234 (Australia); Morgan, Vin I. [Australian Antarctic Division and Antarctic Climate and Ecosystems CRC, Private Bag 80, Hobart, Tasmania 7001 (Australia); Barbante, Carlo [Istituto per la Dinamica dei Processi Ambientali (IDPA-CNR), Dorsoduro 2137, 30123 Venice (Italy); Hong, Sungmin [Korea Polar Research Institute, Songdo Techno Park, 7-50, Songdo-dong, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Boutron, Claude F. [Laboratoire de Glaciologie et Geophysique de l' Environnement du CNRS, 54, rue Moliere, B.P. 96, 3840.2 St Martin d' Heres Cedex (France)

    2009-02-23

    Measurements of Pb isotope ratios in ice containing sub-pg g{sup -1} concentrations are easily compromised by contamination, particularly where limited sample is available. Improved techniques are essential if Antarctic ice cores are to be analysed with sufficient spatial resolution to reveal seasonal variations due to climate. This was achieved here by using stainless steel chisels and saws and strict protocols in an ultra-clean cold room to decontaminate and section ice cores. Artificial ice cores, prepared from high purity water were used to develop and refine the procedures and quantify blanks. Ba and In, two other important elements present at pg g{sup -1} and fg g{sup -1} concentrations in Polar ice, were also measured. The final blank amounted to 0.2 {+-} 0.2 pg of Pb with {sup 206}Pb/{sup 207}Pb and {sup 208}Pb/{sup 207}Pb ratios of 1.16 {+-} 0.12 and 2.35 {+-} 0.16, respectively, 1.5 {+-} 0.4 pg of Ba and 0.6 {+-} 2.0 fg of In, most of which probably originates from abrasion of the steel saws by the ice. The procedure was demonstrated on a Holocene Antarctic ice core section and was shown to contribute blanks of only {approx}5%, {approx}14% and {approx}0.8% to monthly resolved samples with respective Pb, Ba and In concentrations of 0.12 pg g{sup -1}, 0.3 pg g{sup -1} and 2.3 fg g{sup -1}. Uncertainties in the Pb isotopic ratio measurements were degraded by only {approx}0.2%.

  20. Clean energy and the hydrogen economy.

    Brandon, N P; Kurban, Z

    2017-07-28

    In recent years, new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier, hydrogen offers a range of benefits for simultaneously decarbonizing the transport, residential, commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives, and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas, power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems, including fuel cell electric vehicles and micro-combined heat and power devices, the use of hydrogen at grid scale requires the challenges of clean hydrogen production, bulk storage and distribution to be resolved. Ultimately, greater government support, in partnership with industry and academia, is still needed to realize hydrogen's potential across all economic sectors.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  1. Processing method of radioactive cleaning drain

    Otsuka, Shigemitsu; Murakami, Tadashi; Kitao, Hideo

    1998-01-01

    Upon processing of radioactive cleaning drains, contained Co-60 is removed by a selectively adsorbing adsorbent. In addition, after removing suspended materials by a filtering device, Co-60 as predominant nuclides in the drain is selectively adsorbed. The concentration of objective Co-60 is in the order of 0.1 Bq/cc, and non-radioactive metal ions such as Na + ions are present in the order of ppm in addition to Co-60. A granular adsorbent for selectively adsorbing Co-60 is oxine-added activated carbon, and has a grain size of from 20 to 48 mesh. The granular adsorbent is used while being filled in an adsorbing tower. Since a relatively simple device comprising the filtering device and the adsorbing tower in combination is provided, the reduction of the construction cost can be expected. In addition, since no filtering aid is used in the filtering device, the amount of secondary wastes is small. (N.H.)

  2. High-resolution clean-sc

    Sijtsma, P.; Snellen, M.

    2016-01-01

    In this paper a high-resolution extension of CLEAN-SC is proposed: HR-CLEAN-SC. Where CLEAN-SC uses peak sources in “dirty maps” to define so-called source components, HR-CLEAN-SC takes advantage of the fact that source components can likewise be derived from points at some distance from the peak,

  3. Method of dissolving metal ruthenium

    Tsuno, Masao; Soda, Yasuhiko; Kuroda, Sadaomi; Koga, Tadaaki.

    1988-01-01

    Purpose: To dissolve and clean metal ruthenium deposited to the inner surface of a dissolving vessel for spent fuel rods. Method: Metal ruthenium is dissolved in a solution of an alkali metal hydroxide to which potassium permanganate is added. As the alkali metal hydroxide used herein there can be mentioned potassium hydroxide, sodium hydroxide and lithium hydroxide can be mentioned, which is used as an aqueous solution from 5 to 20 % concentration in view of the solubility of metal ruthenium and economical merit. Further, potassium permanganate is used by adding to the solution of alkali metal hydroxide at a concentration of 1 to 5 %. (Yoshihara, H.)

  4. Service water chemical cleaning at River Bend gets results

    Brice, T.O.; Glover, W.A.

    1994-01-01

    The largest known Service Water System (SWS) chemical cleaning ever performed at a nuclear plant was successfully completed at, River Bend Station. Corrosion product buildup was observed during system inspections in the first operating cycle and the first refueling outage in 1987. Under deposit corrosion was followed with microbiologically influenced corrosion (MIC) occurring as a later stage under deposits. The heavy corrosion caused blockage of heat exchanger tubes, fouling of valve seats, and general flow blockage throughout the system. Various options were evaluated for restoring the SWS back to an acceptable long term operating condition. The large scale chemical cleaning performed arrested the corrosion by removing the deposits down to the bare metal surfaces and leaving behind a protective passivation layer. After the cleaning, the open recirculating SWS was converted to a closed system. The implementation of a molybdate/nitrate water treatment program with a copper corrosion inhibitor maintained at a high pH (8.5--10.5) has significantly reduced corrosion rates in the closed system. This should extend the life of the SWS piping for the remaining life of the plant. Several field tests were conducted to qualify the process and demonstrate its ability to achieve acceptable cleaning results prior to being used on a larger scale. In the summer of 1992, temporary and permanent modifications were installed to divide the SWS into two separate cleaning loops for the system wide cleaning. The SWS chemical was successfully performed and completed on schedule during the fourth refueling outage. Post cleaning inspections at various locations throughout the Service Water System showed the process to be very effective at complete deposit removal

  5. Clean coal technologies: A business report

    Anon.

    1993-01-01

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R ampersand D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base

  6. X-ray photoelectron spectroscopy analysis of cleaning procedures for synchrotron radiation beamline materials at the Advanced Photon Source

    Li, Y.; Ryding, D.; Liu, C.; Kuzay, T.M.; McDowell, M.W.; Rosenberg, R.A.

    1994-01-01

    TZM (a high temperature molybdenum alloy), machinable tungsten, and 304 stainless steel were cleaned using environmentally safe, commercially available cleaning detergents. The surface cleanliness was evaluated by x-ray photoelectron spectroscopy (XPS). It was found that a simple alkaline detergent is very effective at removal of organic and inorganic surface contaminants or foreign particle residue from machining processes. The detergent can be used with ultrasonic agitation at 140 F to clean the TZM molybdenum, machinable tungsten, and 304 stainless steel. A citric-acid-based detergent was also found to be effective at cleaning metal oxides, such as iron oxide, molybdenum oxide, as well as tungsten oxides at mild temperatures with ultrasonic agitation, and it can be used to replace strong inorganic acids to improve cleaning safety and minimize waste disposal and other environmental problems. The efficiency of removing the metal oxides depends on both cleaning temperature and time

  7. Nanometer-scale lithography on microscopically clean graphene

    Van Dorp, W F; De Hosson, J Th M; Zhang, X; Feringa, B L; Wagner, J B; Hansen, T W

    2011-01-01

    Focused-electron-beam-induced deposition, or FEBID, enables the fabrication of patterns with sub-10 nm resolution. The initial stages of metal deposition by FEBID are still not fundamentally well understood. For these investigations, graphene, a one-atom-thick sheet of carbon atoms in a hexagonal lattice, is ideal as the substrate for FEBID writing. In this paper, we have used exfoliated few-layer graphene as a support to study the early growth phase of focused-electron-beam-induced deposition and to write patterns with dimensions between 0.6 and 5 nm. The results obtained here are compared to the deposition behavior on amorphous materials. Prior to the deposition experiment, the few-layer graphene was cleaned. Typically, it is observed in electron microscope images that areas of microscopically clean graphene are surrounded by areas with amorphous material. We present a method to remove the amorphous material in order to obtain large areas of microscopically clean graphene flakes. After cleaning, W(CO) 6 was used as the precursor to study the early growth phase of FEBID deposits. It was observed that preferential adsorption of the precursor molecules on step edges and adsorbates plays a key role in the deposition on cleaned few-layer graphene.

  8. Advances in telescope mirror cleaning

    Blanken, Maarten F.; Chopping, Alan K.; Dee, Kevin M.

    2004-09-01

    Metrology and cleaning techniques for telescope mirrors are generally well established. CO2 cleaning and water washing are mainly used. Water washing has proven to be the best method of removing oil and water stains and restoring the aluminium to nearly fresh values. The risk of water getting to unwanted places such as electronics or other optics prevents this method from being employed more often. Recently the Isaac Newton Group introduced a new cleaning technique for their telescope mirrors, which reduces the risks discussed above. This technique uses water vapour instead of water to wash the mirror. The advantage of this method is that the amount of water needed is drastically reduced. In addition the pressure of the vapour will blow away any large dust particles on the mirror and the temperature shock between the vapour and the mirror will help to de-bond the dust particles. Adding a soapy solution will help to clean oil and watermarks of the mirror. This paper describes the vapour cleaning method, tests that have been done and the overall findings.

  9. Optimization of Ultrasonic Fabric Cleaning

    Hand, T.E.

    1998-05-13

    The fundamental purpose of this project was to research and develop a process that would reduce the cost and improve the environmental efficiency of the present dry-cleaning industry. This second phase of research (see report KCP-94-1006 for information gathered during the first phase) was intended to allow the optimal integration of all factors of ultrasonic fabric cleaning. For this phase, Garment Care performed an extensive literature search and gathered data from other researchers worldwide. The Garment Care-AlliedSignal team developed the requirements for a prototype cleaning tank for studies and acquired that tank and the additional equipment required to use it properly. Garment Care and AlliedSignal acquired the transducers and generators from Surftran Martin-Walter in Sterling Heights, Michigan. Amway's Kelly Haley developed the test protocol, supplied hundreds of test swatches, gathered the data on the swatches before and after the tests, assisted with the cleaning tests, and prepared the final analysis of the results. AlliedSignal personnel, in conjunction with Amway and Garment Care staff, performed all the tests. Additional planning is under way for future testing by outside research facilities. The final results indicated repeatable performance and good results for single layered fabric swatches. Swatches that were cleaned as a ''sandwich,'' that is, three or more layers.

  10. Air cleaning using regenerative silica gel wheel

    Fang, Lei

    2011-01-01

    This paper discussed the necessity of indoor air cleaning and the state of the art information on gas-phase air cleaning technology. The performance and problems of oxidation and sorption air cleaning technology were summarized and analysed based on the literature studies. Eventually, based...... on an experimental study, a technology called clean air heat pump is proposed as a practical approach for indoor air cleaning....

  11. Self Cleaning HEPA Filtration without Interrupting Process Flow

    Wylde, M.

    2009-01-01

    The strategy of protecting the traditional glass fibre HEPA filtration train from it's blinding contamination and the recovery of dust by the means of self cleaning, pre-filtration is a proven means in the reduction of ultimate disposal volumes and has been used within the Fuel Production Industry. However, there is an increasing demand in nuclear applications requiring elevated operating temperatures, fire resistance, moisture resistance and chemical composition that the existing glass fibre HEPA filtration cannot accommodate, which can be remedied by the use of a metallic HEPA filter media. Previous research (Bergman et al 1997, Moore et al 1992) suggests that the then costs to the DOE, based on a five year life cycle, was $29.5 million for the installation, testing, removal and disposal of glass fibre HEPA filtration trains. Within these costs, $300 was the value given to the filter and $4,450 was given to the peripheral activity. Development of a low cost, cleanable, metallic, direct replacement of the traditional filter train will the clear solution. The Bergman et al work has suggested that a 1000 ft 3 /min, cleanable, stainless HEPA could be commercially available for $5,000 each, whereas the industry has determined that the truer cost of such an item in isolation would be closer to $15,000. This results in a conflict within the requirement between 'low cost' and 'stainless HEPA'. By proposing a system that combines metallic HEPA filtration with the ability to self clean without interrupting the process flow, the need for a tradition HEPA filtration train will be eliminated and this dramatically reduces the resources required for cleaning or disposal, thus presenting a route to reducing ultimate costs. The paper will examine the performance characteristics, filtration efficiency, flow verses differential pressure and cleanability of a self cleaning HEPA grade sintered metal filter element, together with data to prove the contention. (authors)

  12. Clean air in the Anthropocene.

    Lelieveld, Jos

    2017-08-24

    In atmospheric chemistry, interactions between air pollution, the biosphere and human health, often through reaction mixtures from both natural and anthropogenic sources, are of growing interest. Massive pollution emissions in the Anthropocene have transformed atmospheric composition to the extent that biogeochemical cycles, air quality and climate have changed globally and partly profoundly. It is estimated that mortality attributable to outdoor air pollution amounts to 4.33 million individuals per year, associated with 123 million years of life lost. Worldwide, air pollution is the major environmental risk factor to human health, and strict air quality standards have the potential to strongly reduce morbidity and mortality. Preserving clean air should be considered a human right, and is fundamental to many sustainable development goals of the United Nations, such as good health, climate action, sustainable cities, clean energy, and protecting life on land and in the water. It would be appropriate to adopt "clean air" as a sustainable development goal.

  13. Clean-room robot implementation

    Comeau, J.L.

    1982-01-01

    A robot has been incorporated in a clean room operation in which vacuum tube parts are cleaned just prior to final assembly with a 60 lb/in 2 blast of argon gas. The robot is programmed to pick up the parts, manipulate/rotate them as necessary in the jet pattern and deposit them in a tray precleaned by the robot. A carefully studied implementation plan was followed in the procurement, installation, modification and programming of the robot facility. An unusual configuration of one tube part required a unique gripper design. A study indicated that the tube parts processed by the robot are 12% cleaner than those manually cleaned by an experienced operator

  14. Clean Coal Diesel Demonstration Project

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  15. Stethoscope Cleaning During Patient Care.

    Ghumman, Ghazi Wahla; Ahmad, Nina; Pop-Vicas, Aurora; Iftikhar, Sadia

    2018-05-01

    We conducted a cross-sectional survey of healthcare workers in two community teaching hospitals to better understand clinicians' beliefs and practices related to cleaning of their stethoscopes. The study was conducted from September 2015 to May 2016. Among the total 358 responses received, 45%, 40%, 10% and 5% were from attending physicians, medical students, nurses, and resident physicians, respectively. Although the majority of the respondents (76%) frequently used a stethoscope at work, and almost all (93%) believed that stethoscopes can be involved in pathogen transmission, only 29% of participants reported cleaning their stethoscopes after every use. Hospitals should include stethoscope cleaning into their overall infection prevention efforts. [Full article available at http://rimed.org/rimedicaljournal-2018-05.asp].

  16. Cleaning and dewatering fine coal

    Yoon, Roe-Hoan; Eraydin, Mert K.; Freeland, Chad

    2017-10-17

    Fine coal is cleaned of its mineral matter impurities and dewatered by mixing the aqueous slurry containing both with a hydrophobic liquid, subjecting the mixture to a phase separation. The resulting hydrophobic liquid phase contains coal particles free of surface moisture and droplets of water stabilized by coal particles, while the aqueous phase contains the mineral matter. By separating the entrained water droplets from the coal particles mechanically, a clean coal product of substantially reduced mineral matter and moisture contents is obtained. The spent hydrophobic liquid is separated from the clean coal product and recycled. The process can also be used to separate one type of hydrophilic particles from another by selectively hydrophobizing one.

  17. Controlling the cost of clean air - A new clean coal technology

    Kindig, J.K.; Godfrey, R.L.

    1991-01-01

    This article presents the authors' alternative to expensive coal combustion products clean-up by cleaning the coal, removing the sulfur, before combustion. Topics discussed include sulfur in coal and the coal cleaning process, the nature of a new coal cleaning technology, the impact on Clean Air Act compliance, and the economics of the new technology

  18. Developing clean fuels: Novel techniques for desulfurization

    Nehlsen, James P.

    The removal of sulfur compounds from petroleum is crucial to producing clean burning fuels. Sulfur compounds poison emission control catalysts and are the source of acid rain. New federal regulations require the removal of sulfur in both gasoline and diesel to very low levels, forcing existing technologies to be pushed into inefficient operating regimes. New technology is required to efficiently produce low sulfur fuels. Two processes for the removal of sulfur compounds from petroleum have been developed: the removal of alkanethiols by heterogeneous reaction with metal oxides; and oxidative desulfurization of sulfides and thiophene by reaction with sulfuric acid. Alkanethiols, common in hydrotreated gasoline, can be selectively removed and recovered from a hydrocarbon stream by heterogeneous reaction with oxides of Pb, Hg(II), and Ba. The choice of reactive metal oxides may be predicted from simple thermodynamic considerations. The reaction is found to be autocatalytic, first order in water, and zero order in thiol in the presence of excess oxide. The thiols are recovered by reactive extraction with dilute oxidizing acid. The potential for using polymer membrane hydrogenation reactors (PEMHRs) to perform hydrogenation reactions such as hydrodesulfurization is explored by hydrogenating ketones and olefins over Pt and Au group metals. The dependence of reaction rate on current density suggests that the first hydrogen addition to the olefin is the rate limiting step, rather than the adsorption of hydrogen, for all of the metals tested. PEMHRs proved unsuccessful in hydrogenating sulfur compounds to perform HDS. For the removal of sulfides, a two-phase reactor is used in which concentrated sulfuric acid oxidizes aromatic and aliphatic sulfides present in a hydrocarbon solvent, generating sulfoxides and other sulfonated species. The polar oxidized species are extracted into the acid phase, effectively desulfurizing the hydrocarbon. A reaction scheme is proposed for this

  19. Evaluation of Various Cleaning Methods to Remove Bacillus Spores from Spacecraft Hardware Materials

    Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger

    2004-09-01

    A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm × 2.5 cm) were precleaned and inoculated with 5.8 × 103 cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.

  20. Laser paper cleaning: the method of cleaning historical books

    Zekou, Evangelini; Tsilikas, Ioannis; Chatzitheodoridis, Elias; Serafetinides, Alexander A.

    2016-01-01

    Conservation of cultural heritage treasures is the most important issue for transferring knowledge to the public through the next generation of students, academics, and researchers. Although this century is authenticating e-books and information by means of electronic text, still historical manuscripts as content as well as objects are the main original recourses of keeping a record of this transformation. The current work focuses on cleaning paper samples by the application of pulsed light, which is interventional. Experiments carried out using paper samples that are artificially colonized with Ulocladium chartarum. Paper is treated by Nd:YAG laser light. The available wavelength is 1064 nm, at various fluences, repetition rates and number of pulses. Two types of paper are stained with fungi colonies, which grow on substrates of clean paper, as well as on paper with ink text. The first type of paper is Whatman No.1056, which is closer to pure cellulose. The second type of paper is a page of a cultural heritage book published in 1926. Cleaning is performed using laser irradiation, thus defining the damage threshold of each sample. The treatment on paper Watman showed a yellowing, especially on areas with high concentration of fungi. The second sample was more durable to the exposure, performing the best results at higher fluences. Eventually, the paper samples are characterized, with optical microscopy and SEM/EDX analyses, prior to and after cleaning.

  1. Condenser performance monitoring and cleaning

    Walden, J.V.

    1998-01-01

    The main condenser at Ginna Station was retubed from admiralty brass to 316 stainless steel. A condenser performance monitoring spreadsheet was developed using EPRI guidelines after fouling was discovered. PEPSE computer models were used to determine the power loss and confirm the spreadsheet results. Cleaning of the condenser was performed using plastic scrubbers. Condenser performance improved dramatically following the cleaning. PEPSE, condenser spreadsheet performance, and actual observed plant data correlated well together. The fouling mechanism was determined to be a common lake bacteria and fungus growth which was combined with silt. Chlorination of the circulating water system at the allowable limits is keeping the biofouling under control

  2. Experimental investigation on cleaning of corroded ancient coins using a Nd:YAG laser

    Zhu, Huazhong; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua

    2017-05-01

    The objective of the work reported is to study experimentally on the removal of corrosion layer from the ancient coins using laser beam as the conservation tool. With the use of Q-switched Nd:YAG laser radiation at 1064 nm, dry laser cleaning, steam laser cleaning and chemical-assisted laser cleaning were used to find out a more suitable and efficient laser treatment for corrosion removal. Cleaning tests were performed on ancient Chinese coins. Experimental results shows that the dry laser cleaning was not successful at removing all types of corrosion crust. It was possible to remove the outer thicker layer of the corrosion products (typically known as patina), but failed on the thinner layer of cuprite. The steam laser cleaning could decrease the initial removal threshold and improve the removal efficiency especially for the oxidation with powdery structure. As for chemical-assisted laser treatment, the cleaning results demonstrate that the combination of laser and chemical reagent could provide a considerable improvement in corrosion removal compared with the conventional laser treatments. Most of the corrosion contaminant was stripped, even the cuprite layer. Moreover, no secondary pollution was formed on the cleaned surface. X-ray fluorescence was applied to determine the variation of composition of surface layer and bulk metal before and after the coins cleaned. It shows that all of the three laser treatments were efficient to reduce the chlorine concentration on the surface of the coins more than 75%.

  3. Liquid Metal Engineering and Technology. Volume 1

    1988-01-01

    These proceedings of the fourth international conference on liquid metal engineering and technology volume 1, are devided into 3 sections bearing on: - Apparatus and components for liquid metal (29 papers) - Liquid metal leaks, fires and fumes (10 papers) - Cleaning, decontamination, waste disposal (14 papers) [fr

  4. Cleaning Validation of Fermentation Tanks

    Salo, Satu; Friis, Alan; Wirtanen, Gun

    2008-01-01

    Reliable test methods for checking cleanliness are needed to evaluate and validate the cleaning process of fermentation tanks. Pilot scale tanks were used to test the applicability of various methods for this purpose. The methods found to be suitable for validation of the clenlinees were visula...

  5. Clean fuels from fossil sources

    Sanfilippo, D.

    2000-01-01

    Energy availability is determining to sustain the social development, but energy production involves environmental impacts at regional and global level. The central role of oil, natural gas, coal for energy supply will be kept for decades. The development of the engine-fuel combination to satisfy more stringent emissions limitations, is the challenge for an environmentally clean transportation system [it

  6. Cleaning Massive Sonar Point Clouds

    Arge, Lars Allan; Larsen, Kasper Green; Mølhave, Thomas

    2010-01-01

    We consider the problem of automatically cleaning massive sonar data point clouds, that is, the problem of automatically removing noisy points that for example appear as a result of scans of (shoals of) fish, multiple reflections, scanner self-reflections, refraction in gas bubbles, and so on. We...

  7. Clean coal initiatives in Indiana

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  8. Meeting the clean air demand

    Hocker, C.

    1991-01-01

    This article addresses the impacts to the emissions control industry and the future of small independent projects of the Clean Air Act. Topics discussed include technological and market niche of pollution control companies, risk reduction by owning and operating the emission control portion of the plant as a separate entity, the diversity of technologies, and legislative effects

  9. Discharge cleaning of carbon deposits

    Mozetic, M.; Vesel, A.; Drenik, A.

    2006-01-01

    Experimental results of discharge cleaning of carbon deposits are presented. Deposits were prepared by creating plasma in pure methane. The methane was cracked in RF discharge at the output power of 250 W. The resultant radicals were bonded to the wall of discharge vessel forming a thin film of hydrogenated black carbon with the thickness of about 200nm. The film was then cleaned in situ by oxygen plasma with the density of about 1x10 16 m -3 , electron temperature of 5 eV, neutral gas kinetic temperature of about 100 0 C and neutral atom density of 6x10 21 m -3 . The treatment time was 30 minutes. The efficiency of plasma cleaning was monitored by optical emission spectroscopy. As long as the wall was contaminated with carbon deposit, substantial emission of the CO molecules was detected. As the cleaning was in progress, the CO emission was decreasing and vanished after 30 minutes when the discharge vessel became free of any carbon. The results are explained by interaction of plasma radicals with carbon deposits. (author)

  10. Sociology: Clean-energy conservatism

    McCright, Aaron M.

    2017-03-01

    US conservatives receive a steady stream of anti-environmental messaging from Republican politicians. However, clean-energy conservatives sending strong counter-messages on energy issues could mobilize moderate conservatives to break away from the dominant right-wing defence of fossil fuels.

  11. Clean Energy Infrastructure Educational Initiative

    Hallinan, Kevin; Menart, James; Gilbert, Robert

    2012-08-31

    The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Master's program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for insuring curricular sharing between WSU and the University of Dayton. Finally, the grant, through its support of graduate students, and through cooperation with the largest utilities in SW Ohio enabled a region-wide evaluation of over 10,000 commercial building buildings in order to identify the priority buildings in the region for energy reduction. In each, the grant has achieved success. The main focus of Wright State was to continue the development of graduate education in renewable and clean energy. Wright State has done this in a number of ways. First and foremost this was done by continuing the development of the new Renewable and Clean Energy Master's Degree program at Wright State . Development tasks included: continuing development of courses for the Renewable and Clean Energy Master's Degree, increasing the student enrollment, and increasing renewable and clean energy research work. The grant has enabled development and/or improvement of 7 courses. Collectively, the University of Dayton and WSU offer perhaps the most comprehensive list of courses in the renewable and clean energy area in the country. Because of this development, enrollment at WSU has increased from 4 students to 23. Secondly, the grant has helped to support student research aimed in the renewable and clean energy program. The grant helped to solidify

  12. TOPICAL REVIEW Progress in cold roll bonding of metals

    Long Li, Kotobu Nagai and Fuxing Yin

    2008-01-01

    Full Text Available Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB, as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for fcc structure metals to bond compared with bcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described.

  13. Chemical cleaning of Dresden Unit 1: Final report

    1986-05-01

    The introduction of NS-1 solvent into the full primary system of Dresden Unit-1 nuclear power reactor on September 12, 1984, represented the culmination of several years of development, testing, planning, and construction. The requirement was to dissolve the highly radioactive deposits of primarily nickel ferrite without any corrosion which might compromise the reactor systems. During the actual cleaning with the NS-1 solvent, the chemical condition of the circulating solvent was measured. Iron, nickel, and radioactive cobalt all dissolved smoothly. The amount of copper in solution decreased in concentration, verifying expectations that metallic copper would plate on to clean metal surfaces. A special rinse formulation was employed after the primary cleaning steps and the ''lost'' copper was thus redissolved and removed from the system. After the cleaning was complete and the reactor had been refilled with pure water, radiation levels were measured. The most accurate of these measurements gave decontamination factors ranging well above 100, which indicated a significant removal of the radioactive deposits, and demonstrated the success of this project. Treatment of the radioactive liquid wastes from this operation required volume reduction and water purification. The primary method of processing the spent cleaning solvent and rinse water was evaporation. The resulting concentrate has been stored as a liquid, awaiting solidification to allow burial at a designated site. Water which was separated during evaporation, along with the dilute rinses, was processed by various chemical means, reevaporated, treated with activated carbon, and/or demineralized before its radionuclide and chemical content was low enough to allow it to be returned to Dresden Station for treatment or disposal. 60 figs., 31 tabs

  14. Benchmarks of Global Clean Energy Manufacturing

    Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engel-Cox, Jill [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The Clean Energy Manufacturing Analysis Center (CEMAC), sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Benchmarks of Global Clean Energy Manufacturing sheds light on several fundamental questions about the global clean technology manufacturing enterprise: How does clean energy technology manufacturing impact national economies? What are the economic opportunities across the manufacturing supply chain? What are the global dynamics of clean energy technology manufacturing?

  15. Development of clean chemical mechanical polishing systems; Clean CMP system

    Tsujimura, M.; Hosokawa, M. [Ebara Corp., Tokyo (Japan)

    1998-10-20

    Described herein are clean chemical mechanical polishing (CMP) systems developed by Ebara. A CMP system needs advanced peripheral techniques, in addition to those for grinding adopted by the conventional system, in order to fully exhibit its inherent functions. An integrated design concept is essential for the CMP steps, including slurry supplying, polishing, washing, process controlling and waste fluid treatment. The Ebara has adopted a standard concept `Clean CMP, dry-in and dry-out of wafers,` and provided world`s highest grades of techniques for inter-layer insulating film, shallow trench isolation, plug and wiring. The head for the polishing module is specially designed by FEM, to improve homogeneity of wafers from the center to edges. The dresser is also specially designed, to improve pad surface topolody after dressing. A slurry dipsersing method is developed to reduce slurry consumption. Various washing modules, designed to have the same external shape, can be allocated to various functions. 10 figs.

  16. Clean vehicles as an enabler for a clean electricity grid

    Coignard, Jonathan; Saxena, Samveg; Greenblatt, Jeffery; Wang, Dai

    2018-05-01

    California has issued ambitious targets to decarbonize transportation through the deployment of electric vehicles (EVs), and to decarbonize the electricity grid through the expansion of both renewable generation and energy storage. These parallel efforts can provide an untapped synergistic opportunity for clean transportation to be an enabler for a clean electricity grid. To quantify this potential, we forecast the hourly system-wide balancing problems arising out to 2025 as more renewables are deployed and load continues to grow. We then quantify the system-wide balancing benefits from EVs modulating the charging or discharging of their batteries to mitigate renewable intermittency, without compromising the mobility needs of drivers. Our results show that with its EV deployment target and with only one-way charging control of EVs, California can achieve much of the same benefit of its Storage Mandate for mitigating renewable intermittency, but at a small fraction of the cost. Moreover, EVs provide many times these benefits if two-way charging control becomes widely available. Thus, EVs support the state’s renewable integration targets while avoiding much of the tremendous capital investment of stationary storage that can instead be applied towards further deployment of clean vehicles.

  17. Technology for cleaning of Pb-Bi adhering to steel (1). Basic tests

    Saito, Shigeru; Sasa, Toshinobu; Umeno, Makoto; Kurata, Yuji; Kikuchi, Kenji; Futakawa, Masatoshi

    2004-12-01

    The accelerator driven system (ADS) is proposed to transmute minor actinides (MA) in high-level waste from spent fuels of nuclear power reactors. Liquid Pb-Bi alloy is a candidate material for spallation target and coolant of ADS. Pb-Bi cleaning technology is required to reduce radiation exposure during maintenance service and to decontaminate replaced components. In this study, three cleaning methods were tested; silicon oil cleaning at 170degC, mixture of acetic acid and nitric acid cleaning. Specimens were prepared by immersion in melted Pb-Bi. After silicon oil tests, most of Pb-Bi remained on the surface of the specimens. It was found that blushing was needed to remove Pb-Bi effectively. On the other hands, Pb-Bi was easily dissolved and almost removed in the mixed acid and nitric acid. Silicon oil cleaning did not affect on base metals. The surface of base metals was slightly blacked after mixed acid cleaning. F82H base metals were corroded by nitric acid. (author)

  18. Chemical cleaning specification: few tube test model

    Hampton, L.V.; Simpson, J.L.

    1979-09-01

    The specification is for the waterside chemical cleaning of the 2 1/4 Cr - 1 Mo steel steam generator tubes. It describes the reagents and conditions for post-chemical cleaning passivation of the evaporator tubes

  19. Clean Cities Now Vol. 17, No. 1

    None

    2013-05-24

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  20. Clean Cities Now Vol. 16.1

    None

    2012-05-01

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  1. Pyrolized biochar for heavy metal adsorption

    Removal of copper and lead metal ions from water using pyrolized plant materials. Method can be used to develop a low cost point-of-use device for cleaning contaminated water. This dataset is associated with the following publication:DeMessie, B., E. Sahle-Demessie , and G. Sorial. Cleaning Water Contaminated With Heavy Metal Ions Using Pyrolyzed Banana Peel Adsorbents. Separation Science and Technology. Marcel Dekker Incorporated, New York, NY, USA, 50(16): 2448-2457, (2015).

  2. Private Exploration Primitives for Data Cleaning

    Ge, Chang; Ilyas, Ihab F.; He, Xi; Machanavajjhala, Ashwin

    2017-01-01

    Data cleaning, or the process of detecting and repairing inaccurate or corrupt records in the data, is inherently human-driven. State of the art systems assume cleaning experts can access the data (or a sample of it) to tune the cleaning process. However, in many cases, privacy constraints disallow unfettered access to the data. To address this challenge, we observe and provide empirical evidence that data cleaning can be achieved without access to the sensitive data, but with access to a (no...

  3. Manufacturing of NAA laboratory clean room

    Suwoto; Hasibuan, Djaruddin

    2001-01-01

    The ''NAA laboratory clean room'' has been built in the Reactor Serba Guna G.A. Siwabessy building. The erection of ''AAN laboratory clean room'' doing by started of preparation of the ''manufacturing procedure'' refer to ''Design and manufacturing neutron activation analysis clean room laboratory''. Manufacturing process and erection doing refer to procedures makes. By providing of the ''AAN laboratory clean room'' can be cocluded that the research activity and the user sevises in P2TRR well meet to be done

  4. Southwest Regional Clean Energy Incubation Initiative (SRCEII)

    Webber, Michael [Univ. of Texas, Austin, TX (United States)

    2017-10-31

    The Austin Technology Incubator’s (ATI’s) Clean Energy Incubator at the University of Texas at Austin (ATI-CEI) utilized the National Incubator Initiative for Clean Energy (NIICE) funding to establish the Southwest Regional Clean Energy Incubation Initiative, composed of clean energy incubators from The University of Texas at Austin (UT-Austin), The University of Texas at El Paso (UTEP), The University of Texas at San Antonio (UTSA), and Texas A&M University (TAMU).

  5. Disposal and handling of nuclear steam generator chemical cleaning wastes

    Larrick, A.P.; Schneidmiller, D.

    1978-01-01

    A large number of pressurized water nuclear reactor electrical generating plants have experienced a corrosion-related problem with their steam generators known as denting. Denting is a mechanical deformation of the steam generator tubes that occurs at the tube support plates. Corrosion of the tube support plates occurs within the annuli through which the tubes pass and the resulting corrosion oxides, which are larger in volume than the original metal, compress and deform the tubes. In some cases, the induced stresses have been severe enough to cause tube and/or support cracking. The problem was so severe at the Turkey Point and Surrey plants that the tubing is being replaced. For less severe cases, chemical cleaning of the oxides, and other materials which deposit in the annuli from the water, is being considered. A Department of Energy-sponsored program was conducted by Consolidated Edison Co. of New York which identified several suitable cleaning solvents and led to in-plant chemical cleaning pilot demonstrations in the Indian Point Unit 1 steam generators. Current programs to improve the technology are being conducted by the Electric Power Research Institute, and the three PWR NSSS vendors with the assistance of numerous consultants, vendors, and laboratories. These programs are expected to result in more effective, less corrosive solvents. However, after a chemical cleaning is conducted, a large problem still remains- that of disposing of the spent wastes. The paper summarizes some of the methods currently available for handling and disposal of the wastes

  6. ABORT GAP CLEANING IN RHIC

    DREES, A.; AHRENS, L.; III FLILLER, R.; GASSNER, D.; MCINTYRE, G.T.; MICHNOFF, R.; TRBOJEVIC, D.

    2002-01-01

    During the RHIC Au-run in 2001 the 200 MHz storage cavity system was used for the first time. The rebucketing procedure caused significant beam debunching in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam could account for approximately 30%-40% of the total beam intensity. Some of it will be in the abort gap. In order to minimize the risk of magnet quenching due to uncontrolled beam losses at the time of a beam dump, a combination of a fast transverse kicker and copper collimators were used to clean the abort gap. This report gives an overview of the gap cleaning procedure and the achieved performance

  7. Clean Air Act. Revision 5

    1994-02-15

    This Reference Book contains a current copy of the Clean Air Act, as amended, and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. This Reference Book has been completely revised and is current through February 15, 1994.

  8. Clean Energy Solutions Center Services (Arabic Translation)

    2016-03-01

    This is an Arabic translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  9. Clean Cities Now, Vol. 18, No. 2

    None

    2015-01-19

    This is version 18.2 of Clean Cities Now, the official biannual newsletter of the Clean Cities program. Clean Cities is an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  10. Clean Energy Solutions Center Services (Vietnamese Translation)

    2016-03-01

    This is a Vietnamese translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  11. Clean Energy Solutions Center Services (Portuguese Translation)

    2016-03-01

    This is a Portuguese translation of the Clean Energy Solutions Center Services fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  12. Clean Energy Solutions Center Services (Fact Sheet)

    2014-04-01

    The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  13. 49 CFR 174.615 - Cleaning cars.

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cleaning cars. 174.615 Section 174.615... Requirements for Division 6.1 (Poisonous) Materials § 174.615 Cleaning cars. (a) [Reserved] (b) After Division 6.1 (poisonous) materials are unloaded from a rail car, that car must be thoroughly cleaned unless...

  14. Clean Energy Solutions Center Services (French Translation)

    2016-03-01

    This is a French translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  15. 7 CFR 51.2083 - Clean.

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Clean. 51.2083 Section 51.2083 Agriculture Regulations... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Almonds in the Shell Definitions § 51.2083 Clean. Clean means that the shell is...

  16. Evaporation and wet oxidation of steam generator cleaning solutions

    Baldwin, P.N. Jr.

    1996-01-01

    Ethylene diamine tetra acetic acid (EDTA) is used in metal-cleaning formulations. Usually the form of the EDTA used is the tetra ammonium salt. When these powerful cleaning solutions are used in steam generators, they attract the key metals of interest--iron and copper. A reduction in the volume of these cleaners and EDTA destruction is required to meet waste management and disposal standards. One method of volume reduction is described: concentration by evaporation. Once volume is reduced, the liquid waste can then be further volume reduced and treated for EDTA content through the use of wet oxidation. The effect of this process on the total organic carbon (TOC) in the form of EDTA contained in the copper as well as the iron spent cleaning solutions is reviewed, including regression analysis of selected benchmark and production data. A regressive analysis is made of the relationship between the EDTA and the TOC analyzed in the wet-oxidation batch residuals as well as the summary effects of hydrogen peroxide, sulfuric acid, and reaction time on the percentage of TOC destroyed

  17. Electric utilities and clean air

    Evans, J.E.

    1991-01-01

    This paper reports that electricity has become essential to American life. Approximately 70 percent of the nation's electricity is produced by burning fossil fuels, with coal, the most abundant, domestically-available, extracted natural resource, providing over 55 percent of the total electricity consumed. Emissions resulting from the burning of fossil fuels are regulated by both the federal and state governments. In 1970, Congress passed the comprehensive Clean Air Act which established a national program to protect the nation's air quality. In 1977, additional strict regulations were passed, which mandated even more stringent emission controls for factories, power plants and auto emissions. Prior to passage of the Clean Air Act of 1990, utilities were required to adhere to three major types of clean air regulations: National Ambient Air Quality Standards (NAAQS), New Source Performance Standards (NSPS), and Prevention of Significant Deterioration (PSD) review. NAAQS established limits for the maximum concentration levels of specific air pollutants in the ambient atmosphere. For example, for an area to be in compliance with the NAAQS for sulfur dioxide (SO 2 ), its annual average SO 2 concentration must not exceed 0.03 ppm of SO 2 and a peak 24 hour level of 0.14 ppm of SO 2 must not be exceeded more than once per year

  18. Establishment of a clean chemistry laboratory at JAERI. Clean laboratory for environmental analysis and research (CLEAR)

    Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    2003-02-01

    The JAERI has established a facility with a cleanroom: the Clean Laboratory for Environmental Analysis and Research (CLEAR). This report is an overview of the design, construction and performance evaluation of the CLEAR in the initial stage of the laboratory operation in June 2001. The CLEAR is a facility to be used for analyses of ultra trace amounts of nuclear materials in environmental samples for the safeguards, for the CTBT verification and for researches on environmental sciences. One of the special features of the CLEAR is that it meets double requirements of a cleanroom and for handling of nuclear materials. As another feature of the CLEAR, much attention was paid to the construction materials of the cleanroom for trace analysis of metal elements using considerable amounts of corrosive acids. The air conditioning and purification system, specially designed experimental equipment to provide clean work surfaces, utilities and safety systems are also demonstrated. The potential contamination from the completed cleanroom atmosphere during the analytical procedure was evaluated. It can be concluded that the CLEAR has provided a suitable condition for reliable analysis of ultra trace amounts of nuclear materials and other heavy elements in environmental samples. (author)

  19. Chicago Clean Air, Clean Water Project: Environmental Monitoring for a Healthy, Sustainable Urban Future

    none, none; Tuchman, Nancy [Institute of Environmental Sustainability (IES), Chicago, IL (United States)

    2015-11-11

    The U.S. Department of Energy awarded Loyola University Chicago and the Institute of Environmental Sustainability (IES) $486,000.00 for the proposal entitled “Chicago clean air, clean water project: Environmental monitoring for a healthy, sustainable urban future.” The project supported the purchase of analytical instruments for the development of an environmental analytical laboratory. The analytical laboratory is designed to support the testing of field water and soil samples for nutrients, industrial pollutants, heavy metals, and agricultural toxins, with special emphasis on testing Chicago regional soils and water affected by coal-based industry. Since the award was made in 2010, the IES has been launched (fall 2013), and the IES acquired a new state-of-the-art research and education facility on Loyola University Chicago’s Lakeshore campus. Two labs were included in the research and education facility. The second floor lab is the Ecology Laboratory where lab experiments and analyses are conducted on soil, plant, and water samples. The third floor lab is the Environmental Toxicology Lab where lab experiments on environmental toxins are conducted, as well as analytical tests conducted on water, soil, and plants. On the south end of the Environmental Toxicology Lab is the analytical instrumentation collection purchased from the present DOE grant, which is overseen by a full time Analytical Chemist (hired January 2016), who maintains the instruments, conducts analyses on samples, and helps to train faculty and undergraduate and graduate student researchers.

  20. Chemical cleaning of UK AGR boilers

    Rudge, A.; Turner, P.; Ghosh, A.; Clary, W.; Tice, D.

    2002-01-01

    For the first time in their operational lives, UK advanced gas-cooled reactor once-through boilers have been chemically cleaned. Chemical cleaning was necessary to avoid lost output resulting from boiler pressure drops, which had been increasing for a number of years. Chemical cleaning of these boilers presents a number of unique difficulties. These include lack of access to the boilers, highly sensitised 316H superheater sections that cannot be excluded from the cleaning flow path, relatively thin boiler tube walls and an intolerance to boiler tube failure because of the role of the boilers in nuclear decay heat removal. The difficulties were overcome by implementing the clean in a staged manner, starting with an extensive materials testwork programme to select and then to substantiate the cleaning process. The selected process was based on ammoniated citric acid plus formic acid for the principal acid cleaning stage. Materials testwork was followed by an in-plant trial clean of six boiler tubes, further materials testwork and the clean of a boiler tube in a full-scale test rig. An overview is presented of the work that was carried out to demonstrate that the clean could be carried out safely, effectively and without leading to unacceptable corrosion losses. Full-scale chemical cleaning was implemented by using as much of the existing plant as possible. Careful control and monitoring was employed to ensure that the cleaning was implemented according to the specified design, thus ensuring that a safe and effective clean was carried out. Full-scale cleaning has resulted in significant boiler pressure drop recovery, even though the iron burden was relatively low and cleaning was completed in a short time. (orig.)

  1. L-Reactor 186-basin cleaning alternatives

    Turcotte, M.D.S.

    1983-01-01

    Operation of L Reactor will necessitate annual cleaning of the L Area 186 basins. Alternatives are presented for sediment discharge due to 186-basin cleaning activities as a basis for choosing the optimal cleaning method. Current cleaning activities (i.e. removal of accumulated sediments) for the P, C and K-Area 186 basins result in suspended solids concentrations in the effluent waters above the NPDES limits, requiring an exemption from the NPDES permit for these short-term releases. The objective of mitigating the 186-basin cleaning activities is to decrease the suspended solids concentrations to within permit limits while continuing satisfactory operation of the basins

  2. Industrial use of coal and clean coal technology

    Leibson, I; Plante, J J.M.

    1990-06-01

    This report builds upon two reports published in 1988, namely {ital The use of Coal in the Industrial, Commercial, Residential and Transportation Sectors} and {ital Innovative Clean Coal Technology Deployment}, and provides more specific recommendations pertaining to coal use in the US industrial sector. The first chapter addresses industrial boilers which are common to many industrial users. The subsequent nine chapters cover the following: coke, iron and steel industries; aluminium and other metals; glass, brick, ceramic, and gypsum industries; cement and lime industries; pulp and paper industry; food and kindred products; durable goods industry; textile industry; refining and chemical industry. In addition, appendices supporting the contents of the study are provided. Each chapter covers the following topics as applicable: energy overview of the industry sector being discussed; basic processes; foreign experience; impediments to coal use; incentives that could make coal a fuel of choice; current and projected use of clean coal technology; identification of coal technology needs; conclusions; recommendations.

  3. Nanometer-scale lithography on microscopically clean graphene

    van Dorp, W. F.; Zhang, X.; Feringa, B. L.

    2011-01-01

    Focused-electron-beam-induced deposition, or FEBID, enables the fabrication of patterns with sub-10 nm resolution. The initial stages of metal deposition by FEBID are still not fundamentally well understood. For these investigations, graphene, a one-atom-thick sheet of carbon atoms in a hexagonal...... lattice, is ideal as the substrate for FEBID writing. In this paper, we have used exfoliated few-layer graphene as a support to study the early growth phase of focused-electron-beam-induced deposition and to write patterns with dimensions between 0.6 and 5 nm. The results obtained here are compared...... to the deposition behavior on amorphous materials. Prior to the deposition experiment, the few-layer graphene was cleaned. Typically, it is observed in electron microscope images that areas of microscopically clean graphene are surrounded by areas with amorphous material. We present a method to remove the amorphous...

  4. Hot fuel gas dedusting after sorbent-based gas cleaning

    NONE

    1999-07-01

    Advanced power generation technologies, such as Air Blown Gasification Cycle (ABGC), require gas cleaning at high temperatures in order to meet environmental standards and to achieve high thermal efficiencies. The primary hot gas filtration process, which removes particulates from the cooled raw fuel gas at up to 600{degree}C is the first stage of gas cleaning prior to desulphurization and ammonia removal processes. The dust concentration in the fuel gas downstream of the sorbent processes would be much lower than for the hot gas filtration stage and would have a lower sulphur content and possibly reduced chlorine concentration. The main aim of this project is to define the requirements for a hot gas filter for dedusting fuel gas under these conditions, and to identify a substantially simpler and more cost effective solution using ceramic or metal barrier filters.

  5. Apparatuses, Systems and Methods for Cleaning Photovoltaic Devices

    Eitelhuber, Georg

    2013-01-01

    Embodiments of solar panel cleaning apparatuses, solar panel cleaning systems, and solar panel cleaning methods are disclosed. In certain embodiments, the disclosed solar panel cleaning apparatuses, systems and methods do may not require any water

  6. IDEA Clean Energy Application Center

    Thornton, Robert P. [International District Energy Association, Westborough, MA (United States)

    2013-12-20

    The DOE Clean Energy Application Centers were launched with a goal of focusing on important aspects of our nation’s energy supply including Efficiency, Reliability and Resiliency. Clean Energy solutions based on Combined Heat & Power (CHP), District Energy and Waste Heat Recovery are at the core of ensuring a reliable and efficient energy infrastructure for campuses, communities, and industry and public enterprises across the country. IDEA members which include colleges and universities, hospitals, airports, downtown utilities as well as manufacturers, suppliers and service providers have long-standing expertise in the planning, design, construction and operations of Clean Energy systems. They represent an established base of successful projects and systems at scale and serve important and critical energy loads. They also offer experience, lessons learned and best practices which are of immense value to the sustained growth of the Clean Energy sector. IDEA has been able to leverage the funds from the project award to raise the visibility, improve the understanding and increase deployment CHP, District Energy and Waste Heat Recovery solutions across the regions of our nation, in collaboration with the regional CEAC’s. On August 30, 2012, President Obama signed an Executive Order to accelerate investments in industrial energy efficiency (EE), including CHP and set a national goal of 40 GW of new CHP installation over the next decade IDEA is pleased to have been able to support this Executive Order in a variety of ways including raising awareness of the goal through educational workshops and Conferences and recognizing the installation of large scale CHP and district energy systems. A supporting key area of collaboration has involved IDEA providing technical assistance on District Energy/CHP project screenings and feasibility to the CEAC’s for multi building, multi-use projects. The award was instrumental in the development of a first-order screening

  7. Clean nuclear power (2. part)

    Rocherolles, R.

    1998-01-01

    The 450 nuclear power plants which produce 24% of world electricity do not generate greenhouse gas effects, but 8,000 tonnes per year of irradiated, radioactive fuel. The first article which was published in the July-August 1997 issue of this journal, described the composition and management of these fuels. This article wish to show the advantage of 'advanced re-processing', which would separate fission products from actinides, in order to incinerate them separately in dedicated fuels and reactors, which, from an ecological point of view, seems more efficient than burying them underground in deep, geological layers. To rid the planet of waste which is continuing to build up, the first step is to build 'incinerators' which will eliminate fission products by slow neutron assisted neutronic capture, and actinides by fast neutron assisted fission. Various projects have been set up, in particular, in Los Alamos, Japan and the CERN. The Carlo Rubbia hybrid machine operating on the well-known thorium cycle is the most advanced project. An incinerator connected up to standard PWR reactor produces no actinide, and reduces the existing stock of plutonium. However, the proper solution, obviously, is to no longer produce waste along with power; second generation nuclear fission will do this. The CERN team bas studied a clean reactor, producing practically no actinides, or fission products, more or less. Thus, the solution to the problem of waste is at hand, and nuclear power will be cleaner that all other types of power. The world market opening up to clean nuclear power is about 1,300 Gigawatts, or 1,300 plants of 1,000 Megawatts. Remarkable progress is taking place under our very eyes; soon we will have clean power in sufficient quantities, at a lower cost than that of other forms of power. (authors)

  8. Advances in ultrasonic fuel cleaning

    Blok, J.; Frattini, P.; Moser, T.

    2002-01-01

    The economics of electric generation is requiring PWR plant operators to consider higher fuel duty and longer cycles. As a result, sub-cooled nucleate boiling is now an accepted occurrence in the upper spans of aggressively driven PWR cores. Thermodynamic and hydraulic factors determine that the boiling surfaces of the fuel favor deposition of corrosion products. Thus, the deposits on high-duty fuel tend to be axially distributed in an inhomogeneous manner. Axial offset anomaly (AOA) is the result of axially non-homogeneous distribution of boron compounds in these axially variable fuel deposits. Besides their axial asymmetry, fuel deposits in boiling cores tend to be qualitatively different from deposits on non-boiling fuel. Thus, deposits on moderate-duty PWR fuel are generally iron rich, predominating in nickel ferrites. Deposits on cores with high boiling duty, on the other hand, tend to be rich in nickel, with sizeable fractions of NiO or elemental nickel. Other unexpected compounds such as m-ZrO 2 and Ni-Fe oxy-borates have been found in significant quantity in deposits on boiling cores. This paper describes the ultrasonic fuel cleaning technology developed by EPRI. Data will be presented to confirm that the method is effective for removing fuel deposits from both high-duty and normal-duty fuel. The report will describe full-core fuel cleaning using the EPRI technology for Callaway Cycle 12 reload fuel. The favorable impact of fuel cleaning on Cycle 12 AOA performance will also be presented. (authors)

  9. CLEAN CHEMICAL SYNTHESIS IN WATER

    Newer green chemistry approach to accomplish chemical synthesis in water is summarized. Recent global developments pertaining to C-C bond forming reactions using metallic reagents and direct use of the renewable materials such as carbohydrates without derivatization are described...

  10. Cleaning Insertions and Collimation Challenges

    Redaelli, S.; Appleby, R. B.; Bertarelli, A.; Bruce, R.; Jowett, J. M.; Lechner, A.; Losito, R.

    High-performance collimation systems are essential for operating efficiently modern hadron machine with large beam intensities. In particular, at the LHC the collimation system ensures a clean disposal of beam halos in the superconducting environment. The challenges of the HL-LHC study pose various demanding requests for beam collimation. In this paper we review the present collimation system and its performance during the LHC Run 1 in 2010-2013. Various collimation solutions under study to address the HL-LHC requirements are then reviewed, identifying the main upgrade baseline and pointing out advanced collimation concept for further enhancement of the performance.

  11. Cleaning the Diesel Engine Emissions

    Christensen, Thomas Budde

    This paper examines how technologies for cleaning of diesel emission from road vehicles can be supported by facilitating a technology push in the Danish automotive emission control industry. The European commission is at present preparing legislation for the euro 5 emission standard (to be enforced...... in 2010). The standard is expected to include an 80% reduction of the maximum particulate emissions from diesel cars. The fulfillment of this requirement entails development and production of particulate filters for diesel cars and trucks. Theoretically the paper suggests a rethinking of public industry...

  12. Method of continuously cleaning condensers

    Tomita, Akira; Takahashi, Sankichi.

    1982-01-01

    Purpose: To prevent marine livings from depositing to the inside of ball recycling pipeways. Method: Copper electrodes are provided to the downstream of a sponge ball collector in a sponge ball recycling pipeways for cleaning through the cooling pipes of a condenser. Electrical current is supplied by way of a variable resister to the electrodes and copper ions resulted from the dissolution of the electrodes are fed in the pipes to kill the marine livings such as barnacles and prevent the marine livings from depositing to the inside of the sponge ball recycling pipeways. (Seki, T.)

  13. Adsorption of simple molecules on clean metal surfaces

    Na Lamphun, O.-A.

    1980-06-01

    The adsorption of nitric oxide, oxygen, krypton and xenon on evaporated tungsten, nickel and iron films is studied. The theoretical and experimental aspects of adsorption are reviewed, a preliminary study of adsorption by the volumetric method is presented, surface potential and sticking probability studies of adsorption using ion gauges are investigated and an analysis of residual gases, sticking probability and surface potential studies using quadrupole mass spectrometry, given. (author)

  14. Laser-assisted surface cleaning of metallic components

    DOI: 10.1007/s12043-013-0665-6; ePublication: 9 February 2014. Abstract. Removal of a thin .... During the experiment the laser was operated in .... on an optical-grade LiF slab with no absorption over the entire range of wavelengths used.

  15. Laser induced damage threshold on metallic surfaces during laser cleaning

    Labuschagne, K

    2005-07-01

    Full Text Available laser paint removal. Laser induced damage on 316L stainless steel was studied, with the target subjected to single and multiple pulse irradiations using a Q-switched Nd:YAG, with fluences between 0.15 and 11.8 J/cm2. Several different damage morphologies...

  16. TECHNOLOGY OF REVERSE-BLAST CORROSION CLEANING OF STEEL SHEETS PRIOR TO LASER CUTTING

    A. N. Zguk

    2017-01-01

    Full Text Available Quality of surface cleaning against corrosion influences on efficiency in realization of a number of technological processes. While using bentonite clays in power fluid reverse-blast cleaning ensures formation of anticorrosion protective coating with light absorbing properties on the cleaned surface and prevents formation of the repeated corrosion. The paper presents results of the investigations pertaining to influence of reverse-blast cleaning parameters of steel sheets on quality of the cleaned surface prior to laser cutting. Processing conditions, applied compositions of power fluid and also properties of the protective film coatings on the cleaned surface have been given in the paper. The paper considers topography, morphology and chemical composition of the given coating while applying complex metal micrographic, X-ray diffraction and electronic and microscopic investigations. A complex of laser cutting (refer to gas lasers with output continuous capacity of 2.5/4.0 kW has been applied for experimental works to evaluate influence of the formed surface quality on efficiency of laser cutting process. Specimens having dimension 120×120 mm, made of steel Ст3пс, with thickness from 3 to 10 mm have been prepared for the experiments. An analysis has shown that the application of reverse-blast cleaning ensures higher speed in laser cutting by a mean of 10–20 %. The investigations have made it possible to determine optimum cleaning modes: distance from a nozzle to the surface to be cleaned, jet velocity, pressure. It has been revealed that after drying of the specimens processed by power fluid based on water with concentrations of bentonite clay and calcined soda a protective film coating with thickness of some 5–7 µm has been formed on the whole cleaned specimen surfaces. Chemical base of the coating has been formed by the elements which are included in the composition of bentonite clay being the basic component of the power fluid. 

  17. Appalachian clean coal technology consortium

    Kutz, K.; Yoon, Roe-Hoan

    1995-01-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A ampersand E firms working in the Appalachian coal fields. This approach is consistent with President Clinton's initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force

  18. Appalachian clean coal technology consortium

    Kutz, K.; Yoon, Roe-Hoan [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A&E firms working in the Appalachian coal fields. This approach is consistent with President Clinton`s initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force.

  19. Chemical cleaning of AGR boilers

    Moore, S.V.; Moore, W.; Rantell, A.

    1978-01-01

    AGR boilers are likely to require post service chemical cleaning to remove accumulated oxides at intervals of 15 - 35 kh. The need to clean will be based on an assessment of such factors as the development of flow imbalances through parallel tubes induced by the formation of rough oxide surfaces, an increasing risk of localised corrosion as the growth of porous oxides proceeds and the risk of tube blockage caused by the exfoliation of steam-grown oxides. The study has shown what heterogeneous multilayer oxides possessing a range of physical and chemical properties form on the alloy steels. They include porous and compact magnetites, chromium spinels and sesquioxide. Ammoniated citric acid has been shown to remove deposited and water-grown magnetites from the carbon and alloy steels but will not necessarily remove the substituted spinels grown on the alloy steels or the potentially spalling steam-grown magnetite on the A1SI 316 superheater. Citric acid supplemented with the reducing agent glyoxal completely removes all oxides from the boiler except the protective inner spinel formed on the 316. Removal of the spinels and compact magnetites occurs more by undercutting and physical detachment than by the dissolution. (author)

  20. Clean Coal Program Research Activities

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  1. Analysis of selective laser cleaning of patina on bronze coins

    Buccolieri, G; Nassisi, V; Castellano, A; Di Giulio, M; Giuffreda, E; Delle Side, D; Velardi, L; Torrisi, L; Buccolieri, A

    2014-01-01

    The patina, is the result of a large number of chemical, electrochemical and physical processes which occur spontaneously during interaction of metal surfaces with the environment. In this work we want to analyze and remove the patina in artefacts, exposed to atmosphere for various decades. Here, experimental results about the laser cleaning of bronze coins by KrF (248 nm) and Nd:YAG (532 nm) lasers are reported. Both laser wavelengths were efficient to reduce the chlorine concentration on the surface of the coins more than 80 %, as demonstrated by Energy Dispersive X-Ray Fluorescence analyses.

  2. Vacuum system and cleaning techniques in the FTU machines

    Alessandrini, C.; Apicella, M.L.; Ferro, C.

    1988-01-01

    FTU (Frascati Tokamak Upgrade) is a high magnetic field (8T) tokamak under construction at the Frascati Energy Research Center (ENEA). Its vacuum systems has been already manifactured and is presently being assembled. It consist of an all metallic fully welded vessel, pumped by six turbomolecular pumps. The vacuum system has been dimensioned to allow a base pressure lower than 2.6 x 10 -6 Pa. The paper reports the design philosophy of the vacuum system. The results of the cleaning techniques performed on a 1:1 scale toroidal sector of FTU are also presented and discussed

  3. Evaluation of Surface Cleaning Procedures for CTGS Substrates for SAW Technology with XPS

    Erik Brachmann

    2017-11-01

    Full Text Available A highly efficient and reproducible cleaning procedure of piezoelectric substrates is essential in surface acoustic waves (SAW technology to fabricate high-quality SAW devices, especially for new applications such SAW sensors wherein new materials for piezoelectric substrates and interdigital transducers are used. Therefore, the development and critical evaluation of cleaning procedures for each material system that is under consideration becomes crucial. Contaminants like particles or the presence of organic/inorganic material on the substrate can dramatically influence and alter the properties of the thin film substrate composite, such as wettability, film adhesion, film texture, and so on. In this article, focus is given to different cleaning processes like SC-1 and SC-2, UV-ozone treatment, as well as cleaning by first-contact polymer Opticlean, which are applied for removal of contaminants from the piezoelectric substrate Ca 3 TaGa 3 Si 2 O 14 . By means of X-ray photoelectron spectroscopy, the presence of the most critical contaminants such as carbon, sodium, and iron removed through different cleaning procedures were studied and significant differences were observed between the outcomes of these procedures. Based on these results, a two-step cleaning process, combining SC-1 at a reduced temperature at 30 ∘ C instead of 80 ∘ C and a subsequent UV-ozone cleaning directly prior to deposition of the metallization, is suggested to achieve the lowest residual contamination level.

  4. National Clean Fleets Partnership (Fact Sheet)

    2012-01-01

    Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with local stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.

  5. Metallizing of machinable glass ceramic

    Seigal, P.K.

    1976-02-01

    A satisfactory technique has been developed for metallizing Corning (Code 9658) machinable glass ceramic for brazing. Analyses of several bonding materials suitable for metallizing were made using microprobe analysis, optical metallography, and tensile strength tests. The effect of different cleaning techniques on the microstructure and the effect of various firing temperatures on the bonding interface were also investigated. A nickel paste, used for thick-film application, has been applied to obtain braze joints with strength in excess of 2000 psi

  6. Heavy metals in trees and energy crops - a literature review

    Johnsson, Lars

    1995-12-01

    This literature review deals with the use of energy crops for cleaning of soils from heavy metals. It also deals with the use of low accumulating energy crops to be used on strongly contaminated soils where a low uptake of heavy metals is preferred, for example on mining deposits. In addition to the efforts to reduce the sources for heavy metal contamination of soils (for example commercial fertilizers and atmospheric deposition) the uptake and removal of heavy metals from the soils by the use of energy crops have recently been discussed as a method for cleaning of soils. Species from the Salix family (willow) have a greater potential for accumulating heavy metals than cereals which makes them interesting for this purpose. The Salix family consists of species with a great genetic variation. This will probably make it possible to find or develop clones with different characteristics suitable for cleaning of contaminated soils as well as for plant covering of soils that are extremely contaminated by heavy metals. In the former case an accumulation of heavy metals in the harvested parts, the shoots, is preferred. In the later case clones that do not accumulate heavy metals and maybe also clones with only root accumulation are preferred. There are also Salix clones with a specific accumulation of heavy metals which makes it possible to clean soils from a toxic metal and at the same time avoid the risk for deficiency of essential metals, for example Zn. The greatest potential to clean soils by the use of energy crops, is when the contamination levels in the soils are low, the areas to clean are large and when the time needed for cleaning is of minor importance. The most suitable soils are those where the metal contamination is located in the top soil layer and where the heavy metal concentrations in the sub soil layer are still low. 58 refs, 8 tabs, 1 fig

  7. National Clean Fleets Partnership (Fact Sheet)

    None, None

    2014-01-01

    Clean Cities' National Clean Fleets Partnership establishes strategic alliances with large fleets to help them explore and adopt alternative fuels and fuel economy measures to cut petroleum use. The initiative leverages the strength of nearly 100 Clean Cities coalitions, nearly 18,000 stakeholders, and more than 20 years of experience. It provides fleets with top-level support, technical assistance, robust tools and resources, and public acknowledgement to help meet and celebrate fleets' petroleum-use reductions.

  8. Canyon solvent cleaning with activated alumina

    Reif, D.J.

    1987-01-01

    This paper presents recent work at SRL concerning the cleaning of solvent extraction solvent used at SRP. The paper explains why we undertook the work, and some laboratory studies on two approaches to solvent cleaning, namely extended carbonate washing and use of solid adsorbents. The paper then discusses scale-up of the preferred method and the results of the full-scale cleaning. 19 figs

  9. Environmental cleaning and disinfection of patient areas

    Michelle Doll

    2018-02-01

    Full Text Available The healthcare setting is predisposed to harbor potential pathogens, which in turn can pose a great risk to patients. Routine cleaning of the patient environment is critical to reduce the risk of hospital-acquired infections. While many approaches to environmental cleaning exist, manual cleaning supplemented with ongoing assessment and feedback may be the most feasible for healthcare facilities with limited resources.

  10. Environmental cleaning and disinfection of patient areas.

    Doll, Michelle; Stevens, Michael; Bearman, Gonzalo

    2018-02-01

    The healthcare setting is predisposed to harbor potential pathogens, which in turn can pose a great risk to patients. Routine cleaning of the patient environment is critical to reduce the risk of hospital-acquired infections. While many approaches to environmental cleaning exist, manual cleaning supplemented with ongoing assessment and feedback may be the most feasible for healthcare facilities with limited resources. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Clean Cities Annual Metrics Report 2006

    Bergeron, P.; Putsche, V.

    2007-07-01

    Report summarizes Clean Cities coalition accomplishments, including membership, funding, sales of alternative fuel blends, deployment of AFVs and HEVs, idle reduction initiatives, and fuel economy activities.

  12. Maryland Cleaning & Abatement Services Corp. Information Sheet

    Maryland Cleaning & Abatement Services Corp. (the Company) is located in Baltimore, Maryland. The settlement involves renovation activities conducted at property constructed prior to 1978, located in Baltimore, Maryland.

  13. Laser ablation method for cleaning of mirror surfaces for optical diagnostic systems at the ITER

    Aleksandrova, A.S.; Kuznetsov, A.P.; Gubskij, K.L.; Petrovskij, V.N.; Savelov, A.S.; Shtamm, V.G.; Buzhinskij, O.I.

    2012-01-01

    The possibility of cleaning metallic mirrors from films with complex composition by pulsed radiation from a fiber laser has been experimentally examined. It has been shown that the high initial reflection characteristics of optical elements can be recovered by choosing regimes of the action of radiation on the surface with a deposited film [ru

  14. Developing technique for waste water cleaning of a division for equipment decontamination

    Gromoglasov, A.A.; Solyakov, V.K.; Novikov, V.N.; Pil'shchikov, A.P.; Chekalov, A.G.; Sinyukov, M.A.; Pshenichnykh, V.N.

    1989-01-01

    Results are described of developing technique for radionuclide cleaning solutions after metal product decontamination. The method is based on the adagulation with usage of quicklime. The conclusion is method permits to consider it as the main technique for waste water decontamination. 3 refs.; 2 figs.; 3 tabs

  15. Pollution Law - Clean Air Act

    Schmitt Glaeser, W.; Meins, J.W.

    1982-01-01

    This volume deals with how the living space air is kept clean by means of the pollution law, focussing on the documentation of central problems of pollution law by means of selected articles and court decisions. The literature and jurisdiction available on this sector of which we can hardly keep track makes such a documentation look useful and necessary. It will make working easier for those who do not have direct access to large libraries. The only intention of the guide for the pollution law which preceeds the documentation is to outline basic problems. It is intended to provide basic information in this complex field of law. At the same time, it also constitutes a 'guide' for the documentation: By naming the documentation number in the margin of the respective passage reference is made to the documented publications which deal with the legal issues considered. Using this guide, the documentation can be easily tapped. (orig.) [de

  16. Beam Cleaning and Collimation Systems

    Redaelli, S

    2016-01-01

    Collimation systems in particle accelerators are designed to dispose of unavoidable losses safely and efficiently during beam operation. Different roles are required for different types of accelerator. The present state of the art in beam collimation is exemplified in high-intensity, high-energy superconducting hadron colliders, like the CERN Large Hadron Collider (LHC), where stored beam energies reach levels up to several orders of magnitude higher than the tiny energies required to quench cold magnets. Collimation systems are essential systems for the daily operation of these modern machines. In this document, the design of a multistage collimation system is reviewed, taking the LHC as an example case study. In this case, unprecedented cleaning performance has been achieved, together with a system complexity comparable to no other accelerator. Aspects related to collimator design and operational challenges of large collimation systems are also addressed.

  17. Containment air cleaning for LMFBRs

    Hilliard, R.K.; McCormack, J.D.; Owen, R.K.; Postma, A.K.

    1979-01-01

    A variety of air cleaning concepts was evaluated for potential use in future sodium-cooled breeder reactors. A 3-stage aqueous scrubber system was selected for large-scale demonstration testing under conditions similar to those postulated for containment venting and purging during reactor melt-through accidents. Two tests were performed in the Containment Systems Test Facility using a quench tank, a jet venturi scrubber and a high efficiency fibrous scrubber in series. The results of two tests with Na/sub 2/O/sub 2/ and NaOH aerosol and NaI vapor are presented showing >99.9% removal of Na/sub 2/O/sub 2/ and NaOH and >99.7% for NaI. 7 refs

  18. Cleaning lady saves the day

    2009-01-01

    At lunch time on Wednesday 21 January a guest at the CERN hostel put her food in the microwave oven and switched it on. "Within seconds I smelt plastic. I looked into the oven and saw flames. I switched it off, took my food out. But the flames continued and so I ran for the door." In the corridor she ran into Jane Kiranga, a cleaning lady working for the company ISS. Without hesitation Jane picked up a portable fire extinguisher, returned to the kitchen and stopped the fire. The Fire Brigade arrived a few minutes later and only needed to ventilate the kitchen. "Jane was just in time, because the flames had not left the oven yet. Her model behaviour deserves recognition," said the team leader on duty for the CERN Fire Brigade. A few days later Jane received a gift voucher from the Prevention and Training section of the Safety Commission (photo).

  19. Chemical cleaning of the Bruce A steam generators

    Le Surf, J.E.; Mason, J.B.; Symmons, W.R.; Yee, F.

    1992-01-01

    Deposits consisting mostly of oxides and salts and copper metal in the secondary side of the steam generators at the Bruce A Nuclear Generating Station have caused instability in the steam flow and loss of heat capacity, resulting in derating of the units and reduction in power production. Attempts to remove the deposits by pressure pulsing were unsuccessful. Water lancing succeeded in restoring stability, but restrictions on access prevented complete lancing of the tube support plate holes. Chemical cleaning using a modified EPRI-SGOG process has been selected as the best method of removing the deposits. A complete chemical cleaning system has been designed and fabricated for Ontario Hydro by Pacific Nuclear, with support from AECL CANDU and their suppliers. The system consists of self contained modules which are easily interconnected on site. The whole process is controlled from the Control Module, where all parameters are monitored on a computer video screen. The operator can control motorized valves, pumps and heaters from the computer key board. This system incorporates all the advanced technologies and design features that have been developed by Pacific Nuclear in the design, fabrication and operation of many systems for chemical decontamination and cleaning of nuclear systems. 2 figs

  20. Plasma cleaning of ITER First Mirrors in magnetic field

    Moser, Lucas, E-mail: lucas.moser@unibas.ch [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Steiner, Roland [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Leipold, Frank; Reichle, Roger [ITER Organization, Route de Vinon-sur-Verdon, 13115 St Paul-lez-Durance (France); Marot, Laurent; Meyer, Ernst [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2015-08-15

    To avoid reflectivity losses in ITER’s optical diagnostic systems, plasma sputtering of metallic First Mirrors is foreseen in order to remove deposits coming from the main wall (mainly beryllium and tungsten). Therefore plasma cleaning has to work on large mirrors (up to a size of 200 × 300 mm) and under the influence of strong magnetic fields (several Tesla). This work presents the results of plasma cleaning of aluminium and aluminium oxide (used as beryllium proxy) deposited on molybdenum mirrors. Using radio frequency (13.56 MHz) argon plasma, the removal of a 260 nm mixed aluminium/aluminium oxide film deposited by magnetron sputtering on a mirror (98 mm diameter) was demonstrated. 50 nm of pure aluminium oxide were removed from test mirrors (25 mm diameter) in a magnetic field of 0.35 T for various angles between the field lines and the mirrors surfaces. The cleaning efficiency was evaluated by performing reflectivity measurements, Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy.

  1. The NOXSO clean coal project

    Black, J.B.; Woods, M.C.; Friedrich, J.J.; Browning, J.P. [NOXSO Corp., Bethel Park, PA (United States)

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% of the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).

  2. Webinar: Green Cleaning for Improved Health: The Return on Investment of Green Cleaning in Schools

    A page to register to view the June 22, 2017, webinar in the IAQ Knowledge-to-Action Professional Training Webinar Series: Green Cleaning for Improved Health: The Return on Investment of Green Cleaning in Schools

  3. Efficient methods of nanoimprint stamp cleaning based on imprint self-cleaning effect

    Meng Fantao; Chu Jinkui [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024 Dalian (China); Luo Gang; Zhou Ye; Carlberg, Patrick; Heidari, Babak [Obducat AB, SE-20125 Malmoe (Sweden); Maximov, Ivan; Montelius, Lars; Xu, H Q [Division of Solid State Physics, Lund University, Box 118, S-22100 Lund (Sweden); Nilsson, Lars, E-mail: ivan.maximov@ftf.lth.se [Department of Food Technology, Engineering and Nutrition, Lund University, Box 117, S-22100 Lund (Sweden)

    2011-05-06

    Nanoimprint lithography (NIL) is a nonconventional lithographic technique that promises low-cost, high-throughput patterning of structures with sub-10 nm resolution. Contamination of nanoimprint stamps is one of the key obstacles to industrialize the NIL technology. Here, we report two efficient approaches for removal of typical contamination of particles and residual resist from stamps: thermal and ultraviolet (UV) imprinting cleaning-both based on the self-cleaning effect of imprinting process. The contaminated stamps were imprinted onto polymer substrates and after demolding, they were treated with an organic solvent. The images of the stamp before and after the cleaning processes show that the two cleaning approaches can effectively remove contamination from stamps without destroying the stamp structures. The contact angles of the stamp before and after the cleaning processes indicate that the cleaning methods do not significantly degrade the anti-sticking layer. The cleaning processes reported in this work could also be used for substrate cleaning.

  4. The Clean Energy Manufacturing Analysis Center (CEMAC): Providing Analysis and Insights on Clean Technology Manufacturing

    Johnson, Nicholi S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  5. Incineration and flue gas cleaning in China - a Review

    Buekens, Alfons; Yan, Mi; Jiang, Xuguan; Li, Xiaodong; Lu, Shengyong; Chi, Yong; Yan, Jianhua; Cen, Kefa

    2010-01-01

    Waste incineration is rapidly developing in China. Different technologies are proposed for Municipal Solid Waste (MSW), Hazardous Waste (HW), and Medical Waste (MW). The required technologies are either imported, or developed locally. Some data are cited to illustrate these rapid developments. Incinerator flue gas arises at rather limited scale (10,000-100,000 Nm 3 /h), compared to power generation, yet the number of pollutants to be counted with is huge: dust and grit, acid gases, NO x , selected heavy metals, aerosols and nanoparticles, Polycyclic Aromatic Hydrocarbons, and dioxins. Major options in flue gas cleaning can be derived from Best Available Technologies (BAT), as were developed in the European Union. Hence, E.U. practice is analyzed in some detail, by considering the present situation in selected E.U. countries (Germany, Sweden, the Netherlands, Denmark, Belgium). A comparison is made with China. Also, the situation in Japan is examined. Based on this wide experience, a number of technical suggestions regarding incineration, flue gas cleaning, and emission control are formulated. Also, the possibility of co incineration is considered. Starting from the particular experience of Zhejiang University (as a designer of Fluid Bed and Rotary Kiln plant, with large experience in Fluid Bed processes, coal firing, gasification and pyrolysis, and actively monitoring thermal units throughout China) some specific Case Studies are examined, e.g., a fluidized bed incinerator and its gas cleaning system (MSWI and HWI from ITPE). Some attention is paid to the potential threats in China from uncontrolled combustion sources. As a conclusion, some recommendations are formulated regarding flue gas cleaning in Developing Nations at large and in China in particular. (author)

  6. Clean fuel technologies and clean and reliable energy: a summary

    Bulatov, Igor; Klemes, Jiri Jaromir

    2011-01-01

    There are two major areas covered by this current Special Issue: Cleaner Fuel Technologies and Waste Processing. In addition, the Special Issue, also includes some recent developments in various fields of energy efficiency research. The first group of contributions considers in detail, hydrogen production from biomass and hydrogen production by the sorption-enhanced steam methane reforming process (SE-SMR). Biomass-related technologies are also discussed for a design of an integrated biorefinery, production of clean diesel fuel by co-hydrogenation of vegetable oil with gas oil and utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn. Waste Processing aspects are considered in the second group of papers. This section includes integrated waste-to-energy plants, utilisation of municipal solid waste in the cement industry and urban supply and disposal systems. The third topic is intentionally made rather loose: it includes different research topics on various aspects of energy efficiency, e.g. resource-saving network design, new research on divided wall columns, vehicle logistics as process-network synthesis for energy consumption and CO 2 reduction.

  7. Clean Cities Now Vol. 17, No. 2

    None

    2013-10-23

    The Fall 2013 issue of the biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on deployment of alternative fuels and advanced vehicles, and articles on Clean Cities coalition successes across the country.

  8. Advancing clean energy technology in Canada

    Munro, G.

    2011-01-01

    This paper discusses the development of clean energy technology in Canada. Energy is a major source of Canadian prosperity. Energy means more to Canada than any other industrialized country. It is the only OECD country with growing oil production. Canada is a stable and secure energy supplier and a major consumer. Promoting clean energy is a priority to make progress in multiple areas.

  9. Allegheny County Clean Indoor Air Act Exemptions

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — List and location of all the businesses and social clubs who have received an exemption from the Pennsylvania Clean Indoor Air Act. “The Clean Indoor Air Act, Act...

  10. Gas turbine cleaning upgrade (compressor wash)

    Asplund, P. [Gas Turbine Efficiency, Jarfalla (Sweden)

    1998-12-31

    The influence of gas turbine degradation on operating costs is high. Gas turbine cleaning is one of many actions taken for power recovery and is to consider as preventive maintenance. It is generally performed within the industrial field and occasionally within the aero sector. In order to meet the gas turbine development win high blade loads and ever-increasing temperatures, together with emission Aces and environmental regulations, more efficient and careful cleaning methods are needed. Following a survey about potentials for cost reduction in gas turbine operation a new man-hour and water saving cleaning method has been evaluated for a standard process. Compared with traditional cleaning methods, the new method is water,- cost,- weight and space saving due to a new washing technique. Traditional methods are based on using different nozzles for ON and OFF-line cleaning, which rise the demand for complicated systems. In the new method the same nozzle installation, same liquid flow and pressure is used for both ON and OFF-line cleaning. This gives a cost reduction of appr. 20.000 - 30.000 USD per gas turbine depending on installation and size. Evaluation of the new method shows significantly improved ON -line cleaning performance and thus OFF -line cleaning is required only during scheduled stops. (orig.) 10 refs.

  11. Clean Cities Now Vol. 19, No. 2

    None

    2015-12-18

    Clean Cities Now is the official bi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  12. Clean Cities Now Vol. 20, No. 2

    None

    2017-01-13

    Clean Cities Now is the official semi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  13. WWW expert system on producer gas cleaning

    Schouten, E.J.; Lammers, G.; Beenackers, A.A.C.M. [University of Groningen (Netherlands)

    1999-07-01

    The University of Groningen (RUG) has developed an expert system on cleaning of biomass producer gas. This work was carried out in close co-operation with the Biomass Technology Group B.V. (BTG) in Enschede, The Netherlands within the framework of the EC supported JOR3-CT95-0084 project. The expert system was developed as a tool for the designer-engineer of downstream gas cleaning equipment and consists of an information package and a flowsheet package. The packages are integrated in a client/server system. The flowsheeting package of the expert system has been designed for the evaluation of different gas cleaning methods. The system contains a number of possible gas cleaning devices such as: cyclone, fabric filter, ceramic filter, venturi scrubber and catalytic cracker. The user can select up to five cleaning steps in an arbitrary order for his specific gas cleaning problem. After specification of the required design parameters, the system calculates the main design characteristics of the cleaning device. The information package is a collection of HTML{sup TM} files. It contains a large amount of information, tips, experience data, literature references and hyperlinks to other interesting Internet sites. This information is arranged per cleaning device. (orig.)

  14. The Clean Development Mechanism and Technology Transfer

    Aggarwal, Aradhna

    2017-01-01

    This study assesses the impact of the Clean Development Mechanism (CDM) on the transfer of clean technology in India. The reason this study is unique is because firstly, it adopts an outcome-oriented approach to define ‘technology transfer’, which means that technology transfer occurs if firms...

  15. Reactor water clean-up device

    Tanaka, Koji; Egashira, Yasuo; Shimada, Fumie; Igarashi, Noboru.

    1983-01-01

    Purpose: To save a low temperature reactor water clean-up system indispensable so far and significantly simplify the system by carrying out the reactor water clean-up solely in a high temperature reactor water clean-up system. Constitution: The reactor water clean-up device comprises a high temperature clean-up pump and a high temperature adsorption device for inorganic adsorbents. The high temperature adsorption device is filled with amphoteric ion adsorbing inorganic adsorbents, or amphoteric ion adsorbing inorganic adsorbents and anionic adsorbing inorganic adsorbents. The reactor water clean-up device introduces reactor water by the high temperature clean-up pump through a recycling system to the high temperature adsorption device for inorganic adsorbents. Since cations such as cobalt ions and anions such as chlorine ions in the reactor water are simultaneously removed in the device, a low temperature reactor water clean-up system which has been indispensable so far can be saved to realize the significant simplification for the entire system. (Seki, T.)

  16. Clean Cities Now, Vol. 18, No. 1

    None

    2014-04-30

    The Spring 2014 edition of the semi-annual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on deployment of alternative fuels and advanced vehicles, and articles on Clean Cities coalition successes across the country.

  17. Clean Cities 2011 Annual Metrics Report

    Johnson, C.

    2012-12-01

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2011. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  18. Clean Cities 2010 Annual Metrics Report

    Johnson, C.

    2012-10-01

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2010. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  19. Gas turbine cleaning upgrade (compressor wash)

    Asplund, P [Gas Turbine Efficiency, Jarfalla (Sweden)

    1999-12-31

    The influence of gas turbine degradation on operating costs is high. Gas turbine cleaning is one of many actions taken for power recovery and is to consider as preventive maintenance. It is generally performed within the industrial field and occasionally within the aero sector. In order to meet the gas turbine development win high blade loads and ever-increasing temperatures, together with emission Aces and environmental regulations, more efficient and careful cleaning methods are needed. Following a survey about potentials for cost reduction in gas turbine operation a new man-hour and water saving cleaning method has been evaluated for a standard process. Compared with traditional cleaning methods, the new method is water,- cost,- weight and space saving due to a new washing technique. Traditional methods are based on using different nozzles for ON and OFF-line cleaning, which rise the demand for complicated systems. In the new method the same nozzle installation, same liquid flow and pressure is used for both ON and OFF-line cleaning. This gives a cost reduction of appr. 20.000 - 30.000 USD per gas turbine depending on installation and size. Evaluation of the new method shows significantly improved ON -line cleaning performance and thus OFF -line cleaning is required only during scheduled stops. (orig.) 10 refs.

  20. Clean Cities Now Vol. 20, No. 1

    None

    2016-06-13

    Clean Cities Now is the official semi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  1. 49 CFR 174.57 - Cleaning cars.

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cleaning cars. 174.57 Section 174.57... and Loading Requirements § 174.57 Cleaning cars. All hazardous material which has leaked from a package in any rail car or on other railroad property must be carefully removed. ...

  2. Decontamination of polypropylene fabrics by dry cleaning

    Severa, J.; Knajfl, J.

    1983-01-01

    Polypropylene fabrics can efficiently be decontaminated by dry cleaning in benzine or perchloroethylene, this also in case the fabric was greased in addition to radioactive contamination. For heavily soiled fabric, it is advantageous to first dry clean it and then wash it. The positive effect was confirmed of intensifiers on the cleaning process, especially of benzine soap. In practice, its concentration should be selected within 1 and 10 g.dm - 3 . Decontamination by dry cleaning and subsequent washing is advantageous in that that the resulting activity of waste water from the laundry is low. Radioactive wastes from the dry cleaning process have a low weight and can be handled as solid waste. (M.D.)

  3. A centrifuge CO2 pellet cleaning system

    Foster, C.A.; Fisher, P.W.; Nelson, W.D.; Schechter, D.E.

    1993-01-01

    Centrifuge-based cryogenic pellet accelerator technology, originally developed at Oak Ridge National Laboratory (ORNL) for the purpose of refueling fusion reactors with high-speed pellets of frozen deuterium/tritium,is now being developed as a method of cleaning without the use of conventional solvents. In these applications large quantities of pellets made of frozen CO 2 or argon are accelerated in a high-speed rotor. The accelerated pellet stream is used to clean or etch surfaces. The advantage of this system is that the spent pellets and debris resulting from the cleaning process can be filtered leaving only the debris for disposal. This paper discusses the centrifuge CO 2 pellet cleaning system, the physics model of the pellet impacting the surface, the centrifuge apparatus, and some initial cleaning and etching tests

  4. Atmospheric plasma generation for LCD panel cleaning

    Kim, Gyu-Sik; Won, Chung-Yuen; Choi, Ju-Yeop; Yim, C. H.

    2007-12-01

    UV lamp systems have been used for cleaning of display panels of TFT LCD or Plasma Display Panel (PDP). However, the needs for high efficient cleaning and low cost made high voltage plasma cleaning techniques to be developed and to be improved. Dielectric-barrier discharges (DBDs), also referred to as barrier discharges or silent discharges have for a long time been exclusively related to ozone generation. In this paper, a 6kW high voltage plasma power supply system was developed for LCD cleaning. The -phase input voltage is rectified and then inverter system is used to make a high frequency pulse train, which is rectified after passing through a high-power transformer. Finally, bi-directional high voltage pulse switching circuits are used to generate the high voltage plasma. Some experimental results showed the usefulness of atmospheric plasma for LCD panel cleaning.

  5. Clean Coal Technology Programs: Program Update 2009

    None

    2009-10-01

    The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nation’s energy security and reliability, while protecting the environment using the nation’s most abundant energy resource—coal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

  6. Robotic cleaning of a spent fuel pool

    Roman, H.T.; Marian, F.A.; Silverman, E.B.; Barkley, V.P.

    1987-01-01

    Spent fuel pools at nuclear power plants are not cleaned routinely, other than by purifying the water that they contain. Yet, debris can collect on the bottom of a pool and should be removed prior to fuel transfer. At Public Service Electric and Gas Company's Hope Creek Nuclear Power Plant, a submersible mobile robot - ARD Corporation's SCAVENGER - was used to clean the bottom of the spent fuel pool prior to initial fuel loading. The robotic device was operated remotely (as opposed to autonomously) with a simple forward/reverse control, and it cleaned 70-80% of the pool bottom. This paper reports that a simple cost-benefit analysis shows that the robotic device would be less expensive, on a per mission basis, than other cleaning alternatives, especially if it were used for other similar cleaning operations throughout the plant

  7. [Evaluation of Medical Instruments Cleaning Effect of Fluorescence Detection Technique].

    Sheng, Nan; Shen, Yue; Li, Zhen; Li, Huijuan; Zhou, Chaoqun

    2016-01-01

    To compare the cleaning effect of automatic cleaning machine and manual cleaning on coupling type surgical instruments. A total of 32 cleaned medical instruments were randomly sampled from medical institutions in Putuo District medical institutions disinfection supply center. Hygiena System SUREII ATP was used to monitor the ATP value, and the cleaning effect was evaluated. The surface ATP values of the medical instrument of manual cleaning were higher than that of the automatic cleaning machine. Coupling type surgical instruments has better cleaning effect of automatic cleaning machine before disinfection, the application is recommended.

  8. Northeast Clean Energy Application Center

    Bourgeois, Tom [Pace Univ., New York, NY (United States)

    2013-09-30

    From October 1, 2009 through September 30, 2013 (“contract period”), the Northeast Clean Energy Application Center (“NE-CEAC”) worked in New York and New England (Connecticut, Rhode Island, Vermont, Massachusetts, New Hampshire, and Maine) to create a more robust market for the deployment of clean energy technologies (CETs) including combined heat and power (CHP), district energy systems (DES), and waste heat recovery (WHR) systems through the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers. CHP, DES, and WHR can help reduce greenhouse gas emissions, reduce electrical and thermal energy costs, and provide more reliable energy for users throughout the United States. The NE-CEAC’s efforts in the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers helped advance the market for CETs in the Northeast thereby helping the region move towards the following outcomes: Reduction of greenhouse gas emissions and criteria pollutants; Improvements in energy efficiency resulting in lower costs of doing business; Productivity gains in industry and efficiency gains in buildings; Lower regional energy costs; Strengthened energy security; Enhanced consumer choice; Reduced price risks for end-users; and Economic development effects keeping more jobs and more income in our regional economy Over the contract period, NE-CEAC provided technical assistance to approximately 56 different potential end-users that were interested in CHP and other CETs for their facility or facilities. Of these 56 potential end-users, five new CHP projects totaling over 60 MW of install capacity became operational during the contract period. The NE-CEAC helped host numerous target market workshops, trainings, and webinars; and NE-CEAC staff delivered presentations at many other workshops and conferences. In total, over 60 different workshops, conferences

  9. Effect of Time in Chemical Cleaning of Ultrafiltration Membranes

    Levitsky, I.; Naim, R.; Duek, A.; Gitis, V.

    2012-01-01

    Chemical cleaning of ultrafiltration membranes is often considered successful when the flux through a cleaned membrane is much higher than through a pristine one. Here, a novel definition of cleaning intensity is proposed as the product of the concentration of the cleaning agent and the cleaning

  10. Midwest Clean Energy Application Center

    Cuttica, John; Haefke, Cliff

    2013-12-31

    The Midwest Clean Energy Application Center (CEAC) was one of eight regional centers that promoted and assisted in transforming the market for combined heat and power (CHP), waste heat to power (WHP), and district energy (DE) technologies and concepts throughout the United States between October 1, 2009 and December 31, 2013. The key services the CEACs provided included: Market Opportunity Analyses – Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors. Education and Outreach – Providing information on the energy and non-energy benefits and applications of CHP to state and local policy makers, regulators, energy end-users, trade associations and others. Information was shared on the Midwest CEAC website: www.midwestcleanergy.org. Technical Assistance – Providing technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them through the project development process from initial CHP screening to installation. The Midwest CEAC provided services to the Midwest Region that included the states of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin.

  11. New catalysts for clean environment

    Maijanen, A; Hase, A [eds.; VTT Chemical Technology, Espoo (Finland)

    1997-12-31

    VTT launched a Research Programme on Chemical Reaction Mechanisms (CREAM) in 1993. The three-year programme (1993-1995) has focused on reaction mechanisms relevant to process industries and aimed at developing novel catalysts and biocatalysts for forest, food, and specialty chemicals industries as well as for energy production. The preliminary results of this programme have already been presented in the first symposium organized in Espoo in September 1994. To conclude the programme the second symposium is organized in Otaniemi, Espoo on January 29 - 30, 1996. Papers by 19 speakers and 17 poster presentations of the 1996 Symposium are included in this book. The Symposium consists of four sessions: Biotechnology for Natural Fibers Processing, New Biocatalysts, Catalysts for Clean Energy, and New Opportunities for Chemical Industry. The CREAM programme has tried to foresee solutions for the problems challenged by the public concern on environmental aspects, especially dealing with industrial processes and novel use of raw materials and energy. The programme has followed the basic routes that can lead to natural and simple solutions to develop processes in the fields of forest, food fine chemicals, and energy industry. This symposium presents the results of the programme to learn and further discuss together with the international experts that have been invited as keynote speakers. (author)

  12. Cleaning Puparia for Forensic Analysis.

    Higley, Leon G; Brosius, Tierney R; Reinhard, Karl J; Carter, David

    2016-09-01

    We tested procedures for removing adipocere from insect samples to allow identification. An acceptable procedure was determined: (i) Samples were sorted in petri dishes with 75% alcohol to remove any larvae, adult insects, or other soft-bodied material. (ii) Samples of up to 24 puparia were placed in a vial with 15 mL of 95% acetone, capped, and vortexed for a total of 30-90 sec in 10- to 15-sec bursts. This step removed large masses of adipocere or soil from specimen. (iii) Specimens were removed from acetone and placed in a vial of 15 mL of 2% potassium hydroxide (KOH) and vortexed in 10- to 15-sec bursts until all puparia appeared clean (with our samples this required a total of 60-120 sec). (iv) Specimens were removed from the 2% KOH, placed in 75% ethanol, and examined microscopically. (v) Material was stored in 75% ethanol for identification and long-term preservation. © 2016 American Academy of Forensic Sciences.

  13. New catalysts for clean environment

    Maijanen, A.; Hase, A. [eds.] [VTT Chemical Technology, Espoo (Finland)

    1996-12-31

    VTT launched a Research Programme on Chemical Reaction Mechanisms (CREAM) in 1993. The three-year programme (1993-1995) has focused on reaction mechanisms relevant to process industries and aimed at developing novel catalysts and biocatalysts for forest, food, and specialty chemicals industries as well as for energy production. The preliminary results of this programme have already been presented in the first symposium organized in Espoo in September 1994. To conclude the programme the second symposium is organized in Otaniemi, Espoo on January 29 - 30, 1996. Papers by 19 speakers and 17 poster presentations of the 1996 Symposium are included in this book. The Symposium consists of four sessions: Biotechnology for Natural Fibers Processing, New Biocatalysts, Catalysts for Clean Energy, and New Opportunities for Chemical Industry. The CREAM programme has tried to foresee solutions for the problems challenged by the public concern on environmental aspects, especially dealing with industrial processes and novel use of raw materials and energy. The programme has followed the basic routes that can lead to natural and simple solutions to develop processes in the fields of forest, food fine chemicals, and energy industry. This symposium presents the results of the programme to learn and further discuss together with the international experts that have been invited as keynote speakers. (author)

  14. Refining's-clean new jingle

    Anon.

    1992-01-01

    This paper reports that at a time when profit margins are slim and gasoline demand is down, the U.S. petroleum-refining industry is facing one of its greatest challenges; How to meet new federal and state laws for reformulated gasoline, oxygenated fuels, low-sulfur diesel and other measures to improve the environment. The American Petroleum Institute (API) estimates that industry will spend between $15 and $23 billion by the end of the decade to meet the U.S. Clean Air Act Amendments (CAAA) of 1990, and other legislation. ENSR Consulting and Engineering's capital-spending figure runs to between $70 and 100 billion this decade, including $24 billion to produce reformulated fuels and $10-12 billion to reduce refinery emissions. M.W. Kellogg Co. estimates that refiners may have to spend up to $30 billion this decade to meet the demand for reformulated gasoline. The estimates are wide-ranging because refiners are still studying their options and delaying final decisions as long as they can, to try to ensure they are the best and least-costly decisions. Oxygenated fuels will be required next winter, but federal regulations for reformulated gasoline won't go into effect until 1995, while California's tougher reformulated-fuels law will kick in the following year

  15. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative (HCEI)

    Busche, S.; Doris, E.; Braccio, R.; Lippert, D.; Finch, P.; O' Toole, D.; Fetter, J.

    2010-04-01

    This report provides detailed analyses of 21 clean energy policy options considered by the Hawaii Clean Energy Initiative working groups for recommendation to the 2010 Hawaii State Legislature. The report considers the impact each policy may have on ratepayers, businesses, and the state in terms of energy saved, clean energy generated, and the financial costs and benefits. The analyses provide insight into the possible impacts, both qualitative and quantitative, that these policies may have in Hawaii based on the experience with these policies elsewhere. As much as possible, the analyses incorporate Hawaii-specific context to reflect the many unique aspects of energy use in the State of Hawaii.

  16. Measurement of the Residual Sodium and Reaction Compounds on a Cleaned Cold Trap

    Kim, Byung Ho; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun Nam

    2006-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either a intergranular penetration characteristic of a high-oxygen sodium or an accelerated corrosion due to oxygen. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, a chemical, physical, or mechanical damage, and external effects. It is important to determine the levels of residual sodium that can be accepted so that those deleterious effects will not negate the reuse of the component. The purpose of this paper is to measure the amount of the sodium and the reaction compounds remaining on a component after a cleaning and prepare acceptable criteria for the reuse of components which have been subjected to a sodium cleaning

  17. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-19

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions during tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.

  18. Risk in cleaning: chemical and physical exposure.

    Wolkoff, P; Schneider, T; Kildesø, J; Degerth, R; Jaroszewski, M; Schunk, H

    1998-04-23

    Cleaning is a large enterprise involving a large fraction of the workforce worldwide. A broad spectrum of cleaning agents has been developed to facilitate dust and dirt removal, for disinfection and surface maintenance. The cleaning agents are used in large quantities throughout the world. Although a complex pattern of exposure to cleaning agents and resulting health problems, such as allergies and asthma, are reported among cleaners, only a few surveys of this type of product have been performed. This paper gives a broad introduction to cleaning agents and the impact of cleaning on cleaners, occupants of indoor environments, and the quality of cleaning. Cleaning agents are usually grouped into different product categories according to their technical functions and the purpose of their use (e.g. disinfectants and surface care products). The paper also indicates the adverse health and comfort effects associated with the use of these agents in connection with the cleaning process. The paper identifies disinfectants as the most hazardous group of cleaning agents. Cleaning agents contain evaporative and non-evaporative substances. The major toxicologically significant constituents of the former are volatile organic compounds (VOCs), defined as substances with boiling points in the range of 0 degree C to about 400 degrees C. Although laboratory emission testing has shown many VOCs with quite different time-concentration profiles, few field studies have been carried out measuring the exposure of cleaners. However, both field studies and emission testing indicate that the use of cleaning agents results in a temporal increase in the overall VOC level. This increase may occur during the cleaning process and thus it can enhance the probability of increased short-term exposure of the cleaners. However, the increased levels can also be present after the cleaning and result in an overall increased VOC level that can possibly affect the indoor air quality (IAQ) perceived by

  19. CPV performance versus soiling effects: Cleaning policies

    Sanchez, D.; Trujillo, P.; Martinez, M.; Ferrer, J. P.; Rubio, F.

    2012-10-01

    In order to improve the performance of the CPV Plants in a cost effective way it is important to define the best cleaning policies, analyzing the effect of soiling in the surface of CPV modules. The energy generation of a CPV technology based in Fresnel Lens improves up to 7% when the surface of the module is cleaned. Some experimental measurements have been carried out over CPV modules and a model has been defined to analyze what is the best cleaning policy for that Technology in Puertollano. The power losses because of soiling and the critical time until the power losses stabilizes are obtained from the measurements; they are used as an input for the simulation. Using an established cleaning cost and the feeding tariff from Spain in 2007 it has been obtained that cleaning only reports a profit during the summer. The conclusion of the work is that the cleaning tasks have to be carefully planned together with the meteorological forecast in order to maximize the investment made in the cleaning.

  20. Sorbent Nanotechnologies for Water Cleaning

    Ahmed, Snober

    Despite decades of regulatory efforts to mitigate water pollution, many chemicals, particularly heavy metals, still present risks to human health. In addition to direct exposure, certain metals such as mercury threaten public health due to its persistence, bioaccumulation and bioamplification throughout the food chain. A number of U.S. Federal and State regulations have been established to reduce the levels of mercury in water. Activated carbon (AC) has been widely explored for the removal of mercury. However, AC suffers from many limitations inherent to its chemical properties, and it becomes increasingly challenging to meet current and future regulations by simply modifying AC to enhance its performance. Recently, the performance of nanosorbents have been studied in order to removal pollutants. Nanosorbents utilize the ultra-high reactive surface of nanoparticles for rapid, effective and even permanent sequestration of heavy metals from water and air, thus showed promising results as compared to AC. The goal of this thesis research is to develop nanomaterial-based sorbents for the removal of mercury from water. It describes the development of a new solid-support assisted growth of selenium nanoparticles, their use for water remediation, and the development of a new nanoselenium-based sorbent sponge for fast and efficient mercury removal. The nanoselenium sorbent not only shows irreversible interaction with mercury but also exhibits remarkable properties by overcoming the limitations of AC. The nanoselenium sponge was shown to remove mercury to undetectable levels within one minute. This new sponge technology would have an impact on inspiring new stringent regulations and lowering costs to help industries meet regulatory requirements, which will ultimately help improve air and water quality, aquatic life and public health.

  1. Advanced materials for clean energy

    Xu (Kyo Jo), Qiang

    2015-01-01

    Arylamine-Based Photosensitizing Metal Complexes for Dye-Sensitized Solar CellsCheuk-Lam Ho and Wai-Yeung Wongp-Type Small Electron-Donating Molecules for Organic Heterojunction Solar CellsZhijun Ning and He TianInorganic Materials for Solar Cell ApplicationsYasutake ToyoshimaDevelopment of Thermoelectric Technology from Materials to GeneratorsRyoji Funahashi, Chunlei Wan, Feng Dang, Hiroaki Anno, Ryosuke O. Suzuki, Takeyuki Fujisaka, and Kunihito KoumotoPiezoelectric Materials for Energy HarvestingDeepam Maurya, Yongke Yan, and Shashank PriyaAdvanced Electrode Materials for Electrochemical Ca

  2. Plasma cleaning and analysis of archeological artefacts from Sipán

    Saettone, E. A. O.; da Matta, J. A. S.; Alva, W.; Chubaci, J. F. O.; Fantini, M. C. A.; Galvão, R. M. O.; Kiyohara, P.; Tabacniks, M. H.

    2003-04-01

    A novel procedure using plasma sputtering in an electron-cyclotron-resonance device has been applied to clean archeological MOCHE artefacts, unearthed at the Royal Tombs of Sipán. After successful cleaning, the pieces were analysed by a variety of complementary techniques, namely proton-induced x-ray emission, Rutherford backscattering spectroscopy, x-ray diffraction, electron microscopy, and inductively coupled plasma mass spectroscopy. With these techniques, it has been possible to not only determine the profiles of the gold and silver surface layers, but also to detect elements that may be relevant to explain the gilding techniques skillfully developed by the metal smiths of the MOCHE culture.

  3. Heavy metal content of selected African leafy vegetables planted in ...

    Heavy metal content of selected African leafy vegetables planted in urban and peri-urban Nairobi, Kenya. ... African Journal of Environmental Science and Technology ... Government clean-up activities and monitoring of waste disposal is ...

  4. Cleaning of aluminum after machining with coolants

    Roop, B.

    1992-01-01

    An x-ray photoemission spectroscopic study was undertaken to compare the cleaning of the Advanced Photon Source (APS) aluminum extrusion storage ring vacuum chambers after machining with and without water soluble coolants. While there was significant contamination left by the coolants, the cleaning process was capable of removing the residue. The variation of the surface and near surface composition of samples machined either dry or with coolants was negligible after cleaning. The use of such coolants in the machining process is therefore recommended

  5. Abort Gap Cleaning for LHC Run 2

    Uythoven, Jan [CERN; Boccardi, Andrea [CERN; Bravin, Enrico [CERN; Goddard, Brennan [CERN; Hemelsoet, Georges-Henry [CERN; Höfle, Wolfgang [CERN; Jacquet, Delphine [CERN; Kain, Verena [CERN; Mazzoni, Stefano [CERN; Meddahi, Malika [CERN; Valuch, Daniel [CERN; Gianfelice-Wendt, Eliana [Fermilab

    2014-07-01

    To minimize the beam losses at the moment of an LHC beam dump the 3 μs long abort gap should contain as few particles as possible. Its population can be minimised by abort gap cleaning using the LHC transverse damper system. The LHC Run 1 experience is briefly recalled; changes foreseen for the LHC Run 2 are presented. They include improvements in the observation of the abort gap population and the mechanism to decide if cleaning is required, changes to the hardware of the transverse dampers to reduce the detrimental effect on the luminosity lifetime and proposed changes to the applied cleaning algorithms.

  6. Abort Gap Cleaning for LHC Run 2

    Uythoven, J; Bravin, E; Goddard, B; Hemelsoet, GH; Höfle, W; Jacquet, D; Kain, V; Mazzoni, S; Meddahi, M; Valuch, D

    2015-01-01

    To minimise the beam losses at the moment of an LHC beam dump the 3 μs long abort gap should contain as few particles as possible. Its population can be minimised by abort gap cleaning using the LHC transverse damper system. The LHC Run 1 experience is briefly recalled; changes foreseen for the LHC Run 2 are presented. They include improvements in the observation of the abort gap population and the mechanism to decide if cleaning is required, changes to the hardware of the transverse dampers to reduce the detrimental effect on the luminosity lifetime and proposed changes to the applied cleaning algorithms.

  7. Case study of establishing a clean production

    Kim, Yong Kun; Nam, Yoon Mi [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    This study was implemented to derive suggestions for improving policies in Korea through the examination and analysis on the present policies related to the clean production and its establishment in enterprises. The characters of concept on clean production presented in pollution prevention, waste minimization, zero emission, environmental friendly design, and industrial ecology were analyzed and the mechanism for implementing clean production and government policy were arranged comprehensively. The related policies of major countries with international organizations including UNEP (United Nations Environment Program) and EU (European Union) were reviewed and compared to those of Korea to propose future policy plan. 73 refs., 3 figs., 30 tabs.

  8. The McClean Lake uranium project

    Blaise, J.R.

    2001-01-01

    The McClean Lake Uranium Project, located in the northern part of Saskatchewan, consists of five uranium deposits, Jeb - Sue A - Sue B - Sue C - McClean, scattered in three different locations on the mineral lease. On 16 March 1995, COGEMA Resources Inc and its partners, Denison Mines Ltd and OURD (Canada) Co Ltd, made the formal decision to develop the McClean Lake Project. Construction of the mine and mill started during summer 1995 and should be finished by mid 1997. Mining of the first deposit, Jeb started in 1996, ore being currently mined. The start of the yellowcake production is scheduled to start this fall. (author)

  9. Cleaning and sterilization in biotechnological clean system. Biotechnological clean system no senjo sakkin

    Inoue, M.

    1994-02-20

    Despite their usefulness for mankind, many of microorganisms are generally emphasized of the aspect of their harmfulness as decomposable and pathogenic microorganisms, apt to implant people with wrong preconception. Moreover, the food industries have a habitual practice that they leave unexpectedly unclean conditions unattended. This paper indicates such actual circumstances by quoting various examples, and introduces characteristics and test results on commercially available chemicals having excellent cleansing and sterilizing effects. High-pressure and high-temperature sterilization processes fit the purpose of preservation, but secondary contamination may occur in subsequent processing, for example, from the ceiling and walls of a work room, or operators' fingers. Problems exist there that should be considered in biotechnological clean systems. Technologies have been advanced that mix a small amount of chemicals into plastic sheets, wall materials, and floor materials so that their surfaces are kept away from growth of microorganisms for extended periods of time. About 300 kinds of chemicals have been developed, and are available commercially. 3 refs., 8 figs.

  10. Clean coal technology optimization model

    Laseke, B.A.; Hance, S.B.

    1992-01-01

    Title IV of the Clean Air Act Amendments (CAAA) of 1990 contains provisions for the mitigation of acid rain precipitation through reductions in the annual emission of the acid rain precursors of sulfur dioxide (SO 2 ) and nitrogen oxide (NO x ). These provisions will affect primarily existing coal-fired power-generating plants by requiring nominal reductions of 5 millon and 10 million tons of SO 2 by the years 1995 and 2000, respectively, and 2 million tons of NO x by the year 2000 relative to the 1980 and 1985-87 reference period. The 1990 CAAA Title IV provisions are extremely complex in that they establish phased regulatory milestones, unit-level emission allowances and caps, a mechanism for inter-utility trading of emission allowances, and a system of emission allowance credits based on selection of control option and timing of its implementation. The net result of Title IV of the 1990 CAAA is that approximately 147 gigawatts (GW) of generating capacity is eligible to retrofit SO 2 controls by the year 2000. A number of options are available to bring affected boilers into compliance with Title IV. Market sharewill be influenced by technology performance and costs. These characteristics can be modeled through a bottom-up technology cost and performance optimization exercise to show their impact on the technology's potential market share. Such a model exists in the form of an integrated data base-model software system. This microcomputer (PC)-based software system consists of a unit (boiler)-level data base (ACIDBASE), a cost and performance engineering model (IAPCS), and a market forecast model (ICEMAN)

  11. High-brightness electron beam evolution following laser-based cleaning of a photocathode

    F. Zhou

    2012-09-01

    Full Text Available Laser-based techniques have been widely used for cleaning metal photocathodes to increase quantum efficiency (QE. However, the impact of laser cleaning on cathode uniformity and thereby on electron beam quality are less understood. We are evaluating whether this technique can be applied to revive photocathodes used for high-brightness electron sources in advanced x-ray free-electron laser (FEL facilities, such as the Linac Coherent Light Source (LCLS at the SLAC National Accelerator Laboratory. The laser-based cleaning was applied to two separate areas of the current LCLS photocathode on July 4 and July 26, 2011, respectively. The QE was increased by 8–10 times upon the laser cleaning. Since the cleaning, routine operation has exhibited a slow evolution of the QE improvement and comparatively rapid improvement of transverse emittance, with a factor of 3 QE enhancement over five months, and a significant emittance improvement over the initial 2–3 weeks following the cleaning. Currently, the QE of the LCLS photocathode is holding constant at about 1.2×10^{-4}, with a normalized injector emittance of about 0.3  μm for a 150-pC bunch charge. With the proper procedures, the laser-cleaning technique appears to be a viable tool to revive the LCLS photocathode. We present observations and analyses for the QE and emittance evolution in time following the laser-based cleaning of the LCLS photocathode, and comparison to the previous studies, the measured thermal emittance versus the QE and comparison to the theoretical model.

  12. Clean Air Markets - Monitoring Surface Water Chemistry

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  13. Clean conditions during the erection phase

    Koschel, P.

    1977-01-01

    Following the basic requirements of the Regulatory Guide 1.37 and ANSI 45.2.1 - Standard on Cleaning of Fluid Systems and Associated Components during the Construction Phase of Nuclear Power Plants as a guideline, the implementation of cleaning operations in the pre-installation phase, the installation phase and the maintenance of clean conditions until the operational phase is covered. Specific information will be given from the practical experience point of view with the work execution under clean conditions of piping and components at the semi-finished product manufacturer, the prefabrication workshop and the on-site installation with specific reference to the various detailed procedures required by individual system builders for nuclear power plants in Germany and abroad. (orig.) [de

  14. SRF Clean Rooms and Cryomodule Assembly

    Federal Laboratory Consortium — Three primary cleanroom facilities used for the SRF cryomodule production program are available. All 3 clean rooms have class 10 and class 100 areas. The largest is...

  15. Clean Technology Evaluation & Workforce Development Program

    Patricia Glaza

    2012-12-01

    The overall objective of the Clean Technology Evaluation portion of the award was to design a process to speed up the identification of new clean energy technologies and match organizations to testing and early adoption partners. The project was successful in identifying new technologies targeted to utilities and utility technology integrators, in developing a process to review and rank the new technologies, and in facilitating new partnerships for technology testing and adoption. The purpose of the Workforce Development portion of the award was to create an education outreach program for middle & high-school students focused on clean technology science and engineering. While originally targeting San Diego, California and Cambridge, Massachusetts, the scope of the program was expanded to include a major clean technology speaking series and expo as part of the USA Science & Engineering Festival on the National Mall in Washington, D.C.

  16. Nuclear waste water being cleaned in Paldinski

    Lahtinen, A.

    1995-01-01

    The cleaning of nuclear waste water in the former military base of Paldiski, Estonia, has started with Finnish assistance. During the Soviet era, Paldiski served as a site for training nuclear submarine crews. Spent fuel has already been removed from the two nuclear reactors on the base. The volume of water to be cleaned totals some 450 cubic metres. The work is estimated to take till May 1995. The filtering technique used for cleaning has been developed in cooperation by IVO International and the Department of Radiochemistry of the University of Helsinki. The project is one aspect of an extensive international cooperation programme for reducing environmental hazards arising from the base. The experience of the cleaning obtained so far has been positive. In the first water tank, filtering reduced the cesium activity of waste water from 1,500 becquerels to less than one becquerel. Two water tanks, however, have bottom sediment that probably cannot be treated during the present project. (orig.)

  17. Clean Cities Annual Metrics Report 2009 (Revised)

    Johnson, C.

    2011-08-01

    Document provides Clean Cities coalition metrics about the use of alternative fuels; the deployment of alternative fuel vehicles, hybrid electric vehicles (HEVs), and idle reduction initiatives; fuel economy activities; and programs to reduce vehicle miles driven.

  18. Clean Cities Annual Metrics Report 2008

    Johnson, C.; Bergeron, P.

    2009-09-01

    This report summarizes the Department of Energy's Clean Cities coalition accomplishments in 2008, including petroleum displacement data, membership, funding, sales of alternative fuel blends, deployment of AFVs and HEVs, idle reduction initiatives, and fuel economy activities.

  19. Clean Air Markets - Allowances Query Wizard

    U.S. Environmental Protection Agency — The Allowances Query Wizard is part of a suite of Clean Air Markets-related tools that are accessible at http://camddataandmaps.epa.gov/gdm/index.cfm. The Allowances...

  20. Clean Air Markets - Compliance Query Wizard

    U.S. Environmental Protection Agency — The Compliance Query Wizard is part of a suite of Clean Air Markets-related tools that are accessible at http://ampd.epa.gov/ampd/. The Compliance module provides...

  1. Clean Water Act Section 404 and Agriculture

    The U.S. Department of Agriculture (USDA) and EPA have longstanding programs to promote water quality and broader environmental goals identified in both the Agriculture Act of 2014 and the Clean Water Act.

  2. MEMS and Nano-Technology Clean Room

    Federal Laboratory Consortium — The MEMS and Nano-Technology Clean Room is a state-of-the-art, 800 square foot, Class 1000-capable facility used for development of micro and sub-micro scale sensors...

  3. Section 404 of the Clean Water Act

    Information about the Clean Water Act permitting program for dredge or fill material into waters of the US, including roles, 401 certification of permits, state/tribal assumption of 404 program, mitigation requirements, regulations

  4. Clean Air Markets - Quick Facts and Trends

    U.S. Environmental Protection Agency — The Quick Facts and Trends module is part of a suite of Clean Air Markets-related tools that are accessible at http://camddataandmaps.epa.gov/gdm/index.cfm. The...

  5. Coolant clean-up and recycle systems

    Ito, Takao.

    1979-01-01

    Purpose: To increase the service life of mechanical seals in a shaft sealing device, eliminate leakages and improve the safety by providing a recycle pump for feeding coolants to a coolant clean-up device upon reactor shut-down and adapting the pump treat only low temperature and low pressure coolants. Constitution: The system is adapted to partially take out coolants from the pipeways of a recycling pump upon normal operation and feed them to a clean-up device. Upon reactor shut-down, the recycle pump is stopped and coolants are extracted by the recycle pump for shut-down into the clean-up device. Since the coolants are not fed to the clean-up device by the recycle pump during normal operation as conducted so far, high temperature and high pressure coolants are not directly fed to the recycle pump, thereby enabling to avoid mechanical problems in the pump. (Kamimura, M.)

  6. Ultrasonic cleaning of electrodes of wire chambers

    Krasnov, V.A.; Kurepin, A.B.; Razin, V.I.

    1980-01-01

    A technological process of cleaning electrodes and working volume surfaces of wire chambers from contaminations by the simultaneous mechanical action of the energy of ultrasonic oscillations and the chemical action of detergents is discussed. A device for cleaning wire electrodes of proportional chambers of 0.3x0.4 m is described. The device uses two ultrasonic generators with a total power of 0.5 kW. As a detergent use is made of a mixture of ethyl alcohol, gasoline and freon. In the process of cleaning production defects can be detected in the wire chambers which makes it possible to timely remove the defects. Measurements of the surface resistance of fiberglass laminate of printed drift chamber electrodes at a voltage of 2 kV showed that after completing the cleaning process the resistance increases 15-20%

  7. Metal-metal-hofteproteser

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  8. Brushless Cleaning of Solar Panels and Windows

    Schneider, H. W.

    1982-01-01

    Machine proposed for cleaning solar panels and reflectors uses multiple vortexes of air, solvent, and water to remove dust and dirt. Uses no brushes that might abrade solar surfaces and thereby reduce efficiency. Machine can be readily automated and can be used on curved surfaces such as aparbolic reflectors as well as on flat ones. Cleaning fluids are recycled, so that large quantities of water and solvent are not needed.

  9. Cleaning power and abrasivity of European toothpastes.

    Wülknitz, P

    1997-11-01

    For 41 toothpastes available to European consumers in 1995, the cleaning efficacy was evaluated in comparison with abrasivity on dentin (RDA value). For cleaning power assessment, a modified pellicle cleaning ratio (PCR) measurement method was developed. The method is characterized by a five-day tea-staining procedure on bovine front teeth slabs on a rotating wheel, standardized brushing of the slabs in a V8 cross-brushing machine, and brightness measurement by a chromametric technique. All tested products were in accordance with the new DIN/ISO standard 11,609 for toothpastes in terms of dentin abrasivity. Not a single product exceeded an RDA value of 200. The majority of toothpastes (80%) had an RDA value below 100. Only three products surpassed the reference in cleaning power. Most products (73%) had a cleaning power (PCR value) between 20 and 80. The correlation between cleaning power and dentin abrasion was low (r = 0.66), which can be explained with the different influence on dentin and stains by factors like abrasive type, particle surface and size, as well as the chemical influence of other toothpaste ingredients. Some major trends could be shown on the basis of abrasive types. The ratio PCR to RDA was rather good in most silica-based toothpastes. A lower ratio was found in some products containing calcium carbonate or aluminum trihydrate as the only abrasive. The addition of other abrasives, such as polishing alumina, showed improved cleaning power. Some active ingredients, especially sequenstrants such as sodium tripolyphosphate or AHBP, also improve the PCR/RDA ratio by stain-dissolving action without being abrasive. The data for some special anti-stain products did not differ significantly from standard products. Compared with data measured in 1988, a general trend toward reduced abrasivity without loss of cleaning efficacy could be noticed on the European toothpaste market. This may be mostly due to the increased use of high-performance abrasives such

  10. State perspectives on clean coal technology deployment

    Moreland, T. [State of Illinois Washington Office, Washington, DC (United States)

    1997-12-31

    State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.

  11. Comparison of glow discharge cleaning with Taylor-type discharge cleaning on JFT-2

    Yokokura, Kenji; Matsuzaki, Yoshimi; Tani, Takashi

    1983-01-01

    Method of glow discharge cleaning (GDC) was applied to JFT-2 tokamak and the cleaning effect of GDC was compared with that of taylor-type discharge cleaning (TDC) on the same machin. Results show clearly their individual characteristics to remove light impurities. Their abilities of surface cleaning were compared each other by observing cleanliness of sample surfaces with a AES and by measuring decay times of produced gas pressures during discharge cleanings with a mass-analyser. It was shown that TDC method is better by several times than GDC method from a mass-analyser measurement. Moreover discharge cleaning time necessary to reduce light impurities in the normal plasma to a certain level was compared by monitoring time evolution of radiation loss power with a bolometer, and the time by TDC was only one fifth of that by GDC. The advantage of TDC may come from the excellently high hydrogen flux which interacts with the limiter and the wall. (author)

  12. Clean fuel for demanding environmental markets

    Josewicz, W.; Natschke, D.E. [Acurex Environmental Corp., Research Triangle Park, NC (United States)

    1995-12-31

    Acurex Environmental Corporation is bringing Clean Fuel to the environmentally demand Krakow market, through the cooperative agreement with the U.S. Department of Energy. Clean fuel is a proprietary clean burning coal-based energy source intended for use in stoves and hand stoked boilers. Clean Fuel is a home heating fuel that is similar in form and function to raw coal, but is more environmentally friendly and lower in cost. The heating value of Clean Fuel is 24,45 kJ/kg. Extensive sets of confirmation runs were conducted in the Academy of Mining and Metallurgy in the Krakow laboratories. It demonstrated up to 54 percent reduction of particulate matter emission, up to 35 percent reduction of total hydrocarbon emissions. Most importantly, polycyclic aromatic hydrocarbons (toxic and carcinogens compounds) emissions were reduced by up to 85 percent, depending on species measured. The above comparison was made against premium chunk coal that is currently available in Krakow for approximately $83 to 93/ton. Clean Fuel will be made available in Krakow at a price approximately 10 percent lower than that of the premium chunk coal.

  13. Sonochemical cleaning efficiencies in dental instruments

    Tiong, T. Joyce; Walmsley, A. Damien; Price, Gareth J.

    2012-05-01

    Ultrasound has been widely used for cleaning purposes in a variety of situations, including in dental practice. Cleaning is achieved through a combination of acoustically driven streaming effects and sonochemical effects arising from the production of inertial cavitation in a liquid. In our work, various dental instruments used for endodontic (root canal) treatment have been evaluated for their efficiency in producing sonochemical effects in an in-vitro cleaning environment. The areas where cavitation was produced were mapped by monitoring chemiluminescence from luminol solutions and this was correlated with their cleaning efficiencies - assessed by the ability to bleach a dye, to form an emulsion by mixing immiscible components and also to remove ink from a glass surface. The results showed good correlation (Pearson's coefficient > 0.9) between the cavitation and cleaning efficiencies, suggesting that the former plays an important role in cleaning. The methods developed and the results will be beneficial in endodontics research in order to optimise future root canal instruments and treatments.

  14. What is Clean Cities? October 2011 (Brochure)

    2011-10-01

    Brochure describes the Clean Cities program and includes the contact information for its 85 coalitions. Sponsored by the U.S. Department of Energy's (DOE) Vehicle Technologies Program (VTP), Clean Cities is a government-industry partnership that reduces petroleum consumption in the transportation sector. Clean Cities contributes to the energy, environmental, and economic security of the United States by supporting local decisions to reduce our dependence on imported petroleum. Established in 1993 in response to the Energy Policy Act (EPAct) of 1992, the partnership provides tools and resources for voluntary, community-centered programs to reduce consumption of petroleum-based fuels. In nearly 100 coalitions, government agencies and private companies voluntarily come together under the umbrella of Clean Cities. The partnership helps all parties identify mutual interests and meet the objectives of reducing the use of petroleum, developing regional economic opportunities, and improving air quality. Clean Cities deploys technologies and practices developed by VTP. These include idle-reduction equipment, electric-drive vehicles, fuel economy measures, and renewable and alternative fuels, such as natural gas, liquefied petroleum gas (propane), electricity, hydrogen, biofuels, and biogas. Idle-reduction equipment is targeted primarily to buses and heavy-duty trucks, which use more than 2 billion gallons of fuel every year in the United States while idling. Clean Cities fuel economy measures include public education on vehicle choice and fuel-efficient driving practices.

  15. Microbial water quality in clean water tanks following inspection and cleaning

    Christensen, Sarah Christine Boesgaard; Esbjørn, Anne; Mollerup, Finn

    Increased bacterial counts are often registered in drinking water leaving clean water tanks after the tanks have been emptied, inspected and cleaned by flushing. To investigate the reason for the increased bacterial concentrations and consequently limit it, samples from two clean water tanks befo...... start-up of the tanks, which may indicate that a substantial part of the bacteria in the drinking water leaving the tanks originated from the sand filter. This was supported by 16S DNA analyses....

  16. Outsourcing Housekeeping: An insight into two cleaning companies, SOL and N-Clean, in Helsinki, Finland

    Hussain, Samra

    2016-01-01

    The purpose of the author was to find to get an insight into the cleaning companies, in Helsin-ki, Finland, which the hotel industry is using as an external supplier for their housekeeping de-partment. The author has looked into the cleaning companies training process for the cleaning staff, employee demographics, quality control and process of handling complaints. The ad-vantages and disadvantages of outsourcing housekeeping in the hotel sector are also investi-gated. The research method...

  17. Metallated metal-organic frameworks

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  18. Validation of Alternatives to High Volatile Organic Compound Solvents Used in Aeronautical Antifriction Bearing Cleaning

    2006-10-17

    982-4832 (fax) tom.torres@navy.mil Quality Assurance Officer Gene Griffin NFESC 1100 23rd Avenue Port Hueneme, CA 93043-4370 (805) 982-2267...solvent replenishment system. The waste solvent shall be captured in a sealed container that is easily acces· sible for periodic disposal. (2) HFE ...Co-Solvent Vapor Degreaser. This method features the use of a hydrocarbon (HC) solvating agent and a Hydrofluoroether ( HFE ) liquid rinse and vapor

  19. ''How clean is clean'' in the United States federal and Washington State cleanup regulations

    Landau, H.G.

    1993-01-01

    The enactment of legislation and promulgation of implementing regulations generally involves the resolution of conflicting goals. Defining ''How Clean is Clean?'' in federal and state cleanup laws, regulations, and policies is no exception. Answering the ''How Clean is Clean?'' question has resulted in the identification of some important and sometimes conflicting goals. Continuing resolution of the following conflicting goals is the key to effect cleanup of hazardous waste sites: Expediency vs. Fairness; Flexibility vs. Consistency; Risk Reduction vs. Risk Causation; and Permanence vs. Cost Effectiveness

  20. Design of segmental ultrasonic cleaning equipment for removing the sludge in a steam generator

    Kim, Seok Tae; Jeong, Woo Tae; Byeon, Min Suk; Lee, Ho One

    2010-01-01

    In nuclear power plants, the water in the coolant system is managed to be clean but metallic sludge is accumulated on the top of tube-sheet in a steam generator. The sludge causes the corrosion of the tubesheet. The electric utility company in Korea removes the sludge with a lancing system for every outage of nuclear power plants. But the sludge is not perfectly removed with lancing system because the pressurized water of the lancing system cannot reach all area in a steam generator. Therefore the steam generator cleaning system with ultrasonic energy has been developed in KEPCO Research Institute. In this paper, the ultrasonic cleaning system is designed for removing the sludge on the steam generator

  1. Investigation of effective forensic cleaning methods for bullet and cartridge case samples

    Shuherk, Cassie Marie

    Bullet and cartridge case evidence may potentially link weapons and crimes through the comparison of toolmark patterns. This analysis relies on the clarity of the toolmarks and the ability of the examiner to identify patterns on the evidence. These patterns may be distorted by debris such as soil, blood, cyanoacrylate, and construction materials. Despite the potential importance of bullet and cartridge case evidence, few investigations of proper cleaning methods have been conducted. The present study was designed to examine the effects of various cleaning solutions and application methods on copper and brass bullets and cartridge cases. Additionally, this research investigated the efficacy of these cleaning protocols on the common evidence contaminants blood and cyanoacrylate. No cleaning method was found to be universally effective on both contaminant types and nondestructive to the metal surface. Ultrasonication was the most efficient application method employed when used in conjunction with an appropriate cleaning solution. Acetone proved to be safe and successful at removing heavy cyanoacrylate deposits from brass cartridge cases without damaging the metal. Although sulfuric acid removed most of the cyanoacrylate from the brass cartridge case, ultrasonication of the fumed cartridge cases in sulfuric acid caused the nickel-plated primer caps to turn black. Additionally, etching occurred when sulfuric acid was allowed to dry on the cartridge case surface. Citric acid, salt-flour-vinegar paste, TergazymeRTM, and water did not effectively remove the cyanoacrylate from the cartridge cases, but the solutions were safe to use on the brass and sometimes resulted in a shinier surface. Regardless of the cleaning method employed, the bloodstained bullets retained most or all of the underlying brown tarnish. Ultrasonication with sulfuric acid was successful at removing some blood-initiated tarnishing; however, the removal of residues was not complete, making it difficult

  2. Effectiveness acidic pre-cleaning for copper-gold ore

    Antonio Clareti Pereira

    Full Text Available Abstract The presence of copper-bearing minerals is known to bring on many challenges during the cyanidation of gold ore, like high consumption of cyanide and low extraction of metal, which are undesirable impacts on the auriferous recovery in the subsequent process step. The high copper solubility in cyanide prevents the direct use of classical hydrometallurgical processes for the extraction of gold by cyanidation. Additionally, the application of a conventional flotation process to extract copper is further complicated when it is oxidized. As a result, an acid pre-leaching process was applied in order to clean the ore of these copper minerals that are cyanide consumers. The objective was to evaluate the amount of soluble copper in cyanide before and after acidic cleaning. From a gold ore containing copper, the study selected four samples containing 0.22%, 0.55%, 1.00% and 1.36% of copper. For direct cyanidation of the ore without pre-treatment, copper extraction by cyanide complexing ranged from 8 to 83%. In contrast, the pre-treatment carried out with sulfuric acid extracted 24% to 99% of initial copper and subsequent cyanidation extracted 0.13 to 1.54% of initial copper. The study also showed that the copper contained in the secondary minerals is more easily extracted by cyanide (83%, being followed by the copper oxy-hydroxide minerals (60%, while the copper contained in the manganese oxide is less complexed by cyanide (8% a 12%. It was possible to observe that minerals with low acid solubility also have low solubility in cyanide. Cyanide consumption decreased by about 2.5 times and gold recovery increased to above 94% after acidic pre-cleaning.

  3. TRACKING CLEAN UP AT HANFORD

    CONNELL, C.W.

    2005-01-01

    The Hanford Federal Facility Agreement and Consent Order, known as the ''Tri-Party Agreement'' (TPA), is a legally binding agreement among the US Department of Energy (DOE), The Washington State Department of Ecology, and the US Environmental Protection Agency (EPA) for cleaning up the Hanford Site. Established in the 1940s to produce material for nuclear weapons as part of the Manhattan Project, Hanford is often referred to as the world's large environmental cleanup project. The Site covers more than 580 square miles in a relatively remote region of southeastern Washington state in the US. The production of nuclear materials at Hanford has left a legacy of tremendous proportions in terms of hazardous and radioactive waste. From a waste-management point of view, the task is enormous: 1700 waste sites; 450 billion gallons of liquid waste; 70 billion gallons of contaminated groundwater; 53 million gallons of tank waste; 9 reactors; 5 million cubic yards of contaminated soil; 22 thousand drums of mixed waste; 2.3 tons of spent nuclear fuel; and 17.8 metric tons of plutonium-bearing material and this is just a partial listing. The agreement requires that DOE provide the results of analytical laboratory and non-laboratory tests/readings to the lead regulatory agency to help guide then in making decisions. The agreement also calls for each signatory to preserve--for at least ten years after the Agreement has ended--all of the records in it, or its contractors, possession related to sampling, analysis, investigations, and monitoring conducted. The Action Plan that supports the TPA requires that Ecology and EPA have access to all data that is relevant to work performed, or to be performed, under the Agreement. Further, the Action Plan specifies two additional requirements: (1) that EPA, Ecology and their respective contractor staffs have access to all the information electronically, and (2) that the databases are accessible to, and used by, all personnel doing TPA

  4. Adventitious Carbon on Primary Sample Containment Metal Surfaces

    Calaway, M. J.; Fries, M. D.

    2015-01-01

    Future missions that return astromaterials with trace carbonaceous signatures will require strict protocols for reducing and controlling terrestrial carbon contamination. Adventitious carbon (AC) on primary sample containers and related hardware is an important source of that contamination. AC is a thin film layer or heterogeneously dispersed carbonaceous material that naturally accrues from the environment on the surface of atmospheric exposed metal parts. To test basic cleaning techniques for AC control, metal surfaces commonly used for flight hardware and curating astromaterials at JSC were cleaned using a basic cleaning protocol and characterized for AC residue. Two electropolished stainless steel 316L (SS- 316L) and two Al 6061 (Al-6061) test coupons (2.5 cm diameter by 0.3 cm thick) were subjected to precision cleaning in the JSC Genesis ISO class 4 cleanroom Precision Cleaning Laboratory. Afterwards, the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

  5. Interaction of dimethylamine with clean and partially oxidized copper surfaces

    Kelber, J. A.; Rogers, J. W.; Banse, B. A.; Koel, B. E.

    1990-05-01

    The interaction of dimethylamine (DMA) with partially oxidized polycrystalline copper [Cu(poly)] and clean and partially oxidized Cu(110) between 110 and 500 K has been examined using electron stimulated desorption (ESD), high resolution electron energy loss spectroscopy (HREELS) and temperature programmed desorption (TPD). ESD mass spectra of the DMA adsorbed on O/Cu(poly) between 112 and 230 K consistently display peaks at 44 amu [(CH 3) 2N] + and 46 amu [(CH 3) 2NH-H] +, but no significant parent peak at 45 amu [(CH 3) 2NH] +, even though this last feature is prominent in the gas-phase mass spectrum. OH - is not observed at temperatures below 184 K and the yield at higher temperatures is much less than that of O +. HREELS of DMA on clean and oxygen covered Cu(110) obtained at temperatures between 100 and 320 K show characteristic vibrational spectra for molecular DMA and no OH(a) vibrational modes. TPD results show that the desorption profiles of all the major peaks in the DMA mass spectrum follow that of the parent peak with no evidence for production of H 2O. The ESD, HREELS and TPD results all indicate that DMA is molecularly and reversibly adsorbed, with no significant formation of surface hydroxyl species. The results indicate that preferential adsorption of amines from amine/epoxy mixtures onto metal oxide surfaces could passivate the surface and prevent subsequent bonding to the epoxy resin.

  6. Hot gas cleaning, a targeted project

    Romey, I. [University of Essen, Essen (Germany)

    1998-11-01

    Advanced hot gas cleaning systems will play a key role in future integrated combined cycle technologies. IGCC demonstration plants in operation or under construction are at present equipped with conventional wet gas scrubbing and cleaning systems. Feasibility studies for those IGCC plants have shown that the total efficiency of the processes can be improved using hot gas cleaning systems. However, this technology has not been developed and tested at a technical scale. Six well-known European industrial companies and research centres jointly worked together since January 1996 on a Targeted Project `Hot Gas Cleaning` to investigate and develop new hot gas cleaning systems for advanced clean coal power generation processes. In addition project work on chemical analysis and modelling was carried out in universities in England and Germany. The latest main findings were presented at the workshop. The main project aims are summarised as follows: to increase efficiency of advanced power generation processes; to obtain a reduction of alkalis and environmental emissions e.g. SO{sub 2}, NO{sub x}, CO{sub 2} and dust; and to develop the design basis for future industrial plants based on long-term operation of laboratory, pilot and demo-plants. To cover a range of possible process routes for future hot gas cleaning systems the following research programme is under investigation: removal of trace elements by different commercial and self developed sorbents; gas separation by membranes; separation of gas turbine relevant pollutants by hot filter dust and; H{sub 2}S removal and gas dedusting at high temperatures. 13 figs.

  7. Investigation of some cleaning surface treatments for the fabrication of ITER first wall panels by HIP

    Frayssines, P.E.; Bucci, P. [CEA Grenoble (DRT/LITEN/DTH), 38 (France); Vito, E. de [CEA Grenoble (LITEN/DTH/LCPEM), 38 (France); Lorenzetto, P. [2EFDA, Garching (Germany)

    2007-07-01

    Full text of publication follows: ITER First Wall (FW) panels are the innermost part of the ITER reactor. Metallic materials used for their manufacture are 316L(N)-IG stainless steel, a copper alloy and beryllium. Stainless steel material is a support structure for the copper alloy that serves as a heat sink material and also for the beryllium tiles that are a protective armour against the plasma. All these materials are bonded together by Hot Isostatic Pressing (HIP). Thus, several types of joints (Cu/Cu, Cu/SS, SS/SS or Cu/Be) are present in a FW panels. Their manufacturing requires a very strict and advanced metallic surface preparation in order to eliminate most of the organic or oxide layers that could prevent the diffusion process between the facing materials. In this field, our laboratory practice enables to obtain sufficiently clean metallic surfaces and high strength joints are obtained when small mockups are made. However, the manufacture of a large number of FW panels in the future requires to find a new cleaning process that is industrially relevant without a strong reduction of the joint's mechanical properties. In this paper we present our investigations to find an industrial solution to clean efficiently copper alloy and stainless steel materials in order to manufacture high strength Cu/Cu, SS/SS or Cu/SS joints. Products investigated are mainly acid liquids proposed by chemical Company and a more advanced technique that uses a plasma process. HIP joints are tested mechanically by making impact toughness and tensile measurements. Results obtained with these solutions are compared to those obtained in our Laboratory by using our own cleaning route. Moreover, XPS analyses are performed on small specimens that have been submitted to the same cleaning treatments in order to better understand the mechanical results of our specimens. (authors)

  8. Investigation of some cleaning surface treatments for the fabrication of ITER first wall panels by HIP

    Frayssines, P.E.; Bucci, P.; Vito, E. de; Lorenzetto, P.

    2007-01-01

    Full text of publication follows: ITER First Wall (FW) panels are the innermost part of the ITER reactor. Metallic materials used for their manufacture are 316L(N)-IG stainless steel, a copper alloy and beryllium. Stainless steel material is a support structure for the copper alloy that serves as a heat sink material and also for the beryllium tiles that are a protective armour against the plasma. All these materials are bonded together by Hot Isostatic Pressing (HIP). Thus, several types of joints (Cu/Cu, Cu/SS, SS/SS or Cu/Be) are present in a FW panels. Their manufacturing requires a very strict and advanced metallic surface preparation in order to eliminate most of the organic or oxide layers that could prevent the diffusion process between the facing materials. In this field, our laboratory practice enables to obtain sufficiently clean metallic surfaces and high strength joints are obtained when small mockups are made. However, the manufacture of a large number of FW panels in the future requires to find a new cleaning process that is industrially relevant without a strong reduction of the joint's mechanical properties. In this paper we present our investigations to find an industrial solution to clean efficiently copper alloy and stainless steel materials in order to manufacture high strength Cu/Cu, SS/SS or Cu/SS joints. Products investigated are mainly acid liquids proposed by chemical Company and a more advanced technique that uses a plasma process. HIP joints are tested mechanically by making impact toughness and tensile measurements. Results obtained with these solutions are compared to those obtained in our Laboratory by using our own cleaning route. Moreover, XPS analyses are performed on small specimens that have been submitted to the same cleaning treatments in order to better understand the mechanical results of our specimens. (authors)

  9. Underwater cleaning techniqued used for removal of zebra mussels at the FitzPatrick Nuclear Power Plant

    Hobbs, B.; Kahabka, J.

    1995-01-01

    This paper discusses the use of a mechanical brush cleaning technology recently used to remove biofouling from the Circulating Water (CW) System at New York Power Authority's James A. FitzPatrick Nuclear Power Plant. The FitzPatrick plant had previously used chemical molluscicide to treat zebra mussels in the CW system. Full system treatment was performed in 1992 with limited forebay/screenwell treatment in 1993. The New York Power Authority (NYPA) decided to conduct a mechanical cleaning of the intake system in 1994. Specific project objectives included: (1) Achieve a level of surface cleaniness greater than 98%; (2) Remove 100% of debris, both existing sediment and debris generated as a result of cleaning; (3) Inspect all surfaces and components, identifying any problem areas; (4) Complete the task in a time frame within the 1994-95 refueling outage schedule window, and; (5) Determine if underwater mechanical cleaning is a cost-effective zebra mussel control method suitable for future application at FitzPatrick. A pre-cleaning inspection, including underwater video photography, was conducted of each area. Cleaning was accomplished using diver-controlled, multi-brush equipment included the electro-hydraulic powered Submersible Cleaning and Maintenance Platform (SCAMP), and several designs of hand-held machines. The brushes swept all zebra mussels off surfaces, restoring concrete and metal substrates to their original condition. Sensitive areas including pump housings, standpipes, sensor piping and chlorine injection tubing, were cleaned without degradation. Submersible vortex vacuum pumps were used to remove debris from the cavity. More than 46,000 ft 2 of surface area was cleaned and over 460 cubic yards of dewatered debris were removed. As each area was completed, a post-clean inspection with photos and video was performed

  10. Active gas discharge cleaning for superconducting lead-plated resonators

    Malev, M.D.; Weisser, D.C.

    1985-06-01

    Lead-plating for superconducting RF resonators historically has been directed toward reducing grain size and eliminating spikes on the surface. Investigations were made of degassing lead-plated surfaces under RF resonant electron discharge or multipacting. The mass-spectra of the residual atmosphere showed that decomposition of hydrocarbons on the surface took place. Discolouration of the lead surface, due to the formation of a carbon layer, was easily observed. A method of cleaning surfaces by ion bombardment employing chemically active gases, was proposed and tested. An RF discharge, initiated by multipacting at pressure 10 -2 - 10 -1 torr was used. The first step, discharge treatment in a CO 2 atmosphere, assures oxidation of carbon and hydrocarbons into gaseous compounds which are removed by pumping. During the second step, discharge treatment in a hydrogen atmosphere, lead oxides are reduced to metal

  11. Consistent approach to air-cleaning system duct design

    Miller, W.H.; Ornberg, S.C.; Rooney, K.L.

    1981-01-01

    Nuclear power plant air-cleaning system effectiveness is dependent on the capability of a duct system to safely convey contaminated gas to a filtration unit and subsequently to a point of discharge. This paper presents a logical and consistent design approach for selecting sheet metal ductwork construction to meet applicable criteria. The differences in design engineers' duct construction specifications are acknowledged. Typical duct construction details and suggestions for their effective use are presented. Improvements in duct design sections of ANSI/ASME N509-80 are highlighted. A detailed leakage analysis of a control room HVAC system is undertaken to illustrate the effects of conceptual design variations on duct construction requirements. Shortcomings of previously published analyses and interpretations of a current standard are included

  12. Clean Energy Solutions Center Services (Arabic Translation) (Fact Sheet)

    2014-06-01

    This is the Arabic translation of the Clean Energy Solutions Center Services fact sheet. The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  13. 40 CFR 63.744 - Standards: Cleaning operations.

    2010-07-01

    ... system with equivalent emission control. (e) Exempt cleaning operations. The following cleaning...) Cleaning of aircraft and ground support equipment fluid systems that are exposed to the fluid, including... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Standards: Cleaning operations. 63.744...

  14. Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas

    Phoenix Cleans Up with Natural Gas to someone by E-mail Share Alternative Fuels Data Center : Phoenix Cleans Up with Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Phoenix Cleans Up with Natural

  15. Cleaning Management in Higher Education: Value for Money Study.

    Scottish Higher Education Funding Council, Edinburgh.

    This report identifies key management issues for senior managers and heads of cleaning departments in developing and reviewing cleaning services to support improvement and enhance cost effectiveness. The cleaning costs incurred by higher education institutions (HEIs) represent 2.7 percent of the total spent nationally on cleaning services for both…

  16. 9 CFR 83.7 - Shipping containers; cleaning and disinfection.

    2010-01-01

    ... HEMORRHAGIC SEPTICEMIA § 83.7 Shipping containers; cleaning and disinfection. (a) All live fish that are to be... been cleaned and disinfected. (1) Cleaning and disinfection of shipping containers must be monitored by... who issues the ICI. (2) Cleaning and disinfection must be sufficient to neutralize any VHS virus to...

  17. Study on surface properties of gilt-bronze artifacts, after Nd:YAG laser cleaning

    Lee, Hyeyoun [Division of Restoration Technology, National Research Institute of Cultural Heritage, Daejeon (Korea, Republic of); Cho, Namchul, E-mail: nam1611@hanmail.net [Department of Cultural Heritage Conservation Science, Kongju National University, Gongju, 314-701 (Korea, Republic of); Lee, Jongmyoung [Laser Engineering Group, IMT Co. Ltd, Gyeonggi (Korea, Republic of)

    2013-11-01

    As numerous pores are formed at plating gilt-bronze artifacts, the metal underlying the gold is corroded and corrosion products are formed on layer of gold. Through this study, the surfaces of gilt-bronze are being investigated before and after the laser irradiation to remove corrosion products of copper by using Nd:YAG laser. For gilt-bronze specimens, laser and chemical cleaning were performed, and thereafter, surface analysis with SEM-EDS, AFM, and XPS were used to determine the surface characteristics. Experimental results show that chemical cleaning removes corrosion products of copper through dissolution but it was not removed uniformly and separated the metal substrate and the gold layer. Nevertheless, through laser cleaning, some of the corrosions were removed with some damaged areas due to certain conditions and brown residues remained. Brown residues were copper corrosion products mixed with soil left within the gilt layer. It was due to surface morphology of uneven and rough gilt layer. Hence, they did not react effectively to laser beams, and thus, remained as residues. The surface properties of gilt-bronze should be thoroughly investigated with various surface analyses to succeed in laser cleaning without damages or residues.

  18. Hebei Spirit Oil Spill Exposure and Subjective Symptoms in Residents Participating in Clean-Up Activities

    Cheong, Hae-Kwan; Lee, Jong Seong; Kwon, Hojang; Ha, Eun-Hee; Hong, Yun-Chul; Choi, Yeyong; Jeong, Woo-Chul; Hur, Jongil; Lee, Seung-Min; Kim, Eun-Jung; Im, Hosub

    2011-01-01

    Objectives This study was conducted to examine the relationship between crude oil exposure and physical symptoms among residents participating in clean-up work associated with the Hebei Spirit oil spill, 2007 in Korea. Methods A total of 288 residents responded to a questionnaire regarding subjective physical symptoms, sociodemographic characteristics and clean-up activities that occurred between two and eight weeks after the accident. Additionally, the urine of 154 of the respondents was analyzed for metabolites of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) and heavy metals. To compare the urinary levels of exposure biomarkers, the urine of 39 inland residents who were not directly exposed to the oil spill were analyzed. Results Residents exposed to oil remnants through clean-up work showed associations between physical symptoms and the exposure levels defined in various ways, including days of work, degree of skin contamination, and levels of some urinary exposure biomarkers of VOCs, metabolites and metals, although no major abnormalities in urinary exposure biomarkers were observed. Conclusions This study provides evidence of a relationship between crude oil exposure and acute human health effects and suggests the need for follow-up to evaluate the exposure status and long-term health effects of clean-up participants. PMID:22125768

  19. LEED crystallography studies of the structure of clean and adsorbate-covered Ir, Pt and Rh crystal surfaces

    Koestner, R.J.

    1982-08-01

    There have only been a few Low Energy Electron Diffraction (LEED) intensity analyses carried out to determine the structure of molecules adsorbed on metal surfaces; most surface crystallography studies concentrated on the structure of clean unreconstructed or atomic adsorbate-covered transition metal faces. The few molecular adsorption systems already investigated by dynamical LEED are CO on Ni(100), Cu(100) and Pd(100) as well as C 2 H 2 and C 2 H 4 adsorbed on Pt(111). The emphasis of this thesis research has been to extend the applicability of LEED crystallography to the more complicated unit cells found in molecular overlayers on transition metals or in there constructed surfaces of clean transition metals

  20. LEED crystallography studies of the structure of clean and adsorbate-covered Ir, Pt and Rh crystal surfaces

    Koestner, R.J.

    1982-08-01

    There have only been a few Low Energy Electron Diffraction (LEED) intensity analyses carried out to determine the structure of molecules adsorbed on metal surfaces; most surface crystallography studies concentrated on the structure of clean unreconstructed or atomic adsorbate-covered transition metal faces. The few molecular adsorption systems already investigated by dynamical LEED are CO on Ni(100), Cu(100) and Pd(100) as well as C/sub 2/H/sub 2/ and C/sub 2/H/sub 4/ adsorbed on Pt(111). The emphasis of this thesis research has been to extend the applicability of LEED crystallography to the more complicated unit cells found in molecular overlayers on transition metals or in there constructed surfaces of clean transition metals.

  1. Combining a Novel Computer Vision Sensor with a Cleaning Robot to Achieve Autonomous Pig House Cleaning

    Andersen, Nils Axel; Braithwaite, Ian David; Blanke, Mogens

    2005-01-01

    condition based cleaning. This paper describes how a novel sensor, developed for the purpose, and algorithms for classification and learning are combined with a commercial robot to obtain an autonomous system which meets the necessary quality attributes. These include features to make selective cleaning...

  2. Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications

    Chung, Tai-Shung

    2012-08-01

    The purpose of this short review is to share our understanding and perspectives with the chemical, environmental, water and osmotic power communities on FO processes in order to conduct meaningful R & D and develop effective and sustainable FO technologies for clean water and clean energy. © 2012 Elsevier Ltd. All rights reserved.

  3. Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications

    Chung, Tai-Shung; Li, Xue; Ong, Rui Chin; Ge, Qingchun; Wang, Honglei; Han, Gang

    2012-01-01

    The purpose of this short review is to share our understanding and perspectives with the chemical, environmental, water and osmotic power communities on FO processes in order to conduct meaningful R & D and develop effective and sustainable FO technologies for clean water and clean energy. © 2012 Elsevier Ltd. All rights reserved.

  4. Visible-light self-cleaning cotton by metalloporphyrin-sensitized photocatalysis

    Afzal, Shabana [School of Applied Sciences and Engineering, Monash University, Churchill 3842 (Australia); Daoud, Walid A., E-mail: wdaoud@cityu.edu.hk [School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Langford, Steven J. [School of Chemistry, Monash University, Clayton 3800 (Australia)

    2013-06-15

    Thin films of meso-tetra(4-carboxyphenyl)porphyrin with different metal centres (MTCPP, M = Fe, Co and Zn) in combination with anatase TiO{sub 2} have been formed on cotton fabric. Their self-cleaning properties have been evaluated by conducting the photocatalytic degradation of methylene blue under visible-light irradiation. All MTCPP/TiO{sub 2}-coated cotton fabrics showed superior self-cleaning performance as compared to the bare TiO{sub 2}-coated cotton. Among the three metal porphyrins, FeTCPP showed the highest photocatalytic activity with complete degradation of methylene blue in 180 min. The fabrics were characterized by FESEM, XRD, UV–vis and fluorescence spectroscopy.

  5. Coolant cleaning facility for nuclear reactor

    Kuboniwa, Takao; Konno, Yasuhiro; Kumaya, Shin; Osumi, Katsumi.

    1982-01-01

    Purpose: To remove cation of radioactive cobalt 60 produced in a reactor water during the ordinary operation of the reactor and chlorine when sea water is leaked in a condenser as well as to suppress an increase in iron clad containing radioactive cobalt 60 in the reactor water when the reactor is stopped. Constitution: A large flow rate high temperature cleaning system having an electromagnetic filter capable of removing radioactive substance in a reactor water, a low temperature cleaning system having a desalting unit using ion exchanger resin, a turbidity meter for measuring the turbidity of the reactor water and a conductivity meter for measuring the conductivity are provided. Further, flow rate control means are provided in the high and low temperature cleaning systems. The flow rate control means of the high temperature cleaning system is controlled by a measured signal of the turbidity meter, and the flow rete control means of the low temperature cleaning system is controlled by the measured signal of the conductivity meter. (Aizawa, K.)

  6. Source terms in relation to air cleaning

    Bernero, R.M.

    1985-01-01

    There are two sets of source terms for consideration in air cleaning, those for routine releases and those for accident releases. With about 1000 reactor years of commercial operating experience in the US done, there is an excellent data base for routine and expected transient releases. Specifications for air cleaning can be based on this body of experience with confidence. Specifications for air cleaning in accident situations is another matter. Recent investigations of severe accident behavior are offering a new basis for source terms and air cleaning specifications. Reports by many experts in the field describe an accident environment notably different from previous models. It is an atmosphere heavy with aerosols, both radioactive and inert. Temperatures are sometimes very high; radioiodine is typically in the form of cesium iodide aerosol particles; other nuclides, such as tellurium, are also important aerosols. Some of the present air cleaning requirements may be very important in light of these new accident behavior models. Others may be wasteful or even counterproductive. The use of the new data on accident behavior models to reevaluate requirements promptly is discussed

  7. Canadian government motivators for clean air vehicles

    Forster, J. [Transport Canada, Ottawa, ON (Canada)

    1999-07-01

    A slide presentation is included which covers: why support clean air vehicles, key areas of action including climate change and cleaner air and conclusions. Reasons for supporting clean air vehicles include: the environment is not a top of mind issue for Canadians but is a core issue, transportation contributes significantly to environmental problems, e.g., 40-50% of smog emissions, and 27% of greenhouse gas emissions, and clean air vehicles are part of the solution. The first area of action is that of climate change, and includes as elements: the Kyoto Protocol, First Ministers, and 15 Issue Tables. The second area of action is clean air. Action on climate change can have ancillary benefits, e.g., reduction in smog-related emissions. Government is taking action to address smog in concert with the provinces in the Federal Smog Management Plan. A key element in the Plan is that of ensuring that appropriate emissions standards are in place. Transport Canada supports clean air vehicles through research conducted at the Transporation Research and Development Centre. Further Transport Canada involvement includes: partnership in Montreal 2000, demonstration/conversion testing, development of advanced EV systems, and membership in the CEVEQ. In the longer term, new technologies hold the key to addressing many environmental challenges. This is particularly true with respect to climate change and air quality, and new vehicle technologies will play an important role.

  8. Sodium cleaning device for nuclear reactor equipments

    Fujisawa, Morio.

    1985-01-01

    Purpose: To enable sodium cleaning over the entire length of large size equipments such as control rod drives and primary coolant recycling pumps for use in FBR type reactors. Constitution: A plurality of warm water supply nozzles each having a valve are connected at varying height on the side of a cleaning tank, to which an exhaust line is connected. These nozzles are connected with an exhaust port at the bottom of the tank to constitute a pipeway for cleaning warm water recycling line including a water feed pump and a feedwater heater. The water level in the tank is changed stepwise by successively selecting the warm water feed nozzles. Further, the warm water in the tank is recyclically fed through the nozzles selected at each step of the water level through the recycle line while warming. On the other hand, the pressure inside the tank is reduced through the exhaust line, whereby the warm water in the tank is boiled at low temperature to clean-up sodium on the equipments to be cleaned over the entire length. (Horiuchi, T.)

  9. Cleaning of Easel Paintings: An Overview

    Bordalo, R.; Morais, P.J.; Gouveia, H.; Young, C.

    2006-01-01

    The application of laser cleaning to paintings is relatively recent despite its use on stone-based materials for over 30 years. The cleaning of paintings is of high importance, because it is the least reversible invasive intervention, as well as the most usual of all conservation treatments. Paintings are multilayer system of heterogeneous nature, often very sensitive and inherent difficult to clean. Being a noncontact method, laser cleaning has advantages compared to alternative techniques. Over the last decade, there have been important research studies and advances. However, they are far from sufficient to study the effects on painting materials and to establish the best parameters for each material under investigation. This paper presents a historical overview of the application of laser technology to the cleaning of paintings giving special emphasis on the research of the last decade. An overview of the current research into the interaction between the radiation and the different painting materials (varnish, pigments, and medium) is also given. The pigment's mechanisms of discoloration and the presence of media as a variable factor in the discoloration of pigments are discussed.

  10. Northwest Region Clean Energy Application Center

    Sjoding, David [Washington State Univ., Pullman, WA (United States)

    2013-09-30

    The main objective of the Northwest Clean Energy Application Center (NW CEAC) is to promote and support implementation of clean energy technologies. These technologies include combined heat and power (CHP), district energy, waste heat recovery with a primary focus on waste heat to power, and other related clean energy systems such as stationary fuel cell CHP systems. The northwest states include AK, ID, MT, OR, and WA. The key aim/outcome of the Center is to promote and support implementation of clean energy projects. Implemented projects result in a number of benefits including increased energy efficiency, renewable energy development (when using opportunity fuels), reduced carbon emissions, improved facility economics helping to preserve jobs, and reduced criteria pollutants calculated on an output-based emissions basis. Specific objectives performed by the NW CEAC fall within the following five broad promotion and support categories: 1) Center management and planning including database support; 2) Education and Outreach including plan development, website, target market workshops, and education/outreach materials development 3) Identification and provision of screening assessments & feasibility studies as funded by the facility or occasionally further support of Potential High Impact Projects; 4) Project implementation assistance/trouble shooting; and 5) Development of a supportive clean energy policy and initiative/financing framework.

  11. Cleaning up a biodiesel plant

    Wallace, Paula

    2012-01-01

    Full text: The project at Biodiesel Producers Limited in Victoria involved remediation of a wastewater treatment process containing a large covered anaerobic lagoon, an aerobic sequencing batch reactor (SBR) and a series of downstream open ponds. The pond downstream of the SBR was heavily loaded with a thick hard grease cap. The CAL was believed to have a metre-plus grease cap and the SBR had developed a thick foam cap that prevented aeration and mixing. Environmental Biotech was called in to assist with bioremediation using its Grease Eradication System bacteria cultures, with the aim of reducing the fats, oil and grease in the CAL discharge to less than 150 milligrams per litre, eliminating the stable fat foam in the SBR to allow the denitrification sequencing program to be reinstated and to clean up the hard fat layer from the surfaces of the comany's open ponds. The inflow to the CAL was designed for a flow of 210kL per day with a loading of 6900mg/L biochemical oxygen demand and FOG of 425mg/L. The actual load, as measured by Environmental Biotech, was 100kL with 20,000mg/L BOD and 1800mg/L (180kg) FOG. The CAL had been in use for more than two years, generating methane but assumed to be working well in the breakdown of chemical oxygen demand and FOG. In December 2009 the quality of the effluent began to decrease, overloading the SBR with FOG. It caused the formation of dense foam on aeration and mixing. The foam would not break down despite a variety of methods being employed and would overflow from the walls of the SBR. “Due to the foaming issue the SBR became a large holding tank for the fat and because of the reduced mixing, the solids were settling on the bottom of the tank,” Environmental Biotech project manager and franshisee Craig Barr said. “We were brought in to start work inApril 2010 and initially we slug dosed the CAL with 400 litres of GES bacteria in addition to a constant metered dosing rate of 400 litres per fortnight with the

  12. TOXICanada: 13 good reasons to establish a Clean Canada Fund

    NONE

    2001-07-01

    Contaminated sites abound in Canada, including industrial sites in cities, abandoned hazardous waste dumps, old DEW line sites, landfills, nuclear power plants, mines sites and tailings ponds. There is no inventory of these sites, but an estimated 5,000 of them are on federally-owned lands. The environmental effects of these sites are only guessed at, but it is safe to say that they endanger the health of present and future generations of Canadians, particularly children and other vulnerable populations living in communities affected by these toxins. This report attempts to focus attention on the dangers inherent in untreated contaminated sites by highlighting one contaminated sites per province and territory that represent a range of the most common types of contaminated sites that Canada will, sooner or later, have to deal with. The report also urges the establishment of a Clean Canada Fund to deal with these contaminated sites, starting with an inventory, followed by an immediate start to clean up priority contaminated sites, and relocate communities at risk. The 13 sites highlighted are : Argentia (Newfoundland -- PCBs left by the Americans when they abandoned a 3,600 hectare naval base after 50 years); Sleepy Hollow Landfill in Queens County (Prince Edward Island -- mercury and fly ash pollution from an incinerator site); Sidney Tar Ponds (Nova Scotia --the largest toxic waste site in North America, site of a former steel mill, contaminated by PCBs and other deadly chemicals); Miramichi River (New Brunswick -- 20,000 tonnes of toxic creosote, and pentachlorophenol dumped into the river, left over from a wood preserving operation and base metals from a base metal mining operation which dumped millions of gallons of water carrying base metals which eventually deposited in the Miramichi); Technoparc (Quebec -- hydrocarbons and toxic wastes, including PCBs, from an old landfill site near Montreal); Beckwith Township (Ontario -- groundwater contaminated with

  13. Cleaning of spent solvent and method of processing cleaning liquid waste

    Ozawa, Masaki; Kawada, Tomio; Tamura, Nobuhiko.

    1993-01-01

    Spent solvents discharged from a solvent extracting step mainly comprise n-dodecane and TBP and contain nuclear fission products and solvent degradation products. The spent solvents are cleaned by using a sodium chloride free detergent comprising hydrazine oxalate and hydrazine carbonate in a solvent cleaning device. Nitric acid is added to the cleaning liquid wastes containing spent detergents extracted from the solvent cleaning device, to control an acid concentration. The detergent liquid wastes of controlled acid concentration are sent to an electrolysis oxidation bath as electrolytes and electrochemically decomposed in carbonic acid gas, nitrogen gas and hydrogen gas. The decomposed gases are processed as off gases. The decomposed liquid wastes are processed as a waste nitric acid solution. This can provide more effective cleaning. In addition, the spent detergent can be easily decomposed in a room temperature region. Accordingly, the amount of wastes can be decreased. (I.N.)

  14. Alternative Solvents and Technologies for Precision Cleaning of Aerospace Components

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Hintze, Paul

    2014-01-01

    Precision cleaning solvents for aerospace components and oxygen fuel systems, including currently used Vertrel-MCA, have a negative environmental legacy, high global warming potential, and have polluted cleaning sites. Thus, alternative solvents and technologies are being investigated with the aim of achieving precision contamination levels of less than 1 mg/sq ft. The technologies being evaluated are ultrasonic bath cleaning, plasma cleaning and supercritical carbon dioxide cleaning.

  15. Self Cleaning High Efficiency Particulate Air (HEPA) Filtration without Interrupting Process Flow - 59347

    Chadwick, Chris

    2012-01-01

    The strategy of protecting the traditional glass fibre HEPA filtration train from it's blinding contamination and the recovery of dust by the means of self cleaning, pre-filtration is a proven means in the reduction of ultimate disposal volumes and has been used within the Fuel Production Industry. However, there is an increasing demand in nuclear applications requiring elevated operating temperatures, fire resistance, moisture resistance and chemical composition that the existing glass fibre HEPA filtration cannot accommodate, which can be remedied by the use of a metallic HEPA filter media. Previous research suggests that the then costs to the Department of Energy (DOE), based on a five year life cycle, was $29.5 million for the installation, testing, removal and disposal of glass fibre HEPA filtration trains. Within these costs, $300 was the value given to the filter and $4, 450 was given to the peripheral activity. Development of a low cost, cleanable, metallic, direct replacement of the traditional filter train will the clear solution. The Bergman et al work has suggested that a 1000 ft 3 /min, cleanable, stainless HEPA could be commercially available for $5, 000 each, whereas the industry has determined that the truer cost of such an item in isolation would be closer to $15, 000. This results in a conflict within the requirement between 'low cost' and 'stainless HEPA'. By proposing a system that combines metallic HEPA filtration with the ability to self clean without interrupting the process flow, the need for a tradition HEPA filtration train will be eliminated and this dramatically reduces the resources required for cleaning or disposal, thus presenting a route to reducing ultimate costs. The paper will examine the performance characteristics, filtration efficiency, flow verses differential pressure and cleanability of a self cleaning HEPA grade sintered metal filter element, together with data to prove the contention. (authors)

  16. Antibacterial Metallic Touch Surfaces

    Victor M. Villapún

    2016-08-01

    Full Text Available Our aim is to present a comprehensive review of the development of modern antibacterial metallic materials as touch surfaces in healthcare settings. Initially we compare Japanese, European and US standards for the assessment of antimicrobial activity. The variations in methodologies defined in these standards are highlighted. Our review will also cover the most relevant factors that define the antimicrobial performance of metals, namely, the effect of humidity, material geometry, chemistry, physical properties and oxidation of the material. The state of the art in contact-killing materials will be described. Finally, the effect of cleaning products, including disinfectants, on the antimicrobial performance, either by direct contact or by altering the touch surface chemistry on which the microbes attach, will be discussed. We offer our outlook, identifying research areas that require further development and an overview of potential future directions of this exciting field.

  17. Fluorescent Penetrant INSPECTION—CLEANING Study Update

    Eisenmann, D.; Brasche, L.

    2009-03-01

    Fluorescent penetrant inspection (FPI) is widely used in the aviation industry and other industries for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. There is variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. Before the FPI process begins, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. From the first three phases of this project it has been found that a hot water rinse can aid in the detection process when using this nondestructive method.

  18. dc glow-discharge cleaning for accelerator

    Chou, T.S.; Hseuh, H.C.

    1982-01-01

    Average pressure of 1 x 10 -11 torr and vacuum stability are necessary for the successful operation of the proton storage rings such as ISABELLE. Vacuum degassing at high temperature and in situ bake-out will reduce the thermoout-gassing rate of the beam tubes to approx. 10 -13 Tl/cm 2 sec, therefore achieving the required static pressure. The vacuum instability caused by beam-induced ion desorption can be solved by dc glow discharge cleaning. With evidence from this study, the present understanding of glow discharge in a cylindrically symmetric geometry is reviewed. Argon and argon/oxygen mixture serve as plasmas in the glow. The role of oxygen in cleaning the beam tubes during the glow discharge is demonstrated experimentally. Glow discharge cleaning with and without bake-out is also studied

  19. New air cleaning technology in Japan

    Yoshida, Y.; Kitani, S.; Matsui, H.; Ikezawa, Y.

    1981-01-01

    Application of the new techniques and improvements in air cleaning systems have been made to reduce release of radioactive materials from nuclear facilities based on the ALARA concept. For example, the reduction of release of radioactive gaseous effluents has been made by installation of a charcoal gas hold-up system and a clean steam supply system for a turbine gland seal in a BWR and of a gas decay tank system in a PWR. In connection with the effort for reduction of releases in plants, research and development on air cleaning technology have also been made. Some activities mentioned in the present paper are: removal of particulates, airborne radioiodine, noble gases and tritium; penetration characteristics of submicron DOP aerosol for HEPA filters; radioiodine removal from air exhausts; and operational performance of the incineration plants using ceramic filters

  20. Second annual clean coal technology conference: Proceedings

    1993-01-01

    The Second Annual Clean Coal Technology Conference was held at Atlanta, Georgia, September 7--9, 1993. The Conference, cosponsored by the US Department of Energy (USDOE) and the Southern States Energy Board (SSEB), seeks to examine the status and role of the Clean Coal Technology Demonstration Program (CCTDP) and its projects. The Program is reviewed within the larger context of environmental needs, sustained economic growth, world markets, user performance requirements and supplier commercialization activities. This will be accomplished through in-depth review and discussion of factors affecting domestic and international markets for clean coal technology, the environmental considerations in commercial deployment, the current status of projects, and the timing and effectiveness of transfer of data from these projects to potential users, suppliers, financing entities, regulators, the interested environmental community and the public. Individual papers have been entered separately

  1. Odor and the Clean Air Act

    Morse, H.N.

    1993-01-01

    The case described in this paper involves the interpretation of language contained in the Texas Clean Air Act Texas Health and Safety Code Ann. Sections 382.001-382.141. The State of Texas, on behalf of the Texas Air Control Board, brought suit in the District Court of Erath County, Texas against the F/R Cattle Company, Inc., alleging that, because of odors emanating from the company's cattle feeding facility, the company was violating the Clean Air Act. The Board is granted the power and duty to administer the Clean Air Act and is directed to accomplish the purposes of the Act through the control of air contaminants by all practical and economically feasible methods. Described here is the evidence presented at and proceedings of the trial

  2. In-Water Hull Cleaning & Filtration System

    George, Dan

    2015-04-01

    Dan George R & D Mining Technology LinkedIn GRD Franmarine have received the following prestigious awards in 2014 for their research & development of an in-water hull cleaning and filtration system "The Envirocart: Golden Gecko Award for Environmental Excellence; WA Innovator of the Year - Growth Sector; Department of Fisheries - Excellence in Marine Biosecurity Award - Innovation Category; Lloyd's List Asia Awards - Environmental Award; The Australian Innovation Challenge - Environment, Agriculture and Food Category; and Australian Shipping and Maritime Industry Award - Environmental Transport Award. The Envirocart developed and patented by GRD Franmarine is a revolutionary new fully enclosed capture and containment in-water hull cleaning technology. The Envirocart enables soft Silicon based antifouling paints and coatings containing pesticides such as Copper Oxide to be cleaned in situ using a contactless cleaning method. This fully containerised system is now capable of being deployed to remote locations or directly onto a Dive Support Vessel and is rated to offshore specifications. This is the only known method of in-water hull cleaning that complies with the Department of Agriculture Fisheries and Forestry (DAFF) and Department of Fisheries WA (DoF) Guidelines. The primary underwater cleaning tool is a hydraulically powered hull cleaning unit fitted with rotating discs. The discs can be fitted with conventional brushes for glass or epoxy based coatings or a revolutionary new patented blade system which can remove marine biofouling without damaging the antifouling paint (silicone and copper oxide). Additionally there are a patented range of fully enclosed hand cleaning tools for difficult to access niche areas such as anodes and sea chests, providing an innovative total solution that enables in-water cleaning to be conducted in a manner that causes no biological risk to the environment. In full containment mode or when AIS are present, material is pumped

  3. Solar-Panel Dust Accumulation and Cleanings

    2005-01-01

    Air-fall dust accumulates on the solar panels of NASA's Mars Exploration Rovers, reducing the amount of sunlight reaching the solar arrays. Pre-launch models predicted steady dust accumulation. However, the rovers have been blessed with occasional wind events that clear significant amounts of dust from the solar panels. This graph shows the effects of those panel-cleaning events on the amount of electricity generated by Spirit's solar panels. The horizontal scale is the number of Martian days (sols) after Spirit's Jan. 4, 2005, (Universal Time) landing on Mars. The vertical scale indicates output from the rover's solar panels as a fraction of the amount produced when the clean panels first opened. Note that the gradual declines are interrupted by occasional sharp increases, such as a dust-cleaning event on sol 420.

  4. Risks of using membrane filtration for trace metal analysis and assessing the dissolved metal fraction of aqueous media - A study on zinc, copper and nickel

    Hedberg, Yolanda; Herting, Gunilla; Wallinder, Inger Odnevall

    2011-01-01

    Membrane filtration is commonly performed for solid-liquid separation of aqueous solutions prior to trace metal analysis and when assessing 'dissolved' metal fractions. Potential artifacts induced by filtration such as contamination and/or adsorption of metals within the membrane have been investigated for different membrane materials, metals, applied pressures and pre-cleaning steps. Measurements have been conducted on aqueous solutions including well-defined metal standards, ultrapure water, and on runoff water from corroded samples. Filtration using both non-cleaned and pre-cleaned filters revealed contamination and adsorption effects, in particular pronounced for zinc, evident for copper but non-significant for nickel. The results clearly show these artifacts to be non-systematic both for non-cleaned and pre-cleaned membranes. The applied pressure was of minor importance. Measurements of the labile fraction by means of stripping voltammetry clearly elucidate that membrane filtration followed by total metal analysis cannot accurately assess the labile or the dissolved metal fraction. - Highlights: → Membrane filtration for trace metal analysis can introduce significant artifacts. → The dissolved metal fraction cannot be assessed by membrane filtration. → Non-specified filtration procedures are inadequate for scientific studies. → Artifacts caused by membrane filtration need to be addressed by regulators. - Membrane filtration cannot be used to assess the dissolved metal fraction of aqueous media and needs to be defined in detail in standard tests.

  5. Alternative Enhanced Chemical Cleaning Basic Studies Results FY09

    Hay, M.; King, W.

    2010-05-05

    Due to the need to close waste storage tanks, chemical cleaning methods are needed for the effective removal of the heels. Oxalic acid is the preferred cleaning reagent for sludge heel dissolution, particularly for iron-based sludge, due to the strong complexing strength of the oxalate. However, the large quantity of oxalate added to the tank farm from oxalic acid based chemical cleaning has significant downstream impacts. Optimization of the oxalic acid cleaning process can potentially reduce the downstream impacts from chemical cleaning. To optimize oxalic acid usage, a detailed understanding of the chemistry of oxalic acid based sludge dissolution is required. Additionally, other acid systems may be required for specific waste components with low solubility in oxalic acid and as a means to reduce oxalic acid usage in general. Solubility tests were conducted using non-radioactive, pure metal phases known to be the primary phases present in High Level Waste sludge. The metal phases studied included the aluminum phases gibbsite and boehmite and the iron phases magnetite and hematite. Hematite and boehmite are expected to be the most difficult iron and aluminum phases to dissolve. These mineral phases have been identified in both SRS and Hanford High Level Waste sludge. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids. The results of the solubility tests indicate that oxalic and sulfuric acids are more effective for the dissolution of the primary sludge phases. For boehmite, elevated temperature will be required to promote effective phase dissolution in the acids studied. Literature reviews, thermodynamic modeling, and experimental results have all confirmed that pH control using a supplemental proton source (additional acid) is critical for minimization of oxalic acid usage during the dissolution of hematite. These results emphasize the importance of pH control in optimizing hematite dissolution in oxalic acid and may explain the somewhat

  6. Alternative Enhanced Chemical Cleaning Basic Studies Results FY09

    Hay, M.; King, W.

    2010-01-01

    Due to the need to close waste storage tanks, chemical cleaning methods are needed for the effective removal of the heels. Oxalic acid is the preferred cleaning reagent for sludge heel dissolution, particularly for iron-based sludge, due to the strong complexing strength of the oxalate. However, the large quantity of oxalate added to the tank farm from oxalic acid based chemical cleaning has significant downstream impacts. Optimization of the oxalic acid cleaning process can potentially reduce the downstream impacts from chemical cleaning. To optimize oxalic acid usage, a detailed understanding of the chemistry of oxalic acid based sludge dissolution is required. Additionally, other acid systems may be required for specific waste components with low solubility in oxalic acid and as a means to reduce oxalic acid usage in general. Solubility tests were conducted using non-radioactive, pure metal phases known to be the primary phases present in High Level Waste sludge. The metal phases studied included the aluminum phases gibbsite and boehmite and the iron phases magnetite and hematite. Hematite and boehmite are expected to be the most difficult iron and aluminum phases to dissolve. These mineral phases have been identified in both SRS and Hanford High Level Waste sludge. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids. The results of the solubility tests indicate that oxalic and sulfuric acids are more effective for the dissolution of the primary sludge phases. For boehmite, elevated temperature will be required to promote effective phase dissolution in the acids studied. Literature reviews, thermodynamic modeling, and experimental results have all confirmed that pH control using a supplemental proton source (additional acid) is critical for minimization of oxalic acid usage during the dissolution of hematite. These results emphasize the importance of pH control in optimizing hematite dissolution in oxalic acid and may explain the somewhat

  7. Chemical cleaning of UK AGR boilers

    Rudge, A.; Turner, P.; Ghosh, S.; Clary, W.; Tice, D.R.

    2002-01-01

    For a number of years, the waterside pressure drops across the advanced gas-cooled reactor (AGR) pod boilers have been increasing. The pressure drop increases have accelerated with time, which is the converse behaviour to that expected for rippled magnetite formation (rapid initial increase slowing down with time). Nonetheless, magnetite deposition remains the most likely cause for the increasing boiler resistances. A number of potential countermeasures have been considered in response to the boiler pressure drop increases. However, there was no detectable reduction in the rate of pressure drop increase. Chemical cleaning was therefore considered and a project to substantiate and then implement chemical cleaning was initiated. (authors)

  8. Solar photocatalytic cleaning of polluted water

    Bockelmann, D.

    1994-01-01

    Alternatively to biological, physical and chemical methods of waste water cleaning, photocatalysis can be employed. In this residue-free method, titanium dioxide particles are brought into contact with polluted water as photocatalysts. Under UV irradiation at wave-lengths below 400 nm, change carriers are generated in the semiconductor particles that act so intensely oxidizing as to completely degrade almost all organic pollutants in waste water. In this process, the ultra-violet part of the solar spectrum can be harnessed to generate oxidation equivalents. Thus, solar photocatalytic waste water cleaning is excellently suited for developing countries. (BWI) [de

  9. Clean coal technology roadmap: issues paper

    Pearson, B. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2003-07-01

    The need for the Clean Coal Technology Roadmap is based on the climate change threat, Canada's commitment to the Kyoto protocol, and the need to keep options open in determining the future position of coal in Canada's energy mix. The current role of coal, issues facing coal-fired utilities, and greenhouse gas emission policies and environmental regulations are outlined. The IEA energy outlook (2002) and a National Energy Board draft concerning Canada's energy future are outlined. Environmental, market, and technical demands facing coal, technology options for existing facilities, screening new developments in technology, and clean coal options are considered. 13 figs. 5 tabs.

  10. Clean Cities Award Winning Coalition: Coachella Valley

    ICF Kaiser

    1999-05-20

    Southern California's Coachella Valley became a Clean Cities region in 1996. Since then, they've made great strides. SunLine Transit, the regional public transit provider, was the first transit provider to replace its entire fleet with compressed natural gas buses. They've also built the foundation for a nationally recognized model in the clean air movement, by partnering with Southern California Gas Company to install a refueling station and developing a curriculum for AFV maintenance with the College of the Desert. Today the valley is home to more than 275 AFVs and 15 refueling stations.

  11. LHC Abort Gap Monitoring and Cleaning

    Meddahi, M; Boccardi, A; Butterworth, A; Fisher, A S; Gianfelice-Wendt, E; Goddard, B; Hemelsoet, G H; Höfle, W; Jacquet, D; Jaussi, M; Kain, V; Lefevre, T; Shaposhnikova, E; Uythoven, J; Valuch, D

    2010-01-01

    Unbunched beam is a potentially serious issue in the LHC as it may quench the superconducting magnets during a beam abort. Unbunched particles, either not captured by the RF system at injection or leaking out of the RF bucket, will be removed by using the existing damper kickers to excite resonantly the particles in the abort gap. Following beam simulations, a strategy for cleaning the abort gap at different energies was proposed. The plans for the commissioning of the beam abort gap cleaning are described and first results from the beam commissioning are presented.

  12. Heavy metals

    Adriano, Domy; VANGRONSVELD, Jaco; Bolan, N.S.; Wenzel, W.W.

    2005-01-01

    - Sources of Metals in the Environment - Environmental Contamination - Retention and Dynamics of Metals in Soils - Adsorption - Complexation - Precipitation - Bioavailability–Natural Attenuation Interactions - Biological Response to Metals - Soil Remediation

  13. Summary report of the Banff clean energy dialogue : towards a truly Canadian clean energy strategy

    NONE

    2010-07-01

    A clean energy strategy will allow Canada to seize opportunities for prosperity in a low-carbon future, while also contributing to the country's economic growth. This report outlined the conclusions drawn by representatives of major energy corporations and policy-makers who gathered to discuss Canada's clean energy plans for the future. Attendants at the meeting concluded that energy conservation and energy efficiency will play a prominent role in a successful clean energy strategy. However, a price on carbon is needed to emphasize the fundamental relationship between energy and the environment. A successful strategy will feature the following 4 overarching principles: (1) economic opportunity, (2) social responsibility, (3) environmental stewardship, and (4) international strategy in relation to trade and development of new markets. The role that federal, provincial and municipal governments will play in developing and implementing the strategy was also presented. The meeting was divided into the following 6 working sessions: (1) global context for a clean energy strategy, (2) why a Canadian clean energy strategy? Why now?, (3) key pillars of a Canadian clean energy strategy, (4) key building blocks of a national clean energy strategy, (5) a balanced Canadian framework, and (6) next steps. 1 fig.

  14. Significant OH production under surface cleaning and air cleaning conditions: Impact on indoor air quality.

    Carslaw, N; Fletcher, L; Heard, D; Ingham, T; Walker, H

    2017-11-01

    We report measurements of hydroxyl (OH) and hydroperoxy (HO 2 ) radicals made by laser-induced fluorescence spectroscopy in a computer classroom (i) in the absence of indoor activities (ii) during desk cleaning with a limonene-containing cleaner (iii) during operation of a commercially available "air cleaning" device. In the unmanipulated environment, the one-minute averaged OH concentration remained close to or below the limit of detection (6.5×10 5  molecule cm -3 ), whilst that of HO 2 was 1.3×10 7  molecule cm -3 . These concentrations increased to ~4×10 6 and 4×10 8  molecule cm -3 , respectively during desk cleaning. During operation of the air cleaning device, OH and HO 2 concentrations reached ~2×10 7 and ~6×10 8  molecule cm -3 respectively. The potential of these OH concentrations to initiate chemical processing is explored using a detailed chemical model for indoor air (the INDCM). The model can reproduce the measured OH and HO 2 concentrations to within 50% and often within a few % and demonstrates that the resulting secondary chemistry varies with the cleaning activity. Whilst terpene reaction products dominate the product composition following surface cleaning, those from aromatics and other VOCs are much more important during the use of the air cleaning device. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Pengembangan Sistem Informasi Pemesanan Layanan Jasa Cleaning Service Berbasis Web dan Mobile di Liochita Cleaning Semarang

    Agung, Aulio Romadho; Kridalukmana, Rinta; Windasari, Ike Pertiwi

    2016-01-01

    Liochita cleaning is a company engaged in the field of cleaning services which are located in the city of Semarang. Until now, the existing of information systems on Liochita Cleaning were not sufficiently able to manage the company and thus to make this company as a company that developed and developing its field and can compete with other companies is not possible. Start from recording customer data and order data, which is the became one as income data, so this companies are less aware in ...

  16. The Study of the Impact of Surface Preparation Methods of Inconel 625 and 718 Nickel-Base Alloys on Wettability by BNi-2 and BNi-3 Brazing Filler Metals

    Lankiewicz K.

    2015-04-01

    Full Text Available The article discusses the impact of surface preparation method of Inconel 625 and 718 nickel-base alloys in the form of sheets on wettability of the surface. The results of the investigations of surface preparation method (such as nicro-blasting, nickel plating, etching, degreasing, abrasive blasting with grit 120 and 220 and manually grinding with grit 120 and 240 on spreading of BNi-2 and BNi-3 brazing filler metals, widely used in the aerospace industry in high temperature vacuum brazing processes, are presented. Technological parameters of vacuum brazing process are shown. The macro- and microscopic analysis have shown that nicro-blasting does not bring any benefits of wettability of the alloys investigated.

  17. The Study Of The Impact Of Surface Preparation Methods Of Inconel 625 And 718 Nickel-Base Alloys On Wettability By BNi-2 And BNi-3 Brazing Filler Metals

    Lankiewicz K.

    2015-06-01

    Full Text Available The article discusses the impact of surface preparation method of Inconel 625 and 718 nickel-base alloys in the form of sheets on wettability of the surface. The results of the investigations of surface preparation method (such as nicro-blasting, nickel plating, etching, degreasing, abrasive blasting with grit 120 and 220 and manually grinding with grit 120 and 240 on spreading of BNi-2 and BNi-3 brazing filler metals, widely used in the aerospace industry in high temperature vacuum brazing processes, are presented. Technological parameters of vacuum brazing process are shown. The macro- and microscopic analysis have shown that nicro-blasting does not bring any benefits of wettability of the alloys investigated.

  18. Discharge cleaning on TFTR after boronization

    Mueller, D.; Dylla, H.F.; LaMarche, P.H.; Bell, M.G.; Blanchard, W.; Bush, C.E.; Gentile, C.; Hawryluk, R.J.; HIll, K.W.; Janos, A.C.; Jobes, F.C; Owens, D.K.; Pearson, G.; Schivell, J.; Ulrickson, M.A.; Vannoy, C.; Wong, K.L.

    1991-05-01

    At the beginning of the 1990 TFTR experimental run, after replacement of POCO-AXF-5Q graphite tiles on the midplane of the bumper limiter by carbon fiber composite (CFC) tiles and prior to any Pulse Discharge Cleaning (PDC), boronization was performed. Boronization is the deposition of a layer of boron and carbon on the vacuum vessel inner surface by a glow discharge in a diborane, methane and helium mixture. The amount of discharge cleaning required after boronization was substantially reduced compared to that which was needed after previous openings when boronization was not done. Previously, after a major shutdown, about 10 5 low current (∼20 kA) Taylor Discharge Cleaning (TDC) pulses were required before high current (∼400 kA) aggressive Pulse Discharge Cleaning (PDC) pulses could be performed successfully. Aggressive PDC is used to heat the limiters from the vessel bakeout temperature of 150 degrees C to 250 degrees C for a period of several hours. Heating the limiters is important to increase the rate at which water is removed from the carbon limiter tiles. After boronization, the number of required TDC pulses was reduced to <5000. The number of aggressive PDC pulses required was approximately unchanged. 14 refs., 1 tab

  19. Applying Physics to Clean Energy Needs

    Environmental Science and Technology, 1975

    1975-01-01

    Solar and ocean thermal energy sources offer real potential for an environmentally clean fuel by the year 2000. A review of current research contracts relating to ocean-thermal energy, cost requirements of plant construction and uses of the electricity produced, such as synthesizing ammonia and synthetic fuels, are discussed. (BT)

  20. Radioactive Waste and Clean-up Division

    Collard, G.

    2001-01-01

    The main objectives of the Radioactive Waste and Clean-up division of SCK-CEN are outlined. The division's programme consists of research, development and demonstration projects and aims to contribute to the objectives of Agenda 21 on sustainable development in the field of radioactive waste and rehabilitation of radioactively contaminated sites