WorldWideScience

Sample records for metal casting process

  1. Research on plant of metal fuel fabrication using casting process

    Senda, Yasuhide; Mori, Yukihide

    2003-12-01

    This document presents the plant concept of metal fuel fabrication system (38tHM/y) using casting process in electrolytic recycle, which based on recent studies of its equipment design and quality control system. And we estimate the cost of its construction and operation, including costs of maintenance, consumed hardware and management of waste. The content of this work is as follows. (1) Designing of fuel fabrication equipment: We make material flow diagrams of the fuel fabrication plant and rough designs of the injection casting furnace, demolder and inspection equipment. (2) Designing of resolution system of liquid waste, which comes from analytical process facility. Increased analytical items, we rearrange analytical process facility, estimate its chemicals and amount of waste. (3) Arrangement of equipments: We made a arrangement diagram of the metal fuel fabrication equipments in cells. (4) Estimation of cost data: We estimated cost to construct the facility and to operate it. (author)

  2. Clean Metal Casting

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  3. Clean Metal Casting; FINAL

    Makhlouf M. Makhlouf; Diran Apelian

    2002-01-01

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components

  4. PLC and SCADA based automation of injection casting process for casting of uranium-zirconium blanket fuel slugs for metallic fuel fabrication

    Yathish Kumar, G.; Jagadeeschandran, J.; Avvaru, Prafulla Kumar; Yadaw, Abhishek Kumar; Lavakumar, R.; Prabhu, T.V.; Muralidharan, P.; Anthonysamy, S.

    2016-01-01

    Fabrication of metallic (U-6wt.%Zr) slugs involves melting of binary alloy under vacuum and injection casting into quartz moulds at high pressure. Injection casting system housed inside glove box comprises of high vacuum, induction melting, high pressure control, motion control, mould preheating, chamber cooling, crucible handling and glove box pressure control systems. The technology development for process automation of injection casting system and process optimisation for fabrication of metallic (U-6%Zr) slugs is outlined in this paper. (author)

  5. Workplace Basic Skills in the Metal Casting Industry for World Class Process and Technology.

    Rasmussen, Bonnie

    A workplace basic skills project for the metal casting industry was established jointly by Central Alabama Community College and Robinson Foundry, Inc. Evaluation of the project was made through a commercial test of hourly workers' general literacy level gains, instructor-developed pre- and posttests of mastery of the industrial process and…

  6. Energy use in selected metal casting facilities - 2003

    Eppich, Robert E. [Eppich Technologies, Syracuse, IN (United States)

    2004-05-01

    This report represents an energy benchmark for various metal casting processes. It describes process flows and energy use by fuel type and processes for selected casting operations. It also provides recommendations for improving energy efficiency in casting.

  7. Report of Separate Effects Testing for Modeling of Metallic Fuel Casting Process

    Crapps, Justin M. [Los Alamos National Laboratory; Galloway, Jack D. [Los Alamos National Laboratory; Decroix, David S. [Los Alamos National Laboratory; Korzekwa, David A. [Los Alamos National Laboratory; Aikin, Robert M. Jr. [Los Alamos National Laboratory; Unal, Cetin [Los Alamos National Laboratory; Fielding, R. [Idaho National Laboratory; Kennedy, R [Idaho National Laboratory

    2012-06-29

    In order to give guidance regarding the best investment of time and effort in experimental determination of parameters defining the casting process, a Flow-3D model of the casting process was used to investigate the most influential parameters regarding void fraction of the solidified rods and solidification speed for fluid flow parameters, liquid heat transfer parameters, and solid heat transfer parameters. Table 1 summarizes the most significant variables for each of the situations studied. A primary, secondary, and tertiary effect is provided for fluid flow parameters (impacts void fraction) and liquid heat transfer parameters (impacts solidification). In Table 1, the wetting angle represents the angle between the liquid and mold surface as pictured in Figure 1. The viscosity is the dynamic viscosity of the liquid and the surface tension is the property of the surface of a liquid that allows it to resist an external force. When only considering solid heat transfer properties, the variations from case to case were very small. Details on this conclusion are provided in the section considering solid heat transfer properties. The primary recommendation of the study is to measure the fluid flow parameters, specifically the wetting angle, surface tension, and dynamic viscosity, in order of importance, as well as the heat transfer parameters latent heat and specific heat of the liquid alloy. The wetting angle and surface tension can be measured simultaneously using the sessile drop method. It is unclear whether there is a temperature dependency in these properties. Thus measurements for all three parameters are requested at 1340, 1420, and 1500 degrees Celsius, which correspond to the minimum, middle, and maximum temperatures of the liquid alloy during the process. In addition, the heat transfer coefficient between the mold and liquid metal, the latent heat of transformation, and the specific heat of the liquid metal all have strong influences on solidification. These

  8. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing

    Liu, Dejian; Hu, Peipei; Min, Guoqing

    2015-06-01

    Laser injection of ceramic particle was conducted to produce particulate reinforced metal matrix composites (MMCs) coating on Ti-6Al-4V alloy. Cast WC particle (WCp) was used as injection reinforcement to avoid excessive release of carbon atoms into the melt pool. The interfaces and boundaries between WC and Ti matrix were investigated by electron microscopy study. Compared with single crystal WCp, cast WCp was an appropriate solution to control the reaction products (TiC) in the matrix and the total amount of reaction products was significantly reduced. Irregular-shape reaction layers were formed around cast WCp. The reaction layers consist of a W2C layer and a mixed layer of W and TiC. Such reaction layers are effective in load transfer under an external load.

  9. Yttria coating on quartz mould inner surface for fabrication of metal fuel slug using injection casting process

    Vinod, A.V.; Hemanth Kumar, S.; Manivannan, A.; Muralidaran, P.; Anthonysamy, S.; Sudha, R.

    2016-01-01

    Quartz moulds are used for casting metal alloy of U-Zr slugs by injection casting process. Ceramic (Y_2O_3) coating on inner surface of the quartz mould is provided to avoid silica contamination in the fuel slugs during casting. Experiments were carried out to standardise the coating process and optimising various parameters such as particle size of Y_2O_3, choice of suitable binder, method for application of coating, drying and sintering at high temperature to ensure uniformity and strength of coating. Required Coating thickness of ∼40 μm was achieved on a quartz mould of inner diameter of 4.98±0.01mm. Experimental procedure for coating on inner surface of the quartz tubes using yttrium oxide is described in this work. (author)

  10. Low Loss Advanced Metallic Fuel Casting Evaluation

    Kim, Kihwan; Ko, Youngmo; Kim, Jonghwan; Song, Hoon; Lee Chanbock

    2014-01-01

    The fabrication process for SFR fuel is composed of fuel slug casting, loading and fabrication of the fuel rods, and the fabrication of the final fuel assemblies. Fuel slug casting is the dominant source of fuel losses and recycles streams in the fabrication process. Recycle streams include fuel slug reworks, returned scraps, and fuel casting heels, which are a special concern in the counter gravity injection casting process because of the large masses involved. Large recycle and waste streams result in lowering the productivity and the economic efficiency of fuel production. To increase efficiency the fuel losses in the furnace chamber, crucible, and the mold, after casting a considerable amount of fuel alloy in the casting furnace, will be quantitatively evaluated. After evaluation the losses will be identified and minimized. It is expected that this study will contribute to the minimization of fuel losses and the wastes streams in the fabrication process of the fuel slugs. Also through this study the technical readiness level of the metallic fuel fabrication process will be further enhanced. In this study, U-Zr alloy system fuel slugs were fabricated by a gravity casting method. Metallic fuel slugs were successfully fabricated with 19 slugs/batch with diameter of 5mm and length of 300mm. Fuel losses was quantitatively evaluated in casting process for the fuel slugs. Fuel losses of the fuel slugs were so low, 0.1∼1.0%. Injection casting experiments have been performed to reduce the fuel loss and improve the casting method. U-Zr fuel slug having φ5.4-L250mm was soundly fabricated with 0.1% in fuel loss. The fuel losses could be minimized to 0.1%, which showed that casting technology of fuel slugs can be a feasible approach to reach the goal of the fuel losses of 0.1% or less in commercial scale

  11. Developing technological process of obtaining giality casts

    A. Issagulov

    2014-10-01

    Full Text Available The article considers the process of manufacturing castings using sand-resin forms and alloying furnace. Were the optimal technological parameters of manufacturing shell molds for the manufacture of castings of heating equipment. Using the same upon receipt of castings by casting in shell molds furnace alloying and deoxidation of the metal will provide consumers with quality products and have a positive impact on the economy in general engineering.

  12. METAL PRODUCTION AND CASTING

    Magel, T.T.

    1958-03-01

    This patent covers a method and apparatus for collecting the molten metal produced by high temperature metal salt reduction. It consists essentially of subjecting the reaction vessel to centrifugal force in order to force the liberatcd molten metal into a coherent molten mass, and allowing it to solidify there. The apparatus is particularly suitable for use with small quantities of rare metals.

  13. Study on interfacial heat transfer coefficient at metal/die interface during high pressure die casting process of AZ91D alloy

    GUO Zhi-peng

    2007-02-01

    Full Text Available The high pressure die casting (HPDC process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today’s manufacturing industry.In this study, a high pressure die casting experiment using AZ91D magnesium alloy was conducted, and the temperature profiles inside the die were Measured. By using a computer program based on solving the inverse heat problem, the metal/die interfacial heat transfer coefficient (IHTC was calculated and studied. The results show that the IHTC between the metal and die increases right after the liquid metal is brought into the cavity by the plunger,and decreases as the solidification process of the liquid metal proceeds until the liquid metal is completely solidified,when the IHTC tends to be stable. The interfacial heat transfer coefficient shows different characteristics under different casting wall thicknesses and varies with the change of solidification behavior.

  14. Direct metal laser sintering: a digitised metal casting technology.

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  15. Direct Metal Laser Sintering: A Digitised Metal Casting Technology

    Venkatesh, K. Vijay; Nandini, V. Vidyashree

    2013-01-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  16. Processing and Characterization of Functionally Graded Aluminum (A319)—SiCp Metallic Composites by Centrifugal Casting Technique

    Jayakumar, E.; Jacob, Jibin C.; Rajan, T. P. D.; Joseph, M. A.; Pai, B. C.

    2016-08-01

    Functionally graded materials (FGM) are successfully adopted for the design and fabrication of engineering components with location-specific properties. The present study describes the processing and characterization of A319 Aluminum functionally graded metal matrix composites (FGMMC) with 10 and 15 wt pct SiCp reinforcements. The liquid stir casting method is used for composite melt preparation followed by FGMMC formation by vertical centrifugal casting method. The process parameters used are the mold preheating temperature of 523 K (250 °C), melt pouring temperature of 1013 K (740 °C), and mold rotation speed of 1300 rpm. The study analyzes the distribution and concentration of reinforcement particles in the radial direction of the FGMMC disk along with the effects of gradation on density, hardness, mechanical strength, the variation in coefficient of thermal expansion and the wear resistance properties at different zones. Microstructures of FGMMC reveal an outward radial gradient distribution of reinforcements forming different zones. Namely, matrix-rich inner, transition, particles-rich outer, and chill zone of a few millimeters thick at the outer most periphery of the casting are formed. From 10-FGM, a radial shift in the position of SiCp maxima is observed in 15-FGM casting. The mechanical characterization depicts enhanced properties for the particle-rich zone. The hardness shows a graded nature in correlation with particle concentration and a maximum of 94.4 HRB has been obtained at the particle-rich region of 15-FGM. In the particle-rich zone, the lowest CTE value of 20.1 µm/mK is also observed with a compressive strength of 650 MPa and an ultimate tensile strength of 279 MPa. The wear resistance is higher at the particle-rich zone of the FGMMC.

  17. Semi-solid high pressure die casting of metal matrix composites produced by liquid state processing

    Ivanchev, L

    2012-10-01

    Full Text Available stirring. The composite was then transferred to a High Pressure Die Casting (HPDC) machine in the semi-solid state. The micron size particles were found to be predominantly in the intergranular eutectic while the nano-particles were predominantly...

  18. Research on plant of metal fuel fabrication using casting process (2)

    Senda, Yasuhide; Yamada, Seiya

    2005-02-01

    In this research work for the metal fuel fabrication system (38 tHM/y), the studies of the concept of the main process equipments were performed based on the previous studies on the process design and the quality control system design. In this study the handling equipment of the products were also designed, according to these designs the handling periods were evaluated. Consequently the numbers of the equipments were assessed taking into account for the method of the blending the fuel composition. (1) Structural concept design of the major equipments, the fuel handling machine and the gravimetries in the main fabrication process. The structural concept were designed for the fuel composition blending equipment, the fuel pin assembling equipment, the sodium bonding equipment, the handling equipment for fuel slug palettes, the handling equipment for fuel pins and the gravimetries. (2) Re-assessment of the numbers of the equipments taking account of the handling periods. Based on the results of item (1) the periods were evaluated for the fuel slug and pin handling. Processing time of demolder is short, then the number of it is increased to two. Three vehicles are also added to transfer the slugs and a heel smoothly. (3) Design of the buffer storages. The buffer storages among the equipments were designed through the comparison of the process speed between the equipments taking into account for the handling periods. The required amount of the structural parts (for example cladding materials) was assessed for the buffer in the same manner and the amount of the buffer facilities were optimized. (author)

  19. Simulation of the injection casting of metallic fuels

    Nakagawa, Tomokazu; Ogata, Takanari; Tokiwai, Moriyasu.

    1989-01-01

    For the fabrication of metallic fuel pins, injection casting is a preferable process because the simplicity of the process is suitable for remote operation. In this process, the molten metal in the crucible is injected into evacuated molds (suspended above the crucible) by pressurizing the casting furnace. Argonne National Laboratory has already adopted this process in the Integral Fast Reactor program. To obtain fuel pins with good quality, the casting parameters, such as the molten metal temperature, the magnitude of the pressure applied, the pressurizing rate, the cooling time, etc., must be optimized. Otherwise, bad-quality castings (short castings, rough surfaces, shrinkage cavities, mold fracture) may result. Therefore, it is very important in designing the casting equipment and optimizing the operation conditions to be able to predict the fluid and thermal behavior of the castings. This paper describes methods to simulate the heat and mass transfer in the molds and molten metallic fuel during injection casting. The results obtained by simulation are compared with experimental ones. Also, appropriate casting conditions for the uranium-plutonium-zirconium alloy are discussed based on the simulated results

  20. Method for casting thin metal objects

    Pehrson, Brandon P; Moore, Alan F

    2015-04-14

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  1. NWIS Measurements for uranium metal annular castings

    Mattingly, J.K.; Valentine, T.E.; Mihalczo, J.T.

    1998-01-01

    This report describes measurements performed with annular uranium metal castings of different enrichments to investigate the use of 252 Cf-source-driven noise analysis measurements as a means to quantify the amount of special nuclear material (SNM) in the casting. This work in FY 97 was sponsored by the Oak Ridge Y-12 Plant and the DOE Office of Technology Development Programs. Previous measurements and calculational studies have shown that many of the signatures obtained from the source-driven measurement are very sensitive to fissile mass. Measurements were performed to assess the applicability of this method to standard annular uranium metal castings at the Oak Ridge Y-12 plant under verification by the International Atomic Energy Agency (IAEA) using the Nuclear Weapons Identification System (NWIS) processor. Before the measurements with different enrichments, a limited study of source-detector-casting moderator configurations was performed to enhance the correlated information. These configurations consisted of a casting with no reflector and with various thicknesses of polyethylene reflectors up to 10.16 cm in 2.54 cm steps. The polyethylene moderator thickness of 7.62 cm was used for measurements with castings of different enrichments reported here. The sensitivity of the measured parameters to fissile mass was investigated using four castings each with a different enrichment. The high sensitivity of this measurement method to fissile mass and to other material and configurations provides some advantages over existing safeguards methods

  2. Microstructured metal molds fabricated via investment casting

    Cannon, Andrew H; King, William P

    2010-01-01

    This paper describes an investment casting process to produce aluminum molds having integrated microstructures. Unlike conventional micromolding tools, the aluminum mold was large and had complex curved surfaces. The aluminum was cast from curved microstructured ceramic molds which were themselves cast from curved microstructured rubber. The aluminum microstructures had an aspect ratio of 1:1 and sizes ranging from 25 to 50 µm. Many structures were successfully cast into the aluminum with excellent replication fidelity, including circular, square and triangular holes. We demonstrate molding of large, curved surfaces having surface microstructures using the aluminum mold.

  3. Material accountancy for metallic fuel pin casting

    Bucher, R.G.; Orechwa, Y.; Beitel, J.C.

    1995-01-01

    The operation of the Fuel Conditioning Facility (FCF) is based on the electrometallurgical processing of spent metallic reactor fuel. The pin casting operation, although only one of several operations in FCF, was the first to be on-line. As such, it has served to demonstrate the material accountancy system in many of its facets. This paper details, for the operation of the pin casting process with depleted uranium, the interaction between the mass tracking system (MTG) and some of the ancillary computer codes which generate pertinent information for operations and material accountancy. It is necessary to distinguish between two types of material balance calculations -- closeout for operations and material accountancy for safeguards. The two have much in common, for example, the mass tracking system database and the calculation of an inventory difference, but, in general, are not congruent with regard to balance period and balance spatial domain. Moreover, the objective, assessment, and reporting requirements of the calculated inventory difference are very different in the two cases

  4. Nuclear-waste encapsulation by metal-matrix casting

    Nelson, R.G.; Nesbitt, J.F.; Slate, S.C.

    1981-05-01

    Several encapsulation casting processes are described that were developed or used at the Pacific Northwest Laboratory to embed simulated high-level wastes of two different forms (glass marbles and ceramic pellets) in metal matrices. Preliminary evaluations of these casting processes and the products are presented. Demonstrations have shown that 5- to 10-mm-dia glass marbles can be encapsulated on an engineering scale with lead or lead alloys by gravity or vacuum processes. Marbles approx. 12 mm in dia were successfully encapsulated in a lead alloy on a production scale. Also, 4- to 9-mm-dia ceramic pellets in containers of various sizes were completely penetrated and the individual pellets encased with aluminum-12 wt % silicon alloy by vacuum processes. Indications are that of the casting processes tested, aluminum 12 wt % silicon alloy vacuum-cast around ceramic pellets had the highest degree of infiltration or coverage of pellet surfaces

  5. Metallic Fuel Casting Development and Parameter Optimization Simulations

    Fielding, Randall S.; Kennedy, J.R.; Crapps, J.; Unal, C.

    2013-01-01

    Conclusions: • Gravity casting is a feasible process for casting of metallic fuels: – May not be as robust as CGIC, more parameter dependent to find right “sweet spot” for high quality castings; – Fluid flow is very important and is affected by mold design, vent size, super heat, etc.; – Pressure differential assist was found to be detrimental. • Simulation found that vent location was important to allow adequate filling of mold; • Surface tension plays an important role in determining casting quality; • Casting and simulations high light the need for better characterized fluid physical and thermal properties; • Results from simulations will be incorporated in GACS design such as vent location and physical property characterization

  6. Pipe Rolling from Continuous Cast Metal

    Zhordania, I.; Chkhartishvili, I.; Lordkipanidze, J.; Melashvili, Z.; Papava, K.; Khundadze, K.

    2007-01-01

    The approach to manufacturing of high quality pipes as a result of solid and hollow billet rolling from continuous cast metal is shown. Optimal parameters of piercing, temperature of piercing and piercing rolling mill rollers speed have been experimentally established. (author)

  7. Reinforcement of Aluminum Castings with Dissimilar Metals

    Han, Q

    2004-01-07

    The project ''Reinforcement of Aluminum Casting with Dissimilar Metal'' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Cummins Inc. This project, technologies have been developed to reinforce aluminum castings with steel insert. Defect-free bond between the steel insert and the aluminum casting has been consistently obtained. The push-out experiment indicated that the bond strength is higher than that of the Al-Fin method. Two patents have been granted to the project team that is comprised of Cummins Inc. and ORNL. This report contains four sections: the coating of the steel pins, the cast-in method, microstructure characterization, and the bond strength. The section of the coating of the steel pins contains coating material selection, electro-plating technique for plating Cu and Ni on steel, and diffusion bonding of the coatings to the steel. The section of cast-in method deals with factors that affecting the quality of the metallurgical bond between the coated steel and the aluminum castings. The results of microstructure characteristics of the bonding are presented in the microstructure characterization section. A push-out experiment and the results obtained using this method is described in the section of bond strength/mechanical property.

  8. Marginal Accuracy of Castings Fabricated with Ringless Casting Investment System and Metal Ring Casting Investment System: A Comparative Study.

    Kalavathi, M; Sachin, Bhuvana; Prasanna, B G; Shreeharsha, T V; Praveen, B; Ragher, Mallikarjuna

    2016-02-01

    The thermal expansion of the investment can be restricted by the metal casting ring because the thermal expansion of the ring is less than that of the investment. The ringless casting procedure is in use in clinical dentistry, though there is little scientific data to support its use in fixed partial dentures. In this study, marginal discrepancy of castings produced with the ringless casting technique and the conventional technique using the metal rings were compared. A total of 30 wax patterns were fabricated directly on a metal die. Optical stereomicroscope was used to measure the marginal discrepancy between the metal die and wax patterns. A total of 15 castings were invested using Bellavest T phosphate-bonded investment with the ringless technique and 15 were invested with the same investment with a metal ring; 30 castings were produced using a nickel-chromium ceramo-metal alloy. The internal surface of the castings was not modified and seated with finger pressure. The vertical marginal discrepancy was measured using an optical stereomicroscope at a magnification of 100x. The data obtained were statistically analyzed using students t-test (paired t-test and unpaired t-test). The castings of the ringless technique provided less vertical marginal discrepancy (240.56 ± 45.81 μ) than the castings produced with the conventional metal ring technique (281.98± 53.05 μ). The difference was statistically significant. The ringless casting technique had produced better marginal accuracy compared with conventional casting technique. Ringless casting system can be used routinely for clinical purpose.

  9. Report on results of current and future metal casting

    Unal, Cetin; Carlson, Neil N.

    2015-01-01

    New modeling capabilities needed to simulate the casting of metallic fuels are added to Truchas code. In this report we summarize improvements we made in FY2015 in three areas; (1) Analysis of new casting experiments conducted with BCS and EFL designs, (2) the simulation of INL's U-Zr casting experiments with Flow3D computer program, (3) the implementation of surface tension model into Truchas for unstructured mesh required to run U-Zr casting.

  10. Casting metal microstructures from a flexible and reusable mold

    Cannon, Andrew H; King, William P

    2009-01-01

    This paper describes casting-based microfabrication of metal microstructures and nanostructures. The metal was cast into flexible silicone molds which were themselves cast from microfabricated silicon templates. Microcasting is demonstrated in two metal alloys of melting temperature 70 °C or 138 °C. Many structures were successfully cast into the metal with excellent replication fidelity, including ridges with periodicity 400 nm and holes or pillars with diameter in the range 10–100 µm and aspect ratio up to 2:1. The flexibility of the silicone mold permits casting of curved surfaces, which we demonstrate by fabricating a cylindrical metal roller of diameter 8 mm covered with microstructures. The metal microstructures can be in turn used as a reusable molding tool

  11. Method and mold for casting thin metal objects

    Pehrson, Brandon P; Moore, Alan F

    2014-04-29

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  12. The effects of casting speed on steel continuous casting process

    Sadat, Mohammad; Honarvar Gheysari, Ali; Sadat, Saeid [Islamic Azad University, Department of Mechanics, Mashhad Branch, Mashhad (Iran, Islamic Republic of)

    2011-12-15

    A three dimensional simulation of molten steel flow, heat transfer and solidification in mold and ''secondary cooling zone'' of Continuous Casting machine was performed with consideration of standard k-{epsilon} model. For this purpose, computational fluid dynamics software, FLUENT was utilized. From the simulation standpoint, the main distinction between this work and preceding ones is that, the phase change process (solidification) and flow (turbulent in mold section and laminar in secondary cooling zone) have been coupled and solved jointly instead of dividing it into ''transient heat conduction'' and ''steady fluid flow'' that can lead to more realistic simulation. Determining the appropriate boundary conditions in secondary cooling zone is very complicated because of various forms of heat transfer involved, including natural and forced convection and simultaneous radiation heat transfer. The main objective of this work is to have better understanding of heat transfer and solidification in the continuous casting process. Also, effects of casting speed on heat flux and shell thickness and role of radiation in total heat transfer is discussed. (orig.)

  13. Formation of non-metallic inclusions and the possibility of their removal during ingot casting

    Ragnarsson, Lars

    2010-01-01

    The present study was carried out to investigate the formation and evolution of non-metallic inclusions during ingot casting. Emphasize have been on understanding the types of inclusions formed and developed through the casting process and on the development of already existing inclusions carried over from the ladle during casting. Industrial experiments carried on at Uddeholm Tooling together with laboratory work and Computational Fluid Dynamics (CFD) simulations. Ingots of 5.8 tons have bee...

  14. Technical cost modelling for a novel semi-solid metal (SSM) casting processes for automotive component manufacturing

    Tlale, NS

    2008-09-01

    Full Text Available to predict the cost structure of a newly developed manufacturing process if it is to be considered by manufacturing enterprises for development to substitute a process that is in use. The costs of the new SSM technologies was established by technical cost...

  15. Simulation of mould filling process for composite skeleton castings

    M. Dziuba

    2008-04-01

    Full Text Available In this work authors showed selected results of simulation and experimental studies on temperature distribution during solidification of skeleton casting and mould filling process. The aim of conducted simulations was the choice of thermal and geometrical parameters for the needs of designed calculations of the skeleton castings and the estimation of the guidelines for the technology of manufacturing. The subject of numerical simulation was the analysis of ability of filling the channels of core by liquid metal at estability technological parameters.. Below the assumptions and results of the initial simulated calculations are presented. The total number of the nodes in the casting was 1920 and of the connectors was 5280 what gave filling of 100% for the nodes and 99,56% for the connectors in the results of the simulation. Together it resulted as 99,78 % of filling the volume of the casting. The nodes and connectors were filled up to the 30 level of the casting in the simulation. The all connectors were filled up to the 25 level of the casting in the simulation. Starting from the 25 level individual connectors at the side surface of the casting weren’t filled up. The connectors weren’t supplied by multi-level getting system. The differences of filling the levels are little (maximally 5 per cent.

  16. Casting of metallic fuel containing minor actinide additions

    Trybus, C.L.; Henslee, S.P.; Sanecki, J.E.

    1992-01-01

    A significant attribute of the Integral Fast Reactor (IFR) concept is the transmutation of long-lived minor actinide fission products. These isotopes require isolation for thousands of years, and if they could be removed from the waste, disposal problems would be reduced. The IFR utilizes pyroprocessing of metallic fuel to separate auranium, plutonium, and the minor actinides from nonfissionable constituents. These materials are reintroduced into the fuel and reirradiated. Spent IFR fuel is expected to contain low levels of americium, neptunium, and curium because the hard neutron spectrum should transmute these isotopes as they are produced. This opens the possibility of using an IFR to trnasmute minor actinide waste from conventional light water reactors (LWRs). A standard IFR fuel is based on the alloy U-20% Pu-10% Zr (in weight percent). A metallic fuel system eases the requirements for reprocessing methods and enables the minor actinide metals to be incorporated into the fuel with simple modifications to the basic fuel casting process. In this paper, the authors report the initial casting experience with minor actinide element addition to an IFR U-Pu-Zr metallic fuel

  17. Technical cost modelling for a novel semi-solid metal (SSM) casting processes for automotive component manufacturing

    Tlale, NS

    2008-09-01

    Full Text Available . It has been well established that over 70% of the total development cost of a product and its manufacturing process is decided during the design phase, although this phase accounts for less than 7% of the total costs. It is thus important to be able...

  18. Filler metal alloy for welding cast nickel aluminide alloys

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  19. Manufacturing of aluminum composite material using stir casting process

    Jokhio, M.H.; Panhwar, M.I.; Unar, M.A.

    2011-01-01

    Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7 xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of 'AI/sub 2/O/sub 3/' particles in 7 xxx aluminum matrix. The 7 xxx series aluminum matrix usually contains Cu-Zn-Mg; Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha 'AI/sub 2/O/sub 3/' particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% 'AI/sub 2/O/sub 3/' particles reinforced in aluminum matrix. (author)

  20. Manufacturing of Aluminum Composite Material Using Stir Casting Process

    Muhammad Hayat Jokhio

    2011-01-01

    Full Text Available Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of \\"Al2O3\\" particles in 7xxx aluminum matrix. The 7xxx series aluminum matrix usually contains Cu-Zn-Mg. Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha \\"Al2O3\\" particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% \\"Al2O3\\" particles reinforced in aluminum matrix.

  1. Optimization of the investment casting process

    M. Martinez-Hernandez

    2012-04-01

    Full Text Available Rapid prototyping is an important technique for manufacturing. This work refers to the manufacture of hollow patterns made of polymeric materials by rapid prototyping technologies for its use in the preparation of ceramic molds in the investment casting process. This work is focused on the development of a process for manufacturing patterns different from those that currently exist due to its hollow interior design, allowing its direct use in the fabrication of ceramic molds; avoiding cracking and fracture during the investment casting process, which is an important process for the foundry industry.

  2. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    Fasoyinu, Yemi [CanmetMATERIALS

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloy systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.

  3. Electromagnetic confinement for vertical casting or containing molten metal

    Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1991-01-01

    An apparatus and method adapted to confine a molten metal to a region by means of an alternating electromagnetic field. As adapted for use in the present invention, the alternating electromagnetic field given by B.sub.y =(2.mu..sub.o .rho.gy).sup.1/2 (where B.sub.y is the vertical component of the magnetic field generated by the magnet at the boundary of the region; y is the distance measured downward form the top of the region, .rho. is the metal density, g is the acceleration of gravity and .mu..sub.o is the permeability of free space) induces eddy currents in the molten metal which interact with the magnetic field to retain the molten metal with a vertical boudnary. As applied to an apparatus for the continuous casting of metal sheets or rods, metal in liquid form can be continuously introduced into the region defined by the magnetic field, solidified and conveyed away from the magnetic field in solid form in a continuous process.

  4. Fundamentals of Numerical Modelling of Casting Processes

    Hattel, Jesper Henri; Pryds, Nini; Thorborg, Jesper

    Fundamentals of Numerical Modelling of Casting Processes comprises a thorough presentation of the basic phenomena that need to be addressed in numerical simulation of casting processes. The main philosophy of the book is to present the topics in view of their physical meaning, whenever possible......, rather than relying strictly on mathematical formalism. The book, aimed both at the researcher and the practicing engineer, as well as the student, is naturally divided into four parts. Part I (Chapters 1-3) introduces the fundamentals of modelling in a 1-dimensional framework. Part II (Chapter 4...

  5. Numerical modelling of the tilt casting processes of titanium alumindes

    Wang, Hong

    2008-01-01

    This research has investigated the modelling and optimisation of the tilt casting process of Titanium Aluminides (TiAl). This study is carried out in parallel with the experimental research undertaken in IRC at the University of Birmingham. They propose to use tilt casting inside a vacuum chamber and attempt to combine this tilt casting process with Induction Skull Melting (ISM). A totally novel process is developing for investment casting, which is suitable for casting gamma TiAl.\\ud \\ud As ...

  6. Species redistribution during solidification of nuclear fuel waste metal castings

    Naterer, G F; Schneider, G E [Waterloo Univ., ON (Canada)

    1994-12-31

    An enthalpy-based finite element model and a binary system species redistribution model are developed and applied to problems associated with solidification of nuclear fuel waste metal castings. Minimal casting defects such as inhomogeneous solute segregation and cracks are required to prevent container corrosion and radionuclide release. The control-volume-based model accounts for equilibrium solidification for low cooling rates and negligible solid state diffusion for high cooling rates as well as intermediate conditions. Test problems involving nuclear fuel waste castings are investigated and correct limiting cases of species redistribution are observed. (author). 11 refs., 1 tab., 13 figs.

  7. Cast Metals Coalition Technology Transfer and Program Management Final Report

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people

  8. Fabricating Zr-Based Bulk Metallic Glass Microcomponent by Suction Casting Using Silicon Micromold

    Zhijing Zhu

    2014-08-01

    Full Text Available A suction casting process for fabricating Zr55Cu30Al10Ni5 bulk metallic glass microcomponent using silicon micromold has been studied. A complicated BMG microgear with 50 μm in module has been cast successfully. Observed by scanning electron microscopy and laser scanning confocal microscopy, we find that the cast microgear duplicates the silicon micromold including the microstructure on the surface. The amorphous state of the microgear is confirmed by transmission election microscopy. The nanoindentation hardness and elasticity modulus of the microgear reach 6.5 GPa and 94.5 GPa. The simulation and experimental results prove that the suction casting process with the silicon micromold is a promising one-step method to fabricate bulk metallic glass microcomponents with high performance for applications in microelectromechanical system.

  9. The temperature gradient on section of casting in process of primary crystallization of chromium cast iron

    A. Studnicki

    2008-08-01

    Full Text Available The methodology of defining in article was introduced the temperature gradient in process of primary crystallization during cooling the casting from chromium cast iron on basis of measurements of thermal field in test DTA-K3. Insert also the preliminary results of investigations of influence temperature gradient on structure of studied wear resistance chromium cast iron.

  10. Development of melting and casting process for Nb-Al intermetallic compounds and mechanical properties

    Kamata, Kinya; Degawa, Toru; Nagashima, Yoshinori

    1993-01-01

    The shaping methods of Nb-Al intermetallic compounds, especially melting and casting, have considerably different characteristics as compared with those for other metals and alloys. The authors have investigated melting and casting processes for Nb-Al compounds to develop precision casting processes for these intermetallics. Fundamental properties of Nb-Al compound castings have been also investigated for high temperature structural use in this work. An advanced Induction Skull Melting (ISM) furnace has been developed and the advantages of ISM have been recognized as a result of this study. The mechanical properties, such as hardness and compression strength, are dependent upon the Al content in Nb-Al binary compounds

  11. Implementation of Metal Casting Best Practices

    Eppich, Robert [Eppich Technologies, Syracuse, IN (United States); Naranjo, Robert D. [BCS, Inc., Laurel, MD (United States)

    2007-01-01

    The project examined cases where metal casters had implemented ITP research results and the benefits they received due to that implementation. In cases where casters had not implemented those results, the project examined the factors responsible for that lack of implementation. The project also informed metal casters of the free tools and service offered by the ITP Technology Delivery subprogram.

  12. Nondestructive testing of austenitic casting and dissimilar metal welds

    Lahdenperae, K.

    1995-01-01

    The publication is a literature study of nondestructive testing of dissimilar metal welds and cast austenitic components in PWR and BWR plants. A major key to the successful testing is a realistic mockup made of the materials to be tested. The inspectors must also be trained and validated using suitable mockups. (42 refs., 27 figs., 10 tabs.)

  13. Development of an expert system for the simulation model for casting metal substructure of a metal-ceramic crown design.

    Matin, Ivan; Hadzistevic, Miodrag; Vukelic, Djordje; Potran, Michal; Brajlih, Tomaz

    2017-07-01

    Nowadays, the integrated CAD/CAE systems are favored solutions for the design of simulation models for casting metal substructures of metal-ceramic crowns. The worldwide authors have used different approaches to solve the problems using an expert system. Despite substantial research progress in the design of experts systems for the simulation model design and manufacturing have insufficiently considered the specifics of casting in dentistry, especially the need for further CAD, RE, CAE for the estimation of casting parameters and the control of the casting machine. The novel expert system performs the following: CAD modeling of the simulation model for casting, fast modeling of gate design, CAD eligibility and cast ability check of the model, estimation and running of the program code for the casting machine, as well as manufacturing time reduction of the metal substructure. The authors propose an integration method using common data model approach, blackboard architecture, rule-based reasoning and iterative redesign method. Arithmetic mean roughness values was determinated with constant Gauss low-pass filter (cut-off length of 2.5mm) according to ISO 4287 using Mahr MARSURF PS1. Dimensional deviation between the designed model and manufactured cast was determined using the coordinate measuring machine Zeiss Contura G2 and GOM Inspect software. The ES allows for obtaining the castings derived roughness grade number N7. The dimensional deviation between the simulation model of the metal substructure and the manufactured cast is 0.018mm. The arithmetic mean roughness values measured on the casting substructure are from 1.935µm to 2.778µm. The realized developed expert system with the integrated database is fully applicable for the observed hardware and software. Values of the arithmetic mean roughness and dimensional deviation indicate that casting substructures are surface quality, which is more than enough and useful for direct porcelain veneering. The

  14. Geometrical modulus of a casting and its influence on solidification process

    F. Havlicek

    2011-10-01

    Full Text Available Object: The work analyses the importance of the known criterion for evaluating the controlled solidification of castings, so called geometrical modulus defined by N. Chvorinov as the first one. Geometrical modulus influences the solidification process. The modulus has such specificity that during the process of casting formation it is not a constant but its initial value decreases with the solidification progress because the remaining melt volume can decrease faster than its cooling surface.Methodology: The modulus is determined by a simple calculation from the ratio of the casting volume after pouring the metal in the mould to the cooled mould surface. The solidified metal volume and the cooled surface too are changed during solidification. That calculation is much more complicated. Results were checked up experimentally by measuring the temperatures in the cross-section of heavy steel castings during cooling them.Results: The given experimental results have completed the original theoretical calculations by Chvorinov and recent researches done with use of numerical calculations. The contribution explains how the geometrical modulus together with the thermal process in the casting causes the higher solidification rate in the axial part of the casting cross-section and shortening of solidification time. Practical implications: Change of the geometrical modulus negatively affects the casting internal quality. Melt feeding by capillary filtration in the dendritic network in the casting central part decreases and in such a way the shrinkage porosity volume increases. State of stress character in the casting is changed too and it increases.

  15. Modeling of solidification of MMC composites during gravity casting process

    R. Zagórski

    2013-04-01

    Full Text Available The paper deals with computer simulation of gravity casting of the metal matrix composites reinforced with ceramics (MMC into sand mold. The subject of our interest is aluminum matrix composite (AlMMC reinforced with ceramic particles i.e. silicon carbide SiC and glass carbon Cg. The created model describes the process taking into account solidification and its influence on the distribution of reinforcement particles. The computer calculation has been carried out in 2D system with the use of Navier-Stokes equations using ANSYS FLUENT 13. The Volume of Fluid approach (VOF and enthalpy method have been used to model the air-fluid free surface (and also volume fraction of particular continuous phases and the solidification of the cast, respectively.

  16. The influence of the parameters of lost foam process on the quality of aluminum alloys castings

    Aćimović-Pavlović Zagorka

    2010-01-01

    Full Text Available This paper presents the research results of application of Lost foam process for aluminum alloys castings of a simple geometry. The process characteristic is that patterns and gating of moulds, made of polymers, stay in the mould till the liquid metal inflow. In contact with the liquid metal, pattern intensely and in relatively short time decomposes and evaporates, which is accompanied by casting crystallization. As a consequence of polymer pattern decomposition and evaporation a great quantity of liquid and gaseous products are produced, which is often the cause of different types of casting errors. This paper presents the results of a research with a special consideration given to detecting and analyzing the errors of castings. In most cases the cause of these errors are defects of polymer materials used for evaporable patterns production, as well as defects of materials for refractory coatings production for polymer patterns. The researches have shown that different types of coatings determine properties of the obtained castings. Also, the critical processing parameters (polymer pattern density, casting temperature, permeability of refractory coating and sand, construction of patterns and gating of moulds significantly affect on castings quality. During the research a special consideration was given to control and optimization of these parameters with the goal of achieving applicable castings properties. The study of surface and internal error of castings was performed systematically in order to carry out preventive measures to avoid errors and minimize production costs. In order to achieve qualitative and profitable castings production by the method of Lost foam it is necessary to reach the balance in the system: evaporable polymer pattern - liquid metal - refractory coating - sandy cast in the phase of metal inflow, decomposition and evaporation of polymer pattern, formation and solidification of castings. By optimizing the processing

  17. Manufacturing of Cast Metal Foams with Irregular Cell Structure

    Kroupová I.

    2015-06-01

    Full Text Available Metallic foams are materials of which the research is still on-going, with the broad applicability in many different areas (e.g. automotive industry, building industry, medicine, etc.. These metallic materials have specific properties, such as large rigidity at low density, high thermal conductivity, capability to absorb energy, etc. The work is focused on the preparation of these materials using conventional casting technology (infiltration method, which ensures rapid and economically feasible method for production of shaped components. In the experimental part we studied conditions of casting of metallic foams with open pores and irregular cell structure made of ferrous and nonferrous alloys by use of various types of filler material (precursors.

  18. Casting Technology.

    Wright, Michael D.; And Others

    1992-01-01

    Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)

  19. Novel technologies for the lost foam casting process

    Jiang, Wenming; Fan, Zitian

    2018-03-01

    Lost foam casting (LFC) is a green precision casting process categorized as a near net forming technology. Yet, despite its popularity, it still suffers from some technological problems, such as poor filling ability of the castings, coarse and non-dense microstructure, low mechanical properties for the Al and Mg LFC processes, and defective carburization for the low carbon steel LFC process. These drawbacks restrict the development and widespread application of the LFC process. To solve these problems, the present study developed several novel LFC technologies, namely, LFC technologies under vacuum and low pressure, vibration solidification, and pressure solidification conditions; expendable shell casting technology; and preparation technology of bimetallic castings based on the LFC process. The results showed that the LFC under vacuum and low pressure evidently improved the filling ability and solved the oxidization problem of the alloys, which is suitable for producing complex and thinwall castings. The vibration and pressure solidifications increased the compactness of the castings and refined the microstructure, significantly improving the mechanical properties of the castings. The expendable shell casting technology could solve the pore, carburization, and inclusion defects of the traditional LFC method, obtaining castings with acceptable surface quality. Moreover, the Al/Mg and Al/Al bimetallic castings with acceptable metallurgical bonding were successfully fabricated using the LFC process. These proposed novel LFC technologies can solve the current technological issues and promote the technological progress of the LFC process.

  20. Casting technology for manufacturing metal rods from simulated metallic spent fuels

    Leeand, Y. S.; Lee, D. B.; Kim, C. K.; Shin, Y. J.; Lee, J. H.

    2000-09-01

    A uranium metal rod 13.5 mm in diameter and 1,150 mm long was produced from simulated metallic spent fuels with advanced casting equipment using the directional-solidification method. A vacuum casting furnace equipped with a four-zone heater to prevent surface oxidation and the formation of surface shrinkage holes was designed. By controlling the axial temperature gradient of the casting furnace, deformation by the surface shrinkage phenomena was diminished, and a sound rod was manufactured. The cooling behavior of the molten uranium was analyzed using the computer software package MAGMAsoft.

  1. Numerical simulation of complex multi-phase fluid of casting process and its applications

    CHEN Li-liang

    2006-05-01

    Full Text Available The fluid of casting process is a typical kind of multi-phase flow. Actually, many casting phenomena have close relationship with the multi-phase flow, such as molten metal filling process, air entrapment, slag movement, venting process of die casting, gas escaping of lost foam casting and so on. Obviously, in order to analyze these phenomena accurately, numerical simulation of the multi-phase fluid is necessary. Unfortunately, so far, most of the commercial casting simulation systems do not have the ability of multi-phase flow modeling due to the difficulty in the multi-phase flow calculation. In the paper, Finite Different Method (FDM technique was adopt to solve the multi-phase fluid model. And a simple object of the muiti-phase fluid was analyzed to obtain the fluid rates of the liquid phase and the entrapped air phase.

  2. Implementation of Cyber-Physical Production Systems for Quality Prediction and Operation Control in Metal Casting

    JuneHyuck Lee

    2018-05-01

    Full Text Available The prediction of internal defects of metal casting immediately after the casting process saves unnecessary time and money by reducing the amount of inputs into the next stage, such as the machining process, and enables flexible scheduling. Cyber-physical production systems (CPPS perfectly fulfill the aforementioned requirements. This study deals with the implementation of CPPS in a real factory to predict the quality of metal casting and operation control. First, a CPPS architecture framework for quality prediction and operation control in metal-casting production was designed. The framework describes collaboration among internet of things (IoT, artificial intelligence, simulations, manufacturing execution systems, and advanced planning and scheduling systems. Subsequently, the implementation of the CPPS in actual plants is described. Temperature is a major factor that affects casting quality, and thus, temperature sensors and IoT communication devices were attached to casting machines. The well-known NoSQL database, HBase and the high-speed processing/analysis tool, Spark, are used for IoT repository and data pre-processing, respectively. Many machine learning algorithms such as decision tree, random forest, artificial neural network, and support vector machine were used for quality prediction and compared with R software. Finally, the operation of the entire system is demonstrated through a CPPS dashboard. In an era in which most CPPS-related studies are conducted on high-level abstract models, this study describes more specific architectural frameworks, use cases, usable software, and analytical methodologies. In addition, this study verifies the usefulness of CPPS by estimating quantitative effects. This is expected to contribute to the proliferation of CPPS in the industry.

  3. Implementation of Cyber-Physical Production Systems for Quality Prediction and Operation Control in Metal Casting

    Lee, JuneHyuck; Noh, Sang Do; Kim, Hyun-Jung; Kang, Yong-Shin

    2018-01-01

    The prediction of internal defects of metal casting immediately after the casting process saves unnecessary time and money by reducing the amount of inputs into the next stage, such as the machining process, and enables flexible scheduling. Cyber-physical production systems (CPPS) perfectly fulfill the aforementioned requirements. This study deals with the implementation of CPPS in a real factory to predict the quality of metal casting and operation control. First, a CPPS architecture framework for quality prediction and operation control in metal-casting production was designed. The framework describes collaboration among internet of things (IoT), artificial intelligence, simulations, manufacturing execution systems, and advanced planning and scheduling systems. Subsequently, the implementation of the CPPS in actual plants is described. Temperature is a major factor that affects casting quality, and thus, temperature sensors and IoT communication devices were attached to casting machines. The well-known NoSQL database, HBase and the high-speed processing/analysis tool, Spark, are used for IoT repository and data pre-processing, respectively. Many machine learning algorithms such as decision tree, random forest, artificial neural network, and support vector machine were used for quality prediction and compared with R software. Finally, the operation of the entire system is demonstrated through a CPPS dashboard. In an era in which most CPPS-related studies are conducted on high-level abstract models, this study describes more specific architectural frameworks, use cases, usable software, and analytical methodologies. In addition, this study verifies the usefulness of CPPS by estimating quantitative effects. This is expected to contribute to the proliferation of CPPS in the industry. PMID:29734699

  4. Implementation of Cyber-Physical Production Systems for Quality Prediction and Operation Control in Metal Casting.

    Lee, JuneHyuck; Noh, Sang Do; Kim, Hyun-Jung; Kang, Yong-Shin

    2018-05-04

    The prediction of internal defects of metal casting immediately after the casting process saves unnecessary time and money by reducing the amount of inputs into the next stage, such as the machining process, and enables flexible scheduling. Cyber-physical production systems (CPPS) perfectly fulfill the aforementioned requirements. This study deals with the implementation of CPPS in a real factory to predict the quality of metal casting and operation control. First, a CPPS architecture framework for quality prediction and operation control in metal-casting production was designed. The framework describes collaboration among internet of things (IoT), artificial intelligence, simulations, manufacturing execution systems, and advanced planning and scheduling systems. Subsequently, the implementation of the CPPS in actual plants is described. Temperature is a major factor that affects casting quality, and thus, temperature sensors and IoT communication devices were attached to casting machines. The well-known NoSQL database, HBase and the high-speed processing/analysis tool, Spark, are used for IoT repository and data pre-processing, respectively. Many machine learning algorithms such as decision tree, random forest, artificial neural network, and support vector machine were used for quality prediction and compared with R software. Finally, the operation of the entire system is demonstrated through a CPPS dashboard. In an era in which most CPPS-related studies are conducted on high-level abstract models, this study describes more specific architectural frameworks, use cases, usable software, and analytical methodologies. In addition, this study verifies the usefulness of CPPS by estimating quantitative effects. This is expected to contribute to the proliferation of CPPS in the industry.

  5. Friction Stir Processing of Cast Superalloys, Phase II

    National Aeronautics and Space Administration — This SBIR effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for producing...

  6. Methods of the Detection and Identification of Structural Defects in Saturated Metallic Composite Castings

    Gawdzińska K.

    2017-09-01

    Full Text Available Diagnostics of composite castings, due to their complex structure, requires that their characteristics are tested by an appropriate description method. Any deviation from the specific characteristic will be regarded as a material defect. The detection of defects in composite castings sometimes is not sufficient and the defects have to be identified. This study classifies defects found in the structures of saturated metallic composite castings and indicates those stages of the process where such defects are likely to be formed. Not only does the author determine the causes of structural defects, describe methods of their detection and identification, but also proposes a schematic procedure to be followed during detection and identification of structural defects of castings made from saturated reinforcement metallic composites. Alloys examination was conducted after technological process, while using destructive (macroscopic tests, light and scanning electron microscopy and non-destructive (ultrasonic and X-ray defectoscopy, tomography, gravimetric method methods. Research presented in this article are part of author’s work on castings quality.

  7. Development of casting technology for manufacturing metal rods with simulated metallic spent fuels

    Lee, D. B.; Lee, Y. S.; Woo, Y. M.; Jang, S. J.; Kim, J. D; Kim, C. K.; Shin, Y. J.; Lee, J. H.

    1999-01-01

    The advanced casting equipment based on the directional solidification method was developed for manufacturing the uranium metal rod having 13.5 mm diameter and 1,200 mm length. In order to prevent surface-shrunk holes revealed easily in course of casting the small diameter and long rods, the vacuum casting furnace has the four pre-heaters equipped with temperature controller. On the other hand, the computer simulation to estimate the defective location and to analyze the solidus behavior of molten uranium in the mold were also performed by using MAGMA Code. As a result of the experimental and theoretical study, the sound rod has successfully been manufactured

  8. Semisolid Metal Processing Consortium

    Apelian,Diran

    2002-01-10

    Mathematical modeling and simulations of semisolid filling processes remains a critical issue in understanding and optimizing the process. Semisolid slurries are non-Newtonian materials that exhibit complex rheological behavior. There the way these slurries flow in cavities is very different from the way liquid in classical casting fills cavities. Actually filling in semisolid processing is often counter intuitive

  9. Passive Time Coincidence Measurements with HEU and DU Metal Castings

    McConchie, Seth M.; Hausladen, Paul; Mihalczo, John T.; Wright, Michael C.; Archer, Daniel E.

    2008-01-01

    A Department of Energy sponsored Oak Ridge National Laboratory/Y-12 National Security Complex program of passive time coincidence measurements has been initiated at Y-12 to evaluate the ability to determine the presence of high enriched uranium (HEU) and distinguish it from depleted uranium (DU). This program uses the Nuclear Materials Identification System (NMIS) without an active interrogation source. Previous passive NMIS measurements with Pu metal and Pu oxide have been successful in determining the Pu mass, assuming a known 240Pu content. The spontaneous fission of uranium metal is considerably lower than Pu and measurements of this type have been performed at Lawrence Livermore National Laboratory. This work presents results of measurements of HEU and DU metal castings using moderated 3He detectors.

  10. Validation Studies of Temperature Distribution and Mould Filling Process for Composite Skeleton Castings

    M. Cholewa

    2007-07-01

    Full Text Available In this work authors showed selected results of simulation and experimental studies on temperature distribution during solidification of composite skeleton casting and mould filling process (Fig. 4, 5, 6. The basic subject of the computer simulation was the analysis of ability of metal to fill the channels creating the skeleton shape and prepared in form of a core. Analysis of filling for each consecutive levels of the skeleton casting was conducted for simulation results and real casting. The skeleton casting was manufactured according to proposed technology (Fig. 5. Number of fully filled nodes in simulation was higher than obtained in experimental studies. It was observed in the experiment, that metal during pouring did not flow through the whole channel section, what enabled possibilities of reducing the channel section and pointed out the necessity of local pressure increase.

  11. Refining processes in the copper casting technology

    Rzadkosz, S.; Kranc, M.; Garbacz-Klempka, A.; Kozana, J.; Piękoś, M.

    2015-01-01

    The paper presents the analysis of technology of copper and alloyed copper destined for power engineering casts. The casts quality was assessed based on microstructure, chemical content analysis and strength properties tests. Characteristic deoxidising (Logas, Cup) and modifying (ODM2, Kupmod2) formulas were used for the copper where high electrical conductivity was required. Chosen examples of alloyed copper with varied Cr and Zr content were studied, and the optimal heat treatment parameter...

  12. High pressure die casting of Fe-based metallic glass

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-01-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications. PMID:27725780

  13. High pressure die casting of Fe-based metallic glass.

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-11

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  14. High pressure die casting of Fe-based metallic glass

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  15. Modelling of shrinkage cavity defects during the wheel and belt casting process

    Dablement, S; Mortensen, D; Fjaer, H; Lee, M; Grandfield, J; Savage, G; Nguyen, V

    2012-01-01

    Properzi continuous casting is a wheel and belt casting process used for producing aluminium wire rod which is essential to the making of electrical cables and over head lines. One of the main concerns of Properzi process users is to ensure good quality of the final product and to avoid cast defects especially the presence of shrinkage cavity. Numerical models developed with the Alsim software, which allows an automatic calculation of gap dependent heat transfer coefficients at the metal-mould interface due to thermal deformation, are used in order to get a better understanding on the shrinkage cavity formation. Models show the effect of process parameters on the cavity defect development and provide initial guidance for users in order to avoid this kind of casting defect.

  16. Dome style heavy wall steel casting manufactured by metallic core mould system

    Yamamoto, Shiro; Saeki, Keiji; Hirose, Yutaka; Takebayashi, Kazunari; Kawasaki, Masatoshi

    1986-01-01

    Semi-spherical thick walled steel castings are one of the main products of Nippon Chutanko K.K., but there have been the problems of internal defects peculiar to large thick walled steel castings, and the various improvements have been carried out so far for the manufacturing method, but still some of those remains. Based on the anxiety about the reliability of large steel castings, the conversion to forging has been studied. For the purpose of thoroughly improving the internal quality of thick walled steel castings to compete with forgings, on the basis of the operating experience of chills, the development of the casting techniques changing cores completely to metallic cores has been advanced. After the preliminary experiment using models, a semi-spherical thick walled steel casting mentioned before was manufactured by this metallic core casting method for trial, and the detailed investigation was carried out. As the result, the excellent internal quality was confirmed, accordingly at present, the production is made by this method. The form, dimensions and specification of the semi-spherical thick walled steel castings, the conventional casting plan, the metallic core casting plan, the design of metallic cores, molding and casting, and the examination of the castings made for trial are reported. (Kako, I.)

  17. Quality and Safety Assurance of Iron Casts and Manufacturing Processes

    Kukla S.

    2016-01-01

    The scope of this work focuses on the aspects of quality and safety assurance of the iron cast manufacturing processes. Special attention was given to the processes of quality control and after-machining of iron casts manufactured on automatic foundry lines. Due to low level of automation and huge work intensity at this stage of the process, a model area was established which underwent reorganization in accordance with the assumptions of the World Class Manufacturing (WCM). An analysis of wor...

  18. Computer Simulation of the Formation of Non-Metallic Precipitates During a Continuous Casting of Steel

    Kalisz D.

    2016-03-01

    Full Text Available The authors own computer software, based on the Ueshima mathematical model with taking into account the back diffusion, determined from the Wołczyński equation, was developed for simulation calculations. The applied calculation procedure allowed to determine the chemical composition of the non-metallic phase in steel deoxidised by means of Mn, Si and Al, at the given cooling rate. The calculation results were confirmed by the analysis of samples taken from the determined areas of the cast ingot. This indicates that the developed computer software can be applied for designing the steel casting process of the strictly determined chemical composition and for obtaining the required non-metallic precipitates.

  19. Application of metal oxide refractories for melting and casting reactive metals

    Jessen, N.C. Jr.; Holcombe, C.E. Jr.; Townsend, A.B.

    1979-01-01

    Extensive investigations have been conducted to develop metal oxide refractories for containment of molten uranium and uranium alloys. Since uranium and uranium alloys are readily susceptable to the formation of complex oxides, carbides, nitrides, intermetallic compounds, and suboxide reactions, severe problems exist for the production of quality castings. These contamination reactions are dependent on temperature, pressure, and molten metal interfacial reactions. The need for high purity metals to meet specification repeatedly has resulted in the development of improved metal oxide refractories and sophisticated furnace controls. Applications of Y 2 O 3 for use as a crucible and mold coating, precision molds and cores, and high temperature castable ceramics are discussed. Experimental results on melt impurity levels, thermal controls during melting, surface interactions and casting quality are presented

  20. Preparation of thin actinide metal disks using a multiple disk casting technique

    Conner, W.V.

    1975-01-01

    A casting technique has been developed for preparing multiple actinide metal disks which have a minimum thickness of 0.006 inch. This technique was based on an injection casting procedure which utilizes the weight of a tantalum metal rod to force the molten metal into the mold cavity. Using the proper mold design and casting parameters, it has been possible to prepare ten 1/2 inch diameter neptunium or plutonium metal disks in a single casting, This casting technique is capable of producing disks which are very uniform. The average thickness of the disks from a typical casting will vary no more than 0.001 inch and the variation in the thickness of the individual disks will range from 0.0001 to 0.0005 inch. (Auth.)

  1. Preparation of thin actinide metal disks using a multiple disk casting technique

    Conner, W.V.

    1976-01-01

    A casting technique has been developed for preparing multiple actinide metal disks which have a minimum thickness of 0.006 inch. This technique was based on an injection casting procedure which utilizes the weight of a tantalum metal rod to force the molten metal into the mold cavity. Using the proper mold design and casting parameters, it has been possible to prepare ten 1/2 inch diameter neptunium or plutonium metal disks in a single casting. This casting technique is capable of producing disks which are very uniform. The average thickness of the disks from a typical casting will vary no more than 0.001 inch and the variation in the thickness of the individual disks will range from 0.0001 to 0.0005 inch. (author)

  2. Integrated Modeling of Process, Structures and Performance in Cast Parts

    Kotas, Petr

    This thesis deals with numerical simulations of gravity sand casting processes for the production of large steel parts. The entire manufacturing process is numerically modeled and evaluated, taking into consideration mould filling, solidification, solid state cooling and the subsequent stress build...... and to defects occurrence. In other words, it is desired to eliminate all of the potential casting defects and at the same time to maximize the casting yield. The numerical optimization algorithm then takes these objectives and searches for a set of the investigated process, design or material parameters e.......g. chill design, riser design, gating system design, etc., which would satisfy these objectives the most. The first step in the numerical casting process simulation is to analyze mould filling where the emphasis is put on the gating system design. There are still a lot of foundry specialists who ignore...

  3. Friction Stir Processing of Cast Superalloys, Phase I

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for producing...

  4. TECHNOLOGICAL PROCESSES OF PRODUCTION OF THE MASS FUNCTION CAST BARS

    A. N. Krutilin

    2012-01-01

    Full Text Available A number of scientifically grounded technical decisions, the whole set of which has enabled to create technological processes of production of high-quality cast bars of mass appointment is offered.

  5. Simulation of mould filling process for composite skeleton castings

    M. Dziuba; M. Cholewa

    2008-01-01

    In this work authors showed selected results of simulation and experimental studies on temperature distribution during solidification of skeleton casting and mould filling process. The aim of conducted simulations was the choice of thermal and geometrical parameters for the needs of designed calculations of the skeleton castings and the estimation of the guidelines for the technology of manufacturing. The subject of numerical simulation was the analysis of ability of filling the channels of c...

  6. Surface hardening of two cast irons by friction stir processing

    Fujii, Hidetoshi; Kikuchi, Toshifumi; Nogi, Kiyoshi; Yamaguchi, Yasufumi; Kiguchi, Shoji

    2009-01-01

    The Friction Stir Processing (FSP) was applied to the surface hardening of cast irons. Flake graphite cast iron (FC300) and nodular graphite cast iron (FCD700) were used to investigate the validity of this method. The matrices of the FC300 and FC700 cast irons are pearlite. The rotary tool is a 25mm diameter cylindrical tool, and the travelling speed was varied between 50 and 150mm/min in order to control the heat input at the constant rotation speed of 900rpm. As a result, it has been clarified that a Vickers hardness of about 700HV is obtained for both cast irons. It is considered that a very fine martensite structure is formed because the FSP generates the heat very locally, and a very high cooling rate is constantly obtained. When a tool without an umbo (probe) is used, the domain in which graphite is crushed and striated is minimized. This leads to obtaining a much harder sample. The hardness change depends on the size of the martensite, which can be controlled by the process conditions, such as the tool traveling speed and the load. Based on these results, it was clarified that the FSP has many advantages for cast irons, such as a higher hardness and lower distortion. As a result, no post surface heat treatment and no post machining are required to obtain the required hardness, while these processes are generally required when using the traditional methods.

  7. Influence of S. mutans on base-metal dental casting alloy toxicity.

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  8. Fabrication of sacrificial anode cathodic protection through casting method

    Mohd Sharif Sattar; Muhamad Daud; Siti Radiah Mohd Kamarudin; Azali Muhamad; Zaiton Selamat; Rusni Rejab

    2007-01-01

    Aluminum is one of the few metals that can be cast by all of the processes used in casting metals. These processes consist of die casting, permanent mold casting, sand casting (green sand and dry sand), plaster casting, investment casting, and continuous casting. Other processes such as lost foam, squeeze casting, and hot isostatic pressing are also used. Permanent mold casting method was selected in which used for fabricating of sacrificial anode cathodic protection. This product was ground for surface finished and fabricated in the cylindrical form and reinforced with carbon steel at a center of the anode. (Author)

  9. Influence of the casting processing route on the corrosion behavior of dental alloys.

    Galo, Rodrigo; Rocha, Luis Augusto; Faria, Adriana Claudia; Silveira, Renata Rodrigues; Ribeiro, Ricardo Faria; de Mattos, Maria da Gloria Chiarello

    2014-12-01

    Casting in the presence of oxygen may result in an improvement of the corrosion performance of most alloys. However, the effect of corrosion on the casting without oxygen for dental materials remains unknown. The aim of this study was to investigate the influence of the casting technique and atmosphere (argon or oxygen) on the corrosion behavior response of six different dental casting alloys. The corrosion behavior was evaluated by electrochemical measurements performed in artificial saliva for the different alloys cast in two different conditions: arc melting in argon and oxygen-gas flame centrifugal casting. A slight decrease in open-circuit potential for most alloys was observed during immersion, meaning that the corrosion tendency of the materials increases due to the contact with the solution. Exceptions were the Co-based alloys prepared by plasma, and the Co-Cr-Mo and Ni-Cr-4Ti alloys processed by oxidized flame, in which an increase in potential was observed. The amount of metallic ions released into the artificial saliva solution during immersion was similar for all specimens. Considering the pitting potential, a parameter of high importance when considering the fluctuating conditions of the oral environment, Co-based alloys show the best performance in comparison with the Ni-based alloys, independent of the processing route. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting.

    Mun, Jiwon; Ju, Jaehyung; Thurman, James

    2016-05-14

    One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique.

  11. National Metal Casting Research Institute final report. Volume 2, Die casting research

    Jensen, D. [University of Northern Iowa, Cedar Falls, IA (United States). Dept. of Industrial Technology] [comp.

    1994-06-01

    Four subprojects were completed: development and evaluation of die coatings, accelerated die life characterization of die materials, evaluation of fluid flow and solidification modeling programs, selection and characterization of Al-based die casting alloys, and influence of die materials and coatings on die casting quality.

  12. ASSESSMENT OF SURFACE FINISH AND DIMENSIONAL ACCURACY OF TOOLS MANUFACTURED BY METAL CASTING IN RAPID PROTOTYPING SAND MOULDS

    Nyembwe, K.

    2012-11-01

    Full Text Available In this paper, an initial assessment of the quality parameters of the surface finish and dimensional accuracy of tools made by metal casting in rapid prototyping (RP sand moulds is undertaken. A case study from a local tool room, dealing with the manufacturing of an aluminium die for the lost wax process, is employed. Modern techniques, including surface roughness analysis and three dimensional scanning, are used to determine and understand how each manufacturing step influences the final quality of the cast tool. The best surface finish obtained for the cast die had arithmetic average roughness (Ra and mean average roughness (Rz respectively equal to 3.23m and 11.38m. In terms of dimensional accuracy, 82% of cast-die points coincided with the Computer Aided Design (CAD data, which is within the typical tolerances of sand cast products. The investigation shows that mould coating contributes slightly to the improvement of the cast tool surface finish. The study also found that the additive manufacturing of the sand mould was the chief factor responsible for the loss of dimensional accuracy. These findings indicate that machining will always be required to improve the surface finish and the dimensional accuracy of cast tools in RP sand moulds.

  13. Process to Continuously Melt, Refine and Cast High Quality Steel

    None

    2005-09-01

    The purpose of this project is to conduct research and development targeted at designing a revolutionary steelmaking process. This process will deliver high quality steel from scrap to the casting mold in one continuous process and will be safer, more productive, and less capital intensive to build and operate than conventional steelmaking. The new process will produce higher quality steel faster than traditional batch processes while consuming less energy and other resources.

  14. Rate of solidification of aluminium casting in varying wall thickness of cylindrical metallic moulds

    Katsina Christopher BALA

    2014-02-01

    Full Text Available The quality of final casting mainly depends on the rate of solidification as rapid solidification produces fine grains structures with better mechanical properties. The analysis of heat transfer during the casting and solidification of aluminium alloy as well as the experimental investigation of the rate of solidification in varying thicknesses of cylindrical metallic mould was carried out. The temperature variation with time of the casting was recorded from which cooling curves were obtained for the determination of solidification time of the cast. The results showed that as the cylindrical mould thickness increases the solidification time decreases due to the chilling effect of the mould.

  15. [Cervical adaptation of complete cast crowns of various metal alloys, with and without die spacers].

    Stephano, C B; Roselino, R F; Roselino, R B; Campos, G M

    1989-01-01

    A metallic replica from a dental preparation for crown was used to make 8 class-IV stone dies. The wax patterns for the casting of the crowns were obtained in two conditions: a) from the stone die with no spacer; and b) from the stone die with an acrylic spacer. Thus, 64 metallic crowns were casted, using 4 different alloys: DURACAST (Cu-Al), NICROCAST (Ni-Cr) and DURABOND (Ni-Cr), and gold. The casted crowns were fitted in the metallic replica and measured as to the cervical discrepance of fitting. The results showed that the use of die spacers decreases the clinical discrepancies of fitting of the casted crowns (in a statistically significant level), no matter the metallic alloy employed.

  16. Effect of electric arc, gas oxygen torch and induction melting techniques on the marginal accuracy of cast base-metal and noble metal-ceramic crowns.

    Gómez-Cogolludo, Pablo; Castillo-Oyagüe, Raquel; Lynch, Christopher D; Suárez-García, María-Jesús

    2013-09-01

    The aim of this study was to identify the most appropriate alloy composition and melting technique by evaluating the marginal accuracy of cast metal-ceramic crowns. Seventy standardised stainless-steel abutments were prepared to receive metal-ceramic crowns and were randomly divided into four alloy groups: Group 1: palladium-gold (Pd-Au), Group 2: nickel-chromium-titanium (Ni-Cr-Ti), Group 3: nickel-chromium (Ni-Cr) and Group 4: titanium (Ti). Groups 1, 2 and 3 were in turn subdivided to be melted and cast using: (a) gas oxygen torch and centrifugal casting machine (TC) or (b) induction and centrifugal casting machine (IC). Group 4 was melted and cast using electric arc and vacuum/pressure machine (EV). All of the metal-ceramic crowns were luted with glass-ionomer cement. The marginal fit was measured under an optical microscope before and after cementation using image analysis software. All data was subjected to two-way analysis of variance (ANOVA). Duncan's multiple range test was run for post-hoc comparisons. The Student's t-test was used to investigate the influence of cementation (α=0.05). Uncemented Pd-Au/TC samples achieved the best marginal adaptation, while the worst fit corresponded to the luted Ti/EV crowns. Pd-Au/TC, Ni-Cr and Ti restorations demonstrated significantly increased misfit after cementation. The Ni-Cr-Ti alloy was the most predictable in terms of differences in misfit when either torch or induction was applied before or after cementation. Cemented titanium crowns exceeded the clinically acceptable limit of 120μm. The combination of alloy composition, melting technique, casting method and luting process influences the vertical seal of cast metal-ceramic crowns. An accurate use of the gas oxygen torch may overcome the results attained with the induction system concerning the marginal adaptation of fixed dental prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Ferrous Metal Processing Plants

    Department of Homeland Security — This map layer includes ferrous metal processing plants in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  18. Nonferrous Metal Processing Plants

    Department of Homeland Security — This map layer includes nonferrous metal processing plants in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  19. Development of industry processes simulators. Part III (Continuous casting)

    Ramirez, A.; Morales, R.; Morales, A. J.; Ramos, A.; Solorio, G.

    2006-01-01

    This work written for illustrating the use of Monte Carlo methods and generating of random number in combination with the information of the simulation system of thermal behaviour described previously in order to reproduce in a computer the solidification process of the steel and simulate the formation of strictures of casting step by step. (Author). 12 refs

  20. Numerical Modeling of Fluid Flow in the Tape Casting Process

    Jabbari, Masoud; Hattel, Jesper Henri

    2011-01-01

    The flow behavior of the fluid in the tape casting process is analyzed. A simple geometry is assumed for running the numerical calculations in ANSYS Fluent and the main parameters are expressed in non-dimensional form. The effect of different values for substrate velocity and pressure force...

  1. Actinide metal processing

    Sauer, N.N.; Watkin, J.G.

    1992-01-01

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage

  2. A double metal process

    Hawley, F.; Vasche, G.; Caywood, J.M.; Houck, B.; Boyce, J.; Tso, L.

    1988-01-01

    A dual layer metallization process is studied using a Tungsten 10% Titanium/Molybdenum sandwich (TiW/Mo) first metal with an Al/.5% Cu for the second metal. This metallization process has: 1) very reliable shallow junction contacts without junction spiking, 2) very high electromigration resistance and (3) A very smooth defect free surface throughout the process. Contact resistance of 50 and 30 ohm-um2 for P and N type silicon respectively is achieved. The TiW/Mo film stress is studied and an optimum condition for low compressive stress is defined. The TiW/Mo is etched using a corrosion free etch process. Electromigration data is presented showing TiW/Mo to be at least an order of magnitude better than Al/Si. The intermetal oxide layer is a planarized sandwich of LTO/SOG/LTO providing a smooth positive slope surface for the Metal 2. Metal l/Metal 2 via resistances are studied with 1.25 ohm-um2 values obtained

  3. Optimization of casting defects analysis with supply chain in cast iron foundry process

    C. Narayanaswamy

    2016-10-01

    Full Text Available Some of the foundries are in need of meeting production targets and due to the urgency they ignore the rejections. The objective of this paper is to analyze the various defects, [1] from molding process in a cast iron foundry. The Failure Mode Effects Analysis (FMEA in quality control [2-6] with suitable supply chain for mold making process considering rejection rates are identified and analyzed in terms of Risk Priority Number (RPN to prioritize the attention for each of the problem. The optimum levels of selected parameters [7] are obtained in this analysis.

  4. Ductile cast iron obtaining by Inmold method with use of LOST FOAM process

    T. Pacyniak

    2010-01-01

    Full Text Available The possibility of manufacturing of ductile cast iron castings by Inmold method with use of LOST FOAM process was presented in this work. The spheroidization was carried out by magnesium master alloy in amounts of 1% casting mass. Nodulizer was located in the reactive chamber in the gating system made of foamed polystyrene. Pretests showed, that there are technical possibilities of manufacturing of casts from ductile cast iron in the LOST FOAM process with use of spheroidization in mould.

  5. [Evaluation method with radiographic image quality indicator for internal defects of dental casting metallic restoration].

    Li, Y; Zheng, G; Lin, H

    2014-12-18

    To develop a new kind of dental radiographic image quality indicator (IQI) for internal quality of casting metallic restoration to influence on its usage life. Radiographic image quality indicator method was used to evaluate the depth of the defects region and internal quality of 127 casting metallic restoration and the accuracy was compared with that of conventional callipers method. In the 127 cases of casting metallic restoration, 9 were found the thickness less than 0.7 mm and the thinnest thickness only 0.2 mm in 26 casting metallic crowns or bridges' occlusal defects region. The data measured by image quality indicator were consistent with those measured by conventional gauging. Two metal inner crowns were found the thickness less than 0.3 mm in 56 porcelain crowns or bridges. The thickness of casting removable partial denture was more than 1.0 mm, but thinner regions were not found. It was found that in a titanium partial denture, the X-ray image of clasp was not uniform and there were internal porosity defects in the clasp. Special dental image quality indicator can solve the visual error problems caused by different observing backgrounds and estimate the depth of the defects region in the casting.

  6. Homogeneous metal matrix composites produced by a modified stir-casting technique

    Kennedy, A.R.; McCartney, D.G.; Wood, J.V.

    1995-01-01

    Al-based metal matrix composites have been made by a novel liquid processing route which is not only cheap and versatile but produces composites with extremely uniform distributions of the reinforcing phase. Particles of TiB 2 , TiC and B 4 C have been spontaneously incorporated, that is without the use of external mechanical agitation, into Al and Al-alloy melts in volume fractions as high as 0.3. This has been achieved through the use of wetting agents which produce K-Al-F based slags on the melt surface. Spontaneous particle entry and the chemistry of the slag facilitate the generation of good distributions of the reinforcing phase in the solidified composite castings. Non-clustered, near homogeneous distributions have been achieved irrespective of the casting conditions and the volume fraction, type or size of the reinforcement. The majority of the reinforcement becomes engulfed into the solid metal grains during solidification rather than, what is more commonly the case, being pushed to the inter-granular regions. This intra-granular distribution of the reinforcement is likely to improve the mechanical properties of the material

  7. Dehydrogenation in large ingot casting process

    Ubukata, Takashi; Suzuki, Tadashi; Ueda, Sou; Shibata, Takashi

    2009-01-01

    Forging components (for nuclear power plants) have become larger and larger because of decreased weld lines from a safety point of view. Consequently they have been manufactured from ingots requirement for 200 tons or more. Dehydrogenation is one of the key issues for large ingot manufacturing process. In the case of ingots of 200 tons or heavier, mold stream degassing (MSD) has been applied for dehydrogenation. Although JSW had developed mold stream degassing by argon (MSD-Ar) as a more effective dehydrogenating practice, MSD-Ar was not applied for these ingots, because conventional refractory materials of a stopper rod for the Ar blowing hole had low durability. In this study, we have developed a new type of stopper rod through modification of both refractory materials and the stopper rod construction and have successfully expanded the application range of MSD-Ar up to ingots weighting 330 tons. Compared with the conventional MSD, the hydrogen content in ingots after MSD-Ar has decreased by 24 percent due to the dehydrogenation rate of MSD-Ar increased by 34 percent. (author)

  8. Dehydration of moulding sand in simulated casting process examined with neutron radiography

    Schillinger, B., E-mail: Burkhard.Schillinger@frm2.tum.de [Technische Universitaet Muenchen, FRM II and Faculty for Physics E21, Lichtenbergstr. 1, 85748 Garching (Germany); Calzada, E. [Technische Universitaet Muenchen, FRM II and Faculty for Physics E21, Lichtenbergstr. 1, 85748 Garching (Germany); Eulenkamp, C.; Jordan, G.; Schmahl, W.W. [Ludwig-Maximilians-Universitaet Muenchen, Department fuer Geo- und Umweltwissenschaften, Sektion Kristallographie, Theresienstr. 41, 80333 Muenchen (Germany)

    2011-09-21

    Natural bentonites are an important material in the casting industry. Smectites as the main component of bentonites plasticize and stabilise sand moulds. Pore water as well as interlayer water within the smectites are lost as a function of time, location and temperature. Although rehydration of the smectites should be a reversible process, the industrially dehydrated smectites lose their capability to reabsorb water. This limits the number of possible process cycles of the mould material. A full understanding of the dehydration process would help to optimise the amount of fresh material to be added and thus save resources. A simulated metal casting was investigated with neutron radiography at the ANTARES neutron imaging facility of the FRM II reactor of Technische Universitaet Muenchen, Germany.

  9. Weld microstructure in cast AlSi9/SiC(p metal matrix composites

    J. Wysocki

    2009-04-01

    Full Text Available Welded joint in cast AlSi9/SiC/20(p metal matrix composite by manual TIG arc welding using AlMg5 filler metal has been described inhis paper. Cooling curves have been stated, and the influence in distribution of reinforced particles on crystallization and weldmicrostructure. Welded joint mechanical properties have been determined: hardness and tensile.

  10. Laser processing of cast iron for enhanced erosion resistance

    Chen, C.H.; Altstetter, C.J.; Rigsbee, J.M.

    1984-01-01

    The surfaces of nodular and gray cast iron have been modified by CO 2 laser processing for enhanced hardness and erosion resistance. Control of the near-surface microstructure was achieved primarily by controlling resolidification of the laser melted layer through variations in laser beam/target interaction time and beam power density. Typical interaction times and power densities used were 5 msec and 500 kW/cm 2 . Two basic kinds of microstructure can be produced-a feathery microstructure with high hardness (up to 1245 HV) and a dendritic microstructure with a metastable, fully austenitic matrix and lower hardness (600 to 800 HV). Erosion testing was done using slurries of SiO 2 or SiC in water. Weight loss and crater profile measurements were used to evaluate the erosion characteristics of the various microstructures. Both ductile and gray cast iron showed marked improvement in erosion resistance after laser processing

  11. SURFACE CAST IRON STRENGTHENING USING COMBINED LASER AND ULTRASONIC PROCESSING

    O. G. Devojno

    2013-01-01

    Full Text Available The paper provides an analysis of ultrasonic surface plastic deformation and subsequent laser thermal strengthening of gray cast iron parts in the regime of hardening from a solid state with the purpose to obtain strengthened surface layers of bigger depth and less roughness of the processed surface. Program complex ANSYS 11.0 has been used for calculation of temperature fields induced by laser exposure.  The appropriate regime of laser processing without surface fusion has been selected on the basis of the applied complex. The possibility of displacement in the bottom boundary of α–γ-transformation temperature  for СЧ20 with 900 °С up to 800 °С is confirmed due to preliminary ultrasonic surface plastic deformation of the surface that allows to expand technological opportunities of laser quenching  of gray  cast iron from a solid state. 

  12. Solidification, processing and properties of ductile cast iron

    Tiedje, Niels Skat

    2010-01-01

    Ductile cast iron has been an important engineering material in the past 50 years. In that time, it has evolved from a complicated material that required the foundry metallurgist's highest skill and strict process control to being a commonly used material that can easily be produced with modern...... of the latest years of research indicate that ductile cast iron in the future will become a highly engineered material in which strict control of a range of alloy elements combined with intelligent design and highly advanced processing allows us to target properties to specific applications to a much higher...... degree than we have seen previously. It is the aim of the present paper to present ductile iron as a modern engineering material and present the many different possibilities that the material hides. Focus will be on the latest research in solidification and melt treatment. But for completeness...

  13. Numerical modelling of stresses and deformations in casting processes

    Hattel, Jesper Henri

    1997-01-01

    Keywords: Stresses and deformations, casting, governing equations, thermal strain, control volume method......Keywords: Stresses and deformations, casting, governing equations, thermal strain, control volume method...

  14. Quality and Safety Assurance of Iron Casts and Manufacturing Processes

    Kukla S.

    2016-06-01

    Full Text Available The scope of this work focuses on the aspects of quality and safety assurance of the iron cast manufacturing processes. Special attention was given to the processes of quality control and after-machining of iron casts manufactured on automatic foundry lines. Due to low level of automation and huge work intensity at this stage of the process, a model area was established which underwent reorganization in accordance with the assumptions of the World Class Manufacturing (WCM. An analysis of work intensity was carried out and the costs were divided in order to identify operations with no value added, particularly at individual manufacturing departments. Also an analysis of ergonomics at work stations was carried out to eliminate activities that are uncomfortable and dangerous to the workers' health. Several solutions were proposed in terms of rationalization of work organization at iron cast after-machining work stations. The proposed solutions were assessed with the use of multi-criteria assessment tools and then the best variant was selected based on the assumed optimization criteria. The summary of the obtained results reflects benefits from implementation of the proposed solutions.

  15. Does the casting mode influence microstructure, fracture and properties of different metal ceramic alloys?

    Bauer, José Roberto de Oliveira; Grande, Rosa Helena Miranda; Rodrigues-Filho, Leonardo Eloy; Pinto, Marcelo Mendes; Loguercio, Alessandro Dourado

    2012-01-01

    The aim of the present study was to evaluate the tensile strength, elongation, microhardness, microstructure and fracture pattern of various metal ceramic alloys cast under different casting conditions. Two Ni-Cr alloys, Co-Cr and Pd-Ag were used. The casting conditions were as follows: electromagnetic induction under argon atmosphere, vacuum, using blowtorch without atmosphere control. For each condition, 16 specimens, each measuring 25 mm long and 2.5 mm in diameter, were obtained. Ultimate tensile strength (UTS) and elongation (EL) tests were performed using a Kratos machine. Vickers Microhardness (VM), fracture mode and microstructure were analyzed by SEM. UTS, EL and VM data were statistically analyzed using ANOVA. For UTS, alloy composition had a direct influence on casting condition of alloys (Wiron 99 and Remanium CD), with higher values shown when cast with Flame/Air (p casting condition" influenced the EL and VM results, generally presenting opposite results, i.e., alloy with high elongation value had lower hardness (Wiron 99), and casting condition with the lowest EL values had the highest VM values (blowtorch). Both factors had significant influence on the properties evaluated, and prosthetic laboratories should select the appropriate casting method for each alloy composition to obtain the desired property.

  16. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    Stefan Stein

    Full Text Available The application of piezoelectric transducers to structural body parts of machines or vehicles enables the combination of passive mechanical components with sensor and actuator functions in one single structure. According to Herold et al. [1] and Staeves [2] this approach indicates significant potential regarding smart lightweight construction. To obtain the highest yield, the piezoelectric transducers need to be integrated into the flux of forces (load path of load bearing structures. Application in a downstream process reduces yield and process efficiency during manufacturing and operation, due to the necessity of a subsequent process step of sensor/actuator application. The die casting process offers the possibility for integration of piezoelectric transducers into metal structures. Aluminum castings are particularly favorable due to their high quality and feasibility for high unit production at low cost (Brunhuber [3], Nogowizin [4]. Such molded aluminum parts with integrated piezoelectric transducers enable functions like active vibration damping, structural health monitoring or energy harvesting resulting in significant possibilities of weight reduction, which is an increasingly important driving force of automotive and aerospace industry (Klein [5], Siebenpfeiffer [6] due to increasingly stringent environmental protection laws. In the scope of those developments, this paper focuses on the entire process chain enabling the generation of lightweight metal structures with sensor and actuator function, starting from the manufacturing of piezoelectric modules over electrical and mechanical bonding to the integration of such modules into aluminum (Al matrices by die casting. To achieve this challenging goal, piezoceramic sensors/actuator modules, so-called LTCC/PZT modules (LPM were developed, since ceramic based piezoelectric modules are more likely to withstand the thermal stress of about 700 °C introduced by the casting process (Flössel et

  17. ASSESSMENT OF SURFACE FINISH AND DIMENSIONAL ACCURACY OF TOOLS MANUFACTURED BY METAL CASTING IN RAPID PROTOTYPING SAND MOULDS

    Nyembwe, K.; De Beer, D. J.; Van der Walt, J. G.; Bhero, S.

    2012-01-01

    In this paper, an initial assessment of the quality parameters of the surface finish and dimensional accuracy of tools made by metal casting in rapid prototyping (RP) sand moulds is undertaken. A case study from a local tool room, dealing with the manufacturing of an aluminium die for the lost wax process, is employed. Modern techniques, including surface roughness analysis and three dimensional scanning, are used to determine and understand how each manufacturing step influences the final qu...

  18. ''Heat Transfer at the Mold-Metal Interface in Permanent Mold Casting of Aluminum Alloys'' Final Project Report; FINAL

    Pehlke, R. D.; Cookson, John M.; Shouwei Hao; Prasad Krishna; Bilkey, Kevin T.

    2001-01-01

    This project on heat transfer coefficients in metal permanent mold casting has been conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigation of squeeze casting at CMI-Tech Center (Now Hayes-Lemmerz Technical Center) and the experimental investigation of low pressure permanent mold casting at Amcast Automotive

  19. Cast bulk metallic glass alloys: prospects as wear materials

    Hawk, Jeffrey A.; Dogan, Omer N.; Shiflet, Gary J. (Dept. of Materials Science and Engineering, University of Virginia, Charlottesville, VA)

    2005-01-01

    Bulk metallic glasses are single phase materials with unusual physical and mechanical properties. One intriguing area of possible use is as a wear material. Usually, pure metals and single phase dilute alloys do not perform well in tribological conditions. When the metal or alloy is lightweight, it is usually soft leading to galling in sliding situations. For the harder metals and alloys, their density is usually high, so there is an energy penalty when using these materials in wear situations. However, bulk metallic glasses at the same density are usually harder than corresponding metals and dilute single phase alloys, and so could offer better wear resistance. This work will discuss preliminary wear results for metallic glasses with densities in the range of 4.5 to 7.9 g/cc. The wear behavior of these materials will be compared to similar metals and alloys.

  20. Marginal accuracy of nickel chromium copings fabricated by conventional and accelerated casting procedures, produced with ringless and metal ring investment procedures: A comparative in vitro study

    Deepa Alex

    2015-01-01

    Conclusion: The Ni-Cr cast copings fabricated with the conventional casting using ringless investment system showed significantly better marginal fit than that of cast copings fabricated from conventional and accelerated casting with metal ring investment and accelerated casting using ringless investment since those copings had shown the least vertical marginal discrepancies among the four methods evaluated in this study.

  1. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    Stein, Stefan; Wedler, Jonathan; Rhein, Sebastian; Schmidt, Michael; Körner, Carolin; Michaelis, Alexander; Gebhardt, Sylvia

    The application of piezoelectric transducers to structural body parts of machines or vehicles enables the combination of passive mechanical components with sensor and actuator functions in one single structure. According to Herold et al. [1] and Staeves [2] this approach indicates significant potential regarding smart lightweight construction. To obtain the highest yield, the piezoelectric transducers need to be integrated into the flux of forces (load path) of load bearing structures. Application in a downstream process reduces yield and process efficiency during manufacturing and operation, due to the necessity of a subsequent process step of sensor/actuator application. The die casting process offers the possibility for integration of piezoelectric transducers into metal structures. Aluminum castings are particularly favorable due to their high quality and feasibility for high unit production at low cost (Brunhuber [3], Nogowizin [4]). Such molded aluminum parts with integrated piezoelectric transducers enable functions like active vibration damping, structural health monitoring or energy harvesting resulting in significant possibilities of weight reduction, which is an increasingly important driving force of automotive and aerospace industry (Klein [5], Siebenpfeiffer [6]) due to increasingly stringent environmental protection laws. In the scope of those developments, this paper focuses on the entire process chain enabling the generation of lightweight metal structures with sensor and actuator function, starting from the manufacturing of piezoelectric modules over electrical and mechanical bonding to the integration of such modules into aluminum (Al) matrices by die casting. To achieve this challenging goal, piezoceramic sensors/actuator modules, so-called LTCC/PZT modules (LPM) were developed, since ceramic based piezoelectric modules are more likely to withstand the thermal stress of about 700 °C introduced by the casting process (Flössel et al., [7]). The

  2. Microbiological metal extraction processes

    Torma, A.E.

    1991-01-01

    Application of biotechnological principles in the mineral processing, especially in hydrometallurgy, has created new opportunities and challenges for these industries. During the 1950's and 60's, the mining wastes and unused complex mineral resources have been successfully treated in bacterial assisted heap and dump leaching processes for copper and uranium. The interest in bio-leaching processes is the consequence of economic advantages associated with these techniques. For example, copper can be produced from mining wastes for about 1/3 to 1/2 of the costs of copper production by the conventional smelting process from high-grade sulfide concentrates. The economic viability of bio leaching technology lead to its world wide acceptance by the extractive industries. During 1970's this technology grew into a more structured discipline called 'bio hydrometallurgy'. Currently, bio leaching techniques are ready to be used, in addition to copper and uranium, for the extraction of cobalt, nickel, zinc, precious metals and for the desulfurization of high-sulfur content pyritic coals. As a developing technology, the microbiological leaching of the less common and rare metals has yet to reach commercial maturity. However, the research in this area is very active. In addition, in a foreseeable future the biotechnological methods may be applied also for the treatment of high-grade ores and mineral concentrates using adapted native and/or genetically engineered microorganisms. (author)

  3. Mechanism and application of a newly developed pressure casting process: horizontal squeeze casting

    Li Peijie

    2014-07-01

    Full Text Available Compared to traditional high-pressure die casting (HPDC, horizontal squeeze casting (HSC is a more promising way to fabricate high-integrity castings, owing to a reduced number of gas and shrinkage porosities produced in the casting. In this paper, the differences between HSC and HPDC are assessed, through which it is shown that the cavity filling velocity and the size of the gating system to be the most notable differences. Equipment development and related applications are also reviewed. Furthermore, numerical simulation is used to analyze the three fundamental characteristics of HSC: slow cavity filling, squeeze feeding and slow sleeve filling. From this, a selection principle is given based on the three related critical casting parameters: cavity filling velocity, gate size and sleeve filling velocity. Finally, two specific applications of HSC are introduced, and the future direction of HSC development is discussed.

  4. Nondestructive testing of austenitic casting and dissimilar metal welds; Kaksimetalliliitosten ja austeniittisten valujen testaustekniikoiden vertailu

    Lahdenperae, K [VTT Manufacturing Technology, Espoo (Finland)

    1995-01-01

    The publication is a literature study of nondestructive testing of dissimilar metal welds and cast austenitic components in PWR and BWR plants. A major key to the successful testing is a realistic mockup made of the materials to be tested. The inspectors must also be trained and validated using suitable mockups. (42 refs., 27 figs., 10 tabs.).

  5. Structure-property-processing correlations in freeze-cast composite scaffolds.

    Hunger, Philipp M; Donius, Amalie E; Wegst, Ulrike G K

    2013-05-01

    Surprisingly few reports have been published, to date, on the structure-property-processing correlations observed in freeze-cast materials directionally solidified from polymer solutions, or ceramic or metal slurries. The studies that exist focus on properties of sintered ceramics, that is materials whose structure was altered by further processing. In this contribution, we report first results on correlations observed in alumina-chitosan-gelatin composites, which were chosen as a model system to test and compare the effect of particle size and processing parameters on their mechanical properties at a specific composition. Our study reveals that highly porous (>90%) hybrid materials can be manufactured by freeze casting, through the self-assembly of a polymer and a ceramic phase that occurs during directional solidification, without the need of additional processing steps such as sintering or infiltration. It further illustrates that the properties of freeze-cast hybrid materials can independently be tailored at two levels of their structural hierarchy, allowing for the simultaneous optimization of both mechanical and structural requirements. An increase in freezing rate resulted in decreases in lamellar spacing, cell wall thickness, pore aspect ratio and cross-sectional area, as well as increases in both Young's modulus and compressive yield strength. The mechanical properties of the composite scaffolds increased with an increasing particle size. The results show that both structure and mechanical properties of the freeze-cast composites can be custom-designed and that they are thus ideally suited for a large variety of applications that require high porosity at low or medium load-bearing capacity. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  7. Stainless steel fibre reinforced aluminium matrix composites processed by squeeze casting: relationship between processing conditions and interfacial microstructure

    Colin, C.; Marchal, Y.; Boland, F.; Delannay, F.

    1993-01-01

    This work investigates the influence of some processing parameters on the extent of interfacial reaction in squeeze cast aluminium matrix composites reinforced with 12 μm diameter, continuous stainless steel fibres. The average thickness of the reaction layer at fibre/matrix interfaces was measured by image analysis. When casting was made in a die at room temperature, the thickness of the reaction layer was affected on a distance of several mm from the lateral surface or from the bottom of the preform. The results indicate that the major part of the reaction occurs before solidification of the liquid metal. The control of the extent of interfacial reaction can be achieved through optimization of both infiltration parameters and features of the preform such as the volume fraction of the fibres. (orig.)

  8. Calorimetric analysis of heating and cooling process of nodular cast iron

    Bińczyk F.

    2007-01-01

    Full Text Available The study presents the results of investigations of the thermal effects which take place during heating and cooling of samples of the nodular graphite cast iron taken from the stepped test casting of the wall thicknesses amounting to 5, 10, 15 and 20 mm. For investigations, a differential scanning calorimeter, type Multi HTC S60, was used. During heating, three endothermic effects related with pearlite decomposition, phase transformation α → γ, and carbon dissolution in austenite were observed on a DSC diagram. During cooling, two exothermic effects related with phase transformation γ→ α and pearlite formation were observed to consecutively take place on a DSC diagram. The values of the enthalpy of these processes differ and depend on the initial microstructure of the examined samples. The metallic matrix in 5 mm sample after the process of heating and cooling changes totally in favour of ferrite. The same effect, though less advanced in intensity, takes place in 10 mm sample, while in 15 and 20 mm samples the matrix constitution remains unchanged. The higher is the content of ferrite in samples, the stronger is the endothermic effect of the α → γ transformation and the weaker is the endothermic effect related with carbon dissolution in austenite. The total of the endothermic effects (heating is reduced, while that of the exothermic effects (cooling increases along with the increasing thickness of walls in a stepped test casting, from which samples for the investigations were taken.

  9. Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications

    Carter, Jon T. [General Motors LLC, Warren, MI (United States); Wang, Gerry [Meridian Lightweight Technologies, Plymouth MI (United States); Luo, Alan [General Motors LLC, Warren, MI (United States)

    2017-11-29

    improvement in tensile properties with vacuum casting. Plant trials with large castings revealed cavity fill issues attributed to cooling and partial solidification of metal in the shot sleeve while waiting for vacuum to be established in the die cavity. 6. Developed age-hardenable Mg-based alloys as potential alternatives to the AM60 and AZ91 alloys typically used in automotive applications. Mg-7%Al-based alloys having Sn or Sn+Si additions exhibited significant age hardening, but more work is needed to demonstrate significant improvement in tensile properties. Corrosion behavior of these alloys is between those of AM60 and AZ91 alloys. 7. Evaluated the die casting of magnesium directly onto either steel or aluminum tubes as a potential process to make large lightweight subassemblies. Samples were free of gross defects, but additional work is needed to increase the interfacial shear strength. Overall, the project demonstrated that an automotive door-in-white design incorporating a die cast magnesium inner panel and a stamped aluminum outer panel can achieve approximately 50% mass reduction compared to the stamped steel baseline door-in-white. This leads to reduced energy consumption when driving the vehicle, which should more than offset the increased embedded energy of manufacture associated with the lighter metals. However, additional design work would be needed in order to meet the mechanical performance required of a door. Development of high-strength, high-ductility magnesium alloy castings would help make this technology more attractive for potential use in the side doors on automobiles. Also, increased use of recycled magnesium and aluminum would reduce the embedded energy and greenhouse gas emissions associated with the manufacture of this type of lightweight door. Commercialization planning of the type of lightweight door technology addressed in this project would be contingent upon the doors meeting all technical performance requirements of the car maker. The

  10. Comparison of fracture resistance between cast, CAD/CAM milling, and direct metal laser sintering metal post systems.

    Bilgin, Mehmet Selim; Erdem, Ali; Dilber, Erhan; Ersoy, İbrahim

    2016-01-01

    The purpose of this study was to compare the fracture resistance of Co-Cr post-cores fabricated with 3 different techniques: traditional casting (TC), computer-aided design and manufacturing (CAD/CAM) milling (CCM) and direct metal laser sintering (DMLS). Forty intact human mandibular premolar were endodontically treated. The roots were then randomly divided into four groups according to the post systems: the control group was only filled with gutta percha. Co-Cr metal posts were fabricated with TC, CCM and DMLS in the other three groups. The posts were luted with a resin cement and subjected to compression test at a crosshead speed of 1mm/min. The statistical analysis of the data was performed using one-way analysis of variance (ANOVA) and multiple comparison post hoc Tukey tests (α=.05). The samples were examined under a stereomicroscope with ×20 magnification for the evaluation of the fracture types. The mean fracture loads were 432.69 N for control, 608.89 N for TC, 689.40 N for DMLS and 959.26 N for CCM. One-way ANOVA revealed significant difference between the groups (pmetal posts fabricated by CCM and DMLS could be an alternative to TC processing in daily clinical application. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  11. Review of Grain Refinement of Cast Metals Through Inoculation: Theories and Developments

    Liu, Zhilin

    2017-10-01

    The inoculation method of grain refinement is widely used in research and industry. Because of its commercial and engineering importance, extensive research on the mechanisms/theories of grain refinement and development of effective grain refiners for diverse cast metals/alloys has been conducted. In 1999, Easton and St. John reviewed the mechanisms of grain refinement of cast Al alloys. Since then, grain refinement in alloys of Al, Mg, Fe, Ti, Cu, and Zn has evolved a lot. However, there is still no full consensus on the mechanisms/theories of grain refinement. Moreover, some new grain refiners developed based on the theories do not ensure efficient grain refinement. Thus, the factors that contribute to grain refinement are still not fully understood. Clarification of the prerequisite issues that occur in grain refinement is required using recent theories. This review covers multiple metals/alloys and developments in grain refinement from the last twenty years. The characteristics of effective grain refiners are considered from four perspectives: effective particle/matrix wetting configuration, sufficiently powerful segregating elements, preferential crystallographic matching, and geometrical features of effective nucleants. Then, recent mechanisms/theories on the grain refinement of cast metals/alloys are reviewed, including the peritectic-related, hypernucleation, inert nucleant, and constitutional supercooling-driven theories. Further, developments of deterministic and probabilistic modeling and nucleation crystallography in the grain refinement of cast metals are reviewed. Finally, the latest progress in the grain refinement of cast Zn and its alloys is described, and future work on grain refinement is summarized.

  12. Extraterrestrial Metals Processing, Phase II

    National Aeronautics and Space Administration — The Extraterrestrial Metals Processing (EMP) system produces iron, silicon, and light metals from Mars, Moon, or asteroid resources in support of advanced human...

  13. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Low Pressure Casting

    Hofmann, Douglas C. (Inventor); Kennett, Andrew (Inventor)

    2018-01-01

    Systems and methods to fabricate objects including metallic glass-based materials using low-pressure casting techniques are described. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: introducing molten alloy into a mold cavity defined by a mold using a low enough pressure such that the molten alloy does not conform to features of the mold cavity that are smaller than 100 microns; and cooling the molten alloy such that it solidifies, the solid including a metallic glass-based material.

  14. Engineering scale demonstration of a prospective Cast Stone process

    Cozzi, A.; Fowley, M.; Hansen, E.; Fox, K.; Miller, D.; Williams, M.

    2014-01-01

    This report documents an engineering-scale demonstration with non-radioactive simulants that was performed at SRNL using the Scaled Continuous Processing Facility (SCPF) to fill an 8.5 ft container with simulated Cast Stone grout. The Cast Stone formulation was chosen from the previous screening tests. Legacy salt solution from previous Hanford salt waste testing was adjusted to correspond to the average composition generated from the Hanford Tank Waste Operation Simulator (HTWOS). The dry blend materials, ordinary portland cement (OPC), Class F fly ash, and ground granulated blast furnace slag (GGBFS or BFS), were obtained from Lafarge North America in Pasco, WA. Over three days, the SCPF was used to fill a 1600 gallon container, staged outside the facility, with simulated Cast Stone grout. The container, staged outside the building approximately 60 ft from the SCPF, was instrumented with x-, y-, and z-axis thermocouples to monitor curing temperature. The container was also fitted with two formed core sampling vials. For the operation, the targeted grout production rate was 1.5 gpm. This required a salt solution flow rate of approximately 1 gpm and a premix feed rate of approximately 580 lb/h. During the final day of operation, the dry feed rate was increased to evaluate the ability of the system to handle increased throughput. Although non-steady state operational periods created free surface liquids, no bleed water was observed either before or after operations. The final surface slope at a fill height of 39.5 inches was 1-1.5 inches across the 8.5 foot diameter container, highest at the final fill point and lowest diametrically opposed to the fill point. During processing, grout was collected in cylindrical containers from both the mixer discharge and the discharge into the container. These samples were stored in a humid environment either in a closed box proximal to the container or inside the laboratory. Additional samples collected at these sampling points

  15. Engineering scale demonstration of a prospective Cast Stone process

    Cozzi, A.; Fowley, M.; Hansen, E.; Fox, K.; Miller, D.; Williams, M.

    2014-09-30

    This report documents an engineering-scale demonstration with non-radioactive simulants that was performed at SRNL using the Scaled Continuous Processing Facility (SCPF) to fill an 8.5 ft container with simulated Cast Stone grout. The Cast Stone formulation was chosen from the previous screening tests. Legacy salt solution from previous Hanford salt waste testing was adjusted to correspond to the average composition generated from the Hanford Tank Waste Operation Simulator (HTWOS). The dry blend materials, ordinary portland cement (OPC), Class F fly ash, and ground granulated blast furnace slag (GGBFS or BFS), were obtained from Lafarge North America in Pasco, WA. Over three days, the SCPF was used to fill a 1600 gallon container, staged outside the facility, with simulated Cast Stone grout. The container, staged outside the building approximately 60 ft from the SCPF, was instrumented with x-, y-, and z-axis thermocouples to monitor curing temperature. The container was also fitted with two formed core sampling vials. For the operation, the targeted grout production rate was 1.5 gpm. This required a salt solution flow rate of approximately 1 gpm and a premix feed rate of approximately 580 lb/h. During the final day of operation, the dry feed rate was increased to evaluate the ability of the system to handle increased throughput. Although non-steady state operational periods created free surface liquids, no bleed water was observed either before or after operations. The final surface slope at a fill height of 39.5 inches was 1-1.5 inches across the 8.5 foot diameter container, highest at the final fill point and lowest diametrically opposed to the fill point. During processing, grout was collected in cylindrical containers from both the mixer discharge and the discharge into the container. These samples were stored in a humid environment either in a closed box proximal to the container or inside the laboratory. Additional samples collected at these sampling points

  16. Effects of thermomechanical processing on titanium aluminide strip cast by the melt overflow process

    Gaspar, T.A. (Ribbon Technology Corporation, PO Box 30758, Columbus, OH 43230 (United States)); Hackman, L.E. (Ribbon Technology Corporation, PO Box 30758, Columbus, OH 43230 (United States)); Batawi, E. (Sulzer-Innotec, Division 1511, PO Box 65, Winterthur 8404 (Switzerland)); Peters, J.A. (Sulzer-Innotec, Division 1511, PO Box 65, Winterthur 8404 (Switzerland))

    1994-05-01

    The objective of this research project was to investigate the feasibility of producing titanium aluminide foils from direct cast strip using ribbon technology''s plasma melt overflow process. Niobium-modified Ti[sub 3]Al alloys were melted in a cold copper crucible using a transferred plasma arc and then direct cast into strip on a rotating chill roll.Samples cut from the as-cast Ti[sub 3]Al-Nb ([alpha][sub 2]) titanium aluminide strip were encapsulated into a pack. The packs were heated to the rolling temperature and then hot rolled at low strain rates. Foils 70 [mu]m (0.003 in) thick, having a uniform [alpha][sub 2]-B2 microstructure with oxygen contents as low as 900 wt.ppm were obtained after pack rolling. The strips and foils were characterized in terms of microstructure and chemical composition in the as-received, heat-treated and pack-rolled conditions.The results indicated that it was technically feasible to produce foils from direct cast titanium aluminide strip using pack-rolling technology. The advantage of this technology lies in its cost-effectiveness, since the relatively low cost direct-cast titanium aluminide strip was thermomechanically processed into foil with the desired microstructure without any intermediate processing steps. ((orig.))

  17. Apparatus for injection casting metallic nuclear energy fuel rods

    Seidel, Bobby R.; Tracy, Donald B.; Griffiths, Vernon

    1991-01-01

    Molds for making metallic nuclear fuel rods are provided which present reduced risks to the environment by reducing radioactive waste. In one embodiment, the mold is consumable with the fuel rod, and in another embodiment, part of the mold can be re-used. Several molds can be arranged together in a cascaded manner, if desired, or several long cavities can be integrated in a monolithic multiple cavity re-usable mold.

  18. The effect of hydrogen peroxide concentration on metal ion release from dental casting alloys.

    Al-Salehi, S K; Hatton, P V; Johnson, A; Cox, A G; McLeod, C

    2008-04-01

    There are concerns that tooth bleaching agents may adversely affect dental materials. The aim of this study was to test the hypothesis that increasing concentrations of hydrogen peroxide (HP) are more effective than water at increasing metal ion release from two typical dental casting alloys during bleaching. Discs (n = 28 for each alloy) were prepared by casting and heat treated to simulate a typical porcelain-firing cycle. Discs (n = 7) of each alloy were immersed in either 0%, 3%, 10% or 30% (w/v) HP solutions for 24 h at 37 degrees C. Samples were taken for metal ion release determination using inductively coupled plasma-mass spectrometry and the data analysed using a two-way anova followed by a one-way anova. The surface roughness of each disc was measured using a Talysurf contact profilometer before and after bleaching and the data analysed using a paired t-test. With the exception of gold, the differences in metal ion concentration after treatment with 0% (control) and each of 3%, 10% and 30% HP (w/v) were statistically significant (P alloys increased with increasing HP concentrations (over 3000% increase in Ni and 1400% increase in Pd ions were recorded when HP concentration increased from 0% to 30%). Surface roughness values of the samples before and after bleaching were not significantly different (P > 0.05) Exposure of the two dental casting alloys to HP solutions increased metal ion release of all the elements except gold.

  19. The Effect of Rare-Earth Metals on Cast Steels

    1954-04-01

    sullide inclusions found in two afuminum-Jriffed steefs treated with fire pounds of misch metal per ton of steef (SOOX) 15 manganese sulfides and...deoxidation treatment by ad- ditions in the monorail ladle were better than those not given the secondary deoxidation treatment. The aluminum analyses...Suliur Addition lb/ton Place BHN Area % it-lbs It-lbs Content Regular Secondary Deoxidation (0.028%Ca as CaMnSi + o.ossy.Ai) Added to 300 lb. Monorail

  20. Application of the Pareto chart and Ishikawa diagram for the identification of major defects in metal composite castings

    K. Gawdzińska

    2011-04-01

    Full Text Available This author discusses the use of selected quality management tools, i.e. the Pareto chart and Ishikawa fishbone diagram, for the descriptionof composite casting defects. The Pareto chart allows to determine defect priority related with metallic composite castings, while theIshikawa diagram indicates the causes of defect formation and enables calculating defect weights.

  1. Application of the Pareto chart and Ishikawa diagram for the identification of major defects in metal composite castings

    K. Gawdzińska

    2011-01-01

    This author discusses the use of selected quality management tools, i.e. the Pareto chart and Ishikawa fishbone diagram, for the descriptionof composite casting defects. The Pareto chart allows to determine defect priority related with metallic composite castings, while theIshikawa diagram indicates the causes of defect formation and enables calculating defect weights.

  2. Heavy Metals in ToxCast: Relevance to Food Safety (SOT)

    Human exposure to heavy metals occurs through food contamination due to industrial processes, vehicle emissions and farming methods. Specific toxicity endpoints have been associated with metal exposures, e.g. lead and neurotoxicity; however, numerous varieties of heavy metals hav...

  3. Extraterrestrial Metals Processing, Phase I

    National Aeronautics and Space Administration — The Extraterrestrial Metals Processing (EMP) system produces ferrosilicon, silicon monoxide, a glassy mixed oxide slag, and smaller amounts of alkali earth...

  4. Effects of Rare Earth Metal Addition on Wear Resistance of Chromium-Molybdenum Cast Steel

    Kasinska J.

    2017-09-01

    Full Text Available This paper discusses changes in the microstructure and abrasive wear resistance of G17CrMo5-5 cast steel modified with rare earth metals (REM. The changes were assessed using scanning microscopy. The wear response was determined in the Miller test to ASTM G75. Abrasion tests were supplemented with the surface profile measurements of non-modified and modified cast steel using a Talysurf CCI optical profilometer. It was demonstrated that the modification substantially affected the microstructure of the alloy, leading to grain size reduction and changed morphology of non-metallic inclusions. The observed changes in the microstructure resulted in a three times higher impact strength (from 33 to 99 kJ/cm2 and more than two times higher resistance to cracking (from 116 to 250 MPa. The following surface parameters were computed: Sa: Arithmetic mean deviation of the surface, Sq: Root-mean-square deviation of the surface, Sp: Maximum height of the peak Sv: Maximum depth of the valley, Sz: Ten Point Average, Ssk: Asymmetry of the surface, Sku: Kurtosis of the surface. The findings also indicated that the addition of rare earth metals had a positive effect on the abrasion behaviour of G17CrMo5-5 cast steel.

  5. Characteristics comparison of weld metal zones welded to cast and forged steels for piston crown material

    Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil

    2015-03-01

    An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.

  6. Laser welding of SSM Cast A356 aluminium alloy processed with CSIR-Rheo technology

    Akhter, R

    2006-01-01

    Full Text Available Samples of aluminium alloy A356 were manufactured by Semi Solid Metals HPDC technology, developed recently in CSIR, Pretoria. They were butt welded in as cast conditions using as Nd: YAG laser. The best metal and weld microstructure were presented...

  7. Microstructure, process, and tensile property relationships in an investment cast near-γTiAl alloy

    Jones, P.E.; Porter, W.J. III.; Keller, M.M.; Eylon, D.

    1992-01-01

    The brittle nature of near-γ TiAl alloys makes fabrication difficult. This paper reports on developing near-net shape technologies, such as investment casting, for these alloys which is one of the essential approached to their commercial introduction. The near-γ TiAl alloy Ti-48Al-2Nb-2Cr (a%) is investment cast with two cooling rates. The effect of casting cooling rate on the fill and surface integrity was studied for complex shape thin walled components. Block and bar castings are hot isostatically pressed (HIP'd) and heat treated to produce duplex (lamellar + equiaxed) microstructures for mechanical property evaluation. The relationships between the casting conditions, microstructures, and tensile properties are studied. The strength and elongation below the ductile to brittle transition temperature are dependent on the casting cooling rate and section size. The tensile properties improved with faster cooling during the casting process as a result of microstructural refinement. Faster cooled castings are more fully transformed to a duplex structure during post-casting heat treatments. Above the ductile to brittle transition temperature the effect of casting cooling rate on tensile properties is less pronounced

  8. Application of Anodization Process for Cast Aluminium Surface Properties Enhancement

    Włodarczyk-Fligier A.

    2016-09-01

    Full Text Available An huge interest is observed in last years in metal matrix composite, mostly light metal based, which have found their applications in many industry branches, among others in the aircraft industry, automotive-, and armaments ones, as well as in electrical engineering and electronics, where one of the most important issue is related to the corrosion resistance, especially on the surface layer of the used aluminium alloys. This elaboration presents the influence of ceramic phase on the corrosion resistance, quality of the surface layer its thickness and structure of an anodic layer formed on aluminium alloys. As test materials it was applied the aluminium alloys Al-Si-Cu and Al-Cu-Mg, for which heat treatment processes and corrosion tests were carried out. It was presented herein grindability test results and metallographic examination, as well. Hardness of the treated alloys with those ones subjected to corrosion process were compared.

  9. Babbitt Casting and Babbitt Spraying Processes Case Study

    M. Jalali Azizpour; S.Norouzi H. Mohammadi Majd

    2011-01-01

    In this paper, the babbitting of a bearing in boiler feed pump of an electromotor has been studied. These bearings have an important role in reducing the shut down times in the pumps, compressors and turbines. The most conventional method in babbitting is casting as a melting method. The comparison between thermal spray and casting methods in babbitting shows that the thermal spraying babbitt layer has better performance and tribological behavior. The metallurgical and tribological analysis s...

  10. Arrays of hollow out-of-plane microneedles made by metal electrodeposition onto solvent cast conductive polymer structures

    Mansoor, I; Liu, Y; Stoeber, B; Häfeli, U O

    2013-01-01

    Transdermal drug delivery using microneedles is a technique to potentially replace hypodermic needles for injection of many vaccines and drugs. Fabrication of hollow metallic microneedles so far has been associated with time-consuming steps that restrict batch production of these devices. Here, we are presenting a novel method for making metallic microneedles with any desired height, spacing, and lumen size. In our process, we use solvent casting to coat a mold, which contains an array of pillars, with a conductive polymer composite layer. The conductive layer is then used as a seed layer in a metal electrodeposition process. To characterize the process, the conductivity of the polymer composite with respect to different filler concentrations was investigated. In addition, plasma etching of the polymer was characterized. The electroplating process was also studied further to control the thickness of the microneedle array plate. The strength of the microneedle devices was evaluated through a series of compression tests, while their performance for transdermal drug delivery was tested by injection of 2.28 µm fluorescent microspheres into animal skin. The fabricated metallic microneedles seem appropriate for subcutaneous delivery of drugs and microspheres. (paper)

  11. Friction and wear characteristics of Al-Cu/C composites synthesized using partial liquid phase casting process

    Ng, W.B.; Gupta, M.; Lim, S.C.

    1997-01-01

    During the sliding of aluminium alloys dispersed with graphite particulates, a layer of graphite is usually present at the sliding interface. This tribo-layer significantly reduces the amount of direct metal-to-metal contact, giving rise to low friction and a low rate of wear, making these composites useful candidate materials for anti-friction applications. Such self-lubricating composites are commonly fabricated via the squeeze casting, slurry casting or powder metallurgy route. These processes are expensive while the less-expensive conventional casting route is limited by the agglomeration of graphite particles in the composites, giving rise to poor mechanical properties. In this work, graphite particulate-reinforced Al-4.5 wt.% Cu composites with two effective graphite contents (Al-4.5 Cu/4.2 wt.% C and Al-4.5 Cu/6.8 wt.% C) were synthesized through an innovative partial liquid phase casting (rheocasting) technique, which is a modification of the conventional casting process. Unlubricated (without the use of conventional liquid lubrication) friction and wear performance of these composites as well as the un-reinforced aluminium alloy was determined using a pin-on-disk tester. The results revealed that the graphite-reinforced composites have a higher wear rate than the un-reinforced matrix alloy while their frictional characteristics are very similar within the range of testing conditions. Combining these with the information gathered from worn-surface examinations and wear-debris analysis, it is suggested that there exists a certain threshold for the amount and size of graphite particulates in these composites to enable them to have improved tribological properties. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Enhancement of Efficiency and Reduction of Grid Thickness Variation on Casting Process with Lean Six Sigma Method

    Witantyo; Setyawan, David

    2018-03-01

    In a lead acid battery industry, grid casting is a process that has high defect and thickness variation level. DMAIC (Define-Measure-Analyse-Improve-Control) method and its tools will be used to improve the casting process. In the Define stage, it is used project charter and SIPOC (Supplier Input Process Output Customer) method to map the existent problem. In the Measure stage, it is conducted a data retrieval related to the types of defect and the amount of it, also the grid thickness variation that happened. And then the retrieved data is processed and analyzed by using 5 Why’s and FMEA method. In the Analyze stage, it is conducted a grid observation that experience fragile and crack type of defect by using microscope showing the amount of oxide Pb inclusion in the grid. Analysis that is used in grid casting process shows the difference of temperature that is too high between the metal fluid and mold temperature, also the corking process that doesn’t have standard. The Improve stage is conducted a fixing process which generates the reduction of grid variation thickness level and defect/unit level from 9,184% to 0,492%. In Control stage, it is conducted a new working standard determination and already fixed control process.

  13. Numerical simulation of casting process to assist in defects reduction in complex steel tidal power component

    Guo, E J; Zhao, S C; Wang, L P; Wu, T; Xin, B P; Tan, J J; Jia, H L

    2016-01-01

    In order to reduce defects and improve casting quality, ProCAST software is performed to study the solidification process of discharge bowl. Simulated results of original casting process show that the hot tearing is serious at the intersection of blades and outer or inner rings. The shrinkage porosity appears at the bottom of discharge bowl and the transition area of wall thickness. Based on the formation mechanisms of the defects, the structure of chills attached on the outer surface of discharge bowl casting is optimized. The thickness of chills ranges from 25mm to 35mm. The positions of chills corresponded to the outer surface of the T-shaped parts. Compared to the original casting design (without chills), the hot tearing and shrinkage porosity of the discharge bowl are greatly improved with addition of chills. (paper)

  14. Multiphysics modeling of the steel continuous casting process

    Hibbeler, Lance C.

    This work develops a macroscale, multiphysics model of the continuous casting of steel. The complete model accounts for the turbulent flow and nonuniform distribution of superheat in the molten steel, the elastic-viscoplastic thermal shrinkage of the solidifying shell, the heat transfer through the shell-mold interface with variable gap size, and the thermal distortion of the mold. These models are coupled together with carefully constructed boundary conditions with the aid of reduced-order models into a single tool to investigate behavior in the mold region, for practical applications such as predicting ideal tapers for a beam-blank mold. The thermal and mechanical behaviors of the mold are explored as part of the overall modeling effort, for funnel molds and for beam-blank molds. These models include high geometric detail and reveal temperature variations on the mold-shell interface that may be responsible for cracks in the shell. Specifically, the funnel mold has a column of mold bolts in the middle of the inside-curve region of the funnel that disturbs the uniformity of the hot face temperatures, which combined with the bending effect of the mold on the shell, can lead to longitudinal facial cracks. The shoulder region of the beam-blank mold shows a local hot spot that can be reduced with additional cooling in this region. The distorted shape of the funnel mold narrow face is validated with recent inclinometer measurements from an operating caster. The calculated hot face temperatures and distorted shapes of the mold are transferred into the multiphysics model of the solidifying shell. The boundary conditions for the first iteration of the multiphysics model come from reduced-order models of the process; one such model is derived in this work for mold heat transfer. The reduced-order model relies on the physics of the solution to the one-dimensional heat-conduction equation to maintain the relationships between inputs and outputs of the model. The geometric

  15. Demerit control chart as a decision support tool in quality control of ductile cast-iron casting process

    Sika Robert

    2017-01-01

    Full Text Available In many industrial areas the product quality can be unequivocally assigned to classes such as: “good”, “bad” or “to repair”. In case of casting processes, the product is approved to sales considering customer’s requirements. Except for common characteristics, such as structure, compactness and mechanical properties, physical state of the product is also important. This state is assessed by checking occurrence of specific kind of defects. They are often conditionally accepted by a customer if they do not have any influence on functionality of the product (e.g. negative adhesive and cohesive phenomena, fatigue strength, thermal shocks. Authors’ experience shows that current registering of the most frequently occurring defects and comparing them to customers’ requirements can be very useful and help a quality engineer to control the casting process. They suggest using the Demerit Control Chart (DCC, according to authors’ own methodology, in aspect of information about the castings accepted conditionally by a customer (DCC-recognition. DCC-recognition can be used to assess this quality by monitoring the value of just one aggregated measure for all kinds of defects instead of using a single attribute control chart for each of them. The test version of this tool considering severity of defects proved to be useful in one of the European foundries.

  16. Multi-layers castings

    J. Szajnar

    2010-01-01

    Full Text Available In paper is presented the possibility of making of multi-layers cast steel castings in result of connection of casting and welding coating technologies. First layer was composite surface layer on the basis of Fe-Cr-C alloy, which was put directly in founding process of cast carbon steel 200–450 with use of preparation of mould cavity method. Second layer were padding welds, which were put with use of TIG – Tungsten Inert Gas surfacing by welding technology with filler on Ni matrix, Ni and Co matrix with wolfram carbides WC and on the basis on Fe-Cr-C alloy, which has the same chemical composition with alloy, which was used for making of composite surface layer. Usability for industrial applications of surface layers of castings were estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.

  17. A combined arc-melting and tilt-casting furnace for the manufacture of high-purity bulk metallic glass materials.

    Soinila, E; Pihlajamäki, T; Bossuyt, S; Hänninen, H

    2011-07-01

    An arc-melting furnace which includes a tilt-casting facility was designed and built, for the purpose of producing bulk metallic glass specimens. Tilt-casting was chosen because reportedly, in combination with high-purity processing, it produces the best fatigue endurance in Zr-based bulk metallic glasses. Incorporating the alloying and casting facilities in a single piece of equipment reduces the amount of laboratory space and capital investment needed. Eliminating the sample transfer step from the production process also saves time and reduces sample contamination. This is important because the glass forming ability in many alloy systems, such as Zr-based glass-forming alloys, deteriorates rapidly with increasing oxygen content of the specimen. The challenge was to create a versatile instrument, in which high purity conditions can be maintained throughout the process, even when melting alloys with high affinity for oxygen. Therefore, the design provides a high-vacuum chamber to be filled with a low-oxygen inert atmosphere, and takes special care to keep the system hermetically sealed throughout the process. In particular, movements of the arc-melting electrode and sample manipulator arm are accommodated by deformable metal bellows, rather than sliding O-ring seals, and the whole furnace is tilted for tilt-casting. This performance of the furnace is demonstrated by alloying and casting Zr(55)Cu(30)Al(10)Ni(5) directly into rods up to ø 10 mm which are verified to be amorphous by x-ray diffraction and differential scanning calorimetry, and to exhibit locally ductile fracture at liquid nitrogen temperature.

  18. Application of complex inoculants in improving the process-ability of grey cast iron for cylinder blocks

    LIU Wei-ming

    2006-05-01

    Full Text Available Effect of several complex inoculants on mechanical properties, process-ability and sensibility of grey cast iron used in cylinder block were investigated. The experimental results showed that the grey cast iron treated with 60%FeSi75+40%RE complex inoculants has tensile strength consistently at about 295 MPa along with good hardness and improved metallurgy quality. While the grey cast iron inoculated with 20%FeSi75+80%Sr compound inoculants has the best process-ability, the lowest cross-section sensibility and the least microhardness difference. The wear amount of the drill increases correspondingly with the increase of the microhardness difference of matrix structure, indicating the great effect of homogeneousness of matrix structure in the grey cast iron on the machinability of the grey cast iron.

  19. Influence of reaction chamber shape on cast-iron spheroidization process in-mold

    S. Pietrowski

    2010-01-01

    Full Text Available This paper presents a results concerning the influence of reaction chamber shape on cast – iron spheroidization process in form. The volume of the tested reaction chambers was about 118000mm3. Reaction chambers in the shape of: rectangular, cylinder and spherical cap were examined. It has been shown that the best graphite spheroidizing process was provided by spherical cap chamber shape. The reaction of cast – iron with magnesium in reaction chamber depends on the flow of cast – iron in the chamber. In rectangular and cylinder shape chambers proceed the impact of diphase stream on flat bottom wall. It causes the creation on its surface film, called: cast – iron “film”, where single grains of magnesium master alloy exist. The largest part of master alloy is drifted by liquid cast – iron to the top and only there graphite spheroidization process proceed. In the spherical cap shape reaction chamber, as a result of rotation movement of liquid cast – iron throughout its volume, graphite spheroidization process proceed. Apart from the reaction chamber shape, applying of mixing chamber ensure full cast – iron spheroidization process.

  20. Evaluation of the pattern dimensions of cast-metal posts in uniradicular teeth

    Rafael de Assunção Vital

    Full Text Available Introduction Accurate dimensions of cast-metal posts are relevant to the survival of dental prostheses. Objective The aim of this study was to verify if the dimensions of cast-metal posts accord with ideal clinical criteria. Material and method For the evaluation, 285 periapical radiographs, from a total of 80 teeth, were taken from the charts of patients that attended the clinics at the Dental School of the Federal University of Goiás, from March 2008 to October 2012. Only periapical radiographs of single-rooted teeth with post and core were included in the study. The radiographic evaluation was conducted with the assistance of a magnifying glass and a view box, in a room with low luminosity. The dimensions of the post and core were established with the help of a digital caliper, and the following measurements were considered: a LR (Length Remnant; b LP (Length Post; c BS (Bone Support; d DR (Diameter Root; e DP (mesiodistal diameter post. The post and core were classified as acceptable or deficient by reference values with a margin of error of 0.2 mm. For descriptive analysis, the data were cataloged using SPSS software (version 17.0. Result With regard to the length of the post and core, only 26.25% and 43.75% of the post and core were classified as acceptable according to the two-thirds rule and fulcrum dental rule, respectively. With regard to the mesiodistal diameter of the post and core, 55% were classified as acceptable. Conclusion Within the limits of this study, it can be concluded that the cast-metal posts evaluated do not accord with the ideal clinical criteria.

  1. PERSPECTIVE SOURCES OF METALS RESOURCES (CU, NI FOR CAST IRON ALLOYING, ARISING ON THE TERRITORY OF THE REPUBLIC OF BELARUS

    V. L. Tribushevski

    2005-01-01

    Full Text Available The article is dedicated to the practical foundation of combined resources-economy technologies of the alloyed cast iron melting using wastes of galvanic productions, containing sulfates and hydroxides of these metals, instead of metallic nickel and copper.

  2. Prosthetic Rehabilitation by Palatal Hollow Bulb Obturator with Cast Metal Denture Base: A Case Report

    George Francis

    2015-01-01

    Full Text Available Background: Prosthetic reconstruction of partial maxillectomy defects is a challenging procedure that requires multidisciplinary expertise to achieve an acceptable function, speech and esthetics. This procedure improves the quality of life for the patient as a normal individual. Obturation of the defect depends on its volume and position of remaining hard and soft tissues which determine the retention, stability and support for the prosthesis. The prosthesis should be simple to handle, easy to maintain, biocompatible, light in weight and convenient for future adjustments. This case report describes a clinical case of partial maxillectomy which was successfully rehabilitated with a definitive closed hollow bulb obturator and cast metal denture base.

  3. METAL PLATING PROCESS

    Walker, D.E.; Noland, R.A.

    1958-08-12

    A process ts described for obtaining a closely bonded coating of steel or iron on uranium. The process consists of providing, between the steel and uramium. a layer of silver. amd then pressure rolling tbe assembly at about 600 deg C until a reduction of from l0 to 50% has been obtained.

  4. The thermal fatigue resistance of vermicular cast iron coupling with H13 steel units by cast-in process

    Wang, Chengtao; Zhou, Hong; Lin, Peng Yu; Sun, Na; Guo, Qingchun; Zhang, Peng; Yu, Jiaxiang; Liu, Yan; Wang, Mingxing; Ren, Luquan

    2010-01-01

    This paper focuses on improving the thermal fatigue resistance on the surface of vermicular cast iron coupling with inserted H13 steel blocks that had different cross sections, by cast-in processing. The microstructure of bionic units was examined by scanning electron microscope. Micro-hardness and thermal fatigue resistance of bionic samples with varied cross sections and spacings were investigated, respectively. Results show that a marked metallurgical bonding zone was produced at interface between the inserted H13 steel block and the parent material - a unique feature of the bionic structure in the vermicular cast iron samples. The micro-hardness of the bionic samples has been significantly improved. Thermal resistance of the samples with the circular cross section was the highest and the bionics sample with spacing of 2 mm spacing had a much longer thermal fatigue life, thus resulting in the improvement for the thermal fatigue life of the bionic samples, due to the efficient preclusion for the generation and propagation of crack at the interface of H13 block and the matrix.

  5. The cavitation erosion of ultrasonic sonotrode during large-scale metallic casting: Experiment and simulation.

    Tian, Yang; Liu, Zhilin; Li, Xiaoqian; Zhang, Lihua; Li, Ruiqing; Jiang, Ripeng; Dong, Fang

    2018-05-01

    Ultrasonic sonotrodes play an essential role in transmitting power ultrasound into the large-scale metallic casting. However, cavitation erosion considerably impairs the in-service performance of ultrasonic sonotrodes, leading to marginal microstructural refinement. In this work, the cavitation erosion behaviour of ultrasonic sonotrodes in large-scale castings was explored using the industry-level experiments of Al alloy cylindrical ingots (i.e. 630 mm in diameter and 6000 mm in length). When introducing power ultrasound, severe cavitation erosion was found to reproducibly occur at some specific positions on ultrasonic sonotrodes. However, there is no cavitation erosion present on the ultrasonic sonotrodes that were not driven by electric generator. Vibratory examination showed cavitation erosion depended on the vibration state of ultrasonic sonotrodes. Moreover, a finite element (FE) model was developed to simulate the evolution and distribution of acoustic pressure in 3-D solidification volume. FE simulation results confirmed that significant dynamic interaction between sonotrodes and melts only happened at some specific positions corresponding to severe cavitation erosion. This work will allow for developing more advanced ultrasonic sonotrodes with better cavitation erosion-resistance, in particular for large-scale castings, from the perspectives of ultrasonic physics and mechanical design. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. MCWASP XIV: International Conference on Modelling of Casting, Welding and Advanced Solidification Processes

    Yasuda, H

    2015-01-01

    The current volume represents contributed papers of the proceedings of the 14th international conference on ''Modeling of Casting, Welding and Advanced Solidification Processes (MCWASP XIV)'', Yumebutai International Conference Center, Awaji island, Hyogo, Japan on 21 – 26 June, 2016. The first conference of the series 'Modeling of Casting, Welding and Advanced Solidification Processes (MCWASP)' was started up in 1980, and this is the 14th conference. The participants are more than 100 scientists from industry and academia, coming from 19 countries. In the conference, we have 5 invited, 70 oral and 31 poster presentations on different aspects of the modeling. The conference deals with various casting processes (Ingot / shape casting, continuous casting, direct chill casting and welding), fundamental phenomena (nucleation and growth, dendritic growth, eutectic growth, micro-, meso- and macrostructure formation and defect formation), coupling problems (electromagnetic interactions, application of ultrasonic wave), development of experimental / computational methods and so on. This volume presents the cutting-edge research in the modeling of casting, welding and solidification processes. I would like to thank MAGMA Giessereitechnologie GmbH, Germany and SCSK Corporation, Japan for supporting the publication of contributed papers. Hideyuki Yasuda Conference Chairman Department of Materials Science and Engineering, Kyoto University Japan (preface)

  7. Mathematical Modelling of the Thermical Regime in the Continous Casting Process

    Monika Erika POPA

    2005-10-01

    Full Text Available Continuous casting is one of the prominent methods of production of casts. Effective design and operation of continuous casting machines needs complete analysis of the continuous casting process. In this paper the basic principles of continuous casting and its heat transfer analysis using the finite element method are presented. In the analysis phase change is assumed to take place at constant temperature. A front tracking algorithm has been developed to predict the position of the solidification front at each step. Finally, examples that are solved by the proposed algorithm are discussed. The results show that there is a good agreement between the method developed in this work and other previously reported works.

  8. Microstructure And Mechanical Properties Of An Al-Zn-Mg-Cu Alloy Produced By Gravity Casting Process

    Saikawa S.

    2015-06-01

    Full Text Available High-strength aluminum alloy are widely used for structural components in aerospace, transportation and racing car applications. The objective of this study is to enhance the strength of the Al-Zn-Mg-Cu alloy used for gravity casting process. All alloys cast into stepped-form sand mold (Sand-mold Casting; SC and Y-block shaped metal mold(Permanent mold Casting; PC C and then two –step aged at 398-423 K after solution treated at 743 K for 36 ks. The tensile strength and total elongation of the two-step aged SC alloys were 353-387 MPa and about 0.4% respectively. This low tensile properties of the SC alloys might be caused by remaining of undissolved crystallized phase such as Al2CuM, MgZn2 and Al-Fe-Cu system compounds. However, good tensile properties were obtained from PC alloys, tensile strength and 0.2% proof stress and elongation were 503-537 MPa, 474-519 MPa and 1.3-3.3%.

  9. Nodular cast iron and casting monitoring

    S. Pietrowski

    2008-10-01

    Full Text Available In this paper quality monitoring of nodular cast iron and casting made of it is presented. A control system of initial liquid cast iron to spheroidization, after spheroidization and inoculation with using of TDA method was shown. An application of an ultrasonic method to assessment of the graphite form and the metal matrix microstructure of castings was investigated.

  10. Product and process innovation of grey cast iron brake discs

    Schorn, M. [Brembo S.P.A. (Italy)

    2006-07-01

    The brake disc out of grey cast iron often seems to be playing the role of the ''underdog'' in the technical examinations of the entire brake system. This is also reflected by the 25 year history of the {mu}-club. In a total of 93 presentations in those 25 years, only 3 were related to the topic of grey cast iron discs. This is not a correct relation to the importance of this component within the brake system. The disc, although per definition with a lower specific load than the pad, has the major task to store and dissipate the heat in which the kinetic energy of the vehicle is transformed. The disc also has a significant effect on NVH behaviour, particularly in the low frequency range. It also has a permanent fight with its weight as an unsprung mass. (orig.)

  11. Feasibility study on development of metal matrix composite by microwave stir casting

    Lingappa, S. M.; Srinath, M. S.; Amarendra, H. J.

    2018-04-01

    Need for better service oriented materials has boosted the demand for metal matrix composite materials, which can be developed to have necessary properties. One of the most widely utilized metal matrix composite is Al-SiC, which is having a matrix made of aluminium metal and SiC as reinforcement. Lightweight and conductivity of aluminium, when combined with hardness and wear resistance of SiC provides an excellent platform for various applications in the field of electronics, automotives, and aerospace and so on. However, uniform distribution of reinforcement particles is an issue and has to be addressed. The present study is an attempt made to develop Al-SiC metal matrix composite by melting base metal using microwave hybrid heating technique, followed by addition of reinforcement and stirring the mixture for obtaining homogenous mixture. X-Ray Diffraction analysis shows the presence of aluminium and SiC in the cast material. Further, microstructural study shows the distribution of SiC particles in the grain boundaries.

  12. Market Opportunity of Some Aluminium Silicon Alloys Materials through Changing the Casting Process

    Delfim SOARES

    2012-08-01

    Full Text Available Fatigue is considered to be the most common mechanism by which engineering components fail, and it accounts for at least 90% of all service failures attributed to mechanical causes. Mechanical properties (tensile strength, tensile strain, Young modulus, etc as well as fatigue properties (fatigue life are very dependent on casting method. The most direct effects of casting techniques are on the metallurgical microstructure that bounds the mechanical properties. One of the important variables affected by the casting technique is the cooling rate which is well known to strongly restrict the microstructure. In the present research has been done a comparison of fatigue properties of two aluminum silicon alloys obtained by two casting techniques. It was observed that the fatigue life is increasing with 24% for Al12Si and 31% for AL18Si by using centrifugal casting process instead of gravity casting. This increasing in fatigue life means that a component tailored from materials obtained by centrifugal casting will stay longer in service. It was made an estimation of the time required to recover the costs of technology in order to use the centrifuge process that will allow to obtain materials with improved properties. The amortization can be achieved by using two different marketing techniques: through the release of the product at the old price and with much longer life of the component which means "same price - longer life", or increasing price, by highlighting new product performance which means "higher price - higher properties".

  13. Quantitative analysis of leaching of different metals in human saliva from dental casting alloys: An in vivo study

    Ramashanker Siddharth

    2015-01-01

    Conclusion: Metal-based dentures show maximum leaching immediately after wearing of the prosthesis which decreased significantly over the period of 3 days. Cr and Mn were the metal ions mainly found in saliva of cast partial denture wearer. No concentration of cobalt, molybdenum (Mo and iron (Fe was found in saliva of metal base denture wearer. There was a significant change in concentration of elutes in saliva in first 72 h/3 days making time an effective variable was observed.

  14. Off-loading of hindfoot and midfoot neuropathic ulcers using a fiberglass cast with a metal stirrup.

    Tamir, Eran; Daniels, Timothy R; Finestone, Aharon; Nof, Matityahu

    2007-10-01

    This study was designed to assess the effectiveness of a method of off-loading large neuropathic ulcers of the hindfoot and midfoot. The device used is composed of a fiberglass cast with a metal stirrup and a window around the ulcer. A retrospective study of 14 diabetic and nondiabetic patients was performed. All had chronic plantar hindfoot or midfoot neuropathic ulcers that failed to heal with conventional treatment methods. A fiberglass total contact cast with a metal stirrup was applied. A window was made over the ulcer to allow daily ulcer care. The average duration of ulcer before application of the metal stirrup was 26 + 13.2 (range 7 to 52) months. The ulcer completely healed in 12 of the 14 patients treated. The mean time for healing was 10.8 weeks for midfoot ulcers and 12.3 weeks for heel ulcers. Complications developed in four patients: three developed superficial wounds and one developed a full-thickness wound. In three of these four patients, local wound care was initiated, and the stirrup cast was continued to complete healing of the primary ulcer. A fiberglass cast with a metal stirrup is an effective off-loading device for midfoot and hindfoot ulcers. It is not removable and does not depend on patient compliance. The window around the ulcer allows for daily wound care, drainage of the ulcer and the use of vacuum-assisted closure (VAC) treatment. The complication rate is comparable to that of total contact casting.

  15. Extraction process for removing metallic impurities from alkalide metals

    Royer, Lamar T.

    1988-01-01

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  16. Marginal accuracy of nickel chromium copings fabricated by conventional and accelerated casting procedures, produced with ringless and metal ring investment procedures: A comparative in vitro study.

    Alex, Deepa; Shetty, Y Bharath; Miranda, Glynis Anita; Prabhu, M Bharath; Karkera, Reshma

    2015-01-01

    Conventional investing and casting techniques are time-consuming and usually requires 2-4 h for completion. Accelerated nonstandard, casting techniques have been reported to achieve similar quality results in significantly less time, namely, in 30-40 min. During casting, it is essential to achieve compensation for the shrinkage of solidifying alloy by investment expansion. The metal casting ring restricts the thermal expansion of investment because the thermal expansion of the ring is lesser than that of the investment. The use of casting ring was challenged with the introduction of the ringless technique. A total of 40 test samples of nickel chromium (Ni-Cr) cast copings were obtained from the patterns fabricated using inlay casting wax. The 20 wax patterns were invested using metal ring and 20 wax patterns were invested using the ringless investment system. Of both the groups, 10 samples underwent conventional casting, and the other 10 underwent accelerated casting. The patterns were casted using the induction casting technique. All the test samples of cast copings were evaluated for vertical marginal gaps at four points on the die employing a stereo optical microscope. The vertical marginal discrepancy data obtained were tabulated. Mean and standard deviations were obtained. Vertical discrepancies were analyzed using analysis of variance and Tukey honestly significantly different. The data obtained were found to be very highly significant (P cast copings fabricated with the conventional casting using ringless investment system showed significantly better marginal fit than that of cast copings fabricated from conventional and accelerated casting with metal ring investment and accelerated casting using ringless investment since those copings had shown the least vertical marginal discrepancies among the four methods evaluated in this study.

  17. Numerical modelling of evaporation in a ceramic layer in the tape casting process

    Jabbaribehnam, Mirmasoud; Jambhekar, V. A.; Hattel, Jesper Henri

    2016-01-01

    Evaporation of water from a ceramic layer is a key phenomenon in the drying process for the manufacturing of tape cast ceramics. This process contains mass, momentum and energy exchange between the porous medium and the free-flow region. In order to analyze such interaction processes, a Represent......Evaporation of water from a ceramic layer is a key phenomenon in the drying process for the manufacturing of tape cast ceramics. This process contains mass, momentum and energy exchange between the porous medium and the free-flow region. In order to analyze such interaction processes...

  18. Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes

    Sajjadi, S.A.; Ezatpour, H.R.; Torabi Parizi, M.

    2012-01-01

    Highlights: → Nano and micro-composites (A356/Al 2 O 3 ) were fabricated by stir-casting and compo-casting. → Uniform distribution, grain refinement and low porosity in the composites were attained. → Addition of alumina led to the improvement in yield, ultimate tensile and compression strength. → Nano-alumina particles and compo-casting process obtained the best mechanical properties. -- Abstract: Metal-matrix composites (MMCs), as light and strong materials, are very attractive for application in different industries. In the present work, nano and micro-composites (A356/Al 2 O 3 ) with different weight percent of particles were fabricated by two melt techniques such as stir-casting and compo-casting. Microstructural characterization was investigated by optical (OP) and scanning electron microscopy (SEM). Tensile, hardness and compression tests were carried out in order to identify mechanical properties of the composites. The results of microstructural study revealed uniform distribution, grain refinement and low porosity in micro and nano-composite specimens. The mechanical results showed that the addition of alumina (micro and nano) led to the improvement in yield strength, ultimate tensile strength, compression strength and hardness. It was indicated that type of fabrication process and particle size were the effective factors influencing on the mechanical properties. Decreasing alumina particle size and using compo-casting process obtained the best mechanical properties.

  19. Integrated System of Thermal/Dimensional Analysis for Quality Control of Metallic Melt and Ductile Iron Casting Solidification

    Stan, Stelian; Chisamera, Mihai; Riposan, Iulian; Neacsu, Loredana; Cojocaru, Ana Maria; Stan, Iuliana

    2018-03-01

    The main objective of the present work is to introduce a specific experimental instrument and technique for simultaneously evaluating cooling curves and expansion or contraction of cast metals during solidification. Contraction/expansion analysis illustrates the solidification parameters progression, according to the molten cast iron characteristics, which are dependent on the melting procedure and applied metallurgical treatments, mold media rigidity and thermal behavior [heat transfer parameters]. The first part of the paper summarizes the performance of this two-mold device. Its function is illustrated by representative shrinkage tendency results in ductile cast iron as affected by mold rigidity (green sand and furan resin sand molds) and inoculant type (FeSi-based alloys), published in part previously. The second part of the paper illustrates an application of this equipment adapted for commercial foundry use. It conducts thermal analysis and volume change measurements in a single ceramic cup so that mold media as well as solidification conditions are constants, with cast iron quality as the variable. Experiments compared gray and ductile cast iron solidification patterns. Gray iron castings are characterized by higher undercooling at the beginning and at the end of solidification and lower graphitic expansion. Typically, ductile cast iron exhibits higher graphitic, initial expansion, conducive for shrinkage formation in soft molds.

  20. Simulation of ingot casting processes at Deutsche Edelstahlwerke GmbH®

    Hartmann, L; Ernst, C; Klung, J-S

    2012-01-01

    To enhance the quality of tool steels it is necessary to analyse all stages of the production process. During the ingot- or continuous casting processes and the following solidification, material and geometry depending reactions cause defects such as macro segregations or porosities. In former times the trial and error approach, together with the experience and creativity of the steelworks engineers was used to improve the as-cast quality, with a high amount of test procedures and a high demand of research time and costs. Further development in software and algorithms has allowed modern simulation techniques to find their way into industrial steel production and casting-simulations are widely used to achieve an accurate prediction of the ingot quality. To improve the as-cast quality, several ingot casting processes of tool steels were studied at the R and D department of Deutsche Edelstahlwerke GmbH by using the numerical casting simulation software MAGMASOFT ® . In this paper some results extracted from the simulation software are shown and compared to experimental investigations.

  1. Semi solid metal processing: The fraction solid dilemma

    Nafisi, S.; Emadi, D.; Ghomashchi, R.

    2009-01-01

    One of the most challenging aspects in semi solid metal (SSM) processing is to determine the actual volume fraction of the solid at the processing temperature. The fraction has great impact on the SSM slurry viscosity and the subsequent filling of the mold in the casting stage. Three methods, namely quantitative metallography, thermodynamic calculation, and thermal analysis are employed to investigate and clarify the contradictory open literature reports about the real value of the volume fraction of primary particles. It is reported that the discrepancies between the results obtained by different methods are caused mainly by variations in cooling rates and by coarsening of the primaries during the quenching process

  2. Semi solid metal processing: The fraction solid dilemma

    Nafisi, S. [EVRAZ Inc. NA 100 Armour Road, Regina, SK, S4P 3C7 (Canada)], E-mail: Shahrooz.Nafisi@evrazincna.com; Emadi, D. [CEPG, CanmetENERGY, Natural Resources Canada, Ottawa, ON, K1A 1M1 (Canada); Ghomashchi, R. [Advanced Materials and Processing Research Institute, Suite 122, A7-1390 Major MacKenzie, ON, L4S 0A1 (Canada)

    2009-05-15

    One of the most challenging aspects in semi solid metal (SSM) processing is to determine the actual volume fraction of the solid at the processing temperature. The fraction has great impact on the SSM slurry viscosity and the subsequent filling of the mold in the casting stage. Three methods, namely quantitative metallography, thermodynamic calculation, and thermal analysis are employed to investigate and clarify the contradictory open literature reports about the real value of the volume fraction of primary particles. It is reported that the discrepancies between the results obtained by different methods are caused mainly by variations in cooling rates and by coarsening of the primaries during the quenching process.

  3. A study on the manufacturing conditions of metal matrix composites by low pressure infiltration process

    Park, Won Jo; Hessian, Md Anowar; Park, Sung Ho [Gyeongsang National University, Tongyoung (Korea, Republic of); Huh, Sun Chul [Gyeongsang National University, JinJu (Korea, Republic of)

    2007-10-15

    Metal fiber preform reinforced aluminum alloy composite as made by the infiltration of molten metal under low pressure casting process. The infiltration behavior of filling pattern and the velocity profile with low-pressure casting process was investigated. The thermocouple was inserted into the preform in order to observe the infiltration behavior. The infiltration of applied pressure time, 1, 2 and 5 s under constant pressure of 0.4 MPa was completely filled during 0.4 s. In these conditions, molten aluminum alloy has successfully infiltrated to FeCrSi metal fiber preform by low-pressure casting process. It was observed the porosity of composites for reliability of composites. The automobile piston was developed with FeCrSi reinforced aluminum alloy that is 0% porosity by the optimal applied pressure and applied pressure time.

  4. Effect of Sphere Properties on Microstructure and Mechanical Performance of Cast Composite Metal Foams

    Matias Garcia-Avila

    2015-05-01

    Full Text Available Aluminum-steel composite metal foams (Al-S CMF are manufactured using steel hollow spheres, with a variety of sphere carbon content, surface roughness, and wall porosity, embedded in an Aluminum matrix through gravity casting technique. The microstructural and mechanical properties of the material were studied using scanning electron microscopy, energy dispersive spectroscopy, and quasi-static compressive testing. Higher carbon content and surface roughness in the sphere wall were responsible for an increase in formation of intermetallic phases which had a strengthening effect at lower strain levels, increasing the yield strength of the material by a factor of 2, while higher sphere wall porosity resulted in a decrease on the density of the material and improving its cushioning and ductility maintaining its energy absorption capabilities.

  5. Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs

    Kim, Ki Hwan; Lee, Chong Tak; Lee, Chan Bock; Fielding, R.S.; Kennedy, J.R.

    2013-01-01

    Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 °C showed that HfN, TiC, ZrC, and Y 2 O 3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 °C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y 2 O 3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y 2 O 3 coating exhibited the most promising characteristics among HfN, TiC, ZrC, and Y 2 O 3 coating

  6. Tritium processing using metal hydrides

    Mallett, M.W.

    1986-01-01

    E.I. duPont de Nemours and Company is commissioned by the US Department of Energy to operate the Savannah River Plant and Laboratory. The primary purpose of the plant is to produce radioactive materials for national defense. In keeping with current technology, new processes for the production of tritium are being developed. Three main objectives of this new technology are to ease the processing of, ease the storage of, and to reduce the operating costs of the tritium production facility. Research has indicated that the use of metal hydrides offers a viable solution towards satisfying these objectives. The Hydrogen and Fuels Technology Division has the responsibility to conduct research in support of the tritium production process. Metal hydride technology and its use in the storage and transportation of hydrogen will be reviewed

  7. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  8. Marginal accuracy of nickel chromium copings fabricated by conventional and accelerated casting procedures, produced with ringless and metal ring investment procedures: A comparative in vitro study

    Alex, Deepa; Shetty, Y. Bharath; Miranda, Glynis Anita; Prabhu, M. Bharath; Karkera, Reshma

    2015-01-01

    Background: Conventional investing and casting techniques are time-consuming and usually requires 2–4 h for completion. Accelerated nonstandard, casting techniques have been reported to achieve similar quality results in significantly less time, namely, in 30–40 min. During casting, it is essential to achieve compensation for the shrinkage of solidifying alloy by investment expansion. The metal casting ring restricts the thermal expansion of investment because the thermal expansion of the ring is lesser than that of the investment. The use of casting ring was challenged with the introduction of the ringless technique. Materials and Methods: A total of 40 test samples of nickel chromium (Ni-Cr) cast copings were obtained from the patterns fabricated using inlay casting wax. The 20 wax patterns were invested using metal ring and 20 wax patterns were invested using the ringless investment system. Of both the groups, 10 samples underwent conventional casting, and the other 10 underwent accelerated casting. The patterns were casted using the induction casting technique. All the test samples of cast copings were evaluated for vertical marginal gaps at four points on the die employing a stereo optical microscope. Results: The vertical marginal discrepancy data obtained were tabulated. Mean and standard deviations were obtained. Vertical discrepancies were analyzed using analysis of variance and Tukey honestly significantly different. The data obtained were found to be very highly significant (P marginal fit than that of cast copings fabricated from conventional and accelerated casting with metal ring investment and accelerated casting using ringless investment since those copings had shown the least vertical marginal discrepancies among the four methods evaluated in this study. PMID:26929488

  9. Feasibility of large volume casting cementation process for intermediate level radioactive waste

    Chen Zhuying; Chen Baisong; Zeng Jishu; Yu Chengze

    1988-01-01

    The recent tendency of radioactive waste treatment and disposal both in China and abroad is reviewed. The feasibility of the large volume casting cementation process for treating and disposing the intermediate level radioactive waste from spent fuel reprocessing plant in shallow land is assessed on the basis of the analyses of the experimental results (such as formulation study, solidified radioactive waste properties measurement ect.). It can be concluded large volume casting cementation process is a promising, safe and economic process. It is feasible to dispose the intermediate level radioactive waste from reprocessing plant it the disposal site chosen has resonable geological and geographical conditions and some additional effective protection means are taken

  10. A comprehensive evaluation of the toxicology of the "Deli" cast sheet process used in experimental cigarettes.

    Coggins, Christopher R E; Merski, Jerome A; Oldham, Michael J

    2013-01-01

    Manufacture of cigarettes results in tobacco by-products, some of which can be processed and added back to cigarettes. Such additions (known as reconstituted tobacco or reconstituted leaf) have been shown to reduce tar yields. A new process (termed "Deli" cast sheet) is a potential refinement of the reconstitution process. Compare toxicity of smoke from experimental cigarettes made with reconstituted leaf with that from cigarettes made with Deli cast sheet. Analytical chemistry, Salmonella mutagenicity and cytotoxicity assays were used to evaluate the composition biological activity of mainstream smoke from experimental cigarettes made with Deli cast sheet or with reconstituted leaf. The effect of different amounts of guar and propylene glycol in Deli cast sheet was also evaluated. Small increases in the amount of nitrogen oxides were found as a result of inclusion of the Deli cast sheet when compared with reconstituted leaf; no differences in cytotoxicity or mutagenicity were found. The Deli process neither significantly modified chemical composition of smoke nor affected its biological activity, as measured by the mutagenicity and cytotoxicity assays used here.

  11. Microstructural transformations and mechanical properties of cast NiAl bronze: Effects of fusion welding and friction stir processing

    Fuller, M.D.; Swaminathan, S.; Zhilyaev, A.P.; McNelley, T.R.

    2007-01-01

    A plate of as-cast NiAl bronze (NAB) material was sectioned from a large casting. A six-pass fusion weld overlay was placed in a machined groove; a portion of the weld reinforcement was removed by milling and a single friction stir processing (FSP) pass was conducted in a direction transverse to the axis of and over the weld overlay. A procedure was developed for machining of miniature tensile samples and the distributions of strength and ductility were evaluated for the fusion weld metal; for the stir zone (SZ) produced by the friction stir processing; and for a region wherein friction stir processing had taken place over the fusion weld. A region of low ductility in the heat affected zone (HAZ) of the fusion weld and in the thermomechanically affected zone (TMAZ) of friction stir processed material was attributed to partial reversion of an equilibrium lamellar eutectoid constituent upon local heating above ∼800 deg. C and formation of non-equilibrium transformation products upon subsequent cooling. The adverse effect on ductility is worse in the heat affected zone of the fusion weld than in the thermomechanically affected zone of friction stir processing due to the lower heat input of the latter process. The implications of this work to engineering applications of friction stir processing are discussed

  12. PROCESS FOR PREPARING URANIUM METAL

    Prescott, C.H. Jr.; Reynolds, F.L.

    1959-01-13

    A process is presented for producing oxygen-free uranium metal comprising contacting iodine vapor with crude uranium in a reaction zone maintained at 400 to 800 C to produce a vaporous mixture of UI/sub 4/ and iodine. Also disposed within the maction zone is a tungsten filament which is heated to about 1600 C. The UI/sub 4/, upon contacting the hot filament, is decomposed to molten uranium substantially free of oxygen.

  13. Forward and Reverse Process Models for the Squeeze Casting Process Using Neural Network Based Approaches

    Manjunath Patel Gowdru Chandrashekarappa

    2014-01-01

    Full Text Available The present research work is focussed to develop an intelligent system to establish the input-output relationship utilizing forward and reverse mappings of artificial neural networks. Forward mapping aims at predicting the density and secondary dendrite arm spacing (SDAS from the known set of squeeze cast process parameters such as time delay, pressure duration, squeezes pressure, pouring temperature, and die temperature. An attempt is also made to meet the industrial requirements of developing the reverse model to predict the recommended squeeze cast parameters for the desired density and SDAS. Two different neural network based approaches have been proposed to carry out the said task, namely, back propagation neural network (BPNN and genetic algorithm neural network (GA-NN. The batch mode of training is employed for both supervised learning networks and requires huge training data. The requirement of huge training data is generated artificially at random using regression equation derived through real experiments carried out earlier by the same authors. The performances of BPNN and GA-NN models are compared among themselves with those of regression for ten test cases. The results show that both models are capable of making better predictions and the models can be effectively used in shop floor in selection of most influential parameters for the desired outputs.

  14. Microstructure analysis of AISI 304 stainless steel produced by twin-roll thin strip casting process

    2007-01-01

    The microstructure of AISI 304 austenite stainless steel fabricated by the thin strip casting process were investigated using optical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD).The microstructures of the casting strips show a duplex structure consisting of delta ferrite and austenite. The volume fraction of the delta ferrite is about 9.74vol% at the center and 6.77vol% at the surface of the casting thin strip, in vermicular and band shapes. On account of rapid cooling and solidification in the continuous casting process, many kinds of inclusions and precipitates have been found. Most of the inclusions and precipitates are spherical complex compounds consisting of oxides, such as, SiO2, MnO, Al2O3,Cr2O3,and FeO or their multiplicity oxides of MnO·Al2O3,2FeO·SiO2, and 2MnO·SiO2. Many defects including dislocations and stacking faults have also formed during the rapid cooling and solidification process, which is helpful to improve the mechanical properties of the casting strips.

  15. Microstructure analysis of cofebsinb metallic glasses with a various geometry prepared by planar flow casting and suction casting methods

    Hosko, J.; Janotova, J.; Svec, P.; Matko, I.; Janickovic, D.; Svec, P. Sr.

    2012-01-01

    In this paper we have studied the structure of as-cast Co_4_7Fe_2_0_._9B_2_1_._2Si_4_._6Nb_6_._3 ribbon, bilayer and bulk samples in form of rods up to 5 mm diameter. Amorphous structure of the ribbons and bilayer prepared by PFC was confirmed by XRD characterization. XRD analysis of the bulk sample with 5 mm diameter indicated the presence of crystalline phases. However, XRD analysis of the bulk sample with 4 mm diameter indicated no significant crystalline peaks. From TEM analysis it was found that in-situ BMG composite was obtained in bulk sample. The edge of bulk sample with 4 mm diameter was fully amorphous, however, the center of this sample contains crystalline particles of micron sizes dispersed in the amorphous matrix. Our results suggest that the system Co_4_7Fe_2_0_._9B_2_1_._2Si_4_._6Nb_6_._3 has high GFA because we have prepared various amorphous materials with different shape and thickness using the techniques of suction casting, modified PFC and PFC. The critical diameter of bulk samples with chemical composition Co_4_7Fe_2_0_._9B_2_1_._2Si_4_._6Nb_6_._3 for emergence amorphous phase is 4 mm. (authors)

  16. Reducing non value adding aluminium alloy in production of parts through high pressure die casting

    Pereira, MFVT

    2010-10-01

    Full Text Available in the cast part feed system, including overflows. CSIR intends using the results of this research for further development and application of high temperature die construction materials in high pressure die casting processes of light metal alloys...

  17. Production of an Amorphous Fe_<75>Si_<10>B_<15> Sheet by a Metallic Mold Casting Method and its Properties

    Inoue, Akihisa; Yamamoto, Hirokazu; Saito, Takanobu; Masumoto, Tsuyosi

    1993-01-01

    The application of a metallic mold casting method to an Fe_Si_B_ alloy with the largest glass-forming ability in (Fe, Co, Ni)-Si-B system was found to cause the formation of a mostly single amorphous phase in a sheet form with a thickness of 0.1 mm. No distinct difference in thermal stability (crystallization temperature and heat of crystallization), hardness, Curie temperature and magnetization is detected between the as-cast sheet and the melt-spun amorphous ribbon with a thickness of 0.02 ...

  18. Adhesive bonding of super-elastic titanium-nickel alloy castings with a phosphate metal conditioner and an acrylic adhesive.

    Matsumura, H; Tanoue, N; Yanagida, H; Atsuta, M; Koike, M; Yoneyama, T

    2003-06-01

    The purpose of the current study was to evaluate the bonding characteristics of super-elastic titanium-nickel (Ti-Ni) alloy castings. Disk specimens were cast from a Ti-Ni alloy (Ti-50.85Ni mol%) using an arc centrifugal casting machine. High-purity titanium and nickel specimens were also prepared as experimental references. The specimens were air-abraded with alumina, and bonded with an adhesive resin (Super-Bond C & B). A metal conditioner containing a phosphate monomer (Cesead II Opaque Primer) was also used for priming the specimens. Post-thermocycling average bond strengths (MPa) of the primed groups were 41.5 for Ti-Ni, 30.4 for Ti and 19.5 for Ni, whereas those of the unprimed groups were 21.6 for Ti, 19.3 for Ti-Ni and 9.3 for Ni. Application of the phosphate conditioner elevated the bond strengths of all alloy/metals (P elastic Ti-Ni alloy castings can be achieved with a combination of a phosphate metal conditioner and a tri-n-butylborane-initiated adhesive resin.

  19. AN INTRODUCTION TO RAPID CASTING: DEVELOPMENT AND INVESTIGATION OF PROCESS CHAINS FOR SAND CASTING OF FUNCTIONAL PROTOTYPES

    D. Dimitrov

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper discusses the results obtained from studies on different Rapid Tooling process chains in order to improve the design and manufacture of foundry equipment that is used for sand casting of prototypes in final material. These prototypes are intended for functional and pre-production tests of vehicles. The Three Dimensional Printing process is used as core technology. Subsequently, while considering aspects such as time, cost, quality (accuracy and surface roughness, and tool life, a framework is presented for the evaluation and selection of the most suitable process chain in accordance with specific requirements. This research builds on an in-depth characterisation of the accuracy and repeatability of a 3D printing process.

    AFRIKAANSE OPSOMMING: Hierdie artikel bespreek die resultate wat verkry is tydens studies op verskillende Snel-Gereedskapvervaardigingproseskettings wat ondersoek is teneinde die ontwerp en vervaardiging van sandgietgereedskap, om prototipes in finale materiaal te vervaardig, te verbeter. Die prototipes is bestem vir gebruik in funksionele- en voorproduksietoetse van voertuie. Die sogenaamde Driedimensionele Drukproses (3DP is as kerntegnologie aangewend. Gevolglik, na oorweging van aspekte soos tyd, koste, kwaliteit (akkuraatheid en oppervlakafwerking, en gereedskapleeftyd, is ’n raamwerk ontwikkel vir die evaluering en seleksie van die mees geskikte prosesketting met inagname van spesifieke vereistes. Hierdie navorsing bou op ’n diepgaande karakterisering van die akkuraatheids- en herhaalbaarheidsvermoë van ’n 3D drukproses.

  20. Effect of initial as-cast microstructure on semisolid microstructure of AZ91D alloy during the strain-induced melt activation process

    Wang, J.G.; Lin, H.Q.; Li, Y.Q.; Jiang, Q.C.

    2008-01-01

    The effects of different as-cast microstructures which were initially cast in graphite, metal, sand and firebrick moulds, respectively on the semisolid microstructure of AZ91D alloy, have been investigated during the strain-induced melt activation (SIMA) process. The experimental results showed that the moulds with high cooling capacity could produce the fine-grained as-cast microstructure in which the fine α-Mg dendrites were surrounded by a narrow layer of eutectic mixtures. After compressive deformation, in the fine-grained as-cast microstructure, the more systemic strain energy would be gradually accumulated and abundantly stored due to uniform inner crystal lattice distortion, so the recrystallization was easily induced by the stored strain energy at the elevated temperature. As a channel for the diffusion of atoms, the subgrain boundary along which Al element was enriched, foremost melted above the eutectic temperature and resulted in the separation of neighboring subgrains from primary dendrites. Therefore, the refining role of recrystallization on the microstructural evolution from dendrite to globular particles in morphology was easier to play in the fine-grained as-cast microstructure, which was advantageous for the production of fine-grained semisolid microstructure. Additionally, in the fine-grained as-cast microstructure, the melting fracture of narrow secondary dendritic arms was easy to occur in their roots, which also attributed to the production of fine globular grains in semisolid microstructure from primary dendrites. The finer dendrites in the initial as-cast alloy could evolve into the finer globular grains with relatively small grain size distribution range in the semisolid microstructure during partial remelting; therefore, the finer the dendrites in the initial as-cast microstructure, the better were the tensile properties of the evolved semisolid microstructure

  1. An Investigation on Metallic Ion Release from Four Dental Casting Alloys

    F. Nejatidanesh

    2005-12-01

    Full Text Available Statement of Problem: Element release from dental casting alloys into the oral environment is of clinical concern and is considered to be a potential health problem to all patients.Purpose: The aim of this study was to investigate the metallic ion release of four base metal alloys.Materials and Methods: Two Ni-Cr (Minalux and Supercast and two Co-Cr alloys (Minalia and Wironit were examined. Nine specimens of each type were prepared in 13×11×1.4 mm dimensions and each of the four alloys (3 specimens per group were conditioned in artificial saliva at 37 c for one, three and seven days.The conditioning media were analyzed for element-release using Inductive CoupledPlasma Atomic Emission Spectrophotometer (ICPAES. Collected data were statistically analyzed using ANOVA and Duncan multiple range test (P< 0.05.Results: The greatest amount of element release was seen after seven days (134.9 ppb Supercast, 159.2 ppb Minalux, 197.2 ppb Minalia, and 230.2 ppb Wironit. There was a significant difference between the released elements from the alloys after the three conditioning times (p<0.001.Conclusion: Element release from the studied alloys is proportional to the conditioning time. The Ni-Cr alloys tested in this investigation were more resistant to corrosion as compared to the Co-Cr alloys in artificial saliva. Supercast had the highest corrosion resistance.

  2. SPRAY CASTING

    SALAMCI, Elmas

    2010-01-01

    ABSTRACT This paper is designed to provide a basic review of spray casting. A brief overview of the historical development of spray  casting and the description of plant and equipment have been given. Following metallurgical characteristics of spray formed alloys, process parameters and solidification mechanism of spray deposition have been discussed in detail. Finally, microstructure and mechanical properties of the selected spray cast Al-Zn-Mg-Cu alloys have been presented and comp...

  3. Die design and process optimization of die cast V6 engine blocks

    Henry Hu

    2005-02-01

    Full Text Available The use of aluminum, particularly for engine blocks, has grown considerably in the past ten years, and continues to rise in the automotive industry. In order to enhance the quality and engineering functionality of die cast engine blocks, die design and processes have to be optimized. In this study, a computer simulation software, MAGMAsoft, as an advanced tool for optimizing die design and casting process, was emplooyed to virtually visualize cavity filling and patterns of a V6 engine block. The original die design and process was simulated first to establish a baseline. A reality check was used to verify the predicted results. Then, the die modification with a different unner system was made by using a CAD software, Unigraphics (UG. The simulation on combinations of the modified die design and revised process was performed to examine the effect of die modification and process change on flow filling of V6 engine blocks. The simulated prediction indicateds that the enhancement of cavity filling due to the die and process modification minimizeds the occurrence of defects during casting, and consequently improves the quality of blocks. The results of mechanical testing show a significant increase in fatigue strengths, and a moderately improvement on tensile properties for the blocks die cast with the new die design and prpocess in comparison with those produced by the original ones.

  4. Development of casting techniques for uranium and uranium alloys

    Singh, S.P.

    2003-01-01

    The casting process concerning furnace set-up, mould temperatures, pouring temperatures, out gassing, post heating, casting recovery and crucible and mould clean-up is discussed. Some applications of casting theory can be made in practice, but experience in handling the metal is most valuable in the successful solution of a new problem. The casting of uranium alloys using induction stirring of the melt to promote homogeneity in the casting is described. A few remarks are made concerning safety aspects associated with the casting of uranium

  5. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique.

    Yang, Tae Young; Lee, Jung Min; Yoon, Seog Young; Park, Hong Chae

    2010-05-01

    A novel freeze-gel casting/polymer sponge technique has been introduced to fabricate porous hydroxyapatite scaffolds with controlled "designer" pore structures and improved compressive strength for bone tissue engineering applications. Tertiary-butyl alcohol (TBA) was used as a solvent in this work. The merits of each production process, freeze casting, gel casting, and polymer sponge route were characterized by the sintered microstructure and mechanical strength. A reticulated structure with large pore size of 180-360 microm, which formed on burn-out of polyurethane foam, consisted of the strut with highly interconnected, unidirectional, long pore channels (approximately 4.5 microm in dia.) by evaporation of frozen TBA produced in freeze casting together with the dense inner walls with a few, isolated fine pores (<2 microm) by gel casting. The sintered porosity and pore size generally behaved in an opposite manner to the solid loading, i.e., a high solid loading gave low porosity and small pore size, and a thickening of the strut cross section, thus leading to higher compressive strengths.

  6. Effect of Solution Treatment Process on Hardness of Alumina Reinforced Al-9Zn Composite Produced by Squeeze Casting

    Dwi Rahmalina

    2014-10-01

    Full Text Available Characteristics of aluminium matrix composites reinforced by alumina have been developed to improve mechanical properties. One of the determining factors in the development of this material is parameter of solution treatment process. This study discusses the performance of the composite matrix of Al-9Zn-6Mg-3Si reinforced by alumina powder of 5 % volume fraction. Composite are manufactured by squeeze casting process with the pressure of 20 Ton in the metal mould. To improve mechanical properties, the precipitation hardening process is conducted through variation of temperature of solution treatment of 450, 475 and 500 °C and holding time of solution treatment of 30, 60 and 90 minutes. Materials are characterized by hardness testing and microstructure observation. The results showed that the optimum condition of hardness was produced by solution treatment temperature of 500 °C and 90 minutes holding time of 86 HRB.

  7. Microstructural and mechanical evolutions during the forging step of the COBAPRESS, a casting/forging process

    Perrier, Frédéric; Desrayaud, Christophe; Bouvier, Véronique

    Aluminum casting/forging processes are used to produce parts for the automotive industry. In this study, we examined the influence of the forging step on the microstructure and the mechanical properties of an A356 aluminum alloy modified with strontium. Firstly, a design of samples which allows us to test mechanically the alloy before and after forging was created. A finite element analysis with the ABAQUS software predicts a maximum of strain in the core of the specimens. Observations with the EBSD technique confirm a more intense sub-structuration of the dendrite cells in this zone. Yield strength, ultimate tensile strength, elongation and fatigue lives were then improved for the casting/forging samples compared to the only cast specimens. The closure of the porosities and the improvement of the surface quality during the forging step enhance also the fatigue resistance of the samples.

  8. Multi-Objective Optimization of Squeeze Casting Process using Genetic Algorithm and Particle Swarm Optimization

    Patel G.C.M.

    2016-09-01

    Full Text Available The near net shaped manufacturing ability of squeeze casting process requiresto set the process variable combinations at their optimal levels to obtain both aesthetic appearance and internal soundness of the cast parts. The aesthetic and internal soundness of cast parts deal with surface roughness and tensile strength those can readily put the part in service without the requirement of costly secondary manufacturing processes (like polishing, shot blasting, plating, hear treatment etc.. It is difficult to determine the levels of the process variable (that is, pressure duration, squeeze pressure, pouring temperature and die temperature combinations for extreme values of the responses (that is, surface roughness, yield strength and ultimate tensile strength due to conflicting requirements. In the present manuscript, three population based search and optimization methods, namely genetic algorithm (GA, particle swarm optimization (PSO and multi-objective particle swarm optimization based on crowding distance (MOPSO-CD methods have been used to optimize multiple outputs simultaneously. Further, validation test has been conducted for the optimal casting conditions suggested by GA, PSO and MOPSO-CD. The results showed that PSO outperformed GA with regard to computation time.

  9. Microstructures and formation mechanism of hypoeutectic white cast iron by isothermal electromagnetic rheocast process

    Zhang Wanning

    2010-05-01

    Full Text Available An investigation was made on the evolution of microstructures of hypoeutectic white cast iron slurry containing 2.5wt.%C and 1.8wt.%Si produced by rheocasting in which the solidifying alloy was vigorously agitated by electromagnetic stirrer during isothermal cooling processes. The results indicated that under the proper agitating temperatures and speeds applied, the dendrite structures in white cast iron slurry were gradually evolved into spherical structures during a certain agitating time. It also revealed that the bent dendrites were formed by either convection force or by the growth of the dendrites themselves in the bending direction; then, as they were in solidifying, they were gradually being alternated into separated particles and into more spherical structures at the end of the isothermal cooling process. Especially, the dendrites were granulated as the bending process proceeding, which suggested that they were caused by unwanted elements such as sulfur and phosphor usually contained in engineering cast iron. Convective flow of the melt caused corrosion on the dendritic segments where they were weaker in strength and lower in melting temperature because of higher concentration of sulfur or phosphor. And the granulation process for such dendrites formed in the melt became possible under the condition. Certainly, dendrite fragments are another factors considerable to function for spherical particles formation. A new mechanism, regarding to the rheocast structure formation of white cast iron, was suggested based on the structural evolution observed in the study.

  10. Energy Saving Melting and Revert Reduction Technology: Improved Die Casting Process to Preserve the Life of the Inserts

    David Schwam, PI; Xuejun Zhu, Sr. Research Associate

    2012-09-30

    lubricants and technical support. Experiments conducted with these lubricants demonstrated good protection of the substrate steel. Graphite and boron nitride used as benchmarks are capable of completely eliminating soldering and washout. However, because of cost and environmental considerations these materials are not widely used in industry. The best water-based die lubricants evaluated in this program were capable of providing similar protection from soldering and washout. In addition to improved part quality and higher production rates, improving die casting processes to preserve the life of the inserts will result in energy savings and a reduction in environmental wastes. Improving die life by means of optimized cooling line placement, baffles and bubblers in the die will allow for reduced die temperatures during processing, saving energy associated with production. The utilization of optimized die lubricants will also reduce heat requirements in addition to reducing waste associated with soldering and washout. This new technology was predicted to result in an average energy savings of 1.1 trillion BTU's/year over a 10 year period. Current (2012) annual energy saving estimates, based on commercial introduction in 2010, a market penetration of 70% by 2020 is 1.26 trillion BTU's/year. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.025 Million Metric Tons of Carbon Equivalent (MM TCE).

  11. Controlling inclusions through filtration in investment casting process

    Ahmad, R.; Marshall, R.I.

    2004-01-01

    A technique for the placement of a ceramic foam filter in the feeding up of investment mould was developed which proved quite efficient in removing smaller and major inclusions through various filtration modes. Contaminated old aluminum scrap was used to prepare the melt without the addition of any cleansing and covering fluxes and the main reason was to produce more and more inclusions. Vigorous stirring was also intentionally carried out to form as much oxides as possible. During present research work effective filtration was observed. No leakage through sides of the filter occurred and similarly no choking was seen during feeding of molten metal. Microstructural studies showed the maximum retention of inclusions not only on the surface of filters but also within the various channels of the main body of the filter. The microstructures taken from the filtered test pieces were free from inclusions, which showed the effectiveness and proper placement of the filter. (author)

  12. Adaptive neural network controller for the molten steel level control of strip casting processes

    Chen, Hung Yi; Huang, Shiuh Jer

    2010-01-01

    The twin-roll strip casting process is a steel-strip production method which combines continuous casting and hot rolling processes. The production line from molten liquid steel to the final steel-strip is shortened and the production cost is reduced significantly as compared to conventional continuous casting. The quality of strip casting process depends on many process parameters, such as molten steel level in the pool, solidification position, and roll gap. Their relationships are complex and the strip casting process has the properties of nonlinear uncertainty and time-varying characteristics. It is difficult to establish an accurate process model for designing a model-based controller to monitor the strip quality. In this paper, a model-free adaptive neural network controller is developed to overcome this problem. The proposed control strategy is based on a neural network structure combined with a sliding-mode control scheme. An adaptive rule is employed to on-line adjust the weights of radial basis functions by using the reaching condition of a specified sliding surface. This surface has the on-line learning ability to respond to the system's nonlinear and time-varying behaviors. Since this model-free controller has a simple control structure and small number of control parameters, it is easy to implement. Simulation results, based on a semi experimental system dynamic model and parameters, are executed to show the control performance of the proposed intelligent controller. In addition, the control performance is compared with that of a traditional Pid controller

  13. The Design and Construction Process of a Test Stand for Casting the Power Steering’S Housing with the Use of the Pdcpd Material

    Sobek, M.; Baier, A.; Grabowski, Ł.

    2018-01-01

    The use of new technologies and materials in various industries is a natural process that is directly related to the very high rate of development of these technologies. Certain industries decide to much faster introduce new technologies and materials. One of such branches is the automotive industry, whose representatives are very energetically looking for both financial savings and savings resulting from the vehicles mass reduction. An economically justified approach to construction materials is leading the search for new solutions and materials. The use of a modern material such as the two-component PDCPD composite shows hitherto unknown possibilities of producing subassemblies of many different constructions. The possibility of using a modern composite material with parameters comparable to that of metals and significantly lighter, can be an excellent alternative in the selection of materials for many parts of motor vehicles. The potentiality of precise casting of tolerated surfaces will allow to reduce the operations related to machining process, which is an indispensable part of the production process of elements that are cast of metal. This article describes the process of designing and building a test stand for precise positioning of power steering gear components at the stage of casting their housing. The article presents the principle of operation of the test stand and the process of preparation for the casting and the cast itself will be rudely described. Due to the implementation of research as part of a research project with an industrial partner, the article will only describe some operations. This is related to the confidentiality of the project.

  14. HANFORD CONTAINERIZED CAST STONE FACILITY TASK 1 PROCESS TESTING & DEVELOPMENT FINAL TEST REPORT

    LOCKREM, L L

    2005-07-13

    Laboratory testing and technical evaluation activities on Containerized Cast Stone (CCS) were conducted under the Scope of Work (SOW) contained in CH2M HILL Hanford Group, Inc. (CHG) Contract No. 18548 (CHG 2003a). This report presents the results of testing and demonstration activities discussed in SOW Section 3.1, Task I--''Process Development Testing'', and described in greater detail in the ''Containerized Grout--Phase I Testing and Demonstration Plan'' (CHG, 2003b). CHG (2003b) divided the CCS testing and evaluation activities into six categories, as follows: (1) A short set of tests with simulant to select a preferred dry reagent formulation (DRF), determine allowable liquid addition levels, and confirm the Part 2 test matrix. (2) Waste form performance testing on cast stone made from the preferred DRF and a backup DRF, as selected in Part I, and using low activity waste (LAW) simulant. (3) Waste form performance testing on cast stone made from the preferred DRF using radioactive LAW. (4) Waste form validation testing on a selected nominal cast stone formulation using the preferred DRF and LAW simulant. (5) Engineering evaluations of explosive/toxic gas evolution, including hydrogen, from the cast stone product. (6) Technetium ''getter'' testing with cast stone made with LAW simulant and with radioactive LAW. In addition, nitrate leaching observations were drawn from nitrate leachability data obtained in the course of the Parts 2 and 3 waste form performance testing. The nitrate leachability index results are presented along with other data from the applicable activity categories.

  15. T5 heat treatment of semi-solid metal processed aluminium alloy F357

    Moller, H

    2009-04-01

    Full Text Available The T5 heat treatment of semi-solid metal (SSM) processed alloy F357 was investigated by considering the effects of cooling rate and natural aging after casting, as well as artificial aging parameters on tensile properties. In addition, the tensile...

  16. Comparative study of cytotoxicity of direct metal laser sintered and cast Co-Cr-Mo dental alloy

    T. Puskar

    2015-07-01

    Full Text Available The presented work investigated the cytotoxicity of direct metal laser sintered (DMLS and cast Co-Cr-Mo (CCM dental alloy. In vitro tests were done on human fibroblast cell line MRC-5. There was no statistically significant difference in the cytotoxic effects of DMLS and CCM alloy specimens. The results of this investigation show good potential of DMLS Co-Cr-Mo alloy for application in dentistry.

  17. Microstructural evolution and wear characteristics of equal channel angular pressing processed semi-solid-cast hypoeutectic aluminum alloys

    Thuong, Nguyen Van; Zuhailawati, Hussain; Seman, Anasyida Abu; Huy, Tran Duc; Dhindaw, Brij Kumar

    2015-01-01

    Highlights: • We produced aluminum feedstock for ECAP by two casting techniques: conventional and with cooling slope. • Globular α-Al phase was found in cooling slope sample compared to dendritic in the conventional. • After ECAP uniform Si particles distribution and fine α-Al were observed for cooling slope. • We observed significant improvement in wear resistance of ECAPed sample produced by cooling slope. - Abstract: This work investigated the microstructural evolution of Al–7Si–Mg alloy cast semi-solid using a cooling slope as well as conventional casting followed by equal channel angular pressing (ECAP) in a 120° die. Feed materials were prepared for ECAP by cooling slope casting and by conventional casting. The microstructure of the processed alloys extruded was observed by optical microscope and by transmission electron microscope, and their hardness and wear resistance were evaluated. After ECAP processing, the primary α-Al phase tended to be elongated while the Si particles became fragmented and more nearly globular in shape and uniform in size than in the as-cast sample. The microstructure of the cooling slope-cast ECAPed samples was more homogenous than that of the conventionally cast ECAPed sample. The α-Al phase sub-grains were refined to sub-micrometer sizes for samples cast by both methods after ECAP. The hardness of the cooling slope-cast ECAPed sample was also higher than that of the conventionally cast ECAPed sample. The wear resistance of the alloy improved after cooling slope casting and ECAP processing

  18. Stress strain modelling of casting processes in the framework of the control volume method

    Hattel, Jesper; Andersen, Søren; Thorborg, Jesper

    1998-01-01

    Realistic computer simulations of casting processes call for the solution of both thermal, fluid-flow and stress/strain related problems. The multitude of the influencing parameters, and their non-linear, transient and temperature dependent nature, make the calculations complex. Therefore the nee......, the present model is based on the mainly decoupled representation of the thermal, mechanical and microstructural processes. Examples of industrial applications, such as predicting residual deformations in castings and stress levels in die casting dies, are presented...... for fast, flexible, multidimensional numerical methods is obvious. The basis of the deformation and stress/strain calculation is a transient heat transfer analysis including solidification. This paper presents an approach where the stress/strain and the heat transfer analysis uses the same computational...... domain, which is highly convenient. The basis of the method is the control volume finite difference approach on structured meshes. The basic assumptions of the method are shortly reviewed and discussed. As for other methods which aim at application oriented analysis of casting deformations and stresses...

  19. A Numerical Simulation of Transport Phenomena During the Horizontal Single Belt Casting Process Using an Inclined Feeding System

    Xu, Mianguang; Isac, Mihaiela; Guthrie, Roderick I. L.

    2018-06-01

    Horizontal single belt casting (HSBC) has great potential to replace current conventional continuous casting (CCC) processes for sheet metal production, by directly casting 3 to 1 mm sheet for the automobile industry. In the present paper, two-dimensional mathematical models were developed to study transport phenomena, for the case of an inclined wall feeding system for a liquid aluminum wrought alloy (AA6111). Based on the commercial software ANSYS FLUENT 14.5 and user-defined functions, a two-layer turbulence model was used to examine the fluid flow emanating from a slot nozzle set above a water-cooled, high-speed, steel belt. The Volume of Fluid (VOF) method was used to predict the shape of the melt-air interface. A transformed coordinate system ( x', y') was established in order to analyze the fluid flow on the inclined wall of the feeding system. The total pressure gauge gradient ( ∂p total/ ∂x) was used to describe the behavior of the melt film inside the slot nozzle of the head box. The modeling results show that during the melt film falling process, the total gauge pressure varies within the slot nozzle, which can decrease the stability of the falling film. The first impingement between the falling film and the inclined refractory wall of the feeding system gives rise to a local oscillation, and this influences the stability of the melt film moving downwards. At the rear meniscus position between the inclined wall and the moving belt, there is a clear vibration of the air-melt interface, together with a recirculation zone. The weak vibration of the air-melt interface could be induced by the periodic variation of the melt-air interface. Moreover, the formation of tiny air pockets is predicted. Finally, on the inclined wall of the feeding system, a suitable length of the transition area is needed to avoid over-acceleration of the melt film due to the force of gravity.

  20. A Numerical Simulation of Transport Phenomena During the Horizontal Single Belt Casting Process Using an Inclined Feeding System

    Xu, Mianguang; Isac, Mihaiela; Guthrie, Roderick I. L.

    2018-03-01

    Horizontal single belt casting (HSBC) has great potential to replace current conventional continuous casting (CCC) processes for sheet metal production, by directly casting 3 to 1 mm sheet for the automobile industry. In the present paper, two-dimensional mathematical models were developed to study transport phenomena, for the case of an inclined wall feeding system for a liquid aluminum wrought alloy (AA6111). Based on the commercial software ANSYS FLUENT 14.5 and user-defined functions, a two-layer turbulence model was used to examine the fluid flow emanating from a slot nozzle set above a water-cooled, high-speed, steel belt. The Volume of Fluid (VOF) method was used to predict the shape of the melt-air interface. A transformed coordinate system (x', y') was established in order to analyze the fluid flow on the inclined wall of the feeding system. The total pressure gauge gradient (∂p total/∂x) was used to describe the behavior of the melt film inside the slot nozzle of the head box. The modeling results show that during the melt film falling process, the total gauge pressure varies within the slot nozzle, which can decrease the stability of the falling film. The first impingement between the falling film and the inclined refractory wall of the feeding system gives rise to a local oscillation, and this influences the stability of the melt film moving downwards. At the rear meniscus position between the inclined wall and the moving belt, there is a clear vibration of the air-melt interface, together with a recirculation zone. The weak vibration of the air-melt interface could be induced by the periodic variation of the melt-air interface. Moreover, the formation of tiny air pockets is predicted. Finally, on the inclined wall of the feeding system, a suitable length of the transition area is needed to avoid over-acceleration of the melt film due to the force of gravity.

  1. Process for improving metal production in steelmaking processes

    Pal, Uday B.; Gazula, Gopala K. M.; Hasham, Ali

    1996-01-01

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.

  2. Assessment of Computer Simulation Software and Process Data for High Pressure Die Casting of Magnesium

    Sabau, Adrian S [ORNL; Hatfield, Edward C [ORNL; Dinwiddie, Ralph Barton [ORNL; Kuwana, Kazunori [University of Kentucky; Viti, Valerio [University of Kentucky, Lexington; Hassan, Mohamed I [University of Kentucky, Lexington; Saito, Kozo [University of Kentucky

    2007-09-01

    Computer software for the numerical simulation of solidification and mold filling is an effective design tool for cast structural automotive magnesium components. A review of commercial software capabilities and their validation procedures was conducted. Aside form the software assessment, the program addressed five main areas: lubricant degradation, lubricant application, gate atomization, and heat transfer at metal mold interfaces. A test stand for lubricant application was designed. A sensor was used for the direct measurement of heat fluxes during lubricant application and casting solidification in graphite molds. Spray experiments were conducted using pure deionized water and commercial die lubricants. The results show that the sensor can be used with confidence for measuring heat fluxes under conditions specific to the die lube application. The data on heat flux was presented in forms suitable for use in HPDC simulation software. Severe jet breakup and atomization phenomena are likely to occur due to high gate velocities in HPDC. As a result of gate atomization, droplet flow affects the mold filling pattern, air entrapment, skin formation, and ensuing defects. Warm water analogue dies were designed for obtaining experimental data on mold filling phenomena. Data on break-up jet length, break-up pattern, velocities, and droplet size distribution were obtained experimentally and was used to develop correlations for jet break-up phenomena specific to die casting gate configurations.

  3. Sixty Years of Casting Research

    Campbell, John

    2015-11-01

    The 60 years of solidification research since the publication of Chalmer's constitutional undercooling in 1953 has been a dramatic advance of understanding which has and continues to be an inspiration. In contrast, 60 years of casting research has seen mixed fortunes. One of its success stories relates to improvements in inoculation of gray irons, and another to the discovery of spheroidal graphite iron, although both of these can be classified as metallurgical rather than casting advances. It is suggested that true casting advances have dated from the author's lab in 1992 when a critical surface turbulence condition was defined for the first time. These last 20 years have seen the surface entrainment issues of castings developed to a sufficient sophistication to revolutionize the performance of light alloy and steel foundries. However, there is still a long way to go, with large sections of the steel and Ni-base casting industries still in denial that casting defects are important or even exist. The result has been that special ingots are still cast poorly, and shaped casting operations have suffered massive losses. For secondary melted and cast materials, electro-slag remelting has the potential to be much superior to expensive vacuum arc remelting, which has cost our aerospace and defense industries dearly over the years. This failure to address and upgrade our processing of liquid metals is a serious concern, since the principle entrainment defect, the bifilm, is seen as the principle initiator of cracks in metals; in general, bifilms are the Griffith cracks that initiate failures by cracking. A new generation of crack resistant metals and engineering structures can now be envisaged.

  4. Development of polymer nano composite patterns using fused deposition modeling for rapid investment casting process

    Vivek, Tiwary; Arunkumar, P.; Deshpande, A. S.; Vinayak, Malik; Kulkarni, R. M.; Asif, Angadi

    2018-04-01

    Conventional investment casting is one of the oldest and most economical manufacturing techniques to produce intricate and complex part geometries. However, investment casting is considered economical only if the volume of production is large. Design iterations and design optimisations in this technique proves to be very costly due to time and tooling cost for making dies for producing wax patterns. However, with the advent of Additive manufacturing technology, plastic patterns promise a very good potential to replace the wax patterns. This approach can be very useful for low volume production & lab requirements, since the cost and time required to incorporate the changes in the design is very low. This research paper discusses the steps involved for developing polymer nanocomposite filaments and checking its suitability for investment castings. The process parameters of the 3D printer machine are also optimized using the DOE technique to obtain mechanically stronger plastic patterns. The study is done to develop a framework for rapid investment casting for lab as well as industrial requirements.

  5. 75 FR 8114 - In the Matter of Certain Cast Steel Railway Wheels, Processes for Manufacturing or Relating to...

    2010-02-23

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-655] In the Matter of Certain Cast Steel Railway Wheels, Processes for Manufacturing or Relating to Same and Certain Products Containing Same ; Issuance... to cast steel railway wheels and products containing same manufactured by or for Respondents using...

  6. Development of expert systems for modeling of technological process of pressure casting on the basis of artificial intelligence

    Gavarieva, K. N.; Simonova, L. A.; Pankratov, D. L.; Gavariev, R. V.

    2017-09-01

    In article the main component of expert system of process of casting under pressure which consists of algorithms, united in logical models is considered. The characteristics of system showing data on a condition of an object of management are described. A number of logically interconnected steps allowing to increase quality of the received castings is developed

  7. Clinical marginal and internal adaptation of CAD/CAM milling, laser sintering, and cast metal ceramic crowns.

    Tamac, Ece; Toksavul, Suna; Toman, Muhittin

    2014-10-01

    Metal ceramic crowns are widely used in clinical practice, but comparisons of the clinical adaptation of restorations made with different processing techniques are lacking. The purpose of this study was to compare the clinical marginal and internal adaptation of metal ceramic crowns fabricated with 3 different techniques: computer-aided design and computer-aided manufacturing (CAD/CAM) milling (CCM), direct metal laser sintering (DMLS), and traditional casting (TC). Twenty CCM, 20 DMLS, and 20 TC metal ceramic crowns were fabricated for 42 patients. Before luting the crowns, silicone replicas were obtained to measure marginal gap and internal adaptation that was evaluated at 3 regions: axial wall, axio-occlusal angle, and occlusal surface. Measurements were made with a reflected light binocular stereomicroscope at 20× magnification and analyzed with 1-way analysis of variance (ANOVA) and the Bonferroni post hoc test (α=.05). The mean marginal gap values were 86.64 μm for CCM, 96.23 μm for DMLS, and 75.92 μm for TC. The means at the axial wall region were 117.5 μm for the CCM group, 139.02 μm for the DMLS group, and 121.38 μm for the TC group. One-way ANOVA revealed no statistically significant differences among the groups for measurements at the marginal gap (P=.082) and the axial wall region (P=.114). The means at the axio-occlusal region were 142.1 μm for CCM, 188.12 μm for DMLS, and 140.63 μm for TC, and those at the occlusal surface region were 265.73 μm for CCM, 290.39 μm for DMLS, and 201.09 μm for TC. The mean values of group DMLS were significantly higher at the axio-occlusal region and the occlusal surface region than those of other groups (Pmetal ceramic crowns performed similarly in terms of clinical marginal and axial wall adaptation. The cement film thickness at the occlusal region and axio-occlusal region were higher for DMLS crowns. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc

  8. Comparison between two rheocasting processes of damper cooling tube method and low superheat casting

    Zhang Xiaoli

    2014-09-01

    Full Text Available To produce a high quality semisolid slurry that consists of fine primary particles uniformly suspended in the liquid matrix for rheoforming, chemical refining and electromagnetic or mechanical stirring are the two methods commonly used. But these two methods either contaminate the melt or incur high cost. In this study, the damper cooling tube (DCT method was designed to prepare semisolid slurry of A356 aluminum alloy, and was compared with the low superheat casting (LSC method - a conventional process used to produce casting slab with equiaxed dendrite microstructure for thixoforming route. A series of comparative experiments were performed at the pouring temperatures of 650 °C, 638 °C and 622 °C. Metallographic observations of the casting samples were carried out using an optical electron microscope with image analysis software. Results show that the microstructure of semisolid slurry produced by the DCT process consists of spherical primary α-Al grains, while equiaxed grains microstructure is found in the LSC process. The lower the pouring temperature, the smaller the grain size and the rounder the grain morphology in both methods. The copious nucleation, which could be generated in the DCT, owing to the cooling and stirring effect, is the key to producing high quality semisolid slurry. DCT method could produce rounder and smaller α-Al grains, which are suitable for semisolid processing; and the equivalent grain size is no more than 60 μm when the pouring temperature is 622 °C.

  9. Molding and casting process of a depleted uranium shield for a multipurpose type B (U) transport package of radioactive substances

    Raffaeli, Hector A.; Acosta, Mario; Ilarri, Sergio; Alonso, Paula R.; Gargano, Pablo H.; Rubiolo, Gerardo H.

    2009-01-01

    Anticipating future demand for transport of radioisotopes, a high performance transport package (BU-MAN) with a gamma barrier built in depleted uranium (DU) has been designed by the Radioisotope and Radiation Program (P4) of CNEA in 2003. The shield is a hollow cylinder of approximately 173 mm outside diameter, 223 mm in height, a cylindrical hollow interior 63 mm diameter and 166 mm in height, and a cylindrical plug 58 mm diameter and 57 mm height. Its total weight is 84 Kg. In the period 2004-2006 the Special Alloys Group (DM-GIDAT-GAEN-CNEA) has conducted several developments in order to obtain the mentioned shield, including a manufacturing test casting SAE 1010 in a sand mold. The confirmation of its properties, mechanical and gamma shield are being evaluated by licensing tests of the whole package. In this paper we show all metallurgical processes involved to get the shield in metallic DU. (author)

  10. The taper of cast post preparation measured using innovative image processing technique

    Al Hyiasat Ahmad S

    2010-08-01

    Full Text Available Abstract Background No documentation in the literature about taper of cast posts. This study was conducted to measure the degree of cast posts taper, and to evaluate its suitability based on the anatomy aspects of the common candidate teeth for post reconstruction. Methods Working casts for cast posts, prepared using Gates Glidden drills, were collected. Impressions of post spaces were made using polyvinyl siloxan putty/wash technique. Digital camera with a 10' high quality lens was used for capturing two digital images for each impression; one in the Facio-Lingual (FL and the other in the Mesio-Distal (MD directions. Automated image processing program was developed to measure the degree of canal taper. Data were analyzed using Statistical Package for Social Sciences software and One way Analysis of Variance. Results Eighty four dies for cast posts were collected: 16 for each maxillary anterior teeth subgroup, and 18 for each maxillary and mandibular premolar subgroup. Mean of total taper for all preparations was 10.7 degree. There were no statistical differences among the total taper of all groups (P = .256 or between the MD and FL taper for each subgroup. Mean FL taper for the maxillary first premolars was lower significantly (P = .003 than the maxillary FL taper of the second premolars. FL taper was higher than the MD taper in all teeth except the maxillary first premolars. Conclusions Taper produced did not reflect the differences among the anatomy of teeth. While this technique deemed satisfactory in the maxillary anterior teeth, the same could not be said for the maxillary first premolars. Careful attention to the root anatomy is mandatory.

  11. A comparative study on microgap of premade abutments and abutments cast in base metal alloys.

    Lalithamma, Jaini Jaini; Mallan, Sreekanth Anantha; Murukan, Pazhani Appan; Zarina, Rita

    2014-06-01

    The study compared the marginal accuracy of premade and cast abutments. Premade titanium, stainless steel, and gold abutments formed the control groups. Plastic abutments were cast in nickel-chromium, cobalt-chromium and grade IV titanium. The abutment/implant interface was analyzed. Analysis of variance and Duncan's multiple range test revealed no significant difference in mean marginal microgap between premade gold and titanium abutments and between premade stainless steel and cast titanium abutments. Statistically significant differences (P < .001) were found among all other groups.

  12. Breakout Prediction Based on BP Neural Network in Continuous Casting Process

    Zhang Ben-guo

    2016-01-01

    Full Text Available An improved BP neural network model was presented by modifying the learning algorithm of the traditional BP neural network, based on the Levenberg-Marquardt algorithm, and was applied to the breakout prediction system in the continuous casting process. The results showed that the accuracy rate of the model for the temperature pattern of sticking breakout was 96.43%, and the quote rate was 100%, that verified the feasibility of the model.

  13. Precipitation processes in DC-cast AlMn(Fe,Si) alloys

    Voeroes, G.; Kovacs, I.

    1990-01-01

    The precipitation processes in DC cast Al-Mn alloys were investigated by electrical resistivity measurements. It was obtained that the addition of Fe or Fe and Si influences basically the precipitation of Mn. In pure Al-Mn alloys a phase transition like behaviour was observed at about 550 degC, which can be related to the formation of two different precipitate particles below and above this temperature

  14. Energy efficiency opportunities in the production process of cast iron foundries: An experience in Italy

    Lazzarin, Renato M.; Noro, Marco

    2015-01-01

    Foundry sector is one of the most energy intensive in industry. Energy audits performed in 5 Italian cast iron foundries allowed to identify energy utilization in the various processes that from the melting of the iron arrive at the finishing of the casting. Main equipment was surveyed, evaluating the influence on the overall energy consumption, producing a detailed analysis of energy use per department and energy performance indexes. A separate study was carried out for foundries with induction furnaces and cold or hot blast cupolas. Possibilities of heat recovery was identified particularly in combustion air preheating, but also for building heating or to power direct cycles to produce electricity. Better insulation and new insulating materials can improve the efficiency and the quality of the processes. Suggestions are supplied in the various foundry departments for energy saving. Possible energy saving actions on the service plants will be dealt with in a separate paper. - Highlights: • The Authors performed energy audits in 5 Italian cast iron foundries. • Main equipment was surveyed, evaluating the influence on the overall energy consumption. • An analysis of energy use per department and energy performance indexes was performed. • Possibilities of heat recovery were identified in combustion air preheating and for building heating. • Better and new insulating materials were analyzed to improve the efficiency and process quality.

  15. Novel casting processes for single-crystal turbine blades of superalloys

    Ma, Dexin

    2018-03-01

    This paper presents a brief review of the current casting techniques for single-crystal (SC) blades, as well as an analysis of the solidification process in complex turbine blades. A series of novel casting methods based on the Bridgman process were presented to illustrate the development in the production of SC blades from superalloys. The grain continuator and the heat conductor techniques were developed to remove geometry-related grain defects. In these techniques, the heat barrier that hinders lateral SC growth from the blade airfoil into the extremities of the platform is minimized. The parallel heating and cooling system was developed to achieve symmetric thermal conditions for SC solidification in blade clusters, thus considerably decreasing the negative shadow effect and its related defects in the current Bridgman process. The dipping and heaving technique, in which thinshell molds are utilized, was developed to enable the establishment of a high temperature gradient for SC growth and the freckle-free solidification of superalloy castings. Moreover, by applying the targeted cooling and heating technique, a novel concept for the three-dimensional and precise control of SC growth, a proper thermal arrangement may be dynamically established for the microscopic control of SC growth in the critical areas of large industrial gas turbine blades.

  16. Effects of process variables on the properties of YBa2Cu3O(7-x) ceramics formed by investment casting

    Hooker, M. W.; Taylor, T. D.; Leigh, H. D.; Wise, S. A.; Buckley, J. D.; Vasquez, P.; Buck, G. M.; Hicks, L. P.

    1993-01-01

    An investment casting process has been developed to produce net-shape, superconducting ceramics. In this work, a factorial experiment was performed to determine the critical process parameters for producing cast YBa2Cu3O7 ceramics with optimum properties. An analysis of variance procedure indicated that the key variables in casting superconductive ceramics are the particle size distribution and sintering temperature. Additionally, the interactions between the sintering temperature and the other process parameters (e.g., particle size distribution and the use of silver dopants) were also found to influence the density, porosity, and critical current density of the fired ceramics.

  17. Comparative Evaluation of Marginal Accuracy of a Cast Fixed Partial Denture Compared to Soldered Fixed Partial Denture Made of Two Different Base Metal Alloys and Casting Techniques: An In vitro Study.

    Jei, J Brintha; Mohan, Jayashree

    2014-03-01

    The periodontal health of abutment teeth and the durability of fixed partial denture depends on the marginal adaptation of the prosthesis. Any discrepancy in the marginal area leads to dissolution of luting agent and plaque accumulation. This study was done with the aim of evaluating the accuracy of marginal fit of four unit crown and bridge made up of Ni-Cr and Cr-Co alloys under induction and centrifugal casting. They were compared to cast fixed partial denture (FPD) and soldered FPD. For the purpose of this study a metal model was fabricated. A total of 40 samples (4-unit crown and bridge) were prepared in which 20 Cr-Co samples and 20 Ni-Cr samples were fabricated. Within these 20 samples of each group 10 samples were prepared by induction casting technique and other 10 samples with centrifugal casting technique. The cast FPD samples obtained were seated on the model and the samples were then measured with travelling microscope having precision of 0.001 cm. Sectioning of samples was done between the two pontics and measurements were made, then the soldering was made with torch soldering unit. The marginal discrepancy of soldered samples was measured and all findings were statistically analysed. The results revealed minimal marginal discrepancy with Cr-Co samples when compared to Ni-Cr samples done under induction casting technique. When compared to cast FPD samples, the soldered group showed reduced marginal discrepancy.

  18. Derivative thermo analysis of the Al-Si cast alloy with addition of rare earths metals

    M. Krupiński

    2010-01-01

    Full Text Available In this paper the dependence between chemical composition, structure and cooling rate of Al–Si aluminium cast alloy was investigated. For studying of the structure changes the thermo-analysis was carried out, using the UMSA (Universal Metallurgical Simulator and Analyzer device. For structure investigation optical and electron scanning microscopy was used, phase and chemical composition of the Al cast alloy also using qualitative point-wise EDS microanalysis.

  19. A comparative evaluation of the effect of dentin desensitizers on the retention of complete cast metal crowns

    Saili M Chandavarkar

    2015-01-01

    Full Text Available Context: Desensitizers are used to reduce dentin hypersensitivity. They affect the surface texture of prepared dentin and may alter the retention of fixed restorations. Aims: The aim was to evaluate the effect of dentin desensitizers on the retention of complete cast metal crowns luted with glass ionomer cement. Subjects and Methods: Fifty freshly extracted human premolars were subjected to standardized tooth preparation (20° total convergence, 4 mm axial height with a computer numerically controlled machine. Individual cast metal crowns were fabricated from a base metal alloy. Dentin desensitizers included none (control, a glutaraldehyde (GLU based primer (Gluma desensitizer, casein phosphopeptide (CPP-amorphous calcium phosphate (ACP (GC Mousse, erbium, chromium: YSGG laser (Waterlase MD Turbo, Biolase and Pro-Argin (Colgate Sensitive Pro-Relief desensitizing polishing paste. After desensitization, crowns were luted with glass ionomer cement and kept for 48 h at 37°C in 100% relative humidity. The samples were tested using a universal testing machine by applying a load at a crosshead speed of 0.5 mm/min. Statistical Analysis Used: Statistical analysis included One-way ANOVA, followed by the Scheffe post-hoc test with P < 0.05. Results: All dentin desensitizers showed significantly different values: Pro-Argin (4.10 Megapascals [Mpa] < CPP-ACP (4.01 mpa < GLU based primer (3.87 Mpa < Virgin dentin (3.65 Mpa < LASER (3.37 Mpa. Conclusions : On comparing the effect of prepared virgin dentin, GLU based primer, CPP-ACP, LASER and Pro-Argin on the retention of complete cast metal crowns luted with glass ionomer cement on prepared teeth, it can be concluded that Pro-Argin and CPP-ACP showed the best retention in this in vitro study.

  20. Processing of Advanced Cast Alloys for A-USC Steam Turbine Applications

    Jablonski, Paul D.; Hawk, Jeffery A.; Cowen, Christopher J.; Maziasz, Philip J.

    2012-02-01

    The high-temperature components within conventional supercritical coal-fired power plants are manufactured from ferritic/martensitic steels. To reduce greenhouse-gas emissions, the efficiency of pulverized coal steam power plants must be increased to as high a temperature and pressure as feasible. The proposed steam temperature in the DOE/NETL Advanced Ultra Supercritical power plant is high enough (760°C) that ferritic/martensitic steels will not work for the majority of high-temperature components in the turbine or for pipes and tubes in the boiler due to temperature limitations of this class of materials. Thus, Ni-based superalloys are being considered for many of these components. Off-the-shelf forged nickel alloys have shown good promise at these temperatures, but further improvements can be made through experimentation within the nominal chemistry range as well as through thermomechanical processing and subsequent heat treatment. However, cast nickel-based superalloys, which possess high strength, creep resistance, and weldability, are typically not available, particularly those with good ductility and toughness that are weldable in thick sections. To address those issues related to thick casting for turbine casings, for example, cast analogs of selected wrought nickel-based superalloys such as alloy 263, Haynes 282, and Nimonic 105 have been produced. Alloy design criteria, melt processing experiences, and heat treatment are discussed with respect to the as-processed and heat-treated microstructures and selected mechanical properties. The discussion concludes with the prospects for full-scale development of a thick section casting for a steam turbine valve chest or rotor casing.

  1. Colour Metallography of Cast Iron

    Zhou Jiyang

    2009-05-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron.Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron , uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditionalmaterials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  2. Engineering design of centrifugal casting machine

    Kusnowo, Roni; Gunara, Sophiadi

    2017-06-01

    Centrifugal casting is a metal casting process in which metal liquid is poured into a rotating mold at a specific temperature. Given round will generate a centrifugal force that will affect the outcome of the casting. Casting method is suitable in the manufacture of the casting cylinder to obtain better results. This research was performed to design a prototype machine by using the concept of centrifugal casting. The design method was a step-by-step systematic approach in the process of thinking to achieve the desired goal of realizing the idea and build bridges between idea and the product. Design process was commenced by the conceptual design phase and followed by the embodiment design stage and detailed design stage. With an engineering design process based on the method developed by G. E. Dieter, draft prototype of centrifugal casting machine with dimension of 550×450×400 mm, ¼ HP motor power, pulley and belt mechanism, diameter of 120-150mm, simultaneously with the characteristics of simple casting product, easy manufacture and maintenance, and relatively inexpensive, was generated.

  3. Influence of the cordierite lining on the lost foam casting process

    Trumbulović Ljiljana

    2003-01-01

    Full Text Available This paper discuss the influence of the refractory cordierite lining on the structure and mechanical properties of Al-Si and Al-Cu casings obtained from the Lost foam casting process. So far there has not been any report of the research on cordierite lining in the literature and moreover the cordierite ceramics have never been used in foundries. In the light of these facts this paper investigates the possibility of using cordierite for manufacturing evaporable model refractory linings. Our results indicate that the application of cordierite ceramics is comparable to talc-based refractory linings in both Al-Cu and Al-Si castings, while cordierites are favorable in Al-Cu case due to their higher melting temperature.

  4. Development of vacuum continuous casting technology for uranium

    Lee, Y.S.; Kim, C. K.; Kim, K. H.; Lee, D. B.; Kim, J. D.; Jang, S. J.; Ahn, H. S.; Shin, Y. J.

    2001-02-01

    The spent fuel disposal process of new dry storage concept has been developed in KAERI, in which the uranium metal abstracted by Li-reduction of spent fuel will be formed to long rods and then the rods will be arranged uniformly in canister. The objective of this study is to review the feasibility of applying the continuous casting method to cast a long rod with modifying the vacuum high-frequency induction furnace to vacuum continuous casting system, which was normally used to cast the uranium. The results are as follows. With the nozzle size of 3mm and the withdrawal speed of 3.5 mm/sec, the length of 160mm, diameter of 30 mm continuous casting uranium bar was successfully cast. This result shows there might be a possibility of continuous casting of uranium and helps the design and fabrication of new continuous casting equipment

  5. Process for making rare earth metal chlorides

    Kruesi, P.R.

    1981-01-01

    An uncombined metal or a metal compound such as a sulfide, oxide, carbonate or sulfate is converted in a liquid salt bath to the corresponding metal chloride by reacting it with chlorine gas or a chlorine donor. The process applies to metals of groups 1b, 2a, 2b, 3a, 3b, 4a, 5a and 8 of the periodic table and to the rare earth metals. The chlorine donor may be ferric or sulfur chloride. The liquid fused salt bath is made up of chlorides of alkali metals, alkaline earth metals, ammonia, zinc and ferric iron. Because the formed metal chlorides are soluble in the liquid fused salt bath, they can be recovered by various conventional means

  6. Modelling of solidification processing and continuous strip casting for copper-base alloys

    Mahmoudi, Jafar [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Materials Processing

    2000-04-01

    An experimental and numerical study was carried out to investigate the solidification process in a copper continuous strip casting process. Heat flow and solidification process has been experimentally studied. Cooling curves during solidification were registered using a thermocouple of type K connected to a data acquisition system. Temperature measurements in the mould and cooling water were also performed. The numerical model considers a generalized set of mass, momentum and heat equations that is valid for the solid, liquid and solidification interval in the cast. A k-{epsilon} turbulence model, produced with the commercial program CFX, is used to analyse the solidification process of pure copper in the mould region of the caster. The fluid flow, temperature and heat flux distributions in the mould region of the caster were computed. The shape and location of the solidification front were also determined. The effects of the parameters such as heat transfer coefficient, casting speed, casting temperature, heat of fusion and specific heat on the shape and location of the solidification front and the heat transport at the mould-cast interface were investigated. The predicted temperature and heat flux distributions were compared with experimental measurements, and reasonable agreement was obtained. The solidification behaviour of pure copper and different copper base alloys has been studied. A series of solidification experiments using DTA furnace, mirror furnace and levitation technique were performed on different copper-base alloys. The undercooling, cooling rates of the liquid and the solid states, solidification times and temperatures were evaluated from the curves. The cooling curves for different samples were simulated using a FEM solidification program. It was found that the calculated values of the heat of fusion were much lower than the tabulated ones. The fraction of solid formed before quenching, in the DTA experiments, has been observed to be much higher

  7. The Particle Distribution in Liquid Metal with Ceramic Particles Mould Filling Process

    Dong, Qi; Xing, Shu-ming

    2017-09-01

    Adding ceramic particles in the plate hammer is an effective method to increase the wear resistance of the hammer. The liquid phase method is based on the “with the flow of mixed liquid forging composite preparation of ZTA ceramic particle reinforced high chromium cast iron hammer. Preparation method for this system is using CFD simulation analysis the particles distribution of flow mixing and filling process. Taking the 30% volume fraction of ZTA ceramic composite of high chromium cast iron hammer as example, by changing the speed of liquid metal viscosity to control and make reasonable predictions of particles distribution before solidification.

  8. Casting AISI 316 steel by gel cast

    Ozols, A; Thern, G; Rozenberg, S; Barreiro, M; Marajofsky, A

    2004-01-01

    The feasibility of producing AISI 316 steel components from their powders and avoiding their compaction is analyzed. A casting technique is tested that is similar to gel casting, used for ceramic materials. In the initial stage, the process consists of the formulation of a concentrated barbotine of powdered metal in a solution of water soluble organic monomers, which is cast in a mold and polymerized in situ to form a raw piece in the shape of the cavity. The process can be performed under controlled conditions using barbotines with a high monomer content from the acrylimide family. Then, the molded piece is slowly heated until the polymer is eliminated, and it is sintered at temperatures of 1160 o C to 1300 o C under a dry hydrogen atmosphere, until the desired densities are attained. The density and micro structure of the materials obtained are compared with those for the materials compacted and synthesized by the conventional processes. The preliminary results show the feasibility of the process for the production of certain kinds of structural components (CW)

  9. Modeling of microstructure evolution of magnesium alloy during the high pressure die casting process

    Wu Mengwu; Xiong Shoumei

    2012-01-01

    Two important microstructure characteristics of high pressure die cast magnesium alloy are the externally solidified crystals (ESCs) and the fully divorced eutectic which form at the filling stage of the shot sleeve and at the last stage of solidification in the die cavity, respectively. Both of them have a significant influence on the mechanical properties and performance of magnesium alloy die castings. In the present paper, a numerical model based on the cellular automaton (CA) method was developed to simulate the microstructure evolution of magnesium alloy during cold-chamber high pressure die casting (HPDC) process. Modeling of dendritic growth of magnesium alloy with six-fold symmetry was achieved by defining a special neighbourhood configuration and calculating of the growth kinetics from complete solution of the transport equations. Special attention was paid to establish a nucleation model considering both of the nucleation of externally solidified crystals in the shot sleeve and the massive nucleation in the die cavity. Meanwhile, simulation of the formation of fully divorced eutectic was also taken into account in the present CA model. Validation was performed and the capability of the present model was addressed by comparing the simulated results with those obtained by experiments.

  10. Phased arrays techniques and split spectrum processing for inspection of thick titanium casting components

    Banchet, J.; Chahbaz, A.; Sicard, R.; Zellouf, D.E.

    2003-01-01

    In aircraft structures, titanium parts and engine members are critical structural components, and their inspection crucial. However, these structures are very difficult to inspect ultrasonically because of their large grain structure that increases noise drastically. In this work, phased array inspection setups were developed to detected small defects such as simulated inclusions and porosity contained in thick titanium casting blocks, which are frequently used in the aerospace industry. A Cut Spectrum Processing (CSP)-based algorithm was then implemented on the acquired data by employing a set of parallel bandpass filters with different center frequencies. This process led in substantial improvement of the signal to noise ratio and thus, of detectability

  11. Wear and Friction Behavior of Stir Cast Al-TiB2 Metal Matrix Composites with Various Lubricants

    S. Poria

    2016-12-01

    Full Text Available Al- TiB2 metal matrix composites are fabricated using stir cast method and its tribological characterization is done using three different lubricants. Tribological studies are performed in a multi-tribotester using block-on-roller configuration under 25-75 N loads and 400-600 rpm rotational speeds. Four different weight percentages of TiB2 are considered in this study. Comparison between dry condition and lubricated conditions is gleaned to differentiate wear and friction characteristics and SEM images are taken to fortify them. Lubricated conditions yield large reduction in wear and friction compared to dry condition.

  12. Process for cleaning radioactively contaminated metal surfaces

    Mihram, R.G.; Snyder, G.A.

    1975-01-01

    A process is described for removing radioactive scale from a ferrous metal surface, including the steps of initially preconditioning the surface by contacting it with an oxidizing solution (such as an aqueous solution of an alkali metal permanganate or hydrogen peroxide), then, after removal or decomposition of the oxidizing solution, the metallic surface is contacted with a cleaning solution which is a mixture of a mineral acid and a complexing agent (such as sulfuric acid and oxalic acid), and which preferably contains a corrosion inhibitor. A final step in the process is the treatment of the spent cleaning solution containing radioactive waste materials in solution by adding a reagent selected from the group consisting of calcium hydroxide or potassium permanganate and an alkali metal hydroxide to thereby form easily recovered metallic compounds containing substantially all of the dissolved metals and radioactivity. (auth)

  13. Energy Saving Melting and Revert Reduction Technology: Innovative Semi-Solid Metal (SSM) Processing

    Diran Apelian

    2012-08-15

    Semi-solid metal (SSM) processing has emerged as an attractive method for near-net-shape manufacturing due to the distinct advantages it holds over conventional near-net-shape forming technologies. These advantages include lower cycle time, increased die life, reduced porosity, reduced solidification shrinkage, improved mechanical properties, etc. SSM processing techniques can not only produce the complex dimensional details (e.g. thin-walled sections) associated with conventional high-pressure die castings, but also can produce high integrity castings currently attainable only with squeeze and low-pressure permanent mold casting processes. There are two primary semi-solid processing routes, (a) thixocasting and (b) rheocasting. In the thixocasting route, one starts from a non-dendritic solid precursor material that is specially prepared by a primary aluminum manufacturer, using continuous casting methods. Upon reheating this material into the mushy (a.k.a. "two-phase") zone, a thixotropic slurry is formed, which becomes the feed for the casting operation. In the rheocasting route (a.k.a. "slurry-on-demand" or "SoD"), one starts from the liquid state, and the thixotropic slurry is formed directly from the melt via careful thermal management of the system; the slurry is subsequently fed into the die cavity. Of these two routes, rheocasting is favored in that there is no premium added to the billet cost, and the scrap recycling issues are alleviated. The CRP (Trade Marked) is a process where the molten metal flows through a reactor prior to casting. The role of the reactor is to ensure that copious nucleation takes place and that the nuclei are well distributed throughout the system prior to entering the casting cavity. The CRP (Trade Marked) has been successfully applied in hyper-eutectic Al-Si alloys (i.e., 390 alloy) where two liquids of equal or different compositions and temperatures are mixed in the reactor and creating a SSM slurry. The process has been mostly

  14. Development of casting investment preventing blackening of noble metal alloys part 1. Application of developed investment for Ag-Pd-Cu-Au alloy.

    Kakuta, Kiyoshi; Nakai, Akira; Goto, Shin-ichi; Wakamatsu, Yasushi; Yara, Atushi; Miyagawa, Yukio; Ogura, Hideo

    2003-03-01

    The objective of this study is to develop a casting investment that prevents the blackening of the cast surface of noble metal alloys. The experimental investments were prepared using a gypsum-bonded investment in which the metallic powders such as boron (B), silicon (Si), aluminum (Al) and titanium (Ti) were added as oxidizing agents. An Ag-Pd-Cu-Au alloy was cast into the mold made of the prepared investment. The effect of the addition of each metal powder was evaluated from the color difference between the as-cast surface and the polished surface of the cast specimen. The color of the as-cast surface approached that of the polished surface with increasing B and Al content. A lower mean value in the color difference was obtained at 0.25-1.00 mass% B content. B and Al are useful as an additive in a gypsum-bonded investment to prevent the blackening of an Ag-Pd-Cu-Au alloy. The effects of Si and Ti powder addition could not be found.

  15. Study on Pot Forming of Induction Heater Type Rice Cookers by Forging Cast Process

    Ohnishi, Masayuki; Yamaguchi, Mitsugi; Ohashi, Osamu

    This paper describes a study result on pot fabrication by the forging cast process of stainless steel with aluminum. Rice cooked with the new bowl-shaped pot for the induction heater type rice cookers is better tasting than rice cooked with the conventional cylindrical one, due to the achievement of better heat conduction and convection. The conventional pot is made of the clad sheet, consisting of stainless steel and aluminum. However, it is rather difficult to form a bowl shape from the clad sheet, primarily due to the problem of a material spring back. The fabrication of a new type of a pot was made possible by means of the adoption of a forging cast process instead of the clad sheet. In this process, iron powder is inserted between stainless steel and aluminum in order to alleviate the large difference on the coefficient of expansion between each material. It was made clear that the application of two kinds of iron particle, namely 10 μm size powder on the stainless steel side and 44 μm on the aluminum side, enables the joints to become strong enough. The joint strength of the new pot by this fabrication process was confirmed by the tests of the shear strength and the fatigue tests together with the stress analysis.

  16. Numerical Modeling of the Flow of a Power Law Ceramic Slurry in the Tape Casting Process

    Jabbari, Masoud; Hattel, Jesper Henri

    2012-01-01

    Multilayer ceramics and their application have increased recently. One of the most common ways used to produce these products is tape casting. In this process the wet tape thickness is one of the most determining parameters affecting the final properties of the product and it is therefore of great...... interest to be able to control it. In the present work the flow of La0.85Sr0.15MnO3 (LSM) material in the doctor blade region is modelled numerically with ANSYS Fluent in combination with an Ostwald power law constitutive equation. Based on rheometer experiments the constants in the Ostwald power law...

  17. Process for electrolytically preparing uranium metal

    Haas, Paul A.

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  18. Modelling the Cast Component Weight in Hot Chamber Die Casting using Combined Taguchi and Buckingham's π Approach

    Singh, Rupinder

    2018-02-01

    Hot chamber (HC) die casting process is one of the most widely used commercial processes for the casting of low temperature metals and alloys. This process gives near-net shape product with high dimensional accuracy. However in actual field environment the best settings of input parameters is often conflicting as the shape and size of the casting changes and one have to trade off among various output parameters like hardness, dimensional accuracy, casting defects, microstructure etc. So for online inspection of the cast components properties (without affecting the production line) the weight measurement has been established as one of the cost effective method (as the difference in weight of sound and unsound casting reflects the possible casting defects) in field environment. In the present work at first stage the effect of three input process parameters (namely: pressure at 2nd phase in HC die casting; metal pouring temperature and die opening time) has been studied for optimizing the cast component weight `W' as output parameter in form of macro model based upon Taguchi L9 OA. After this Buckingham's π approach has been applied on Taguchi based macro model for the development of micro model. This study highlights the Taguchi-Buckingham based combined approach as a case study (for conversion of macro model into micro model) by identification of optimum levels of input parameters (based on Taguchi approach) and development of mathematical model (based on Buckingham's π approach). Finally developed mathematical model can be used for predicting W in HC die casting process with more flexibility. The results of study highlights second degree polynomial equation for predicting cast component weight in HC die casting and suggest that pressure at 2nd stage is one of the most contributing factors for controlling the casting defect/weight of casting.

  19. Quantitative examination of carbide and sulphide precipitates in chemically complex steels processed by direct strip casting

    Dorin, Thomas, E-mail: thomas.dorin@deakin.edu.au [Deakin University, Pigdons Road, Geelong, Victoria, 3216 (Australia); Wood, Kathleen [Australian Nuclear Science and Technology Organisation, Bragg Institute, New South Wales, 2234, Menai (Australia); Taylor, Adam; Hodgson, Peter; Stanford, Nicole [Deakin University, Pigdons Road, Geelong, Victoria, 3216 (Australia)

    2016-02-15

    A high strength low alloy steel composition has been melted and processed by two different routes: simulated direct strip casting and slow cooled ingot casting. The microstructures were examined with scanning and transmission electron microscopy, atom probe tomography and small angle neutron scattering (SANS). The formation of cementite (Fe{sub 3}C), manganese sulphides (MnS) and niobium carbo-nitrides (Nb(C,N)) was investigated in both casting conditions. The sulphides were found to be significantly refined by the higher cooling rate, and developed an average diameter of only 100 nm for the fast cooled sample, and a diameter too large to be measured with SANS in the slow cooled condition (> 1.1 μm). Slow cooling resulted in the development of classical Nb(C,N) precipitation, with an average diameter of 7.2 nm. However, after rapid cooling both the SANS and atom probe tomography data indicated that the Nb was retained in the matrix as a random solid solution. There was also some evidence that O, N and S are also retained in solid solution in levels not found during conventional processing. - Highlights: • The influence of cooling rate on microstructure is investigated in a HSLA steel. • SANS, TEM and APT are used to characterise the sulphides and Nb(C,N) precipitates. • The slow cooling rate result in the formation of Nb(C,N) precipitates. • The fast cooling rate results in a microstructure supersaturated in Nb, C and N. • The sulphides are 100 nm in the fast cooled sample and > 1 μm in the slow cooled one.

  20. Comparison in processing routes by copper mold casting injection and suction in the Cu46Zr42Al7Y5 vitreous alloy

    Batalha, W.; Aliaga, L.C.R.; Bolfarini, C.; Botta, W.J.; Kiminami, C.S.

    2014-01-01

    To expand the application of glassy metals, the development of processing routes and compositions that allow the production of parts with dimensions of millimeters or even centimeters, is very important. The present work aims the contribution to the technological development of processing routes for the production of Cu-based bulk metallic glasses. Wedge-shaped samples of Cu 46 Zr 42 Al 7 Y 5 (atom percent) chemical composition were processed using copper mold casting by suction and injection. Characterization was made combining scanning electron microscopy, x-ray diffraction and differential scanning calorimetry. The critical amorphous thickness obtained by those two different routes was carefully observed. The suction route allow obtaining the best results with critical amorphous thickness about 8 mm. This result was analyzed considering the different extrinsic parameters to the glass forming ability of the alloy. (author)

  1. Evaluation of marginal and internal gaps of metal ceramic crowns obtained from conventional impressions and casting techniques with those obtained from digital techniques.

    Rai, Rathika; Kumar, S Arun; Prabhu, R; Govindan, Ranjani Thillai; Tanveer, Faiz Mohamed

    2017-01-01

    Accuracy in fit of cast metal restoration has always remained as one of the primary factors in determining the success of the restoration. A well-fitting restoration needs to be accurate both along its margin and with regard to its internal surface. The aim of the study is to evaluate the marginal fit of metal ceramic crowns obtained by conventional inlay casting wax pattern using conventional impression with the metal ceramic crowns obtained by computer-aided design and computer-aided manufacturing (CAD/CAM) technique using direct and indirect optical scanning. This in vitro study on preformed custom-made stainless steel models with former assembly that resembles prepared tooth surfaces of standardized dimensions comprised three groups: the first group included ten samples of metal ceramic crowns fabricated with conventional technique, the second group included CAD/CAM-milled direct metal laser sintering (DMLS) crowns using indirect scanning, and the third group included DMLS crowns fabricated by direct scanning of the stainless steel model. The vertical marginal gap and the internal gap were evaluated with the stereomicroscope (Zoomstar 4); post hoc Turkey's test was used for statistical analysis. One-way analysis of variance method was used to compare the mean values. Metal ceramic crowns obtained from direct optical scanning showed the least marginal and internal gap when compared to the castings obtained from inlay casting wax and indirect optical scanning. Indirect and direct optical scanning had yielded results within clinically acceptable range.

  2. PRODUCTION OF ROTARY ENGINES’ PARTS FROM ALUMINUM ALLOYS USING LOST FOAM CASTING PROCESS

    E. I. Marukovich

    2018-01-01

    Full Text Available The production technology of casting details for rotary engine from the aluminum alloy АК12М2 is developed. The bulk density of expanded polystyrene to ensure the best quality of the surface of castings has been experimentally established. The lost foam casting shop was organized in the experimental department of the Institute.

  3. Catalytic extraction processing of contaminated scrap metal

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.; Zeitoon, B.M.

    1995-01-01

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE's inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results

  4. Catalytic extraction processing of contaminated scrap metal

    Griffin, T.P.; Johnston, J.E.

    1994-01-01

    The contract was conceived to establish the commercial capability of Catalytic Extraction Processing (CEP) to treat contaminated scrap metal in the DOE inventory. In so doing, Molten Metal Technology, Inc. (MMT), pursued the following objectives: demonstration of the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal can be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP will concentrate the radionuclides in a dense vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP will convert hazardous organics to valuable industrial gases, which can be used as feed gases for chemical synthesis or as an energy source; recovery volatile heavy metals--that CEP's off-gas treatment system will capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory--that CEP is a more cost-effective and, complete treatment and recycling technology than competing technologies for processing contaminated scrap. The process and its performance are described

  5. Fabrication of TiO2/PU Superhydrophobic Film by Nanoparticle Assisted Cast Micromolding Process.

    Li, Jie; Zheng, Jianyong; Zhang, Jing; Feng, Jie

    2016-06-01

    Lotus-like surfaces have attracted great attentions in recent years for their wide applications in water repellency, anti-fog and self-cleaning. This paper introduced a novel process, nanoparticle assisted cast micromolding, to create polymer film with superhydrophobic surface. Briefly, waterborne polyurethane (WPU) sol and nano TiO2/WPU sol were each cast onto the featured surfaces of the poly(dimethylsiloxane) (PDMS) stamps replicated from fresh lotus leaves. After being dried and peeled off from the stamps, PU and TiO2/WPU replica films were created respectively. To the former, only high hydrophobic property was observed with static water contact angle (WCA) at 142.5 degrees. While to the later, superhydrophobic property was obtained with WCA more than 150 degrees and slide angle less than 3 degrees. Scanning electron microscopy (SEM) imaging showed that the PU replica film only had the micro-papillas and the TiO2/PU replica film not only had micro papillas but also had a large number of nano structures distributed on and between the micro-papillas. Such nano and micro hierarchical structures were very similar with those on the natural lotus leaf surface, thus was the main reason for causing superhydrophobic property. Although an elastic PDMS stamp from lotus leaf was used in herein process, hard molds may also be used in theory. This study supplied an alternative technique for large scale production of polymeric films with superhydrophobic.

  6. Numerical modelling of evaporation in a ceramic layer in the tape casting process

    Jabbari, M.; Hattel, J. H. [Process Modelling Group, Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby (Denmark); Jambhekar, V. A.; Helmig, R. [Department of Hydromechanics and Modelling of Hydrosystems, Institute for Modelling Hydraulic and Environmental Systems, Universität Stuttgart, Stuttgart (Germany)

    2016-06-08

    Evaporation of water from a ceramic layer is a key phenomenon in the drying process for the manufacturing of tape cast ceramics. This process contains mass, momentum and energy exchange between the porous medium and the free–flow region. In order to analyze such interaction processes, a Representative Elementary Volume (REV)–scale model concept is presented for coupling non–isothermal multi–phase compositional porous–media flow and single–phase compositional laminar free–flow. The preliminary results show the typical expected evaporation behaviour from a porous medium initially saturated with water, and its transport to the free–flow region according to the existent results from the literature.

  7. Optimization and control of metal forming processes

    Havinga, Gosse Tjipke

    2016-01-01

    Inevitable variations in process and material properties limit the accuracy of metal forming processes. Robust optimization methods or control systems can be used to improve the production accuracy. Robust optimization methods are used to design production processes with low sensitivity to the

  8. Superior metallic alloys through rapid solidification processing (RSP) by design

    Flinn, J.E. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1995-05-01

    Rapid solidification processing using powder atomization methods and the control of minor elements such as oxygen, nitrogen, and carbon can provide metallic alloys with superior properties and performance compared to conventionally processing alloys. Previous studies on nickel- and iron-base superalloys have provided the baseline information to properly couple RSP with alloy composition, and, therefore, enable alloys to be designed for performance improvements. The RSP approach produces powders, which need to be consolidated into suitable monolithic forms. This normally involves canning, consolidation, and decanning of the powders. Canning/decanning is expensive and raises the fabrication cost significantly above that of conventional, ingot metallurgy production methods. The cost differential can be offset by the superior performance of the RSP metallic alloys. However, without the performance database, it is difficult to convince potential users to adopt the RSP approach. Spray casting of the atomized molten droplets into suitable preforms for subsequent fabrication can be cost competitive with conventional processing. If the fine and stable microstructural features observed for the RSP approach are preserved during spray casing, a cost competitive product can be obtained that has superior properties and performance that cannot be obtained by conventional methods.

  9. Effect of chemical composition of Ni-Cr dental casting alloys on the bonding characterization between porcelain and metal.

    Huang, H-H; Lin, M-C; Lee, T-H; Yang, H-W; Chen, F-L; Wu, S-C; Hsu, C-C

    2005-03-01

    The purpose of this study was to investigate the influence of chemical composition of Ni-Cr dental casting alloys on the bonding behaviour between porcelain and metal. A three-point bending test was used to measure the fracture load of alloy after porcelain firing. A scanning electron microscope, accompanied by an energy dispersion spectrometer, was used to analyse the morphology and chemical composition of the fracture surface. An X-ray photoelectron spectrometer and glow discharge spectrometer were used to identify the structure and cross-sectional chemical composition, respectively, of oxide layers on Ni-Cr alloys after heat treatment at 990 degrees C for 5 min. Results showed that the oxide layers formed on all Ni-Cr alloys contained mainly Cr2O3, NiO, and trace MoO3. The Ni-Cr alloy with a higher Cr content had a thicker oxide layer, as well as a weaker bonding behaviour of porcelain/metal interface. The presence of Al (as Al2O3) and Be (as BeO) on the oxide layer suppressed the growth of the oxide layer, leading to a better porcelain/metal bonding behaviour. However, the presence of a small amount of Ti (as TiO2) on the oxide layer did not have any influence on the bonding behaviour. The fracture propagated along the interface between the opaque porcelain and metal, and exhibited an adhesive type of fracture morphology.

  10. New Approaches to Aluminum Integral Foam Production with Casting Methods

    Ahmet Güner

    2015-08-01

    Full Text Available Integral foam has been used in the production of polymer materials for a long time. Metal integral foam casting systems are obtained by transferring and adapting polymer injection technology. Metal integral foam produced by casting has a solid skin at the surface and a foam core. Producing near-net shape reduces production expenses. Insurance companies nowadays want the automotive industry to use metallic foam parts because of their higher impact energy absorption properties. In this paper, manufacturing processes of aluminum integral foam with casting methods will be discussed.

  11. Metals and Alloys Material Stabilization Process Plan

    RISENMAY, H.R.; BURK, R.A.

    2000-05-18

    This Plan outlines the process for brushing metal and alloys in accordance with the path forward discussed in the Integrated Project Management Plan for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617, and requirements set forth in the Project Management Plan for Materials Stabilization, HNF-3605. This plan provides the basis for selection of the location to process, the processes involved, equipment to be used, and the characterization of the contents of the can. The scope of the process is from retrieval of metals and alloys from storage to transfer back to storage in a repackaged configuration.

  12. Metals and Alloys Material Stabilization Process Plan

    RISENMAY, H.R.; BURK, R.A.

    2000-01-01

    This Plan outlines the process for brushing metal and alloys in accordance with the path forward discussed in the Integrated Project Management Plan for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617, and requirements set forth in the Project Management Plan for Materials Stabilization, HNF-3605. This plan provides the basis for selection of the location to process, the processes involved, equipment to be used, and the characterization of the contents of the can. The scope of the process is from retrieval of metals and alloys from storage to transfer back to storage in a repackaged configuration

  13. National Metal Casting Research Institute final report. Development of an automated ultrasonic inspection cell for detecting subsurface discontinuities in cast gray iron. Volume 3

    Burningham, J.S. [University of Northern Iowa, Cedar Falls, IA (United States). Dept. of Industrial Technology

    1995-08-01

    This inspection cell consisted of an ultrasonic flaw detector, transducer, robot, immersion tank, computer, and software. Normal beam pulse-echo ultrasonic nondestructive testing, using the developed automated cell, was performed on 17 bosses on each rough casting. Ultrasonic transducer selection, initial inspection criteria, and ultrasonic flow detector (UFD) setup parameters were developed for the gray iron castings used in this study. The software were developed for control of the robot and UFD in real time. The software performed two main tasks: emulating the manual operation of the UFD, and evaluating the ultrasonic signatures for detecting subsurface discontinuities. A random lot of 105 castings were tested; the 100 castings that passed were returned to the manufacturer for machining into finished parts and then inspection. The other 5 castings had one boss each with ultrasonic signatures consistent with subsurface discontinuities. The cell was successful in quantifying the ultrasonic echo signatures for the existence of signature characteristics consistent with Go/NoGo criteria developed from simulated defects. Manual inspection showed that no defects in the areas inspected by the automated cell avoided detection in the 100 castings machined into finished parts. Of the 5 bosses found to have subsurface discontinuities, two were verified by manual inspection. The cell correctly classified 1782 of the 1785 bosses (99.832%) inspected.

  14. Intelligent Machine Vision Based Modeling and Positioning System in Sand Casting Process

    Shahid Ikramullah Butt

    2017-01-01

    Full Text Available Advanced vision solutions enable manufacturers in the technology sector to reconcile both competitive and regulatory concerns and address the need for immaculate fault detection and quality assurance. The modern manufacturing has completely shifted from the manual inspections to the machine assisted vision inspection methodology. Furthermore, the research outcomes in industrial automation have revolutionized the whole product development strategy. The purpose of this research paper is to introduce a new scheme of automation in the sand casting process by means of machine vision based technology for mold positioning. Automation has been achieved by developing a novel system in which casting molds of different sizes, having different pouring cup location and radius, position themselves in front of the induction furnace such that the center of pouring cup comes directly beneath the pouring point of furnace. The coordinates of the center of pouring cup are found by using computer vision algorithms. The output is then transferred to a microcontroller which controls the alignment mechanism on which the mold is placed at the optimum location.

  15. Annealing of chromium oxycarbide coatings deposited by plasma immersion ion processing (PIIP) for aluminum die casting

    Peters, A.M.; He, X.M.; Trkula, M.; Nastasi, M.

    2001-01-01

    Chromium oxycarbide coatings have been investigated for use as non-wetting coatings for aluminum die casting. This paper examines Cr-C-O coating stability and non-wetability at elevated temperatures for extended periods. Coatings were deposited onto 304 stainless steel from chromium carbonyl [Cr(CO) 6 ] by plasma immersion ion processing. The coatings were annealed in air at an aluminum die casting temperature of 700 deg. C up to 8 h. Coatings were analyzed using resonant ion backscattering spectroscopy, nanoindentation and pin-on-disk tribometry. Molten aluminum was used to determine coating wetting and contact angle. Results indicate that the surface oxide layer reaches a maximum thickness of 900 nm. Oxygen concentrations in the coatings increased from 24% to 34%, while the surface concentration rose to almost 45%. Hardness values ranged from 22.1 to 6.7 GPa, wear coefficients ranged from 21 to 8x10 -6 mm 3 /Nm and contact angles ranged from 156 deg. to 127 deg

  16. Microstructure and wear behavior of friction stir processed cast hypereutectic aluminum silicon

    Ahmad Rosli

    2017-01-01

    Full Text Available Hypereutectic as-cast Al-18Si-Cu-Ni alloy was subjected to friction stir processing (FSP. The resultant effect of FSP on the alloy was evaluated by microstructure analysis and wear tests (dry sliding. A significant microstructural modification and enhancement in wear behavior of Al-18Si-Cu-Ni alloy was recorded after friction stir processing. Wear resistance improvement was related to considerable modification in size, morphology and distribution of silicon particles, and hardness improvement. It was found that lower tool rotation speed was more effective to refine silicon particles and in turn increase wear resistance. Minimum Si particle mean area of about 47.8 µm2, and wear rate of 0.0155 mg/m was achieved.

  17. Quality problems root cause identification and variability reduction in casting processes

    G. Furgał

    2009-01-01

    Full Text Available Increasing customer requirements and production costs force casting manufacturers to adopt a methodological approach to manufacturingprocesses, in order to deliver increasingly more repeatable, predictable and competitive products. One of the methods of achieving such results is the reduction of variability of manufacturing processes and the optimization of their control. This paper presents the possibilities granted by the Six Sigma methodology in efficient identification of special factors influencing pre-heat of ceramic moulds and castingparameters, in the minimization of the frequency at which they occur, and in the reduction of key process parameters variability. This paper also shows the usability of the method in achieving measurable business advantages for the company using the example of one DMAIC methodology based project realized in the Investment Foundry Department of WSK “PZL-Rzeszow” S.A.

  18. Development of Cast Alumina-forming Austenitic Stainless Steel Alloys for use in High Temperature Process Environments

    Muralidharan, Govindarajan [ORNL; Yamamoto, Yukinori [ORNL; Brady, Michael P [ORNL; Pint, Bruce A [ORNL; Pankiw, Roman [Duraloy Technologies Inc; Voke, Don [Duraloy Technologies Inc

    2015-01-01

    There is significant interest in the development of alumina-forming, creep resistant alloys for use in various industrial process environments. It is expected that these alloys can be fabricated into components for use in these environments through centrifugal casting and welding. Based on the successful earlier studies on the development of wrought versions of Alumina-Forming Austenitic (AFA) alloys, new alloy compositions have been developed for cast products. These alloys achieve good high-temperature oxidation resistance due to the formation of protective Al2O3 scales while multiple second-phase precipitation strengthening contributes to excellent creep resistance. This work will summarize the results on the development and properties of a centrifugally cast AFA alloy. This paper highlights the strength, oxidation resistance in air and water vapor containing environments, and creep properties in the as-cast condition over the temperature range of 750°C to 900°C in a centrifugally cast heat. Preliminary results for a laboratory cast AFA composition with good oxidation resistance at 1100°C are also presented.

  19. Adjustment of cast metal post/cores modeled with different acrylic resins

    Gusmão, João Milton Rocha; Pereira, Renato Piai; Alves, Guilhermino Oliveira; Pithon, Matheus Melo; Moreira, David Costa

    2016-01-01

    Aim: Evaluate the performance of four commercially available chemically-activated acrylic resins (CAARs) by measuring the level of displacement of the cores following casting. Materials and Methods: Two devices were constructed to model the cores based on a natural tooth. Forty post/cores were modeled, 10 in each of the following CAARs: Duralay (Reliance Dental, Illinois, USA), Pattern Resin (GC, Tokyo, Japan), Dencrilay (Dencril, Sao Paulo, Brazil), and Jet (Clássico, Sao Paulo, Brazil). Two...

  20. Applying a Numerical Model of the Continuous Steel Casting Process to Control the Length of the Liquid Core in the Strand

    Miłkowska-Piszczek K.

    2015-04-01

    Full Text Available This paper presents development and the application of a numerical model of the continuous steel casting process to optimise the strand solidification area. The design of the numerical model of the steel continuous casting process was presented and which was developed based on the actual dimensions of the slab continuous casting machine in ArcelorMittal Poland Unit in Kraków. The S235 steel grade and the cast strand format of 220×1280 mm were selected for the tests. Three strand casting speeds were analysed: 0.6, 0.8 and 1 m min-1. An algorithm was presented, allowing the calculation of the heat transfer coefficient values for the secondary cooling zone. In order to verify the results of numerical simulations, additional temperature measurements of the strand surface within the secondary cooling chamber were made. The ProCAST software was used to construct the numerical model of continuous casting of steel.

  1. Mass fractionation processes of transition metal isotopes

    Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.

    2002-06-01

    Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.

  2. Field Evaluations of Low-Frequency SAFT-UT on Cast Stainless Steel and Dissimilar Metal Weld Components

    Diaz, Aaron A.; Harris, R. V.; Doctor, Steven R.

    2008-11-01

    This report documents work performed at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, and at the Electric Power Research Institute's (EPRI) Nondestructive Examination (NDE) Center in Charlotte, North Carolina, on evalutating a low frequency ultrasonic inspection technique used for examination of cast stainless steel (CSS) and dissimilar metal (DMW) reactor piping components. The technique uses a zone-focused, multi-incident angle, low frequency (250-450 kHz) inspection protocol coupled with the synthetic aperture focusing technique (SAFT). The primary focus of this work is to provide information to the United States Nuclear Regulatory Commission on the utility, effectiveness and reliability of ultrasonic testing (UT) inspection techniques as related to the inservice ultrasonic inspection of coarse grained primary piping components in pressurized water reactors (PWRs).

  3. Trace metals in corals--hind casting environmental chemical changes in the tropical Atlantic waters

    Holmes, C. W.; Koenig, A.; Ridley, W. I.; Wilson, S. A.

    2002-12-01

    As corals grow, they secrete a calcareous skeleton with the aid of photosynthetic activity of endosymbiotic dinoflagellates (zooxanthellae). The rate of this secretion varies inter-annually. Entrapped with the carbonate are trace substances that record the chemistry of the surrounding ocean. Detailing changes in chemistry requires careful and very tedious high-resolution sampling. The advent of laser ablation inductive couple plasma/mass spectroscopy (LA-ICP/MS) circumvents this sampling problem. This method also permits a continuous scan of the entire coral skeleton. Another problem has been the lack of a carbonate standard which appears to be resolved with the creation of an artificial carbonate standard (USGS MAC-1). This standard is presently undergoing rigorous analysis, but preliminary results are very positive. The LA-ICP/MS data of three Atlantic corals reveals an intriguing distribution of trace metals and boron that may be related to climatic driven chemical changes during the last hundred years. The distribution of the trace metals appears to have an association with three climate signals: 1. the strength of the North Atlantic Oscillation (NAO), 2. the local effects of El Nino in the Florida region and 3. change in oceanic chemistry, possibly due to rising CO2. Aluminum and titanium levels vary with the strength of the NAO. The highest concentrations occur at the time of strong positive NOA when there is large amount of sediment transported off the deserts of North Africa. This relationship is particularly strong in the coral from the Cape Verde Islands. Along the eastern seaboard of the Atlantic, the relationship is not as pronounced but still observable. Nutrients and anthropogenic trace metals, such as zinc, lead, and mercury appear to correlate with local conditions and show a weak correspondence to the El Nino as it affects south Florida. Boron variation is directly related to the high-density bands of the corals. The long-term record of boron

  4. Microstructure, hardness, corrosion resistance and porcelain shear bond strength comparison between cast and hot pressed CoCrMo alloy for metal-ceramic dental restorations.

    Henriques, B; Soares, D; Silva, F S

    2012-08-01

    The purpose of this study was to compare the microstructure, hardness, corrosion resistance and metal-porcelain bond strength of a CoCrMo dental alloy obtained by two routes, cast and hot pressing. CoCrMo alloy substrates were obtained by casting and hot pressing. Substrates' microstructure was examined by the means of Optical Microscopy (OM) and by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). Hardness tests were performed in a microhardness indenter. The electrochemical behavior of substrates was investigated through potentiodynamic tests in a saline solution (8g NaCl/L). Substrates were bonded to dental porcelain and metal-porcelain bond strength was assessed by the means of a shear test performed in a universal test machine (crosshead speed: 0.5 mm/min) until fracture. Fractured surfaces as well as undestroyed interface specimens were examined with Stereomicroscopy and SEM-EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The t-test (pmicrostructures whereas hot pressed specimens exhibited a typical globular microstructure with a second phase spread through the matrix. The hardness registered for hot pressed substrates was greater than that of cast specimens, 438±24HV/1 and 324±8HV/1, respectively. Hot pressed substrates showed better corrosion properties than cast ones, i.e. higher OCP; higher corrosion potential (E(corr)) and lower current densities (i(corr)). No significant difference was found (p<0.05) in metal-ceramic bond strength between cast (116.5±6.9 MPa) and hot pressed (114.2±11.9 MPa) substrates. The failure type analysis revealed an adhesive failure for all specimens. Hot pressed products arise as an alternative to cast products in dental prosthetics, as they impart enhanced mechanical and electrochemical properties to prostheses without compromising the metal-ceramic bond strength. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Microstructural studies of suck cast (Zr-SS)-3 and 5 AI alloys for nuclear metallic waste form

    Kumar, P.; Das, N.; Sengupta, P.; Arya, A.; Dey, G.K.

    2015-01-01

    Management of radioactive metallic waste using 'alloy melting route' is currently being investigated. For disposal of Zr and SS base nuclear metallic wastes, Zr-stainless steel (SS) hybrid alloys are being considered as baseline alloys for developing metallic-waste-form (MWF) alloys. In this context Zr-16 wt. %55 has been selected for MWF alloy in our previous study. In present study, to include amorphous phase in this alloy, 3 and 5 wt. % Al has been added in order to improve desirable properties and useful features of MWF and the two alloys have been prepared by suck casting techniques. Microstructure of these alloys have been investigated by optical and electron microscopy which shows occurrence of two different phases, e.g. dark grey and white phases, in (Zr-16 SS)-3 Al and three different phases, e.g. grey, dark grey and white phases in (Zr-16 SS)-5 AI. Electron diffraction and X-ray diffraction (XRD) analyses of these two alloy specimens revealed the occurrence of Zr (Fe, Cr, AI) (dark grey) and Zr 2 (Fe, Cr, AI) (white) phases in (Zr-16 SS)-3 Al whereas, Zr (Fe, Cr, AI) (dark grey), Zr 2 (Fe, Cr, AI) (grey) and Zr 3 (Fe, Cr, AI) (white) phases were found in (Zr-16 SS)-5 AI. In addition, presence of amorphous phase was indicated by XRD analysis that could be confirmed by transmission electron microscopy of these two alloys. (author)

  6. Processing facility for metal waste

    Awano, Toshihiko; Kataoka, Yoshitsune.

    1998-01-01

    Each steps of temporarily storing materials to be reduced in the volume to a storage vessel, transferring them to a weighing machine by a conveyor, weighing them by a weighing machine, drying them by a drying means, packing them in containing canisters, sealing and welding them, carrying out the containing canisters after sealing are conducted independently respectively or optionally simultaneously in parallel. Accordingly, isolation from peripheral circumstances is ensured, and improvement of working efficiency, ensuring of safety and simplification of structure of processing devices can be attained. (T.M.)

  7. Pyrometallurgical process of actinide metal

    Yoo, Jae Hyung; Kang, Young Ho; Woo, Mun Sik; Hwang, Sung Chan

    1999-06-01

    Major subject on pyrometallurgical partitioning technology is to separate transmutation elements (TRU) from rare earth elements(RE). Distribution coefficients of TRU and RE between molten chloride and liquid cadmium were measured for reductive extraction, and TRU were separated from RE in simplified molten chloride system by electrorefining. And separation efficiency between TRU and RE were estimated by using thermodynamics data. The results indicate that uranium, neptunium and plutonium are easy to separate from RE but some amount of RE accompany americium, and that processes have to be optimized to attain good separation efficiency of TRU. (author)

  8. Atomization process for metal powder

    Lagutkin, Stanislav; Achelis, Lydia; Sheikhaliev, Sheikhali; Uhlenwinkel, Volker; Srivastava, Vikas

    2004-01-01

    A new atomization process has been developed, which combines pressure and gas atomization. The melt leaves the pressure nozzle as a hollow thin film cone. After the pre-filming step, the melt is atomized by a gas stream delivered by a ring nozzle. The objectives of this investigation are to achieve a narrow size distribution and low specific gas consumption compared to conventional gas atomization techniques. Both lead to a higher efficiency and low costs. Tin and some alloys have been atomized successfully with this technique. The mass median diameters from different experiments are between 20 and 100 μm. Sieving analysis of the tin powder shows close particle size distributions

  9. Influence of heat treatments for laser welded semi solid metal cast A356 alloy on the fracture mode of tensile specimens

    Kunene, G

    2008-09-01

    Full Text Available were then butt laser welded. It was found that the pre-weld as cast, T4 and post-weld T4 heat treated specimens fractured in the base metal. However, the pre-weld T6 heat treated specimens were found to have fractured in the heat affected zone (HAZ)...

  10. Initial assessment of the processes and significance of thermal aging in cast stainless steels

    Chopra, O.K.; Chung, H.M.

    1988-10-01

    Charpy-impact and J-R curve data for thermally aged cast stainless steel are presented. The effects of material variables on the embrittlement of cast materials are evaluated. The chemical composition and ferrite morphology have a strong effect on the kinetics and extent of embrittlement. The procedure and correlations for predicting the impact strength and fracture toughness of cast component during reactor service are described. 19 refs., 17 figs., 4 tabs

  11. Effect of Low-Melting Metals (Pb, Bi, Cd, In) on the Structure, Phase Composition, and Properties of Casting Al-5% Si-4% Cu Alloy

    Yakovleva, A. O.; Belov, N. A.; Bazlova, T. A.; Shkalei, I. V.

    2018-01-01

    The effect of low-melting metals (Pb, Bi, Cd, In) on the structure, phase composition, and properties of the Al-5% Si-4% Cu alloy was studied using calculations. Polythermal sections have been reported, which show that the considered systems are characterized by the presence of liquid regions and monotectic reactions. The effect of low-melting metals on the microstructure and hardening of base alloy in the cast and heat-treated states has been studied.

  12. Application of the lattice Boltzmann method for simulation of the mold filling process in the casting industry

    Szucki, Michal; Suchy, J. S.; Lelito, J.; Malinowski, P.; Sobczyk, J.

    2017-12-01

    The aim of this work is the development of the lattice Boltzmann model for simulation of the mold filling process. The authors present a simplified approach to the modeling of liquid metal-gas flows with particular emphasis on the interactions between these phases. The boundary condition for momentum transfer of the moving free surface to the gaseous phase is shown. Simultaneously, the method for modeling influence of gas back pressure on a position and shape of the interfacial boundary is explained in details. The problem of the lattice Boltzmann method (LBM) stability is also analyzed. Since large differences in viscosity of both fluids are a source of the model instability, the so-called fractional step (FS) method allowing to improve the computation stability is applied. The presented solution is verified on the bases of the available reference data and the results of experiments. It is shown that the model describes properly such effects as: gas bubbles formation and air back pressure, accompanying liquid-gas flows in the casting mold. At the same time the proposed approach is easy to be implemented and characterized by a lower demand of operating memory as compared to typical LBM models of two-phase flows.

  13. Friction Stir Processing Parameters and Property Distributions in Cast Nickel Aluminum Bronze

    Rosemark, Brian P

    2006-01-01

    Cast nickel-aluminum bronze (NAB) alloy is specified for many marine applications, including ship propellers, due to its excellent corrosion-resistance combined with acceptable mechanical properties...

  14. Preparation by the nano-casting process of novel porous carbons from large pore zeolite templates

    F Gaslain; J Parmentier; V Valtchev; J Patarin; C Vix Guterl

    2005-01-01

    The development of new growing industrial applications such as gas storage (e.g.: methane or hydrogen) or electric double-layer capacitors has focussed the attention of many research groups. For this kind of application, porous carbons with finely tailored micro-porosity (i.e.: pore size diameter ≤ 1 nm) appear as very promising materials due to their high surface area and their specific pore size distribution. In order to meet these requirements, attention has been paid towards the feasibility of preparing microporous carbons by the nano-casting process. Since the sizes and shapes of the pores and walls respectively become the walls and pores of the resultant carbons, using templates with different framework topologies leads to various carbon replicas. The works performed with commercially available zeolites employed as templates [1-4] showed that the most promising candidate is the FAU-type zeolite, which is a large zeolite with three-dimensional channel system. The promising results obtained on FAU-type matrices encouraged us to study the microporous carbon formation on large pore zeolites synthesized in our laboratory, such as EMC-1 (International Zeolite Association framework type FAU), zeolite β (BEA) or EMC-2 (EMT). The carbon replicas were prepared following largely the nano-casting method proposed for zeolite Y by the Kyotani research group [4]: either by liquid impregnation of furfuryl alcohol (FA) followed by carbonization or by vapour deposition (CVD) of propylene, or by an association of these two processes. Heat treatment of the mixed materials (zeolite / carbon) could also follow in order to improve the structural ordering of the carbon. After removal of the inorganic template by an acidic treatment, the carbon materials obtained were characterised by several analytical techniques (XRD, N 2 and CO 2 adsorption, electron microscopy, etc...). The unique characteristics of these carbons are discussed in details in this paper and compared to those

  15. Process for etching zirconium metallic objects

    Panson, A.J.

    1988-01-01

    In a process for etching of zirconium metallic articles formed from zirconium or a zirconium alloy, wherein the zirconium metallic article is contacted with an aqueous hydrofluoric acid-nitric acid etching bath having an initial ratio of hydrofluoric acid to nitric acid and an initial concentration of hydrofluoric and nitric acids, the improvement, is described comprising: after etching of zirconium metallic articles in the bath for a period of time such that the etching rate has diminished from an initial rate to a lesser rate, adding hydrofluoric acid and nitric acid to the exhausted bath to adjust the concentration and ratio of hydrofluoric acid to nitric acid therein to a value substantially that of the initial concentration and ratio and thereby regenerate the etching solution without removal of dissolved zirconium therefrom; and etching further zirconium metallic articles in the regenerated etching bath

  16. Production of A356 aluminum alloy wheels by thixo-forging combined with a low superheat casting process

    Wang Shuncheng

    2013-09-01

    Full Text Available The A356 aluminum alloy wheels were produced by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of thixo-forged wheels made from the A356 aluminum alloy were studied. The results show that the A356 aluminum alloy round billet with fine, uniform and non-dendritic grains can be obtained when the melt is cast at 635 篊. When the round billet is reheated at 600 篊 for 60 min, the non-dendritic grains are changed into spherical ones and the round billet can be easily thixo-forged into wheels. The tensile strength, yield strength and elongation of the thixo-forged wheels with T6 heat treatment are 327.6 MPa, 228.3 MPa and 7.8%, respectively, which are higher than those of a cast wheel. It is suggested that the thixo-forging combined with the low superheat casting process is an effective technique to produce aluminum alloy wheels with high mechanical properties.

  17. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    none,

    2005-11-01

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  18. Analysis of Monolith Cores from an Engineering Scale Demonstration of a Prospective Cast Stone Process

    Crawford, C. L.; Cozzi, A. D.; Hill, K. A.

    2016-01-01

    The primary disposition path of Low Activity Waste (LAW) at the DOE Hanford Site is vitrification. A cementitious waste form is one of the alternatives being considered for the supplemental immobilization of the LAW that will not be treated by the primary vitrification facility. Washington River Protection Solutions (WRPS) has been directed to generate and collect data on cementitious or pozzolanic waste forms such as Cast Stone. This report documents the coring and leach testing of monolithic samples cored from an engineering-scale demonstration (ES Demo) with non-radioactive simulants. The ES Demo was performed at SRNL in October of 2013 using the Scaled Continuous Processing Facility (SCPF) to fill an 8.5 ft. diameter x 3.25 ft. high container with simulated Cast Stone grout. The Cast Stone formulation was chosen from the previous screening tests. Legacy salt solution from previous Hanford salt waste testing was adjusted to correspond to the average LAW composition generated from the Hanford Tank Waste Operation Simulator (HTWOS). The dry blend materials, ordinary portland cement (OPC), Class F fly ash, and ground granulated blast furnace slag (GGBFS or BFS), were obtained from Lafarge North America in Pasco, WA. In 2014 core samples originally obtained approximately six months after filling the ES Demo were tested along with bench scale molded samples that were collected during the original pour. A latter set of core samples were obtained in late March of 2015, eighteen months after completion of the original ES Demo. Core samples were obtained using a 2'' diameter x 11'' long coring bit. The ES Demo was sampled in three different regions consisting of an outer ring, a middle ring and an inner core zone. Cores from these three lateral zones were further segregated into upper, middle and lower vertical segments. Monolithic core samples were tested using the Environmental Protection Agency (EPA) Method 1315, which is designed to provide mass

  19. Processing method of radioactive metal wastes

    Uetake, Naoto; Urata, Megumu; Sato, Masao.

    1985-01-01

    Purpose: To reduce the volume and increase the density of radioactive metal wastes easily while preventing scattering of radioactivity and process them into suitable form to storage and treatment. Method: Metal wastes mainly composed of zirconium are discharged from nuclear power plants or fuel re-processing plants, and these metals such as zirconium and titanium vigorously react with hydrogen and rapidly diffuse as hydrides. Since the hydrides are extremely brittle and can be pulverized easily, they can be volume-reduced. However, since metal hydrides have no ductility, dehydrogenation is applied for the molding fabrication in view of the subsequent storage and processing. The dehydrogenation is easy like the hydrogenation and fine metal pieces can be molded in a small compression device. For the dehydrogenation, a temperature is slightly increased as compared with that in the hydrogenation, pressure is reduced through the vacuum evacuation system and the removed hydrogen is purified for reuse. The upper limit for the temperature of the hydrogenation is 680 0 C in order to prevent the scttering of radioactivity. (Kamimura, M.)

  20. MicroCast: Additive Manufacturing of Metal Plus Insulator Structures with Sub-mm Features, Phase I

    National Aeronautics and Space Administration — A novel method for fabricating electronics containing both metals and polymers can be adapted to quickly and effectively produce micro-well sensors. The process...

  1. Laser Processing Technology using Metal Powders

    Jang, Jeong-Hwan; Moon, Young-Hoon [Pusan National University, Busan (Korea, Republic of)

    2012-03-15

    The purpose of this paper is to review the state of laser processing technology using metal powders. In recent years, a series of research and development efforts have been undertaken worldwide to develop laser processing technologies to fabricate metal-based parts. Layered manufacturing by the laser melting process is gaining ground for use in manufacturing rapid prototypes (RP), tools (RT) and functional end products. Selective laser sintering / melting (SLS/SLM) is one of the most rapidly growing rapid prototyping techniques. This is mainly due to the processes's suitability for almost any materials, including polymers, metals, ceramics and many types of composites. The interaction between the laser beam and the powder material used in the laser melting process is one of the dominant phenomena defining feasibility and quality. In the case of SLS, the powder is not fully melted during laser scanning, therefore the SLS-processed parts are not fully dense and have relatively low strength. To overcome this disadvantage, SLM and laser cladding (LC) processes have been used to enable full melting of the powder. Further studies on the laser processing technology will be continued due to the many potential applications that the technology offers.

  2. Corrosion resistance of cast irons and titanium alloys as reference engineered metal barriers for use in basalt geologic storage: a literature assessment

    Charlot, L.A.; Westerman, R.E.

    1981-07-01

    A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allows its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt

  3. Process for production of a metal hydride

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  4. Fused salt processing of impure plutonium dioxide to high-purity plutonium metal

    Mullins, L.J.; Christensen, D.C.; Babcock, B.R.

    1982-01-01

    A process for converting impure plutonium dioxide (approx. 96% pure) to high-purity plutonium metal (>99.9%) was developed. The process consists of reducing the oxide to an impure plutonium metal intermediate with calcium metal in molten calcium chloride. The impure intermediate metal is cast into an anode and electrorefined to produce high-purity plutonium metal. The oxide reduction step is being done now on a 0.6-kg scale with the resulting yield being >99.5%. The electrorefining is being done on a 4.0-kg scale with the resulting yield being 80 to 85%. The purity of the product, which averages 99.98%, is essentially insensitive to the purity of the feed metal. The yield, however, is directly dependent on the chemical composition of the feed. To date, approximately 250 kg of impure oxide has been converted to pure metal by this processing sequence. The availability of impure plutonium dioxide, together with the need for pure plutonium metal, makes this sequence a valuable plutonium processing tool

  5. Microstructure and phase morphology during thermochemical processing of {alpha}{sub 2}-based titanium aluminide castings

    Saqib, M. [Wright State Univ., Dayton, OH (United States). Dept. of Mechanical and Materials Engineering; Apgar, L.S. [Dayton Univ., OH (United States). Graduate Materials Engineering; Eylon, D. [Dayton Univ., OH (United States). Graduate Materials Engineering; Weiss, I. [Wright State Univ., Dayton, OH (United States). Dept. of Mechanical and Materials Engineering

    1995-12-31

    Changes in the microstructure, volume fraction and distribution of phases during different stages of thermochemical processing of Ti-25Al-10Nb-3V-1Mo (at.%) castings were investigated. Up to 14.5 at.% (0.35 wt.%) of hydrogen was introduced into the material by gas charging at temperatures between 650 and 980 C for times up to 20 h. The material was subsequently dehydrogenated by vacuum annealing at 650 C for 48 h. Investment cast Ti-25Al-10Nb-3V-1Mo alloy, hot isostatically pressed (HIP) at 1175 C at 260 MPa for 6 h, was used as the starting material. The microstructure of the as-HIP material consists of {alpha}{sub 2}, B2 and orthorhombic phases. The {alpha}{sub 2} phase exists in equiaxed, Widmanstaeten and cellular morphologies. The B2 phase is observed mainly along {alpha}{sub 2}/{alpha}{sub 2} boundaries. Some {alpha}{sub 2} Widmanstaeten also contain very fine orthorhombic phase in a plate-like morphology. Hydrogenation of the material modified the microstructure; however, the morphology of the {alpha}{sub 2} and B2 phases did not change. Furthermore, hydride precipitation and a higher volume fraction of the orthorhombic phase were observed compared with the as-HIP material. Following dehydrogenation, the hydrogen level in the material was found to be less than 0.1 at.% (0.0025wt.%). Transmission electron microscopy of the dehydrogenated material did not reveal the presence of hydride precipitates; however, the high volume fraction of the orthorhombic phase was found to persist following dehydrogenation. (orig.)

  6. ToxCast Workflow: High-throughput screening assay data processing, analysis and management (SOT)

    US EPA’s ToxCast program is generating data in high-throughput screening (HTS) and high-content screening (HCS) assays for thousands of environmental chemicals, for use in developing predictive toxicity models. Currently the ToxCast screening program includes over 1800 unique c...

  7. Fatigue Resistance of GX12CrMoVNbN9-1 Cast Steel after Ageing Process

    Stanisław MROZIŃSKI

    2014-12-01

    Full Text Available In the present paper, low cycle fatigue behaviour of GX12CrMoVNbN9-1 (GP91 cast steel is presented. Fatigue tests were performed under isothermal conditions at room temperature and at 550 and 600oC, on five levels of total strain amplitude value ɛac = 0.25÷0.60%. The cast steel subject to investigation was in the as-received condition (after heat treatment and after 8000 hours of ageing at the temperature of 600oC. Performed research has shown an insignificant influence of the ageing process on mechanical properties of GP91 cast steel, determined with the static test of tension. Analysis of the performed tests has proved that GP91 cast steel in the as-received condition and after ageing process was characterized by strong cyclic softening without a clear period of stabilization of the hysteresis loop parameters. The fatigue lifetime curves at each temperature were obtained based on Basquin and Coffin – Manson equations. The process of ageing of GP91 cast steel contributed to a decrease in its fatigue life Nf from a few to a few dozen percent, and the level of fatigue life was dependent on the value of strain amplitude ɛac. It has also been stated that the fatigue life Nf of GP91 cast steel is determined by its plastic properties, and the degree of changes in fatigue life Nf was dependent not only on the temperature of testing, but also on the value of strain amplitude ɛac. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6077

  8. A National Assistance Extension Program for Metal Casting: a foundation industry. Final report for the period February 16, 1994 through May 15, 1997

    NONE

    1997-09-01

    The TRP award was proposed as an umbrella project to build infrastructure and extract lessons about providing extension-enabling services to the metal casting industry through the national network of Manufacturing Technology Center`s (MTC`s). It targeted four discrete task areas required for the MCC to service the contemplated needs of industry, and in which the MCC had secured substantial involvement of partner organizations. Task areas identified included Counter-Gravitational Casting, Synchronous Manufacturing, Technology Deployment, and Facility and Laboratory Improvements. Each of the task areas includes specific subtasks which are described.

  9. Ejection Performance of Coated Core Pins Intended for Application on High Pressure Die Casting Tools for Aluminium Alloys Processing

    P. Terek

    2017-09-01

    Full Text Available In high pressure die casting (HPDC process of aluminium alloys cast alloy soldering severely damages tool surfaces. It hampers casting ejection, reduces the casting quality and decreases the overall production efficiency. Thin ceramic PVD (physical vapor deposition coatings applied on tool surfaces successfully reduce these effects. However, their performance is still not recognised for surfaces with various topographies. In this investigation, soldering tendency of Al-Si-Cu alloy toward EN X27CrMoV51 steel, plasma nitrided steel, CrN and TiAlN duplex PVD coatings is evaluated using ejection test. The coatings were prepared to a range of surface roughness and topographies. After the tests sample surfaces were analysed by different microscopy techniques and profilometry. It was found that the ejection performance is independent of the chemical composition of investigated materials. After the ejection, the cast alloy soldering layer was found on surfaces of all tested materials. This built-up layer formed by effects of mechanical soldering, without corrosion reactions. Coated samples displayed a pronounced dependence of ejection force on surface roughness and topography. By decreasing roughness, ejection force increased, which is a consequence of intensified adhesion effects. Presented findings are a novel information important for efficient application of PVD coatings intendent for protection of HPDC tools.

  10. INVESTIGATION OF THE METAL MELTING PROCESS

    V. I. Timoshpolskij

    2006-01-01

    Full Text Available The nonlinear mathematical model of calculation of temperature fields in the process of metal melting is formulated and solved using the method of equivalent source taking into account nonlinearity of thermophysical properties of material and variable terms of heat exchange.

  11. The effect of veneering on the marginal fit of CAD/CAM-generated, copy-milled, and cast metal copings.

    Ates, Sabit Melih; Yesil Duymus, Zeynep; Caglar, Ipek; Hologlu, Bilal

    2017-11-01

    This in vitro study investigated the marginal fit of metal and zirconia copings before and after veneering on dies with shoulder/chamfer (s/c) finish lines. Using CAD/CAM, ten (n = 10) each s/c zirconia (NZ) copings and ten (n = 10) each s/c metal (MM) copings were generated. As controls, ten (n = 10) each s/c zirconia copings were copy-milled (ZZ) and ten (n = 10) each s/c metal copings were cast (CC). The vertical marginal discrepancy of the copings was measured at 20 predefined spots of the circular shoulder and chamfer finish lines in microns (μm) before and after a first and a second veneering firing using a stereomicroscope at ×40 magnification. Data were statistically analyzed, and the comparisons of CAD/CAM-milled (NZ, MM), copy-milled (ZZ), and cast (CC) copings before and after veneering were made at a significance level of p < 0.05. Gap width at s/c finish lines of ZZ was (91 ± 11/100 ± 28) and increased significantly (109 ± 21/141 ± 18) after the first firing (ZZ1). NZ showed significantly smaller gaps than ZZ (36 ± 6/46 ± 12) and (NZ1) after the first firing (61 ± 16/71 ± 29). Gap widths of CC groups (36 ± 8/25 ± 4) were not significantly different from NZ but were significantly lower after the (CC1) first veneering firing (40 ± 8/42 ± 7). MM copings showed gap values similar to NZ. Second firings did not significantly increase gaps in all groups except ZZ2 of chamfer finish line. Veneering increased the marginal gap width of copings. Within the limits of this in vitro study, aesthetic ceramic veneering of CAD/CAM-generated copings caused a statistically significant but tolerable loss of marginal fit precision.

  12. Process technology - rare and refractory metals

    Gupta, C.K.; Bose, D.K.

    1989-01-01

    India has fairly rich resreves of rare and refractory metals. Abundant sources of ilmenite, rutile, zircon and rare earths are found in the placer deposits of the southern and eastern coasts of the country. Columbite-tantalite occur in mica and the mining belts of Bihar and cassiterite deposits are found in Bastar (Madhya Pradesh). Vanadium as a minor associate occurs in bauxites and in the vast deposits of titaniferrous magnetites. Over the years, research and development and pilot plant works in many research organisations in India have built up a sound technological base in the country for process metallurgy of many refractory and rare earth metals starting from their indigenous sources. The present paper provides a comprehensive view of the developments that have taken place till now on the processing of various refractory and rare earth metals with particular reference to the extensive work carried out at the Department of Atomic Energy. The coverage includes mineral benification separation of individual elements, preparation of pure intermediates, techniques of reduction to metal and final purification. The paper also reviews some of the recent developments that have been taken place in these fields and the potential application of these metals in the foreseeable future. (author). 22 refs., 18 fi g., 7 tabs

  13. Modelling and multi objective optimization of LM13 aluminium alloy squeeze cast process parameters using taguchi and genetic algorithm

    S. Vellingiri

    2018-01-01

    Full Text Available This present investigation deals with squeeze casting process in order to produce a component with good mechanical properties such as micro-hardness(VH, tensile strength(Rm, and density(ρ on LM13 by varying squeeze pressure(P, molten temperature(Tm and die temperature(Td. Taguchi experimental design L9 orthogonal array was used to determine the signal to noise ratio. The results specified that the squeeze pressure and die preheat temperature are the most influencing parameters for mechanical properties improvement. Genetic algorithm (GA has been applied to optimize the casting parameters that simultaneously maximize the responses.

  14. Assessment Method of Overheating Degree of a Spent Moulding Sand with Organic Binder, After the Casting Process

    Dańko R.

    2013-06-01

    Full Text Available A proper management of sand grains of moulding sands requires knowing basic properties of the spent matrix after casting knocking out. This information is essential from the point of view of the proper performing the matrix recycling process and preparing moulding sands with reclaimed materials. The most important parameter informing on the matrix quality - in case of moulding sands with organic binders after casting knocking out - is their ignition loss. The methodology of estimating ignition loss of spent moulding sands with organic binder - after casting knocking out - developed in AGH, is presented in the paper. This method applies the simulation MAGMA software, allowing to determine this moulding sand parameter already at the stage of the production preparation.

  15. Behavior and effect of Ti2Ni phase during processing of NiTi shape memory alloy wire from cast ingot

    Bhagyaraj, J.; Ramaiah, K.V.; Saikrishna, C.N.; Bhaumik, S.K.; Gouthama

    2013-01-01

    Highlights: •Ti 2 Ni second phase particles forms in different sizes and shapes in cast ingot. •TEM evidences showed shearing/fragmentation of Ti 2 Ni during processing. •Matrix close to Ti 2 Ni experienced severe plastic deformation lead to amorphisation. •Ti 2 Ni interfaces were mostly faceted and assist in nucleation of martensite. •Heterogeneity of microstructure observed near to and away from Ti 2 Ni. -- Abstract: Binary NiTi alloy is one of the commercially successful shape memory alloys (SMAs). Generally, the NiTi alloy composition used for thermal actuator application is slightly Ti-rich. In the present study, vacuum arc melted alloy of 50.2Ti–Ni (at.%) composition was prepared and characterized using optical, scanning and transmission electron microcopy. Formation of second phase particles (SPPs) in the cast alloy and their influence on development of microstructure during processing of the alloy into wire form has been investigated. Results showed that the present alloy contained Ti 2 Ni type SPPs in the matrix. In the cast alloy, the Ti 2 Ni particles form in varying sizes (1–10 μm) and shapes. During subsequent thermo-mechanical processing, these SPPs get sheared/fragmented into smaller particles with low aspect ratio. The presence of SPPs plays a significant role in refinement of the microstructure during processing of the alloy. During deformation of the alloy, the matrix phase around the SPPs experiences conditions similar to that observed in severe plastic deformation of metallic materials, leading to localized amorphisation of the matrix phase

  16. Sensing the gas metal arc welding process

    Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.

    1994-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  17. Evaluation of marginal and internal gaps of metal ceramic crowns obtained from conventional impressions and casting techniques with those obtained from digital techniques

    Rathika Rai

    2017-01-01

    Full Text Available Background: Accuracy in fit of cast metal restoration has always remained as one of the primary factors in determining the success of the restoration. A well-fitting restoration needs to be accurate both along its margin and with regard to its internal surface. Aim: The aim of the study is to evaluate the marginal fit of metal ceramic crowns obtained by conventional inlay casting wax pattern using conventional impression with the metal ceramic crowns obtained by computer-aided design and computer-aided manufacturing (CAD/CAM technique using direct and indirect optical scanning. Materials and Methods: This in vitro study on preformed custom-made stainless steel models with former assembly that resembles prepared tooth surfaces of standardized dimensions comprised three groups: the first group included ten samples of metal ceramic crowns fabricated with conventional technique, the second group included CAD/CAM-milled direct metal laser sintering (DMLS crowns using indirect scanning, and the third group included DMLS crowns fabricated by direct scanning of the stainless steel model. The vertical marginal gap and the internal gap were evaluated with the stereomicroscope (Zoomstar 4; post hoc Turkey's test was used for statistical analysis. One-way analysis of variance method was used to compare the mean values. Results and Conclusion: Metal ceramic crowns obtained from direct optical scanning showed the least marginal and internal gap when compared to the castings obtained from inlay casting wax and indirect optical scanning. Indirect and direct optical scanning had yielded results within clinically acceptable range.

  18. Die casting copper motor rotors: mold materials and processing for cost-effective manufacturing

    Peters, D.T.; Cowie, J.G.; Brush, E.F. Jr.

    2000-07-01

    This project seeks to demonstrate mold materials for copper pressure die-casting that are cost-effective and practical for production use in die-casting copper motor rotors. The incorporation of die-cast copper for conductor bars and end rings of the induction motor in place of aluminum would result in attractive improvements in motor energy efficiency through reductions in motor losses ranging from 15% to 20%. Die-cast motor rotors are produced in aluminum today because rotor fabrication by pressure die-casting is an established practice. Lack of a durable and cost-effective mold material has been the technical barrier preventing manufacture of the die-cast copper rotor. This project tested H-13 steel die inserts that establish the baseline. Nickel-, tungsten-, and molybdenum-based high temperature alloys were extensively tested. Results indicate that substantially extended die life is possible using high temperature die materials, pre-heated and operated at elevated temperatures. Pre-heating and high operating temperatures were shown to be critical in extending the die life by decreasing the cyclic stresses associated with thermal expansion. Extended die life provides the opportunity for economically viable copper motor rotor die-casting. (orig.)

  19. Relaxation processes during amorphous metal alloys heating

    Malinochka, E.Ya.; Durachenko, A.M.; Borisov, V.T.

    1982-01-01

    Behaviour of Te+15 at.%Ge and Fe+13 at.%P+7 at.%C amorphous metal alloys during heating has been studied using the method of differential scanning calorimetry (DSC) as the most convenient one for determination of the value of heat effects, activation energies, temperature ranges of relaxation processes. Thermal effects corresponding to high-temperature relaxation processes taking place during amorphous metal alloys (AMA) heating are detected. The change of ratio of relaxation peaks values on DSC curves as a result of AMA heat treatment can be explained by the presence of a number of levels of inner energy in amorphous system, separated with potential barriers, the heights of which correspond to certain activation energies of relaxation processes

  20. Assessment of poly(ε-caprolactone)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends processed by solvent casting and electrospinning

    Del Gaudio, Costantino; Ercolani, Enrico; Nanni, Francesca; Bianco, Alessandra

    2011-01-01

    Research highlights: → PHBV, PCL and blends were processed in form of solvent cast films and e-spun mats. → A clear phase separation was observed for cast films when blended in equal amount. → E-spun blends were comprised of uniform and defect-free randomly arranged fibers. → DSC and XRD analyses demonstrated the immiscibility of PHBV and PCL. → Rearrangement of e-spun fibers and neckings, after axial test, were observed. - Abstract: Poly(ε-caprolactone) (PCL) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were blended in different ratio, e.g. 30/70, 50/50 and 70/30 (w/w), by means of solvent casting or electrospinning. Microstructure, thermal and mechanical properties of cast films and non-woven mats were investigated by means of scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), differential scanning calorimetry (DSC), and uniaxial tensile test. The microstructure of PHBV/PCL solvent cast films (thickness 65-100 μm) was strictly dependent on the composition of the blend, a clean phase separation was observed for the 50/50 (w/w) sample. All electrospun PHBV/PCL blends (thickness 350-800 μm) were characterised by uniform and homogenous fibers, the average size was about 3 μm. Both techniques led to polymeric blends comprised of separate crystalline domains associated to an amorphous interdisperse phase. It has also been demonstrated that electrospun PHBV/PCL blends showed a lower segregation degree among the crystalline domains. Solvent cast blends were characterised by superior mechanical properties in terms of tensile modulus and tensile strength compared to electrospun ones. Fractured electrospun blends showed an overall fiber rearrangement in the direction of the applied load, eventually highlighting multiple necking regions along the fibers.

  1. Casting technology for ODS steels - dispersion of nanoparticles in liquid metals

    Sarma, M.; Grants, I.; Kaldre, I.; Bojarevics, A.; Gerbeth, G.

    2017-07-01

    Dispersion of particles to produce metal matrix nanocomposites (MMNC) can be achieved by means of ultrasonic vibration of the melt using ultrasound transducers. However, a direct transfer of this method to produce steel composites is not feasible because of the much higher working temperature. Therefore, an inductive technology for contactless treatment by acoustic cavitation was developed. This report describes the samples produced to assess the feasibility of the proposed method for nano-particle separation in steel. Stainless steel samples with inclusions of TiB2, TiO2, Y2O3, CeO2, Al2O3 and TiN have been created and analyzed. Additional experiments have been performed using light metals with an increased value of the steady magnetic field using a superconducting magnet with a field strength of up to 5 T.

  2. Improved leaching process for metal ores

    Kar-Kwan Yung, K.; Barlow, C.B.; Glass, J.R.

    1980-01-01

    The general overall sequence of process steps in the technique of the invention in set forth. In sequence, the ore is crushed, and solubilizing reagents and moisture are added to the crushed ore in preselected controlled portions. The mixture of ore, reagent, and moisture is then cured followed in the preferred process by conditioning for filtration. The slurry that is produced from conditioning is then subjected to multiple stage washing on a belt filter. The filtrate is further processed for metal value recovery and the solids are transported to tailings disposal

  3. Description of Latvian Metal Production and Processing Enterprises' Air Emissions

    Pubule, J; Zahare, D; Blumberga, D

    2010-01-01

    The metal production and processing sector in Latvia has acquired a stable position in the national economy. Smelting of ferrous and nonferrous metals, production of metalware, galvanisation, etc. are developed in Latvia. The metal production and processing sector has an impact on air quality due to polluting substances which are released in the air from metal treatment processes. Therefore it is necessary to determine the total volume of emissions produced by the metal production and process...

  4. Manufacturing of cast fittings for power machine building using improved CO2-process

    Shuvalov, V.G.; Borodin, M.A.

    1984-01-01

    Technique for manufacturing of rods for casting fittings for power machines of heat and nuclear power plants using liquid-glass mixtures solidified by CO 2 is described. Optimal composition of mixtures and their basic technological properties were determined

  5. Demonstration of the Impact of Thermomagnetic Processing on Cast Aluminum Alloys

    Ludtka, Gerard Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Murphy, Bart L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kesler, Michael S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Henderson, Hunter B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-01

    This project builds on an earlier Manufacturing Demonstration Facility Technical Collaboration phase 1 project to investigate application of high magnetic fields during solution heat treating and aging of three different cast aluminum alloys.

  6. Laser processing of metals and alloys

    Goswami, G.L.; Kumar, Dilip; Roy, P.R.

    1988-01-01

    Laser, due to its high degree of coherence can produce powder density in the range of 10 3 -10 11 W/mm 2 . This high power density of the laser beam enables it to be utilized for many industrial applications, e.g. welding, cutting, drilling, surface treatment, etc. Laser processing of materials has many advantages, e.g. good quality product at high processing speed, least heat affected zone, minimum distortion, etc. In addition, the same laser system can be utilized for different applications, a very cost effective factor for any industry. Therefore laser has been adopted for processing of different materials for a wide range of applications and is now replacing conventional materials processing techniques on commercial merits with several economic and metallurgical advantages. Applications of laser to process materials of different thicknesses varying from 0.1 mm to 100 mm have demonstrat ed its capability as an important manufacturing tool for engineering industries. While lasers have most widely been utilized in welding, cutting and drilling they have also found applications in surface treatment of metals and alloys, e.g. transfor mation hardening and annealing. More recently, there has been significant amount of research being undertaken in laser glazing, laser surface alloying and laser cladding for obtaining improved surface properties. This report reviews the stat us of laser processing of metals and alloys emphasising its metallurgical aspects a nd deals with the different laser processes like welding, cutting, drilling and surface treatment highlighting the types and choice of laser and its interaction with metals and alloys and the applications of these processes. (author). 93 refs., 32 figs., 7 tables

  7. Ultrasonically nebulised electrolysed oxidising water: a promising new infection control programme for impressions, metals and gypsum casts used in dental hospitals.

    Wu, G; Yu, X; Gu, Z

    2008-04-01

    Controlling the transmission of infectious diseases by impressions, metals and dental casts in dental hospitals remains a challenge. Current disinfection methods have various drawbacks. This study introduced and provided a preliminary evaluation of the feasibility of using ultrasonically nebulised, electrolysed oxidising water (UNEOW) as a new infection control programme. UNEOW was produced from freshly generated electrolysed oxidising water (EOW). Samples of impressions, titanium and gypsum were subjected to the following treatments: (1) immersion in 1% sodium hypochlorite for 10min; (2) immersion in EOW for 10min; (3) exposure to UNEOW for 15, 30 and 45min; (4) no disinfection (control). Bactericidal efficacy was examined using Staphylococcus aureus and Bacillus subtilis var. niger spores as indicators. Dimensional accuracy, surface quality, and effect of corrosion were also evaluated for the different samples. Results showed that except for B. subtilis var. niger spores on gypsum casts, the bacterial reduction log(10) values after 30-45min treatment with UNEOW were all above 4. The impression dimensional changes showed no difference between control and UNEOW groups, but both were significantly lower than the EOW and sodium hypochlorite groups (Pimpressions and gypsum casts. No assessable corrosion was found on the titanium surface after a 45min treatment with UNEOW. The findings indicated that use of UNEOW is a feasible and promising approach for controlling the transmission of infectious diseases by impressions, gypsum casts and denture metals in dental facilities.

  8. A flow time model for melt-cast insensitive explosive process

    Guillemin, Jean-Philippe; Brunet, Luc [Nexter Munitions, 7 Route de Guerry, 18023 Bourges Cedex (France); Bonnefoy, Olivier; Thomas, Gerard [Ecole Nationale Superieure des Mines de Saint-Etienne, Centre SPIN/LPMG, UMR CNRS 5148, 158 Cours Fauriel, 42023 Saint-Etienne Cedex 2 (France)

    2007-06-15

    Diphasic flows of concentrated suspensions of melt-cast insensitive explosives exhibit specific rheological properties. In order to limit the handling of pyrotechnical products presenting a risk with respect to the mechanical and thermal shocks, a lot of work has been undertaken for many years in the civil engineering sector. The objective of this study is to propose a predictive model of the flow time of a concentrated suspension through a nozzle located at the bottom of a tank. Similar to our industrial process, the suspension is made out of insensitive energetic materials and flows under gravity. Experimental results are compared to three models (Quemada, Krieger-Dougherty, and Mooney) predicting the viscosity {mu} of a suspension as a function of the solid volume fraction {phi}, the maximum packing density {phi}{sub m} and the viscosity {mu}{sub 0} of the interstitial liquid. De Larrard's model is used to calculate {phi}{sub m}. The value of viscosity measured for the pure liquid is close to the one predicted by the Bernoulli theorem, where liquids are considered as incompressible and inviscid. Finally, it was found that the Quemada's model gives a fair agreement between predictions and experiments. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  9. Bending strength and fracture surface topography of natural fiber-reinforced shell for investment casting process

    Kai Lu

    2016-05-01

    Full Text Available In order to improve the properties of silica sol shell for investment casting process, various contents of cattail fibers were added into the slurry to prepare a fiber-reinforced shell in the present study. The bending strength of fiber-reinforced shell was investigated and the fracture surfaces of shell specimens were observed using SEM. It is found that the bending strength increases with the increase of fiber content, and the bending strength of a green shell with 1.0 wt.% fiber addition increases by 44% compared to the fiber-free shell. The failure of specimens of the fiber-reinforced green shell results from fiber rupture and debonding between the interface of fibers and adhesive under the bending load. The micro-crack propagation in the matrix is inhibited by the micro-holes for ablation of fibers in specimens of the fiber-reinforced shell during the stage of being fired. As a result, the bending strength of specimens of the fired shell had no significant drop. Particularly, the bending strength of specimens of the fired shell reinforced with 0.6wt.% fiber reached the maximum value of 4.6 MPa.

  10. Solar Convective Furnace for Metals Processing

    Patidar, Deepesh; Tiwari, Sheetanshu; Sharma, Piyush; Pardeshi, Ravindra; Chandra, Laltu; Shekhar, Rajiv

    2015-11-01

    Metals processing operations, primarily soaking, heat treatment, and melting of metals are energy-intensive processes using fossil fuels, either directly or indirectly as electricity, to operate furnaces at high temperatures. Use of concentrated solar energy as a source of heat could be a viable "green" option for industrial heat treatment furnaces. This paper introduces the concept of a solar convective furnace which utilizes hot air generated by an open volumetric air receiver (OVAR)-based solar tower technology. The potential for heating air above 1000°C exists. Air temperatures of 700°C have already been achieved in a 1.5-MWe volumetric air receiver demonstration plant. Efforts to retrofit an industrial aluminium soaking furnace for integration with a solar tower system are briefly described. The design and performance of an OVAR has been discussed. A strategy for designing a 1/15th-scale model of an industrial aluminium soaking furnace has been presented. Preliminary flow and thermal simulation results suggest the presence of recirculating flow in existing furnaces that could possibly result in non-uniform heating of the slabs. The multifarious uses of concentrated solar energy, for example in smelting, metals processing, and even fuel production, should enable it to overcome its cost disadvantage with respect to solar photovoltaics.

  11. Mesoporous metal oxides and processes for preparation thereof

    Suib, Steven L.; Poyraz, Altug Suleyman

    2018-03-06

    A process for preparing a mesoporous metal oxide, i.e., transition metal oxide. Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.

  12. SLIP CASTING METHOD

    Allison, A.G.

    1959-09-01

    S>A process is described for preparing a magnesium oxide slip casting slurry which when used in conjunction with standard casting techniques results in a very strong "green" slip casting and a fired piece of very close dimensional tolerance. The process involves aging an aqueous magnestum oxide slurry, having a basic pH value, until it attains a specified critical viscosity at which time a deflocculating agent is added without upsetting the basic pH value.

  13. Effect of medium on friction and wear properties of compacted graphite cast iron processed by biomimetic coupling laser remelting process

    Guo Qingchun; Zhou Hong; Wang Chengtao; Zhang Wei; Lin Pengyu; Sun Na; Ren Luquan

    2009-01-01

    Stimulated by the cuticles of soil animals, an attempt to improve the wear resistance of compact graphite cast iron (CGI) with biomimetic units on the surface was made by using a biomimetic coupled laser remelting process in air and various thicknesses water film, respectively. The microstructures of biomimetic units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases in the melted zone. Microhardness was measured and the wear behaviors of biomimetic specimens as functions of different mediums as well as various water film thicknesses were investigated under dry sliding condition, respectively. The results indicated that the microstructure zones in the biomimetic specimens processed with water film are refined compared with that processed in air and had better wear resistance increased by 60%, the microhardness of biomimetic units has been improved significantly. The application of water film provided finer microstructures and much more regular grain shape in biomimetic units, which played a key role in improving the friction properties and wear resistance of CGI.

  14. Effect of medium on friction and wear properties of compacted graphite cast iron processed by biomimetic coupling laser remelting process

    Guo, Qing-chun; Zhou, Hong; Wang, Cheng-tao; Zhang, Wei; Lin, Peng-yu; Sun, Na; Ren, Luquan

    2009-04-01

    Stimulated by the cuticles of soil animals, an attempt to improve the wear resistance of compact graphite cast iron (CGI) with biomimetic units on the surface was made by using a biomimetic coupled laser remelting process in air and various thicknesses water film, respectively. The microstructures of biomimetic units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases in the melted zone. Microhardness was measured and the wear behaviors of biomimetic specimens as functions of different mediums as well as various water film thicknesses were investigated under dry sliding condition, respectively. The results indicated that the microstructure zones in the biomimetic specimens processed with water film are refined compared with that processed in air and had better wear resistance increased by 60%, the microhardness of biomimetic units has been improved significantly. The application of water film provided finer microstructures and much more regular grain shape in biomimetic units, which played a key role in improving the friction properties and wear resistance of CGI.

  15. Casting fine grained, fully dense, strong inorganic materials

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.

    2015-11-24

    Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.

  16. Fabrication process optimization for improved mechanical properties of Al 7075/SiCp metal matrix composites

    Dipti Kanta Das

    2016-04-01

    Full Text Available Two sets of nine different silicon carbide particulate (SiCp reinforced Al 7075 Metal Matrix Composites (MMCs were fabricated using liquid metallurgy stir casting process. Mean particle size and weight percentage of the reinforcement were varied according to Taguchi L9 Design of Experiments (DOE. One set of the cast composites were then heat treated to T6 condition. Optical micrographs of the MMCs reveal consistent dispersion of reinforcements in the matrix phase. Mechanical properties were determined for both as-cast and heat treated MMCs for comparison of the experimental results. Linear regression models were developed for mechanical properties of the heat treated MMCs using list square method of regression analysis. The fabrication process parameters were then optimized using Taguchi based grey relational analysis for the multiple mechanical properties of the heat treated MMCs. The largest value of mean grey relational grade was obtained for the composite with mean particle size 6.18 µm and 25 weight % of reinforcement. The optimal combination of process parameters were then verified through confirmation experiments, which resulted 42% of improvement in the grey relational grade. Finally, the percentage of contribution of each process parameter on the multiple performance characteristics was calculated through Analysis of Variance (ANOVA.

  17. The effect of surface treatments on the microroughness of laser-sintered and vacuum-cast base metal alloys for dental prosthetic frameworks.

    Castillo-Oyagüe, Raquel; Osorio, Raquel; Osorio, Estrella; Sánchez-Aguilera, Fátima; Toledano, Manuel

    2012-09-01

    This study aimed to evaluate the effect of four chemomechanical surface treatments on the surface average microroughness and profile of laser-sintered and vacuum-cast dental prosthetic structures. Square-shaped blocks (10 mm × 10 mm × 1.5 mm) were prepared as follows: (1) laser-sintered CoCr (L) (ST2724G); (2) cast Co-Cr (C) (Gemium-cn); and (3) cast Ni-Cr-Ti (T) (Tilite). Specimens of each alloy group were randomly divided into five subgroups (n = 10 each), depending on the conditioning method used: (1) no treatment (control); (2) sandblasting (125 μm Al₂O₃-particles); (3) silica coating (50 μm silica-modified Al₂O₃-particles); (4) oxidation; and (5) oxidation plus opacification. Subgroups 2 and 3 represent "inner" pretreatments proposed for ceramometal restorations to improve the metal surface area available for luting cements. Subgroups 4 and 5 are the "outer" pretreatments required for bonding the aesthetic veneering ceramics to the underlying metal frameworks. Average surface roughness (Ra/μm) was determined using a surface profilometer. Data were analyzed by two-way ANOVA and Student-Newman-Keuls tests (α = 0.05). Metal surface topography was SEM-analyzed. Despite the inner pretreatment applied, L samples resulted in the highest microroughness (P < 0.001), whereas sandblasting produced a surface-smoothing effect in cast specimens. After oxidation, a significant increase in surface roughness occurred in all groups compared with controls, L specimens being the roughest (P < 0.001). Opacification caused a flattening effect of all oxidized structures; all opacified groups resulting in similar microroughness. Laser sintering of Co-Cr enhances the roughness of metal structures, which may improve the frameworks' microretention of the cements, and of the opaquer before the copings are veneered with the aesthetic ceramics. Copyright © 2012 Wiley Periodicals, Inc.

  18. Strip casting apparatus and method

    Williams, R.S.; Baker, D.F.

    1988-09-20

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip. 6 figs.

  19. Catalysed electrolytic metal oxide dissolution processes

    Machuron-Mandard, X.

    1994-01-01

    The hydrometallurgical processes designed for recovering valuable metals from mineral ores as well as industrial wastes usually require preliminary dissolution of inorganic compounds in aqueous media before extraction and purification steps. Unfortunately, most of the minerals concerned hardly or slowly dissolve in acidic or basic solutions. Metallic oxides, sulfides and silicates are among the materials most difficult to dissolve in aqueous solutions. They are also among the main minerals containing valuable metals. The redox properties of such materials sometimes permit to improve their dissolution by adding oxidizing or reducing species to the leaching solution, which leads to an increase in the dissolution rate. Moreover, limited amounts of redox promoters are required if the redox agent is regenerated continuously thanks to an electrochemical device. Nuclear applications of such concepts have been suggested since the dissolution of many actinide compounds (e.g., UO 2 , AmO 2 , PuC, PuN,...) is mainly based on redox reactions. In the 1980s, improvements of the plutonium dioxide dissolution process have been proposed on the basis of oxidation-reduction principles, which led a few years later to the design of industrial facilities (e.g., at Marcoule or at the french reprocessing plant of La Hague). General concepts and well-established results obtained in France at the Atomic Energy Commission (''Commissariat a l'Energie Atomique'') will be presented and will illustrate applications to industrial as well as analytical problems. (author)

  20. The Through Process Simulation of Mold filling, Solidification, and Heat Treatment of the Al Alloy Bending Beam Low-pressure Casting

    Yin, Yajun; Guo, Zhao; Wang, Huan; Liao, Dunming; Chen, Tao; Zhou, Jianxin

    2015-01-01

    The research on the simulation for the through process of low-pressure casting and heat treatment is conducive to combine information technology and advanced casting technology, which will help to predict the defects and mechanical properties of the castings in the through process. In this paper, we focus on the simulation for through process of low-pressure casting and heat treatment of ZL114A Bending beam. Firstly, we analyzethe distribution of the shrinkage and porosities in filling and solidification process, and simulate the distribution of stress and strain in the late solidification of casting. Then, the numerical simulation of heat treatment process for ZL114A Bending beam is realized according to the heat treatment parameters and the corresponding simulation results of temperature field, stress, strain, and aging performance are given. Finally, we verify that simulation platform for the through process of low-pressure casting and heat treatment can serve the production practice perfectly and provide technical guidance and process optimization for the through process of low-pressure casting and heat treatment. (paper)

  1. Reliable processing of graphene using metal etchmasks

    Peltekis Nikos

    2011-01-01

    Full Text Available Abstract Graphene exhibits exciting properties which make it an appealing candidate for use in electronic devices. Reliable processes for device fabrication are crucial prerequisites for this. We developed a large area of CVD synthesis and transfer of graphene films. With patterning of these graphene layers using standard photoresist masks, we are able to produce arrays of gated graphene devices with four point contacts. The etching and lift off process poses problems because of delamination and contamination due to polymer residues when using standard resists. We introduce a metal etch mask which minimises these problems. The high quality of graphene is shown by Raman and XPS spectroscopy as well as electrical measurements. The process is of high value for applications, as it improves the processability of graphene using high-throughput lithography and etching techniques.

  2. Method of processing radioactive metal wastes

    Inoue, Yoichi; Kitagawa, Kazuo; Tsuzura, Katsuhiko.

    1980-01-01

    Purpose: To enable long and safety storage for radioactive metal wastes such as used fuel cans after the procession or used pipe, instruments and the likes polluted with various radioactive substances, by compacting them to solidify. Method: Metal wastes such as used fuel cans, which have been cut shorter and reprocessed, are pressed into generally hexagonal blocks. The block is charged in a capsule of a hexagonal cross section made of non-gas permeable materials such as soft steels, stainless steels and the likes. Then, the capsule is subjected to static hydraulic hot pressing as it is or after deaeration and sealing. While various combinations are possible for temperature, pressure and time as the conditions for the static hydraulic hot pressing, dense block with no residual gas pores can be obtained, for example, under the conditions of 900 0 C, 1000 Kg/cm 2 and one hour where the wastes are composed of zircaloy. (Kawakami, Y.)

  3. Investment casting: parameters, application and recent development

    Zaid, A.I.O.

    2007-01-01

    Investment casting process, also referred to as the lost wax method and as precision casting, has been known for more than 6000 years. However, industry paid little attention to the process until the urgent military demands of World War 1 overtaxed the machine tool industry and short cuts were then needed to provide finished tools and precision parts, avoiding time-consuming in machining and assembly. The use of the process for the production of commercial casting has grown in the second half of the 20th century. The process is highly flexible and can handle great variety of parts which are difficult or even not possible to be produced by forging or other casting methods. In this paper, the investment casting process, its applications, advantages and limitations together with the parameters affecting it as related to pattern material, cluster, slurry and molten metal are given and discussed. Furthermore, the recent developments in the process particularly in manufacturing parts made of superalloys e.g nickel-base alloys are given and discussed. The striking fact that the process has advanced further in the last 60 years than it has in the previous 6000 years ensures that in the coming years of this century development in the process and its application will continue to advance in the interest of achieving higher quality and precision which can meet the critical performance standards being imposed. (author)

  4. Rapid die manufacturing - high pressure casting of low volume non ferrous metals components

    Pereira, MFV

    2006-11-01

    Full Text Available .csir.co.za Models of assembled Die Slide 12 © CSIR 2006 www.csir.co.za 3. Die manufacture, assembly and data capturing 21.521.521.525.5total 4electrode 3Fitting3Fitting3Fitting3Fitting 2Polish2Polish2Polish2Polish 7SER 3F grind3F grind...3F grind4F grind Heat trHeat trHeat tr1Heat tr Jig boreJig boreJig boreJig bore GrindingGrindingGrinding2Grinding 13.5DMLS13.5DMLS13.5DMLS2.5Milling HrsCostProcessHrsCostProcessHrsCostProcessHrsCostProcess Core 4Core 3Core 2Core 1 NB. Times...

  5. Effects of metallic Ti particles on the aging behavior and the influenced mechanical properties of squeeze-cast (SiCp+Ti)/7075Al hybrid composites

    Liu, Yixiong; Chen, Weiping; Yang, Chao; Zhu, Dezhi; Li, Yuanyuan

    2015-01-01

    The effects of metallic Ti particles on the aging behavior of squeeze-cast (SiC p +Ti)/7075Al hybrid composites and the mechanical properties of the aging treated composites were investigated. Results shown that the precipitation hardening of the hybrid composites during aging processes was delayed due to the segregation of solute Mg atoms in the vicinity of the Ti particles even though the activation energy of the η′ precipitates in the hybrid composites was reduced when compared with the Ti particle-free composites. The segregation of the solute Mg atoms was facilitated as a result of the high diffusivity paths formed by the generated dislocations in the matrix induced by the thermal misfit between the SiC particle and the matrix. The smaller activation energy for the hybrid composite may attribute to a significant reduction in the nucleation rate of the dislocation nucleated η′ precipitates compared with the Ti particle-free composite. After aging treated under the optimum aging conditions, the tensile strength of both composites was improved because of the precipitation hardening of the matrix alloy. In contrast with the reduced ductility of the traditional Ti particle-free composites after aging treatment, the ductility of the Ti particle-containing composites was improved as a result of the strengthened interfaces between the Ti particles and the matrix alloy

  6. Correlation vs. Causation: The Effects of Ultrasonic Melt Treatment on Cast Metal Grain Size

    J. B. Ferguson

    2014-10-01

    Full Text Available Interest in ultrasonic treatment of liquid metal has waxed and waned for nearly 80 years. A review of several experiments representative of ultrasonic cavitation treatment of Al and Mg alloys shows that the theoretical mechanisms thought to be responsible for grain refinement are (1 cavitation-induced increase in melting temperature predicted by the Clausius-Clapeyron equation and (2 cavitation-induced wetting of otherwise unwetted insoluble particles. Neither of these theoretical mechanisms can be directly confirmed by experiment, and though they remain speculative, the available literature generally assumes that one or the other or both mechanisms are active. However, grain size is known to depend on temperature of the liquid, temperature of the mold, and cooling rate of the entire system. From the reviewed experiments, it is difficult to isolate temperature and cooling rate effects on grain size from the theoretical effects. Ultrasonic treatments of Al-A356 were carried out to isolate such effects, and though it was found that ultrasound produced significant grain refinement, the treatments also significantly chilled the liquid and thereby reduced the pouring temperature. The grain sizes attained closely correlated with pouring temperature suggesting that ultrasonic grain refinement is predominantly a result of heat removal by the horn and ultrasonic stirring.

  7. Electron bombardment fusion and continuous casting of uranium carbide. Fundamental study of the metallurgical and thermal processes

    Trouve, J.

    1968-02-01

    During a pilot production run, about 1.200 kg of uranium carbide cylindrical rods were prepared by electron bombardment fusion and continuous casting in an apparatus making it possible to operate in a constant vacuum automatically. In order to make the most of the fusion technique used, it was necessary to resolve a certain number of problems involved in this production. It was found that the energy yield for the electron bombardment heating using accelerating voltages of about 10 kV was 100 per cent; about 40 per cent of the electrons are re-emitted by back-scattering. These electrons leave the surface with practically zero energy. The fusion technique leads to the elimination of the majority of the metallic impurities. In order to explain the variations in the non-metallic impurity contents the different reactions occurring in the molten uranium monocarbide have been determined. A micrographic study of the rods obtained has shown various types of crystallization depending on the rate of casting and, despite the uniaxial symmetry of the cooling, no texture has been observed, whatever the rate of fusion employed. The aspects of the fracture surfaces observed on certain rods can be explained by theory in the domain where the material is elastic. Furthermore it has been shown that a decrease in the brittleness occurs as a result of the formation of fine precipitates of the Wiedmanstatten structure type. (authors) [fr

  8. Casting of microstructured shark skin surfaces and possible applications on aluminum casting parts

    Todor Ivanov

    2011-02-01

    Full Text Available Within the project Functional Surfaces via Micro- and Nanoscaled Structures?which is part of the Cluster of Excellence 揑ntegrative Production Technology?established and financed by the German Research Foundation (DFG, an investment casting process to produce 3-dimensional functional surfaces down to a structural size of 1 μm on near-net-shape-casting parts has been developed. The common way to realize functional microstructures on metallic surfaces is to use laser ablation, electro discharge machining or micro milling. The handicap of these processes is their limited productivity. The approach of this project to raise the efficiency is to use the investment casting process to replicate microstructured surfaces by moulding from a laser-microstructured grand master pattern. The main research objective deals with the investigation of the single process steps of the investment casting process with regard to the moulding accuracy. Actual results concerning making of the wax pattern, suitability of ceramic mould and core materials for casting of an AlSi7Mg0.3 alloy as well as the knock-out behavior of the shells are presented. By using of the example of an intake manifold of a gasoline race car engine, a technical shark skin surface has been realized to reduce the drag of the intake air. The intake manifold consists of an air-restrictor with a defined inner diameter which is microstructured with technical shark skin riblets. For this reason the inner diameter cannot be drilled after casting and demands a very high accuracy of the casting part. A technology for the fabrication and demoulding of accurate microstructured castings are shown. Shrinkage factors of different moulding steps of the macroscopic casting part as well as the microscopic riblet structure have been examined as well.

  9. Crystallization characteristics of cast aluminum alloys during a unidirectional solidification process

    Okayasu, Mitsuhiro, E-mail: mitsuhiro.okayasu@utoronto.ca; Takeuchi, Shuhei

    2015-05-01

    The crystal orientation characteristics of cast Al–Si, Al–Cu and Al–Mg alloys produced by a unidirectional solidification process are examined. Two distinct crystal orientation patterns are observed: uniform and random formation. A uniform crystal orientation is created by columnar growth of α-Al dendrites in the alloys with low proportions of alloying element, e.g., the Al–Si alloy (with Si <12.6%) and the Al–Cu and Al–Mg alloys (with Cu and Mg <2%). A uniformly organized crystal orientation with [100] direction is created by columnar growth of α-Al dendrites. With increasing proportion of alloying element (>2% Cu or Mg), the uniform crystal orientations collapse in the Al–Cu and Al–Mg alloys, owing to interruption of the columnar α-Al dendrite growth as a result of different dynamics of the alloying atoms and the creation of a core for the eutectic phases. For the hypo-eutectic Al–Si alloys, a uniform crystal orientation is obtained. In contrast, a random orientation can be detected in the hyper-eutectic Al–Si alloy (15% Si), which results from interruption of the growth of the α-Al dendrites due to precipitation of primary Si particles. There is no clear effect of crystal formation on ultimate tensile strength (UTS), whereas crystal orientation does influence the material ductility, with the alloys with a uniform crystal orientation being elongated beyond their UTS points and with necking occurring in the test specimens. In contrast, the alloys with a nonuniform crystal orientation are not elongated beyond their UTS points.

  10. Crystallization characteristics of cast aluminum alloys during a unidirectional solidification process

    Okayasu, Mitsuhiro; Takeuchi, Shuhei

    2015-01-01

    The crystal orientation characteristics of cast Al–Si, Al–Cu and Al–Mg alloys produced by a unidirectional solidification process are examined. Two distinct crystal orientation patterns are observed: uniform and random formation. A uniform crystal orientation is created by columnar growth of α-Al dendrites in the alloys with low proportions of alloying element, e.g., the Al–Si alloy (with Si <12.6%) and the Al–Cu and Al–Mg alloys (with Cu and Mg <2%). A uniformly organized crystal orientation with [100] direction is created by columnar growth of α-Al dendrites. With increasing proportion of alloying element (>2% Cu or Mg), the uniform crystal orientations collapse in the Al–Cu and Al–Mg alloys, owing to interruption of the columnar α-Al dendrite growth as a result of different dynamics of the alloying atoms and the creation of a core for the eutectic phases. For the hypo-eutectic Al–Si alloys, a uniform crystal orientation is obtained. In contrast, a random orientation can be detected in the hyper-eutectic Al–Si alloy (15% Si), which results from interruption of the growth of the α-Al dendrites due to precipitation of primary Si particles. There is no clear effect of crystal formation on ultimate tensile strength (UTS), whereas crystal orientation does influence the material ductility, with the alloys with a uniform crystal orientation being elongated beyond their UTS points and with necking occurring in the test specimens. In contrast, the alloys with a nonuniform crystal orientation are not elongated beyond their UTS points

  11. METAL CHIP HEATING PROCESS INVESTIGATION (Part I

    O. M. Dyakonov

    2007-01-01

    Full Text Available The main calculation methods for heat- and mass transfer in porous heterogeneous medium have been considered. The paper gives an evaluation of the possibility to apply them for calculation of metal chip heating process. It has been shown that a description of transfer processes in a chip has its own specific character that is attributed to difference between thermal and physical properties of chip material and lubricant-coolant components on chip surfaces. It has been determined that the known expressions for effective heat transfer coefficients can be used as basic ones while approaching mutually penetrating continuums. A mathematical description of heat- and mass transfer in chip medium can be considered as a basis of mathematical modeling, numerical solution and parameter optimization of the mentioned processes.

  12. New process for weld metal reliability

    Hebel, A.G.

    1985-01-01

    The industry-wide nature of weld cracking alerts one to the possibility that there is a fundamental law being overlooked. And in overlooking this law, industry is unable to counteract it. That law mandates that restraint during welding causes internal stress; internal stress causes weld metal to crack. Component restraint during welding, according to the welding standard, is the major cause of weld metal failures. When the metal working industry accepts this fact and begins to counter the effects of restraint, the number of weld failures experienced fall dramatically. Bonal Technologies, inc., of Detroit, has developed the first consistently effective non-thermal process to relieve stress caused by restraint during welding. Bonal's patented Mets-Lax sub-resonant stress relief acts as a restraint neutralizer when used during welding. Meta-Lax weld conditioning produces a finer more uniform weld grain structure. A finer, more uniform grain structure is a clear metallurgical indication of improved mechanical weld properties. Other benefits like less internal stress, and less warpage are also achieved

  13. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅳ

    Zhou Jiyang

    2010-11-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  14. Colour Metallography of Cast Iron - Chapter 3: Spheroidal Graphite Cast Iron (Ⅰ

    Zhou Jiyang

    2010-02-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  15. Colour Metallography of Cast Iron - Chapter 4: Vermicular Graphite Cast Iron (Ⅱ

    Zhou Jiyang

    2011-05-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  16. Simulation of the metallic powders compaction process

    Prado, J.M.; Riera, M.D.

    1998-01-01

    The simulation by means of finite elements of the forming processes of mechanical components is a very useful tool for their design and validation. In this work, the simulation of the compaction of a metal powder is presented. The finite element software ABAQUS is used together with the modified CAM-clay plasticity model in order to represent the elastoplastic behaviour of the material. Density distributions are obtained and therefore the motion of the compaction punches which improve this distribution can be found. Stress distribution in the different parts of the mould can also be determined. (Author) 9 refs

  17. Effects of different cooling rates during two casting processes on the microstructures and mechanical properties of extruded Mg–Al–Ca–Mn alloy

    Xu, S.W.; Oh-ishi, K.; Kamado, S.; Takahashi, H.; Homma, T.

    2012-01-01

    Highlights: ► Ordered monolayer GP zone was formed by increasing cooling rate. ► Finer extruded microstructure was obtained by increasing cooling rate. ► Higher number density precipitates was obtained by increasing cooling rate. ► Tensile 0.2% proof stress was increased by 105 MPa by increasing cooling rate. ► Extruded DC-cast alloy shows higher tensile 0.2% proof stress of 409 MPa. - Abstract: In this study, Mg–3.6Al–3.4Ca–0.3Mn (wt.%) (which is denoted AXM4303) alloy ingots were prepared by two casting processes with different cooling rates: permanent mold (PM) casting, which has a lower cooling rate of 10–20 °C/s and direct chill (DC) casting, which has a higher cooling rate of 100–110 °C/s. Then, these two types of AXM4303 alloy ingots were hot extruded at 400 °C under the same conditions. The microstructures of the as-cast and extruded alloy samples were systematically investigated by field-emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and electron backscattered diffraction (EBSD) systems. The effects of the different cooling rates during the casting process on the microstructures and mechanical properties of the extruded AXM4303 alloy samples were evaluated. The results show that the strength of the extruded Mg–Al–Ca–Mn alloy can be substantially increased by microstructural control during the casting process. Because the cooling rate of the DC casting process is much faster than the cooling rate of PM casting, the DC-cast AXM4303 has the following properties: (i) the lamellar eutectic structure and dendrite cell size are significantly refined, (ii) the ordered monolayer GP zones enriched with Al and Ca nucleate with no growth, and (iii) most of the Mn remains in solution in the matrix. Thus, after hot extrusion, the DC-cast AXM4303 has finer dynamically recrystallized (DRXed) grain size, finer and more uniformly distributed fragmented eutectic particles, finer planar Al 2 Ca precipitates

  18. Microstructure and mechanical properties of AM50 alloy according to thickness and forming condition of the products by a high pressure die-casting process

    Park, Joon Hong [Dong-A University, Busan (Korea, Republic of); Kang, Chung Gil [Pusan National University, Busan (Korea, Republic of)

    2013-10-15

    In recent years, Magnesium (Mg) and its alloys have become a center of special interest in the automotive industry. Due to their high specific mechanical properties, they offer a significant weight saving potential in modern vehicle constructions. Most Mg alloys show very good machinability and processability, and even the most complicated die casting parts can be easily produced. The die casting process is a fast production method capable of a high degree of automation for which certain Mg alloys are ideally suited. Although Mg alloys are fulfilling the demands for low specific weight materials with excellent machining and casting abilities, they are still not used in die casting process to the same extent as the competing material aluminum. One of the reasons is that effects of various forming variables for die casting process is not closely examined from the viewpoint of die design. In this study, step die and flowability tests for AM50 were performed by die casting process according to various combination of casting pressure and plunger velocity. Microstructure, Vickers hardness and tensile tests were examined and performed for each specimen to verify effects of forming conditions.

  19. Machinability and Tribological Properties of Stir Cast LM6/SiC/GR Hybrid Metal Matrix Composite

    Tahat Montasser S.

    2016-01-01

    Full Text Available Analysis on machining characteristics in turning of LM6/SiC/Gr hybrid metal matrix composites is made of (Al-11.8%Si/SiC/Gr hybrid metal matrix composites. The process performances such as porosity, wear rate of the composites, tool wear, tool life, specific modulus, surface roughness and material removal rate with equal weight fraction of SiC and Gr particulates of 3%, 7%, 10% and 13% reinforcement are investigated. This experimental analysis and test results on the machinability of Al/SiCMMC will provide essential guidelines to the manufacturers. Hybird metal matrix composites reinforced with graphite particles posses better machinability and tribological properties.

  20. Semi-solid twin-roll casting process of magnesium alloy sheets

    Watari, H.; Davey, K.; Rasgado, M.T. Alonso; Haga, T.; Koga, N.

    2004-01-01

    An experimental approach has been performed to ascertain the effectiveness of semi-solid strip casting using a horizontal twin roll caster. The demand for light-weight products with high strength has grown recently due to the rapid development of automobile and aircraft technology. One key to such development has been utilization of magnesium alloys, which can potentially reduce the total product weight. However, the problems of utilizing magnesium alloys are still mainly related to high manufacturing cost. One of the solutions to this problem is to develop magnesium casting-rolling technology in order to produce magnesium sheet products at competitive cost for commercial applications. In this experiment, magnesium alloy AZ31B was used to ascertain the effectiveness of semi-solid roll strip casting for producing magnesium alloy sheets. The temperature of the molten magnesium, and the roll speeds of the upper and lower rolls, (which could be changed independently), were varied to find an appropriate manufacturing condition. Rolling and heat treatment conditions were changed to examine which condition would be appropriate for producing wrought magnesium alloys with good formability. Microscopic observation of the crystals of the manufactured wrought magnesium alloys was performed. It has been found that a limiting drawing ratio of 2.7 was possible in a warm deep drawing test of the cast magnesium alloy sheets after being hot rolled

  1. Developments of steel fabrication processes for castings and ingots for forgings

    Fernandez, S.

    1980-01-01

    This chapter deals with a series of technological developments in the manufacture of steels which have occurred during the last years, in particular reporting the results obtained in Reinosa with some of these methods in the fabrication of castings as well as forgings and rolled products. (author)

  2. An alternative section method for casting and posterior laser welding of metallic frameworks for an implant-supported prosthesis.

    de Aguiar, Fábio Afrânio; Tiossi, Rodrigo; Rodrigues, Renata Cristina Silveira; Mattos, Maria de Gloria Chiarello; Ribeiro, Ricardo Faria

    2009-04-01

    The aim of this study was to compare the accuracy of fit of three types of implant-supported frameworks cast in Ni-Cr alloy: specifically, a framework cast as one piece compared to frameworks cast separately in sections to the transverse or the diagonal axis, and later laser welded. Three sets of similar implant-supported frameworks were constructed. The first group of six 3-unit implant-supported frameworks were cast as one piece, the second group of six were sectioned in the transverse axis of the pontic region prior to casting, and the last group of six were sectioned in the diagonal axis of the pontic region prior to casting. The sectioned frameworks were positioned in the matrix (10 N.cm torque) and laser welded. To evaluate passive fit, readings were made with an optical microscope with both screws tightened and with only one-screw tightened. Data were submitted to ANOVA and Tukey-Kramer's test (p screws were tightened, no differences were found between the three groups (p > 0.05). In the single-screw-tightened test, with readings made opposite to the tightened side, the group cast as one piece (57.02 +/- 33.48 mum) was significantly different (p 0.05) from the group transversally sectioned (31.42 +/- 20.68 microm). On the tightened side, no significant differences were found between the groups (p > 0.05). Results of this study showed that casting diagonally sectioned frameworks lowers misfit levels of prosthetic implant-supported frameworks and also improves the levels of passivity to the same frameworks when compared to structures cast as one piece.

  3. An eco design strategy for high pressure die casting components: microstructural analysis applied to mass reducing processes

    Suarez-Pena, B.; Asensio-Lozano, J.

    2009-01-01

    In this work the study focused on the possibility of use of new aluminium alloys with optimized microstructures that ensure the mechanical properties requested for cast components made by high pressure die casting. The objective was to check the possibility of manufacture of structurally sound eco-steps for escalators with reduced structural integrity. The former arises as a result of a new redesign of the traditional steps aiming at a significant weight reduction. The experimental results show that it is feasible to cut the use of materials during processing and therefore to reduce the impact of the components during its lifetime, whilst the performance and safety standards are kept identical or even improved. (Author) 17 refs

  4. Dimensional control of die castings

    Karve, Aniruddha Ajit

    The demand for net shape die castings, which require little or no machining, is steadily increasing. Stringent customer requirements are forcing die casters to deliver high quality castings in increasingly short lead times. Dimensional conformance to customer specifications is an inherent part of die casting quality. The dimensional attributes of a die casting are essentially dependent upon many factors--the quality of the die and the degree of control over the process variables being the two major sources of dimensional error in die castings. This study focused on investigating the nature and the causes of dimensional error in die castings. The two major components of dimensional error i.e., dimensional variability and die allowance were studied. The major effort of this study was to qualitatively and quantitatively study the effects of casting geometry and process variables on die casting dimensional variability and die allowance. This was accomplished by detailed dimensional data collection at production die casting sites. Robust feature characterization schemes were developed to describe complex casting geometry in quantitative terms. Empirical modeling was utilized to quantify the effects of the casting variables on dimensional variability and die allowance for die casting features. A number of casting geometry and process variables were found to affect dimensional variability in die castings. The dimensional variability was evaluated by comparisons with current published dimensional tolerance standards. The casting geometry was found to play a significant role in influencing the die allowance of the features measured. The predictive models developed for dimensional variability and die allowance were evaluated to test their effectiveness. Finally, the relative impact of all the components of dimensional error in die castings was put into perspective, and general guidelines for effective dimensional control in the die casting plant were laid out. The results of

  5. design, construction and performance evaluation of multiple casting

    eobe

    time taken for solidification, plays an important role in the casting. There should not ... Keywords: Design, Construction, Multiple casting machine, Compo Casting operation. 1. Introduction .... metal and pathway channel pipe with heater is used.

  6. Casting materials

    Chaudhry, Anil R [Xenia, OH; Dzugan, Robert [Cincinnati, OH; Harrington, Richard M [Cincinnati, OH; Neece, Faurice D [Lyndurst, OH; Singh, Nipendra P [Pepper Pike, OH

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  7. Pyrolisator Coal to be Cokes (Coal Cokes Casting Metal Industry Standard

    Sukamto

    2016-01-01

    Full Text Available Pyrolisis of coal is partial combustion to reduce total moisture, volatile matter and sulfur contens and increase the calorific value of coal. The results of pyrolysis of coal is coke. At the laboratory level studies, pyrolisis done in batch using different calorie, namely 5800, 6000, 6300 kcal/kg and a time of 15-60 minutes and the temperature 400-800°C. Maximum results obtained total moisture (0.44%, fixed carbon (89%, volatile matter (2.4%, sulfur content (undetected and ash (7.2%. Then applied to the scale miniplant with continuous processes using multitube pyrolisator which are designed to operate in the temperature range 400-800°C and a flow rate of 240-730 kg/h, obtained coal cokes that meets industry quality standards, namely TM (0.42%, FC (90.40%, VM (2.16%, S (not detected, Ash (6.8% incalori 6300 kcal/h, a flow rate of 240 kg / h and temperatures between 600-700°C

  8. Investigation of Shrinkage Defect in Castings by Quantitative Ishikawa Diagram

    Chokkalingam B.

    2017-03-01

    Full Text Available Metal casting process involves processes such as pattern making, moulding and melting etc. Casting defects occur due to combination of various processes even though efforts are taken to control them. The first step in the defect analysis is to identify the major casting defect among the many casting defects. Then the analysis is to be made to find the root cause of the particular defect. Moreover, it is especially difficult to identify the root causes of the defect. Therefore, a systematic method is required to identify the root cause of the defect among possible causes, consequently specific remedial measures have to be implemented to control them. This paper presents a systematic procedure to identify the root cause of shrinkage defect in an automobile body casting (SG 500/7 and control it by the application of Pareto chart and Ishikawa diagram. with quantitative Weightage. It was found that the root causes were larger volume section in the cope, insufficient feeding of riser and insufficient poured metal in the riser. The necessary remedial measures were taken and castings were reproduced. The shrinkage defect in the castings was completely eliminated.

  9. TECHNOLOGICAL PECULIARITIES O F MELTING AND OUT-OF-FURNACE PROCESSING OF BALANCED STEELS IN CONDITIONS OF ELECTRIC FURNACE STEELMAKING AND CONTINUOUS CASTING

    S. V. Terletski

    2007-01-01

    Full Text Available The technological peculiarities of melting and out-of-furnace processing of balanced steels in conditions of electric furnace steelmaking and continuous cast of RUP “BMZ” are considered.

  10. Spall behavior of cast iron with varying microstructures

    Plume, Gifford; Rousseau, Carl-Ernst

    2014-01-01

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94–1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  11. Spall behavior of cast iron with varying microstructures

    Plume, Gifford; Rousseau, Carl-Ernst, E-mail: rousseau@uri.edu [Mechanical Engineering, University of Rhode Island, 92 Upper College Rd., Kingston, Rhode Island 02881 (United States)

    2014-07-21

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94–1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  12. Numerical study of crucial parameters in tilt casting for titanium aluminides

    Hong Wang

    2011-08-01

    Full Text Available Numerical modeling of the tilt casting process for TiAl alloys was investigated to achieve a tranquil mould filling and TiAl castings free of defects. Titanium alloys are very reactive in molten state, so they are widely melted in cold crucible, e.g. the Induction Skull Melting (ISM furnace. Then the crucible holding the molten metal together with the mould is rotated to transfer the metal into the mould — ISM+ tilt casting. This paper emphasizes the effect of crucial parameters on mould filling and solidification of the castings during tilt casting. All crucial parameters, such as rotation rate, rotation profile, venting, initial mould temperature, casting orientation, feeder design, change of radius in 'T' junction and mould insulation have been discussed using numerical modeling data. Simulations were performed using a 3D CFD code PHYSICA implemented with front tracking, heat transfer algorithms and a turbulence model (which accounts for an advancing solid front.

  13. Process for the disposal of alkali metals

    Lewis, L.C.

    1979-01-01

    The invention describes a method of disposing of alkali metals by forming a solid waste for storage. The method comprises preparing an aqueous disposal solution of at least 55 weight percent alkali metal hydroxide, heating the alkali metal to melting temperature to form a feed solution, and spraying the molten feed solution into the disposal solution. The alkali metal reacts with the water in the disposal solution in a controlled reaction which produces alkali metal hydroxide, hydrogen and heat and thereby forms a solution of alkali metal hydroxides. Water is added to the solution in amounts sufficient to maintain the concentration of alkali metal hydroxides in the solution at 70 to 90 weight percent, and to maintain the temperature of the solution at about the boiling point. Removing and cooling the alkali metal hydroxide solution thereby forms a solid waste for storage. The method is particularly applicable to radioactive alkali metal reactor coolant. (auth)

  14. Metal processing with ultrashort laser pulses

    Banks, Paul S.; Felt, M. D.; Komashko, Aleksey M.; Perry, Michael D.; Rubenchik, Alexander M.; Stuart, Brent C.

    2000-08-01

    Femtosecond laser ablation has been shown to produce well-defined cuts and holes in metals with minimal heat effect to the remaining material. Ultrashort laser pulse processing shows promise as an important technique for materials processing. We will discuss the physical effects associated with processing based experimental and modeling results. Intense ultra-short laser pulse (USLP) generates high pressures and temperatures in a subsurface layer during the pulse, which can strongly modify the absorption. We carried out simulations of USLP absorption versus material and pulse parameters. The ablation rate as function of the laser parameters has been estimated. Since every laser pulse removes only a small amount of material, a practical laser processing system must have high repetition rate. We will demonstrate that planar ablation is unstable and the initially smooth crater bottom develops a corrugated pattern after many tens of shots. The corrugation growth rate, angle of incidence and the polarization of laser electric field dependence will be discussed. In the nonlinear stage, the formation of coherent structures with scales much larger than the laser wavelength was observed. Also, there appears to be a threshold fluence above which a narrow, nearly perfectly circular channel forms after a few hundred shots. Subsequent shots deepen this channel without significantly increasing its diameter. The role of light absorption in the hole walls will be discussed.

  15. Laser Processing of Metals and Polymers

    Singaravelu, Senthilraja [Old Dominion Univ., Norfolk, VA (United States)

    2012-05-01

    A laser offers a unique set of opportunities for precise delivery of high quality coherent energy. This energy can be tailored to alter the properties of material allowing a very flexible adjustment of the interaction that can lead to melting, vaporization, or just surface modification. Nowadays laser systems can be found in nearly all branches of research and industry for numerous applications. Sufficient evidence exists in the literature to suggest that further advancements in the field of laser material processing will rely significantly on the development of new process schemes. As a result they can be applied in various applications starting from fundamental research on systems, materials and processes performed on a scientific and technical basis for the industrial needs. The interaction of intense laser radiation with solid surfaces has extensively been studied for many years, in part, for development of possible applications. In this thesis, I present several applications of laser processing of metals and polymers including polishing niobium surface, producing a superconducting phase niobium nitride and depositing thin films of niobium nitride and organic material (cyclic olefin copolymer). The treated materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), atomic force microscopy (AFM), high resolution optical microscopy, surface profilometry, Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD). Power spectral density (PSD) spectra computed from AFM data gives further insight into the effect of laser melting on the topography of the treated niobium.

  16. Catalytic extraction processing of contaminated scrap metal

    Griffin, T.P.; Johnston, J.E.; Payea, B.M. [Molten Metal Technology, Inc., Waltham, MA (United States)] [and others

    1995-10-01

    The U.S. Department of Energy issued a Planned Research and Development Announcement (PRDA) in 1993, with the objective of identifying unique technologies which could be applied to the most hazardous waste streams at DOE sites. The combination of radioactive contamination with additional contamination by hazardous constituents such as those identified by the Resource Conservation and Recovery Act (RCRA) pose an especially challenging problem. Traditional remediation technologies are increasingly becoming less acceptable to stakeholders and regulators because of the risks they pose to public health and safety. Desirable recycling technologies were described by the DOE as: (1) easily installed, operated, and maintained; (2) exhibiting superior environmental performance; (3) protective of worker and public health and safety; (4) readily acceptable to a wide spectrum of evaluators; and (5) economically feasible. Molten Metal Technology, Inc. (MMT) was awarded a contract as a result of the PRDA initiative to demonstrate the applicability of Catalytic Extraction Processing (CEP), MMT`s proprietary elemental recycling technology, to DOE`s inventory of low level mixed waste. This includes DOE`s inventory of radioactively- and RCRA-contaminated scrap metal and other waste forms expected to be generated by the decontamination and decommissioning (D&D) of DOE sites.

  17. Catalytic extraction processing of contaminated scrap metal

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.

    1995-01-01

    The U.S. Department of Energy issued a Planned Research and Development Announcement (PRDA) in 1993, with the objective of identifying unique technologies which could be applied to the most hazardous waste streams at DOE sites. The combination of radioactive contamination with additional contamination by hazardous constituents such as those identified by the Resource Conservation and Recovery Act (RCRA) pose an especially challenging problem. Traditional remediation technologies are increasingly becoming less acceptable to stakeholders and regulators because of the risks they pose to public health and safety. Desirable recycling technologies were described by the DOE as: (1) easily installed, operated, and maintained; (2) exhibiting superior environmental performance; (3) protective of worker and public health and safety; (4) readily acceptable to a wide spectrum of evaluators; and (5) economically feasible. Molten Metal Technology, Inc. (MMT) was awarded a contract as a result of the PRDA initiative to demonstrate the applicability of Catalytic Extraction Processing (CEP), MMT's proprietary elemental recycling technology, to DOE's inventory of low level mixed waste. This includes DOE's inventory of radioactively- and RCRA-contaminated scrap metal and other waste forms expected to be generated by the decontamination and decommissioning (D ampersand D) of DOE sites

  18. Development of industry processes simulators. Part II (continuous casting); Desarrollo de simuladores para procesos industriales. Parte II (Colada continua)

    Ramirez, A.; Mosqueda, A.; Sauce, V.; Morales, R.; Ramos, A.; Solario, G.

    2006-07-01

    The understanding of steel thermal behavior is very important in order to take care the quality of the products like billets and slabs due to these; this work shows the joint of a subroutine to simulate the heat transfer conditions during the continuous casting process to the model for simulating the process described by the present authors in a previous work; the result is the temperature profiles and surface temperature graphics of the steel, then they are compared with data carried out or real operating conditions. (Author). 15 refs.

  19. Rheologic behaviors of A356 aluminum alloy billet produced by semisolid continuous casting process

    Shuming XING

    2004-08-01

    Full Text Available The experiments for rheologic behaviors of semisolid continous casting billets of A356 alloy in semisolid state has been carried out with a multifunctional rheometer. The results show that the deformation rate increases with loading time, the maximum strain reaches 120% (which is one time larger than that of traditional casting billet and the strain can be rapidly eliminated to 10% after unloading. Moreover, there is a critic stress for billet deformation even in semisolid state, which is named as critic shear stress. This stress increases with the decreasing of heating time. The rheologic behaviors can be expressed by five elements mechanical model and can be modified with the increasing of heating time.

  20. Anisotropic Responses of Mechanical and Thermal Processed Cast Al-Si-Mg-Cu Alloy

    Adeosun, S. O.; Akpan, E. I.; Balogun, S. A.; Onoyemi, O. K.

    2015-05-01

    The effects of ambient directional rolling and heat treatments on ultimate tensile strength (UTS), hardness (HD), percent elongation (PE), and impact energy (IE) on Al-Si-Mg-Cu alloy casting with reference to inclination to rolling direction are discussed in this article. The results show that rolled and quenched (CQ) sample possess superior UTS and HD to as-cast and those of rolled and aged samples (CA). Improved IE resistance with ductility is shown by both CQ and CA samples. However, these mechanical properties are enhanced as changes in the test sample direction moved away from rolling direction for all heat-treated samples. The CQ samples displayed highest tensile strength (108 MPa) and PE (19.8%) in the 90° direction.

  1. Study of the precipitation hardening process in recycled Al-Si-Cu cast alloys

    Kuchariková L.

    2017-03-01

    Full Text Available The formation of extremely small uniformly dispersed particles of a second phase within the original phase matrix during heat treatment changed material properties. Therefore the characterization of precipitation had been investigated using high resolution transmission electron microscopy (TEM and electron diffraction of thin foils for an AlSi9Cu3 cast alloy. For investigation the hardening effect onto mechanical properties of aluminium cast was used heat treatment, which consisted from solution treatment at 515°C / 4 hours (h, followed by quenching into water with temperature 50°C and artificial aging using different temperatures 170°C and 190°C with different holding time 2, 4, 8, 16, and 32 hours. The observations of microstructure and substructure reveals that precipitation hardening has caused great changes in size, morphology and distributions of structural components, the formation of precipitates of Cu phases, and the change of mechanical properties as well.

  2. Processes and material flow in spoilbank sediments - Zwenkau, Cospuden and Espenhain open-cast mines; Prozesse und Stoffstroeme in Kippensedimenten - Tagebaue Zwenkau, Cospuden und Espenhain. Beitraege

    Glaesser, W.; Strauch, G.; Schreck, P.; Bozau, E. [comps.

    1999-07-01

    Open-cast mining has caused complete destruction of the quarternary and tertiary bedrock in mining regions, including destruction of the aquifers formerly used for freshwater and service water supply. The large-area, long-term lowering of the groundwater level resulted in irreversible changes in the minerals and materials concentrations in the aquifers. Filling-up of open-cast mines with overburden material resulted in spoilbanks with complex structures and heterogeneous hydraulic properties which may affect the quality of the groundwater and surface water systems in the long run. So far, descriptions of the hydrological processes in spoilbanks and of the acidification processes, minerals reforming processes and metal mobilisations are based on the assumption of homogeneous water flow in the dumped sediments which can be no more than a rough approximation. In particular, the geochemical and hydraulic long-term behaviour of the spoilbanks (stability, effects on new groundwater formation, water quality) are considered in none of the available models. [German] Der offene Braunkohlebergbau hatten in den bergbaulich betroffenen Regionen durch die vollstaendige Massenumsetzung des quartaeren und tertiaeren Deckgebirges eine Zerstoerung der ehemals fuer Trink- und Brauchwasser genutzten Grundwasserleiter zur Folge. Die grossraeumige und langandauernde Grundwasserabsenkung fuehrte zu nachfolgend irreversiblen Veraenderungen des Mineral- und Stoffbestandes in den Aquiferen. Die Fuellung der Tagebaue mit Abraummaterial erzeugt Kippenkoerper mit komplizierter Schuettungsstruktur und heterogenen hydraulischen Eigenschaften, die langfristig die Qualitaet der Grund- und Oberflaechenwasser-Systeme beeinflussen werden. Die bisherigen Vorstellungn zum hydrologischen Geschehen in Kippenkoerpern und den mit dem Grundwasseranstieg einhergehenden Versauerungserscheinungen, Mineralumbildungen und Metallmobilisierungen gehen von einem homogenen Wasserfluss in den geschuetteten Sedimenten

  3. Influence of refining process on the porosity of high pressure die casting alloy Al-Si

    A.W. Orlowicz

    2009-04-01

    Full Text Available This study presents research results of the influence that refining and transfer of AlSi12S alloy on the porosity of high pressure diecastings.Tests were conducted under production conditions of Die-casting Foundry META-ZEL Sp z o.o. The operation of refining was conducted in a melting furnace, with the use of an FDU Mini Degasser. Decay of the refining effect was assessed by evaluating the porosity content and metallographic examination.

  4. PROCESSING OF CONCENTRATED AQUEOUS ZIRCONIA-BIOGLASS SLIPS BY SLIP CASTING

    Beltina Leon

    2017-03-01

    Full Text Available 3 mol% yttria-partially stabilized zirconia (Y-TZP powder and a sol-gel derived CaO- P₂O₅- SiO₂ (64S bioglass, were used to produce Y-TZP- bioglass slip cast compacts. The rheological properties of concentrated aqueous Y-TZP- 64S suspensions prepared with two different glass contents: 10.5 vol% and 19.9 vol%, and ammonium polyacrylate (NH₄PA as dispersant, were investigated and compared with those of Y-TZP. The density of green cast samples was related to the degree of slip dispersion. The substitution of Y-TZP by 64S glass in the mixtures resulted in greater adsorption of NH₄PA; however, the viscosity and yield stress values of Y-TZP-64S slips were higher than those of Y-TZP ones for the solid loadings studied. The increase in the glass content from 10.5 to 19.9 vol% increased the viscosity and yield stress values. The presence of 64S glass in the mixtures resulted in a less dense packing of cast samples.

  5. Metal Compression Forming of aluminum alloys and metal matrix composites

    Viswanathan, S.; Ren, W.; Porter, W.D.; Brinkman, C.R.; Sabau, A.S.; Purgert, R.M.

    2000-02-01

    Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. However, the MCF process applies pressure on the entire mold face, thereby directing pressure on all regions of the casting and producing a uniformly sound part. The process is capable of producing parts with properties close to those of forgings, while retaining the near net shape, complexity in geometry, and relatively low cost of the casting process.

  6. Process for the enhanced capture of heavy metal emissions

    Biswas, Pratim; Wu, Chang-Yu

    2001-01-01

    This invention is directed to a process for forming a sorbent-metal complex. The process includes oxidizing a sorbent precursor and contacting the sorbent precursor with a metallic species. The process further includes chemically reacting the sorbent precursor and the metallic species, thereby forming a sorbent-metal complex. In one particular aspect of the invention, at least a portion of the sorbent precursor is transformed into sorbent particles during the oxidation step. These sorbent particles then are contacted with the metallic species and chemically reacted with the metallic species, thereby forming a sorbent-metal complex. Another aspect of the invention is directed to a process for forming a sorbent metal complex in a combustion system. The process includes introducing a sorbent precursor into a combustion system and subjecting the sorbent precursor to an elevated temperature sufficient to oxidize the sorbent precursor and transform the sorbent precursor into sorbent particles. The process further includes contacting the sorbent particles with a metallic species and exposing the sorbent particles and the metallic species to a complex-forming temperature whereby the metallic species reacts with the sorbent particles thereby forming a sorbent-metal complex under UV irradiation.

  7. Effect of metal properties of casts of steel-15Kh1M1FL on the crack resistance at 565 deg C

    Gladshtejn, V.I.; Sheshenev, M.F.

    1976-01-01

    Results are given of prolonged tests of the metal of industrial casts with various fluidity limits. It has been shown experimentally that a quite satisfactory crack resistance is characteristic of a metal with a fluidity limit in the range 30-50 kgf/mm 2 . Metallographic studies have been conducted. Upon variation of the structure and properties of the 15Kh1M1FL steel during operation, the rate of growth of small cracks (up to 2.0 mm) decreases almost by 3 orders of ten (from 1.4x10 -4 to 2.0x10 -7 mm/hour). Subsequent structural changes during prolonged operation (over 50000 hours) result in a gradual increase in the rate of crack growth. At the same time resistance towards appearance of the impermissible high rate of the crack growth, Ksub(10sup(-3)), diminishes monotonically with the operation time. The metal of industrial 15Kh1M1FL steel casts has good crack resistance (Ksub(10sup(-3)) =30-70 kgf/mmsup(3/2) and Vsub(ef) =) kgf/mm 2 ) and a satisfactory local plasticity (critical opening being no more than 0.20 mm for 10 3 hours)

  8. Wear study of Al-SiC metal matrix composites processed through microwave energy

    Honnaiah, C.; Srinath, M. S.; Prasad, S. L. Ajit

    2018-04-01

    Particulate reinforced metal matrix composites are finding wider acceptance in many industrial applications due to their isotropic properties and ease of manufacture. Uniform distribution of reinforcement particulates and good bonding between matrix and reinforcement phases are essential features in order to obtain metal matrix composites with improved properties. Conventional powder metallurgy technique can successfully overcome the limitation of stir casting techniques, but it is time consuming and not cost effective. Use of microwave technology for processing particulate reinforced metal matrix composites through powder metallurgy technique is being increasingly explored in recent times because of its cost effectiveness and speed of processing. The present work is an attempt to process Al-SiC metal matrix composites using microwaves irradiated at 2.45 GHz frequency and 900 W power for 10 minutes. Further, dry sliding wear studies were conducted at different loads at constant velocity of 2 m/s for various sliding distances using pin-on-disc equipment. Analysis of the obtained results show that the microwave processed Al-SiC composite material shows around 34 % of resistance to wear than the aluminium alloy.

  9. Fabrication of Meso-Porous Gamma-Alumina Films by Sol-Gel and Gel Casting Processes for Making Moisture Sensors

    Kalyan Kumar Mistry

    2007-04-01

    Full Text Available Meso-porous g-Al2O3 film may be used as a highly sensitive trace moisture sensor. The crack-free alumina film was developed using a combination of sol-gel and tape casting processes, which produce high porosity, high surface area and small pore dimensions in the range of few nano-meter at uniform distribution. Sol-gel processes are well known in nano-technology and nano-material preparation, but it is difficult to make crack-free thick or thin films using this method. Tape cast methods are used for the fabrication of flexible crack-free thick ceramic sheets. Our objective was to develop nano-structured, crack-free, transparent Al2O3 film a few microns thick, has a highly porous and stable crystallographic nature. A metallic paste was printed by screen printing on both side of the film surface for electrodes to form a sensitive element. A silver wire (dia j=0.1mm lead was connected to a grid structure electrode using a silver paste spot for fine joining. Alumina is absorbs moisture molecules into its meso-porous layer and changes its electrical characteristics according to the moisture content, its dielectric constant increase as moisture increase. Moisture molecules can be conceived of as dipoles in random state before the application of an electric field. When the dipole orientation was changed from random to an equilibrium state under the application of external field, a large change in dielectric constant was observed. The number of water molecules absorbed determines the electrical impedance of the capacitor, which in turn is proportional to water vapor pressure.

  10. Characterization of fold defects in AZ91D and AE42 magnesium alloy permanent mold castings

    Bichler, L.; Ravindran, C.

    2010-01-01

    Casting premium-quality magnesium alloy components for aerospace and automotive applications poses unique challenges. Magnesium alloys are known to freeze rapidly prior to filling a casting cavity, resulting in misruns and cold shuts. In addition, melt oxidation, solute segregation and turbulent metal flow during casting contribute to the formation of fold defects. In this research, formation of fold defects in AZ91D and AE42 magnesium alloys cast via the permanent mold casting process was investigated. Computer simulations of the casting process predicted the development of a turbulent metal flow in a critical casting region with abrupt geometrical transitions. SEM and light optical microscopy examinations revealed the presence of folds in this region for both alloys. However, each alloy exhibited a unique mechanism responsible for fold formation. In the AZ91D alloy, melt oxidation and velocity gradients in the critical casting region prevented fusion of merging metal front streams. In the AE42 alloy, limited solubility of rare-earth intermetallic compounds in the α-Mg phase resulted in segregation of Al 2 RE particles at the leading edge of a metal front and created microstructural inhomogeneity across the fold.

  11. Morphology and Precipitation Kinetics of MnS in Low-Carbon Steel During Thin Slab Continuous Casting Process

    YU Hao; KANG Yong-lin; ZHAO Zheng-zhi; SUN Hao

    2006-01-01

    The morphology of manganese sulfide formed during thin slab continuous casting process in low-carbon steel produced by compact strip production (CSP) technique was investigated. Using transmission electron microscopy analysis, it was seen that a majority of manganese sulfides precipitated at austenite grain boundaries, the morphologies of which were spherical or close to the spherical shape and the size of MnS precipitates ranged from 30 nm to 100 nm. A mathematical model of the manganese sulfide precipitation in this process was developed based on classical nucleation theory. Under the given conditions, the starting and finishing precipitation temperatures of MnS in the continuous casting thin slab of the studied low-carbon steel are 1 189 ℃ and 1 171 ℃, respectively, and the average diameter of MnS precipitates is about 48 nm within this precipitation temperature range. The influences of chemical components and thermo-mechanical processing conditions on the precipitation behavior of MnS in the same process were also discussed.

  12. Effect of Bi modification treatment on microstructure, tensile properties, and fracture behavior of cast Al-Mg2Si metal matrix composite

    Wu Xiaofeng

    2013-01-01

    Full Text Available Bi has a good modification effect on the hypoeutectic Al-Si alloy, and the morphology of eutectic Si changes from coarse acicular to fine fibrous. Based on the similarity between Mg2Si and Si phases in crystalline structure and crystallization process, the present study investigated the effects of different concentrations of Bi on the microstructure, tensile properties, and fracture behavior of cast Al-15wt.%Mg2Si in-situ metal matrix composite. The results show that the addition of the proper amount of Bi has a significant modification effect on both primary and eutectic Mg2Si in the Al-15wt.%Mg2Si composite. With an increase in Bi content from 0 to 1wt.%, the morphology of the primary Mg2Si is changed from irregular or dendritic to polyhedral shape; and its average particle size is significantly decreased from 70 to 6 μm. Moreover, the morphology of the eutectic Mg2Si phase is altered from flake-like to very short fibrous or dot-like. When the Bi addition exceeds 4.0wt.%, the primary Mg2Si becomes coarse again. However, the eutectic Mg2Si still exhibits the modified morphology. Tensile tests reveal that the Bi addition can improve the tensile strength and ductility of the material. Compared with those of the unmodified composite, the ultimate tensile strength and percentage elongation after fracture with 1.0wt.% Bi increase 51.2% and 100%, respectively. At the same time, the Bi addition changes the fracture behavior from brittle to ductile.

  13. Casting thermal simulation

    Shamsuddin bin Sulaiman

    1994-01-01

    The whole of this study is concerned with process simulation in casting processes. This study describes the application of the finite element method as an aid to simulating the thermal design of a high pressure die casting die by analysing the cooling transients in the casting cycle. Two types of investigation were carried out to model the linear and non-linear cooling behavior with consideration of a thermal interface effect. The simulated cooling for different stages were presented in temperature contour form. These illustrate the successful application of the Finite Element Method to model the process and they illustrate the significance of the thermal interface at low pressure

  14. Potensi Pasir Lokal Tanjung Bintang Pada Aluminium Sand Casting Terhadap Porositas Produk Hasil Cor Aluminium

    Hendronursito, Yusup; Prayanda, Yogi

    2016-01-01

    Green sand is one of the most important components in the process of metal casting. The sand in Indonesia region is varied level of subtlety, size of sand, and shape of sand. Green sand used in the process of metal casting is possible can affect the quality of casting product. This aims to determine the potential of Tanjung Bintang sand as green sand and the quality of the product in terms of porosity defects. The research was conducted by varying sand river from Tanjung Bintang and sand from...

  15. Algorithm for prevention of molten steel sticking onto mold in continous casting process

    Blažević, D.

    2008-01-01

    Full Text Available In continuous casting steel production a significant loss reduction – in terms of scrap material, time and money – can be achieved by developing an appropriate algorithm for the prevention of molten steel sticking onto mould. The logic of such algorithm should be simple and manageable to ensure its practical implementation on a computer system via the usage of thermo sensors. This suggests that both the algorithm and the automated data collection can be implemented by means of applicative software. Despite its simplicity, the algorithm should accurately trace physical phenomena in molten steel.

  16. Process to separate alkali metal salts from alkali metal reacted hydrocarbons

    Gordon, John Howard; Alvare, Javier; Larsen, Dennis; Killpack, Jeff

    2017-06-27

    A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phase may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.

  17. Study of the mechanisms involved in the laser superficial hardening process of metallic alloys

    Silva, Edmara Marques Rodrigues da

    2001-01-01

    The laser superficial hardening process of a ferrous alloy (gray cast iron) and of an aluminum-silicon alloy was investigated in this work. These metallic alloys are used in the automobile industry for manufacturing cylinders and pistons, respectively. By application of individual pulses and single tracks, the involved mechanisms during the processing were studied. Variables such as energy density, power density, temporal width, beam diameter on the sample surface, atmosphere of the processing region, overlapping and scanning velocity. The hardened surface was characterized by optical and scanning electronic microscopy, dispersive energy microanalysis, X-ray mapping, X-ray diffraction, and measurements of roughness and Vickers microhardness. Depending on the processing parameters, it is possible to obtain different microstructures. The affected area of gray cast iron, can be hardened by remelting or transformation hardening (total or partial) if the reached temperature is higher or not that of melting temperature. Laser treatment originated new structures such as retained austenite, martensite and, occasionally, eutectic of cellular dendritic structure. Aluminum-silicon alloy does not have phase transformation in solid state, it can be hardened only by remelting. The increase of hardness is a function of the precipitation hardening process, which makes the silicon particles smaller and more disperse in the matrix. Maximal values of microhardness (700-1000 HV) were reached with the laser treatment in gray cast iron samples. The initial microhardness is of 242 HV. For aluminum-silicon alloy, the laser remelting increases the initial microhardness of 128 HV to the range of 160-320 HV. The found results give a new perspective for using the CLA/IPEN's laser in the heat treatment area. Besides providing a higher absorptivity to the materials, compared with the CO 2 laser, and optical fiber access, the superficial hardening with Nd:YAG laser, depending on the level of

  18. Evolution of microstructure, texture and inhibitor along the processing route for grain-oriented electrical steels using strip casting

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Yao, Sheng-Jie [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 264209 (China); Sun, Yu; Gao, Fei; Song, Hong-Yu; Liu, Guo-Huai [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Li, Lei; Geng, Dian-Qiao [Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Liu, Zhen-Yu; Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China)

    2015-08-15

    In the present work, a regular grade GO sheet was produced successively by strip casting, hot rolling, normalizing annealing, two-stage cold rolling with intermediate annealing, primary recrystallization annealing, secondary recrystallization annealing and purification. The aim of this paper was to characterize the evolution of microstructure, texture and inhibitor along the new processing route by comprehensive utilization of optical microscopy, X-ray diffraction and transmission electron microscopy. It was found that a fine microstructure with the ferrite grain size range of 7–12 μm could be obtained in the primary recrystallization annealed sheet though a very coarse microstructure was produced in the initial as-cast strip. The main finding was that the “texture memory” effect on Goss texture started on the through-thickness intermediate annealed strip after first cold rolling, which was not similar to the “texture memory” effect on Goss texture starting on the surface layers of the hot rolled strip in the conventional production route. As a result, the origin of Goss nuclei capable of secondary recrystallization lied in the grains already presented in Goss orientation in the intermediate annealed strip after first cold rolling. Another finding was that fine and dispersive inhibitors (mainly AlN) were easy to be produced in the primary recrystallization microstructure due to the initial rapid solidification during strip casting and the subsequent rapid cooling, and the very high temperature reheating usually used before hot rolling in the conventional production route could be avoided. - Highlights: • A regular grade grain-oriented electrical steel was produced. • Evolution of microstructure, texture and inhibitor was characterized. • Origin of Goss nuclei lied in the intermediate annealed strip. • A fine primary recrystallization microstructure could be produced. • Effective inhibitors were easy to be obtained in the new processing route.

  19. Noble Metal/Ceramic Composites in Flame Processes

    Schultz, Heiko; Madler, Lutz; Strobel, Reto

    conditions influence the resulting noble metal particles size in those systems [1]. For every specific application the particle size and the metal/metal oxide interaction affect the performance of these nano-composite materials [2]. Recently, aerosol processes have been successfully used to produce platinum...

  20. Application of Hydroforming Process in Sheet Metal Formation

    GRIZELJ, Branko; CUMIN, Josip; ERGIĆ, Todor

    2009-01-01

    This article deals with the theory and application of a hydroforming process. Nowadays automobile manufacturers use high strength sheet metal plates. This high strength steel sheet metal plates are strain hardened in the process of metal forming. With the use of high strength steel, cars are made lightweight, which is intended for low fuel consumption because of high energy prices. Some examples of application of a hydroforming process are simulated with FEM.

  1. Modelling of flow phenomena during DC casting

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an

  2. Radiography of Co-60 in the lead cube castings

    Djoli Soembogo; Harun Al Rasyid R; Namad Sianta

    2016-01-01

    Radiography Co-60 on Carbon steel or Stainless steel has been widely applied, but for metal Lead has not yet been applied and has not yet widely known. Lead has a greater density than Carbon steel or Stainless steel and could muffle gamma radiation so it takes a longer exposure time. The result of its film radiography are also not as good as compared to radiography applications on carbon steel or Stainless steel. The study also applied digital radiography using isotope Co-60 sources and used Epson V700 scanner positive film for digitization results of conventional radiographic films. These radiographs using film AGFA D7 to get the contrast medium, medium sensitivity and good image quality. The purpose of radiography Co-60 on the cube castings Lead is to find indications of defective castings cube Lead and digitizing the results using conventional radiographic film with a positive film media scanner to process the data transfer and storage of digital data. Radiographic testing has been carried out using the isotope Co-60 on metal castings Lead with a single thickness of a single shadow method using positive film scanner media and isotope Co-60 with disabilities observation parameter Lead metal castings on radiographic film. Co-60 radiation time exposure is 3,500 hours for the thickness of the metal cube castings Lead 100 mm with the activity of 29 Ci and perpendicular SFD of 840 mm. Radiographic testing on metal cube castings Lead by the method of a single thickness of single image defects produce a parameter indicative for a cube of metal castings Lead of porosity level 2. The density mean of radiographic film was 2.051 and 2.046 for 5 minutes in a developer solution. The result of scanning positive film is in the form of digital radiography which allows for the transfer of digital data or computerized storage of digital data. This status is still within limits acceptable under the standards referred. (author)

  3. Neutron radiography inspection of investment castings

    Richards, W.J.; Barrett, J.R.; Springgate, M.E.; Shields, K.C.

    2004-01-01

    Investment casting, also known as the lost wax process, is a manufacturing method employed to produce near net shape metal articles. Traditionally, investment casting has been used to produce structural titanium castings for aero-engine applications with wall thickness less than 1 in (2.54 cm). Recently, airframe manufacturers have been exploring the use of titanium investment casting to replace components traditionally produced from forgings. Use of titanium investment castings for these applications reduces weight, cost, lead time, and part count. Recently, the investment casting process has been selected to produce fracture critical structural titanium airframe components. These airframe components have pushed the traditional inspection techniques to their physical limits due to cross sections on the order of 3 in (7.6 cm). To overcome these inspection limitations, a process incorporating neutron radiography (n-ray) has been developed. In this process, the facecoat of the investment casting mold material contains a cocalcined mixture of yttrium oxide and gadolinium oxide. The presence of the gadolinium oxide, allows for neutron radiographic imaging (and eventual removal and repair) of mold facecoat inclusions that remain within these thick cross sectional castings. Probability of detection (POD) studies have shown a 3x improvement of detecting a 0.050x0.007 in 2 (1.270x0.178 mm 2 ) inclusion of this cocalcined material using n-ray techniques when compared to the POD using traditional X-ray techniques. Further, it has been shown that this n-ray compatible mold facecoat material produces titanium castings of equal metallurgical quality when compared to the traditional materials. Since investment castings can be very large and heavy, the neutron radiography facilities at the University of California, Davis McClellan Nuclear Radiation Center (UCD/MNRC) were used to develop the inspection techniques. The UCD/MNRC has very unique facilities that can handle large parts

  4. Process for the disposal of alkali metals

    Lewis, L.C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level. 6 claims

  5. Metals Processing Laboratory Users (MPLUS) Facility Annual Report FY 2002 (October 1, 2001-September 30, 2002)

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program, user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary user centers: (1) Processing--casting, powder metallurgy, deformation processing (including extrusion, forging, rolling), melting, thermomechanical processing, and high-density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, and bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; and (4) Materials/Process Modeling--mathematical design and analyses, high-performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials databases A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state-of-the-art materials characterization capabilities, and high-performance computing to manufacturing technologies. MPLUS can be accessed through a standardized user-submitted proposal and a user agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provided free of charge

  6. Metals Processing Laboratory Users (MPLUS) Facility Annual Report: October 1, 2000 through September 30, 2001

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary User Centers including: (1) Processing--casting, powder metallurgy, deformation processing including (extrusion, forging, rolling), melting, thermomechanical processing, high density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; (4) Materials/Process Modeling--mathematical design and analyses, high performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials data bases. A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state of the art materials characterization capabilities, high performance computing, to manufacturing technologies. MPLUS can be accessed through a standardized User-submitted Proposal and a User Agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provides free of charge while

  7. Fabrication and Characterization of Porous MgAl₂O₄ Ceramics via a Novel Aqueous Gel-Casting Process.

    Yuan, Lei; Liu, Zongquan; Liu, Zhenli; He, Xiao; Ma, Beiyue; Zhu, Qiang; Yu, Jingkun

    2017-11-30

    A novel and aqueous gel-casting process has been successfully developed to fabricate porous MgAl₂O₄ ceramics by using hydratable alumina and MgO powders as raw materials and deionized water as hydration agent. The effects of different amounts of deionized water on the hydration properties, apparent porosity, bulk density, microstructure, pore size distribution and compressive strength of the samples were investigated. The results indicated that the porosity and the microstructure of porous MgAl₂O₄ ceramics were governed by the amounts of deionized water added. The porous structure was formed by the liberation of physisorbed water and the decomposition of hydration products such as bayerite, brucite and boehmite. After determining the addition amounts of deionized water, the fabricated porous MgAl₂O₄ ceramics had a high apparent porosity (52.5-65.8%), a small average pore size structure (around 1-3 μm) and a relatively high compressive strength (12-28 MPa). The novel aqueous gel-casting process with easy access is expected to be a promising candidate for the preparation of Al₂O₃-based porous ceramics.

  8. Interface analysis of A1 matrix composites produced by hot isostatic pressing, squeeze casting and semi-solid processing

    Shamsul, J.B.; Zainal Arifin Ahmad; Faaizulaswad, M.S.; Azmi, R.

    2000-01-01

    The interface analysis has been carried out an aluminium based composites system produced by hot isostatic pressing, squeeze casting and semi-solid processing. A range of different fabrication techniques has been used to produce different types of microstructure of Al 2124 (Al-Cu-Mg) reinforced with 5 weight % SiC particles. Blending followed by hot isostatic pressing is used to fabricate composite I. Composite II was 6061 (Al-Si-Mg) wrought aluminium alloy reinforced with fibres of alumina-silica (V f = 0.58) and fabricated by squeeze casting. Finally, A356 (AlSi7Mg0.3) alloy was reinforced with 20 Vol.% of SiC particles (13 μm) and namely as composite III. Composite III is fabricated by semi-solid processing. Interface analysis was done by optical microscopy, scanning and transmission electron microscopy. Composite I exhibited good interface bonding and dislocation was also observed near the interface. Elements such as Al, Fe, Cr, Mn were found near the interface of composite II and intermetallic of iron rich inclusion and Mg 2 Si were observed near the interface of composite III. (Author)

  9. Fabrication and Characterization of Porous MgAl2O4 Ceramics via a Novel Aqueous Gel-Casting Process

    Lei Yuan

    2017-11-01

    Full Text Available A novel and aqueous gel-casting process has been successfully developed to fabricate porous MgAl2O4 ceramics by using hydratable alumina and MgO powders as raw materials and deionized water as hydration agent. The effects of different amounts of deionized water on the hydration properties, apparent porosity, bulk density, microstructure, pore size distribution and compressive strength of the samples were investigated. The results indicated that the porosity and the microstructure of porous MgAl2O4 ceramics were governed by the amounts of deionized water added. The porous structure was formed by the liberation of physisorbed water and the decomposition of hydration products such as bayerite, brucite and boehmite. After determining the addition amounts of deionized water, the fabricated porous MgAl2O4 ceramics had a high apparent porosity (52.5–65.8%, a small average pore size structure (around 1–3 μm and a relatively high compressive strength (12–28 MPa. The novel aqueous gel-casting process with easy access is expected to be a promising candidate for the preparation of Al2O3-based porous ceramics.

  10. REDUCING REJECTION/REWORK IN PRESSURE DIE CASTING PROCESS BY APPLICATION OF DMAIC METHODOLOGY OF SIX SIGMA

    Javedhusen Malek

    2015-12-01

    Full Text Available In today's ever-changing customer driven market, industries are needed to improve their products and processes to satisfy customer requirements. The Six Sigma approach has set a new paradigm of business excellence. Six Sigma as a process driven improvement methodology has been adopted successfully by many industries. From the review of various literatures, it is revealed that Six Sigma is well adopted in large scale enterprise but having less evidence of adoption in Indian SMEs. This paper is focused on providing path to Indian SMEs for initiating Six Sigma approach in their industries. The paper discusses the real life case where Six Sigma has been successfully applied at one of the Indian small-scale unit to improve rejection/rework rate in manufacturing products by pressure die casting process. This paper describes phase wise application of all the phases of define-measure-analyse-improve-control (DMAIC which also shows impact of Six Sigma in quality improvement.

  11. Characterization of waste ceramic process for lost wax casting for employment as pozzolan

    Machado, C.F.; Moravia, W.G.

    2012-01-01

    There are about 30 companies of Lost Wax Casting in Brazil, and each one of them disposes around 50 to 100 tons of waste ceramic shell monthly. This work is concerned in the physical, chemical and microstructural characterization to evaluated the reactivity of this material. It was analyzed also the environmental risk of the material. The tests were made with a ceramic shell ground to evaluate the aspect of sustainable waste. In the physical characterization of the waste the density, specific surface area and distribution of the particle size were analyzed. In the chemical characterization, the powder was subjected to essays of fluorescence and pozzolanic activity. As for microstructural characterization scanning electron microscopy and Xray diffraction were carried out. The analysis of results shows that the ceramic shell powder is classified as non-inert waste, II-A Class, with density of 2,59 g/cm³. (author)

  12. Zirconium and cast zirconium

    Krone, K

    1977-04-01

    A survey is given on the occurence of zirconium, production of Zr sponge and semi-finished products, on physical and mechanical properties, production of Zr cast, composition of the commercial grades and reactor grades qualities, metal cutting, welding, corrosion behavior and use.

  13. Low-level radioactive waste from rare metals processing facilities

    Eng, J.; Hendricks, D.W.; Feldman, J.; Giardina, P.A.

    1980-01-01

    This paper reviews the situations at the existing Teledyne Wah Chang Co., Inc. located at Albany, Oregon, and the former Carborundum Corp./Amax Specialty Metals, Inc., facilities located at Parkersburg, West Virginia, and Akron, New York, in order to show the extent of the radioactivity problem at rare metals processing facilities and the need to identify for radiological review other rare metal and rare earth processing sites

  14. Aluminium Foam and Magnesium Compound Casting Produced by High-Pressure Die Casting

    Iban Vicario

    2016-01-01

    Full Text Available Nowadays, fuel consumption and carbon dioxide emissions are two of the main focal points in vehicle design, promoting the reduction in the weight of vehicles by using lighter materials. The aim of the work is to evaluate the influence of different aluminium foams and injection parameters in order to obtain compound castings with a compromise between the obtained properties and weight by high-pressure die cast (HPDC using aluminium foams as cores into a magnesium cast part. To evaluate the influence of the different aluminium foams and injection parameters on the final casting products quality, the type and density of the aluminium foam, metal temperature, plunger speed, and multiplication pressure have been varied within a range of suitable values. The obtained compound HPDC castings have been studied by performing visual and RX inspections, obtaining sound composite castings with aluminium foam cores. The presence of an external continuous layer on the foam surface and the correct placement of the foam to support injection conditions permit obtaining good quality parts. A HPDC processed magnesium-aluminium foam composite has been developed for a bicycle application obtaining a suitable combination of mechanical properties and, especially, a reduced weight in the demonstration part.

  15. Gating system optimization of low pressure casting A356 aluminum alloy intake manifold based on numerical simulation

    Jiang Wenming

    2014-03-01

    Full Text Available To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on filling and solidification processes of the casting was carried out using the ProCAST software. The gating system of the casting is optimized according to the simulation results. Results show that when the gating system consists of only one sprue, the filling of the molten metal is not stable; and the casting does not follow the sequence solidification, and many shrinkage porosities are observed through the casting. After the gating system is improved by adding one runner and two in-gates, the filling time is prolonged from 4.0 s to 4.5 s, the filling of molten metal becomes stable, but this casting does not follow the sequence solidification either. Some shrinkage porosity is also observed in the hot spots of the casting. When the gating system was further improved by adding risers and chill to the hot spots of the casting, the shrinkage porosity defects were eliminated completely. Finally, by using the optimized gating system the A356 aluminum alloy intake manifold casting with integrated shape and smooth surface as well as dense microstructure was successfully produced.

  16. Pressure distribution in centrifugal dental casting.

    Nielsen, J P

    1978-02-01

    Equations are developed for liquid metal pressure in centrifugal dental casting, given the instantaneous rotational velocity, density, and certain dimensions of the casting machine and casting pattern. A "reference parabola" is introduced making the fluid pressure concept more understandable. A specially designed specimen demonstrates experimentally the reference parabola at freezing.

  17. Antipollution processing of a used refining catalyst and metal recovery

    Trinh Dinh Chan; Llido, E.

    1992-04-30

    The used catalyst, containing metals such as vanadium, nickel and iron, is unloaded from the plant and is first processed by stripping; it is then calcined in critical conditions, and the catalyst metals are leached with a sodium hydroxide or sodium carbonate aqueous solution. The antipollution process can be applied to oil fraction hydroconversion or hydroprocessing catalysts.

  18. Triple Plate Mold Final Report: Optimization of the Mold Design and Casting Parameters for a Thin U-10mo Fuel Casting

    Aikin, Jr., Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-04

    This work describes the experiments and modeling that have been performed to improve and try to optimize the simultaneous casting of three plates of U-10wt%Mo in a single coil vacuum induction melting (VIM) furnace. The plates of interest are 280 mm wide by 203 mm tall by 5 mm thick (11" x 8" x 0.2"). The initial mold design and processing parameters were supplied by Y-12. The mold and casting cavity were instrumented with a number of thermocouples, and the casting performed to determine the thermal history of the mold and casting. The resulting cast plates were radiographed and numerous defects identified. Metallography was performed to help identify the nature of the radiographically observed defects. This information was then used to validate a mold filling and solidification model of that casting. Based on the initial casting, good casting design practice, and process simulation of several design alternatives, a revised design was developed with the goal of minimizing casting defects such as porosity. The redesigned mold had a larger hot-top and had its long axis along the horizontal direction. These changes were to try to develop a strong thermal gradient conducive to good feeding and minimization of micro- and macroporosity in the cast plates. An instrumented casting was then performed with the revised mold design and a linear distributor. This design yielded cast plates with significantly less radiographically identified defects. Unfortunately, there was significant variation in plate weight and metal content in their hot-tops. Fluid flow simulations were then performed on this mold/distributor design. This helped identify the issue with this linear distributor design. Additional simulations were then performed on candidate distributor redesigns and a preferred distributor annular design was identified. This improved annular design was used to produce a third instrumented casting with favorable results. These refined designs and their radiographic

  19. Experimental and Numerical Modeling of Fluid Flow Processes in Continuous Casting: Results from the LIMMCAST-Project

    Timmel, K.; Kratzsch, C.; Asad, A.; Schurmann, D.; Schwarze, R.; Eckert, S.

    2017-07-01

    The present paper reports about numerical simulations and model experiments concerned with the fluid flow in the continuous casting process of steel. This work was carried out in the LIMMCAST project in the framework of the Helmholtz alliance LIMTECH. A brief description of the LIMMCAST facilities used for the experimental modeling at HZDR is given here. Ultrasonic and inductive techniques and the X-ray radioscopy were employed for flow measurements or visualizations of two-phase flow regimes occurring in the submerged entry nozzle and the mold. Corresponding numerical simulations were performed at TUBAF taking into account the dimensions and properties of the model experiments. Numerical models were successfully validated using the experimental data base. The reasonable and in many cases excellent agreement of numerical with experimental data allows to extrapolate the models to real casting configurations. Exemplary results will be presented here showing the effect of electromagnetic brakes or electromagnetic stirrers on the flow in the mold or illustrating the properties of two-phase flows resulting from an Ar injection through the stopper rod.

  20. DOE applied to study the effect of process parameters on silicon spacing in lost foam Al-Si-Cu alloy casting

    Shayganpour, A; Izman, S; Idris, M H; Jafari, H

    2012-01-01

    Lost foam casting as a relatively new manufacturing process is extensively employed to produce sound complicated castings. In this study, an experimental investigation on lost foam casting of an Al-Si-Cu aluminium cast alloy was conducted. The research was aimed in evaluating the effect of different pouring temperatures, slurry viscosities, vibration durations and sand grain sizes on eutectic silicon spacing of thin-wall castings. A stepped-pattern was used in the study and the focus of the investigations was at the thinnest 3 mm section. A full two-level factorial design experimental technique was used to plan the experiments and afterwards identify the significant factors affecting casting silicon spacing. The results showed that pouring temperature and its interaction with vibration time have pronounced effect on eutectic silicon phase size. Increasing pouring temperature coarsened the eutectic silicon spacing while the higher vibration time diminished coarsening effect. Moreover, no significant effects on silicon spacing were found with variation of sand size and slurry viscosity.

  1. Colour Metallography of Cast Iron - Chapter 2: Grey Iron (Ⅱ

    Zhou Jiyang

    2009-08-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  2. Colour Metallography of Cast Iron - Chapter 1: Introduction (Ⅰ

    Zhou Jiyang

    2009-02-01

    Full Text Available Cast iron, as a traditional metal material, has advantages of low total cost, good castability and machinability, good wear resistance and low notch sensitivity, and is still facing tough challenge in quality, property and variety of types etc. Experts and engineers studying and producing iron castings all around world extremely concern this serious challenge. Over more than 30 years, a great of research work has been carried out on how to further improve its property, expand its application and combine cast iron technology with some hi-techs (for example, computer technology. Nevertheless, cast iron is a multi-element and multi-phase alloy and has complex and variety of structures and still has great development potential in structure and property. For further studying and developing cast iron, theoretical research work is important promise, and the study on solidification process and control mechanism of graphite morphology is fundamental for improving property of cast iron and developing new type of cast iron. Metallography of cast iron normally includes two sections: liquid phase transformation and solid phase transformation. The book, Colour Metallography of Cast Iron, uses colour metallography technique to study solidification structures of cast irons: graphite, carbides, austenite and eutectics; and focuses on solidification processes. With progress of modern solidification theory, the control of material solidification process becomes important measure for improving traditional materials and developing new materials. Solidification structure not only influences mechanical and physical properties of cast iron, but also affects its internal quality. The book uses a large amount of colour photos to describe the formation of solidification structures and their relations. Crystallization phenomena, which cannot be displayed with traditional metallography, are presented and more phase transformation information is obtained from these colour

  3. Caste System

    Hoff, Karla

    2016-01-01

    In standard economics, individuals are rational actors and economic forces undermine institutions that impose large inefficiencies. The persistence of the caste system is evidence of the need for psychologically more realistic models of decision-making in economics. The caste system divides South Asian society into hereditary groups whose lowest ranks are represented as innately polluted. ...

  4. Evaluating the effectiveness of heat-resistant cast steel filtration from the results of structure examinations

    Asłanowicz M.

    2007-01-01

    Full Text Available Filtration guarantees castings characterised by high quality and free from any non-metallic inclusions, which are formed at the stage of melting and pouring of liquid metal. This article discusses the problem of the effectiveness of filtration process taking as an example heat-resistant cast steel poured into ceramic moulds. In investigations, foamed zircon filters made by FerroTerm Sp. z o.o. The effectiveness of filtration was described and examined using the results of metallographic examinations, including macro- and micro-structure examinations of metal and of cast metal/ceramic filter interface, and measurements of the content of non-metallic inclusions. The methods of investigations were presented, the obtained results were described, and relevant conclusions were drawn, all of them unmistakably indicating a very beneficial effect that filtration has on molten metal quality. Łódź, Poland, were used.

  5. Evaluation of the marginal fit of metal copings fabricated on three different marginal designs using conventional and accelerated casting techniques: An in vitro study

    Sharad Vaidya

    2014-01-01

    Conclusion: Among the three marginal designs studied, shoulder with bevel showed the best marginal fit with conventional as well as accelerated casting techniques. Accelerated casting technique could be a vital alternative to the time-consuming conventional casting technique. The marginal fit between the two casting techniques showed no statistical difference.

  6. Ultrastable Photoelectrodes for Solar Water Splitting Based on Organic Metal Halide Perovskite Fabricated by Lift-Off Process.

    Nam, SeongSik; Mai, Cuc Thi Kim; Oh, Ilwhan

    2018-05-02

    Herein, we report an integrated photoelectrolysis of water employing organic metal halide (OMH) perovskite material. As generic OMH perovskite material and device architecture are highly susceptible to degradation by aqueous electrolytes, we have developed a versatile mold-cast and lift-off process to fabricate and assemble multipurpose metal encapsulation onto perovskite devices. With the metal encapsulation effectively protecting the perovskite cell and also functioning as electrocatalyst, the high-performance perovskite photoelectrodes exhibit high photovoltage and photocurrent that are effectively inherited from the original solid-state solar cell. More importantly, thus-fabricated perovskite photoelectrode demonstrates record-long unprecedented stability even at highly oxidizing potential in strong alkaline electrolyte. We expect that this versatile lift-off process can be adapted in a wide variety of photoelectrochemical devices to protect the material surfaces from corroding electrolyte and facilitate various electrochemical reactions.

  7. Rubber molds for investment casting

    Sibtain, S.N.

    2011-01-01

    The main objective of the project is to investigate different types of molding rubbers used for investment casting. The level of shape complexity which can be achieved by using these rubber molds is also studied. It was almost impossible to make complex shapes molds using metal molds, in that cases rubber molds are very important because they arc flexible and give accurate and precise part dimensions. Turbine blades are hi-tech components with air-foil geometries that have close dimensional tolerances. They are made of super-alloys and manufactured by investment casting. The final blade profile depends upon the dimensional accuracy in each of the processing steps. In the present work experimental study for the production of high quality low cost castings of turbine blades using rubber molds and injected wax patterns is presented. Natural Rubber molds and wax patterns from these molds were made. Different types of molding rubbers were studied including natural rubber, silicone rubber and liquid silicone rubber. It was found that by using rubber molds we can make most complex shape with very less finishing required. The shrinkage was 12% as compared to original master pattern. Rubber molds were made using laboratory hot press. Three layers of rubber above and below the master pattern. After that vulcanization was done by giving temperature and pressure. (author)

  8. Effect of RE elements on the microstructural evolution of as cast and SIMA processed Mg-4Al alloy

    Nayyeri, Mohammad Javad; Khomamizadeh, Farzad

    2011-01-01

    Research highlights: → In this article, we examined the effect of Rare Earth elements on the microstructural development of as cast and semisolid Mg-4Al alloy produced by SIMA process. → Our investigations contained metallographic observation, scanning electron microscope and quantitative metallographic methods. → Results showed that alloy's dendrites turn into larger fully dendritic shape with sharp and narrow arms from equiaxed rosette type as the amount of RE elements increased from 0 through 4 percent. → Also we studied the effect of RE elements on the quality and quantityof intragranular liquid droplets as well as kinetic of microstructural changes. → Moreover, the effect of REs on the other parameters such as fraction of liquid, shape factor and particle size was studied.In this article, we examined the effect of Rare Earth elements on the microstructural development of as cast and semisolid Mg-4Al alloy produced by SIMA process. Our investigations contained metallographic observation, scanning electron microscope and quantitative metallographic methods. Results showed that alloy's dendrites turn into larger fully dendritic shape with sharp and narrow arms from equiaxed rosette type as the amount of RE elements increased from 0 through 4 percent. Also we studied the effect of RE elements on the quality and quantityof intragranular liquid droplets as well as kinetic of microstructural changes. Moreover, the effect of REs on the other parameters such as fraction of liquid, shape factor and particle size was studied. - Abstract: In the present article, the effect of Rare Earth elements on the microstructural development of as cast and semisolid Mg-4Al alloy produced by SIMA process is studied. Investigation conducted by metallographic observation, scanning electron microscope and quantitative metallographic methods. Results showed that alloy's dendrites turn into larger fully dendritic shape with sharp and narrow arms from equiaxed rosette type as the

  9. Temperature field in the hot-top during casting a new super-high strength Al-Zn-Mg-Cu alloy by low frequency electromagnetic process

    Yubo ZUO

    2005-08-01

    Full Text Available The billets of a new super-high strength Al-Zn-Mg-Cu alloy in 200 mm diameter were produced by the processed of low frequency electromagnetic casting (LFEC and conventional direct chill(DCcasting, respectively. The effects of low frequency electromagnetic field on temperature field of the melt in the hot-top were investigated by temperature thermocouples into the casting during the processes. The results show that during LFEC process the temperature field in the melt applying the hot-top is very uniform, which is helpful to reduce the difference of thermal gradients between the surface and the center, and then to reduce the thermal stress and to eliminate casting crack.

  10. Alternating-current transport losses of melt-cast processed Bi-2212 bulk superconductor bars

    Tsukamoto, T; Inada, R; Inagaki, N; Andoh, H; Sugiura, T; Oota, A

    2003-01-01

    Using a melt-casting method, we have fabricated two pieces of Bi-2212 bulk superconductor bar with square and rectangular cross-sections, and we have investigated the alternating-current (ac) transport self-field losses at 77 K. Despite the main contribution of hysteresis loss of the superconductor, there is some difference in the loss behaviour between these two samples. To elucidate the origin, we make numerical calculations on the ac transport self-field losses as a function of current amplitude I 0 below the critical current I c . At a fixed I 0 , the calculated values using the uniform J c distribution and the actual cross-sectional geometry are much higher than the experimental data for the sample with a square cross-section 7.5 x 7.5 mm 2 , while there is good agreement between the calculation and the experiment for the sample with a rectangular cross-section 4.5 x 13.6 mm 2 . The discrepancy appearing in the sample with a square cross-section is ascribed to the actual J c distribution, which is confirmed by critical current measurements when scraping off the sample. The local J c value decreases significantly in going from the surface to the interior of the sample. This suppresses the extension of the flux-penetration region to the interior under ac current transmission and lowers the loss generation compared with the calculated results obtained by the uniform J c distribution

  11. Process-scale modelling of microstructure in direct chill casting of aluminium alloys

    Bedel, M.; Heyvaert, L.; Založnik, M.; Combeau, H.; Daloz, D.; Lesoult, G.

    2015-06-01

    The mechanical properties of an alloy being related to its microstructure, the understanding of the mechanisms responsible for the grain structure formation in direct chill casting is crucial. However, the grain size prediction by modelling is difficult since a variety of multi-scale coupled phenomena have to be considered. Nucleation and growth of the grains are interrelated, and the macroscopic transport phenomena such as the motion of grains and inoculant particles with the flow impact the nucleation-gowth competition. Thus we propose to study the grain size distribution of a 5182 alloy industrial scale slab of 510 mm thickness, both non-inoculated and inoculated with Al-3Ti-1B, for which experimental grain size measurements are available. We use a volume-averaged two-phase multi-scale model that describes nucleation from inoculant particles and grain growth, fully coupled with macroscopic transport phenomena: fluid flow induced by natural convection and solidification shrinkage, heat, mass and solute mass transport, grains and inoculant particles motion. We analyze the effect of liquid and grain motion as the effect of grain morphology on microstructure formation and we show in which extent those phenomena are responsible for the grain size distribution observed experimentally. The effect of the refiner level is also studied.

  12. Control of cast iron and casts manufacturing by Inmold method

    S. Pietrowski

    2009-07-01

    Full Text Available In this paper the usability of cast iron spheroidizing process in mould control by ATD method as well as by ultrasonic method were presented. Structure of instrumentation needed for control form performance of cast iron spheroidizing by Inmold method was illustrated. Author, pointed out that amount of magnesium master alloy should obtain 0,8 ÷ 1,0% of mass in form at all. Such quantity of preliminary alloy assure of obtain of nodular graphite in cast iron. In consequence of this, is reduce the cast iron liquidus temperature and decrease of recalescence temperature of graphite-eutectic crystallization in compare with initial cast iron. Control of casts can be carried out by ultrasonic method. In plain cast iron, ferritic-pearlitic microstructure is obtaining. Additives of 1,5% Cu ensure pearlitic structure.

  13. HFIR Fuel Casting Support

    Imhoff, Seth D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gibbs, Paul Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Solis, Eunice Martinez [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-28

    Process exploration for fuel production for the High Flux Isotope Reactor (HFIR) using cast LEU-10wt.%Mo as an initial processing step has just begun. This project represents the first trials concerned with casting design and quality. The studies carried out over the course of this year and information contained in this report address the initial mold development to be used as a starting point for future operations. In broad terms, the final billet design is that of a solid rolling blank with an irregular octagonal cross section. The work covered here is a comprehensive view of the initial attempts to produce a sound casting. This report covers the efforts to simulate, predict, cast, inspect, and revise the initial mold design.

  14. Pyrochemical processes for the recovery of weapons grade plutonium either as a metal or as PuO2 for use in mixed oxide reactor fuel pellets

    Colmenares, C.A.; Ebbinghaus, B.B.; Bronson, M.C.

    1995-01-01

    The authors have developed two processes for the recovery of weapons grade Pu, as either Pu metal or PuO 2 , that are strictly pyrochemical and do not produce any liquid waste. Large amounts of Pu metal (up to 4 kg.), in various geometric shapes, have been recovered by a hydride/dehydride/casting process (HYDEC) to produce metal ingots of any desired shape. The three processing steps are carried out in a single compact apparatus. The experimental technique and results obtained will be described. The authors have prepared PuO 2 powders from weapons grade Pu by a process that hydrides the Pu metal followed by the oxidation of the hydride (HYDOX process). Experimental details of the best way to carry out this process will be presented, as well as the characterization of both hydride and oxide powders produced

  15. The Lot Sizing and Scheduling of Sand Casting Operations

    Hans, Elias W.; van de Velde, S.L.; van de Velde, Steef

    2011-01-01

    We describe a real world case study that involves the monthly planning and scheduling of the sand-casting department in a metal foundry. The problem can be characterised as a single-level multi-item capacitated lot-sizing model with a variety of additional process-specific constraints. The main

  16. Fabrication of uranium alloy fuel slug for sodium-cooled fast reactor by injection casting

    Jong Hwan Kim; Hoon Song; Ki Hwan Kim; Chan Bock Lee

    2014-01-01

    Metal fuel slugs of U-Zr alloys for a sodium-cooled fast reactor (SFR) have been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents such as Am can cause problems in a conventional injection casting method. Therefore, in this study, several injection-casting methods were applied to evaluate the volatility of the metal-fuel elements and control the transport of volatile elements. Mn was selected as a volatile surrogate alloy since it possesses a total vapor pressure equivalent to that of minor actinide-bearing fuels for SFRs. U-10 wt% Zr and U-10 wt% Zr-5 wt% Mn metal fuels were prepared, and the casting processes were evaluated. The casting soundness of the fuel slugs was characterized by gamma-ray radiography and immersion density measurements. Inductively coupled plasma atomic emission spectroscopy was used to determine the chemical composition of fuel slugs. Fuel losses after casting were also evaluated according to the casting conditions. (author)

  17. Manufacturing processes of cellular metals. Part I. Liquid route processes

    Fernandez, P.; Cruz, L. J.; Coleto, J.

    2008-01-01

    With its interesting and particular characteristics, cellular metals are taking part of the great family of new materials. They can have open or closed porosity. At the present time, the major challenge for the materials researchers is based in the manufacturing techniques improvement in order to obtain reproducible and reliable cellular metals with quality. In the present paper, the different production methods to manufacture cellular metals by liquid route are reviewed; making a short description about the main parameters involved and the advantages and drawbacks in each of them. (Author) 106 refs

  18. Thermal Expansion Properties of Fe-42Ni-Si Alloy Strips Fabricated by Melt Drag Casting Process

    Kim, Moo Kyum; Ahn, Yong Sik; Namkung, Jeong; Kim, Moon Chul; Kim, Yong Chan

    2007-01-01

    Thermal expansion property was investigated on Fe-42% Ni alloy strip added by alloying element of Si of 0∼1.5wt.%. The strip was fabricated by a melt drag casting process. Addition of Si enlarged the solid-liquid region and reduced the melting point which leads to the increase of the formability of a strip. The alloy containing 0.6 wt.% Si showed the lowest thermal expansion ratio in the temperature range between 20 to 350 .deg. C. The grain size was increased with reduction ratio and annealing temperature, which resulted in the decrease of the thermal expansion coefficient of strip. Because of grain refining by precipitation of Ni 3 Fe, the alloy strip containing 1.5 wt.% Si showed higher thermal expansion ratio compared with the alloy containing 0.6 wt.% Si

  19. Additional grain refinement in recrystallization controlled rolling of Ti-microalloyed steels processed by near-net-shape casting technology

    Arribas, M.; Lopez, B.; Rodriguez-Ibabe, J.M.

    2008-01-01

    This paper analyzes the recrystallization kinetics in Ti-microalloyed steels processed using 'beam blank' casting technology. The faster solidification rates associated with this technology brings a finer precipitation of TiN particles which are very effective in controlling austenite grain growth during hot working. Furthermore, these small precipitates have been shown to delay static and dynamic recrystallization. The finer the precipitates the higher the delay in recrystallization. Nevertheless, beyond particle size and distribution, the level of delay is very dependent on microstructure (above all austenite grain size) and deformation conditions (strain and temperature). This paper studies the effects of this recrystallization delay on the microstructure evolution during hot rolling. Special attention was paid to the study of the occurrence of partial recrystallization during the final stages of rolling, which could lead to the presence of mixed microstructures before transformation. The possibility of achieving an additional austenite grain size refinement prior to transformation was evaluated

  20. Separation of Metals From Spent Catalysts Waste by Bioleaching Process

    Sirin Fairus, Tria Liliandini, M.Febrian, Ronny Kurniawan

    2010-01-01

    A kind of waste that hard to be treated is a metal containing solid waste. Leaching method is one thealternative waste treatment. But there still left an obstacle on this method, it is the difficulty to find theselective solvent for the type of certain metal that will separated. Bioleaching is one of the carry ablealternative waste treatments to overcome that obstacle. Bioleaching is a metal dissolving process orextraction from a sediment become dissolve form using microorganisms. On this met...

  1. Rheo-Cast Microstructure and Mechanical Properties of AM60 Alloy Produced by Self-Inoculation Rheo-Diecasting Process

    Bo Xing

    2016-03-01

    Full Text Available Rheo-forming is becoming the choice for production of high quality parts with diminished defects and fine integrity. In this paper, the novel self-inoculation rheo-diecasting (SIRD process, in which semisolid slurry is produced by mixing two precursory solid and liquid alloys and subsequently pouring them through a multi-stream fluid director, has been proposed. Microstructural characteristics of AM60 alloy slurry and the microstructure and mechanical properties of rheo-diecasting AM60 samples were investigated. Quenching experiments reveal that the slurry microstructure of AM60 was well refined to irregular α-Mg particles with the average size of approximately 20–40 μm after pouring with the self-inoculation process, and these particles were evolved to globular and coarse morphology while continuously keeping in semisolid state. After rheo-diecasting, the microstructure of the sample was dominated by fine primary α-Mg globules accompanied with tiny secondary α-Mg particles while the sample from conventional liquid die casting was characterized by developed dendrite and porosity. Microscopic analysis indicates that there are three stages of remaining liquid solidification in die cavity in SIRD: α-Mg nucleation and growth on primary α-Mg surface, α-Mg nucleated independently in liquid, and, finally, formation of skeleton devoiced eutectic. Due to diminished porosity and hot tearing, tensile strength and elongation of SIRD samples were increased by 12.9% and 35.3%, respectively, compared to a conventional liquid die casting sample.

  2. Cast iron - a predictable material

    Jorg C. Sturm

    2011-02-01

    Full Text Available High strength compacted graphite iron (CGI or alloyed cast iron components are substituting previously used non-ferrous castings in automotive power train applications. The mechanical engineering industry has recognized the value in substituting forged or welded structures with stiff and light-weight cast iron castings. New products such as wind turbines have opened new markets for an entire suite of highly reliable ductile iron cast components. During the last 20 years, casting process simulation has developed from predicting hot spots and solidification to an integral assessment tool for foundries for the entire manufacturing route of castings. The support of the feeding related layout of the casting is still one of the most important duties for casting process simulation. Depending on the alloy poured, different feeding behaviors and self-feeding capabilities need to be considered to provide a defect free casting. Therefore, it is not enough to base the prediction of shrinkage defects solely on hot spots derived from temperature fields. To be able to quantitatively predict these defects, solidification simulation had to be combined with density and mass transport calculations, in order to evaluate the impact of the solidification morphology on the feeding behavior as well as to consider alloy dependent feeding ranges. For cast iron foundries, the use of casting process simulation has become an important instrument to predict the robustness and reliability of their processes, especially since the influence of alloying elements, melting practice and metallurgy need to be considered to quantify the special shrinkage and solidification behavior of cast iron. This allows the prediction of local structures, phases and ultimately the local mechanical properties of cast irons, to asses casting quality in the foundry but also to make use of this quantitative information during design of the casting. Casting quality issues related to thermally driven

  3. Modeling and Analysis of Mechanical Properties of Aluminium Alloy (A413 Processed through Squeeze Casting Route Using Artificial Neural Network Model and Statistical Technique

    R. Soundararajan

    2015-01-01

    Full Text Available Artificial Neural Network (ANN approach was used for predicting and analyzing the mechanical properties of A413 aluminum alloy produced by squeeze casting route. The experiments are carried out with different controlled input variables such as squeeze pressure, die preheating temperature, and melt temperature as per Full Factorial Design (FFD. The accounted absolute process variables produce a casting with pore-free and ideal fine grain dendritic structure resulting in good mechanical properties such as hardness, ultimate tensile strength, and yield strength. As a primary objective, a feed forward back propagation ANN model has been developed with different architectures for ensuring the definiteness of the values. The developed model along with its predicted data was in good agreement with the experimental data, inferring the valuable performance of the optimal model. From the work it was ascertained that, for castings produced by squeeze casting route, the ANN is an alternative method for predicting the mechanical properties and appropriate results can be estimated rather than measured, thereby reducing the testing time and cost. As a secondary objective, quantitative and statistical analysis was performed in order to evaluate the effect of process parameters on the mechanical properties of the castings.

  4. The application of optical measurements for the determination of accuracy of gear wheels casts manufactured in the RT/RP process

    G. Budzik

    2010-01-01

    Full Text Available The article discusses the possibilities of using optical measurements for defining the geometric accuracy of gear wheels casts manufactured in the rapid prototyping process. The tested gear wheel prototype was cast using an aluminum alloy. The casting mould was made by means of the three-dimensional print method (3DP with the use of a Z510 Spectrum device. The aim of the tests was to determine the geometric accuracy of the cast made by the ZCast technology in the rapid prototyping process. The tests were conducted with the use of the coordinate optical measuring method and a GOM measuring device. The prototype measurements were made in the scanning mode. The results of the measurements, saved in the STL format with the use of the scanning device software, were compared with the gear wheel 3D-CAD nominal model. The measurements enabled the determination of the real accuracy of prototypes manufactured in casting moulds by means of the ZCast technology. The selection of the measuring method was also analyzed in terms of measurement accuracy and the RP technology precision.

  5. Method of processing radioactive metallic sodium with recycling alcohols

    Sakai, Takuhiko; Mitsuzuka, Norimasa.

    1980-01-01

    Purpose: To employ high safety alcohol procession and decrease the amount of wastes in the procession of radioactive metallic sodium discharged from LMFBR type reactors. Method: Radioactive metallic sodium containing long half-decay period nuclides such as cesium, strontium, barium, cerium, lanthanum or zirconium is dissolved in an alcohol at about 70% purity. After extracting the sodium alcoholate thus formed, gaseous hydrochloride is blown-in to separate the sodium alcoholate into alcohol and sodium chloride, and regenerated alcohol is used again for dissolving sodium metal. The sodium chloride thus separated is processed into solid wastes. (Furukawa, Y.)

  6. Effect of electrical pulse treatment on the thermal fatigue resistance of bionic compacted graphite cast iron processed in water

    Liu, Yan; Zhou, Hong; Su, Hang; Yang, Chunyan; Cheng, Jingyan; Zhang, Peng; Ren, Luquan

    2012-01-01

    Highlights: ► Electrical pulse treatment can reduce cracks on bionic units before thermal fatigue tests. ► Electrical pulse treatment can reduce crack sources during thermal fatigue tests. ► Thermal fatigue resistance of bionic units processed in water is enhanced. ► Thermal fatigue resistance of bionic CGI processed in water is improved. -- Abstract: In order to further enhance the thermal fatigue resistance of bionic compacted graphite cast iron (CGI) which is processed by laser in water, the electrical pulse treatment is applied to improve the thermal fatigue resistance of bionic units. The results show that the electrical pulse treatment causes the supersaturated carbon atoms located in the lattice of austenite to react with the iron atoms to form the Fe 3 C. The microstructures of the bionic units processed in water are refined by the electrical pulse treatment. The cracks on the bionic units are reduced by the electrical pulse treatment before the thermal fatigue tests; and during the tests, the thermal fatigue resistance of bionic units is therefore enhanced by reducing the crack sources. By this way, the thermal fatigue resistance of bionic CGI processed in water is improved.

  7. Optimizing the Gating System for Steel Castings

    Jan Jezierski

    2018-04-01

    Full Text Available The article presents the attempt to optimize a gating system to produce cast steel castings. It is based on John Campbell’s theory and presents the original results of computer modelling of typical and optimized gating systems for cast steel castings. The current state-of-the-art in cast steel casting foundry was compared with several proposals of optimization. The aim was to find a compromise between the best, theoretically proven gating system version, and a version that would be affordable in industrial conditions. The results show that it is possible to achieve a uniform and slow pouring process even for heavy castings to preserve their internal quality.

  8. A bioseparation process for removing heavy metals from waste ...

    The role of cell structure, cell wall, micropores and macropores is evaluated in terms of the potential of these biosorbents for metal sequestration. Binding mechanisms are discussed, including the key functional groups involved and the ion-exchange process. Quantification of metal-biomass interactions is fundamental to the ...

  9. Microstructure and mechanical properties of friction stir welded Al/Mg2Si metal matrix cast composite

    Nami, H.; Adgi, H.; Sharifitabar, M.; Shamabadi, H.

    2011-01-01

    In this research, friction stir weldability of 15 wt.% Mg 2 Si particulate aluminum matrix cast composite and effects of tool rotation speed and number of welding passes on microstructure and mechanical properties of the joints were investigated. Microstructural observations were carried out by employing optical and scanning electron microscopy of the cross sections perpendicular to the tool traverse direction. Mechanical properties including microhardness and tensile strength were evaluated in detail. The results showed fragmentation of Mg 2 Si particles and Mg 2 Si needles existing in eutectic structure in stir zone. Also, homogeneous distribution of Mg 2 Si particles was observed in the stir zone as a result of stirring with high plastic strains. Tension test results indicated that tensile strength of the joint had an optimum at 1120 rpm tool rotation speed and decreased with increasing of the number of welding passes. Hardness of the joint increased due to modification of solidification microstructure of the base composite. This research indicates that friction stir welding is a good candidate for joining of 15 wt.% Mg 2 Si aluminum matrix composite castings.

  10. Determination for the Entrapment Criterion of Non-metallic Inclusions by the Solidification Front During Steel Centrifugal Continuous Casting

    Wang, Qiangqiang; Zhang, Lifeng

    2016-06-01

    In the current study, the three-dimensional fluid flow, heat transfer, and solidification in steel centrifugal continuous casting strands were simulated. The volume of fluid model was used to solve the multiphase phenomena between the molten steel and the air. The entrapment and final distribution of inclusions in the solidified shell were studied with the discussion on the effect of rotation behavior of the caster system. Main results indicate that after applying the rotation of the shell, the fluid flow transformed from a recirculation flow to a rotation flow in the mold region and was driven to flow around in the casting direction. As the distance below the meniscus increased, the distribution of the tangential speed of the flow and the centrifugal force along one diameter of the strand became symmetrical gradually. The jet flow from the nozzle hardly impinged on the same location on the shell due to the rotation of the shell during solidification. Thus, the shell thickness on the same height was uniform around, and the thinning shell and a hot spot on the surface of shell were avoided. Both of the measurement and the calculation about the distribution of oxide inclusions along the radial direction indicated the number of inclusions at the side and the center was more than that at the quarter on the cross section of billet. With a larger diameter, inclusions tended to be entrapped toward the center area of the billet.

  11. Time evolution of absorption process in nonlinear metallic photonic crystals

    Singh, Mahi R.; Hatef, Ali [Department of Physics and Astronomy, University of Western Ontario, London (Canada)

    2009-05-15

    The time evolution of the absorption coefficient in metallic photonic crystals has been studied numerically. These crystals are made from metallic spheres which are arranged periodically in air. The refractive index of the metallic spheres depends on the plasma frequency. Probe and pump fields are applied to monitor the absorption process. Ensembles of three-level particles are embedded in the crystal. Nanoparticles are interacting with the metallic crystals via the electron-photon interaction. It is found that when the resonance states lie away from the band edges system goes to transparent state. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Determination of reduction yield of lithium metal reduction process

    Choi, In Kyu; Cho, Young Hwan; Kim, Taek Jin; Jee, Kwang Young

    2004-01-01

    Metal reduction of spent oxide fuel is the first step for the effective storage of spent fuel in Korea as well as transmutation purpose of long-lived radio-nuclides. During the reduction of uranium oxide by lithium metal to uranium metal, lithium oxide is stoichiometrically produced. By determining the concentration of lithium oxide in lithium chloride, we can estimate that how much uranium oxide is converted to uranium metal. Previous method to determine the lithium oxide concentration in lithium chloride is tedious and timing consuming. This paper describe the on-line monitoring method of lithium oxide during the reduction process

  13. Study of strength of Dsub(y)150 gate valve case, manufactured by centrifugal casting

    Umanskaya, L.G.; Semenov, P.V.; Tinyakov, V.G.; Babkina, R.I.; Khatuntsev, Eh.V.

    1982-01-01

    A process for manufacturing centrifugal-cast gate valve body is developed. Structural strength of such items, homogeneity, ductile and strength properties over the cross section as well as the metal susceptibility to embrittlement have been investigated. Three cast gate valve bodies have been taken: one - of 20GSL steel - for hydraulic testing, and two - of 15Kh1MFL steel - for investigation into the metal properties across the valve thickness. The strength properties of the centrifugal-cast gate valve body of 15Kh1M1FL steel are stated to meet the specifications. The gate valve metal ductility (delta and PSI) is twice as high as that of a sand-cast valve. The microstructure, strength and ductility are uniform both over wall thickness and over different body cross sections

  14. Pre-Brazed Casting and Hot Radial Pressing: A Reliable Process for the Manufacturing of CFC and W Monoblock Mockups

    Visca, E.; Libera, S.; Mancini, A.; Mazzone, G.; Pizzuto, A.; Testani, C.

    2006-01-01

    ENEA association is involved in the European International Thermonuclear Experimental Reactor (ITER) R-and-D activities and in particular for the manufacturing of high heat flux plasma-facing components (HHFC), such as the divertor targets, the baffles and the limiters: During the last years ENEA has manufactured actively cooled mock-ups by using different technologies, namely brazing, diffusion bonding and hot isostatic pressing (HIPping). A new manufacturing process has been set up and tested. It was successfully applied for the manufacturing of W armoured monoblock mockups. This technique is the HRP (Hot Radial Pressing) based on performing a radial diffusion bonding between the cooling tube and the armour tile by pressurizing only the internal tube and by keeping the joining zone in vacuum and at the required bonding temperature. The heating is obtained by a standard air furnace. The next step was to apply the HRP technique for the manufacturing of CFC armoured monoblock components. For this purpose some issues have to be solved like as the low CFC tensile strength, the pure copper interlayer between the heat sink and the armour necessary to mitigate the stress at the joint interface and the low wettability of the pure copper on the CFC matrix. This paper reports the research path followed to manufacture a medium scale vertical target CFC and W armoured mockup by HRP. An ad hoc rig able to maintain the CFC in a compressive constant condition was also designed and tested. The casting of a soft copper interlayer between the tube and the tile was performed by a new technique: the Pre-Brazed Casting (PBC, ENEA patent). Some mock-ups with three NB31 CFC tiles were successfully manufactured and tested to thermal fatigue using electron beam facilities. They all reached at least 1000 cycles at 20 MW/m 2 without suffering any damage. The manufactured medium scale vertical target mock-up is now under testing at the FE2000 (France) facility. (author)

  15. Hair casts

    Sweta S Parmar; Kirti S Parmar; Bela J Shah

    2014-01-01

    Hair casts or pseudonits are circumferential concretions, which cover the hair shaft in such a way that, it could be easily removed. They are thin, cylindrical, and elongated in length. We present an unusual case of an 8-year-old girl presenting with hair casts. Occurrence of these is unusual, and they may have varied associations. This patient was suffering from developmental delay. It is commonly misdiagnosed as and very important to differentiate from pediculosis capitis.

  16. PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS

    Moore, R.H.

    1962-10-01

    A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

  17. Impact of as-cast structure on structure and properties of twin-roll cast AA8006 alloy

    Slamova, M.; Ocenasek, V. [Vyzkumny Ustav Kovu, Panenske Brezany (Czechoslovakia); Juricek, Z.

    2000-07-01

    Sheet production by twin-roll casting (TRC) process is a well established practice in the aluminium industry because it offers several advantages in comparison with DC casting and hot rolling, esp. lower production and investment costs. Thin strips exhibiting a combination of good strength and high ductility are required for various applications and for this reason alloys with higher Fe and Mn content such as AA 8006 displace AA 1xxx or AA 8011 alloys. However, TRC of AA 8006 strips involves several problems, e.g. casting conditions and subsequent treatment procedures need fine tuning. The results of an investigation of the effect of casting conditions on structure and properties of AA 8006 strips are presented. The influence of casting speed, grain refiner addition, molten metal level in the tundish, tip setback and roll separating force was investigated. The impact of imperfect as-cast structure on structure and properties of thin strips in H22 and O tempers was evaluated and compared with strips from good as-cast material. (orig.)

  18. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    Makowiecki, Daniel M.; Ramsey, Philip B.; Juntz, Robert S.

    1995-01-01

    An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

  19. Process of treating surfaces of metals

    Kimura, T.; Murao, A.; Kuwahara, T.

    1975-01-01

    Both higher corrosion resistance and paint adherence are given to films formed on the surfaces of metals by treating the surfaces with aqueous solutions of one or more materials selected from the group consisting of water soluble vinyl monomer or water soluble high polymer and then irradiating with ionizing radioactive rays on the nearly dried surface film. When a water soluble inorganic compound is mixed with the above mentioned aqueous solution, the film properties are greatly improved. The inorganic ionic material should contain a cation from the group consisting of Ca, Mg, Zn, Cr, Al, Fe, and Ni. Electron beams may be used. (U.S.)

  20. Electrochemical activity of heavy metal oxides in the process of ...

    Unknown

    2002-02-02

    Feb 2, 2002 ... Electrochemical activity of heavy metal oxides in the process of chloride induced .... represents the protective barrier moderating the chloride attack which ... inhibitors and their influence on the physical properties of. Portland ...

  1. Hopper design for metallic powders used in additive manufacturing processes

    Visagie, N

    2013-10-01

    Full Text Available The influence of hopper geometry on the flow behaviour of typical metallic powders used in additive manufacturing processes is investigated. Bulk hopper theory provides a method of determining critical hopper parameters for bulk amounts...

  2. Experiments on the Model Testing of the 2nd Phase of Die Casting Process Compared with the Results of Numerical Simulation

    Dańko R.

    2015-12-01

    Full Text Available Experiments of filling the model moulds cavity of various inner shapes inserted in rectangular cavity of the casting die (dimensions: 280 mm (height × 190 mm (width × 10 mm (depth by applying model liquids of various density and viscosity are presented in the paper. Influence of die venting as well as inlet system area and inlet velocity on the volumetric rate of filling of the model liquid - achieved by means of filming the process in the system of a cold-chamber casting die was tested. Experiments compared with the results of simulation performed by means of the calculation module Novacast (Novaflow&Solid for the selected various casting conditions - are also presented in the paper.

  3. Titanium and zirconium metal powder spheroidization by thermal plasma processes

    Bissett, H.; van der Walt, I.J.; Havenga, J.L.; Nel, J.T.

    2015-01-01

    New technologies used to manufacture high-quality components, such as direct laser sintering, require spherical powders of a narrow particle size distribution as this affects the packing density and sintering mechanism. The powder also has to be chemically pure as impurities such as H, O, C, N, and S causes brittleness, influence metal properties such as tensile strength, hardness, and ductility, and also increase surface tension during processing. Two new metal powder processes have been dev...

  4. Metal Catalyzed Fusion: Nuclear Active Environment vs. Process

    Chubb, Talbot

    2009-03-01

    To achieve radiationless dd fusion and/or other LENR reactions via chemistry: some focus on environment of interior or altered near-surface volume of bulk metal; some on environment inside metal nanocrystals or on their surface; some on the interface between nanometal crystals and ionic crystals; some on a momentum shock-stimulation reaction process. Experiment says there is also a spontaneous reaction process.

  5. Process for forming unusually strong joints between metals and ceramics by brazing at temperatures that do no exceed 750 degree C.

    Hammond, Joseph P.; David, Stan A.; Woodhouse, John J.

    1986-01-01

    This invention is a process for joining metals to ceramics to form very strong bonds using low brazing temperature, i.e., less than 750.degree. C., and particularly for joining nodular cast iron to partially stabilized zirconia. The process provides that the ceramic be coated with an active metal, such as titanium, that can form an intermetallic with a low melting point brazing alloy such as 60Ag-30Cu-10Sn. The nodular cast iron is coated with a noncarbon containing metal, such as copper, to prevent carbon in the nodular cast iron from dissolving in the brazing alloy. These coated surfaces can be brazed together with the brazing alloy between at less than 750.degree. C. to form a very strong joint. An even stronger bond can be formed if a transition piece is used between the metal and ceramic. It is preferred for the transition piece to have a coefficient of thermal compatible with the coefficient of thermal expansion of the ceramic, such as titanium.

  6. Influence of temper condition on microstructure and mechanical properties of semisolid metal processed Al–Si–Mg alloy A356

    Moller, H

    2009-01-01

    Full Text Available The microstructures and mechanical properties of strontium modified semisolid metal high pressure die cast A356 alloy are presented. The alloy A356-F (as cast) has a globular primary grain structure containing a fine eutectic. Solution treatment...

  7. Sol-gel processing with inorganic metal salt precursors

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  8. Usage of Thermodynamic Activity for Optimization of Power Expenses in Respect of Casting Process in Arc Steel-Melting Furnace

    A. N. Chichko

    2006-01-01

    Full Text Available The equilibrium between carbon and oxygen has been investigated during oxidizing refining in an arc steel-melting furnace. It is shown that there is a possibility to apply an equilibrium thermodynamic. It has been established that during oxidizing refining FeO concentration in slag practically does not depend on C concentration in metal. It is demonstrated that in a number of cases metal carbon oxidation is characterized by the presence of a transit period that may be attributed to incomplete slag-formation process.

  9. Characterization of metal powder based rapid prototyping components under aluminium high pressure die casting process conditions

    Pereira, MFVT

    2009-11-01

    Full Text Available periodic inspections, monitoring crack formation and evidence of surface washout. At the end of the thermal tests, mechanical strength and hardness tests were performed to assess toughness and core resistance variations in relation to the initial conditions...

  10. Phase characteristics of rare earth elements in metallic fuel for a sodium-cooled fast reactor by injection casting

    Kuk, Seoung Woo, E-mail: swkuk@kaeri.re.kr [Next Generation Fuel Development Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock [Next Generation Fuel Development Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Youn, Young-Sang [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Kim, Jong-Yun [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Radiochemistry & Nuclear Nonproliferation, University of Science & Technology, Gajeong-ro 217, Yuseong-gu, Daejeon, 34113 (Korea, Republic of)

    2017-04-01

    Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.

  11. Freeze-casting as a Novel Manufacturing Process for Fast Reactor Fuels. Final Report

    Wegst, Ulrike G.K.; Sridharan, Kumar

    2014-01-01

    Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reactors requires novel fuel types based on new materials and designs that can achieve higher performance requirements (higher burn up, higher power, and greater margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a well-defined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

  12. Freeze-casting as a Novel Manufacturing Process for Fast Reactor Fuels. Final Report

    Wegst, Ulrike G.K. [Dartmouth College, Hanover, NH (United States). Thayer School of Engineering; Allen, Todd [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States)

    2014-04-07

    Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reactors requires novel fuel types based on new materials and designs that can achieve higher performance requirements (higher burn up, higher power, and greater margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a well-defined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

  13. New sol–gel refractory coatings on chemically-bonded sand cores for foundry applications to improve casting surface quality

    Nwaogu, Ugochukwu Chibuzoh; Poulsen, T.; Stage, R.K.

    2011-01-01

    Foundry refractory coatings protect bonded sand cores and moulds from producing defective castings during the casting process by providing a barrier between the core and the liquid metal. In this study, new sol–gel refractory coating on phenolic urethane cold box (PUCB) core was examined. The coa......Foundry refractory coatings protect bonded sand cores and moulds from producing defective castings during the casting process by providing a barrier between the core and the liquid metal. In this study, new sol–gel refractory coating on phenolic urethane cold box (PUCB) core was examined......–gel coated cores have better surface quality than those from uncoated cores and comparable surface quality with the commercial coatings. Therefore, the new sol–gel coating has a potential application in the foundry industry for improving the surface finish of castings thereby reducing the cost of fettling...

  14. Melting and casting of FeAl-based cast alloy

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  15. Process for the regeneration of metallic catalysts

    Katzer, James R.; Windawi, Hassan

    1981-01-01

    A method for the regeneration of metallic hydrogenation catalysts from the class consisting of Ni, Rh, Pd, Ir, Pt and Ru poisoned with sulfur, with or without accompanying carbon deposition, comprising subjecting the catalyst to exposure to oxygen gas in a concentration of about 1-10 ppm. intermixed with an inert gas of the group consisting of He, A, Xe, Kr, N.sub.2 and air substantially free of oxygen to an extent such that the total oxygen molecule throughout is in the range of about 10 to 20 times that of the hydrogen sulfide molecular exposure producing the catalyst poisoning while maintaining the temperature in the range of about 300.degree. to 500.degree. C.

  16. Trend and Development of Semisolid Metal Joining Processing

    M. N. Mohammed

    2015-01-01

    Full Text Available The semisolid metal joining (SSMJ process or thixojoining process has recently been developed based on the principles of SSM processing, which is a technology that involves the formation of metal alloys between solidus and liquidus temperatures. Thixojoining has many potential benefits, which has encouraged researchers to carry out feasibility studies on various materials that could be utilized in this process and which could transform the production of metal components. This paper reviews the findings in the literature to date in this evolving field, specifically, the experimental details, technology considerations for industrialization, and advantages and disadvantages of the various types of SSMJ methods that have been proposed. It also presents details of the range of materials that have been joined by using the SSMJ process. Furthermore, it highlights the huge potential of this process and future directions for further research.

  17. Ceramic/metal nanocomposites by lyophilization: Processing and HRTEM study

    Gutierrez-Gonzalez, C.F.; Agouram, S.; Torrecillas, R.; Moya, J.S.; Lopez-Esteban, S.

    2012-01-01

    Highlights: ► A cryogenic route has been used to obtain ceramic/metal nanostructured powders. ► The powders present good homogeneity and dispersion of metal. ► The metal nanoparticle size distributions are centred in 17–35 nm. ► Both phases, ceramic and metal, present a high degree of crystallinity. ► Good metal/ceramic interfaces due to epitaxial growth, studied by HRTEM. -- Abstract: This work describes a wet-processing route based on spray-freezing and subsequent lyophilization designed to obtain nanostructured ceramic/metal powders. Starting from the ceramic powder and the corresponding metal salt, a water-based suspension is sprayed on liquid nitrogen. The frozen powders are subsequently freeze-dried, calcined and reduced. The material was analyzed using X-ray diffraction analysis at all stages. High resolution transmission electron microscopy studies showed a uniform distribution of metal nanoparticles on the ceramic grain surfaces, good interfaces and high crystallinity, with an average metal particle size in the nanometric range.

  18. Studies on the optimization of deformation processed metal metal matrix composites

    Ellis, Tim W. [Iowa State Univ., Ames, IA (United States)

    1994-01-04

    A methodology for the production of deformation processed metal metal matrix composites from hyper-eutectic copper-chromium alloys was developed. This methodology was derived from a basic study of the precipitation phenomena in these alloys encompassing evaluation of microstructural, electrical, and mechanical properties. The methodology developed produces material with a superior combination of electrical and mechanical properties compared to those presently available in commercial alloys. New and novel alloying procedures were investigated to extend the range of production methods available for these material. These studies focused on the use of High Pressure Gas Atomization and the development of new containment technologies for the liquid alloy. This allowed the production of alloys with a much more refined starting microstructure and lower contamination than available by other methods. The knowledge gained in the previous studies was used to develop two completely new families of deformation processed metal metal matrix composites. These composites are based on immissible alloys with yttrium and magnesium matrices and refractory metal reinforcement. This work extends the physical property range available in deformation processed metal metal matrix composites. Additionally, it also represents new ways to apply these metals in engineering applications.

  19. Cast dielectric composite linear accelerator

    Sanders, David M [Livermore, CA; Sampayan, Stephen [Manteca, CA; Slenes, Kirk [Albuquerque, NM; Stoller, H M [Albuquerque, NM

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  20. Repair welding of cast iron coated electrodes

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  1. Solidification and casting

    Cantor, Brian

    2002-01-01

    INDUSTRIAL PERSPECTIVEDirect chillcasting of aluminium alloysContinuous casting of aluminium alloysContinuous casting of steelsCastings in the automotive industryCast aluminium-silicon piston alloysMODELLING AND SIMULATIONModelling direct chill castingMold filling simulation of die castingThe ten casting rulesGrain selection in single crystal superalloy castingsDefects in aluminium shape castingPattern formation during solidificationPeritectic solidificationSTRUCTURE AND DEFECTSHetergeneous nucleation in aluminium alloysCo

  2. Fabrication of subwavelength metallic structures by using a metal direct imprinting process

    Hsieh, C W; Hsiung, H Y; Lu, Y T; Sung, C K; Wang, W H

    2007-01-01

    This work employs a metal direct imprinting process, which possesses the characteristics of simplicity, low-cost and high resolution, for the fabrication of subwavelength structures on a metallic thin film. Herein, the mould featuring periodic line structures is manufactured by using E-beam lithography and followed by a dry etching process; meanwhile, the thin film is fabricated by sputtering Al on a silicon substrate. AFM section analyses are employed to measure imprinting depths of the subwavelength metallic structures and it is found that the uniformity of the imprinting depths is affected by the designed patterns, the material property of thin film and mould deformation. The process temperature and the mould filling that influence the transferred quality are investigated. In addition, TEM is also utilized to examine defects in the subwavelength metallic structures. Finally, good quality subwavelength metallic structures are fabricated under a pressure of 300 MPa for 60 s at room temperature. In this study, we have demonstrated that subwavelength metallic structures with a minimum linewidth of less than 100 nm on the Al thin film are successfully constructed by the metal direct imprinting process

  3. Quasi-superplasticity of a banded-grained Al-Mg-Y alloy processed by continuous casting-extrusion

    Cao, Furong, E-mail: cfr-lff@163.com [School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Zhu, Xiaotong [School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Huaian Dekema Semiconductor Co., Ltd., Huaian 223300 (China); Wang, Shuncheng [Institute of Materials Processing and Forming Technology, Guangdong General Research Institute of Industrial Technology, Guangzhou 510650 (China); Shi, Lu [School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Xu, Guangming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Wen, Jinglin [School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China)

    2017-04-06

    The continuous casting-extrusion (CTE) process is a short-route technology for fabricating aluminum and aluminum alloy wires. A novel Al-1.44Mg-1.09Y alloy was prepared by CTE, and its mechanical properties and microstructure evolution were investigated at elevated temperatures to explore the hot tensile ductility of aluminum alloy wire. A true strain to failure of 1.159 was obtained at 773 K and 1.67×10{sup −2} s{sup −1}, and the present alloy exhibits high strain rate quasi-superplasticity. Microstructure observations reveal that it is difficult to realize the equiaxedness of elongated or textured grains through hot tensile deformation. A new deformation mechanism map (DMM) was constructed which predicts that dislocation climb at high stress dominates the high-temperature deformation process. This theoretical prediction using the DMM is in good agreement with experimental transmission-electron-microscopy results and with the estimated true stress exponent of 5 and the activation energy for deformation in the range 127.378―141.536 kJ mol{sup −1}. A new three-dimensional histogram containing a dynamic recovery (DRV) or dynamic recrystallization factor was constructed to demonstrate that the DRV mechanism dominates the deformation. Most experimental results are consistent with prediction using this histogram.

  4. Quasi-superplasticity of a banded-grained Al-Mg-Y alloy processed by continuous casting-extrusion

    Cao, Furong; Zhu, Xiaotong; Wang, Shuncheng; Shi, Lu; Xu, Guangming; Wen, Jinglin

    2017-01-01

    The continuous casting-extrusion (CTE) process is a short-route technology for fabricating aluminum and aluminum alloy wires. A novel Al-1.44Mg-1.09Y alloy was prepared by CTE, and its mechanical properties and microstructure evolution were investigated at elevated temperatures to explore the hot tensile ductility of aluminum alloy wire. A true strain to failure of 1.159 was obtained at 773 K and 1.67×10 −2 s −1 , and the present alloy exhibits high strain rate quasi-superplasticity. Microstructure observations reveal that it is difficult to realize the equiaxedness of elongated or textured grains through hot tensile deformation. A new deformation mechanism map (DMM) was constructed which predicts that dislocation climb at high stress dominates the high-temperature deformation process. This theoretical prediction using the DMM is in good agreement with experimental transmission-electron-microscopy results and with the estimated true stress exponent of 5 and the activation energy for deformation in the range 127.378―141.536 kJ mol −1 . A new three-dimensional histogram containing a dynamic recovery (DRV) or dynamic recrystallization factor was constructed to demonstrate that the DRV mechanism dominates the deformation. Most experimental results are consistent with prediction using this histogram.

  5. Technological Aspects of Low-Alloyed Cast Steel Massive Casting Manufacturing

    Szajnara J.

    2013-12-01

    Full Text Available In the paper authors have undertaken the attempt of explaining the causes of cracks net occurrence on a massive 3-ton cast steel casting with complex geometry. Material used for casting manufacturing was the low-alloyed cast steel with increased wear resistance modified with vanadium and titanium. The studies included the primary and secondary crystallization analysis with use of TDA and the qualitative and quantitative analysis of non-metallic inclusions.

  6. Biocompatibility effects of indirect exposure of base-metal dental casting alloys to a human-derived three-dimensional oral mucosal model.

    McGinley, Emma Louise; Moran, Gary P; Fleming, Garry J P

    2013-11-01

    The study employed a three-dimensional (3D) human-derived oral mucosal model to assess the biocompatibility of base-metal dental casting alloys ubiquitous in fixed prosthodontic and orthodontic dentistry. Oral mucosal models were generated using primary human oral keratinocyte and gingival fibroblast cells seeded onto human de-epidermidised dermal scaffolds. Nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) base-metal alloy immersion solutions were exposed to oral mucosal models for increasing time periods (2-72h). Analysis methodologies (histology, viable cell counts, oxidative stress, cytokine expression and toxicity) were performed following exposure. Ni-based alloy immersion solutions elicited significantly decreased cell viability (P0.4755) or cellular toxicity (Pcasting alloys through discriminatory experimental parameters. Increasing incidences of Ni hypersensitivity in the general population warrants serious consideration from dental practitioners and patients alike where fixed prosthodontic/orthodontic dental treatments are the treatment modality involved. The novel and analytical oral mucosal model has the potential to significantly contribute to the advancement of reproducible dental medical device and dental material appraisals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Application of molten salts in pyrochemical processing of reactive metals

    Mishra, B.; Olson, D.L.; Averill, W.A.

    1992-01-01

    Various mixes of chloride and fluoride salts are used as the media for conducting pyrochemical processes in the production and purification of reactive metals. These processes generate a significant amount of contaminated waste that has to be treated for recycling or disposal. Molten calcium chloride based salt systems have been used in this work to electrolytically regenerate calcium metal from calcium oxide for the in situ reduction of reactive metal oxides. The recovery of calcium is characterized by the process efficiency to overcome back reactions in the electrowinning cell. A thermodynamic analysis, based on fundamental rate theory, has been performed to understand the process parameters controlling the metal deposition, rate, behavior of the ceramic anode-sheath and influence of the back-reactions. It has been observed that the deposition of calcium is dependent on the ionic diffusion through the sheath. It has also been evidenced that the recovered calcium is completely lost through the back-reactions in the absence of a sheath. A practical scenario has also been presented where the electrowon metal can be used in situ as a reductant to reduce another reactive metal oxide

  8. Microstructure and Properties of Cobalt-and Zinc-Containing Magnetic Magnesium Alloys Processed by High-Pressure Die Casting

    Klose, Christian; Demminger, Christian; Maier, Hans Jürgen

    The inherent magnetic properties of lightweight alloys based on magnesium and cobalt offer a novel way in order to measure mechanical loads throughout the entire structural component using the magnetoelastic effect. Because the solubility of cobalt in the magnesium matrix is negligible, the magnetic properties mainly originate from Co-rich precipitates. Thus, the size and distribution of Co-containing phases within the alloy's microstructure wields a major influence on the amplitude of the load-sensitive properties which can be measured by employing the harmonic analysis of eddy-current signals. In this study, Mg-Co-based alloys are produced by several casting methods which allow the application of different cooling rates, e.g. gravity die casting and high-pressure die casting. The differences between the manufactured alloys' micro- and phase structures are compared depending on the applied cooling rate and the superior magnetic and mechanical properties of the high-pressure die cast material are demonstrated.

  9. Fracture Mechanisms in Steel Castings

    Stradomski Z.

    2013-09-01

    Full Text Available The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion - the intergranular one - occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.

  10. Overview of friction modelling in metal forming processes

    Nielsen, Chris Valentin; Bay, Niels Oluf

    2017-01-01

    In metal forming processes, friction between tool and workpiece is an important parameter influencing the material flow, surface quality and tool life. Theoretical models of friction in metal forming are based on analysis of the real contact area in tool-workpiece interfaces. Several research...... groups have studied and modelled the asperity flattening of workpiece material against tool surface in dry contact or in contact interfaces with only thin layers of lubrication with the aim to improve understanding of friction in metal forming. This paper aims at giving a review of the most important...... future work in order to advance further in modelling of real contact area in relation to implementation of frictional conditions existing finite element codes for simulation of metal forming processes. © 2017 The Authors. Published by Elsevier Ltd....

  11. Synthesis and processing of composites by reactive metal penetration

    Loehman, R.E.; Ewsuk, K.G. [Sandia National Laboratories, Albuquerque, NM (United States); Tomsia, A.P. [Pask Research and Engineering, Berkeley, CA (United States)] [and others

    1995-05-01

    Ceramic-metal composites are being developed because their high stiffness-to weight ratios, good fracture toughness, and variable electrical and thermal properties give them advantages over more conventional materials. However, because ceramic-metal composite components presently are more expensive than monolithic materials, improvements in processing are required to reduce manufacturing costs. Reactive metal penetration is a promising new method for making ceramic- and metal-matrix composites that has the advantage of being inherently a net-shape process. This technique, once fully developed, will provide another capability for manufacturing the advanced ceramic composites that are needed for many light-weight structural and wear applications. The lower densities of these composites lead directly to energy savings in use. Near-net-shape fabrication of composite parts should lead to additional savings because costly and energy intensive grinding and machining operations are significantly reduced, and the waste generated from such finishing operations is minimized. The goals of this research program are: (1) to identify feasible compositional systems for making composites by reactive metal penetration; (2) to understand the mechanism(s) of composite formation by reactive metal penetration; and (3) to learn how to control and optimize reactive metal penetration for economical production of composites and composite coatings.

  12. 3D scanning based mold correction for planar and cylindrical parts in aluminum die casting

    Takashi Seno

    2015-04-01

    Full Text Available Aluminum die casting is an important manufacturing process for mechanical components. Die casting is known to be more accurate than other types of casting; however, post-machining is usually necessary to achieve the required accuracy. The goal of this investigation is to develop machining- free aluminum die casting. Improvement of the accuracy of planar and cylindrical parts is expected by correcting metal molds. In the proposed method, the shape of cast aluminum made with the initial metal molds is measured by 3D scanning. The 3D scan data includes information about deformations that occur during casting. Therefore, it is possible to estimate the deformation and correction amounts by comparing 3D scan data with product computer-aided design (CAD data. We corrected planar and cylindrical parts of the CAD data for the mold. In addition, we corrected the planar part of the metal mold using the corrected mold data. The effectiveness of the proposed method is demonstrated by evaluating the accuracy improvement of the cast aluminum made with the corrected mold.

  13. Valuable metals - recovery processes, current trends, and recycling strategies

    Froehlich, Peter; Lorenz, Tom; Martin, Gunther; Brett, Beate; Bertau, Martin [Institut fuer Technische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, 09599, Freiberg (Germany)

    2017-03-01

    This Review provides an overview of valuable metals, the supply of which has been classified as critical for Europe. Starting with a description of the current state of the art, novel approaches for their recovery from primary resources are presented as well as recycling processes. The focus lies on developments since 2005. Chemistry strategies which are used in metal recovery are summarized on the basis of the individual types of deposit and mineral. In addition, the economic importance as well as utilization of the metals is outlined. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Survey of electrochemical metal winning processes. Final report

    Vaaler, L.E.

    1979-03-01

    The subject program was undertaken to find electrometallurgical technology that could be developed into energy saving commercial metal winning processes. Metals whose current production processes consume significant energy (excepting copper and aluminum) are magnesium, zinc, lead, chromium, manganese, sodium, and titanium. The technology of these metals, with the exception of titanium, was reviewed. Growth of titanium demand has been too small to justify the installation of an electrolyte process that has been developed. This fact and the uncertainty of estimates of future demand dissuaded us from reviewing titanium technology. Opportunities for developing energy saving processes were found for magnesium, zinc, lead, and sodium. Costs for R and D and demonstration plants have been estimated. It appeared that electrolytic methods for chromium and manganese cannot compete energywise or economically with the pyrometallurgical methods of producing the ferroalloys, which are satisfactory for most uses of chromium and manganese.

  15. Process for removing heavy metal compounds from heavy crude oil

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  16. Development of methodology for the fore cast of microbiological processes under transaction to industrial cultivation

    Lepeshkin, G.; Bugreev, V.

    1996-01-01

    Proposals for possible cooperation with Western partners : To obtain the scale transfers method in laboratory condition of microorganisms cultivation to industrial conditions based on the parameters of spatial cultivation to industrial conditions based on the parameters of spatial heterogeneous hydrodynamics situation in bioreactors. The problem is the impossibility to count constructive elements and regimes of ferments operation which provided optimum environment for microorganisms vital functions because the hydrodynamic, biological and mass change processes are complicated. To solve the problems it is required to : - Investigate the different sides of physiology of culture-producer of Biologically Active Substances (hereinafter BAS) - Investigate the interrelation between the stirring and biological transformation in microorganism cells - Analyze and search main tendencies required to control biosynthesis (BAS) processes and reproduction of biosynthesis results at the cultivation change scale - Analyze technical properties of the reactor and the revealing of the spatial heterogeneous hydrodynamics situation at the different scales of bioreactor parameters - Investigate cinematic energy mediums field in the different bioreactor scales - Obtain the criteria dependencies estimating the irregularity of the stirrings intensity - Prepare the methodological foundations of microbiological processes forecast required to introduce to the industrial biosynthesis environment Expected results : To detect the comparable regimes of bioreactor operation in order to achieve equal production range and realize the scale-up method

  17. Preliminary physical, nutrients, biological, meteorological, and other data from bottle casts, CTD casts, ADCP casts, moored current meters, and meteorological sensors from the GYRE from as part of the Texas-Louisiana Shelf Circulation and Transport Processes Study (LATEX PART A) from 04 November 1992 to 05 August 1994 (NODC Accession 9500054)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary physical, nutrients, biological, meteorological, and other data from bottle casts, CTD casts, ADCP casts, and meteorological sensors from the GYRE from...

  18. Process control for sheet-metal stamping process modeling, controller design and shop-floor implementation

    Lim, Yongseob; Ulsoy, A Galip

    2014-01-01

    Process Control for Sheet-Metal Stamping presents a comprehensive and structured approach to the design and implementation of controllers for the sheet metal stamping process. The use of process control for sheet-metal stamping greatly reduces defects in deep-drawn parts and can also yield large material savings from reduced scrap. Sheet-metal forming is a complex process and most often characterized by partial differential equations that are numerically solved using finite-element techniques. In this book, twenty years of academic research are reviewed and the resulting technology transitioned to the industrial environment. The sheet-metal stamping process is modeled in a manner suitable for multiple-input multiple-output control system design, with commercially available sensors and actuators. These models are then used to design adaptive controllers and real-time controller implementation is discussed. Finally, experimental results from actual shopfloor deployment are presented along with ideas for further...

  19. Development of Metal Plate with Internal Structure Utilizing the Metal Injection Molding (MIM Process

    Kwangho Shin

    2013-12-01

    Full Text Available In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE simulation. PE (high density polyethylene (HDPE and low density polyethylene (LDPE and polypropylene (PP resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made.

  20. CASTING FURNACES

    Ruppel, R.H.; Winters, C.E.

    1961-01-01

    A device is described for casting uranium which comprises a crucible, a rotatable table holding a plurality of molds, and a shell around both the crucible and the table. The bottom of the crucible has an eccentrically arranged pouring hole aligned with one of the molds at a time. The shell can be connected with a vacuum.