WorldWideScience

Sample records for metabolomics experiments involving

  1. Tools for the functional interpretation of metabolomic experiments.

    Science.gov (United States)

    Chagoyen, Monica; Pazos, Florencio

    2013-11-01

    The so-called 'omics' approaches used in modern biology aim at massively characterizing the molecular repertories of living systems at different levels. Metabolomics is one of the last additions to the 'omics' family and it deals with the characterization of the set of metabolites in a given biological system. As metabolomic techniques become more massive and allow characterizing larger sets of metabolites, automatic methods for analyzing these sets in order to obtain meaningful biological information are required. Only recently the first tools specifically designed for this task in metabolomics appeared. They are based on approaches previously used in transcriptomics and other 'omics', such as annotation enrichment analysis. These, together with generic tools for metabolic analysis and visualization not specifically designed for metabolomics will for sure be in the toolbox of the researches doing metabolomic experiments in the near future.

  2. Metabolomics

    DEFF Research Database (Denmark)

    Pedersen, Hans

    is a presentation of a core consistency diagnostic aiding in determining the number of components in a PARAFAC2 model. It is of great importance to validate especially PLS-DA models and if not done properly, the developed models might reveal spurious groupings. Furthermore, data from metabolomics studies contain...... and the results indicate that GC-MS-based metabolomics in combination with PARAFAC2 modelling is applicable for extracting relevant biological information from the plasma samples. Overall, the work in this thesis shows that suitable and properly validated chemometrics models used in metabolomics are very useful...

  3. Metabolomics

    DEFF Research Database (Denmark)

    Kamstrup-Nielsen, Maja Hermann

    how to properly handle complex metabolomics data, in order to achieve reliable and valid multivariate models. This has been illustrated by three case studies with examples of forecasting breast cancer and early detection of colorectal cancer based on data from nuclear magnetic resonance (NMR...... based on NMR data with RRV and known risk markers. The sensitivity and specificity values are 0.80 and 0.79, respectively, for a test set validated model. The second case study is based on plasma samples with verified colorectal cancer and three types of control samples analysed by fluorescence...... spectroscopy a potential tool in early detection of colorectal cancer. Finally, plasma samples have been analysed using GC-MS. The method requires extensive sample preparation and therefore the study can only be considered a feasibility study with room for optimization. However, 14 plasma samples were analysed...

  4. Work Experience and Work Involvement.

    Science.gov (United States)

    Lorence, Jon; Mortimer, Jeylan T.

    1981-01-01

    Examines the interrelations of work experience and psychological involvement in work among male college graduates over a 10-year period. Both the occupational socialization and the occupational selection hypotheses are supported by the data analysis. (Author/JOW)

  5. Standard reporting requirements for biological samples in metabolomics experiments: Microbial and in vitro biology experiments

    NARCIS (Netherlands)

    Werf, M.J. van der; Takors, R.; Smedsgaard, J.; Nielsen, J.; Ferenci, T.; Portais, J.C.; Wittmann, C.; Hooks, M.; Tomassini, A.; Oldiges, M.; Fostel, J.; Sauer, U.

    2007-01-01

    With the increasing use of metabolomics as a means to study a large number of different biological research questions, there is a need for a minimal set of reporting standards that allow the scientific community to evaluate, understand, repeat, compare and re-investigate metabolomics studies. Here

  6. Integration of Metabolomics and Transcriptomics Reveals Major Metabolic Pathways and Potential Biomarker Involved in Prostate Cancer.

    Science.gov (United States)

    Ren, Shancheng; Shao, Yaping; Zhao, Xinjie; Hong, Christopher S; Wang, Fubo; Lu, Xin; Li, Jia; Ye, Guozhu; Yan, Min; Zhuang, Zhengping; Xu, Chuanliang; Xu, Guowang; Sun, Yinghao

    2016-01-01

    Prostate cancer is a highly prevalent tumor affecting millions of men worldwide, but poor understanding of its pathogenesis has limited effective clinical management of patients. In addition to transcriptional profiling or transcriptomics, metabolomics is being increasingly utilized to discover key molecular changes underlying tumorigenesis. In this study, we integrated transcriptomics and metabolomics to analyze 25 paired human prostate cancer tissues and adjacent noncancerous tissues, followed by further validation of our findings in an additional cohort of 51 prostate cancer patients and 16 benign prostatic hyperplasia patients. We found several altered pathways aberrantly expressed at both metabolic and transcriptional levels, including cysteine and methionine metabolism, nicotinamide adenine dinucleotide metabolism, and hexosamine biosynthesis. Additionally, the metabolite sphingosine demonstrated high specificity and sensitivity for distinguishing prostate cancer from benign prostatic hyperplasia, particularly for patients with low prostate specific antigen level (0-10 ng/ml). We also found impaired sphingosine-1-phosphate receptor 2 signaling, downstream of sphingosine, representing a loss of tumor suppressor gene and a potential key oncogenic pathway for therapeutic targeting. By integrating metabolomics and transcriptomics, we have provided both a broad picture of the molecular perturbations underlying prostate cancer and a preliminary study of a novel metabolic signature, which may help to discriminate prostate cancer from normal tissue and benign prostatic hyperplasia. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Optimal preprocessing of serum and urine metabolomic data fusion for staging prostate cancer through design of experiment.

    Science.gov (United States)

    Zheng, Hong; Cai, Aimin; Zhou, Qi; Xu, Pengtao; Zhao, Liangcai; Li, Chen; Dong, Baijun; Gao, Hongchang

    2017-10-23

    Accurate classification of cancer stages will achieve precision treatment for cancer. Metabolomics presents biological phenotypes at the metabolite level and holds a great potential for cancer classification. Since metabolomic data can be obtained from different samples or analytical techniques, data fusion has been applied to improve classification accuracy. Data preprocessing is an essential step during metabolomic data analysis. Therefore, we developed an innovative optimization method to select a proper data preprocessing strategy for metabolomic data fusion using a design of experiment approach for improving the classification of prostate cancer (PCa) stages. In this study, urine and serum samples were collected from participants at five phases of PCa and analyzed using a 1 H NMR-based metabolomic approach. Partial least squares-discriminant analysis (PLS-DA) was used as a classification model and its performance was assessed by goodness of fit (R 2 ) and predictive ability (Q 2 ). Results show that data preprocessing significantly affect classification performance and depends on data properties. Using the fused metabolomic data from urine and serum, PLS-DA model with the optimal data preprocessing (R 2  = 0.729, Q 2  = 0.504, P < 0.0001) can effectively improve model performance and achieve a better classification result for PCa stages as compared with that without data preprocessing (R 2  = 0.139, Q 2  = 0.006, P = 0.450). Therefore, we propose that metabolomic data fusion integrated with an optimal data preprocessing strategy can significantly improve the classification of cancer stages for precision treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Metabolomic Analysis and Mode of Action of Metabolites of Tea Tree Oil Involved in the Suppression of Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Jiayu Xu

    2017-06-01

    Full Text Available Tea tree oil (TTO, a volatile essential oil, has been widely used as an antimicrobial agent. However, the mechanism underlying TTO antifungal activity is not fully understood. In this study, a comprehensive metabolomics survey was undertaken to identify changes in metabolite production in Botrytis cinerea cells treated with TTO. Significant differences in 91 metabolites were observed, including 8 upregulated and 83 downregulated metabolites in TTO-treated cells. The results indicate that TTO inhibits primary metabolic pathways through the suppression of the tricarboxylic acid (TCA cycle and fatty acid metabolism. Further experiments show that TTO treatment decreases the activities of key enzymes in the TCA cycle and increases the level of hydrogen peroxide (H2O2. Membrane damage is also induced by TTO treatment. We hypothesize that the effect of TTO on B. cinerea is achieved mainly by disruption of the TCA cycle and fatty acid metabolism, resulting in mitochondrial dysfunction and oxidative stress.

  9. A proposed framework for the description of plant metabolomics experiments and their results

    NARCIS (Netherlands)

    Jenkens, H.; Hardy, N.; Beckmann, M.; Draper, J.; Smith, A.R.; Taylor, J.; Fiehn, O.; Goodacre, R.; Bino, R.J.; Hall, R.D.; Kopka, J.; Lane, G.A.; Lange, B.M.; Liu, J.R.; Mendes, P.; Nikolau, B.J.; Oliver, S.G.; Paton, I.R.; Roessner-Tunali, U.; Saito, K.; Smedsgaard, J.; Sumner, L.W.; Wang, T.; Walsh, S.; Wurtele, E.S.; Kell, D.B.

    2004-01-01

    The study of the metabolite complement of biological samples, known as metabolomics, is creating large amounts of data, and support for handling these data sets is required to facilitate meaningful analyses that will answer biological questions. We present a data model for plant metabolomics known

  10. A proposed framework for the description of plant metabolomics experiments and their results

    DEFF Research Database (Denmark)

    Jenkins, H.; Hardy, N.; Beckmann, M-

    2004-01-01

    The study of the metabolite complement of biological samples, known as metabolomics, is creating large amounts of data, and support for handling these data sets is required to facilitate meaningful analyses that will answer biological questions. We present a data model for plant metabolomics known...

  11. Metabolomic profiling identifies potential pathways involved in the interaction of iron homeostasis with glucose metabolism

    Directory of Open Access Journals (Sweden)

    Lars Stechemesser

    2017-01-01

    Conclusions: Our data suggest that high serum ferritin concentrations are linked to impaired glucose homeostasis in subjects with the MetS. Iron excess is associated to distinct changes in the serum concentrations of phosphatidylcholine subsets. A pathway involving sarcosine and citrulline also may be involved in iron-induced impairment of glucose metabolism.

  12. Quality assurance procedures for mass spectrometry untargeted metabolomics. a review.

    Science.gov (United States)

    Dudzik, Danuta; Barbas-Bernardos, Cecilia; García, Antonia; Barbas, Coral

    2018-01-05

    Untargeted metabolomics, as a global approach, has already proven its great potential and capabilities for the investigation of health and disease, as well as the wide applicability for other research areas. Although great progress has been made on the feasibility of metabolomics experiments, there are still some challenges that should be faced and that includes all sources of fluctuations and bias affecting every step involved in multiplatform untargeted metabolomics studies. The identification and reduction of the main sources of unwanted variation regarding the pre-analytical, analytical and post-analytical phase of metabolomics experiments is essential to ensure high data quality. Nowadays, there is still a lack of information regarding harmonized guidelines for quality assurance as those available for targeted analysis. In this review, sources of variations to be considered and minimized along with methodologies and strategies for monitoring and improvement the quality of the results are discussed. The given information is based on evidences from different groups among our own experiences and recommendations for each stage of the metabolomics workflow. The comprehensive overview with tools presented here might serve other researchers interested in monitoring, controlling and improving the reliability of their findings by implementation of good experimental quality practices in the untargeted metabolomics study. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Time-saving design of experiment protocol for optimization of LC-MS data processing in metabolomic approaches.

    Science.gov (United States)

    Zheng, Hong; Clausen, Morten Rahr; Dalsgaard, Trine Kastrup; Mortensen, Grith; Bertram, Hanne Christine

    2013-08-06

    We describe a time-saving protocol for the processing of LC-MS-based metabolomics data by optimizing parameter settings in XCMS and threshold settings for removing noisy and low-intensity peaks using design of experiment (DoE) approaches including Plackett-Burman design (PBD) for screening and central composite design (CCD) for optimization. A reliability index, which is based on evaluation of the linear response to a dilution series, was used as a parameter for the assessment of data quality. After identifying the significant parameters in the XCMS software by PBD, CCD was applied to determine their values by maximizing the reliability and group indexes. Optimal settings by DoE resulted in improvements of 19.4% and 54.7% in the reliability index for a standard mixture and human urine, respectively, as compared with the default setting, and a total of 38 h was required to complete the optimization. Moreover, threshold settings were optimized by using CCD for further improvement. The approach combining optimal parameter setting and the threshold method improved the reliability index about 9.5 times for a standards mixture and 14.5 times for human urine data, which required a total of 41 h. Validation results also showed improvements in the reliability index of about 5-7 times even for urine samples from different subjects. It is concluded that the proposed methodology can be used as a time-saving approach for improving the processing of LC-MS-based metabolomics data.

  14. Acclimation to UV-B radiation and visible light in Lactuca sativa involves up-regulation of photosynthetic performance and orchestration of metabolome-wide responses.

    Science.gov (United States)

    Wargent, J J; Nelson, B C W; McGhie, T K; Barnes, P W

    2015-05-01

    UV-B radiation is often viewed as a source of stress for higher plants. In particular, photosynthetic function has been described as a common target for UV-B impairment; yet as our understanding of UV-B photomorphogenesis increases, there are opportunities to expand the emerging paradigm of regulatory UV response. Lactuca sativa is an important dietary crop species and is often subjected to rapid sunlight exposure at field transfer. Acclimation to UV-B and visible light conditions in L. sativa was dissected using gas exchange and chlorophyll fluorescence measurements, in addition to non-destructive assessments of UV epidermal shielding (SUV ). After UV-B treatment, seedlings were subjected to wide-range metabolomic analysis using liquid chromatography hybrid quadrupole time-of-flight high-resolution mass spectrometry (LC-QTOF-HRMS). During the acclimation period, net photosynthetic rate increased in UV-treated plants, epidermal UV shielding increased in both subsets of plants transferred to the acclimatory conditions (UV+/UV- plants) and Fv /Fm declined slightly in UV+/UV- plants. Metabolomic analysis revealed that a key group of secondary compounds was up-regulated by higher light conditions, yet several of these compounds were elevated further by UV-B radiation. In conclusion, acclimation to UV-B radiation involves co-protection from the effects of visible light, and responses to UV-B radiation at a photosynthetic level may not be consistently viewed as damaging to plant development. © 2014 John Wiley & Sons Ltd.

  15. Quantitative metabolomics based on gas chromatography mass spectrometry: Status and perspectives

    NARCIS (Netherlands)

    Koek, M.M.; Jellema, R.H.; Greef, J. van der; Tas, A.C.; Hankemeier, T.

    2011-01-01

    Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues (the metabolome). By analyzing differences between metabolomes using biostatistics (multivariate data analysis; pattern recognition), metabolites

  16. Clinical Metabolomics and Glaucoma.

    Science.gov (United States)

    Barbosa-Breda, João; Himmelreich, Uwe; Ghesquière, Bart; Rocha-Sousa, Amândio; Stalmans, Ingeborg

    2018-01-01

    Glaucoma is one of the leading causes of irreversible blindness worldwide. However, there are no biomarkers that accurately help clinicians perform an early diagnosis or detect patients with a high risk of progression. Metabolomics is the study of all metabolites in an organism, and it has the potential to provide a biomarker. This review summarizes the findings of metabolomics in glaucoma patients and explains why this field is promising for new research. We identified published studies that focused on metabolomics and ophthalmology. After providing an overview of metabolomics in ophthalmology, we focused on human glaucoma studies. Five studies have been conducted in glaucoma patients and all compared patients to healthy controls. Using mass spectrometry, significant differences were found in blood plasma in the metabolic pathways that involve palmitoylcarnitine, sphingolipids, vitamin D-related compounds, and steroid precursors. For nuclear magnetic resonance spectroscopy, a high glutamine-glutamate/creatine ratio was found in the vitreous and lateral geniculate body; no differences were detected in the optic radiations, and a lower N-acetylaspartate/choline ratio was observed in the geniculocalcarine and striate areas. Metabolomics can move glaucoma care towards a personalized approach and provide new knowledge concerning the pathophysiology of glaucoma, which can lead to new therapeutic options. © 2017 S. Karger AG, Basel.

  17. DEVELOPMENT OF ANALYTICAL METHODS IN METABOLOMICS FOR THE STUDY OF HEREDITARY AND ACQUIRED GENETIC DISEASE

    OpenAIRE

    Arvonio, Raffaele

    2011-01-01

    METABOLOMICS AND MASS SPECTROMETRY The research project take place in the branch of metabolomics, which involves the systematic study of the metabolites present in a cell and in this area MS, thanks to its potential to carry out controlled experiments of fragmentation, plays a role as a key methodology for identification of various metabolites. The work of thesis project is focused on the analytical methods development for the diagnosis of metabolic diseases and is divided as follows: ...

  18. Involving Motion Graphics in Spatial Experience Design

    DEFF Research Database (Denmark)

    Steijn, Arthur

    2013-01-01

    In this article I introduce early steps in my work with adjoining and developing concepts relevant to the analysis, as well as the artistic design of video projected motion graphics in spatial contexts. I present two empirical cases that are used as a starting point for my analytical...... elements such as e.g. space, tone, color, movement, time and timing. Developing this design model has two purposes. The first is as a tool for analyzing empirical examples or cases of where motion graphics is used in spatial experience design. The second is as a tool that can be used in the actual design...... conceptualization of various design elements in an analysis of the way in which these elements are integrated and used in the creation of particular experiences of space, atmosphere and artistic expression. On the basis of this analysis I present a preliminary construction of a design model including some design...

  19. Nutritional Metabolomics

    DEFF Research Database (Denmark)

    Gürdeniz, Gözde

    Metabolomics provides a holistic approach to investigate the perturbations in human metabolism with respect to a specific exposure. In nutritional metabolomics, the research question is generally related to the effect of a specific food intake on metabolic profiles commonly of plasma or urine...... strategy influences the patterns identified as important for the nutritional question under study. Therefore, in depth understanding of the study design and the specific effects of the analytical technology on the produced data is extremely important to achieve high quality data handling. Besides data...... handling, this thesis also deals with biological interpretation of postprandial metabolism and trans fatty acid (TFA) intake. Two nutritional issues were objects of investigation: 1) metabolic states as a function of time since the last meal and 2) markers related to intakes of cis- and trans-fat. Plasma...

  20. Gas chromatography/mass spectrometry-based urine metabolome study in children for inborn errors of metabolism: An Indian experience.

    Science.gov (United States)

    Hampe, Mahesh H; Panaskar, Shrimant N; Yadav, Ashwini A; Ingale, Pramod W

    2017-02-01

    The present study highlights the feasibility of gas chromatography/mass spectrometry (GC/MS)-based analysis for simultaneous detection of >200 marker metabolites in urine found in characteristic pattern in inborn errors of metabolism (IEM) in India. During this retrospective study conducted from July 2013 to January 2016, we collected urine specimens on filter papers from Indian children across the country along with relevant demographic and clinical data. The laboratory technique involved urease pretreatment followed by deproteinization, derivatization, and subsequent computer-aided analysis of organic acids, amino acids, fatty acids, and sugars by GC/MS, which enable chemical diagnosis of IEM. Totally 23,140 patients were investigated for IEM with an estimated frequency of about 1.40%, that is, 323 positive cases. Most frequent disorders observed were of primary lactic acidemia (27.2%) and organic acidemia (methylmalonic aciduria, glutaric acidemia type I, propionic aciduria, etc.) followed by aminoacidopathies (maple syrup urine disease, phenylketonuria, tyrosinemia, etc.). Furthermore, alkaptonuria, canavan disease, and 4-hydroxybutyric aciduria were also diagnosed. Prompt treatment following diagnosis led to a better outcome in a considerable number of patients. GC/MS with one-step metabolomics enables quick detection, accurate identification, and precise quantification of a wide range of urinary markers that may not be discovered using existing newborn screening programs. The technique is effective as a second-tier test to other established screening technologies, as well as one-step primary screening tool for a wide spectrum of IEM. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. Modeling of modification experiments involving neutral-gas release

    International Nuclear Information System (INIS)

    Bernhardt, P.A.

    1983-01-01

    Many experiments involve the injection of neutral gases into the upper atmosphere. Examples are critical velocity experiments, MHD wave generation, ionospheric hole production, plasma striation formation, and ion tracing. Many of these experiments are discussed in other sessions of the Active Experiments Conference. This paper limits its discussion to: (1) the modeling of the neutral gas dynamics after injection, (2) subsequent formation of ionosphere holes, and (3) use of such holes as experimental tools

  2. Involvement of organic acids and amino acids in ameliorating Ni(II) toxicity induced cell cycle dysregulation in Caulobacter crescentus: a metabolomics analysis.

    Science.gov (United States)

    Jain, Abhishek; Chen, Wei Ning

    2018-04-03

    Nickel (Ni(II)) toxicity is addressed by many different bacteria, but bacterial responses to nickel stress are still unclear. Therefore, we studied the effect of Ni(II) toxicity on cell proliferation of α-proteobacterium Caulobacter crescentus. Next, we showed the mechanism that allows C. crescentus to survive in Ni(II) stress condition. Our results revealed that the growth of C. crescentus is severely affected when the bacterium was exposed to different Ni(II) concentrations, 0.003 mM slightly affected the growth, 0.008 mM reduced the growth by 50%, and growth was completely inhibited at 0.015 mM. It was further shown that Ni(II) toxicity induced mislocalization of major regulatory proteins such as MipZ, FtsZ, ParB, and MreB, resulting in dysregulation of the cell cycle. GC-MS metabolomics analysis of Ni(II) stressed C. crescentus showed an increased level of nine important metabolites including TCA cycle intermediates and amino acids. This indicates that changes in central carbon metabolism and nitrogen metabolism are linked with the disruption of cell division process. Addition of malic acid, citric acid, alanine, proline, and glutamine to 0.015 mM Ni(II)-treated C. crescentus restored its growth. Thus, the present work shows a protective effect of these organic acids and amino acids on Ni(II) toxicity. Metabolic stimulation through the PutA/GlnA pathway, accelerated degradation of CtrA, and Ni-chelation by organic acids or amino acids are some of the possible mechanisms suggested to be involved in enhancing C. crescentus's tolerance. Our results shed light on the mechanism of increased Ni(II) tolerance in C. crescentus which may be useful in bioremediation strategies and synthetic biology applications such as the development of whole cell biosensor.

  3. Partial least squares model and design of experiments toward the analysis of the metabolome of Jatropha gossypifolia leaves: Extraction and chromatographic fingerprint optimization.

    Science.gov (United States)

    Pilon, Alan Cesar; Carnevale Neto, Fausto; Freire, Rafael Teixeira; Cardoso, Patrícia; Carneiro, Renato Lajarim; Da Silva Bolzani, Vanderlan; Castro-Gamboa, Ian

    2016-03-01

    A major challenge in metabolomic studies is how to extract and analyze an entire metabolome. So far, no single method was able to clearly complete this task in an efficient and reproducible way. In this work we proposed a sequential strategy for the extraction and chromatographic separation of metabolites from leaves Jatropha gossypifolia using a design of experiments and partial least square model. The effect of 14 different solvents on extraction process was evaluated and an optimized separation condition on liquid chromatography was estimated considering mobile phase composition and analysis time. The initial conditions of extraction using methanol and separation in 30 min between 5 and 100% water/methanol (1:1 v/v) with 0.1% of acetic acid, 20 μL sample volume, 3.0 mL min(-1) flow rate and 25°C column temperature led to 107 chromatographic peaks. After the optimization strategy using i-propanol/chloroform (1:1 v/v) for extraction, linear gradient elution of 60 min between 5 and 100% water/(acetonitrile/methanol 68:32 v/v with 0.1% of acetic acid), 30 μL sample volume, 2.0 mL min(-1) flow rate, and 30°C column temperature, we detected 140 chromatographic peaks, 30.84% more peaks compared to initial method. This is a reliable strategy using a limited number of experiments for metabolomics protocols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. MetMatch: A Semi-Automated Software Tool for the Comparison and Alignment of LC-HRMS Data from Different Metabolomics Experiments

    Directory of Open Access Journals (Sweden)

    Stefan Koch

    2016-11-01

    Full Text Available Due to its unsurpassed sensitivity and selectivity, LC-HRMS is one of the major analytical techniques in metabolomics research. However, limited stability of experimental and instrument parameters may cause shifts and drifts of retention time and mass accuracy or the formation of different ion species, thus complicating conclusive interpretation of the raw data, especially when generated in different analytical batches. Here, a novel software tool for the semi-automated alignment of different measurement sequences is presented. The tool is implemented in the Java programming language, it features an intuitive user interface and its main goal is to facilitate the comparison of data obtained from different metabolomics experiments. Based on a feature list (i.e., processed LC-HRMS chromatograms with mass-to-charge ratio (m/z values and retention times that serves as a reference, the tool recognizes both m/z and retention time shifts of single or multiple analytical datafiles/batches of interest. MetMatch is also designed to account for differently formed ion species of detected metabolites. Corresponding ions and metabolites are matched and chromatographic peak areas, m/z values and retention times are combined into a single data matrix. The convenient user interface allows for easy manipulation of processing results and graphical illustration of the raw data as well as the automatically matched ions and metabolites. The software tool is exemplified with LC-HRMS data from untargeted metabolomics experiments investigating phenylalanine-derived metabolites in wheat and T-2 toxin/HT-2 toxin detoxification products in barley.

  5. The future of metabolomics in ELIXIR.

    Science.gov (United States)

    van Rijswijk, Merlijn; Beirnaert, Charlie; Caron, Christophe; Cascante, Marta; Dominguez, Victoria; Dunn, Warwick B; Ebbels, Timothy M D; Giacomoni, Franck; Gonzalez-Beltran, Alejandra; Hankemeier, Thomas; Haug, Kenneth; Izquierdo-Garcia, Jose L; Jimenez, Rafael C; Jourdan, Fabien; Kale, Namrata; Klapa, Maria I; Kohlbacher, Oliver; Koort, Kairi; Kultima, Kim; Le Corguillé, Gildas; Moreno, Pablo; Moschonas, Nicholas K; Neumann, Steffen; O'Donovan, Claire; Reczko, Martin; Rocca-Serra, Philippe; Rosato, Antonio; Salek, Reza M; Sansone, Susanna-Assunta; Satagopam, Venkata; Schober, Daniel; Shimmo, Ruth; Spicer, Rachel A; Spjuth, Ola; Thévenot, Etienne A; Viant, Mark R; Weber, Ralf J M; Willighagen, Egon L; Zanetti, Gianluigi; Steinbeck, Christoph

    2017-01-01

    Metabolomics, the youngest of the major omics technologies, is supported by an active community of researchers and infrastructure developers across Europe. To coordinate and focus efforts around infrastructure building for metabolomics within Europe, a workshop on the "Future of metabolomics in ELIXIR" was organised at Frankfurt Airport in Germany. This one-day strategic workshop involved representatives of ELIXIR Nodes, members of the PhenoMeNal consortium developing an e-infrastructure that supports workflow-based metabolomics analysis pipelines, and experts from the international metabolomics community. The workshop established metabolite identification as the critical area, where a maximal impact of computational metabolomics and data management on other fields could be achieved. In particular, the existing four ELIXIR Use Cases, where the metabolomics community - both industry and academia - would benefit most, and which could be exhaustively mapped onto the current five ELIXIR Platforms were discussed. This opinion article is a call for support for a new ELIXIR metabolomics Use Case, which aligns with and complements the existing and planned ELIXIR Platforms and Use Cases.

  6. An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum lycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytis cinerea and Pseudomonas syringae.

    Science.gov (United States)

    Camañes, Gemma; Scalschi, Loredana; Vicedo, Begonya; González-Bosch, Carmen; García-Agustín, Pilar

    2015-10-01

    In this study, we have used untargeted global metabolomic analysis to determine and compare the chemical nature of the metabolites altered during the infection of tomato plants (cv. Ailsa Craig) with Botrytis cinerea (Bot) or Pseudomonas syringae pv. tomato DC3000 (Pst), pathogens that have different invasion mechanisms and lifestyles. We also obtained the metabolome of tomato plants primed using the natural resistance inducer hexanoic acid and then infected with these pathogens. By contrasting the metabolomic profiles of infected, primed, and primed + infected plants, we determined not only the processes or components related directly to plant defense responses, but also inferred the metabolic mechanisms by which pathogen resistance is primed. The data show that basal resistance and hexanoic acid-induced resistance to Bot and Pst are associated with a marked metabolic reprogramming. This includes significant changes in amino acids, sugars and free fatty acids, and in primary and secondary metabolism. Comparison of the metabolic profiles of the infections indicated clear differences, reflecting the fact that the plant's chemical responses are highly adapted to specific attackers. The data also indicate involvement of signaling molecules, including pipecolic and azelaic acids, in response to Pst and, interestingly, to Bot. The compound 1-methyltryptophan was shown to be associated with the tomato-Pst and tomato-Bot interactions as well as with hexanoic acid-induced resistance. Root application of this Trp-derived metabolite also demonstrated its ability to protect tomato plants against both pathogens. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  7. Public involvement in the decision making process, Argentine experience

    International Nuclear Information System (INIS)

    Clein, D.

    1999-01-01

    In the frame of a young participative democracy the Comision Nacional de Energia Atomica (C.N.E.A.), technical and legal responsible for radioactive waste management, is developing a plan for the close out of tailings facilities from past mining and milling operations and the environmental restoration of nine different sites in six provinces all over the country. In the first site, Malargue Facility, different activities have been developed promoting public involvement in the decision making process. The lessons learned and the experience acquired have given the background for the systematization of public consultation in the ongoing and future stages of the plan. Malargue's experience in this field will be analyzed stressing on different aspects considered of importance for the design of a communicational strategy adapted to the characteristics of a society without experience in this field. The influence of public concern on conservative bias of technical decisions will be evaluated. (author)

  8. Alcohol Involvement in First Sexual Intercourse Experiences of Adolescent Girls

    Science.gov (United States)

    Livingston, Jennifer A.; Testa, Maria; Windle, Michael; Bay-Cheng, Laina Y.

    2015-01-01

    This study examines whether use of alcohol at first coitus is associated with increased sexual risk for young women. First coitus is the focus of the investigation because it is a memorable, formative experience that has implications for subsequent sexual health. A community sample of young women ages 18 – 19 years (N = 227) completed retrospective interviews. Characteristics and perceptions of the first coital event were examined using chi squares and one-way multivariate analysis of variance (MANOVA) to determine if there were differences based on alcohol-involvement. Alcohol-involved first coitus events occurred in social settings with risky partners, were rated less positively, and were non-consensual relative to those that did not involve alcohol. Alcohol use was not related to condom use. Alcohol-involvement was associated with subsequent pairing of alcohol with sex and incapacitated rape. Adolescent alcohol use occurs in contexts that increases young women’s sexual risk through exposure to risky partners. PMID:26121927

  9. Metabolomics and Epidemiology Working Group

    Science.gov (United States)

    The Metabolomics and Epidemiology (MetEpi) Working Group promotes metabolomics analyses in population-based studies, as well as advancement in the field of metabolomics for broader biomedical and public health research.

  10. Metabolomic Studies in Drosophila.

    Science.gov (United States)

    Cox, James E; Thummel, Carl S; Tennessen, Jason M

    2017-07-01

    Metabolomic analysis provides a powerful new tool for studies of Drosophila physiology. This approach allows investigators to detect thousands of chemical compounds in a single sample, representing the combined contributions of gene expression, enzyme activity, and environmental context. Metabolomics has been used for a wide range of studies in Drosophila , often providing new insights into gene function and metabolic state that could not be obtained using any other approach. In this review, we survey the uses of metabolomic analysis since its entry into the field. We also cover the major methods used for metabolomic studies in Drosophila and highlight new directions for future research. Copyright © 2017 by the Genetics Society of America.

  11. Gas chromatography mass spectrometry : key technology in metabolomics

    NARCIS (Netherlands)

    Koek, Maud Marijtje

    2009-01-01

    Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues. Gas chromatography coupled to mass spectrometry (GC-MS) is very suitable for metabolomics analysis, as it combines high separation power with

  12. Analyses of tropistic responses using metabolomics.

    Science.gov (United States)

    Millar, Katherine D L; Kiss, John Z

    2013-01-01

    Characterization of phototropism and gravitropism has been through gene expression studies, assessment of curvature response, and protein expression experiments. To our knowledge, the current study is the first to determine how the metabolome, the complete set of small-molecule metabolites within a plant, is impacted during these tropisms. We have determined the metabolic profile of plants during gravitropism and phototropism. Seedlings of Arabidopsis thaliana wild type (WT) and phyB mutant were exposed to unidirectional light (red or blue) or reoriented to induce a tropistic response, and small-molecule metabolites were assayed and quantified. A subset of the WT was analyzed using microarray experiments to obtain gene profiling data. Analyses of the metabolomic data using principal component analysis showed a common profile in the WT during the different tropistic curvatures, but phyB mutants produced a distinctive profile for each tropism. Interestingly, the gravity treatment elicited the greatest changes in gene expression of the WT, followed by blue light, then by red light treatments. For all tropisms, we identified genes that were downregulated by a large magnitude in carbohydrate metabolism and secondary metabolism. These included ATCSLA15, CELLULOSE SYNTHASE-LIKE, and ATCHS/SHS/TT4, CHALCONE SYNTHASE. In addition, genes involved in amino acid biosynthesis were strongly upregulated, and these included THA1 (THREONINE ALDOLASE 1) and ASN1 (DARK INDUCIBLE asparagine synthase). We have established the first metabolic profile of tropisms in conjunction with transcriptomic analyses. This approach has been useful in characterizing the similarities and differences in the molecular mechanisms involved with phototropism and gravitropism.

  13. Metabolomics of pulmonary exacerbations reveals the personalized nature of cystic fibrosis disease

    Directory of Open Access Journals (Sweden)

    Robert A. Quinn

    2016-08-01

    Full Text Available Background. Cystic fibrosis (CF is a genetic disease that results in chronic infections of the lungs. CF patients experience intermittent pulmonary exacerbations (CFPE that are associated with poor clinical outcomes. CFPE involves an increase in disease symptoms requiring more aggressive therapy. Methods. Longitudinal sputum samples were collected from 11 patients (n = 44 samples to assess the effect of exacerbations on the sputum metabolome using liquid chromatography-tandem mass spectrometry (LC-MS/MS. The data was analyzed with MS/MS molecular networking and multivariate statistics. Results. The individual patient source had a larger influence on the metabolome of sputum than the clinical state (exacerbation, treatment, post-treatment, or stable. Of the 4,369 metabolites detected, 12% were unique to CFPE samples; however, the only known metabolites significantly elevated at exacerbation across the dataset were platelet activating factor (PAF and a related monacylglycerophosphocholine lipid. Due to the personalized nature of the sputum metabolome, a single patient was followed for 4.2 years (capturing four separate exacerbation events as a case study for the detection of personalized biomarkers with metabolomics. PAF and related lipids were significantly elevated during CFPEs of this patient and ceramide was elevated during CFPE treatment. Correlating the abundance of bacterial 16S rRNA gene amplicons to metabolomics data from the same samples during a CFPE demonstrated that antibiotics were positively correlated to Stenotrophomonas and Pseudomonas, while ceramides and other lipids were correlated with Streptococcus, Rothia, and anaerobes. Conclusions. This study identified PAF and other inflammatory lipids as potential biomarkers of CFPE, but overall, the metabolome of CF sputum was patient specific, supporting a personalized approach to molecular detection of CFPE onset.

  14. Phenylacetic Acid Is ISR Determinant Produced by Bacillus fortis IAGS162, Which Involves Extensive Re-modulation in Metabolomics of Tomato to Protect against Fusarium Wilt.

    Science.gov (United States)

    Akram, Waheed; Anjum, Tehmina; Ali, Basharat

    2016-01-01

    Bacillus fortis IAGS162 has been previously shown to induce systemic resistance in tomato plants against Fusarium wilt disease. In the first phase of current study, the ISR determinant was isolated from extracellular metabolites of this bacterium. ISR bioassays combined with solvent extraction, column chromatography and GC/MS analysis proved that phenylacetic acid (PAA) was the potential ISR determinant that significantly ameliorated Fusarium wilt disease of tomato at concentrations of 0.1 and 1 mM. In the second phase, the biochemical basis of the induced systemic resistance (ISR) under influence of PAA was elucidated by performing non-targeted whole metabolomics through GC/MS analysis. Tomato plants were treated with PAA and fungal pathogen in various combinations. Exposure to PAA and subsequent pathogen challenge extensively re-modulated tomato metabolic networks along with defense related pathways. In addition, various phenylpropanoid precursors were significantly up-regulated in treatments receiving PAA. This work suggests that ISR elicitor released from B. fortis IAGS162 contributes to resistance against fungal pathogens through dynamic reprogramming of plant pathways that are functionally correlated with defense responses.

  15. Metabolomics in chemical ecology.

    Science.gov (United States)

    Kuhlisch, Constanze; Pohnert, Georg

    2015-07-01

    Chemical ecology elucidates the nature and role of natural products as mediators of organismal interactions. The emerging techniques that can be summarized under the concept of metabolomics provide new opportunities to study such environmentally relevant signaling molecules. Especially comparative tools in metabolomics enable the identification of compounds that are regulated during interaction situations and that might play a role as e.g. pheromones, allelochemicals or in induced and activated defenses. This approach helps overcoming limitations of traditional bioassay-guided structure elucidation approaches. But the power of metabolomics is not limited to the comparison of metabolic profiles of interacting partners. Especially the link to other -omics techniques helps to unravel not only the compounds in question but the entire biosynthetic and genetic re-wiring, required for an ecological response. This review comprehensively highlights successful applications of metabolomics in chemical ecology and discusses existing limitations of these novel techniques. It focuses on recent developments in comparative metabolomics and discusses the use of metabolomics in the systems biology of organismal interactions. It also outlines the potential of large metabolomics initiatives for model organisms in the field of chemical ecology.

  16. Error Analysis and Propagation in Metabolomics Data Analysis.

    Science.gov (United States)

    Moseley, Hunter N B

    2013-01-01

    Error analysis plays a fundamental role in describing the uncertainty in experimental results. It has several fundamental uses in metabolomics including experimental design, quality control of experiments, the selection of appropriate statistical methods, and the determination of uncertainty in results. Furthermore, the importance of error analysis has grown with the increasing number, complexity, and heterogeneity of measurements characteristic of 'omics research. The increase in data complexity is particularly problematic for metabolomics, which has more heterogeneity than other omics technologies due to the much wider range of molecular entities detected and measured. This review introduces the fundamental concepts of error analysis as they apply to a wide range of metabolomics experimental designs and it discusses current methodologies for determining the propagation of uncertainty in appropriate metabolomics data analysis. These methodologies include analytical derivation and approximation techniques, Monte Carlo error analysis, and error analysis in metabolic inverse problems. Current limitations of each methodology with respect to metabolomics data analysis are also discussed.

  17. Metabolomic studies in pulmonology

    Directory of Open Access Journals (Sweden)

    R. R. Furina

    2015-01-01

    Full Text Available The review shows the results of metabolomic studies in pulmonology. The key idea of metabolomics is to detect specific biomarkers in a biological sample for the diagnosis of diseases of the bronchi and lung. Main methods for the separation and identification of volatile organic substances as biomarkers (gas chromatography, mass spectrometry, and nuclear magnetic resonance spectrometry used in metabolomics are given. A solid-phase microextraction method used to pre-prepare a sample is also covered. The results of laboratory tests for biomarkers for lung cancer, acute respiratory distress syndrome, chronic obstructive pulmonary disease, cystic fibrosis, chronic infections, and pulmonary tuberculosis are presented. In addition, emphasis is placed on the possibilities of metabolomics used in experimental medicine, including to the study of asthma. The information is of interest to both theorists and practitioners.

  18. The food metabolome

    DEFF Research Database (Denmark)

    Scalbert, Augustin; Brennan, Lorraine; Manach, Claudine

    2014-01-01

    The food metabolome is defined as the part of the human metabolome directly derived from the digestion and biotransformation of foods and their constituents. With >25,000 compounds known in various foods, the food metabolome is extremely complex, with a composition varying widely according...... to the diet. By its very nature it represents a considerable and still largely unexploited source of novel dietary biomarkers that could be used to measure dietary exposures with a high level of detail and precision. Most dietary biomarkers currently have been identified on the basis of our knowledge of food...... by the recent identification of novel biomarkers of intakes for fruit, vegetables, beverages, meats, or complex diets. Moreover, examples also show how the scrutiny of the food metabolome can lead to the discovery of bioactive molecules and dietary factors associated with diseases. However, researchers still...

  19. Quality assurance of metabolomics.

    Science.gov (United States)

    Bouhifd, Mounir; Beger, Richard; Flynn, Thomas; Guo, Lining; Harris, Georgina; Hogberg, Helena; Kaddurah-Daouk, Rima; Kamp, Hennicke; Kleensang, Andre; Maertens, Alexandra; Odwin-DaCosta, Shelly; Pamies, David; Robertson, Donald; Smirnova, Lena; Sun, Jinchun; Zhao, Liang; Hartung, Thomas

    2015-01-01

    Metabolomics promises a holistic phenotypic characterization of biological responses to toxicants. This technology is based on advanced chemical analytical tools with reasonable throughput, including mass-spectroscopy and NMR. Quality assurance, however - from experimental design, sample preparation, metabolite identification, to bioinformatics data-mining - is urgently needed to assure both quality of metabolomics data and reproducibility of biological models. In contrast to microarray-based transcriptomics, where consensus on quality assurance and reporting standards has been fostered over the last two decades, quality assurance of metabolomics is only now emerging. Regulatory use in safety sciences, and even proper scientific use of these technologies, demand quality assurance. In an effort to promote this discussion, an expert workshop discussed the quality assurance needs of metabolomics. The goals for this workshop were 1) to consider the challenges associated with metabolomics as an emerging science, with an emphasis on its application in toxicology and 2) to identify the key issues to be addressed in order to establish and implement quality assurance procedures in metabolomics-based toxicology. Consensus has still to be achieved regarding best practices to make sure sound, useful, and relevant information is derived from these new tools.

  20. Functional Analysis of Metabolomics Data.

    Science.gov (United States)

    Chagoyen, Mónica; López-Ibáñez, Javier; Pazos, Florencio

    2016-01-01

    Metabolomics aims at characterizing the repertory of small chemical compounds in a biological sample. As it becomes more massive and larger sets of compounds are detected, a functional analysis is required to convert these raw lists of compounds into biological knowledge. The most common way of performing such analysis is "annotation enrichment analysis," also used in transcriptomics and proteomics. This approach extracts the annotations overrepresented in the set of chemical compounds arisen in a given experiment. Here, we describe the protocols for performing such analysis as well as for visualizing a set of compounds in different representations of the metabolic networks, in both cases using free accessible web tools.

  1. COnsortium of METabolomics Studies (COMETS)

    Science.gov (United States)

    The COnsortium of METabolomics Studies (COMETS) is an extramural-intramural partnership that promotes collaboration among prospective cohort studies that follow participants for a range of outcomes and perform metabolomic profiling of individuals.

  2. Chemometrics Methods and Strategies in Metabolomics.

    Science.gov (United States)

    Pinto, Rui Climaco

    2017-01-01

    Chemometrics has been a fundamental discipline for the development of metabolomics, while symbiotically growing with it. From design of experiments, through data processing, to data analysis, chemometrics tools are used to design, process, visualize, explore and analyse metabolomics data.In this chapter, the most commonly used chemometrics methods for data analysis and interpretation of metabolomics experiments will be presented, with focus on multivariate analysis. These are projection-based linear methods, like principal component analysis (PCA) and orthogonal projection to latent structures (OPLS), which facilitate interpretation of the causes behind the observed sample trends, correlation with outcomes or group discrimination analysis. Validation procedures for multivariate methods will be presented and discussed.Univariate analysis is briefly discussed in the context of correlation-based linear regression methods to find associations to outcomes or in analysis of variance-based and logistic regression methods for class discrimination. These methods rely on frequentist statistics, with the determination of p-values and corresponding multiple correction procedures.Several strategies of design-analysis of metabolomics experiments will be discussed, in order to guide the reader through different setups, adopted to better address some experimental issues and to better test the scientific hypotheses.

  3. Nanoparticle-Assisted Metabolomics

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2018-03-01

    Full Text Available Understanding and harnessing the interactions between nanoparticles and biological molecules is at the forefront of applications of nanotechnology to modern biology. Metabolomics has emerged as a prominent player in systems biology as a complement to genomics, transcriptomics and proteomics. Its focus is the systematic study of metabolite identities and concentration changes in living systems. Despite significant progress over the recent past, important challenges in metabolomics remain, such as the deconvolution of the spectra of complex mixtures with strong overlaps, the sensitive detection of metabolites at low abundance, unambiguous identification of known metabolites, structure determination of unknown metabolites and standardized sample preparation for quantitative comparisons. Recent research has demonstrated that some of these challenges can be substantially alleviated with the help of nanoscience. Nanoparticles in particular have found applications in various areas of bioanalytical chemistry and metabolomics. Their chemical surface properties and increased surface-to-volume ratio endows them with a broad range of binding affinities to biomacromolecules and metabolites. The specific interactions of nanoparticles with metabolites or biomacromolecules help, for example, simplify metabolomics spectra, improve the ionization efficiency for mass spectrometry or reveal relationships between spectral signals that belong to the same molecule. Lessons learned from nanoparticle-assisted metabolomics may also benefit other emerging areas, such as nanotoxicity and nanopharmaceutics.

  4. Metabolomics in Immunology Research.

    Science.gov (United States)

    Everts, Bart

    2018-01-01

    There is a growing appreciation that metabolic processes and individual metabolites can shape the function of immune cells and thereby play important roles in the outcome of immune responses. In this respect, the use of MS- and NMR spectroscopy-based platforms to characterize and quantify metabolites in biological samples has recently yielded important novel insights into how our immune system functions and has contributed to the identification of biomarkers for immune-mediated diseases. Here, these recent immunological studies in which metabolomics has been used and made significant contributions to these fields will be discussed. In particular the role of metabolomics to the rapidly advancing field of cellular immunometabolism will be highlighted as well as the future prospects of such metabolomic tools in immunology.

  5. Public involvement in cleanup - the Rocky Flats experience

    International Nuclear Information System (INIS)

    Paukert, J.; Pennock, S.; Schassburger, R.

    1992-01-01

    The U.S. Department of Energy's Rocky Flats Plant recently completed and implemented the Rocky Flats Plant Community Relations Plan for public involvement in environmental restoration of the site. The plan was developed in cooperation with the plant's regulators, the U.S. Environmental Protection Agency and the Colorado Department of Health. In addition, citizens near the plant played a significant role in shaping the document through extensive community interviews and public comment. The result of these cooperative efforts is a plan that meets and exceeds the applicable federal and state community relations requirements for a cleanup program. In fact, the U.S. Environmental Protection Agency has used the Rocky Flats Plant Community Relations Plants a model for similar plans at other federal facilities. Plan development, however, is only the starting point for an effective community relations effort. The Rocky Flats Plant and the public will face many challenges together as we implement the plan and build a partnership for addressing environmental cleanup issues. (author)

  6. Some experiences of public meetings/involvement in Sweden

    International Nuclear Information System (INIS)

    Stroemberg, Bo

    2008-01-01

    Bo Stroemberg from SKI presented recent Swedish experiences of public meetings organised in connection with site investigations and the regular review of RD and D programmes. He introduced examples of stakeholder concerns that have been expressed during RD and D programme reviews. Academic institutions have identified needs for additional research. Environmental groups have raised concerns about potential disruptive events and degradation mechanisms. They have called attention to deficiencies related to decision-making processes, and recommended alternative approaches for site and method selection. Municipalities and local authorities have been critical about the insufficient degree of transparency, while other authorities have focused on legal responsibility, transport safety, and security issues, among others. Next, Mr Stroemberg highlighted examples of technical comments concerning long-term safety. Some of these referred to catastrophic impacts of earthquakes, especially the formation of new fractures, which could invalidate the KBS-3 concept. Others called attention to scenarios of deliberate human intrusion, if for example the repository was excavated as an archaeological site. Some comments concerned the issue of retrievability, the greatest advantage of the KBS-3 method, but also its most important shortcoming, since it would necessitate monitoring and surveillance indefinitely. Some suggested that an inland site with regional recharge conditions should be used, while others proposed the use of deep boreholes, i.e., the location of the repository in deep stagnant conditions. Mr Stroemberg concluded that questions and comments put during public meetings represent useful information to the experts for the identification of issues to be addressed by RD and D

  7. Investigating the use of patient involvement and patient experience in quality improvement in Norway

    DEFF Research Database (Denmark)

    Wiig, Siri; Storm, Marianne; Aase, Karina

    2013-01-01

    -fold: 1) to describe and analyze how governmental organizations expect acute hospitals to incorporate patient involvement and patient experiences into their quality improvement (QI) efforts and 2) to analyze how patient involvement and patient experiences are used by hospitals to try to improve...... in hospitals. The expectations span from systematic collection of patients' and family members' experiences for the purpose of improving service quality through establishing patient-oriented arenas for ongoing collaboration with staff to the support of individual involvement in decision making. However...... and value the contribution that patient involvement and patient experiences can make to the improvement of healthcare quality....

  8. Statistical methods for handling unwanted variation in metabolomics data

    OpenAIRE

    De Livera, Alysha M.; Sysi-Aho, Marko; Jacob, Laurent; Gagnon-Bartsch, Johann A.; Castillo, Sandra; Simpson, Julie A; Speed, Terence P.

    2015-01-01

    Metabolomics experiments are inevitably subject to a component of unwanted variation, due to factors such as batch effects, long runs of samples, and confounding biological variation. Although the removal of this unwanted variation is a vital step in the analysis of metabolomics data, it is considered a gray area in which there is a recognised need to develop a better understanding of the procedures and statistical methods required to achieve statistically relevant optimal biological outcomes...

  9. GC-MS Metabolomic Analysis to Reveal the Metabolites and Biological Pathways Involved in the Developmental Stages and Tissue Response of Panax ginseng

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2017-03-01

    Full Text Available Ginsenosides, the major compounds present in ginseng, are known to have numerous physiological and pharmacological effects. The physiological processes, enzymes and genes involved in ginsenoside synthesis in P. ginseng have been well characterized. However, relatively little information is known about the dynamic metabolic changes that occur during ginsenoside accumulation in ginseng. To explore this topic, we isolated metabolites from different tissues at different growth stages, and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS. The results showed that a total of 30, 16, 20, 36 and 31 metabolites were identified and involved in different developmental stages in leaf, stem, petiole, lateral root and main root, respectively. To investigate the contribution of tissue to the biosynthesis of ginsenosides, we examined the metabolic changes of leaf, stem, petiole, lateral root and main root during five development stages: 1-, 2-, 3-, 4- and 5-years. The score plots of partial least squares-discriminate analysis (PLS-DA showed clear discrimination between growth stages and tissue samples. Kyoto Encyclopedia of Genes and Genomes (KEGG pathway analysis in the same tissue at different growth stages indicated profound biochemical changes in several pathways, including carbohydrate metabolism and pentose phosphate metabolism, in addition, the tissues displayed significant variations in amino acid metabolism, sugar metabolism and energy metabolism. These results should facilitate further dissection of the metabolic flux regulation of ginsenoside accumulation in different developmental stages or different tissues of ginseng.

  10. The MetabolomeExpress Project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets

    Directory of Open Access Journals (Sweden)

    Carroll Adam J

    2010-07-01

    Full Text Available Abstract Background Standardization of analytical approaches and reporting methods via community-wide collaboration can work synergistically with web-tool development to result in rapid community-driven expansion of online data repositories suitable for data mining and meta-analysis. In metabolomics, the inter-laboratory reproducibility of gas-chromatography/mass-spectrometry (GC/MS makes it an obvious target for such development. While a number of web-tools offer access to datasets and/or tools for raw data processing and statistical analysis, none of these systems are currently set up to act as a public repository by easily accepting, processing and presenting publicly submitted GC/MS metabolomics datasets for public re-analysis. Description Here, we present MetabolomeExpress, a new File Transfer Protocol (FTP server and web-tool for the online storage, processing, visualisation and statistical re-analysis of publicly submitted GC/MS metabolomics datasets. Users may search a quality-controlled database of metabolite response statistics from publicly submitted datasets by a number of parameters (eg. metabolite, species, organ/biofluid etc.. Users may also perform meta-analysis comparisons of multiple independent experiments or re-analyse public primary datasets via user-friendly tools for t-test, principal components analysis, hierarchical cluster analysis and correlation analysis. They may interact with chromatograms, mass spectra and peak detection results via an integrated raw data viewer. Researchers who register for a free account may upload (via FTP their own data to the server for online processing via a novel raw data processing pipeline. Conclusions MetabolomeExpress https://www.metabolome-express.org provides a new opportunity for the general metabolomics community to transparently present online the raw and processed GC/MS data underlying their metabolomics publications. Transparent sharing of these data will allow researchers to

  11. Metabolomic Identification of Subtypes of Nonalcoholic Steatohepatitis.

    Science.gov (United States)

    Alonso, Cristina; Fernández-Ramos, David; Varela-Rey, Marta; Martínez-Arranz, Ibon; Navasa, Nicolás; Van Liempd, Sebastiaan M; Lavín Trueba, José L; Mayo, Rebeca; Ilisso, Concetta P; de Juan, Virginia G; Iruarrizaga-Lejarreta, Marta; delaCruz-Villar, Laura; Mincholé, Itziar; Robinson, Aaron; Crespo, Javier; Martín-Duce, Antonio; Romero-Gómez, Manuel; Sann, Holger; Platon, Julian; Van Eyk, Jennifer; Aspichueta, Patricia; Noureddin, Mazen; Falcón-Pérez, Juan M; Anguita, Juan; Aransay, Ana M; Martínez-Chantar, María Luz; Lu, Shelly C; Mato, José M

    2017-05-01

    Nonalcoholic fatty liver disease (NAFLD) is a consequence of defects in diverse metabolic pathways that involve hepatic accumulation of triglycerides. Features of these aberrations might determine whether NAFLD progresses to nonalcoholic steatohepatitis (NASH). We investigated whether the diverse defects observed in patients with NAFLD are caused by different NAFLD subtypes with specific serum metabolomic profiles, and whether these can distinguish patients with NASH from patients with simple steatosis. We collected liver and serum from methionine adenosyltransferase 1a knockout (MAT1A-KO) mice, which have chronically low levels of hepatic S-adenosylmethionine (SAMe) and spontaneously develop steatohepatitis, as well as C57Bl/6 mice (controls); the metabolomes of all samples were determined. We also analyzed serum metabolomes of 535 patients with biopsy-proven NAFLD (353 with simple steatosis and 182 with NASH) and compared them with serum metabolomes of mice. MAT1A-KO mice were also given SAMe (30 mg/kg/day for 8 weeks); liver samples were collected and analyzed histologically for steatohepatitis. Livers of MAT1A-KO mice were characterized by high levels of triglycerides, diglycerides, fatty acids, ceramides, and oxidized fatty acids, as well as low levels of SAMe and downstream metabolites. There was a correlation between liver and serum metabolomes. We identified a serum metabolomic signature associated with MAT1A-KO mice that also was present in 49% of the patients; based on this signature, we identified 2 NAFLD subtypes. We identified specific panels of markers that could distinguish patients with NASH from patients with simple steatosis for each subtype of NAFLD. Administration of SAMe reduced features of steatohepatitis in MAT1A-KO mice. In an analysis of serum metabolomes of patients with NAFLD and MAT1A-KO mice with steatohepatitis, we identified 2 major subtypes of NAFLD and markers that differentiate steatosis from NASH in each subtype. These might be

  12. Integrative metabolomics as emerging tool to study autophagy regulation

    Directory of Open Access Journals (Sweden)

    Sarah Stryeck

    2017-07-01

    Full Text Available Recent technological developments in metabolomics research have enabled in-depth characterization of complex metabolite mixtures in a wide range of biological, biomedical, environmental, agricultural, and nutritional research fields. Nuclear magnetic resonance spectroscopy and mass spectrometry are the two main platforms for performing metabolomics studies. Given their broad applicability and the systemic insight into metabolism that can be ob-tained it is not surprising that metabolomics becomes increasingly popular in basic biological research. In this review, we provide an overview on key me-tabolites, recent studies, and future opportunities for metabolomics in stud-ying autophagy regulation. Metabolites play a pivotal role in autophagy regulation and are therefore key targets for autophagy research. Given the recent success of metabolomics, it can be expected that metabolomics ap-proaches will contribute significantly to deciphering the complex regulatory mechanisms involved in autophagy in the near future and promote under-standing of autophagy and autophagy-related diseases in living cells and or-ganisms.

  13. Mass spectrometry-based metabolomics for tuberculosis meningitis.

    Science.gov (United States)

    Zhang, Peixu; Zhang, Weiguanliu; Lang, Yue; Qu, Yan; Chu, Fengna; Chen, Jiafeng; Cui, Li

    2018-04-18

    Tuberculosis meningitis (TBM) is a prevalent form of extra-pulmonary tuberculosis that causes substantial morbidity and mortality. Diagnosis of TBM is difficult because of the limited sensitivity of existing laboratory techniques. A metabolomics approach can be used to investigate the sets of metabolites of both bacteria and host, and has been used to clarify the mechanisms underlying disease development, and identify metabolic changes, leadings to improved methods for diagnosis, treatment, and prognostication. Mass spectrometry (MS) is a major analysis platform used in metabolomics, and MS-based metabolomics provides wide metabolite coverage, because of its high sensitivity, and is useful for the investigation of Mycobacterium tuberculosis (Mtb) and related diseases. It has been used to investigate TBM diagnosis; however, the processes involved in the MS-based metabolomics approach are complex and flexible, and often consist of several steps, and small changes in the methods used can have a huge impact on the final results. Here, the process of MS-based metabolomics is summarized and its applications in Mtb and Mtb-related diseases discussed. Moreover, the current status of TBM metabolomics is described. Copyright © 2018. Published by Elsevier B.V.

  14. SMART: Statistical Metabolomics Analysis-An R Tool.

    Science.gov (United States)

    Liang, Yu-Jen; Lin, Yu-Ting; Chen, Chia-Wei; Lin, Chien-Wei; Chao, Kun-Mao; Pan, Wen-Harn; Yang, Hsin-Chou

    2016-06-21

    Metabolomics data provide unprecedented opportunities to decipher metabolic mechanisms by analyzing hundreds to thousands of metabolites. Data quality concerns and complex batch effects in metabolomics must be appropriately addressed through statistical analysis. This study developed an integrated analysis tool for metabolomics studies to streamline the complete analysis flow from initial data preprocessing to downstream association analysis. We developed Statistical Metabolomics Analysis-An R Tool (SMART), which can analyze input files with different formats, visually represent various types of data features, implement peak alignment and annotation, conduct quality control for samples and peaks, explore batch effects, and perform association analysis. A pharmacometabolomics study of antihypertensive medication was conducted and data were analyzed using SMART. Neuromedin N was identified as a metabolite significantly associated with angiotensin-converting-enzyme inhibitors in our metabolome-wide association analysis (p = 1.56 × 10(-4) in an analysis of covariance (ANCOVA) with an adjustment for unknown latent groups and p = 1.02 × 10(-4) in an ANCOVA with an adjustment for hidden substructures). This endogenous neuropeptide is highly related to neurotensin and neuromedin U, which are involved in blood pressure regulation and smooth muscle contraction. The SMART software, a user guide, and example data can be downloaded from http://www.stat.sinica.edu.tw/hsinchou/metabolomics/SMART.htm .

  15. Microbial metabolomics : Toward a platform with full metabolome coverage

    NARCIS (Netherlands)

    Werf, M.J.v.d.; Overkamp, K.M.; Muilwijk, B.; Coulier, L.; Hankemeier, T.

    2007-01-01

    Achieving metabolome data with satisfactory coverage is a formidable challenge in metabolomics because metabolites are a chemically highly diverse group of compounds. Here we present a strategy for the development of an advanced analytical platform that allows the comprehensive analysis of microbial

  16. Embedding a Recovery Orientation into Neuroscience Research: Involving People with a Lived Experience in Research Activity.

    Science.gov (United States)

    Stratford, Anthony; Brophy, Lisa; Castle, David; Harvey, Carol; Robertson, Joanne; Corlett, Philip; Davidson, Larry; Everall, Ian

    2016-03-01

    This paper highlights the importance and value of involving people with a lived experience of mental ill health and recovery in neuroscience research activity. In this era of recovery oriented service delivery, involving people with the lived experience of mental illness in neuroscience research extends beyond their participation as "subjects". The recovery paradigm reconceptualises people with the lived experience of mental ill health as experts by experience. To support this contribution, local policies and procedures, recovery-oriented training for neuroscience researchers, and dialogue about the practical applications of neuroscience research, are required.

  17. Undergraduate business and management students’ experiences of being involved in assessment

    OpenAIRE

    Tai, Chunming

    2012-01-01

    This study aimed to explore university undergraduates’ experiences of student involvement in assessment (SIA). Based on Biggs’ 3P model of student learning, this study focused on students’ experiences prior to SIA, during SIA and after SIA in three Business and Management modules. Applying this framework, different practices of involving students in assessment (peer assessment, self assessment or self designed assessment) were studied from the perspectives of the students co...

  18. The Impact of Parental Involvement on a Structured Youth Program Experience: A Qualitative Inquiry

    Directory of Open Access Journals (Sweden)

    Mat D. Duerden

    2013-12-01

    Full Text Available Parental involvement is an often proposed, but rarely researched, key element of youth programs. Questions remain regarding the impact of parental involvement on program processes and outcomes. Qualitative data were collected over a one-year period with youth participants (n=46, parents (n=26, and teachers (n=5 associated with an international immersion/service learning program for adolescents. Three main research questions guided the data analysis: (1 what role does parental involvement play in the youths’ experience in the program; (2 how does parental involvement in the program influence the parent/child relationship; and (3 what role does parental involvement play in terms of the program’s long-term impact on the youth participants? Findings suggest a relationship between parental involvement in youth programs and improved parent/child communication, bonding, and perceptions of one another. Findings also suggest that having a common ground experience prolonged the experience’s positive post-participation effects.

  19. Educational Support System for Experiments Involving Construction of Sound Processing Circuits

    Science.gov (United States)

    Takemura, Atsushi

    2012-01-01

    This paper proposes a novel educational support system for technical experiments involving the production of practical electronic circuits for sound processing. To support circuit design and production, each student uses a computer during the experiments, and can learn circuit design, virtual circuit making, and real circuit making. In the…

  20. A Metadata description of the data in "A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human."

    Directory of Open Access Journals (Sweden)

    Griffin Julian L

    2011-07-01

    Full Text Available Abstract Background Metabolomics is a rapidly developing functional genomic tool that has a wide range of applications in diverse fields in biology and medicine. However, unlike transcriptomics and proteomics there is currently no central repository for the depositing of data despite efforts by the Metabolomics Standard Initiative (MSI to develop a standardised description of a metabolomic experiment. Findings In this manuscript we describe how the MSI description has been applied to a published dataset involving the identification of cross-species metabolic biomarkers associated with type II diabetes. The study describes sample collection of urine from mice, rats and human volunteers, and the subsequent acquisition of data by high resolution 1H NMR spectroscopy. The metadata is described to demonstrate how the MSI descriptions could be applied in a manuscript and the spectra have also been made available for the mouse and rat studies to allow others to process the data. Conclusions The intention of this manuscript is to stimulate discussion as to whether the MSI description is sufficient to describe the metadata associated with metabolomic experiments and encourage others to make their data available to other researchers.

  1. Metabolomics of Genetically Modified Crops

    Directory of Open Access Journals (Sweden)

    Carolina Simó

    2014-10-01

    Full Text Available Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  2. Metabolomics of genetically modified crops.

    Science.gov (United States)

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-10-20

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  3. Metabolomics of Genetically Modified Crops

    Science.gov (United States)

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  4. Electoral Proximity and the Political Involvement of Bureaucrats: A Natural Experiment in Argentina, 1904

    OpenAIRE

    Valentín Figueroa; Universidad Torcuato Di Tella / IIGG

    2016-01-01

    In this paper, I use a slightly modified version of the Becker–Stigler model of corrupt behavior to explain bureaucratic political involvement. Since bureaucrats prefer higher rewards and not to support losing candidates, we expect them to become politically involved near elections – when rewards are expected to be higher, and information more abundant. Taking advantage of a natural experiment, I employ differences-in-means and differences-in-differences techniques to esti-mate the effect of ...

  5. Fathers' emotional involvement with the neonate: impact of the umbilical cord cutting experience.

    Science.gov (United States)

    Brandão, Sónia; Figueiredo, Bárbara

    2012-12-01

    This paper is a report on a study analysing the effect of the umbilical cord cutting experience on fathers' emotional involvement with their infants. Participation in childbirth offers an opportunity for father and mother to share the childbirth experience, so it is vital that midwives improve the fathers' participation in this event. A quasi-experimental study with a quantitative methodology was implemented. One hundred and five fathers were recruited as part of a convenience sample in a Maternity Public Hospital in a Metropolitan City in Portugal, between January and May of 2008. The Bonding Scale, the Portuguese version of the 'Mother-to-Infant Bonding Scale' was used to evaluate the fathers' emotional involvement with the neonate at different moments: before childbirth, first day after childbirth and first month after childbirth. After childbirth, the fathers were divided into three separate groups depending on their umbilical cord cutting experience. The results demonstrate that the emotional involvement between father and child tends to increase during the first days after childbirth and to decrease when evaluated 1 month after birth, for fathers who did not cut the umbilical cord. However, fathers who cut the umbilical cord demonstrate an improvement in emotional involvement 1 month later. Results suggest that the umbilical cord cutting experience benefits the father's emotional involvement with the neonate, supporting the benefits of his participation and empowerment in childbirth. © 2012 Blackwell Publishing Ltd.

  6. Metabolomics for functional genomics, systems biology, and biotechnology.

    Science.gov (United States)

    Saito, Kazuki; Matsuda, Fumio

    2010-01-01

    Metabolomics now plays a significant role in fundamental plant biology and applied biotechnology. Plants collectively produce a huge array of chemicals, far more than are produced by most other organisms; hence, metabolomics is of great importance in plant biology. Although substantial improvements have been made in the field of metabolomics, the uniform annotation of metabolite signals in databases and informatics through international standardization efforts remains a challenge, as does the development of new fields such as fluxome analysis and single cell analysis. The principle of transcript and metabolite cooccurrence, particularly transcriptome coexpression network analysis, is a powerful tool for decoding the function of genes in Arabidopsis thaliana. This strategy can now be used for the identification of genes involved in specific pathways in crops and medicinal plants. Metabolomics has gained importance in biotechnology applications, as exemplified by quantitative loci analysis, prediction of food quality, and evaluation of genetically modified crops. Systems biology driven by metabolome data will aid in deciphering the secrets of plant cell systems and their application to biotechnology.

  7. The future of metabolomics in ELIXIR [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Merlijn van Rijswijk

    2017-10-01

    Full Text Available Metabolomics, the youngest of the major omics technologies, is supported by an active community of researchers and infrastructure developers across Europe. To coordinate and focus efforts around infrastructure building for metabolomics within Europe, a workshop on the “Future of metabolomics in ELIXIR” was organised at Frankfurt Airport in Germany. This one-day strategic workshop involved representatives of ELIXIR Nodes, members of the PhenoMeNal consortium developing an e-infrastructure that supports workflow-based metabolomics analysis pipelines, and experts from the international metabolomics community. The workshop established metabolite identification as the critical area, where a maximal impact of computational metabolomics and data management on other fields could be achieved. In particular, the existing four ELIXIR Use Cases, where the metabolomics community - both industry and academia - would benefit most, and which could be exhaustively mapped onto the current five ELIXIR Platforms were discussed. This opinion article is a call for support for a new ELIXIR metabolomics Use Case, which aligns with and complements the existing and planned ELIXIR Platforms and Use Cases.

  8. The future of metabolomics in ELIXIR [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Merlijn van Rijswijk

    2017-09-01

    Full Text Available Metabolomics, the youngest of the major omics technologies, is supported by an active community of researchers and infrastructure developers across Europe. To coordinate and focus efforts around infrastructure building for metabolomics within Europe, a workshop on the “Future of metabolomics in ELIXIR” was organised at Frankfurt Airport in Germany. This one-day strategic workshop involved representatives of ELIXIR Nodes, members of the PhenoMeNal consortium developing an e-infrastructure that supports workflow-based metabolomics analysis pipelines, and experts from the international metabolomics community. The workshop established metabolite identification as the critical area, where a maximal impact of computational metabolomics and data management on other fields could be achieved. In particular, the existing four ELIXIR Use Cases, where the metabolomics community - both industry and academia - would benefit most, and which could be exhaustively mapped onto the current five ELIXIR Platforms were discussed. This opinion article is a call for support for a new ELIXIR metabolomics Use Case, which aligns with and complements the existing and planned ELIXIR Platforms and Use Cases.

  9. Next of kin's experiences of involvement during involuntary hospitalisation and coercion.

    Science.gov (United States)

    Førde, Reidun; Norvoll, Reidun; Hem, Marit Helene; Pedersen, Reidar

    2016-11-24

    Norway has extensive and detailed legal requirements and guidelines concerning involvement of next of kin (NOK) during involuntary hospital treatment of seriously mentally ill patients. However, we have little knowledge about what happens in practice. This study explores NOK's views and experiences of involvement during involuntary hospitalisation in Norway. We performed qualitative interviews-focus groups and individual-with 36 adult NOK to adults and adolescents who had been involuntarily admitted once or several times. The semi-structured interview guide included questions on experiences with and views on involvement during serious mental illness and coercion. Most of the NOK were heavily involved in the patient's life and illness. Their conceptions of involvement during mental illness and coercion, included many important aspects adding to the traditional focus on substitute decision-making. The overall impression was, with a few exceptions, that the NOK had experienced lack of involvement or had negative experiences as NOK in their encounters with the health services. Not being seen and acknowledged as important caregivers and co sufferers were experienced as offensive and could add to their feelings of guilt. Lack of involvement had as a consequence that vital patient information which the NOK possessed was not shared with the patient's therapists. Despite public initiatives to improve the involvement of NOK, the NOK in our study felt neglected, unappreciated and dismissed. The paper discusses possible reasons for the gap between public policies and practice which deserve more attention: 1. A strong and not always correct focus on legal matters. 2. Little emphasis on the role of NOK in professional ethics. 3. The organisation of health services and resource constraints. 4. A conservative culture regarding the role of next of kin in mental health care. Acknowledging these reasons may be helpful to understand deficient involvement of the NOK in voluntary mental

  10. A new strategy of exploring metabolomics data using Monte Carlo tree.

    Science.gov (United States)

    Cao, Dong-Sheng; Wang, Bing; Zeng, Mao-Mao; Liang, Yi-Zeng; Xu, Qing-Song; Zhang, Liang-Xiao; Li, Hong-Dong; Hu, Qian-Nan

    2011-03-07

    Large amounts of data from high-throughput metabolomics experiments have become commonly more and more complex, which brings a number of challenges to existing statistical modeling. Thus there is a need to develop a statistically efficient approach for mining the underlying metabolite information contained by metabolomics data under investigation. In this work, we provide a new strategy based on Monte Carlo cross validation coupled with the classification tree algorithm, which is termed as the MCTree approach. The MCTree approach inherently provides a feasible way to uncover the predictive structure of metabolomics data by the establishment of many cross-predictive models. With the help of the sample proximity matrix such obtained, it seems to be able to give some interesting insights into metabolomics data. Simultaneously, informative metabolites or potential biomarkers can be successfully discovered by means of variable importance ranking in the MCTree approach. Two real metabolomics datasets are finally used to demonstrate the performance of the proposed approach.

  11. NMR-based metabolomics applications

    DEFF Research Database (Denmark)

    Iaccarino, Nunzia

    juice from ancient Danish apple cultivars. Both studies revealed variety-related peculiarities that would have been difficult to detect by means of traditional analysis. The second part of the project includes four metabolomics studies performed on samples of biological origin. In particular, the first......Metabolomics is the scientific discipline that identifies and quantifies endogenous and exogenous metabolites in different biological samples. Metabolites are crucial components of a biological system and they are highly informative about its functional state, due to their closeness to the organism...... focused on the analysis of various samples covering a wide range of fields, namely, food and nutraceutical sciences, cell metabolomics and medicine using a metabolomics approach. Indeed, the first part of the thesis describes two exploratory studies performed on Algerian extra virgin olive oil and apple...

  12. NMR-based milk metabolomics

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik; Larsen, Lotte Bach; Bertram, Hanne Christine S.

    2013-01-01

    and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking...... the milk metabolite profiling with nutritional aspects, and applications which aim to link the milk metabolite profile to various technological qualities of milk. The metabolite profiling studies encompass the identification of novel metabolites, which potentially can be used as biomarkers or as bioactive...... compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining...

  13. Metabolomics Workbench (MetWB)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Metabolomics Program's Data Repository and Coordinating Center (DRCC), housed at the San Diego Supercomputer Center (SDSC), University of California, San Diego,...

  14. Effect of sleep deprivation on the human metabolome

    NARCIS (Netherlands)

    S.K. Davies (Sarah); J.E. Ang (Joo Ern); V.L. Revell (Victoria); B. Holmes (Ben); A. Mann (Anuska); F.P. Robertson (Francesca); N. Cui (Nanyi); B. Middleton (Benita); K. Ackermann (Katrin); M.H. Kayser (Manfred); A.E. Thumser (Alfred); P. Raynaud (Philippe); D.J. Skene (Debra)

    2014-01-01

    textabstractSleep restriction and circadian clock disruption are associated with metabolic disorders such as obesity, insulin resistance, and diabetes. The metabolic pathways involved in human sleep, however, have yet to be investigatedwith the use of a metabolomics approach. Here we have used

  15. An e-Learning System with MR for Experiments Involving Circuit Construction to Control a Robot

    Science.gov (United States)

    Takemura, Atsushi

    2016-01-01

    This paper proposes a novel e-Learning system for technological experiments involving electronic circuit-construction and controlling robot motion that are necessary in the field of technology. The proposed system performs automated recognition of circuit images transmitted from individual learners and automatically supplies the learner with…

  16. Collegiate Diversity Experiences and Students' Views Regarding Social and Political Involvement

    Science.gov (United States)

    Parker, Eugene T., III; Trolian, Teniell L.

    2015-01-01

    Using data from the Wabash National Study of Liberal Arts Education, this study examines the relationship between engagement in diversity experiences during college and student attitudes about the importance of being socially and politically involved at the end of their fourth year of college. Findings suggest a positive link between…

  17. Parental Beliefs and Experiences Regarding Involvement in Intervention for Their Child with Speech Sound Disorder

    Science.gov (United States)

    Watts Pappas, Nicole; McAllister, Lindy; McLeod, Sharynne

    2016-01-01

    Parental beliefs and experiences regarding involvement in speech intervention for their child with mild to moderate speech sound disorder (SSD) were explored using multiple, sequential interviews conducted during a course of treatment. Twenty-one interviews were conducted with seven parents of six children with SSD: (1) after their child's initial…

  18. Framing the Undergraduate Research Experience: Discovery Involvement in Retailing Undergraduate Education

    Science.gov (United States)

    Sternquist, Brenda; Huddleston, Patricia; Fairhurst, Ann

    2018-01-01

    We provide an overview of ways to involve undergraduate business and retailing students in faculty research projects and discuss advantages of these student-faculty collaborations. We use Kolb's experiential learning cycle to provide a framework for creating an effective and engaging undergraduate research experience and use it to classify types…

  19. Parents' Experiences as Predictors of State Accountability Measures of Schools' Facilitation of Parent Involvement

    Science.gov (United States)

    Elbaum, Batya; Blatz, Erin T.; Rodriguez, Raymond J.

    2016-01-01

    The aim of this study was to ascertain which dimensions of parents' experiences with schools are most strongly associated with parents' perceptions that schools are or are not facilitating parent involvement as mandated by the federal accountability system under the Individuals With Disabilities Education Act (IDEA). Participants were 92 parents…

  20. The photographer and the greenhouse: how to analyse plant metabolomics data

    NARCIS (Netherlands)

    Jansen, J.J.; Smit, S.; Hoefsloot, H.C.J.; Smilde, A.K.

    2010-01-01

    ntroduction - Plant metabolomics experiments yield large amounts of data, too much to be interpretable by eye. Multivariate data analyses are therefore essential to extract and visualise the information of interest. Objective - Because multivariate statistical methods may be remote from the

  1. Reflections on univariate and multivariate analysis of metabolomics data

    NARCIS (Netherlands)

    Saccenti, E.; Hoefsloot, H.C.J.; Smilde, A.K.; Westerhuis, J.A.; Hendriks, M.M.W.B.

    2014-01-01

    Metabolomics experiments usually result in a large quantity of data. Univariate and multivariate analysis techniques are routinely used to extract relevant information from the data with the aim of providing biological knowledge on the problem studied. Despite the fact that statistical tools like

  2. Electoral Proximity and the Political Involvement of Bureaucrats: A Natural Experiment in Argentina, 1904

    Directory of Open Access Journals (Sweden)

    Valentín Figueroa

    2016-01-01

    Full Text Available In this paper, I use a slightly modified version of the Becker–Stigler model of corrupt behavior to explain bureaucratic political involvement. Since bureaucrats prefer higher rewards and not to support losing candidates, we expect them to become politically involved near elections – when rewards are expected to be higher, and information more abundant. Taking advantage of a natural experiment, I employ differences-in-means and differences-in-differences techniques to esti-mate the effect of electoral proximity on the political involvement of justices of the peace in the city of Buenos Aires in 1904. I find a large, positive, and highly local effect of electoral proximity on their political involvement, with no appreciable impact in the months before or after elections.

  3. Metabolomics Society’s International Affiliations

    NARCIS (Netherlands)

    Roessner, U.; Rolin, D.; Rijswijk, van M.E.C.; Hall, R.D.; Hankemeier, T.

    2015-01-01

    In 2012 the Metabolomics Society established a more formal system for national and regional metabolomics initiatives, interest groups, societies and networks to become an International Affiliate of the Society. A number of groups (http://metabolomicssociety.org/international-affilia

  4. ECMDB: The E. coli Metabolome Database

    OpenAIRE

    Guo, An Chi; Jewison, Timothy; Wilson, Michael; Liu, Yifeng; Knox, Craig; Djoumbou, Yannick; Lo, Patrick; Mandal, Rupasri; Krishnamurthy, Ram; Wishart, David S.

    2012-01-01

    The Escherichia coli Metabolome Database (ECMDB, http://www.ecmdb.ca) is a comprehensively annotated metabolomic database containing detailed information about the metabolome of E. coli (K-12). Modelled closely on the Human and Yeast Metabolome Databases, the ECMDB contains >2600 metabolites with links to ?1500 different genes and proteins, including enzymes and transporters. The information in the ECMDB has been collected from dozens of textbooks, journal articles and electronic databases. E...

  5. Metabolomic Profiling for Identification of Novel Potential Biomarkers in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Maria G. Barderas

    2011-01-01

    Full Text Available Metabolomics involves the identification and quantification of metabolites present in a biological system. Three different approaches can be used: metabolomic fingerprinting, metabolic profiling, and metabolic footprinting, in order to evaluate the clinical course of a disease, patient recovery, changes in response to surgical intervention or pharmacological treatment, as well as other associated features. Characteristic patterns of metabolites can be revealed that broaden our understanding of a particular disorder. In the present paper, common strategies and analytical techniques used in metabolomic studies are reviewed, particularly with reference to the cardiovascular field.

  6. Sample preparation procedures utilized in microbial metabolomics: An overview.

    Science.gov (United States)

    Patejko, Małgorzata; Jacyna, Julia; Markuszewski, Michał J

    2017-02-01

    Bacteria are remarkably diverse in terms of their size, structure and biochemical properties. Due to this fact, it is hard to develop a universal method for handling bacteria cultures during metabolomic analysis. The choice of suitable processing methods constitutes a key element in any analysis, because only appropriate selection of procedures may provide accurate results, leading to reliable conclusions. Because of that, every analytical experiment concerning bacteria requires individually and very carefully planned research methodology. Although every study varies in terms of sample preparation, there are few general steps to follow while planning experiment, like sampling, separation of cells from growth medium, stopping their metabolism and extraction. As a result of extraction, all intracellular metabolites should be washed out from cell environment. What is more, extraction method utilized cannot cause any chemical decomposition or degradation of the metabolome. Furthermore, chosen extraction method should correlate with analytical technique, so it will not disturb or prolong following sample preparation steps. For those reasons, we observe a need to summarize sample preparation procedures currently utilized in microbial metabolomic studies. In the presented overview, papers concerning analysis of extra- and intracellular metabolites, published over the last decade, have been discussed. Presented work gives some basic guidelines that might be useful while planning experiments in microbial metabolomics. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Metabolomics: the chemistry between ecology and genetics

    NARCIS (Netherlands)

    Macel, M.; Dam, van N.M.; Keurentjes, J.J.B.

    2010-01-01

    Metabolomics is a fast developing field of comprehensive untargeted chemical analyses. It has many applications and can in principle be used on any organism without prior knowledge of the metabolome or genome. The amount of functional information that is acquired with metabolomics largely depends on

  8. Packages of participation: Swedish employees' experience of Lean depends on how they are involved.

    Science.gov (United States)

    Brännmark, Mikael; Holden, Richard J

    2013-01-01

    Lean Production is a dominant approach in Swedish and global manufacturing and service industries. Studies of Lean's employee effects are few and contradictory. Employee effects from Lean are likely not uniform. This paper investigates the effect of employees' participation on their experiences of Lean. This study investigated how different packages of employee participation in Lean affected manufacturing workers' experiences of Lean. During 2008-2011, qualitative and quantitative data were collected from Swedish manufacturing companies participating in the national Swedish Lean Production program Produktionslyftet. Data from 129 surveys (28 companies), 39 semi-structured interviews, and 30 reports were analyzed. In the main analysis, comparisons were made of the survey-reported Lean experiences of employees in three groups: temporary group employees (N = 36), who participated in Lean mostly through intermittent projects; continuous group employees (N = 69), who participated through standing improvement groups; and combined group employees (N = 24), who participated in both ways. Continuous group employees had the most positive experience of Lean, followed by the combined group. Temporary group employees had the least positive experiences, being less likely than their counterparts to report that Lean improved teamwork, occupational safety, and change-related learning, decision making, and authority. These findings support the importance of continuous, structured opportunities for participation but raise the possibility that more participation may result in greater workload and role overload, mitigating some benefits of employee involvement. Consequently, companies should consider involving employees in change efforts but should attend to the specific design of participation activities.

  9. Co-researching with people with learning disabilities: an experience of involvement in qualitative data analysis.

    Science.gov (United States)

    Tuffrey-Wijne, Irene; Butler, Gary

    2010-06-01

    People with learning disabilities have been included in research as co-researchers since the 1990s. However, there is limited literature about the processes of involving people with learning disabilities in the more intellectual and analytical stages of the research process. To examine the potential contribution of people with learning disabilities to data analysis in qualitative research. This article is a reflection on one research experience. The two authors include one researcher with and one without learning disabilities. They each describe their experience and understanding of user involvement in analysing the data of an ethnographic study of people with learning disabilities who had cancer. The researcher with learning disabilities was given extensive vignettes and extracts from the research field notes, and was supported to extract themes, which were cross-compared with the analysis of other members of the research team. The researcher with learning disabilities coped well with the emotive content of the data and with the additional support provided, he was able to extract themes that added validity to the overall analysis. His contribution complemented those of the other members of the research team. There were unexpected benefits, in particular, in terms of a more reciprocal and supportive relationship between the two researchers. It is possible and valuable to extend involvement to data analysis, but to avoid tokenism and maintain academic rigour, there must be a clear rationale for such involvement. Extra support, time and costs must be planned for.

  10. High Resolution Separations and Improved Ion Production and Transmission in Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Thomas O.; Page, Jason S.; Baker, Erin Shammel; Tang, Keqi; Ding, Jie; Shen, Yufeng; Smith, Richard D.

    2008-03-31

    The goal of metabolomics experiments is the detection and quantitation of as many sample components as reasonably possible in order to identify “features” that can be used to characterize the samples under study. When utilizing electrospray ionization to produce ions for analysis by mass spectrometry (MS), it is imperative that metabolome sample constituents be efficiently separated prior to ion production, in order to minimize the phenomenon of ionization suppression. Similarly, optimization of the MS inlet can lead to increased measurement sensitivity. This review will focus on the role of high resolution liquid chromatography (LC) separations in conjunction with improved ion production and transmission for LC-MS-based metabolomics.

  11. Packages of participation: Swedish employees’ experience of Lean depends on how they are involved

    Science.gov (United States)

    Brännmark, Mikael; Holden, Richard J.

    2013-01-01

    Background Lean Production is a dominant approach in Swedish and global manufacturing and service industries. Studies of Lean’s employee effects are few and contradictory. Purpose Employee effects from Lean are likely not uniform. This paper investigates the effect of employees' participation on their experiences of Lean. Method This study investigated how different packages of employee participation in Lean affected manufacturing workers’ experiences of Lean. During 2008–2011, qualitative and quantitative data were collected from Swedish manufacturing companies participating in the national Swedish Lean Production program Produktionslyftet. Data from 129 surveys (28 companies), 39 semi-structured interviews, and 30 reports were analyzed. In the main analysis, comparisons were made of the survey-reported Lean experiences of employees in three groups: temporary group employees (N = 36), who participated in Lean mostly through intermittent projects; continuous group employees (N = 69), who participated through standing improvement groups; and combined group employees (N = 24), who participated in both ways. Results Continuous group employees had the most positive experience of Lean, followed by the combined group. Temporary group employees had the least positive experiences, being less likely than their counterparts to report that Lean improved teamwork, occupational safety, and change-related learning, decision making, and authority. Conclusions These findings support the importance of continuous, structured opportunities for participation but raise the possibility that more participation may result in greater workload and role overload, mitigating some benefits of employee involvement. Consequently, companies should consider involving employees in change efforts but should attend to the specific design of participation activities. PMID:24665370

  12. Amyloidosis involving the respiratory system: 5-year's experience of a multi-disciplinary group's activity.

    Science.gov (United States)

    Scala, Raffaele; Maccari, Uberto; Madioni, Chiara; Venezia, Duccio; La Magra, Lidia Calogera

    2015-01-01

    Amyloidosis may involve the respiratory system with different clinical-radiological-functional patterns which are not always easy to be recognized. A good level of knowledge of the disease, an active integration of the pulmonologist within a multidisciplinary setting and a high level of clinical suspicion are necessary for an early diagnosis of respiratory amyloidosis. The aim of this retrospective study was to evaluate the number and the patterns of amyloidosis involving the respiratory system. We searched the cases of amyloidosis among patients attending the multidisciplinary rare and diffuse lung disease outpatients' clinic of Pulmonology Unit of the Hospital of Arezzo from 2007 to 2012. Among the 298 patients evaluated during the study period, we identified three cases of amyloidosis with involvement of the respiratory system, associated or not with other extra-thoracic localizations, whose diagnosis was histo-pathologically confirmed after the pulmonologist, the radiologist, and the pathologist evaluation. Our experience of a multidisciplinary team confirms that intra-thoracic amyloidosis is an uncommon disorder, representing 1.0% of the cases of rare and diffuse lung diseases referred to our center. The diagnosis of the disease is not always easy and quick as the amyloidosis may involve different parts of the respiratory system (airways, pleura, parenchyma). It is therefore recommended to remind this orphan disease in the differential diagnosis of the wide clinical scenarios the pulmonologist may intercept in clinical practice.

  13. Application of Metabolomics to Study Effects of Bariatric Surgery

    Directory of Open Access Journals (Sweden)

    Paulina Samczuk

    2018-01-01

    Full Text Available Bariatric surgery was born in the 1950s at the University of Minnesota. From this time, it continues to evolve and, by the same token, gives new or better possibilities to treat not only obesity but also associated comorbidities. Metabolomics is also a relatively young science discipline, and similarly, it shows great potential for the comprehensive study of the dynamic alterations of the metabolome. It has been widely used in medicine, biology studies, biomarker discovery, and prognostic evaluations. Currently, several dozen metabolomics studies were performed to study the effects of bariatric surgery. LC-MS and NMR are the most frequently used techniques to study main effects of RYGB or SG. Research has yield many interesting results involving not only clinical parameters but also molecular modulations. Detected changes pertain to amino acid, lipids, carbohydrates, or gut microbiota alterations. It proves that including bariatric surgery to metabolic surgery is warranted. However, many molecular modulations after those procedures remain unexplained. Therefore, application of metabolomics to study this field seems to be a proper solution. New findings can suggest new directions of surgery technics modifications, contribute to broadening knowledge about obesity and diseases related to it, and perhaps develop nonsurgical methods of treatment in the future.

  14. Preliminary metabolomics analysis of placenta in maternal obesity.

    Science.gov (United States)

    Fattuoni, Claudia; Mandò, Chiara; Palmas, Francesco; Anelli, Gaia Maria; Novielli, Chiara; Parejo Laudicina, Estefanìa; Savasi, Valeria Maria; Barberini, Luigi; Dessì, Angelica; Pintus, Roberta; Fanos, Vassilios; Noto, Antonio; Cetin, Irene

    2018-01-01

    Metabolomics identifies phenotypical groups with specific metabolic profiles, being increasingly applied to several pregnancy conditions. This is the first preliminary study analyzing placental metabolomics in normal weight (NW) and obese (OB) pregnancies. Twenty NW (18.5 ≤ BMI< 25 kg/m 2 ) and eighteen OB (BMI≥ 30 kg/m 2 ) pregnancies were studied. Placental biopsies were collected at elective caesarean section. Metabolites extraction method was optimized for hydrophilic and lipophilic phases, then analyzed with GC-MS. Univariate and PLS-DA multivariate analysis were applied. Univariate analysis showed increased uracil levels while multivariate PLS-DA analysis revealed lower levels of LC-PUFA derivatives in the lipophilic phase and several metabolites with significantly different levels in the hydrophilic phase of OB vs NW. Placental metabolome analysis of obese pregnancies showed differences in metabolites involved in antioxidant defenses, nucleotide production, as well as lipid synthesis and energy production, supporting a shift towards higher placental metabolism. OB placentas also showed a specific fatty acids profile suggesting a disruption of LC-PUFA biomagnification. This study can lay the foundation to further metabolomic placental characterization in maternal obesity. Metabolic signatures in obese placentas may reflect changes occurring in the intrauterine metabolic environment, which may affect the development of adult diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Growth of Malignant Non-CNS Tumors Alters Brain Metabolome

    Science.gov (United States)

    Kovalchuk, Anna; Nersisyan, Lilit; Mandal, Rupasri; Wishart, David; Mancini, Maria; Sidransky, David; Kolb, Bryan; Kovalchuk, Olga

    2018-01-01

    Cancer survivors experience numerous treatment side effects that negatively affect their quality of life. Cognitive side effects are especially insidious, as they affect memory, cognition, and learning. Neurocognitive deficits occur prior to cancer treatment, arising even before cancer diagnosis, and we refer to them as “tumor brain.” Metabolomics is a new area of research that focuses on metabolome profiles and provides important mechanistic insights into various human diseases, including cancer, neurodegenerative diseases, and aging. Many neurological diseases and conditions affect metabolic processes in the brain. However, the tumor brain metabolome has never been analyzed. In our study we used direct flow injection/mass spectrometry (DI-MS) analysis to establish the effects of the growth of lung cancer, pancreatic cancer, and sarcoma on the brain metabolome of TumorGraft™ mice. We found that the growth of malignant non-CNS tumors impacted metabolic processes in the brain, affecting protein biosynthesis, and amino acid and sphingolipid metabolism. The observed metabolic changes were similar to those reported for neurodegenerative diseases and brain aging, and may have potential mechanistic value for future analysis of the tumor brain phenomenon. PMID:29515623

  16. Vitamins, metabolomics, and prostate cancer.

    Science.gov (United States)

    Mondul, Alison M; Weinstein, Stephanie J; Albanes, Demetrius

    2017-06-01

    How micronutrients might influence risk of developing adenocarcinoma of the prostate has been the focus of a large body of research (especially regarding vitamins E, A, and D). Metabolomic profiling has the potential to discover molecular species relevant to prostate cancer etiology, early detection, and prevention, and may help elucidate the biologic mechanisms through which vitamins influence prostate cancer risk. Prostate cancer risk data related to vitamins E, A, and D and metabolomic profiling from clinical, cohort, and nested case-control studies, along with randomized controlled trials, are examined and summarized, along with recent metabolomic data of the vitamin phenotypes. Higher vitamin E serologic status is associated with lower prostate cancer risk, and vitamin E genetic variant data support this. By contrast, controlled vitamin E supplementation trials have had mixed results based on differing designs and dosages. Beta-carotene supplementation (in smokers) and higher circulating retinol and 25-hydroxy-vitamin D concentrations appear related to elevated prostate cancer risk. Our prospective metabolomic profiling of fasting serum collected 1-20 years prior to clinical diagnoses found reduced lipid and energy/TCA cycle metabolites, including inositol-1-phosphate, lysolipids, alpha-ketoglutarate, and citrate, significantly associated with lower risk of aggressive disease. Several active leads exist regarding the role of micronutrients and metabolites in prostate cancer carcinogenesis and risk. How vitamins D and A may adversely impact risk, and whether low-dose vitamin E supplementation remains a viable preventive approach, require further study.

  17. Sexual risk, substance use, mental health, and trauma experiences of gang-involved homeless youth.

    Science.gov (United States)

    Petering, Robin

    2016-04-01

    This study examined the associations of sexual risk behaviors, substance use, mental health, and trauma with varying levels of gang involvement in a sample of Los Angeles-based homeless youths. Data were collected from 505 homeless youths who self-reported various health information and whether they have ever identified as or been closely affiliated with a gang member. Multivariable logistic regression assessed associations of lifetime gang involvement with risk taking behaviors and negative health outcomes. Results revealed seventeen percent of youths have ever identified as a gang member and 46% as gang affiliated. Both gang members and affiliates were at greater risk of many negative behaviors than non-gang involved youths. Gang members and affiliates were more likely to report recent methamphetamine use, cocaine use, chronic marijuana use, having sex while intoxicated, and symptoms of depression, symptoms of posttraumatic stress disorder. They were also more likely to have experienced childhood sexual abuse and witnessing family violence. Gang members were more likely to ever attempt suicide, experience recent partner violence, and report physical abuse during childhood. Results suggest that lifetime gang involvement is related to a trajectory of negative outcomes and amplified risk for youths experiencing homelessness. Additionally, being closely connected to a gang member appears to have just as much as an impact on risk as personally identifying as a gang member. Given the lack of knowledge regarding the intersection between youth homelessness and gang involvement, future research is needed to inform policies and programs that can address the specific needs of this population. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  18. YMDB: the Yeast Metabolome Database

    Science.gov (United States)

    Jewison, Timothy; Knox, Craig; Neveu, Vanessa; Djoumbou, Yannick; Guo, An Chi; Lee, Jacqueline; Liu, Philip; Mandal, Rupasri; Krishnamurthy, Ram; Sinelnikov, Igor; Wilson, Michael; Wishart, David S.

    2012-01-01

    The Yeast Metabolome Database (YMDB, http://www.ymdb.ca) is a richly annotated ‘metabolomic’ database containing detailed information about the metabolome of Saccharomyces cerevisiae. Modeled closely after the Human Metabolome Database, the YMDB contains >2000 metabolites with links to 995 different genes/proteins, including enzymes and transporters. The information in YMDB has been gathered from hundreds of books, journal articles and electronic databases. In addition to its comprehensive literature-derived data, the YMDB also contains an extensive collection of experimental intracellular and extracellular metabolite concentration data compiled from detailed Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) metabolomic analyses performed in our lab. This is further supplemented with thousands of NMR and MS spectra collected on pure, reference yeast metabolites. Each metabolite entry in the YMDB contains an average of 80 separate data fields including comprehensive compound description, names and synonyms, structural information, physico-chemical data, reference NMR and MS spectra, intracellular/extracellular concentrations, growth conditions and substrates, pathway information, enzyme data, gene/protein sequence data, as well as numerous hyperlinks to images, references and other public databases. Extensive searching, relational querying and data browsing tools are also provided that support text, chemical structure, spectral, molecular weight and gene/protein sequence queries. Because of S. cervesiae's importance as a model organism for biologists and as a biofactory for industry, we believe this kind of database could have considerable appeal not only to metabolomics researchers, but also to yeast biologists, systems biologists, the industrial fermentation industry, as well as the beer, wine and spirit industry. PMID:22064855

  19. Experience of Public Involvement in Canada Presented to the Forum for Stakeholder Confidence

    International Nuclear Information System (INIS)

    Facella, Jo-Ann; Patton, Pat

    2008-01-01

    Pat Patton of NWMO, Canada, summarised the experiences of the organisation's three-year study aimed at identifying a broadly supported approach to managing Canada's nuclear fuel waste. The starting point of the study was the recognition that citizen perception of safety and acceptability are strongly interrelated, therefore understanding and addressing the social dimension of safety would be critical for finding a socially acceptable RWM approach. An iterative and collaborative dialogue was conducted between specialists and citizens to both identify how safety is to be assessed and to carry out the assessment. First, objectives, values and ethical principles were defined, which formed the basis for the criteria of selecting a preferred RWM approach. The dialogue revealed that adaptability of the management approach to new information and technological advancement is a key requirement. Continuous learning, RD and D, and citizen involvement over the course of implementation were also identified as important components of the management approach. Ms Patton presented an illustrative model for public involvement during the implementation process. According to the model, implementation would be a multi-stage process with a continuous interaction between scientific and technical specialists, potentially affected communities and the implementer. Finally, Ms Patton outlined some key challenges for future dialogues between non-specialists and experts, including the development of tools for involving citizens in increasingly more knowledge-intensive areas and communicating research results which address issues highlighted by citizens

  20. Middle Eastern mothers in Sweden, their experiences of the maternal health service and their partner's involvement

    Directory of Open Access Journals (Sweden)

    D Karlsson Elisabeth

    2007-10-01

    Full Text Available Abstract Background Traditional patterns relating to how to handle pregnancy and birth are often challenged due to migration. The purpose of this study was to describe Middle Eastern mothers' experiences of the maternal health care services in Sweden and the involvement of their male partner. Methods Thirteen immigrant mothers from the Middle East who had used the maternal health services in Sweden were interviewed using focus group discussions and individual interviews. These were taped, transcribed and analysed according to Content analysis. Results The four main categories that developed were: • Access to the professional midwife • Useful counselling • Stable motherhood in transition • Being a family living in a different culture Conclusion According to the respondents in this study, understanding the woman's native language or her culture was not vital to develop a good relationship with the midwife. Instead the immigrant woman developed trust in the midwife based on the knowledge and the empathy the midwife imparted. Increasing the amount of first trimester antenatal visits could avoid spontaneous visits to the emergency clinic. There was a greater need for involvement and support by the father during the perinatal period, such as caring for older children and carrying out household chores since the mothers' earlier female network was often lost. Clinical implications There is a need to involve immigrant parents in the available parental education in order to prepare them for parenthood in their new country as well as to explore their altered family situation. Collecting immigrant women and their partner's, experiences of maternal health care services offers a possibility to improve the existing care, both in content, access and availability where the timing of visits and content require further evaluation.

  1. The potential of metabolomics for Leishmania research in the post-genomics era.

    Science.gov (United States)

    Scheltema, Richard A; Decuypere, Saskia; T'kindt, Ruben; Dujardin, Jean-Claude; Coombs, Graham H; Breitling, Rainer

    2010-08-01

    The post-genomics era has provided researchers with access to a new generation of tools for the global characterization and understanding of pathogen diversity. This review provides a critical summary of published Leishmania post-genomic research efforts to date, and discusses the potential impact of the addition of metabolomics to the post-genomic toolbox. Metabolomics aims at understanding biology by comprehensive metabolite profiling. We present an overview of the design and interpretation of metabolomics experiments in the context of Leishmania research. Sample preparation, measurement techniques, and bioinformatics analysis of the generated complex datasets are discussed in detail. To illustrate the concepts and the expected results of metabolomics analyses, we also present an overview of comparative metabolic profiles of drug-sensitive and drug-resistant Leishmania donovani clinical isolates.

  2. Community Involvement among Behaviourally Bisexual Men in the Midwestern USA: Experiences and Perceptions across Communities

    Science.gov (United States)

    Dodge, Brian; Schnarrs, Phillip W.; Reece, Michael; Goncalves, Gabriel; Martinez, Omar; Nix, Ryan; Malebranche, David; Van Der Pol, Barbara; Murray, Maresa; Fortenberry, J. Dennis

    2012-01-01

    Limited research exists regarding community involvement and social support among behaviourally bisexual men. Previous studies suggest that bisexual men experience high levels of social stigma in both heterosexual and homosexual community settings. Research focusing on social support has demonstrated that individuals with limited access to similar individuals experience greater risk for negative health outcomes. Using a community-based research design, participants were recruited using multiple methods in Indianapolis, Indiana, USA. Researchers conducted in-depth, semi-structured interviews with 75 men who reported having engaged in bisexual behaviour within the past six months. Interviews elucidated the experiences of behaviourally bisexual men in heterosexual and homosexual settings, as well as their perceptions of the existence of a bisexual community or bisexual spaces. All participants perceived a lack of a visible bisexual community and expressed difficulty with being comfortable, or feeling belonging, within a variety of heterosexual and homosexual community spaces. Findings suggest the need for interventions focused on community building among, as well as creating spaces specifically designed for, bisexual men in order to increase perceived social support and decrease isolation and possible negative health outcomes. PMID:22978551

  3. Midwifery students experience of teamwork projects involving mark-related peer feedback.

    Science.gov (United States)

    Hastie, Carolyn R; Fahy, Kathleen M; Parratt, Jenny A; Grace, Sandra

    2016-06-01

    Lack of teamwork skills among health care professionals endangers patients and enables workplace bullying. Individual teamwork skills are increasingly being assessed in the undergraduate health courses but rarely defined, made explicit or taught. To remedy these deficiencies we introduced a longitudinal educational strategy across all three years of the Bachelor of Midwifery program. To report on students' experiences of engaging in team based assignments which involved mark-related peer feedback. Stories of midwifery students' experiences were collected from 17 participants across the three years of the degree. These were transcribed and analysed thematically and interpreted using feminist collaborative conversations. Most participants reported being in well-functioning teams and enjoyed the experience; they spoke of 'we' and said 'Everyone was on Board'. Students in poorly functioning teams spoke of 'I' and 'they'. These students complained about the poor performance of others but they didn't speak up because they 'didn't want to make waves' and they didn't have the skills to be able to confidently manage conflict. All participants agreed 'Peer-related marks cause mayhem'. Teamwork skills should be specifically taught and assessed. These skills take time to develop. Students, therefore, should be engaged in a teamwork assignment in each semester of the entire program. Peer feedback should be moderated by the teacher and not directly related to marks. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  4. Metabolomics Application in Maternal-Fetal Medicine

    OpenAIRE

    Fanos, Vassilios; Atzori, Luigi; Makarenko, Karina; Melis, Gian Benedetto; Ferrazzi, Enrico

    2013-01-01

    Metabolomics in maternal-fetal medicine is still an “embryonic” science. However, there is already an increasing interest in metabolome of normal and complicated pregnancies, and neonatal outcomes. Tissues used for metabolomics interrogations of pregnant women, fetuses and newborns are amniotic fluid, blood, plasma, cord blood, placenta, urine, and vaginal secretions. All published papers highlight the strong correlation between biomarkers found in these tissues and fetal malformations, prete...

  5. Recent Operating Experience involving Power Electronics Failure in Korea Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Jaedo

    2015-01-01

    Recently, modern power electronics devices for electrical component were steadily increased in electrical systems which used for main power control and protection. To upgrade the system reliability we recommended the redundancy for electrical equipment trip system. The past several years, Korean Nuclear power plants have changed the electrical control and protection systems (Auto Voltage Regulator, Power Protection Relay) for main generator and main power protection relay systems. In this paper we deal with operating experience involving modern solid state power electronics failure in Korean nuclear power plants. One of the failures we will discuss the degraded phenomenon of power electronics device for CEDMCS(Control Element Drive Mechanism Control System). As the result of the failure we concerned about the modification for trip source of main generator excitation systems and others. We present an interesting issue for modern solid state devices (IGBT, Thyristors). (authors)

  6. Metabolomics of Clostridial Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D [Princeton Univ., NJ (United States); Aristilde, Ludmilla [Cornell Univ., Ithaca, NY (United States); Amador-Noguez, Daniel [Univ. of Wisconsin, Madison, WI (United States)

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars

  7. A longitudinal online interprofessional education experience involving family nurse practitioner students and pharmacy students.

    Science.gov (United States)

    Collins, Andrea; Broeseker, Amy; Cunningham, Jill; Cortes, Cyndi; Beall, Jennifer; Bigham, Amy; Chang, Jongwha

    2017-03-01

    Interprofessional education (IPE) continues to gain traction worldwide. Challenges integrating IPE into health profession programmes include finding convenient times, meeting spaces, and level-appropriate assignments for each profession. This article describes the implementation of a 21-month prospective cohort study pilot programme for the Master of Science in nursing family nurse practitioner (FNP) and doctor of pharmacy (PharmD) students at a private university in the United States. This IPE experience utilised a blended approach for the learning activities; these students had initial and final sessions where they met face-to-face, with asynchronous online activities between these two sessions. The online assignments, discussions, and quizzes during the pilot programme involved topics such as antimicrobial stewardship, hormone replacement therapy, human papilloma virus vaccination, prenatal counselling, emergency contraception, and effects of the Affordable Care Act on practice. The results suggested that the FNP students held more favourable attitudes about online IPE and that the PharmD students reported having a clearer understanding of their own roles and those of the other participating healthcare students. However, the students also reported wanting more face-to-face interaction during their online IPE experience. Implications from this study suggest that effective online IPE can be supported by ensuring educational parity between students regarding the various topics discussed and a consistent approach of the required involvement for all student groups is needed. In addition, given the students desire for more face-to-face interaction, it may be beneficial to offer online IPE activities for a shorter time period. It is anticipated that this study may inform other programmes that are exploring innovative approaches to provide IPE to promote effective collaboration in patient care.

  8. Functional metabolomics reveals novel active products in the DHA metabolome

    Directory of Open Access Journals (Sweden)

    Masakazu eShinohara

    2012-04-01

    Full Text Available Endogenous mechanisms for successful resolution of an acute inflammatory response and the local return to homeostasis are of interest because excessive inflammation underlies many human diseases. In this review, we provide an update and overview of functional metabolomics that identified a new bioactive metabolome of docosahexaenoic acid (DHA. Systematic studies revealed that DHA was converted to DHEA-derived novel bioactive products as well as aspirin-triggered (AT forms of protectins. The new oxygenated DHEA derived products blocked PMN chemotaxis, reduced P-selectin expression and platelet-leukocyte adhesion, and showed organ protection in ischemia/reperfusion injury. These products activated cannabinoid receptor (CB2 receptor and not CB1 receptors. The AT-PD1 reduced neutrophil (PMN recruitment in murine peritonitis. With human cells, AT-PD1 decreased transendothelial PMN migration as well as enhanced efferocytosis of apoptotic human PMN by macrophages. The recent findings reviewed here indicate that DHEA oxidative metabolism and aspirin-triggered conversion of DHA produce potent novel molecules with anti-inflammatory and organ-protective properties, opening the DHA metabolome functional roles.

  9. Metabolomics in Toxicology and Preclinical Research

    Science.gov (United States)

    Ramirez, Tzutzuy; Daneshian, Mardas; Kamp, Hennicke; Bois, Frederic Y.; Clench, Malcolm R.; Coen, Muireann; Donley, Beth; Fischer, Steven M.; Ekman, Drew R.; Fabian, Eric; Guillou, Claude; Heuer, Joachim; Hogberg, Helena T.; Jungnickel, Harald; Keun, Hector C.; Krennrich, Gerhard; Krupp, Eckart; Luch, Andreas; Noor, Fozia; Peter, Erik; Riefke, Bjoern; Seymour, Mark; Skinner, Nigel; Smirnova, Lena; Verheij, Elwin; Wagner, Silvia; Hartung, Thomas; van Ravenzwaay, Bennard; Leist, Marcel

    2013-01-01

    Summary Metabolomics, the comprehensive analysis of metabolites in a biological system, provides detailed information about the biochemical/physiological status of a biological system, and about the changes caused by chemicals. Metabolomics analysis is used in many fields, ranging from the analysis of the physiological status of genetically modified organisms in safety science to the evaluation of human health conditions. In toxicology, metabolomics is the -omics discipline that is most closely related to classical knowledge of disturbed biochemical pathways. It allows rapid identification of the potential targets of a hazardous compound. It can give information on target organs and often can help to improve our understanding regarding the mode-of-action of a given compound. Such insights aid the discovery of biomarkers that either indicate pathophysiological conditions or help the monitoring of the efficacy of drug therapies. The first toxicological applications of metabolomics were for mechanistic research, but different ways to use the technology in a regulatory context are being explored. Ideally, further progress in that direction will position the metabolomics approach to address the challenges of toxicology of the 21st century. To address these issues, scientists from academia, industry, and regulatory bodies came together in a workshop to discuss the current status of applied metabolomics and its potential in the safety assessment of compounds. We report here on the conclusions of three working groups addressing questions regarding 1) metabolomics for in vitro studies 2) the appropriate use of metabolomics in systems toxicology, and 3) use of metabolomics in a regulatory context. PMID:23665807

  10. Cloning and molecular analysis of HlbZip1 and HlbZip2 transcription factors putatively involved in the regulation of the lupulin metabolome in hop (Humulus lupulus L.).

    Science.gov (United States)

    Matousek, Jaroslav; Kocábek, Tomás; Patzak, Josef; Stehlík, Jan; Füssy, Zoltan; Krofta, Karel; Heyerick, Arne; Roldán-Ruiz, Isabel; Maloukh, Lina; De Keukeleire, Denis

    2010-01-27

    Hop (Humulus lupulus L.), the essential source of beer flavor is of interest from a medicinal perspective in view of its high content in health-beneficial terpenophenolics including prenylflavonoids. The dissection of biosynthetic pathway(s) of these compounds in lupulin glands, as well as its regulation by transcription factors (TFs), is important for efficient biotechnological manipulation of the hop metabolome. TFs of the bZIP class were preselected from the hop transcriptome using a cDNA-AFLP approach and cloned from a cDNA library based on glandular tissue-enriched hop cones. The cloned TFs HlbZIP1A and HlbZIP2 have predicted molecular masses of 27.4 and 34.2 kDa, respectively, and both are similar to the group A3 bZIP TFs according to the composition of characteristic domains. While HlbZIP1A is rather neutral (pI 6.42), HlbZIP2 is strongly basic (pI 8.51). A truncated variant of HlbZIP1 (HlbZIP1B), which is strongly basic but lacks the leucine zipper domain, has also been cloned from hop. Similar to the previously cloned HlMyb3 from hop, both bZIP TFs show a highly specific expression in lupulin glands, although low expression was observed also in other tissues including roots and immature pollen. Comparative functional analyses of HlbZip1A, HlbZip2, and subvariants of HlMyb3 were performed in a transient expression system using Nicotiana benthamiana leaf coinfiltration with Agrobacterium tumefaciens strains bearing hop TFs and selected promoters fused to the GUS reference gene. Both hop bZIP TFs and HlMyb3 mainly activated the promoters of chalcone synthase chs_H1 and the newly cloned O-methyl transferase 1 genes, while the response of the valerophenone synthase promoter to the cloned hop TFs was very low. These analyses also showed that the cloned bZIP TFs are not strictly G-box-specific. HPLC analysis of secondary metabolites in infiltrated Petunia hybrida showed that both hop bZIP TFs interfere with the accumulation and the composition of flavonol

  11. NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review

    International Nuclear Information System (INIS)

    Smolinska, Agnieszka; Blanchet, Lionel; Buydens, Lutgarde M.C.; Wijmenga, Sybren S.

    2012-01-01

    Highlights: ► Procedures for acquisition of different biofluids by NMR. ► Recent developments in metabolic profiling of different biofluids by NMR are presented. ► The crucial steps involved in data preprocessing and multivariate chemometric analysis are reviewed. ► Emphasis is given on recent findings on Multiple Sclerosis via NMR and pattern recognition methods. - Abstract: Metabolomics is the discipline where endogenous and exogenous metabolites are assessed, identified and quantified in different biological samples. Metabolites are crucial components of biological system and highly informative about its functional state, due to their closeness to functional endpoints and to the organism's phenotypes. Nuclear Magnetic Resonance (NMR) spectroscopy, next to Mass Spectrometry (MS), is one of the main metabolomics analytical platforms. The technological developments in the field of NMR spectroscopy have enabled the identification and quantitative measurement of the many metabolites in a single sample of biofluids in a non-targeted and non-destructive manner. Combination of NMR spectra of biofluids and pattern recognition methods has driven forward the application of metabolomics in the field of biomarker discovery. The importance of metabolomics in diagnostics, e.g. in identifying biomarkers or defining pathological status, has been growing exponentially as evidenced by the number of published papers. In this review, we describe the developments in data acquisition and multivariate analysis of NMR-based metabolomics data, with particular emphasis on the metabolomics of Cerebrospinal Fluid (CSF) and biomarker discovery in Multiple Sclerosis (MScl).

  12. Metabolomics techniques for nanotoxicity investigations.

    Science.gov (United States)

    Lv, Mengying; Huang, Wanqiu; Chen, Zhipeng; Jiang, Hulin; Chen, Jiaqing; Tian, Yuan; Zhang, Zunjian; Xu, Fengguo

    2015-01-01

    Nanomaterials are commonly defined as engineered structures with at least one dimension of 100 nm or less. Investigations of their potential toxicological impact on biological systems and the environment have yet to catch up with the rapid development of nanotechnology and extensive production of nanoparticles. High-throughput methods are necessary to assess the potential toxicity of nanoparticles. The omics techniques are well suited to evaluate toxicity in both in vitro and in vivo systems. Besides genomic, transcriptomic and proteomic profiling, metabolomics holds great promises for globally evaluating and understanding the molecular mechanism of nanoparticle-organism interaction. This manuscript presents a general overview of metabolomics techniques, summarizes its early application in nanotoxicology and finally discusses opportunities and challenges faced in nanotoxicology.

  13. Metabolomics and ischaemic heart disease.

    Science.gov (United States)

    Rasmiena, Aliki A; Ng, Theodore W; Meikle, Peter J

    2013-03-01

    Ischaemic heart disease accounts for nearly half of the global cardiovascular disease burden. Aetiologies relating to heart disease are complex, but dyslipidaemia, oxidative stress and inflammation are cardinal features. Despite preventative measures and advancements in treatment regimens with lipid-lowering agents, the high prevalence of heart disease and the residual risk of recurrent events continue to be a significant burden to the health sector and to the affected individuals and their families. The development of improved risk models for the early detection and prevention of cardiovascular events in addition to new therapeutic strategies to address this residual risk are required if we are to continue to make inroads into this most prevalent of diseases. Metabolomics and lipidomics are modern disciplines that characterize the metabolite and lipid complement respectively, of a given system. Their application to ischaemic heart disease has demonstrated utilities in population profiling, identification of multivariate biomarkers and in monitoring of therapeutic response, as well as in basic mechanistic studies. Although advances in magnetic resonance and mass spectrometry technologies have given rise to the fields of metabolomics and lipidomics, the plethora of data generated presents challenges requiring specific statistical and bioinformatics applications, together with appropriate study designs. Nonetheless, the predictive and re-classification capacity of individuals with various degrees of risk by the plasma lipidome has recently been demonstrated. In the present review, we summarize evidence derived exclusively by metabolomic and lipidomic studies in the context of ischaemic heart disease. We consider the potential role of plasma lipid profiling in assessing heart disease risk and therapeutic responses, and explore the potential mechanisms. Finally, we highlight where metabolomic studies together with complementary -omic disciplines may make further

  14. MetaboLights: An Open-Access Database Repository for Metabolomics Data.

    Science.gov (United States)

    Kale, Namrata S; Haug, Kenneth; Conesa, Pablo; Jayseelan, Kalaivani; Moreno, Pablo; Rocca-Serra, Philippe; Nainala, Venkata Chandrasekhar; Spicer, Rachel A; Williams, Mark; Li, Xuefei; Salek, Reza M; Griffin, Julian L; Steinbeck, Christoph

    2016-03-24

    MetaboLights is the first general purpose, open-access database repository for cross-platform and cross-species metabolomics research at the European Bioinformatics Institute (EMBL-EBI). Based upon the open-source ISA framework, MetaboLights provides Metabolomics Standard Initiative (MSI) compliant metadata and raw experimental data associated with metabolomics experiments. Users can upload their study datasets into the MetaboLights Repository. These studies are then automatically assigned a stable and unique identifier (e.g., MTBLS1) that can be used for publication reference. The MetaboLights Reference Layer associates metabolites with metabolomics studies in the archive and is extensively annotated with data fields such as structural and chemical information, NMR and MS spectra, target species, metabolic pathways, and reactions. The database is manually curated with no specific release schedules. MetaboLights is also recommended by journals for metabolomics data deposition. This unit provides a guide to using MetaboLights, downloading experimental data, and depositing metabolomics datasets using user-friendly submission tools. Copyright © 2016 John Wiley & Sons, Inc.

  15. Comprehensive Metabolomic, Lipidomic and Microscopic Profiling of Yarrowia lipolytica during Lipid Accumulation Identifies Targets for Increased Lipogenesis.

    Directory of Open Access Journals (Sweden)

    Kyle R Pomraning

    Full Text Available Yarrowia lipolytica is an oleaginous ascomycete yeast that accumulates large amounts of lipids and has potential as a biofuel producing organism. Despite a growing scientific literature focused on lipid production by Y. lipolytica, there remain significant knowledge gaps regarding the key biological processes involved. We applied a combination of metabolomic and lipidomic profiling approaches as well as microscopic techniques to identify and characterize the key pathways involved in de novo lipid accumulation from glucose in batch cultured, wild-type Y. lipolytica. We found that lipids accumulated rapidly and peaked at 48 hours during the five day experiment, concurrent with a shift in amino acid metabolism. We also report that exhaustion of extracellular sugars coincided with thickening of the cell wall, suggesting that genes involved in cell wall biogenesis may be a useful target for improving the efficiency of lipid producing yeast strains.

  16. Comprehensive Metabolomic, Lipidomic and Microscopic Profiling of Yarrowia lipolytica during Lipid Accumulation Identifies Targets for Increased Lipogenesis

    Science.gov (United States)

    Pomraning, Kyle R.; Wei, Siwei; Karagiosis, Sue A.; Kim, Young-Mo; Dohnalkova, Alice C.; Arey, Bruce W.; Bredeweg, Erin L.; Orr, Galya; Metz, Thomas O.; Baker, Scott E.

    2015-01-01

    Yarrowia lipolytica is an oleaginous ascomycete yeast that accumulates large amounts of lipids and has potential as a biofuel producing organism. Despite a growing scientific literature focused on lipid production by Y. lipolytica, there remain significant knowledge gaps regarding the key biological processes involved. We applied a combination of metabolomic and lipidomic profiling approaches as well as microscopic techniques to identify and characterize the key pathways involved in de novo lipid accumulation from glucose in batch cultured, wild-type Y. lipolytica. We found that lipids accumulated rapidly and peaked at 48 hours during the five day experiment, concurrent with a shift in amino acid metabolism. We also report that exhaustion of extracellular sugars coincided with thickening of the cell wall, suggesting that genes involved in cell wall biogenesis may be a useful target for improving the efficiency of lipid producing yeast strains. PMID:25905710

  17. PROM and Labour Effects on Urinary Metabolome: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Alessandra Meloni

    2018-01-01

    Full Text Available Since pathologies and complications occurring during pregnancy and/or during labour may cause adverse outcomes for both newborns and mothers, there is a growing interest in metabolomic applications on pregnancy investigation. In fact, metabolomics has proved to be an efficient strategy for the description of several perinatal conditions. In particular, this study focuses on premature rupture of membranes (PROM in pregnancy at term. For this project, urine samples were collected at three different clinical conditions: out of labour before PROM occurrence (Ph1, out of labour with PROM (Ph2, and during labour with PROM (Ph3. GC-MS analysis, followed by univariate and multivariate statistical analysis, was able to discriminate among the different classes, highlighting the metabolites most involved in the discrimination.

  18. The experience of mental distress and recovery among people involved with the service user/survivor movement.

    Science.gov (United States)

    Chassot, Carolina S; Mendes, Felismina

    2015-07-01

    This article examines how the personal experiences of mental distress of people involved in the British service user/survivor movement were shaped or transformed by this involvement, and the impact of involvement on their recovery journeys. The analysis was based on 12 in-depth interviews with service users/survivors who are, or were once, involved with the service user/survivor movement. Three large themes were identified regarding the ways in which social movement involvement affected the personal experience of mental distress: (a) making sense and reframing mental distress, (b) the social experience of involvement and (c) identity and identity reconstruction. We discuss how some features of the service user/survivor movement, such as self-help, user involvement, the centrality of experience to collective action, and the range of political positions adopted by activists can affect experience and recovery in different forms. As an exploratory study that looks into a complex topic, our findings illuminate the ways of surviving, recovering and experiencing mental distress in the context of a significant social movement. © The Author(s) 2014.

  19. Thai nursing students' experiences when attending real life situations involving cardiac life support: A Phenomenological study.

    Science.gov (United States)

    Matchim, Yaowarat; Kongsuwan, Waraporn

    2015-12-01

    During the last few years, manikin simulations have been used for cardiac life support training procedures in medical and nursing education. However, some nursing students have experienced attending real events involving cardiac life support during their clinical practice. This study aims to describe the meaning of experience of Thai nursing students when attending real situations of cardiac life support. A hermeneutic phenomenological study was used. Third and fourth year bachelor of nursing students at a university in the southern region of Thailand who had the experience of attending real situation of cardiac life support were purposely selected as the informants. The data were generated from individual in-depth interviews with eighteen nursing students. Van Manen's approach was used to analyze the data. Trustworthiness was established using the criteria set out by Lincoln and Guba. Essential themes situated in the context of the four existential grounds of body, time, space, and relation emerged. These were: being worried and fearful while desiring to participate in cardiac life support procedures; enhancing self value; knowing each moment is meaningful for one's life; having time to understand the reality of life; being in a small corner; appreciating such opportunities and the encouragement given by nurses and the healthcare team; and feeling empathy. Besides learning in classrooms and practicing in labs, experiencing real situations is beneficial for nursing students in learning cardiac life support. This study provides information that can be used for clinical teaching management in the topics relating to cardiac life support. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Experiences of community pharmacists involved in the delivery of a specialist asthma service in Australia.

    Science.gov (United States)

    Emmerton, Lynne M; Smith, Lorraine; LeMay, Kate S; Krass, Ines; Saini, Bandana; Bosnic-Anticevich, Sinthia Z; Reddel, Helen K; Burton, Deborah L; Stewart, Kay; Armour, Carol L

    2012-06-18

    The role of community pharmacists in disease state management has been mooted for some years. Despite a number of trials of disease state management services, there is scant literature into the engagement of, and with, pharmacists in such trials. This paper reports pharmacists' feedback as providers of a Pharmacy Asthma Management Service (PAMS), a trial coordinated across four academic research centres in Australia in 2009. We also propose recommendations for optimal involvement of pharmacists in academic research. Feedback about the pharmacists' experiences was sought via their participation in either a focus group or telephone interview (for those unable to attend their scheduled focus group) at one of three time points. A semi-structured interview guide focused discussion on the pharmacists' training to provide the asthma service, their interactions with health professionals and patients as per the service protocol, and the future for this type of service. Focus groups were facilitated by two researchers, and the individual interviews were shared between three researchers, with data transcribed verbatim and analysed manually. Of 93 pharmacists who provided the PAMS, 25 were involved in a focus group and seven via telephone interview. All pharmacists approached agreed to provide feedback. In general, the pharmacists engaged with both the service and research components, and embraced their roles as innovators in the trial of a new service. Some experienced challenges in the recruitment of patients into the service and the amount of research-related documentation, and collaborative patient-centred relationships with GPs require further attention. Specific service components, such as the spirometry, were well received by the pharmacists and their patients. Professional rewards included satisfaction from their enhanced practice, and pharmacists largely envisaged a future for the service. The PAMS provided pharmacists an opportunity to become involved in an

  1. Experiences of community pharmacists involved in the delivery of a specialist asthma service in Australia

    Directory of Open Access Journals (Sweden)

    Emmerton Lynne M

    2012-06-01

    Full Text Available Abstract Background The role of community pharmacists in disease state management has been mooted for some years. Despite a number of trials of disease state management services, there is scant literature into the engagement of, and with, pharmacists in such trials. This paper reports pharmacists’ feedback as providers of a Pharmacy Asthma Management Service (PAMS, a trial coordinated across four academic research centres in Australia in 2009. We also propose recommendations for optimal involvement of pharmacists in academic research. Methods Feedback about the pharmacists’ experiences was sought via their participation in either a focus group or telephone interview (for those unable to attend their scheduled focus group at one of three time points. A semi-structured interview guide focused discussion on the pharmacists’ training to provide the asthma service, their interactions with health professionals and patients as per the service protocol, and the future for this type of service. Focus groups were facilitated by two researchers, and the individual interviews were shared between three researchers, with data transcribed verbatim and analysed manually. Results Of 93 pharmacists who provided the PAMS, 25 were involved in a focus group and seven via telephone interview. All pharmacists approached agreed to provide feedback. In general, the pharmacists engaged with both the service and research components, and embraced their roles as innovators in the trial of a new service. Some experienced challenges in the recruitment of patients into the service and the amount of research-related documentation, and collaborative patient-centred relationships with GPs require further attention. Specific service components, such as the spirometry, were well received by the pharmacists and their patients. Professional rewards included satisfaction from their enhanced practice, and pharmacists largely envisaged a future for the service. Conclusions The

  2. Experience, Adoption, and Technology: Exploring the Phenomenological Experiences of Faculty Involved in Online Teaching at One School of Public Health

    Science.gov (United States)

    Kidd, Terry; Davis, Trina; Larke, Patricia

    2016-01-01

    Using the Unified Theory of Acceptance and Use of Technology (UTAUT) and Dewey's Theory of Experience, this phenomenological study explored the experiences of faculty who engaged in online teaching at one school of public health. Findings revealed that the experiences of public health faculty, who engaged in online teaching, are similar and…

  3. Intimate relationships and women involved in the sex trade: perceptions and experiences of inclusion and exclusion.

    Science.gov (United States)

    Jackson, Lois A; Augusta-Scott, Tod; Burwash-Brennan, Marilee; Karabanow, Jeff; Robertson, Karyn; Sowinski, Barbara

    2009-01-01

    This article reports on a qualitative study exploring the intimate (non-work) relationships of women involved in the sex trade. Women working in the sex industry and intimate partners of women in the industry were interviewed in order to understand how intimate relationships are perceived as influencing the women's general health and well-being. The research suggests that intimate relationships can, and do, provide a space for feelings of inclusion and safety that are perceived as positive forces in women's general health and well-being. At the same time, however, feelings and experiences of exclusion (fuelled by the dominant stigmatizing discourse related to prostitution) can enter into intimate relationships, and are perceived as having a negative impact on the women's well-being, particularly their emotional health. Although there are attempts to keep the women's work separate from the intimate relationship, cross-over between the two spheres does occur. The research suggests that health care and service providers need to look beyond the women's working lives, and understand the relationships between work and home, as well as the ways in which intimate relationships can influence women's lives and health through both positive and negative forces.

  4. Psychiatric morbidity and people's experience of and response to social problems involving rights.

    Science.gov (United States)

    Balmer, Nigel J; Pleasence, Pascoe; Buck, Alexy

    2010-11-01

    Psychiatric morbidity has been shown to be associated with the increased reporting of a range of social problems involving legal rights ('rights problems'). Using a validated measure of psychiatric morbidity, this paper explores the relationship between psychiatric morbidity and rights problems and discusses the implications for the delivery of health and legal services. New representative national survey data from the English and Welsh Civil and Social Justice Survey (CSJS) surveyed 3040 adults in 2007 to explore the relationship between GHQ-12 scores and the self reported incidence of and behaviour surrounding, rights problems. It was found that the prevalence of rights problems increased with psychiatric morbidity, as did the experience of multiple problems. It was also found the likelihood of inaction in the face of problems increased with psychiatric morbidity, while the likelihood of choosing to resolve problems without help decreased. Where advice was obtained, psychiatric morbidity was associated with a greater tendency to obtain a combination of 'legal' and 'general' support, rather than 'legal' advice alone. The results suggest that integrated and 'outreach' services are of particular importance to the effective support of those facing mental illness. © 2010 Blackwell Publishing Ltd.

  5. Symbiosis of chemometrics and metabolomics: past, present, and future

    NARCIS (Netherlands)

    van der Greef, J.; Smilde, A. K.

    2005-01-01

    Metabolomics is a growing area in the field of systems biology. Metabolomics has already a long history and also the connection of metabolomics with chemometrics goes back some time. This review discusses the symbiosis of metabolomics and chemometrics with emphasis on the medical domain, puts the

  6. Proteomics and Metabolomics: two emerging areas for legume improvement

    Directory of Open Access Journals (Sweden)

    Abirami eRamalingam

    2015-12-01

    Full Text Available The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important source of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signalling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signalling in legumes. In

  7. A Metabolomic Perspective on Coeliac Disease

    Science.gov (United States)

    Calabrò, Antonio

    2014-01-01

    Metabolomics is an “omic” science that is now emerging with the purpose of elaborating a comprehensive analysis of the metabolome, which is the complete set of metabolites (i.e., small molecules intermediates) in an organism, tissue, cell, or biofluid. In the past decade, metabolomics has already proved to be useful for the characterization of several pathological conditions and offers promises as a clinical tool. A metabolomics investigation of coeliac disease (CD) revealed that a metabolic fingerprint for CD can be defined, which accounts for three different but complementary components: malabsorption, energy metabolism, and alterations in gut microflora and/or intestinal permeability. In this review, we will discuss the major advancements in metabolomics of CD, in particular with respect to the role of gut microbiome and energy metabolism. PMID:24665364

  8. Metabolomics and bioactive substances in plants

    DEFF Research Database (Denmark)

    Khakimov, Bekzod

    Metabolomic analysis of plants broadens understanding of how plants may benefit humans, animals and the environment, provide sustainable food and energy, and improve current agricultural, pharmacological and medicinal practices in order to bring about healthier and longer life. The quality...... and amount of the extractible biological information is largely determined by data acquisition, data processing and analysis methodologies of the plant metabolomics studies. This PhD study focused mainly on the development and implementation of new metabolomics methodologies for improved data acquisition...... and data processing. The study mainly concerned the three most commonly applied analytical techniques in plant metabolomics, GC-MS, LC-MS and NMR. In addition, advanced chemometrics methods e.g. PARAFAC2 and ASCA have been extensively used for development of complex metabolomics data processing...

  9. New findings on the in vivo antioxidant activity of Curcuma longa extract by an integrated (1)H NMR and HPLC-MS metabolomic approach.

    Science.gov (United States)

    Dall'Acqua, Stefano; Stocchero, Matteo; Boschiero, Irene; Schiavon, Mariano; Golob, Samuel; Uddin, Jalal; Voinovich, Dario; Mammi, Stefano; Schievano, Elisabetta

    2016-03-01

    Curcuminoids possess powerful antioxidant activity as demonstrated in many chemical in vitro tests and in several in vivo trials. Nevertheless, the mechanism of this activity is not completely elucidated and studies on the in vivo antioxidant effects are still needed. Metabolomics may be used as an attractive approach for such studies and in this paper, we describe the effects of oral administration of a Curcuma longa L. extract (150 mg/kg of total curcuminoids) to 12 healthy rats with particular attention to urinary markers of oxidative stress. The experiment was carried out over 33 days and changes in the 24-h urine samples metabolome were evaluated by (1)H NMR and HPLC-MS. Both techniques produced similar representations for the collected samples confirming our previous study. Modifications of the urinary metabolome lead to the observation of different variables proving the complementarity of (1)H NMR and HPLC-MS for metabolomic purposes. The urinary levels of allantoin, m-tyrosine, 8-hydroxy-2'-deoxyguanosine, and nitrotyrosine were decreased in the treated group thus supporting an in vivo antioxidant effect of the oral administration of Curcuma extract to healthy rats. On the other hand, urinary TMAO levels were higher in the treated compared to the control group suggesting a role of curcumin supplementation on microbiota or on TMAO urinary excretion. Furthermore, the urinary levels of the sulphur containing compounds taurine and cystine were also changed suggesting a role for such constituents in the biochemical pathways involved in Curcuma extract bioactivity and indicating the need for further investigation on the complex role of antioxidant curcumin effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Staff experiences of closing out a clinical trial involving withdrawal of treatment: qualitative study.

    Science.gov (United States)

    Lawton, Julia; White, David; Rankin, David; Elliott, Jackie; Taylor, Carolin; Cooper, Cindy; Heller, Simon; Hallowell, Nina

    2017-02-07

    The ending of a clinical trial may be challenging, particularly if staff are required to withdraw the investigated treatment(s); however, this aspect of trial work is surprisingly under-researched. To address this gap, we explored the experiences of staff involved in closing out a trial that entailed withdrawal of treatment (insulin pumps) from some patients. Interviews were conducted with n = 22 staff, recruited from seven trial sites. Data were analysed thematically. Staff described a myriad of ethical and emotional challenges at closeout, many of which had been unforeseen when the trial began. A key challenge for staff was that, while patients gave their agreement to participate on the understanding that pump treatment could be withdrawn, they often found themselves benefitting from this regimen in ways they could not have foreseen. Hence, as the trial progressed, patients became increasingly anxious about withdrawal of treatment. This situation forced staff to consider whether the consent patients had given at the outset remained valid; it also presented them with a dilemma at closeout because many of those who had wanted to remain on a pump did not meet the clinical criteria required for post-trial funding. When deciding whether to withdraw treatment, staff not only had to take funding pressures and patient distress into account, but they also found themselves caught between an ethic of Hippocratic individualism and one of utilitarianism. These conflicting pressures and ethical considerations resulted in staff decision-making varying across the sites, an issue that some described as a further source of ethical unease. Staff concluded that, had there been more advanced planning and discussion, and greater accountability to an ethics committee, some of the challenges they had confronted at closeout could have been lessened or even prevented. The same kinds of ethical issues that may vex staff at the beginning of a trial (e.g. patients having unrealistic

  11. Perception of chemesthetic stimuli in groups who differ by food involvement and culinary experience.

    Science.gov (United States)

    Byrnes, Nadia; Loss, Christopher R; Hayes, John E

    2015-12-01

    In the English language, there is generally a limited lexicon when referring to the sensations elicited by chemesthetic stimuli like capsaicin, allyl isothiocyanate, and eugenol, the orally irritating compounds found in chiles, wasabi, and cloves, respectively. Elsewhere, experts and novices have been shown to use language differently, with experts using more precise language. Here, we compare perceptual maps and word usage across three cohorts: experts with formal culinary education, naïve individuals with high Food Involvement Scale (FIS) scores, and naïve individuals with low FIS scores. We hypothesized that increased experience with foods, whether through informal experiential learning or formal culinary education, would have a significant influence on the perceptual maps generated from a sorting task conducted with chemesthetic stimuli, as well as on language use in a descriptive follow-up task to this sorting task. The low- and highFIS non-expert cohorts generated significantly similar maps, though in other respects the highFIS cohort was an intermediate between the lowFIS and expert cohorts. The highFIS and expert cohorts generated more attributes but used language more idiosyncratically than the lowFIS group. Overall, the results from the expert group with formal culinary education differed from the two naïve cohorts both in the perceptual map generated using MDS as well as the mean number of attributes generated. Present data suggest that both formal education and informal experiential learning result in lexical development, but the level and type of learning can have a significant influence on language use and the approach to a sorting task.

  12. Metabolomic biomarkers correlating with hepatic lipidosis in dairy cows.

    Science.gov (United States)

    Imhasly, Sandro; Naegeli, Hanspeter; Baumann, Sven; von Bergen, Martin; Luch, Andreas; Jungnickel, Harald; Potratz, Sarah; Gerspach, Christian

    2014-06-02

    Hepatic lipidosis or fatty liver disease is a major metabolic disorder of high-producing dairy cows that compromises animal performance and, hence, causes heavy economic losses worldwide. This syndrome, occurring during the critical transition from gestation to early lactation, leads to an impaired health status, decreased milk yield, reduced fertility and shortened lifetime. Because the prevailing clinical chemistry parameters indicate advanced liver damage independently of the underlying disease, currently, hepatic lipidosis can only be ascertained by liver biopsy. We hypothesized that the condition of fatty liver disease may be accompanied by an altered profile of endogenous metabolites in the blood of affected animals. To identify potential small-molecule biomarkers as a novel diagnostic alternative, the serum samples of diseased dairy cows were subjected to a targeted metabolomics screen by triple quadrupole mass spectrometry. A subsequent multivariate test involving principal component and linear discriminant analyses yielded 29 metabolites (amino acids, phosphatidylcholines and sphingomyelines) that, in conjunction, were able to distinguish between dairy cows with no hepatic lipidosis and those displaying different stages of the disorder. This proof-of-concept study indicates that metabolomic profiles, including both amino acids and lipids, distinguish hepatic lipidosis from other peripartal disorders and, hence, provide a promising new tool for the diagnosis of hepatic lipidosis. By generating insights into the molecular pathogenesis of hepatic lipidosis, metabolomics studies may also facilitate the prevention of this syndrome.

  13. The role of metabolomics in neonatal and pediatric laboratory medicine.

    Science.gov (United States)

    Mussap, Michele; Antonucci, Roberto; Noto, Antonio; Fanos, Vassilios

    2013-11-15

    Metabolomics consists of the quantitative analysis of a large number of low molecular mass metabolites involving substrates or products in metabolic pathways existing in all living systems. The analysis of the metabolic profile detectable in a human biological fluid allows to instantly identify changes in the composition of endogenous and exogenous metabolites caused by the interaction between specific physiopathological states, gene expression, and environment. In pediatrics and neonatology, metabolomics offers new encouraging perspectives for the improvement of critically ill patient outcome, for the early recognition of metabolic profiles associated with the development of diseases in the adult life, and for delivery of individualized medicine. In this view, nutrimetabolomics, based on the recognition of specific cluster of metabolites associated with nutrition and pharmacometabolomics, based on the capacity to personalize drug therapy by analyzing metabolic modifications due to therapeutic treatment may open new frontiers in the prevention and in the treatment of pediatric and neonatal diseases. This review summarizes the most relevant results published in the literature on the application of metabolomics in pediatric and neonatal clinical settings. However, there is the urgent need to standardize physiological and preanalytical variables, analytical methods, data processing, and result presentation, before establishing the definitive clinical value of results. © 2013 Elsevier B.V. All rights reserved.

  14. NMR metabolomics of thrips (Frankliniella occidentalis) resistance in Senecio hybrids.

    Science.gov (United States)

    Leiss, Kirsten A; Choi, Young H; Abdel-Farid, Ibrahim B; Verpoorte, Robert; Klinkhamer, Peter G L

    2009-02-01

    Western flower thrips (Frankliniella occidentalis) has become a key insect pest of agricultural and horticultural crops worldwide. Little is known about host plant resistance to thrips. In this study, we investigated thrips resistance in F (2) hybrids of Senecio jacobaea and Senecio aquaticus. We identified thrips-resistant hybrids applying three different bioassays. Subsequently, we compared the metabolomic profiles of these hybrids applying nuclear magnetic resonance spectroscopy (NMR). The new developments of NMR facilitate a wide range coverage of the metabolome. This makes NMR especially suitable if there is no a priori knowledge of the compounds related to herbivore resistance and allows a holistic approach analyzing different chemical compounds simultaneously. We show that the metabolomes of thrips-resistant and -susceptible hybrids differed considerably. Thrips-resistant hybrids contained higher amounts of the pyrrolizidine alkaloids (PA), jacobine, and jaconine, especially in younger leaves. Also, a flavanoid, kaempferol glucoside, accumulated in the resistant plants. Both PAs and kaempferol are known for their inhibitory effect on herbivores. In resistant and susceptible F (2) hybrids, young leaves showed less thrips damage than old leaves. Consistent with the optimal plant defense theory, young leaves contained increased levels of primary metabolites such as sucrose, raffinose, and stachyose, but also accumulated jacaranone as a secondary plant defense compound. Our results prove NMR as a promising tool to identify different metabolites involved in herbivore resistance. It constitutes a significant advance in the study of plant-insect relationships, providing key information on the implementation of herbivore resistance breeding strategies in plants.

  15. Chitosan and grape secondary metabolites: A proteomics and metabolomics approach

    Directory of Open Access Journals (Sweden)

    Bavaresco Luigi

    2017-01-01

    Full Text Available Chitosan is a polysaccharide obtained by deacetylation of chitin, and it is involved in defence mechanisms of plants toward diseases. In the present work, V. vinifera L. cv. Ortrugo, grafted on 420A rootstock was grown in pot and treated, at veraison, by 0.03% chitosan solution at cluster level. Just before the treatment (T0 and 24 hours (T1, 48 hours (T2, 72 hours (T3 and 10 days (T4 later, the concentration of stilbenic compounds was detected, and at T1 proteomics and metabolomics analyses were done. Proteomics relies on the analysis of the complete set of proteins existing in a given substrate, while metabolomics relies on the analyses of the complete set of metabolites in a given substrate. The treatment improved the stilbene concentration over the control at T1. Proteomic analysis showed that superoxide dismutase (SOD and phenylalanine ammonia-lyase (PAL were overexpressed in the treated grapes. SOD is known to be an enzyme active against reactive oxygen species (ROS while PAL is a key enzyme in the phenylpropanoids pathway. Metabolomics analysis highlighted the positive role of the treatment in improving the triperpenoid concentration (betulin, erythrodiol, uvaol, oleanolate; these compounds are known to be effective against microbes, insects and fungi.

  16. Improved Emergency Preparedness For Management Of The Food chain Via Stakeholder Involvement: Belgian and European Experience

    International Nuclear Information System (INIS)

    Hardeman, Frank; Carle, Benny; Turcanu, Catrinel; Vandecasteele, Christian

    2006-01-01

    Initiatives involving stakeholder engagement have gained increasing importance in sustainable decision making for many risk-related issues. This paper describes a Belgian experience within a European context related to food management options in the event of a radioactive contamination of the food chain. Under the auspices of the European Commission's 5. Framework Programme, the F.A.R.M.I.N.G. (F.A.R.M.I.N.G. 2000) project (co-ordinated by H.P.A.) a stakeholder network was established in a number of European countries, following a successful approach originally adopted in the UK. In a comparable approach, national working groups were thus established in Belgium, Finland, France and Greece in order to organise stakeholder panels and to discuss the outcomes of scientific and technical research related to management options for the food chain. The results of these panels were exchanged between participating Member States and on a wider international basis at the W.I.S.D.O.M.2. workshop in 2003. The F.A.R.M.I.N.G. project had many achievements and there were also several important lessons learned for Belgium (Vandecasteele et al., 2005): Firstly, many stakeholders showed a real interest in tackling problems relating to food chain contamination; Secondly, the Belgian agricultural system is very intensive and technically and economically optimised, making many of the options envisaged difficult to implement; thirdly, the applicability of management options is also limited by political and legal issues (e.g. competencies, environmental legislation), operational constraints (e.g. waste treatment, supplies of materials), societal and ethical aspects (e.g. milk disposal to sea, animal welfare), and economics (e.g. who pays the intervention cost?); fourthly, there is a now a greater awareness of these problems in both the food production sector and among the experts involved in emergency management; Fifthly, increased attention is now given in Belgium to the medium and long

  17. Improved Emergency Preparedness For Management Of The Food chain Via Stakeholder Involvement: Belgian and European Experience

    Energy Technology Data Exchange (ETDEWEB)

    Hardeman, Frank; Carle, Benny [SCK.CEN, the Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium); Turcanu, Catrinel [Universite Libre de Bruxelles, Av. F. Roosevelt 50, 1050 Brussels (Belgium); Vandecasteele, Christian [FANC, Federal Agency for Nuclear Control, Ravensteinstraat 36, 1000 Brussels (Belgium)

    2006-07-01

    Initiatives involving stakeholder engagement have gained increasing importance in sustainable decision making for many risk-related issues. This paper describes a Belgian experience within a European context related to food management options in the event of a radioactive contamination of the food chain. Under the auspices of the European Commission's 5. Framework Programme, the F.A.R.M.I.N.G. (F.A.R.M.I.N.G. 2000) project (co-ordinated by H.P.A.) a stakeholder network was established in a number of European countries, following a successful approach originally adopted in the UK. In a comparable approach, national working groups were thus established in Belgium, Finland, France and Greece in order to organise stakeholder panels and to discuss the outcomes of scientific and technical research related to management options for the food chain. The results of these panels were exchanged between participating Member States and on a wider international basis at the W.I.S.D.O.M.2. workshop in 2003. The F.A.R.M.I.N.G. project had many achievements and there were also several important lessons learned for Belgium (Vandecasteele et al., 2005): Firstly, many stakeholders showed a real interest in tackling problems relating to food chain contamination; Secondly, the Belgian agricultural system is very intensive and technically and economically optimised, making many of the options envisaged difficult to implement; thirdly, the applicability of management options is also limited by political and legal issues (e.g. competencies, environmental legislation), operational constraints (e.g. waste treatment, supplies of materials), societal and ethical aspects (e.g. milk disposal to sea, animal welfare), and economics (e.g. who pays the intervention cost?); fourthly, there is a now a greater awareness of these problems in both the food production sector and among the experts involved in emergency management; Fifthly, increased attention is now given in Belgium to the medium and

  18. Metabolomics to unveil and understand phenotypic diversity between pathogen populations.

    Directory of Open Access Journals (Sweden)

    Ruben t'Kindt

    Full Text Available Leishmaniasis is a debilitating disease caused by the parasite Leishmania. There is extensive clinical polymorphism, including variable responsiveness to treatment. We study Leishmania donovani parasites isolated from visceral leishmaniasis patients in Nepal that responded differently to antimonial treatment due to differing intrinsic drug sensitivity of the parasites. Here, we present a proof-of-principle study in which we applied a metabolomics pipeline specifically developed for L. donovani to characterize the global metabolic differences between antimonial-sensitive and antimonial-resistant L. donovani isolates. Clones of drug-sensitive and drug-resistant parasite isolates from clinical samples were cultured in vitro and harvested for metabolomics analysis. The relative abundance of 340 metabolites was determined by ZIC-HILIC chromatography coupled to LTQ-Orbitrap mass spectrometry. Our measurements cover approximately 20% of the predicted core metabolome of Leishmania and additionally detected a large number of lipids. Drug-sensitive and drug-resistant parasites showed distinct metabolic profiles, and unsupervised clustering and principal component analysis clearly distinguished the two phenotypes. For 100 metabolites, the detected intensity differed more than three-fold between the 2 phenotypes. Many of these were in specific areas of lipid metabolism, suggesting that the membrane composition of the drug-resistant parasites is extensively modified. Untargeted metabolomics has been applied on clinical Leishmania isolates to uncover major metabolic differences between drug-sensitive and drug-resistant isolates. The identified major differences provide novel insights into the mechanisms involved in resistance to antimonial drugs, and facilitate investigations using targeted approaches to unravel the key changes mediating drug resistance.

  19. The Impact of Parental Involvement on a Structured Youth Program Experience: A Qualitative Inquiry

    OpenAIRE

    Mat D. Duerden; Peter A. Witt; Christopher J. Harrist

    2013-01-01

    Parental involvement is an often proposed, but rarely researched, key element of youth programs. Questions remain regarding the impact of parental involvement on program processes and outcomes. Qualitative data were collected over a one-year period with youth participants (n=46), parents (n=26), and teachers (n=5) associated with an international immersion/service learning program for adolescents. Three main research questions guided the data analysis: (1) what role does parental involvement ...

  20. Elucidation of cellular metabolism via metabolomics and stable-isotope assisted metabolomics.

    Science.gov (United States)

    Hiller, Karsten; Metallo, Christian; Stephanopoulos, Gregory

    2011-07-01

    Metabolomics and metabolic flux analysis (MFA) are powerful tools in the arsenal of methodologies of systems biology. Currently, metabolomics techniques are applied routinely for biomarker determination. However, standard metabolomics techniques only provide static information about absolute or relative metabolite amounts. The application of stable-isotope tracers has opened up a new dimension to metabolomics by providing dynamic information of intracellular fluxes and, by extension, enzyme activities. In the first part of the manuscript we review experimental and computational technologies applicable for metabolomics analyses. In the second part we present current technologies based on the use of stable isotopes and their applications to the analysis of cellular metabolism. Beginning with the determination of mass isotopomer distributions (MIDs), we review technologies for metabolic flux analysis (MFA) and conclude with the presentation of a new methodology for the non-targeted analysis of stable-isotope labeled metabolomics data.

  1. Probabilistic Principal Component Analysis for Metabolomic Data.

    LENUS (Irish Health Repository)

    Nyamundanda, Gift

    2010-11-23

    Abstract Background Data from metabolomic studies are typically complex and high-dimensional. Principal component analysis (PCA) is currently the most widely used statistical technique for analyzing metabolomic data. However, PCA is limited by the fact that it is not based on a statistical model. Results Here, probabilistic principal component analysis (PPCA) which addresses some of the limitations of PCA, is reviewed and extended. A novel extension of PPCA, called probabilistic principal component and covariates analysis (PPCCA), is introduced which provides a flexible approach to jointly model metabolomic data and additional covariate information. The use of a mixture of PPCA models for discovering the number of inherent groups in metabolomic data is demonstrated. The jackknife technique is employed to construct confidence intervals for estimated model parameters throughout. The optimal number of principal components is determined through the use of the Bayesian Information Criterion model selection tool, which is modified to address the high dimensionality of the data. Conclusions The methods presented are illustrated through an application to metabolomic data sets. Jointly modeling metabolomic data and covariates was successfully achieved and has the potential to provide deeper insight to the underlying data structure. Examination of confidence intervals for the model parameters, such as loadings, allows for principled and clear interpretation of the underlying data structure. A software package called MetabolAnalyze, freely available through the R statistical software, has been developed to facilitate implementation of the presented methods in the metabolomics field.

  2. Perplexing Metabolomes in Fungal-Insect Trophic Interactions: A Terra Incognita of Mycobiocontrol Mechanisms

    Science.gov (United States)

    Singh, Digar; Son, Su Y.; Lee, Choong H.

    2016-01-01

    The trophic interactions of entomopathogenic fungi in different ecological niches viz., soil, plants, or insect themselves are effectively regulated by their maneuvered metabolomes and the plethora of metabotypes. In this article, we discuss a holistic framework of co-evolutionary metabolomes and metabotypes to model the interactions of biocontrol fungi especially with mycosed insects. Conventionally, the studies involving fungal biocontrol mechanisms are reported in the context of much aggrandized fungal entomotoxins while the adaptive response mechanisms of host insects are relatively overlooked. The present review asserts that the selective pressure exerted among the competing or interacting species drives alterations in their overall metabolomes which ultimately implicates in corresponding metabotypes. Quintessentially, metabolomics offers a most generic and tractable model to assess the fungal-insect antagonism in terms of interaction biomarkers, biosynthetic pathway plasticity, and their co-evolutionary defense. The fungi chiefly rely on a battery of entomotoxins viz., secondary metabolites falling in the categories of NRP’s (non-ribosomal peptides), PK’s (polyketides), lysine derive alkaloids, and terpenoids. On the contrary, insects overcome mycosis through employing different layers of immunity manifested as altered metabotypes (phenoloxidase activity) and overall metabolomes viz., carbohydrates, lipids, fatty acids, amino acids, and eicosanoids. Here, we discuss the recent findings within conventional premise of fungal entomotoxicity and the evolution of truculent immune response among host insect. The metabolomic frameworks for fungal–insect interaction can potentially transmogrify our current comprehensions of biocontrol mechanisms to develop the hypervirulent biocontrol strains with least environmental concerns. Moreover, the interaction metabolomics (interactome) in complementation with other -omics cascades could further be applied to address

  3. Strategies for Extending Metabolomics Studies with Stable Isotope Labelling and Fluxomics

    Directory of Open Access Journals (Sweden)

    Anubhav Srivastava

    2016-10-01

    Full Text Available This is a perspective from the peer session on stable isotope labelling and fluxomics at the Australian & New Zealand Metabolomics Conference (ANZMET held from 30 March to 1 April 2016 at La Trobe University, Melbourne, Australia. This report summarizes the key points raised in the peer session which focused on the advantages of using stable isotopes in modern metabolomics and the challenges in conducting flux analyses. The session highlighted the utility of stable isotope labelling in generating reference standards for metabolite identification, absolute quantification, and in the measurement of the dynamic activity of metabolic pathways. The advantages and disadvantages of different approaches of fluxomics analyses including flux balance analysis, metabolic flux analysis and kinetic flux profiling were also discussed along with the use of stable isotope labelling in in vivo dynamic metabolomics. A number of crucial technical considerations for designing experiments and analyzing data with stable isotope labelling were discussed which included replication, instrumentation, methods of labelling, tracer dilution and data analysis. This report reflects the current viewpoint on the use of stable isotope labelling in metabolomics experiments, identifying it as a great tool with the potential to improve biological interpretation of metabolomics data in a number of ways.

  4. Addiction Treatment Experience among a Cohort of Street-Involved Youths and Young Adults

    Science.gov (United States)

    Wong, Jellena; Marshall, Brandon D. L.; Kerr, Thomas; Lai, Calvin; Wood, Evan

    2009-01-01

    Very little is known about the accessibility and potential barriers to addiction treatment among street youths and young adults. We sought to examine the prevalence and correlates of enrollment in addiction treatment among a cohort of street-involved youths and young adults in Vancouver, Canada. Street-involved youths and young adults who use…

  5. Patient and public involvement in clinical guidelines: international experiences and future perspectives.

    NARCIS (Netherlands)

    Boivin, A.; Currie, K.; Fervers, B.; Gracia, J.; James, M.; Marshall, C.; Sakala, C.; Sanger, S.; Strid, J.; Thomas, V.; Weijden, G.D.E.M. van der; Grol, R.P.T.M.; Burgers, J.S.

    2010-01-01

    BACKGROUND: Clinical practice guidelines (CPG) are important tools for improving patient care. Patient and public involvement is recognised as an essential component of CPG development and implementation. The Guideline International Network Patient and Public Involvement Working Group (G-I-N PUBLIC)

  6. Estimation of Effect Size from a Series of Experiments Involving Paired Comparisons.

    Science.gov (United States)

    Gibbons, Robert D.; And Others

    1993-01-01

    A distribution theory is derived for a G. V. Glass-type (1976) estimator of effect size from studies involving paired comparisons. The possibility of combining effect sizes from studies involving a mixture of related and unrelated samples is also explored. Resulting estimates are illustrated using data from previous psychiatric research. (SLD)

  7. African American Fathers' Involvement in Home and Schools: An Interpretive Analysis of Their Beliefs and Experiences

    Science.gov (United States)

    Jones, Tomashu

    2012-01-01

    The lack of research about Black fathers and their involvement with schools was the primary motivation for this mixed method dissertation study. This discourse provides a much-needed account of what the nature is of Black father's involvement with schools, why and how they do it, and how student performance is influenced by Black fathers'…

  8. Patient Involvement in Geriatric Care – Results and Experiences from a Mixed Models Design Study within Project INTEGRATE

    Directory of Open Access Journals (Sweden)

    Joern Kiselev

    2018-02-01

    Full Text Available Introduction: Patient involvement is a core component of an integrated care approach. While the benefits and prerequisites of patient involvement have been described in general and additionally for some target populations, little is known about the views and experiences of older people regarding this matter. Methods: A study with a mixed-methods design was conducted to gain a better understanding about patient involvement in geriatric care. A questionnaire on shared decision-making was administered within a group of older adults in Germany. Additionally, 7 focus groups with health professionals and geriatric patients in Germany and Estonia were held to deepen the insight of the questionnaire and discussing experiences and barriers of patient involvement. Results: Older people without an actual medical problem expressed a significantly higher desire to participate in shared decisions than those requiring actual medical care. No significant differences could be found for the desire to be informed as part of the care process. No correlation between patients’ desire and experiences on shared decision-making could be observed. In the focus groups, patients demanded a comprehensive and understandable information and education process while the health professionals’ view was very task-specific. This conflict led to a loss of trust by the patients. Conclusions: There is a gap between patients’ and health professionals’ views on patient involvement in older people. The involvement process should therefore be comprehensive and should take into account different levels of health literacy.

  9. Patient involvement in diabetes care: experiences in nine diabetes care groups

    Directory of Open Access Journals (Sweden)

    Lidwien Lemmens

    2015-12-01

    Full Text Available Introduction: Despite the expected beneficial effects on quality of care, patient involvement in diabetes care groups, which deliver a bundled paid integrated care programme for diabetes type 2, seems to be limited. The aim of this study was to gain insight into levels and methods of patient involvement, into facilitators and barriers, and into the future preferences of care groups and patient representatives.Theory and methods: Semi-structured interviews were held with 10 representatives of care groups and 11 representatives of patient advocacy groups. An adapted version of Arnstein's ladder of citizen participation was used to define five levels of patient involvement.Results: Patient involvement in care groups was mostly limited to informing and consulting patients. Higher levels, i.e., advising, co-producing and decision-making, were less frequently observed. Care groups and patient representatives perceived largely the same barriers and facilitators and had similar preferences regarding future themes and design of patient involvement.Conclusion: Constructive collaboration between diabetes care groups and patient representatives to enhance patient involvement in the future seems viable. Several issues such as the lack of evidence for effectiveness of patient involvement, differences in viewpoints on the role and responsibilities of care groups and perceived barriers need to be addressed.

  10. Patient involvement in diabetes care: experiences in nine diabetes care groups

    Directory of Open Access Journals (Sweden)

    Lidwien Lemmens

    2015-12-01

    Full Text Available Introduction: Despite the expected beneficial effects on quality of care, patient involvement in diabetes care groups, which deliver a bundled paid integrated care programme for diabetes type 2, seems to be limited. The aim of this study was to gain insight into levels and methods of patient involvement, into facilitators and barriers, and into the future preferences of care groups and patient representatives. Theory and methods: Semi-structured interviews were held with 10 representatives of care groups and 11 representatives of patient advocacy groups. An adapted version of Arnstein's ladder of citizen participation was used to define five levels of patient involvement. Results: Patient involvement in care groups was mostly limited to informing and consulting patients. Higher levels, i.e., advising, co-producing and decision-making, were less frequently observed. Care groups and patient representatives perceived largely the same barriers and facilitators and had similar preferences regarding future themes and design of patient involvement. Conclusion: Constructive collaboration between diabetes care groups and patient representatives to enhance patient involvement in the future seems viable. Several issues such as the lack of evidence for effectiveness of patient involvement, differences in viewpoints on the role and responsibilities of care groups and perceived barriers need to be addressed.

  11. Involvement of Consumer Groups in Tobacco Control: Russia and Belarus Experience

    Directory of Open Access Journals (Sweden)

    Dmitry Yanin

    2017-05-01

    5. Cooperation of consumer organizations from Russia (KONFOP and Belarus (Belarus Consumer Society, launched to promote best Tobacco Control practices, according to FCTC provisions, is a success story of involvement of consumer groups in Tobacco Control.

  12. Involving the public in epidemiological public health research: a qualitative study of public and stakeholder involvement in evaluation of a population-wide natural policy experiment.

    Science.gov (United States)

    Anderson de Cuevas, Rachel; Nylén, Lotta; Burström, Bo; Whitehead, Margaret

    2018-04-20

    Public involvement in research is considered good practice by European funders; however, evidence of its research impact is sparse, particularly in relation to large-scale epidemiological research. To explore what difference public and stakeholder involvement made to the interpretation of findings from an evaluation of a natural policy experiment to influence the wider social determinants of health: 'Flexicurity'. Stockholm County, Sweden. Members of the public from different occupational groups represented by blue-collar and white-collar trade union representatives. Also, members of three stakeholder groups: the Swedish national employment agency; an employers' association and politicians sitting on a national labour market committee. Total: 17 participants. Qualitative study of process and outcomes of public and stakeholder participation in four focused workshops on the interpretation of initial findings from the flexicurity evaluation. New insights from participants benefiting the interpretation of our research findings or conceptualisation of future research. Participants sensed more drastic and nuanced change in the Swedish welfare system over recent decades than was evident from our literature reviews and policy analysis. They also elaborated hidden developments in the Swedish labour market that were increasingly leading to 'insiders' and 'outsiders', with differing experiences and consequences for financial and job security. Their explanation of the differential effects of the various collective agreements for different occupational groups was new and raised further potential research questions. Their first-hand experience provided new insights into how changes to the social protection system were contributing to the increasing trends in poverty among unemployed people with limiting long-standing illness. The politicians provided further reasoning behind some of the policy changes and their intended and unintended consequences. These insights fed into

  13. Contribution to the study of elementary particles in experiments involving accelerators

    International Nuclear Information System (INIS)

    Baldisseri, A.

    2006-05-01

    This document reviews the theoretical, experimental and technical achievements of the author since the beginning of his scientific career. Works in 5 fields have been highlighted: 1) rare decays of the η meson, 2) neutrino oscillations in NOMAD experiment, 3) quark and gluon plasma, 4) the PHENIX experiment at RHIC, and 5) the ALICE experiment in LHC. The PHENIX experiment was dedicated to the accurate measuring of photons and dileptons (particularly J/Ψ, Ψ' resonances) produced in heavy ion collisions. The ALICE experiment is devoted to the study of the quark gluon plasma. Its detector must be able to detect charged particles with a broad range of transverse momenta (from 100 MeV/c to 100 GeV/c). This document presented before an academic board will allow his author to manage research works and particularly to tutor thesis students

  14. Metabolomics Application in Maternal-Fetal Medicine

    Directory of Open Access Journals (Sweden)

    Vassilios Fanos

    2013-01-01

    Full Text Available Metabolomics in maternal-fetal medicine is still an “embryonic” science. However, there is already an increasing interest in metabolome of normal and complicated pregnancies, and neonatal outcomes. Tissues used for metabolomics interrogations of pregnant women, fetuses and newborns are amniotic fluid, blood, plasma, cord blood, placenta, urine, and vaginal secretions. All published papers highlight the strong correlation between biomarkers found in these tissues and fetal malformations, preterm delivery, premature rupture of membranes, gestational diabetes mellitus, preeclampsia, neonatal asphyxia, and hypoxic-ischemic encephalopathy. The aim of this review is to summarize and comment on original data available in relevant published works in order to emphasize the clinical potential of metabolomics in obstetrics in the immediate future.

  15. Research Experiences for Teachers (RET): Motivation, Expectations, and Changes to Teaching Practices Due to Professional Program Involvement

    Science.gov (United States)

    Pop, Margareta M.; Dixon, Patricia; Grove, Crissie M.

    2010-01-01

    This study investigated teachers' motivation, expectations, and changes to teaching practices due to a 6 week summer professional development program involvement. Participants (n = 67) attended the Research Experiences for Teachers (RET) program within a major university in southeast. Surveys and interviews were used to collect data to answer the…

  16. Metabolomics unveils urinary changes in subjects with metabolic syndrome following 12-week nut consumption.

    Science.gov (United States)

    Tulipani, Sara; Llorach, Rafael; Jáuregui, Olga; López-Uriarte, Patricia; Garcia-Aloy, Mar; Bullo, Mònica; Salas-Salvadó, Jordi; Andrés-Lacueva, Cristina

    2011-11-04

    Through an HPLC-Q-TOF-MS-driven nontargeted metabolomics approach, we aimed to discriminate changes in the urinary metabolome of subjects with metabolic syndrome (MetS), following 12 weeks of mixed nuts consumption (30 g/day), compared to sex- and age-matched individuals given a control diet. The urinary metabolome corresponding to the nut-enriched diet clearly clustered in a distinct group, and the multivariate data analysis discriminated relevant mass features in this separation. Metabolites corresponding to the discriminating ions (MS features) were then subjected to multiple tandem mass spectrometry experiments using LC-ITD-FT-MS, to confirm their putative identification. The metabolomics approach revealed 20 potential markers of nut intake, including fatty acid conjugated metabolites, phase II and microbial-derived phenolic metabolites, and serotonin metabolites. An increased excretion of serotonin metabolites was associated for the first time with nut consumption. Additionally, the detection of urinary markers of gut microbial and phase II metabolism of nut polyphenols confirmed the understanding of their bioavailability and bioactivity as a priority area of research in the determination of the health effects derived from nut consumption. The results confirmed how a nontargeted metabolomics strategy may help to access unexplored metabolic pathways impacted by diet, thereby raising prospects for new intervention targets.

  17. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis.

    Science.gov (United States)

    Xia, Jianguo; Wishart, David S

    2016-09-07

    MetaboAnalyst (http://www.metaboanalyst.ca) is a comprehensive Web application for metabolomic data analysis and interpretation. MetaboAnalyst handles most of the common metabolomic data types from most kinds of metabolomics platforms (MS and NMR) for most kinds of metabolomics experiments (targeted, untargeted, quantitative). In addition to providing a variety of data processing and normalization procedures, MetaboAnalyst also supports a number of data analysis and data visualization tasks using a range of univariate, multivariate methods such as PCA (principal component analysis), PLS-DA (partial least squares discriminant analysis), heatmap clustering and machine learning methods. MetaboAnalyst also offers a variety of tools for metabolomic data interpretation including MSEA (metabolite set enrichment analysis), MetPA (metabolite pathway analysis), and biomarker selection via ROC (receiver operating characteristic) curve analysis, as well as time series and power analysis. This unit provides an overview of the main functional modules and the general workflow of the latest version of MetaboAnalyst (MetaboAnalyst 3.0), followed by eight detailed protocols. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  18. Solving local problems through local involvement? Experiences from Danish Urban Regeneration

    DEFF Research Database (Denmark)

    Jensen, Jesper Ole

    -down approaches or massive public subsidies, the public regeneration schemes from the last decade have increasingly emphasized the need for involving local actors in the urban regeneration e.g. through partnerships, network building, involvement and participation of local actors and institutions, and financially...... based of voluntary work, local co-financing etc. Based on a number of evaluations and studies of the Danish Urban Regeneration scheme carried out over the last decade, the paper will discuss to which degree the Danish urban regeneration scheme has been successful in this transformation towards a new...... agenda, and what can be learned from the development so far. Although ‘local involvement’ is a commonly used term in various urban regeneration programs, it can have many different meanings and implications. Therefore, the paper will discuss local involvement in the urban regeneration based on four...

  19. [Metabolomics in research of phytotherapeutics].

    Science.gov (United States)

    Kráfová, Katarina; Jampílek, Josef; Ostrovský, Ivan

    2012-02-01

    Pharmaceutical and food industries are increasingly focused on the great potential of plant secondary metabolites or natural substances which can be used as therapeutics or model compounds for development of new drugs. The paper is devoted to the use of metabolomics, metabolic profiling and metabolic "fingerprint" for the identification of individual active phyto-substances in plant extracts, in profiling of unique groups of plant secondary metabolites that can be used to improve the classification of several species of medicinal plants as well as for a better characterization and quality control of medicinal extracts, tinctures and phytotherapeutic products prepared from these plants. Combined analytical methods and multivariate statistical analysis are used for metabolite identification. Using this approach, medicinal plants are evaluated not only on the basis of a limited number of pharmacologically important metabolites but also based on the fingerprints of minor metabolites and bioactive molecules.

  20. The Experiences and Involvement of Grandparents in Hearing Detection and Intervention

    Science.gov (United States)

    McNee, Chelsea M.; Jackson, Carla W.

    2012-01-01

    The purpose of this study was to examine the involvement of grandparents during hearing detection and intervention. Data were collected and analyzed from survey responses of 50 parents and 35 grandparents of children of varying ages who have hearing loss. Parents described important types of support that grandparents provided including frequent…

  1. The Vocational Goals and Career Development of Criminally Involved Youth: Experiences That Help and Hinder

    Science.gov (United States)

    Bartlett, Jennifer; Domene, José F.

    2015-01-01

    Little is known about the career development of youth with a history of criminal activity and the factors that influence their career development. The ability to secure employment is important in predicting successful outcomes for this population, but unfortunately youth who have been involved in crime are likely to face a myriad of obstacles to…

  2. Family Involvement in Children's Mathematics Education Experiences: Voices of Immigrant Chinese American Students and Their Parents

    Science.gov (United States)

    Liang, Senfeng

    2013-01-01

    This study examines ways in which Chinese immigrant families are involved in their children's mathematics education, particularly focusing on how different types of families utilize different forms of capital to support their children's mathematics education. The theoretical framework defines four types of Chinese immigrant families--working…

  3. Adverse Childhood Experiences, Coping Resources, and Mental Health Problems among Court-Involved Youth

    Science.gov (United States)

    Logan-Greene, Patricia; Tennyson, Robert L.; Nurius, Paula S.; Borja, Sharon

    2017-01-01

    Background: Mental health problems are gaining attention among court-involved youth with emphasis on the role of childhood adversity, but assessment lags. Objective: The present study uses a commonly delivered assessment tool to examine mental health problems (current mental health problem, mental health interfered with probation goals, and…

  4. Genetic basis of metabolome variation in yeast.

    Directory of Open Access Journals (Sweden)

    Jeffrey S Breunig

    2014-03-01

    Full Text Available Metabolism, the conversion of nutrients into usable energy and biochemical building blocks, is an essential feature of all cells. The genetic factors responsible for inter-individual metabolic variability remain poorly understood. To investigate genetic causes of metabolome variation, we measured the concentrations of 74 metabolites across ~ 100 segregants from a Saccharomyces cerevisiae cross by liquid chromatography-tandem mass spectrometry. We found 52 quantitative trait loci for 34 metabolites. These included linkages due to overt changes in metabolic genes, e.g., linking pyrimidine intermediates to the deletion of ura3. They also included linkages not directly related to metabolic enzymes, such as those for five central carbon metabolites to ira2, a Ras/PKA pathway regulator, and for the metabolites, S-adenosyl-methionine and S-adenosyl-homocysteine to slt2, a MAP kinase involved in cell wall integrity. The variant of ira2 that elevates metabolite levels also increases glucose uptake and ethanol secretion. These results highlight specific examples of genetic variability, including in genes without prior known metabolic regulatory function, that impact yeast metabolism.

  5. Maxillary Ameloblastoma with Orbital Involvement: An Institutional Experience and Literature Review.

    Science.gov (United States)

    Milman, Tatyana; Lee, Vivian; LiVolsi, Virginia

    To describe 8 patients with orbital involvement by ameloblastoma and to review the literature on this topic. The electronic medical records and pathology databases of the Hospital of the University of Pennsylvania were searched to identify all patients with histopathologically confirmed ameloblastoma diagnosed between 1990 and 2015. PubMed database was searched for all well-documented cases of maxillary ameloblastoma and ameloblastic carcinoma ex-ameloblastoma with orbital involvement published in the English literature. The information collected on the compiled 23 patients included age, sex, clinical presentation, imaging findings, management, tumor histopathologic features, and follow up. Review of medical records identified 8 patients with orbital involvement by ameloblastoma. Literature search yielded 15 patients with well-documented orbital involvement by ameloblastoma. Most tumors occurred in men (19 of 23, M:F = 4-5:1) with an average age of 56 years. The overall rates of recurrence, visual compromise, death, and confirmed disease-related mortality were 70% (16/23), 26% (6/23), 39% (9/23), and 22% (5/23), respectively. The initial surgical approach correlated with prognosis. The rates of recurrence, orbital exenteration, and mortality in the cohort managed with conservative surgery or partial maxillectomy were 57% (8/14), 29% (4/14), and 50% (7/14), respectively. In contrast, the patients initially managed with a radical resection had substantially lower frequencies of tumor recurrence (2/7, 29%), exenteration (1/7, 14%), and death (1/7, 14%). Malignant transformation to ameloblastic carcinoma occurred in the setting of recurrent disease in 3 patients and in 1 patient with prolonged duration of symptoms, suggestive of a long-standing tumor. Maxillary ameloblastoma can rarely involve the orbit, leading to significant ocular morbidity and occasional mortality. Prompt radical resection of the tumor has the potential to decrease the likelihood of recurrence and

  6. Diffusion with chemical reaction: An attempt to explain number density anomalies in experiments involving alkali vapor

    Science.gov (United States)

    Snow, W. L.

    1974-01-01

    The mutual diffusion of two reacting gases is examined which takes place in a bath of inert gas atoms. Solutions are obtained between concentric spheres, each sphere acting as a source for one of the reactants. The calculational model is used to illustrate severe number density gradients observed in absorption experiments with alkali vapor. Severe gradients result when sq root k/D R is approximately 5 where k, D, and R are respectively the second order rate constant, the multicomponent diffusion constant, and the geometrical dimension of the experiment.

  7. CT features of peritoneal and mesenteric involvement in pediatric malignancies. Experience from thirteen cases

    International Nuclear Information System (INIS)

    Grenier, N.; Filiatrault, D.; Garel, L.; Dube, J.; Paille, P.; Grenier, N.

    1986-01-01

    A retrospective study of all patients presenting with abdominal malignancies since November 1982 was undertaken in order to assess the CT features of peritoneal and mesenteric involvement in childhood. Thirteen cases, including 4 cases of malignant lymphomas, 1 case of Hodgkin's disease, 5 cases of adrenal tumors and 3 cases of ovarian tumors, were selected. Providing a good technique, CT appears as the best imaging modality of the mesentery. CT is also reliable in showing peritoneal implants, even without ascites. A high quality vascular opacification is needed in order to recognize the involvement of the lesser omentum (6/13 cases in our series). Precise knowledge of the intra-abdominal extension of the primary neoplasm has a definite impact upon the surgical indications and therefore upon the prognosis [fr

  8. Multiple myeloma and central nervous system involvement: experience of a Brazilian center.

    Science.gov (United States)

    Dias, Ana Luiza Miranda Silva; Higashi, Fabiana; Peres, Ana Lúcia M; Cury, Pricilla; Crusoé, Edvan de Queiroz; Hungria, Vânia Tietsche de Moraes

    The estimated involvement of the central nervous system in patients with multiple myeloma is rare at about 1%. The infiltration can be identified at the time multiple myeloma is diagnosed or during its progression. However, it is more common in refractory disease or during relapse. This retrospective cohort study reviewed data from medical records of patients followed up at the Gammopathy Outpatient Clinic of Santa Casa de Misericórdia de São Paulo from January 2008 to December 2016. Twenty patients were included, with a median follow-up of 33.5 months after central nervous system infiltration. The prevalence was 7%. The median age at diagnosis of multiple myeloma was 56.1 years, with 70% of participants being female. Sixteen patients had central nervous system infiltration at diagnosis of multiple myeloma. Seventeen patients had exclusive osteodural lesions and three had infiltrations of the leptomeninge, of which one had exclusive involvement and two had associated osteodural lesions. The median overall survival was 40.3 months after central nervous system involvement. The median overall survival in the group with central nervous system infiltration at relapse was 7.4 months. The patients with leptomeningeal involvement had a median overall survival of 5.8 months. Central nervous system infiltration is a rare condition, but it should be considered as a possibility in patients with multiple myeloma and neurological symptoms. The best treatment regimen for this condition remains unknown and, in most cases, the prognosis is unfavorable. Copyright © 2017. Published by Elsevier Editora Ltda.

  9. Nodal involvement evaluation in advanced cervical cancer: a single institutional experience.

    Science.gov (United States)

    Gonzalez-Benitez, C; Zapardiel, I; Salas, P I; Diestro, M D; Hernandez, A; De Santiago, J

    2013-01-01

    To assess the usefulness of different imaging techniques in the detection of nodal involvement in patients with advanced cervical carcinoma. Moreover, to analyze the correlation between the presurgical (FIGO) and postsurgical (pTNM) staging classifications. All patients diagnosed with advanced cervical cancer (FIGO Stages IIB-IV) from 2005 to 2012 were selected. The medical charts of 51 patients that underwent presurgical assessment with posterior surgical staging by means of para-aortic lymphadenectomy, were reviewed. Nodal status assessment by computed tomography scan (CT scan), magnetic resonance imaging (MRI), positron emission tomography (PET), and sonography was compared, as well as the size given in imaging techniques compared to the final pathologic report information. Presurgical analysis by CT scan, MRI, PET, and sonography showed pelvic nodal involvement in 51.3% of patients, and para-aortic involvement in 30.8% of cases. CT scan showed positive pelvic nodes in 35% of cases, but pathologic confirmation was observed in just 17.6% of cases. However, MRI resulted in higher rates of up to 48.8% of cases. Concerning para-aortic nodal involvement, CT scan showed positive nodes in 25% of cases, MRI in 3.2% of cases, and the pathologic report in 15.6% of cases. The authors found significant differences between staging groups among both classifications (FIGO vs. pTNM; p < 0.001). Eight cases (15.7%) were understaged by FIGO classification. Despite all imaging techniques available, none has demonstrated to be efficient enough to avoid the systematic study of para-aortic nodal status by means of surgical evaluation.

  10. Student International Research Project on Employees' Involvement in Innovation: Experience and Outcomes

    Science.gov (United States)

    Bondarev, Maxim; Zashchitina, Elena; Andreassen, John-Erik

    2016-01-01

    This paper represents the experience and outcomes of a joint education and research project of Østfold University College and Southern Federal University. The project goal is to evolve and strengthen the academic cooperation between the universities by developing joint courses and improving the quality of education via mutual exchange of…

  11. The Effects of Traumatic Experiences on Academic Relationships and Expectations in Justice-Involved Children

    Science.gov (United States)

    Johnson, Micah E.

    2018-01-01

    Positive school experiences are an important predictor of long-term health and well-being. Developing positive relationships with school personnel and positive academic expectations set the foundation for success. Positive relationships and expectations can be a powerful protective factor or intervention to redirect troubled children toward a more…

  12. Involving Children in Reflective Discussions about Their Perceived Self-Efficacy and Learning Experiences

    Science.gov (United States)

    Määttä, Elina; Järvelä, Sanna

    2013-01-01

    Previous research indicates the importance of self-efficacy beliefs for young children's learning and achievement. However, the challenge has been to research young children's self-efficacy in authentic learning situations. Therefore, the aims of this study were to investigate young children's immediate experiences of confidence in…

  13. Accurate mass error correction in liquid chromatography time-of-flight mass spectrometry based metabolomics

    NARCIS (Netherlands)

    Mihaleva, V.V.; Vorst, O.F.J.; Maliepaard, C.A.; Verhoeven, H.A.; Vos, de C.H.; Hall, R.D.; Ham, van R.C.H.J.

    2008-01-01

    Compound identification and annotation in (untargeted) metabolomics experiments based on accurate mass require the highest possible accuracy of the mass determination. Experimental LC/TOF-MS platforms equipped with a time-to-digital converter (TDC) give the best mass estimate for those mass signals

  14. Non-target effects of GM potato : an eco-metabolomics approach

    NARCIS (Netherlands)

    Plischke, Andreas

    2013-01-01

    In this thesis, patterns of variation in plant metabolomes and insect communities were described in GM and non-GM potato plants in both laboratory and field experiments. Differences between plant genotypes in insect abundances were small when compared to year-to-year differences, location effects

  15. Australian Academic Librarians’ Experience of Evidence Based Practice Involves Empowering, Intuiting, Affirming, Connecting, Noticing, and Impacting

    Directory of Open Access Journals (Sweden)

    Joanne Marie Muellenbach

    2017-12-01

    Full Text Available A Review of: Miller, F., Partridge, H., Bruce, C., Yates, C., & Howlett, A. (2017. How academic librarians experience evidence-based practice: A grounded theory model. Library & Information Science Research, 39(2, 124-130. http://dx.doi.org/10.1016/j.lisr.2017.04.003 Abstract Objective – To explore and enhance the understanding of how Australian library and information science (LIS practitioners experience or understand evidence based practice (EBP within the context of their day-to-day professional work. Design – Constructivist grounded theory methodology. Setting – University libraries in Queensland, Australia. Subjects – 13 academic librarians. Methods – Researchers contacted academic librarians by email and invited each participant to take part in a 30-60 minute, semi-structured interview. They designed interview questions to allow participants to explain their process and experience of EBP. Main results – This study identified six categories of experience of EBP using a constructivist grounded theory analysis process. The categories are: Empowering; Intuiting; Affirming; Connecting; Noticing; and Impacting. Briefly, empowering includes being empowered, or empowering clients, colleagues, and institutions through improved practice or performance. Intuiting includes being intuitive, or using one’s own intuition, wisdom, and understanding, of colleagues and clients’ behaviours to solve problems and redesign services. Affirming includes being affirmed through sharing feedback and using affirmation to strengthen support for action. Connecting includes being connected, and building connections, with clients, colleagues, and institutions. Noticing includes being actively aware of, observing, and reflecting on clients, colleagues, and literature within and outside of one’s own university, and noticing patterns in data to inform decision-making. Impacting includes being impactful, or having a visible impact, on clients, colleagues

  16. Comprehensive metabolomic profiling and incident cardiovascular disease: a systematic review

    Science.gov (United States)

    Background: Metabolomics is a promising tool of cardiovascular biomarker discovery. We systematically reviewed the literature on comprehensive metabolomic profiling in association with incident cardiovascular disease (CVD). Methods and Results: We searched MEDLINE and EMBASE from inception to Janua...

  17. Plant Metabolomics : the missiong link in functional genomics strategies

    NARCIS (Netherlands)

    Hall, R.D.; Beale, M.; Fiehn, O.; Hardy, N.; Summer, L.; Bino, R.

    2002-01-01

    After the establishment of technologies for high-throughput DNA sequencing (genomics), gene expression analysis (transcriptomics), and protein analysis (proteomics), the remaining functional genomics challenge is that of metabolomics. Metabolomics is the term coined for essentially comprehensive,

  18. Commitment of involved actors in the preparation of accidental and post-accident situations: European experiments

    International Nuclear Information System (INIS)

    Schneider, Th.

    2010-01-01

    The author briefly describes some approaches developed within the EURANOS European research programme between 2004 and 2009 which aims at promoting the building up of a European network (NERIS) for the management of nuclear accidental and post-accident situations. Notably, he comments the experiment which took place in the Montbeliard district where two types of radiological events have been modelled and simulated: an accident in the Fessenheim nuclear power plant with two scenarios of release, and a transportation accident with a release of radioactive caesium 137. He also evokes the Norwegian experience and some other actions in Finland, Great-Britain, Spain and Slovakia where reflections on the management of accidental and post-accident situations or crisis exercises have been organized

  19. TEACHING PHYSICS: An experiment to demonstrate the principles and processes involved in medical Doppler ultrasound

    Science.gov (United States)

    Andrews, D. G. H.

    2000-09-01

    Doppler ultrasound is widely used in medicine for measuring blood velocity. This paper describes an experiment illustrating the principles of medical Doppler ultrasound. It is designed with A-level/undergraduate physics students in mind. Ultrasound is transmitted in air and reflected from a moving target. The return signal is processed using a series of modules, so that students can discover for themselves how each stage in the instrument works. They can also obtain a quantitative value of the speed of the target.

  20. Exploring the experiences of bereaved families involved in assisted suicide in Southern Switzerland: a qualitative study.

    Science.gov (United States)

    Gamondi, Claudia; Pott, Murielle; Forbes, Karen; Payne, Sheila

    2015-06-01

    In Switzerland, helping with assisted suicide under certain conditions is not prosecuted. With approximately 300 cases annually, this leaves behind a large group of bereaved people where its consequences are mostly unknown. The study aimed to explore family involvement in decision making prior to assisted suicide, and to examine their ways of coping during the bereavement period. A qualitative interview study used the principles of Grounded Theory analysis. Eleven relatives of eight patients, who died in Southern Switzerland after assisted suicide, participated in semistructured interviews. The large majority of family members faced moral dilemmas during the decision-making phase. Their respect for patient's autonomy was a key justification to resolve dilemmas. Two types of involvement were identified: categorised as 'passive' when the decision making was located with the patient, and 'active' when assisted suicide was proposed by the family member and/or the relative was involved in some way. The relatives reported feelings of isolation during and after assisted suicide. Family members reported fear of social stigma and did not openly disclose assisted suicide as the cause of death. None of those interviewed received formal psychological support. Bereaved families express moral dilemmas, feelings of isolation and secrecy in the management of assisted suicide in Southern Switzerland. These features seem underestimated and not sufficiently recognised by the healthcare professionals. Management of assisted suicide requests should include consideration of family members' needs, in addition to those of the patient. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. How policy on employee involvement in work reintegration can yield its opposite: employee experiences in a Canadian setting.

    Science.gov (United States)

    Maiwald, Karin; Meershoek, Agnes; de Rijk, Angelique; Nijhuis, Frans

    2013-04-01

    Canada has a long tradition of involving employee representatives in developing work reintegration policies and expects this to positively affect employee involvement to improve work reintegration success. The purpose of this study was to examine employee involvement in reintegration in a Canadian province as experienced by employees. Fourteen semi-structured interviews were held with employees in a healthcare organization. The interview topic list was based on a review of local reintegration policy documents and literature. Interviews were transcribed verbatim and analysed using ethnographic methodology. Employees do not feel in control of their reintegration trajectory. In the phase of reporting sickness absence, they wrestle with a lack of understanding on how to report in sick. In the phase of reintegration planning and coordination, they hesitate to get involved in the organization of reintegration. In the phase of reintegration plan execution, employees encounter unfulfilled expectations on interventions. Employee involvement in the organization of reintegration makes them responsible for the development of reintegration trajectories. However, they consider themselves often incapable of completing this in practice. Moreover, employees experience that their contribution can boomerang on them. • It is not that employees are not able to think along or decide on their reintegration trajectory but rather they are expected to do so at times when they cannot oversee their illness and/or recovery trajectory. • Settings out reintegration procedures that are inflexible in practice do not recognize that employee involvement in work reintegration trajectories can develop over time. • The disability management professional has a central role in organizing and supporting employee involvement in work reintegration, however, the employees do not experience this is indeed happening.

  2. mzGroupAnalyzer--predicting pathways and novel chemical structures from untargeted high-throughput metabolomics data.

    Science.gov (United States)

    Doerfler, Hannes; Sun, Xiaoliang; Wang, Lei; Engelmeier, Doris; Lyon, David; Weckwerth, Wolfram

    2014-01-01

    The metabolome is a highly dynamic entity and the final readout of the genotype x environment x phenotype (GxExP) relationship of an organism. Monitoring metabolite dynamics over time thus theoretically encrypts the whole range of possible chemical and biochemical transformations of small molecules involved in metabolism. The bottleneck is, however, the sheer number of unidentified structures in these samples. This represents the next challenge for metabolomics technology and is comparable with genome sequencing 30 years ago. At the same time it is impossible to handle the amount of data involved in a metabolomics analysis manually. Algorithms are therefore imperative to allow for automated m/z feature extraction and subsequent structure or pathway assignment. Here we provide an automated pathway inference strategy comprising measurements of metabolome time series using LC- MS with high resolution and high mass accuracy. An algorithm was developed, called mzGroupAnalyzer, to automatically explore the metabolome for the detection of metabolite transformations caused by biochemical or chemical modifications. Pathways are extracted directly from the data and putative novel structures can be identified. The detected m/z features can be mapped on a van Krevelen diagram according to their H/C and O/C ratios for pattern recognition and to visualize oxidative processes and biochemical transformations. This method was applied to Arabidopsis thaliana treated simultaneously with cold and high light. Due to a protective antioxidant response the plants turn from green to purple color via the accumulation of flavonoid structures. The detection of potential biochemical pathways resulted in 15 putatively new compounds involved in the flavonoid-pathway. These compounds were further validated by product ion spectra from the same data. The mzGroupAnalyzer is implemented in the graphical user interface (GUI) of the metabolomics toolbox COVAIN (Sun & Weckwerth, 2012, Metabolomics 8: 81

  3. mzGroupAnalyzer--predicting pathways and novel chemical structures from untargeted high-throughput metabolomics data.

    Directory of Open Access Journals (Sweden)

    Hannes Doerfler

    Full Text Available The metabolome is a highly dynamic entity and the final readout of the genotype x environment x phenotype (GxExP relationship of an organism. Monitoring metabolite dynamics over time thus theoretically encrypts the whole range of possible chemical and biochemical transformations of small molecules involved in metabolism. The bottleneck is, however, the sheer number of unidentified structures in these samples. This represents the next challenge for metabolomics technology and is comparable with genome sequencing 30 years ago. At the same time it is impossible to handle the amount of data involved in a metabolomics analysis manually. Algorithms are therefore imperative to allow for automated m/z feature extraction and subsequent structure or pathway assignment. Here we provide an automated pathway inference strategy comprising measurements of metabolome time series using LC- MS with high resolution and high mass accuracy. An algorithm was developed, called mzGroupAnalyzer, to automatically explore the metabolome for the detection of metabolite transformations caused by biochemical or chemical modifications. Pathways are extracted directly from the data and putative novel structures can be identified. The detected m/z features can be mapped on a van Krevelen diagram according to their H/C and O/C ratios for pattern recognition and to visualize oxidative processes and biochemical transformations. This method was applied to Arabidopsis thaliana treated simultaneously with cold and high light. Due to a protective antioxidant response the plants turn from green to purple color via the accumulation of flavonoid structures. The detection of potential biochemical pathways resulted in 15 putatively new compounds involved in the flavonoid-pathway. These compounds were further validated by product ion spectra from the same data. The mzGroupAnalyzer is implemented in the graphical user interface (GUI of the metabolomics toolbox COVAIN (Sun & Weckwerth, 2012

  4. Metabolomics data normalization with EigenMS.

    Directory of Open Access Journals (Sweden)

    Yuliya V Karpievitch

    Full Text Available Liquid chromatography mass spectrometry has become one of the analytical platforms of choice for metabolomics studies. However, LC-MS metabolomics data can suffer from the effects of various systematic biases. These include batch effects, day-to-day variations in instrument performance, signal intensity loss due to time-dependent effects of the LC column performance, accumulation of contaminants in the MS ion source and MS sensitivity among others. In this study we aimed to test a singular value decomposition-based method, called EigenMS, for normalization of metabolomics data. We analyzed a clinical human dataset where LC-MS serum metabolomics data and physiological measurements were collected from thirty nine healthy subjects and forty with type 2 diabetes and applied EigenMS to detect and correct for any systematic bias. EigenMS works in several stages. First, EigenMS preserves the treatment group differences in the metabolomics data by estimating treatment effects with an ANOVA model (multiple fixed effects can be estimated. Singular value decomposition of the residuals matrix is then used to determine bias trends in the data. The number of bias trends is then estimated via a permutation test and the effects of the bias trends are eliminated. EigenMS removed bias of unknown complexity from the LC-MS metabolomics data, allowing for increased sensitivity in differential analysis. Moreover, normalized samples better correlated with both other normalized samples and corresponding physiological data, such as blood glucose level, glycated haemoglobin, exercise central augmentation pressure normalized to heart rate of 75, and total cholesterol. We were able to report 2578 discriminatory metabolite peaks in the normalized data (p<0.05 as compared to only 1840 metabolite signals in the raw data. Our results support the use of singular value decomposition-based normalization for metabolomics data.

  5. Vitroprocines, new antibiotics against Acinetobacter baumannii, discovered from marine Vibrio sp. QWI-06 using mass-spectrometry-based metabolomics approach

    Science.gov (United States)

    Liaw, Chih-Chuang; Chen, Pei-Chin; Shih, Chao-Jen; Tseng, Sung-Pin; Lai, Ying-Mi; Hsu, Chi-Hsin; Dorrestein, Pieter C.; Yang, Yu-Liang

    2015-08-01

    A robust and convenient research strategy integrating state-of-the-art analytical techniques is needed to efficiently discover novel compounds from marine microbial resources. In this study, we identified a series of amino-polyketide derivatives, vitroprocines A-J, from the marine bacterium Vibrio sp. QWI-06 by an integrated approach using imaging mass spectroscopy and molecular networking, as well as conventional bioactivity-guided fractionation and isolation. The structure-activity relationship of vitroprocines against Acinetobacter baumannii is proposed. In addition, feeding experiments with 13C-labeled precursors indicated that a pyridoxal 5‧-phosphate-dependent mechanism is involved in the biosynthesis of vitroprocines. Elucidation of amino-polyketide derivatives from a species of marine bacteria for the first time demonstrates the potential of this integrated metabolomics approach to uncover marine bacterial biodiversity.

  6. NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review

    Energy Technology Data Exchange (ETDEWEB)

    Smolinska, Agnieszka, E-mail: A.Smolinska@science.ru.nl [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands); Blanchet, Lionel [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands); Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Buydens, Lutgarde M.C.; Wijmenga, Sybren S. [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands)

    2012-10-31

    Highlights: Black-Right-Pointing-Pointer Procedures for acquisition of different biofluids by NMR. Black-Right-Pointing-Pointer Recent developments in metabolic profiling of different biofluids by NMR are presented. Black-Right-Pointing-Pointer The crucial steps involved in data preprocessing and multivariate chemometric analysis are reviewed. Black-Right-Pointing-Pointer Emphasis is given on recent findings on Multiple Sclerosis via NMR and pattern recognition methods. - Abstract: Metabolomics is the discipline where endogenous and exogenous metabolites are assessed, identified and quantified in different biological samples. Metabolites are crucial components of biological system and highly informative about its functional state, due to their closeness to functional endpoints and to the organism's phenotypes. Nuclear Magnetic Resonance (NMR) spectroscopy, next to Mass Spectrometry (MS), is one of the main metabolomics analytical platforms. The technological developments in the field of NMR spectroscopy have enabled the identification and quantitative measurement of the many metabolites in a single sample of biofluids in a non-targeted and non-destructive manner. Combination of NMR spectra of biofluids and pattern recognition methods has driven forward the application of metabolomics in the field of biomarker discovery. The importance of metabolomics in diagnostics, e.g. in identifying biomarkers or defining pathological status, has been growing exponentially as evidenced by the number of published papers. In this review, we describe the developments in data acquisition and multivariate analysis of NMR-based metabolomics data, with particular emphasis on the metabolomics of Cerebrospinal Fluid (CSF) and biomarker discovery in Multiple Sclerosis (MScl).

  7. Experience in the analysis of accidents and incidents involving the transport of radioactive materials

    International Nuclear Information System (INIS)

    Warner-Jones, S.M.; Hughes, J.S.; Shaw, K.B.

    2002-01-01

    Some half a million packages containing radioactive materials are transported to, from and within the UK annually. Accidents and incidents involving these shipments are rare. However, there is always the potential for such an event, which could lead to a release of the contents of a package or an increase in radiation level caused by damaged shielding. These events could result in radiological consequences for transport workers. As transport occurs in the public environment, such events could also lead to radiation exposures of members of the public. The UK Department for Transport (DfT), together with the Health and Safety Executive (HSE) have supported, for almost 20 years, work to compile, analyse and report on accidents and incidents that occur during the transport of radioactive materials. Annual reports on these events have been produced for twelve years. The details of these events are recorded in the Radioactive Materials Transport Event Database (RAMTED) maintained by the National Radiological Protection Board on behalf of the DfT and HSE. Information on accidents and incidents dates back to 1958. RAMTED currently includes information of 708 accidents and incidents, covering the period 1958 to 2000. This paper presents a summary of the data covering this period, identifying trends and lessons learned together with a discussion of some examples. It was found that, historically, the most significant exposures were received as a result of accidents involving the transport of industrial radiography sources. However, the frequency and severity of these events has decreased considerably in the later years of this study due to improvements in training, awareness and equipment. The International Atomic Energy Agency and the Nuclear Energy Agency, have established the international nuclear event scale (INES), which is described in detail in a users' guide. The INES has been revised to fully include transport events, and the information in RAMTED has been reviewed

  8. Telehealth distance education course in Latin America: analysis of an experience involving 15 countries.

    Science.gov (United States)

    dos Santos, Alaneir de Fátima; Alves, Humberto José; Nogueira, Janaina Teixeira; Torres, Rosoália Mpraes; Melo, Maria do Carmo Barros

    2014-08-01

    Telehealth activities are already going on in many Latin American countries. This article aims to present and evaluate a distance learning telehealth training course in the region. This was a cross-sectional descriptive study. A coordinating committee was formed, composed of medical school faculty from 15 countries, which defined the course's syllabus, teaching model, and mentoring structure. A questionnaire was prepared, using a Likert scale, in order to verify if the parameters of gender, age, professional category, postgraduate degree, and experience in distance education indicated any difference in relation to the course evaluation. The responses were analyzed by chi-squared test, considering as significant a value of pdistance education was statistically significant for the evaluation of the tutors. The results presented indicate an important concern on the part of the Latin American countries participating on the course in relation to telehealth training activities. Regarding course assessment, high approval rates in relation to tutoring, educational model, course content, and goals were noted, corroborating literature data. The experience of conducting a Latin American shared telehealth training course was indeed positive, contributing to the development of telehealth actions.

  9. Medicaid funding for abortion: providers' experiences with cases involving rape, incest and life endangerment.

    Science.gov (United States)

    Kacanek, Deborah; Dennis, Amanda; Miller, Kate; Blanchard, Kelly

    2010-06-01

    The Hyde Amendment bans federal Medicaid funding for abortion in the United States except if a pregnancy resulted from rape or incest or endangers the life of the woman. Some evidence suggests that providers do not always receive Medicaid reimbursement for abortions that should qualify for funding. From October 2007 to February 2008, semistructured in-depth interviews about experiences with Medicaid reimbursement for qualifying abortions were conducted with 25 respondents representing abortion providers in six states. A thematic analysis approach was used to explore respondents' knowledge of and experiences seeking Medicaid reimbursement for qualifying abortions, as well as individual, clinical and structural influences on reimbursement. The numbers of qualifying cases that were and were not reimbursed were assessed. More than half of Medicaid-eligible cases reported by respondents in the past year were not reimbursed. Respondents reported that filing for reimbursement takes excessive staff time and is hampered by bureaucratic claims procedures and ill-informed Medicaid staff, and that reimbursements are small. Many had stopped seeking Medicaid reimbursement and relied on nonprofit abortion funds to cover procedure costs. Respondents reporting receiving reimbursement said that streamlined forms, a statewide education intervention and a legal intervention to ensure that Medicaid reimbursed claims facilitated the process. The policy governing federal funding of abortion is inconsistently implemented. Eliminating administrative burdens, educating providers about women's rights to obtain Medicaid reimbursement for abortion in certain circumstances and holding Medicaid accountable for reimbursing qualifying cases are among the steps that may facilitate Medicaid reimbursement for qualifying abortions.

  10. A Nontargeted UHPLC-HRMS Metabolomics Pipeline for Metabolite Identification: Application to Cardiac Remote Ischemic Preconditioning.

    Science.gov (United States)

    Kouassi Nzoughet, Judith; Bocca, Cinzia; Simard, Gilles; Prunier-Mirebeau, Delphine; Chao de la Barca, Juan Manuel; Bonneau, Dominique; Procaccio, Vincent; Prunier, Fabrice; Lenaers, Guy; Reynier, Pascal

    2017-02-07

    In recent years, the number of investigations based on nontargeted metabolomics has increased, although often without a thorough assessment of analytical strategies applied to acquire data. Following published guidelines for metabolomics experiments, we report a validated nontargeted metabolomics strategy with pipeline for unequivocal identification of metabolites using the MSMLS molecule library. We achieved an in-house database containing accurate m/z values, retention times, isotopic patterns, full MS, and MS/MS spectra. A UHPLC-HRMS Q-Exactive method was developed, and experimental variations were determined within and between 3 experimental days. The extraction efficiency as well as the accuracy, precision, repeatability, and linearity of the method were assessed, the method demonstrating good performances. The methodology was further blindly applied to plasma from remote ischemic pre-conditioning (RIPC) rats. Samples, previously analyzed by targeted metabolomics using completely different protocol, analytical strategy, and platform, were submitted to our analytical pipeline. A combination of multivariate and univariate statistical analyses was employed. Selection of putative biomarkers from OPLS-DA model and S-plot was combined to jack-knife confidence intervals, metabolites' VIP values, and univariate statistics. Only variables with strong model contribution and highly statistical reliability were selected as discriminated metabolites. Three biomarkers identified by the previous targeted metabolomics study were found in the current work, in addition to three novel metabolites, emphasizing the efficiency of the current methodology and its ability to identify new biomarkers of clinical interest, in a single sequence. The biomarkers were identified to level 1 according to the metabolomics standard initiative and confirmed by both RPLC and HILIC-HRMS.

  11. Is Motor Simulation Involved During Foreign Language Learning? A Virtual Reality Experiment

    Directory of Open Access Journals (Sweden)

    Claudia Repetto

    2015-10-01

    Full Text Available This article presents a study performed to investigate the role of simulation in second language learning while using a virtual environment. Participants were asked to explore a virtual park while learning 15 new Czech verbs (action verbs that describe movements performed with either the hand or the foot, and abstract verbs. This learning condition was compared with a baseline condition, where movements (either virtual or real were not allowed. The goal was to investigate whether the virtual action (performed with the feet would promote or interfere with the learning of verbs describing actions that were performed with the same or a different effector. The number of verbs correctly remembered in a free recall task was computed, along with reaction times and number of errors during a recognition task. Results show that the simulation per se has no effect in verbal learning, but the features of the virtual experience mediate it.

  12. Metabolomics: towards understanding traditional Chinese medicine.

    Science.gov (United States)

    Zhang, Aihua; Sun, Hui; Wang, Zhigang; Sun, Wenjun; Wang, Ping; Wang, Xijun

    2010-12-01

    Metabolomics represent a global understanding of metabolite complement of integrated living systems and dynamic responses to the changes of both endogenous and exogenous factors and has many potential applications and advantages for the research of complex systems. As a systemic approach, metabolomics adopts a "top-down" strategy to reflect the function of organisms from the end products of the metabolic network and to understand metabolic changes of a complete system caused by interventions in a holistic context. This property agrees with the holistic thinking of Traditional Chinese Medicine (TCM), a complex medical science, suggesting that metabolomics has the potential to impact our understanding of the theory behind the evidence-based Chinese medicine. Consequently, the development of robust metabolomic platforms will greatly facilitate, for example, the understanding of the action mechanisms of TCM formulae and the analysis of Chinese herbal (CHM) and mineral medicine, acupuncture, and Chinese medicine syndromes. This review summarizes some of the applications of metabolomics in special TCM issues with an emphasis on metabolic biomarker discovery. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Basics of mass spectrometry based metabolomics.

    Science.gov (United States)

    Courant, Frédérique; Antignac, Jean-Philippe; Dervilly-Pinel, Gaud; Le Bizec, Bruno

    2014-11-01

    The emerging field of metabolomics, aiming to characterize small molecule metabolites present in biological systems, promises immense potential for different areas such as medicine, environmental sciences, agronomy, etc. The purpose of this article is to guide the reader through the history of the field, then through the main steps of the metabolomics workflow, from study design to structure elucidation, and help the reader to understand the key phases of a metabolomics investigation and the rationale underlying the protocols and techniques used. This article is not intended to give standard operating procedures as several papers related to this topic were already provided, but is designed as a tutorial aiming to help beginners understand the concept and challenges of MS-based metabolomics. A real case example is taken from the literature to illustrate the application of the metabolomics approach in the field of doping analysis. Challenges and limitations of the approach are then discussed along with future directions in research to cope with these limitations. This tutorial is part of the International Proteomics Tutorial Programme (IPTP18). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Accelerators for critical experiments involving single-particle upset in solid-state microcircuits

    Science.gov (United States)

    Zoutendyk, J. A.

    1985-01-01

    Charged-particle interactions in microelectronic circuit chips (integrated circuits) present a particularly insidious problem for solid-state electronic systems due to the generation of soft errors or single-particle event upset (SEU) by either cosmic rays or other radiation sources. Particle accelerators are used to provide both light and heavy ions in order to assess the propensity of integrated circuit chips for SEU. Critical aspects of this assessment involve the ability to analytically model SEU for the prediction of error rates in known radiation environments. In order to accurately model SEU, the measurement and prediction of energy deposition in the form of an electron-hole plasma generated along an ion track is of paramount importance. This requires the use of accelerators which allow for ease in both energy control (change of energy) and change of ion species. This and other aspects of ion-beam control and diagnostics (e.g., uniformity and flux) are of critical concern for the experimental verification of theoretical SEU models.

  15. Non-Hodgkin’s lymphoma with bone involvement: a single center experience with 18 patients

    Directory of Open Access Journals (Sweden)

    Filiz Vural

    2010-03-01

    Full Text Available Objective: Non-Hodgkin’s lymphoma (NHL of bone is a rare entity. The most common histological subtype is diffuse large B cell lymphoma (DLBCL. The major presenting symptoms are soft tissue swelling, bone pain and pathological fracture. Treatment options are chemotherapy, radiotherapy, surgery, or a combination of these modalities. Materials and Methods: We retrospectively analyzed the 18 patients (11 females, 7 males with NHL of bone who were diagnosed and treated between 1995-2005. The median age was 56.5 years. The median duration of symptoms was 4.5 months. The bone pain was the first symptom in all patients. Tru-cut biopsy was performed for diagnosis in most of the cases. Diagnosis in five patients (27.8% required open biopsy. Results: DLBCL (77.8% was the most common histological type among all patients. Other histological subtypes were anaplastic large cell lymphoma (11.1%, Burkitt-like lymphoma (5.6% and marginal zone lymphoma (5.6%. According to Ann Arbor staging system, 44.4% of patients were Stage I, 11.1% were Stage II and 44.4% were Stage IV. Bone marrow involvement was determined in four patients (22.2%. All patients except one were treated with anthracycline-containing regimens and eight patients (44.4% received rituximab combination with chemotherapy. Radiation therapy was performed as the first-line therapy in 9 (50% patients. The median follow-up was 37 months (range, 2-124 months. Among the 17 patients who achieved complete remission, five (27.8% relapsed. All patients were still alive. The five-year relapse-free survival was 73.5%.Conclusion: The treatment of bone lymphoma can be planned according to the stage and location of the disease. Although we had a relatively low number of patients, it could be concluded that whether or not radiation therapy is performed, rituximab in combination with systemic chemotherapy has been proven beneficial on survival.

  16. Metabolomics to Explore Impact of Dairy Intake

    Directory of Open Access Journals (Sweden)

    Hong Zheng

    2015-06-01

    Full Text Available Dairy products are an important component in the Western diet and represent a valuable source of nutrients for humans. However, a reliable dairy intake assessment in nutrition research is crucial to correctly elucidate the link between dairy intake and human health. Metabolomics is considered a potential tool for assessment of dietary intake instead of traditional methods, such as food frequency questionnaires, food records, and 24-h recalls. Metabolomics has been successfully applied to discriminate between consumption of different dairy products under different experimental conditions. Moreover, potential metabolites related to dairy intake were identified, although these metabolites need to be further validated in other intervention studies before they can be used as valid biomarkers of dairy consumption. Therefore, this review provides an overview of metabolomics for assessment of dairy intake in order to better clarify the role of dairy products in human nutrition and health.

  17. Metabolomic heterogeneity of pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Yidan Zhao

    Full Text Available Although multiple gene and protein expression have been extensively profiled in human pulmonary arterial hypertension (PAH, the mechanism for the development and progression of pulmonary hypertension remains elusive. Analysis of the global metabolomic heterogeneity within the pulmonary vascular system leads to a better understanding of disease progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted glycolysis, increased TCA cycle, and fatty acid metabolites with altered oxidation pathways in the human PAH lung. The results suggest that PAH has specific metabolic pathways contributing to increased ATP synthesis for the vascular remodeling process in severe pulmonary hypertension. These identified metabolites may serve as potential biomarkers for the diagnosis of PAH. By profiling metabolomic alterations of the PAH lung, we reveal new pathogenic mechanisms of PAH, opening an avenue of exploration for therapeutics that target metabolic pathway alterations in the progression of PAH.

  18. Microbiome, Metabolome and Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Ishfaq Ahmed

    2016-06-01

    Full Text Available Inflammatory Bowel Disease (IBD is a multifactorial disorder that conceptually occurs as a result of altered immune responses to commensal and/or pathogenic gut microbes in individuals most susceptible to the disease. During Crohn’s Disease (CD or Ulcerative Colitis (UC, two components of the human IBD, distinct stages define the disease onset, severity, progression and remission. Epigenetic, environmental (microbiome, metabolome and nutritional factors are important in IBD pathogenesis. While the dysbiotic microbiota has been proposed to play a role in disease pathogenesis, the data on IBD and diet are still less convincing. Nonetheless, studies are ongoing to examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome and its metabolome in an effort to define the healthy diet in patients with IBD. Knowledge of a unique metabolomic fingerprint in IBD could be useful for diagnosis, treatment and detection of disease pathogenesis.

  19. Metabolomics in pediatric nephrology: Emerging concepts

    Science.gov (United States)

    Hanna, Mina H; Brophy, Patrick D

    2014-01-01

    Metabolomics, the latest of the “omics” sciences, refers to the systematic study of metabolites and their changes in biological samples due to physiological stimuli and/or genetic modification. Because metabolites represent the downstream expression of genome, transcriptome and proteome, they can closely reflect the phenotype of an organism at a specific time. As an emerging field in analytical biochemistry; metabolomics has the potential to play a major role for monitoring real-time kidney function and detecting adverse renal events. Additionally, small molecule metabolites can provide mechanistic insights for novel biomarkers of kidney diseases, given the limitations of the current traditional markers. The clinical utility of metabolomics in the field of pediatric nephrology includes biomarker discovery, defining as yet unrecognized biologic therapeutic targets, linking of metabolites to relevant standard indices and clinical outcomes, and providing a window of opportunity to investigate the intricacies of environment/genetic interplay in specific disease states. PMID:25027575

  20. Linking metabolomics data to underlying metabolic regulation

    Directory of Open Access Journals (Sweden)

    Thomas eNägele

    2014-11-01

    Full Text Available The comprehensive experimental analysis of a metabolic constitution plays a central role in approaches of organismal systems biology.Quantifying the impact of a changing environment on the homeostasis of cellular metabolism has been the focus of numerous studies applying various metabolomics techniques. It has been proven that approaches which integrate different analytical techniques, e.g. LC-MS, GC-MS, CE-MS and H-NMR, can provide a comprehensive picture of a certain metabolic homeostasis. Identification of metabolic compounds and quantification of metabolite levels represent the groundwork for the analysis of regulatory strategies in cellular metabolism. This significantly promotes our current understanding of the molecular organization and regulation of cells, tissues and whole organisms.Nevertheless, it is demanding to elicit the pertinent information which is contained in metabolomics data sets.Based on the central dogma of molecular biology, metabolite levels and their fluctuations are the result of a directed flux of information from gene activation over transcription to translation and posttranslational modification.Hence, metabolomics data represent the summed output of a metabolic system comprising various levels of molecular organization.As a consequence, the inverse assignment of metabolomics data to underlying regulatory processes should yield information which-if deciphered correctly-provides comprehensive insight into a metabolic system.Yet, the deduction of regulatory principles is complex not only due to the high number of metabolic compounds, but also because of a high level of cellular compartmentalization and differentiation.Motivated by the question how metabolomics approaches can provide a representative view on regulatory biochemical processes, this article intends to present and discuss current metabolomics applications, strategies of data analysis and their limitations with respect to the interpretability in context of

  1. MBRole: enrichment analysis of metabolomic data.

    Science.gov (United States)

    Chagoyen, Monica; Pazos, Florencio

    2011-03-01

    While many tools exist for performing enrichment analysis of transcriptomic and proteomic data in order to interpret them in biological terms, almost no equivalent tools exist for metabolomic data. We present Metabolite Biological Role (MBRole), a web server for carrying out over-representation analysis of biological and chemical annotations in arbitrary sets of metabolites (small chemical compounds) coming from metabolomic data of any organism or sample. The web server is freely available at http://csbg.cnb.csic.es/mbrole. It was tested in the main web browsers.

  2. Metabolomics of forage plants: a review.

    Science.gov (United States)

    Rasmussen, Susanne; Parsons, Anthony J; Jones, Christopher S

    2012-11-01

    Forage plant breeding is under increasing pressure to deliver new cultivars with improved yield, quality and persistence to the pastoral industry. New innovations in DNA sequencing technologies mean that quantitative trait loci analysis and marker-assisted selection approaches are becoming faster and cheaper, and are increasingly used in the breeding process with the aim to speed it up and improve its precision. High-throughput phenotyping is currently a major bottle neck and emerging technologies such as metabolomics are being developed to bridge the gap between genotype and phenotype; metabolomics studies on forages are reviewed in this article. Major challenges for pasture production arise from the reduced availability of resources, mainly water, nitrogen and phosphorus, and metabolomics studies on metabolic responses to these abiotic stresses in Lolium perenne and Lotus species will be discussed here. Many forage plants can be associated with symbiotic microorganisms such as legumes with nitrogen fixing rhizobia, grasses and legumes with phosphorus-solubilizing arbuscular mycorrhizal fungi, and cool temperate grasses with fungal anti-herbivorous alkaloid-producing Neotyphodium endophytes and metabolomics studies have shown that these associations can significantly affect the metabolic composition of forage plants. The combination of genetics and metabolomics, also known as genetical metabolomics can be a powerful tool to identify genetic regions related to specific metabolites or metabolic profiles, but this approach has not been widely adopted for forages yet, and we argue here that more studies are needed to improve our chances of success in forage breeding. Metabolomics combined with other '-omics' technologies and genome sequencing can be invaluable tools for large-scale geno- and phenotyping of breeding populations, although the implementation of these approaches in forage breeding programmes still lags behind. The majority of studies using metabolomics

  3. Adverse Childhood Experiences and the Risk of Criminal Justice Involvement and Victimization Among Homeless Adults With Mental Illness.

    Science.gov (United States)

    Edalati, Hanie; Nicholls, Tonia L; Crocker, Anne G; Roy, Laurence; Somers, Julian M; Patterson, Michelle L

    2017-12-01

    Exposure to adverse childhood experiences (ACEs) is highly prevalent among homeless individuals and is associated with negative consequences during homelessness. This study examined the effect of ACEs on the risk of criminal justice involvement and victimization among homeless individuals with mental illness. The study used baseline data from a demonstration project (At Home/Chez Soi) that provided Housing First and recovery-oriented services to homeless adults with mental illness. The sample was recruited from five Canadian cities and included participants who provided valid responses on an ACEs questionnaire (N=1,888). Fifty percent reported more than four types of ACE, 19% reported three or four types, 19% reported one or two, and 12% reported none. Rates of criminal justice involvement and victimization were significantly higher among those with a history of ACEs. For victimization, the association was significant for all ten types of ACE, and for justice involvement, it was significant for seven types. Logistic regression models indicated that the effect of cumulative childhood adversity on the two outcomes was significant regardless of sociodemographic factors, duration of homelessness, and psychiatric diagnosis, with one exception: the relationship between cumulative childhood adversity and criminal justice involvement did not remain significant when the analysis controlled for a diagnosis of posttraumatic stress disorder and substance dependence. Findings support the need for early interventions for at-risk youths and trauma-informed practice and violence prevention policies that specifically target homeless populations.

  4. Amyloidosis involving the respiratory system: 5-year′s experience of a multi-disciplinary group′s activity

    Directory of Open Access Journals (Sweden)

    Raffaele Scala

    2015-01-01

    Full Text Available Amyloidosis may involve the respiratory system with different clinical-radiological-functional patterns which are not always easy to be recognized. A good level of knowledge of the disease, an active integration of the pulmonologist within a multidisciplinary setting and a high level of clinical suspicion are necessary for an early diagnosis of respiratory amyloidosis. The aim of this retrospective study was to evaluate the number and the patterns of amyloidosis involving the respiratory system. We searched the cases of amyloidosis among patients attending the multidisciplinary rare and diffuse lung disease outpatients′ clinic of Pulmonology Unit of the Hospital of Arezzo from 2007 to 2012. Among the 298 patients evaluated during the study period, we identified three cases of amyloidosis with involvement of the respiratory system, associated or not with other extra-thoracic localizations, whose diagnosis was histo-pathologically confirmed after the pulmonologist, the radiologist, and the pathologist evaluation. Our experience of a multidisciplinary team confirms that intra-thoracic amyloidosis is an uncommon disorder, representing 1.0% of the cases of rare and diffuse lung diseases referred to our center. The diagnosis of the disease is not always easy and quick as the amyloidosis may involve different parts of the respiratory system (airways, pleura, parenchyma. It is therefore recommended to remind this orphan disease in the differential diagnosis of the wide clinical scenarios the pulmonologist may intercept in clinical practice.

  5. Blame and guilt - a mixed methods study of obstetricians' and midwives' experiences and existential considerations after involvement in traumatic childbirth

    DEFF Research Database (Denmark)

    Schrøder, Katja; Jørgensen, Jan S; Lamont, Ronald F

    2016-01-01

    and proportions of obstetricians and midwives involved in such traumatic childbirth and explored their experiences with guilt, blame, shame and existential concerns. MATERIAL AND METHODS: A mixed methods study comprising a national survey of Danish obstetricians and midwives and a qualitative interview study...... with selected survey participants. RESULTS: The response rate was 59% (1237/2098), of which 85% stated that they had been involved in a traumatic childbirth. We formed five categories during the comparative mixed methods analysis: the patient, clinical peers, official complaints, guilt, and existential...... considerations. Although blame from patients, peers or official authorities was feared (and sometimes experienced), the inner struggles with guilt and existential considerations were dominant. Feelings of guilt were reported by 36-49%, and 50% agreed that the traumatic childbirth had made them think more about...

  6. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats

    International Nuclear Information System (INIS)

    Miller, Desinia B.; Karoly, Edward D.; Jones, Jan C.; Ward, William O.; Vallanat, Beena D.; Andrews, Debora L.; Schladweiler, Mette C.; Snow, Samantha J.; Bass, Virginia L.; Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D.; Kodavanti, Urmila P.

    2015-01-01

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O 3 ) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O 3 exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O 3 at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O 3 , 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O 3 increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O 3 increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O 3 . In conclusion, short-term O 3 exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. - Highlights: • Ozone, an ubiquitous air pollutant induces acute systemic metabolic derangement. • Serum metabolomic approach provides novel insights in ozone-induced changes. • Ozone exposure induces leptinemia, hyperglycemia, and glucose intolerance

  7. Formation of conical fractures in sedimentary basins: Experiments involving pore fluids and implications for sandstone intrusion mechanisms

    Science.gov (United States)

    Mourgues, R.; Bureau, D.; Bodet, L.; Gay, A.; Gressier, J. B.

    2012-01-01

    Large sand intrusions often exhibit conical morphologies analogous to magmatic intrusions such as saucer-shaped or cup-shaped sills. Whereas some physical processes may be similar, we show with scaled experiments that the formation of conical sand intrusions may be favoured by the pore-pressure gradients prevailing in the host rock before sand injection. Our experiments involve injecting air into a permeable and cohesive analogue material to produce hydraulic fractures while controlling the pore pressure field. We control the state of overpressure in the overburden by applying homogeneous basal pore pressure, and then adding a second local pore pressure field by injecting air via a central injector to initiate hydraulic fractures near the injection point. In experiments involving small vertical effective stresses (small overburden, or high pore fluid overpressure), the fracturing pressure ( λfract) is supralithostatic and two dipping fractures are initiated at the injection point forming a conical structure. From theoretical considerations, we predict that high values of λfract are due to strong cohesion or high pore fluid overpressure distributed in the overburden. Such conditions are favoured by the pore pressure/stress coupling induced by both pore pressure fields. The dips of cones can be accounted for elastic-stress rotation occurring around the source. Contrary to magmatic chamber models, the aqueous fluid overpressure developed in a parent sandbody (and prevailing before the formation of injectites) may diffuse into the surrounding overburden, thus favouring stress rotation and the formation of inclined sheets far from the parent source. For experiments involving higher vertical effective stresses (thick overburden or low pore fluid overpressure), the fracturing pressure is lower than the lithostatic stress, and a single fracture is opened in mode I which then grows vertically. At a critical depth, the fracture separates into two dilatant branches forming

  8. Structured plant metabolomics for the simultaneous exploration of multiple factors

    Science.gov (United States)

    Vasilev, Nikolay; Boccard, Julien; Lang, Gerhard; Grömping, Ulrike; Fischer, Rainer; Goepfert, Simon; Rudaz, Serge; Schillberg, Stefan

    2016-01-01

    Multiple factors act simultaneously on plants to establish complex interaction networks involving nutrients, elicitors and metabolites. Metabolomics offers a better understanding of complex biological systems, but evaluating the simultaneous impact of different parameters on metabolic pathways that have many components is a challenging task. We therefore developed a novel approach that combines experimental design, untargeted metabolic profiling based on multiple chromatography systems and ionization modes, and multiblock data analysis, facilitating the systematic analysis of metabolic changes in plants caused by different factors acting at the same time. Using this method, target geraniol compounds produced in transgenic tobacco cell cultures were grouped into clusters based on their response to different factors. We hypothesized that our novel approach may provide more robust data for process optimization in plant cell cultures producing any target secondary metabolite, based on the simultaneous exploration of multiple factors rather than varying one factor each time. The suitability of our approach was verified by confirming several previously reported examples of elicitor–metabolite crosstalk. However, unravelling all factor–metabolite networks remains challenging because it requires the identification of all biochemically significant metabolites in the metabolomics dataset. PMID:27853298

  9. Integration of metabolomics and transcriptomics in nanotoxicity studies.

    Science.gov (United States)

    Shin, Tae Hwan; Lee, Da Yeon; Lee, Hyeon-Seong; Park, Hyung Jin; Jin, Moon Suk; Paik, Man-Jeong; Manavalan, Balachandran; Mo, Jung-Soon; Lee, Gwang

    2018-01-01

    Biomedical research involving nanoparticles has produced useful products with medical applications. However, the potential toxicity of nanoparticles in biofluids, cells, tissues, and organisms is a major challenge. The '-omics' analyses provide molecular profiles of multifactorial biological systems instead of focusing on a single molecule. The 'omics' approaches are necessary to evaluate nanotoxicity because classical methods for the detection of nanotoxicity have limited ability in detecting miniscule variations within a cell and do not accurately reflect the actual levels of nanotoxicity. In addition, the 'omics' approaches allow analyses of in-depth changes and compensate for the differences associated with high-throughput technologies between actual nanotoxicity and results from traditional cytotoxic evaluations. However, compared with a single omics approach, integrated omics provides precise and sensitive information by integrating complex biological conditions. Thus, these technologies contribute to extended safety evaluations of nanotoxicity and allow the accurate diagnoses of diseases far earlier than was once possible in the nanotechnology era. Here, we review a novel approach for evaluating nanotoxicity by integrating metabolomics with metabolomic profiling and transcriptomics, which is termed "metabotranscriptomics". [BMB Reports 2018; 51(1): 14-20].

  10. Masculinity and the body: how African American and White men experience cancer screening exams involving the rectum.

    Science.gov (United States)

    Winterich, Julie A; Quandt, Sara A; Grzywacz, Joseph G; Clark, Peter E; Miller, David P; Acuña, Joshua; Arcury, Thomas A

    2009-12-01

    Past research on prostate and colorectal cancer disparities finds that barriers to screening, such as embarrassment and offensiveness, are often reported. Yet none of this literature investigates why. This study uses masculinity and health theory to examine how men experience two common screenings: digital rectal exams (DREs) and colonoscopies. In-depth interviews were conducted with 64 African American and White men from diverse backgrounds, aged 40 to 64, from North Carolina. Regardless of race or education, men experienced DREs more negatively than colonoscopies because penetration with a finger was associated with a gay sexual act. Some men disliked colonoscopies, however, because they associated any penetration as an affront to their masculinity. Because beliefs did not differ by race, future research should focus on structural issues to examine why disparities persist with prostate and colorectal cancer. Recommendations are provided for educational programs and physicians to improve men's experiences with exams that involve the rectum.

  11. Alteration of metabolomic markers of amino-acid metabolism in piglets with in-feed antibiotics.

    Science.gov (United States)

    Mu, Chunlong; Yang, Yuxiang; Yu, Kaifan; Yu, Miao; Zhang, Chuanjian; Su, Yong; Zhu, Weiyun

    2017-04-01

    In-feed antibiotics have been used to promote growth in piglets, but its impact on metabolomics profiles associated with host metabolism is largely unknown. In this study, to test the hypothesis that antibiotic treatment may affect metabolite composition both in the gut and host biofluids, metabolomics profiles were analyzed in antibiotic-treated piglets. Piglets were fed a corn-soy basal diet with or without in-feed antibiotics from postnatal day 7 to day 42. The serum biochemical parameters, metabolomics profiles of the serum, urine, and jejunal digesta, and indicators of microbial metabolism (short-chain fatty acids and biogenic amines) were analyzed. Compared to the control group, antibiotics treatment did not have significant effects on serum biochemical parameters except that it increased (P Antibiotics treatment increased the relative concentrations of metabolites involved in amino-acid metabolism in the serum, while decreased the relative concentrations of most amino acids in the jejunal content. Antibiotics reduced urinary 2-ketoisocaproate and hippurate. Furthermore, antibiotics decreased (P Antibiotics significantly affected the concentrations of biogenic amines, which are derived from microbial amino-acid metabolism. The three major amines, putrescine, cadaverine, and spermidine, were all increased (P antibiotics-treated piglets. These results identified the phenomena that in-feed antibiotics may have significant impact on the metabolomic markers of amino-acid metabolism in piglets.

  12. Learning clinical skills in the simulation suite: the lived experiences of student nurses involved in peer teaching and peer assessment.

    Science.gov (United States)

    Ramm, Dianne; Thomson, Anna; Jackson, Andrew

    2015-06-01

    The benefits of peer teaching and assessment are well documented within nurse education literature. However, research to date has predominantly focused on the advantages and disadvantages for the inexperienced learner, with a dearth of knowledge relating to the perceptions of senior nursing students involved in teaching their peers. This study sought to investigate the student experience of taking part in a peer teaching and assessment initiative to include the perceptions of both first year nursing students and second/third year participants. Data were collected via open-ended questionnaires and analysed with qualitative 'Framework' analysis. This initiative received a generally positive response both from students being taught and also from those acting as facilitators. Perceived benefits included the social learning experience, development of teaching skills, self-awareness and the opportunity to communicate both good and bad news. Suggestions for improvement included additional time working in small groups, specific supplementary learning materials and the introduction of peer teaching and assessment into other areas of the Adult Nursing Programme. Peer teaching and assessment principles represent valuable strategies which can be utilised in nurse education to develop clinical skills and prepare nurses for real-life scenarios. Further research needs to investigate how to enhance the student learning experience and to fully exploit the potential for simulated experience to prepare students for their future role as registered nurses in clinical practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Chemotherapy-induced gastrointestinal toxicity is associated with changes in serum and urine metabolome and fecal microbiota in male Sprague-Dawley rats.

    Science.gov (United States)

    Forsgård, Richard A; Marrachelli, Vannina G; Korpela, Katri; Frias, Rafael; Collado, Maria Carmen; Korpela, Riitta; Monleon, Daniel; Spillmann, Thomas; Österlund, Pia

    2017-08-01

    Chemotherapy-induced gastrointestinal toxicity (CIGT) is a complex process that involves multiple pathophysiological mechanisms. We have previously shown that commonly used chemotherapeutics 5-fluorouracil, oxaliplatin, and irinotecan damage the intestinal mucosa and increase intestinal permeability to iohexol. We hypothesized that CIGT is associated with alterations in fecal microbiota and metabolome. Our aim was to characterize these changes and examine how they relate to the severity of CIGT. A total of 48 male Sprague-Dawley rats were injected intraperitoneally either with 5-fluorouracil (150 mg/kg), oxaliplatin (15 mg/kg), or irinotecan (200 mg/kg). Body weight change was measured daily after drug administration and the animals were euthanized after 72 h. Blood, urine, and fecal samples were collected at baseline and at the end of the experiment. The changes in the composition of fecal microbiota were analyzed with 16S rRNA gene sequencing. Metabolic changes in serum and urine metabolome were measured with 1 mm proton nuclear magnetic resonance ( 1 H-NMR). Irinotecan increased the relative abundance of Fusobacteria and Proteobacteria, while 5-FU and oxaliplatin caused only minor changes in the composition of fecal microbiota. All chemotherapeutics increased the levels of serum fatty acids and N(CH 3 ) 3 moieties and decreased the levels of Krebs cycle metabolites and free amino acids. Chemotherapeutic drugs, 5-fluorouracil, oxaliplatin, and irinotecan, induce several microbial and metabolic changes which may play a role in the pathophysiology of CIGT. The observed changes in intestinal permeability, fecal microbiota, and metabolome suggest the activation of inflammatory processes.

  14. RaMP: A Comprehensive Relational Database of Metabolomics Pathways for Pathway Enrichment Analysis of Genes and Metabolites.

    Science.gov (United States)

    Zhang, Bofei; Hu, Senyang; Baskin, Elizabeth; Patt, Andrew; Siddiqui, Jalal K; Mathé, Ewy A

    2018-02-22

    The value of metabolomics in translational research is undeniable, and metabolomics data are increasingly generated in large cohorts. The functional interpretation of disease-associated metabolites though is difficult, and the biological mechanisms that underlie cell type or disease-specific metabolomics profiles are oftentimes unknown. To help fully exploit metabolomics data and to aid in its interpretation, analysis of metabolomics data with other complementary omics data, including transcriptomics, is helpful. To facilitate such analyses at a pathway level, we have developed RaMP (Relational database of Metabolomics Pathways), which combines biological pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, WikiPathways, and the Human Metabolome DataBase (HMDB). To the best of our knowledge, an off-the-shelf, public database that maps genes and metabolites to biochemical/disease pathways and can readily be integrated into other existing software is currently lacking. For consistent and comprehensive analysis, RaMP enables batch and complex queries (e.g., list all metabolites involved in glycolysis and lung cancer), can readily be integrated into pathway analysis tools, and supports pathway overrepresentation analysis given a list of genes and/or metabolites of interest. For usability, we have developed a RaMP R package (https://github.com/Mathelab/RaMP-DB), including a user-friendly RShiny web application, that supports basic simple and batch queries, pathway overrepresentation analysis given a list of genes or metabolites of interest, and network visualization of gene-metabolite relationships. The package also includes the raw database file (mysql dump), thereby providing a stand-alone downloadable framework for public use and integration with other tools. In addition, the Python code needed to recreate the database on another system is also publicly available (https://github.com/Mathelab/RaMP-BackEnd). Updates for databases in RaMP will be

  15. Attitudes toward hiring applicants with mental illness and criminal justice involvement: the impact of education and experience.

    Science.gov (United States)

    Batastini, Ashley B; Bolanos, Angelea D; Morgan, Robert D

    2014-01-01

    Individuals with mental health diagnoses, as well as those involved in the criminal justice system, experience a number of barriers in the recovery and reintegration progress, including access to stable, prosocial employment opportunities. Employment for these populations is important for establishing financial security, reducing unstructured leisure time, increasing self-worth, and improving interpersonal skills. However, research has demonstrated that individuals with psychiatric and/or criminal backgrounds may experience stigmatizing attitudes from employers that impede their ability to find adequate work. This study aimed to evaluate stigmatizing beliefs toward hypothetical applicants who indicated a mental health history, a criminal history, or both, as well as the effectiveness of psychoeducation in reducing stigma. Participants consisted of 465 individuals recruited from a large university who completed a series of online questions about a given applicant. Results of this study varied somewhat across measures of employability, but were largely consistent with extant research suggesting that mental illness and criminal justice involvement serve as deterrents when making hiring decisions. Overall, psychoeducation appeared to reduce stigma for hiring decisions when the applicant presented with a criminal history. Unfortunately, similar findings were not revealed when applicants presented with a psychiatric or a psychiatric and criminal history. Implications and limitations of these findings are presented, along with suggestions for future research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Towards a scientific interpretation of the terroir concept: plasticity of the grape berry metabolome.

    Science.gov (United States)

    Anesi, Andrea; Stocchero, Matteo; Dal Santo, Silvia; Commisso, Mauro; Zenoni, Sara; Ceoldo, Stefania; Tornielli, Giovanni Battista; Siebert, Tracey E; Herderich, Markus; Pezzotti, Mario; Guzzo, Flavia

    2015-08-07

    The definition of the terroir concept is one of the most debated issues in oenology and viticulture. The dynamic interaction among diverse factors including the environment, the grapevine plant and the imposed viticultural techniques means that the wine produced in a given terroir is unique. However, there is an increasing interest to define and quantify the contribution of individual factors to a specific terroir objectively. Here, we characterized the metabolome and transcriptome of berries from a single clone of the Corvina variety cultivated in seven different vineyards, located in three macrozones, over a 3-year trial period. To overcome the anticipated strong vintage effect, we developed statistical tools that allowed us to identify distinct terroir signatures in the metabolic composition of berries from each macrozone, and from different vineyards within each macrozone. We also identified non-volatile and volatile components of the metabolome which are more plastic and therefore respond differently to terroir diversity. We observed some relationships between the plasticity of the metabolome and transcriptome, allowing a multifaceted scientific interpretation of the terroir concept. Our experiments with a single Corvina clone in different vineyards have revealed the existence of a clear terroir-specific effect on the transcriptome and metabolome which persists over several vintages and allows each vineyard to be characterized by the unique profile of specific metabolites.

  17. Microbial metabolomics in open microscale platforms

    Science.gov (United States)

    Barkal, Layla J.; Theberge, Ashleigh B.; Guo, Chun-Jun; Spraker, Joe; Rappert, Lucas; Berthier, Jean; Brakke, Kenneth A.; Wang, Clay C. C.; Beebe, David J.; Keller, Nancy P.; Berthier, Erwin

    2016-01-01

    The microbial secondary metabolome encompasses great synthetic diversity, empowering microbes to tune their chemical responses to changing microenvironments. Traditional metabolomics methods are ill-equipped to probe a wide variety of environments or environmental dynamics. Here we introduce a class of microscale culture platforms to analyse chemical diversity of fungal and bacterial secondary metabolomes. By leveraging stable biphasic interfaces to integrate microculture with small molecule isolation via liquid–liquid extraction, we enable metabolomics-scale analysis using mass spectrometry. This platform facilitates exploration of culture microenvironments (including rare media typically inaccessible using established methods), unusual organic solvents for metabolite isolation and microbial mutants. Utilizing Aspergillus, a fungal genus known for its rich secondary metabolism, we characterize the effects of culture geometry and growth matrix on secondary metabolism, highlighting the potential use of microscale systems to unlock unknown or cryptic secondary metabolites for natural products discovery. Finally, we demonstrate the potential for this class of microfluidic systems to study interkingdom communication between fungi and bacteria. PMID:26842393

  18. Analyzing metabolomics-based challenge test

    NARCIS (Netherlands)

    Vis, D.J.; Westerhuis, J.A.; Jacobs, D.M.; van Duynhoven, J.P.M.; Wopereis, S.; van Ommen, B.; Hendriks, M.M.W.B.; Smilde, A.K.

    2015-01-01

    Challenge tests are used to assess the resilience of human beings to perturbations by analyzing responses to detect functional abnormalities. Well known examples are allergy tests and glucose tolerance tests. Increasingly, metabolomics analysis of blood or serum samples is used to analyze the

  19. Data-processing strategies for metabolomics studies

    NARCIS (Netherlands)

    Hendriks, M.M.W.B.; Eeuwijk, van F.A.; Jellema, R.H.; Westerhuis, J.A.; Reijmers, T.H.; Hoefsloot, H.C.J.; Smilde, A.K.

    2011-01-01

    Metabolomics studies aim at a better understanding of biochemical processes by studying relations between metabolites and between metabolites and other types of information (e.g., sensory and phenotypic features). The objectives of these studies are diverse, but the types of data generated and the

  20. Impact of anesthesia and euthanasia on metabolomics of mammalian tissues: studies in a C57BL/6J mouse model.

    Science.gov (United States)

    Overmyer, Katherine A; Thonusin, Chanisa; Qi, Nathan R; Burant, Charles F; Evans, Charles R

    2015-01-01

    A critical application of metabolomics is the evaluation of tissues, which are often the primary sites of metabolic dysregulation in disease. Laboratory rodents have been widely used for metabolomics studies involving tissues due to their facile handing, genetic manipulability and similarity to most aspects of human metabolism. However, the necessary step of administration of anesthesia in preparation for tissue sampling is not often given careful consideration, in spite of its potential for causing alterations in the metabolome. We examined, for the first time using untargeted and targeted metabolomics, the effect of several commonly used methods of anesthesia and euthanasia for collection of skeletal muscle, liver, heart, adipose and serum of C57BL/6J mice. The data revealed dramatic, tissue-specific impacts of tissue collection strategy. Among many differences observed, post-euthanasia samples showed elevated levels of glucose 6-phosphate and other glycolytic intermediates in skeletal muscle. In heart and liver, multiple nucleotide and purine degradation metabolites accumulated in tissues of euthanized compared to anesthetized animals. Adipose tissue was comparatively less affected by collection strategy, although accumulation of lactate and succinate in euthanized animals was observed in all tissues. Among methods of tissue collection performed pre-euthanasia, ketamine showed more variability compared to isoflurane and pentobarbital. Isoflurane induced elevated liver aspartate but allowed more rapid initiation of tissue collection. Based on these findings, we present a more optimal collection strategy mammalian tissues and recommend that rodent tissues intended for metabolomics studies be collected under anesthesia rather than post-euthanasia.

  1. Impact of Anesthesia and Euthanasia on Metabolomics of Mammalian Tissues: Studies in a C57BL/6J Mouse Model

    Science.gov (United States)

    Overmyer, Katherine A.; Thonusin, Chanisa; Qi, Nathan R.; Burant, Charles F.; Evans, Charles R.

    2015-01-01

    A critical application of metabolomics is the evaluation of tissues, which are often the primary sites of metabolic dysregulation in disease. Laboratory rodents have been widely used for metabolomics studies involving tissues due to their facile handing, genetic manipulability and similarity to most aspects of human metabolism. However, the necessary step of administration of anesthesia in preparation for tissue sampling is not often given careful consideration, in spite of its potential for causing alterations in the metabolome. We examined, for the first time using untargeted and targeted metabolomics, the effect of several commonly used methods of anesthesia and euthanasia for collection of skeletal muscle, liver, heart, adipose and serum of C57BL/6J mice. The data revealed dramatic, tissue-specific impacts of tissue collection strategy. Among many differences observed, post-euthanasia samples showed elevated levels of glucose 6-phosphate and other glycolytic intermediates in skeletal muscle. In heart and liver, multiple nucleotide and purine degradation metabolites accumulated in tissues of euthanized compared to anesthetized animals. Adipose tissue was comparatively less affected by collection strategy, although accumulation of lactate and succinate in euthanized animals was observed in all tissues. Among methods of tissue collection performed pre-euthanasia, ketamine showed more variability compared to isoflurane and pentobarbital. Isoflurane induced elevated liver aspartate but allowed more rapid initiation of tissue collection. Based on these findings, we present a more optimal collection strategy mammalian tissues and recommend that rodent tissues intended for metabolomics studies be collected under anesthesia rather than post-euthanasia. PMID:25658945

  2. Disruption of TCA Cycle and Glutamate Metabolism Identified by Metabolomics in an In Vitro Model of Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Veyrat-Durebex, Charlotte; Corcia, Philippe; Piver, Eric; Devos, David; Dangoumau, Audrey; Gouel, Flore; Vourc'h, Patrick; Emond, Patrick; Laumonnier, Frédéric; Nadal-Desbarats, Lydie; Gordon, Paul H; Andres, Christian R; Blasco, Hélène

    2016-12-01

    This study aims to develop a cellular metabolomics model that reproduces the pathophysiological conditions found in amyotrophic lateral sclerosis in order to improve knowledge of disease physiology. We used a co-culture model combining the motor neuron-like cell line NSC-34 and the astrocyte clone C8-D1A, with each over-expressing wild-type or G93C mutant human SOD1, to examine amyotrophic lateral sclerosis (ALS) physiology. We focused on the effects of mutant human SOD1 as well as oxidative stress induced by menadione on intracellular metabolism using a metabolomics approach through gas chromatography coupled with mass spectrometry (GC-MS) analysis. Preliminary non-supervised analysis by Principal Component Analysis (PCA) revealed that cell type, genetic environment, and time of culture influenced the metabolomics profiles. Supervised analysis using orthogonal partial least squares discriminant analysis (OPLS-DA) on data from intracellular metabolomics profiles of SOD1 G93C co-cultures produced metabolites involved in glutamate metabolism and the tricarboxylic acid cycle (TCA) cycle. This study revealed the feasibility of using a metabolomics approach in a cellular model of ALS. We identified potential disruption of the TCA cycle and glutamate metabolism under oxidative stress, which is consistent with prior research in the disease. Analysis of metabolic alterations in an in vitro model is a novel approach to investigation of disease physiology.

  3. Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Ressom, Habtom W., E-mail: hwr@georgetown.edu [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Xiao, Jun Feng; Tuli, Leepika; Varghese, Rency S.; Zhou Bin; Tsai, Tsung-Heng; Nezami Ranjbar, Mohammad R.; Zhao Yi; Wang Jinlian; Di Poto, Cristina; Cheema, Amrita K. [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Tadesse, Mahlet G. [Department of Mathematics and Statistics, Georgetown University, Washington, DC 20057 (United States); Goldman, Radoslav [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Shetty, Kirti [Department of Surgery, Georgetown University Medical Center, Washington, DC 20057 (United States); Georgetown University Hospital, Washington, DC 20057 (United States)

    2012-09-19

    Highlights: Black-Right-Pointing-Pointer We analyzed sera from HCC and cirrhotic patients by LC-MS in three experiments. Black-Right-Pointing-Pointer Metabolites with significant and consistent changes in HCC vs. cirrhosis were selected. Black-Right-Pointing-Pointer Verification of the identities of selected metabolites was performed by MS/MS. Black-Right-Pointing-Pointer Quantitation of candidate metabolites was conducted using isotope dilution by SRM. - Abstract: Characterizing the metabolic changes pertaining to hepatocellular carcinoma (HCC) in patients with liver cirrhosis is believed to contribute towards early detection, treatment, and understanding of the molecular mechanisms of HCC. In this study, we compare metabolite levels in sera of 78 HCC cases with 184 cirrhotic controls by using ultra performance liquid chromatography coupled with a hybrid quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS). Following data preprocessing, the most relevant ions in distinguishing HCC cases from patients with cirrhosis are selected by parametric and non-parametric statistical methods. Putative metabolite identifications for these ions are obtained through mass-based database search. Verification of the identities of selected metabolites is conducted by comparing their MS/MS fragmentation patterns and retention time with those from authentic compounds. Quantitation of these metabolites is performed in a subset of the serum samples (10 HCC and 10 cirrhosis) using isotope dilution by selected reaction monitoring (SRM) on triple quadrupole linear ion trap (QqQLIT) and triple quadrupole (QqQ) mass spectrometers. The results of this analysis confirm that metabolites involved in sphingolipid metabolism and phospholipid catabolism such as sphingosine-1-phosphate (S-1-P) and lysophosphatidylcholine (lysoPC 17:0) are up-regulated in sera of HCC vs. those with liver cirrhosis. Down-regulated metabolites include those involved in bile acid biosynthesis (specifically

  4. Impact of Soil Warming on the Plant Metabolome of Icelandic Grasslands

    Science.gov (United States)

    Gargallo-Garriga, Albert; Ayala-Roque, Marta; Granda, Victor; Sigurdsson, Bjarni D.; Leblans, Niki I. W.; Oravec, Michal; Urban, Otmar; Janssens, Ivan A.

    2017-01-01

    Climate change is stronger at high than at temperate and tropical latitudes. The natural geothermal conditions in southern Iceland provide an opportunity to study the impact of warming on plants, because of the geothermal bedrock channels that induce stable gradients of soil temperature. We studied two valleys, one where such gradients have been present for centuries (long-term treatment), and another where new gradients were created in 2008 after a shallow crustal earthquake (short-term treatment). We studied the impact of soil warming (0 to +15 °C) on the foliar metabolomes of two common plant species of high northern latitudes: Agrostis capillaris, a monocotyledon grass; and Ranunculus acris, a dicotyledonous herb, and evaluated the dependence of shifts in their metabolomes on the length of the warming treatment. The two species responded differently to warming, depending on the length of exposure. The grass metabolome clearly shifted at the site of long-term warming, but the herb metabolome did not. The main up-regulated compounds at the highest temperatures at the long-term site were saccharides and amino acids, both involved in heat-shock metabolic pathways. Moreover, some secondary metabolites, such as phenolic acids and terpenes, associated with a wide array of stresses, were also up-regulated. Most current climatic models predict an increase in annual average temperature between 2–8 °C over land masses in the Arctic towards the end of this century. The metabolomes of A. capillaris and R. acris shifted abruptly and nonlinearly to soil warming >5 °C above the control temperature for the coming decades. These results thus suggest that a slight warming increase may not imply substantial changes in plant function, but if the temperature rises more than 5 °C, warming may end up triggering metabolic pathways associated with heat stress in some plant species currently dominant in this region. PMID:28832555

  5. Analysis of metabolomic data: tools, current strategies and future challenges for omics data integration.

    Science.gov (United States)

    Cambiaghi, Alice; Ferrario, Manuela; Masseroli, Marco

    2017-05-01

    Metabolomics is a rapidly growing field consisting of the analysis of a large number of metabolites at a system scale. The two major goals of metabolomics are the identification of the metabolites characterizing each organism state and the measurement of their dynamics under different situations (e.g. pathological conditions, environmental factors). Knowledge about metabolites is crucial for the understanding of most cellular phenomena, but this information alone is not sufficient to gain a comprehensive view of all the biological processes involved. Integrated approaches combining metabolomics with transcriptomics and proteomics are thus required to obtain much deeper insights than any of these techniques alone. Although this information is available, multilevel integration of different 'omics' data is still a challenge. The handling, processing, analysis and integration of these data require specialized mathematical, statistical and bioinformatics tools, and several technical problems hampering a rapid progress in the field exist. Here, we review four main tools for number of users or provided features (MetaCoreTM, MetaboAnalyst, InCroMAP and 3Omics) out of the several available for metabolomic data analysis and integration with other 'omics' data, highlighting their strong and weak aspects; a number of related issues affecting data analysis and integration are also identified and discussed. Overall, we provide an objective description of how some of the main currently available software packages work, which may help the experimental practitioner in the choice of a robust pipeline for metabolomic data analysis and integration. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. NMR-based metabolomics in human disease diagnosis: Applications, limitations, and recommendations

    KAUST Repository

    Emwas, Abdul-Hamid M.

    2013-04-03

    Metabolomics is a dynamic and emerging research field, similar to proteomics, transcriptomics and genomics in affording global understanding of biological systems. It is particularly useful in functional genomic studies in which metabolism is thought to be perturbed. Metabolomics provides a snapshot of the metabolic dynamics that reflect the response of living systems to both pathophysiological stimuli and/or genetic modification. Because this approach makes possible the examination of interactions between an organism and its diet or environment, it is particularly useful for identifying biomarkers of disease processes that involve the environment. For example, the interaction of a high fat diet with cardiovascular disease can be studied via such a metabolomics approach by modeling the interaction between genes and diet. The high reproducibility of NMR-based techniques gives this method a number of advantages over other analytical techniques in large-scale and long-term metabolomic studies, such as epidemiological studies. This approach has been used to study a wide range of diseases, through the examination of biofluids, including blood plasma/serum, urine, blister fluid, saliva and semen, as well as tissue extracts and intact tissue biopsies. However, complicating the use of NMR spectroscopy in biomarker discovery is the fact that numerous variables can effect metabolic composition including, fasting, stress, drug administration, diet, gender, age, physical activity, life style and the subject\\'s health condition. To minimize the influence of these variations in the datasets, all experimental conditions including sample collection, storage, preparation as well as NMR spectroscopic parameters and data analysis should be optimized carefully and conducted in an identical manner as described by the local standard operating protocol. This review highlights the potential applications of NMR-based metabolomics studies and gives some recommendations to improve sample

  7. Metabolomics reveals distinct neurochemical profiles associated with stress resilience

    Directory of Open Access Journals (Sweden)

    Brooke N. Dulka

    2017-12-01

    Full Text Available Acute social defeat represents a naturalistic form of conditioned fear and is an excellent model in which to investigate the biological basis of stress resilience. While there is growing interest in identifying biomarkers of stress resilience, until recently, it has not been feasible to associate levels of large numbers of neurochemicals and metabolites to stress-related phenotypes. The objective of the present study was to use an untargeted metabolomics approach to identify known and unknown neurochemicals in select brain regions that distinguish susceptible and resistant individuals in two rodent models of acute social defeat. In the first experiment, male mice were first phenotyped as resistant or susceptible. Then, mice were subjected to acute social defeat, and tissues were immediately collected from the ventromedial prefrontal cortex (vmPFC, basolateral/central amygdala (BLA/CeA, nucleus accumbens (NAc, and dorsal hippocampus (dHPC. Ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UPLC-HRMS was used for the detection of water-soluble neurochemicals. In the second experiment, male Syrian hamsters were paired in daily agonistic encounters for 2 weeks, during which they formed stable dominant-subordinate relationships. Then, 24 h after the last dominance encounter, animals were exposed to acute social defeat stress. Immediately after social defeat, tissue was collected from the vmPFC, BLA/CeA, NAc, and dHPC for analysis using UPLC-HRMS. Although no single biomarker characterized stress-related phenotypes in both species, commonalities were found. For instance, in both model systems, animals resistant to social defeat stress also show increased concentration of molecules to protect against oxidative stress in the NAc and vmPFC. Additionally, in both mice and hamsters, unidentified spectral features were preliminarily annotated as potential targets for future experiments. Overall, these findings

  8. Impact of Short-Term Intake of Red Wine and Grape Polyphenol Extract on the Human Metabolome

    NARCIS (Netherlands)

    Jacobs, D.M.; Fuhrmann, J.C.; Dorsten, van F.A.; Rein, D.; Peters, S.; Velzen, van E.J.J.; Hollebrands, B.; Draijer, R.; Duynhoven, van J.P.M.; Garczarek, U.

    2012-01-01

    Red wine and grape polyphenols are considered to promote cardiovascular health and are involved in multiple biological functions. Their overall impact on the human metabolome is not known. Therefore, exogenous and endogenous metabolic effects were determined in fasting plasma and 24 h urine from

  9. Lipidomic and metabolomic characterization of a genetically modified mouse model of the early stages of human type 1 diabetes pathogenesis

    DEFF Research Database (Denmark)

    Overgaard, Anne Julie; Weir, Jacquelyn M; De Souza, David Peter

    2016-01-01

    The early mechanisms regulating progression towards beta cell failure in type 1 diabetes (T1D) are poorly understood, but it is generally acknowledged that genetic and environmental components are involved. The metabolomic phenotype is sensitive to minor variations in both, and accordingly reflects...

  10. Glyphosate-Induced Specific and Widespread Perturbations in the Metabolome of Soil Pseudomonas Species

    Directory of Open Access Journals (Sweden)

    Ludmilla Aristilde

    2017-06-01

    Full Text Available Previous studies have reported adverse effects of glyphosate on crop-beneficial soil bacterial species, including several soil Pseudomonas species. Of particular interest is the elucidation of the metabolic consequences of glyphosate toxicity in these species. Here we investigated the growth and metabolic responses of soil Pseudomonas species grown on succinate, a common root exudate, and glyphosate at different concentrations. We conducted our experiments with one agricultural soil isolate, P. fluorescens RA12, and three model species, P. putida KT2440, P. putida S12, and P. protegens Pf-5. Our results demonstrated both species- and strain-dependent growth responses to glyphosate. Following exposure to a range of glyphosate concentrations (up to 5 mM, the growth rate of both P. protegens Pf-5 and P. fluorescens RA12 remained unchanged whereas the two P. putida strains exhibited from 0 to 100% growth inhibition. We employed a 13C-assisted metabolomics approach using liquid chromatography-mass spectrometry to monitor disruptions in metabolic homeostasis and fluxes. Profiling of the whole-cell metabolome captured deviations in metabolite levels involved in the tricarboxylic acid cycle, ribonucleotide biosynthesis, and protein biosynthesis. Altered metabolite levels specifically in the biosynthetic pathway of aromatic amino acids (AAs, the target of toxicity for glyphosate in plants, implied the same toxicity target in the soil bacterium. Kinetic flux experiments with 13C-labeled succinate revealed that biosynthetic fluxes of the aromatic AAs were not inhibited in P. fluorescens Pf-5 in the presence of low and high glyphosate doses but these fluxes were inhibited by up to 60% in P. putida KT2440, even at sub-lethal glyphosate exposure. Notably, the greatest inhibition was found for the aromatic AA tryptophan, an important precursor to secondary metabolites. When the growth medium was supplemented with aromatic AAs, P. putida S12 exposed to a lethal

  11. The impact of product experience, product involvement and verbal processing style on consumers' cognitive structure with regard to fresh fish

    DEFF Research Database (Denmark)

    Sørensen, Elin; Grunert, Klaus G.; Nielsen, Niels Asger

    1996-01-01

    Executive summary 1) The means-end chain model has been widely advocated for the understanding of how consumers perceive self-relevant consequences of products. The model implies that subjective product meaning is established by associations between product attributes and more abstract, more...... central cognitive categories like values. A means-end chain consists of concrete product attributes, abstract product attributes, functional consequences, psychosocial consequences, instrumental values, a terminal values. 2) The most common method of measuring means-end chains has been the laddering......) However popular, a number of problems with means-end chain analysis have been pointed out. In this paper we report how three variables affect the outcome of a laddering study, namely (1) product experience, (2) product involvement, and (3) verbal processing style. 4) 90 respondents in the Copenhagen area...

  12. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production.

    Science.gov (United States)

    Wu, Gary D; Compher, Charlene; Chen, Eric Z; Smith, Sarah A; Shah, Rachana D; Bittinger, Kyle; Chehoud, Christel; Albenberg, Lindsey G; Nessel, Lisa; Gilroy, Erin; Star, Julie; Weljie, Aalim M; Flint, Harry J; Metz, David C; Bennett, Michael J; Li, Hongzhe; Bushman, Frederic D; Lewis, James D

    2016-01-01

    The consumption of an agrarian diet is associated with a reduced risk for many diseases associated with a 'Westernised' lifestyle. Studies suggest that diet affects the gut microbiota, which subsequently influences the metabolome, thereby connecting diet, microbiota and health. However, the degree to which diet influences the composition of the gut microbiota is controversial. Murine models and studies comparing the gut microbiota in humans residing in agrarian versus Western societies suggest that the influence is large. To separate global environmental influences from dietary influences, we characterised the gut microbiota and the host metabolome of individuals consuming an agrarian diet in Western society. Using 16S rRNA-tagged sequencing as well as plasma and urinary metabolomic platforms, we compared measures of dietary intake, gut microbiota composition and the plasma metabolome between healthy human vegans and omnivores, sampled in an urban USA environment. Plasma metabolome of vegans differed markedly from omnivores but the gut microbiota was surprisingly similar. Unlike prior studies of individuals living in agrarian societies, higher consumption of fermentable substrate in vegans was not associated with higher levels of faecal short chain fatty acids, a finding confirmed in a 10-day controlled feeding experiment. Similarly, the proportion of vegans capable of producing equol, a soy-based gut microbiota metabolite, was less than that was reported in Asian societies despite the high consumption of soy-based products. Evidently, residence in globally distinct societies helps determine the composition of the gut microbiota that, in turn, influences the production of diet-dependent gut microbial metabolites. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production

    Science.gov (United States)

    Wu, Gary D; Compher, Charlene; Chen, Eric Z; Smith, Sarah A; Shah, Rachana D; Bittinger, Kyle; Chehoud, Christel; Albenberg, Lindsey G; Nessel, Lisa; Gilroy, Erin; Star, Julie; Weljie, Aalim M; Flint, Harry J; Metz, David C; Bennett, Michael J; Li, Hongzhe; Bushman, Frederic D; Lewis, James D

    2015-01-01

    Objective The consumption of an agrarian diet is associated with a reduced risk for many diseases associated with a ‘Westernised’ lifestyle. Studies suggest that diet affects the gut microbiota, which subsequently influences the metabolome, thereby connecting diet, microbiota and health. However, the degree to which diet influences the composition of the gut microbiota is controversial. Murine models and studies comparing the gut microbiota in humans residing in agrarian versus Western societies suggest that the influence is large. To separate global environmental influences from dietary influences, we characterised the gut microbiota and the host metabolome of individuals consuming an agrarian diet in Western society. Design and results Using 16S rRNA-tagged sequencing as well as plasma and urinary metabolomic platforms, we compared measures of dietary intake, gut microbiota composition and the plasma metabolome between healthy human vegans and omnivores, sampled in an urban USA environment. Plasma metabolome of vegans differed markedly from omnivores but the gut microbiota was surprisingly similar. Unlike prior studies of individuals living in agrarian societies, higher consumption of fermentable substrate in vegans was not associated with higher levels of faecal short chain fatty acids, a finding confirmed in a 10-day controlled feeding experiment. Similarly, the proportion of vegans capable of producing equol, a soy-based gut microbiota metabolite, was less than that was reported in Asian societies despite the high consumption of soy-based products. Conclusions Evidently, residence in globally distinct societies helps determine the composition of the gut microbiota that, in turn, influences the production of diet-dependent gut microbial metabolites. PMID:25431456

  14. Independent component analysis in non-hypothesis driven metabolomics

    DEFF Research Database (Denmark)

    Li, Xiang; Hansen, Jakob; Zhao, Xinjie

    2012-01-01

    components were involved in fuel metabolism, representing one of the most affected metabolic changes occurring in exercising humans. Conclusive time dependent physiological changes of the metabolic pattern under exercise conditions were detected. We conclude that after optimization ICA can successfully......In a non-hypothesis driven metabolomics approach plasma samples collected at six different time points (before, during and after an exercise bout) were analyzed by gas chromatography-time of flight mass spectrometry (GC-TOF MS). Since independent component analysis (ICA) does not need a priori...... information on the investigated process and moreover can separate statistically independent source signals with non-Gaussian distribution, we aimed to elucidate the analytical power of ICA for the metabolic pattern analysis and the identification of key metabolites in this exercise study. A novel approach...

  15. Extracting the Beat: An Experience-dependent Complex Integration of Multisensory Information Involving Multiple Levels of the Nervous System

    Directory of Open Access Journals (Sweden)

    Laurel J. Trainor

    2009-04-01

    Full Text Available In a series of studies we have shown that movement (or vestibular stimulation that is synchronized to every second or every third beat of a metrically ambiguous rhythm pattern biases people to perceive the meter as a march or as a waltz, respectively. Riggle (this volume claims that we postulate an "innate", "specialized brain unit" for beat perception that is "directly" influenced by vestibular input. In fact, to the contrary, we argue that experience likely plays a large role in the development of rhythmic auditory-movement interactions, and that rhythmic processing in the brain is widely distributed and includes subcortical and cortical areas involved in sound processing and movement. Further, we argue that vestibular and auditory information are integrated at various subcortical and cortical levels along with input from other sensory modalities, and it is not clear which levels are most important for rhythm processing or, indeed, what a "direct" influence of vestibular input would mean. Finally, we argue that vestibular input to sound location mechanisms may be involved, but likely cannot explain the influence of vestibular input on the perception of auditory rhythm. This remains an empirical question for future research.

  16. Binary similarity measures for fingerprint analysis of qualitative metabolomic profiles.

    Science.gov (United States)

    Rácz, Anita; Andrić, Filip; Bajusz, Dávid; Héberger, Károly

    2018-01-01

    Contemporary metabolomic fingerprinting is based on multiple spectrometric and chromatographic signals, used either alone or combined with structural and chemical information of metabolic markers at the qualitative and semiquantitative level. However, signal shifting, convolution, and matrix effects may compromise metabolomic patterns. Recent increase in the use of qualitative metabolomic data, described by the presence (1) or absence (0) of particular metabolites, demonstrates great potential in the field of metabolomic profiling and fingerprint analysis. The aim of this study is a comprehensive evaluation of binary similarity measures for the elucidation of patterns among samples of different botanical origin and various metabolomic profiles. Nine qualitative metabolomic data sets covering a wide range of natural products and metabolomic profiles were applied to assess 44 binary similarity measures for the fingerprinting of plant extracts and natural products. The measures were analyzed by the novel sum of ranking differences method (SRD), searching for the most promising candidates. Baroni-Urbani-Buser (BUB) and Hawkins-Dotson (HD) similarity coefficients were selected as the best measures by SRD and analysis of variance (ANOVA), while Dice (Di1), Yule, Russel-Rao, and Consonni-Todeschini 3 ranked the worst. ANOVA revealed that concordantly and intermediately symmetric similarity coefficients are better candidates for metabolomic fingerprinting than the asymmetric and correlation based ones. The fingerprint analysis based on the BUB and HD coefficients and qualitative metabolomic data performed equally well as the quantitative metabolomic profile analysis. Fingerprint analysis based on the qualitative metabolomic profiles and binary similarity measures proved to be a reliable way in finding the same/similar patterns in metabolomic data as that extracted from quantitative data.

  17. Metabolomics-Driven Nutraceutical Evaluation of Diverse Green Tea Cultivars

    OpenAIRE

    Fujimura, Yoshinori; Kurihara, Kana; Ida, Megumi; Kosaka, Reia; Miura, Daisuke; Wariishi, Hiroyuki; Maeda-Yamamoto, Mari; Nesumi, Atsushi; Saito, Takeshi; Kanda, Tomomasa; Yamada, Koji; Tachibana, Hirofumi

    2011-01-01

    BACKGROUND: Green tea has various health promotion effects. Although there are numerous tea cultivars, little is known about the differences in their nutraceutical properties. Metabolic profiling techniques can provide information on the relationship between the metabolome and factors such as phenotype or quality. Here, we performed metabolomic analyses to explore the relationship between the metabolome and health-promoting attributes (bioactivity) of diverse Japanese green tea cultivars. MET...

  18. Challenges, Dilemmas and Factors Involved in PGD Decision-Making: Providers' and Patients' Views, Experiences and Decisions.

    Science.gov (United States)

    Klitzman, Robert

    2017-12-16

    Providers and patients are considering and pursuing PGD for ever-more conditions, but questions arise concerning how they make, view and experience these decisions, and what challenges they may face. Thirty-seven in-depth semi-structured interviews were conducted (with 27 IVF providers and 10 patients). Patients and providers struggled with challenges and dilemmas about whether to pursue PGD in specific cases, and how to decide. Respondents varied in how they viewed, experienced and made these choices, and for which conditions to pursue PGD (from lethal, childhood-onset conditions to milder, treatable, or adult-onset disorders). Several factors were involved, including differences in gene penetrance, predictability, and phenotypic expression, and disease severity, age of onset, treatability, stigma and degree of disability. Providers and patients face questions regarding possibilities of screening for more than one condition in one set of embryos, and limitations of PGD (e.g., inaccurate results). Characteristics of providers (e.g., amount of PGD experience, understandings of genetics, and use of genetic counselors), and of patients (e.g., related to broader moral and social attitudes) can also affect these decisions. These data, the first to examine several key questions concerning PGD, suggest that providers and patients confront several dilemmas. These findings have critical implications for future practice, guidelines, education and research.

  19. Are Lowered Socioeconomic Circumstances Causally Related to Tooth Loss? A Natural Experiment Involving the 2011 Great East Japan Earthquake.

    Science.gov (United States)

    Matsuyama, Yusuke; Aida, Jun; Tsuboya, Toru; Hikichi, Hiroyuki; Kondo, Katsunori; Kawachi, Ichiro; Osaka, Ken

    2017-07-01

    Oral health status is correlated with socioeconomic status. However, the causal nature of the relationship is not established. Here we describe a natural experiment involving deteriorating socioeconomic circumstances following exposure to the 2011 Great East Japan Earthquake and Tsunami. We investigated the relationship between subjective economic deterioration and housing damage due to the disaster and tooth loss in a cohort of community-dwelling residents (n = 3,039), from whom we obtained information about socioeconomic status and health status in 2010 (i.e., predating the disaster). A follow-up survey was performed in 2013 (postdisaster), and 82.1% of the 4,380 eligible survivors responded. We estimated the impact of subjective economic deterioration and housing damage due to the disaster on tooth loss by fitting an instrumental variable probit model. Subjective economic deterioration and housing damage due to the disaster were significantly associated with 8.1% and 1.7% increases in the probability of tooth loss (probit coefficients were 0.469 (95% confidence interval: 0.065, 0.872) and 0.103 (95% confidence interval: 0.011, 0.196), respectively). In this natural experiment, we confirmed the causal relationship between deteriorating socioeconomic circumstances and tooth loss. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Seismic and volcanic activity during 2014 in the region involved by TOMO-ETNA seismic active experiment

    Directory of Open Access Journals (Sweden)

    Graziella Barberi

    2016-09-01

    Full Text Available This paper presents an overview of the seismic and volcanic activity occurred during 2014 in the region involved by the TOMO-ETNA seismic active experiment (Mt. Etna, Aeolian Islands and Peloritani-Messina Strait areas. To better characterize the seismicity over the year, three-dimensional hypocenter locations and focal mechanism solutions of a dataset of 678 selected small-to-moderate magnitude earthquakes (0.5 ≤ ML ≤ 4.3 were analyzed. In the framework of the TOMO-ETNA experiment, a temporary seismic network was installed on-land from June to November 2014, both to acquire seismic signals produced by shots and to record the local seismicity. Data collected by the temporary network were used to integrate those deriving from the permanent seismic network operated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV-Osservatorio Etneo (Etna Observatory, thus obtaining a numerically more robust dataset. In agreement with previous analysis and studies, the distribution of the hypocentral locations is well representative of the seismicity that typically characterizes this area. The selected well-constrained 42 fault plane solutions evidence two domains characterized by different motions and style of deformation. In particular, an extensional domain in the northeastern Sicily and a strike-slip regime in the northernmost part of the studied region have been observed.

  1. Advances in metabolome information retrieval: turning chemistry into biology. Part I: analytical chemistry of the metabolome.

    Science.gov (United States)

    Tebani, Abdellah; Afonso, Carlos; Bekri, Soumeya

    2017-08-24

    Metabolites are small molecules produced by enzymatic reactions in a given organism. Metabolomics or metabolic phenotyping is a well-established omics aimed at comprehensively assessing metabolites in biological systems. These comprehensive analyses use analytical platforms, mainly nuclear magnetic resonance spectroscopy and mass spectrometry, along with associated separation methods to gather qualitative and quantitative data. Metabolomics holistically evaluates biological systems in an unbiased, data-driven approach that may ultimately support generation of hypotheses. The approach inherently allows the molecular characterization of a biological sample with regard to both internal (genetics) and environmental (exosome, microbiome) influences. Metabolomics workflows are based on whether the investigator knows a priori what kind of metabolites to assess. Thus, a targeted metabolomics approach is defined as a quantitative analysis (absolute concentrations are determined) or a semiquantitative analysis (relative intensities are determined) of a set of metabolites that are possibly linked to common chemical classes or a selected metabolic pathway. An untargeted metabolomics approach is a semiquantitative analysis of the largest possible number of metabolites contained in a biological sample. This is part I of a review intending to give an overview of the state of the art of major metabolic phenotyping technologies. Furthermore, their inherent analytical advantages and limits regarding experimental design, sample handling, standardization and workflow challenges are discussed.

  2. Human gut microbes impact host serum metabolome and insulin sensitivity

    DEFF Research Database (Denmark)

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Nielsen, Henrik Bjørn

    2016-01-01

    Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individ......Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin...

  3. Non-target effects of GM potato: an eco-metabolomics approach

    OpenAIRE

    Plischke, Andreas

    2013-01-01

    In this thesis, patterns of variation in plant metabolomes and insect communities were described in GM and non-GM potato plants in both laboratory and field experiments. Differences between plant genotypes in insect abundances were small when compared to year-to-year differences, location effects and differences between developmental stages of plants. Standardized effect sizes are discussed as an alternative scale for measuring effects. Leaf age, aphid infestation and virus infection were fou...

  4. Metabolomic analysis of three Mollicute species.

    Directory of Open Access Journals (Sweden)

    Anna A Vanyushkina

    Full Text Available We present a systematic study of three bacterial species that belong to the class Mollicutes, the smallest and simplest bacteria, Spiroplasma melliferum, Mycoplasma gallisepticum, and Acholeplasma laidlawii. To understand the difference in the basic principles of metabolism regulation and adaptation to environmental conditions in the three species, we analyzed the metabolome of these bacteria. Metabolic pathways were reconstructed using the proteogenomic annotation data provided by our lab. The results of metabolome, proteome and genome profiling suggest a fundamental difference in the adaptation of the three closely related Mollicute species to stress conditions. As the transaldolase is not annotated in Mollicutes, we propose variants of the pentose phosphate pathway catalyzed by annotated enzymes for three species. For metabolite detection we employed high performance liquid chromatography coupled with mass spectrometry. We used liquid chromatography method - hydrophilic interaction chromatography with silica column - as it effectively separates highly polar cellular metabolites prior to their detection by mass spectrometer.

  5. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats.

    Science.gov (United States)

    Miller, Desinia B; Karoly, Edward D; Jones, Jan C; Ward, William O; Vallanat, Beena D; Andrews, Debora L; Schladweiler, Mette C; Snow, Samantha J; Bass, Virginia L; Richards, Judy E; Ghio, Andrew J; Cascio, Wayne E; Ledbetter, Allen D; Kodavanti, Urmila P

    2015-07-15

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O3) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O3 exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O3 at 0.25, 0.50, or 1.0ppm, 6h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0ppm O3, 6h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18h post-exposure. O3 increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18h-post second exposure. O3 increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O3. In conclusion, short-term O3 exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress-response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. Published by Elsevier Inc.

  6. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats☆

    Science.gov (United States)

    Miller, Desinia B.; Karoly, Edward D.; Jones, Jan C.; Ward, William O.; Vallanat, Beena D.; Andrews, Debora L.; Schladweiler, Mette C.; Snow, Samantha J.; Bass, Virginia L.; Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D.; Kodavanti, Urmila P.

    2016-01-01

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O3) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O3 exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O3 at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O3, 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O3 increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O3 increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O3. In conclusion, short-term O3 exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. PMID:25838073

  7. Data fusion in metabolomic cancer diagnostics

    DEFF Research Database (Denmark)

    Bro, Rasmus; Nielsen, Hans Jørgen; Savorani, Francesco

    2013-01-01

    We have recently shown that fluorescence spectroscopy of plasma samples has promising abilities regarding early detection of colorectal cancer. In the present paper, these results were further developed by combining fluorescence with the biomarkers, CEA and TIMP-1 and traditional metabolomic...... measurements in the form of (1)H NMR spectroscopy. The results indicate that using an extensive profile established by combining such measurements together with the biomarkers is better than using single markers....

  8. Metabolomics for assessment of nutritional status.

    Science.gov (United States)

    Zivkovic, Angela M; German, J Bruce

    2009-09-01

    The current rise in diet-related diseases continues to be one of the most significant health problems facing both the developed and the developing world. The use of metabolomics - the accurate and comprehensive measurement of a significant fraction of important metabolites in accessible biological fluids - for the assessment of nutritional status is a promising way forward. The basic toolset, targets and knowledge are all being developed in the emerging field of metabolomics, yet important knowledge and technology gaps will need to be addressed in order to bring such assessment to practice. Dysregulation within the principal metabolic organs (e.g. intestine, adipose, skeletal muscle and liver) are at the center of a diet-disease paradigm that includes metabolic syndrome, type 2 diabetes and obesity. The assessment of both essential nutrient status and the more comprehensive systemic metabolic response to dietary, lifestyle and environmental influences (e.g. metabolic phenotype) are necessary for the evaluation of status in individuals that can identify the multiple targets of intervention needed to address metabolic disease. The first proofs of principle building the knowledge to bring actionable metabolic diagnostics to practice through metabolomics are now appearing.

  9. Global open data management in metabolomics.

    Science.gov (United States)

    Haug, Kenneth; Salek, Reza M; Steinbeck, Christoph

    2017-02-01

    Chemical Biology employs chemical synthesis, analytical chemistry and other tools to study biological systems. Recent advances in both molecular biology such as next generation sequencing (NGS) have led to unprecedented insights towards the evolution of organisms' biochemical repertoires. Because of the specific data sharing culture in Genomics, genomes from all kingdoms of life become readily available for further analysis by other researchers. While the genome expresses the potential of an organism to adapt to external influences, the Metabolome presents a molecular phenotype that allows us to asses the external influences under which an organism exists and develops in a dynamic way. Steady advancements in instrumentation towards high-throughput and highresolution methods have led to a revival of analytical chemistry methods for the measurement and analysis of the metabolome of organisms. This steady growth of metabolomics as a field is leading to a similar accumulation of big data across laboratories worldwide as can be observed in all of the other omics areas. This calls for the development of methods and technologies for handling and dealing with such large datasets, for efficiently distributing them and for enabling re-analysis. Here we describe the recently emerging ecosystem of global open-access databases and data exchange efforts between them, as well as the foundations and obstacles that enable or prevent the data sharing and reanalysis of this data. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. The Discourse of Parent Involvement in Special Education: A Critical Analysis Linking Policy Documents to the Experiences of Mothers

    Science.gov (United States)

    Lai, Yuan; Vadeboncoeur, Jennifer A.

    2013-01-01

    Parent involvement is acknowledged as a crucial aspect of the education of students with special needs. However, the discourse of parent involvement represents parent involvement in limited ways, thereby controlling how and the extent to which parents can be involved in the education of their children. In this article, critical discourse analysis…

  11. Social determinants for health (mental: evaluating a non-governmental experience from the perspective of actors involved

    Directory of Open Access Journals (Sweden)

    Maria Lucia Magalhães Bosi

    2014-01-01

    Full Text Available INTRODUCTION: The Brazilian Psychiatric Reform, an ongoing process, and its developments involve the construction of new ways of seeing the subject in illness, establishing the mental health field in a new way of understanding the social determinants that reflect in the deinstitutionalization and social inclusion. OBJECTIVE: This study, multidimensional analysis of the relationship between social determinants and deinstitutionalization in mental health focusing on a community movement in Northeast Brazil, whose proposed work is subjective and psychosocial dimensions, aims to explore and analyze how the experiences in course of the Movement highlights the importance of social determinants, the perspective of professionals. METHODS: The methodological approach outlined in the qualitative approach in the form of case studies, employing techniques such as interviews and focus groups. The categorization of analytical information was built from the relationship established between a model based on the constituent dimensions of the psychiatric reform, covering different planes, namely epistemological, healthcare, legal and socio-political, and social determinants of health - living conditions, and work environment, community networks and support, economic, cultural and environmental behaviors and lifestyles. RESULTS: The results show emphasis on the social subject, making the processing and knowledge of professionals, adding new ways to produce health; dialogue with multiple stakeholders, building autonomy, participative management, concern for professionalization; reorganizing the work process; appreciation of the everyday activities that weave and; invention of a new social site, among other elements in close interface with the determinants of health. CONCLUSION: These elements indicate that care practices woven into the daily life of the Movement involve the disassembling the traditional model of mental health care, stimulating new forms of

  12. Benefits, challenges, and best practices for involving audiences in the development of interactive coastal risk communication tools: Professional communicators' experiences

    Science.gov (United States)

    Stephens, S. H.; DeLorme, D.

    2017-12-01

    To make scientific information useful and usable to audiences, communicators must understand audience needs, expectations, and future applications. This presentation synthesizes benefits, challenges, and best practices resulting from a qualitative social science interview study of nine professionals on their experiences developing interactive visualization tools for communicating about coastal environmental risks. Online interactive risk visualization tools, such as flooding maps, are used to provide scientific information about the impacts of coastal hazards. These tools have a wide range of audiences and purposes, including time-sensitive emergency communication, infrastructure and natural resource planning, and simply starting a community conversation about risks. Thus, the science, purposes, and audiences of these tools require a multifaceted communication strategy. In order to make these tools useable and accepted by their audiences, many professional development teams solicit target end-user input or incorporate formal user-centered design into the development process. This presentation will share results of seven interviews with developers of U.S. interactive coastal risk communication tools, ranging from state-level to international in scope. Specific techniques and procedures for audience input that were used in these projects will be discussed, including ad-hoc conversations with users, iterative usability testing with project stakeholder groups, and other participatory mechanisms. The presentation will then focus on benefits, challenges, and recommendations for best practice that the interviewees disclosed about including audiences in their development projects. Presentation attendees will gain an understanding of different procedures and techniques that professionals employ to involve end-users in risk tool development projects, as well as important considerations and recommendations for effectively involving audiences in science communication design.

  13. Social determinants for health (mental): evaluating a non-governmental experience from the perspective of actors involved.

    Science.gov (United States)

    Bosi, Maria Lucia Magalhães; Melo, Anna Karynne da Silva; Carvalho, Liliane Brandão; Ximenes, Veronica Morais; Godoy, Maria Gabriela Curubeto

    2014-01-01

    The Brazilian Psychiatric Reform, an ongoing process, and its developments involve the construction of new ways of seeing the subject in illness, establishing the mental health field in a new way of understanding the social determinants that reflect in the deinstitutionalization and social inclusion. This study, multidimensional analysis of the relationship between social determinants and deinstitutionalization in mental health focusing on a community movement in Northeast Brazil, whose proposed work is subjective and psychosocial dimensions, aims to explore and analyze how the experiences in course of the Movement highlights the importance of social determinants, the perspective of professionals. The methodological approach outlined in the qualitative approach in the form of case studies, employing techniques such as interviews and focus groups. The categorization of analytical information was built from the relationship established between a model based on the constituent dimensions of the psychiatric reform, covering different planes, namely epistemological, healthcare, legal and socio-political, and social determinants of health - living conditions, and work environment, community networks and support, economic, cultural and environmental behaviors and lifestyles. The results show emphasis on the social subject, making the processing and knowledge of professionals, adding new ways to produce health; dialogue with multiple stakeholders, building autonomy, participative management, concern for professionalization; reorganizing the work process; appreciation of the everyday activities that weave and; invention of a new social site, among other elements in close interface with the determinants of health. These elements indicate that care practices woven into the daily life of the Movement involve the disassembling the traditional model of mental health care, stimulating new forms of citizenship, thus contributing to the institutionalization and promoting equality

  14. Organization of GC/MS and LC/MS metabolomics data into chemical libraries

    Directory of Open Access Journals (Sweden)

    DeHaven Corey D

    2010-10-01

    Full Text Available Abstract Background Metabolomics experiments involve generating and comparing small molecule (metabolite profiles from complex mixture samples to identify those metabolites that are modulated in altered states (e.g., disease, drug treatment, toxin exposure. One non-targeted metabolomics approach attempts to identify and interrogate all small molecules in a sample using GC or LC separation followed by MS or MSn detection. Analysis of the resulting large, multifaceted data sets to rapidly and accurately identify the metabolites is a challenging task that relies on the availability of chemical libraries of metabolite spectral signatures. A method for analyzing spectrometry data to identify and Quantify Individual Components in a Sample, (QUICS, enables generation of chemical library entries from known standards and, importantly, from unknown metabolites present in experimental samples but without a corresponding library entry. This method accounts for all ions in a sample spectrum, performs library matches, and allows review of the data to quality check library entries. The QUICS method identifies ions related to any given metabolite by correlating ion data across the complete set of experimental samples, thus revealing subtle spectral trends that may not be evident when viewing individual samples and are likely to be indicative of the presence of one or more otherwise obscured metabolites. Results LC-MS/MS or GC-MS data from 33 liver samples were analyzed simultaneously which exploited the inherent biological diversity of the samples and the largely non-covariant chemical nature of the metabolites when viewed over multiple samples. Ions were partitioned by both retention time (RT and covariance which grouped ions from a single common underlying metabolite. This approach benefitted from using mass, time and intensity data in aggregate over the entire sample set to reject outliers and noise thereby producing higher quality chemical identities. The

  15. Metabolomics investigation to shed light on cheese as a possible piece in the French paradox puzzle.

    Science.gov (United States)

    Zheng, Hong; Yde, Christian C; Clausen, Morten R; Kristensen, Mette; Lorenzen, Janne; Astrup, Arne; Bertram, Hanne C

    2015-03-18

    An NMR-based metabolomics approach was used to investigate the differentiation between subjects consuming cheese or milk and to elucidate the potential link to an effect on blood cholesterol level. Fifteen healthy young men participated in a full crossover study during which they consumed three isocaloric diets with similar fat contents that were either (i) high in milk, (ii) high in cheese with equal amounts of dairy calcium, or (iii) a control diet for 14 days. Urine and feces samples were collected and analyzed by NMR-based metabolomics. Cheese and milk consumption decreased urinary choline and TMAO levels and increased fecal excretion of acetate, propionate, and lipid. Compared with milk intake, cheese consumption significantly reduced urinary citrate, creatine, and creatinine levels and significantly increased the microbiota-related metabolites butyrate, hippurate, and malonate. Correlation analyses indicated that microbial and lipid metabolism could be involved in the dairy-induced effects on blood cholesterol level.

  16. The Da Vinci European BioBank: A Metabolomics-Driven Infrastructure

    Directory of Open Access Journals (Sweden)

    Dario Carotenuto

    2015-04-01

    Full Text Available We present here the organization of the recently-constituted da Vinci European BioBank (daVEB, https://www.davincieuropeanbiobank.org/it. The biobank was created as an infrastructure to support the activities of the Fiorgen Foundation (http://www.fiorgen.net/, a nonprofit organization that promotes research in the field of pharmacogenomics and personalized medicine. The way operating procedures concerning samples and data have been developed at daVEB largely stems from the strong metabolomics connotation of Fiorgen and from the involvement of the scientific collaborators of the foundation in international/European projects aimed to tackle the standardization of pre-analytical procedures and the promotion of data standards in metabolomics.

  17. The Da Vinci European BioBank: A Metabolomics-Driven Infrastructure

    Science.gov (United States)

    Carotenuto, Dario; Luchinat, Claudio; Marcon, Giordana; Rosato, Antonio; Turano, Paola

    2015-01-01

    We present here the organization of the recently-constituted da Vinci European BioBank (daVEB, https://www.davincieuropeanbiobank.org/it). The biobank was created as an infrastructure to support the activities of the Fiorgen Foundation (http://www.fiorgen.net/), a nonprofit organization that promotes research in the field of pharmacogenomics and personalized medicine. The way operating procedures concerning samples and data have been developed at daVEB largely stems from the strong metabolomics connotation of Fiorgen and from the involvement of the scientific collaborators of the foundation in international/European projects aimed to tackle the standardization of pre-analytical procedures and the promotion of data standards in metabolomics. PMID:25913579

  18. The food-gut human axis: the effects of diet on gut microbiota and metabolome.

    Science.gov (United States)

    De Angelis, Maria; Garruti, Gabriella; Minervini, Fabio; Bonfrate, Leonilde; Portincasa, Piero; Gobbetti, Marco

    2017-04-27

    Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influences the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Comprehensive metabolomics identified lipid peroxidation as a prominent feature in human plasma of patients with coronary heart diseases

    Directory of Open Access Journals (Sweden)

    Jianhong Lu

    2017-08-01

    Full Text Available Coronary heart disease (CHD is a complex human disease associated with inflammation and oxidative stress. The underlying mechanisms and diagnostic biomarkers for the different types of CHD remain poorly defined. Metabolomics has been increasingly recognized as an enabling technique with the potential to identify key metabolomic features in an attempt to understand the pathophysiology and differentiate different stages of CHD. We performed comprehensive metabolomic analysis in human plasma from 28 human subjects with stable angina (SA, myocardial infarction (MI, and healthy control (HC. Subsequent analysis demonstrated a uniquely altered metabolic profile in these CHD: a total of 18, 37 and 36 differential metabolites were identified to distinguish SA from HC, MI from SA, and MI from HC groups respectively. Among these metabolites, glycerophospholipid (GPL metabolism emerged as the most significantly disturbed pathway. Next, we used a targeted metabolomic approach to systematically analyze GPL, oxidized phospholipid (oxPL, and downstream metabolites derived from polyunsaturated fatty acids (PUFAs, such as arachidonic acid and linoleic acid. Surprisingly, lipids associated with lipid peroxidation (LPO pathways including oxidized PL and isoprostanes, isomers of prostaglandins, were significantly elevated in plasma of MI patients comparing to HC and SA, consistent with the notion that oxidative stress-induced LPO is a prominent feature in CHD. Our studies using the state-of-the-art metabolomics help to understand the underlying biological mechanisms involved in the pathogenesis of CHD; LPO metabolites may serve as potential biomarkers to differentiation MI from SA and HC. Keywords: Metabolomics, Lipid peroxidation, Lipidomics, Myocardial infarction, Isoprostanes, Coronary heart disease (CHD

  20. Accurate, fully-automated NMR spectral profiling for metabolomics.

    Directory of Open Access Journals (Sweden)

    Siamak Ravanbakhsh

    Full Text Available Many diseases cause significant changes to the concentrations of small molecules (a.k.a. metabolites that appear in a person's biofluids, which means such diseases can often be readily detected from a person's "metabolic profile"-i.e., the list of concentrations of those metabolites. This information can be extracted from a biofluids Nuclear Magnetic Resonance (NMR spectrum. However, due to its complexity, NMR spectral profiling has remained manual, resulting in slow, expensive and error-prone procedures that have hindered clinical and industrial adoption of metabolomics via NMR. This paper presents a system, BAYESIL, which can quickly, accurately, and autonomously produce a person's metabolic profile. Given a 1D 1H NMR spectrum of a complex biofluid (specifically serum or cerebrospinal fluid, BAYESIL can automatically determine the metabolic profile. This requires first performing several spectral processing steps, then matching the resulting spectrum against a reference compound library, which contains the "signatures" of each relevant metabolite. BAYESIL views spectral matching as an inference problem within a probabilistic graphical model that rapidly approximates the most probable metabolic profile. Our extensive studies on a diverse set of complex mixtures including real biological samples (serum and CSF, defined mixtures and realistic computer generated spectra; involving > 50 compounds, show that BAYESIL can autonomously find the concentration of NMR-detectable metabolites accurately (~ 90% correct identification and ~ 10% quantification error, in less than 5 minutes on a single CPU. These results demonstrate that BAYESIL is the first fully-automatic publicly-accessible system that provides quantitative NMR spectral profiling effectively-with an accuracy on these biofluids that meets or exceeds the performance of trained experts. We anticipate this tool will usher in high-throughput metabolomics and enable a wealth of new applications of

  1. Stable isotope- and mass spectrometry-based metabolomics as tools in drug metabolism: a study expanding tempol pharmacology.

    Science.gov (United States)

    Li, Fei; Pang, Xiaoyan; Krausz, Kristopher W; Jiang, Changtao; Chen, Chi; Cook, John A; Krishna, Murali C; Mitchell, James B; Gonzalez, Frank J; Patterson, Andrew D

    2013-03-01

    The application of mass spectrometry-based metabolomics in the field of drug metabolism has yielded important insights not only into the metabolic routes of drugs but has provided unbiased, global perspectives of the endogenous metabolome that can be useful for identifying biomarkers associated with mechanism of action, efficacy, and toxicity. In this report, a stable isotope- and mass spectrometry-based metabolomics approach that captures both drug metabolism and changes in the endogenous metabolome in a single experiment is described. Here the antioxidant drug tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) was chosen because its mechanism of action is not completely understood and its metabolic fate has not been studied extensively. Furthermore, its small size (MW = 172.2) and chemical composition (C(9)H(18)NO(2)) make it challenging to distinguish from endogenous metabolites. In this study, mice were dosed with tempol or deuterated tempol (C(9)D(17)HNO(2)) and their urine was profiled using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Principal component analysis of the urinary metabolomics data generated a Y-shaped scatter plot containing drug metabolites (protonated and deuterated) that were clearly distinct from the endogenous metabolites. Ten tempol drug metabolites, including eight novel metabolites, were identified. Phase II metabolism was the major metabolic pathway of tempol in vivo, including glucuronidation and glucosidation. Urinary endogenous metabolites significantly elevated by tempol treatment included 2,8-dihydroxyquinoline (8.0-fold, P tempol treatment including pantothenic acid (1.3-fold, P < 0.05) and isobutrylcarnitine (5.3-fold, P < 0.01). This study underscores the power of a stable isotope- and mass spectrometry-based metabolomics in expanding the view of drug pharmacology.

  2. The metabolome 18 years on: a concept comes of age.

    Science.gov (United States)

    Kell, Douglas B; Oliver, Stephen G

    2016-01-01

    The term 'metabolome' was introduced to the scientific literature in September 1998. To mark its 18-year-old 'coming of age', two of the co-authors of that paper review the genesis of metabolomics, whence it has come and where it may be going.

  3. Environmental metabolomics: a SWOT analysis (strengths, weaknesses, opportunities, and threats).

    Science.gov (United States)

    Miller, Marion G

    2007-02-01

    Metabolomic approaches have the potential to make an exceptional contribution to understanding how chemicals and other environmental stressors can affect both human and environmental health. However, the application of metabolomics to environmental exposures, although getting underway, has not yet been extensively explored. This review will use a SWOT analysis model to discuss some of the strengths, weaknesses, opportunities, and threats that are apparent to an investigator venturing into this relatively new field. SWOT has been used extensively in business settings to uncover new outlooks and identify problems that would impede progress. The field of environmental metabolomics provides great opportunities for discovery, and this is recognized by a high level of interest in potential applications. However, understanding the biological consequence of environmental exposures can be confounded by inter- and intra-individual differences. Metabolomic profiles can yield a plethora of data, the interpretation of which is complex and still being evaluated and researched. The development of the field will depend on the availability of technologies for data handling and that permit ready access metabolomic databases. Understanding the relevance of metabolomic endpoints to organism health vs adaptation vs variation is an important step in understanding what constitutes a substantive environmental threat. Metabolomic applications in reproductive research are discussed. Overall, the development of a comprehensive mechanistic-based interpretation of metabolomic changes offers the possibility of providing information that will significantly contribute to the protection of human health and the environment.

  4. A metabolomics study on human dietary intervention with apples

    DEFF Research Database (Denmark)

    Dragsted, L. O.; Kristensen, M.; Ravn-Haren, Gitte

    2009-01-01

    Metabolomics is a promising tool for searching out new biomarkers and the development of hypotheses in nutrition research. This chapter will describe the design of human dietary intervention studies where samples are collected for metabolomics analyses as well as the analytical issues and data...

  5. Metabolomics for Undergraduates: Identification and Pathway Assignment of Mitochondrial Metabolites

    Science.gov (United States)

    Marques, Ana Patrícia; Serralheiro, Maria Luisa; Ferreira, António E. N.; Freire, Ana Ponces; Cordeiro, Carlos; Silva, Marta Sousa

    2016-01-01

    Metabolomics is a key discipline in systems biology, together with genomics, transcriptomics, and proteomics. In this omics cascade, the metabolome represents the biochemical products that arise from cellular processes and is often regarded as the final response of a biological system to environmental or genetic changes. The overall screening…

  6. Metabolomic Profiling of Prostate Cancer Progression During Active Surveillance

    Science.gov (United States)

    2012-10-01

    cancer or a history of transurethral resection of the prostate (TURP) for benign prostatic hypertrophy are excluded. Somewhat surprisingly...AD_________________ Award Number: W81XWH-11-1-0451 TITLE: Metabolomic Profiling of Prostate Cancer...29 September 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Metabolomic Profiling of Prostate Cancer Progression During Active Surveillance 5b

  7. Plant metabolomics and its potential application for human nutrition

    NARCIS (Netherlands)

    Hall, R.D.; Brouwer, I.D.; Fitzgerald, M.A.

    2008-01-01

    With the growing interest in the use of metabolomic technologies for a wide range of biological targets, food applications related to nutrition and quality are rapidly emerging. Metabolomics offers us the opportunity to gain deeper insights into, and have better control of, the fundamental

  8. Metabolomics Reveals that Dietary Xenoestrogens Alter Cellular Metabolism Induced by Palbociclib/Letrozole Combination Cancer Therapy.

    Science.gov (United States)

    Warth, Benedikt; Raffeiner, Philipp; Granados, Ana; Huan, Tao; Fang, Mingliang; Forsberg, Erica M; Benton, H Paul; Goetz, Laura; Johnson, Caroline H; Siuzdak, Gary

    2018-03-15

    Recently, the palbociclib/letrozole combination therapy was granted accelerated US FDA approval for the treatment of estrogen receptor (ER)-positive breast cancer. Since the underlying metabolic effects of these drugs are yet unknown, we investigated their synergism at the metabolome level in MCF-7 cells. As xenoestrogens interact with the ER, we additionally aimed at deciphering the impact of the phytoestrogen genistein and the estrogenic mycotoxin zearalenone. A global metabolomics approach was applied to unravel metabolite and pathway modifications. The results clearly showed that the combined effects of palbociclib and letrozole on cellular metabolism were far more pronounced than that of each agent alone and potently influenced by xenoestrogens. This behavior was confirmed in proliferation experiments and functional assays. Specifically, amino acids and central carbon metabolites were attenuated, while higher abundances were observed for fatty acids and most nucleic acid-related metabolites. Interestingly, exposure to model xenoestrogens appeared to counteract these effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Application of Stable Isotope-Assisted Metabolomics for Cell Metabolism Studies

    Directory of Open Access Journals (Sweden)

    Le You

    2014-03-01

    Full Text Available The applications of stable isotopes in metabolomics have facilitated the study of cell metabolisms. Stable isotope-assisted metabolomics requires: (1 properly designed tracer experiments; (2 stringent sampling and quenching protocols to minimize isotopic alternations; (3 efficient metabolite separations; (4 high resolution mass spectrometry to resolve overlapping peaks and background noises; and (5 data analysis methods and databases to decipher isotopic clusters over a broad m/z range (mass-to-charge ratio. This paper overviews mass spectrometry based techniques for precise determination of metabolites and their isotopologues. It also discusses applications of isotopic approaches to track substrate utilization, identify unknown metabolites and their chemical formulas, measure metabolite concentrations, determine putative metabolic pathways, and investigate microbial community populations and their carbon assimilation patterns. In addition, 13C-metabolite fingerprinting and metabolic models can be integrated to quantify carbon fluxes (enzyme reaction rates. The fluxome, in combination with other “omics” analyses, may give systems-level insights into regulatory mechanisms underlying gene functions. More importantly, 13C-tracer experiments significantly improve the potential of low-resolution gas chromatography-mass spectrometry (GC-MS for broad-scope metabolism studies. We foresee the isotope-assisted metabolomics to be an indispensable tool in industrial biotechnology, environmental microbiology, and medical research.

  10. Application of Stable Isotope-Assisted Metabolomics for Cell Metabolism Studies

    Science.gov (United States)

    You, Le; Zhang, Baichen; Tang, Yinjie J.

    2014-01-01

    The applications of stable isotopes in metabolomics have facilitated the study of cell metabolisms. Stable isotope-assisted metabolomics requires: (1) properly designed tracer experiments; (2) stringent sampling and quenching protocols to minimize isotopic alternations; (3) efficient metabolite separations; (4) high resolution mass spectrometry to resolve overlapping peaks and background noises; and (5) data analysis methods and databases to decipher isotopic clusters over a broad m/z range (mass-to-charge ratio). This paper overviews mass spectrometry based techniques for precise determination of metabolites and their isotopologues. It also discusses applications of isotopic approaches to track substrate utilization, identify unknown metabolites and their chemical formulas, measure metabolite concentrations, determine putative metabolic pathways, and investigate microbial community populations and their carbon assimilation patterns. In addition, 13C-metabolite fingerprinting and metabolic models can be integrated to quantify carbon fluxes (enzyme reaction rates). The fluxome, in combination with other “omics” analyses, may give systems-level insights into regulatory mechanisms underlying gene functions. More importantly, 13C-tracer experiments significantly improve the potential of low-resolution gas chromatography-mass spectrometry (GC-MS) for broad-scope metabolism studies. We foresee the isotope-assisted metabolomics to be an indispensable tool in industrial biotechnology, environmental microbiology, and medical research. PMID:24957020

  11. Compliance with minimum information guidelines in public metabolomics repositories.

    Science.gov (United States)

    Spicer, Rachel A; Salek, Reza; Steinbeck, Christoph

    2017-09-26

    The Metabolomics Standards Initiative (MSI) guidelines were first published in 2007. These guidelines provided reporting standards for all stages of metabolomics analysis: experimental design, biological context, chemical analysis and data processing. Since 2012, a series of public metabolomics databases and repositories, which accept the deposition of metabolomic datasets, have arisen. In this study, the compliance of 399 public data sets, from four major metabolomics data repositories, to the biological context MSI reporting standards was evaluated. None of the reporting standards were complied with in every publicly available study, although adherence rates varied greatly, from 0 to 97%. The plant minimum reporting standards were the most complied with and the microbial and in vitro were the least. Our results indicate the need for reassessment and revision of the existing MSI reporting standards.

  12. MET-XAlign: a metabolite cross-alignment tool for LC/MS-based comparative metabolomics.

    Science.gov (United States)

    Zhang, Wenchao; Lei, Zhentian; Huhman, David; Sumner, Lloyd W; Zhao, Patrick X

    2015-09-15

    Liquid chromatography/mass spectrometry (LC/MS) metabolite profiling has been widely used in comparative metabolomics studies; however, LC/MS-based comparative metabolomics currently faces several critical challenges. One of the greatest challenges is how to effectively align metabolites across different LC/MS profiles; a single metabolite can give rise to multiple peak features, and the grouped peak features that can be used to construct a spectrum pattern of single metabolite can vary greatly between biochemical experiments and even between instrument runs. Another major challenge is that the observed retention time for a single metabolite can also be significantly affected by experimental conditions. To overcome these two key challenges, we present a novel metabolite-based alignment approach entitled MET-XAlign to align metabolites across LC/MS metabolomics profiles. MET-XAlign takes the deduced molecular mass and estimated compound retention time information that can be extracted by our previously published tool, MET-COFEA, and aligns metabolites based on this information. We demonstrate that MET-XAlign is able to cross-align metabolite compounds, either known or unknown, in LC/MS profiles not only across different samples but also across different biological experiments and different electrospray ionization modes. Therefore, our proposed metabolite-based cross-alignment approach is a great step forward and its implementation, MET-XAlign, is a very useful tool in LC/MS-based comparative metabolomics. MET-XAlign has been successfully implemented with core algorithm coding in C++, making it very efficient, and visualization interface coding in the Microsoft.NET Framework. The MET-XAlign software along with demonstrative data is freely available at http://bioinfo.noble.org/manuscript-support/met-xalign/ .

  13. MASTR-MS: a web-based collaborative laboratory information management system (LIMS) for metabolomics.

    Science.gov (United States)

    Hunter, Adam; Dayalan, Saravanan; De Souza, David; Power, Brad; Lorrimar, Rodney; Szabo, Tamas; Nguyen, Thu; O'Callaghan, Sean; Hack, Jeremy; Pyke, James; Nahid, Amsha; Barrero, Roberto; Roessner, Ute; Likic, Vladimir; Tull, Dedreia; Bacic, Antony; McConville, Malcolm; Bellgard, Matthew

    2017-01-01

    An increasing number of research laboratories and core analytical facilities around the world are developing high throughput metabolomic analytical and data processing pipelines that are capable of handling hundreds to thousands of individual samples per year, often over multiple projects, collaborations and sample types. At present, there are no Laboratory Information Management Systems (LIMS) that are specifically tailored for metabolomics laboratories that are capable of tracking samples and associated metadata from the beginning to the end of an experiment, including data processing and archiving, and which are also suitable for use in large institutional core facilities or multi-laboratory consortia as well as single laboratory environments. Here we present MASTR-MS, a downloadable and installable LIMS solution that can be deployed either within a single laboratory or used to link workflows across a multisite network. It comprises a Node Management System that can be used to link and manage projects across one or multiple collaborating laboratories; a User Management System which defines different user groups and privileges of users; a Quote Management System where client quotes are managed; a Project Management System in which metadata is stored and all aspects of project management, including experimental setup, sample tracking and instrument analysis, are defined, and a Data Management System that allows the automatic capture and storage of raw and processed data from the analytical instruments to the LIMS. MASTR-MS is a comprehensive LIMS solution specifically designed for metabolomics. It captures the entire lifecycle of a sample starting from project and experiment design to sample analysis, data capture and storage. It acts as an electronic notebook, facilitating project management within a single laboratory or a multi-node collaborative environment. This software is being developed in close consultation with members of the metabolomics research

  14. Molecular change signal-to-noise criteria for interpreting experiments involving exposure of biological systems to weakly interacting electromagnetic fields.

    Science.gov (United States)

    Vaughan, Timothy E; Weaver, James C

    2005-05-01

    We describe an approach to aiding the design and interpretation of experiments involving biological effects of weakly interacting electromagnetic fields that range from steady (dc) to microwave frequencies. We propose that if known biophysical mechanisms cannot account for an inferred, underlying molecular change signal-to-noise ratio, (S/N)gen, of a observed result, then there are two interpretation choices: (1) there is an unknown biophysical mechanism with stronger coupling between the field exposure and the ongoing biochemical process, or (2) the experiment is responding to something other than the field exposure. Our approach is based on classical detection theory, the recognition that weakly interacting fields cannot break chemical bonds, and the consequence that such fields can only alter rates of ongoing, metabolically driven biochemical reactions, and transport processes. The approach includes both fundamental chemical noise (molecular shot noise) and other sources of competing chemical change, to be compared quantitatively to the field induced change for the basic case that the field alters a single step in a biochemical network. Consistent with pharmacology and toxicology, we estimate the molecular dose (mass associated with field induced molecular change per mass tissue) resulting from illustrative low frequency field exposures for the biophysical mechanism of voltage gated channels. For perspective, we then consider electric field-mediated delivery of small molecules across human skin and into individual cells. Specifically, we consider the examples of iontophoretic and electroporative delivery of fentanyl through skin and electroporative delivery of bleomycin into individual cells. The total delivered amount corresponds to a molecular change signal and the delivery variability corresponds to generalized chemical noise. Viewed broadly, biological effects due to nonionizing fields may include animal navigation, medical applications, and environmental

  15. Power1D: a Python toolbox for numerical power estimates in experiments involving one-dimensional continua

    Directory of Open Access Journals (Sweden)

    Todd C. Pataky

    2017-07-01

    Full Text Available The unit of experimental measurement in a variety of scientific applications is the one-dimensional (1D continuum: a dependent variable whose value is measured repeatedly, often at regular intervals, in time or space. A variety of software packages exist for computing continuum-level descriptive statistics and also for conducting continuum-level hypothesis testing, but very few offer power computing capabilities, where ‘power’ is the probability that an experiment will detect a true continuum signal given experimental noise. Moreover, no software package yet exists for arbitrary continuum-level signal/noise modeling. This paper describes a package called power1d which implements (a two analytical 1D power solutions based on random field theory (RFT and (b a high-level framework for computational power analysis using arbitrary continuum-level signal/noise modeling. First power1d’s two RFT-based analytical solutions are numerically validated using its random continuum generators. Second arbitrary signal/noise modeling is demonstrated to show how power1d can be used for flexible modeling well beyond the assumptions of RFT-based analytical solutions. Its computational demands are non-excessive, requiring on the order of only 30 s to execute on standard desktop computers, but with approximate solutions available much more rapidly. Its broad signal/noise modeling capabilities along with relatively rapid computations imply that power1d may be a useful tool for guiding experimentation involving multiple measurements of similar 1D continua, and in particular to ensure that an adequate number of measurements is made to detect assumed continuum signals.

  16. Protective Behaviour of Citizens to Transport Accidents Involving Hazardous Materials: A Discrete Choice Experiment Applied to Populated Areas nearby Waterways.

    Science.gov (United States)

    de Bekker-Grob, Esther W; Bergstra, Arnold D; Bliemer, Michiel C J; Trijssenaar-Buhre, Inge J M; Burdorf, Alex

    2015-01-01

    To improve the information for and preparation of citizens at risk to hazardous material transport accidents, a first important step is to determine how different characteristics of hazardous material transport accidents will influence citizens' protective behaviour. However, quantitative studies investigating citizens' protective behaviour in case of hazardous material transport accidents are scarce. A discrete choice experiment was conducted among subjects (19-64 years) living in the direct vicinity of a large waterway. Scenarios were described by three transport accident characteristics: odour perception, smoke/vapour perception, and the proportion of people in the environment that were leaving at their own discretion. Subjects were asked to consider each scenario as realistic and to choose the alternative that was most appealing to them: staying, seeking shelter, or escaping. A panel error component model was used to quantify how different transport accident characteristics influenced subjects' protective behaviour. The response was 44% (881/1,994). The predicted probability that a subject would stay ranged from 1% in case of a severe looking accident till 62% in case of a mild looking accident. All three transport accident characteristics proved to influence protective behaviour. Particularly a perception of strong ammonia or mercaptan odours and visible smoke/vapour close to citizens had the strongest positive influence on escaping. In general, 'escaping' was more preferred than 'seeking shelter', although stated preference heterogeneity among subjects for these protective behaviour options was substantial. Males were less willing to seek shelter than females, whereas elderly people were more willing to escape than younger people. Various characteristics of transport accident involving hazardous materials influence subjects' protective behaviour. The preference heterogeneity shows that information needs to be targeted differently depending on gender and age

  17. The Gelation of Polyvinyl Alcohol with Borax: A Novel Class Participation Experiment Involving the Preparation and Properties of a "Slime."

    Science.gov (United States)

    Casassa, E. Z.; And Others

    1986-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment in which students prepare and study the characteristics of a "slime." A list of general, inorganic, and polymer chemistry concepts fostered in the experiment is included. (JN)

  18. Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in Foodomics: A review

    International Nuclear Information System (INIS)

    Ibáñez, Clara; Simó, Carolina; García-Cañas, Virginia; Cifuentes, Alejandro; Castro-Puyana, María

    2013-01-01

    Graphical abstract: -- Highlights: •Foodomics allows studying food and nutrition through the application of advanced omics approaches. •CE-MS plays a crucial role as analytical platform to carry out omics studies. •CE-MS applications for food metabolomics, proteomics and peptidomics are presented. -- Abstract: In the current post-genomic era, Foodomics has been defined as a discipline that studies food and nutrition through the application of advanced omics approaches. Foodomics involves the use of genomics, transcriptomics, epigenetics, proteomics, peptidomics, and/or metabolomics to investigate food quality, safety, traceability and bioactivity. In this context, capillary electrophoresis-mass spectrometry (CE-MS) has been applied mainly in food proteomics, peptidomics and metabolomics. The aim of this review work is to present an overview of the most recent developments and applications of CE-MS as analytical platform for Foodomics, covering the relevant works published from 2008 to 2012. The review provides also information about the integration of several omics approaches in the new Foodomics field

  19. Optimized Method for Untargeted Metabolomics Analysis of MDA-MB-231 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Amanda L. Peterson

    2016-09-01

    Full Text Available Cancer cells often have dysregulated metabolism, which is largely characterized by the Warburg effect—an increase in glycolytic activity at the expense of oxidative phosphorylation—and increased glutamine utilization. Modern metabolomics tools offer an efficient means to investigate metabolism in cancer cells. Currently, a number of protocols have been described for harvesting adherent cells for metabolomics analysis, but the techniques vary greatly and they lack specificity to particular cancer cell lines with diverse metabolic and structural features. Here we present an optimized method for untargeted metabolomics characterization of MDA-MB-231 triple negative breast cancer cells, which are commonly used to study metastatic breast cancer. We found that an approach that extracted all metabolites in a single step within the culture dish optimally detected both polar and non-polar metabolite classes with higher relative abundance than methods that involved removal of cells from the dish. We show that this method is highly suited to diverse applications, including the characterization of central metabolic flux by stable isotope labelling and differential analysis of cells subjected to specific pharmacological interventions.

  20. Metabolomics guided pathway analysis reveals link between cancer metastasis, cholesterol sulfate, and phospholipids

    Directory of Open Access Journals (Sweden)

    Caroline H. Johnson

    2017-10-01

    Full Text Available Abstract Background Cancer cells that enter the metastatic cascade require traits that allow them to survive within the circulation and colonize distant organ sites. As disseminating cancer cells adapt to their changing microenvironments, they also modify their metabolism and metabolite production. Methods A mouse xenograft model of spontaneous tumor metastasis was used to determine the metabolic rewiring that occurs between primary cancers and their metastases. An “autonomous” mass spectrometry-based untargeted metabolomic workflow with integrative metabolic pathway analysis revealed a number of differentially regulated metabolites in primary mammary fat pad (MFP tumors compared to microdissected paired lung metastases. The study was further extended to analyze metabolites in paired normal tissues which determined the potential influence of metabolites from the microenvironment. Results Metabolomic analysis revealed that multiple metabolites were increased in metastases, including cholesterol sulfate and phospholipids (phosphatidylglycerols and phosphatidylethanolamine. Metabolite analysis of normal lung tissue in the mouse model also revealed increased levels of these metabolites compared to tissues from normal MFP and primary MFP tumors, indicating potential extracellular uptake by cancer cells in lung metastases. These results indicate a potential functional importance of cholesterol sulfate and phospholipids in propagating metastasis. In addition, metabolites involved in DNA/RNA synthesis and the TCA cycle were decreased in lung metastases compared to primary MFP tumors. Conclusions Using an integrated metabolomic workflow, this study identified a link between cholesterol sulfate and phospholipids, metabolic characteristics of the metastatic niche, and the capacity of tumor cells to colonize distant sites.

  1. Combined metabolomic and correlation networks analyses reveal fumarase insufficiency altered amino acid metabolism.

    Science.gov (United States)

    Hou, Entai; Li, Xian; Liu, Zerong; Zhang, Fuchang; Tian, Zhongmin

    2018-04-01

    Fumarase catalyzes the interconversion of fumarate and l-malate in the tricarboxylic acid cycle. Fumarase insufficiencies were associated with increased levels of fumarate, decreased levels of malate and exacerbated salt-induced hypertension. To gain insights into the metabolism profiles induced by fumarase insufficiency and identify key regulatory metabolites, we applied a GC-MS based metabolomics platform coupled with a network approach to analyze fumarase insufficient human umbilical vein endothelial cells (HUVEC) and negative controls. A total of 24 altered metabolites involved in seven metabolic pathways were identified as significantly altered, and enriched for the biological module of amino acids metabolism. In addition, Pearson correlation network analysis revealed that fumaric acid, l-malic acid, l-aspartic acid, glycine and l-glutamic acid were hub metabolites according to Pagerank based on their three centrality indices. Alanine aminotransferase and glutamate dehydrogenase activities increased significantly in fumarase deficiency HUVEC. These results confirmed that fumarase insufficiency altered amino acid metabolism. The combination of metabolomics and network methods would provide another perspective on expounding the molecular mechanism at metabolomics level. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in Foodomics: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ibáñez, Clara; Simó, Carolina; García-Cañas, Virginia; Cifuentes, Alejandro, E-mail: a.cifuentes@csic.es; Castro-Puyana, María

    2013-11-13

    Graphical abstract: -- Highlights: •Foodomics allows studying food and nutrition through the application of advanced omics approaches. •CE-MS plays a crucial role as analytical platform to carry out omics studies. •CE-MS applications for food metabolomics, proteomics and peptidomics are presented. -- Abstract: In the current post-genomic era, Foodomics has been defined as a discipline that studies food and nutrition through the application of advanced omics approaches. Foodomics involves the use of genomics, transcriptomics, epigenetics, proteomics, peptidomics, and/or metabolomics to investigate food quality, safety, traceability and bioactivity. In this context, capillary electrophoresis-mass spectrometry (CE-MS) has been applied mainly in food proteomics, peptidomics and metabolomics. The aim of this review work is to present an overview of the most recent developments and applications of CE-MS as analytical platform for Foodomics, covering the relevant works published from 2008 to 2012. The review provides also information about the integration of several omics approaches in the new Foodomics field.

  3. Biological variation of Vanilla planifolia leaf metabolome.

    Science.gov (United States)

    Palama, Tony Lionel; Fock, Isabelle; Choi, Young Hae; Verpoorte, Robert; Kodja, Hippolyte

    2010-04-01

    The metabolomic analysis of Vanilla planifolia leaves collected at different developmental stages was carried out using (1)H-nuclear magnetic resonance (NMR) spectroscopy and multivariate data analysis in order to evaluate their variation. Ontogenic changes of the metabolome were considered since leaves of different ages were collected at two different times of the day and in two different seasons. Principal component analysis (PCA) and partial least square modeling discriminate analysis (PLS-DA) of (1)H NMR data provided a clear separation according to leaf age, time of the day and season of collection. Young leaves were found to have higher levels of glucose, bis[4-(beta-D-glucopyranosyloxy)-benzyl]-2-isopropyltartrate (glucoside A) and bis[4-(beta-D-glucopyranosyloxy)-benzyl]-2-(2-butyl)-tartrate (glucoside B), whereas older leaves had more sucrose, acetic acid, homocitric acid and malic acid. Results obtained from PLS-DA analysis showed that leaves collected in March 2008 had higher levels of glucosides A and B as compared to those collected in August 2007. However, the relative standard deviation (RSD) exhibited by the individual values of glucosides A and B showed that those compounds vary more according to their developmental stage (50%) than to the time of day or the season in which they were collected (19%). Although morphological variations of the V. planifolia accessions were observed, no clear separation of the accessions was determined from the analysis of the NMR spectra. The results obtained in this study, show that this method based on the use of (1)H NMR spectroscopy in combination with multivariate analysis has a great potential for further applications in the study of vanilla leaf metabolome. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. A Metabolomic Signature of Acute Caloric Restriction.

    Science.gov (United States)

    Collet, Tinh-Hai; Sonoyama, Takuhiro; Henning, Elana; Keogh, Julia M; Ingram, Brian; Kelway, Sarah; Guo, Lining; Farooqi, I Sadaf

    2017-12-01

    The experimental paradigm of acute caloric restriction (CR) followed by refeeding (RF) can be used to study the homeostatic mechanisms that regulate energy homeostasis, which are relevant to understanding the adaptive response to weight loss. Metabolomics, the measurement of hundreds of small molecule metabolites, their precursors, derivatives, and degradation products, has emerged as a useful tool for the study of physiology and disease and was used here to study the metabolic response to acute CR. We used four ultra high-performance liquid chromatography-tandem mass spectrometry methods to characterize changes in carbohydrates, lipids, amino acids, and steroids in eight normal weight men at baseline, after 48 hours of CR (10% of energy requirements) and after 48 hours of ad libitum RF in a tightly controlled environment. We identified a distinct metabolomic signature associated with acute CR characterized by the expected switch from carbohydrate to fat utilization with increased lipolysis and β-fatty acid oxidation. We found an increase in ω-fatty acid oxidation and levels of endocannabinoids, which are known to promote food intake. These changes were reversed with RF. Several plasmalogen phosphatidylethanolamines (endogenous antioxidants) significantly decreased with CR (all P ≤ 0.0007). Additionally, acute CR was associated with an increase in the branched chain amino acids (all P ≤ 1.4 × 10-7) and dehydroepiandrosterone sulfate (P = 0.0006). We identified a distinct metabolomic signature associated with acute CR. Further studies are needed to characterize the mechanisms that mediate these changes and their potential contribution to the adaptive response to dietary restriction. Copyright © 2017 Endocrine Society

  5. Metabolomics analysis of metabolic effects of nicotinamide phosphoribosyltransferase (NAMPT inhibition on human cancer cells.

    Directory of Open Access Journals (Sweden)

    Vladimir Tolstikov

    Full Text Available Nicotinamide phosphoribosyltransferase (NAMPT plays an important role in cellular bioenergetics. It is responsible for converting nicotinamide to nicotinamide adenine dinucleotide, an essential molecule in cellular metabolism. NAMPT has been extensively studied over the past decade due to its role as a key regulator of nicotinamide adenine dinucleotide-consuming enzymes. NAMPT is also known as a potential target for therapeutic intervention due to its involvement in disease. In the current study, we used a global mass spectrometry-based metabolomic approach to investigate the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on metabolic perturbations in human cancer cells. We treated A2780 (ovarian cancer and HCT-116 (colorectal cancer cell lines with FK866 in the presence and absence of nicotinic acid. Significant changes were observed in the amino acids metabolism and the purine and pyrimidine metabolism. We also observed metabolic alterations in glycolysis, the citric acid cycle (TCA, and the pentose phosphate pathway. To expand the range of the detected polar metabolites and improve data confidence, we applied a global metabolomics profiling platform by using both non-targeted and targeted hydrophilic (HILIC-LC-MS and GC-MS analysis. We used Ingenuity Knowledge Base to facilitate the projection of metabolomics data onto metabolic pathways. Several metabolic pathways showed differential responses to FK866 based on several matches to the list of annotated metabolites. This study suggests that global metabolomics can be a useful tool in pharmacological studies of the mechanism of action of drugs at a cellular level.

  6. Effects of menstrual cycle phase on metabolomic profiles in premenopausal women.

    Science.gov (United States)

    Wallace, M; Hashim, Y Z H-Y; Wingfield, M; Culliton, M; McAuliffe, F; Gibney, M J; Brennan, L

    2010-04-01

    Characterization of the normal degree of physiological variation in the metabolomic profiles of healthy humans is a necessary step in the development of metabolomics as both a clinical research and diagnostic tool. This study investigated the effects of the menstrual cycle on (1)H nuclear magnetic resonance (NMR) derived metabolomic profiles of urine and plasma from healthy women. In this study, 34 healthy women were recruited and a first void urine and fasting blood sample were collected from each woman at four different time points during one menstrual cycle. Serum hormone levels were used in combination with the menstrual calendar to classify the urine and plasma samples into five different phases i.e. menstrual, follicular, periovulatory, luteal and premenstrual. The urine and plasma samples were analysed using (1)H NMR spectroscopy and subsequent data were analysed using principal component analysis (PCA) and partial least squares discriminant analysis. PCA of the urine spectra showed no separation of samples based on the phases of the menstrual cycle. Multivariate analysis of the plasma spectra showed a separation of the menstrual phase and the luteal phase samples (R(2) = 0.61, Q(2) = 0.41). Subsequent analysis revealed a significant decrease in levels of glutamine, glycine, alanine, lysine, serine and creatinine and a significant increase in levels of acetoacetate and very low density lipoprotein (VLDL CH(2)) during the luteal phase. These results establish a need to control for metabolic changes that occur in plasma due to the menstrual cycle in the design of future metabolomic studies involving premenopausal women.

  7. Long-term differential changes in mouse intestinal metabolomics after γ and heavy ion radiation exposure.

    Directory of Open Access Journals (Sweden)

    Amrita K Cheema

    Full Text Available Tissue consequences of radiation exposure are dependent on radiation quality and high linear energy transfer (high-LET radiation, such as heavy ions in space is known to deposit higher energy in tissues and cause greater damage than low-LET γ radiation. While radiation exposure has been linked to intestinal pathologies, there are very few studies on long-term effects of radiation, fewer involved a therapeutically relevant γ radiation dose, and none explored persistent tissue metabolomic alterations after heavy ion space radiation exposure. Using a metabolomics approach, we report long-term metabolomic markers of radiation injury and perturbation of signaling pathways linked to metabolic alterations in mice after heavy ion or γ radiation exposure. Intestinal tissues (C57BL/6J, female, 6 to 8 wks were analyzed using ultra performance liquid chromatography coupled with electrospray quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS two months after 2 Gy γ radiation and results were compared to an equitoxic ⁵⁶Fe (1.6 Gy radiation dose. The biological relevance of the metabolites was determined using Ingenuity Pathway Analysis, immunoblots, and immunohistochemistry. Metabolic profile analysis showed radiation-type-dependent spatial separation of the groups. Decreased adenine and guanosine and increased inosine and uridine suggested perturbed nucleotide metabolism. While both the radiation types affected amino acid metabolism, the ⁵⁶Fe radiation preferentially altered dipeptide metabolism. Furthermore, ⁵⁶Fe radiation caused upregulation of 'prostanoid biosynthesis' and 'eicosanoid signaling', which are interlinked events related to cellular inflammation and have implications for nutrient absorption and inflammatory bowel disease during space missions and after radiotherapy. In conclusion, our data showed for the first time that metabolomics can not only be used to distinguish between heavy ion and γ radiation exposures, but

  8. Gut microbiota, metabolome and immune signatures in patients with uncomplicated diverticular disease.

    Science.gov (United States)

    Barbara, Giovanni; Scaioli, Eleonora; Barbaro, Maria Raffaella; Biagi, Elena; Laghi, Luca; Cremon, Cesare; Marasco, Giovanni; Colecchia, Antonio; Picone, Gianfranco; Salfi, Nunzio; Capozzi, Francesco; Brigidi, Patrizia; Festi, Davide

    2017-07-01

    The engagement of the gut microbiota in the development of symptoms and complications of diverticular disease has been frequently hypothesised. Our aim was to explore colonic immunocytes, gut microbiota and the metabolome in patients with diverticular disease in a descriptive, cross-sectional, pilot study. Following colonoscopy with biopsy and questionnaire phenotyping, patients were classified into diverticulosis or symptomatic uncomplicated diverticular disease; asymptomatic subjects served as controls. Mucosal immunocytes, in the diverticular region and in unaffected sites, were quantified with immunohistochemistry. Mucosa and faecal microbiota were analysed by the phylogenetic platform high taxonomic fingerprint (HTF)-Microbi.Array, while the metabolome was assessed by 1 H nuclear magnetic resonance. Compared with controls, patients with diverticula, regardless of symptoms, had a >70% increase in colonic macrophages. Their faecal microbiota showed depletion of Clostridium cluster IV. Clostridium cluster IX, Fusobacterium and Lactobacillaceae were reduced in symptomatic versus asymptomatic patients. A negative correlation was found between macrophages and mucosal Clostridium cluster IV and Akkermansia . Urinary and faecal metabolome changes in diverticular disease involved the hippurate and kynurenine pathways. Six urinary molecules allowed to discriminate diverticular disease and control groups with >95% accuracy. Patients with colonic diverticular disease show depletion of microbiota members with anti-inflammatory activity associated with mucosal macrophage infiltration. Metabolome profiles were linked to inflammatory pathways and gut neuromotor dysfunction and showed the ability to discriminate diverticular subgroups and controls. These data pave the way for further large-scale studies specifically aimed at identifying microbiota signatures with a potential diagnostic value in patients with diverticular disease. Published by the BMJ Publishing Group Limited

  9. Facilitating the development of controlled vocabularies for metabolomics technologies with text mining

    Directory of Open Access Journals (Sweden)

    Rebholz-Schuhmann Dietrich

    2008-04-01

    Full Text Available Abstract Background Many bioinformatics applications rely on controlled vocabularies or ontologies to consistently interpret and seamlessly integrate information scattered across public resources. Experimental data sets from metabolomics studies need to be integrated with one another, but also with data produced by other types of omics studies in the spirit of systems biology, hence the pressing need for vocabularies and ontologies in metabolomics. However, it is time-consuming and non trivial to construct these resources manually. Results We describe a methodology for rapid development of controlled vocabularies, a study originally motivated by the needs for vocabularies describing metabolomics technologies. We present case studies involving two controlled vocabularies (for nuclear magnetic resonance spectroscopy and gas chromatography whose development is currently underway as part of the Metabolomics Standards Initiative. The initial vocabularies were compiled manually, providing a total of 243 and 152 terms. A total of 5,699 and 2,612 new terms were acquired automatically from the literature. The analysis of the results showed that full-text articles (especially the Materials and Methods sections are the major source of technology-specific terms as opposed to paper abstracts. Conclusions We suggest a text mining method for efficient corpus-based term acquisition as a way of rapidly expanding a set of controlled vocabularies with the terms used in the scientific literature. We adopted an integrative approach, combining relatively generic software and data resources for time- and cost-effective development of a text mining tool for expansion of controlled vocabularies across various domains, as a practical alternative to both manual term collection and tailor-made named entity recognition methods.

  10. Metabolomics analysis of metabolic effects of nicotinamide phosphoribosyltransferase (NAMPT) inhibition on human cancer cells.

    Science.gov (United States)

    Tolstikov, Vladimir; Nikolayev, Alexander; Dong, Sucai; Zhao, Genshi; Kuo, Ming-Shang

    2014-01-01

    Nicotinamide phosphoribosyltransferase (NAMPT) plays an important role in cellular bioenergetics. It is responsible for converting nicotinamide to nicotinamide adenine dinucleotide, an essential molecule in cellular metabolism. NAMPT has been extensively studied over the past decade due to its role as a key regulator of nicotinamide adenine dinucleotide-consuming enzymes. NAMPT is also known as a potential target for therapeutic intervention due to its involvement in disease. In the current study, we used a global mass spectrometry-based metabolomic approach to investigate the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on metabolic perturbations in human cancer cells. We treated A2780 (ovarian cancer) and HCT-116 (colorectal cancer) cell lines with FK866 in the presence and absence of nicotinic acid. Significant changes were observed in the amino acids metabolism and the purine and pyrimidine metabolism. We also observed metabolic alterations in glycolysis, the citric acid cycle (TCA), and the pentose phosphate pathway. To expand the range of the detected polar metabolites and improve data confidence, we applied a global metabolomics profiling platform by using both non-targeted and targeted hydrophilic (HILIC)-LC-MS and GC-MS analysis. We used Ingenuity Knowledge Base to facilitate the projection of metabolomics data onto metabolic pathways. Several metabolic pathways showed differential responses to FK866 based on several matches to the list of annotated metabolites. This study suggests that global metabolomics can be a useful tool in pharmacological studies of the mechanism of action of drugs at a cellular level.

  11. Energetics of endurance exercise in young horses determined by nuclear magnetic resonance metabolomics

    Directory of Open Access Journals (Sweden)

    Margaux Marie-Hélène, Olivia Luck

    2015-07-01

    Full Text Available Long-term endurance exercise severely affects metabolism in both human and animal athletes resulting in serious risk of metabolic disorders during or after competition. Young horses (up to 6 years old can compete in races up to 90 km despite limited scientific knowledge of energetic metabolism responses to long distance exercise in these animals. The hypothesis of this study was that there would be a strong effect of endurance exercise on the metabolomic profiles of young horses and that the energetic metabolism response in young horses would be different from that of more experienced horses. Metabolomic profiling is a powerful method that combines Nuclear magnetic resonance (NMR spectrometry with supervised orthogonal projection on latent structure (OPLS statistical analysis. 1H-NMR spectra were obtained from plasma samples drawn from young horses (before and after competition. The spectra obtained before and after the race from the same horse (92 samples were compared using OPLS. The statistical parameters showed the robustness of the model (R2Y=0.947, Q2Y=0.856 and CV-ANOVA p-value < 0.001. For confirmation of the predictive value of the model, a test set of 104 sample spectra were projected by the model, which provided perfect predictions as the area under the receiving-operator curve was 1. The metabolomic profile determined with the OPLS model showed that glycemia after the race was lower than glycemia before the race, despite the involvement of lipid and protein catabolism. An OPLS model was calculated to compare spectra obtained on plasma taken after the race from 6-year-old horses and from experienced horses (cross-validated ANOVA p-value < 0.001. The comparison of metabolomic profiles in young horses to those from experienced horses showed that experienced horses maintained their glycemia with higher levels of lactate and a decrease of plasma lipids after the race.

  12. Inhaled ozone (O{sub 3})-induces changes in serum metabolomic and liver transcriptomic profiles in rats

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Desinia B. [Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, NC (United States); Karoly, Edward D.; Jones, Jan C. [Metabolon Incorporation, Durham, NC (United States); Ward, William O.; Vallanat, Beena D.; Andrews, Debora L. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Schladweiler, Mette C.; Snow, Samantha J. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Bass, Virginia L. [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC (United States); Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, Urmila P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2015-07-15

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O{sub 3}) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O{sub 3} exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O{sub 3} at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O{sub 3}, 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O{sub 3} increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O{sub 3} increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O{sub 3}. In conclusion, short-term O{sub 3} exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. - Highlights: • Ozone, an ubiquitous air pollutant induces acute systemic metabolic derangement. • Serum metabolomic approach provides novel insights in ozone-induced changes. • Ozone exposure induces leptinemia

  13. Intergenerational environmental effects: functional signals in offspring transcriptomes and metabolomes after parental jasmonic acid treatment in apomictic dandelion.

    Science.gov (United States)

    Verhoeven, Koen J F; Verbon, Eline H; van Gurp, Thomas P; Oplaat, Carla; Ferreira de Carvalho, Julie; Morse, Alison M; Stahl, Mark; Macel, Mirka; McIntyre, Lauren M

    2018-01-01

    Parental environments can influence offspring traits. However, the magnitude of the impact of parental environments on offspring molecular phenotypes is poorly understood. Here, we test the direct effects and intergenerational effects of jasmonic acid (JA) treatment, which is involved in herbivory-induced defense signaling, on transcriptomes and metabolomes in apomictic common dandelion (Taraxacum officinale). In a full factorial crossed design with parental and offspring JA and control treatments, we performed leaf RNA-seq gene expression analysis, LC-MS metabolomics and total phenolics assays in offspring plants. Expression analysis, leveraged by a de novo assembled transcriptome, revealed an induced response to JA exposure that is consistent with known JA effects. The intergenerational effect of treatment was considerable: 307 of 858 detected JA-responsive transcripts were affected by parental JA treatment. In terms of the numbers of metabolites affected, the magnitude of the chemical response to parental JA exposure was c. 10% of the direct JA treatment response. Transcriptome and metabolome analyses both identified the phosphatidylinositol signaling pathway as a target of intergenerational JA effects. Our results highlight that parental environments can have substantial effects in offspring generations. Transcriptome and metabolome assays provide a basis for zooming in on the potential mechanisms of inherited JA effects. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Challenges of metabolomics in human gut microbiota research.

    Science.gov (United States)

    Smirnov, Kirill S; Maier, Tanja V; Walker, Alesia; Heinzmann, Silke S; Forcisi, Sara; Martinez, Inés; Walter, Jens; Schmitt-Kopplin, Philippe

    2016-08-01

    The review highlights the role of metabolomics in studying human gut microbial metabolism. Microbial communities in our gut exert a multitude of functions with huge impact on human health and disease. Within the meta-omics discipline, gut microbiome is studied by (meta)genomics, (meta)transcriptomics, (meta)proteomics and metabolomics. The goal of metabolomics research applied to fecal samples is to perform their metabolic profiling, to quantify compounds and classes of interest, to characterize small molecules produced by gut microbes. Nuclear magnetic resonance spectroscopy and mass spectrometry are main technologies that are applied in fecal metabolomics. Metabolomics studies have been increasingly used in gut microbiota related research regarding health and disease with main focus on understanding inflammatory bowel diseases. The elucidated metabolites in this field are summarized in this review. We also addressed the main challenges of metabolomics in current and future gut microbiota research. The first challenge reflects the need of adequate analytical tools and pipelines, including sample handling, selection of appropriate equipment, and statistical evaluation to enable meaningful biological interpretation. The second challenge is related to the choice of the right animal model for studies on gut microbiota. We exemplified this using NMR spectroscopy for the investigation of cross-species comparison of fecal metabolite profiles. Finally, we present the problem of variability of human gut microbiota and metabolome that has important consequences on the concepts of personalized nutrition and medicine. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Metabolomic Studies of Oral Biofilm, Oral Cancer, and Beyond.

    Science.gov (United States)

    Washio, Jumpei; Takahashi, Nobuhiro

    2016-06-02

    Oral diseases are known to be closely associated with oral biofilm metabolism, while cancer tissue is reported to possess specific metabolism such as the 'Warburg effect'. Metabolomics might be a useful method for clarifying the whole metabolic systems that operate in oral biofilm and oral cancer, however, technical limitations have hampered such research. Fortunately, metabolomics techniques have developed rapidly in the past decade, which has helped to solve these difficulties. In vivo metabolomic analyses of the oral biofilm have produced various findings. Some of these findings agreed with the in vitro results obtained in conventional metabolic studies using representative oral bacteria, while others differed markedly from them. Metabolomic analyses of oral cancer tissue not only revealed differences between metabolomic profiles of cancer and normal tissue, but have also suggested a specific metabolic system operates in oral cancer tissue. Saliva contains a variety of metabolites, some of which might be associated with oral or systemic disease; therefore, metabolomics analysis of saliva could be useful for identifying disease-specific biomarkers. Metabolomic analyses of the oral biofilm, oral cancer, and saliva could contribute to the development of accurate diagnostic, techniques, safe and effective treatments, and preventive strategies for oral and systemic diseases.

  16. MetPP: a computational platform for comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry-based metabolomics.

    Science.gov (United States)

    Wei, Xiaoli; Shi, Xue; Koo, Imhoi; Kim, Seongho; Schmidt, Robin H; Arteel, Gavin E; Watson, Walter H; McClain, Craig; Zhang, Xiang

    2013-07-15

    Due to the high complexity of metabolome, the comprehensive 2D gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) is considered as a powerful analytical platform for metabolomics study. However, the applications of GC×GC-TOF MS in metabolomics are not popular owing to the lack of bioinformatics system for data analysis. We developed a computational platform entitled metabolomics profiling pipeline (MetPP) for analysis of metabolomics data acquired on a GC×GC-TOF MS system. MetPP can process peak filtering and merging, retention index matching, peak list alignment, normalization, statistical significance tests and pattern recognition, using the peak lists deconvoluted from the instrument data as its input. The performance of MetPP software was tested with two sets of experimental data acquired in a spike-in experiment and a biomarker discovery experiment, respectively. MetPP not only correctly aligned the spiked-in metabolite standards from the experimental data, but also correctly recognized their concentration difference between sample groups. For analysis of the biomarker discovery data, 15 metabolites were recognized with significant concentration difference between the sample groups and these results agree with the literature results of histological analysis, demonstrating the effectiveness of applying MetPP software for disease biomarker discovery. The source code of MetPP is available at http://metaopen.sourceforge.net xiang.zhang@louisville.edu Supplementary data are available at Bioinformatics online.

  17. Chemical Structure Identification in Metabolomics: Computational Modeling of Experimental Features

    Directory of Open Access Journals (Sweden)

    Lochana C Menikarachchi

    2013-02-01

    Full Text Available The identification of compounds in complex mixtures remains challenging despite recent advances in analytical techniques. At present, no single method can detect and quantify the vast array of compounds that might be of potential interest in metabolomics studies. High performance liquid chromatography/mass spectrometry (HPLC/MS is often considered the analytical method of choice for analysis of biofluids. The positive identification of an unknown involves matching at least two orthogonal HPLC/MS measurements (exact mass, retention index, drift time etc. against an authentic standard. However, due to the limited availability of authentic standards, an alternative approach involves matching known and measured features of the unknown compound with computationally predicted features for a set of candidate compounds downloaded from a chemical database. Computationally predicted features include retention index, ECOM50 (energy required to decompose 50% of a selected precursor ion in a collision induced dissociation cell, drift time, whether the unknown compound is biological or synthetic and a collision induced dissociation (CID spectrum. Computational predictions are used to filter the initial “bin” of candidate compounds. The final output is a ranked list of candidates that best match the known and measured features. In this mini review, we discuss cheminformatics methods underlying this database search-filter identification approach.

  18. Radiation Metabolomics: Current Status and Future Directions

    Directory of Open Access Journals (Sweden)

    Smrithi eSugumaran Menon

    2016-02-01

    Full Text Available Human exposure to ionizing radiation disrupts normal metabolic processes in cells and organs by inducing complex biological responses that interfere with gene and protein expression. Conventional dosimetry, monitoring of prodromal symptoms and peripheral lymphocyte counts are of limited value as organ and tissue specific biomarkers for personnel exposed to radiation, particularly, weeks or months after exposure. Analysis of metabolites generated in known stress-responsive pathways by molecular profiling helps to predict the physiological status of an individual in response to environmental or genetic perturbations. Thus, a multi-metabolite profile obtained from a high resolution mass spectrometry-based metabolomics platform offers potential for identification of robust biomarkers to predict radiation toxicity of organs and tissues resulting from exposures to therapeutic or non-therapeutic ionizing radiation. Here, we review the status of radiation metabolomics and explore applications as a standalone technology, as well as its integration in systems biology, to facilitate a better understanding of the molecular basis of radiation response. Finally, we draw attention to the identification of specific pathways that can be targeted for the development of therapeutics to alleviate or mitigate harmful effects of radiation exposure.

  19. Integrated sampling procedure for metabolome analysis.

    Science.gov (United States)

    Schaub, Jochen; Schiesling, Carola; Reuss, Matthias; Dauner, Michael

    2006-01-01

    Metabolome analysis, the analysis of large sets of intracellular metabolites, has become an important systems analysis method in biotechnological and pharmaceutical research. In metabolic engineering, the integration of metabolome data with fluxome and proteome data into large-scale mathematical models promises to foster rational strategies for strain and cell line improvement. However, the development of reproducible sampling procedures for quantitative analysis of intracellular metabolite concentrations represents a major challenge, accomplishing (i) fast transfer of sample, (ii) efficient quenching of metabolism, (iii) quantitative metabolite extraction, and (iv) optimum sample conditioning for subsequent quantitative analysis. In addressing these requirements, we propose an integrated sampling procedure. Simultaneous quenching and quantitative extraction of intracellular metabolites were realized by short-time exposure of cells to temperatures unit operations into a one unit operation, (ii) the avoidance of any alteration of the sample due to chemical reagents in quenching and extraction, and (iii) automation. A sampling frequency of 5 s(-)(1) and an overall individual sample processing time faster than 30 s allow observing responses of intracellular metabolite concentrations to extracellular stimuli on a subsecond time scale. Recovery and reliability of the unit operations were analyzed. Impact of sample conditioning on subsequent IC-MS analysis of metabolites was examined as well. The integrated sampling procedure was validated through consistent results from steady-state metabolite analysis of Escherichia coli cultivated in a chemostat at D = 0.1 h(-)(1).

  20. Serum Metabolomics of Burkitt Lymphoma Mouse Models.

    Directory of Open Access Journals (Sweden)

    Fengmin Yang

    Full Text Available Burkitt lymphoma (BL is a rare and highly aggressive type of non-Hodgkin lymphoma. The mortality rate of BL patients is very high due to the rapid growth rate and frequent systemic spread of the disease. A better understanding of the pathogenesis, more sensitive diagnostic tools and effective treatment methods for BL are essential. Metabolomics, an important aspect of systems biology, allows the comprehensive analysis of global, dynamic and endogenous biological metabolites based on their nuclear magnetic resonance (NMR and mass spectrometry (MS. It has already been used to investigate the pathogenesis and discover new biomarkers for disease diagnosis and prognosis. In this study, we analyzed differences of serum metabolites in BL mice and normal mice by NMR-based metabolomics. We found that metabolites associated with energy metabolism, amino acid metabolism, fatty acid metabolism and choline phospholipid metabolism were altered in BL mice. The diagnostic potential of the metabolite differences was investigated in this study. Glutamate, glycerol and choline had a high diagnostic accuracy; in contrast, isoleucine, leucine, pyruvate, lysine, α-ketoglutarate, betaine, glycine, creatine, serine, lactate, tyrosine, phenylalanine, histidine and formate enabled the accurate differentiation of BL mice from normal mice. The discovery of abnormal metabolism and relevant differential metabolites may provide useful clues for developing novel, noninvasive approaches for the diagnosis and prognosis of BL based on these potential biomarkers.

  1. Metabolomics, a promising approach to translational research in cardiology

    Directory of Open Access Journals (Sweden)

    Martino Deidda

    2015-12-01

    In this article, we will provide a description of metabolomics in comparison with other, better known “omics” disciplines such as genomics and proteomics. In addition, we will review the current rationale for the implementation of metabolomics in cardiology, its basic methodology and the available data from human studies in this discipline. The topics covered will delineate the importance of being able to use the metabolomic information to understand the mechanisms of diseases from the perspective of systems biology, and as a non-invasive approach to the diagnosis, grading and treatment of cardiovascular diseases.

  2. Territories climate plans: territories in action 21 collectivities involved in the climatic change challenge. 1. experiences collection 2007

    International Nuclear Information System (INIS)

    2007-01-01

    The climate plan invites the collectivities to implement actions of greenhouse reduction. This collection presents the first collectivities involved in a climate approach: towns, natural parks, syndicates, general and regional council. (A.L.B.)

  3. “We Have a Lot of Sleeping Parents”: Comparing Inner-City and Suburban High School Teachers’ Experiences with Parent Involvement

    Directory of Open Access Journals (Sweden)

    David Wilkerson

    2010-09-01

    Full Text Available Teachers’ experiences with parent involvement were compared at an inner-city high school and a suburban high school. Parent involvement has been described as underutilized by teachers, due to either ideological barriers or cultural biases against parents of lower socio-economic status. A sample of 62 teachers found no significant group differences between teachers at the two schools for either problematic or collaborative parent involvement. There was a significant difference for beliefs about parent competency. Results may suggest that the ideological barrier of a “protective model” for home/school relations devalues parent involvement for teachers. Parent involvement may be further devalued for inner-city teachers, who hold beliefs that parent competence is reduced by socioeconomic challenges.

  4. New approaches for metabolomics by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vertes, Akos [George Washington Univ., Washington, DC (United States)

    2017-07-10

    Small molecules constitute a large part of the world around us, including fossil and some renewable energy sources. Solar energy harvested by plants and bacteria is converted into energy rich small molecules on a massive scale. Some of the worst contaminants of the environment and compounds of interest for national security also fall in the category of small molecules. The development of large scale metabolomic analysis methods lags behind the state of the art established for genomics and proteomics. This is commonly attributed to the diversity of molecular classes included in a metabolome. Unlike nucleic acids and proteins, metabolites do not have standard building blocks, and, as a result, their molecular properties exhibit a wide spectrum. This impedes the development of dedicated separation and spectroscopic methods. Mass spectrometry (MS) is a strong contender in the quest for a quantitative analytical tool with extensive metabolite coverage. Although various MS-based techniques are emerging for metabolomics, many of these approaches include extensive sample preparation that make large scale studies resource intensive and slow. New ionization methods are redefining the range of analytical problems that can be solved using MS. This project developed new approaches for the direct analysis of small molecules in unprocessed samples, as well as pushed the limits of ultratrace analysis in volume limited complex samples. The projects resulted in techniques that enabled metabolomics investigations with enhanced molecular coverage, as well as the study of cellular response to stimuli on a single cell level. Effectively individual cells became reaction vessels, where we followed the response of a complex biological system to external perturbation. We established two new analytical platforms for the direct study of metabolic changes in cells and tissues following external perturbation. For this purpose we developed a novel technique, laser ablation electrospray

  5. To do, to have, or to share? Valuing experiences over material possessions depends on the involvement of others.

    Science.gov (United States)

    Caprariello, Peter A; Reis, Harry T

    2013-02-01

    Recent evidence indicates that spending discretionary money with the intention of acquiring life experiences-events that one lives through-makes people happier than spending money with the intention of acquiring material possessions-tangible objects that one obtains and possesses. We propose and show that experiences are more likely to be shared with others, whereas material possessions are more prone to solitary use and that this distinction may account for their differential effects on happiness. In 4 studies, we present evidence demonstrating that the inclusion of others is a key dimension of how people derive happiness from discretionary spending. These studies showed that when the social-solitary and experiential-material dimensions were considered simultaneously, social discretionary spending was favored over solitary discretionary spending, whereas experiences showed no happiness-producing advantage relative to possessions. Furthermore, whereas spending money on socially shared experiences was valued more than spending money on either experiences enacted alone or material possessions, solitary experiences were no more valued than material possessions. Together, these results extend and clarify the basic findings of prior research and add to growing evidence that the social context of experiences is critical for their effects on happiness. (c) 2013 APA, all rights reserved.

  6. Maternal-fetal hepatic and placental metabolome profiles are associated with reduced fetal growth in a rat model of maternal obesity

    DEFF Research Database (Denmark)

    Mumme, Karen; Gray, Clint; Reynolds, Clare M.

    2016-01-01

    : Metabolomic profiling was used to reveal altered maternal and fetal metabolic pathways in a model of diet induced obesity during pregnancy, leading to reduced fetal growth. Methods: We examined the metabolome of maternal and fetal livers, and placenta following a high fat and salt intake. Sprague–Dawley rats....... Metabolites from maternal and fetal livers, and placenta were identified using gas and liquid chromatography combined with mass spectrometry. Results: Maternal HF intake resulted in reduced fetal weight. Altered metabolite profiles were observed in the HF maternal and fetal liver, and placenta...... and fetal response to increased fat consumption seems likely to involve palmitoleic acid utilization as an adaptive response during maternal obesity....

  7. Impact of anesthesia and euthanasia on metabolomics of mammalian tissues: studies in a C57BL/6J mouse model.

    Directory of Open Access Journals (Sweden)

    Katherine A Overmyer

    Full Text Available A critical application of metabolomics is the evaluation of tissues, which are often the primary sites of metabolic dysregulation in disease. Laboratory rodents have been widely used for metabolomics studies involving tissues due to their facile handing, genetic manipulability and similarity to most aspects of human metabolism. However, the necessary step of administration of anesthesia in preparation for tissue sampling is not often given careful consideration, in spite of its potential for causing alterations in the metabolome. We examined, for the first time using untargeted and targeted metabolomics, the effect of several commonly used methods of anesthesia and euthanasia for collection of skeletal muscle, liver, heart, adipose and serum of C57BL/6J mice. The data revealed dramatic, tissue-specific impacts of tissue collection strategy. Among many differences observed, post-euthanasia samples showed elevated levels of glucose 6-phosphate and other glycolytic intermediates in skeletal muscle. In heart and liver, multiple nucleotide and purine degradation metabolites accumulated in tissues of euthanized compared to anesthetized animals. Adipose tissue was comparatively less affected by collection strategy, although accumulation of lactate and succinate in euthanized animals was observed in all tissues. Among methods of tissue collection performed pre-euthanasia, ketamine showed more variability compared to isoflurane and pentobarbital. Isoflurane induced elevated liver aspartate but allowed more rapid initiation of tissue collection. Based on these findings, we present a more optimal collection strategy mammalian tissues and recommend that rodent tissues intended for metabolomics studies be collected under anesthesia rather than post-euthanasia.

  8. Induced pluripotent stem cells show metabolomic differences to embryonic stem cells in polyunsaturated phosphatidylcholines and primary metabolism.

    Directory of Open Access Journals (Sweden)

    John K Meissen

    Full Text Available Induced pluripotent stem cells are different from embryonic stem cells as shown by epigenetic and genomics analyses. Depending on cell types and culture conditions, such genetic alterations can lead to different metabolic phenotypes which may impact replication rates, membrane properties and cell differentiation. We here applied a comprehensive metabolomics strategy incorporating nanoelectrospray ion trap mass spectrometry (MS, gas chromatography-time of flight MS, and hydrophilic interaction- and reversed phase-liquid chromatography-quadrupole time-of-flight MS to examine the metabolome of induced pluripotent stem cells (iPSCs compared to parental fibroblasts as well as to reference embryonic stem cells (ESCs. With over 250 identified metabolites and a range of structurally unknown compounds, quantitative and statistical metabolome data were mapped onto a metabolite networks describing the metabolic state of iPSCs relative to other cell types. Overall iPSCs exhibited a striking shift metabolically away from parental fibroblasts and toward ESCs, suggestive of near complete metabolic reprogramming. Differences between pluripotent cell types were not observed in carbohydrate or hydroxyl acid metabolism, pentose phosphate pathway metabolites, or free fatty acids. However, significant differences between iPSCs and ESCs were evident in phosphatidylcholine and phosphatidylethanolamine lipid structures, essential and non-essential amino acids, and metabolites involved in polyamine biosynthesis. Together our findings demonstrate that during cellular reprogramming, the metabolome of fibroblasts is also reprogrammed to take on an ESC-like profile, but there are select unique differences apparent in iPSCs. The identified metabolomics signatures of iPSCs and ESCs may have important implications for functional regulation of maintenance and induction of pluripotency.

  9. Induced pluripotent stem cells show metabolomic differences to embryonic stem cells in polyunsaturated phosphatidylcholines and primary metabolism.

    Science.gov (United States)

    Meissen, John K; Yuen, Benjamin T K; Kind, Tobias; Riggs, John W; Barupal, Dinesh K; Knoepfler, Paul S; Fiehn, Oliver

    2012-01-01

    Induced pluripotent stem cells are different from embryonic stem cells as shown by epigenetic and genomics analyses. Depending on cell types and culture conditions, such genetic alterations can lead to different metabolic phenotypes which may impact replication rates, membrane properties and cell differentiation. We here applied a comprehensive metabolomics strategy incorporating nanoelectrospray ion trap mass spectrometry (MS), gas chromatography-time of flight MS, and hydrophilic interaction- and reversed phase-liquid chromatography-quadrupole time-of-flight MS to examine the metabolome of induced pluripotent stem cells (iPSCs) compared to parental fibroblasts as well as to reference embryonic stem cells (ESCs). With over 250 identified metabolites and a range of structurally unknown compounds, quantitative and statistical metabolome data were mapped onto a metabolite networks describing the metabolic state of iPSCs relative to other cell types. Overall iPSCs exhibited a striking shift metabolically away from parental fibroblasts and toward ESCs, suggestive of near complete metabolic reprogramming. Differences between pluripotent cell types were not observed in carbohydrate or hydroxyl acid metabolism, pentose phosphate pathway metabolites, or free fatty acids. However, significant differences between iPSCs and ESCs were evident in phosphatidylcholine and phosphatidylethanolamine lipid structures, essential and non-essential amino acids, and metabolites involved in polyamine biosynthesis. Together our findings demonstrate that during cellular reprogramming, the metabolome of fibroblasts is also reprogrammed to take on an ESC-like profile, but there are select unique differences apparent in iPSCs. The identified metabolomics signatures of iPSCs and ESCs may have important implications for functional regulation of maintenance and induction of pluripotency.

  10. A research note on the benefit of patient and public involvement in research: The experience of prostate cancer patients regarding information in radiotherapy

    International Nuclear Information System (INIS)

    Gordon, L.; Dickinson, A.; Offredy, M.; Smiddy, J.

    2017-01-01

    Aim: To explore the inclusion of patient and public involvement (PPI) in a qualitative study on the experiences of men with prostate cancer regarding information in radiotherapy. Method: The application of PPI to one doctoral research study is explored with respect to two perspectives: firstly, involvement of a patient reference group who informed the research design and materials, and secondly, the involvement of a public involvement in research group (PIRg) in advising the researcher during the design process. Discussion: PPI is recognised as an important component of contemporary health research. PPI is becoming a common and essential requirement for high quality research projects and yet literature exploring or reporting the involvement and influence of PPI is sparse. Consideration is given to the national PPI landscape that has shaped public involvement in health research. Conclusion: The contribution of PPI to this study appears to have been beneficial to the development and evaluation of the study design, the self-worth of the reference group participants and demonstrates that the value of PPI in health research should not be underestimated. - Highlights: • Patient and public involvement (PPI) in research is rare or rarely described. • PPI involvement was a positive inclusion and modified the research aims and methods. • PPI is of value to both PPI contributors and researchers.

  11. Molecular identification in metabolomics using infrared ion spectroscopy

    NARCIS (Netherlands)

    Martens, J.; Berden, G.; van Outersterp, R.E.; Kluijtmans, L.A.J.; Engelke, U.F.; van Karnebeek, C.D.M.; Wevers, R.A.; Oomens, J.

    2017-01-01

    Small molecule identification is a continually expanding field of research and represents the core challenge in various areas of (bio) analytical science, including metabolomics. Here, we unequivocally differentiate enantiomeric N-acetylhexosamines in body fluids using infrared ion spectroscopy,

  12. Plant single-cell and single-cell-type metabolomics.

    Science.gov (United States)

    Misra, Biswapriya B; Assmann, Sarah M; Chen, Sixue

    2014-10-01

    In conjunction with genomics, transcriptomics, and proteomics, plant metabolomics is providing large data sets that are paving the way towards a comprehensive and holistic understanding of plant growth, development, defense, and productivity. However, dilution effects from organ- and tissue-based sampling of metabolomes have limited our understanding of the intricate regulation of metabolic pathways and networks at the cellular level. Recent advances in metabolomics methodologies, along with the post-genomic expansion of bioinformatics knowledge and functional genomics tools, have allowed the gathering of enriched information on individual cells and single cell types. Here we review progress, current status, opportunities, and challenges presented by single cell-based metabolomics research in plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Spectral Relative Standard Deviation: A Practical Benchmark in Metabolomics

    Science.gov (United States)

    Metabolomics datasets, by definition, comprise of measurements of large numbers of metabolites. Both technical (analytical) and biological factors will induce variation within these measurements that is not consistent across all metabolites. Consequently, criteria are required to...

  14. Microbial metabolomics with gas chromatography/mass spectrometry

    NARCIS (Netherlands)

    Koek, M.M.; Muilwijk, B.; Werf, M.J. van der; Hankemeier, T.

    2006-01-01

    An analytical method was set up suitable for the analysis of microbial metabolomes, consisting of an oximation and silylation derivatization reaction and subsequent analysis by gas chromatography coupled to mass spectrometry. Microbial matrixes contain many compounds that potentially interfere with

  15. A lost opportunity for science: journals promote data sharing in metabolomics but do not enforce it.

    Science.gov (United States)

    Spicer, Rachel A; Steinbeck, Christoph

    2018-01-01

    Data sharing is being increasingly required by journals and has been heralded as a solution to the 'replication crisis'. (i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals' policies to those that publish the most metabolomics papers. A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications. Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data. Further efforts are required to improve data sharing in metabolomics.

  16. Revealing the metabolome of animal tissues using 1H nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Viant, Mark R

    2007-01-01

    The measurement of tissue-specific metabolic fingerprints can be of particular interest when investigating disease processes, mechanisms of toxicity, or when knowledge of the metabolic interactions between different organs is required. This chapter presents several optimized protocols for the extraction of metabolites from animal tissues, their analysis by 1H nuclear magnetic resonance (NMR) spectroscopy, and the subsequent spectral preprocessing required for an NMR-based metabolomics experiment. First, the three critical steps in the preparation of tissue extracts for NMR analysis are described, including both a perchloric acid protocol for the extraction of polar metabolites, and a methanol:chloroform protocol for extraction of polar and lipophilic metabolites. Then a series of NMR experiments are described including a standard one-dimensional (1D) 1H NMR study, a 1D 1H Carr-Purcell-Meiboom-Gill spin-echo experiment, and a two-dimensional 1H-1H J-resolved NMR experiment. The advantages and limitations of each experiment for metabolomics research are discussed. Analysis of the resulting NMR datasets is typically conducted in two phases comprising "low level" spectral preprocessing and "high level" multivariate analysis. NMR spectral preprocessing is a critical step that converts raw NMR spectra into an appropriate data format for multivariate analysis. A detailed protocol for preprocessing NMR data, using ProMetab software, is presented. Because a plethora of algorithms exist for multivariate analyses, which can be used to construct classification models or for biomarker discovery, this is beyond the scope of the current chapter.

  17. The Relationship of Spiritual Beliefs and Involvement with the Experience of Anger and Stress in College Students

    Science.gov (United States)

    Winterowd, Carrie; Harrist, Steve; Thomason, Nancy; Worth, Sheri; Carlozzi, Barbara

    2005-01-01

    The purpose of this study was to explore the relationship of spiritual beliefs and involvement with anger and stress in college students. The spirituality scales were positively related to perceived stress and most of the anger subscales. When stress was controlled, the spirituality subscales still contributed significantly to anger.

  18. Beyond the Bake Sale: Fundraising and Professional Experience for Students Involved in an Information Systems Student Chapter

    Science.gov (United States)

    Snyder, Johnny; Carpenter, Don; Slauson, Gayla Jo; Skinner, Joe; Nash, Cole

    2012-01-01

    Fundraising traditionally involves selling. This paper explores the merits of selling technology services provided by a technology oriented student club to members of a campus community. This club activity puts into practice learning theories presented in the literature. Beyond fundraising, this activity yields many additional benefits to the…

  19. Intergenerational environmental effects: functional signals in offspring transcriptomes and metabolomes after parental jasmonic acid treatment in apomictic dandelion

    OpenAIRE

    Verhoeven, Koen J. F.; Verbon, Eline H.; van Gurp, Thomas P.; Oplaat, Carla; Ferreira de Carvalho, Julie; Morse, Alison M.; Stahl, Mark; Macel, Mirka; McIntyre, Lauren M.

    2017-01-01

    Summary Parental environments can influence offspring traits. However, the magnitude of the impact of parental environments on offspring molecular phenotypes is poorly understood. Here, we test the direct effects and intergenerational effects of jasmonic acid (JA) treatment, which is involved in herbivory‐induced defense signaling, on transcriptomes and metabolomes in apomictic common dandelion (Taraxacum officinale). In a full factorial crossed design with parental and offspring JA and contr...

  20. Stable isotope-resolved metabolomics and applications for drug development

    Science.gov (United States)

    Fan, Teresa W-M.; Lorkiewicz, Pawel; Sellers, Katherine; Moseley, Hunter N.B.; Higashi, Richard M.; Lane, Andrew N.

    2012-01-01

    Advances in analytical methodologies, principally nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), during the last decade have made large-scale analysis of the human metabolome a reality. This is leading to the reawakening of the importance of metabolism in human diseases, particularly cancer. The metabolome is the functional readout of the genome, functional genome, and proteome; it is also an integral partner in molecular regulations for homeostasis. The interrogation of the metabolome, or metabolomics, is now being applied to numerous diseases, largely by metabolite profiling for biomarker discovery, but also in pharmacology and therapeutics. Recent advances in stable isotope tracer-based metabolomic approaches enable unambiguous tracking of individual atoms through compartmentalized metabolic networks directly in human subjects, which promises to decipher the complexity of the human metabolome at an unprecedented pace. This knowledge will revolutionize our understanding of complex human diseases, clinical diagnostics, as well as individualized therapeutics and drug response. In this review, we focus on the use of stable isotope tracers with metabolomics technologies for understanding metabolic network dynamics in both model systems and in clinical applications. Atom-resolved isotope tracing via the two major analytical platforms, NMR and MS, has the power to determine novel metabolic reprogramming in diseases, discover new drug targets, and facilitates ADME studies. We also illustrate new metabolic tracer-based imaging technologies, which enable direct visualization of metabolic processes in vivo. We further outline current practices and future requirements for biochemoinformatics development, which is an integral part of translating stable isotope-resolved metabolomics into clinical reality. PMID:22212615

  1. Metabolomic NMR fingerprinting: an exploratory and predictive tool

    OpenAIRE

    Lauri, Ilaria

    2014-01-01

    Metabolomics is the comprehensive assessment of low molecular weight organic metabolites within biological system. The identification and characterization of several chemical species, or metabolic fingerprinting, is an emergent approach in metabolomics field that provides a valuable “snapshot” of metabolic profiles. This approach is finding an increasing number of applications in many areas including cancer research, drug discovery and food science. The combined use of NMR spectroscopy, data ...

  2. Impact of dietary polydextrose fiber on the human gut metabolome.

    Science.gov (United States)

    Lamichhane, Santosh; Yde, Christian C; Forssten, Sofia; Ouwehand, Arthur C; Saarinen, Markku; Jensen, Henrik Max; Gibson, Glenn R; Rastall, Robert; Fava, Francesca; Bertram, Hanne Christine

    2014-10-08

    The aim of the present study was to elucidate the impact of polydextrose PDX an soluble fiber, on the human fecal metabolome by high-resolution nuclear magnetic resonance (NMR) spectroscopy-based metabolomics in a dietary intervention study (n = 12). Principal component analysis (PCA) revealed a strong effect of PDX consumption on the fecal metabolome, which could be mainly ascribed to the presence of undigested fiber and oligosaccharides formed from partial degradation of PDX. Our results demonstrate that NMR-based metabolomics is a useful technique for metabolite profiling of feces and for testing compliance to dietary fiber intake in such trials. In addition, novel associations between PDX and the levels of the fecal metabolites acetate and propionate could be identified. The establishment of a correlation between the fecal metabolome and levels of Bifidobacterium (R(2) = 0.66) and Bacteroides (R(2) = 0.46) demonstrates the potential of NMR-based metabolomics to elucidate metabolic activity of bacteria in the gut.

  3. Metabolomics study of Populus type propolis.

    Science.gov (United States)

    Anđelković, Boban; Vujisić, Ljubodrag; Vučković, Ivan; Tešević, Vele; Vajs, Vlatka; Gođevac, Dejan

    2017-02-20

    Herein, we propose rapid and simple spectroscopic methods to determine the chemical composition of propolis derived from various Populus species using a metabolomics approach. In order to correlate variability in Populus type propolis composition with the altitude of its collection, NMR, IR, and UV spectroscopy followed by OPLS was conducted. The botanical origin of propolis was established by comparing propolis spectral data to those of buds of various Populus species. An O2PLS method was utilized to integrate two blocks of data. According to OPLS and O2PLS, the major compounds in propolis samples, collected from temperate continental climate above 500m, were phenolic glycerides originating from P. tremula buds. Flavonoids were predominant in propolis samples collected below 400m, originating from P. nigra and P. x euramericana buds. Samples collected at 400-500m were of mixed origin, with variable amounts of all detected metabolites. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    Directory of Open Access Journals (Sweden)

    Stéphane Demine

    2014-09-01

    Full Text Available Mitochondrial dysfunction(s (MDs can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy in the obesity and insulin resistance thematic.

  5. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    Science.gov (United States)

    Demine, Stéphane; Reddy, Nagabushana; Renard, Patricia; Raes, Martine; Arnould, Thierry

    2014-01-01

    Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic. PMID:25257998

  6. Principal beliefs, experiences, and barriers to involvement with student teachers during the practicum component of initial teacher education programs

    OpenAIRE

    Chute, Carey Douglas

    2017-01-01

    Numerous research studies have investigated the significance of Initial Teacher Education (ITE) programs and their practicum in preparing student teachers. The role played by the traditional triad of faculty associate, school associate and student teacher has been studied extensively. However, the principal’s role in the student teacher’s school-based practicum, is often neglected. This study fills that gap and provides Canadian-based data on principal beliefs, self-reported involvement an...

  7. SMILE: interpretation of WP4 PTS transient type experiment performed on a cracked cylinder involving warm pre-stress

    International Nuclear Information System (INIS)

    Moinereau, D.; Dahl, A.; Wadier, Y.

    2005-01-01

    The Reactor Pressure Vessel (RPV) is an essential component liable to limit the lifetime duration of PWR plants. The assessment of defects in RPV subjected to PTS transients made at an European level do not always account the beneficial effect of load history (warm pre-stress WPS). A 3-year Research and Development program-SMILE-has been started in January 2002 as part of the 5th Framework Program of the European Atomic Energy Community (EURATOM). The SMILE project-Structural Margin Improvements in aged embrittled RPV with Load history Effect-is one of a cluster of 5th framework projects in the area of Plant Life Management. It aims to give sufficient elements to demonstrate, to model and to validate the beneficial WPS effect in a RPV integrity assessment. Within the framework of the project, an important experimental work has been conducted including WPS type experiments on CT specimens and a PTS type transient experiment on a large component. The WPS type experiment on the cylinder has been successfully conducted by MPA Stuttgart with a final brittle failure during the reloading. The present paper describes shortly the experiment and presents the corresponding analyses based on engineering methods, finite element elastic-plastic computations, and local approach to fracture. The results are in good agreement with the experimental observations. Very significant margins are underlined, with an effective important increase of the material resistance regarding the risk of brittle failure. (authors)

  8. Striking the Right Balance: Police Experience, Perceptions and Use of Independent Support Persons during Interviews Involving People with Intellectual Disability

    Science.gov (United States)

    Henshaw, Marie; Spivak, Benjamin; Thomas, Stuart D. M.

    2018-01-01

    Background: Several jurisdictions mandate the presence of an independent support person during police interviews with vulnerable people. The current study investigated police officers' experiences and perceptions of these volunteers during interviews with people with intellectual disability(ies) (ID). Methods: The sample comprised 229 police…

  9. Metabolome-wide association study of neovascular age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Melissa P Osborn

    Full Text Available To determine if plasma metabolic profiles can detect differences between patients with neovascular age-related macular degeneration (NVAMD and similarly-aged controls.Metabolomic analysis using liquid chromatography with Fourier-transform mass spectrometry (LC-FTMS was performed on plasma samples from 26 NVAMD patients and 19 controls. Data were collected from mass/charge ratio (m/z 85 to 850 on a Thermo LTQ-FT mass spectrometer, and metabolic features were extracted using an adaptive processing software package. Both non-transformed and log2 transformed data were corrected using Benjamini and Hochberg False Discovery Rate (FDR to account for multiple testing. Orthogonal Partial Least Squares-Discriminant Analysis was performed to determine metabolic features that distinguished NVAMD patients from controls. Individual m/z features were matched to the Kyoto Encyclopedia of Genes and Genomes database and the Metlin metabolomics database, and metabolic pathways associated with NVAMD were identified using MetScape.Of the 1680 total m/z features detected by LC-FTMS, 94 unique m/z features were significantly different between NVAMD patients and controls using FDR (q = 0.05. A comparison of these features to those found with log2 transformed data (n = 132, q = 0.2 revealed 40 features in common, reaffirming the involvement of certain metabolites. Such metabolites included di- and tripeptides, covalently modified amino acids, bile acids, and vitamin D-related metabolites. Correlation analysis revealed associations among certain significant features, and pathway analysis demonstrated broader changes in tyrosine metabolism, sulfur amino acid metabolism, and amino acids related to urea metabolism.These data suggest that metabolomic analysis can identify a panel of individual metabolites that differ between NVAMD cases and controls. Pathway analysis can assess the involvement of certain metabolic pathways, such as tyrosine and urea metabolism, and can

  10. Evaluation of cadmium-induced nephrotoxicity using urinary metabolomic profiles in sprague-dawley male rats.

    Science.gov (United States)

    Lee, Yu Kyung; Park, Eun Young; Kim, Shiwon; Son, Ji Yeon; Kim, Tae Hyung; Kang, Won Gu; Jeong, Tae Chun; Kim, Kyu-Bong; Kwack, Seung Jun; Lee, Jaewon; Kim, Suhkmann; Lee, Byung-Mu; Kim, Hyung Sik

    2014-01-01

    The aim of this study was to investigate urinary metabolomic profiles associated with cadmium (Cd)-induced nephrotoxicity and their potential mechanisms. Metabolomic profiles were measured by high-resolution (1)H-nuclear magnetic resonance (NMR) spectroscopy in the urine of rats after oral exposure to CdCl2 (1, 5, or 25 mg/kg) for 6 wk. The spectral data were further analyzed by a multivariate analysis to identify specific urinary metabolites. Urinary excretion levels of protein biomarkers were also measured and CdCl2 accumulated dose-dependently in the kidney. High-dose (25 mg/kg) CdCl2 exposure significantly increased serum blood urea nitrogen (BUN), but serum creatinine (sCr) levels were unchanged. High-dose CdCl2 (25 mg/kg) exposure also significantly elevated protein-based urinary biomarkers including osteopontin, monocyte chemoattractant protein-1 (MCP-1), kidney injury molecules-1 (Kim-1), and selenium-binding protein 1 (SBP1) in rat urine. Under these conditions, six urinary metabolites (citrate, serine, 3-hydroxyisovalerate, 4-hydroxyphenyllactate, dimethylamine, and betaine) were involved in mitochondrial energy metabolism. In addition, a few number of amino acids such as glycine, glutamate, tyrosine, proline, or phenylalanine and carbohydrate (glucose) were altered in urine after CdCl2 exposure. In particular, the metabolites involved in the glutathione biosynthesis pathway, including cysteine, serine, methionine, and glutamate, were markedly decreased compared to the control. Thus, these metabolites are potential biomarkers for detection of Cd-induced nephrotoxicity. Our results further indicate that redox metabolomics pathways may be associated with Cd-mediated chronic kidney injury. These findings provide a biochemical pathway for better understanding of cellular mechanism underlying Cd-induced renal injury in humans.

  11. Involvement of activated leukocytes in the regulation of plasma levels of acute phase proteins in microgravity simulation experiments

    Science.gov (United States)

    Larina, Olga; Bekker, Anna; Turin-Kuzmin, Alexey

    2016-07-01

    Earth-based studies of microgravity effects showed the induction of the mechanisms of acute phase reaction (APR). APR comprises the transition of stress-sensitive protein kinases of macrophages and other responsive cells into the active state and the phosphorylation of transcription factors which in turn stimulate the production of acute-phase reaction cytokines. Leukocyte activation is accompanied by the acceleration of the formation of oxygen radicals which can serve a functional indice of leukocyte cell state. The series of events at acute phase response result in selective changes in the synthesis of a number of secretory blood proteins (acute phase proteins, APPs) in liver cells thus contributing the recovery of homeostasis state in the organism. Earlier experiment with head-down tilt showed the increase in plasma concentrations of two cytokine mediators of acute phase response, tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) being the outcome of the activation of producer cells, foremost, leukocytes. In experiment with 4-day dry immersion chemiluminescent (ChL) reply of the whole blood samples to a test stimulus were studied along with the measurements of plasma levels of APPs, namely, alpha1-antitrypsin (alpha1-AT), alpha1-acid glycoprotein (alpha1-AGP), alpha2-macroglobulin (alpha2-M), ceruloplasmin (Cer), haptoglobin (Hp), C3-complement component (C3), C-reactive protein (CRP). Eight individuals aged 21.2 ± 3.2 years were the test subjects in the investigation. Protein studies showed a noticeable increase in the mean plasma levels of all APPs measured in experiment thus producing the evidence of the activation of acute phase response mechanisms while individual patterns revealed variability during the immersion period. The overall trends were similar to these in the previous immersion series. The augment in the strength of signal in stimulated light emission tests was higher after 1- and 2-day of immersion exposure than before the

  12. Changes in Families' Caregiving Experiences through Involvement as Participants then Facilitators in a Family Peer-Education Program for Mental Disorders in Japan.

    Science.gov (United States)

    Kageyama, Masako; Yokoyama, Keiko; Nakamura, Yukako; Kobayashi, Sayaka

    2017-06-01

    A family peer-education program for mental disorders was developed in Japan, similar to existing programs in the United States and Hong Kong. Families that serve as facilitators in such programs may enhance their caregiving processes and, thereby, their well-being. This study's aim was to describe how families' caregiving experiences change, beginning with the onset of a family member's mental illness, through their involvement in a family group or peer-education program as participants then facilitators. Thus, this study was conducted in a family peer-education program for mental disorders in Japan. Group interviews were conducted with 27 facilitators from seven program sites about their experiences before, during, and after becoming facilitators. Interview data were coded and categorized into five stages of caregiving processes: (1) withdrawing and suppressing negative experiences with difficulty and regret; (2) finding comfort through being listened to about negative experiences; (3) supporting participants' sharing as facilitators; (4) understanding and affirming oneself through repeated sharing of experiences; and (5) finding value and social roles in one's experiences. The third, fourth, and fifth stages were experienced by the facilitators. The value that the facilitators placed on their caregiving experiences changed from negative to positive, which participants regarded as helpful and supportive. We conclude that serving as facilitators may improve families' caregiving processes. © 2015 Family Process Institute.

  13. Pattern of mri brain abnormalities in rheumatic patients with neurological involvement: a tertiary care teaching hospital experience

    International Nuclear Information System (INIS)

    Parvez, K.; Arfaj, A.; Naseeb, F.; Daif, A.K.

    2015-01-01

    Objective: To explore the pattern of abnormalities seen on MRI in rheumatic patients with neurological manifestations and to interpret the findings in relation to clinical picture. Study Design: Descriptive study. Place and Duration of Study: Rheumatology unit, King Khalid University Hospital, Riyadh, Saudi Arabia from January 2013 to February 2014. Patients and Methods: We prospectively included rheumatic patients with neurological symptoms and signs. The clinical data were correlated with MRI findings by a team comprising of a rheumatologist, neurologist and neuro-radiologist. Data was analyzed using simple statistical analysis. Results: Fifty patients were recruited with a mean age of 36.4 ± 10.76 years (range 17-62). Among SLE patients with seizures, focal deficit and headache white matter hyperintensities were found in 9 (64.28%), 4 (50%), 4 (80%) patients respectively. Out of seven SLE patients with global dysfunction, 3 (42.85%) had brain atrophy and 2 (28.57%) normal MRI. In Behcet disease with focal deficit, 3 (75%) patients had white matter hyperintensities and 1 (25%) had brainstem involvement. In Behcet disease with headache, 2 (50%) had normal MRI, 1 (25%) brainstem hyper-intensities and 1 (25%) had subacute infarct. Two (66%) of three Primary APS patients had white matter hyperintensities while third (33%) had old infarct. Both patients of polyarteritisnodosa, had white matter hyperintensities. Out of two Wegener granulomatosis one had white matter hyperintensities and other had ischemic changes in optic nerves. The only one scleroderma patient had white matter hyperintensities. Conclusion: We found that white matter hyperintensities was the most common MRI abnormality in our study group which in most of the cases had poor clinical correlation. No distinct pattern of CNS involvement on MRI was observed in various rheumatic disorders. (author)

  14. Volunteer stream monitoring: Do the data quality and monitoring experience support increased community involvement in freshwater decision making?

    Directory of Open Access Journals (Sweden)

    Richard G. Storey

    2016-12-01

    Full Text Available Recent freshwater policy reforms in New Zealand promote increased community involvement in freshwater decision making and management. Involving community members in scientific monitoring increases both their knowledge and their ability to discuss this knowledge with professionals, potentially increasing their influence in decision-making processes. However, these interactions rarely occur because, in particular, of perceptions that volunteer-collected data are unreliable. We assessed the agreement between volunteer (community group and local government (regional council data at nine stream sites across New Zealand. Over 18 months, community groups and regional council staff monitored, in parallel, a common set of water quality variables, physical habitat, periphyton and benthic macroinvertebrates that are routinely used by regional councils for statutory state of environment reporting. Community groups achieved close agreement (correlations ≥ 0.89, bias < 1% with regional councils for temperature, electrical conductivity, visual water clarity, and Escherichia coli. For dissolved oxygen, nitrate, and pH, correlations were weaker (0.2, 0.53, and 0.4, respectively. Volunteer assessments of physical habitat were as consistent over time as those of councils. For visual assessments of thick periphyton growths (% streambed cover, volunteers achieved a correlation of 0.93 and bias of 0.1% relative to councils. And for a macroinvertebrate biotic index that indicates water and habitat quality, correlation was 0.88, bias was < 5%, and the average difference was 12% of the index score. Volunteers showed increased awareness of local freshwaters, understanding of stream ecosystems, and attentiveness to local and national freshwater issues. Most volunteers had shared their knowledge and interest with others in their community. Most groups had developed relationships with their regional council, and some volunteers became more interested in engaging in

  15. Normalization method for metabolomics data using optimal selection of multiple internal standards

    Directory of Open Access Journals (Sweden)

    Yetukuri Laxman

    2007-03-01

    Full Text Available Abstract Background Success of metabolomics as the phenotyping platform largely depends on its ability to detect various sources of biological variability. Removal of platform-specific sources of variability such as systematic error is therefore one of the foremost priorities in data preprocessing. However, chemical diversity of molecular species included in typical metabolic profiling experiments leads to different responses to variations in experimental conditions, making normalization a very demanding task. Results With the aim to remove unwanted systematic variation, we present an approach that utilizes variability information from multiple internal standard compounds to find optimal normalization factor for each individual molecular species detected by metabolomics approach (NOMIS. We demonstrate the method on mouse liver lipidomic profiles using Ultra Performance Liquid Chromatography coupled to high resolution mass spectrometry, and compare its performance to two commonly utilized normalization methods: normalization by l2 norm and by retention time region specific standard compound profiles. The NOMIS method proved superior in its ability to reduce the effect of systematic error across the full spectrum of metabolite peaks. We also demonstrate that the method can be used to select best combinations of standard compounds for normalization. Conclusion Depending on experiment design and biological matrix, the NOMIS method is applicable either as a one-step normalization method or as a two-step method where the normalization parameters, influenced by variabilities of internal standard compounds and their correlation to metabolites, are first calculated from a study conducted in repeatability conditions. The method can also be used in analytical development of metabolomics methods by helping to select best combinations of standard compounds for a particular biological matrix and analytical platform.

  16. QCScreen: a software tool for data quality control in LC-HRMS based metabolomics.

    Science.gov (United States)

    Simader, Alexandra Maria; Kluger, Bernhard; Neumann, Nora Katharina Nicole; Bueschl, Christoph; Lemmens, Marc; Lirk, Gerald; Krska, Rudolf; Schuhmacher, Rainer

    2015-10-24

    Metabolomics experiments often comprise large numbers of biological samples resulting in huge amounts of data. This data needs to be inspected for plausibility before data evaluation to detect putative sources of error e.g. retention time or mass accuracy shifts. Especially in liquid chromatography-high resolution mass spectrometry (LC-HRMS) based metabolomics research, proper quality control checks (e.g. for precision, signal drifts or offsets) are crucial prerequisites to achieve reliable and comparable results within and across experimental measurement sequences. Software tools can support this process. The software tool QCScreen was developed to offer a quick and easy data quality check of LC-HRMS derived data. It allows a flexible investigation and comparison of basic quality-related parameters within user-defined target features and the possibility to automatically evaluate multiple sample types within or across different measurement sequences in a short time. It offers a user-friendly interface that allows an easy selection of processing steps and parameter settings. The generated results include a coloured overview plot of data quality across all analysed samples and targets and, in addition, detailed illustrations of the stability and precision of the chromatographic separation, the mass accuracy and the detector sensitivity. The use of QCScreen is demonstrated with experimental data from metabolomics experiments using selected standard compounds in pure solvent. The application of the software identified problematic features, samples and analytical parameters and suggested which data files or compounds required closer manual inspection. QCScreen is an open source software tool which provides a useful basis for assessing the suitability of LC-HRMS data prior to time consuming, detailed data processing and subsequent statistical analysis. It accepts the generic mzXML format and thus can be used with many different LC-HRMS platforms to process both multiple

  17. The Lipopolysaccharide-Induced Metabolome Signature in Arabidopsis thaliana Reveals Dynamic Reprogramming of Phytoalexin and Phytoanticipin Pathways.

    Science.gov (United States)

    Finnegan, Tarryn; Steenkamp, Paul A; Piater, Lizelle A; Dubery, Ian A

    Lipopolysaccharides (LPSs), as MAMP molecules, trigger the activation of signal transduction pathways involved in defence. Currently, plant metabolomics is providing new dimensions into understanding the intracellular adaptive responses to external stimuli. The effect of LPS on the metabolomes of Arabidopsis thaliana cells and leaf tissue was investigated over a 24 h period. Cellular metabolites and those secreted into the medium were extracted with methanol and liquid chromatography coupled to mass spectrometry was used for quantitative and qualitative analyses. Multivariate statistical data analyses were used to extract interpretable information from the generated multidimensional LC-MS data. The results show that LPS perception triggered differential changes in the metabolomes of cells and leaves, leading to variation in the biosynthesis of specialised secondary metabolites. Time-dependent changes in metabolite profiles were observed and biomarkers associated with the LPS-induced response were tentatively identified. These include the phytohormones salicylic acid and jasmonic acid, and also the associated methyl esters and sugar conjugates. The induced defensive state resulted in increases in indole-and other glucosinolates, indole derivatives, camalexin as well as cinnamic acid derivatives and other phenylpropanoids. These annotated metabolites indicate dynamic reprogramming of metabolic pathways that are functionally related towards creating an enhanced defensive capacity. The results reveal new insights into the mode of action of LPS as an activator of plant innate immunity, broadens knowledge about the defence metabolite pathways involved in Arabidopsis responses to LPS, and identifies specialised metabolites of functional importance that can be employed to enhance immunity against pathogen infection.

  18. Metabolomic profiles are gender, disease and time specific in the interleukin-10 gene-deficient mouse model of inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Victor K Tso

    Full Text Available Metabolomic profiling can be used to study disease-induced changes in inflammatory bowel diseases (IBD. The aim of this study was to investigate the difference in the metabolomic profile of males and females as they developed IBD. Using the IL-10 gene-deficient mouse model of IBD and wild-type mice, urine at age 4, 6, 8, 12, 16, and 20 weeks was collected and analyzed by nuclear magnetic resonance (NMR spectroscopy. Multivariate data analysis was employed to assess differences in metabolomic profiles that occurred as a consequence of IBD development and severity (at week 20. These changes were contrasted to those that occurred as a consequence of gender. Our results demonstrate that both IL-10 gene-deficient and wild-type mice exhibit gender-related changes in urinary metabolomic profile over time. Some male-female separating metabolites are common to both IL-10 gene-deficient and control wild-type mice and, therefore, appear to be related predominantly to gender maturation. In addition, we were able to identify gender-separating metabolites that are unique for IL-10 gene-deficient and wild-type mice and, therefore, may be indicative of a gender-specific involvement in the development and severity of the intestinal inflammation. The comparison of the gender-separating metabolomic profile from IL-10 gene-deficient mice and wild-type mice during the development of IBD allowed us to identify changes in profile patterns that appear to be imperative in the development of intestinal inflammation, but yet central to gender-related differences in IBD development. The knowledge of metabolomic profile differences by gender and by disease severity has potential clinical implications in the design of both biomarkers of disease as well as the development of optimal therapies.

  19. Metabolomic profiles are gender, disease and time specific in the interleukin-10 gene-deficient mouse model of inflammatory bowel disease.

    Science.gov (United States)

    Tso, Victor K; Sydora, Beate C; Foshaug, Rae R; Churchill, Thomas A; Doyle, Jason; Slupsky, Carolyn M; Fedorak, Richard N

    2013-01-01

    Metabolomic profiling can be used to study disease-induced changes in inflammatory bowel diseases (IBD). The aim of this study was to investigate the difference in the metabolomic profile of males and females as they developed IBD. Using the IL-10 gene-deficient mouse model of IBD and wild-type mice, urine at age 4, 6, 8, 12, 16, and 20 weeks was collected and analyzed by nuclear magnetic resonance (NMR) spectroscopy. Multivariate data analysis was employed to assess differences in metabolomic profiles that occurred as a consequence of IBD development and severity (at week 20). These changes were contrasted to those that occurred as a consequence of gender. Our results demonstrate that both IL-10 gene-deficient and wild-type mice exhibit gender-related changes in urinary metabolomic profile over time. Some male-female separating metabolites are common to both IL-10 gene-deficient and control wild-type mice and, therefore, appear to be related predominantly to gender maturation. In addition, we were able to identify gender-separating metabolites that are unique for IL-10 gene-deficient and wild-type mice and, therefore, may be indicative of a gender-specific involvement in the development and severity of the intestinal inflammation. The comparison of the gender-separating metabolomic profile from IL-10 gene-deficient mice and wild-type mice during the development of IBD allowed us to identify changes in profile patterns that appear to be imperative in the development of intestinal inflammation, but yet central to gender-related differences in IBD development. The knowledge of metabolomic profile differences by gender and by disease severity has potential clinical implications in the design of both biomarkers of disease as well as the development of optimal therapies.

  20. Striking the Right Balance: Police Experience, Perceptions and Use of Independent Support Persons During Interviews Involving People with Intellectual Disability.

    Science.gov (United States)

    Henshaw, Marie; Spivak, Benjamin; Thomas, Stuart D M

    2018-03-01

    Several jurisdictions mandate the presence of an independent support person during police interviews with vulnerable people. The current study investigated police officers' experiences and perceptions of these volunteers during interviews with people with intellectual disability(ies) (ID). The sample comprised 229 police officers who attended a mandatory firearms training course in Melbourne, Australia, in 2010. Participants commonly reported utilizing independent support persons and displayed a fair understanding of their role. Overall, volunteers were engaged more frequently than family/friends; police considered the volunteers to be more impartial during interviews, whereas family/friends provided a greater level of emotional support to interviewees. Independent support persons need to demonstrate two quite different types of support to people with intellectual disability(ies) during police interviews; these require quite different skill sets and suggest the need for more tailored training and support for these volunteers. Implications for future research and policy are discussed. © 2016 John Wiley & Sons Ltd.

  1. Somatisation in primary care: experiences of primary care physicians involved in a training program and in a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Salazar Agustín

    2009-11-01

    Full Text Available Abstract Background A new intervention aimed at managing patients with medically unexplained symptoms (MUS based on a specific set of communication techniques was developed, and tested in a cluster randomised clinical trial. Due to the modest results obtained and in order to improve our intervention we need to know the GPs' attitudes towards patients with MUS, their experience, expectations and the utility of the communication techniques we proposed and the feasibility of implementing them. Physicians who took part in 2 different training programs and in a randomised controlled trial (RCT for patients with MUS were questioned to ascertain the reasons for the doctors' participation in the trial and the attitudes, experiences and expectations of GPs about the intervention. Methods A qualitative study based on four focus groups with GPs who took part in a RCT. A content analysis was carried out. Results Following the RCT patients are perceived as true suffering persons, and the relationship with them has improved in GPs of both groups. GPs mostly valued the fact that it is highly structured, that it made possible a more comfortable relationship and that it could be applied to a broad spectrum of patients with psychosocial problems. Nevertheless, all participants consider that change in patients is necessary; GPs in the intervention group remarked that that is extremely difficult to achieve. Conclusion GPs positively evaluate the communication techniques and the interventions that help in understanding patient suffering, and express the enormous difficulties in handling change in patients. These findings provide information on the direction in which efforts for improving intervention should be directed. Trial registration US ClinicalTrials.gov NCT00130988

  2. Collaboration and involvement of persons with lived experience in planning Canada's At Home/Chez Soi project.

    Science.gov (United States)

    Nelson, Geoffrey; Macnaughton, Eric; Curwood, Susan Eckerle; Egalité, Nathalie; Voronka, Jijian; Fleury, Marie-Josée; Kirst, Maritt; Flowers, Linsay; Patterson, Michelle; Dudley, Michael; Piat, Myra; Goering, Paula

    2016-03-01

    Planning the implementation of evidence-based mental health services entails commitment to both rigour and community relevance, which entails navigating the challenges of collaboration between professionals and community members in a planning environment which is neither 'top-down' nor 'bottom-up'. This research focused on collaboration among different stakeholders (e.g. researchers, service-providers, persons with lived experience [PWLE]) at five project sites across Canada in the planning of At Home/Chez Soi, a Housing First initiative for homeless people with mental health problems. The research addressed the question of what strategies worked well or less well in achieving successful collaboration, given the opportunities and challenges within this complex 'hybrid' planning environment. Using qualitative methods, 131 local stakeholders participated in key informant or focus group interviews between October 2009 and February 2010. Site researchers identified themes in the data, using the constant comparative method. Strategies that enhanced collaboration included the development of a common vision, values and purpose around the Housing First approach, developing a sense of belonging and commitment among stakeholders, bridging strategies employed by Site Co-ordinators and multiple strategies to engage PWLE. At the same time, a tight timeline, initial tensions, questions and resistance regarding project and research parameters, and lack of experience in engaging PWLE challenged collaboration. In a hybrid planning environment, clear communication and specific strategies are required that flow from an understanding that the process is neither fully participatory nor expert-driven, but rather a hybrid of both. © 2015 John Wiley & Sons Ltd.

  3. A liquid chromatography-mass spectrometry-based metabolome database for tomato

    NARCIS (Netherlands)

    Moco, S.I.A.; Bino, R.J.; Vorst, O.F.J.; Verhoeven, H.A.; Groot, de J.C.W.; Beek, van T.A.; Vervoort, J.J.M.; Vos, de C.H.

    2006-01-01

    For the description of the metabolome of an organism, the development of common metabolite databases is of utmost importance. Here we present the Metabolome Tomato Database (MoTo DB), a metabolite database dedicated to liquid chromatography-mass spectrometry (LC-MS)- based metabolomics of tomato

  4. Families in Assertive Community Treatment (ACT) Teams in Norway: A Cross-Sectional Study on Relatives' Experiences of Involvement and Alienation.

    Science.gov (United States)

    Weimand, B M; Israel, P; Ewertzon, M

    2017-11-10

    International research shows that relatives of people with mental illness are rarely involved by mental health services. Assertive Community Treatment (ACT) has been recently implemented in Norway. The experience of relatives of ACT users is largely unknown. The aim of this study was to explore relatives' experience with ACT-teams in Norway. Data were collected using the family involvement and alienation questionnaire, consisting of experiences of approach, and alienation from the provision of professional care. 38 Relatives participated in this study. A majority experienced a positive approach (openness, confirmation, and cooperation) from the ACT teams, which also was considered better compared to previous services. They considered openness and cooperation as essential aspects from the professionals. Almost half did not feel alienated (powerlessness and social isolation). Higher level of being approached positively was significantly associated with lower level of feeling alienated. The knowledge of what constituted relatives' positive experiences with the ACT teams should be transferred into practice regarding how to form a positive alliance with relatives.

  5. Involving stakeholders in the commissioning and implementation of fishery science projects: experiences from the U.K. Fisheries Science Partnership.

    Science.gov (United States)

    Armstrong, M J; Payne, A I L; Deas, B; Catchpole, T L

    2013-10-01

    Following from similar initiatives worldwide, the U.K.'s Fisheries Science Partnership (FSP) was established in 2003 to provide the fishing industry with opportunities to propose and participate in scientific studies in collaboration with fishery scientists. Key concepts were that most of the available funding would support industry participation, that industry, not scientists, would come up with the ideas for projects, and that commercial fishing vessels and fishing methods would be used to address specific concerns of the fishing industry in a scientifically controlled manner. Nearly 100 projects had been commissioned by March 2012, covering annual time-series surveys of stocks subject to traditional assessment, and ad hoc projects on, e.g. gear selectivity, discard survival, tagging and migration and fishery development. The extent to which the results of the projects have been used by stakeholders, fishery scientists and fishery managers at a national and E.U. level is evaluated, along with the degree of industry interest and involvement, and reasons are identified for successes or failures in the uptake of the results into management and policy. Finally, the question is posed whether the programme has been successful in improving the engagement of the fishing community in the science-management process and in fostering communication and greater trust between fishers, scientists and managers. © 2013 Crown Copyright. © 2013 The Fisheries Society of the British Isles.

  6. Gas chromatographic-mass spectrometric urinary metabolome analysis to study mutations of inborn errors of metabolism.

    Science.gov (United States)

    Kuhara, Tomiko

    2005-01-01

    Urine contains numerous metabolites, and can provide evidence for the screening or molecular diagnosis of many inborn errors of metabolism (IEMs). The metabolomic analysis of urine by the combined use of urease pretreatment, stable-isotope dilution, and capillary gas chromatography/mass spectrometry offers reliable and quantitative data for the simultaneous screening or molecular diagnosis of more than 130 IEMs. Those IEMs include hyperammonemias and lactic acidemias, and the IEMs of amino acids, pyrimidines, purines, carbohydrates, and others including primary hyperoxalurias, hereditary fructose intolerance, propionic acidemia, and methylmalonic acidemia. Metabolite analysis is comprehensive for mutant genotypes. Enzyme dysfunction-either by the abnormal structure of an enzyme/apoenzyme, the reduced quantity of a normal enzyme/apoenzyme, or the lack of a coenzyme-is involved. Enzyme dysfunction-either by an abnormal regulatory gene, abnormal sub-cellular localization, or by abnormal post-transcriptional or post-translational modification-is included. Mutations-either known or unknown, common or uncommon-are involved. If the urine metabolome approach can accurately observe quantitative abnormality for hundreds of metabolites, reflecting 100 different disease-causing reactions in a body, then it is possible to simultaneously detect different mutant genotypes of far more than tens of thousands. (c) 2004 Wiley Periodicals, Inc., Mass Spec Rev 24:814-827, 2005.

  7. Long-term fertilization determines different metabolomic profiles and responses in saplings of three rainforest tree species with different adult canopy position.

    Directory of Open Access Journals (Sweden)

    Albert Gargallo-Garriga

    Full Text Available Tropical rainforests are frequently limited by soil nutrient availability. However, the response of the metabolic phenotypic plasticity of trees to an increase of soil nutrient availabilities is poorly understood. We expected that increases in the ability of a nutrient that limits some plant processes should be detected by corresponding changes in plant metabolome profile related to such processes.We studied the foliar metabolome of saplings of three abundant tree species in a 15 year field NPK fertilization experiment in a Panamanian rainforest. The largest differences were among species and explained 75% of overall metabolome variation. The saplings of the large canopy species, Tetragastris panamensis, had the lowest concentrations of all identified amino acids and the highest concentrations of most identified secondary compounds. The saplings of the "mid canopy" species, Alseis blackiana, had the highest concentrations of amino acids coming from the biosynthesis pathways of glycerate-3P, oxaloacetate and α-ketoglutarate, and the saplings of the low canopy species, Heisteria concinna, had the highest concentrations of amino acids coming from the pyruvate synthesis pathways.The changes in metabolome provided strong evidence that different nutrients limit different species in different ways. With increasing P availability, the two canopy species shifted their metabolome towards larger investment in protection mechanisms, whereas with increasing N availability, the sub-canopy species increased its primary metabolism. The results highlighted the proportional distinct use of different nutrients by different species and the resulting different metabolome profiles in this high diversity community are consistent with the ecological niche theory.

  8. Assisted reproduction involving gestational surrogacy: an analysis of the medical, psychosocial and legal issues: experience from a large surrogacy program.

    Science.gov (United States)

    Dar, Shir; Lazer, Tal; Swanson, Sonja; Silverman, Jan; Wasser, Cindy; Moskovtsev, Sergey I; Sojecki, Agata; Librach, Clifford L

    2015-02-01

    What are the medical, psychosocial and legal aspects of gestational surrogacy (GS), including pregnancy outcomes and complications, in a large series? Meticulous multidisciplinary teamwork, involving medical, legal and psychosocial input for both the intended parent(s) (IP) and the gestational carrier (GC), is critical to achieve a successful GS program. Small case series have described pregnancy rates of 17-50% for GS. There are no large case series and the medical, legal and psychological aspects of GS have not been addressed in most of these studies. To our knowledge, this is the largest reported GS case series. A retrospective cohort study was performed. Data were collected from 333 consecutive GC cycles between 1998 and 2012. There were 178 pregnancies achieved out of 333 stimulation cycles, including fresh and frozen transfers. The indications for a GC were divided into two groups. Those who have 'failed to carry', included women with recurrent implantation failure (RIF), recurrent pregnancy loss (RPL) and previous poor pregnancy outcome (n = 96; 132 cycles, pregnancy rate 50.0%). The second group consisted of those who 'cannot carry' including those with severe Asherman's syndrome, uterine malformations/uterine agenesis and maternal medical diseases (n = 108, 139 cycles, pregnancy rate 54.0%). A third group, of same-sex male couples and single men, were analyzed separately (n = 52, 62 cycles, pregnancy rate 59.7%). In 49.2% of cycles, autologous oocytes were used and 50.8% of cycles involved donor oocytes. The 'failed to carry' group consisted of 96 patients who underwent 132 cycles at a mean age of 40.3 years. There were 66 pregnancies (50.0%) with 17 miscarriages (25.8%) and 46 confirmed births (34.8%). The 'cannot carry pregnancy' group consisted of 108 patients who underwent 139 cycles at a mean age of 35.9 years. There were 75 pregnancies (54.0%) with 15 miscarriages (20.0%) and 56 confirmed births (40.3%). The pregnancy, miscarriage and live birth

  9. Study of charmless $B_{(s)}$ meson decays involving $\\eta'$ and $\\phi$ intermediate states at the LHCb experiment

    CERN Document Server

    Prisciandaro, Jessica; Blanc, Frédéric

    LHCb is one of the four main experiments located at the Large Hadron Collider (LHC) at CERN, and has collected about 3 ${\\rm fb}^{-1}$ of proton-proton collisions at $\\sqrt{s}= 7$ TeV and 8 TeV between December 2009 and December 2012. Designed for the study of $B$-meson decays and for precision $CP$-violation measurements, the LHCb detector requires a high resolution vertex reconstruction, a precise measurement of the charged particle's momentum and an excellent particle identification. In this thesis, a study of the LHCb magnetic field map and two physics analyses are presented. Based on the magnetic field measurements collected during a dedicated campaign in February 2011, the magnetic field map is corrected for mis-alignments, considering global translations and rotations. A more reliable mapping of the field is provided, and is used for the LHCb event reconstruction since June 2011. As a consequence of this study, the mass resolution is improved, and a better agreement between the software alignment and t...

  10. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Nagana Gowda, G. A.; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory.

  11. [Development of Plant Metabolomics and Medicinal Plant Genomics].

    Science.gov (United States)

    Saito, Kazuki

    2018-01-01

     A variety of chemicals produced by plants, often referred to as 'phytochemicals', have been used as medicines, food, fuels and industrial raw materials. Recent advances in the study of genomics and metabolomics in plant science have accelerated our understanding of the mechanisms, regulation and evolution of the biosynthesis of specialized plant products. We can now address such questions as how the metabolomic diversity of plants is originated at the levels of genome, and how we should apply this knowledge to drug discovery, industry and agriculture. Our research group has focused on metabolomics-based functional genomics over the last 15 years and we have developed a new research area called 'Phytochemical Genomics'. In this review, the development of a research platform for plant metabolomics is discussed first, to provide a better understanding of the chemical diversity of plants. Then, representative applications of metabolomics to functional genomics in a model plant, Arabidopsis thaliana, are described. The extension of integrated multi-omics analyses to non-model specialized plants, e.g., medicinal plants, is presented, including the identification of novel genes, metabolites and networks for the biosynthesis of flavonoids, alkaloids, sulfur-containing metabolites and terpenoids. Further, functional genomics studies on a variety of medicinal plants is presented. I also discuss future trends in pharmacognosy and related sciences.

  12. LC-MS-BASED METABOLOMICS OF XENOBIOTIC-INDUCED TOXICITIES

    Directory of Open Access Journals (Sweden)

    Chi Chen

    2013-01-01

    Full Text Available Xenobiotic exposure, especially high-dose or repeated exposure of xenobiotics, can elicit detrimental effects on biological systems through diverse mechanisms. Changes in metabolic systems, including formation of reactive metabolites and disruption of endogenous metabolism, are not only the common consequences of toxic xenobiotic exposure, but in many cases are the major causes behind development of xenobiotic-induced toxicities (XIT. Therefore, examining the metabolic events associated with XIT generates mechanistic insights into the initiation and progression of XIT, and provides guidance for prevention and treatment. Traditional bioanalytical platforms that target only a few suspected metabolites are capable of validating the expected outcomes of xenobiotic exposure. However, these approaches lack the capacity to define global changes and to identify unexpected events in the metabolic system. Recent developments in high-throughput metabolomics have dramatically expanded the scope and potential of metabolite analysis. Among all analytical techniques adopted for metabolomics, liquid chromatography-mass spectrometry (LC-MS has been most widely used for metabolomic investigations of XIT due to its versatility and sensitivity in metabolite analysis. In this review, technical platform of LC-MS-based metabolomics, including experimental model, sample preparation, instrumentation, and data analysis, are discussed. Applications of LC-MS-based metabolomics in exploratory and hypothesis-driven investigations of XIT are illustrated by case studies of xenobiotic metabolism and endogenous metabolism associated with xenobiotic exposure.

  13. Mixing omics: combining genetics and metabolomics to study rheumatic diseases.

    Science.gov (United States)

    Menni, Cristina; Zierer, Jonas; Valdes, Ana M; Spector, Tim D

    2017-03-01

    Metabolomics is an exciting field in systems biology that provides a direct readout of the biochemical activities taking place within an individual at a particular point in time. Metabolite levels are influenced by many factors, including disease status, environment, medications, diet and, importantly, genetics. Thanks to their dynamic nature, metabolites are useful for diagnosis and prognosis, as well as for predicting and monitoring the efficacy of treatments. At the same time, the strong links between an individual's metabolic and genetic profiles enable the investigation of pathways that underlie changes in metabolite levels. Thus, for the field of metabolomics to yield its full potential, researchers need to take into account the genetic factors underlying the production of metabolites, and the potential role of these metabolites in disease processes. In this Review, the methodological aspects related to metabolomic profiling and any potential links between metabolomics and the genetics of some of the most common rheumatic diseases are described. Links between metabolomics, genetics and emerging fields such as the gut microbiome and proteomics are also discussed.

  14. Metabolomic Profiling in Perinatal Asphyxia: A Promising New Field

    Science.gov (United States)

    Denihan, Niamh M.; Boylan, Geraldine B.; Murray, Deirdre M.

    2015-01-01

    Metabolomics, the latest “omic” technology, is defined as the comprehensive study of all low molecular weight biochemicals, “metabolites” present in an organism. As a systems biology approach, metabolomics has huge potential to progress our understanding of perinatal asphyxia and neonatal hypoxic-ischaemic encephalopathy, by uniquely detecting rapid biochemical pathway alterations in response to the hypoxic environment. The study of metabolomic biomarkers in the immediate neonatal period is not a trivial task and requires a number of specific considerations, unique to this disease and population. Recruiting a clearly defined cohort requires standardised multicentre recruitment with broad inclusion criteria and the participation of a range of multidisciplinary staff. Minimally invasive biospecimen collection is a priority for biomarker discovery. Umbilical cord blood presents an ideal medium as large volumes can be easily extracted and stored and the sample is not confounded by postnatal disease progression. Pristine biobanking and phenotyping are essential to ensure the validity of metabolomic findings. This paper provides an overview of the current state of the art in the field of metabolomics in perinatal asphyxia and neonatal hypoxic-ischaemic encephalopathy. We detail the considerations required to ensure high quality sampling and analysis, to support scientific progression in this important field. PMID:25802843

  15. Serum metabolome and lipidome changes in adult patients with primary dengue infection.

    Directory of Open Access Journals (Sweden)

    Liang Cui

    Full Text Available Dengue virus (DENV is the most widespread arbovirus with an estimated 100 million infections occurring every year. Endemic in the tropical and subtropical areas of the world, dengue fever/dengue hemorrhagic fever (DF/DHF is emerging as a major public health concern. The complex array of concurrent host physiologic changes has hampered a complete understanding of underlying molecular mechanisms of dengue pathogenesis.Systems level characterization of serum metabolome and lipidome of adult DF patients at early febrile, defervescence, and convalescent stages of DENV infection was performed using liquid chromatography- and gas chromatography-mass spectrometry. The tractability of following metabolite and lipid changes in a relatively large sample size (n = 44 across three prominent infection stages allowed the identification of critical physiologic changes that coincided with the different stages. Sixty differential metabolites were identified in our metabolomics analysis and the main metabolite classes were free fatty acids, acylcarnitines, phospholipids, and amino acids. Major perturbed metabolic pathways included fatty acid biosynthesis and β-oxidation, phospholipid catabolism, steroid hormone pathway, etc., suggesting the multifactorial nature of human host responses. Analysis of phospholipids and sphingolipids verified the temporal trends and revealed association with lymphocytes and platelets numbers. These metabolites were significantly perturbed during the early stages, and normalized to control levels at convalescent stage, suggesting their potential utility as prognostic markers.DENV infection causes temporally distinct serum metabolome and lipidome changes, and many of the differential metabolites are involved in acute inflammatory responses. Our global analyses revealed early anti-inflammatory responses working in concert to modulate early pro-inflammatory processes, thus preventing the host from development of pathologies by excessive

  16. Metabolomics reveals metabolic alterations by intrauterine growth restriction in the fetal rabbit brain.

    Directory of Open Access Journals (Sweden)

    Erwin van Vliet

    Full Text Available Intrauterine Growth Restriction (IUGR due to placental insufficiency occurs in 5-10% of pregnancies and is a major risk factor for abnormal neurodevelopment. The perinatal diagnosis of IUGR related abnormal neurodevelopment represents a major challenge in fetal medicine. The development of clinical biomarkers is considered a promising approach, but requires the identification of biochemical/molecular alterations by IUGR in the fetal brain. This targeted metabolomics study in a rabbit IUGR model aimed to obtain mechanistic insight into the effects of IUGR on the fetal brain and identify metabolite candidates for biomarker development.At gestation day 25, IUGR was induced in two New Zealand rabbits by 40-50% uteroplacental vessel ligation in one horn and the contralateral horn was used as control. At day 30, fetuses were delivered by Cesarian section, weighed and brains collected for metabolomics analysis. Results showed that IUGR fetuses had a significantly lower birth and brain weight compared to controls. Metabolomics analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS and database matching identified 78 metabolites. Comparison of metabolite intensities using a t-test demonstrated that 18 metabolites were significantly different between control and IUGR brain tissue, including neurotransmitters/peptides, amino acids, fatty acids, energy metabolism intermediates and oxidative stress metabolites. Principle component and hierarchical cluster analysis showed cluster formations that clearly separated control from IUGR brain tissue samples, revealing the potential to develop predictive biomarkers. Moreover birth weight and metabolite intensity correlations indicated that the extent of alterations was dependent on the severity of IUGR.IUGR leads to metabolic alterations in the fetal rabbit brain, involving neuronal viability, energy metabolism, amino acid levels, fatty acid profiles and oxidative stress

  17. Reconstruction of food webs in biological soil crusts using metabolomics.

    Science.gov (United States)

    Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; Nunes Da Rocha, Ulisses; Bowen, Benjamin P.; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; Northen, Trent R.

    2015-04-01

    Biological soil crusts (BSCs) are communities of organisms inhabiting the upper layer of soil in arid environments. BSCs persist in a dessicated dormant state for extended periods of time and experience pulsed periods of activity facilitated by infrequent rainfall. Microcoleus vaginatus, a non-diazotrophic filamentous cyanobacterium, is the key primary producer in BSCs in the Colorado Plateau and is an early pioneer in colonizing arid environments. Over decades, BSCs proceed through developmental stages with increasing complexity of constituent microorganisms and macroscopic properties. Metabolic interactions among BSC microorganisms probably play a key role in determining the community dynamics and cycling of carbon and nitrogen. However, these metabolic interactions have not been studied systematically. Towards this goal, exometabolomic analysis was performed using liquid chromatography coupled to tandem mass spectrometry on biological soil crust pore water and spent media of key soil bacterial isolates. Comparison of spent vs. fresh media was used to determine uptake or release of metabolites by specific microbes. To link pore water experiments with isolate studies, metabolite extracts of authentic soil were used as supplements for isolate exometabolomic profiling. Our soil metabolomics methods detected hundreds of metabolites from soils including many novel compounds. Overall, Microcoleus vaginatus was found to release and utilize a broad range of metabolites. Many of these metabolites were also taken up by heterotrophs but there were surprisingly few metabolites uptaken by all isolates. This points to a competition for a small set of central metabolites and specialization of individual heterotrophs towards a diverse pool of available organic nutrients. Overall, these data suggest that understanding the substrate specialization of biological soil crust bacteria can help link community structure to nutrient cycling.

  18. Involving lay community researchers in epidemiological research: experiences from a seroprevalence study among sub-Saharan African migrants.

    Science.gov (United States)

    Nöstlinger, Christiana; Loos, Jasna

    2016-01-01

    Community-based participatory research (CBPR) has received considerable attention during past decades as a method to increase community ownership in research and prevention. We discuss its application to epidemiological research using the case of second-generation surveillance conducted among sub-Saharan African (SSA) migrants in Antwerp city. To inform evidence-based prevention planning for this target group, this HIV-prevalence study used two-stage time-location sampling preceded by formative research. Extensive collaborative partnerships were built with community organizations, a Community Advisory Board provided input throughout the project, and community researchers were trained to participate in all phases of the seroprevalence study. Valid oral fluid samples for HIV testing were collected among 717 SSA migrants and linked to behavioural data assessed through an anonymous survey between December 2013 and August 2014. A qualitative content analysis of various data sources (extensive field notes, minutes of intervision, and training protocols) collected at 77 data collection visits in 51 settings was carried out to describe experiences with challenges and opportunities inherent to the CBPR approach at three crucial stages of the research process: building collaborative partnerships; implementing the study; dissemination of findings including prevention planning. The results show that CBPR is feasible in conducting scientifically sound epidemiological research, but certain requirements need to be in place. These include among others sufficient resources to train, coordinate, and supervise community researchers; continuity in the implementation; transparency about decision-taking and administrative procedures, and willingness to share power and control over the full research process. CBPR contributed to empowering community researchers on a personal level, and to create greater HIV prevention demand in the SSA communities.

  19. Automatic differential analysis of NMR experiments in complex samples.

    Science.gov (United States)

    Margueritte, Laure; Markov, Petar; Chiron, Lionel; Starck, Jean-Philippe; Vonthron-Sénécheau, Catherine; Bourjot, Mélanie; Delsuc, Marc-André

    2017-11-20

    Liquid state nuclear magnetic resonance (NMR) is a powerful tool for the analysis of complex mixtures of unknown molecules. This capacity has been used in many analytical approaches: metabolomics, identification of active compounds in natural extracts, and characterization of species, and such studies require the acquisition of many diverse NMR measurements on series of samples. Although acquisition can easily be performed automatically, the number of NMR experiments involved in these studies increases very rapidly, and this data avalanche requires to resort to automatic processing and analysis. We present here a program that allows the autonomous, unsupervised processing of a large corpus of 1D, 2D, and diffusion-ordered spectroscopy experiments from a series of samples acquired in different conditions. The program provides all the signal processing steps, as well as peak-picking and bucketing of 1D and 2D spectra, the program and its components are fully available. In an experiment mimicking the search of a bioactive species in a natural extract, we use it for the automatic detection of small amounts of artemisinin added to a series of plant extracts and for the generation of the spectral fingerprint of this molecule. This program called Plasmodesma is a novel tool that should be useful to decipher complex mixtures, particularly in the discovery of biologically active natural products from plants extracts but can also in drug discovery or metabolomics studies. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Understanding experiences of and preferences for service user and carer involvement in physical health care discussions within mental health care planning.

    Science.gov (United States)

    Small, Nicola; Brooks, Helen; Grundy, Andrew; Pedley, Rebecca; Gibbons, Chris; Lovell, Karina; Bee, Penny

    2017-04-13

    People with severe mental illness suffer more physical comorbidity than the general population, which can require a tailored approach to physical health care discussions within mental health care planning. Although evidence pertaining to service user and carer involvement in mental health care planning is accumulating, current understanding of how physical health is prioritised within this framework is limited. Understanding stakeholder experiences of physical health discussions within mental health care planning, and the key domains that underpin this phenomena is essential to improve quality of care. Our study aimed to explore service user, carer and professional experiences of and preferences for service user and carer involvement in physical health discussions within mental health care planning, and develop a conceptual framework of effective user-led involvement in this aspect of service provision. Six focus groups and four telephone interviews were carried out with twelve service users, nine carers, three service users with a dual service user and carer role, and ten mental health professionals recruited from one mental health Trust in the United Kingdom. Data was analysed utilising a thematic approach, analysed separately for each stakeholder group, and combined to aid comparisons. No service users or carers recalled being explicitly involved in physical health discussions within mental health care planning. Six prerequisites for effective service user and carer involvement in physical care planning were identified. Three themes confirmed general mental health care planning requirements: tailoring a collaborative working relationship, maintaining a trusting relationship with a professional, and having access to and being able to edit a living document. Three themes were novel to feeling involved in physical health care planning discussions: valuing physical health equally with mental health; experiencing coordination of care between physical-mental health

  1. The experiences of rural and remote families involved in an inter-hospital transfer to a tertiary ICU: a hermeneutic study.

    Science.gov (United States)

    Mackie, Benjamin; Kellett, Ursula; Mitchell, Marion; Tonge, Angela

    2014-11-01

    Inter-hospital transfers are necessary for critically ill patients to improve their chance of survival. Rural and remote families experience significant disruption to family life when critically ill patients are required to undergo a transfer to a tertiary hospital. What is not known is how ICU staff can assist these families who are involved in an inter-hospital transfer to a tertiary ICU. To gain an understanding of rural and remote critical care families' experiences during an inter-hospital transfer to a tertiary ICU. A hermeneutic phenomenological approach was adopted informed by the philosophical world views of Heidegger and Gadamer. Data collection occurred by in-depth conversational interviews from a purposeful sample of seven family members. Interview transcripts, field notes and diary entries formed the text which underwent hermeneutic analysis. Being confused, being engaged, being vulnerable and being resilient emerged as significant aspects of the rural and remote family members' experience during a transfer event. A better understanding of the experiences of rural and remote families during an inter-hospital transfer journey can inform the practice of ICU nurses. This study highlights the specific experiences of rural and remote families during an inter-hospital transfer journey to a tertiary ICU. It also informs nurses of the meaningful ways in which they can support these families with the uncertainty and chaos experienced as part of this journey. Copyright © 2014 Australian College of Critical Care Nurses Ltd. Published by Elsevier Ltd. All rights reserved.

  2. Deconstructing the pig sex metabolome: Targeted metabolomics in heavy pigs revealed sexual dimorphisms in plasma biomarkers and metabolic pathways.

    Science.gov (United States)

    Bovo, S; Mazzoni, G; Calò, D G; Galimberti, G; Fanelli, F; Mezzullo, M; Schiavo, G; Scotti, E; Manisi, A; Samoré, A B; Bertolini, F; Trevisi, P; Bosi, P; Dall'Olio, S; Pagotto, U; Fontanesi, L

    2015-12-01

    Metabolomics has opened new possibilities to investigate metabolic differences among animals. In this study, we applied a targeted metabolomic approach to deconstruct the pig sex metabolome as defined by castrated males and entire gilts. Plasma from 545 performance-tested Italian Large White pigs (172 castrated males and 373 females) sampled at about 160 kg live weight were analyzed for 186 metabolites using the Biocrates AbsoluteIDQ p180 Kit. After filtering, 132 metabolites (20 AA, 11 biogenic amines, 1 hexose, 13 acylcarnitines, 11 sphingomyelins, 67 phosphatidylcholines, and 9 lysophosphatidylcholines) were retained for further analyses. The multivariate approach of the sparse partial least squares discriminant analysis was applied, together with a specifically designed statistical pipeline, that included a permutation test and a 10 cross-fold validation procedure that produced stability and effect size statistics for each metabolite. Using this approach, we identified 85 biomarkers (with metabolites from all analyzed chemical families) that contributed to the differences between the 2 groups of pigs ( metabolic shift in castrated males toward energy storage and lipid production. Similar general patterns were observed for most sphingomyelins, phosphatidylcholines, and lysophosphatidylcholines. Metabolomic pathway analysis and pathway enrichment identified several differences between the 2 sexes. This metabolomic overview opened new clues on the biochemical mechanisms underlying sexual dimorphism that, on one hand, might explain differences in terms of economic traits between castrated male pigs and entire gilts and, on the other hand, could strengthen the pig as a model to define metabolic mechanisms related to fat deposition.

  3. Human urinary biomarkers of dioxin exposure: analysis by metabolomics and biologically driven data dimensionality reduction.

    Science.gov (United States)

    Jeanneret, Fabienne; Boccard, Julien; Badoud, Flavia; Sorg, Olivier; Tonoli, David; Pelclova, Daniela; Vlckova, Stepanka; Rutledge, Douglas N; Samer, Caroline F; Hochstrasser, Denis; Saurat, Jean-Hilaire; Rudaz, Serge

    2014-10-15

    Untargeted metabolomic approaches offer new opportunities for a deeper understanding of the molecular events related to toxic exposure. This study proposes a metabolomic investigation of biochemical alterations occurring in urine as a result of dioxin toxicity. Urine samples were collected from Czech chemical workers submitted to severe dioxin occupational exposure in a herbicide production plant in the late 1960s. Experiments were carried out with ultra-high pressure liquid chromatography (UHPLC) coupled to high-resolution quadrupole time-of-flight (QTOF) mass spectrometry. A chemistry-driven feature selection was applied to focus on steroid-related metabolites. Supervised multivariate data analysis allowed biomarkers, mainly related to bile acids, to be highlighted. These results supported the hypothesis of liver damage and oxidative stress for long-term dioxin toxicity. As a second step of data analysis, the information gained from the urine analysis of Victor Yushchenko after his poisoning was examined. A subset of relevant urinary markers of acute dioxin toxicity from this extreme phenotype, including glucuro- and sulfo-conjugated endogenous steroid metabolites and bile acids, was assessed for its ability to detect long-term effects of exposure. The metabolomic strategy presented in this work allowed the determination of metabolic patterns related to dioxin effects in human and the discovery of highly predictive subsets of biologically meaningful and clinically relevant compounds. These results are expected to provide valuable information for a deeper understanding of the molecular events related to dioxin toxicity. Furthermore, it presents an original methodology of data dimensionality reduction by using extreme phenotype as a guide to select relevant features prior to data modeling (biologically driven data reduction). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Directory of Open Access Journals (Sweden)

    Jun Hong

    2016-06-01

    Full Text Available As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  5. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Science.gov (United States)

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-01-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality. PMID:27258266

  6. What Have Metabolomics Approaches Taught Us About Type 2 Diabetes?

    DEFF Research Database (Denmark)

    Gonzalez-Franquesa, Alba; Burkart, Alison M; Isganaitis, Elvira

    2016-01-01

    and mathematical modeling approaches, have provided the scientific community with new tools to describe the T2D metabolome. The metabolomics signatures associated with T2D and obesity include increased levels of lactate, glycolytic intermediates, branched-chain and aromatic amino acids, and long-chain fatty acids......Type 2 diabetes (T2D) is increasing worldwide, making identification of biomarkers for detection, staging, and effective prevention strategies an especially critical scientific and medical goal. Fortunately, advances in metabolomics techniques, together with improvements in bioinformatics....... Conversely, tricarboxylic acid cycle intermediates, betaine, and other metabolites decrease. Future studies will be required to fully integrate these and other findings into our understanding of diabetes pathophysiology and to identify biomarkers of disease risk, stage, and responsiveness to specific...

  7. Metabolomics in epidemiology: from metabolite concentrations to integrative reaction networks.

    Science.gov (United States)

    Fearnley, Liam G; Inouye, Michael

    2016-10-01

    Metabolomics is becoming feasible for population-scale studies of human disease. In this review, we survey epidemiological studies that leverage metabolomics and multi-omics to gain insight into disease mechanisms. We outline key practical, technological and analytical limitations while also highlighting recent successes in integrating these data. The use of multi-omics to infer reaction rates is discussed as a potential future direction for metabolomics research, as a means of identifying biomarkers as well as inferring causality. Furthermore, we highlight established analysis approaches as well as simulation-based methods currently used in single- and multi-cell levels in systems biology. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association.

  8. Serum Metabolomics in Rats after Acute Paraquat Poisoning.

    Science.gov (United States)

    Wang, Zhiyi; Ma, Jianshe; Zhang, Meiling; Wen, Congcong; Huang, Xueli; Sun, Fa; Wang, Shuanghu; Hu, Lufeng; Lin, Guanyang; Wang, Xianqin

    2015-01-01

    Paraquat is one of the most widely used herbicides in the world and is highly toxic to humans and animals. In this study, we developed a serum metabolomic method based on GC/MS to evaluate the effects of acute paraquat poisoning on rats. Pattern recognition analysis, including both principal component analysis and partial least squares-discriminate analysis revealed that acute paraquat poisoning induced metabolic perturbations. Compared with the control group, the level of octadecanoic acid, L-serine, L-threonine, L-valine, and glycerol in the acute paraquat poisoning group (36 mg/kg) increased, while the levels of hexadecanoic acid, D-galactose, and decanoic acid decreased. These findings provide an overview of systematic responses to paraquat exposure and metabolomic insight into the toxicological mechanism of paraquat. Our results indicate that metabolomic methods based on GC/MS may be useful to elucidate the mechanism of acute paraquat poisoning through the exploration of biomarkers.

  9. Metabolomic-based identification of clusters that reflect dietary patterns.

    Science.gov (United States)

    Gibbons, Helena; Carr, Eibhlin; McNulty, Breige A; Nugent, Anne P; Walton, Janette; Flynn, Albert; Gibney, Michael J; Brennan, Lorraine

    2017-10-01

    Classification of subjects into dietary patterns generally relies on self-reporting dietary data which are prone to error. The aim of the present study was to develop a model for objective classification of people into dietary patterns based on metabolomic data. Dietary and urinary metabolomic data from the National Adult Nutrition Survey (NANS) was used in the analysis (n = 567). Two-step cluster analysis was applied to the urinary data to identify clusters. The subsequent model was used in an independent cohort to classify people into dietary patterns. Two distinct dietary patterns were identified. Cluster 1 was characterized by significantly higher intakes of breakfast cereals, low fat and skimmed milks, potatoes, fruit, fish and fish dishes (p patterns based on metabolomics data. Future applications of this approach could be developed for rapid and objective assignment of subjects into dietary patterns. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science.

    Science.gov (United States)

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-06-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  11. 'To be treated as a human': Using co-production to explore experts by experience involvement in mental health nursing education - The COMMUNE project.

    Science.gov (United States)

    Horgan, Aine; Manning, Fionnuala; Bocking, Julia; Happell, Brenda; Lahti, Mari; Doody, Rory; Griffin, Martha; Bradley, Stephen K; Russell, Siobhan; Bjornsson, Einar; O'Donovan, Moira; MacGabhann, Liam; Savage, Eileen; Pulli, Jarmo; Goodwin, John; van der Vaart, Kornelis Jan; O'Sullivan, Hazel; Dorrity, Claire; Ellila, Heikki; Allon, Jerry; Hals, Elisabeth; Sitvast, Jan; Granerud, Arild; Biering, Pall

    2018-01-29

    Increasingly, experts as deemed by personal experience or mental health service use, are involved in the education of nurses; however, accompanying research is limited and focuses primarily on opinions of nurse educators and students. The aim of this study was to develop an understanding of the potential contribution to mental health nursing education by those with experience of mental health service use. The research was part of the international COMMUNE (Co-production of Mental Health Nursing Education) project, established to develop and evaluate co-produced mental health content for undergraduate nursing students. A qualitative descriptive design was adopted with data collected through focus group interviews in seven sites across Europe and Australia. Experts by experience (people with experience of distress, service use, and recovery) co-produced the project in partnership with nursing academics. Co-production enriched the process of data collection and facilitated the analysis of data from multiple perspectives. Two themes are presented in this paper. The first focuses on how experts by experience can enhance students' understanding of recovery by seeing the strengths inherent in the 'human' behind the diagnostic label. The second highlights the importance of communication and self-reflection on personal values, where students can explore their own thoughts and feelings about mental distress alongside those with lived experience. Interacting with experts by experience in the classroom can assist in challenging stigmatizing attitudes prior to nursing placements. These findings can be used to inform international nursing curricula by increasing the focus on nursing skills valued by those who use the services. © 2018 Australian College of Mental Health Nurses Inc.

  12. Navigating freely-available software tools for metabolomics analysis.

    Science.gov (United States)

    Spicer, Rachel; Salek, Reza M; Moreno, Pablo; Cañueto, Daniel; Steinbeck, Christoph

    2017-01-01

    The field of metabolomics has expanded greatly over the past two decades, both as an experimental science with applications in many areas, as well as in regards to data standards and bioinformatics software tools. The diversity of experimental designs and instrumental technologies used for metabolomics has led to the need for distinct data analysis methods and the development of many software tools. To compile a comprehensive list of the most widely used freely available software and tools that are used primarily in metabolomics. The most widely used tools were selected for inclusion in the review by either ≥ 50 citations on Web of Science (as of 08/09/16) or the use of the tool being reported in the recent Metabolomics Society survey. Tools were then categorised by the type of instrumental data (i.e. LC-MS, GC-MS or NMR) and the functionality (i.e. pre- and post-processing, statistical analysis, workflow and other functions) they are designed for. A comprehensive list of the most used tools was compiled. Each tool is discussed within the context of its application domain and in relation to comparable tools of the same domain. An extended list including additional tools is available at https://github.com/RASpicer/MetabolomicsTools which is classified and searchable via a simple controlled vocabulary. This review presents the most widely used tools for metabolomics analysis, categorised based on their main functionality. As future work, we suggest a direct comparison of tools' abilities to perform specific data analysis tasks e.g. peak picking.

  13. Medicinal Plants: A Public Resource for Metabolomics and Hypothesis Development

    Directory of Open Access Journals (Sweden)

    Eve Syrkin Wurtele

    2012-11-01

    Full Text Available Specialized compounds from photosynthetic organisms serve as rich resources for drug development. From aspirin to atropine, plant-derived natural products have had a profound impact on human health. Technological advances provide new opportunities to access these natural products in a metabolic context. Here, we describe a database and platform for storing, visualizing and statistically analyzing metabolomics data from fourteen medicinal plant species. The metabolomes and associated transcriptomes (RNAseq for each plant species, gathered from up to twenty tissue/organ samples that have experienced varied growth conditions and developmental histories, were analyzed in parallel. Three case studies illustrate different ways that the data can be integrally used to generate testable hypotheses concerning the biochemistry, phylogeny and natural product diversity of medicinal plants. Deep metabolomics analysis of Camptotheca acuminata exemplifies how such data can be used to inform metabolic understanding of natural product chemical diversity and begin to formulate hypotheses about their biogenesis. Metabolomics data from Prunella vulgaris, a species that contains a wide range of antioxidant, antiviral, tumoricidal and anti-inflammatory constituents, provide a case study of obtaining biosystematic and developmental fingerprint information from metabolite accumulation data in a little studied species. Digitalis purpurea, well known as a source of cardiac glycosides, is used to illustrate how integrating metabolomics and transcriptomics data can lead to identification of candidate genes encoding biosynthetic enzymes in the cardiac glycoside pathway. Medicinal Plant Metabolomics Resource (MPM [1] provides a framework for generating experimentally testable hypotheses about the metabolic networks that lead to the generation of specialized compounds, identifying genes that control their biosynthesis and establishing a basis for modeling metabolism in less

  14. Medicinal plants: a public resource for metabolomics and hypothesis development.

    Science.gov (United States)

    Wurtele, Eve Syrkin; Chappell, Joe; Jones, A Daniel; Celiz, Mary Dawn; Ransom, Nick; Hur, Manhoi; Rizshsky, Ludmila; Crispin, Matthew; Dixon, Philip; Liu, Jia; P Widrlechner, Mark; Nikolau, Basil J

    2012-11-21

    Specialized compounds from photosynthetic organisms serve as rich resources for drug development. From aspirin to atropine, plant-derived natural products have had a profound impact on human health. Technological advances provide new opportunities to access these natural products in a metabolic context. Here, we describe a database and platform for storing, visualizing and statistically analyzing metabolomics data from fourteen medicinal plant species. The metabolomes and associated transcriptomes (RNAseq) for each plant species, gathered from up to twenty tissue/organ samples that have experienced varied growth conditions and developmental histories, were analyzed in parallel. Three case studies illustrate different ways that the data can be integrally used to generate testable hypotheses concerning the biochemistry, phylogeny and natural product diversity of medicinal plants. Deep metabolomics analysis of Camptotheca acuminata exemplifies how such data can be used to inform metabolic understanding of natural product chemical diversity and begin to formulate hypotheses about their biogenesis. Metabolomics data from Prunella vulgaris, a species that contains a wide range of antioxidant, antiviral, tumoricidal and anti-inflammatory constituents, provide a case study of obtaining biosystematic and developmental fingerprint information from metabolite accumulation data in a little studied species. Digitalis purpurea, well known as a source of cardiac glycosides, is used to illustrate how integrating metabolomics and transcriptomics data can lead to identification of candidate genes encoding biosynthetic enzymes in the cardiac glycoside pathway. Medicinal Plant Metabolomics Resource (MPM) [1] provides a framework for generating experimentally testable hypotheses about the metabolic networks that lead to the generation of specialized compounds, identifying genes that control their biosynthesis and establishing a basis for modeling metabolism in less studied species. The

  15. Untargeted Metabolomics To Ascertain Antibiotic Modes of Action

    Science.gov (United States)

    Vincent, Isabel M.; Ehmann, David E.; Mills, Scott D.; Perros, Manos

    2016-01-01

    Deciphering the mode of action (MOA) of new antibiotics discovered through phenotypic screening is of increasing importance. Metabolomics offers a potentially rapid and cost-effective means of identifying modes of action of drugs whose effects are mediated through changes in metabolism. Metabolomics techniques also collect data on off-target effects and drug modifications. Here, we present data from an untargeted liquid chromatography-mass spectrometry approach to identify the modes of action of eight compounds: 1-[3-fluoro-4-(5-methyl-2,4-dioxo-pyrimidin-1-yl)phenyl]-3-[2-(trifluoromethyl)phenyl]urea (AZ1), 2-(cyclobutylmethoxy)-5′-deoxyadenosine, triclosan, fosmidomycin, CHIR-090, carbonyl cyanide m-chlorophenylhydrazone (CCCP), 5-chloro-2-(methylsulfonyl)-N-(1,3-thiazol-2-yl)-4-pyrimidinecarboxamide (AZ7), and ceftazidime. Data analysts were blind to the compound identities but managed to identify the target as thymidylate kinase for AZ1, isoprenoid biosynthesis for fosmidomycin, acyl-transferase for CHIR-090, and DNA metabolism for 2-(cyclobutylmethoxy)-5′-deoxyadenosine. Changes to cell wall metabolites were seen in ceftazidime treatments, although other changes, presumably relating to off-target effects, dominated spectral outputs in the untargeted approach. Drugs which do not work through metabolic pathways, such as the proton carrier CCCP, have no discernible impact on the metabolome. The untargeted metabolomics approach also revealed modifications to two compounds, namely, fosmidomycin and AZ7. An untreated control was also analyzed, and changes to the metabolome were seen over 4 h, highlighting the necessity for careful controls in these types of studies. Metabolomics is a useful tool in the analysis of drug modes of action and can complement other technologies already in use. PMID:26833150

  16. Proteomics, metabolomics and ionomics perspectives of salinity tolerance in halophytes

    Directory of Open Access Journals (Sweden)

    ASHA KUMARI YADAV

    2015-07-01

    Full Text Available Halophytes are plants which naturally survive in saline environment. They account for approximately 1% of the total flora of the world. They include both dicots and monocots and are distributed mainly in arid, semi-arid inlands and saline wet lands along the tropical and sub-tropical coasts. Salinity tolerance in halophytes depends on a set of ecological and physiological characteristics that allow them to grow and flourish in high saline conditions. The ability of halophytes to tolerate high salt is determined by the effective coordination between various physiological processes, metabolic pathways and protein or gene networks responsible for delivering salinity tolerance. The salinity responsive proteins belong to diverse functional classes such as photosynthesis, redox homeostasis, stress/defence, carbohydrate and energy metabolism, protein metabolism, signal transduction and membrane transport. The important metabolites which are involved in salt tolerance of halophytes are proline and proline analogue (4-hydroxy-N-methyl proline, glycine betaine, pinitol, myo-inositol, mannitol, sorbitol, O-methylmucoinositol and polyamines. In halophytes, the synthesis of specific proteins and osmotically active metabolites control ion and water flux and support scavenging of oxygen radicals under salt stress condition. The present review summarizes the salt tolerance mechanisms of halophytes by elucidating the recent studies that have focused on proteomic, metabolomic and ionomic aspects of various halophytes in response to salinity. By integrating the information from halophytes and its comparison with glycophytes could give an overview of salt tolerance mechanisms in halophytes, thus laying down the pavement for development of salt tolerant crop plants through genetic modification and effective breeding strategies.

  17. Mitochondrial responses to extreme environments: insights from metabolomics.

    Science.gov (United States)

    O'Brien, Katie A; Griffin, Julian L; Murray, Andrew J; Edwards, Lindsay M

    2015-01-01

    Humans are capable of survival in a remarkable range of environments, including the extremes of temperature and altitude as well as zero gravity. Investigation into physiological function in response to such environmental stresses may help further our understanding of human (patho-) physiology both at a systems level and in certain disease states, making it a highly relevant field of study. This review focuses on the application of metabolomics in assessing acclimatisation to these states, particularly the insights this approach can provide into mitochondrial function. It includes an overview of metabolomics and the associated analytical tools and also suggests future avenues of research.

  18. Metabolome analysis - mass spectrometry and microbial primary metabolites

    DEFF Research Database (Denmark)

    Højer-Pedersen, Jesper Juul

    2008-01-01

    increased amounts of data generated in high resolution. One major limitation though is the digestion of data coverting the information into a format that can be interpreted in a biological context and take metabolomics beyond the principle of guilt-byassociation. To analyze the data there is a general need....... Statistical analysis of the footprinting data revealed discriminating ions, which could be assigned using the in silico metabolome. By this approach metabolic footprinting can advance from a classification method that is used to derive biological information based on guilt-by-association, to a tool...

  19. Metabolomic Biomarkers in the Progression to Type 1 Diabetes

    DEFF Research Database (Denmark)

    Overgaard, Anne Julie; Kaur, Simranjeet; Pociot, Flemming

    2016-01-01

    Metabolomics is the snapshot of all detectable metabolites and lipids in biological materials and has potential in reflecting genetic and environmental factors contributing to the development of complex diseases, such as type 1 diabetes. The progression to seroconversion to development of type 1...... diabetes has been studied using this technique, although in relatively small cohorts and at limited time points. Overall, three observations have been consistently reported; phospholipids at birth are lower in children developing type 1 diabetes early in childhood, methionine levels are lower in children...... at seroconversion, and triglycerides are increased at seroconversion and associated to microbiome diversity, indicating an association between the metabolome and microbiome in type 1 diabetes progression....

  20. [Application and research advances of metabolomics in the field of orthopedics].

    Science.gov (United States)

    Sun, Zhijian; Qiu, Guixing; Zhao, Yu

    2015-06-01

    Metabolomics is a subject of systematic, qualitative and quantitative analysis of all metabolites in all organisms, which is applied to finding biomarkers and studying pathogenesis of diseases. Study procedures of metabolomics include data acquisition by spectroscopic/spectrometric techniques, multivariate statistical analysis and projection of the acquired metabolomic information. In recent years, metabolomics have gained popularity in orthopedic field. Metabolomic study of osteoarthritis was firstly conducted and widely developed. Metabolite profiles of different samples, including serum/plasma, urine, synovial fluid and synovial tissue, were studied and dozens of differential metabolites and several disturbed metabolic pathways were found. In addition, metabolomic studies of osteoporosis, ankylosing spondylitis and bone tumors were also conducted, which identified many potential biomarkers and made further understanding of pathogenesis of corresponding disease. However, metabolomic studies in orthopedic field just begin. More orthopedic diseases will be researched thank to the satisfactory results of previous reports.

  1. A metabolomic strategy defines the regulation of lipid content and global metabolism by Δ9 desaturases in Caenorhabditis elegans.

    Science.gov (United States)

    Castro, Cecilia; Sar, Funda; Shaw, W Robert; Mishima, Masanori; Miska, Eric A; Griffin, Julian L

    2012-01-20

    Caenorhabditis elegans provides a genetically tractable model organism to investigate the network of genes involved in fat metabolism and how regulation is perturbed to produce the complex phenotype of obesity. C. elegans possess the full range of desaturases, including the Δ9 desaturases expressed by fat-5, fat-6 and fat-7. They regulate the biosynthesis of monounsaturated fatty acids, used for the synthesis of lipids including phospholipids, triglycerides and cholesteryl esters. Liquid chromatography mass spectrometry (LC-MS), gas chromatography mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy were used to define the metabolome of all the possible knock-outs for the Δ9 desaturases, including for the first time intact lipids. Despite the genes having similar enzymatic roles, excellent discrimination was achievable for all single and viable double mutants highlighting the distinctive roles of fat-6 and fat-7, both expressing steroyl-CoA desaturases. The metabolomic changes extend to aqueous metabolites demonstrating the influence Δ9 desaturases have on regulating global metabolism and highlighting how comprehensive metabolomics is more discriminatory than classically used dyes for fat staining. The propagation of metabolic changes across the network of metabolism demonstrates that modification of the Δ9 desaturases places C.elegans into a catabolic state compared with wildtype controls.

  2. Component-Metabolome Correlations of Gut Microbiota from Child-Turcotte-Pugh of A and B patients

    Directory of Open Access Journals (Sweden)

    Xiao Wei

    2016-11-01

    Full Text Available The gut flora are widely involved in the cometabolism with the host and have evident effects on the metabolic phenotype of host. This study performed a metabolome analysis of the intestinal microbiota specific for liver cirrhosis. The study population included patients with Child-Turcotte-Pugh (CTP score of A (AP, n=5 and B (BP, n=5, and control subjects (NM, n=3. Metagenomic DNA from fecal microbiota was extracted followed by metagenomic sequenceing through Illumina MiSeq high throughput sequencing of 16S rRNA regions. The detection of metabolites from fecal samples was performed using high-performance liquid phase chromatography and gas chromatography coupled with tandem mass spectrometry (HPLC-GC/MS-MS. Intestinal microbiota community and metabolite analysis both showed separation of cirrhotic patients from control participants, moreover, the microbiota-metabolite correlations changed in cirrhotic patients. Fecal microbiota from cirrhotic patients, with the reduced diversity, contained a decreased abundance of Bacteroidetes and an increased abundance of Proteobacteria compared with the normal samples. Analysis of metabolome revealed a remarkable change in the metabolic potential of the microbiota in cirrhotic patients, with specific higher concentrations of amine, unsaturated fatty acid, and SCFAs (short-chain fatty acids, and lower concentrations of sugar alcohol and amino acid, suggesting the initial equilibrium of gut microbiota community and co-metabolism with the host were perturbed by cirrhosis. Our study illustrated the relationship between fecal microbiota composition and metabolom in cirrhotic patients, which may improve the clinical prognosis of cirrhosis.

  3. A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism.

    Science.gov (United States)

    Sánchez-Martín, Javier; Heald, Jim; Kingston-Smith, Alison; Winters, Ana; Rubiales, Diego; Sanz, Mariluz; Mur, Luis A J; Prats, Elena

    2015-07-01

    Although a wealth of information is available on the induction of one or several drought-related responses in different species, little is known of how their timing, modulation and crucially integration influence drought tolerance. Based upon metabolomic changes in oat (Avena sativa L.), we have defined key processes involved in drought tolerance. During a time course of increasing water deficit, metabolites from leaf samples were profiled using direct infusion-electrospray mass spectroscopy (DI-ESI-MS) and high-performance liquid chromatography (HPLC) ESI-MS/MS and analysed using principal component analysis (PCA) and discriminant function analysis (DFA). The involvement of metabolite pathways was confirmed through targeted assays of key metabolites and physiological experiments. We demonstrate an early accumulation of salicylic acid (SA) influencing stomatal opening, photorespiration and antioxidant defences before any change in the relative water content. These changes are likely to maintain plant water status, with any photoinhibitory effect being counteracted by an efficient antioxidant capacity, thereby representing an integrated mechanism of drought tolerance in oats. We also discuss these changes in relation to those engaged at later points, consequence of the different water status in susceptible and resistant genotypes. © 2014 John Wiley & Sons Ltd.

  4. Bio-effectors from waste materials as growth promoters, an agronomic and metabolomic study

    Science.gov (United States)

    Alwanney, Deaa; Chami, Ziad Al; Angelica De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2014-05-01

    Nowadays, improving plant performance by providing growth promoters is a main concern of the organic agriculture. As a consequence of increased food demands, more efficient and alternatives of the current plant nutrition strategies are becoming urgent. Recently, a novel concept "bio-effectors" raised on to describe a group of products that are able to improve plant performance and do not belong to fertilizers or pesticides. Agro-Food processing residues are promising materials as bio-effector. Three plant-derived materials: brewers' spent grain (BSG), fennel processing residues (FPR) and lemon processing residues (LPR) were chosen as bio-effector candidates. Plant-derived materials were characterized in term of total macro and micronutrients content. Green extraction methodology and solvent choice (aqueous; ethanol; and aqueous: ethanol mixture 1:1) was based on the extraction yield as main factor. Optimum extracts, to be used on the tomato test plant, were determined using phytotoxicity test (seed germination test) as main constraint. Thereafter, selected extracts were characterized and secondary metabolites profiling were detected by NMR technique. Selected extracts were applied on tomato in a growth chamber at different doses in comparison to humic-like substances as positive control (Ctrl+) and to a Hoagland solution as negative control (Ctrl-). At the end of the experiment, agronomical parameters were determined and NMR-metabolomic profiling were conducted on tomato seedlings. Results are summarized as follow: (i) raw showed an interesting content, either at nutritional or biological level; (ii) aqueous extraction resulted higher yield than other used solvent; (iii) at high extraction ratio (1:25 for BSG; 1:100 for FPR; and 1:200 for LPR) aqueous extracts were not phytotoxic on the tomato test plant; (iv) all aqueous extract are differently rich in nutrients, aminoacids, sugars and low molecular weight molecules; (v) all extract exhibited a growth promotion at

  5. Metabolomic Analysis of Alfalfa (Medicago sativa L. Root-Symbiotic Rhizobia Responses under Alkali Stress

    Directory of Open Access Journals (Sweden)

    Tingting Song

    2017-07-01

    Full Text Available Alkaline salts (e.g., NaHCO3 and Na2CO3 causes more severe morphological and physiological damage to plants than neutral salts (e.g., NaCl and Na2SO4 due to differences in pH. The mechanism by which plants respond to alkali stress is not fully understood, especially in plants having symbotic relationships such as alfalfa (Medicago sativa L.. Therefore, a study was designed to evaluate the metabolic response of the root-nodule symbiosis in alfalfa under alkali stress using comparative metabolomics. Rhizobium-nodulized (RI group and non-nodulized (NI group alfalfa roots were treated with 200 mmol/L NaHCO3 and, roots samples were analyzed for malondialdehydyde (MDA, proline, glutathione (GSH, superoxide dismutase (SOD, and peroxidase (POD content. Additionally, metabolite profiling was conducted using gas chromatography combined with time-of-flight mass spectrometry (GC/TOF-MS. Phenotypically, the RI alfalfa exhibited a greater resistance to alkali stress than the NI plants examined. Physiological analysis and metabolic profiling revealed that RI plants accumulated more antioxidants (SOD, POD, GSH, osmolytes (sugar, glycols, proline, organic acids (succinic acid, fumaric acid, and alpha-ketoglutaric acid, and metabolites that are involved in nitrogen fixation. Our pairwise metabolomics comparisons revealed that RI alfalfa plants exhibited a distinct metabolic profile associated with alkali putative tolerance relative to NI alfalfa plants. Data provide new information about the relationship between non-nodulized, rhizobium-nodulized alfalfa and alkali resistance.

  6. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics and ionomics

    Directory of Open Access Journals (Sweden)

    Samiksha eSingh

    2016-02-01

    Full Text Available Heavy metal contamination of soil and water causing toxicity/stress has become one important constraint to crop productivity and quality. This situation has further worsened by the increasing population growth and inherent food demand. It have been reported in several studies that counterbalancing toxicity, due to heavy metal requires complex mechanisms at molecular, biochemical, physiological, cellular, tissue and whole plant level, which might manifest in terms of improved crop productivity. Recent advances in various disciplines of biological sciences such as metabolomics, transcriptomics, proteomics etc. have assisted in the characterization of metabolites, transcription factors, stress-inducible proteins involved in heavy metal tolerance, which in turn can be utilized for generating heavy metal tolerant crops. This review summarizes various tolerance strategies of plants under heavy metal toxicity, covering the role of metabolites (metabolomics, trace elements (ionomics, transcription factors (transcriptomics, various stress-inducible proteins (proteomics as well as the role of plant hormones. We also provide a glance at strategies adopted by metal accumulating plants also known as metallophytes.

  7. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics.

    Science.gov (United States)

    Singh, Samiksha; Parihar, Parul; Singh, Rachana; Singh, Vijay P; Prasad, Sheo M

    2015-01-01

    Heavy metal contamination of soil and water causing toxicity/stress has become one important constraint to crop productivity and quality. This situation has further worsened by the increasing population growth and inherent food demand. It has been reported in several studies that counterbalancing toxicity due to heavy metal requires complex mechanisms at molecular, biochemical, physiological, cellular, tissue, and whole plant level, which might manifest in terms of improved crop productivity. Recent advances in various disciplines of biological sciences such as metabolomics, transcriptomics, proteomics, etc., have assisted in the characterization of metabolites, transcription factors, and stress-inducible proteins involved in heavy metal tolerance, which in turn can be utilized for generating heavy metal-tolerant crops. This review summarizes various tolerance strategies of plants under heavy metal toxicity covering the role of metabolites (metabolomics), trace elements (ionomics), transcription factors (transcriptomics), various stress-inducible proteins (proteomics) as well as the role of plant hormones. We also provide a glance of some strategies adopted by metal-accumulating plants, also known as "metallophytes."

  8. Mass Spectrometry-Based Metabolomic and Proteomic Strategies in Organic Acidemias

    Directory of Open Access Journals (Sweden)

    Esther Imperlini

    2016-01-01

    Full Text Available Organic acidemias (OAs are inherited metabolic disorders caused by deficiency of enzymatic activities in the catabolism of amino acids, carbohydrates, or lipids. These disorders result in the accumulation of mono-, di-, or tricarboxylic acids, generally referred to as organic acids. The OA outcomes can involve different organs and/or systems. Some OA disorders are easily managed if promptly diagnosed and treated, whereas, in others cases, such as propionate metabolism-related OAs (propionic acidemia, PA; methylmalonic acidemia, MMA, neither diet, vitamin therapy, nor liver transplantation appears to prevent multiorgan impairment. Here, we review the recent developments in dissecting molecular bases of OAs by using integration of mass spectrometry- (MS- based metabolomic and proteomic strategies. MS-based techniques have facilitated the rapid and economical evaluation of a broad spectrum of metabolites in various body fluids, also collected in small samples, like dried blood spots. This approach has enabled the timely diagnosis of OAs, thereby facilitating early therapeutic intervention. Besides providing an overview of MS-based approaches most frequently used to study the molecular mechanisms underlying OA pathophysiology, we discuss the principal challenges of metabolomic and proteomic applications to OAs.

  9. Optimization and Evaluation Strategy of Esophageal Tissue Preparation Protocols for Metabolomics by LC-MS.

    Science.gov (United States)

    Wang, Huiqing; Xu, Jing; Chen, Yanhua; Zhang, Ruiping; He, Jiuming; Wang, Zhonghua; Zang, Qingce; Wei, Jinfeng; Song, Xiaowei; Abliz, Zeper

    2016-04-05

    Sample preparation is a critical step in tissue metabolomics. Therefore, a comprehensive and systematic strategy for the screening of tissue preparation protocols is highly desirable. In this study, we developed an Optimization and Evaluation Strategy based on LC-MS to screen for a high-extractive efficiency and reproducible esophageal tissue preparation protocol for different types of endogenous metabolites (amino acids, carnitines, cholines, etc.), with a special focus on low-level metabolites. In this strategy, we first selected a large number of target metabolites based on literature survey, previous work in our lab, and known metabolic pathways. For these target metabolites, we tested different solvent extraction methods (biphasic solvent extraction, two-step [TS], stepwise [SW], all-in one [AO]; single-phase solvent extraction, SP) and esophageal tissue disruption methods (homogenized wet tissue [HW], ground wet tissue [GW], and ground dry tissue [GD]). A protocol involving stepwise addition of solvents and a homogenized wet tissue protocol (SWHW) was superior to the others. Finally, we evaluated the stability of endogenous metabolites in esophageal tissues and the sensitivity, reproducibility, and recovery of the optimal protocol. The results proved that the SWHW protocol was robust and adequate for bioanalysis. This strategy will provide important guidance for the standardized and scientific investigation of tissue metabolomics.

  10. Metabolomic Analysis of Alfalfa (Medicago sativa L.) Root-Symbiotic Rhizobia Responses under Alkali Stress.

    Science.gov (United States)

    Song, Tingting; Xu, Huihui; Sun, Na; Jiang, Liu; Tian, Pu; Yong, Yueyuan; Yang, Weiwei; Cai, Hua; Cui, Guowen

    2017-01-01

    Alkaline salts (e.g., NaHCO 3 and Na 2 CO 3 ) causes more severe morphological and physiological damage to plants than neutral salts (e.g., NaCl and Na 2 SO 4 ) due to differences in pH. The mechanism by which plants respond to alkali stress is not fully understood, especially in plants having symbotic relationships such as alfalfa ( Medicago sativa L.). Therefore, a study was designed to evaluate the metabolic response of the root-nodule symbiosis in alfalfa under alkali stress using comparative metabolomics. Rhizobium-nodulized (RI group) and non-nodulized (NI group) alfalfa roots were treated with 200 mmol/L NaHCO 3 and, roots samples were analyzed for malondialdehydyde (MDA), proline, glutathione (GSH), superoxide dismutase (SOD), and peroxidase (POD) content. Additionally, metabolite profiling was conducted using gas chromatography combined with time-of-flight mass spectrometry (GC/TOF-MS). Phenotypically, the RI alfalfa exhibited a greater resistance to alkali stress than the NI plants examined. Physiological analysis and metabolic profiling revealed that RI plants accumulated more antioxidants (SOD, POD, GSH), osmolytes (sugar, glycols, proline), organic acids (succinic acid, fumaric acid, and alpha-ketoglutaric acid), and metabolites that are involved in nitrogen fixation. Our pairwise metabolomics comparisons revealed that RI alfalfa plants exhibited a distinct metabolic profile associated with alkali putative tolerance relative to NI alfalfa plants. Data provide new information about the relationship between non-nodulized, rhizobium-nodulized alfalfa and alkali resistance.

  11. Effects of MeJA on Arabidopsis metabolome under endogenous JA deficiency

    Science.gov (United States)

    Cao, Jingjing; Li, Mengya; Chen, Jian; Liu, Pei; Li, Zhen

    2016-11-01

    Jasmonates (JAs) play important roles in plant growth, development and defense. Comprehensive metabolomics profiling of plants under JA treatment provides insights into the interaction and regulation network of plant hormones. Here we applied high resolution mass spectrometry based metabolomics approach on Arabidopsis wild type and JA synthesis deficiency mutant opr3. The effects of exogenous MeJA treatment on the metabolites of opr3 were investigated. More than 10000 ion signals were detected and more than 2000 signals showed significant variation in different genotypes and treatment groups. Multivariate statistic analyses (PCA and PLS-DA) were performed and a differential compound library containing 174 metabolites with high resolution precursor ion-product ions pairs was obtained. Classification and pathway analysis of 109 identified compounds in this library showed that glucosinolates and tryptophan metabolism, amino acids and small peptides metabolism, lipid metabolism, especially fatty acyls metabolism, were impacted by endogenous JA deficiency and exogenous MeJA treatment. These results were further verified by quantitative reverse transcription PCR (RT-qPCR) analysis of 21 related genes involved in the metabolism of glucosinolates, tryptophan and α-linolenic acid pathways. The results would greatly enhance our understanding of the biological functions of JA.

  12. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics

    Science.gov (United States)

    Singh, Samiksha; Parihar, Parul; Singh, Rachana; Singh, Vijay P.; Prasad, Sheo M.

    2016-01-01

    Heavy metal contamination of soil and water causing toxicity/stress has become one important constraint to crop productivity and quality. This situation has further worsened by the increasing population growth and inherent food demand. It has been reported in several studies that counterbalancing toxicity due to heavy metal requires complex mechanisms at molecular, biochemical, physiological, cellular, tissue, and whole plant level, which might manifest in terms of improved crop productivity. Recent advances in various disciplines of biological sciences such as metabolomics, transcriptomics, proteomics, etc., have assisted in the characterization of metabolites, transcription factors, and stress-inducible proteins involved in heavy metal tolerance, which in turn can be utilized for generating heavy metal-tolerant crops. This review summarizes various tolerance strategies of plants under heavy metal toxicity covering the role of metabolites (metabolomics), trace elements (ionomics), transcription factors (transcriptomics), various stress-inducible proteins (proteomics) as well as the role of plant hormones. We also provide a glance of some strategies adopted by metal-accumulating plants, also known as “metallophytes.” PMID:26904030

  13. Metabolomic Pathways to Osteoporosis in Middle-Aged Women: A Genome-Metabolome-Wide Mendelian Randomization Study.

    Science.gov (United States)

    Moayyeri, Alireza; Cheung, Ching-Lung; Tan, Kathryn Cb; Morris, John A; Cerani, Agustin; Mohney, Robert P; Richards, J Brent; Hammond, Christopher; Spector, Tim D; Menni, Cristina

    2017-12-12

    The metabolic state of the body can be a major determinant of bone health. We used a Mendelian randomization approach to identify metabolites causally associated with bone mass to better understand the biological mechanisms of osteoporosis. We tested bone phenotypes (femoral neck, total hip, and lumbar spine bone mineral density [BMD]) for association with 280 fasting blood metabolites in 6055 women from TwinsUK cohort with genomewide genotyping scans. Causal associations between metabolites and bone phenotypes were further assessed in a bidirectional Mendelian randomization study using genetic markers/scores as instrumental variables. Significant associations were replicated in 624 participants from the Hong Kong Osteoporosis Study (HKOS). Fifteen metabolites showed direct associations with bone phenotypes after adjusting for covariates and multiple testing. Using genetic instruments, four of these metabolites were found to be causally associated with hip or spine BMD. These included androsterone sulfate, epiandrosterone sulfate, 5alpha-androstan-3beta17beta-diol disulfate (encoded by CYP3A5), and 4-androsten-3beta17beta-diol disulfate (encoded by SULT2A1). In the HKOS population, all four metabolites showed significant associations with hip and spine BMD in the expected directions. No causal reverse association between BMD and any of the metabolites were found. In the first metabolome-genomewide Mendelian randomization study of human bone mineral density, we identified four novel biomarkers causally associated with BMD. Our findings reveal novel biological pathways involved in the pathogenesis of osteoporosis. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  14. Evaluation of the anti-hypertensive effect of Tengfu Jiangya tablet by combination of UPLC-Q-exactive-MS-based metabolomics and iTRAQ-based proteomics technology.

    Science.gov (United States)

    Tian, Yanpeng; Jiang, Feng; Li, Yunlun; Jiang, Haiqiang; Chu, Yanjun; Zhu, Lijuan; Guo, Weixing

    2018-04-01

    Tengfu Jiangya tablet (TJT) is a traditional Chinese medicine formulation composed of Uncaria rhynchophylla and Semen raphani. It is a hospital preparation that is widely used in clinics for treating hypertension. A previous metabolomics study reported that TJT exerted a protective effect on hypertension by restoring impaired NO production, ameliorating the inflammatory state, and vascular remodeling. A clinical proteomics study also revealed five key target proteins during TJT intervention. This study aimed to integrate proteome and metabolome data sets for a holistic view of the molecular mechanisms of TJT in treating hypertension. Serum samples from spontaneously hypertensive rats and Wistar Kyoto rats were analyzed using ultra-high performance liquid chromatography coupled to Q Exactive hybrid quadrupole-Orbitrap mass spectrometry (UPLC-Q-Exactive-MS)-based metabolomics technology and isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics technology. Moreover, we selected two candidate proteins and determined their expression levels in rat serum using an enzyme-linked immunosorbent assay (ELISA). A total of 20 potential biomarkers and 14 differential proteins in rat serum were identified. These substances were mainly involved in three biological pathways: the kallikrein-kinin pathway, the lipid metabolism pathway, and the PPARγ signaling pathway. The results suggested that TJT could effectively treat hypertension, partially by regulating the above three metabolic pathways. The combination of proteomics and metabolomics provided a feasible method to uncover the underlying interventional effect and therapeutic mechanism of TJT on spontaneously hypertensive rats. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Metabolomic Study on Idiosyncratic Liver Injury Induced by Different Extracts ofPolygonum multiflorumin Rats Integrated with Pattern Recognition and Enriched Pathways Analysis.

    Science.gov (United States)

    Li, Chun-Yu; Tu, Can; Gao, Dan; Wang, Rui-Lin; Zhang, Hai-Zhu; Niu, Ming; Li, Rui-Yu; Zhang, Cong-En; Li, Rui-Sheng; Xiao, Xiao-He; Yang, Mei-Hua; Wang, Jia-Bo

    2016-01-01

    Currently, numerous liver injury cases related to a famous Chinese herb- Polygonum Multiflorum (Heshouwu in Chinese) have attracted great attention in many countries. Our previous work showed that Heshouwu-induced hepatotoxicity belonged to idiosyncratic drug-induced liver injury (IDILI). Unfortunately, the components and mechanisms attributed to IDILI of Heshouwu are difficult to determine and thus remain unknown. Attempts to explore puzzles, we prepared the chloroform (CH)-, ethyl acetate (EA)-, and residue (RE) extracts of Heshouwu to investigate IDILI constituents and underlying mechanisms, using biochemistry, histopathology, and metabolomics examinations. The results showed that co-treatment with non-toxic dose of lipopolysaccharide (LPS) and EA extract could result in evident liver injury, indicated by the significant elevation of plasma alanine aminotransferase and aspartate aminotransferase activities, as well as obvious liver histologic damage; whereas other two separated fractions, CH and RE extracts, failed to induce observable liver injury. Furthermore, 21 potential metabolomic biomarkers that differentially expressed in LPS/EA group compared with other groups without liver injury were identified by untargeted metabolomics, mainly involved two pathways: tricarboxylic acid cycle and sphingolipid metabolism. This work illustrated EA extract had close association with the idiosyncratic hepatotoxicity of Heshouwu and provided a metabolomic insight into IDILI of different extracts from Heshouwu.

  16. Metabolomic study on idiosyncratic liver injury induced by different extracts of Polygonum multiflorum in rats integrated with pattern recognition and enriched pathways analysis

    Directory of Open Access Journals (Sweden)

    Chun-yu Li

    2016-12-01

    Full Text Available Currently, numerous liver injury cases related to a famous Chinese herb- Polygonum Multiflorum (Heshouwu in Chinese have attracted great attention in many countries. Our previous work showed that Heshouwu-induced hepatotoxicity belonged to idiosyncratic drug-induced liver injury (IDILI. Unfortunately, the components and mechanisms attributed to IDILI of Heshouwu are difficult to determine and thus remain unknown. Attempts to explore puzzles, we prepared the chloroform (CH-, ethyl acetate (EA-, and residue (RE extracts of Heshouwu to investigate IDILI constituents and underlying mechanisms,using biochemistry, histopathology, and metabolomics examinations. The results showed that co-treatment with non-toxic dose of lipopolysaccharide (LPS and EA extract could result in evident liver injury, indicated by the significant elevation of plasma alanine aminotransferase (ALTand aspartate aminotransferase (AST activities, as well as obvious liver histologic damage; whereas other two separated fractions, CH and RE extracts, failed to induce observable liver injury. Furthermore, 21 potential metabolomic biomarkers that differentially expressed in LPS/EA group compared with other groups without liver injury were identified by untargeted metabolomics, mainly involved two pathways: tricarboxylic acid cycle and sphingolipid metabolism. This work illustrated EA extract had close association with the idiosyncratic hepatotoxicity of Heshouwu and provided a metabolomic insight into IDILI of different extracts from Heshouwu.

  17. Metabolomic Study on Idiosyncratic Liver Injury Induced by Different Extracts of Polygonum multiflorum in Rats Integrated with Pattern Recognition and Enriched Pathways Analysis

    Science.gov (United States)

    Li, Chun-Yu; Tu, Can; Gao, Dan; Wang, Rui-Lin; Zhang, Hai-Zhu; Niu, Ming; Li, Rui-Yu; Zhang, Cong-En; Li, Rui-Sheng; Xiao, Xiao-He; Yang, Mei-Hua; Wang, Jia-Bo

    2016-01-01

    Currently, numerous liver injury cases related to a famous Chinese herb- Polygonum Multiflorum (Heshouwu in Chinese) have attracted great attention in many countries. Our previous work showed that Heshouwu-induced hepatotoxicity belonged to idiosyncratic drug-induced liver injury (IDILI). Unfortunately, the components and mechanisms attributed to IDILI of Heshouwu are difficult to determine and thus remain unknown. Attempts to explore puzzles, we prepared the chloroform (CH)-, ethyl acetate (EA)-, and residue (RE) extracts of Heshouwu to investigate IDILI constituents and underlying mechanisms, using biochemistry, histopathology, and metabolomics examinations. The results showed that co-treatment with non-toxic dose of lipopolysaccharide (LPS) and EA extract could result in evident liver injury, indicated by the significant elevation of plasma alanine aminotransferase and aspartate aminotransferase activities, as well as obvious liver histologic damage; whereas other two separated fractions, CH and RE extracts, failed to induce observable liver injury. Furthermore, 21 potential metabolomic biomarkers that differentially expressed in LPS/EA group compared with other groups without liver injury were identified by untargeted metabolomics, mainly involved two pathways: tricarboxylic acid cycle and sphingolipid metabolism. This work illustrated EA extract had close association with the idiosyncratic hepatotoxicity of Heshouwu and provided a metabolomic insight into IDILI of different extracts from Heshouwu. PMID:28018221

  18. Elucidating causes of Diporeia decline in the Great Lakes via metabolomics: physiological responses after exposure to different stressors.

    Science.gov (United States)

    Maity, Suman; Jannasch, Amber; Adamec, Jiri; Watkins, James M; Nalepa, Thomas; Höök, Tomas O; Sepúlveda, Maria S

    2013-01-01

    The benthic macroinvertebrate Diporeia spp. have been extirpated from many areas of the Laurentian Great Lakes, but the mechanisms underlying such declines are not fully understood. Diporeia declines coinciding with the invasion of exotic dreissenid mussels (zebra and quagga) have led to the hypothesis that Diporeia declines are a result of decreased food availability from increasing competition with dreissenids for diatoms. There is additional evidence that Diporeia are negatively affected when in close proximity to dreissenids, probably because of exposure to toxins present in the mussels' pseudofeces. Diporeia are also known to be sensitive to anthropogenic contaminants (such as polychlorinated biphenyls [PCBs]) present in Great Lakes sediments. To better understand the physiological responses of Diporeia to diverse stressors, we conducted three 28-d experiments evaluating changes in the metabolomes of Diporeia (1) fed diatoms (Cyclotella meneghiniana) versus starved, (2) exposed (from Lake Michigan and Cayuga Lake) to quagga mussels (Dreissena bugensis), and (3) exposed to sediments contaminated with PCBs. The metabolomes of samples were examined using both two-dimensional gas and liquid chromatography coupled with mass spectrometry. Each stressor elicited a unique metabolome response characterized by enhanced citric acid cycle, fatty acid biosynthesis, and protein metabolism in diatom-fed Diporeia; impaired glycolysis, protein catabolism, and folate metabolism in Diporeia from Lake Michigan irrespective of quagga mussel exposure, suggesting lake-specific adaptation mechanisms; and altered cysteine and phospholipid metabolism during PCB exposure. Subsequent comparisons of these stressor-specific metabolic responses with metabolomes of a feral Diporeia population would help identify stressors affecting Diporeia populations throughout the Great Lakes.

  19. Understanding Aquatic Rhizosphere Processes Through Metabolomics and Metagenomics Approach

    Science.gov (United States)

    Lee, Yong Jian; Mynampati, Kalyan; Drautz, Daniela; Arumugam, Krithika; Williams, Rohan; Schuster, Stephan; Kjelleberg, Staffan; Swarup, Sanjay

    2013-04-01

    The aquatic rhizosphere is a region around the roots of aquatic plants. Many studies focusing on terrestrial rhizosphere have led to a good understanding of the interactions between the roots, its exudates and its associated rhizobacteria. The rhizosphere of free-floating roots, however, is a different habitat that poses several additional challenges, including rapid diffusion rates of signals and nutrient molecules, which are further influenced by the hydrodynamic forces. These can lead to rapid diffusion and complicates the studying of diffusible factors from both plant and/or rhizobacterial origins. These plant systems are being increasingly used for self purification of water bodies to provide sustainable solution. A better understanding of these processes will help in improving their performance for ecological engineering of freshwater systems. The same principles can also be used to improve the yield of hydroponic cultures. Novel toolsets and approaches are needed to investigate the processes occurring in the aquatic rhizosphere. We are interested in understanding the interaction between root exudates and the complex microbial communities that are associated with the roots, using a systems biology approach involving metabolomics and metagenomics. With this aim, we have developed a RhizoFlowCell (RFC) system that provides a controlled study of aquatic plants, observed the root biofilms, collect root exudates and subject the rhizosphere system to changes in various chemical or physical perturbations. As proof of concept, we have used RFC to test the response of root exudation patterns of Pandanus amaryllifolius after exposure to the pollutant naphthalene. Complexity of root exudates in the aquatic rhizosphere was captured using this device and analysed using LC-qTOF-MS. The highly complex metabolomic profile allowed us to study the dynamics of the response of roots to varying levels of naphthalene. The metabolic profile changed within 5mins after spiking with

  20. Involving people with dementia in developing an interactive web tool for shared decision-making: experiences with a participatory design approach.

    Science.gov (United States)

    Span, Marijke; Hettinga, Marike; Groen-van de Ven, Leontine; Jukema, Jan; Janssen, Ruud; Vernooij-Dassen, Myrra; Eefsting, Jan; Smits, Carolien

    2018-06-01

    The aim of this study was at gaining insight into the participatory design approach of involving people with dementia in the development of the DecideGuide, an interactive web tool facilitating shared decision-making in their care networks. An explanatory case study design was used when developing the DecideGuide. A secondary analysis focused on the data gathered from the participating people with dementia during the development stages: semi-structured interviews (n = 23), four focus group interviews (n = 18), usability tests (n = 3), and a field study (n = 4). Content analysis was applied to the data. Four themes showed to be important regarding the participation experiences of involving people with dementia in research: valuable feedback on content and design of the DecideGuide, motivation to participate, perspectives of people with dementia and others about distress related to involvement, and time investment. People with dementia can give essential feedback and, therefore, their contribution is useful and valuable. Meaningful participation of people with dementia takes time that should be taken into account. It is important for people with dementia to be able to reciprocate the efforts others make and to feel of significance to others. Implications for Rehabilitation People with dementia can contribute meaningfully to the content and design and their perspective is essential for developing useful and user-friendly tools. Participating in research activities may contribute to social inclusion, empowerment, and quality of life of people with dementia.

  1. Targeted Metabolomics Identifies Pharmacodynamic Biomarkers for BIO 300 Mitigation of Radiation-Induced Lung Injury.

    Science.gov (United States)

    Jones, Jace W; Jackson, Isabel L; Vujaskovic, Zeljko; Kaytor, Michael D; Kane, Maureen A

    2017-12-01

    Biomarkers serve a number of purposes during drug development including defining the natural history of injury/disease, serving as a secondary endpoint or trigger for intervention, and/or aiding in the selection of an effective dose in humans. BIO 300 is a patent-protected pharmaceutical formulation of nanoparticles of synthetic genistein being developed by Humanetics Corporation. The primary goal of this metabolomic discovery experiment was to identify biomarkers that correlate with radiation-induced lung injury and BIO 300 efficacy for mitigating tissue damage based upon the primary endpoint of survival. High-throughput targeted metabolomics of lung tissue from male C57L/J mice exposed to 12.5 Gy whole thorax lung irradiation, treated daily with 400 mg/kg BIO 300 for either 2 weeks or 6 weeks starting 24 h post radiation exposure, were assayed at 180 d post-radiation to identify potential biomarkers. A panel of lung metabolites that are responsive to radiation and able to distinguish an efficacious treatment schedule of BIO 300 from a non-efficacious treatment schedule in terms of 180 d survival were identified. These metabolites represent potential biomarkers that could be further validated for use in drug development of BIO 300 and in the translation of dose from animal to human.

  2. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data.

    Science.gov (United States)

    Mönchgesang, Susann; Strehmel, Nadine; Schmidt, Stephan; Westphal, Lore; Taruttis, Franziska; Müller, Erik; Herklotz, Siska; Neumann, Steffen; Scheel, Dierk

    2016-07-01

    Many metabolomics studies focus on aboveground parts of the plant, while metabolism within roots and the chemical composition of the rhizosphere, as influenced by exudation, are not deeply investigated. In this study, we analysed exudate metabolic patterns of Arabidopsis thaliana and their variation in genetically diverse accessions. For this project, we used the 19 parental accessions of the Arabidopsis MAGIC collection. Plants were grown in a hydroponic system, their exudates were harvested before bolting and subjected to UPLC/ESI-QTOF-MS analysis. Metabolite profiles were analysed together with the genome sequence information. Our study uncovered distinct metabolite profiles for root exudates of the 19 accessions. Hierarchical clustering revealed similarities in the exudate metabolite profiles, which were partly reflected by the genetic distances. An association of metabolite absence with nonsense mutations was detected for the biosynthetic pathways of an indolic glucosinolate hydrolysis product, a hydroxycinnamic acid amine and a flavonoid triglycoside. Consequently, a direct link between metabolic phenotype and genotype was detected without using segregating populations. Moreover, genomics can help to identify biosynthetic enzymes in metabolomics experiments. Our study elucidates the chemical composition of the rhizosphere and its natural variation in A. thaliana, which is important for the attraction and shaping of microbial communities.

  3. Analysis of Metabolomics Datasets with High-Performance Computing and Metabolite Atlases

    Directory of Open Access Journals (Sweden)

    Yushu Yao

    2015-07-01

    Full Text Available Even with the widespread use of liquid chromatography mass spectrometry (LC/MS based metabolomics, there are still a number of challenges facing this promising technique. Many, diverse experimental workflows exist; yet there is a lack of infrastructure and systems for tracking and sharing of information. Here, we describe the Metabolite Atlas framework and interface that provides highly-efficient, web-based access to raw mass spectrometry data in concert with assertions about chemicals detected to help address some of these challenges. This integration, by design, enables experimentalists to explore their raw data, specify and refine features annotations such that they can be leveraged for future experiments. Fast queries of the data through the web using SciDB, a parallelized database for high performance computing, make this process operate quickly. By using scripting containers, such as IPython or Jupyter, to analyze the data, scientists can utilize a wide variety of freely available graphing, statistics, and information management resources. In addition, the interfaces facilitate integration with systems biology tools to ultimately link metabolomics data with biological models.

  4. Comprehensive metabolomics to evaluate the impact of industrial processing on the phytochemical composition of vegetable purees.

    Science.gov (United States)

    Lopez-Sanchez, Patricia; de Vos, R C H; Jonker, H H; Mumm, R; Hall, R D; Bialek, L; Leenman, R; Strassburg, K; Vreeken, R; Hankemeier, T; Schumm, S; van Duynhoven, J

    2015-02-01

    The effects of conventional industrial processing steps on global phytochemical composition of broccoli, tomato and carrot purees were investigated by using a range of complementary targeted and untargeted metabolomics approaches including LC-PDA for vitamins, (1)H NMR for polar metabolites, accurate mass LC-QTOF MS for semi-polar metabolites, LC-MRM for oxylipins, and headspace GC-MS for volatile compounds. An initial exploratory experiment indicated that the order of blending and thermal treatments had the highest impact on the phytochemicals in the purees. This blending-heating order effect was investigated in more depth by performing alternate blending-heating sequences in triplicate on the same batches of broccoli, tomato and carrot. For each vegetable and particularly in broccoli, a large proportion of the metabolites detected in the purees was significantly influenced by the blending-heating order, amongst which were potential health-related phytochemicals and flavour compounds like vitamins C and E, carotenoids, flavonoids, glucosinolates and oxylipins. Our metabolomics data indicates that during processing the activity of a series of endogenous plant enzymes, such as lipoxygenases, peroxidases and glycosidases, including myrosinase in broccoli, is key to the final metabolite composition and related quality of the purees. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate

    Science.gov (United States)

    Misra, Biswapriya B.; de Armas, Evaldo; Tong, Zhaohui; Chen, Sixue

    2015-01-01

    Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus) to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3 -). Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3 - responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3 -. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids), and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids) as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage. PMID:26641455

  6. Bagged K-means clustering of metabolome data

    NARCIS (Netherlands)

    Hageman, J. A.; van den Berg, R. A.; Westerhuis, J. A.; Hoefsloot, H. C. J.; Smilde, A. K.

    2006-01-01

    Clustering of metabolomics data can be hampered by noise originating from biological variation, physical sampling error and analytical error. Using data analysis methods which are not specially suited for dealing with noisy data will yield sub optimal solutions. Bootstrap aggregating (bagging) is a

  7. Advances in Ginkgo biloba research: Genomics and metabolomics ...

    African Journals Online (AJOL)

    The maiden hair tree, Ginkgo biloba is very much resistant to a wide spectrum of biotic and abiotic stress conditions. It hardly seems to be attacked by any herbivore or microbe. In spite of its strong resistant nature to wide stress conditions, only little research has been carried out at genomics and metabolomics level to ...

  8. Nuclear magnetic resonance metabolomics of iron deficiency in soybean leaves

    Science.gov (United States)

    Iron (Fe) deficiency is an important agricultural concern leading to lower yields and crop quality. A better understanding of the condition, at the metabolome level, could contribute to the design of strategies to ameliorate Fe deficiency problems. Fe-sufficient and Fe-deficient soybean leaf extract...

  9. Metabolomics and food processing: From semolina to pasta

    CSIR Research Space (South Africa)

    Beleggia, R

    2011-09-01

    Full Text Available Agric Food Chem. 2011 Sep 14;59(17):9366-77. Epub 2011 Aug 16. Metabolomics and food processing: from semolina to pasta. Beleggia R, Platani C, Papa R, Di Chio A, Barros E, Mashaba C, Wirth J, Fammartino A, Sautter C, Conner S, Rauscher J, Stewart D...

  10. Genetic algorithm based two-mode clustering of metabolomics data

    NARCIS (Netherlands)

    Hageman, J.A.; van den Berg, R.A.; Westerhuis, J.A.; van der Werf, M.J.; Smilde, A.K.

    2008-01-01

    Metabolomics and other omics tools are generally characterized by large data sets with many variables obtained under different environmental conditions. Clustering methods and more specifically two-mode clustering methods are excellent tools for analyzing this type of data. Two-mode clustering

  11. Metabolomic Modularity Analysis (MMA) to Quantify Human Liver Perfusion Dynamics.

    Science.gov (United States)

    Sridharan, Gautham Vivek; Bruinsma, Bote; Bale, Shyam Sundhar; Swaminathan, Anandh; Saeidi, Nima; Yarmush, Martin L; Uygun, Korkut

    2017-11-13

    Large-scale -omics data are now ubiquitously utilized to capture and interpret global responses to perturbations in biological systems, such as the impact of disease states on cells, tissues, and whole organs. Metabolomics data, in particular, are difficult to interpret for providing physiological insight because predefined biochemical pathways used for analysis are inherently biased and fail to capture more complex network interactions that span multiple canonical pathways. In this study, we introduce a nov-el approach coined Metabolomic Modularity Analysis (MMA) as a graph-based algorithm to systematically identify metabolic modules of reactions enriched with metabolites flagged to be statistically significant. A defining feature of the algorithm is its ability to determine modularity that highlights interactions between reactions mediated by the production and consumption of cofactors and other hub metabolites. As a case study, we evaluated the metabolic dynamics of discarded human livers using time-course metabolomics data and MMA to identify modules that explain the observed physiological changes leading to liver recovery during subnormothermic machine perfusion (SNMP). MMA was performed on a large scale liver-specific human metabolic network that was weighted based on metabolomics data and identified cofactor-mediated modules that would not have been discovered by traditional metabolic pathway analyses.

  12. Metabolomic changes of Brassica rapa under biotic stress

    NARCIS (Netherlands)

    Abdel-Farid Ali, Ibrahim Bayoumi

    2009-01-01

    It has been shown by this thesis that plant metabolomics is a promising tool for studying the interaction between B. rapa and pathogenic fungi. It gives a picture of the plant metabolites during the interaction. Brassica rapa has many defense related compounds such as glucosinolates, IAA,

  13. Metabolomics: Insulin Resistance and Type 2 Diabetes Mellitus

    Science.gov (United States)

    Type 2 diabetes mellitus (T2DM) develops over many years, providing an opportunity to consider early prognostic tools that guide interventions to thwart disease. Advancements in analytical chemistry enable quantitation of hundreds of metabolites in biofluids and tissues (metabolomics), providing in...

  14. Alterations of red blood cell metabolome in overhydrated hereditary stomatocytosis.

    NARCIS (Netherlands)

    Darghouth, D.; Koehl, B.; Heilier, J.F.; Madalinski, G.; Bovee, P.H.; Bosman, G.J.C.G.M.; Delaunay, J.; Junot, C.; Romeo, P.H.

    2011-01-01

    Overhydrated hereditary stomatocytosis, clinically characterized by hemolytic anemia, is a rare disorder of the erythrocyte membrane permeability to monovalent cations, associated with mutations in the Rh-associated glycoprotein gene. We assessed the red blood cell metabolome of 4 patients with this

  15. Metabolomic characteristics of Catharanthus roseus plants in time and space

    NARCIS (Netherlands)

    Qifang, Pan; Qifang, Pan

    2014-01-01

    The thesis aims at combining metabolomics with other methods to investigate the regulation of the TIA biosynthesis and how this is connected with other pathways and the plant’s physiology and development. It reviews the biosynthesis studies of Catharanthus roseus. An HPLC method is described for

  16. The effects of gliadin on urine metabolome in mice

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Zhang, Li; Frandsen, Henrik Lauritz

    in the gliadin mice. Also, Maillard reaction products and β-oxidized tocopherols were observed in higher levels in the urine of gliadin mice, suggesting increased oxidative stress in the gliadin mice. Indisputably, gliadin affected the urine metabolome. However, the mechanisms behind the observed metabolite...

  17. Moving from theory to practice: experience of implementing a learning supporting model designed to increase patient involvement and autonomy in care.

    Science.gov (United States)

    Svanström, Rune; Andersson, Susanne; Rosén, Helena; Berglund, Mia

    2016-07-23

    In implementing new programs of care, such as person-centered care, there is a risk that the focus will be at an organizational level, instead of a level that describes what happens in the personal development among staff. The aim of this study was to describe experiences of the implementation process of a learning supporting model designed to increase patient involvement and autonomy in care. The project, which lasted 2 years, involved training sessions, supervision and reflective meetings. Over the period, the staff who participated focused on developing their dialogues with patients to make the patients aware of their own capabilities and to encourage them to be fully involved in the treatment. A reflective lifeworld approach was used. Data were collected through interviews, notes and written stories, and analyzed using hermeneutic analysis with a focus on meanings. At the beginning of the project, the participants perceived the model as abstract and difficult to understand but supervision and reflection sessions enabled understanding and changed the participants' approach to caring. The participants described the model as an approach used in challenging patients to become involved in their care and to take charge of their lives when living with a chronic life-threatening disease. The participants' experience of implementing the model has not been easy but has led to increased self-confidence and feelings of improved competence in dialogue with patients. Using the PARISH model when critically examining the results shows that in the implementation process there were some difficulties, e.g. the context was supportive and facilitating but there was no appointed facilitator. By making participation in improvement work voluntary, the impact of such work becomes less efficient, less cost-effective and probably less sustainable. Furthermore, implementation needs encouragement since changing approaches takes time and requires patience. Group supervision sessions seem

  18. Metabolomics-driven nutraceutical evaluation of diverse green tea cultivars.

    Directory of Open Access Journals (Sweden)

    Yoshinori Fujimura

    Full Text Available BACKGROUND: Green tea has various health promotion effects. Although there are numerous tea cultivars, little is known about the differences in their nutraceutical properties. Metabolic profiling techniques can provide information on the relationship between the metabolome and factors such as phenotype or quality. Here, we performed metabolomic analyses to explore the relationship between the metabolome and health-promoting attributes (bioactivity of diverse Japanese green tea cultivars. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the ability of leaf extracts from 43 Japanese green tea cultivars to inhibit thrombin-induced phosphorylation of myosin regulatory light chain (MRLC in human umbilical vein endothelial cells (HUVECs. This thrombin-induced phosphorylation is a potential hallmark of vascular endothelial dysfunction. Among the tested cultivars, Cha Chuukanbohon Nou-6 (Nou-6 and Sunrouge (SR strongly inhibited MRLC phosphorylation. To evaluate the bioactivity of green tea cultivars using a metabolomics approach, the metabolite profiles of all tea extracts were determined by high-performance liquid chromatography-mass spectrometry (LC-MS. Multivariate statistical analyses, principal component analysis (PCA and orthogonal partial least-squares-discriminant analysis (OPLS-DA, revealed differences among green tea cultivars with respect to their ability to inhibit MRLC phosphorylation. In the SR cultivar, polyphenols were associated with its unique metabolic profile and its bioactivity. In addition, using partial least-squares (PLS regression analysis, we succeeded in constructing a reliable bioactivity-prediction model to predict the inhibitory effect of tea cultivars based on their metabolome. This model was based on certain identified metabolites that were associated with bioactivity. When added to an extract from the non-bioactive cultivar Yabukita, several metabolites enriched in SR were able to transform the extract into a bioactive

  19. Metabolomics-Driven Nutraceutical Evaluation of Diverse Green Tea Cultivars

    Science.gov (United States)

    Ida, Megumi; Kosaka, Reia; Miura, Daisuke; Wariishi, Hiroyuki; Maeda-Yamamoto, Mari; Nesumi, Atsushi; Saito, Takeshi; Kanda, Tomomasa; Yamada, Koji; Tachibana, Hirofumi

    2011-01-01

    Background Green tea has various health promotion effects. Although there are numerous tea cultivars, little is known about the differences in their nutraceutical properties. Metabolic profiling techniques can provide information on the relationship between the metabolome and factors such as phenotype or quality. Here, we performed metabolomic analyses to explore the relationship between the metabolome and health-promoting attributes (bioactivity) of diverse Japanese green tea cultivars. Methodology/Principal Findings We investigated the ability of leaf extracts from 43 Japanese green tea cultivars to inhibit thrombin-induced phosphorylation of myosin regulatory light chain (MRLC) in human umbilical vein endothelial cells (HUVECs). This thrombin-induced phosphorylation is a potential hallmark of vascular endothelial dysfunction. Among the tested cultivars, Cha Chuukanbohon Nou-6 (Nou-6) and Sunrouge (SR) strongly inhibited MRLC phosphorylation. To evaluate the bioactivity of green tea cultivars using a metabolomics approach, the metabolite profiles of all tea extracts were determined by high-performance liquid chromatography-mass spectrometry (LC-MS). Multivariate statistical analyses, principal component analysis (PCA) and orthogonal partial least-squares-discriminant analysis (OPLS-DA), revealed differences among green tea cultivars with respect to their ability to inhibit MRLC phosphorylation. In the SR cultivar, polyphenols were associated with its unique metabolic profile and its bioactivity. In addition, using partial least-squares (PLS) regression analysis, we succeeded in constructing a reliable bioactivity-prediction model to predict the inhibitory effect of tea cultivars based on their metabolome. This model was based on certain identified metabolites that were associated with bioactivity. When added to an extract from the non-bioactive cultivar Yabukita, several metabolites enriched in SR were able to transform the extract into a bioactive extract

  20. How parents and practitioners experience research without prior consent (deferred consent) for emergency research involving children with life threatening conditions: a mixed method study

    Science.gov (United States)

    Woolfall, Kerry; Frith, Lucy; Gamble, Carrol; Gilbert, Ruth; Mok, Quen; Young, Bridget

    2015-01-01

    Objective Alternatives to prospective informed consent to enable children with life-threatening conditions to be entered into trials of emergency treatments are needed. Across Europe, a process called deferred consent has been developed as an alternative. Little is known about the views and experiences of those with first-hand experience of this controversial consent process. To inform how consent is sought for future paediatric critical care trials, we explored the views and experiences of parents and practitioners involved in the CATheter infections in CHildren (CATCH) trial, which allowed for deferred consent in certain circumstances. Design Mixed method survey, interview and focus group study. Participants 275 parents completed a questionnaire; 20 families participated in an interview (18 mothers, 5 fathers). 17 CATCH practitioners participated in one of four focus groups (10 nurses, 3 doctors and 4 clinical trial unit staff). Setting 12 UK children's hospitals. Results Some parents were momentarily shocked or angered to discover that their child had or could have been entered into CATCH without their prior consent. Although these feelings resolved after the reasons why consent needed to be deferred were explained and that the CATCH interventions were already used in clinical care. Prior to seeking deferred consent for the first few times, CATCH practitioners were apprehensive, although their feelings abated with experience of talking to parents about CATCH. Parents reported that their decisions about their child's participation in the trial had been voluntary. However, mistiming the deferred consent discussion had caused distress for some. Practitioners and parents supported the use of deferred consent in CATCH and in future trials of interventions already used in clinical care. Conclusions Our study provides evidence to support the use of deferred consent in paediatric emergency medicine; it also indicates the crucial importance of practitioner communication

  1. Can biophysics tell us something about the weak equivalence principle vis a vis the thought experiment of Einstein involving human subjects?

    Science.gov (United States)

    Thaheld, Fred H

    2009-08-01

    Over a period of several decades it has been noticed that most astronauts, either orbiting the earth or on trips to the moon, have observed phosphenes or light flashes (LF) including streaks, spots and clouds of light when their eyes are closed or they are in a darkened cabin. Scientists suspect that two separate components of cosmic rays cause these flashes due to direct interaction with the retina. This phenomenon is not noticed on the ground because of cosmic ray interaction with the atmosphere. The argument is advanced that this effect may provide us with a new method of exploring the weak equivalence principle from the standpoint of Einstein's original thought experiment involving human subjects. This can be done, utilizing the retina only, as an animate quantum mechanical measuring device or, in conjunction with the Anomalous Long Term Effects on Astronauts (ALTEA) facility.

  2. NMR-based metabolomics reveals urinary metabolome modifications in female Sprague-Dawley rats by cranberry procyanidins.

    Science.gov (United States)

    Liu, Haiyan; Tayyari, Fariba; Edison, Arthur S; Su, Zhihua; Gu, Liwei

    2016-08-01

    A (1)H NMR global metabolomics approach was used to investigate the urinary metabolome changes in female rats gavaged with partially purified cranberry procyanidins (PPCP) or partially purified apple procyanidins (PPAP). After collecting 24-h baseline urine, 24 female Sprague-Dawley rats were randomly separated into two groups and gavaged with PPCP or PPAP twice using a dose of 250 mg extracts per kilogram body weight. The 24-h urine samples were collected after the gavage. Urine samples were analyzed using (1)H NMR. Multivariate analyses showed that the urinary metabolome in rats was modified after administering PPCP or PPAP compared to baseline urine metabolic profiles. 2D (1)H-(13)C HSQC NMR was conducted to assist identification of discriminant metabolites. An increase of hippurate, lactate and succinate and a decrease of citrate and α-ketoglutarate were observed in rat urine after administering PPCP. Urinary levels of d-glucose, d-maltose, 3-(3'-hydroxyphenyl)-3-hydroxypropanoic acid, p-hydroxyphenylacetic acid, formate and phenol increased but citrate, α-ketoglutarate and creatinine decreased in rats after administering PPAP. Furthermore, the NMR analysis showed that the metabolome in the urine of rats administered with PPCP differed from those gavaged with PPAP. Compared to PPAP, PPCP caused an increase of urinary excretion of hippurate but a decrease of 3-(3'-hydroxyphenyl)-3-hydroxypropanoic acid, p-hydroxyphenylacetic acid and phenol. These metabolome changes caused by cranberry procyanidins may help to explain its reported health benefits and identify biomarkers of cranberry procyanidin intake. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Analytical methods in untargeted metabolomics: state of the art in 2015

    Directory of Open Access Journals (Sweden)

    Arnald eAlonso

    2015-03-01

    Full Text Available Metabolomics comprises the methods and techniques that are used to measure the small molecule composition of biofluids and tissues, and is actually one of the most rapidly evolving research fields. The determination of the metabolomic profile –the metabolome- has multiple applications in many biological sciences, including the developing of new diagnostic tools in medicine. Recent technological advances in nuclear magnetic resonance (NMR and mass spectrometry (MS are significantly improving our capacity to obtain more data from each biological sample. Consequently, there is a need for fast and accurate statistical and bioinformatic tools that can deal with the complexity and volume of the data generated in metabolomic studies. In this review we provide an update of the most commonly used analytical methods in metabolomics, starting from raw data processing and ending with pathway analysis and biomarker identification. Finally, the integration of metabolomic profiles with molecular data from other high throughput biotechnologies is also reviewed.

  4. Metabolomic analysis of lung epithelial secretions in rats: an investigation of bronchoalveolar lavage fluid by GC-MS and FT-IR.

    Science.gov (United States)

    Qamar, Wajhul; Ahamad, Syed Rizwan; Ali, Raisuddin; Khan, Mohammad Rashid; Al-Ghadeer, Abdul Rahman

    2014-11-01

    Rat bronchoalveolar lavage fluid (BALF) metabolome can be used to obtain valuable, precise, and accurate information about underlying lung conditions in an experiment. The present study focuses on the evaluation of the lung epithelium metabolome in a rat model using techniques including bronchoalveolar lavage, gas chromatography-mass spectroscopy (GC-MS), and Fourier transform infrared spectroscopy (FT-IR). Untargeted metabolites in BALF were extracted in ethyl acetate and derivatized by standard methods for the analysis by GC-MS. FT-IR spectra of ethyl acetate extract of BALF were obtained and read for the characteristic fingerprint of rats under investigation. Analyses were done in individual animals to obtain consistent data. BALF cells were counted by flow cytometry to monitor any inflammatory condition in rats. FT-IR analysis finds two peaks which are characteristically different from the extract medium, which is ethyl acetate. FT-IR peaks correspond to that of amino acids and carbohydrates, including β-D-glucose, α-D-glucose, and β-D-galactose. GC-MS evaluation of the BALF finds several products of the metabolism or its participants. Main compounds in the BALF detected by GC-MS include succinate, fumarate, glycine, alanine, 2-methyl-3-oxovaleric acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, octanoic acid, trans-9-octadecanoic acid, octadecanoic acid, and Prostaglandin F1α. Several research reports reveal metabolomic parameters in murine model lung tissue or BALF, but they rarely reported a complete metabolomics model profile, particularly in rats. The present data of GC-MS and FT-IR suggest that the set up can be exploited to study metabolomic alterations in several lung conditions including acute lung toxicity, inflammation, asthma, bronchitis, fibrosis, and emphysema.

  5. Utilization of Metabolomics to Identify Serum Biomarkers for Hepatocellular Carcinoma in Patients with Liver Cirrhosis

    Science.gov (United States)

    Ressom, Habtom W.; Xiao, Jun Feng; Tuli, Leepika; Varghese, Rency S.; Zhou, Bin; Tsai, Tsung-Heng; Nezami Ranjbar, Mohammad R.; Zhao, Yi; Wang, Jinlian; Di Poto, Cristina; Cheema, Amrita K.; Tadesse, Mahlet G.; Goldman, Radoslav; Shetty, Kirti

    2012-01-01

    Characterizing the metabolic changes pertaining to hepatocellular carcinoma (HCC) in patients with liver cirrhosis is believed to contribute towards early detection, treatment, and understanding of the molecular mechanisms of HCC. In this study, we compare metabolite levels in sera of 78 HCC cases with 184 cirrhotic controls by using ultra performance liquid chromatography coupled with a hybrid quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS). Following data preprocessing, the most relevant ions in distinguishing HCC cases from patients with cirrhosis are selected by parametric and non-parametric statistical methods. Putative metabolite identifications for these ions are obtained through mass-based database search. Verification of the identities of selected metabolites is conducted by comparing their MS/MS fragmentation patterns and retention time with those from authentic compounds. Quantitation of these metabolites is performed in a subset of the serum samples (10 HCC and 10 cirrhosis) using isotope dilution by selected reaction monitoring (SRM) on triple quadrupole linear ion trap (QqQLIT) and triple quadrupole (QqQ) mass spectrometers. The results of this analysis confirm that metabolites involved in sphingolipid metabolism and phospholipid catabolism such as sphingosine-1-phosphate (S-1-P) and lysophosphatidylcholine (lysoPC 17:0) are up-regulated in sera of HCC vs. those with liver cirrhosis. Down-regulated metabolites include those involved in bile acid biosynthesis (specifically cholesterol metabolism) such as glycochenodeoxycholic acid 3-sulfate (3-sulfo-GCDCA), glycocholic acid (GCA), glycodeoxycholic acid (GDCA), taurocholic acid (TCA), and taurochenodeoxycholate (TCDCA). These results provide useful insights into HCC biomarker discovery utilizing metabolomics as an efficient and cost-effective platform. Our work shows that metabolomic profiling is a promising tool to identify candidate metabolic biomarkers for early detection of HCC cases in

  6. Global metabolomic responses of Nitrosomonas europaea 19718 to cold stress and altered ammonia feeding patterns.

    Science.gov (United States)

    Lu, Huijie; Ulanov, Alexander V; Nobu, Masaru; Liu, Wen-Tso

    2016-02-01

    The model ammonia-oxidizing bacterium Nitrosomonas europaea represents one of the environmentally and biotechnologically significant microorganisms. Genome-based studies over the last decade have led to many intriguing discoveries about its cellular biochemistry and physiology. However, knowledge regarding the regulation of overall metabolic routes in response to various environmental stresses is limited due to a lack of comprehensive, time-resolved metabolomic analyses. In this study, gas chromatography-mass spectrometry (GC-MS)-based metabolic profiling was performed to characterize the temporal variations of N. europaea 19718 intercellular metabolites in response to varied temperature (23 and 10 °C) and ammonia feeding patterns (shock loading and continuous feeding of 20 mg N/L). Approximately 87 metabolites were successfully identified and mapped to the existing pathways of N. europaea 19718, allowing interpretation of the influence of temperature and feeding pattern on metabolite levels. In general, varied temperature had a more profound influence on the overall metabolism than varied feeding patterns. Total extracellular metabolite concentrations (relative to internal standards and normalized to biomass weight) were lower under cold stress and shock loading conditions compared with the control (continuous feeding at 23 °C). Cold stress caused the widespread downregulation of metabolites involved in central carbon metabolism, amino acid, and lipid synthesis (e.g., malonic acid, succinic acid, putrescine, and phosphonolpyruvate). Metabolites that showed differences under varied feeding patterns were mainly involved in nucleotide acid, amino acid, and lipid metabolism (e.g., adenine, uracil, and spermidine). This study highlighted the roles of central carbon and nitrogen metabolism in countering cold stress and altered ammonia availability. In addition, transcriptomic, proteomic, and metabolomic data from three studies on N. europaea were compared to achieve a

  7. Global metabolomic responses of Nitrosomonas europaea 19718 to cold stress and altered ammonia feeding patterns

    KAUST Repository

    Lu, Huijie

    2015-11-05

    © 2015 Springer-Verlag Berlin Heidelberg The model ammonia-oxidizing bacterium Nitrosomonas europaea represents one of the environmentally and biotechnologically significant microorganisms. Genome-based studies over the last decade have led to many intriguing discoveries about its cellular biochemistry and physiology. However, knowledge regarding the regulation of overall metabolic routes in response to various environmental stresses is limited due to a lack of comprehensive, time-resolved metabolomic analyses. In this study, gas chromatography–mass spectrometry (GC-MS)-based metabolic profiling was performed to characterize the temporal variations of N. europaea 19718 intercellular metabolites in response to varied temperature (23 and 10 °C) and ammonia feeding patterns (shock loading and continuous feeding of 20 mg N/L). Approximately 87 metabolites were successfully identified and mapped to the existing pathways of N. europaea 19718, allowing interpretation of the influence of temperature and feeding pattern on metabolite levels. In general, varied temperature had a more profound influence on the overall metabolism than varied feeding patterns. Total extracellular metabolite concentrations (relative to internal standards and normalized to biomass weight) were lower under cold stress and shock loading conditions compared with the control (continuous feeding at 23 °C). Cold stress caused the widespread downregulation of metabolites involved in central carbon metabolism, amino acid, and lipid synthesis (e.g., malonic acid, succinic acid, putrescine, and phosphonolpyruvate). Metabolites that showed differences under varied feeding patterns were mainly involved in nucleotide acid, amino acid, and lipid metabolism (e.g., adenine, uracil, and spermidine). This study highlighted the roles of central carbon and nitrogen metabolism in countering cold stress and altered ammonia availability. In addition, transcriptomic, proteomic, and metabolomic data from three

  8. Metabolomics and its integration with systems biology: PSI 2014 conference panel discussion report.

    Science.gov (United States)

    More, Tushar; RoyChoudhury, Sourav; Gollapalli, Kishore; Patel, Sandip K; Gowda, Harsha; Chaudhury, Koel; Rapole, Srikanth

    2015-09-08

    Metabolomics, being a relatively new field, is facing multiple challenges related to data acquisition and interpretation, reproducibility across analytical platforms, integration with other omics approaches and translation into theragnostic biomarkers. There is an immediate need to overcome these challenges in order to make metabolomics more useful and reliable in terms of improving our current understanding of disease biology and help in developing predictive biomarkers. Researchers interested in metabolomics gathered for a panel discussion on 'Metabolomics and its integration with systems biology' during the 6th Annual Meeting of Proteomics Society-India and International Conference on "Proteomics from Discovery to Function" held at the Indian Institute of Technology, Bombay from December 7-9, 2014. The panel discussed various challenges related to metabolomics and also proposed several effective solutions for optimum implementation of metabolomics in clinical practice. The key areas of panel discussion were improvement in metabolite databases with comprehensive spectral libraries, need for extensive bioinformatics tools for integrative approaches and serious considerations for clinical validation of the biomarkers for the successful implementation of metabolomics in clinics. Information drafted in this report is significant for researchers working in metabolomics field to overcome the challenges and successful implementation of metabolomics in clinical practice. This article is part of a special issue titled: Proteomics in India. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The Recent Developments in Sample Preparation for Mass Spectrometry-Based Metabolomics.

    Science.gov (United States)

    Gong, Zhi-Gang; Hu, Jing; Wu, Xi; Xu, Yong-Jiang

    2017-07-04

    Metabolomics is a critical member in systems biology. Although great progress has been achieved in metabolomics, there are still some problems in sample preparation, data processing and data interpretation. In this review, we intend to explore the roles, challenges and trends in sample preparation for mass spectrometry- (MS-) based metabolomics. The newly emerged sample preparation methods were also critically examined, including laser microdissection, in vivo sampling, dried blood spot, microwave, ultrasound and enzyme-assisted extraction, as well as microextraction techniques. Finally, we provide some conclusions and perspectives for sample preparation in MS-based metabolomics.

  10. Metabolomic imaging of prostate cancer with magnetic resonance spectroscopy and mass spectrometry

    International Nuclear Information System (INIS)

    Spur, Eva-Margarete; Decelle, Emily A.; Cheng, Leo L.

    2013-01-01

    Metabolomic imaging of prostate cancer (PCa) aims to improve in vivo imaging capability so that PCa tumors can be localized noninvasively to guide biopsy and evaluated for aggressiveness prior to prostatectomy, as well as to assess and monitor PCa growth in patients with asymptomatic PCa newly diagnosed by biopsy. Metabolomics studies global variations of metabolites with which malignancy conditions can be evaluated by profiling the entire measurable metabolome, instead of focusing only on certain metabolites or isolated metabolic pathways. At present, PCa metabolomics is mainly studied by magnetic resonance spectroscopy (MRS) and mass spectrometry (MS). With MRS imaging, the anatomic image, obtained from magnetic resonance imaging, is mapped with values of disease condition-specific metabolomic profiles calculated from MRS of each location. For example, imaging of removed whole prostates has demonstrated the ability of metabolomic profiles to differentiate cancerous foci from histologically benign regions. Additionally, MS metabolomic imaging of prostate biopsies has uncovered metabolomic expression patterns that could discriminate between PCa and benign tissue. Metabolomic imaging offers the potential to identify cancer lesions to guide prostate biopsy and evaluate PCa aggressiveness noninvasively in vivo, or ex vivo to increase the power of pathology analysis. Potentially, this imaging ability could be applied not only to PCa, but also to different tissues and organs to evaluate other human malignancies and metabolic diseases. (orig.)

  11. Critical assessment of alignment procedures for LC-MS proteomics and metabolomics measurements

    Directory of Open Access Journals (Sweden)

    Neumann Steffen

    2008-09-01

    Full Text Available Abstract Background Liquid chromatography coupled to mass spectrometry (LC-MS has become a prominent tool for the analysis of complex proteomics and metabolomics samples. In many applications multiple LC-MS measurements need to be compared, e. g. to improve reliability or to combine results from different samples in a statistical comparative analysis. As in all physical experiments, LC-MS data are affected by uncertainties, and variability of retention time is encountered in all data sets. It is therefore necessary to estimate and correct the underlying distortions of the retention time axis to search for corresponding compounds in different samples. To this end, a variety of so-called LC-MS map alignment algorithms have been developed during the last four years. Most of these approaches are well documented, but they are usually evaluated on very specific samples only. So far, no publication has been assessing different alignment algorithms using a standard LC-MS sample along with commonly used quality criteria. Results We propose two LC-MS proteomics as well as two LC-MS metabolomics data sets that represent typical alignment scenarios. Furthermore, we introduce a new quality measure for the evaluation of LC-MS alignment algorithms. Using the four data sets to compare six freely available alignment algorithms proposed for the alignment of metabolomics and proteomics LC-MS measurements, we found significant differences with respect to alignment quality, running time, and usability in general. Conclusion The multitude of available alignment methods necessitates the generation of standard data sets and quality measures that allow users as well as developers to benchmark and compare their map alignment tools on a fair basis. Our study represents a first step in this direction. Currently, the installation and evaluation of the "correct" parameter settings can be quite a time-consuming task, and the success of a particular method is still highly

  12. The Lipopolysaccharide-Induced Metabolome Signature in Arabidopsis thaliana Reveals Dynamic Reprogramming of Phytoalexin and Phytoanticipin Pathways.

    Directory of Open Access Journals (Sweden)

    Tarryn Finnegan

    Full Text Available Lipopolysaccharides (LPSs, as MAMP molecules, trigger the activation of signal transduction pathways involved in defence. Currently, plant metabolomics is providing new dimensions into understanding the intracellular adaptive responses to external stimuli. The effect of LPS on the metabolomes of Arabidopsis thaliana cells and leaf tissue was investigated over a 24 h period. Cellular metabolites and those secreted into the medium were extracted with methanol and liquid chromatography coupled to mass spectrometry was used for quantitative and qualitative analyses. Multivariate statistical data analyses were used to extract interpretable information from the generated multidimensional LC-MS data. The results show that LPS perception triggered differential changes in the metabolomes of cells and leaves, leading to variation in the biosynthesis of specialised secondary metabolites. Time-dependent changes in metabolite profiles were observed and biomarkers associated with the LPS-induced response were tentatively identified. These include the phytohormones salicylic acid and jasmonic acid, and also the associated methyl esters and sugar conjugates. The induced defensive state resulted in increases in indole-and other glucosinolates, indole derivatives, camalexin as well as cinnamic acid derivatives and other phenylpropanoids. These annotated metabolites indicate dynamic reprogramming of metabolic pathways that are functionally related towards creating an enhanced defensive capacity. The results reveal new insights into the mode of action of LPS as an activator of plant innate immunity, broadens knowledge about the defence metabolite pathways involved in Arabidopsis responses to LPS, and identifies specialised metabolites of functional importance that can be employed to enhance immunity against pathogen infection.

  13. Qualitative investigation of the perceptions and experiences of nursing and allied health professionals involved in the implementation of an enriched environment in an Australian acute stroke unit.

    Science.gov (United States)

    Rosbergen, Ingrid C M; Brauer, Sandra G; Fitzhenry, Sarah; Grimley, Rohan S; Hayward, Kathryn S

    2017-12-21

    An enriched environment embedded in an acute stroke unit can increase activity levels of patients who had stroke, with changes sustained 6 months post-implementation. The objective of this study was to understand perceptions and experiences of nursing and allied health professionals involved in implementing an enriched environment in an acute stroke unit. A descriptive qualitative approach. An acute stroke unit in a regional Australian hospital. We purposively recruited three allied health and seven nursing professionals involved in the delivery of the enriched environment. Face-to-face, semistructured interviews were conducted 8 weeks post-completion of the enriched environment study. One independent researcher completed all interviews. Voice-recorded interviews were transcribed verbatim and analysed by three researchers using a thematic approach to identify main themes. Three themes were identified. First, staff perceived that 'the road to recovery had started' for patients. An enriched environment was described to shift the focus to recovery in the acute setting, which was experienced through increased patient activity, greater psychological well-being and empowering patients and families. Second, 'it takes a team' to successfully create an enriched environment. Integral to building the team were positive interdisciplinary team dynamics and education. The impact of the enriched environment on workload was diversely experienced by staff. Third, 'keeping it going' was perceived to be challenging. Staff reflected that changing work routines was difficult. Contextual factors such as a supportive physical environment and variety in individual enrichment opportunities were indicated to enhance implementation. Key to sustaining change was consistency in staff and use of change management strategies. Investigating staff perceptions and experiences of an enrichment model in an acute stroke unit highlighted the need for effective teamwork. To facilitate staff in their

  14. Polyphenol metabolomics of twenty Italian red grape varieties

    Directory of Open Access Journals (Sweden)

    Bavaresco Luigi

    2016-01-01

    Full Text Available “Suspect screening analysis”method to study grape metabolomics, was performed. This method is a middle-way “targeted” and “untargeted”approach aiming at identifying the largest number of metabolites in grape samples. A new database of putative grape and wine metabolites (GrapeMetabolomics, which currently contains around 1,100 compounds, was constructed by CREA at Conegliano. By performing high-resolution mass spectrometry analysis of the grape extract in both positive and negative ionization mode, averaging 320-450 putative compounds are identified. Most of them are grape polyphenols, such as anthocyanins, flavonols and stilbene derivatives. By performing PCA and Cluster Analysis the composition in anthocyanins and flavonols of 20 Italian red grape varieties, was studied.

  15. Metabolomics of Δ9-tetrahydrocannabinol: implications in toxicity.

    Science.gov (United States)

    Dinis-Oliveira, Ricardo Jorge

    2016-01-01

    Cannabis sativa is the most commonly used recreational drug, Δ(9)-tetrahydrocannabinol (Δ(9)-THC) being the main addictive compound. Biotransformation of cannabinoids is an important field of xenobiochemistry and toxicology and the study of the metabolism can lead to the discovery of new compounds, unknown metabolites with unique structures and new therapeutic effects. The pharmacokinetics of Δ(9)-THC is dependent on multiple factors such as physical/chemical form, route of administration, genetics, and concurrent consumption of alcohol. This review aims to discuss metabolomics of Δ(9)-THC, namely by presenting all known metabolites of Δ(9)-THC described both in vitro and in vivo, and their roles in the Δ(9)-THC-mediated toxic effects. Since medicinal use is increasing, metabolomics of Δ(9)-THC will also be discussed in order to uncover potential active metabolites that can be made available for this purpose.

  16. Metabolome Consistency: Additional Parazoanthines from the Mediterranean Zoanthid Parazoanthus Axinellae

    Directory of Open Access Journals (Sweden)

    Coralie Audoin

    2014-05-01

    Full Text Available Ultra-high pressure liquid chromatography coupled to high resolution mass spectrometry (UHPLC-MS/MS analysis of the organic extract obtained from the Mediterranean zoanthid Parazoanthus axinellae yielded to the identification of five new parazoanthines F-J. The structures were fully determined by comparison of fragmentation patterns with those of previously isolated parazoathines and MS/MS spectra simulation of in silico predicted compounds according to the metabolome consistency. The absolute configuration of the new compounds has been assigned using on-line electronic circular dichroism (UHPLC-ECD. We thus demonstrated the potential of highly sensitive hyphenated techniques to characterize the structures of a whole family of natural products within the metabolome of a marine species. Minor compounds can be characterized using these techniques thus avoiding long isolation processes that may alter the structure of the natural products. These results are also of interest to identify putative bioactive compounds present at low concentration in a complex mixture.

  17. Metabolome consistency: additional parazoanthines from the mediterranean zoanthid parazoanthus axinellae.

    Science.gov (United States)

    Audoin, Coralie; Cocandeau, Vincent; Thomas, Olivier P; Bruschini, Adrien; Holderith, Serge; Genta-Jouve, Grégory

    2014-05-30

    Ultra-high pressure liquid chromatography coupled to high resolution mass spectrometry (UHPLC-MS/MS) analysis of the organic extract obtained from the Mediterranean zoanthid Parazoanthus axinellae yielded to the identification of five new parazoanthines F-J. The structures were fully determined by comparison of fragmentation patterns with those of previously isolated parazoathines and MS/MS spectra simulation of in silico predicted compounds according to the metabolome consistency. The absolute configuration of the new compounds has been assigned using on-line electronic circular dichroism (UHPLC-ECD). We thus demonstrated the potential of highly sensitive hyphenated techniques to characterize the structures of a whole family of natural products within the metabolome of a marine species. Minor compounds can be characterized using these techniques thus avoiding long isolation processes that may alter the structure of the natural products. These results are also of interest to identify putative bioactive compounds present at low concentration in a complex mixture.

  18. Sparse Mbplsr for Metabolomics Data and Biomarker Discovery

    DEFF Research Database (Denmark)

    Karaman, İbrahim

    2014-01-01

    Metabolomics is part of systems biology and a rapidly evolving field. It is a tool to analyze multiple metabolic changes in biofluids and tissues and aims at determining biomarkers in the metabolism. LC-MS (liquid chromatography – mass spectrometry), GC-MS (gas chromatography – mass spectrometry...... the link between high throughput metabolomics data generated on different analytical platforms, discover important metabolites deriving from the digestion processes in the gut, and automate metabolic pathway discovery from mass spectrometry. PLS (partial least squares) based chemometric methods were......, potential biomarkers from LC-MS and NMR data could be detected and the relationships among the measurement variables of both analytical methods could be studied. Detection of potential biomarkers is followed up by an identification process through online metabolite and pathway databases. This process...

  19. Metabolomics Insights Into Pathophysiological Mechanisms of Interstitial Cystitis

    Science.gov (United States)

    Fiehn, Oliver

    2014-01-01

    Interstitial cystitis (IC), also known as painful bladder syndrome or bladder pain syndrome, is a chronic lower urinary tract syndrome characterized by pelvic pain, urinary urgency, and increased urinary frequency in the absence of bacterial infection or identifiable clinicopathology. IC can lead to long-term adverse effects on the patient's quality of life. Therefore, early diagnosis and better understanding of the mechanisms underlying IC are needed. Metabolomic studies of biofluids have become a powerful method for assessing disease mechanisms and biomarker discovery, which potentially address these important clinical needs. However, limited intensive metabolic profiles have been elucidated in IC. The article is a short review on metabolomic analyses that provide a unique fingerprint of IC with a focus on its use in determining a potential diagnostic biomarker associated with symptoms, a response predictor of therapy, and a prognostic marker. PMID:25279237

  20. The MetaboLights repository: curation challenges in metabolomics

    Science.gov (United States)

    Salek, Reza M.; Haug, Kenneth; Conesa, Pablo; Hastings, Janna; Williams, Mark; Mahendraker, Tejasvi; Maguire, Eamonn; González-Beltrán, Alejandra N.; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Steinbeck, Christoph

    2013-01-01

    MetaboLights is the first general-purpose open-access curated repository for metabolomic studies, their raw experimental data and associated metadata, maintained by one of the major open-access data providers in molecular biology. Increases in the number of depositions, number of samples per study and the file size of data submitted to MetaboLights present a challenge for the objective of ensuring high-quality and standardized data in the context of diverse metabolomic workflows and data representations. Here, we describe the MetaboLights curation pipeline, its challenges and its practical application in quality control of complex data depositions. Database URL: http://www.ebi.ac.uk/metabolights PMID:23630246

  1. Human gut microbes impact host serum metabolome and insulin sensitivity.

    Science.gov (United States)

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Nielsen, Henrik Bjørn; Hyotylainen, Tuulia; Nielsen, Trine; Jensen, Benjamin A H; Forslund, Kristoffer; Hildebrand, Falk; Prifti, Edi; Falony, Gwen; Le Chatelier, Emmanuelle; Levenez, Florence; Doré, Joel; Mattila, Ismo; Plichta, Damian R; Pöhö, Päivi; Hellgren, Lars I; Arumugam, Manimozhiyan; Sunagawa, Shinichi; Vieira-Silva, Sara; Jørgensen, Torben; Holm, Jacob Bak; Trošt, Kajetan; Kristiansen, Karsten; Brix, Susanne; Raes, Jeroen; Wang, Jun; Hansen, Torben; Bork, Peer; Brunak, Søren; Oresic, Matej; Ehrlich, S Dusko; Pedersen, Oluf

    2016-07-21

    Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders.

  2. The role of metabolomics in tuberculosis treatment research.

    Science.gov (United States)

    Luies, Laneke; du Preez, Ilse; Loots, Du Toit

    2017-11-01

    Despite the fact that tuberculosis (TB) is a curable disease, it still results in approximately 1.8 million deaths annually. Various inadequacies in the current TB treatment strategies are major contributors to this high disease prevalence, including the long duration of therapy, the severe side effects associated with TB drugs, treatment failure due to drug resistance, post-treatment disease relapse, and HIV co-infection. In this review, we describe how metabolomics has contributed toward better explaining/elucidating the mechanisms of drug action/metabolism, drug toxicity and microbial drug resistance, and how metabolite biomarkers may serve as prognostic indicators for predicting treatment outcome as well as for the development of new TB drugs. We also discuss possible future contributions that metabolomics can make toward more efficient, less toxic TB treatment strategies.

  3. A scoping review of the experiences, benefits, and challenges involved in volunteer work among youth and young adults with a disability.

    Science.gov (United States)

    Lindsay, Sally

    2016-08-01

    To develop a better understanding of the experiences of volunteer work among youth with disabilities. A scoping review was undertaken to assess the benefits and challenges of volunteering among youth with disabilities. Comprehensive searches using six international databases were conducted. Eligible articles included: (a) youth aged 30 or younger, with a disability; (b) empirical research on the benefits or challenges of volunteering; (c) published in a peer-reviewed journal between 1980 and 2014. Of the 1558 articles identified, 20 articles - involving 1409 participants, aged 12-30, across five countries - met the inclusion criteria. Studies linked volunteering to the development of human capital (i.e. practical experience, improved self-determination, self-confidence, coping), enhanced social capital (i.e. social and communication skills, social inclusion) and improved cultural capital (i.e. helping others, contributing to community). Many youth with disabilities also encountered challenges - including lack of accessible volunteer opportunities, difficulties arranging transportation, and negative attitudes from potential supervisors. Young people with disabilities are willing and able to volunteer, and they report benefits of volunteering; however, they face many challenges in finding suitable volunteer positions. More rigorous research is needed to understand the health and social benefits of volunteering and how it can help youth develop career pathways. Implications for Rehabilitation Clinicians, educators and parents should discuss the benefits of volunteering with youth with disabilities and assist them in finding placements that match their interests and abilities. Managers and clinicians should consider incorporating volunteering into vocational rehabilitation programming (i.e. addressing how to find placements and connecting youth to organisations). Clinicians should encourage youth to take part in social and extracurricular activities to help build their

  4. Contribution of student involvement in production/service unit and experience of industry practices to entrepreneurial attitude and the impact entrepeneurship readiness of vocational high school students of great Malang

    Science.gov (United States)

    Mukminna, Halimahtus; Isnandar, Muladi

    2017-09-01

    Purpose of this research was to determine the contribution of student involvement in production/ service unit (X1), experience of industry practices (X2), and entrepreneurial attitude (Y) towards readiness entrepreneurship (Z) of vocational student regional Malang. The design of the study using a quantitative approach. The samples used as many as 130 respondents. Instruments used for collecting data in the form of questionnaires. Data analysis included descriptive and test of hypothesis. The result showed: that the description of data on the level of student involvement in production/ service unit, experience of industry practices, entrepreneurial attitude and entrepreneurship readiness in the high category. The contribution student involvement in production/ service unit of entrepreneurial attitude of 10.6%. The contribution experience of industry practices of entrepreneurial attitude of 17.4%. The contribution student involvement in production/ service unit and experience of industry practices simultaneously to entrepreneurial attitude of 44.1%. The contribution student involvement in production/ service unit of readiness entrepreneurship of 4%. The contribution experience of industry practices of readiness entrepreneurship of 5%. The contribution entrepreneurial attitude of readiness entrepreneurship of 16%. Finally, the contribution student involvement in production/ service unit, experience of industry practices, and entrepreneurial attitude simultaneously to readiness entrepreneurship of 50.3%.

  5. An untargeted metabolomic assessment of cocoa beans during fermentation

    OpenAIRE

    Mayorga Gross, Ana Lucía; Quirós Guerrero, Luis Manuel; Fourny, G.; Vaillant Barka, Fabrice

    2016-01-01

    Fermentation is a critical step in the processing of high quality cocoa; however, the biochemistry behind is still not well understood at a molecular level. In this research, using a non-targeted approach, the main metabolomic changes that occur throughout the fermentation process were explored. Genetically undefined cocoa varieties from Trinidad and Tobago (n = 3), Costa Rica (n = 1) and one clone IMC-67 (n = 3) were subjected to spontaneous fermentation using farm-based and pilot plant cont...

  6. Metabolome Consistency: Additional Parazoanthines from the Mediterranean Zoanthid Parazoanthus Axinellae

    OpenAIRE

    Audoin, Coralie; Cocandeau, Vincent; Thomas, Olivier P.; Bruschini, Adrien; Holderith, Serge; Genta-Jouve, Grégory

    2014-01-01

    Ultra-high pressure liquid chromatography coupled to high resolution mass spectrometry (UHPLC-MS/MS) analysis of the organic extract obtained from the Mediterranean zoanthid Parazoanthus axinellae yielded to the identification of five new parazoanthines F-J. The structures were fully determined by comparison of fragmentation patterns with those of previously isolated parazoathines and MS/MS spectra simulation of in silico predicted compounds according to the metabolome consistency. The absolu...

  7. Psychosocial Stress and Ovarian Cancer Risk: Metabolomics and Perceived Stress

    Science.gov (United States)

    2017-10-01

    continuing work on the role of stress in ovarian cancer development indicates that chronic stress may increase risk of developing ovarian cancer. 15...advice. Dr. Poole was also a peer mentor to three post-doctoral fellows working in the CDNM. Results from the ongoing research in the role of stress in...AWARD NUMBER: W81XWH-13-1-0493 TITLE: Psychosocial Stress and Ovarian Cancer Risk: Metabolomics and Perceived Stress PRINCIPAL INVESTIGATOR

  8. Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome

    Directory of Open Access Journals (Sweden)

    Cseke Leland J

    2011-05-01

    Full Text Available Abstract Background Mycorrhizae, symbiotic interactions between soil fungi and tree roots, are ubiquitous in terrestrial ecosystems. The fungi contribute phosphorous, nitrogen and mobilized nutrients from organic matter in the soil and in return the fungus receives photosynthetically-derived carbohydrates. This union of plant and fungal metabolisms is the mycorrhizal metabolome. Understanding this symbiotic relationship at a molecular level provides important contributions to the understanding of forest ecosystems and global carbon cycling. Results We generated next generation short-read transcriptomic sequencing data from fully-formed ectomycorrhizae between Laccaria bicolor and aspen (Populus tremuloides roots. The transcriptomic data was used to identify statistically significantly expressed gene models using a bootstrap-style approach, and these expressed genes were mapped to specific metabolic pathways. Integration of expressed genes that code for metabolic enzymes and the set of expressed membrane transporters generates a predictive model of the ectomycorrhizal metabolome. The generated model of mycorrhizal metabolome predicts that the specific compounds glycine, glutamate, and allantoin are synthesized by L. bicolor and that these compounds or their metabolites may be used for the benefit of aspen in exchange for the photosynthetically-derived sugars fructose and glucose. Conclusions The analysis illustrates an approach to generate testable biological hypotheses to investigate the complex molecular interactions that drive ectomycorrhizal symbiosis. These models are consistent with experimental environmental data and provide insight into the molecular exchange processes for organisms in this complex ecosystem. The method used here for predicting metabolomic models of mycorrhizal systems from deep RNA sequencing data can be generalized and is broadly applicable to transcriptomic data derived from complex systems.

  9. A metabolomics approach to thrips resistance in tomato

    OpenAIRE

    Romero González, Roman Rodolfo

    2011-01-01

    Western flower thrips is one of the most serious crop pests worldwide. Its control relies mainly on pesticides whose excessive use leads to resistance development and environmental contamination. As an alternative, in this thesis host-plant resistance in wild and domesticated tomatoes was studied using metabolomics. Different resistance mechanisms in which mechanical and chemical defenses work coordinately to fend thrips off were observed and contrasted. In all cases resistance was associated...

  10. Feature Selection Methods for Early Predictive Biomarker Discovery Using Untargeted Metabolomic Data.

    Science.gov (United States)

    Grissa, Dhouha; Pétéra, Mélanie; Brandolini, Marion; Napoli, Amedeo; Comte, Blandine; Pujos-Guillot, Estelle

    2016-01-01

    Untargeted metabolomics is a powerful phenotyping tool for better understanding biological mechanisms involved in human pathology development and identifying early predictive biomarkers. This approach, based on multiple analytical platforms, such as mass spectrometry (MS), chemometrics and bioinformatics, generates massive and complex data that need appropriate analyses to extract the biologically meaningful information. Despite various tools available, it is still a challenge to handle such large and noisy datasets with limited number of individuals without risking overfitting. Moreover, when the objective is focused on the identification of early predictive markers of clinical outcome, few years before occurrence, it becomes essential to use the appropriate algorithms and workflow to be able to discover subtle effects among this large amount of data. In this context, this work consists in studying a workflow describing the general feature selection process, using knowledge discovery and data mining methodologies to propose advanced solutions for predictive biomarker discovery. The strategy was focused on evaluating a combination of numeric-symbolic approaches for feature selection with the objective of obtaining the best combination of metabolites producing an effective and accurate predictive model. Relying first on numerical approaches, and especially on machine learning methods (SVM-RFE, RF, RF-RFE) and on univariate statistical analyses (ANOVA), a comparative study was performed on an original metabolomic dataset and reduced subsets. As resampling method, LOOCV was applied to minimize the risk of overfitting. The best k-features obtained with different scores of importance from the combination of these different approaches were compared and allowed determining the variable stabilities using Formal Concept Analysis. The results revealed the interest of RF-Gini combined with ANOVA for feature selection as these two complementary methods allowed selecting the 48

  11. Metabolomics study of the therapeutic mechanism of Schisandra Chinensis lignans in diet-induced hyperlipidemia mice.

    Science.gov (United States)

    Sun, Jing-Hui; Liu, Xu; Cong, Li-Xin; Li, He; Zhang, Cheng-Yi; Chen, Jian-Guang; Wang, Chun-Mei

    2017-08-01

    Schisandra, a globally distributed plant, has been widely applied for the treatment of diseases such as hyperlipidemia, fatty liver and obesity in China. In the present work, a rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (RRLC-Q-TOF-MS)-based metabolomics was conducted to investigate the intervention effect of Schisandra chinensis lignans (SCL) on hyperlipidemia mice induced by high-fat diet (HFD). Hyperlipidemia mice were orally administered with SCL (100 mg/kg) once a day for 4 weeks. Serum biochemistry assay of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c) was conducted to confirm the treatment of SCL on lipid regulation. Metabolomics analysis on serum samples was carried out, and principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were carried out for the pattern recognition and characteristic metabolites identification. The relative levels of critical regulatory factors of liver lipid metabolism, sterol regulatory element-binding proteins (SREBPs) and its related gene expressions were measured by quantitative real-time polymerase chain reaction (RT-PCR) for investigating the underlying mechanism. Oral administration of SCL significantly decreased the serum levels of TC, TG and LDL-c and increased the serum level of HDL-c in the hyperlipidemia mice, and no effect of SCL on blood lipid levels was observed in control mice. Serum samples were scattered in the PCA scores plots in response to the control, HFD and SCL group. Totally, thirteen biomarkers were identified and nine of them were recovered to the normal levels after SCL treatment. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, the anti-hyperlipidemia mechanisms of SCL may be involved in the following metabolic pathways: tricarboxylic acid (TCA) cycle, synthesis of ketone body and cholesterol

  12. NMR-based metabolomics of mammalian cell and tissue cultures

    International Nuclear Information System (INIS)

    Aranibar, Nelly; Borys, Michael; Mackin, Nancy A.; Ly, Van; Abu-Absi, Nicholas; Abu-Absi, Susan; Niemitz, Matthias; Schilling, Bernhard; Li, Zheng Jian; Brock, Barry; Russell, Reb J.; Tymiak, Adrienne; Reily, Michael D.

    2011-01-01

    NMR spectroscopy was used to evaluate growth media and the cellular metabolome in two systems of interest to biomedical research. The first of these was a Chinese hamster ovary cell line engineered to express a recombinant protein. Here, NMR spectroscopy and a quantum mechanical total line shape analysis were utilized to quantify 30 metabolites such as amino acids, Krebs cycle intermediates, activated sugars, cofactors, and others in both media and cell extracts. The impact of bioreactor scale and addition of anti-apoptotic agents to the media on the extracellular and intracellular metabolome indicated changes in metabolic pathways of energy utilization. These results shed light into culture parameters that can be manipulated to optimize growth and protein production. Second, metabolomic analysis was performed on the superfusion media in a common model used for drug metabolism and toxicology studies, in vitro liver slices. In this study, it is demonstrated that two of the 48 standard media components, choline and histidine are depleted at a faster rate than many other nutrients. Augmenting the starting media with extra choline and histidine improves the long-term liver slice viability as measured by higher tissues levels of lactate dehydrogenase (LDH), glutathione and ATP, as well as lower LDH levels in the media at time points out to 94 h after initiation of incubation. In both models, media components and cellular metabolites are measured over time and correlated with currently accepted endpoint measures.

  13. Computational Metabolomics Operations at BioCyc.org

    Directory of Open Access Journals (Sweden)

    Peter D. Karp

    2015-05-01

    Full Text Available BioCyc.org is a genome and metabolic pathway web portal covering 5500 organisms, including Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae and Escherichia coli. These organism-specific databases have undergone variable degrees of curation. The EcoCyc (Escherichia coli Encyclopedia database is the most highly curated; its contents have been derived from 27,000 publications. The MetaCyc (Metabolic Encyclopedia database within BioCyc is a “universal” metabolic database that describes pathways, reactions, enzymes and metabolites from all domains of life. Metabolic pathways provide an organizing framework for analyzing metabolomics data, and the BioCyc website provides computational operations for metabolomics data that include metabolite search and translation of metabolite identifiers across multiple metabolite databases. The site allows researchers to store and manipulate metabolite lists using a facility called SmartTables, which supports metabolite enrichment analysis. That analysis operation identifies metabolite sets that are statistically over-represented for the substrates of specific metabolic pathways. BioCyc also enables visualization of metabolomics data on individual pathway diagrams and on the organism-specific metabolic map diagrams that are available for every BioCyc organism. Most of these operations are available both interactively and as programmatic web services.

  14. A Combined Metabolomic and Proteomic Analysis of Gestational Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Joanna Hajduk

    2015-12-01

    Full Text Available The aim of this pilot study was to apply a novel combined metabolomic and proteomic approach in analysis of gestational diabetes mellitus. The investigation was performed with plasma samples derived from pregnant women with diagnosed gestational diabetes mellitus (n = 18 and a matched control group (n = 13. The mass spectrometry-based analyses allowed to determine 42 free amino acids and low molecular-weight peptide profiles. Different expressions of several peptides and altered amino acid profiles were observed in the analyzed groups. The combination of proteomic and metabolomic data allowed obtaining the model with a high discriminatory power, where amino acids ethanolamine, l-citrulline, l-asparagine, and peptide ions with m/z 1488.59; 4111.89 and 2913.15 had the highest contribution to the model. The sensitivity (94.44% and specificity (84.62%, as well as the total group membership classification value (90.32% calculated from the post hoc classification matrix of a joint model were the highest when compared with a single analysis of either amino acid levels or peptide ion intensities. The obtained results indicated a high potential of integration of proteomic and metabolomics analysis regardless the sample size. This promising approach together with clinical evaluation of the subjects can also be used in the study of other diseases.

  15. A metabolomics guided exploration of marine natural product chemical space.

    Science.gov (United States)

    Floros, Dimitrios J; Jensen, Paul R; Dorrestein, Pieter C; Koyama, Nobuhiro

    2016-09-01

    Natural products from culture collections have enormous impact in advancing discovery programs for metabolites of biotechnological importance. These discovery efforts rely on the metabolomic characterization of strain collections. Many emerging approaches compare metabolomic profiles of such collections, but few enable the analysis and prioritization of thousands of samples from diverse organisms while delivering chemistry specific read outs. In this work we utilize untargeted LC-MS/MS based metabolomics together with molecular networking to. This approach annotated 76 molecular families (a spectral match rate of 28 %), including clinically and biotechnologically important molecules such as valinomycin, actinomycin D, and desferrioxamine E. Targeting a molecular family produced primarily by one microorganism led to the isolation and structure elucidation of two new molecules designated maridric acids A and B. Molecular networking guided exploration of large culture collections allows for rapid dereplication of know molecules and can highlight producers of uniques metabolites. These methods, together with large culture collections and growing databases, allow for data driven strain prioritization with a focus on novel chemistries.

  16. Solid-phase microextraction and the human fecal VOC metabolome.

    Directory of Open Access Journals (Sweden)

    Emma Dixon

    2011-04-01

    Full Text Available The diagnostic potential and health implications of volatile organic compounds (VOCs present in human feces has begun to receive considerable attention. Headspace solid-phase microextraction (SPME has greatly facilitated the isolation and analysis of VOCs from human feces. Pioneering human fecal VOC metabolomic investigations have utilized a single SPME fiber type for analyte extraction and analysis. However, we hypothesized that the multifarious nature of metabolites present in human feces dictates the use of several diverse SPME fiber coatings for more comprehensive metabolomic coverage. We report here an evaluation of eight different commercially available SPME fibers, in combination with both GC-MS and GC-FID, and identify the 50/30 µm CAR-DVB-PDMS, 85 µm CAR-PDMS, 65 µm DVB-PDMS, 7 µm PDMS, and 60 µm PEG SPME fibers as a minimal set of fibers appropriate for human fecal VOC metabolomics, collectively isolating approximately 90% of the total metabolites obtained when using all eight fibers. We also evaluate the effect of extraction duration on metabolite isolation and illustrate that ex vivo enteric microbial fermentation has no effect on metabolite composition during prolonged extractions if the SPME is performed as described herein.

  17. Biomarker discovery in neurological diseases: a metabolomic approach

    Directory of Open Access Journals (Sweden)

    Afaf El-Ansary

    2009-12-01

    Full Text Available Afaf El-Ansary, Nouf Al-Afaleg, Yousra Al-YafaeeBiochemistry Department, Science College, King Saud University, Riyadh, Saudi ArabiaAbstract: Biomarkers are pharmacological and physiological measurements or specific biochemicals in the body that have a particular molecular feature that makes them useful for measuring the progress of disease or the effects of treatment. Due to the complexity of neurological disorders, it is very difficult to have perfect markers. Brain diseases require plenty of markers to reflect the metabolic impairment of different brain cells. The recent introduction of the metabolomic approach helps the study of neurological diseases based on profiling a multitude of biochemical components related to brain metabolism. This review is a trial to elucidate the possibility to use this approach to identify plasma metabolic markers related to neurological disorders. Previous trials using different metabolomic analyses including nuclear magnetic resonance spectroscopy, gas chromatography combined with mass spectrometry, liquid chromatography combined with mass spectrometry, and capillary electrophoresis will be traced.Keywords: metabolic biomarkers, neurological disorders. metabolome, nuclear magnetic resonance, mass spectrometry, chromatography

  18. The Time Is Right to Focus on Model Organism Metabolomes.

    Science.gov (United States)

    Edison, Arthur S; Hall, Robert D; Junot, Christophe; Karp, Peter D; Kurland, Irwin J; Mistrik, Robert; Reed, Laura K; Saito, Kazuki; Salek, Reza M; Steinbeck, Christoph; Sumner, Lloyd W; Viant, Mark R

    2016-02-15

    Model organisms are an essential component of biological and biomedical research that can be used to study specific biological processes. These organisms are in part selected for facile experimental study. However, just as importantly, intensive study of a small number of model organisms yields important synergies as discoveries in one area of science for a given organism shed light on biological processes in other areas, even for other organisms. Furthermore, the extensive knowledge bases compiled for each model organism enable systems-level understandings of these species, which enhance the overall biological and biomedical knowledge for all organisms, including humans. Building upon extensive genomics research, we argue that the time is now right to focus intensively on model organism metabolomes. We propose a grand challenge for metabolomics studies of model organisms: to identify and map all metabolites onto metabolic pathways, to develop quantitative metabolic models for model organisms, and to relate organism metabolic pathways within the context of evolutionary metabolomics, i.e., phylometabolomics. These efforts should focus on a series of established model organisms in microbial, animal and plant research.

  19. The Time Is Right to Focus on Model Organism Metabolomes

    Directory of Open Access Journals (Sweden)

    Arthur S. Edison

    2016-02-01

    Full Text Available Model organisms are an essential component of biological and biomedical research that can be used to study specific biological processes. These organisms are in part selected for facile experimental study. However, just as importantly, intensive study of a small number of model organisms yields important synergies as discoveries in one area of science for a given organism shed light on biological processes in other areas, even for other organisms. Furthermore, the extensive knowledge bases compiled for each model organism enable systems-level understandings of these species, which enhance the overall biological and biomedical knowledge for all organisms, including humans. Building upon extensive genomics research, we argue that the time is now right to focus intensively on model organism metabolomes. We propose a grand challenge for metabolomics studies of model organisms: to identify and map all metabolites onto metabolic pathways, to develop quantitative metabolic models for model organisms, and to relate organism metabolic pathways within the context of evolutionary metabolomics, i.e., phylometabolomics. These efforts should focus on a series of established model organisms in microbial, animal and plant research.

  20. Understanding Plant Nitrogen Metabolism through Metabolomics and Computational Approaches

    Directory of Open Access Journals (Sweden)

    Perrin H. Beatty

    2016-10-01

    Full Text Available A comprehensive understanding of plant metabolism could provide a direct mechanism for improving nitrogen use efficiency (NUE in crops. One of the major barriers to achieving this outcome is our poor understanding of the complex metabolic networks, physiological factors, and signaling mechanisms that affect NUE in agricultural settings. However, an exciting collection of computational and experimental approaches has begun to elucidate whole-plant nitrogen usage and provides an avenue for connecting nitrogen-related phenotypes to genes. Herein, we describe how metabolomics, computational models of metabolism, and flux balance analysis have been harnessed to advance our understanding of plant nitrogen metabolism. We introduce a model describing the complex flow of nitrogen through crops in a real-world agricultural setting and describe how experimental metabolomics data, such as isotope labeling rates and analyses of nutrient uptake, can be used to refine these models. In summary, the metabolomics/computational approach offers an exciting mechanism for understanding NUE that may ultimately lead to more effective crop management and engineered plants with higher yields.

  1. Serum metabolomics in oral leukoplakia and oral squamous cell carcinoma.

    Science.gov (United States)

    Sridharan, Gokul; Ramani, Pratibha; Patankar, Sangeeta

    2017-01-01

    Metabolomics is a core discipline of system biology focusing on the study of low molecular weight compounds in biological system. Analysis of human metabolome, which is composed of diverse group of metabolites, can aid in diagnosis and prognosis of oral squamous cell carcinoma (OSCC). The aim of the present study is to analyze and identify serum metabolites in oral leukoplakia and OSCC as a potential diagnostic biomarker and a predictor for malignant transformation of oral leukoplakia. Serum metabolomic profile of patients diagnosed with oral leukoplakia (n = 21) and OSCC (n = 22) was compared with normal controls (n = 18) using quadrupole time of flight-liquid chromatography-mass spectrometry. MassHunter profile software was used for metabolite identification, and statistical analysis to assess the variation of the metabolites was performed using Mass Profiler Professional software. Statistical significance between the three groups was expressed using ANOVA (P oral leukoplakia and OSCC than in normal controls. Furthermore, significant upregulation of 5,6-dihydrouridine, 4-hydroxypenbutolol glucuronide, 8-hydroxyadenine, and putrescine was evident in OSCC group than in oral leukoplakia. Upregulation of L-carnitine, lysine, 2-methylcitric acid, putrescine; 8-hydroxyadenine; 17-estradiol; 5,6-dihydrouridine; and MTA suggests their diagnostic potential in oral leukoplakia and OSCC. Further, a significant upregulation of putrescine, 8-hydroxyadenine, and 5,6-dihydrouridine in OSCC than in oral leukoplakia indicates their potential role in predicting the malignant transformation of oral leukoplakia.

  2. Nutritional impact on the plasma metabolome of rats.

    Science.gov (United States)

    Mellert, W; Kapp, M; Strauss, V; Wiemer, J; Kamp, H; Walk, T; Looser, R; Prokoudine, A; Fabian, E; Krennrich, G; Herold, M; van Ravenzwaay, B

    2011-11-30

    Metabolite profiling (metabolomics) elucidates changes in biochemical pathways under various conditions, e.g., different nutrition scenarios or compound administration. BASF and metanomics have obtained plasma metabolic profiles of approximately 500 compounds (agrochemicals, chemicals and pharmaceuticals) from 28-day rat studies. With these profiles the establishment of a database (MetaMap(®)Tox) containing specific metabolic patterns associated with many toxicological modes of action was achieved. To evaluate confounding factors influencing metabolome patterns, the effect of fasting vs. non-fasting prior to blood sampling, the influence of high caloric diet and caloric restriction as well as the administration of corn oil and olive oil was studied for its influence on the metabolome. All mentioned treatments had distinct effects: triacylglycerol, phospholipids and their degradation product levels (fatty acids, glycerol, lysophosphatidylcholine) were often altered depending on the nutritional status. Also some amino acid and related compounds were changed. Some metabolites derived from food (e.g. alpha-tocopherol, ascorbic acid, beta-sitosterol, campesterol) were biomarkers related to food consumption, whereas others indicated a changed energy metabolism (e.g. hydroxybutyrate, pyruvate). Strikingly, there was a profound difference in the metabolite responses to diet restriction in male and female rats. Consequently, when evaluating the metabolic profile of a compound, the effect of nutritional status should be taken into account. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Behavioral metabolomics analysis identifies novel neurochemical signatures in methamphetamine sensitization

    Science.gov (United States)

    Adkins, Daniel E.; McClay, Joseph L.; Vunck, Sarah A.; Batman, Angela M.; Vann, Robert E.; Clark, Shaunna L.; Souza, Renan P.; Crowley, James J.; Sullivan, Patrick F.; van den Oord, Edwin J.C.G.; Beardsley, Patrick M.

    2014-01-01

    Behavioral sensitization has been widely studied in animal models and is theorized to reflect neural modifications associated with human psychostimulant addiction. While the mesolimbic dopaminergic pathway is known to play a role, the neurochemical mechanisms underlying behavioral sensitization remain incompletely understood. In the present study, we conducted the first metabolomics analysis to globally characterize neurochemical differences associated with behavioral sensitization. Methamphetamine-induced sensitization measures were generated by statistically modeling longitudinal activity data for eight inbred strains of mice. Subsequent to behavioral testing, nontargeted liquid and gas chromatography-mass spectrometry profiling was performed on 48 brain samples, yielding 301 metabolite levels per sample after quality control. Association testing between metabolite levels and three primary dimensions of behavioral sensitization (total distance, stereotypy and margin time) showed four robust, significant associations at a stringent metabolome-wide significance threshold (false discovery rate < 0.05). Results implicated homocarnosine, a dipeptide of GABA and histidine, in total distance sensitization, GABA metabolite 4-guanidinobutanoate and pantothenate in stereotypy sensitization, and myo-inositol in margin time sensitization. Secondary analyses indicated that these associations were independent of concurrent methamphetamine levels and, with the exception of the myo-inositol association, suggest a mechanism whereby strain-based genetic variation produces specific baseline neurochemical differences that substantially influence the magnitude of MA-induced sensitization. These findings demonstrate the utility of mouse metabolomics for identifying novel biomarkers, and developing more comprehensive neurochemical models, of psychostimulant sensitization. PMID:24034544

  4. Metabolomics as a promising tool for early osteoarthritis diagnosis

    Directory of Open Access Journals (Sweden)

    E.B. de Sousa

    2017-09-01

    Full Text Available Osteoarthritis (OA is the main cause of disability worldwide, due to progressive articular cartilage loss and degeneration. According to recent research, OA is more than just a degenerative disease due to some metabolic components associated to its pathogenesis. However, no biomarker has been identified to detect this disease at early stages or to track its development. Metabolomics is an emerging field and has the potential to detect many metabolites in a single spectrum using high resolution nuclear magnetic resonance (NMR techniques or mass spectrometry (MS. NMR is a reproducible and reliable non-destructive analytical method. On the other hand, MS has a lower detection limit and is more destructive, but it is more sensitive. NMR and MS are useful for biological fluids, such as urine, blood plasma, serum, or synovial fluid, and have been used for metabolic profiling in dogs, mice, sheep, and humans. Thus, many metabolites have been listed as possibly associated to OA pathogenesis. The goal of this review is to provide an overview of the studies in animal models and humans, regarding the use of metabolomics as a tool for early osteoarthritis diagnosis. The concept of osteoarthritis as a metabolic disease and the importance of detecting a biomarker for its early diagnosis are highlighted. Then, some studies in plasma and synovial tissues are shown, and finally the application of metabolomics in the evaluation of synovial fluid is described.

  5. Maternal Plasma Metabolomic Profiles in Spontaneous Preterm Birth: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Barbara Lizewska

    2018-01-01

    Full Text Available Objective. To profile maternal plasma metabolome in spontaneous preterm birth. Method. In this retrospective case-control study, we have examined plasma of patient with preterm birth (between 22 and 36 weeks of pregnancy (n=57, with threatened preterm labor (between 23 and 36 weeks of pregnancy (n=49, and with term delivery (n=25. Plasma samples were analysed using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS in positive and negative polarity modes. Results. We found 168 differentially expressed metabolites that were significantly distinct between study groups. We determined 51 metabolites using publicly available databases that could be subdivided into one of the five groups: amino acids, fatty acids, lipids, hormones, and bile acids. PLS-DA models, verified by SVM classification accuracy, differentiated preterm birth and term delivery groups. Conclusions. Maternal plasma metabolites are different between term and preterm parturitions. Part of them may be related with preterm labor, while others may be affected by gestational age or the beginning of labor. Metabolite profile can classify preterm or term delivery groups raising the potential of metabolome as a biomarker to identify high-risk pregnancies. Metabolomic studies are also a tool to detect individual compounds that may be further tested in targeted researches.

  6. Metabolome of human gut microbiome is predictive of host dysbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Peter E.; Dai, Yang

    2015-09-14

    Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent on its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.

  7. Job Involvement of Teachers.

    Science.gov (United States)

    Knoop, Robert

    This study investigated the relationship between job involvement and three sets of variables: nine personal (age, sex, marital status, education, overall experience, nonteaching experience, present school experience, income, and locus of control), three structural (size of school, location of school, and hierarchical position), and eight job…

  8. Functional interpretation of metabolomics data as a new method for predicting long-term side effects: treatment of atopic dermatitis in infants.

    Science.gov (United States)

    Lee, Seul Ji; Woo, Sung-il; Ahn, Soo Hyun; Lim, Dong Kyu; Hong, Ji Yeon; Park, Jeong Hill; Lim, Johan; Kim, Mi-kyeong; Kwon, Sung Won

    2014-12-10

    Topical steroids are used for the treatment of primary atopic dermatitis (AD); however, their associated risk of serious complications is great due to the presence of vulnerable lesions in young children with AD. Topical calcineurin inhibitors (TCIs) are steroid-free, anti-inflammatory agents used for topical AD therapy. However, their use is prohibited in infants side effects. The 1% pimecrolimus cream displayed similar efficacy and exceptional safety compared with the 0.05% desonide cream. Metabolomics-based long-term toxicity tests effectively predicted long-term side effects using short-term clinical models. This applicable method for the functional interpretation of metabolomics data sets the foundation for future studies involving the prediction of the toxicity and systemic reactions caused by long-term medication administration.

  9. A story of scrutiny and fear: Australian midwives' experiences of an external review of obstetric services, being involved with litigation and the impact on clinical practice.

    Science.gov (United States)

    Hood, Laraine; Fenwick, Jennifer; Butt, Janice

    2010-06-01

    to describe Australian midwives' experiences of an external review of obstetric services, involvement in legal proceedings and the impact on midwives' clinical practice and personal wellbeing. the external review process (commonly referred to as the 'Douglas Inquiry') was initiated by a state government and was in response to hospital staff and consumer complaints that focused on anomalies in client care and a significantly high rate of adverse outcomes and clinical errors. It took place within the context of a number of legal proceedings against medical practitioners. As a result, some midwives employed by the hospital were called to give evidence at a variety of legal forums. a qualitative study using an explorative descriptive design. Snowball sampling was used to invite 16 Australian midwives to participate in a tape-recorded interview. Thematic analysis and the techniques associated with constant comparison were used to analyse the data. Australian maternity tertiary referral centre. the analysis identified two overarching themes, 'A story of scrutiny' and 'A story of fear', each with a number of subthemes. 'A story of scrutiny' consists of three subthemes. 'A cloak and dagger affair' reflects the midwives' sense of being and feeling 'exposed' and 'vulnerable' whilst simultaneously being 'kept in the dark' and uninformed during the review process. The subtheme 'Being thrown to the wolves' describes the midwives' experiences of being involved, as witnesses, in medico-legal proceedings. The third subtheme, 'The Inquiry followed them home' outlines the effect on midwives' emotional wellbeing and personal relationships. The second major theme, 'A story of fear' again consists of a number of subthemes. 'Feeling unsafe at work: a culture of fear' describes the midwives' experiences of working within an environment they perceive as driven by the fear of litigation. In order to protect themselves and maintain a sense of control, the midwives adopted a number of

  10. Metabolomics study of human urinary metabolome modifications after intake of almond (Prunus dulcis (Mill.) D.A. Webb) skin polyphenols.

    Science.gov (United States)

    Llorach, Rafael; Garrido, Ignacio; Monagas, Maria; Urpi-Sarda, Mireia; Tulipani, Sara; Bartolome, Begona; Andres-Lacueva, Cristina

    2010-11-05

    Almond, as a part of the nut family, is an important source of biological compounds, and specifically, almond skins have been considered an important source of polyphenols, including flavan-3-ols and flavonols. Polyphenol metabolism may produce several classes of metabolites that could often be more biologically active than their dietary precursor and could also become a robust new biomarker of almond polyphenol intake. In order to study urinary metabolome modifications during the 24 h after a single dose of almond skin extract, 24 volunteers (n = 24), who followed a polyphenol-free diet for 48 h before and during the study, ingested a dietary supplement of almond skin phenolic compounds (n = 12) or a placebo (n = 12). Urine samples were collected before ((-2)-0 h) and after (0-2 h, 2-6 h, 6-10 h, and 10-24 h) the intake and were analyzed by liquid chromatography-mass spectrometry (LC-q-TOF) and multivariate statistical analysis (principal component analysis (PCA) and orthogonal projection to latent structures (OPLS)). Putative identification of relevant biomarkers revealed a total of 34 metabolites associated with the single dose of almond extract, including host and, in particular, microbiota metabolites. As far as we know, this is the first time that conjugates of hydroxyphenylvaleric, hydroxyphenylpropionic, and hydroxyphenylacetic acids have been identified in human samples after the consumption of flavan-3-ols through a metabolomic approach. The results showed that this non-targeted approach could provide new intake biomarkers, contributing to the development of the food metabolome as an important part of the human urinary metabolome.

  11. Intestinal Metagenomes and Metabolomes in Healthy Young Males: Inactivity and Hypoxia Generated Negative Physiological Symptoms Precede Microbial Dysbiosis

    Directory of Open Access Journals (Sweden)

    Robert Šket

    2018-03-01

    Full Text Available We explored the metagenomic, metabolomic and trace metal makeup of intestinal microbiota and environment in healthy male participants during the run-in (5 day and the following three 21-day interventions: normoxic bedrest (NBR, hypoxic bedrest (HBR and hypoxic ambulation (HAmb which were carried out within a controlled laboratory environment (circadian rhythm, fluid and dietary intakes, microbial bioburden, oxygen level, exercise. The fraction of inspired O2 (FiO2 and partial pressure of inspired O2 (PiO2 were 0.209 and 133.1 ± 0.3 mmHg for the NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg (~4,000 m simulated altitude for HBR and HAmb interventions, respectively. Shotgun metagenomes were analyzed at various taxonomic and functional levels, 1H- and 13C -metabolomes were processed using standard quantitative and human expert approaches, whereas metals were assessed using X-ray fluorescence spectrometry. Inactivity and hypoxia resulted in a significant increase in the genus Bacteroides in HBR, in genes coding for proteins involved in iron acquisition and metabolism, cell wall, capsule, virulence, defense and mucin degradation, such as beta-galactosidase (EC3.2.1.23, α-L-fucosidase (EC3.2.1.51, Sialidase (EC3.2.1.18, and α-N-acetylglucosaminidase (EC3.2.1.50. In contrast, the microbial metabolomes, intestinal element and metal profiles, the diversity of bacterial, archaeal and fungal microbial communities were not significantly affected. The observed progressive decrease in defecation frequency and concomitant increase in the electrical conductivity (EC preceded or took place in absence of significant changes at the taxonomic, functional gene, metabolome and intestinal metal profile levels. The fact that the genus Bacteroides and proteins involved in iron acquisition and metabolism, cell wall, capsule, virulence and mucin degradation were enriched at the end of HBR suggest that both constipation and EC decreased intestinal metal availability

  12. UHPLC-Q-Orbitrap-HRMS-based global metabolomics reveal metabolome modifications in plasma of young women after cranberry juice consumption.

    Science.gov (United States)

    Liu, Haiyan; Garrett, Timothy J; Su, Zhihua; Khoo, Christina; Gu, Liwei

    2017-07-01

    Plasma metabolome in young women following cranberry juice consumption were investigated using a global UHPLC-Q-Orbitrap-HRMS approach. Seventeen female college students, between 21 and 29 years old, were given either cranberry juice or apple juice for three days using a cross-over design. Plasma samples were collected before and after juice consumption. Plasma metabolomes were analyzed using UHPLC-Q-Orbitrap-HRMS followed by orthogonal partial least squares-discriminant analyses (OPLS-DA). S-plot was used to identify discriminant metabolites. Validated OPLS-DA analyses showed that the plasma metabolome in young women, including both exogenous and endogenous metabolites, were altered following cranberry juice consumption. Cranberry juice caused increases of exogenous metabolites including quinic acid, vanilloloside, catechol sulfate, 3,4-dihydroxyphenyl ethanol sulfate, coumaric acid sulfate, ferulic acid sulfate, 5-(trihydroxphenyl)-gamma-valerolactone, 3-(hydroxyphenyl)proponic acid, hydroxyphenylacetic acid and trihydroxybenzoic acid. In addition, the plasma levels of endogenous metabolites including citramalic acid, aconitic acid, hydroxyoctadecanoic acid, hippuric acid, 2-hydroxyhippuric acid, vanilloylglycine, 4-acetamido-2-aminobutanoic acid, dihydroxyquinoline, and glycerol 3-phosphate were increased in women following cranberry juice consumption. The metabolic differences and discriminant metabolites observed in this study may serve as biomarkers of cranberry juice consumption and explain its health promoting properties in human. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. MeRy-B, a metabolomic database and knowledge base for exploring plant primary metabolism.

    Science.gov (United States)

    Deborde, Catherine; Jacob, Daniel

    2014-01-01

    Plant primary metabolites are organic compounds that are common to all or most plant species and are essential for plant growth, development, and reproduction. They are intermediates and products of metabolism involved in photosynthesis and other biosynthetic processes. Primary metabolites belong to different compound families, mainly carbohydrates, organic acids, amino acids, nucleotides, fatty acids, steroids, or lipids. Until recently, unlike the Human Metabolome Database ( http://www.hmdb.ca ) dedicated to human metabolism, there was no centralized database or repository dedicated exclusively to the plant kingdom that contained information on metabolites and their concentrations in a detailed experimental context. MeRy-B is the first platform for plant (1)H-NMR metabolomic profiles (MeRy-B, http://bit.ly/meryb ), designed to provide a knowledge base of curated plant profiles and metabolites obtained by NMR, together with the corresponding experimental and analytical metadata. MeRy-B contains lists of plant metabolites, mostly primary metabolites and unknown compounds, with information about experimental conditions, the factors studied, and metabolite concentrations for 19 different plant species (Arabidopsis, broccoli, daphne, grape, maize, barrel clover, melon, Ostreococcus tauri, palm date, palm tree, peach, pine tree, eucalyptus, plantain rice, strawberry, sugar beet, tomato, vanilla), compiled from more than 2,300 annotated NMR profiles for various organs or tissues deposited by 30 different private or public contributors in September 2013. Currently, about half of the data deposited in MeRy-B is publicly available. In this chapter, readers will be shown how to (1) navigate through and retrieve data of publicly available projects on MeRy-B website; (2) visualize lists of experimentally identified metabolites and their concentrations in all plant species present in MeRy-B; (3) get primary metabolite list for a particular plant species in MeRy-B; and for a

  14. Plasma metabolome and skin proteins in Charcot-Marie-Tooth 1A patients.

    Science.gov (United States)

    Soldevilla, Beatriz; Cuevas-Martín, Carmen; Ibáñez, Clara; Santacatterina, Fulvio; Alberti, María A; Simó, Carolina; Casasnovas, Carlos; Márquez-Infante, Celedonio; Sevilla, Teresa; Pascual, Samuel I; Sánchez-Aragó, María; Espinos, Carmen; Palau, Francesc; Cuezva, José M

    2017-01-01

    Charcot-Marie-Tooth 1A (CMT1A) disease is the most common inherited neuropathy that lacks of therapy and of molecular markers to assess disease severity. Herein, we have pursued the identification of potential biomarkers in plasma samples and skin biopsies that could define the phenotype of CMT1A patients at mild (Mi), moderate (Mo) and severe (Se) stages of disease as assessed by the CMT neuropathy score to contribute to the understanding of CMT pathophysiology and eventually inform of the severity of the disease. We have used: (i) a high-throughput untargeted metabolomic approach of plasma samples in a cohort of 42 CMT1A patients and 15 healthy controls (CRL) using ultrahigh liquid chromatography coupled to mass spectrometry and (ii) reverse phase protein microarrays to quantitate the expression of some proteins of energy metabolism and of the antioxidant response in skin biopsies of a cohort of 70 CMT1A patients and 13 healthy controls. The metabolomic approach identified 194 metabolites with significant differences among the four groups (Mi, Mo, Se, CRL) of samples. A multivariate Linear Discriminant Analysis model using 12 metabolites afforded the correct classification of the samples. These metabolites indicate an increase in protein catabolism and the mobilization of membrane lipids involved in signaling inflammation with severity of CMT1A. A concurrent depletion of leucine, which is required for the biogenesis of the muscle, is also observed in the patients. Protein expression in skin biopsies indicates early loss of mitochondrial and antioxidant proteins in patients' biopsies. The findings indicate that CMT1A disease is associated with a metabolic state resembling inflammation and sarcopenia suggesting that it might represent a potential target to prevent the nerve and muscle wasting phenotype in these patients. The observed changes in metabolites could be useful as potential biomarkers of CMT1A disease after appropriate validation in future longitudinal

  15. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum.

    Directory of Open Access Journals (Sweden)

    Christian Gieger

    2008-11-01

    Full Text Available The rapidly evolving field of metabolomics aims at a comprehensive measurement of ideally all endogenous metabolites in a cell or body fluid. It thereby provides a functional readout of the physiological state of the human body. Genetic variants that associate with changes in the homeostasis of key lipids, carbohydrates, or amino acids are not only expected to display much larger effect sizes due to their direct involvement in metabolite conversion modification, but should also provide access to the biochemical context of such variations, in particular when enzyme coding genes are concerned. To test this hypothesis, we conducted what is, to the best of our knowledge, the first GWA study with metabolomics based on the quantitative measurement of 363 metabolites in serum of 284 male participants of the KORA study. We found associations of frequent single nucleotide polymorphisms (SNPs with considerable differences in the metabolic homeostasis of the human body, explaining up to 12% of the observed variance. Using ratios of certain metabolite concentrations as a proxy for enzymatic activity, up to 28% of the variance can be explained (p-values 10(-16 to 10(-21. We identified four genetic variants in genes coding for enzymes (FADS1, LIPC, SCAD, MCAD where the corresponding metabolic phenotype (metabotype clearly matches the biochemical pathways in which these enzymes are active. Our results suggest that common genetic polymorphisms induce major differentiations in the metabolic make-up of the human population. This may lead to a novel approach to personalized health care based on a combination of genotyping and metabolic characterization. These genetically determined metabotypes may subscribe the risk for a certain medical phenotype, the response to a given drug treatment, or the reaction to a nutritional intervention or environmental challenge.

  16. Plasma metabolome and skin proteins in Charcot-Marie-Tooth 1A patients.

    Directory of Open Access Journals (Sweden)

    Beatriz Soldevilla

    Full Text Available Charcot-Marie-Tooth 1A (CMT1A disease is the most common inherited neuropathy that lacks of therapy and of molecular markers to assess disease severity. Herein, we have pursued the identification of potential biomarkers in plasma samples and skin biopsies that could define the phenotype of CMT1A patients at mild (Mi, moderate (Mo and severe (Se stages of disease as assessed by the CMT neuropathy score to contribute to the understanding of CMT pathophysiology and eventually inform of the severity of the disease.We have used: (i a high-throughput untargeted metabolomic approach of plasma samples in a cohort of 42 CMT1A patients and 15 healthy controls (CRL using ultrahigh liquid chromatography coupled to mass spectrometry and (ii reverse phase protein microarrays to quantitate the expression of some proteins of energy metabolism and of the antioxidant response in skin biopsies of a cohort of 70 CMT1A patients and 13 healthy controls.The metabolomic approach identified 194 metabolites with significant differences among the four groups (Mi, Mo, Se, CRL of samples. A multivariate Linear Discriminant Analysis model using 12 metabolites afforded the correct classification of the samples. These metabolites indicate an increase in protein catabolism and the mobilization of membrane lipids involved in signaling inflammation with severity of CMT1A. A concurrent depletion of leucine, which is required for the biogenesis of the muscle, is also observed in the patients. Protein expression in skin biopsies indicates early loss of mitochondrial and antioxidant proteins in patients' biopsies.The findings indicate that CMT1A disease is associated with a metabolic state resembling inflammation and sarcopenia suggesting that it might represent a potential target to prevent the nerve and muscle wasting phenotype in these patients. The observed changes in metabolites could be useful as potential biomarkers of CMT1A disease after appropriate validation in future

  17. Investigation of Liver Injury of Polygonum multiflorum Thunb. in Rats by Metabolomics and Traditional Approaches

    Science.gov (United States)

    Li, Yun-Xia; Gong, Xiao-Hong; Liu, Mei-Chen; Peng, Cheng; Li, Peng; Wang, Yi-Tao

    2017-01-01

    Liver injury induced by Polygonum multiflorum Thunb. (PM) have been reported since 2006, which aroused widespread concern. However, the toxicity mechanism of PM liver injury remained unclear. In this study, the mechanism of liver injury induced by different doses of PM after long-term administration was investigated in rats by metabolomics and traditional approaches. Rats were randomly divided into control group and PM groups. PM groups were oral administered PM of low (10 g/kg), medium (20 g/kg), high (40 g/kg) dose, while control group was administered distilled water. After 28 days of continuous administration, the serum biochemical indexes in the control and three PM groups were measured and the liver histopathology were analyzed. Also, UPLC-Q-TOF-MS with untargeted metabolomics was performed to identify the possible metabolites and pathway of liver injury caused by PM. Compared with the control group, the serum levels of ALT, AST, ALP, TG, and TBA in middle and high dose PM groups were significantly increased. And the serum contents of T-Bil, D-Bil, TC, TP were significantly decreased. However, there was no significant difference between the low dose group of PM and the control group except serum AST, TG, T-Bil, and D-Bil. Nine biomarkers were identified based on biomarkers analysis. And the pathway analysis indicated that fat metabolism, amino acid metabolism and bile acid metabolism were involved in PM liver injury. Based on the biomarker pathway analysis, PM changed the lipid metabolism, amino acid metabolism and bile acid metabolism and excretion in a dose-dependent manner which was related to the mechanism of liver injury. PMID:29163173

  18. Investigation of Liver Injury of Polygonum multiflorum Thunb. in Rats by Metabolomics and Traditional Approaches

    Directory of Open Access Journals (Sweden)

    Yun-Xia Li

    2017-11-01

    Full Text Available Liver injury induced by Polygonum multiflorum Thunb. (PM have been reported since 2006, which aroused widespread concern. However, the toxicity mechanism of PM liver injury remained unclear. In this study, the mechanism of liver injury induced by different doses of PM after long-term administration was investigated in rats by metabolomics and traditional approaches. Rats were randomly divided into control group and PM groups. PM groups were oral administered PM of low (10 g/kg, medium (20 g/kg, high (40 g/kg dose, while control group was administered distilled water. After 28 days of continuous administration, the serum biochemical indexes in the control and three PM groups were measured and the liver histopathology were analyzed. Also, UPLC-Q-TOF-MS with untargeted metabolomics was performed to identify the possible metabolites and pathway of liver injury caused by PM. Compared with the control group, the serum levels of ALT, AST, ALP, TG, and TBA in middle and high dose PM groups were significantly increased. And the serum contents of T-Bil, D-Bil, TC, TP were significantly decreased. However, there was no significant difference between the low dose group of PM and the control group except serum AST, TG, T-Bil, and D-Bil. Nine biomarkers were identified based on biomarkers analysis. And the pathway analysis indicated that fat metabolism, amino acid metabolism and bile acid metabolism were involved in PM liver injury. Based on the biomarker pathway analysis, PM changed the lipid metabolism, amino acid metabolism and bile acid metabolism and excretion in a dose-dependent manner which was related to the mechanism of liver injury.

  19. Urinary Metabolomic Study of Chlorogenic Acid in a Rat Model of Chronic Sleep Deprivation Using Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Wei-ni Ma

    2018-01-01

    Full Text Available The urinary metabolomic study based on gas chromatography-mass spectrometry (GC-MS had been developed to investigate the possible antidepressant mechanism of chlorogenic acid (CGA in a rat model of sleep deprivation (SD. According to pattern recognition analysis, there was a clear separation among big platform group (BP, sleep deprivation group (SD, and the CGA (model + CGA, and CGA group was much closer to the BP group by showing a tendency of recovering towards BP group. Thirty-six significantly changed metabolites related to antidepressant by CGA were identified and used to explore the potential mechanism. Combined with the result of the classic behavioral tests and biochemical indices, CGA has significant antidepressant effects in a rat model of SD, suggesting that the mechanism of action of CGA might be involved in regulating the abnormal pathway of nicotinate and nicotinamide metabolism; glyoxylate and dicarboxylate metabolism; glycine, serine, and threonine metabolism; and arginine and proline metabolism. Our results also show that metabolomics analysis based on GC-MS is a useful tool for exploring biomarkers involved in depression and elucidating the potential therapeutic mechanisms of Chinese medicine.

  20. The outcome of patients with renal involvement in pediatric-onset systemic lupus erythematosus--a 20-year experience in Asia.

    Science.gov (United States)

    Lee, P-Y; Yeh, K-W; Yao, T-C; Lee, W-I; Lin, Y-J; Huang, J-L

    2013-12-01

    Systemic lupus erythematosus (SLE) predominantly affects women of childbearing age, but 15-20% of cases are diagnosed during childhood. It is important for physicians to understand the epidemiology and clinical presentation for early detection and diagnosis of this disease in difference races. The aim of this retrospective review was to provide a 20-year experience for initial clinical and laboratory manifestations and outcomes in pediatric-onset SLE (pSLE) in a medical center in Asia. We reviewed medical records between April 1990 and June 2012 of patients with a diagnosis of International Classification of Diseases, Ninth Revision (ICD-9) code 710.0 (SLE), who admitted or received follow-up in the Department of Pediatrics at Chang Chung Memorial Hospital. Patients with a diagnosis of SLE prior to their 18th birthday and followed up at our hospital were eligible for inclusion in this study. Medical records regarding age, gender, date of birth and diagnosis, clinical manifestations at diagnosis, laboratory results, image studies and the classification criteria were reviewed. Patients received regular outpatient department follow-up and laboratory survey every 1-6 months. The study cohort consisted of 189 patients; 164 females (86.87%) and 25 males (13.23%). The overall mean age at pSLE diagnosis was 12.62 ± 2.77 years. The most common clinical symptom was malar rash, followed by arthritis and oral ulcers. There was no significant difference in clinical and laboratory manifestations between females and males. More than half of the patients presented with renal involvement initially. The most common histological finding was Class IV lupus nephritis (LN), especially in males (p = 0.0